1 | //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains a printer that converts from our internal representation |
10 | // of machine-dependent LLVM code to GAS-format ARM assembly language. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "ARMAsmPrinter.h" |
15 | #include "ARM.h" |
16 | #include "ARMConstantPoolValue.h" |
17 | #include "ARMMachineFunctionInfo.h" |
18 | #include "ARMTargetMachine.h" |
19 | #include "ARMTargetObjectFile.h" |
20 | #include "MCTargetDesc/ARMAddressingModes.h" |
21 | #include "MCTargetDesc/ARMInstPrinter.h" |
22 | #include "MCTargetDesc/ARMMCExpr.h" |
23 | #include "TargetInfo/ARMTargetInfo.h" |
24 | #include "llvm/ADT/SmallString.h" |
25 | #include "llvm/BinaryFormat/COFF.h" |
26 | #include "llvm/CodeGen/MachineFunctionPass.h" |
27 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
28 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
29 | #include "llvm/IR/Constants.h" |
30 | #include "llvm/IR/DataLayout.h" |
31 | #include "llvm/IR/Mangler.h" |
32 | #include "llvm/IR/Module.h" |
33 | #include "llvm/IR/Type.h" |
34 | #include "llvm/MC/MCAsmInfo.h" |
35 | #include "llvm/MC/MCAssembler.h" |
36 | #include "llvm/MC/MCContext.h" |
37 | #include "llvm/MC/MCELFStreamer.h" |
38 | #include "llvm/MC/MCInst.h" |
39 | #include "llvm/MC/MCInstBuilder.h" |
40 | #include "llvm/MC/MCObjectStreamer.h" |
41 | #include "llvm/MC/MCStreamer.h" |
42 | #include "llvm/MC/MCSymbol.h" |
43 | #include "llvm/MC/TargetRegistry.h" |
44 | #include "llvm/Support/ARMBuildAttributes.h" |
45 | #include "llvm/Support/Debug.h" |
46 | #include "llvm/Support/ErrorHandling.h" |
47 | #include "llvm/Support/raw_ostream.h" |
48 | #include "llvm/Target/TargetMachine.h" |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "asm-printer" |
52 | |
53 | ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, |
54 | std::unique_ptr<MCStreamer> Streamer) |
55 | : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), |
56 | MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} |
57 | |
58 | void ARMAsmPrinter::emitFunctionBodyEnd() { |
59 | // Make sure to terminate any constant pools that were at the end |
60 | // of the function. |
61 | if (!InConstantPool) |
62 | return; |
63 | InConstantPool = false; |
64 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
65 | } |
66 | |
67 | void ARMAsmPrinter::emitFunctionEntryLabel() { |
68 | if (AFI->isThumbFunction()) { |
69 | OutStreamer->emitAssemblerFlag(Flag: MCAF_Code16); |
70 | OutStreamer->emitThumbFunc(Func: CurrentFnSym); |
71 | } else { |
72 | OutStreamer->emitAssemblerFlag(Flag: MCAF_Code32); |
73 | } |
74 | |
75 | // Emit symbol for CMSE non-secure entry point |
76 | if (AFI->isCmseNSEntryFunction()) { |
77 | MCSymbol *S = |
78 | OutContext.getOrCreateSymbol(Name: "__acle_se_" + CurrentFnSym->getName()); |
79 | emitLinkage(GV: &MF->getFunction(), GVSym: S); |
80 | OutStreamer->emitSymbolAttribute(Symbol: S, Attribute: MCSA_ELF_TypeFunction); |
81 | OutStreamer->emitLabel(Symbol: S); |
82 | } |
83 | AsmPrinter::emitFunctionEntryLabel(); |
84 | } |
85 | |
86 | void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { |
87 | uint64_t Size = getDataLayout().getTypeAllocSize(Ty: CV->getType()); |
88 | assert(Size && "C++ constructor pointer had zero size!" ); |
89 | |
90 | const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CV->stripPointerCasts()); |
91 | assert(GV && "C++ constructor pointer was not a GlobalValue!" ); |
92 | |
93 | const MCExpr *E = MCSymbolRefExpr::create(Symbol: GetARMGVSymbol(GV, |
94 | TargetFlags: ARMII::MO_NO_FLAG), |
95 | Kind: (Subtarget->isTargetELF() |
96 | ? MCSymbolRefExpr::VK_ARM_TARGET1 |
97 | : MCSymbolRefExpr::VK_None), |
98 | Ctx&: OutContext); |
99 | |
100 | OutStreamer->emitValue(Value: E, Size); |
101 | } |
102 | |
103 | void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { |
104 | if (PromotedGlobals.count(Ptr: GV)) |
105 | // The global was promoted into a constant pool. It should not be emitted. |
106 | return; |
107 | AsmPrinter::emitGlobalVariable(GV); |
108 | } |
109 | |
110 | /// runOnMachineFunction - This uses the emitInstruction() |
111 | /// method to print assembly for each instruction. |
112 | /// |
113 | bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
114 | AFI = MF.getInfo<ARMFunctionInfo>(); |
115 | MCP = MF.getConstantPool(); |
116 | Subtarget = &MF.getSubtarget<ARMSubtarget>(); |
117 | |
118 | SetupMachineFunction(MF); |
119 | const Function &F = MF.getFunction(); |
120 | const TargetMachine& TM = MF.getTarget(); |
121 | |
122 | // Collect all globals that had their storage promoted to a constant pool. |
123 | // Functions are emitted before variables, so this accumulates promoted |
124 | // globals from all functions in PromotedGlobals. |
125 | for (const auto *GV : AFI->getGlobalsPromotedToConstantPool()) |
126 | PromotedGlobals.insert(Ptr: GV); |
127 | |
128 | // Calculate this function's optimization goal. |
129 | unsigned OptimizationGoal; |
130 | if (F.hasOptNone()) |
131 | // For best debugging illusion, speed and small size sacrificed |
132 | OptimizationGoal = 6; |
133 | else if (F.hasMinSize()) |
134 | // Aggressively for small size, speed and debug illusion sacrificed |
135 | OptimizationGoal = 4; |
136 | else if (F.hasOptSize()) |
137 | // For small size, but speed and debugging illusion preserved |
138 | OptimizationGoal = 3; |
139 | else if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) |
140 | // Aggressively for speed, small size and debug illusion sacrificed |
141 | OptimizationGoal = 2; |
142 | else if (TM.getOptLevel() > CodeGenOptLevel::None) |
143 | // For speed, but small size and good debug illusion preserved |
144 | OptimizationGoal = 1; |
145 | else // TM.getOptLevel() == CodeGenOptLevel::None |
146 | // For good debugging, but speed and small size preserved |
147 | OptimizationGoal = 5; |
148 | |
149 | // Combine a new optimization goal with existing ones. |
150 | if (OptimizationGoals == -1) // uninitialized goals |
151 | OptimizationGoals = OptimizationGoal; |
152 | else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals |
153 | OptimizationGoals = 0; |
154 | |
155 | if (Subtarget->isTargetCOFF()) { |
156 | bool Local = F.hasLocalLinkage(); |
157 | COFF::SymbolStorageClass Scl = |
158 | Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL; |
159 | int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; |
160 | |
161 | OutStreamer->beginCOFFSymbolDef(Symbol: CurrentFnSym); |
162 | OutStreamer->emitCOFFSymbolStorageClass(StorageClass: Scl); |
163 | OutStreamer->emitCOFFSymbolType(Type); |
164 | OutStreamer->endCOFFSymbolDef(); |
165 | } |
166 | |
167 | // Emit the rest of the function body. |
168 | emitFunctionBody(); |
169 | |
170 | // Emit the XRay table for this function. |
171 | emitXRayTable(); |
172 | |
173 | // If we need V4T thumb mode Register Indirect Jump pads, emit them. |
174 | // These are created per function, rather than per TU, since it's |
175 | // relatively easy to exceed the thumb branch range within a TU. |
176 | if (! ThumbIndirectPads.empty()) { |
177 | OutStreamer->emitAssemblerFlag(Flag: MCAF_Code16); |
178 | emitAlignment(Alignment: Align(2)); |
179 | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { |
180 | OutStreamer->emitLabel(Symbol: TIP.second); |
181 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBX) |
182 | .addReg(Reg: TIP.first) |
183 | // Add predicate operands. |
184 | .addImm(Val: ARMCC::AL) |
185 | .addReg(Reg: 0)); |
186 | } |
187 | ThumbIndirectPads.clear(); |
188 | } |
189 | |
190 | // We didn't modify anything. |
191 | return false; |
192 | } |
193 | |
194 | void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, |
195 | raw_ostream &O) { |
196 | assert(MO.isGlobal() && "caller should check MO.isGlobal" ); |
197 | unsigned TF = MO.getTargetFlags(); |
198 | if (TF & ARMII::MO_LO16) |
199 | O << ":lower16:" ; |
200 | else if (TF & ARMII::MO_HI16) |
201 | O << ":upper16:" ; |
202 | else if (TF & ARMII::MO_LO_0_7) |
203 | O << ":lower0_7:" ; |
204 | else if (TF & ARMII::MO_LO_8_15) |
205 | O << ":lower8_15:" ; |
206 | else if (TF & ARMII::MO_HI_0_7) |
207 | O << ":upper0_7:" ; |
208 | else if (TF & ARMII::MO_HI_8_15) |
209 | O << ":upper8_15:" ; |
210 | |
211 | GetARMGVSymbol(GV: MO.getGlobal(), TargetFlags: TF)->print(OS&: O, MAI); |
212 | printOffset(Offset: MO.getOffset(), OS&: O); |
213 | } |
214 | |
215 | void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, |
216 | raw_ostream &O) { |
217 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
218 | |
219 | switch (MO.getType()) { |
220 | default: llvm_unreachable("<unknown operand type>" ); |
221 | case MachineOperand::MO_Register: { |
222 | Register Reg = MO.getReg(); |
223 | assert(Reg.isPhysical()); |
224 | assert(!MO.getSubReg() && "Subregs should be eliminated!" ); |
225 | if(ARM::GPRPairRegClass.contains(Reg)) { |
226 | const MachineFunction &MF = *MI->getParent()->getParent(); |
227 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
228 | Reg = TRI->getSubReg(Reg, Idx: ARM::gsub_0); |
229 | } |
230 | O << ARMInstPrinter::getRegisterName(Reg); |
231 | break; |
232 | } |
233 | case MachineOperand::MO_Immediate: { |
234 | O << '#'; |
235 | unsigned TF = MO.getTargetFlags(); |
236 | if (TF == ARMII::MO_LO16) |
237 | O << ":lower16:" ; |
238 | else if (TF == ARMII::MO_HI16) |
239 | O << ":upper16:" ; |
240 | else if (TF == ARMII::MO_LO_0_7) |
241 | O << ":lower0_7:" ; |
242 | else if (TF == ARMII::MO_LO_8_15) |
243 | O << ":lower8_15:" ; |
244 | else if (TF == ARMII::MO_HI_0_7) |
245 | O << ":upper0_7:" ; |
246 | else if (TF == ARMII::MO_HI_8_15) |
247 | O << ":upper8_15:" ; |
248 | O << MO.getImm(); |
249 | break; |
250 | } |
251 | case MachineOperand::MO_MachineBasicBlock: |
252 | MO.getMBB()->getSymbol()->print(OS&: O, MAI); |
253 | return; |
254 | case MachineOperand::MO_GlobalAddress: { |
255 | PrintSymbolOperand(MO, O); |
256 | break; |
257 | } |
258 | case MachineOperand::MO_ConstantPoolIndex: |
259 | if (Subtarget->genExecuteOnly()) |
260 | llvm_unreachable("execute-only should not generate constant pools" ); |
261 | GetCPISymbol(CPID: MO.getIndex())->print(OS&: O, MAI); |
262 | break; |
263 | } |
264 | } |
265 | |
266 | MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { |
267 | // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as |
268 | // indexes in MachineConstantPool, which isn't in sync with indexes used here. |
269 | const DataLayout &DL = getDataLayout(); |
270 | return OutContext.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) + |
271 | "CPI" + Twine(getFunctionNumber()) + "_" + |
272 | Twine(CPID)); |
273 | } |
274 | |
275 | //===--------------------------------------------------------------------===// |
276 | |
277 | MCSymbol *ARMAsmPrinter:: |
278 | GetARMJTIPICJumpTableLabel(unsigned uid) const { |
279 | const DataLayout &DL = getDataLayout(); |
280 | SmallString<60> Name; |
281 | raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" |
282 | << getFunctionNumber() << '_' << uid; |
283 | return OutContext.getOrCreateSymbol(Name); |
284 | } |
285 | |
286 | bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, |
287 | const char *, raw_ostream &O) { |
288 | // Does this asm operand have a single letter operand modifier? |
289 | if (ExtraCode && ExtraCode[0]) { |
290 | if (ExtraCode[1] != 0) return true; // Unknown modifier. |
291 | |
292 | switch (ExtraCode[0]) { |
293 | default: |
294 | // See if this is a generic print operand |
295 | return AsmPrinter::PrintAsmOperand(MI, OpNo: OpNum, ExtraCode, OS&: O); |
296 | case 'P': // Print a VFP double precision register. |
297 | case 'q': // Print a NEON quad precision register. |
298 | printOperand(MI, OpNum, O); |
299 | return false; |
300 | case 'y': // Print a VFP single precision register as indexed double. |
301 | if (MI->getOperand(i: OpNum).isReg()) { |
302 | MCRegister Reg = MI->getOperand(i: OpNum).getReg().asMCReg(); |
303 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
304 | // Find the 'd' register that has this 's' register as a sub-register, |
305 | // and determine the lane number. |
306 | for (MCPhysReg SR : TRI->superregs(Reg)) { |
307 | if (!ARM::DPRRegClass.contains(Reg: SR)) |
308 | continue; |
309 | bool Lane0 = TRI->getSubReg(Reg: SR, Idx: ARM::ssub_0) == Reg; |
310 | O << ARMInstPrinter::getRegisterName(Reg: SR) << (Lane0 ? "[0]" : "[1]" ); |
311 | return false; |
312 | } |
313 | } |
314 | return true; |
315 | case 'B': // Bitwise inverse of integer or symbol without a preceding #. |
316 | if (!MI->getOperand(i: OpNum).isImm()) |
317 | return true; |
318 | O << ~(MI->getOperand(i: OpNum).getImm()); |
319 | return false; |
320 | case 'L': // The low 16 bits of an immediate constant. |
321 | if (!MI->getOperand(i: OpNum).isImm()) |
322 | return true; |
323 | O << (MI->getOperand(i: OpNum).getImm() & 0xffff); |
324 | return false; |
325 | case 'M': { // A register range suitable for LDM/STM. |
326 | if (!MI->getOperand(i: OpNum).isReg()) |
327 | return true; |
328 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
329 | Register RegBegin = MO.getReg(); |
330 | // This takes advantage of the 2 operand-ness of ldm/stm and that we've |
331 | // already got the operands in registers that are operands to the |
332 | // inline asm statement. |
333 | O << "{" ; |
334 | if (ARM::GPRPairRegClass.contains(Reg: RegBegin)) { |
335 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
336 | Register Reg0 = TRI->getSubReg(Reg: RegBegin, Idx: ARM::gsub_0); |
337 | O << ARMInstPrinter::getRegisterName(Reg: Reg0) << ", " ; |
338 | RegBegin = TRI->getSubReg(Reg: RegBegin, Idx: ARM::gsub_1); |
339 | } |
340 | O << ARMInstPrinter::getRegisterName(Reg: RegBegin); |
341 | |
342 | // FIXME: The register allocator not only may not have given us the |
343 | // registers in sequence, but may not be in ascending registers. This |
344 | // will require changes in the register allocator that'll need to be |
345 | // propagated down here if the operands change. |
346 | unsigned RegOps = OpNum + 1; |
347 | while (MI->getOperand(i: RegOps).isReg()) { |
348 | O << ", " |
349 | << ARMInstPrinter::getRegisterName(Reg: MI->getOperand(i: RegOps).getReg()); |
350 | RegOps++; |
351 | } |
352 | |
353 | O << "}" ; |
354 | |
355 | return false; |
356 | } |
357 | case 'R': // The most significant register of a pair. |
358 | case 'Q': { // The least significant register of a pair. |
359 | if (OpNum == 0) |
360 | return true; |
361 | const MachineOperand &FlagsOP = MI->getOperand(i: OpNum - 1); |
362 | if (!FlagsOP.isImm()) |
363 | return true; |
364 | InlineAsm::Flag F(FlagsOP.getImm()); |
365 | |
366 | // This operand may not be the one that actually provides the register. If |
367 | // it's tied to a previous one then we should refer instead to that one |
368 | // for registers and their classes. |
369 | unsigned TiedIdx; |
370 | if (F.isUseOperandTiedToDef(Idx&: TiedIdx)) { |
371 | for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { |
372 | unsigned OpFlags = MI->getOperand(i: OpNum).getImm(); |
373 | const InlineAsm::Flag F(OpFlags); |
374 | OpNum += F.getNumOperandRegisters() + 1; |
375 | } |
376 | F = InlineAsm::Flag(MI->getOperand(i: OpNum).getImm()); |
377 | |
378 | // Later code expects OpNum to be pointing at the register rather than |
379 | // the flags. |
380 | OpNum += 1; |
381 | } |
382 | |
383 | const unsigned NumVals = F.getNumOperandRegisters(); |
384 | unsigned RC; |
385 | bool FirstHalf; |
386 | const ARMBaseTargetMachine &ATM = |
387 | static_cast<const ARMBaseTargetMachine &>(TM); |
388 | |
389 | // 'Q' should correspond to the low order register and 'R' to the high |
390 | // order register. Whether this corresponds to the upper or lower half |
391 | // depends on the endianess mode. |
392 | if (ExtraCode[0] == 'Q') |
393 | FirstHalf = ATM.isLittleEndian(); |
394 | else |
395 | // ExtraCode[0] == 'R'. |
396 | FirstHalf = !ATM.isLittleEndian(); |
397 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
398 | if (F.hasRegClassConstraint(RC) && |
399 | ARM::GPRPairRegClass.hasSubClassEq(RC: TRI->getRegClass(i: RC))) { |
400 | if (NumVals != 1) |
401 | return true; |
402 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
403 | if (!MO.isReg()) |
404 | return true; |
405 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
406 | Register Reg = |
407 | TRI->getSubReg(Reg: MO.getReg(), Idx: FirstHalf ? ARM::gsub_0 : ARM::gsub_1); |
408 | O << ARMInstPrinter::getRegisterName(Reg); |
409 | return false; |
410 | } |
411 | if (NumVals != 2) |
412 | return true; |
413 | unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; |
414 | if (RegOp >= MI->getNumOperands()) |
415 | return true; |
416 | const MachineOperand &MO = MI->getOperand(i: RegOp); |
417 | if (!MO.isReg()) |
418 | return true; |
419 | Register Reg = MO.getReg(); |
420 | O << ARMInstPrinter::getRegisterName(Reg); |
421 | return false; |
422 | } |
423 | |
424 | case 'e': // The low doubleword register of a NEON quad register. |
425 | case 'f': { // The high doubleword register of a NEON quad register. |
426 | if (!MI->getOperand(i: OpNum).isReg()) |
427 | return true; |
428 | Register Reg = MI->getOperand(i: OpNum).getReg(); |
429 | if (!ARM::QPRRegClass.contains(Reg)) |
430 | return true; |
431 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
432 | Register SubReg = |
433 | TRI->getSubReg(Reg, Idx: ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); |
434 | O << ARMInstPrinter::getRegisterName(Reg: SubReg); |
435 | return false; |
436 | } |
437 | |
438 | // This modifier is not yet supported. |
439 | case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. |
440 | return true; |
441 | case 'H': { // The highest-numbered register of a pair. |
442 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
443 | if (!MO.isReg()) |
444 | return true; |
445 | const MachineFunction &MF = *MI->getParent()->getParent(); |
446 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
447 | Register Reg = MO.getReg(); |
448 | if(!ARM::GPRPairRegClass.contains(Reg)) |
449 | return false; |
450 | Reg = TRI->getSubReg(Reg, Idx: ARM::gsub_1); |
451 | O << ARMInstPrinter::getRegisterName(Reg); |
452 | return false; |
453 | } |
454 | } |
455 | } |
456 | |
457 | printOperand(MI, OpNum, O); |
458 | return false; |
459 | } |
460 | |
461 | bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
462 | unsigned OpNum, const char *, |
463 | raw_ostream &O) { |
464 | // Does this asm operand have a single letter operand modifier? |
465 | if (ExtraCode && ExtraCode[0]) { |
466 | if (ExtraCode[1] != 0) return true; // Unknown modifier. |
467 | |
468 | switch (ExtraCode[0]) { |
469 | case 'A': // A memory operand for a VLD1/VST1 instruction. |
470 | default: return true; // Unknown modifier. |
471 | case 'm': // The base register of a memory operand. |
472 | if (!MI->getOperand(i: OpNum).isReg()) |
473 | return true; |
474 | O << ARMInstPrinter::getRegisterName(Reg: MI->getOperand(i: OpNum).getReg()); |
475 | return false; |
476 | } |
477 | } |
478 | |
479 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
480 | assert(MO.isReg() && "unexpected inline asm memory operand" ); |
481 | O << "[" << ARMInstPrinter::getRegisterName(Reg: MO.getReg()) << "]" ; |
482 | return false; |
483 | } |
484 | |
485 | static bool isThumb(const MCSubtargetInfo& STI) { |
486 | return STI.hasFeature(Feature: ARM::ModeThumb); |
487 | } |
488 | |
489 | void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, |
490 | const MCSubtargetInfo *EndInfo) const { |
491 | // If either end mode is unknown (EndInfo == NULL) or different than |
492 | // the start mode, then restore the start mode. |
493 | const bool WasThumb = isThumb(STI: StartInfo); |
494 | if (!EndInfo || WasThumb != isThumb(STI: *EndInfo)) { |
495 | OutStreamer->emitAssemblerFlag(Flag: WasThumb ? MCAF_Code16 : MCAF_Code32); |
496 | } |
497 | } |
498 | |
499 | void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { |
500 | const Triple &TT = TM.getTargetTriple(); |
501 | // Use unified assembler syntax. |
502 | OutStreamer->emitAssemblerFlag(Flag: MCAF_SyntaxUnified); |
503 | |
504 | // Emit ARM Build Attributes |
505 | if (TT.isOSBinFormatELF()) |
506 | emitAttributes(); |
507 | |
508 | // Use the triple's architecture and subarchitecture to determine |
509 | // if we're thumb for the purposes of the top level code16 assembler |
510 | // flag. |
511 | if (!M.getModuleInlineAsm().empty() && TT.isThumb()) |
512 | OutStreamer->emitAssemblerFlag(Flag: MCAF_Code16); |
513 | } |
514 | |
515 | static void |
516 | emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, |
517 | MachineModuleInfoImpl::StubValueTy &MCSym) { |
518 | // L_foo$stub: |
519 | OutStreamer.emitLabel(Symbol: StubLabel); |
520 | // .indirect_symbol _foo |
521 | OutStreamer.emitSymbolAttribute(Symbol: MCSym.getPointer(), Attribute: MCSA_IndirectSymbol); |
522 | |
523 | if (MCSym.getInt()) |
524 | // External to current translation unit. |
525 | OutStreamer.emitIntValue(Value: 0, Size: 4/*size*/); |
526 | else |
527 | // Internal to current translation unit. |
528 | // |
529 | // When we place the LSDA into the TEXT section, the type info |
530 | // pointers need to be indirect and pc-rel. We accomplish this by |
531 | // using NLPs; however, sometimes the types are local to the file. |
532 | // We need to fill in the value for the NLP in those cases. |
533 | OutStreamer.emitValue( |
534 | Value: MCSymbolRefExpr::create(Symbol: MCSym.getPointer(), Ctx&: OutStreamer.getContext()), |
535 | Size: 4 /*size*/); |
536 | } |
537 | |
538 | |
539 | void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { |
540 | const Triple &TT = TM.getTargetTriple(); |
541 | if (TT.isOSBinFormatMachO()) { |
542 | // All darwin targets use mach-o. |
543 | const TargetLoweringObjectFileMachO &TLOFMacho = |
544 | static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); |
545 | MachineModuleInfoMachO &MMIMacho = |
546 | MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
547 | |
548 | // Output non-lazy-pointers for external and common global variables. |
549 | MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); |
550 | |
551 | if (!Stubs.empty()) { |
552 | // Switch with ".non_lazy_symbol_pointer" directive. |
553 | OutStreamer->switchSection(Section: TLOFMacho.getNonLazySymbolPointerSection()); |
554 | emitAlignment(Alignment: Align(4)); |
555 | |
556 | for (auto &Stub : Stubs) |
557 | emitNonLazySymbolPointer(OutStreamer&: *OutStreamer, StubLabel: Stub.first, MCSym&: Stub.second); |
558 | |
559 | Stubs.clear(); |
560 | OutStreamer->addBlankLine(); |
561 | } |
562 | |
563 | Stubs = MMIMacho.GetThreadLocalGVStubList(); |
564 | if (!Stubs.empty()) { |
565 | // Switch with ".non_lazy_symbol_pointer" directive. |
566 | OutStreamer->switchSection(Section: TLOFMacho.getThreadLocalPointerSection()); |
567 | emitAlignment(Alignment: Align(4)); |
568 | |
569 | for (auto &Stub : Stubs) |
570 | emitNonLazySymbolPointer(OutStreamer&: *OutStreamer, StubLabel: Stub.first, MCSym&: Stub.second); |
571 | |
572 | Stubs.clear(); |
573 | OutStreamer->addBlankLine(); |
574 | } |
575 | |
576 | // Funny Darwin hack: This flag tells the linker that no global symbols |
577 | // contain code that falls through to other global symbols (e.g. the obvious |
578 | // implementation of multiple entry points). If this doesn't occur, the |
579 | // linker can safely perform dead code stripping. Since LLVM never |
580 | // generates code that does this, it is always safe to set. |
581 | OutStreamer->emitAssemblerFlag(Flag: MCAF_SubsectionsViaSymbols); |
582 | } |
583 | |
584 | // The last attribute to be emitted is ABI_optimization_goals |
585 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
586 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
587 | |
588 | if (OptimizationGoals > 0 && |
589 | (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || |
590 | Subtarget->isTargetMuslAEABI())) |
591 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_optimization_goals, Value: OptimizationGoals); |
592 | OptimizationGoals = -1; |
593 | |
594 | ATS.finishAttributeSection(); |
595 | } |
596 | |
597 | //===----------------------------------------------------------------------===// |
598 | // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() |
599 | // FIXME: |
600 | // The following seem like one-off assembler flags, but they actually need |
601 | // to appear in the .ARM.attributes section in ELF. |
602 | // Instead of subclassing the MCELFStreamer, we do the work here. |
603 | |
604 | // Returns true if all functions have the same function attribute value. |
605 | // It also returns true when the module has no functions. |
606 | static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, |
607 | StringRef Value) { |
608 | return !any_of(Range: M, P: [&](const Function &F) { |
609 | return F.getFnAttribute(Kind: Attr).getValueAsString() != Value; |
610 | }); |
611 | } |
612 | // Returns true if all functions have the same denormal mode. |
613 | // It also returns true when the module has no functions. |
614 | static bool checkDenormalAttributeConsistency(const Module &M, |
615 | StringRef Attr, |
616 | DenormalMode Value) { |
617 | return !any_of(Range: M, P: [&](const Function &F) { |
618 | StringRef AttrVal = F.getFnAttribute(Kind: Attr).getValueAsString(); |
619 | return parseDenormalFPAttribute(Str: AttrVal) != Value; |
620 | }); |
621 | } |
622 | |
623 | void ARMAsmPrinter::emitAttributes() { |
624 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
625 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
626 | |
627 | ATS.emitTextAttribute(Attribute: ARMBuildAttrs::conformance, String: "2.09" ); |
628 | |
629 | ATS.switchVendor(Vendor: "aeabi" ); |
630 | |
631 | // Compute ARM ELF Attributes based on the default subtarget that |
632 | // we'd have constructed. The existing ARM behavior isn't LTO clean |
633 | // anyhow. |
634 | // FIXME: For ifunc related functions we could iterate over and look |
635 | // for a feature string that doesn't match the default one. |
636 | const Triple &TT = TM.getTargetTriple(); |
637 | StringRef CPU = TM.getTargetCPU(); |
638 | StringRef FS = TM.getTargetFeatureString(); |
639 | std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); |
640 | if (!FS.empty()) { |
641 | if (!ArchFS.empty()) |
642 | ArchFS = (Twine(ArchFS) + "," + FS).str(); |
643 | else |
644 | ArchFS = std::string(FS); |
645 | } |
646 | const ARMBaseTargetMachine &ATM = |
647 | static_cast<const ARMBaseTargetMachine &>(TM); |
648 | const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, |
649 | ATM.isLittleEndian()); |
650 | |
651 | // Emit build attributes for the available hardware. |
652 | ATS.emitTargetAttributes(STI); |
653 | |
654 | // RW data addressing. |
655 | if (isPositionIndependent()) { |
656 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RW_data, |
657 | Value: ARMBuildAttrs::AddressRWPCRel); |
658 | } else if (STI.isRWPI()) { |
659 | // RWPI specific attributes. |
660 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RW_data, |
661 | Value: ARMBuildAttrs::AddressRWSBRel); |
662 | } |
663 | |
664 | // RO data addressing. |
665 | if (isPositionIndependent() || STI.isROPI()) { |
666 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RO_data, |
667 | Value: ARMBuildAttrs::AddressROPCRel); |
668 | } |
669 | |
670 | // GOT use. |
671 | if (isPositionIndependent()) { |
672 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_GOT_use, |
673 | Value: ARMBuildAttrs::AddressGOT); |
674 | } else { |
675 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_GOT_use, |
676 | Value: ARMBuildAttrs::AddressDirect); |
677 | } |
678 | |
679 | // Set FP Denormals. |
680 | if (checkDenormalAttributeConsistency(M: *MMI->getModule(), Attr: "denormal-fp-math" , |
681 | Value: DenormalMode::getPreserveSign())) |
682 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
683 | Value: ARMBuildAttrs::PreserveFPSign); |
684 | else if (checkDenormalAttributeConsistency(M: *MMI->getModule(), |
685 | Attr: "denormal-fp-math" , |
686 | Value: DenormalMode::getPositiveZero())) |
687 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
688 | Value: ARMBuildAttrs::PositiveZero); |
689 | else if (!TM.Options.UnsafeFPMath) |
690 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
691 | Value: ARMBuildAttrs::IEEEDenormals); |
692 | else { |
693 | if (!STI.hasVFP2Base()) { |
694 | // When the target doesn't have an FPU (by design or |
695 | // intention), the assumptions made on the software support |
696 | // mirror that of the equivalent hardware support *if it |
697 | // existed*. For v7 and better we indicate that denormals are |
698 | // flushed preserving sign, and for V6 we indicate that |
699 | // denormals are flushed to positive zero. |
700 | if (STI.hasV7Ops()) |
701 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
702 | Value: ARMBuildAttrs::PreserveFPSign); |
703 | } else if (STI.hasVFP3Base()) { |
704 | // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, |
705 | // the sign bit of the zero matches the sign bit of the input or |
706 | // result that is being flushed to zero. |
707 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
708 | Value: ARMBuildAttrs::PreserveFPSign); |
709 | } |
710 | // For VFPv2 implementations it is implementation defined as |
711 | // to whether denormals are flushed to positive zero or to |
712 | // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically |
713 | // LLVM has chosen to flush this to positive zero (most likely for |
714 | // GCC compatibility), so that's the chosen value here (the |
715 | // absence of its emission implies zero). |
716 | } |
717 | |
718 | // Set FP exceptions and rounding |
719 | if (checkFunctionsAttributeConsistency(M: *MMI->getModule(), |
720 | Attr: "no-trapping-math" , Value: "true" ) || |
721 | TM.Options.NoTrappingFPMath) |
722 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_exceptions, |
723 | Value: ARMBuildAttrs::Not_Allowed); |
724 | else if (!TM.Options.UnsafeFPMath) { |
725 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_exceptions, Value: ARMBuildAttrs::Allowed); |
726 | |
727 | // If the user has permitted this code to choose the IEEE 754 |
728 | // rounding at run-time, emit the rounding attribute. |
729 | if (TM.Options.HonorSignDependentRoundingFPMathOption) |
730 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_rounding, Value: ARMBuildAttrs::Allowed); |
731 | } |
732 | |
733 | // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the |
734 | // equivalent of GCC's -ffinite-math-only flag. |
735 | if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) |
736 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_number_model, |
737 | Value: ARMBuildAttrs::Allowed); |
738 | else |
739 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_number_model, |
740 | Value: ARMBuildAttrs::AllowIEEE754); |
741 | |
742 | // FIXME: add more flags to ARMBuildAttributes.h |
743 | // 8-bytes alignment stuff. |
744 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_align_needed, Value: 1); |
745 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_align_preserved, Value: 1); |
746 | |
747 | // Hard float. Use both S and D registers and conform to AAPCS-VFP. |
748 | if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) |
749 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_VFP_args, Value: ARMBuildAttrs::HardFPAAPCS); |
750 | |
751 | // FIXME: To support emitting this build attribute as GCC does, the |
752 | // -mfp16-format option and associated plumbing must be |
753 | // supported. For now the __fp16 type is exposed by default, so this |
754 | // attribute should be emitted with value 1. |
755 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_16bit_format, |
756 | Value: ARMBuildAttrs::FP16FormatIEEE); |
757 | |
758 | if (const Module *SourceModule = MMI->getModule()) { |
759 | // ABI_PCS_wchar_t to indicate wchar_t width |
760 | // FIXME: There is no way to emit value 0 (wchar_t prohibited). |
761 | if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( |
762 | MD: SourceModule->getModuleFlag(Key: "wchar_size" ))) { |
763 | int WCharWidth = WCharWidthValue->getZExtValue(); |
764 | assert((WCharWidth == 2 || WCharWidth == 4) && |
765 | "wchar_t width must be 2 or 4 bytes" ); |
766 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_wchar_t, Value: WCharWidth); |
767 | } |
768 | |
769 | // ABI_enum_size to indicate enum width |
770 | // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 |
771 | // (all enums contain a value needing 32 bits to encode). |
772 | if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( |
773 | MD: SourceModule->getModuleFlag(Key: "min_enum_size" ))) { |
774 | int EnumWidth = EnumWidthValue->getZExtValue(); |
775 | assert((EnumWidth == 1 || EnumWidth == 4) && |
776 | "Minimum enum width must be 1 or 4 bytes" ); |
777 | int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; |
778 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_enum_size, Value: EnumBuildAttr); |
779 | } |
780 | |
781 | auto *PACValue = mdconst::extract_or_null<ConstantInt>( |
782 | MD: SourceModule->getModuleFlag(Key: "sign-return-address" )); |
783 | if (PACValue && PACValue->isOne()) { |
784 | // If "+pacbti" is used as an architecture extension, |
785 | // Tag_PAC_extension is emitted in |
786 | // ARMTargetStreamer::emitTargetAttributes(). |
787 | if (!STI.hasPACBTI()) { |
788 | ATS.emitAttribute(Attribute: ARMBuildAttrs::PAC_extension, |
789 | Value: ARMBuildAttrs::AllowPACInNOPSpace); |
790 | } |
791 | ATS.emitAttribute(Attribute: ARMBuildAttrs::PACRET_use, Value: ARMBuildAttrs::PACRETUsed); |
792 | } |
793 | |
794 | auto *BTIValue = mdconst::extract_or_null<ConstantInt>( |
795 | MD: SourceModule->getModuleFlag(Key: "branch-target-enforcement" )); |
796 | if (BTIValue && BTIValue->isOne()) { |
797 | // If "+pacbti" is used as an architecture extension, |
798 | // Tag_BTI_extension is emitted in |
799 | // ARMTargetStreamer::emitTargetAttributes(). |
800 | if (!STI.hasPACBTI()) { |
801 | ATS.emitAttribute(Attribute: ARMBuildAttrs::BTI_extension, |
802 | Value: ARMBuildAttrs::AllowBTIInNOPSpace); |
803 | } |
804 | ATS.emitAttribute(Attribute: ARMBuildAttrs::BTI_use, Value: ARMBuildAttrs::BTIUsed); |
805 | } |
806 | } |
807 | |
808 | // We currently do not support using R9 as the TLS pointer. |
809 | if (STI.isRWPI()) |
810 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
811 | Value: ARMBuildAttrs::R9IsSB); |
812 | else if (STI.isR9Reserved()) |
813 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
814 | Value: ARMBuildAttrs::R9Reserved); |
815 | else |
816 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
817 | Value: ARMBuildAttrs::R9IsGPR); |
818 | } |
819 | |
820 | //===----------------------------------------------------------------------===// |
821 | |
822 | static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, |
823 | unsigned LabelId, MCContext &Ctx) { |
824 | |
825 | MCSymbol *Label = Ctx.getOrCreateSymbol(Name: Twine(Prefix) |
826 | + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); |
827 | return Label; |
828 | } |
829 | |
830 | static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, |
831 | unsigned LabelId, MCContext &Ctx) { |
832 | |
833 | MCSymbol *Label = Ctx.getOrCreateSymbol(Name: Twine(Prefix) |
834 | + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); |
835 | return Label; |
836 | } |
837 | |
838 | static MCSymbolRefExpr::VariantKind |
839 | getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { |
840 | switch (Modifier) { |
841 | case ARMCP::no_modifier: |
842 | return MCSymbolRefExpr::VK_None; |
843 | case ARMCP::TLSGD: |
844 | return MCSymbolRefExpr::VK_TLSGD; |
845 | case ARMCP::TPOFF: |
846 | return MCSymbolRefExpr::VK_TPOFF; |
847 | case ARMCP::GOTTPOFF: |
848 | return MCSymbolRefExpr::VK_GOTTPOFF; |
849 | case ARMCP::SBREL: |
850 | return MCSymbolRefExpr::VK_ARM_SBREL; |
851 | case ARMCP::GOT_PREL: |
852 | return MCSymbolRefExpr::VK_ARM_GOT_PREL; |
853 | case ARMCP::SECREL: |
854 | return MCSymbolRefExpr::VK_SECREL; |
855 | } |
856 | llvm_unreachable("Invalid ARMCPModifier!" ); |
857 | } |
858 | |
859 | MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, |
860 | unsigned char TargetFlags) { |
861 | if (Subtarget->isTargetMachO()) { |
862 | bool IsIndirect = |
863 | (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); |
864 | |
865 | if (!IsIndirect) |
866 | return getSymbol(GV); |
867 | |
868 | // FIXME: Remove this when Darwin transition to @GOT like syntax. |
869 | MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, Suffix: "$non_lazy_ptr" ); |
870 | MachineModuleInfoMachO &MMIMachO = |
871 | MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
872 | MachineModuleInfoImpl::StubValueTy &StubSym = |
873 | GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(Sym: MCSym) |
874 | : MMIMachO.getGVStubEntry(Sym: MCSym); |
875 | |
876 | if (!StubSym.getPointer()) |
877 | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), |
878 | !GV->hasInternalLinkage()); |
879 | return MCSym; |
880 | } else if (Subtarget->isTargetCOFF()) { |
881 | assert(Subtarget->isTargetWindows() && |
882 | "Windows is the only supported COFF target" ); |
883 | |
884 | bool IsIndirect = |
885 | (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); |
886 | if (!IsIndirect) |
887 | return getSymbol(GV); |
888 | |
889 | SmallString<128> Name; |
890 | if (TargetFlags & ARMII::MO_DLLIMPORT) |
891 | Name = "__imp_" ; |
892 | else if (TargetFlags & ARMII::MO_COFFSTUB) |
893 | Name = ".refptr." ; |
894 | getNameWithPrefix(Name, GV); |
895 | |
896 | MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); |
897 | |
898 | if (TargetFlags & ARMII::MO_COFFSTUB) { |
899 | MachineModuleInfoCOFF &MMICOFF = |
900 | MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
901 | MachineModuleInfoImpl::StubValueTy &StubSym = |
902 | MMICOFF.getGVStubEntry(Sym: MCSym); |
903 | |
904 | if (!StubSym.getPointer()) |
905 | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); |
906 | } |
907 | |
908 | return MCSym; |
909 | } else if (Subtarget->isTargetELF()) { |
910 | return getSymbolPreferLocal(GV: *GV); |
911 | } |
912 | llvm_unreachable("unexpected target" ); |
913 | } |
914 | |
915 | void ARMAsmPrinter::emitMachineConstantPoolValue( |
916 | MachineConstantPoolValue *MCPV) { |
917 | const DataLayout &DL = getDataLayout(); |
918 | int Size = DL.getTypeAllocSize(Ty: MCPV->getType()); |
919 | |
920 | ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); |
921 | |
922 | if (ACPV->isPromotedGlobal()) { |
923 | // This constant pool entry is actually a global whose storage has been |
924 | // promoted into the constant pool. This global may be referenced still |
925 | // by debug information, and due to the way AsmPrinter is set up, the debug |
926 | // info is immutable by the time we decide to promote globals to constant |
927 | // pools. Because of this, we need to ensure we emit a symbol for the global |
928 | // with private linkage (the default) so debug info can refer to it. |
929 | // |
930 | // However, if this global is promoted into several functions we must ensure |
931 | // we don't try and emit duplicate symbols! |
932 | auto *ACPC = cast<ARMConstantPoolConstant>(Val: ACPV); |
933 | for (const auto *GV : ACPC->promotedGlobals()) { |
934 | if (!EmittedPromotedGlobalLabels.count(Ptr: GV)) { |
935 | MCSymbol *GVSym = getSymbol(GV); |
936 | OutStreamer->emitLabel(Symbol: GVSym); |
937 | EmittedPromotedGlobalLabels.insert(Ptr: GV); |
938 | } |
939 | } |
940 | return emitGlobalConstant(DL, CV: ACPC->getPromotedGlobalInit()); |
941 | } |
942 | |
943 | MCSymbol *MCSym; |
944 | if (ACPV->isLSDA()) { |
945 | MCSym = getMBBExceptionSym(MBB: MF->front()); |
946 | } else if (ACPV->isBlockAddress()) { |
947 | const BlockAddress *BA = |
948 | cast<ARMConstantPoolConstant>(Val: ACPV)->getBlockAddress(); |
949 | MCSym = GetBlockAddressSymbol(BA); |
950 | } else if (ACPV->isGlobalValue()) { |
951 | const GlobalValue *GV = cast<ARMConstantPoolConstant>(Val: ACPV)->getGV(); |
952 | |
953 | // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so |
954 | // flag the global as MO_NONLAZY. |
955 | unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; |
956 | MCSym = GetARMGVSymbol(GV, TargetFlags: TF); |
957 | } else if (ACPV->isMachineBasicBlock()) { |
958 | const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(Val: ACPV)->getMBB(); |
959 | MCSym = MBB->getSymbol(); |
960 | } else { |
961 | assert(ACPV->isExtSymbol() && "unrecognized constant pool value" ); |
962 | auto Sym = cast<ARMConstantPoolSymbol>(Val: ACPV)->getSymbol(); |
963 | MCSym = GetExternalSymbolSymbol(Sym); |
964 | } |
965 | |
966 | // Create an MCSymbol for the reference. |
967 | const MCExpr *Expr = |
968 | MCSymbolRefExpr::create(Symbol: MCSym, Kind: getModifierVariantKind(Modifier: ACPV->getModifier()), |
969 | Ctx&: OutContext); |
970 | |
971 | if (ACPV->getPCAdjustment()) { |
972 | MCSymbol *PCLabel = |
973 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
974 | LabelId: ACPV->getLabelId(), Ctx&: OutContext); |
975 | const MCExpr *PCRelExpr = MCSymbolRefExpr::create(Symbol: PCLabel, Ctx&: OutContext); |
976 | PCRelExpr = |
977 | MCBinaryExpr::createAdd(LHS: PCRelExpr, |
978 | RHS: MCConstantExpr::create(Value: ACPV->getPCAdjustment(), |
979 | Ctx&: OutContext), |
980 | Ctx&: OutContext); |
981 | if (ACPV->mustAddCurrentAddress()) { |
982 | // We want "(<expr> - .)", but MC doesn't have a concept of the '.' |
983 | // label, so just emit a local label end reference that instead. |
984 | MCSymbol *DotSym = OutContext.createTempSymbol(); |
985 | OutStreamer->emitLabel(Symbol: DotSym); |
986 | const MCExpr *DotExpr = MCSymbolRefExpr::create(Symbol: DotSym, Ctx&: OutContext); |
987 | PCRelExpr = MCBinaryExpr::createSub(LHS: PCRelExpr, RHS: DotExpr, Ctx&: OutContext); |
988 | } |
989 | Expr = MCBinaryExpr::createSub(LHS: Expr, RHS: PCRelExpr, Ctx&: OutContext); |
990 | } |
991 | OutStreamer->emitValue(Value: Expr, Size); |
992 | } |
993 | |
994 | void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { |
995 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
996 | unsigned JTI = MO1.getIndex(); |
997 | |
998 | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for |
999 | // ARM mode tables. |
1000 | emitAlignment(Alignment: Align(4)); |
1001 | |
1002 | // Emit a label for the jump table. |
1003 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1004 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1005 | |
1006 | // Mark the jump table as data-in-code. |
1007 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionJT32); |
1008 | |
1009 | // Emit each entry of the table. |
1010 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1011 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1012 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1013 | |
1014 | for (MachineBasicBlock *MBB : JTBBs) { |
1015 | // Construct an MCExpr for the entry. We want a value of the form: |
1016 | // (BasicBlockAddr - TableBeginAddr) |
1017 | // |
1018 | // For example, a table with entries jumping to basic blocks BB0 and BB1 |
1019 | // would look like: |
1020 | // LJTI_0_0: |
1021 | // .word (LBB0 - LJTI_0_0) |
1022 | // .word (LBB1 - LJTI_0_0) |
1023 | const MCExpr *Expr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx&: OutContext); |
1024 | |
1025 | if (isPositionIndependent() || Subtarget->isROPI()) |
1026 | Expr = MCBinaryExpr::createSub(LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: JTISymbol, |
1027 | Ctx&: OutContext), |
1028 | Ctx&: OutContext); |
1029 | // If we're generating a table of Thumb addresses in static relocation |
1030 | // model, we need to add one to keep interworking correctly. |
1031 | else if (AFI->isThumbFunction()) |
1032 | Expr = MCBinaryExpr::createAdd(LHS: Expr, RHS: MCConstantExpr::create(Value: 1,Ctx&: OutContext), |
1033 | Ctx&: OutContext); |
1034 | OutStreamer->emitValue(Value: Expr, Size: 4); |
1035 | } |
1036 | // Mark the end of jump table data-in-code region. |
1037 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1038 | } |
1039 | |
1040 | void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { |
1041 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
1042 | unsigned JTI = MO1.getIndex(); |
1043 | |
1044 | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for |
1045 | // ARM mode tables. |
1046 | emitAlignment(Alignment: Align(4)); |
1047 | |
1048 | // Emit a label for the jump table. |
1049 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1050 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1051 | |
1052 | // Emit each entry of the table. |
1053 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1054 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1055 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1056 | |
1057 | for (MachineBasicBlock *MBB : JTBBs) { |
1058 | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), |
1059 | Ctx&: OutContext); |
1060 | // If this isn't a TBB or TBH, the entries are direct branch instructions. |
1061 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2B) |
1062 | .addExpr(Val: MBBSymbolExpr) |
1063 | .addImm(Val: ARMCC::AL) |
1064 | .addReg(Reg: 0)); |
1065 | } |
1066 | } |
1067 | |
1068 | void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, |
1069 | unsigned OffsetWidth) { |
1070 | assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width" ); |
1071 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
1072 | unsigned JTI = MO1.getIndex(); |
1073 | |
1074 | if (Subtarget->isThumb1Only()) |
1075 | emitAlignment(Alignment: Align(4)); |
1076 | |
1077 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1078 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1079 | |
1080 | // Emit each entry of the table. |
1081 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1082 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1083 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1084 | |
1085 | // Mark the jump table as data-in-code. |
1086 | OutStreamer->emitDataRegion(Kind: OffsetWidth == 1 ? MCDR_DataRegionJT8 |
1087 | : MCDR_DataRegionJT16); |
1088 | |
1089 | for (auto *MBB : JTBBs) { |
1090 | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), |
1091 | Ctx&: OutContext); |
1092 | // Otherwise it's an offset from the dispatch instruction. Construct an |
1093 | // MCExpr for the entry. We want a value of the form: |
1094 | // (BasicBlockAddr - TBBInstAddr + 4) / 2 |
1095 | // |
1096 | // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 |
1097 | // would look like: |
1098 | // LJTI_0_0: |
1099 | // .byte (LBB0 - (LCPI0_0 + 4)) / 2 |
1100 | // .byte (LBB1 - (LCPI0_0 + 4)) / 2 |
1101 | // where LCPI0_0 is a label defined just before the TBB instruction using |
1102 | // this table. |
1103 | MCSymbol *TBInstPC = GetCPISymbol(CPID: MI->getOperand(i: 0).getImm()); |
1104 | const MCExpr *Expr = MCBinaryExpr::createAdd( |
1105 | LHS: MCSymbolRefExpr::create(Symbol: TBInstPC, Ctx&: OutContext), |
1106 | RHS: MCConstantExpr::create(Value: 4, Ctx&: OutContext), Ctx&: OutContext); |
1107 | Expr = MCBinaryExpr::createSub(LHS: MBBSymbolExpr, RHS: Expr, Ctx&: OutContext); |
1108 | Expr = MCBinaryExpr::createDiv(LHS: Expr, RHS: MCConstantExpr::create(Value: 2, Ctx&: OutContext), |
1109 | Ctx&: OutContext); |
1110 | OutStreamer->emitValue(Value: Expr, Size: OffsetWidth); |
1111 | } |
1112 | // Mark the end of jump table data-in-code region. 32-bit offsets use |
1113 | // actual branch instructions here, so we don't mark those as a data-region |
1114 | // at all. |
1115 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1116 | |
1117 | // Make sure the next instruction is 2-byte aligned. |
1118 | emitAlignment(Alignment: Align(2)); |
1119 | } |
1120 | |
1121 | std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, |
1122 | codeview::JumpTableEntrySize> |
1123 | ARMAsmPrinter::getCodeViewJumpTableInfo(int JTI, |
1124 | const MachineInstr *BranchInstr, |
1125 | const MCSymbol *BranchLabel) const { |
1126 | codeview::JumpTableEntrySize EntrySize; |
1127 | const MCSymbol *BaseLabel; |
1128 | uint64_t BaseOffset = 0; |
1129 | switch (BranchInstr->getOpcode()) { |
1130 | case ARM::BR_JTadd: |
1131 | case ARM::BR_JTr: |
1132 | case ARM::tBR_JTr: |
1133 | // Word relative to the jump table address. |
1134 | EntrySize = codeview::JumpTableEntrySize::UInt32; |
1135 | BaseLabel = GetARMJTIPICJumpTableLabel(uid: JTI); |
1136 | break; |
1137 | case ARM::tTBH_JT: |
1138 | case ARM::t2TBH_JT: |
1139 | // half-word shifted left, relative to *after* the branch instruction. |
1140 | EntrySize = codeview::JumpTableEntrySize::UInt16ShiftLeft; |
1141 | BranchLabel = GetCPISymbol(CPID: BranchInstr->getOperand(i: 3).getImm()); |
1142 | BaseLabel = BranchLabel; |
1143 | BaseOffset = 4; |
1144 | break; |
1145 | case ARM::tTBB_JT: |
1146 | case ARM::t2TBB_JT: |
1147 | // byte shifted left, relative to *after* the branch instruction. |
1148 | EntrySize = codeview::JumpTableEntrySize::UInt8ShiftLeft; |
1149 | BranchLabel = GetCPISymbol(CPID: BranchInstr->getOperand(i: 3).getImm()); |
1150 | BaseLabel = BranchLabel; |
1151 | BaseOffset = 4; |
1152 | break; |
1153 | case ARM::t2BR_JT: |
1154 | // Direct jump. |
1155 | BaseLabel = nullptr; |
1156 | EntrySize = codeview::JumpTableEntrySize::Pointer; |
1157 | break; |
1158 | default: |
1159 | llvm_unreachable("Unknown jump table instruction" ); |
1160 | } |
1161 | |
1162 | return std::make_tuple(args&: BaseLabel, args&: BaseOffset, args&: BranchLabel, args&: EntrySize); |
1163 | } |
1164 | |
1165 | void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { |
1166 | assert(MI->getFlag(MachineInstr::FrameSetup) && |
1167 | "Only instruction which are involved into frame setup code are allowed" ); |
1168 | |
1169 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
1170 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
1171 | const MachineFunction &MF = *MI->getParent()->getParent(); |
1172 | const TargetRegisterInfo *TargetRegInfo = |
1173 | MF.getSubtarget().getRegisterInfo(); |
1174 | const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); |
1175 | |
1176 | Register FramePtr = TargetRegInfo->getFrameRegister(MF); |
1177 | unsigned Opc = MI->getOpcode(); |
1178 | unsigned SrcReg, DstReg; |
1179 | |
1180 | switch (Opc) { |
1181 | case ARM::tPUSH: |
1182 | // special case: tPUSH does not have src/dst regs. |
1183 | SrcReg = DstReg = ARM::SP; |
1184 | break; |
1185 | case ARM::tLDRpci: |
1186 | case ARM::t2MOVi16: |
1187 | case ARM::t2MOVTi16: |
1188 | case ARM::tMOVi8: |
1189 | case ARM::tADDi8: |
1190 | case ARM::tLSLri: |
1191 | // special cases: |
1192 | // 1) for Thumb1 code we sometimes materialize the constant via constpool |
1193 | // load. |
1194 | // 2) for Thumb1 execute only code we materialize the constant via the |
1195 | // following pattern: |
1196 | // movs r3, #:upper8_15:<const> |
1197 | // lsls r3, #8 |
1198 | // adds r3, #:upper0_7:<const> |
1199 | // lsls r3, #8 |
1200 | // adds r3, #:lower8_15:<const> |
1201 | // lsls r3, #8 |
1202 | // adds r3, #:lower0_7:<const> |
1203 | // So we need to special-case MOVS, ADDS and LSLS, and keep track of |
1204 | // where we are in the sequence with the simplest of state machines. |
1205 | // 3) for Thumb2 execute only code we materialize the constant via |
1206 | // immediate constants in 2 separate instructions (MOVW/MOVT). |
1207 | SrcReg = ~0U; |
1208 | DstReg = MI->getOperand(i: 0).getReg(); |
1209 | break; |
1210 | default: |
1211 | SrcReg = MI->getOperand(i: 1).getReg(); |
1212 | DstReg = MI->getOperand(i: 0).getReg(); |
1213 | break; |
1214 | } |
1215 | |
1216 | // Try to figure out the unwinding opcode out of src / dst regs. |
1217 | if (MI->mayStore()) { |
1218 | // Register saves. |
1219 | assert(DstReg == ARM::SP && |
1220 | "Only stack pointer as a destination reg is supported" ); |
1221 | |
1222 | SmallVector<unsigned, 4> RegList; |
1223 | // Skip src & dst reg, and pred ops. |
1224 | unsigned StartOp = 2 + 2; |
1225 | // Use all the operands. |
1226 | unsigned NumOffset = 0; |
1227 | // Amount of SP adjustment folded into a push, before the |
1228 | // registers are stored (pad at higher addresses). |
1229 | unsigned PadBefore = 0; |
1230 | // Amount of SP adjustment folded into a push, after the |
1231 | // registers are stored (pad at lower addresses). |
1232 | unsigned PadAfter = 0; |
1233 | |
1234 | switch (Opc) { |
1235 | default: |
1236 | MI->print(OS&: errs()); |
1237 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1238 | case ARM::tPUSH: |
1239 | // Special case here: no src & dst reg, but two extra imp ops. |
1240 | StartOp = 2; NumOffset = 2; |
1241 | [[fallthrough]]; |
1242 | case ARM::STMDB_UPD: |
1243 | case ARM::t2STMDB_UPD: |
1244 | case ARM::VSTMDDB_UPD: |
1245 | assert(SrcReg == ARM::SP && |
1246 | "Only stack pointer as a source reg is supported" ); |
1247 | for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; |
1248 | i != NumOps; ++i) { |
1249 | const MachineOperand &MO = MI->getOperand(i); |
1250 | // Actually, there should never be any impdef stuff here. Skip it |
1251 | // temporary to workaround PR11902. |
1252 | if (MO.isImplicit()) |
1253 | continue; |
1254 | // Registers, pushed as a part of folding an SP update into the |
1255 | // push instruction are marked as undef and should not be |
1256 | // restored when unwinding, because the function can modify the |
1257 | // corresponding stack slots. |
1258 | if (MO.isUndef()) { |
1259 | assert(RegList.empty() && |
1260 | "Pad registers must come before restored ones" ); |
1261 | unsigned Width = |
1262 | TargetRegInfo->getRegSizeInBits(Reg: MO.getReg(), MRI: MachineRegInfo) / 8; |
1263 | PadAfter += Width; |
1264 | continue; |
1265 | } |
1266 | // Check for registers that are remapped (for a Thumb1 prologue that |
1267 | // saves high registers). |
1268 | Register Reg = MO.getReg(); |
1269 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: Reg)) |
1270 | Reg = RemappedReg; |
1271 | RegList.push_back(Elt: Reg); |
1272 | } |
1273 | break; |
1274 | case ARM::STR_PRE_IMM: |
1275 | case ARM::STR_PRE_REG: |
1276 | case ARM::t2STR_PRE: |
1277 | assert(MI->getOperand(2).getReg() == ARM::SP && |
1278 | "Only stack pointer as a source reg is supported" ); |
1279 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1280 | SrcReg = RemappedReg; |
1281 | |
1282 | RegList.push_back(Elt: SrcReg); |
1283 | break; |
1284 | case ARM::t2STRD_PRE: |
1285 | assert(MI->getOperand(3).getReg() == ARM::SP && |
1286 | "Only stack pointer as a source reg is supported" ); |
1287 | SrcReg = MI->getOperand(i: 1).getReg(); |
1288 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1289 | SrcReg = RemappedReg; |
1290 | RegList.push_back(Elt: SrcReg); |
1291 | SrcReg = MI->getOperand(i: 2).getReg(); |
1292 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1293 | SrcReg = RemappedReg; |
1294 | RegList.push_back(Elt: SrcReg); |
1295 | PadBefore = -MI->getOperand(i: 4).getImm() - 8; |
1296 | break; |
1297 | } |
1298 | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { |
1299 | if (PadBefore) |
1300 | ATS.emitPad(Offset: PadBefore); |
1301 | ATS.emitRegSave(RegList, isVector: Opc == ARM::VSTMDDB_UPD); |
1302 | // Account for the SP adjustment, folded into the push. |
1303 | if (PadAfter) |
1304 | ATS.emitPad(Offset: PadAfter); |
1305 | } |
1306 | } else { |
1307 | // Changes of stack / frame pointer. |
1308 | if (SrcReg == ARM::SP) { |
1309 | int64_t Offset = 0; |
1310 | switch (Opc) { |
1311 | default: |
1312 | MI->print(OS&: errs()); |
1313 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1314 | case ARM::MOVr: |
1315 | case ARM::tMOVr: |
1316 | Offset = 0; |
1317 | break; |
1318 | case ARM::ADDri: |
1319 | case ARM::t2ADDri: |
1320 | case ARM::t2ADDri12: |
1321 | case ARM::t2ADDspImm: |
1322 | case ARM::t2ADDspImm12: |
1323 | Offset = -MI->getOperand(i: 2).getImm(); |
1324 | break; |
1325 | case ARM::SUBri: |
1326 | case ARM::t2SUBri: |
1327 | case ARM::t2SUBri12: |
1328 | case ARM::t2SUBspImm: |
1329 | case ARM::t2SUBspImm12: |
1330 | Offset = MI->getOperand(i: 2).getImm(); |
1331 | break; |
1332 | case ARM::tSUBspi: |
1333 | Offset = MI->getOperand(i: 2).getImm()*4; |
1334 | break; |
1335 | case ARM::tADDspi: |
1336 | case ARM::tADDrSPi: |
1337 | Offset = -MI->getOperand(i: 2).getImm()*4; |
1338 | break; |
1339 | case ARM::tADDhirr: |
1340 | Offset = |
1341 | -AFI->EHPrologueOffsetInRegs.lookup(Val: MI->getOperand(i: 2).getReg()); |
1342 | break; |
1343 | } |
1344 | |
1345 | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { |
1346 | if (DstReg == FramePtr && FramePtr != ARM::SP) |
1347 | // Set-up of the frame pointer. Positive values correspond to "add" |
1348 | // instruction. |
1349 | ATS.emitSetFP(FpReg: FramePtr, SpReg: ARM::SP, Offset: -Offset); |
1350 | else if (DstReg == ARM::SP) { |
1351 | // Change of SP by an offset. Positive values correspond to "sub" |
1352 | // instruction. |
1353 | ATS.emitPad(Offset); |
1354 | } else { |
1355 | // Move of SP to a register. Positive values correspond to an "add" |
1356 | // instruction. |
1357 | ATS.emitMovSP(Reg: DstReg, Offset: -Offset); |
1358 | } |
1359 | } |
1360 | } else if (DstReg == ARM::SP) { |
1361 | MI->print(OS&: errs()); |
1362 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1363 | } else { |
1364 | int64_t Offset = 0; |
1365 | switch (Opc) { |
1366 | case ARM::tMOVr: |
1367 | // If a Thumb1 function spills r8-r11, we copy the values to low |
1368 | // registers before pushing them. Record the copy so we can emit the |
1369 | // correct ".save" later. |
1370 | AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; |
1371 | break; |
1372 | case ARM::tLDRpci: { |
1373 | // Grab the constpool index and check, whether it corresponds to |
1374 | // original or cloned constpool entry. |
1375 | unsigned CPI = MI->getOperand(i: 1).getIndex(); |
1376 | const MachineConstantPool *MCP = MF.getConstantPool(); |
1377 | if (CPI >= MCP->getConstants().size()) |
1378 | CPI = AFI->getOriginalCPIdx(CloneIdx: CPI); |
1379 | assert(CPI != -1U && "Invalid constpool index" ); |
1380 | |
1381 | // Derive the actual offset. |
1382 | const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; |
1383 | assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry" ); |
1384 | Offset = cast<ConstantInt>(Val: CPE.Val.ConstVal)->getSExtValue(); |
1385 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1386 | break; |
1387 | } |
1388 | case ARM::t2MOVi16: |
1389 | Offset = MI->getOperand(i: 1).getImm(); |
1390 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1391 | break; |
1392 | case ARM::t2MOVTi16: |
1393 | Offset = MI->getOperand(i: 2).getImm(); |
1394 | AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); |
1395 | break; |
1396 | case ARM::tMOVi8: |
1397 | Offset = MI->getOperand(i: 2).getImm(); |
1398 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1399 | break; |
1400 | case ARM::tLSLri: |
1401 | assert(MI->getOperand(3).getImm() == 8 && |
1402 | "The shift amount is not equal to 8" ); |
1403 | assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && |
1404 | "The source register is not equal to the destination register" ); |
1405 | AFI->EHPrologueOffsetInRegs[DstReg] <<= 8; |
1406 | break; |
1407 | case ARM::tADDi8: |
1408 | assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && |
1409 | "The source register is not equal to the destination register" ); |
1410 | Offset = MI->getOperand(i: 3).getImm(); |
1411 | AFI->EHPrologueOffsetInRegs[DstReg] += Offset; |
1412 | break; |
1413 | case ARM::t2PAC: |
1414 | case ARM::t2PACBTI: |
1415 | AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; |
1416 | break; |
1417 | default: |
1418 | MI->print(OS&: errs()); |
1419 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1420 | } |
1421 | } |
1422 | } |
1423 | } |
1424 | |
1425 | // Simple pseudo-instructions have their lowering (with expansion to real |
1426 | // instructions) auto-generated. |
1427 | #include "ARMGenMCPseudoLowering.inc" |
1428 | |
1429 | void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { |
1430 | // TODOD FIXME: Enable feature predicate checks once all the test pass. |
1431 | // ARM_MC::verifyInstructionPredicates(MI->getOpcode(), |
1432 | // getSubtargetInfo().getFeatureBits()); |
1433 | |
1434 | const DataLayout &DL = getDataLayout(); |
1435 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
1436 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
1437 | |
1438 | // If we just ended a constant pool, mark it as such. |
1439 | if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { |
1440 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1441 | InConstantPool = false; |
1442 | } |
1443 | |
1444 | // Emit unwinding stuff for frame-related instructions |
1445 | if (Subtarget->isTargetEHABICompatible() && |
1446 | MI->getFlag(Flag: MachineInstr::FrameSetup)) |
1447 | EmitUnwindingInstruction(MI); |
1448 | |
1449 | // Do any auto-generated pseudo lowerings. |
1450 | if (emitPseudoExpansionLowering(OutStreamer&: *OutStreamer, MI)) |
1451 | return; |
1452 | |
1453 | assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && |
1454 | "Pseudo flag setting opcode should be expanded early" ); |
1455 | |
1456 | // Check for manual lowerings. |
1457 | unsigned Opc = MI->getOpcode(); |
1458 | switch (Opc) { |
1459 | case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass" ); |
1460 | case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing" ); |
1461 | case ARM::LEApcrel: |
1462 | case ARM::tLEApcrel: |
1463 | case ARM::t2LEApcrel: { |
1464 | // FIXME: Need to also handle globals and externals |
1465 | MCSymbol *CPISymbol = GetCPISymbol(CPID: MI->getOperand(i: 1).getIndex()); |
1466 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(MI->getOpcode() == |
1467 | ARM::t2LEApcrel ? ARM::t2ADR |
1468 | : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR |
1469 | : ARM::ADR)) |
1470 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1471 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: CPISymbol, Ctx&: OutContext)) |
1472 | // Add predicate operands. |
1473 | .addImm(Val: MI->getOperand(i: 2).getImm()) |
1474 | .addReg(Reg: MI->getOperand(i: 3).getReg())); |
1475 | return; |
1476 | } |
1477 | case ARM::LEApcrelJT: |
1478 | case ARM::tLEApcrelJT: |
1479 | case ARM::t2LEApcrelJT: { |
1480 | MCSymbol *JTIPICSymbol = |
1481 | GetARMJTIPICJumpTableLabel(uid: MI->getOperand(i: 1).getIndex()); |
1482 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(MI->getOpcode() == |
1483 | ARM::t2LEApcrelJT ? ARM::t2ADR |
1484 | : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR |
1485 | : ARM::ADR)) |
1486 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1487 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: JTIPICSymbol, Ctx&: OutContext)) |
1488 | // Add predicate operands. |
1489 | .addImm(Val: MI->getOperand(i: 2).getImm()) |
1490 | .addReg(Reg: MI->getOperand(i: 3).getReg())); |
1491 | return; |
1492 | } |
1493 | // Darwin call instructions are just normal call instructions with different |
1494 | // clobber semantics (they clobber R9). |
1495 | case ARM::BX_CALL: { |
1496 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1497 | .addReg(Reg: ARM::LR) |
1498 | .addReg(Reg: ARM::PC) |
1499 | // Add predicate operands. |
1500 | .addImm(Val: ARMCC::AL) |
1501 | .addReg(Reg: 0) |
1502 | // Add 's' bit operand (always reg0 for this) |
1503 | .addReg(Reg: 0)); |
1504 | |
1505 | assert(Subtarget->hasV4TOps()); |
1506 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::BX) |
1507 | .addReg(Reg: MI->getOperand(i: 0).getReg())); |
1508 | return; |
1509 | } |
1510 | case ARM::tBX_CALL: { |
1511 | if (Subtarget->hasV5TOps()) |
1512 | llvm_unreachable("Expected BLX to be selected for v5t+" ); |
1513 | |
1514 | // On ARM v4t, when doing a call from thumb mode, we need to ensure |
1515 | // that the saved lr has its LSB set correctly (the arch doesn't |
1516 | // have blx). |
1517 | // So here we generate a bl to a small jump pad that does bx rN. |
1518 | // The jump pads are emitted after the function body. |
1519 | |
1520 | Register TReg = MI->getOperand(i: 0).getReg(); |
1521 | MCSymbol *TRegSym = nullptr; |
1522 | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { |
1523 | if (TIP.first == TReg) { |
1524 | TRegSym = TIP.second; |
1525 | break; |
1526 | } |
1527 | } |
1528 | |
1529 | if (!TRegSym) { |
1530 | TRegSym = OutContext.createTempSymbol(); |
1531 | ThumbIndirectPads.push_back(Elt: std::make_pair(x&: TReg, y&: TRegSym)); |
1532 | } |
1533 | |
1534 | // Create a link-saving branch to the Reg Indirect Jump Pad. |
1535 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBL) |
1536 | // Predicate comes first here. |
1537 | .addImm(Val: ARMCC::AL).addReg(Reg: 0) |
1538 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TRegSym, Ctx&: OutContext))); |
1539 | return; |
1540 | } |
1541 | case ARM::BMOVPCRX_CALL: { |
1542 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1543 | .addReg(Reg: ARM::LR) |
1544 | .addReg(Reg: ARM::PC) |
1545 | // Add predicate operands. |
1546 | .addImm(Val: ARMCC::AL) |
1547 | .addReg(Reg: 0) |
1548 | // Add 's' bit operand (always reg0 for this) |
1549 | .addReg(Reg: 0)); |
1550 | |
1551 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1552 | .addReg(Reg: ARM::PC) |
1553 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1554 | // Add predicate operands. |
1555 | .addImm(Val: ARMCC::AL) |
1556 | .addReg(Reg: 0) |
1557 | // Add 's' bit operand (always reg0 for this) |
1558 | .addReg(Reg: 0)); |
1559 | return; |
1560 | } |
1561 | case ARM::BMOVPCB_CALL: { |
1562 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1563 | .addReg(Reg: ARM::LR) |
1564 | .addReg(Reg: ARM::PC) |
1565 | // Add predicate operands. |
1566 | .addImm(Val: ARMCC::AL) |
1567 | .addReg(Reg: 0) |
1568 | // Add 's' bit operand (always reg0 for this) |
1569 | .addReg(Reg: 0)); |
1570 | |
1571 | const MachineOperand &Op = MI->getOperand(i: 0); |
1572 | const GlobalValue *GV = Op.getGlobal(); |
1573 | const unsigned TF = Op.getTargetFlags(); |
1574 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1575 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1576 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::Bcc) |
1577 | .addExpr(Val: GVSymExpr) |
1578 | // Add predicate operands. |
1579 | .addImm(Val: ARMCC::AL) |
1580 | .addReg(Reg: 0)); |
1581 | return; |
1582 | } |
1583 | case ARM::MOVi16_ga_pcrel: |
1584 | case ARM::t2MOVi16_ga_pcrel: { |
1585 | MCInst TmpInst; |
1586 | TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); |
1587 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1588 | |
1589 | unsigned TF = MI->getOperand(i: 1).getTargetFlags(); |
1590 | const GlobalValue *GV = MI->getOperand(i: 1).getGlobal(); |
1591 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1592 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1593 | |
1594 | MCSymbol *LabelSym = |
1595 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1596 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext); |
1597 | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(Symbol: LabelSym, Ctx&: OutContext); |
1598 | unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; |
1599 | const MCExpr *PCRelExpr = |
1600 | ARMMCExpr::createLower16(Expr: MCBinaryExpr::createSub(LHS: GVSymExpr, |
1601 | RHS: MCBinaryExpr::createAdd(LHS: LabelSymExpr, |
1602 | RHS: MCConstantExpr::create(Value: PCAdj, Ctx&: OutContext), |
1603 | Ctx&: OutContext), Ctx&: OutContext), Ctx&: OutContext); |
1604 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: PCRelExpr)); |
1605 | |
1606 | // Add predicate operands. |
1607 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1608 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1609 | // Add 's' bit operand (always reg0 for this) |
1610 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1611 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1612 | return; |
1613 | } |
1614 | case ARM::MOVTi16_ga_pcrel: |
1615 | case ARM::t2MOVTi16_ga_pcrel: { |
1616 | MCInst TmpInst; |
1617 | TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel |
1618 | ? ARM::MOVTi16 : ARM::t2MOVTi16); |
1619 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1620 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 1).getReg())); |
1621 | |
1622 | unsigned TF = MI->getOperand(i: 2).getTargetFlags(); |
1623 | const GlobalValue *GV = MI->getOperand(i: 2).getGlobal(); |
1624 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1625 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1626 | |
1627 | MCSymbol *LabelSym = |
1628 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1629 | LabelId: MI->getOperand(i: 3).getImm(), Ctx&: OutContext); |
1630 | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(Symbol: LabelSym, Ctx&: OutContext); |
1631 | unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; |
1632 | const MCExpr *PCRelExpr = |
1633 | ARMMCExpr::createUpper16(Expr: MCBinaryExpr::createSub(LHS: GVSymExpr, |
1634 | RHS: MCBinaryExpr::createAdd(LHS: LabelSymExpr, |
1635 | RHS: MCConstantExpr::create(Value: PCAdj, Ctx&: OutContext), |
1636 | Ctx&: OutContext), Ctx&: OutContext), Ctx&: OutContext); |
1637 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: PCRelExpr)); |
1638 | // Add predicate operands. |
1639 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1640 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1641 | // Add 's' bit operand (always reg0 for this) |
1642 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1643 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1644 | return; |
1645 | } |
1646 | case ARM::t2BFi: |
1647 | case ARM::t2BFic: |
1648 | case ARM::t2BFLi: |
1649 | case ARM::t2BFr: |
1650 | case ARM::t2BFLr: { |
1651 | // This is a Branch Future instruction. |
1652 | |
1653 | const MCExpr *BranchLabel = MCSymbolRefExpr::create( |
1654 | Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1655 | LabelId: MI->getOperand(i: 0).getIndex(), Ctx&: OutContext), |
1656 | Ctx&: OutContext); |
1657 | |
1658 | auto MCInst = MCInstBuilder(Opc).addExpr(Val: BranchLabel); |
1659 | if (MI->getOperand(i: 1).isReg()) { |
1660 | // For BFr/BFLr |
1661 | MCInst.addReg(Reg: MI->getOperand(i: 1).getReg()); |
1662 | } else { |
1663 | // For BFi/BFLi/BFic |
1664 | const MCExpr *BranchTarget; |
1665 | if (MI->getOperand(i: 1).isMBB()) |
1666 | BranchTarget = MCSymbolRefExpr::create( |
1667 | Symbol: MI->getOperand(i: 1).getMBB()->getSymbol(), Ctx&: OutContext); |
1668 | else if (MI->getOperand(i: 1).isGlobal()) { |
1669 | const GlobalValue *GV = MI->getOperand(i: 1).getGlobal(); |
1670 | BranchTarget = MCSymbolRefExpr::create( |
1671 | Symbol: GetARMGVSymbol(GV, TargetFlags: MI->getOperand(i: 1).getTargetFlags()), Ctx&: OutContext); |
1672 | } else if (MI->getOperand(i: 1).isSymbol()) { |
1673 | BranchTarget = MCSymbolRefExpr::create( |
1674 | Symbol: GetExternalSymbolSymbol(Sym: MI->getOperand(i: 1).getSymbolName()), |
1675 | Ctx&: OutContext); |
1676 | } else |
1677 | llvm_unreachable("Unhandled operand kind in Branch Future instruction" ); |
1678 | |
1679 | MCInst.addExpr(Val: BranchTarget); |
1680 | } |
1681 | |
1682 | if (Opc == ARM::t2BFic) { |
1683 | const MCExpr *ElseLabel = MCSymbolRefExpr::create( |
1684 | Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1685 | LabelId: MI->getOperand(i: 2).getIndex(), Ctx&: OutContext), |
1686 | Ctx&: OutContext); |
1687 | MCInst.addExpr(Val: ElseLabel); |
1688 | MCInst.addImm(Val: MI->getOperand(i: 3).getImm()); |
1689 | } else { |
1690 | MCInst.addImm(Val: MI->getOperand(i: 2).getImm()) |
1691 | .addReg(Reg: MI->getOperand(i: 3).getReg()); |
1692 | } |
1693 | |
1694 | EmitToStreamer(S&: *OutStreamer, Inst: MCInst); |
1695 | return; |
1696 | } |
1697 | case ARM::t2BF_LabelPseudo: { |
1698 | // This is a pseudo op for a label used by a branch future instruction |
1699 | |
1700 | // Emit the label. |
1701 | OutStreamer->emitLabel(Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1702 | FunctionNumber: getFunctionNumber(), |
1703 | LabelId: MI->getOperand(i: 0).getIndex(), Ctx&: OutContext)); |
1704 | return; |
1705 | } |
1706 | case ARM::tPICADD: { |
1707 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1708 | // LPC0: |
1709 | // add r0, pc |
1710 | // This adds the address of LPC0 to r0. |
1711 | |
1712 | // Emit the label. |
1713 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1714 | FunctionNumber: getFunctionNumber(), |
1715 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1716 | |
1717 | // Form and emit the add. |
1718 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1719 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1720 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1721 | .addReg(Reg: ARM::PC) |
1722 | // Add predicate operands. |
1723 | .addImm(Val: ARMCC::AL) |
1724 | .addReg(Reg: 0)); |
1725 | return; |
1726 | } |
1727 | case ARM::PICADD: { |
1728 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1729 | // LPC0: |
1730 | // add r0, pc, r0 |
1731 | // This adds the address of LPC0 to r0. |
1732 | |
1733 | // Emit the label. |
1734 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1735 | FunctionNumber: getFunctionNumber(), |
1736 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1737 | |
1738 | // Form and emit the add. |
1739 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDrr) |
1740 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1741 | .addReg(Reg: ARM::PC) |
1742 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1743 | // Add predicate operands. |
1744 | .addImm(Val: MI->getOperand(i: 3).getImm()) |
1745 | .addReg(Reg: MI->getOperand(i: 4).getReg()) |
1746 | // Add 's' bit operand (always reg0 for this) |
1747 | .addReg(Reg: 0)); |
1748 | return; |
1749 | } |
1750 | case ARM::PICSTR: |
1751 | case ARM::PICSTRB: |
1752 | case ARM::PICSTRH: |
1753 | case ARM::PICLDR: |
1754 | case ARM::PICLDRB: |
1755 | case ARM::PICLDRH: |
1756 | case ARM::PICLDRSB: |
1757 | case ARM::PICLDRSH: { |
1758 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1759 | // LPC0: |
1760 | // OP r0, [pc, r0] |
1761 | // The LCP0 label is referenced by a constant pool entry in order to get |
1762 | // a PC-relative address at the ldr instruction. |
1763 | |
1764 | // Emit the label. |
1765 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1766 | FunctionNumber: getFunctionNumber(), |
1767 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1768 | |
1769 | // Form and emit the load |
1770 | unsigned Opcode; |
1771 | switch (MI->getOpcode()) { |
1772 | default: |
1773 | llvm_unreachable("Unexpected opcode!" ); |
1774 | case ARM::PICSTR: Opcode = ARM::STRrs; break; |
1775 | case ARM::PICSTRB: Opcode = ARM::STRBrs; break; |
1776 | case ARM::PICSTRH: Opcode = ARM::STRH; break; |
1777 | case ARM::PICLDR: Opcode = ARM::LDRrs; break; |
1778 | case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; |
1779 | case ARM::PICLDRH: Opcode = ARM::LDRH; break; |
1780 | case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; |
1781 | case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; |
1782 | } |
1783 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opcode) |
1784 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1785 | .addReg(Reg: ARM::PC) |
1786 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1787 | .addImm(Val: 0) |
1788 | // Add predicate operands. |
1789 | .addImm(Val: MI->getOperand(i: 3).getImm()) |
1790 | .addReg(Reg: MI->getOperand(i: 4).getReg())); |
1791 | |
1792 | return; |
1793 | } |
1794 | case ARM::CONSTPOOL_ENTRY: { |
1795 | if (Subtarget->genExecuteOnly()) |
1796 | llvm_unreachable("execute-only should not generate constant pools" ); |
1797 | |
1798 | /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool |
1799 | /// in the function. The first operand is the ID# for this instruction, the |
1800 | /// second is the index into the MachineConstantPool that this is, the third |
1801 | /// is the size in bytes of this constant pool entry. |
1802 | /// The required alignment is specified on the basic block holding this MI. |
1803 | unsigned LabelId = (unsigned)MI->getOperand(i: 0).getImm(); |
1804 | unsigned CPIdx = (unsigned)MI->getOperand(i: 1).getIndex(); |
1805 | |
1806 | // If this is the first entry of the pool, mark it. |
1807 | if (!InConstantPool) { |
1808 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegion); |
1809 | InConstantPool = true; |
1810 | } |
1811 | |
1812 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: LabelId)); |
1813 | |
1814 | const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; |
1815 | if (MCPE.isMachineConstantPoolEntry()) |
1816 | emitMachineConstantPoolValue(MCPV: MCPE.Val.MachineCPVal); |
1817 | else |
1818 | emitGlobalConstant(DL, CV: MCPE.Val.ConstVal); |
1819 | return; |
1820 | } |
1821 | case ARM::JUMPTABLE_ADDRS: |
1822 | emitJumpTableAddrs(MI); |
1823 | return; |
1824 | case ARM::JUMPTABLE_INSTS: |
1825 | emitJumpTableInsts(MI); |
1826 | return; |
1827 | case ARM::JUMPTABLE_TBB: |
1828 | case ARM::JUMPTABLE_TBH: |
1829 | emitJumpTableTBInst(MI, OffsetWidth: MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); |
1830 | return; |
1831 | case ARM::t2BR_JT: { |
1832 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
1833 | .addReg(Reg: ARM::PC) |
1834 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1835 | // Add predicate operands. |
1836 | .addImm(Val: ARMCC::AL) |
1837 | .addReg(Reg: 0)); |
1838 | return; |
1839 | } |
1840 | case ARM::t2TBB_JT: |
1841 | case ARM::t2TBH_JT: { |
1842 | unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; |
1843 | // Lower and emit the PC label, then the instruction itself. |
1844 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: MI->getOperand(i: 3).getImm())); |
1845 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1846 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1847 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1848 | // Add predicate operands. |
1849 | .addImm(Val: ARMCC::AL) |
1850 | .addReg(Reg: 0)); |
1851 | return; |
1852 | } |
1853 | case ARM::tTBB_JT: |
1854 | case ARM::tTBH_JT: { |
1855 | |
1856 | bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; |
1857 | Register Base = MI->getOperand(i: 0).getReg(); |
1858 | Register Idx = MI->getOperand(i: 1).getReg(); |
1859 | assert(MI->getOperand(1).isKill() && "We need the index register as scratch!" ); |
1860 | |
1861 | // Multiply up idx if necessary. |
1862 | if (!Is8Bit) |
1863 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLSLri) |
1864 | .addReg(Reg: Idx) |
1865 | .addReg(Reg: ARM::CPSR) |
1866 | .addReg(Reg: Idx) |
1867 | .addImm(Val: 1) |
1868 | // Add predicate operands. |
1869 | .addImm(Val: ARMCC::AL) |
1870 | .addReg(Reg: 0)); |
1871 | |
1872 | if (Base == ARM::PC) { |
1873 | // TBB [base, idx] = |
1874 | // ADDS idx, idx, base |
1875 | // LDRB idx, [idx, #4] ; or LDRH if TBH |
1876 | // LSLS idx, #1 |
1877 | // ADDS pc, pc, idx |
1878 | |
1879 | // When using PC as the base, it's important that there is no padding |
1880 | // between the last ADDS and the start of the jump table. The jump table |
1881 | // is 4-byte aligned, so we ensure we're 4 byte aligned here too. |
1882 | // |
1883 | // FIXME: Ideally we could vary the LDRB index based on the padding |
1884 | // between the sequence and jump table, however that relies on MCExprs |
1885 | // for load indexes which are currently not supported. |
1886 | OutStreamer->emitCodeAlignment(Alignment: Align(4), STI: &getSubtargetInfo()); |
1887 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1888 | .addReg(Reg: Idx) |
1889 | .addReg(Reg: Idx) |
1890 | .addReg(Reg: Base) |
1891 | // Add predicate operands. |
1892 | .addImm(Val: ARMCC::AL) |
1893 | .addReg(Reg: 0)); |
1894 | |
1895 | unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; |
1896 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1897 | .addReg(Reg: Idx) |
1898 | .addReg(Reg: Idx) |
1899 | .addImm(Val: Is8Bit ? 4 : 2) |
1900 | // Add predicate operands. |
1901 | .addImm(Val: ARMCC::AL) |
1902 | .addReg(Reg: 0)); |
1903 | } else { |
1904 | // TBB [base, idx] = |
1905 | // LDRB idx, [base, idx] ; or LDRH if TBH |
1906 | // LSLS idx, #1 |
1907 | // ADDS pc, pc, idx |
1908 | |
1909 | unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; |
1910 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1911 | .addReg(Reg: Idx) |
1912 | .addReg(Reg: Base) |
1913 | .addReg(Reg: Idx) |
1914 | // Add predicate operands. |
1915 | .addImm(Val: ARMCC::AL) |
1916 | .addReg(Reg: 0)); |
1917 | } |
1918 | |
1919 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLSLri) |
1920 | .addReg(Reg: Idx) |
1921 | .addReg(Reg: ARM::CPSR) |
1922 | .addReg(Reg: Idx) |
1923 | .addImm(Val: 1) |
1924 | // Add predicate operands. |
1925 | .addImm(Val: ARMCC::AL) |
1926 | .addReg(Reg: 0)); |
1927 | |
1928 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: MI->getOperand(i: 3).getImm())); |
1929 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1930 | .addReg(Reg: ARM::PC) |
1931 | .addReg(Reg: ARM::PC) |
1932 | .addReg(Reg: Idx) |
1933 | // Add predicate operands. |
1934 | .addImm(Val: ARMCC::AL) |
1935 | .addReg(Reg: 0)); |
1936 | return; |
1937 | } |
1938 | case ARM::tBR_JTr: |
1939 | case ARM::BR_JTr: { |
1940 | // mov pc, target |
1941 | MCInst TmpInst; |
1942 | unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? |
1943 | ARM::MOVr : ARM::tMOVr; |
1944 | TmpInst.setOpcode(Opc); |
1945 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
1946 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1947 | // Add predicate operands. |
1948 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1949 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1950 | // Add 's' bit operand (always reg0 for this) |
1951 | if (Opc == ARM::MOVr) |
1952 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1953 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1954 | return; |
1955 | } |
1956 | case ARM::BR_JTm_i12: { |
1957 | // ldr pc, target |
1958 | MCInst TmpInst; |
1959 | TmpInst.setOpcode(ARM::LDRi12); |
1960 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
1961 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1962 | TmpInst.addOperand(Op: MCOperand::createImm(Val: MI->getOperand(i: 2).getImm())); |
1963 | // Add predicate operands. |
1964 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1965 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1966 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1967 | return; |
1968 | } |
1969 | case ARM::BR_JTm_rs: { |
1970 | // ldr pc, target |
1971 | MCInst TmpInst; |
1972 | TmpInst.setOpcode(ARM::LDRrs); |
1973 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
1974 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1975 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 1).getReg())); |
1976 | TmpInst.addOperand(Op: MCOperand::createImm(Val: MI->getOperand(i: 2).getImm())); |
1977 | // Add predicate operands. |
1978 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1979 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1980 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1981 | return; |
1982 | } |
1983 | case ARM::BR_JTadd: { |
1984 | // add pc, target, idx |
1985 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDrr) |
1986 | .addReg(Reg: ARM::PC) |
1987 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1988 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1989 | // Add predicate operands. |
1990 | .addImm(Val: ARMCC::AL) |
1991 | .addReg(Reg: 0) |
1992 | // Add 's' bit operand (always reg0 for this) |
1993 | .addReg(Reg: 0)); |
1994 | return; |
1995 | } |
1996 | case ARM::SPACE: |
1997 | OutStreamer->emitZeros(NumBytes: MI->getOperand(i: 1).getImm()); |
1998 | return; |
1999 | case ARM::TRAP: { |
2000 | // Non-Darwin binutils don't yet support the "trap" mnemonic. |
2001 | // FIXME: Remove this special case when they do. |
2002 | if (!Subtarget->isTargetMachO()) { |
2003 | uint32_t Val = 0xe7ffdefeUL; |
2004 | OutStreamer->AddComment(T: "trap" ); |
2005 | ATS.emitInst(Inst: Val); |
2006 | return; |
2007 | } |
2008 | break; |
2009 | } |
2010 | case ARM::TRAPNaCl: { |
2011 | uint32_t Val = 0xe7fedef0UL; |
2012 | OutStreamer->AddComment(T: "trap" ); |
2013 | ATS.emitInst(Inst: Val); |
2014 | return; |
2015 | } |
2016 | case ARM::tTRAP: { |
2017 | // Non-Darwin binutils don't yet support the "trap" mnemonic. |
2018 | // FIXME: Remove this special case when they do. |
2019 | if (!Subtarget->isTargetMachO()) { |
2020 | uint16_t Val = 0xdefe; |
2021 | OutStreamer->AddComment(T: "trap" ); |
2022 | ATS.emitInst(Inst: Val, Suffix: 'n'); |
2023 | return; |
2024 | } |
2025 | break; |
2026 | } |
2027 | case ARM::t2Int_eh_sjlj_setjmp: |
2028 | case ARM::t2Int_eh_sjlj_setjmp_nofp: |
2029 | case ARM::tInt_eh_sjlj_setjmp: { |
2030 | // Two incoming args: GPR:$src, GPR:$val |
2031 | // mov $val, pc |
2032 | // adds $val, #7 |
2033 | // str $val, [$src, #4] |
2034 | // movs r0, #0 |
2035 | // b LSJLJEH |
2036 | // movs r0, #1 |
2037 | // LSJLJEH: |
2038 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2039 | Register ValReg = MI->getOperand(i: 1).getReg(); |
2040 | MCSymbol *Label = OutContext.createTempSymbol(Name: "SJLJEH" ); |
2041 | OutStreamer->AddComment(T: "eh_setjmp begin" ); |
2042 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
2043 | .addReg(Reg: ValReg) |
2044 | .addReg(Reg: ARM::PC) |
2045 | // Predicate. |
2046 | .addImm(Val: ARMCC::AL) |
2047 | .addReg(Reg: 0)); |
2048 | |
2049 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDi3) |
2050 | .addReg(Reg: ValReg) |
2051 | // 's' bit operand |
2052 | .addReg(Reg: ARM::CPSR) |
2053 | .addReg(Reg: ValReg) |
2054 | .addImm(Val: 7) |
2055 | // Predicate. |
2056 | .addImm(Val: ARMCC::AL) |
2057 | .addReg(Reg: 0)); |
2058 | |
2059 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tSTRi) |
2060 | .addReg(Reg: ValReg) |
2061 | .addReg(Reg: SrcReg) |
2062 | // The offset immediate is #4. The operand value is scaled by 4 for the |
2063 | // tSTR instruction. |
2064 | .addImm(Val: 1) |
2065 | // Predicate. |
2066 | .addImm(Val: ARMCC::AL) |
2067 | .addReg(Reg: 0)); |
2068 | |
2069 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVi8) |
2070 | .addReg(Reg: ARM::R0) |
2071 | .addReg(Reg: ARM::CPSR) |
2072 | .addImm(Val: 0) |
2073 | // Predicate. |
2074 | .addImm(Val: ARMCC::AL) |
2075 | .addReg(Reg: 0)); |
2076 | |
2077 | const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Symbol: Label, Ctx&: OutContext); |
2078 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tB) |
2079 | .addExpr(Val: SymbolExpr) |
2080 | .addImm(Val: ARMCC::AL) |
2081 | .addReg(Reg: 0)); |
2082 | |
2083 | OutStreamer->AddComment(T: "eh_setjmp end" ); |
2084 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVi8) |
2085 | .addReg(Reg: ARM::R0) |
2086 | .addReg(Reg: ARM::CPSR) |
2087 | .addImm(Val: 1) |
2088 | // Predicate. |
2089 | .addImm(Val: ARMCC::AL) |
2090 | .addReg(Reg: 0)); |
2091 | |
2092 | OutStreamer->emitLabel(Symbol: Label); |
2093 | return; |
2094 | } |
2095 | |
2096 | case ARM::Int_eh_sjlj_setjmp_nofp: |
2097 | case ARM::Int_eh_sjlj_setjmp: { |
2098 | // Two incoming args: GPR:$src, GPR:$val |
2099 | // add $val, pc, #8 |
2100 | // str $val, [$src, #+4] |
2101 | // mov r0, #0 |
2102 | // add pc, pc, #0 |
2103 | // mov r0, #1 |
2104 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2105 | Register ValReg = MI->getOperand(i: 1).getReg(); |
2106 | |
2107 | OutStreamer->AddComment(T: "eh_setjmp begin" ); |
2108 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDri) |
2109 | .addReg(Reg: ValReg) |
2110 | .addReg(Reg: ARM::PC) |
2111 | .addImm(Val: 8) |
2112 | // Predicate. |
2113 | .addImm(Val: ARMCC::AL) |
2114 | .addReg(Reg: 0) |
2115 | // 's' bit operand (always reg0 for this). |
2116 | .addReg(Reg: 0)); |
2117 | |
2118 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::STRi12) |
2119 | .addReg(Reg: ValReg) |
2120 | .addReg(Reg: SrcReg) |
2121 | .addImm(Val: 4) |
2122 | // Predicate. |
2123 | .addImm(Val: ARMCC::AL) |
2124 | .addReg(Reg: 0)); |
2125 | |
2126 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVi) |
2127 | .addReg(Reg: ARM::R0) |
2128 | .addImm(Val: 0) |
2129 | // Predicate. |
2130 | .addImm(Val: ARMCC::AL) |
2131 | .addReg(Reg: 0) |
2132 | // 's' bit operand (always reg0 for this). |
2133 | .addReg(Reg: 0)); |
2134 | |
2135 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDri) |
2136 | .addReg(Reg: ARM::PC) |
2137 | .addReg(Reg: ARM::PC) |
2138 | .addImm(Val: 0) |
2139 | // Predicate. |
2140 | .addImm(Val: ARMCC::AL) |
2141 | .addReg(Reg: 0) |
2142 | // 's' bit operand (always reg0 for this). |
2143 | .addReg(Reg: 0)); |
2144 | |
2145 | OutStreamer->AddComment(T: "eh_setjmp end" ); |
2146 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVi) |
2147 | .addReg(Reg: ARM::R0) |
2148 | .addImm(Val: 1) |
2149 | // Predicate. |
2150 | .addImm(Val: ARMCC::AL) |
2151 | .addReg(Reg: 0) |
2152 | // 's' bit operand (always reg0 for this). |
2153 | .addReg(Reg: 0)); |
2154 | return; |
2155 | } |
2156 | case ARM::Int_eh_sjlj_longjmp: { |
2157 | // ldr sp, [$src, #8] |
2158 | // ldr $scratch, [$src, #4] |
2159 | // ldr r7, [$src] |
2160 | // bx $scratch |
2161 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2162 | Register ScratchReg = MI->getOperand(i: 1).getReg(); |
2163 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2164 | .addReg(Reg: ARM::SP) |
2165 | .addReg(Reg: SrcReg) |
2166 | .addImm(Val: 8) |
2167 | // Predicate. |
2168 | .addImm(Val: ARMCC::AL) |
2169 | .addReg(Reg: 0)); |
2170 | |
2171 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2172 | .addReg(Reg: ScratchReg) |
2173 | .addReg(Reg: SrcReg) |
2174 | .addImm(Val: 4) |
2175 | // Predicate. |
2176 | .addImm(Val: ARMCC::AL) |
2177 | .addReg(Reg: 0)); |
2178 | |
2179 | const MachineFunction &MF = *MI->getParent()->getParent(); |
2180 | const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
2181 | |
2182 | if (STI.isTargetDarwin() || STI.isTargetWindows()) { |
2183 | // These platforms always use the same frame register |
2184 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2185 | .addReg(Reg: STI.getFramePointerReg()) |
2186 | .addReg(Reg: SrcReg) |
2187 | .addImm(Val: 0) |
2188 | // Predicate. |
2189 | .addImm(Val: ARMCC::AL) |
2190 | .addReg(Reg: 0)); |
2191 | } else { |
2192 | // If the calling code might use either R7 or R11 as |
2193 | // frame pointer register, restore it into both. |
2194 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2195 | .addReg(Reg: ARM::R7) |
2196 | .addReg(Reg: SrcReg) |
2197 | .addImm(Val: 0) |
2198 | // Predicate. |
2199 | .addImm(Val: ARMCC::AL) |
2200 | .addReg(Reg: 0)); |
2201 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2202 | .addReg(Reg: ARM::R11) |
2203 | .addReg(Reg: SrcReg) |
2204 | .addImm(Val: 0) |
2205 | // Predicate. |
2206 | .addImm(Val: ARMCC::AL) |
2207 | .addReg(Reg: 0)); |
2208 | } |
2209 | |
2210 | assert(Subtarget->hasV4TOps()); |
2211 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::BX) |
2212 | .addReg(Reg: ScratchReg) |
2213 | // Predicate. |
2214 | .addImm(Val: ARMCC::AL) |
2215 | .addReg(Reg: 0)); |
2216 | return; |
2217 | } |
2218 | case ARM::tInt_eh_sjlj_longjmp: { |
2219 | // ldr $scratch, [$src, #8] |
2220 | // mov sp, $scratch |
2221 | // ldr $scratch, [$src, #4] |
2222 | // ldr r7, [$src] |
2223 | // bx $scratch |
2224 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2225 | Register ScratchReg = MI->getOperand(i: 1).getReg(); |
2226 | |
2227 | const MachineFunction &MF = *MI->getParent()->getParent(); |
2228 | const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
2229 | |
2230 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2231 | .addReg(Reg: ScratchReg) |
2232 | .addReg(Reg: SrcReg) |
2233 | // The offset immediate is #8. The operand value is scaled by 4 for the |
2234 | // tLDR instruction. |
2235 | .addImm(Val: 2) |
2236 | // Predicate. |
2237 | .addImm(Val: ARMCC::AL) |
2238 | .addReg(Reg: 0)); |
2239 | |
2240 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
2241 | .addReg(Reg: ARM::SP) |
2242 | .addReg(Reg: ScratchReg) |
2243 | // Predicate. |
2244 | .addImm(Val: ARMCC::AL) |
2245 | .addReg(Reg: 0)); |
2246 | |
2247 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2248 | .addReg(Reg: ScratchReg) |
2249 | .addReg(Reg: SrcReg) |
2250 | .addImm(Val: 1) |
2251 | // Predicate. |
2252 | .addImm(Val: ARMCC::AL) |
2253 | .addReg(Reg: 0)); |
2254 | |
2255 | if (STI.isTargetDarwin() || STI.isTargetWindows()) { |
2256 | // These platforms always use the same frame register |
2257 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2258 | .addReg(Reg: STI.getFramePointerReg()) |
2259 | .addReg(Reg: SrcReg) |
2260 | .addImm(Val: 0) |
2261 | // Predicate. |
2262 | .addImm(Val: ARMCC::AL) |
2263 | .addReg(Reg: 0)); |
2264 | } else { |
2265 | // If the calling code might use either R7 or R11 as |
2266 | // frame pointer register, restore it into both. |
2267 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2268 | .addReg(Reg: ARM::R7) |
2269 | .addReg(Reg: SrcReg) |
2270 | .addImm(Val: 0) |
2271 | // Predicate. |
2272 | .addImm(Val: ARMCC::AL) |
2273 | .addReg(Reg: 0)); |
2274 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2275 | .addReg(Reg: ARM::R11) |
2276 | .addReg(Reg: SrcReg) |
2277 | .addImm(Val: 0) |
2278 | // Predicate. |
2279 | .addImm(Val: ARMCC::AL) |
2280 | .addReg(Reg: 0)); |
2281 | } |
2282 | |
2283 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBX) |
2284 | .addReg(Reg: ScratchReg) |
2285 | // Predicate. |
2286 | .addImm(Val: ARMCC::AL) |
2287 | .addReg(Reg: 0)); |
2288 | return; |
2289 | } |
2290 | case ARM::tInt_WIN_eh_sjlj_longjmp: { |
2291 | // ldr.w r11, [$src, #0] |
2292 | // ldr.w sp, [$src, #8] |
2293 | // ldr.w pc, [$src, #4] |
2294 | |
2295 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2296 | |
2297 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2298 | .addReg(Reg: ARM::R11) |
2299 | .addReg(Reg: SrcReg) |
2300 | .addImm(Val: 0) |
2301 | // Predicate |
2302 | .addImm(Val: ARMCC::AL) |
2303 | .addReg(Reg: 0)); |
2304 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2305 | .addReg(Reg: ARM::SP) |
2306 | .addReg(Reg: SrcReg) |
2307 | .addImm(Val: 8) |
2308 | // Predicate |
2309 | .addImm(Val: ARMCC::AL) |
2310 | .addReg(Reg: 0)); |
2311 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2312 | .addReg(Reg: ARM::PC) |
2313 | .addReg(Reg: SrcReg) |
2314 | .addImm(Val: 4) |
2315 | // Predicate |
2316 | .addImm(Val: ARMCC::AL) |
2317 | .addReg(Reg: 0)); |
2318 | return; |
2319 | } |
2320 | case ARM::PATCHABLE_FUNCTION_ENTER: |
2321 | LowerPATCHABLE_FUNCTION_ENTER(MI: *MI); |
2322 | return; |
2323 | case ARM::PATCHABLE_FUNCTION_EXIT: |
2324 | LowerPATCHABLE_FUNCTION_EXIT(MI: *MI); |
2325 | return; |
2326 | case ARM::PATCHABLE_TAIL_CALL: |
2327 | LowerPATCHABLE_TAIL_CALL(MI: *MI); |
2328 | return; |
2329 | case ARM::SpeculationBarrierISBDSBEndBB: { |
2330 | // Print DSB SYS + ISB |
2331 | MCInst TmpInstDSB; |
2332 | TmpInstDSB.setOpcode(ARM::DSB); |
2333 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2334 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstDSB); |
2335 | MCInst TmpInstISB; |
2336 | TmpInstISB.setOpcode(ARM::ISB); |
2337 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2338 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstISB); |
2339 | return; |
2340 | } |
2341 | case ARM::t2SpeculationBarrierISBDSBEndBB: { |
2342 | // Print DSB SYS + ISB |
2343 | MCInst TmpInstDSB; |
2344 | TmpInstDSB.setOpcode(ARM::t2DSB); |
2345 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2346 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
2347 | TmpInstDSB.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2348 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstDSB); |
2349 | MCInst TmpInstISB; |
2350 | TmpInstISB.setOpcode(ARM::t2ISB); |
2351 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2352 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
2353 | TmpInstISB.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2354 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstISB); |
2355 | return; |
2356 | } |
2357 | case ARM::SpeculationBarrierSBEndBB: { |
2358 | // Print SB |
2359 | MCInst TmpInstSB; |
2360 | TmpInstSB.setOpcode(ARM::SB); |
2361 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstSB); |
2362 | return; |
2363 | } |
2364 | case ARM::t2SpeculationBarrierSBEndBB: { |
2365 | // Print SB |
2366 | MCInst TmpInstSB; |
2367 | TmpInstSB.setOpcode(ARM::t2SB); |
2368 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstSB); |
2369 | return; |
2370 | } |
2371 | |
2372 | case ARM::SEH_StackAlloc: |
2373 | ATS.emitARMWinCFIAllocStack(Size: MI->getOperand(i: 0).getImm(), |
2374 | Wide: MI->getOperand(i: 1).getImm()); |
2375 | return; |
2376 | |
2377 | case ARM::SEH_SaveRegs: |
2378 | case ARM::SEH_SaveRegs_Ret: |
2379 | ATS.emitARMWinCFISaveRegMask(Mask: MI->getOperand(i: 0).getImm(), |
2380 | Wide: MI->getOperand(i: 1).getImm()); |
2381 | return; |
2382 | |
2383 | case ARM::SEH_SaveSP: |
2384 | ATS.emitARMWinCFISaveSP(Reg: MI->getOperand(i: 0).getImm()); |
2385 | return; |
2386 | |
2387 | case ARM::SEH_SaveFRegs: |
2388 | ATS.emitARMWinCFISaveFRegs(First: MI->getOperand(i: 0).getImm(), |
2389 | Last: MI->getOperand(i: 1).getImm()); |
2390 | return; |
2391 | |
2392 | case ARM::SEH_SaveLR: |
2393 | ATS.emitARMWinCFISaveLR(Offset: MI->getOperand(i: 0).getImm()); |
2394 | return; |
2395 | |
2396 | case ARM::SEH_Nop: |
2397 | case ARM::SEH_Nop_Ret: |
2398 | ATS.emitARMWinCFINop(Wide: MI->getOperand(i: 0).getImm()); |
2399 | return; |
2400 | |
2401 | case ARM::SEH_PrologEnd: |
2402 | ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); |
2403 | return; |
2404 | |
2405 | case ARM::SEH_EpilogStart: |
2406 | ATS.emitARMWinCFIEpilogStart(Condition: ARMCC::AL); |
2407 | return; |
2408 | |
2409 | case ARM::SEH_EpilogEnd: |
2410 | ATS.emitARMWinCFIEpilogEnd(); |
2411 | return; |
2412 | |
2413 | case ARM::PseudoARMInitUndefMQPR: |
2414 | case ARM::PseudoARMInitUndefSPR: |
2415 | case ARM::PseudoARMInitUndefDPR_VFP2: |
2416 | case ARM::PseudoARMInitUndefGPR: |
2417 | return; |
2418 | } |
2419 | |
2420 | MCInst TmpInst; |
2421 | LowerARMMachineInstrToMCInst(MI, OutMI&: TmpInst, AP&: *this); |
2422 | |
2423 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
2424 | } |
2425 | |
2426 | //===----------------------------------------------------------------------===// |
2427 | // Target Registry Stuff |
2428 | //===----------------------------------------------------------------------===// |
2429 | |
2430 | // Force static initialization. |
2431 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { |
2432 | RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); |
2433 | RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); |
2434 | RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); |
2435 | RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); |
2436 | } |
2437 | |