1 | //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ARMBaseInstrInfo.h" |
10 | #include "ARMFeatures.h" |
11 | #include "MCTargetDesc/ARMAddressingModes.h" |
12 | #include "MCTargetDesc/ARMBaseInfo.h" |
13 | #include "MCTargetDesc/ARMInstPrinter.h" |
14 | #include "MCTargetDesc/ARMMCExpr.h" |
15 | #include "MCTargetDesc/ARMMCTargetDesc.h" |
16 | #include "TargetInfo/ARMTargetInfo.h" |
17 | #include "Utils/ARMBaseInfo.h" |
18 | #include "llvm/ADT/APFloat.h" |
19 | #include "llvm/ADT/APInt.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/SmallBitVector.h" |
22 | #include "llvm/ADT/SmallSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/StringMap.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include "llvm/ADT/StringSet.h" |
27 | #include "llvm/ADT/StringSwitch.h" |
28 | #include "llvm/ADT/Twine.h" |
29 | #include "llvm/MC/MCContext.h" |
30 | #include "llvm/MC/MCExpr.h" |
31 | #include "llvm/MC/MCInst.h" |
32 | #include "llvm/MC/MCInstrDesc.h" |
33 | #include "llvm/MC/MCInstrInfo.h" |
34 | #include "llvm/MC/MCParser/MCAsmLexer.h" |
35 | #include "llvm/MC/MCParser/MCAsmParser.h" |
36 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
37 | #include "llvm/MC/MCParser/MCAsmParserUtils.h" |
38 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
39 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
40 | #include "llvm/MC/MCRegisterInfo.h" |
41 | #include "llvm/MC/MCSection.h" |
42 | #include "llvm/MC/MCStreamer.h" |
43 | #include "llvm/MC/MCSubtargetInfo.h" |
44 | #include "llvm/MC/MCSymbol.h" |
45 | #include "llvm/MC/TargetRegistry.h" |
46 | #include "llvm/Support/ARMBuildAttributes.h" |
47 | #include "llvm/Support/ARMEHABI.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Compiler.h" |
51 | #include "llvm/Support/Debug.h" |
52 | #include "llvm/Support/ErrorHandling.h" |
53 | #include "llvm/Support/MathExtras.h" |
54 | #include "llvm/Support/SMLoc.h" |
55 | #include "llvm/Support/raw_ostream.h" |
56 | #include "llvm/TargetParser/SubtargetFeature.h" |
57 | #include "llvm/TargetParser/TargetParser.h" |
58 | #include "llvm/TargetParser/Triple.h" |
59 | #include <algorithm> |
60 | #include <cassert> |
61 | #include <cstddef> |
62 | #include <cstdint> |
63 | #include <iterator> |
64 | #include <limits> |
65 | #include <memory> |
66 | #include <optional> |
67 | #include <string> |
68 | #include <utility> |
69 | #include <vector> |
70 | |
71 | #define DEBUG_TYPE "asm-parser" |
72 | |
73 | using namespace llvm; |
74 | |
75 | namespace { |
76 | class ARMOperand; |
77 | |
78 | enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; |
79 | |
80 | static cl::opt<ImplicitItModeTy> ImplicitItMode( |
81 | "arm-implicit-it" , cl::init(Val: ImplicitItModeTy::ARMOnly), |
82 | cl::desc("Allow conditional instructions outdside of an IT block" ), |
83 | cl::values(clEnumValN(ImplicitItModeTy::Always, "always" , |
84 | "Accept in both ISAs, emit implicit ITs in Thumb" ), |
85 | clEnumValN(ImplicitItModeTy::Never, "never" , |
86 | "Warn in ARM, reject in Thumb" ), |
87 | clEnumValN(ImplicitItModeTy::ARMOnly, "arm" , |
88 | "Accept in ARM, reject in Thumb" ), |
89 | clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb" , |
90 | "Warn in ARM, emit implicit ITs in Thumb" ))); |
91 | |
92 | static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes" , |
93 | cl::init(Val: false)); |
94 | |
95 | enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; |
96 | |
97 | static inline unsigned (unsigned Mask, unsigned Position) { |
98 | // Position==0 means we're not in an IT block at all. Position==1 |
99 | // means we want the first state bit, which is always 0 (Then). |
100 | // Position==2 means we want the second state bit, stored at bit 3 |
101 | // of Mask, and so on downwards. So (5 - Position) will shift the |
102 | // right bit down to bit 0, including the always-0 bit at bit 4 for |
103 | // the mandatory initial Then. |
104 | return (Mask >> (5 - Position) & 1); |
105 | } |
106 | |
107 | class UnwindContext { |
108 | using Locs = SmallVector<SMLoc, 4>; |
109 | |
110 | MCAsmParser &Parser; |
111 | Locs FnStartLocs; |
112 | Locs CantUnwindLocs; |
113 | Locs PersonalityLocs; |
114 | Locs PersonalityIndexLocs; |
115 | Locs HandlerDataLocs; |
116 | int FPReg; |
117 | |
118 | public: |
119 | UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} |
120 | |
121 | bool hasFnStart() const { return !FnStartLocs.empty(); } |
122 | bool cantUnwind() const { return !CantUnwindLocs.empty(); } |
123 | bool hasHandlerData() const { return !HandlerDataLocs.empty(); } |
124 | |
125 | bool hasPersonality() const { |
126 | return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); |
127 | } |
128 | |
129 | void recordFnStart(SMLoc L) { FnStartLocs.push_back(Elt: L); } |
130 | void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(Elt: L); } |
131 | void recordPersonality(SMLoc L) { PersonalityLocs.push_back(Elt: L); } |
132 | void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(Elt: L); } |
133 | void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(Elt: L); } |
134 | |
135 | void saveFPReg(int Reg) { FPReg = Reg; } |
136 | int getFPReg() const { return FPReg; } |
137 | |
138 | void emitFnStartLocNotes() const { |
139 | for (const SMLoc &Loc : FnStartLocs) |
140 | Parser.Note(L: Loc, Msg: ".fnstart was specified here" ); |
141 | } |
142 | |
143 | void emitCantUnwindLocNotes() const { |
144 | for (const SMLoc &Loc : CantUnwindLocs) |
145 | Parser.Note(L: Loc, Msg: ".cantunwind was specified here" ); |
146 | } |
147 | |
148 | void emitHandlerDataLocNotes() const { |
149 | for (const SMLoc &Loc : HandlerDataLocs) |
150 | Parser.Note(L: Loc, Msg: ".handlerdata was specified here" ); |
151 | } |
152 | |
153 | void emitPersonalityLocNotes() const { |
154 | for (Locs::const_iterator PI = PersonalityLocs.begin(), |
155 | PE = PersonalityLocs.end(), |
156 | PII = PersonalityIndexLocs.begin(), |
157 | PIE = PersonalityIndexLocs.end(); |
158 | PI != PE || PII != PIE;) { |
159 | if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) |
160 | Parser.Note(L: *PI++, Msg: ".personality was specified here" ); |
161 | else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) |
162 | Parser.Note(L: *PII++, Msg: ".personalityindex was specified here" ); |
163 | else |
164 | llvm_unreachable(".personality and .personalityindex cannot be " |
165 | "at the same location" ); |
166 | } |
167 | } |
168 | |
169 | void reset() { |
170 | FnStartLocs = Locs(); |
171 | CantUnwindLocs = Locs(); |
172 | PersonalityLocs = Locs(); |
173 | HandlerDataLocs = Locs(); |
174 | PersonalityIndexLocs = Locs(); |
175 | FPReg = ARM::SP; |
176 | } |
177 | }; |
178 | |
179 | // Various sets of ARM instruction mnemonics which are used by the asm parser |
180 | class ARMMnemonicSets { |
181 | StringSet<> CDE; |
182 | StringSet<> CDEWithVPTSuffix; |
183 | public: |
184 | ARMMnemonicSets(const MCSubtargetInfo &STI); |
185 | |
186 | /// Returns true iff a given mnemonic is a CDE instruction |
187 | bool isCDEInstr(StringRef Mnemonic) { |
188 | // Quick check before searching the set |
189 | if (!Mnemonic.starts_with(Prefix: "cx" ) && !Mnemonic.starts_with(Prefix: "vcx" )) |
190 | return false; |
191 | return CDE.count(Key: Mnemonic); |
192 | } |
193 | |
194 | /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction |
195 | /// (possibly with a predication suffix "e" or "t") |
196 | bool isVPTPredicableCDEInstr(StringRef Mnemonic) { |
197 | if (!Mnemonic.starts_with(Prefix: "vcx" )) |
198 | return false; |
199 | return CDEWithVPTSuffix.count(Key: Mnemonic); |
200 | } |
201 | |
202 | /// Returns true iff a given mnemonic is an IT-predicable CDE instruction |
203 | /// (possibly with a condition suffix) |
204 | bool isITPredicableCDEInstr(StringRef Mnemonic) { |
205 | if (!Mnemonic.starts_with(Prefix: "cx" )) |
206 | return false; |
207 | return Mnemonic.starts_with(Prefix: "cx1a" ) || Mnemonic.starts_with(Prefix: "cx1da" ) || |
208 | Mnemonic.starts_with(Prefix: "cx2a" ) || Mnemonic.starts_with(Prefix: "cx2da" ) || |
209 | Mnemonic.starts_with(Prefix: "cx3a" ) || Mnemonic.starts_with(Prefix: "cx3da" ); |
210 | } |
211 | |
212 | /// Return true iff a given mnemonic is an integer CDE instruction with |
213 | /// dual-register destination |
214 | bool isCDEDualRegInstr(StringRef Mnemonic) { |
215 | if (!Mnemonic.starts_with(Prefix: "cx" )) |
216 | return false; |
217 | return Mnemonic == "cx1d" || Mnemonic == "cx1da" || |
218 | Mnemonic == "cx2d" || Mnemonic == "cx2da" || |
219 | Mnemonic == "cx3d" || Mnemonic == "cx3da" ; |
220 | } |
221 | }; |
222 | |
223 | ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { |
224 | for (StringRef Mnemonic: { "cx1" , "cx1a" , "cx1d" , "cx1da" , |
225 | "cx2" , "cx2a" , "cx2d" , "cx2da" , |
226 | "cx3" , "cx3a" , "cx3d" , "cx3da" , }) |
227 | CDE.insert(key: Mnemonic); |
228 | for (StringRef Mnemonic : |
229 | {"vcx1" , "vcx1a" , "vcx2" , "vcx2a" , "vcx3" , "vcx3a" }) { |
230 | CDE.insert(key: Mnemonic); |
231 | CDEWithVPTSuffix.insert(key: Mnemonic); |
232 | CDEWithVPTSuffix.insert(key: std::string(Mnemonic) + "t" ); |
233 | CDEWithVPTSuffix.insert(key: std::string(Mnemonic) + "e" ); |
234 | } |
235 | } |
236 | |
237 | class ARMAsmParser : public MCTargetAsmParser { |
238 | const MCRegisterInfo *MRI; |
239 | UnwindContext UC; |
240 | ARMMnemonicSets MS; |
241 | |
242 | ARMTargetStreamer &getTargetStreamer() { |
243 | assert(getParser().getStreamer().getTargetStreamer() && |
244 | "do not have a target streamer" ); |
245 | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
246 | return static_cast<ARMTargetStreamer &>(TS); |
247 | } |
248 | |
249 | // Map of register aliases registers via the .req directive. |
250 | StringMap<unsigned> RegisterReqs; |
251 | |
252 | bool NextSymbolIsThumb; |
253 | |
254 | bool useImplicitITThumb() const { |
255 | return ImplicitItMode == ImplicitItModeTy::Always || |
256 | ImplicitItMode == ImplicitItModeTy::ThumbOnly; |
257 | } |
258 | |
259 | bool useImplicitITARM() const { |
260 | return ImplicitItMode == ImplicitItModeTy::Always || |
261 | ImplicitItMode == ImplicitItModeTy::ARMOnly; |
262 | } |
263 | |
264 | struct { |
265 | ARMCC::CondCodes Cond; // Condition for IT block. |
266 | unsigned Mask:4; // Condition mask for instructions. |
267 | // Starting at first 1 (from lsb). |
268 | // '1' condition as indicated in IT. |
269 | // '0' inverse of condition (else). |
270 | // Count of instructions in IT block is |
271 | // 4 - trailingzeroes(mask) |
272 | // Note that this does not have the same encoding |
273 | // as in the IT instruction, which also depends |
274 | // on the low bit of the condition code. |
275 | |
276 | unsigned CurPosition; // Current position in parsing of IT |
277 | // block. In range [0,4], with 0 being the IT |
278 | // instruction itself. Initialized according to |
279 | // count of instructions in block. ~0U if no |
280 | // active IT block. |
281 | |
282 | bool IsExplicit; // true - The IT instruction was present in the |
283 | // input, we should not modify it. |
284 | // false - The IT instruction was added |
285 | // implicitly, we can extend it if that |
286 | // would be legal. |
287 | } ITState; |
288 | |
289 | SmallVector<MCInst, 4> PendingConditionalInsts; |
290 | |
291 | void flushPendingInstructions(MCStreamer &Out) override { |
292 | if (!inImplicitITBlock()) { |
293 | assert(PendingConditionalInsts.size() == 0); |
294 | return; |
295 | } |
296 | |
297 | // Emit the IT instruction |
298 | MCInst ITInst; |
299 | ITInst.setOpcode(ARM::t2IT); |
300 | ITInst.addOperand(Op: MCOperand::createImm(Val: ITState.Cond)); |
301 | ITInst.addOperand(Op: MCOperand::createImm(Val: ITState.Mask)); |
302 | Out.emitInstruction(Inst: ITInst, STI: getSTI()); |
303 | |
304 | // Emit the conditional instructions |
305 | assert(PendingConditionalInsts.size() <= 4); |
306 | for (const MCInst &Inst : PendingConditionalInsts) { |
307 | Out.emitInstruction(Inst, STI: getSTI()); |
308 | } |
309 | PendingConditionalInsts.clear(); |
310 | |
311 | // Clear the IT state |
312 | ITState.Mask = 0; |
313 | ITState.CurPosition = ~0U; |
314 | } |
315 | |
316 | bool inITBlock() { return ITState.CurPosition != ~0U; } |
317 | bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } |
318 | bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } |
319 | |
320 | bool lastInITBlock() { |
321 | return ITState.CurPosition == 4 - (unsigned)llvm::countr_zero(Val: ITState.Mask); |
322 | } |
323 | |
324 | void forwardITPosition() { |
325 | if (!inITBlock()) return; |
326 | // Move to the next instruction in the IT block, if there is one. If not, |
327 | // mark the block as done, except for implicit IT blocks, which we leave |
328 | // open until we find an instruction that can't be added to it. |
329 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
330 | if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) |
331 | ITState.CurPosition = ~0U; // Done with the IT block after this. |
332 | } |
333 | |
334 | // Rewind the state of the current IT block, removing the last slot from it. |
335 | void rewindImplicitITPosition() { |
336 | assert(inImplicitITBlock()); |
337 | assert(ITState.CurPosition > 1); |
338 | ITState.CurPosition--; |
339 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
340 | unsigned NewMask = 0; |
341 | NewMask |= ITState.Mask & (0xC << TZ); |
342 | NewMask |= 0x2 << TZ; |
343 | ITState.Mask = NewMask; |
344 | } |
345 | |
346 | // Rewind the state of the current IT block, removing the last slot from it. |
347 | // If we were at the first slot, this closes the IT block. |
348 | void discardImplicitITBlock() { |
349 | assert(inImplicitITBlock()); |
350 | assert(ITState.CurPosition == 1); |
351 | ITState.CurPosition = ~0U; |
352 | } |
353 | |
354 | // Get the condition code corresponding to the current IT block slot. |
355 | ARMCC::CondCodes currentITCond() { |
356 | unsigned MaskBit = extractITMaskBit(Mask: ITState.Mask, Position: ITState.CurPosition); |
357 | return MaskBit ? ARMCC::getOppositeCondition(CC: ITState.Cond) : ITState.Cond; |
358 | } |
359 | |
360 | // Invert the condition of the current IT block slot without changing any |
361 | // other slots in the same block. |
362 | void invertCurrentITCondition() { |
363 | if (ITState.CurPosition == 1) { |
364 | ITState.Cond = ARMCC::getOppositeCondition(CC: ITState.Cond); |
365 | } else { |
366 | ITState.Mask ^= 1 << (5 - ITState.CurPosition); |
367 | } |
368 | } |
369 | |
370 | // Returns true if the current IT block is full (all 4 slots used). |
371 | bool isITBlockFull() { |
372 | return inITBlock() && (ITState.Mask & 1); |
373 | } |
374 | |
375 | // Extend the current implicit IT block to have one more slot with the given |
376 | // condition code. |
377 | void extendImplicitITBlock(ARMCC::CondCodes Cond) { |
378 | assert(inImplicitITBlock()); |
379 | assert(!isITBlockFull()); |
380 | assert(Cond == ITState.Cond || |
381 | Cond == ARMCC::getOppositeCondition(ITState.Cond)); |
382 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
383 | unsigned NewMask = 0; |
384 | // Keep any existing condition bits. |
385 | NewMask |= ITState.Mask & (0xE << TZ); |
386 | // Insert the new condition bit. |
387 | NewMask |= (Cond != ITState.Cond) << TZ; |
388 | // Move the trailing 1 down one bit. |
389 | NewMask |= 1 << (TZ - 1); |
390 | ITState.Mask = NewMask; |
391 | } |
392 | |
393 | // Create a new implicit IT block with a dummy condition code. |
394 | void startImplicitITBlock() { |
395 | assert(!inITBlock()); |
396 | ITState.Cond = ARMCC::AL; |
397 | ITState.Mask = 8; |
398 | ITState.CurPosition = 1; |
399 | ITState.IsExplicit = false; |
400 | } |
401 | |
402 | // Create a new explicit IT block with the given condition and mask. |
403 | // The mask should be in the format used in ARMOperand and |
404 | // MCOperand, with a 1 implying 'e', regardless of the low bit of |
405 | // the condition. |
406 | void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { |
407 | assert(!inITBlock()); |
408 | ITState.Cond = Cond; |
409 | ITState.Mask = Mask; |
410 | ITState.CurPosition = 0; |
411 | ITState.IsExplicit = true; |
412 | } |
413 | |
414 | struct { |
415 | unsigned Mask : 4; |
416 | unsigned CurPosition; |
417 | } VPTState; |
418 | bool inVPTBlock() { return VPTState.CurPosition != ~0U; } |
419 | void forwardVPTPosition() { |
420 | if (!inVPTBlock()) return; |
421 | unsigned TZ = llvm::countr_zero(Val: VPTState.Mask); |
422 | if (++VPTState.CurPosition == 5 - TZ) |
423 | VPTState.CurPosition = ~0U; |
424 | } |
425 | |
426 | void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
427 | return getParser().Note(L, Msg, Range); |
428 | } |
429 | |
430 | bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
431 | return getParser().Warning(L, Msg, Range); |
432 | } |
433 | |
434 | bool Error(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
435 | return getParser().Error(L, Msg, Range); |
436 | } |
437 | |
438 | bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, |
439 | unsigned MnemonicOpsEndInd, unsigned ListIndex, |
440 | bool IsARPop = false); |
441 | bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, |
442 | unsigned MnemonicOpsEndInd, unsigned ListIndex); |
443 | |
444 | int tryParseRegister(bool AllowOutofBoundReg = false); |
445 | bool tryParseRegisterWithWriteBack(OperandVector &); |
446 | int tryParseShiftRegister(OperandVector &); |
447 | std::optional<ARM_AM::ShiftOpc> tryParseShiftToken(); |
448 | bool parseRegisterList(OperandVector &, bool EnforceOrder = true, |
449 | bool AllowRAAC = false, |
450 | bool AllowOutOfBoundReg = false); |
451 | bool parseMemory(OperandVector &); |
452 | bool parseOperand(OperandVector &, StringRef Mnemonic); |
453 | bool parseImmExpr(int64_t &Out); |
454 | bool parsePrefix(ARMMCExpr::VariantKind &RefKind); |
455 | bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, |
456 | unsigned &ShiftAmount); |
457 | bool parseLiteralValues(unsigned Size, SMLoc L); |
458 | bool parseDirectiveThumb(SMLoc L); |
459 | bool parseDirectiveARM(SMLoc L); |
460 | bool parseDirectiveThumbFunc(SMLoc L); |
461 | bool parseDirectiveCode(SMLoc L); |
462 | bool parseDirectiveSyntax(SMLoc L); |
463 | bool parseDirectiveReq(StringRef Name, SMLoc L); |
464 | bool parseDirectiveUnreq(SMLoc L); |
465 | bool parseDirectiveArch(SMLoc L); |
466 | bool parseDirectiveEabiAttr(SMLoc L); |
467 | bool parseDirectiveCPU(SMLoc L); |
468 | bool parseDirectiveFPU(SMLoc L); |
469 | bool parseDirectiveFnStart(SMLoc L); |
470 | bool parseDirectiveFnEnd(SMLoc L); |
471 | bool parseDirectiveCantUnwind(SMLoc L); |
472 | bool parseDirectivePersonality(SMLoc L); |
473 | bool parseDirectiveHandlerData(SMLoc L); |
474 | bool parseDirectiveSetFP(SMLoc L); |
475 | bool parseDirectivePad(SMLoc L); |
476 | bool parseDirectiveRegSave(SMLoc L, bool IsVector); |
477 | bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); |
478 | bool parseDirectiveLtorg(SMLoc L); |
479 | bool parseDirectiveEven(SMLoc L); |
480 | bool parseDirectivePersonalityIndex(SMLoc L); |
481 | bool parseDirectiveUnwindRaw(SMLoc L); |
482 | bool parseDirectiveTLSDescSeq(SMLoc L); |
483 | bool parseDirectiveMovSP(SMLoc L); |
484 | bool parseDirectiveObjectArch(SMLoc L); |
485 | bool parseDirectiveArchExtension(SMLoc L); |
486 | bool parseDirectiveAlign(SMLoc L); |
487 | bool parseDirectiveThumbSet(SMLoc L); |
488 | |
489 | bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide); |
490 | bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide); |
491 | bool parseDirectiveSEHSaveSP(SMLoc L); |
492 | bool parseDirectiveSEHSaveFRegs(SMLoc L); |
493 | bool parseDirectiveSEHSaveLR(SMLoc L); |
494 | bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment); |
495 | bool parseDirectiveSEHNop(SMLoc L, bool Wide); |
496 | bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition); |
497 | bool parseDirectiveSEHEpilogEnd(SMLoc L); |
498 | bool parseDirectiveSEHCustom(SMLoc L); |
499 | |
500 | std::unique_ptr<ARMOperand> defaultCondCodeOp(); |
501 | std::unique_ptr<ARMOperand> defaultCCOutOp(); |
502 | std::unique_ptr<ARMOperand> defaultVPTPredOp(); |
503 | |
504 | bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ); |
505 | StringRef splitMnemonic(StringRef Mnemonic, StringRef , |
506 | ARMCC::CondCodes &PredicationCode, |
507 | ARMVCC::VPTCodes &VPTPredicationCode, |
508 | bool &CarrySetting, unsigned &ProcessorIMod, |
509 | StringRef &ITMask); |
510 | void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef , |
511 | StringRef FullInst, bool &CanAcceptCarrySet, |
512 | bool &CanAcceptPredicationCode, |
513 | bool &CanAcceptVPTPredicationCode); |
514 | bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); |
515 | |
516 | void tryConvertingToTwoOperandForm(StringRef Mnemonic, |
517 | ARMCC::CondCodes PredicationCode, |
518 | bool CarrySetting, OperandVector &Operands, |
519 | unsigned MnemonicOpsEndInd); |
520 | |
521 | bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands, |
522 | unsigned MnemonicOpsEndInd); |
523 | |
524 | bool isThumb() const { |
525 | // FIXME: Can tablegen auto-generate this? |
526 | return getSTI().hasFeature(Feature: ARM::ModeThumb); |
527 | } |
528 | |
529 | bool isThumbOne() const { |
530 | return isThumb() && !getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
531 | } |
532 | |
533 | bool isThumbTwo() const { |
534 | return isThumb() && getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
535 | } |
536 | |
537 | bool hasThumb() const { |
538 | return getSTI().hasFeature(Feature: ARM::HasV4TOps); |
539 | } |
540 | |
541 | bool hasThumb2() const { |
542 | return getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
543 | } |
544 | |
545 | bool hasV6Ops() const { |
546 | return getSTI().hasFeature(Feature: ARM::HasV6Ops); |
547 | } |
548 | |
549 | bool hasV6T2Ops() const { |
550 | return getSTI().hasFeature(Feature: ARM::HasV6T2Ops); |
551 | } |
552 | |
553 | bool hasV6MOps() const { |
554 | return getSTI().hasFeature(Feature: ARM::HasV6MOps); |
555 | } |
556 | |
557 | bool hasV7Ops() const { |
558 | return getSTI().hasFeature(Feature: ARM::HasV7Ops); |
559 | } |
560 | |
561 | bool hasV8Ops() const { |
562 | return getSTI().hasFeature(Feature: ARM::HasV8Ops); |
563 | } |
564 | |
565 | bool hasV8MBaseline() const { |
566 | return getSTI().hasFeature(Feature: ARM::HasV8MBaselineOps); |
567 | } |
568 | |
569 | bool hasV8MMainline() const { |
570 | return getSTI().hasFeature(Feature: ARM::HasV8MMainlineOps); |
571 | } |
572 | bool hasV8_1MMainline() const { |
573 | return getSTI().hasFeature(Feature: ARM::HasV8_1MMainlineOps); |
574 | } |
575 | bool hasMVEFloat() const { |
576 | return getSTI().hasFeature(Feature: ARM::HasMVEFloatOps); |
577 | } |
578 | bool hasCDE() const { |
579 | return getSTI().hasFeature(Feature: ARM::HasCDEOps); |
580 | } |
581 | bool has8MSecExt() const { |
582 | return getSTI().hasFeature(Feature: ARM::Feature8MSecExt); |
583 | } |
584 | |
585 | bool hasARM() const { |
586 | return !getSTI().hasFeature(Feature: ARM::FeatureNoARM); |
587 | } |
588 | |
589 | bool hasDSP() const { |
590 | return getSTI().hasFeature(Feature: ARM::FeatureDSP); |
591 | } |
592 | |
593 | bool hasD32() const { |
594 | return getSTI().hasFeature(Feature: ARM::FeatureD32); |
595 | } |
596 | |
597 | bool hasV8_1aOps() const { |
598 | return getSTI().hasFeature(Feature: ARM::HasV8_1aOps); |
599 | } |
600 | |
601 | bool hasRAS() const { |
602 | return getSTI().hasFeature(Feature: ARM::FeatureRAS); |
603 | } |
604 | |
605 | void SwitchMode() { |
606 | MCSubtargetInfo &STI = copySTI(); |
607 | auto FB = ComputeAvailableFeatures(FB: STI.ToggleFeature(FB: ARM::ModeThumb)); |
608 | setAvailableFeatures(FB); |
609 | } |
610 | |
611 | void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); |
612 | |
613 | bool isMClass() const { |
614 | return getSTI().hasFeature(Feature: ARM::FeatureMClass); |
615 | } |
616 | |
617 | /// @name Auto-generated Match Functions |
618 | /// { |
619 | |
620 | #define |
621 | #include "ARMGenAsmMatcher.inc" |
622 | |
623 | /// } |
624 | |
625 | ParseStatus parseITCondCode(OperandVector &); |
626 | ParseStatus parseCoprocNumOperand(OperandVector &); |
627 | ParseStatus parseCoprocRegOperand(OperandVector &); |
628 | ParseStatus parseCoprocOptionOperand(OperandVector &); |
629 | ParseStatus parseMemBarrierOptOperand(OperandVector &); |
630 | ParseStatus parseTraceSyncBarrierOptOperand(OperandVector &); |
631 | ParseStatus parseInstSyncBarrierOptOperand(OperandVector &); |
632 | ParseStatus parseProcIFlagsOperand(OperandVector &); |
633 | ParseStatus parseMSRMaskOperand(OperandVector &); |
634 | ParseStatus parseBankedRegOperand(OperandVector &); |
635 | ParseStatus parsePKHImm(OperandVector &O, ARM_AM::ShiftOpc, int Low, |
636 | int High); |
637 | ParseStatus parsePKHLSLImm(OperandVector &O) { |
638 | return parsePKHImm(O, ARM_AM::lsl, Low: 0, High: 31); |
639 | } |
640 | ParseStatus parsePKHASRImm(OperandVector &O) { |
641 | return parsePKHImm(O, ARM_AM::asr, Low: 1, High: 32); |
642 | } |
643 | ParseStatus parseSetEndImm(OperandVector &); |
644 | ParseStatus parseShifterImm(OperandVector &); |
645 | ParseStatus parseRotImm(OperandVector &); |
646 | ParseStatus parseModImm(OperandVector &); |
647 | ParseStatus parseBitfield(OperandVector &); |
648 | ParseStatus parsePostIdxReg(OperandVector &); |
649 | ParseStatus parseAM3Offset(OperandVector &); |
650 | ParseStatus parseFPImm(OperandVector &); |
651 | ParseStatus parseVectorList(OperandVector &); |
652 | ParseStatus parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, |
653 | SMLoc &EndLoc); |
654 | |
655 | // Asm Match Converter Methods |
656 | void cvtThumbMultiply(MCInst &Inst, const OperandVector &); |
657 | void cvtThumbBranches(MCInst &Inst, const OperandVector &); |
658 | void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); |
659 | |
660 | bool validateInstruction(MCInst &Inst, const OperandVector &Ops, |
661 | unsigned MnemonicOpsEndInd); |
662 | bool processInstruction(MCInst &Inst, const OperandVector &Ops, |
663 | unsigned MnemonicOpsEndInd, MCStreamer &Out); |
664 | bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, |
665 | OperandVector &Operands, |
666 | unsigned MnemonicOpsEndInd); |
667 | bool isITBlockTerminator(MCInst &Inst) const; |
668 | |
669 | void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands, |
670 | unsigned MnemonicOpsEndInd); |
671 | bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, bool Load, |
672 | bool ARMMode, bool Writeback, |
673 | unsigned MnemonicOpsEndInd); |
674 | |
675 | public: |
676 | enum ARMMatchResultTy { |
677 | Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, |
678 | Match_RequiresNotITBlock, |
679 | Match_RequiresV6, |
680 | Match_RequiresThumb2, |
681 | Match_RequiresV8, |
682 | Match_RequiresFlagSetting, |
683 | #define GET_OPERAND_DIAGNOSTIC_TYPES |
684 | #include "ARMGenAsmMatcher.inc" |
685 | |
686 | }; |
687 | |
688 | ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, |
689 | const MCInstrInfo &MII, const MCTargetOptions &Options) |
690 | : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { |
691 | MCAsmParserExtension::Initialize(Parser); |
692 | |
693 | // Cache the MCRegisterInfo. |
694 | MRI = getContext().getRegisterInfo(); |
695 | |
696 | // Initialize the set of available features. |
697 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
698 | |
699 | // Add build attributes based on the selected target. |
700 | if (AddBuildAttributes) |
701 | getTargetStreamer().emitTargetAttributes(STI); |
702 | |
703 | // Not in an ITBlock to start with. |
704 | ITState.CurPosition = ~0U; |
705 | |
706 | VPTState.CurPosition = ~0U; |
707 | |
708 | NextSymbolIsThumb = false; |
709 | } |
710 | |
711 | // Implementation of the MCTargetAsmParser interface: |
712 | bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; |
713 | ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
714 | SMLoc &EndLoc) override; |
715 | bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
716 | SMLoc NameLoc, OperandVector &Operands) override; |
717 | bool ParseDirective(AsmToken DirectiveID) override; |
718 | |
719 | unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, |
720 | unsigned Kind) override; |
721 | unsigned checkTargetMatchPredicate(MCInst &Inst) override; |
722 | unsigned |
723 | checkEarlyTargetMatchPredicate(MCInst &Inst, |
724 | const OperandVector &Operands) override; |
725 | |
726 | bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
727 | OperandVector &Operands, MCStreamer &Out, |
728 | uint64_t &ErrorInfo, |
729 | bool MatchingInlineAsm) override; |
730 | unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, |
731 | SmallVectorImpl<NearMissInfo> &NearMisses, |
732 | bool MatchingInlineAsm, bool &EmitInITBlock, |
733 | MCStreamer &Out); |
734 | |
735 | struct NearMissMessage { |
736 | SMLoc Loc; |
737 | SmallString<128> Message; |
738 | }; |
739 | |
740 | const char *getCustomOperandDiag(ARMMatchResultTy MatchError); |
741 | |
742 | void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
743 | SmallVectorImpl<NearMissMessage> &NearMissesOut, |
744 | SMLoc IDLoc, OperandVector &Operands); |
745 | void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, |
746 | OperandVector &Operands); |
747 | |
748 | MCSymbolRefExpr::VariantKind |
749 | getVariantKindForName(StringRef Name) const override; |
750 | |
751 | void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) override; |
752 | |
753 | void onLabelParsed(MCSymbol *Symbol) override; |
754 | |
755 | const MCInstrDesc &getInstrDesc(unsigned int Opcode) const { |
756 | return MII.get(Opcode); |
757 | } |
758 | |
759 | bool hasMVE() const { return getSTI().hasFeature(Feature: ARM::HasMVEIntegerOps); } |
760 | |
761 | // Return the low-subreg of a given Q register. |
762 | unsigned getDRegFromQReg(unsigned QReg) const { |
763 | return MRI->getSubReg(Reg: QReg, Idx: ARM::dsub_0); |
764 | } |
765 | |
766 | const MCRegisterInfo *getMRI() const { return MRI; } |
767 | }; |
768 | |
769 | /// ARMOperand - Instances of this class represent a parsed ARM machine |
770 | /// operand. |
771 | class ARMOperand : public MCParsedAsmOperand { |
772 | enum KindTy { |
773 | k_CondCode, |
774 | k_VPTPred, |
775 | k_CCOut, |
776 | k_ITCondMask, |
777 | k_CoprocNum, |
778 | k_CoprocReg, |
779 | k_CoprocOption, |
780 | k_Immediate, |
781 | k_MemBarrierOpt, |
782 | k_InstSyncBarrierOpt, |
783 | k_TraceSyncBarrierOpt, |
784 | k_Memory, |
785 | k_PostIndexRegister, |
786 | k_MSRMask, |
787 | k_BankedReg, |
788 | k_ProcIFlags, |
789 | k_VectorIndex, |
790 | k_Register, |
791 | k_RegisterList, |
792 | k_RegisterListWithAPSR, |
793 | k_DPRRegisterList, |
794 | k_SPRRegisterList, |
795 | k_FPSRegisterListWithVPR, |
796 | k_FPDRegisterListWithVPR, |
797 | k_VectorList, |
798 | k_VectorListAllLanes, |
799 | k_VectorListIndexed, |
800 | k_ShiftedRegister, |
801 | k_ShiftedImmediate, |
802 | k_ShifterImmediate, |
803 | k_RotateImmediate, |
804 | k_ModifiedImmediate, |
805 | k_ConstantPoolImmediate, |
806 | k_BitfieldDescriptor, |
807 | k_Token, |
808 | } Kind; |
809 | |
810 | SMLoc StartLoc, EndLoc, AlignmentLoc; |
811 | SmallVector<unsigned, 8> Registers; |
812 | |
813 | ARMAsmParser *Parser; |
814 | |
815 | struct CCOp { |
816 | ARMCC::CondCodes Val; |
817 | }; |
818 | |
819 | struct VCCOp { |
820 | ARMVCC::VPTCodes Val; |
821 | }; |
822 | |
823 | struct CopOp { |
824 | unsigned Val; |
825 | }; |
826 | |
827 | struct CoprocOptionOp { |
828 | unsigned Val; |
829 | }; |
830 | |
831 | struct ITMaskOp { |
832 | unsigned Mask:4; |
833 | }; |
834 | |
835 | struct MBOptOp { |
836 | ARM_MB::MemBOpt Val; |
837 | }; |
838 | |
839 | struct ISBOptOp { |
840 | ARM_ISB::InstSyncBOpt Val; |
841 | }; |
842 | |
843 | struct TSBOptOp { |
844 | ARM_TSB::TraceSyncBOpt Val; |
845 | }; |
846 | |
847 | struct IFlagsOp { |
848 | ARM_PROC::IFlags Val; |
849 | }; |
850 | |
851 | struct MMaskOp { |
852 | unsigned Val; |
853 | }; |
854 | |
855 | struct BankedRegOp { |
856 | unsigned Val; |
857 | }; |
858 | |
859 | struct TokOp { |
860 | const char *Data; |
861 | unsigned Length; |
862 | }; |
863 | |
864 | struct RegOp { |
865 | unsigned RegNum; |
866 | }; |
867 | |
868 | // A vector register list is a sequential list of 1 to 4 registers. |
869 | struct VectorListOp { |
870 | unsigned RegNum; |
871 | unsigned Count; |
872 | unsigned LaneIndex; |
873 | bool isDoubleSpaced; |
874 | }; |
875 | |
876 | struct VectorIndexOp { |
877 | unsigned Val; |
878 | }; |
879 | |
880 | struct ImmOp { |
881 | const MCExpr *Val; |
882 | }; |
883 | |
884 | /// Combined record for all forms of ARM address expressions. |
885 | struct MemoryOp { |
886 | unsigned BaseRegNum; |
887 | // Offset is in OffsetReg or OffsetImm. If both are zero, no offset |
888 | // was specified. |
889 | const MCExpr *OffsetImm; // Offset immediate value |
890 | unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL |
891 | ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg |
892 | unsigned ShiftImm; // shift for OffsetReg. |
893 | unsigned Alignment; // 0 = no alignment specified |
894 | // n = alignment in bytes (2, 4, 8, 16, or 32) |
895 | unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) |
896 | }; |
897 | |
898 | struct PostIdxRegOp { |
899 | unsigned RegNum; |
900 | bool isAdd; |
901 | ARM_AM::ShiftOpc ShiftTy; |
902 | unsigned ShiftImm; |
903 | }; |
904 | |
905 | struct ShifterImmOp { |
906 | bool isASR; |
907 | unsigned Imm; |
908 | }; |
909 | |
910 | struct RegShiftedRegOp { |
911 | ARM_AM::ShiftOpc ShiftTy; |
912 | unsigned SrcReg; |
913 | unsigned ShiftReg; |
914 | unsigned ShiftImm; |
915 | }; |
916 | |
917 | struct RegShiftedImmOp { |
918 | ARM_AM::ShiftOpc ShiftTy; |
919 | unsigned SrcReg; |
920 | unsigned ShiftImm; |
921 | }; |
922 | |
923 | struct RotImmOp { |
924 | unsigned Imm; |
925 | }; |
926 | |
927 | struct ModImmOp { |
928 | unsigned Bits; |
929 | unsigned Rot; |
930 | }; |
931 | |
932 | struct BitfieldOp { |
933 | unsigned LSB; |
934 | unsigned Width; |
935 | }; |
936 | |
937 | union { |
938 | struct CCOp CC; |
939 | struct VCCOp VCC; |
940 | struct CopOp Cop; |
941 | struct CoprocOptionOp CoprocOption; |
942 | struct MBOptOp MBOpt; |
943 | struct ISBOptOp ISBOpt; |
944 | struct TSBOptOp TSBOpt; |
945 | struct ITMaskOp ITMask; |
946 | struct IFlagsOp IFlags; |
947 | struct MMaskOp MMask; |
948 | struct BankedRegOp BankedReg; |
949 | struct TokOp Tok; |
950 | struct RegOp Reg; |
951 | struct VectorListOp VectorList; |
952 | struct VectorIndexOp VectorIndex; |
953 | struct ImmOp Imm; |
954 | struct MemoryOp Memory; |
955 | struct PostIdxRegOp PostIdxReg; |
956 | struct ShifterImmOp ShifterImm; |
957 | struct RegShiftedRegOp RegShiftedReg; |
958 | struct RegShiftedImmOp RegShiftedImm; |
959 | struct RotImmOp RotImm; |
960 | struct ModImmOp ModImm; |
961 | struct BitfieldOp Bitfield; |
962 | }; |
963 | |
964 | public: |
965 | ARMOperand(KindTy K, ARMAsmParser &Parser) : Kind(K), Parser(&Parser) {} |
966 | |
967 | /// getStartLoc - Get the location of the first token of this operand. |
968 | SMLoc getStartLoc() const override { return StartLoc; } |
969 | |
970 | /// getEndLoc - Get the location of the last token of this operand. |
971 | SMLoc getEndLoc() const override { return EndLoc; } |
972 | |
973 | /// getLocRange - Get the range between the first and last token of this |
974 | /// operand. |
975 | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
976 | |
977 | /// getAlignmentLoc - Get the location of the Alignment token of this operand. |
978 | SMLoc getAlignmentLoc() const { |
979 | assert(Kind == k_Memory && "Invalid access!" ); |
980 | return AlignmentLoc; |
981 | } |
982 | |
983 | ARMCC::CondCodes getCondCode() const { |
984 | assert(Kind == k_CondCode && "Invalid access!" ); |
985 | return CC.Val; |
986 | } |
987 | |
988 | ARMVCC::VPTCodes getVPTPred() const { |
989 | assert(isVPTPred() && "Invalid access!" ); |
990 | return VCC.Val; |
991 | } |
992 | |
993 | unsigned getCoproc() const { |
994 | assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!" ); |
995 | return Cop.Val; |
996 | } |
997 | |
998 | StringRef getToken() const { |
999 | assert(Kind == k_Token && "Invalid access!" ); |
1000 | return StringRef(Tok.Data, Tok.Length); |
1001 | } |
1002 | |
1003 | MCRegister getReg() const override { |
1004 | assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!" ); |
1005 | return Reg.RegNum; |
1006 | } |
1007 | |
1008 | const SmallVectorImpl<unsigned> &getRegList() const { |
1009 | assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || |
1010 | Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || |
1011 | Kind == k_FPSRegisterListWithVPR || |
1012 | Kind == k_FPDRegisterListWithVPR) && |
1013 | "Invalid access!" ); |
1014 | return Registers; |
1015 | } |
1016 | |
1017 | const MCExpr *getImm() const { |
1018 | assert(isImm() && "Invalid access!" ); |
1019 | return Imm.Val; |
1020 | } |
1021 | |
1022 | const MCExpr *getConstantPoolImm() const { |
1023 | assert(isConstantPoolImm() && "Invalid access!" ); |
1024 | return Imm.Val; |
1025 | } |
1026 | |
1027 | unsigned getVectorIndex() const { |
1028 | assert(Kind == k_VectorIndex && "Invalid access!" ); |
1029 | return VectorIndex.Val; |
1030 | } |
1031 | |
1032 | ARM_MB::MemBOpt getMemBarrierOpt() const { |
1033 | assert(Kind == k_MemBarrierOpt && "Invalid access!" ); |
1034 | return MBOpt.Val; |
1035 | } |
1036 | |
1037 | ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { |
1038 | assert(Kind == k_InstSyncBarrierOpt && "Invalid access!" ); |
1039 | return ISBOpt.Val; |
1040 | } |
1041 | |
1042 | ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { |
1043 | assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!" ); |
1044 | return TSBOpt.Val; |
1045 | } |
1046 | |
1047 | ARM_PROC::IFlags getProcIFlags() const { |
1048 | assert(Kind == k_ProcIFlags && "Invalid access!" ); |
1049 | return IFlags.Val; |
1050 | } |
1051 | |
1052 | unsigned getMSRMask() const { |
1053 | assert(Kind == k_MSRMask && "Invalid access!" ); |
1054 | return MMask.Val; |
1055 | } |
1056 | |
1057 | unsigned getBankedReg() const { |
1058 | assert(Kind == k_BankedReg && "Invalid access!" ); |
1059 | return BankedReg.Val; |
1060 | } |
1061 | |
1062 | bool isCoprocNum() const { return Kind == k_CoprocNum; } |
1063 | bool isCoprocReg() const { return Kind == k_CoprocReg; } |
1064 | bool isCoprocOption() const { return Kind == k_CoprocOption; } |
1065 | bool isCondCode() const { return Kind == k_CondCode; } |
1066 | bool isVPTPred() const { return Kind == k_VPTPred; } |
1067 | bool isCCOut() const { return Kind == k_CCOut; } |
1068 | bool isITMask() const { return Kind == k_ITCondMask; } |
1069 | bool isITCondCode() const { return Kind == k_CondCode; } |
1070 | bool isImm() const override { |
1071 | return Kind == k_Immediate; |
1072 | } |
1073 | |
1074 | bool isARMBranchTarget() const { |
1075 | if (!isImm()) return false; |
1076 | |
1077 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) |
1078 | return CE->getValue() % 4 == 0; |
1079 | return true; |
1080 | } |
1081 | |
1082 | |
1083 | bool isThumbBranchTarget() const { |
1084 | if (!isImm()) return false; |
1085 | |
1086 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) |
1087 | return CE->getValue() % 2 == 0; |
1088 | return true; |
1089 | } |
1090 | |
1091 | // checks whether this operand is an unsigned offset which fits is a field |
1092 | // of specified width and scaled by a specific number of bits |
1093 | template<unsigned width, unsigned scale> |
1094 | bool isUnsignedOffset() const { |
1095 | if (!isImm()) return false; |
1096 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1097 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1098 | int64_t Val = CE->getValue(); |
1099 | int64_t Align = 1LL << scale; |
1100 | int64_t Max = Align * ((1LL << width) - 1); |
1101 | return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); |
1102 | } |
1103 | return false; |
1104 | } |
1105 | |
1106 | // checks whether this operand is an signed offset which fits is a field |
1107 | // of specified width and scaled by a specific number of bits |
1108 | template<unsigned width, unsigned scale> |
1109 | bool isSignedOffset() const { |
1110 | if (!isImm()) return false; |
1111 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1112 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1113 | int64_t Val = CE->getValue(); |
1114 | int64_t Align = 1LL << scale; |
1115 | int64_t Max = Align * ((1LL << (width-1)) - 1); |
1116 | int64_t Min = -Align * (1LL << (width-1)); |
1117 | return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); |
1118 | } |
1119 | return false; |
1120 | } |
1121 | |
1122 | // checks whether this operand is an offset suitable for the LE / |
1123 | // LETP instructions in Arm v8.1M |
1124 | bool isLEOffset() const { |
1125 | if (!isImm()) return false; |
1126 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1127 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1128 | int64_t Val = CE->getValue(); |
1129 | return Val < 0 && Val >= -4094 && (Val & 1) == 0; |
1130 | } |
1131 | return false; |
1132 | } |
1133 | |
1134 | // checks whether this operand is a memory operand computed as an offset |
1135 | // applied to PC. the offset may have 8 bits of magnitude and is represented |
1136 | // with two bits of shift. textually it may be either [pc, #imm], #imm or |
1137 | // relocable expression... |
1138 | bool isThumbMemPC() const { |
1139 | int64_t Val = 0; |
1140 | if (isImm()) { |
1141 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1142 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val); |
1143 | if (!CE) return false; |
1144 | Val = CE->getValue(); |
1145 | } |
1146 | else if (isGPRMem()) { |
1147 | if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; |
1148 | if(Memory.BaseRegNum != ARM::PC) return false; |
1149 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
1150 | Val = CE->getValue(); |
1151 | else |
1152 | return false; |
1153 | } |
1154 | else return false; |
1155 | return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); |
1156 | } |
1157 | |
1158 | bool isFPImm() const { |
1159 | if (!isImm()) return false; |
1160 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1161 | if (!CE) return false; |
1162 | int Val = ARM_AM::getFP32Imm(Imm: APInt(32, CE->getValue())); |
1163 | return Val != -1; |
1164 | } |
1165 | |
1166 | template<int64_t N, int64_t M> |
1167 | bool isImmediate() const { |
1168 | if (!isImm()) return false; |
1169 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1170 | if (!CE) return false; |
1171 | int64_t Value = CE->getValue(); |
1172 | return Value >= N && Value <= M; |
1173 | } |
1174 | |
1175 | template<int64_t N, int64_t M> |
1176 | bool isImmediateS4() const { |
1177 | if (!isImm()) return false; |
1178 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1179 | if (!CE) return false; |
1180 | int64_t Value = CE->getValue(); |
1181 | return ((Value & 3) == 0) && Value >= N && Value <= M; |
1182 | } |
1183 | template<int64_t N, int64_t M> |
1184 | bool isImmediateS2() const { |
1185 | if (!isImm()) return false; |
1186 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1187 | if (!CE) return false; |
1188 | int64_t Value = CE->getValue(); |
1189 | return ((Value & 1) == 0) && Value >= N && Value <= M; |
1190 | } |
1191 | bool isFBits16() const { |
1192 | return isImmediate<0, 17>(); |
1193 | } |
1194 | bool isFBits32() const { |
1195 | return isImmediate<1, 33>(); |
1196 | } |
1197 | bool isImm8s4() const { |
1198 | return isImmediateS4<-1020, 1020>(); |
1199 | } |
1200 | bool isImm7s4() const { |
1201 | return isImmediateS4<-508, 508>(); |
1202 | } |
1203 | bool isImm7Shift0() const { |
1204 | return isImmediate<-127, 127>(); |
1205 | } |
1206 | bool isImm7Shift1() const { |
1207 | return isImmediateS2<-255, 255>(); |
1208 | } |
1209 | bool isImm7Shift2() const { |
1210 | return isImmediateS4<-511, 511>(); |
1211 | } |
1212 | bool isImm7() const { |
1213 | return isImmediate<-127, 127>(); |
1214 | } |
1215 | bool isImm0_1020s4() const { |
1216 | return isImmediateS4<0, 1020>(); |
1217 | } |
1218 | bool isImm0_508s4() const { |
1219 | return isImmediateS4<0, 508>(); |
1220 | } |
1221 | bool isImm0_508s4Neg() const { |
1222 | if (!isImm()) return false; |
1223 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1224 | if (!CE) return false; |
1225 | int64_t Value = -CE->getValue(); |
1226 | // explicitly exclude zero. we want that to use the normal 0_508 version. |
1227 | return ((Value & 3) == 0) && Value > 0 && Value <= 508; |
1228 | } |
1229 | |
1230 | bool isImm0_4095Neg() const { |
1231 | if (!isImm()) return false; |
1232 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1233 | if (!CE) return false; |
1234 | // isImm0_4095Neg is used with 32-bit immediates only. |
1235 | // 32-bit immediates are zero extended to 64-bit when parsed, |
1236 | // thus simple -CE->getValue() results in a big negative number, |
1237 | // not a small positive number as intended |
1238 | if ((CE->getValue() >> 32) > 0) return false; |
1239 | uint32_t Value = -static_cast<uint32_t>(CE->getValue()); |
1240 | return Value > 0 && Value < 4096; |
1241 | } |
1242 | |
1243 | bool isImm0_7() const { |
1244 | return isImmediate<0, 7>(); |
1245 | } |
1246 | |
1247 | bool isImm1_16() const { |
1248 | return isImmediate<1, 16>(); |
1249 | } |
1250 | |
1251 | bool isImm1_32() const { |
1252 | return isImmediate<1, 32>(); |
1253 | } |
1254 | |
1255 | bool isImm8_255() const { |
1256 | return isImmediate<8, 255>(); |
1257 | } |
1258 | |
1259 | bool isImm0_255Expr() const { |
1260 | if (!isImm()) |
1261 | return false; |
1262 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1263 | // If it's not a constant expression, it'll generate a fixup and be |
1264 | // handled later. |
1265 | if (!CE) |
1266 | return true; |
1267 | int64_t Value = CE->getValue(); |
1268 | return isUInt<8>(x: Value); |
1269 | } |
1270 | |
1271 | bool isImm256_65535Expr() const { |
1272 | if (!isImm()) return false; |
1273 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1274 | // If it's not a constant expression, it'll generate a fixup and be |
1275 | // handled later. |
1276 | if (!CE) return true; |
1277 | int64_t Value = CE->getValue(); |
1278 | return Value >= 256 && Value < 65536; |
1279 | } |
1280 | |
1281 | bool isImm0_65535Expr() const { |
1282 | if (!isImm()) return false; |
1283 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1284 | // If it's not a constant expression, it'll generate a fixup and be |
1285 | // handled later. |
1286 | if (!CE) return true; |
1287 | int64_t Value = CE->getValue(); |
1288 | return Value >= 0 && Value < 65536; |
1289 | } |
1290 | |
1291 | bool isImm24bit() const { |
1292 | return isImmediate<0, 0xffffff + 1>(); |
1293 | } |
1294 | |
1295 | bool isImmThumbSR() const { |
1296 | return isImmediate<1, 33>(); |
1297 | } |
1298 | |
1299 | bool isPKHLSLImm() const { |
1300 | return isImmediate<0, 32>(); |
1301 | } |
1302 | |
1303 | bool isPKHASRImm() const { |
1304 | return isImmediate<0, 33>(); |
1305 | } |
1306 | |
1307 | bool isAdrLabel() const { |
1308 | // If we have an immediate that's not a constant, treat it as a label |
1309 | // reference needing a fixup. |
1310 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1311 | return true; |
1312 | |
1313 | // If it is a constant, it must fit into a modified immediate encoding. |
1314 | if (!isImm()) return false; |
1315 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1316 | if (!CE) return false; |
1317 | int64_t Value = CE->getValue(); |
1318 | return (ARM_AM::getSOImmVal(Arg: Value) != -1 || |
1319 | ARM_AM::getSOImmVal(Arg: -Value) != -1); |
1320 | } |
1321 | |
1322 | bool isT2SOImm() const { |
1323 | // If we have an immediate that's not a constant, treat it as an expression |
1324 | // needing a fixup. |
1325 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) { |
1326 | // We want to avoid matching :upper16: and :lower16: as we want these |
1327 | // expressions to match in isImm0_65535Expr() |
1328 | const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(Val: getImm()); |
1329 | return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && |
1330 | ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); |
1331 | } |
1332 | if (!isImm()) return false; |
1333 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1334 | if (!CE) return false; |
1335 | int64_t Value = CE->getValue(); |
1336 | return ARM_AM::getT2SOImmVal(Arg: Value) != -1; |
1337 | } |
1338 | |
1339 | bool isT2SOImmNot() const { |
1340 | if (!isImm()) return false; |
1341 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1342 | if (!CE) return false; |
1343 | int64_t Value = CE->getValue(); |
1344 | return ARM_AM::getT2SOImmVal(Arg: Value) == -1 && |
1345 | ARM_AM::getT2SOImmVal(Arg: ~Value) != -1; |
1346 | } |
1347 | |
1348 | bool isT2SOImmNeg() const { |
1349 | if (!isImm()) return false; |
1350 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1351 | if (!CE) return false; |
1352 | int64_t Value = CE->getValue(); |
1353 | // Only use this when not representable as a plain so_imm. |
1354 | return ARM_AM::getT2SOImmVal(Arg: Value) == -1 && |
1355 | ARM_AM::getT2SOImmVal(Arg: -Value) != -1; |
1356 | } |
1357 | |
1358 | bool isSetEndImm() const { |
1359 | if (!isImm()) return false; |
1360 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1361 | if (!CE) return false; |
1362 | int64_t Value = CE->getValue(); |
1363 | return Value == 1 || Value == 0; |
1364 | } |
1365 | |
1366 | bool isReg() const override { return Kind == k_Register; } |
1367 | bool isRegList() const { return Kind == k_RegisterList; } |
1368 | bool isRegListWithAPSR() const { |
1369 | return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; |
1370 | } |
1371 | bool isDReg() const { |
1372 | return isReg() && |
1373 | ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg: Reg.RegNum); |
1374 | } |
1375 | bool isQReg() const { |
1376 | return isReg() && |
1377 | ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: Reg.RegNum); |
1378 | } |
1379 | bool isDPRRegList() const { return Kind == k_DPRRegisterList; } |
1380 | bool isSPRRegList() const { return Kind == k_SPRRegisterList; } |
1381 | bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } |
1382 | bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } |
1383 | bool isToken() const override { return Kind == k_Token; } |
1384 | bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } |
1385 | bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } |
1386 | bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } |
1387 | bool isMem() const override { |
1388 | return isGPRMem() || isMVEMem(); |
1389 | } |
1390 | bool isMVEMem() const { |
1391 | if (Kind != k_Memory) |
1392 | return false; |
1393 | if (Memory.BaseRegNum && |
1394 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.BaseRegNum) && |
1395 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg: Memory.BaseRegNum)) |
1396 | return false; |
1397 | if (Memory.OffsetRegNum && |
1398 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1399 | Reg: Memory.OffsetRegNum)) |
1400 | return false; |
1401 | return true; |
1402 | } |
1403 | bool isGPRMem() const { |
1404 | if (Kind != k_Memory) |
1405 | return false; |
1406 | if (Memory.BaseRegNum && |
1407 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.BaseRegNum)) |
1408 | return false; |
1409 | if (Memory.OffsetRegNum && |
1410 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.OffsetRegNum)) |
1411 | return false; |
1412 | return true; |
1413 | } |
1414 | bool isShifterImm() const { return Kind == k_ShifterImmediate; } |
1415 | bool isRegShiftedReg() const { |
1416 | return Kind == k_ShiftedRegister && |
1417 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1418 | Reg: RegShiftedReg.SrcReg) && |
1419 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1420 | Reg: RegShiftedReg.ShiftReg); |
1421 | } |
1422 | bool isRegShiftedImm() const { |
1423 | return Kind == k_ShiftedImmediate && |
1424 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1425 | Reg: RegShiftedImm.SrcReg); |
1426 | } |
1427 | bool isRotImm() const { return Kind == k_RotateImmediate; } |
1428 | |
1429 | template<unsigned Min, unsigned Max> |
1430 | bool isPowerTwoInRange() const { |
1431 | if (!isImm()) return false; |
1432 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1433 | if (!CE) return false; |
1434 | int64_t Value = CE->getValue(); |
1435 | return Value > 0 && llvm::popcount(Value: (uint64_t)Value) == 1 && Value >= Min && |
1436 | Value <= Max; |
1437 | } |
1438 | bool isModImm() const { return Kind == k_ModifiedImmediate; } |
1439 | |
1440 | bool isModImmNot() const { |
1441 | if (!isImm()) return false; |
1442 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1443 | if (!CE) return false; |
1444 | int64_t Value = CE->getValue(); |
1445 | return ARM_AM::getSOImmVal(Arg: ~Value) != -1; |
1446 | } |
1447 | |
1448 | bool isModImmNeg() const { |
1449 | if (!isImm()) return false; |
1450 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1451 | if (!CE) return false; |
1452 | int64_t Value = CE->getValue(); |
1453 | return ARM_AM::getSOImmVal(Arg: Value) == -1 && |
1454 | ARM_AM::getSOImmVal(Arg: -Value) != -1; |
1455 | } |
1456 | |
1457 | bool isThumbModImmNeg1_7() const { |
1458 | if (!isImm()) return false; |
1459 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1460 | if (!CE) return false; |
1461 | int32_t Value = -(int32_t)CE->getValue(); |
1462 | return 0 < Value && Value < 8; |
1463 | } |
1464 | |
1465 | bool isThumbModImmNeg8_255() const { |
1466 | if (!isImm()) return false; |
1467 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1468 | if (!CE) return false; |
1469 | int32_t Value = -(int32_t)CE->getValue(); |
1470 | return 7 < Value && Value < 256; |
1471 | } |
1472 | |
1473 | bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } |
1474 | bool isBitfield() const { return Kind == k_BitfieldDescriptor; } |
1475 | bool isPostIdxRegShifted() const { |
1476 | return Kind == k_PostIndexRegister && |
1477 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: PostIdxReg.RegNum); |
1478 | } |
1479 | bool isPostIdxReg() const { |
1480 | return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; |
1481 | } |
1482 | bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { |
1483 | if (!isGPRMem()) |
1484 | return false; |
1485 | // No offset of any kind. |
1486 | return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
1487 | (alignOK || Memory.Alignment == Alignment); |
1488 | } |
1489 | bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { |
1490 | if (!isGPRMem()) |
1491 | return false; |
1492 | |
1493 | if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1494 | Reg: Memory.BaseRegNum)) |
1495 | return false; |
1496 | |
1497 | // No offset of any kind. |
1498 | return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
1499 | (alignOK || Memory.Alignment == Alignment); |
1500 | } |
1501 | bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { |
1502 | if (!isGPRMem()) |
1503 | return false; |
1504 | |
1505 | if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( |
1506 | Reg: Memory.BaseRegNum)) |
1507 | return false; |
1508 | |
1509 | // No offset of any kind. |
1510 | return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
1511 | (alignOK || Memory.Alignment == Alignment); |
1512 | } |
1513 | bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { |
1514 | if (!isGPRMem()) |
1515 | return false; |
1516 | |
1517 | if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( |
1518 | Reg: Memory.BaseRegNum)) |
1519 | return false; |
1520 | |
1521 | // No offset of any kind. |
1522 | return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
1523 | (alignOK || Memory.Alignment == Alignment); |
1524 | } |
1525 | bool isMemPCRelImm12() const { |
1526 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1527 | return false; |
1528 | // Base register must be PC. |
1529 | if (Memory.BaseRegNum != ARM::PC) |
1530 | return false; |
1531 | // Immediate offset in range [-4095, 4095]. |
1532 | if (!Memory.OffsetImm) return true; |
1533 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1534 | int64_t Val = CE->getValue(); |
1535 | return (Val > -4096 && Val < 4096) || |
1536 | (Val == std::numeric_limits<int32_t>::min()); |
1537 | } |
1538 | return false; |
1539 | } |
1540 | |
1541 | bool isAlignedMemory() const { |
1542 | return isMemNoOffset(alignOK: true); |
1543 | } |
1544 | |
1545 | bool isAlignedMemoryNone() const { |
1546 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1547 | } |
1548 | |
1549 | bool isDupAlignedMemoryNone() const { |
1550 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1551 | } |
1552 | |
1553 | bool isAlignedMemory16() const { |
1554 | if (isMemNoOffset(alignOK: false, Alignment: 2)) // alignment in bytes for 16-bits is 2. |
1555 | return true; |
1556 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1557 | } |
1558 | |
1559 | bool isDupAlignedMemory16() const { |
1560 | if (isMemNoOffset(alignOK: false, Alignment: 2)) // alignment in bytes for 16-bits is 2. |
1561 | return true; |
1562 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1563 | } |
1564 | |
1565 | bool isAlignedMemory32() const { |
1566 | if (isMemNoOffset(alignOK: false, Alignment: 4)) // alignment in bytes for 32-bits is 4. |
1567 | return true; |
1568 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1569 | } |
1570 | |
1571 | bool isDupAlignedMemory32() const { |
1572 | if (isMemNoOffset(alignOK: false, Alignment: 4)) // alignment in bytes for 32-bits is 4. |
1573 | return true; |
1574 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1575 | } |
1576 | |
1577 | bool isAlignedMemory64() const { |
1578 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1579 | return true; |
1580 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1581 | } |
1582 | |
1583 | bool isDupAlignedMemory64() const { |
1584 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1585 | return true; |
1586 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1587 | } |
1588 | |
1589 | bool isAlignedMemory64or128() const { |
1590 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1591 | return true; |
1592 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1593 | return true; |
1594 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1595 | } |
1596 | |
1597 | bool isDupAlignedMemory64or128() const { |
1598 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1599 | return true; |
1600 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1601 | return true; |
1602 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1603 | } |
1604 | |
1605 | bool isAlignedMemory64or128or256() const { |
1606 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1607 | return true; |
1608 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1609 | return true; |
1610 | if (isMemNoOffset(alignOK: false, Alignment: 32)) // alignment in bytes for 256-bits is 32. |
1611 | return true; |
1612 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1613 | } |
1614 | |
1615 | bool isAddrMode2() const { |
1616 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1617 | // Check for register offset. |
1618 | if (Memory.OffsetRegNum) return true; |
1619 | // Immediate offset in range [-4095, 4095]. |
1620 | if (!Memory.OffsetImm) return true; |
1621 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1622 | int64_t Val = CE->getValue(); |
1623 | return Val > -4096 && Val < 4096; |
1624 | } |
1625 | return false; |
1626 | } |
1627 | |
1628 | bool isAM2OffsetImm() const { |
1629 | if (!isImm()) return false; |
1630 | // Immediate offset in range [-4095, 4095]. |
1631 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1632 | if (!CE) return false; |
1633 | int64_t Val = CE->getValue(); |
1634 | return (Val == std::numeric_limits<int32_t>::min()) || |
1635 | (Val > -4096 && Val < 4096); |
1636 | } |
1637 | |
1638 | bool isAddrMode3() const { |
1639 | // If we have an immediate that's not a constant, treat it as a label |
1640 | // reference needing a fixup. If it is a constant, it's something else |
1641 | // and we reject it. |
1642 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1643 | return true; |
1644 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1645 | // No shifts are legal for AM3. |
1646 | if (Memory.ShiftType != ARM_AM::no_shift) return false; |
1647 | // Check for register offset. |
1648 | if (Memory.OffsetRegNum) return true; |
1649 | // Immediate offset in range [-255, 255]. |
1650 | if (!Memory.OffsetImm) return true; |
1651 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1652 | int64_t Val = CE->getValue(); |
1653 | // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and |
1654 | // we have to check for this too. |
1655 | return (Val > -256 && Val < 256) || |
1656 | Val == std::numeric_limits<int32_t>::min(); |
1657 | } |
1658 | return false; |
1659 | } |
1660 | |
1661 | bool isAM3Offset() const { |
1662 | if (isPostIdxReg()) |
1663 | return true; |
1664 | if (!isImm()) |
1665 | return false; |
1666 | // Immediate offset in range [-255, 255]. |
1667 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1668 | if (!CE) return false; |
1669 | int64_t Val = CE->getValue(); |
1670 | // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
1671 | return (Val > -256 && Val < 256) || |
1672 | Val == std::numeric_limits<int32_t>::min(); |
1673 | } |
1674 | |
1675 | bool isAddrMode5() const { |
1676 | // If we have an immediate that's not a constant, treat it as a label |
1677 | // reference needing a fixup. If it is a constant, it's something else |
1678 | // and we reject it. |
1679 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1680 | return true; |
1681 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1682 | // Check for register offset. |
1683 | if (Memory.OffsetRegNum) return false; |
1684 | // Immediate offset in range [-1020, 1020] and a multiple of 4. |
1685 | if (!Memory.OffsetImm) return true; |
1686 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1687 | int64_t Val = CE->getValue(); |
1688 | return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || |
1689 | Val == std::numeric_limits<int32_t>::min(); |
1690 | } |
1691 | return false; |
1692 | } |
1693 | |
1694 | bool isAddrMode5FP16() const { |
1695 | // If we have an immediate that's not a constant, treat it as a label |
1696 | // reference needing a fixup. If it is a constant, it's something else |
1697 | // and we reject it. |
1698 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1699 | return true; |
1700 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1701 | // Check for register offset. |
1702 | if (Memory.OffsetRegNum) return false; |
1703 | // Immediate offset in range [-510, 510] and a multiple of 2. |
1704 | if (!Memory.OffsetImm) return true; |
1705 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1706 | int64_t Val = CE->getValue(); |
1707 | return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || |
1708 | Val == std::numeric_limits<int32_t>::min(); |
1709 | } |
1710 | return false; |
1711 | } |
1712 | |
1713 | bool isMemTBB() const { |
1714 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1715 | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
1716 | return false; |
1717 | return true; |
1718 | } |
1719 | |
1720 | bool isMemTBH() const { |
1721 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1722 | Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || |
1723 | Memory.Alignment != 0 ) |
1724 | return false; |
1725 | return true; |
1726 | } |
1727 | |
1728 | bool isMemRegOffset() const { |
1729 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) |
1730 | return false; |
1731 | return true; |
1732 | } |
1733 | |
1734 | bool isT2MemRegOffset() const { |
1735 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1736 | Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) |
1737 | return false; |
1738 | // Only lsl #{0, 1, 2, 3} allowed. |
1739 | if (Memory.ShiftType == ARM_AM::no_shift) |
1740 | return true; |
1741 | if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) |
1742 | return false; |
1743 | return true; |
1744 | } |
1745 | |
1746 | bool isMemThumbRR() const { |
1747 | // Thumb reg+reg addressing is simple. Just two registers, a base and |
1748 | // an offset. No shifts, negations or any other complicating factors. |
1749 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1750 | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
1751 | return false; |
1752 | return isARMLowRegister(Reg: Memory.BaseRegNum) && |
1753 | (!Memory.OffsetRegNum || isARMLowRegister(Reg: Memory.OffsetRegNum)); |
1754 | } |
1755 | |
1756 | bool isMemThumbRIs4() const { |
1757 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
1758 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1759 | return false; |
1760 | // Immediate offset, multiple of 4 in range [0, 124]. |
1761 | if (!Memory.OffsetImm) return true; |
1762 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1763 | int64_t Val = CE->getValue(); |
1764 | return Val >= 0 && Val <= 124 && (Val % 4) == 0; |
1765 | } |
1766 | return false; |
1767 | } |
1768 | |
1769 | bool isMemThumbRIs2() const { |
1770 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
1771 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1772 | return false; |
1773 | // Immediate offset, multiple of 4 in range [0, 62]. |
1774 | if (!Memory.OffsetImm) return true; |
1775 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1776 | int64_t Val = CE->getValue(); |
1777 | return Val >= 0 && Val <= 62 && (Val % 2) == 0; |
1778 | } |
1779 | return false; |
1780 | } |
1781 | |
1782 | bool isMemThumbRIs1() const { |
1783 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
1784 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1785 | return false; |
1786 | // Immediate offset in range [0, 31]. |
1787 | if (!Memory.OffsetImm) return true; |
1788 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1789 | int64_t Val = CE->getValue(); |
1790 | return Val >= 0 && Val <= 31; |
1791 | } |
1792 | return false; |
1793 | } |
1794 | |
1795 | bool isMemThumbSPI() const { |
1796 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
1797 | Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) |
1798 | return false; |
1799 | // Immediate offset, multiple of 4 in range [0, 1020]. |
1800 | if (!Memory.OffsetImm) return true; |
1801 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1802 | int64_t Val = CE->getValue(); |
1803 | return Val >= 0 && Val <= 1020 && (Val % 4) == 0; |
1804 | } |
1805 | return false; |
1806 | } |
1807 | |
1808 | bool isMemImm8s4Offset() const { |
1809 | // If we have an immediate that's not a constant, treat it as a label |
1810 | // reference needing a fixup. If it is a constant, it's something else |
1811 | // and we reject it. |
1812 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1813 | return true; |
1814 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1815 | return false; |
1816 | // Immediate offset a multiple of 4 in range [-1020, 1020]. |
1817 | if (!Memory.OffsetImm) return true; |
1818 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1819 | int64_t Val = CE->getValue(); |
1820 | // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
1821 | return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || |
1822 | Val == std::numeric_limits<int32_t>::min(); |
1823 | } |
1824 | return false; |
1825 | } |
1826 | |
1827 | bool isMemImm7s4Offset() const { |
1828 | // If we have an immediate that's not a constant, treat it as a label |
1829 | // reference needing a fixup. If it is a constant, it's something else |
1830 | // and we reject it. |
1831 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1832 | return true; |
1833 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || |
1834 | !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1835 | Reg: Memory.BaseRegNum)) |
1836 | return false; |
1837 | // Immediate offset a multiple of 4 in range [-508, 508]. |
1838 | if (!Memory.OffsetImm) return true; |
1839 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1840 | int64_t Val = CE->getValue(); |
1841 | // Special case, #-0 is INT32_MIN. |
1842 | return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; |
1843 | } |
1844 | return false; |
1845 | } |
1846 | |
1847 | bool isMemImm0_1020s4Offset() const { |
1848 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1849 | return false; |
1850 | // Immediate offset a multiple of 4 in range [0, 1020]. |
1851 | if (!Memory.OffsetImm) return true; |
1852 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1853 | int64_t Val = CE->getValue(); |
1854 | return Val >= 0 && Val <= 1020 && (Val & 3) == 0; |
1855 | } |
1856 | return false; |
1857 | } |
1858 | |
1859 | bool isMemImm8Offset() const { |
1860 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1861 | return false; |
1862 | // Base reg of PC isn't allowed for these encodings. |
1863 | if (Memory.BaseRegNum == ARM::PC) return false; |
1864 | // Immediate offset in range [-255, 255]. |
1865 | if (!Memory.OffsetImm) return true; |
1866 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1867 | int64_t Val = CE->getValue(); |
1868 | return (Val == std::numeric_limits<int32_t>::min()) || |
1869 | (Val > -256 && Val < 256); |
1870 | } |
1871 | return false; |
1872 | } |
1873 | |
1874 | template<unsigned Bits, unsigned RegClassID> |
1875 | bool isMemImm7ShiftedOffset() const { |
1876 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || |
1877 | !ARMMCRegisterClasses[RegClassID].contains(Reg: Memory.BaseRegNum)) |
1878 | return false; |
1879 | |
1880 | // Expect an immediate offset equal to an element of the range |
1881 | // [-127, 127], shifted left by Bits. |
1882 | |
1883 | if (!Memory.OffsetImm) return true; |
1884 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1885 | int64_t Val = CE->getValue(); |
1886 | |
1887 | // INT32_MIN is a special-case value (indicating the encoding with |
1888 | // zero offset and the subtract bit set) |
1889 | if (Val == INT32_MIN) |
1890 | return true; |
1891 | |
1892 | unsigned Divisor = 1U << Bits; |
1893 | |
1894 | // Check that the low bits are zero |
1895 | if (Val % Divisor != 0) |
1896 | return false; |
1897 | |
1898 | // Check that the remaining offset is within range. |
1899 | Val /= Divisor; |
1900 | return (Val >= -127 && Val <= 127); |
1901 | } |
1902 | return false; |
1903 | } |
1904 | |
1905 | template <int shift> bool isMemRegRQOffset() const { |
1906 | if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0) |
1907 | return false; |
1908 | |
1909 | if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1910 | Reg: Memory.BaseRegNum)) |
1911 | return false; |
1912 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1913 | Reg: Memory.OffsetRegNum)) |
1914 | return false; |
1915 | |
1916 | if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) |
1917 | return false; |
1918 | |
1919 | if (shift > 0 && |
1920 | (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) |
1921 | return false; |
1922 | |
1923 | return true; |
1924 | } |
1925 | |
1926 | template <int shift> bool isMemRegQOffset() const { |
1927 | if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1928 | return false; |
1929 | |
1930 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1931 | Reg: Memory.BaseRegNum)) |
1932 | return false; |
1933 | |
1934 | if (!Memory.OffsetImm) |
1935 | return true; |
1936 | static_assert(shift < 56, |
1937 | "Such that we dont shift by a value higher than 62" ); |
1938 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1939 | int64_t Val = CE->getValue(); |
1940 | |
1941 | // The value must be a multiple of (1 << shift) |
1942 | if ((Val & ((1U << shift) - 1)) != 0) |
1943 | return false; |
1944 | |
1945 | // And be in the right range, depending on the amount that it is shifted |
1946 | // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set |
1947 | // separately. |
1948 | int64_t Range = (1U << (7 + shift)) - 1; |
1949 | return (Val == INT32_MIN) || (Val > -Range && Val < Range); |
1950 | } |
1951 | return false; |
1952 | } |
1953 | |
1954 | bool isMemPosImm8Offset() const { |
1955 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1956 | return false; |
1957 | // Immediate offset in range [0, 255]. |
1958 | if (!Memory.OffsetImm) return true; |
1959 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1960 | int64_t Val = CE->getValue(); |
1961 | return Val >= 0 && Val < 256; |
1962 | } |
1963 | return false; |
1964 | } |
1965 | |
1966 | bool isMemNegImm8Offset() const { |
1967 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1968 | return false; |
1969 | // Base reg of PC isn't allowed for these encodings. |
1970 | if (Memory.BaseRegNum == ARM::PC) return false; |
1971 | // Immediate offset in range [-255, -1]. |
1972 | if (!Memory.OffsetImm) return false; |
1973 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1974 | int64_t Val = CE->getValue(); |
1975 | return (Val == std::numeric_limits<int32_t>::min()) || |
1976 | (Val > -256 && Val < 0); |
1977 | } |
1978 | return false; |
1979 | } |
1980 | |
1981 | bool isMemUImm12Offset() const { |
1982 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
1983 | return false; |
1984 | // Immediate offset in range [0, 4095]. |
1985 | if (!Memory.OffsetImm) return true; |
1986 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1987 | int64_t Val = CE->getValue(); |
1988 | return (Val >= 0 && Val < 4096); |
1989 | } |
1990 | return false; |
1991 | } |
1992 | |
1993 | bool isMemImm12Offset() const { |
1994 | // If we have an immediate that's not a constant, treat it as a label |
1995 | // reference needing a fixup. If it is a constant, it's something else |
1996 | // and we reject it. |
1997 | |
1998 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1999 | return true; |
2000 | |
2001 | if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
2002 | return false; |
2003 | // Immediate offset in range [-4095, 4095]. |
2004 | if (!Memory.OffsetImm) return true; |
2005 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
2006 | int64_t Val = CE->getValue(); |
2007 | return (Val > -4096 && Val < 4096) || |
2008 | (Val == std::numeric_limits<int32_t>::min()); |
2009 | } |
2010 | // If we have an immediate that's not a constant, treat it as a |
2011 | // symbolic expression needing a fixup. |
2012 | return true; |
2013 | } |
2014 | |
2015 | bool isConstPoolAsmImm() const { |
2016 | // Delay processing of Constant Pool Immediate, this will turn into |
2017 | // a constant. Match no other operand |
2018 | return (isConstantPoolImm()); |
2019 | } |
2020 | |
2021 | bool isPostIdxImm8() const { |
2022 | if (!isImm()) return false; |
2023 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2024 | if (!CE) return false; |
2025 | int64_t Val = CE->getValue(); |
2026 | return (Val > -256 && Val < 256) || |
2027 | (Val == std::numeric_limits<int32_t>::min()); |
2028 | } |
2029 | |
2030 | bool isPostIdxImm8s4() const { |
2031 | if (!isImm()) return false; |
2032 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2033 | if (!CE) return false; |
2034 | int64_t Val = CE->getValue(); |
2035 | return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || |
2036 | (Val == std::numeric_limits<int32_t>::min()); |
2037 | } |
2038 | |
2039 | bool isMSRMask() const { return Kind == k_MSRMask; } |
2040 | bool isBankedReg() const { return Kind == k_BankedReg; } |
2041 | bool isProcIFlags() const { return Kind == k_ProcIFlags; } |
2042 | |
2043 | // NEON operands. |
2044 | bool isAnyVectorList() const { |
2045 | return Kind == k_VectorList || Kind == k_VectorListAllLanes || |
2046 | Kind == k_VectorListIndexed; |
2047 | } |
2048 | |
2049 | bool isVectorList() const { return Kind == k_VectorList; } |
2050 | |
2051 | bool isSingleSpacedVectorList() const { |
2052 | return Kind == k_VectorList && !VectorList.isDoubleSpaced; |
2053 | } |
2054 | |
2055 | bool isDoubleSpacedVectorList() const { |
2056 | return Kind == k_VectorList && VectorList.isDoubleSpaced; |
2057 | } |
2058 | |
2059 | bool isVecListOneD() const { |
2060 | // We convert a single D reg to a list containing a D reg |
2061 | if (isDReg() && !Parser->hasMVE()) |
2062 | return true; |
2063 | if (!isSingleSpacedVectorList()) return false; |
2064 | return VectorList.Count == 1; |
2065 | } |
2066 | |
2067 | bool isVecListTwoMQ() const { |
2068 | return isSingleSpacedVectorList() && VectorList.Count == 2 && |
2069 | ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
2070 | Reg: VectorList.RegNum); |
2071 | } |
2072 | |
2073 | bool isVecListDPair() const { |
2074 | // We convert a single Q reg to a list with the two corresponding D |
2075 | // registers |
2076 | if (isQReg() && !Parser->hasMVE()) |
2077 | return true; |
2078 | if (!isSingleSpacedVectorList()) return false; |
2079 | return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
2080 | .contains(Reg: VectorList.RegNum)); |
2081 | } |
2082 | |
2083 | bool isVecListThreeD() const { |
2084 | if (!isSingleSpacedVectorList()) return false; |
2085 | return VectorList.Count == 3; |
2086 | } |
2087 | |
2088 | bool isVecListFourD() const { |
2089 | if (!isSingleSpacedVectorList()) return false; |
2090 | return VectorList.Count == 4; |
2091 | } |
2092 | |
2093 | bool isVecListDPairSpaced() const { |
2094 | if (Kind != k_VectorList) return false; |
2095 | if (isSingleSpacedVectorList()) return false; |
2096 | return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] |
2097 | .contains(Reg: VectorList.RegNum)); |
2098 | } |
2099 | |
2100 | bool isVecListThreeQ() const { |
2101 | if (!isDoubleSpacedVectorList()) return false; |
2102 | return VectorList.Count == 3; |
2103 | } |
2104 | |
2105 | bool isVecListFourQ() const { |
2106 | if (!isDoubleSpacedVectorList()) return false; |
2107 | return VectorList.Count == 4; |
2108 | } |
2109 | |
2110 | bool isVecListFourMQ() const { |
2111 | return isSingleSpacedVectorList() && VectorList.Count == 4 && |
2112 | ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
2113 | Reg: VectorList.RegNum); |
2114 | } |
2115 | |
2116 | bool isSingleSpacedVectorAllLanes() const { |
2117 | return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; |
2118 | } |
2119 | |
2120 | bool isDoubleSpacedVectorAllLanes() const { |
2121 | return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; |
2122 | } |
2123 | |
2124 | bool isVecListOneDAllLanes() const { |
2125 | if (!isSingleSpacedVectorAllLanes()) return false; |
2126 | return VectorList.Count == 1; |
2127 | } |
2128 | |
2129 | bool isVecListDPairAllLanes() const { |
2130 | if (!isSingleSpacedVectorAllLanes()) return false; |
2131 | return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
2132 | .contains(Reg: VectorList.RegNum)); |
2133 | } |
2134 | |
2135 | bool isVecListDPairSpacedAllLanes() const { |
2136 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2137 | return VectorList.Count == 2; |
2138 | } |
2139 | |
2140 | bool isVecListThreeDAllLanes() const { |
2141 | if (!isSingleSpacedVectorAllLanes()) return false; |
2142 | return VectorList.Count == 3; |
2143 | } |
2144 | |
2145 | bool isVecListThreeQAllLanes() const { |
2146 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2147 | return VectorList.Count == 3; |
2148 | } |
2149 | |
2150 | bool isVecListFourDAllLanes() const { |
2151 | if (!isSingleSpacedVectorAllLanes()) return false; |
2152 | return VectorList.Count == 4; |
2153 | } |
2154 | |
2155 | bool isVecListFourQAllLanes() const { |
2156 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2157 | return VectorList.Count == 4; |
2158 | } |
2159 | |
2160 | bool isSingleSpacedVectorIndexed() const { |
2161 | return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; |
2162 | } |
2163 | |
2164 | bool isDoubleSpacedVectorIndexed() const { |
2165 | return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; |
2166 | } |
2167 | |
2168 | bool isVecListOneDByteIndexed() const { |
2169 | if (!isSingleSpacedVectorIndexed()) return false; |
2170 | return VectorList.Count == 1 && VectorList.LaneIndex <= 7; |
2171 | } |
2172 | |
2173 | bool isVecListOneDHWordIndexed() const { |
2174 | if (!isSingleSpacedVectorIndexed()) return false; |
2175 | return VectorList.Count == 1 && VectorList.LaneIndex <= 3; |
2176 | } |
2177 | |
2178 | bool isVecListOneDWordIndexed() const { |
2179 | if (!isSingleSpacedVectorIndexed()) return false; |
2180 | return VectorList.Count == 1 && VectorList.LaneIndex <= 1; |
2181 | } |
2182 | |
2183 | bool isVecListTwoDByteIndexed() const { |
2184 | if (!isSingleSpacedVectorIndexed()) return false; |
2185 | return VectorList.Count == 2 && VectorList.LaneIndex <= 7; |
2186 | } |
2187 | |
2188 | bool isVecListTwoDHWordIndexed() const { |
2189 | if (!isSingleSpacedVectorIndexed()) return false; |
2190 | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
2191 | } |
2192 | |
2193 | bool isVecListTwoQWordIndexed() const { |
2194 | if (!isDoubleSpacedVectorIndexed()) return false; |
2195 | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
2196 | } |
2197 | |
2198 | bool isVecListTwoQHWordIndexed() const { |
2199 | if (!isDoubleSpacedVectorIndexed()) return false; |
2200 | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
2201 | } |
2202 | |
2203 | bool isVecListTwoDWordIndexed() const { |
2204 | if (!isSingleSpacedVectorIndexed()) return false; |
2205 | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
2206 | } |
2207 | |
2208 | bool isVecListThreeDByteIndexed() const { |
2209 | if (!isSingleSpacedVectorIndexed()) return false; |
2210 | return VectorList.Count == 3 && VectorList.LaneIndex <= 7; |
2211 | } |
2212 | |
2213 | bool isVecListThreeDHWordIndexed() const { |
2214 | if (!isSingleSpacedVectorIndexed()) return false; |
2215 | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
2216 | } |
2217 | |
2218 | bool isVecListThreeQWordIndexed() const { |
2219 | if (!isDoubleSpacedVectorIndexed()) return false; |
2220 | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
2221 | } |
2222 | |
2223 | bool isVecListThreeQHWordIndexed() const { |
2224 | if (!isDoubleSpacedVectorIndexed()) return false; |
2225 | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
2226 | } |
2227 | |
2228 | bool isVecListThreeDWordIndexed() const { |
2229 | if (!isSingleSpacedVectorIndexed()) return false; |
2230 | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
2231 | } |
2232 | |
2233 | bool isVecListFourDByteIndexed() const { |
2234 | if (!isSingleSpacedVectorIndexed()) return false; |
2235 | return VectorList.Count == 4 && VectorList.LaneIndex <= 7; |
2236 | } |
2237 | |
2238 | bool isVecListFourDHWordIndexed() const { |
2239 | if (!isSingleSpacedVectorIndexed()) return false; |
2240 | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
2241 | } |
2242 | |
2243 | bool isVecListFourQWordIndexed() const { |
2244 | if (!isDoubleSpacedVectorIndexed()) return false; |
2245 | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
2246 | } |
2247 | |
2248 | bool isVecListFourQHWordIndexed() const { |
2249 | if (!isDoubleSpacedVectorIndexed()) return false; |
2250 | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
2251 | } |
2252 | |
2253 | bool isVecListFourDWordIndexed() const { |
2254 | if (!isSingleSpacedVectorIndexed()) return false; |
2255 | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
2256 | } |
2257 | |
2258 | bool isVectorIndex() const { return Kind == k_VectorIndex; } |
2259 | |
2260 | template <unsigned NumLanes> |
2261 | bool isVectorIndexInRange() const { |
2262 | if (Kind != k_VectorIndex) return false; |
2263 | return VectorIndex.Val < NumLanes; |
2264 | } |
2265 | |
2266 | bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } |
2267 | bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } |
2268 | bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } |
2269 | bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } |
2270 | |
2271 | template<int PermittedValue, int OtherPermittedValue> |
2272 | bool isMVEPairVectorIndex() const { |
2273 | if (Kind != k_VectorIndex) return false; |
2274 | return VectorIndex.Val == PermittedValue || |
2275 | VectorIndex.Val == OtherPermittedValue; |
2276 | } |
2277 | |
2278 | bool isNEONi8splat() const { |
2279 | if (!isImm()) return false; |
2280 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2281 | // Must be a constant. |
2282 | if (!CE) return false; |
2283 | int64_t Value = CE->getValue(); |
2284 | // i8 value splatted across 8 bytes. The immediate is just the 8 byte |
2285 | // value. |
2286 | return Value >= 0 && Value < 256; |
2287 | } |
2288 | |
2289 | bool isNEONi16splat() const { |
2290 | if (isNEONByteReplicate(NumBytes: 2)) |
2291 | return false; // Leave that for bytes replication and forbid by default. |
2292 | if (!isImm()) |
2293 | return false; |
2294 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2295 | // Must be a constant. |
2296 | if (!CE) return false; |
2297 | unsigned Value = CE->getValue(); |
2298 | return ARM_AM::isNEONi16splat(Value); |
2299 | } |
2300 | |
2301 | bool isNEONi16splatNot() const { |
2302 | if (!isImm()) |
2303 | return false; |
2304 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2305 | // Must be a constant. |
2306 | if (!CE) return false; |
2307 | unsigned Value = CE->getValue(); |
2308 | return ARM_AM::isNEONi16splat(Value: ~Value & 0xffff); |
2309 | } |
2310 | |
2311 | bool isNEONi32splat() const { |
2312 | if (isNEONByteReplicate(NumBytes: 4)) |
2313 | return false; // Leave that for bytes replication and forbid by default. |
2314 | if (!isImm()) |
2315 | return false; |
2316 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2317 | // Must be a constant. |
2318 | if (!CE) return false; |
2319 | unsigned Value = CE->getValue(); |
2320 | return ARM_AM::isNEONi32splat(Value); |
2321 | } |
2322 | |
2323 | bool isNEONi32splatNot() const { |
2324 | if (!isImm()) |
2325 | return false; |
2326 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2327 | // Must be a constant. |
2328 | if (!CE) return false; |
2329 | unsigned Value = CE->getValue(); |
2330 | return ARM_AM::isNEONi32splat(Value: ~Value); |
2331 | } |
2332 | |
2333 | static bool isValidNEONi32vmovImm(int64_t Value) { |
2334 | // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, |
2335 | // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. |
2336 | return ((Value & 0xffffffffffffff00) == 0) || |
2337 | ((Value & 0xffffffffffff00ff) == 0) || |
2338 | ((Value & 0xffffffffff00ffff) == 0) || |
2339 | ((Value & 0xffffffff00ffffff) == 0) || |
2340 | ((Value & 0xffffffffffff00ff) == 0xff) || |
2341 | ((Value & 0xffffffffff00ffff) == 0xffff); |
2342 | } |
2343 | |
2344 | bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { |
2345 | assert((Width == 8 || Width == 16 || Width == 32) && |
2346 | "Invalid element width" ); |
2347 | assert(NumElems * Width <= 64 && "Invalid result width" ); |
2348 | |
2349 | if (!isImm()) |
2350 | return false; |
2351 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2352 | // Must be a constant. |
2353 | if (!CE) |
2354 | return false; |
2355 | int64_t Value = CE->getValue(); |
2356 | if (!Value) |
2357 | return false; // Don't bother with zero. |
2358 | if (Inv) |
2359 | Value = ~Value; |
2360 | |
2361 | uint64_t Mask = (1ull << Width) - 1; |
2362 | uint64_t Elem = Value & Mask; |
2363 | if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) |
2364 | return false; |
2365 | if (Width == 32 && !isValidNEONi32vmovImm(Value: Elem)) |
2366 | return false; |
2367 | |
2368 | for (unsigned i = 1; i < NumElems; ++i) { |
2369 | Value >>= Width; |
2370 | if ((Value & Mask) != Elem) |
2371 | return false; |
2372 | } |
2373 | return true; |
2374 | } |
2375 | |
2376 | bool isNEONByteReplicate(unsigned NumBytes) const { |
2377 | return isNEONReplicate(Width: 8, NumElems: NumBytes, Inv: false); |
2378 | } |
2379 | |
2380 | static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { |
2381 | assert((FromW == 8 || FromW == 16 || FromW == 32) && |
2382 | "Invalid source width" ); |
2383 | assert((ToW == 16 || ToW == 32 || ToW == 64) && |
2384 | "Invalid destination width" ); |
2385 | assert(FromW < ToW && "ToW is not less than FromW" ); |
2386 | } |
2387 | |
2388 | template<unsigned FromW, unsigned ToW> |
2389 | bool isNEONmovReplicate() const { |
2390 | checkNeonReplicateArgs(FromW, ToW); |
2391 | if (ToW == 64 && isNEONi64splat()) |
2392 | return false; |
2393 | return isNEONReplicate(Width: FromW, NumElems: ToW / FromW, Inv: false); |
2394 | } |
2395 | |
2396 | template<unsigned FromW, unsigned ToW> |
2397 | bool isNEONinvReplicate() const { |
2398 | checkNeonReplicateArgs(FromW, ToW); |
2399 | return isNEONReplicate(Width: FromW, NumElems: ToW / FromW, Inv: true); |
2400 | } |
2401 | |
2402 | bool isNEONi32vmov() const { |
2403 | if (isNEONByteReplicate(NumBytes: 4)) |
2404 | return false; // Let it to be classified as byte-replicate case. |
2405 | if (!isImm()) |
2406 | return false; |
2407 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2408 | // Must be a constant. |
2409 | if (!CE) |
2410 | return false; |
2411 | return isValidNEONi32vmovImm(Value: CE->getValue()); |
2412 | } |
2413 | |
2414 | bool isNEONi32vmovNeg() const { |
2415 | if (!isImm()) return false; |
2416 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2417 | // Must be a constant. |
2418 | if (!CE) return false; |
2419 | return isValidNEONi32vmovImm(Value: ~CE->getValue()); |
2420 | } |
2421 | |
2422 | bool isNEONi64splat() const { |
2423 | if (!isImm()) return false; |
2424 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2425 | // Must be a constant. |
2426 | if (!CE) return false; |
2427 | uint64_t Value = CE->getValue(); |
2428 | // i64 value with each byte being either 0 or 0xff. |
2429 | for (unsigned i = 0; i < 8; ++i, Value >>= 8) |
2430 | if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; |
2431 | return true; |
2432 | } |
2433 | |
2434 | template<int64_t Angle, int64_t Remainder> |
2435 | bool isComplexRotation() const { |
2436 | if (!isImm()) return false; |
2437 | |
2438 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2439 | if (!CE) return false; |
2440 | uint64_t Value = CE->getValue(); |
2441 | |
2442 | return (Value % Angle == Remainder && Value <= 270); |
2443 | } |
2444 | |
2445 | bool isMVELongShift() const { |
2446 | if (!isImm()) return false; |
2447 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2448 | // Must be a constant. |
2449 | if (!CE) return false; |
2450 | uint64_t Value = CE->getValue(); |
2451 | return Value >= 1 && Value <= 32; |
2452 | } |
2453 | |
2454 | bool isMveSaturateOp() const { |
2455 | if (!isImm()) return false; |
2456 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2457 | if (!CE) return false; |
2458 | uint64_t Value = CE->getValue(); |
2459 | return Value == 48 || Value == 64; |
2460 | } |
2461 | |
2462 | bool isITCondCodeNoAL() const { |
2463 | if (!isITCondCode()) return false; |
2464 | ARMCC::CondCodes CC = getCondCode(); |
2465 | return CC != ARMCC::AL; |
2466 | } |
2467 | |
2468 | bool isITCondCodeRestrictedI() const { |
2469 | if (!isITCondCode()) |
2470 | return false; |
2471 | ARMCC::CondCodes CC = getCondCode(); |
2472 | return CC == ARMCC::EQ || CC == ARMCC::NE; |
2473 | } |
2474 | |
2475 | bool isITCondCodeRestrictedS() const { |
2476 | if (!isITCondCode()) |
2477 | return false; |
2478 | ARMCC::CondCodes CC = getCondCode(); |
2479 | return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || |
2480 | CC == ARMCC::GE; |
2481 | } |
2482 | |
2483 | bool isITCondCodeRestrictedU() const { |
2484 | if (!isITCondCode()) |
2485 | return false; |
2486 | ARMCC::CondCodes CC = getCondCode(); |
2487 | return CC == ARMCC::HS || CC == ARMCC::HI; |
2488 | } |
2489 | |
2490 | bool isITCondCodeRestrictedFP() const { |
2491 | if (!isITCondCode()) |
2492 | return false; |
2493 | ARMCC::CondCodes CC = getCondCode(); |
2494 | return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || |
2495 | CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; |
2496 | } |
2497 | |
2498 | void setVecListDPair(unsigned int DPair) { |
2499 | Kind = k_VectorList; |
2500 | VectorList.RegNum = DPair; |
2501 | VectorList.Count = 2; |
2502 | VectorList.isDoubleSpaced = false; |
2503 | } |
2504 | |
2505 | void setVecListOneD(unsigned int DReg) { |
2506 | Kind = k_VectorList; |
2507 | VectorList.RegNum = DReg; |
2508 | VectorList.Count = 1; |
2509 | VectorList.isDoubleSpaced = false; |
2510 | } |
2511 | |
2512 | void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
2513 | // Add as immediates when possible. Null MCExpr = 0. |
2514 | if (!Expr) |
2515 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
2516 | else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr)) |
2517 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2518 | else |
2519 | Inst.addOperand(Op: MCOperand::createExpr(Val: Expr)); |
2520 | } |
2521 | |
2522 | void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { |
2523 | assert(N == 1 && "Invalid number of operands!" ); |
2524 | addExpr(Inst, Expr: getImm()); |
2525 | } |
2526 | |
2527 | void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { |
2528 | assert(N == 1 && "Invalid number of operands!" ); |
2529 | addExpr(Inst, Expr: getImm()); |
2530 | } |
2531 | |
2532 | void addCondCodeOperands(MCInst &Inst, unsigned N) const { |
2533 | assert(N == 2 && "Invalid number of operands!" ); |
2534 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getCondCode()))); |
2535 | unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; |
2536 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2537 | } |
2538 | |
2539 | void addVPTPredNOperands(MCInst &Inst, unsigned N) const { |
2540 | assert(N == 3 && "Invalid number of operands!" ); |
2541 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getVPTPred()))); |
2542 | unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; |
2543 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2544 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2545 | } |
2546 | |
2547 | void addVPTPredROperands(MCInst &Inst, unsigned N) const { |
2548 | assert(N == 4 && "Invalid number of operands!" ); |
2549 | addVPTPredNOperands(Inst, N: N-1); |
2550 | unsigned RegNum; |
2551 | if (getVPTPred() == ARMVCC::None) { |
2552 | RegNum = 0; |
2553 | } else { |
2554 | unsigned NextOpIndex = Inst.getNumOperands(); |
2555 | auto &MCID = Parser->getInstrDesc(Opcode: Inst.getOpcode()); |
2556 | int TiedOp = MCID.getOperandConstraint(OpNum: NextOpIndex, Constraint: MCOI::TIED_TO); |
2557 | assert(TiedOp >= 0 && |
2558 | "Inactive register in vpred_r is not tied to an output!" ); |
2559 | RegNum = Inst.getOperand(i: TiedOp).getReg(); |
2560 | } |
2561 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2562 | } |
2563 | |
2564 | void addCoprocNumOperands(MCInst &Inst, unsigned N) const { |
2565 | assert(N == 1 && "Invalid number of operands!" ); |
2566 | Inst.addOperand(Op: MCOperand::createImm(Val: getCoproc())); |
2567 | } |
2568 | |
2569 | void addCoprocRegOperands(MCInst &Inst, unsigned N) const { |
2570 | assert(N == 1 && "Invalid number of operands!" ); |
2571 | Inst.addOperand(Op: MCOperand::createImm(Val: getCoproc())); |
2572 | } |
2573 | |
2574 | void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { |
2575 | assert(N == 1 && "Invalid number of operands!" ); |
2576 | Inst.addOperand(Op: MCOperand::createImm(Val: CoprocOption.Val)); |
2577 | } |
2578 | |
2579 | void addITMaskOperands(MCInst &Inst, unsigned N) const { |
2580 | assert(N == 1 && "Invalid number of operands!" ); |
2581 | Inst.addOperand(Op: MCOperand::createImm(Val: ITMask.Mask)); |
2582 | } |
2583 | |
2584 | void addITCondCodeOperands(MCInst &Inst, unsigned N) const { |
2585 | assert(N == 1 && "Invalid number of operands!" ); |
2586 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getCondCode()))); |
2587 | } |
2588 | |
2589 | void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { |
2590 | assert(N == 1 && "Invalid number of operands!" ); |
2591 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(ARMCC::getOppositeCondition(CC: getCondCode())))); |
2592 | } |
2593 | |
2594 | void addCCOutOperands(MCInst &Inst, unsigned N) const { |
2595 | assert(N == 1 && "Invalid number of operands!" ); |
2596 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
2597 | } |
2598 | |
2599 | void addRegOperands(MCInst &Inst, unsigned N) const { |
2600 | assert(N == 1 && "Invalid number of operands!" ); |
2601 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
2602 | } |
2603 | |
2604 | void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { |
2605 | assert(N == 3 && "Invalid number of operands!" ); |
2606 | assert(isRegShiftedReg() && |
2607 | "addRegShiftedRegOperands() on non-RegShiftedReg!" ); |
2608 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedReg.SrcReg)); |
2609 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedReg.ShiftReg)); |
2610 | Inst.addOperand(Op: MCOperand::createImm( |
2611 | Val: ARM_AM::getSORegOpc(ShOp: RegShiftedReg.ShiftTy, Imm: RegShiftedReg.ShiftImm))); |
2612 | } |
2613 | |
2614 | void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { |
2615 | assert(N == 2 && "Invalid number of operands!" ); |
2616 | assert(isRegShiftedImm() && |
2617 | "addRegShiftedImmOperands() on non-RegShiftedImm!" ); |
2618 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedImm.SrcReg)); |
2619 | // Shift of #32 is encoded as 0 where permitted |
2620 | unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); |
2621 | Inst.addOperand(Op: MCOperand::createImm( |
2622 | Val: ARM_AM::getSORegOpc(ShOp: RegShiftedImm.ShiftTy, Imm))); |
2623 | } |
2624 | |
2625 | void addShifterImmOperands(MCInst &Inst, unsigned N) const { |
2626 | assert(N == 1 && "Invalid number of operands!" ); |
2627 | Inst.addOperand(Op: MCOperand::createImm(Val: (ShifterImm.isASR << 5) | |
2628 | ShifterImm.Imm)); |
2629 | } |
2630 | |
2631 | void addRegListOperands(MCInst &Inst, unsigned N) const { |
2632 | assert(N == 1 && "Invalid number of operands!" ); |
2633 | const SmallVectorImpl<unsigned> &RegList = getRegList(); |
2634 | for (unsigned Reg : RegList) |
2635 | Inst.addOperand(Op: MCOperand::createReg(Reg)); |
2636 | } |
2637 | |
2638 | void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { |
2639 | assert(N == 1 && "Invalid number of operands!" ); |
2640 | const SmallVectorImpl<unsigned> &RegList = getRegList(); |
2641 | for (unsigned Reg : RegList) |
2642 | Inst.addOperand(Op: MCOperand::createReg(Reg)); |
2643 | } |
2644 | |
2645 | void addDPRRegListOperands(MCInst &Inst, unsigned N) const { |
2646 | addRegListOperands(Inst, N); |
2647 | } |
2648 | |
2649 | void addSPRRegListOperands(MCInst &Inst, unsigned N) const { |
2650 | addRegListOperands(Inst, N); |
2651 | } |
2652 | |
2653 | void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
2654 | addRegListOperands(Inst, N); |
2655 | } |
2656 | |
2657 | void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
2658 | addRegListOperands(Inst, N); |
2659 | } |
2660 | |
2661 | void addRotImmOperands(MCInst &Inst, unsigned N) const { |
2662 | assert(N == 1 && "Invalid number of operands!" ); |
2663 | // Encoded as val>>3. The printer handles display as 8, 16, 24. |
2664 | Inst.addOperand(Op: MCOperand::createImm(Val: RotImm.Imm >> 3)); |
2665 | } |
2666 | |
2667 | void addModImmOperands(MCInst &Inst, unsigned N) const { |
2668 | assert(N == 1 && "Invalid number of operands!" ); |
2669 | |
2670 | // Support for fixups (MCFixup) |
2671 | if (isImm()) |
2672 | return addImmOperands(Inst, N); |
2673 | |
2674 | Inst.addOperand(Op: MCOperand::createImm(Val: ModImm.Bits | (ModImm.Rot << 7))); |
2675 | } |
2676 | |
2677 | void addModImmNotOperands(MCInst &Inst, unsigned N) const { |
2678 | assert(N == 1 && "Invalid number of operands!" ); |
2679 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2680 | uint32_t Enc = ARM_AM::getSOImmVal(Arg: ~CE->getValue()); |
2681 | Inst.addOperand(Op: MCOperand::createImm(Val: Enc)); |
2682 | } |
2683 | |
2684 | void addModImmNegOperands(MCInst &Inst, unsigned N) const { |
2685 | assert(N == 1 && "Invalid number of operands!" ); |
2686 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2687 | uint32_t Enc = ARM_AM::getSOImmVal(Arg: -CE->getValue()); |
2688 | Inst.addOperand(Op: MCOperand::createImm(Val: Enc)); |
2689 | } |
2690 | |
2691 | void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { |
2692 | assert(N == 1 && "Invalid number of operands!" ); |
2693 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2694 | uint32_t Val = -CE->getValue(); |
2695 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2696 | } |
2697 | |
2698 | void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { |
2699 | assert(N == 1 && "Invalid number of operands!" ); |
2700 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2701 | uint32_t Val = -CE->getValue(); |
2702 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2703 | } |
2704 | |
2705 | void addBitfieldOperands(MCInst &Inst, unsigned N) const { |
2706 | assert(N == 1 && "Invalid number of operands!" ); |
2707 | // Munge the lsb/width into a bitfield mask. |
2708 | unsigned lsb = Bitfield.LSB; |
2709 | unsigned width = Bitfield.Width; |
2710 | // Make a 32-bit mask w/ the referenced bits clear and all other bits set. |
2711 | uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> |
2712 | (32 - (lsb + width))); |
2713 | Inst.addOperand(Op: MCOperand::createImm(Val: Mask)); |
2714 | } |
2715 | |
2716 | void addImmOperands(MCInst &Inst, unsigned N) const { |
2717 | assert(N == 1 && "Invalid number of operands!" ); |
2718 | addExpr(Inst, Expr: getImm()); |
2719 | } |
2720 | |
2721 | void addFBits16Operands(MCInst &Inst, unsigned N) const { |
2722 | assert(N == 1 && "Invalid number of operands!" ); |
2723 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2724 | Inst.addOperand(Op: MCOperand::createImm(Val: 16 - CE->getValue())); |
2725 | } |
2726 | |
2727 | void addFBits32Operands(MCInst &Inst, unsigned N) const { |
2728 | assert(N == 1 && "Invalid number of operands!" ); |
2729 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2730 | Inst.addOperand(Op: MCOperand::createImm(Val: 32 - CE->getValue())); |
2731 | } |
2732 | |
2733 | void addFPImmOperands(MCInst &Inst, unsigned N) const { |
2734 | assert(N == 1 && "Invalid number of operands!" ); |
2735 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2736 | int Val = ARM_AM::getFP32Imm(Imm: APInt(32, CE->getValue())); |
2737 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2738 | } |
2739 | |
2740 | void addImm8s4Operands(MCInst &Inst, unsigned N) const { |
2741 | assert(N == 1 && "Invalid number of operands!" ); |
2742 | // FIXME: We really want to scale the value here, but the LDRD/STRD |
2743 | // instruction don't encode operands that way yet. |
2744 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2745 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2746 | } |
2747 | |
2748 | void addImm7s4Operands(MCInst &Inst, unsigned N) const { |
2749 | assert(N == 1 && "Invalid number of operands!" ); |
2750 | // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR |
2751 | // instruction don't encode operands that way yet. |
2752 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2753 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2754 | } |
2755 | |
2756 | void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { |
2757 | assert(N == 1 && "Invalid number of operands!" ); |
2758 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2759 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2760 | } |
2761 | |
2762 | void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { |
2763 | assert(N == 1 && "Invalid number of operands!" ); |
2764 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2765 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2766 | } |
2767 | |
2768 | void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { |
2769 | assert(N == 1 && "Invalid number of operands!" ); |
2770 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2771 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2772 | } |
2773 | |
2774 | void addImm7Operands(MCInst &Inst, unsigned N) const { |
2775 | assert(N == 1 && "Invalid number of operands!" ); |
2776 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2777 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2778 | } |
2779 | |
2780 | void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { |
2781 | assert(N == 1 && "Invalid number of operands!" ); |
2782 | // The immediate is scaled by four in the encoding and is stored |
2783 | // in the MCInst as such. Lop off the low two bits here. |
2784 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2785 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
2786 | } |
2787 | |
2788 | void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { |
2789 | assert(N == 1 && "Invalid number of operands!" ); |
2790 | // The immediate is scaled by four in the encoding and is stored |
2791 | // in the MCInst as such. Lop off the low two bits here. |
2792 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2793 | Inst.addOperand(Op: MCOperand::createImm(Val: -(CE->getValue() / 4))); |
2794 | } |
2795 | |
2796 | void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { |
2797 | assert(N == 1 && "Invalid number of operands!" ); |
2798 | // The immediate is scaled by four in the encoding and is stored |
2799 | // in the MCInst as such. Lop off the low two bits here. |
2800 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2801 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
2802 | } |
2803 | |
2804 | void addImm1_16Operands(MCInst &Inst, unsigned N) const { |
2805 | assert(N == 1 && "Invalid number of operands!" ); |
2806 | // The constant encodes as the immediate-1, and we store in the instruction |
2807 | // the bits as encoded, so subtract off one here. |
2808 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2809 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() - 1)); |
2810 | } |
2811 | |
2812 | void addImm1_32Operands(MCInst &Inst, unsigned N) const { |
2813 | assert(N == 1 && "Invalid number of operands!" ); |
2814 | // The constant encodes as the immediate-1, and we store in the instruction |
2815 | // the bits as encoded, so subtract off one here. |
2816 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2817 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() - 1)); |
2818 | } |
2819 | |
2820 | void addImmThumbSROperands(MCInst &Inst, unsigned N) const { |
2821 | assert(N == 1 && "Invalid number of operands!" ); |
2822 | // The constant encodes as the immediate, except for 32, which encodes as |
2823 | // zero. |
2824 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2825 | unsigned Imm = CE->getValue(); |
2826 | Inst.addOperand(Op: MCOperand::createImm(Val: (Imm == 32 ? 0 : Imm))); |
2827 | } |
2828 | |
2829 | void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { |
2830 | assert(N == 1 && "Invalid number of operands!" ); |
2831 | // An ASR value of 32 encodes as 0, so that's how we want to add it to |
2832 | // the instruction as well. |
2833 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2834 | int Val = CE->getValue(); |
2835 | Inst.addOperand(Op: MCOperand::createImm(Val: Val == 32 ? 0 : Val)); |
2836 | } |
2837 | |
2838 | void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { |
2839 | assert(N == 1 && "Invalid number of operands!" ); |
2840 | // The operand is actually a t2_so_imm, but we have its bitwise |
2841 | // negation in the assembly source, so twiddle it here. |
2842 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2843 | Inst.addOperand(Op: MCOperand::createImm(Val: ~(uint32_t)CE->getValue())); |
2844 | } |
2845 | |
2846 | void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { |
2847 | assert(N == 1 && "Invalid number of operands!" ); |
2848 | // The operand is actually a t2_so_imm, but we have its |
2849 | // negation in the assembly source, so twiddle it here. |
2850 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2851 | Inst.addOperand(Op: MCOperand::createImm(Val: -(uint32_t)CE->getValue())); |
2852 | } |
2853 | |
2854 | void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { |
2855 | assert(N == 1 && "Invalid number of operands!" ); |
2856 | // The operand is actually an imm0_4095, but we have its |
2857 | // negation in the assembly source, so twiddle it here. |
2858 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2859 | Inst.addOperand(Op: MCOperand::createImm(Val: -(uint32_t)CE->getValue())); |
2860 | } |
2861 | |
2862 | void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { |
2863 | if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) { |
2864 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() >> 2)); |
2865 | return; |
2866 | } |
2867 | const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Val: Imm.Val); |
2868 | Inst.addOperand(Op: MCOperand::createExpr(Val: SR)); |
2869 | } |
2870 | |
2871 | void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { |
2872 | assert(N == 1 && "Invalid number of operands!" ); |
2873 | if (isImm()) { |
2874 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2875 | if (CE) { |
2876 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2877 | return; |
2878 | } |
2879 | const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Val: Imm.Val); |
2880 | Inst.addOperand(Op: MCOperand::createExpr(Val: SR)); |
2881 | return; |
2882 | } |
2883 | |
2884 | assert(isGPRMem() && "Unknown value type!" ); |
2885 | assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!" ); |
2886 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
2887 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2888 | else |
2889 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
2890 | } |
2891 | |
2892 | void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2893 | assert(N == 1 && "Invalid number of operands!" ); |
2894 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getMemBarrierOpt()))); |
2895 | } |
2896 | |
2897 | void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2898 | assert(N == 1 && "Invalid number of operands!" ); |
2899 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getInstSyncBarrierOpt()))); |
2900 | } |
2901 | |
2902 | void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2903 | assert(N == 1 && "Invalid number of operands!" ); |
2904 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getTraceSyncBarrierOpt()))); |
2905 | } |
2906 | |
2907 | void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { |
2908 | assert(N == 1 && "Invalid number of operands!" ); |
2909 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2910 | } |
2911 | |
2912 | void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { |
2913 | assert(N == 1 && "Invalid number of operands!" ); |
2914 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2915 | } |
2916 | |
2917 | void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { |
2918 | assert(N == 1 && "Invalid number of operands!" ); |
2919 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2920 | } |
2921 | |
2922 | void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { |
2923 | assert(N == 1 && "Invalid number of operands!" ); |
2924 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2925 | } |
2926 | |
2927 | void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { |
2928 | assert(N == 1 && "Invalid number of operands!" ); |
2929 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
2930 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2931 | else |
2932 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
2933 | } |
2934 | |
2935 | void addAdrLabelOperands(MCInst &Inst, unsigned N) const { |
2936 | assert(N == 1 && "Invalid number of operands!" ); |
2937 | assert(isImm() && "Not an immediate!" ); |
2938 | |
2939 | // If we have an immediate that's not a constant, treat it as a label |
2940 | // reference needing a fixup. |
2941 | if (!isa<MCConstantExpr>(Val: getImm())) { |
2942 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
2943 | return; |
2944 | } |
2945 | |
2946 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2947 | int Val = CE->getValue(); |
2948 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2949 | } |
2950 | |
2951 | void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { |
2952 | assert(N == 2 && "Invalid number of operands!" ); |
2953 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2954 | Inst.addOperand(Op: MCOperand::createImm(Val: Memory.Alignment)); |
2955 | } |
2956 | |
2957 | void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
2958 | addAlignedMemoryOperands(Inst, N); |
2959 | } |
2960 | |
2961 | void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
2962 | addAlignedMemoryOperands(Inst, N); |
2963 | } |
2964 | |
2965 | void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
2966 | addAlignedMemoryOperands(Inst, N); |
2967 | } |
2968 | |
2969 | void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
2970 | addAlignedMemoryOperands(Inst, N); |
2971 | } |
2972 | |
2973 | void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
2974 | addAlignedMemoryOperands(Inst, N); |
2975 | } |
2976 | |
2977 | void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
2978 | addAlignedMemoryOperands(Inst, N); |
2979 | } |
2980 | |
2981 | void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
2982 | addAlignedMemoryOperands(Inst, N); |
2983 | } |
2984 | |
2985 | void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
2986 | addAlignedMemoryOperands(Inst, N); |
2987 | } |
2988 | |
2989 | void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
2990 | addAlignedMemoryOperands(Inst, N); |
2991 | } |
2992 | |
2993 | void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
2994 | addAlignedMemoryOperands(Inst, N); |
2995 | } |
2996 | |
2997 | void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { |
2998 | addAlignedMemoryOperands(Inst, N); |
2999 | } |
3000 | |
3001 | void addAddrMode2Operands(MCInst &Inst, unsigned N) const { |
3002 | assert(N == 3 && "Invalid number of operands!" ); |
3003 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3004 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3005 | if (!Memory.OffsetRegNum) { |
3006 | if (!Memory.OffsetImm) |
3007 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3008 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3009 | int32_t Val = CE->getValue(); |
3010 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3011 | // Special case for #-0 |
3012 | if (Val == std::numeric_limits<int32_t>::min()) |
3013 | Val = 0; |
3014 | if (Val < 0) |
3015 | Val = -Val; |
3016 | Val = ARM_AM::getAM2Opc(Opc: AddSub, Imm12: Val, SO: ARM_AM::no_shift); |
3017 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3018 | } else |
3019 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3020 | } else { |
3021 | // For register offset, we encode the shift type and negation flag |
3022 | // here. |
3023 | int32_t Val = |
3024 | ARM_AM::getAM2Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
3025 | Imm12: Memory.ShiftImm, SO: Memory.ShiftType); |
3026 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3027 | } |
3028 | } |
3029 | |
3030 | void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { |
3031 | assert(N == 2 && "Invalid number of operands!" ); |
3032 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3033 | assert(CE && "non-constant AM2OffsetImm operand!" ); |
3034 | int32_t Val = CE->getValue(); |
3035 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3036 | // Special case for #-0 |
3037 | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
3038 | if (Val < 0) Val = -Val; |
3039 | Val = ARM_AM::getAM2Opc(Opc: AddSub, Imm12: Val, SO: ARM_AM::no_shift); |
3040 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3041 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3042 | } |
3043 | |
3044 | void addAddrMode3Operands(MCInst &Inst, unsigned N) const { |
3045 | assert(N == 3 && "Invalid number of operands!" ); |
3046 | // If we have an immediate that's not a constant, treat it as a label |
3047 | // reference needing a fixup. If it is a constant, it's something else |
3048 | // and we reject it. |
3049 | if (isImm()) { |
3050 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3051 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3052 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3053 | return; |
3054 | } |
3055 | |
3056 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3057 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3058 | if (!Memory.OffsetRegNum) { |
3059 | if (!Memory.OffsetImm) |
3060 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3061 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3062 | int32_t Val = CE->getValue(); |
3063 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3064 | // Special case for #-0 |
3065 | if (Val == std::numeric_limits<int32_t>::min()) |
3066 | Val = 0; |
3067 | if (Val < 0) |
3068 | Val = -Val; |
3069 | Val = ARM_AM::getAM3Opc(Opc: AddSub, Offset: Val); |
3070 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3071 | } else |
3072 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3073 | } else { |
3074 | // For register offset, we encode the shift type and negation flag |
3075 | // here. |
3076 | int32_t Val = |
3077 | ARM_AM::getAM3Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Offset: 0); |
3078 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3079 | } |
3080 | } |
3081 | |
3082 | void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { |
3083 | assert(N == 2 && "Invalid number of operands!" ); |
3084 | if (Kind == k_PostIndexRegister) { |
3085 | int32_t Val = |
3086 | ARM_AM::getAM3Opc(Opc: PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, Offset: 0); |
3087 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3088 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3089 | return; |
3090 | } |
3091 | |
3092 | // Constant offset. |
3093 | const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); |
3094 | int32_t Val = CE->getValue(); |
3095 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3096 | // Special case for #-0 |
3097 | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
3098 | if (Val < 0) Val = -Val; |
3099 | Val = ARM_AM::getAM3Opc(Opc: AddSub, Offset: Val); |
3100 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3101 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3102 | } |
3103 | |
3104 | void addAddrMode5Operands(MCInst &Inst, unsigned N) const { |
3105 | assert(N == 2 && "Invalid number of operands!" ); |
3106 | // If we have an immediate that's not a constant, treat it as a label |
3107 | // reference needing a fixup. If it is a constant, it's something else |
3108 | // and we reject it. |
3109 | if (isImm()) { |
3110 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3111 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3112 | return; |
3113 | } |
3114 | |
3115 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3116 | if (!Memory.OffsetImm) |
3117 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3118 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3119 | // The lower two bits are always zero and as such are not encoded. |
3120 | int32_t Val = CE->getValue() / 4; |
3121 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3122 | // Special case for #-0 |
3123 | if (Val == std::numeric_limits<int32_t>::min()) |
3124 | Val = 0; |
3125 | if (Val < 0) |
3126 | Val = -Val; |
3127 | Val = ARM_AM::getAM5Opc(Opc: AddSub, Offset: Val); |
3128 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3129 | } else |
3130 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3131 | } |
3132 | |
3133 | void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { |
3134 | assert(N == 2 && "Invalid number of operands!" ); |
3135 | // If we have an immediate that's not a constant, treat it as a label |
3136 | // reference needing a fixup. If it is a constant, it's something else |
3137 | // and we reject it. |
3138 | if (isImm()) { |
3139 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3140 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3141 | return; |
3142 | } |
3143 | |
3144 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3145 | // The lower bit is always zero and as such is not encoded. |
3146 | if (!Memory.OffsetImm) |
3147 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3148 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3149 | int32_t Val = CE->getValue() / 2; |
3150 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3151 | // Special case for #-0 |
3152 | if (Val == std::numeric_limits<int32_t>::min()) |
3153 | Val = 0; |
3154 | if (Val < 0) |
3155 | Val = -Val; |
3156 | Val = ARM_AM::getAM5FP16Opc(Opc: AddSub, Offset: Val); |
3157 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3158 | } else |
3159 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3160 | } |
3161 | |
3162 | void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3163 | assert(N == 2 && "Invalid number of operands!" ); |
3164 | // If we have an immediate that's not a constant, treat it as a label |
3165 | // reference needing a fixup. If it is a constant, it's something else |
3166 | // and we reject it. |
3167 | if (isImm()) { |
3168 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3169 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3170 | return; |
3171 | } |
3172 | |
3173 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3174 | addExpr(Inst, Expr: Memory.OffsetImm); |
3175 | } |
3176 | |
3177 | void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3178 | assert(N == 2 && "Invalid number of operands!" ); |
3179 | // If we have an immediate that's not a constant, treat it as a label |
3180 | // reference needing a fixup. If it is a constant, it's something else |
3181 | // and we reject it. |
3182 | if (isImm()) { |
3183 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3184 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3185 | return; |
3186 | } |
3187 | |
3188 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3189 | addExpr(Inst, Expr: Memory.OffsetImm); |
3190 | } |
3191 | |
3192 | void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3193 | assert(N == 2 && "Invalid number of operands!" ); |
3194 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3195 | if (!Memory.OffsetImm) |
3196 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3197 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3198 | // The lower two bits are always zero and as such are not encoded. |
3199 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3200 | else |
3201 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3202 | } |
3203 | |
3204 | void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { |
3205 | assert(N == 2 && "Invalid number of operands!" ); |
3206 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3207 | addExpr(Inst, Expr: Memory.OffsetImm); |
3208 | } |
3209 | |
3210 | void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { |
3211 | assert(N == 2 && "Invalid number of operands!" ); |
3212 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3213 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3214 | } |
3215 | |
3216 | void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
3217 | assert(N == 2 && "Invalid number of operands!" ); |
3218 | // If this is an immediate, it's a label reference. |
3219 | if (isImm()) { |
3220 | addExpr(Inst, Expr: getImm()); |
3221 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3222 | return; |
3223 | } |
3224 | |
3225 | // Otherwise, it's a normal memory reg+offset. |
3226 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3227 | addExpr(Inst, Expr: Memory.OffsetImm); |
3228 | } |
3229 | |
3230 | void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
3231 | assert(N == 2 && "Invalid number of operands!" ); |
3232 | // If this is an immediate, it's a label reference. |
3233 | if (isImm()) { |
3234 | addExpr(Inst, Expr: getImm()); |
3235 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3236 | return; |
3237 | } |
3238 | |
3239 | // Otherwise, it's a normal memory reg+offset. |
3240 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3241 | addExpr(Inst, Expr: Memory.OffsetImm); |
3242 | } |
3243 | |
3244 | void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { |
3245 | assert(N == 1 && "Invalid number of operands!" ); |
3246 | // This is container for the immediate that we will create the constant |
3247 | // pool from |
3248 | addExpr(Inst, Expr: getConstantPoolImm()); |
3249 | } |
3250 | |
3251 | void addMemTBBOperands(MCInst &Inst, unsigned N) const { |
3252 | assert(N == 2 && "Invalid number of operands!" ); |
3253 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3254 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3255 | } |
3256 | |
3257 | void addMemTBHOperands(MCInst &Inst, unsigned N) const { |
3258 | assert(N == 2 && "Invalid number of operands!" ); |
3259 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3260 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3261 | } |
3262 | |
3263 | void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
3264 | assert(N == 3 && "Invalid number of operands!" ); |
3265 | unsigned Val = |
3266 | ARM_AM::getAM2Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
3267 | Imm12: Memory.ShiftImm, SO: Memory.ShiftType); |
3268 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3269 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3270 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3271 | } |
3272 | |
3273 | void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
3274 | assert(N == 3 && "Invalid number of operands!" ); |
3275 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3276 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3277 | Inst.addOperand(Op: MCOperand::createImm(Val: Memory.ShiftImm)); |
3278 | } |
3279 | |
3280 | void addMemThumbRROperands(MCInst &Inst, unsigned N) const { |
3281 | assert(N == 2 && "Invalid number of operands!" ); |
3282 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3283 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3284 | } |
3285 | |
3286 | void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { |
3287 | assert(N == 2 && "Invalid number of operands!" ); |
3288 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3289 | if (!Memory.OffsetImm) |
3290 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3291 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3292 | // The lower two bits are always zero and as such are not encoded. |
3293 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3294 | else |
3295 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3296 | } |
3297 | |
3298 | void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { |
3299 | assert(N == 2 && "Invalid number of operands!" ); |
3300 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3301 | if (!Memory.OffsetImm) |
3302 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3303 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3304 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 2)); |
3305 | else |
3306 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3307 | } |
3308 | |
3309 | void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { |
3310 | assert(N == 2 && "Invalid number of operands!" ); |
3311 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3312 | addExpr(Inst, Expr: Memory.OffsetImm); |
3313 | } |
3314 | |
3315 | void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { |
3316 | assert(N == 2 && "Invalid number of operands!" ); |
3317 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3318 | if (!Memory.OffsetImm) |
3319 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3320 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3321 | // The lower two bits are always zero and as such are not encoded. |
3322 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3323 | else |
3324 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3325 | } |
3326 | |
3327 | void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { |
3328 | assert(N == 1 && "Invalid number of operands!" ); |
3329 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3330 | assert(CE && "non-constant post-idx-imm8 operand!" ); |
3331 | int Imm = CE->getValue(); |
3332 | bool isAdd = Imm >= 0; |
3333 | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
3334 | Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; |
3335 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3336 | } |
3337 | |
3338 | void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { |
3339 | assert(N == 1 && "Invalid number of operands!" ); |
3340 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3341 | assert(CE && "non-constant post-idx-imm8s4 operand!" ); |
3342 | int Imm = CE->getValue(); |
3343 | bool isAdd = Imm >= 0; |
3344 | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
3345 | // Immediate is scaled by 4. |
3346 | Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; |
3347 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3348 | } |
3349 | |
3350 | void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { |
3351 | assert(N == 2 && "Invalid number of operands!" ); |
3352 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3353 | Inst.addOperand(Op: MCOperand::createImm(Val: PostIdxReg.isAdd)); |
3354 | } |
3355 | |
3356 | void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { |
3357 | assert(N == 2 && "Invalid number of operands!" ); |
3358 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3359 | // The sign, shift type, and shift amount are encoded in a single operand |
3360 | // using the AM2 encoding helpers. |
3361 | ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; |
3362 | unsigned Imm = ARM_AM::getAM2Opc(Opc: opc, Imm12: PostIdxReg.ShiftImm, |
3363 | SO: PostIdxReg.ShiftTy); |
3364 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3365 | } |
3366 | |
3367 | void addPowerTwoOperands(MCInst &Inst, unsigned N) const { |
3368 | assert(N == 1 && "Invalid number of operands!" ); |
3369 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3370 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
3371 | } |
3372 | |
3373 | void addMSRMaskOperands(MCInst &Inst, unsigned N) const { |
3374 | assert(N == 1 && "Invalid number of operands!" ); |
3375 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getMSRMask()))); |
3376 | } |
3377 | |
3378 | void addBankedRegOperands(MCInst &Inst, unsigned N) const { |
3379 | assert(N == 1 && "Invalid number of operands!" ); |
3380 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getBankedReg()))); |
3381 | } |
3382 | |
3383 | void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { |
3384 | assert(N == 1 && "Invalid number of operands!" ); |
3385 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getProcIFlags()))); |
3386 | } |
3387 | |
3388 | void addVecListOperands(MCInst &Inst, unsigned N) const { |
3389 | assert(N == 1 && "Invalid number of operands!" ); |
3390 | |
3391 | if (isAnyVectorList()) |
3392 | Inst.addOperand(Op: MCOperand::createReg(Reg: VectorList.RegNum)); |
3393 | else if (isDReg() && !Parser->hasMVE()) { |
3394 | Inst.addOperand(Op: MCOperand::createReg(Reg: Reg.RegNum)); |
3395 | } else if (isQReg() && !Parser->hasMVE()) { |
3396 | auto DPair = Parser->getDRegFromQReg(QReg: Reg.RegNum); |
3397 | DPair = Parser->getMRI()->getMatchingSuperReg( |
3398 | Reg: DPair, SubIdx: ARM::dsub_0, RC: &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
3399 | Inst.addOperand(Op: MCOperand::createReg(Reg: DPair)); |
3400 | } else { |
3401 | LLVM_DEBUG(dbgs() << "TYPE: " << Kind << "\n" ); |
3402 | llvm_unreachable( |
3403 | "attempted to add a vector list register with wrong type!" ); |
3404 | } |
3405 | } |
3406 | |
3407 | void addMVEVecListOperands(MCInst &Inst, unsigned N) const { |
3408 | assert(N == 1 && "Invalid number of operands!" ); |
3409 | |
3410 | // When we come here, the VectorList field will identify a range |
3411 | // of q-registers by its base register and length, and it will |
3412 | // have already been error-checked to be the expected length of |
3413 | // range and contain only q-regs in the range q0-q7. So we can |
3414 | // count on the base register being in the range q0-q6 (for 2 |
3415 | // regs) or q0-q4 (for 4) |
3416 | // |
3417 | // The MVE instructions taking a register range of this kind will |
3418 | // need an operand in the MQQPR or MQQQQPR class, representing the |
3419 | // entire range as a unit. So we must translate into that class, |
3420 | // by finding the index of the base register in the MQPR reg |
3421 | // class, and returning the super-register at the corresponding |
3422 | // index in the target class. |
3423 | |
3424 | const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; |
3425 | const MCRegisterClass *RC_out = |
3426 | (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] |
3427 | : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; |
3428 | |
3429 | unsigned I, E = RC_out->getNumRegs(); |
3430 | for (I = 0; I < E; I++) |
3431 | if (RC_in->getRegister(i: I) == VectorList.RegNum) |
3432 | break; |
3433 | assert(I < E && "Invalid vector list start register!" ); |
3434 | |
3435 | Inst.addOperand(Op: MCOperand::createReg(Reg: RC_out->getRegister(i: I))); |
3436 | } |
3437 | |
3438 | void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { |
3439 | assert(N == 2 && "Invalid number of operands!" ); |
3440 | Inst.addOperand(Op: MCOperand::createReg(Reg: VectorList.RegNum)); |
3441 | Inst.addOperand(Op: MCOperand::createImm(Val: VectorList.LaneIndex)); |
3442 | } |
3443 | |
3444 | void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { |
3445 | assert(N == 1 && "Invalid number of operands!" ); |
3446 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3447 | } |
3448 | |
3449 | void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { |
3450 | assert(N == 1 && "Invalid number of operands!" ); |
3451 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3452 | } |
3453 | |
3454 | void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { |
3455 | assert(N == 1 && "Invalid number of operands!" ); |
3456 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3457 | } |
3458 | |
3459 | void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { |
3460 | assert(N == 1 && "Invalid number of operands!" ); |
3461 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3462 | } |
3463 | |
3464 | void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { |
3465 | assert(N == 1 && "Invalid number of operands!" ); |
3466 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3467 | } |
3468 | |
3469 | void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { |
3470 | assert(N == 1 && "Invalid number of operands!" ); |
3471 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3472 | } |
3473 | |
3474 | void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { |
3475 | assert(N == 1 && "Invalid number of operands!" ); |
3476 | // The immediate encodes the type of constant as well as the value. |
3477 | // Mask in that this is an i8 splat. |
3478 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3479 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() | 0xe00)); |
3480 | } |
3481 | |
3482 | void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { |
3483 | assert(N == 1 && "Invalid number of operands!" ); |
3484 | // The immediate encodes the type of constant as well as the value. |
3485 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3486 | unsigned Value = CE->getValue(); |
3487 | Value = ARM_AM::encodeNEONi16splat(Value); |
3488 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3489 | } |
3490 | |
3491 | void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { |
3492 | assert(N == 1 && "Invalid number of operands!" ); |
3493 | // The immediate encodes the type of constant as well as the value. |
3494 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3495 | unsigned Value = CE->getValue(); |
3496 | Value = ARM_AM::encodeNEONi16splat(Value: ~Value & 0xffff); |
3497 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3498 | } |
3499 | |
3500 | void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { |
3501 | assert(N == 1 && "Invalid number of operands!" ); |
3502 | // The immediate encodes the type of constant as well as the value. |
3503 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3504 | unsigned Value = CE->getValue(); |
3505 | Value = ARM_AM::encodeNEONi32splat(Value); |
3506 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3507 | } |
3508 | |
3509 | void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { |
3510 | assert(N == 1 && "Invalid number of operands!" ); |
3511 | // The immediate encodes the type of constant as well as the value. |
3512 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3513 | unsigned Value = CE->getValue(); |
3514 | Value = ARM_AM::encodeNEONi32splat(Value: ~Value); |
3515 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3516 | } |
3517 | |
3518 | void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { |
3519 | // The immediate encodes the type of constant as well as the value. |
3520 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3521 | assert((Inst.getOpcode() == ARM::VMOVv8i8 || |
3522 | Inst.getOpcode() == ARM::VMOVv16i8) && |
3523 | "All instructions that wants to replicate non-zero byte " |
3524 | "always must be replaced with VMOVv8i8 or VMOVv16i8." ); |
3525 | unsigned Value = CE->getValue(); |
3526 | if (Inv) |
3527 | Value = ~Value; |
3528 | unsigned B = Value & 0xff; |
3529 | B |= 0xe00; // cmode = 0b1110 |
3530 | Inst.addOperand(Op: MCOperand::createImm(Val: B)); |
3531 | } |
3532 | |
3533 | void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
3534 | assert(N == 1 && "Invalid number of operands!" ); |
3535 | addNEONi8ReplicateOperands(Inst, Inv: true); |
3536 | } |
3537 | |
3538 | static unsigned encodeNeonVMOVImmediate(unsigned Value) { |
3539 | if (Value >= 256 && Value <= 0xffff) |
3540 | Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); |
3541 | else if (Value > 0xffff && Value <= 0xffffff) |
3542 | Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); |
3543 | else if (Value > 0xffffff) |
3544 | Value = (Value >> 24) | 0x600; |
3545 | return Value; |
3546 | } |
3547 | |
3548 | void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { |
3549 | assert(N == 1 && "Invalid number of operands!" ); |
3550 | // The immediate encodes the type of constant as well as the value. |
3551 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3552 | unsigned Value = encodeNeonVMOVImmediate(Value: CE->getValue()); |
3553 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3554 | } |
3555 | |
3556 | void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
3557 | assert(N == 1 && "Invalid number of operands!" ); |
3558 | addNEONi8ReplicateOperands(Inst, Inv: false); |
3559 | } |
3560 | |
3561 | void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { |
3562 | assert(N == 1 && "Invalid number of operands!" ); |
3563 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3564 | assert((Inst.getOpcode() == ARM::VMOVv4i16 || |
3565 | Inst.getOpcode() == ARM::VMOVv8i16 || |
3566 | Inst.getOpcode() == ARM::VMVNv4i16 || |
3567 | Inst.getOpcode() == ARM::VMVNv8i16) && |
3568 | "All instructions that want to replicate non-zero half-word " |
3569 | "always must be replaced with V{MOV,MVN}v{4,8}i16." ); |
3570 | uint64_t Value = CE->getValue(); |
3571 | unsigned Elem = Value & 0xffff; |
3572 | if (Elem >= 256) |
3573 | Elem = (Elem >> 8) | 0x200; |
3574 | Inst.addOperand(Op: MCOperand::createImm(Val: Elem)); |
3575 | } |
3576 | |
3577 | void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { |
3578 | assert(N == 1 && "Invalid number of operands!" ); |
3579 | // The immediate encodes the type of constant as well as the value. |
3580 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3581 | unsigned Value = encodeNeonVMOVImmediate(Value: ~CE->getValue()); |
3582 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3583 | } |
3584 | |
3585 | void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { |
3586 | assert(N == 1 && "Invalid number of operands!" ); |
3587 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3588 | assert((Inst.getOpcode() == ARM::VMOVv2i32 || |
3589 | Inst.getOpcode() == ARM::VMOVv4i32 || |
3590 | Inst.getOpcode() == ARM::VMVNv2i32 || |
3591 | Inst.getOpcode() == ARM::VMVNv4i32) && |
3592 | "All instructions that want to replicate non-zero word " |
3593 | "always must be replaced with V{MOV,MVN}v{2,4}i32." ); |
3594 | uint64_t Value = CE->getValue(); |
3595 | unsigned Elem = encodeNeonVMOVImmediate(Value: Value & 0xffffffff); |
3596 | Inst.addOperand(Op: MCOperand::createImm(Val: Elem)); |
3597 | } |
3598 | |
3599 | void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { |
3600 | assert(N == 1 && "Invalid number of operands!" ); |
3601 | // The immediate encodes the type of constant as well as the value. |
3602 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3603 | uint64_t Value = CE->getValue(); |
3604 | unsigned Imm = 0; |
3605 | for (unsigned i = 0; i < 8; ++i, Value >>= 8) { |
3606 | Imm |= (Value & 1) << i; |
3607 | } |
3608 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm | 0x1e00)); |
3609 | } |
3610 | |
3611 | void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { |
3612 | assert(N == 1 && "Invalid number of operands!" ); |
3613 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3614 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 90)); |
3615 | } |
3616 | |
3617 | void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { |
3618 | assert(N == 1 && "Invalid number of operands!" ); |
3619 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3620 | Inst.addOperand(Op: MCOperand::createImm(Val: (CE->getValue() - 90) / 180)); |
3621 | } |
3622 | |
3623 | void addMveSaturateOperands(MCInst &Inst, unsigned N) const { |
3624 | assert(N == 1 && "Invalid number of operands!" ); |
3625 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3626 | unsigned Imm = CE->getValue(); |
3627 | assert((Imm == 48 || Imm == 64) && "Invalid saturate operand" ); |
3628 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm == 48 ? 1 : 0)); |
3629 | } |
3630 | |
3631 | void print(raw_ostream &OS) const override; |
3632 | |
3633 | static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S, |
3634 | ARMAsmParser &Parser) { |
3635 | auto Op = std::make_unique<ARMOperand>(args: k_ITCondMask, args&: Parser); |
3636 | Op->ITMask.Mask = Mask; |
3637 | Op->StartLoc = S; |
3638 | Op->EndLoc = S; |
3639 | return Op; |
3640 | } |
3641 | |
3642 | static std::unique_ptr<ARMOperand> |
3643 | CreateCondCode(ARMCC::CondCodes CC, SMLoc S, ARMAsmParser &Parser) { |
3644 | auto Op = std::make_unique<ARMOperand>(args: k_CondCode, args&: Parser); |
3645 | Op->CC.Val = CC; |
3646 | Op->StartLoc = S; |
3647 | Op->EndLoc = S; |
3648 | return Op; |
3649 | } |
3650 | |
3651 | static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, SMLoc S, |
3652 | ARMAsmParser &Parser) { |
3653 | auto Op = std::make_unique<ARMOperand>(args: k_VPTPred, args&: Parser); |
3654 | Op->VCC.Val = CC; |
3655 | Op->StartLoc = S; |
3656 | Op->EndLoc = S; |
3657 | return Op; |
3658 | } |
3659 | |
3660 | static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S, |
3661 | ARMAsmParser &Parser) { |
3662 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocNum, args&: Parser); |
3663 | Op->Cop.Val = CopVal; |
3664 | Op->StartLoc = S; |
3665 | Op->EndLoc = S; |
3666 | return Op; |
3667 | } |
3668 | |
3669 | static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S, |
3670 | ARMAsmParser &Parser) { |
3671 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocReg, args&: Parser); |
3672 | Op->Cop.Val = CopVal; |
3673 | Op->StartLoc = S; |
3674 | Op->EndLoc = S; |
3675 | return Op; |
3676 | } |
3677 | |
3678 | static std::unique_ptr<ARMOperand> |
3679 | CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3680 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocOption, args&: Parser); |
3681 | Op->Cop.Val = Val; |
3682 | Op->StartLoc = S; |
3683 | Op->EndLoc = E; |
3684 | return Op; |
3685 | } |
3686 | |
3687 | static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S, |
3688 | ARMAsmParser &Parser) { |
3689 | auto Op = std::make_unique<ARMOperand>(args: k_CCOut, args&: Parser); |
3690 | Op->Reg.RegNum = RegNum; |
3691 | Op->StartLoc = S; |
3692 | Op->EndLoc = S; |
3693 | return Op; |
3694 | } |
3695 | |
3696 | static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S, |
3697 | ARMAsmParser &Parser) { |
3698 | auto Op = std::make_unique<ARMOperand>(args: k_Token, args&: Parser); |
3699 | Op->Tok.Data = Str.data(); |
3700 | Op->Tok.Length = Str.size(); |
3701 | Op->StartLoc = S; |
3702 | Op->EndLoc = S; |
3703 | return Op; |
3704 | } |
3705 | |
3706 | static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, |
3707 | SMLoc E, ARMAsmParser &Parser) { |
3708 | auto Op = std::make_unique<ARMOperand>(args: k_Register, args&: Parser); |
3709 | Op->Reg.RegNum = RegNum; |
3710 | Op->StartLoc = S; |
3711 | Op->EndLoc = E; |
3712 | return Op; |
3713 | } |
3714 | |
3715 | static std::unique_ptr<ARMOperand> |
3716 | CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, |
3717 | unsigned ShiftReg, unsigned ShiftImm, SMLoc S, SMLoc E, |
3718 | ARMAsmParser &Parser) { |
3719 | auto Op = std::make_unique<ARMOperand>(args: k_ShiftedRegister, args&: Parser); |
3720 | Op->RegShiftedReg.ShiftTy = ShTy; |
3721 | Op->RegShiftedReg.SrcReg = SrcReg; |
3722 | Op->RegShiftedReg.ShiftReg = ShiftReg; |
3723 | Op->RegShiftedReg.ShiftImm = ShiftImm; |
3724 | Op->StartLoc = S; |
3725 | Op->EndLoc = E; |
3726 | return Op; |
3727 | } |
3728 | |
3729 | static std::unique_ptr<ARMOperand> |
3730 | CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, |
3731 | unsigned ShiftImm, SMLoc S, SMLoc E, |
3732 | ARMAsmParser &Parser) { |
3733 | auto Op = std::make_unique<ARMOperand>(args: k_ShiftedImmediate, args&: Parser); |
3734 | Op->RegShiftedImm.ShiftTy = ShTy; |
3735 | Op->RegShiftedImm.SrcReg = SrcReg; |
3736 | Op->RegShiftedImm.ShiftImm = ShiftImm; |
3737 | Op->StartLoc = S; |
3738 | Op->EndLoc = E; |
3739 | return Op; |
3740 | } |
3741 | |
3742 | static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, |
3743 | SMLoc S, SMLoc E, |
3744 | ARMAsmParser &Parser) { |
3745 | auto Op = std::make_unique<ARMOperand>(args: k_ShifterImmediate, args&: Parser); |
3746 | Op->ShifterImm.isASR = isASR; |
3747 | Op->ShifterImm.Imm = Imm; |
3748 | Op->StartLoc = S; |
3749 | Op->EndLoc = E; |
3750 | return Op; |
3751 | } |
3752 | |
3753 | static std::unique_ptr<ARMOperand> |
3754 | CreateRotImm(unsigned Imm, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3755 | auto Op = std::make_unique<ARMOperand>(args: k_RotateImmediate, args&: Parser); |
3756 | Op->RotImm.Imm = Imm; |
3757 | Op->StartLoc = S; |
3758 | Op->EndLoc = E; |
3759 | return Op; |
3760 | } |
3761 | |
3762 | static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, |
3763 | SMLoc S, SMLoc E, |
3764 | ARMAsmParser &Parser) { |
3765 | auto Op = std::make_unique<ARMOperand>(args: k_ModifiedImmediate, args&: Parser); |
3766 | Op->ModImm.Bits = Bits; |
3767 | Op->ModImm.Rot = Rot; |
3768 | Op->StartLoc = S; |
3769 | Op->EndLoc = E; |
3770 | return Op; |
3771 | } |
3772 | |
3773 | static std::unique_ptr<ARMOperand> |
3774 | CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E, |
3775 | ARMAsmParser &Parser) { |
3776 | auto Op = std::make_unique<ARMOperand>(args: k_ConstantPoolImmediate, args&: Parser); |
3777 | Op->Imm.Val = Val; |
3778 | Op->StartLoc = S; |
3779 | Op->EndLoc = E; |
3780 | return Op; |
3781 | } |
3782 | |
3783 | static std::unique_ptr<ARMOperand> CreateBitfield(unsigned LSB, |
3784 | unsigned Width, SMLoc S, |
3785 | SMLoc E, |
3786 | ARMAsmParser &Parser) { |
3787 | auto Op = std::make_unique<ARMOperand>(args: k_BitfieldDescriptor, args&: Parser); |
3788 | Op->Bitfield.LSB = LSB; |
3789 | Op->Bitfield.Width = Width; |
3790 | Op->StartLoc = S; |
3791 | Op->EndLoc = E; |
3792 | return Op; |
3793 | } |
3794 | |
3795 | static std::unique_ptr<ARMOperand> |
3796 | CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, |
3797 | SMLoc StartLoc, SMLoc EndLoc, ARMAsmParser &Parser) { |
3798 | assert(Regs.size() > 0 && "RegList contains no registers?" ); |
3799 | KindTy Kind = k_RegisterList; |
3800 | |
3801 | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
3802 | Reg: Regs.front().second)) { |
3803 | if (Regs.back().second == ARM::VPR) |
3804 | Kind = k_FPDRegisterListWithVPR; |
3805 | else |
3806 | Kind = k_DPRRegisterList; |
3807 | } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
3808 | Reg: Regs.front().second)) { |
3809 | if (Regs.back().second == ARM::VPR) |
3810 | Kind = k_FPSRegisterListWithVPR; |
3811 | else |
3812 | Kind = k_SPRRegisterList; |
3813 | } |
3814 | |
3815 | if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) |
3816 | Kind = k_RegisterListWithAPSR; |
3817 | |
3818 | assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding" ); |
3819 | |
3820 | auto Op = std::make_unique<ARMOperand>(args&: Kind, args&: Parser); |
3821 | for (const auto &P : Regs) |
3822 | Op->Registers.push_back(Elt: P.second); |
3823 | |
3824 | Op->StartLoc = StartLoc; |
3825 | Op->EndLoc = EndLoc; |
3826 | return Op; |
3827 | } |
3828 | |
3829 | static std::unique_ptr<ARMOperand> |
3830 | CreateVectorList(unsigned RegNum, unsigned Count, bool isDoubleSpaced, |
3831 | SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3832 | auto Op = std::make_unique<ARMOperand>(args: k_VectorList, args&: Parser); |
3833 | Op->VectorList.RegNum = RegNum; |
3834 | Op->VectorList.Count = Count; |
3835 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3836 | Op->StartLoc = S; |
3837 | Op->EndLoc = E; |
3838 | return Op; |
3839 | } |
3840 | |
3841 | static std::unique_ptr<ARMOperand> |
3842 | CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, |
3843 | SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3844 | auto Op = std::make_unique<ARMOperand>(args: k_VectorListAllLanes, args&: Parser); |
3845 | Op->VectorList.RegNum = RegNum; |
3846 | Op->VectorList.Count = Count; |
3847 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3848 | Op->StartLoc = S; |
3849 | Op->EndLoc = E; |
3850 | return Op; |
3851 | } |
3852 | |
3853 | static std::unique_ptr<ARMOperand> |
3854 | CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, |
3855 | bool isDoubleSpaced, SMLoc S, SMLoc E, |
3856 | ARMAsmParser &Parser) { |
3857 | auto Op = std::make_unique<ARMOperand>(args: k_VectorListIndexed, args&: Parser); |
3858 | Op->VectorList.RegNum = RegNum; |
3859 | Op->VectorList.Count = Count; |
3860 | Op->VectorList.LaneIndex = Index; |
3861 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3862 | Op->StartLoc = S; |
3863 | Op->EndLoc = E; |
3864 | return Op; |
3865 | } |
3866 | |
3867 | static std::unique_ptr<ARMOperand> CreateVectorIndex(unsigned Idx, SMLoc S, |
3868 | SMLoc E, MCContext &Ctx, |
3869 | ARMAsmParser &Parser) { |
3870 | auto Op = std::make_unique<ARMOperand>(args: k_VectorIndex, args&: Parser); |
3871 | Op->VectorIndex.Val = Idx; |
3872 | Op->StartLoc = S; |
3873 | Op->EndLoc = E; |
3874 | return Op; |
3875 | } |
3876 | |
3877 | static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, |
3878 | SMLoc E, ARMAsmParser &Parser) { |
3879 | auto Op = std::make_unique<ARMOperand>(args: k_Immediate, args&: Parser); |
3880 | Op->Imm.Val = Val; |
3881 | Op->StartLoc = S; |
3882 | Op->EndLoc = E; |
3883 | return Op; |
3884 | } |
3885 | |
3886 | static std::unique_ptr<ARMOperand> |
3887 | CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum, |
3888 | ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, |
3889 | bool isNegative, SMLoc S, SMLoc E, ARMAsmParser &Parser, |
3890 | SMLoc AlignmentLoc = SMLoc()) { |
3891 | auto Op = std::make_unique<ARMOperand>(args: k_Memory, args&: Parser); |
3892 | Op->Memory.BaseRegNum = BaseRegNum; |
3893 | Op->Memory.OffsetImm = OffsetImm; |
3894 | Op->Memory.OffsetRegNum = OffsetRegNum; |
3895 | Op->Memory.ShiftType = ShiftType; |
3896 | Op->Memory.ShiftImm = ShiftImm; |
3897 | Op->Memory.Alignment = Alignment; |
3898 | Op->Memory.isNegative = isNegative; |
3899 | Op->StartLoc = S; |
3900 | Op->EndLoc = E; |
3901 | Op->AlignmentLoc = AlignmentLoc; |
3902 | return Op; |
3903 | } |
3904 | |
3905 | static std::unique_ptr<ARMOperand> |
3906 | CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, |
3907 | unsigned ShiftImm, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3908 | auto Op = std::make_unique<ARMOperand>(args: k_PostIndexRegister, args&: Parser); |
3909 | Op->PostIdxReg.RegNum = RegNum; |
3910 | Op->PostIdxReg.isAdd = isAdd; |
3911 | Op->PostIdxReg.ShiftTy = ShiftTy; |
3912 | Op->PostIdxReg.ShiftImm = ShiftImm; |
3913 | Op->StartLoc = S; |
3914 | Op->EndLoc = E; |
3915 | return Op; |
3916 | } |
3917 | |
3918 | static std::unique_ptr<ARMOperand> |
3919 | CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S, ARMAsmParser &Parser) { |
3920 | auto Op = std::make_unique<ARMOperand>(args: k_MemBarrierOpt, args&: Parser); |
3921 | Op->MBOpt.Val = Opt; |
3922 | Op->StartLoc = S; |
3923 | Op->EndLoc = S; |
3924 | return Op; |
3925 | } |
3926 | |
3927 | static std::unique_ptr<ARMOperand> |
3928 | CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S, |
3929 | ARMAsmParser &Parser) { |
3930 | auto Op = std::make_unique<ARMOperand>(args: k_InstSyncBarrierOpt, args&: Parser); |
3931 | Op->ISBOpt.Val = Opt; |
3932 | Op->StartLoc = S; |
3933 | Op->EndLoc = S; |
3934 | return Op; |
3935 | } |
3936 | |
3937 | static std::unique_ptr<ARMOperand> |
3938 | CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S, |
3939 | ARMAsmParser &Parser) { |
3940 | auto Op = std::make_unique<ARMOperand>(args: k_TraceSyncBarrierOpt, args&: Parser); |
3941 | Op->TSBOpt.Val = Opt; |
3942 | Op->StartLoc = S; |
3943 | Op->EndLoc = S; |
3944 | return Op; |
3945 | } |
3946 | |
3947 | static std::unique_ptr<ARMOperand> |
3948 | CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S, ARMAsmParser &Parser) { |
3949 | auto Op = std::make_unique<ARMOperand>(args: k_ProcIFlags, args&: Parser); |
3950 | Op->IFlags.Val = IFlags; |
3951 | Op->StartLoc = S; |
3952 | Op->EndLoc = S; |
3953 | return Op; |
3954 | } |
3955 | |
3956 | static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S, |
3957 | ARMAsmParser &Parser) { |
3958 | auto Op = std::make_unique<ARMOperand>(args: k_MSRMask, args&: Parser); |
3959 | Op->MMask.Val = MMask; |
3960 | Op->StartLoc = S; |
3961 | Op->EndLoc = S; |
3962 | return Op; |
3963 | } |
3964 | |
3965 | static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S, |
3966 | ARMAsmParser &Parser) { |
3967 | auto Op = std::make_unique<ARMOperand>(args: k_BankedReg, args&: Parser); |
3968 | Op->BankedReg.Val = Reg; |
3969 | Op->StartLoc = S; |
3970 | Op->EndLoc = S; |
3971 | return Op; |
3972 | } |
3973 | }; |
3974 | |
3975 | } // end anonymous namespace. |
3976 | |
3977 | void ARMOperand::print(raw_ostream &OS) const { |
3978 | auto RegName = [](MCRegister Reg) { |
3979 | if (Reg) |
3980 | return ARMInstPrinter::getRegisterName(Reg); |
3981 | else |
3982 | return "noreg" ; |
3983 | }; |
3984 | |
3985 | switch (Kind) { |
3986 | case k_CondCode: |
3987 | OS << "<ARMCC::" << ARMCondCodeToString(CC: getCondCode()) << ">" ; |
3988 | break; |
3989 | case k_VPTPred: |
3990 | OS << "<ARMVCC::" << ARMVPTPredToString(CC: getVPTPred()) << ">" ; |
3991 | break; |
3992 | case k_CCOut: |
3993 | OS << "<ccout " << RegName(getReg()) << ">" ; |
3994 | break; |
3995 | case k_ITCondMask: { |
3996 | static const char *const MaskStr[] = { |
3997 | "(invalid)" , "(tttt)" , "(ttt)" , "(ttte)" , |
3998 | "(tt)" , "(ttet)" , "(tte)" , "(ttee)" , |
3999 | "(t)" , "(tett)" , "(tet)" , "(tete)" , |
4000 | "(te)" , "(teet)" , "(tee)" , "(teee)" , |
4001 | }; |
4002 | assert((ITMask.Mask & 0xf) == ITMask.Mask); |
4003 | OS << "<it-mask " << MaskStr[ITMask.Mask] << ">" ; |
4004 | break; |
4005 | } |
4006 | case k_CoprocNum: |
4007 | OS << "<coprocessor number: " << getCoproc() << ">" ; |
4008 | break; |
4009 | case k_CoprocReg: |
4010 | OS << "<coprocessor register: " << getCoproc() << ">" ; |
4011 | break; |
4012 | case k_CoprocOption: |
4013 | OS << "<coprocessor option: " << CoprocOption.Val << ">" ; |
4014 | break; |
4015 | case k_MSRMask: |
4016 | OS << "<mask: " << getMSRMask() << ">" ; |
4017 | break; |
4018 | case k_BankedReg: |
4019 | OS << "<banked reg: " << getBankedReg() << ">" ; |
4020 | break; |
4021 | case k_Immediate: |
4022 | OS << *getImm(); |
4023 | break; |
4024 | case k_MemBarrierOpt: |
4025 | OS << "<ARM_MB::" << MemBOptToString(val: getMemBarrierOpt(), HasV8: false) << ">" ; |
4026 | break; |
4027 | case k_InstSyncBarrierOpt: |
4028 | OS << "<ARM_ISB::" << InstSyncBOptToString(val: getInstSyncBarrierOpt()) << ">" ; |
4029 | break; |
4030 | case k_TraceSyncBarrierOpt: |
4031 | OS << "<ARM_TSB::" << TraceSyncBOptToString(val: getTraceSyncBarrierOpt()) << ">" ; |
4032 | break; |
4033 | case k_Memory: |
4034 | OS << "<memory" ; |
4035 | if (Memory.BaseRegNum) |
4036 | OS << " base:" << RegName(Memory.BaseRegNum); |
4037 | if (Memory.OffsetImm) |
4038 | OS << " offset-imm:" << *Memory.OffsetImm; |
4039 | if (Memory.OffsetRegNum) |
4040 | OS << " offset-reg:" << (Memory.isNegative ? "-" : "" ) |
4041 | << RegName(Memory.OffsetRegNum); |
4042 | if (Memory.ShiftType != ARM_AM::no_shift) { |
4043 | OS << " shift-type:" << ARM_AM::getShiftOpcStr(Op: Memory.ShiftType); |
4044 | OS << " shift-imm:" << Memory.ShiftImm; |
4045 | } |
4046 | if (Memory.Alignment) |
4047 | OS << " alignment:" << Memory.Alignment; |
4048 | OS << ">" ; |
4049 | break; |
4050 | case k_PostIndexRegister: |
4051 | OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-" ) |
4052 | << RegName(PostIdxReg.RegNum); |
4053 | if (PostIdxReg.ShiftTy != ARM_AM::no_shift) |
4054 | OS << ARM_AM::getShiftOpcStr(Op: PostIdxReg.ShiftTy) << " " |
4055 | << PostIdxReg.ShiftImm; |
4056 | OS << ">" ; |
4057 | break; |
4058 | case k_ProcIFlags: { |
4059 | OS << "<ARM_PROC::" ; |
4060 | unsigned IFlags = getProcIFlags(); |
4061 | for (int i=2; i >= 0; --i) |
4062 | if (IFlags & (1 << i)) |
4063 | OS << ARM_PROC::IFlagsToString(val: 1 << i); |
4064 | OS << ">" ; |
4065 | break; |
4066 | } |
4067 | case k_Register: |
4068 | OS << "<register " << RegName(getReg()) << ">" ; |
4069 | break; |
4070 | case k_ShifterImmediate: |
4071 | OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl" ) |
4072 | << " #" << ShifterImm.Imm << ">" ; |
4073 | break; |
4074 | case k_ShiftedRegister: |
4075 | OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " |
4076 | << ARM_AM::getShiftOpcStr(Op: RegShiftedReg.ShiftTy) << " " |
4077 | << RegName(RegShiftedReg.ShiftReg) << ">" ; |
4078 | break; |
4079 | case k_ShiftedImmediate: |
4080 | OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " |
4081 | << ARM_AM::getShiftOpcStr(Op: RegShiftedImm.ShiftTy) << " #" |
4082 | << RegShiftedImm.ShiftImm << ">" ; |
4083 | break; |
4084 | case k_RotateImmediate: |
4085 | OS << "<ror " << " #" << (RotImm.Imm * 8) << ">" ; |
4086 | break; |
4087 | case k_ModifiedImmediate: |
4088 | OS << "<mod_imm #" << ModImm.Bits << ", #" |
4089 | << ModImm.Rot << ")>" ; |
4090 | break; |
4091 | case k_ConstantPoolImmediate: |
4092 | OS << "<constant_pool_imm #" << *getConstantPoolImm(); |
4093 | break; |
4094 | case k_BitfieldDescriptor: |
4095 | OS << "<bitfield " << "lsb: " << Bitfield.LSB |
4096 | << ", width: " << Bitfield.Width << ">" ; |
4097 | break; |
4098 | case k_RegisterList: |
4099 | case k_RegisterListWithAPSR: |
4100 | case k_DPRRegisterList: |
4101 | case k_SPRRegisterList: |
4102 | case k_FPSRegisterListWithVPR: |
4103 | case k_FPDRegisterListWithVPR: { |
4104 | OS << "<register_list " ; |
4105 | |
4106 | const SmallVectorImpl<unsigned> &RegList = getRegList(); |
4107 | for (SmallVectorImpl<unsigned>::const_iterator |
4108 | I = RegList.begin(), E = RegList.end(); I != E; ) { |
4109 | OS << RegName(*I); |
4110 | if (++I < E) OS << ", " ; |
4111 | } |
4112 | |
4113 | OS << ">" ; |
4114 | break; |
4115 | } |
4116 | case k_VectorList: |
4117 | OS << "<vector_list " << VectorList.Count << " * " |
4118 | << RegName(VectorList.RegNum) << ">" ; |
4119 | break; |
4120 | case k_VectorListAllLanes: |
4121 | OS << "<vector_list(all lanes) " << VectorList.Count << " * " |
4122 | << RegName(VectorList.RegNum) << ">" ; |
4123 | break; |
4124 | case k_VectorListIndexed: |
4125 | OS << "<vector_list(lane " << VectorList.LaneIndex << ") " |
4126 | << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">" ; |
4127 | break; |
4128 | case k_Token: |
4129 | OS << "'" << getToken() << "'" ; |
4130 | break; |
4131 | case k_VectorIndex: |
4132 | OS << "<vectorindex " << getVectorIndex() << ">" ; |
4133 | break; |
4134 | } |
4135 | } |
4136 | |
4137 | /// @name Auto-generated Match Functions |
4138 | /// { |
4139 | |
4140 | static MCRegister MatchRegisterName(StringRef Name); |
4141 | |
4142 | /// } |
4143 | |
4144 | static bool isDataTypeToken(StringRef Tok) { |
4145 | static const DenseSet<StringRef> DataTypes{ |
4146 | ".8" , ".16" , ".32" , ".64" , ".i8" , ".i16" , ".i32" , ".i64" , |
4147 | ".u8" , ".u16" , ".u32" , ".u64" , ".s8" , ".s16" , ".s32" , ".s64" , |
4148 | ".p8" , ".p16" , ".f32" , ".f64" , ".f" , ".d" }; |
4149 | return DataTypes.contains(V: Tok); |
4150 | } |
4151 | |
4152 | static unsigned getMnemonicOpsEndInd(const OperandVector &Operands) { |
4153 | unsigned MnemonicOpsEndInd = 1; |
4154 | // Special case for CPS which has a Mnemonic side token for possibly storing |
4155 | // ie/id variant |
4156 | if (Operands[0]->isToken() && |
4157 | static_cast<ARMOperand &>(*Operands[0]).getToken() == "cps" ) { |
4158 | if (Operands.size() > 1 && Operands[1]->isImm() && |
4159 | static_cast<ARMOperand &>(*Operands[1]).getImm()->getKind() == |
4160 | llvm::MCExpr::Constant && |
4161 | (dyn_cast<MCConstantExpr>( |
4162 | Val: static_cast<ARMOperand &>(*Operands[1]).getImm()) |
4163 | ->getValue() == ARM_PROC::IE || |
4164 | dyn_cast<MCConstantExpr>( |
4165 | Val: static_cast<ARMOperand &>(*Operands[1]).getImm()) |
4166 | ->getValue() == ARM_PROC::ID)) |
4167 | ++MnemonicOpsEndInd; |
4168 | } |
4169 | |
4170 | // In some circumstances the condition code moves to the right |
4171 | bool RHSCondCode = false; |
4172 | while (MnemonicOpsEndInd < Operands.size()) { |
4173 | auto Op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
4174 | // Special case for it instructions which have a condition code on the RHS |
4175 | if (Op.isITMask()) { |
4176 | RHSCondCode = true; |
4177 | MnemonicOpsEndInd++; |
4178 | } else if (Op.isToken() && |
4179 | ( |
4180 | // There are several special cases not covered by |
4181 | // isDataTypeToken |
4182 | Op.getToken() == ".w" || Op.getToken() == ".bf16" || |
4183 | Op.getToken() == ".p64" || Op.getToken() == ".f16" || |
4184 | isDataTypeToken(Tok: Op.getToken()))) { |
4185 | // In the mnemonic operators the cond code must always precede the data |
4186 | // type. So we can now safely assume any subsequent cond code is on the |
4187 | // RHS. As is the case for VCMP and VPT. |
4188 | RHSCondCode = true; |
4189 | MnemonicOpsEndInd++; |
4190 | } |
4191 | // Skip all mnemonic operator types |
4192 | else if (Op.isCCOut() || (Op.isCondCode() && !RHSCondCode) || |
4193 | Op.isVPTPred() || (Op.isToken() && Op.getToken() == ".w" )) |
4194 | MnemonicOpsEndInd++; |
4195 | else |
4196 | break; |
4197 | } |
4198 | return MnemonicOpsEndInd; |
4199 | } |
4200 | |
4201 | bool ARMAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, |
4202 | SMLoc &EndLoc) { |
4203 | const AsmToken &Tok = getParser().getTok(); |
4204 | StartLoc = Tok.getLoc(); |
4205 | EndLoc = Tok.getEndLoc(); |
4206 | Reg = tryParseRegister(); |
4207 | |
4208 | return Reg == (unsigned)-1; |
4209 | } |
4210 | |
4211 | ParseStatus ARMAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
4212 | SMLoc &EndLoc) { |
4213 | if (parseRegister(Reg, StartLoc, EndLoc)) |
4214 | return ParseStatus::NoMatch; |
4215 | return ParseStatus::Success; |
4216 | } |
4217 | |
4218 | /// Try to parse a register name. The token must be an Identifier when called, |
4219 | /// and if it is a register name the token is eaten and the register number is |
4220 | /// returned. Otherwise return -1. |
4221 | int ARMAsmParser::tryParseRegister(bool AllowOutOfBoundReg) { |
4222 | MCAsmParser &Parser = getParser(); |
4223 | const AsmToken &Tok = Parser.getTok(); |
4224 | if (Tok.isNot(K: AsmToken::Identifier)) return -1; |
4225 | |
4226 | std::string lowerCase = Tok.getString().lower(); |
4227 | unsigned RegNum = MatchRegisterName(Name: lowerCase); |
4228 | if (!RegNum) { |
4229 | RegNum = StringSwitch<unsigned>(lowerCase) |
4230 | .Case(S: "r13" , Value: ARM::SP) |
4231 | .Case(S: "r14" , Value: ARM::LR) |
4232 | .Case(S: "r15" , Value: ARM::PC) |
4233 | .Case(S: "ip" , Value: ARM::R12) |
4234 | // Additional register name aliases for 'gas' compatibility. |
4235 | .Case(S: "a1" , Value: ARM::R0) |
4236 | .Case(S: "a2" , Value: ARM::R1) |
4237 | .Case(S: "a3" , Value: ARM::R2) |
4238 | .Case(S: "a4" , Value: ARM::R3) |
4239 | .Case(S: "v1" , Value: ARM::R4) |
4240 | .Case(S: "v2" , Value: ARM::R5) |
4241 | .Case(S: "v3" , Value: ARM::R6) |
4242 | .Case(S: "v4" , Value: ARM::R7) |
4243 | .Case(S: "v5" , Value: ARM::R8) |
4244 | .Case(S: "v6" , Value: ARM::R9) |
4245 | .Case(S: "v7" , Value: ARM::R10) |
4246 | .Case(S: "v8" , Value: ARM::R11) |
4247 | .Case(S: "sb" , Value: ARM::R9) |
4248 | .Case(S: "sl" , Value: ARM::R10) |
4249 | .Case(S: "fp" , Value: ARM::R11) |
4250 | .Default(Value: 0); |
4251 | } |
4252 | if (!RegNum) { |
4253 | // Check for aliases registered via .req. Canonicalize to lower case. |
4254 | // That's more consistent since register names are case insensitive, and |
4255 | // it's how the original entry was passed in from MC/MCParser/AsmParser. |
4256 | StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(Key: lowerCase); |
4257 | // If no match, return failure. |
4258 | if (Entry == RegisterReqs.end()) |
4259 | return -1; |
4260 | Parser.Lex(); // Eat identifier token. |
4261 | return Entry->getValue(); |
4262 | } |
4263 | |
4264 | // Some FPUs only have 16 D registers, so D16-D31 are invalid |
4265 | if (!AllowOutOfBoundReg && !hasD32() && RegNum >= ARM::D16 && |
4266 | RegNum <= ARM::D31) |
4267 | return -1; |
4268 | |
4269 | Parser.Lex(); // Eat identifier token. |
4270 | |
4271 | return RegNum; |
4272 | } |
4273 | |
4274 | std::optional<ARM_AM::ShiftOpc> ARMAsmParser::tryParseShiftToken() { |
4275 | MCAsmParser &Parser = getParser(); |
4276 | const AsmToken &Tok = Parser.getTok(); |
4277 | if (Tok.isNot(K: AsmToken::Identifier)) |
4278 | return std::nullopt; |
4279 | |
4280 | std::string lowerCase = Tok.getString().lower(); |
4281 | return StringSwitch<std::optional<ARM_AM::ShiftOpc>>(lowerCase) |
4282 | .Case(S: "asl" , Value: ARM_AM::lsl) |
4283 | .Case(S: "lsl" , Value: ARM_AM::lsl) |
4284 | .Case(S: "lsr" , Value: ARM_AM::lsr) |
4285 | .Case(S: "asr" , Value: ARM_AM::asr) |
4286 | .Case(S: "ror" , Value: ARM_AM::ror) |
4287 | .Case(S: "rrx" , Value: ARM_AM::rrx) |
4288 | .Default(Value: std::nullopt); |
4289 | } |
4290 | |
4291 | // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. |
4292 | // If a recoverable error occurs, return 1. If an irrecoverable error |
4293 | // occurs, return -1. An irrecoverable error is one where tokens have been |
4294 | // consumed in the process of trying to parse the shifter (i.e., when it is |
4295 | // indeed a shifter operand, but malformed). |
4296 | int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { |
4297 | MCAsmParser &Parser = getParser(); |
4298 | SMLoc S = Parser.getTok().getLoc(); |
4299 | |
4300 | auto ShiftTyOpt = tryParseShiftToken(); |
4301 | if (ShiftTyOpt == std::nullopt) |
4302 | return 1; |
4303 | auto ShiftTy = ShiftTyOpt.value(); |
4304 | |
4305 | Parser.Lex(); // Eat the operator. |
4306 | |
4307 | // The source register for the shift has already been added to the |
4308 | // operand list, so we need to pop it off and combine it into the shifted |
4309 | // register operand instead. |
4310 | std::unique_ptr<ARMOperand> PrevOp( |
4311 | (ARMOperand *)Operands.pop_back_val().release()); |
4312 | if (!PrevOp->isReg()) |
4313 | return Error(L: PrevOp->getStartLoc(), Msg: "shift must be of a register" ); |
4314 | int SrcReg = PrevOp->getReg(); |
4315 | |
4316 | SMLoc EndLoc; |
4317 | int64_t Imm = 0; |
4318 | int ShiftReg = 0; |
4319 | if (ShiftTy == ARM_AM::rrx) { |
4320 | // RRX Doesn't have an explicit shift amount. The encoder expects |
4321 | // the shift register to be the same as the source register. Seems odd, |
4322 | // but OK. |
4323 | ShiftReg = SrcReg; |
4324 | } else { |
4325 | // Figure out if this is shifted by a constant or a register (for non-RRX). |
4326 | if (Parser.getTok().is(K: AsmToken::Hash) || |
4327 | Parser.getTok().is(K: AsmToken::Dollar)) { |
4328 | Parser.Lex(); // Eat hash. |
4329 | SMLoc ImmLoc = Parser.getTok().getLoc(); |
4330 | const MCExpr *ShiftExpr = nullptr; |
4331 | if (getParser().parseExpression(Res&: ShiftExpr, EndLoc)) { |
4332 | Error(L: ImmLoc, Msg: "invalid immediate shift value" ); |
4333 | return -1; |
4334 | } |
4335 | // The expression must be evaluatable as an immediate. |
4336 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftExpr); |
4337 | if (!CE) { |
4338 | Error(L: ImmLoc, Msg: "invalid immediate shift value" ); |
4339 | return -1; |
4340 | } |
4341 | // Range check the immediate. |
4342 | // lsl, ror: 0 <= imm <= 31 |
4343 | // lsr, asr: 0 <= imm <= 32 |
4344 | Imm = CE->getValue(); |
4345 | if (Imm < 0 || |
4346 | ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || |
4347 | ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { |
4348 | Error(L: ImmLoc, Msg: "immediate shift value out of range" ); |
4349 | return -1; |
4350 | } |
4351 | // shift by zero is a nop. Always send it through as lsl. |
4352 | // ('as' compatibility) |
4353 | if (Imm == 0) |
4354 | ShiftTy = ARM_AM::lsl; |
4355 | } else if (Parser.getTok().is(K: AsmToken::Identifier)) { |
4356 | SMLoc L = Parser.getTok().getLoc(); |
4357 | EndLoc = Parser.getTok().getEndLoc(); |
4358 | ShiftReg = tryParseRegister(); |
4359 | if (ShiftReg == -1) { |
4360 | Error(L, Msg: "expected immediate or register in shift operand" ); |
4361 | return -1; |
4362 | } |
4363 | } else { |
4364 | Error(L: Parser.getTok().getLoc(), |
4365 | Msg: "expected immediate or register in shift operand" ); |
4366 | return -1; |
4367 | } |
4368 | } |
4369 | |
4370 | if (ShiftReg && ShiftTy != ARM_AM::rrx) |
4371 | Operands.push_back(Elt: ARMOperand::CreateShiftedRegister( |
4372 | ShTy: ShiftTy, SrcReg, ShiftReg, ShiftImm: Imm, S, E: EndLoc, Parser&: *this)); |
4373 | else |
4374 | Operands.push_back(Elt: ARMOperand::CreateShiftedImmediate(ShTy: ShiftTy, SrcReg, ShiftImm: Imm, |
4375 | S, E: EndLoc, Parser&: *this)); |
4376 | |
4377 | return 0; |
4378 | } |
4379 | |
4380 | /// Try to parse a register name. The token must be an Identifier when called. |
4381 | /// If it's a register, an AsmOperand is created. Another AsmOperand is created |
4382 | /// if there is a "writeback". 'true' if it's not a register. |
4383 | /// |
4384 | /// TODO this is likely to change to allow different register types and or to |
4385 | /// parse for a specific register type. |
4386 | bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { |
4387 | MCAsmParser &Parser = getParser(); |
4388 | SMLoc RegStartLoc = Parser.getTok().getLoc(); |
4389 | SMLoc RegEndLoc = Parser.getTok().getEndLoc(); |
4390 | int RegNo = tryParseRegister(); |
4391 | if (RegNo == -1) |
4392 | return true; |
4393 | |
4394 | Operands.push_back( |
4395 | Elt: ARMOperand::CreateReg(RegNum: RegNo, S: RegStartLoc, E: RegEndLoc, Parser&: *this)); |
4396 | |
4397 | const AsmToken &ExclaimTok = Parser.getTok(); |
4398 | if (ExclaimTok.is(K: AsmToken::Exclaim)) { |
4399 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: ExclaimTok.getString(), |
4400 | S: ExclaimTok.getLoc(), Parser&: *this)); |
4401 | Parser.Lex(); // Eat exclaim token |
4402 | return false; |
4403 | } |
4404 | |
4405 | // Also check for an index operand. This is only legal for vector registers, |
4406 | // but that'll get caught OK in operand matching, so we don't need to |
4407 | // explicitly filter everything else out here. |
4408 | if (Parser.getTok().is(K: AsmToken::LBrac)) { |
4409 | SMLoc SIdx = Parser.getTok().getLoc(); |
4410 | Parser.Lex(); // Eat left bracket token. |
4411 | |
4412 | const MCExpr *ImmVal; |
4413 | if (getParser().parseExpression(Res&: ImmVal)) |
4414 | return true; |
4415 | const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Val: ImmVal); |
4416 | if (!MCE) |
4417 | return TokError(Msg: "immediate value expected for vector index" ); |
4418 | |
4419 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
4420 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
4421 | |
4422 | SMLoc E = Parser.getTok().getEndLoc(); |
4423 | Parser.Lex(); // Eat right bracket token. |
4424 | |
4425 | Operands.push_back(Elt: ARMOperand::CreateVectorIndex(Idx: MCE->getValue(), S: SIdx, E, |
4426 | Ctx&: getContext(), Parser&: *this)); |
4427 | } |
4428 | |
4429 | return false; |
4430 | } |
4431 | |
4432 | /// MatchCoprocessorOperandName - Try to parse an coprocessor related |
4433 | /// instruction with a symbolic operand name. |
4434 | /// We accept "crN" syntax for GAS compatibility. |
4435 | /// <operand-name> ::= <prefix><number> |
4436 | /// If CoprocOp is 'c', then: |
4437 | /// <prefix> ::= c | cr |
4438 | /// If CoprocOp is 'p', then : |
4439 | /// <prefix> ::= p |
4440 | /// <number> ::= integer in range [0, 15] |
4441 | static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { |
4442 | // Use the same layout as the tablegen'erated register name matcher. Ugly, |
4443 | // but efficient. |
4444 | if (Name.size() < 2 || Name[0] != CoprocOp) |
4445 | return -1; |
4446 | Name = (Name[1] == 'r') ? Name.drop_front(N: 2) : Name.drop_front(); |
4447 | |
4448 | switch (Name.size()) { |
4449 | default: return -1; |
4450 | case 1: |
4451 | switch (Name[0]) { |
4452 | default: return -1; |
4453 | case '0': return 0; |
4454 | case '1': return 1; |
4455 | case '2': return 2; |
4456 | case '3': return 3; |
4457 | case '4': return 4; |
4458 | case '5': return 5; |
4459 | case '6': return 6; |
4460 | case '7': return 7; |
4461 | case '8': return 8; |
4462 | case '9': return 9; |
4463 | } |
4464 | case 2: |
4465 | if (Name[0] != '1') |
4466 | return -1; |
4467 | switch (Name[1]) { |
4468 | default: return -1; |
4469 | // CP10 and CP11 are VFP/NEON and so vector instructions should be used. |
4470 | // However, old cores (v5/v6) did use them in that way. |
4471 | case '0': return 10; |
4472 | case '1': return 11; |
4473 | case '2': return 12; |
4474 | case '3': return 13; |
4475 | case '4': return 14; |
4476 | case '5': return 15; |
4477 | } |
4478 | } |
4479 | } |
4480 | |
4481 | /// parseITCondCode - Try to parse a condition code for an IT instruction. |
4482 | ParseStatus ARMAsmParser::parseITCondCode(OperandVector &Operands) { |
4483 | MCAsmParser &Parser = getParser(); |
4484 | SMLoc S = Parser.getTok().getLoc(); |
4485 | const AsmToken &Tok = Parser.getTok(); |
4486 | if (!Tok.is(K: AsmToken::Identifier)) |
4487 | return ParseStatus::NoMatch; |
4488 | unsigned CC = ARMCondCodeFromString(CC: Tok.getString()); |
4489 | if (CC == ~0U) |
4490 | return ParseStatus::NoMatch; |
4491 | Parser.Lex(); // Eat the token. |
4492 | |
4493 | Operands.push_back( |
4494 | Elt: ARMOperand::CreateCondCode(CC: ARMCC::CondCodes(CC), S, Parser&: *this)); |
4495 | |
4496 | return ParseStatus::Success; |
4497 | } |
4498 | |
4499 | /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The |
4500 | /// token must be an Identifier when called, and if it is a coprocessor |
4501 | /// number, the token is eaten and the operand is added to the operand list. |
4502 | ParseStatus ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { |
4503 | MCAsmParser &Parser = getParser(); |
4504 | SMLoc S = Parser.getTok().getLoc(); |
4505 | const AsmToken &Tok = Parser.getTok(); |
4506 | if (Tok.isNot(K: AsmToken::Identifier)) |
4507 | return ParseStatus::NoMatch; |
4508 | |
4509 | int Num = MatchCoprocessorOperandName(Name: Tok.getString().lower(), CoprocOp: 'p'); |
4510 | if (Num == -1) |
4511 | return ParseStatus::NoMatch; |
4512 | if (!isValidCoprocessorNumber(Num, featureBits: getSTI().getFeatureBits())) |
4513 | return ParseStatus::NoMatch; |
4514 | |
4515 | Parser.Lex(); // Eat identifier token. |
4516 | Operands.push_back(Elt: ARMOperand::CreateCoprocNum(CopVal: Num, S, Parser&: *this)); |
4517 | return ParseStatus::Success; |
4518 | } |
4519 | |
4520 | /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The |
4521 | /// token must be an Identifier when called, and if it is a coprocessor |
4522 | /// number, the token is eaten and the operand is added to the operand list. |
4523 | ParseStatus ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { |
4524 | MCAsmParser &Parser = getParser(); |
4525 | SMLoc S = Parser.getTok().getLoc(); |
4526 | const AsmToken &Tok = Parser.getTok(); |
4527 | if (Tok.isNot(K: AsmToken::Identifier)) |
4528 | return ParseStatus::NoMatch; |
4529 | |
4530 | int Reg = MatchCoprocessorOperandName(Name: Tok.getString().lower(), CoprocOp: 'c'); |
4531 | if (Reg == -1) |
4532 | return ParseStatus::NoMatch; |
4533 | |
4534 | Parser.Lex(); // Eat identifier token. |
4535 | Operands.push_back(Elt: ARMOperand::CreateCoprocReg(CopVal: Reg, S, Parser&: *this)); |
4536 | return ParseStatus::Success; |
4537 | } |
4538 | |
4539 | /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. |
4540 | /// coproc_option : '{' imm0_255 '}' |
4541 | ParseStatus ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { |
4542 | MCAsmParser &Parser = getParser(); |
4543 | SMLoc S = Parser.getTok().getLoc(); |
4544 | |
4545 | // If this isn't a '{', this isn't a coprocessor immediate operand. |
4546 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4547 | return ParseStatus::NoMatch; |
4548 | Parser.Lex(); // Eat the '{' |
4549 | |
4550 | const MCExpr *Expr; |
4551 | SMLoc Loc = Parser.getTok().getLoc(); |
4552 | if (getParser().parseExpression(Res&: Expr)) |
4553 | return Error(L: Loc, Msg: "illegal expression" ); |
4554 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
4555 | if (!CE || CE->getValue() < 0 || CE->getValue() > 255) |
4556 | return Error(L: Loc, |
4557 | Msg: "coprocessor option must be an immediate in range [0, 255]" ); |
4558 | int Val = CE->getValue(); |
4559 | |
4560 | // Check for and consume the closing '}' |
4561 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
4562 | return ParseStatus::Failure; |
4563 | SMLoc E = Parser.getTok().getEndLoc(); |
4564 | Parser.Lex(); // Eat the '}' |
4565 | |
4566 | Operands.push_back(Elt: ARMOperand::CreateCoprocOption(Val, S, E, Parser&: *this)); |
4567 | return ParseStatus::Success; |
4568 | } |
4569 | |
4570 | // For register list parsing, we need to map from raw GPR register numbering |
4571 | // to the enumeration values. The enumeration values aren't sorted by |
4572 | // register number due to our using "sp", "lr" and "pc" as canonical names. |
4573 | static unsigned getNextRegister(unsigned Reg) { |
4574 | // If this is a GPR, we need to do it manually, otherwise we can rely |
4575 | // on the sort ordering of the enumeration since the other reg-classes |
4576 | // are sane. |
4577 | if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4578 | return Reg + 1; |
4579 | switch(Reg) { |
4580 | default: llvm_unreachable("Invalid GPR number!" ); |
4581 | case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; |
4582 | case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; |
4583 | case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; |
4584 | case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; |
4585 | case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; |
4586 | case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; |
4587 | case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; |
4588 | case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; |
4589 | } |
4590 | } |
4591 | |
4592 | // Insert an <Encoding, Register> pair in an ordered vector. Return true on |
4593 | // success, or false, if duplicate encoding found. |
4594 | static bool |
4595 | insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, |
4596 | unsigned Enc, unsigned Reg) { |
4597 | Regs.emplace_back(Args&: Enc, Args&: Reg); |
4598 | for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { |
4599 | if (J->first == Enc) { |
4600 | Regs.erase(CI: J.base()); |
4601 | return false; |
4602 | } |
4603 | if (J->first < Enc) |
4604 | break; |
4605 | std::swap(x&: *I, y&: *J); |
4606 | } |
4607 | return true; |
4608 | } |
4609 | |
4610 | /// Parse a register list. |
4611 | bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder, |
4612 | bool AllowRAAC, bool AllowOutOfBoundReg) { |
4613 | MCAsmParser &Parser = getParser(); |
4614 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4615 | return TokError(Msg: "Token is not a Left Curly Brace" ); |
4616 | SMLoc S = Parser.getTok().getLoc(); |
4617 | Parser.Lex(); // Eat '{' token. |
4618 | SMLoc RegLoc = Parser.getTok().getLoc(); |
4619 | |
4620 | // Check the first register in the list to see what register class |
4621 | // this is a list of. |
4622 | int Reg = tryParseRegister(); |
4623 | if (Reg == -1) |
4624 | return Error(L: RegLoc, Msg: "register expected" ); |
4625 | if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) |
4626 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4627 | // The reglist instructions have at most 16 registers, so reserve |
4628 | // space for that many. |
4629 | int EReg = 0; |
4630 | SmallVector<std::pair<unsigned, unsigned>, 16> Registers; |
4631 | |
4632 | // Allow Q regs and just interpret them as the two D sub-registers. |
4633 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4634 | Reg = getDRegFromQReg(QReg: Reg); |
4635 | EReg = MRI->getEncodingValue(RegNo: Reg); |
4636 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4637 | ++Reg; |
4638 | } |
4639 | const MCRegisterClass *RC; |
4640 | if (Reg == ARM::RA_AUTH_CODE || |
4641 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4642 | RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; |
4643 | else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) |
4644 | RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; |
4645 | else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) |
4646 | RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; |
4647 | else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
4648 | RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
4649 | else |
4650 | return Error(L: RegLoc, Msg: "invalid register in register list" ); |
4651 | |
4652 | // Store the register. |
4653 | EReg = MRI->getEncodingValue(RegNo: Reg); |
4654 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4655 | |
4656 | // This starts immediately after the first register token in the list, |
4657 | // so we can see either a comma or a minus (range separator) as a legal |
4658 | // next token. |
4659 | while (Parser.getTok().is(K: AsmToken::Comma) || |
4660 | Parser.getTok().is(K: AsmToken::Minus)) { |
4661 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
4662 | if (Reg == ARM::RA_AUTH_CODE) |
4663 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4664 | Parser.Lex(); // Eat the minus. |
4665 | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
4666 | int EndReg = tryParseRegister(AllowOutOfBoundReg); |
4667 | if (EndReg == -1) |
4668 | return Error(L: AfterMinusLoc, Msg: "register expected" ); |
4669 | if (EndReg == ARM::RA_AUTH_CODE) |
4670 | return Error(L: AfterMinusLoc, Msg: "pseudo-register not allowed" ); |
4671 | // Allow Q regs and just interpret them as the two D sub-registers. |
4672 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: EndReg)) |
4673 | EndReg = getDRegFromQReg(QReg: EndReg) + 1; |
4674 | // If the register is the same as the start reg, there's nothing |
4675 | // more to do. |
4676 | if (Reg == EndReg) |
4677 | continue; |
4678 | // The register must be in the same register class as the first. |
4679 | if (!RC->contains(Reg)) |
4680 | return Error(L: AfterMinusLoc, Msg: "invalid register in register list" ); |
4681 | // Ranges must go from low to high. |
4682 | if (MRI->getEncodingValue(RegNo: Reg) > MRI->getEncodingValue(RegNo: EndReg)) |
4683 | return Error(L: AfterMinusLoc, Msg: "bad range in register list" ); |
4684 | |
4685 | // Add all the registers in the range to the register list. |
4686 | while (Reg != EndReg) { |
4687 | Reg = getNextRegister(Reg); |
4688 | EReg = MRI->getEncodingValue(RegNo: Reg); |
4689 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4690 | Warning(L: AfterMinusLoc, Msg: StringRef("duplicated register (" ) + |
4691 | ARMInstPrinter::getRegisterName(Reg) + |
4692 | ") in register list" ); |
4693 | } |
4694 | } |
4695 | continue; |
4696 | } |
4697 | Parser.Lex(); // Eat the comma. |
4698 | RegLoc = Parser.getTok().getLoc(); |
4699 | int OldReg = Reg; |
4700 | const AsmToken RegTok = Parser.getTok(); |
4701 | Reg = tryParseRegister(AllowOutOfBoundReg); |
4702 | if (Reg == -1) |
4703 | return Error(L: RegLoc, Msg: "register expected" ); |
4704 | if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) |
4705 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4706 | // Allow Q regs and just interpret them as the two D sub-registers. |
4707 | bool isQReg = false; |
4708 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4709 | Reg = getDRegFromQReg(QReg: Reg); |
4710 | isQReg = true; |
4711 | } |
4712 | if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) && |
4713 | RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && |
4714 | ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { |
4715 | // switch the register classes, as GPRwithAPSRnospRegClassID is a partial |
4716 | // subset of GPRRegClassId except it contains APSR as well. |
4717 | RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
4718 | } |
4719 | if (Reg == ARM::VPR && |
4720 | (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || |
4721 | RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || |
4722 | RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { |
4723 | RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; |
4724 | EReg = MRI->getEncodingValue(RegNo: Reg); |
4725 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4726 | Warning(L: RegLoc, Msg: "duplicated register (" + RegTok.getString() + |
4727 | ") in register list" ); |
4728 | } |
4729 | continue; |
4730 | } |
4731 | // The register must be in the same register class as the first. |
4732 | if ((Reg == ARM::RA_AUTH_CODE && |
4733 | RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || |
4734 | (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) |
4735 | return Error(L: RegLoc, Msg: "invalid register in register list" ); |
4736 | // In most cases, the list must be monotonically increasing. An |
4737 | // exception is CLRM, which is order-independent anyway, so |
4738 | // there's no potential for confusion if you write clrm {r2,r1} |
4739 | // instead of clrm {r1,r2}. |
4740 | if (EnforceOrder && |
4741 | MRI->getEncodingValue(RegNo: Reg) < MRI->getEncodingValue(RegNo: OldReg)) { |
4742 | if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4743 | Warning(L: RegLoc, Msg: "register list not in ascending order" ); |
4744 | else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
4745 | return Error(L: RegLoc, Msg: "register list not in ascending order" ); |
4746 | } |
4747 | // VFP register lists must also be contiguous. |
4748 | if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && |
4749 | RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && |
4750 | Reg != OldReg + 1) |
4751 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
4752 | EReg = MRI->getEncodingValue(RegNo: Reg); |
4753 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4754 | Warning(L: RegLoc, Msg: "duplicated register (" + RegTok.getString() + |
4755 | ") in register list" ); |
4756 | } |
4757 | if (isQReg) { |
4758 | EReg = MRI->getEncodingValue(RegNo: ++Reg); |
4759 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4760 | } |
4761 | } |
4762 | |
4763 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
4764 | return Error(L: Parser.getTok().getLoc(), Msg: "'}' expected" ); |
4765 | SMLoc E = Parser.getTok().getEndLoc(); |
4766 | Parser.Lex(); // Eat '}' token. |
4767 | |
4768 | // Push the register list operand. |
4769 | Operands.push_back(Elt: ARMOperand::CreateRegList(Regs&: Registers, StartLoc: S, EndLoc: E, Parser&: *this)); |
4770 | |
4771 | // The ARM system instruction variants for LDM/STM have a '^' token here. |
4772 | if (Parser.getTok().is(K: AsmToken::Caret)) { |
4773 | Operands.push_back( |
4774 | Elt: ARMOperand::CreateToken(Str: "^" , S: Parser.getTok().getLoc(), Parser&: *this)); |
4775 | Parser.Lex(); // Eat '^' token. |
4776 | } |
4777 | |
4778 | return false; |
4779 | } |
4780 | |
4781 | // Helper function to parse the lane index for vector lists. |
4782 | ParseStatus ARMAsmParser::parseVectorLane(VectorLaneTy &LaneKind, |
4783 | unsigned &Index, SMLoc &EndLoc) { |
4784 | MCAsmParser &Parser = getParser(); |
4785 | Index = 0; // Always return a defined index value. |
4786 | if (Parser.getTok().is(K: AsmToken::LBrac)) { |
4787 | Parser.Lex(); // Eat the '['. |
4788 | if (Parser.getTok().is(K: AsmToken::RBrac)) { |
4789 | // "Dn[]" is the 'all lanes' syntax. |
4790 | LaneKind = AllLanes; |
4791 | EndLoc = Parser.getTok().getEndLoc(); |
4792 | Parser.Lex(); // Eat the ']'. |
4793 | return ParseStatus::Success; |
4794 | } |
4795 | |
4796 | // There's an optional '#' token here. Normally there wouldn't be, but |
4797 | // inline assemble puts one in, and it's friendly to accept that. |
4798 | if (Parser.getTok().is(K: AsmToken::Hash)) |
4799 | Parser.Lex(); // Eat '#' or '$'. |
4800 | |
4801 | const MCExpr *LaneIndex; |
4802 | SMLoc Loc = Parser.getTok().getLoc(); |
4803 | if (getParser().parseExpression(Res&: LaneIndex)) |
4804 | return Error(L: Loc, Msg: "illegal expression" ); |
4805 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: LaneIndex); |
4806 | if (!CE) |
4807 | return Error(L: Loc, Msg: "lane index must be empty or an integer" ); |
4808 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
4809 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
4810 | EndLoc = Parser.getTok().getEndLoc(); |
4811 | Parser.Lex(); // Eat the ']'. |
4812 | int64_t Val = CE->getValue(); |
4813 | |
4814 | // FIXME: Make this range check context sensitive for .8, .16, .32. |
4815 | if (Val < 0 || Val > 7) |
4816 | return Error(L: Parser.getTok().getLoc(), Msg: "lane index out of range" ); |
4817 | Index = Val; |
4818 | LaneKind = IndexedLane; |
4819 | return ParseStatus::Success; |
4820 | } |
4821 | LaneKind = NoLanes; |
4822 | return ParseStatus::Success; |
4823 | } |
4824 | |
4825 | // parse a vector register list |
4826 | ParseStatus ARMAsmParser::parseVectorList(OperandVector &Operands) { |
4827 | MCAsmParser &Parser = getParser(); |
4828 | VectorLaneTy LaneKind; |
4829 | unsigned LaneIndex; |
4830 | SMLoc S = Parser.getTok().getLoc(); |
4831 | // As an extension (to match gas), support a plain D register or Q register |
4832 | // (without encosing curly braces) as a single or double entry list, |
4833 | // respectively. |
4834 | // If there is no lane supplied, just parse as a register and |
4835 | // use the custom matcher to convert to list if necessary |
4836 | if (!hasMVE() && Parser.getTok().is(K: AsmToken::Identifier)) { |
4837 | SMLoc E = Parser.getTok().getEndLoc(); |
4838 | int Reg = tryParseRegister(); |
4839 | if (Reg == -1) |
4840 | return ParseStatus::NoMatch; |
4841 | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { |
4842 | ParseStatus Res = parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E); |
4843 | if (!Res.isSuccess()) |
4844 | return Res; |
4845 | switch (LaneKind) { |
4846 | case NoLanes: |
4847 | Operands.push_back(Elt: ARMOperand::CreateReg(RegNum: Reg, S, E, Parser&: *this)); |
4848 | break; |
4849 | case AllLanes: |
4850 | Operands.push_back( |
4851 | Elt: ARMOperand::CreateVectorListAllLanes(RegNum: Reg, Count: 1, isDoubleSpaced: false, S, E, Parser&: *this)); |
4852 | break; |
4853 | case IndexedLane: |
4854 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
4855 | RegNum: Reg, Count: 1, Index: LaneIndex, isDoubleSpaced: false, S, E, Parser&: *this)); |
4856 | break; |
4857 | } |
4858 | return ParseStatus::Success; |
4859 | } |
4860 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4861 | Reg = getDRegFromQReg(QReg: Reg); |
4862 | ParseStatus Res = parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E); |
4863 | if (!Res.isSuccess()) |
4864 | return Res; |
4865 | switch (LaneKind) { |
4866 | case NoLanes: |
4867 | Operands.push_back(Elt: ARMOperand::CreateReg(RegNum: Reg, S, E, Parser&: *this)); |
4868 | break; |
4869 | case AllLanes: |
4870 | Reg = MRI->getMatchingSuperReg(Reg, SubIdx: ARM::dsub_0, |
4871 | RC: &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
4872 | Operands.push_back( |
4873 | Elt: ARMOperand::CreateVectorListAllLanes(RegNum: Reg, Count: 2, isDoubleSpaced: false, S, E, Parser&: *this)); |
4874 | break; |
4875 | case IndexedLane: |
4876 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
4877 | RegNum: Reg, Count: 2, Index: LaneIndex, isDoubleSpaced: false, S, E, Parser&: *this)); |
4878 | break; |
4879 | } |
4880 | return ParseStatus::Success; |
4881 | } |
4882 | Operands.push_back(Elt: ARMOperand::CreateReg(RegNum: Reg, S, E, Parser&: *this)); |
4883 | return ParseStatus::Success; |
4884 | } |
4885 | |
4886 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4887 | return ParseStatus::NoMatch; |
4888 | |
4889 | Parser.Lex(); // Eat '{' token. |
4890 | SMLoc RegLoc = Parser.getTok().getLoc(); |
4891 | |
4892 | int Reg = tryParseRegister(); |
4893 | if (Reg == -1) |
4894 | return Error(L: RegLoc, Msg: "register expected" ); |
4895 | unsigned Count = 1; |
4896 | int Spacing = 0; |
4897 | unsigned FirstReg = Reg; |
4898 | |
4899 | if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) |
4900 | return Error(L: Parser.getTok().getLoc(), |
4901 | Msg: "vector register in range Q0-Q7 expected" ); |
4902 | // The list is of D registers, but we also allow Q regs and just interpret |
4903 | // them as the two D sub-registers. |
4904 | else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4905 | FirstReg = Reg = getDRegFromQReg(QReg: Reg); |
4906 | Spacing = 1; // double-spacing requires explicit D registers, otherwise |
4907 | // it's ambiguous with four-register single spaced. |
4908 | ++Reg; |
4909 | ++Count; |
4910 | } |
4911 | |
4912 | SMLoc E; |
4913 | if (!parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E).isSuccess()) |
4914 | return ParseStatus::Failure; |
4915 | |
4916 | while (Parser.getTok().is(K: AsmToken::Comma) || |
4917 | Parser.getTok().is(K: AsmToken::Minus)) { |
4918 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
4919 | if (!Spacing) |
4920 | Spacing = 1; // Register range implies a single spaced list. |
4921 | else if (Spacing == 2) |
4922 | return Error(L: Parser.getTok().getLoc(), |
4923 | Msg: "sequential registers in double spaced list" ); |
4924 | Parser.Lex(); // Eat the minus. |
4925 | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
4926 | int EndReg = tryParseRegister(); |
4927 | if (EndReg == -1) |
4928 | return Error(L: AfterMinusLoc, Msg: "register expected" ); |
4929 | // Allow Q regs and just interpret them as the two D sub-registers. |
4930 | if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: EndReg)) |
4931 | EndReg = getDRegFromQReg(QReg: EndReg) + 1; |
4932 | // If the register is the same as the start reg, there's nothing |
4933 | // more to do. |
4934 | if (Reg == EndReg) |
4935 | continue; |
4936 | // The register must be in the same register class as the first. |
4937 | if ((hasMVE() && |
4938 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg: EndReg)) || |
4939 | (!hasMVE() && |
4940 | !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg: EndReg))) |
4941 | return Error(L: AfterMinusLoc, Msg: "invalid register in register list" ); |
4942 | // Ranges must go from low to high. |
4943 | if (Reg > EndReg) |
4944 | return Error(L: AfterMinusLoc, Msg: "bad range in register list" ); |
4945 | // Parse the lane specifier if present. |
4946 | VectorLaneTy NextLaneKind; |
4947 | unsigned NextLaneIndex; |
4948 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
4949 | return ParseStatus::Failure; |
4950 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
4951 | return Error(L: AfterMinusLoc, Msg: "mismatched lane index in register list" ); |
4952 | |
4953 | // Add all the registers in the range to the register list. |
4954 | Count += EndReg - Reg; |
4955 | Reg = EndReg; |
4956 | continue; |
4957 | } |
4958 | Parser.Lex(); // Eat the comma. |
4959 | RegLoc = Parser.getTok().getLoc(); |
4960 | int OldReg = Reg; |
4961 | Reg = tryParseRegister(); |
4962 | if (Reg == -1) |
4963 | return Error(L: RegLoc, Msg: "register expected" ); |
4964 | |
4965 | if (hasMVE()) { |
4966 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) |
4967 | return Error(L: RegLoc, Msg: "vector register in range Q0-Q7 expected" ); |
4968 | Spacing = 1; |
4969 | } |
4970 | // vector register lists must be contiguous. |
4971 | // It's OK to use the enumeration values directly here rather, as the |
4972 | // VFP register classes have the enum sorted properly. |
4973 | // |
4974 | // The list is of D registers, but we also allow Q regs and just interpret |
4975 | // them as the two D sub-registers. |
4976 | else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4977 | if (!Spacing) |
4978 | Spacing = 1; // Register range implies a single spaced list. |
4979 | else if (Spacing == 2) |
4980 | return Error( |
4981 | L: RegLoc, |
4982 | Msg: "invalid register in double-spaced list (must be 'D' register')" ); |
4983 | Reg = getDRegFromQReg(QReg: Reg); |
4984 | if (Reg != OldReg + 1) |
4985 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
4986 | ++Reg; |
4987 | Count += 2; |
4988 | // Parse the lane specifier if present. |
4989 | VectorLaneTy NextLaneKind; |
4990 | unsigned NextLaneIndex; |
4991 | SMLoc LaneLoc = Parser.getTok().getLoc(); |
4992 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
4993 | return ParseStatus::Failure; |
4994 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
4995 | return Error(L: LaneLoc, Msg: "mismatched lane index in register list" ); |
4996 | continue; |
4997 | } |
4998 | // Normal D register. |
4999 | // Figure out the register spacing (single or double) of the list if |
5000 | // we don't know it already. |
5001 | if (!Spacing) |
5002 | Spacing = 1 + (Reg == OldReg + 2); |
5003 | |
5004 | // Just check that it's contiguous and keep going. |
5005 | if (Reg != OldReg + Spacing) |
5006 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
5007 | ++Count; |
5008 | // Parse the lane specifier if present. |
5009 | VectorLaneTy NextLaneKind; |
5010 | unsigned NextLaneIndex; |
5011 | SMLoc EndLoc = Parser.getTok().getLoc(); |
5012 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
5013 | return ParseStatus::Failure; |
5014 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
5015 | return Error(L: EndLoc, Msg: "mismatched lane index in register list" ); |
5016 | } |
5017 | |
5018 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
5019 | return Error(L: Parser.getTok().getLoc(), Msg: "'}' expected" ); |
5020 | E = Parser.getTok().getEndLoc(); |
5021 | Parser.Lex(); // Eat '}' token. |
5022 | |
5023 | switch (LaneKind) { |
5024 | case NoLanes: |
5025 | case AllLanes: { |
5026 | // Two-register operands have been converted to the |
5027 | // composite register classes. |
5028 | if (Count == 2 && !hasMVE()) { |
5029 | const MCRegisterClass *RC = (Spacing == 1) ? |
5030 | &ARMMCRegisterClasses[ARM::DPairRegClassID] : |
5031 | &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; |
5032 | FirstReg = MRI->getMatchingSuperReg(Reg: FirstReg, SubIdx: ARM::dsub_0, RC); |
5033 | } |
5034 | auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : |
5035 | ARMOperand::CreateVectorListAllLanes); |
5036 | Operands.push_back(Elt: Create(FirstReg, Count, (Spacing == 2), S, E, *this)); |
5037 | break; |
5038 | } |
5039 | case IndexedLane: |
5040 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
5041 | RegNum: FirstReg, Count, Index: LaneIndex, isDoubleSpaced: (Spacing == 2), S, E, Parser&: *this)); |
5042 | break; |
5043 | } |
5044 | return ParseStatus::Success; |
5045 | } |
5046 | |
5047 | /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. |
5048 | ParseStatus ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { |
5049 | MCAsmParser &Parser = getParser(); |
5050 | SMLoc S = Parser.getTok().getLoc(); |
5051 | const AsmToken &Tok = Parser.getTok(); |
5052 | unsigned Opt; |
5053 | |
5054 | if (Tok.is(K: AsmToken::Identifier)) { |
5055 | StringRef OptStr = Tok.getString(); |
5056 | |
5057 | Opt = StringSwitch<unsigned>(OptStr.slice(Start: 0, End: OptStr.size()).lower()) |
5058 | .Case(S: "sy" , Value: ARM_MB::SY) |
5059 | .Case(S: "st" , Value: ARM_MB::ST) |
5060 | .Case(S: "ld" , Value: ARM_MB::LD) |
5061 | .Case(S: "sh" , Value: ARM_MB::ISH) |
5062 | .Case(S: "ish" , Value: ARM_MB::ISH) |
5063 | .Case(S: "shst" , Value: ARM_MB::ISHST) |
5064 | .Case(S: "ishst" , Value: ARM_MB::ISHST) |
5065 | .Case(S: "ishld" , Value: ARM_MB::ISHLD) |
5066 | .Case(S: "nsh" , Value: ARM_MB::NSH) |
5067 | .Case(S: "un" , Value: ARM_MB::NSH) |
5068 | .Case(S: "nshst" , Value: ARM_MB::NSHST) |
5069 | .Case(S: "nshld" , Value: ARM_MB::NSHLD) |
5070 | .Case(S: "unst" , Value: ARM_MB::NSHST) |
5071 | .Case(S: "osh" , Value: ARM_MB::OSH) |
5072 | .Case(S: "oshst" , Value: ARM_MB::OSHST) |
5073 | .Case(S: "oshld" , Value: ARM_MB::OSHLD) |
5074 | .Default(Value: ~0U); |
5075 | |
5076 | // ishld, oshld, nshld and ld are only available from ARMv8. |
5077 | if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || |
5078 | Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) |
5079 | Opt = ~0U; |
5080 | |
5081 | if (Opt == ~0U) |
5082 | return ParseStatus::NoMatch; |
5083 | |
5084 | Parser.Lex(); // Eat identifier token. |
5085 | } else if (Tok.is(K: AsmToken::Hash) || |
5086 | Tok.is(K: AsmToken::Dollar) || |
5087 | Tok.is(K: AsmToken::Integer)) { |
5088 | if (Parser.getTok().isNot(K: AsmToken::Integer)) |
5089 | Parser.Lex(); // Eat '#' or '$'. |
5090 | SMLoc Loc = Parser.getTok().getLoc(); |
5091 | |
5092 | const MCExpr *MemBarrierID; |
5093 | if (getParser().parseExpression(Res&: MemBarrierID)) |
5094 | return Error(L: Loc, Msg: "illegal expression" ); |
5095 | |
5096 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: MemBarrierID); |
5097 | if (!CE) |
5098 | return Error(L: Loc, Msg: "constant expression expected" ); |
5099 | |
5100 | int Val = CE->getValue(); |
5101 | if (Val & ~0xf) |
5102 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5103 | |
5104 | Opt = ARM_MB::RESERVED_0 + Val; |
5105 | } else |
5106 | return ParseStatus::Failure; |
5107 | |
5108 | Operands.push_back( |
5109 | Elt: ARMOperand::CreateMemBarrierOpt(Opt: (ARM_MB::MemBOpt)Opt, S, Parser&: *this)); |
5110 | return ParseStatus::Success; |
5111 | } |
5112 | |
5113 | ParseStatus |
5114 | ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { |
5115 | MCAsmParser &Parser = getParser(); |
5116 | SMLoc S = Parser.getTok().getLoc(); |
5117 | const AsmToken &Tok = Parser.getTok(); |
5118 | |
5119 | if (Tok.isNot(K: AsmToken::Identifier)) |
5120 | return ParseStatus::NoMatch; |
5121 | |
5122 | if (!Tok.getString().equals_insensitive(RHS: "csync" )) |
5123 | return ParseStatus::NoMatch; |
5124 | |
5125 | Parser.Lex(); // Eat identifier token. |
5126 | |
5127 | Operands.push_back( |
5128 | Elt: ARMOperand::CreateTraceSyncBarrierOpt(Opt: ARM_TSB::CSYNC, S, Parser&: *this)); |
5129 | return ParseStatus::Success; |
5130 | } |
5131 | |
5132 | /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. |
5133 | ParseStatus |
5134 | ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { |
5135 | MCAsmParser &Parser = getParser(); |
5136 | SMLoc S = Parser.getTok().getLoc(); |
5137 | const AsmToken &Tok = Parser.getTok(); |
5138 | unsigned Opt; |
5139 | |
5140 | if (Tok.is(K: AsmToken::Identifier)) { |
5141 | StringRef OptStr = Tok.getString(); |
5142 | |
5143 | if (OptStr.equals_insensitive(RHS: "sy" )) |
5144 | Opt = ARM_ISB::SY; |
5145 | else |
5146 | return ParseStatus::NoMatch; |
5147 | |
5148 | Parser.Lex(); // Eat identifier token. |
5149 | } else if (Tok.is(K: AsmToken::Hash) || |
5150 | Tok.is(K: AsmToken::Dollar) || |
5151 | Tok.is(K: AsmToken::Integer)) { |
5152 | if (Parser.getTok().isNot(K: AsmToken::Integer)) |
5153 | Parser.Lex(); // Eat '#' or '$'. |
5154 | SMLoc Loc = Parser.getTok().getLoc(); |
5155 | |
5156 | const MCExpr *ISBarrierID; |
5157 | if (getParser().parseExpression(Res&: ISBarrierID)) |
5158 | return Error(L: Loc, Msg: "illegal expression" ); |
5159 | |
5160 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ISBarrierID); |
5161 | if (!CE) |
5162 | return Error(L: Loc, Msg: "constant expression expected" ); |
5163 | |
5164 | int Val = CE->getValue(); |
5165 | if (Val & ~0xf) |
5166 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5167 | |
5168 | Opt = ARM_ISB::RESERVED_0 + Val; |
5169 | } else |
5170 | return ParseStatus::Failure; |
5171 | |
5172 | Operands.push_back(Elt: ARMOperand::CreateInstSyncBarrierOpt( |
5173 | Opt: (ARM_ISB::InstSyncBOpt)Opt, S, Parser&: *this)); |
5174 | return ParseStatus::Success; |
5175 | } |
5176 | |
5177 | /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. |
5178 | ParseStatus ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { |
5179 | MCAsmParser &Parser = getParser(); |
5180 | SMLoc S = Parser.getTok().getLoc(); |
5181 | const AsmToken &Tok = Parser.getTok(); |
5182 | if (!Tok.is(K: AsmToken::Identifier)) |
5183 | return ParseStatus::NoMatch; |
5184 | StringRef IFlagsStr = Tok.getString(); |
5185 | |
5186 | // An iflags string of "none" is interpreted to mean that none of the AIF |
5187 | // bits are set. Not a terribly useful instruction, but a valid encoding. |
5188 | unsigned IFlags = 0; |
5189 | if (IFlagsStr != "none" ) { |
5190 | for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { |
5191 | unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(Start: i, N: 1).lower()) |
5192 | .Case(S: "a" , Value: ARM_PROC::A) |
5193 | .Case(S: "i" , Value: ARM_PROC::I) |
5194 | .Case(S: "f" , Value: ARM_PROC::F) |
5195 | .Default(Value: ~0U); |
5196 | |
5197 | // If some specific iflag is already set, it means that some letter is |
5198 | // present more than once, this is not acceptable. |
5199 | if (Flag == ~0U || (IFlags & Flag)) |
5200 | return ParseStatus::NoMatch; |
5201 | |
5202 | IFlags |= Flag; |
5203 | } |
5204 | } |
5205 | |
5206 | Parser.Lex(); // Eat identifier token. |
5207 | Operands.push_back( |
5208 | Elt: ARMOperand::CreateProcIFlags(IFlags: (ARM_PROC::IFlags)IFlags, S, Parser&: *this)); |
5209 | return ParseStatus::Success; |
5210 | } |
5211 | |
5212 | /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. |
5213 | ParseStatus ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { |
5214 | // Don't parse two MSR registers in a row |
5215 | if (static_cast<ARMOperand &>(*Operands.back()).isMSRMask() || |
5216 | static_cast<ARMOperand &>(*Operands.back()).isBankedReg()) |
5217 | return ParseStatus::NoMatch; |
5218 | MCAsmParser &Parser = getParser(); |
5219 | SMLoc S = Parser.getTok().getLoc(); |
5220 | const AsmToken &Tok = Parser.getTok(); |
5221 | |
5222 | if (Tok.is(K: AsmToken::Integer)) { |
5223 | int64_t Val = Tok.getIntVal(); |
5224 | if (Val > 255 || Val < 0) { |
5225 | return ParseStatus::NoMatch; |
5226 | } |
5227 | unsigned SYSmvalue = Val & 0xFF; |
5228 | Parser.Lex(); |
5229 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: SYSmvalue, S, Parser&: *this)); |
5230 | return ParseStatus::Success; |
5231 | } |
5232 | |
5233 | if (!Tok.is(K: AsmToken::Identifier)) |
5234 | return ParseStatus::NoMatch; |
5235 | StringRef Mask = Tok.getString(); |
5236 | |
5237 | if (isMClass()) { |
5238 | auto TheReg = ARMSysReg::lookupMClassSysRegByName(Name: Mask.lower()); |
5239 | if (!TheReg || !TheReg->hasRequiredFeatures(ActiveFeatures: getSTI().getFeatureBits())) |
5240 | return ParseStatus::NoMatch; |
5241 | |
5242 | unsigned SYSmvalue = TheReg->Encoding & 0xFFF; |
5243 | |
5244 | Parser.Lex(); // Eat identifier token. |
5245 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: SYSmvalue, S, Parser&: *this)); |
5246 | return ParseStatus::Success; |
5247 | } |
5248 | |
5249 | // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" |
5250 | size_t Start = 0, Next = Mask.find(C: '_'); |
5251 | StringRef Flags = "" ; |
5252 | std::string SpecReg = Mask.slice(Start, End: Next).lower(); |
5253 | if (Next != StringRef::npos) |
5254 | Flags = Mask.slice(Start: Next+1, End: Mask.size()); |
5255 | |
5256 | // FlagsVal contains the complete mask: |
5257 | // 3-0: Mask |
5258 | // 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
5259 | unsigned FlagsVal = 0; |
5260 | |
5261 | if (SpecReg == "apsr" ) { |
5262 | FlagsVal = StringSwitch<unsigned>(Flags) |
5263 | .Case(S: "nzcvq" , Value: 0x8) // same as CPSR_f |
5264 | .Case(S: "g" , Value: 0x4) // same as CPSR_s |
5265 | .Case(S: "nzcvqg" , Value: 0xc) // same as CPSR_fs |
5266 | .Default(Value: ~0U); |
5267 | |
5268 | if (FlagsVal == ~0U) { |
5269 | if (!Flags.empty()) |
5270 | return ParseStatus::NoMatch; |
5271 | else |
5272 | FlagsVal = 8; // No flag |
5273 | } |
5274 | } else if (SpecReg == "cpsr" || SpecReg == "spsr" ) { |
5275 | // cpsr_all is an alias for cpsr_fc, as is plain cpsr. |
5276 | if (Flags == "all" || Flags == "" ) |
5277 | Flags = "fc" ; |
5278 | for (int i = 0, e = Flags.size(); i != e; ++i) { |
5279 | unsigned Flag = StringSwitch<unsigned>(Flags.substr(Start: i, N: 1)) |
5280 | .Case(S: "c" , Value: 1) |
5281 | .Case(S: "x" , Value: 2) |
5282 | .Case(S: "s" , Value: 4) |
5283 | .Case(S: "f" , Value: 8) |
5284 | .Default(Value: ~0U); |
5285 | |
5286 | // If some specific flag is already set, it means that some letter is |
5287 | // present more than once, this is not acceptable. |
5288 | if (Flag == ~0U || (FlagsVal & Flag)) |
5289 | return ParseStatus::NoMatch; |
5290 | FlagsVal |= Flag; |
5291 | } |
5292 | } else // No match for special register. |
5293 | return ParseStatus::NoMatch; |
5294 | |
5295 | // Special register without flags is NOT equivalent to "fc" flags. |
5296 | // NOTE: This is a divergence from gas' behavior. Uncommenting the following |
5297 | // two lines would enable gas compatibility at the expense of breaking |
5298 | // round-tripping. |
5299 | // |
5300 | // if (!FlagsVal) |
5301 | // FlagsVal = 0x9; |
5302 | |
5303 | // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
5304 | if (SpecReg == "spsr" ) |
5305 | FlagsVal |= 16; |
5306 | |
5307 | Parser.Lex(); // Eat identifier token. |
5308 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: FlagsVal, S, Parser&: *this)); |
5309 | return ParseStatus::Success; |
5310 | } |
5311 | |
5312 | /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for |
5313 | /// use in the MRS/MSR instructions added to support virtualization. |
5314 | ParseStatus ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { |
5315 | // Don't parse two Banked registers in a row |
5316 | if (static_cast<ARMOperand &>(*Operands.back()).isBankedReg() || |
5317 | static_cast<ARMOperand &>(*Operands.back()).isMSRMask()) |
5318 | return ParseStatus::NoMatch; |
5319 | MCAsmParser &Parser = getParser(); |
5320 | SMLoc S = Parser.getTok().getLoc(); |
5321 | const AsmToken &Tok = Parser.getTok(); |
5322 | if (!Tok.is(K: AsmToken::Identifier)) |
5323 | return ParseStatus::NoMatch; |
5324 | StringRef RegName = Tok.getString(); |
5325 | |
5326 | auto TheReg = ARMBankedReg::lookupBankedRegByName(Name: RegName.lower()); |
5327 | if (!TheReg) |
5328 | return ParseStatus::NoMatch; |
5329 | unsigned Encoding = TheReg->Encoding; |
5330 | |
5331 | Parser.Lex(); // Eat identifier token. |
5332 | Operands.push_back(Elt: ARMOperand::CreateBankedReg(Reg: Encoding, S, Parser&: *this)); |
5333 | return ParseStatus::Success; |
5334 | } |
5335 | |
5336 | // FIXME: Unify the different methods for handling shift operators |
5337 | // and use TableGen matching mechanisms to do the validation rather than |
5338 | // separate parsing paths. |
5339 | ParseStatus ARMAsmParser::parsePKHImm(OperandVector &Operands, |
5340 | ARM_AM::ShiftOpc Op, int Low, int High) { |
5341 | MCAsmParser &Parser = getParser(); |
5342 | auto ShiftCodeOpt = tryParseShiftToken(); |
5343 | |
5344 | if (!ShiftCodeOpt.has_value()) |
5345 | return ParseStatus::NoMatch; |
5346 | auto ShiftCode = ShiftCodeOpt.value(); |
5347 | |
5348 | // The wrong shift code has been provided. Can error here as has matched the |
5349 | // correct operand in this case. |
5350 | if (ShiftCode != Op) |
5351 | return Error(L: Parser.getTok().getLoc(), |
5352 | Msg: ARM_AM::getShiftOpcStr(Op) + " operand expected." ); |
5353 | |
5354 | Parser.Lex(); // Eat shift type token. |
5355 | |
5356 | // There must be a '#' and a shift amount. |
5357 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5358 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5359 | return ParseStatus::NoMatch; |
5360 | Parser.Lex(); // Eat hash token. |
5361 | |
5362 | const MCExpr *ShiftAmount; |
5363 | SMLoc Loc = Parser.getTok().getLoc(); |
5364 | SMLoc EndLoc; |
5365 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5366 | return Error(L: Loc, Msg: "illegal expression" ); |
5367 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5368 | if (!CE) |
5369 | return Error(L: Loc, Msg: "constant expression expected" ); |
5370 | int Val = CE->getValue(); |
5371 | if (Val < Low || Val > High) |
5372 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5373 | |
5374 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: CE, S: Loc, E: EndLoc, Parser&: *this)); |
5375 | |
5376 | return ParseStatus::Success; |
5377 | } |
5378 | |
5379 | ParseStatus ARMAsmParser::parseSetEndImm(OperandVector &Operands) { |
5380 | MCAsmParser &Parser = getParser(); |
5381 | const AsmToken &Tok = Parser.getTok(); |
5382 | SMLoc S = Tok.getLoc(); |
5383 | if (Tok.isNot(K: AsmToken::Identifier)) |
5384 | return Error(L: S, Msg: "'be' or 'le' operand expected" ); |
5385 | int Val = StringSwitch<int>(Tok.getString().lower()) |
5386 | .Case(S: "be" , Value: 1) |
5387 | .Case(S: "le" , Value: 0) |
5388 | .Default(Value: -1); |
5389 | Parser.Lex(); // Eat the token. |
5390 | |
5391 | if (Val == -1) |
5392 | return Error(L: S, Msg: "'be' or 'le' operand expected" ); |
5393 | Operands.push_back(Elt: ARMOperand::CreateImm( |
5394 | Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, E: Tok.getEndLoc(), Parser&: *this)); |
5395 | return ParseStatus::Success; |
5396 | } |
5397 | |
5398 | /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT |
5399 | /// instructions. Legal values are: |
5400 | /// lsl #n 'n' in [0,31] |
5401 | /// asr #n 'n' in [1,32] |
5402 | /// n == 32 encoded as n == 0. |
5403 | ParseStatus ARMAsmParser::parseShifterImm(OperandVector &Operands) { |
5404 | MCAsmParser &Parser = getParser(); |
5405 | const AsmToken &Tok = Parser.getTok(); |
5406 | SMLoc S = Tok.getLoc(); |
5407 | if (Tok.isNot(K: AsmToken::Identifier)) |
5408 | return ParseStatus::NoMatch; |
5409 | StringRef ShiftName = Tok.getString(); |
5410 | bool isASR; |
5411 | if (ShiftName == "lsl" || ShiftName == "LSL" ) |
5412 | isASR = false; |
5413 | else if (ShiftName == "asr" || ShiftName == "ASR" ) |
5414 | isASR = true; |
5415 | else |
5416 | return ParseStatus::NoMatch; |
5417 | Parser.Lex(); // Eat the operator. |
5418 | |
5419 | // A '#' and a shift amount. |
5420 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5421 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5422 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5423 | Parser.Lex(); // Eat hash token. |
5424 | SMLoc ExLoc = Parser.getTok().getLoc(); |
5425 | |
5426 | const MCExpr *ShiftAmount; |
5427 | SMLoc EndLoc; |
5428 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5429 | return Error(L: ExLoc, Msg: "malformed shift expression" ); |
5430 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5431 | if (!CE) |
5432 | return Error(L: ExLoc, Msg: "shift amount must be an immediate" ); |
5433 | |
5434 | int64_t Val = CE->getValue(); |
5435 | if (isASR) { |
5436 | // Shift amount must be in [1,32] |
5437 | if (Val < 1 || Val > 32) |
5438 | return Error(L: ExLoc, Msg: "'asr' shift amount must be in range [1,32]" ); |
5439 | // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. |
5440 | if (isThumb() && Val == 32) |
5441 | return Error(L: ExLoc, Msg: "'asr #32' shift amount not allowed in Thumb mode" ); |
5442 | if (Val == 32) Val = 0; |
5443 | } else { |
5444 | // Shift amount must be in [1,32] |
5445 | if (Val < 0 || Val > 31) |
5446 | return Error(L: ExLoc, Msg: "'lsr' shift amount must be in range [0,31]" ); |
5447 | } |
5448 | |
5449 | Operands.push_back( |
5450 | Elt: ARMOperand::CreateShifterImm(isASR, Imm: Val, S, E: EndLoc, Parser&: *this)); |
5451 | |
5452 | return ParseStatus::Success; |
5453 | } |
5454 | |
5455 | /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family |
5456 | /// of instructions. Legal values are: |
5457 | /// ror #n 'n' in {0, 8, 16, 24} |
5458 | ParseStatus ARMAsmParser::parseRotImm(OperandVector &Operands) { |
5459 | MCAsmParser &Parser = getParser(); |
5460 | const AsmToken &Tok = Parser.getTok(); |
5461 | SMLoc S = Tok.getLoc(); |
5462 | if (Tok.isNot(K: AsmToken::Identifier)) |
5463 | return ParseStatus::NoMatch; |
5464 | StringRef ShiftName = Tok.getString(); |
5465 | if (ShiftName != "ror" && ShiftName != "ROR" ) |
5466 | return ParseStatus::NoMatch; |
5467 | Parser.Lex(); // Eat the operator. |
5468 | |
5469 | // A '#' and a rotate amount. |
5470 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5471 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5472 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5473 | Parser.Lex(); // Eat hash token. |
5474 | SMLoc ExLoc = Parser.getTok().getLoc(); |
5475 | |
5476 | const MCExpr *ShiftAmount; |
5477 | SMLoc EndLoc; |
5478 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5479 | return Error(L: ExLoc, Msg: "malformed rotate expression" ); |
5480 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5481 | if (!CE) |
5482 | return Error(L: ExLoc, Msg: "rotate amount must be an immediate" ); |
5483 | |
5484 | int64_t Val = CE->getValue(); |
5485 | // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) |
5486 | // normally, zero is represented in asm by omitting the rotate operand |
5487 | // entirely. |
5488 | if (Val != 8 && Val != 16 && Val != 24 && Val != 0) |
5489 | return Error(L: ExLoc, Msg: "'ror' rotate amount must be 8, 16, or 24" ); |
5490 | |
5491 | Operands.push_back(Elt: ARMOperand::CreateRotImm(Imm: Val, S, E: EndLoc, Parser&: *this)); |
5492 | |
5493 | return ParseStatus::Success; |
5494 | } |
5495 | |
5496 | ParseStatus ARMAsmParser::parseModImm(OperandVector &Operands) { |
5497 | MCAsmParser &Parser = getParser(); |
5498 | MCAsmLexer &Lexer = getLexer(); |
5499 | int64_t Imm1, Imm2; |
5500 | |
5501 | SMLoc S = Parser.getTok().getLoc(); |
5502 | |
5503 | // 1) A mod_imm operand can appear in the place of a register name: |
5504 | // add r0, #mod_imm |
5505 | // add r0, r0, #mod_imm |
5506 | // to correctly handle the latter, we bail out as soon as we see an |
5507 | // identifier. |
5508 | // |
5509 | // 2) Similarly, we do not want to parse into complex operands: |
5510 | // mov r0, #mod_imm |
5511 | // mov r0, :lower16:(_foo) |
5512 | if (Parser.getTok().is(K: AsmToken::Identifier) || |
5513 | Parser.getTok().is(K: AsmToken::Colon)) |
5514 | return ParseStatus::NoMatch; |
5515 | |
5516 | // Hash (dollar) is optional as per the ARMARM |
5517 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5518 | Parser.getTok().is(K: AsmToken::Dollar)) { |
5519 | // Avoid parsing into complex operands (#:) |
5520 | if (Lexer.peekTok().is(K: AsmToken::Colon)) |
5521 | return ParseStatus::NoMatch; |
5522 | |
5523 | // Eat the hash (dollar) |
5524 | Parser.Lex(); |
5525 | } |
5526 | |
5527 | SMLoc Sx1, Ex1; |
5528 | Sx1 = Parser.getTok().getLoc(); |
5529 | const MCExpr *Imm1Exp; |
5530 | if (getParser().parseExpression(Res&: Imm1Exp, EndLoc&: Ex1)) |
5531 | return Error(L: Sx1, Msg: "malformed expression" ); |
5532 | |
5533 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm1Exp); |
5534 | |
5535 | if (CE) { |
5536 | // Immediate must fit within 32-bits |
5537 | Imm1 = CE->getValue(); |
5538 | int Enc = ARM_AM::getSOImmVal(Arg: Imm1); |
5539 | if (Enc != -1 && Parser.getTok().is(K: AsmToken::EndOfStatement)) { |
5540 | // We have a match! |
5541 | Operands.push_back(Elt: ARMOperand::CreateModImm( |
5542 | Bits: (Enc & 0xFF), Rot: (Enc & 0xF00) >> 7, S: Sx1, E: Ex1, Parser&: *this)); |
5543 | return ParseStatus::Success; |
5544 | } |
5545 | |
5546 | // We have parsed an immediate which is not for us, fallback to a plain |
5547 | // immediate. This can happen for instruction aliases. For an example, |
5548 | // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform |
5549 | // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite |
5550 | // instruction with a mod_imm operand. The alias is defined such that the |
5551 | // parser method is shared, that's why we have to do this here. |
5552 | if (Parser.getTok().is(K: AsmToken::EndOfStatement)) { |
5553 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: Imm1Exp, S: Sx1, E: Ex1, Parser&: *this)); |
5554 | return ParseStatus::Success; |
5555 | } |
5556 | } else { |
5557 | // Operands like #(l1 - l2) can only be evaluated at a later stage (via an |
5558 | // MCFixup). Fallback to a plain immediate. |
5559 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: Imm1Exp, S: Sx1, E: Ex1, Parser&: *this)); |
5560 | return ParseStatus::Success; |
5561 | } |
5562 | |
5563 | // From this point onward, we expect the input to be a (#bits, #rot) pair |
5564 | if (Parser.getTok().isNot(K: AsmToken::Comma)) |
5565 | return Error(L: Sx1, |
5566 | Msg: "expected modified immediate operand: #[0, 255], #even[0-30]" ); |
5567 | |
5568 | if (Imm1 & ~0xFF) |
5569 | return Error(L: Sx1, Msg: "immediate operand must a number in the range [0, 255]" ); |
5570 | |
5571 | // Eat the comma |
5572 | Parser.Lex(); |
5573 | |
5574 | // Repeat for #rot |
5575 | SMLoc Sx2, Ex2; |
5576 | Sx2 = Parser.getTok().getLoc(); |
5577 | |
5578 | // Eat the optional hash (dollar) |
5579 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5580 | Parser.getTok().is(K: AsmToken::Dollar)) |
5581 | Parser.Lex(); |
5582 | |
5583 | const MCExpr *Imm2Exp; |
5584 | if (getParser().parseExpression(Res&: Imm2Exp, EndLoc&: Ex2)) |
5585 | return Error(L: Sx2, Msg: "malformed expression" ); |
5586 | |
5587 | CE = dyn_cast<MCConstantExpr>(Val: Imm2Exp); |
5588 | |
5589 | if (CE) { |
5590 | Imm2 = CE->getValue(); |
5591 | if (!(Imm2 & ~0x1E)) { |
5592 | // We have a match! |
5593 | Operands.push_back(Elt: ARMOperand::CreateModImm(Bits: Imm1, Rot: Imm2, S, E: Ex2, Parser&: *this)); |
5594 | return ParseStatus::Success; |
5595 | } |
5596 | return Error(L: Sx2, |
5597 | Msg: "immediate operand must an even number in the range [0, 30]" ); |
5598 | } else { |
5599 | return Error(L: Sx2, Msg: "constant expression expected" ); |
5600 | } |
5601 | } |
5602 | |
5603 | ParseStatus ARMAsmParser::parseBitfield(OperandVector &Operands) { |
5604 | MCAsmParser &Parser = getParser(); |
5605 | SMLoc S = Parser.getTok().getLoc(); |
5606 | // The bitfield descriptor is really two operands, the LSB and the width. |
5607 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5608 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5609 | return ParseStatus::NoMatch; |
5610 | Parser.Lex(); // Eat hash token. |
5611 | |
5612 | const MCExpr *LSBExpr; |
5613 | SMLoc E = Parser.getTok().getLoc(); |
5614 | if (getParser().parseExpression(Res&: LSBExpr)) |
5615 | return Error(L: E, Msg: "malformed immediate expression" ); |
5616 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: LSBExpr); |
5617 | if (!CE) |
5618 | return Error(L: E, Msg: "'lsb' operand must be an immediate" ); |
5619 | |
5620 | int64_t LSB = CE->getValue(); |
5621 | // The LSB must be in the range [0,31] |
5622 | if (LSB < 0 || LSB > 31) |
5623 | return Error(L: E, Msg: "'lsb' operand must be in the range [0,31]" ); |
5624 | E = Parser.getTok().getLoc(); |
5625 | |
5626 | // Expect another immediate operand. |
5627 | if (Parser.getTok().isNot(K: AsmToken::Comma)) |
5628 | return Error(L: Parser.getTok().getLoc(), Msg: "too few operands" ); |
5629 | Parser.Lex(); // Eat hash token. |
5630 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5631 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5632 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5633 | Parser.Lex(); // Eat hash token. |
5634 | |
5635 | const MCExpr *WidthExpr; |
5636 | SMLoc EndLoc; |
5637 | if (getParser().parseExpression(Res&: WidthExpr, EndLoc)) |
5638 | return Error(L: E, Msg: "malformed immediate expression" ); |
5639 | CE = dyn_cast<MCConstantExpr>(Val: WidthExpr); |
5640 | if (!CE) |
5641 | return Error(L: E, Msg: "'width' operand must be an immediate" ); |
5642 | |
5643 | int64_t Width = CE->getValue(); |
5644 | // The LSB must be in the range [1,32-lsb] |
5645 | if (Width < 1 || Width > 32 - LSB) |
5646 | return Error(L: E, Msg: "'width' operand must be in the range [1,32-lsb]" ); |
5647 | |
5648 | Operands.push_back(Elt: ARMOperand::CreateBitfield(LSB, Width, S, E: EndLoc, Parser&: *this)); |
5649 | |
5650 | return ParseStatus::Success; |
5651 | } |
5652 | |
5653 | ParseStatus ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { |
5654 | // Check for a post-index addressing register operand. Specifically: |
5655 | // postidx_reg := '+' register {, shift} |
5656 | // | '-' register {, shift} |
5657 | // | register {, shift} |
5658 | |
5659 | // This method must return ParseStatus::NoMatch without consuming any tokens |
5660 | // in the case where there is no match, as other alternatives take other |
5661 | // parse methods. |
5662 | MCAsmParser &Parser = getParser(); |
5663 | AsmToken Tok = Parser.getTok(); |
5664 | SMLoc S = Tok.getLoc(); |
5665 | bool haveEaten = false; |
5666 | bool isAdd = true; |
5667 | if (Tok.is(K: AsmToken::Plus)) { |
5668 | Parser.Lex(); // Eat the '+' token. |
5669 | haveEaten = true; |
5670 | } else if (Tok.is(K: AsmToken::Minus)) { |
5671 | Parser.Lex(); // Eat the '-' token. |
5672 | isAdd = false; |
5673 | haveEaten = true; |
5674 | } |
5675 | |
5676 | SMLoc E = Parser.getTok().getEndLoc(); |
5677 | int Reg = tryParseRegister(); |
5678 | if (Reg == -1) { |
5679 | if (!haveEaten) |
5680 | return ParseStatus::NoMatch; |
5681 | return Error(L: Parser.getTok().getLoc(), Msg: "register expected" ); |
5682 | } |
5683 | |
5684 | ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; |
5685 | unsigned ShiftImm = 0; |
5686 | if (Parser.getTok().is(K: AsmToken::Comma)) { |
5687 | Parser.Lex(); // Eat the ','. |
5688 | if (parseMemRegOffsetShift(ShiftType&: ShiftTy, ShiftAmount&: ShiftImm)) |
5689 | return ParseStatus::Failure; |
5690 | |
5691 | // FIXME: Only approximates end...may include intervening whitespace. |
5692 | E = Parser.getTok().getLoc(); |
5693 | } |
5694 | |
5695 | Operands.push_back( |
5696 | Elt: ARMOperand::CreatePostIdxReg(RegNum: Reg, isAdd, ShiftTy, ShiftImm, S, E, Parser&: *this)); |
5697 | |
5698 | return ParseStatus::Success; |
5699 | } |
5700 | |
5701 | ParseStatus ARMAsmParser::parseAM3Offset(OperandVector &Operands) { |
5702 | // Check for a post-index addressing register operand. Specifically: |
5703 | // am3offset := '+' register |
5704 | // | '-' register |
5705 | // | register |
5706 | // | # imm |
5707 | // | # + imm |
5708 | // | # - imm |
5709 | |
5710 | // This method must return ParseStatus::NoMatch without consuming any tokens |
5711 | // in the case where there is no match, as other alternatives take other |
5712 | // parse methods. |
5713 | MCAsmParser &Parser = getParser(); |
5714 | AsmToken Tok = Parser.getTok(); |
5715 | SMLoc S = Tok.getLoc(); |
5716 | |
5717 | // Do immediates first, as we always parse those if we have a '#'. |
5718 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5719 | Parser.getTok().is(K: AsmToken::Dollar)) { |
5720 | Parser.Lex(); // Eat '#' or '$'. |
5721 | // Explicitly look for a '-', as we need to encode negative zero |
5722 | // differently. |
5723 | bool isNegative = Parser.getTok().is(K: AsmToken::Minus); |
5724 | const MCExpr *Offset; |
5725 | SMLoc E; |
5726 | if (getParser().parseExpression(Res&: Offset, EndLoc&: E)) |
5727 | return ParseStatus::Failure; |
5728 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Offset); |
5729 | if (!CE) |
5730 | return Error(L: S, Msg: "constant expression expected" ); |
5731 | // Negative zero is encoded as the flag value |
5732 | // std::numeric_limits<int32_t>::min(). |
5733 | int32_t Val = CE->getValue(); |
5734 | if (isNegative && Val == 0) |
5735 | Val = std::numeric_limits<int32_t>::min(); |
5736 | |
5737 | Operands.push_back(Elt: ARMOperand::CreateImm( |
5738 | Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, E, Parser&: *this)); |
5739 | |
5740 | return ParseStatus::Success; |
5741 | } |
5742 | |
5743 | bool haveEaten = false; |
5744 | bool isAdd = true; |
5745 | if (Tok.is(K: AsmToken::Plus)) { |
5746 | Parser.Lex(); // Eat the '+' token. |
5747 | haveEaten = true; |
5748 | } else if (Tok.is(K: AsmToken::Minus)) { |
5749 | Parser.Lex(); // Eat the '-' token. |
5750 | isAdd = false; |
5751 | haveEaten = true; |
5752 | } |
5753 | |
5754 | Tok = Parser.getTok(); |
5755 | int Reg = tryParseRegister(); |
5756 | if (Reg == -1) { |
5757 | if (!haveEaten) |
5758 | return ParseStatus::NoMatch; |
5759 | return Error(L: Tok.getLoc(), Msg: "register expected" ); |
5760 | } |
5761 | |
5762 | Operands.push_back(Elt: ARMOperand::CreatePostIdxReg( |
5763 | RegNum: Reg, isAdd, ShiftTy: ARM_AM::no_shift, ShiftImm: 0, S, E: Tok.getEndLoc(), Parser&: *this)); |
5764 | |
5765 | return ParseStatus::Success; |
5766 | } |
5767 | |
5768 | // Finds the index of the first CondCode operator, if there is none returns 0 |
5769 | unsigned findCondCodeInd(const OperandVector &Operands, |
5770 | unsigned MnemonicOpsEndInd) { |
5771 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
5772 | auto Op = static_cast<ARMOperand &>(*Operands[I]); |
5773 | if (Op.isCondCode()) |
5774 | return I; |
5775 | } |
5776 | return 0; |
5777 | } |
5778 | |
5779 | unsigned findCCOutInd(const OperandVector &Operands, |
5780 | unsigned MnemonicOpsEndInd) { |
5781 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
5782 | auto Op = static_cast<ARMOperand &>(*Operands[I]); |
5783 | if (Op.isCCOut()) |
5784 | return I; |
5785 | } |
5786 | return 0; |
5787 | } |
5788 | |
5789 | /// Convert parsed operands to MCInst. Needed here because this instruction |
5790 | /// only has two register operands, but multiplication is commutative so |
5791 | /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". |
5792 | void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, |
5793 | const OperandVector &Operands) { |
5794 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5795 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5796 | unsigned CondOutI = findCCOutInd(Operands, MnemonicOpsEndInd); |
5797 | |
5798 | // 2 operand form |
5799 | unsigned RegRd = MnemonicOpsEndInd; |
5800 | unsigned RegRn = MnemonicOpsEndInd + 1; |
5801 | unsigned RegRm = MnemonicOpsEndInd; |
5802 | |
5803 | if (Operands.size() == MnemonicOpsEndInd + 3) { |
5804 | // If we have a three-operand form, make sure to set Rn to be the operand |
5805 | // that isn't the same as Rd. |
5806 | if (((ARMOperand &)*Operands[RegRd]).getReg() == |
5807 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 1]).getReg()) { |
5808 | RegRn = MnemonicOpsEndInd + 2; |
5809 | RegRm = MnemonicOpsEndInd + 1; |
5810 | } else { |
5811 | RegRn = MnemonicOpsEndInd + 1; |
5812 | RegRm = MnemonicOpsEndInd + 2; |
5813 | } |
5814 | } |
5815 | |
5816 | // Rd |
5817 | ((ARMOperand &)*Operands[RegRd]).addRegOperands(Inst, N: 1); |
5818 | // CCOut |
5819 | if (CondOutI != 0) { |
5820 | ((ARMOperand &)*Operands[CondOutI]).addCCOutOperands(Inst, N: 1); |
5821 | } else { |
5822 | ARMOperand Op = |
5823 | *ARMOperand::CreateCCOut(RegNum: 0, S: Operands[0]->getEndLoc(), Parser&: *this); |
5824 | Op.addCCOutOperands(Inst, N: 1); |
5825 | } |
5826 | // Rn |
5827 | ((ARMOperand &)*Operands[RegRn]).addRegOperands(Inst, N: 1); |
5828 | // Rm |
5829 | ((ARMOperand &)*Operands[RegRm]).addRegOperands(Inst, N: 1); |
5830 | |
5831 | // Cond code |
5832 | if (CondI != 0) { |
5833 | ((ARMOperand &)*Operands[CondI]).addCondCodeOperands(Inst, N: 2); |
5834 | } else { |
5835 | ARMOperand Op = *ARMOperand::CreateCondCode( |
5836 | CC: llvm::ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5837 | Op.addCondCodeOperands(Inst, N: 2); |
5838 | } |
5839 | } |
5840 | |
5841 | void ARMAsmParser::cvtThumbBranches(MCInst &Inst, |
5842 | const OperandVector &Operands) { |
5843 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5844 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5845 | unsigned Cond = |
5846 | (CondI == 0 ? ARMCC::AL |
5847 | : static_cast<ARMOperand &>(*Operands[CondI]).getCondCode()); |
5848 | |
5849 | // first decide whether or not the branch should be conditional |
5850 | // by looking at it's location relative to an IT block |
5851 | if(inITBlock()) { |
5852 | // inside an IT block we cannot have any conditional branches. any |
5853 | // such instructions needs to be converted to unconditional form |
5854 | switch(Inst.getOpcode()) { |
5855 | case ARM::tBcc: Inst.setOpcode(ARM::tB); break; |
5856 | case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; |
5857 | } |
5858 | } else { |
5859 | switch(Inst.getOpcode()) { |
5860 | case ARM::tB: |
5861 | case ARM::tBcc: |
5862 | Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); |
5863 | break; |
5864 | case ARM::t2B: |
5865 | case ARM::t2Bcc: |
5866 | Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); |
5867 | break; |
5868 | } |
5869 | } |
5870 | |
5871 | // now decide on encoding size based on branch target range |
5872 | switch(Inst.getOpcode()) { |
5873 | // classify tB as either t2B or t1B based on range of immediate operand |
5874 | case ARM::tB: { |
5875 | ARMOperand &op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
5876 | if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) |
5877 | Inst.setOpcode(ARM::t2B); |
5878 | break; |
5879 | } |
5880 | // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand |
5881 | case ARM::tBcc: { |
5882 | ARMOperand &op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
5883 | if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) |
5884 | Inst.setOpcode(ARM::t2Bcc); |
5885 | break; |
5886 | } |
5887 | } |
5888 | ((ARMOperand &)*Operands[MnemonicOpsEndInd]).addImmOperands(Inst, N: 1); |
5889 | if (CondI != 0) { |
5890 | ((ARMOperand &)*Operands[CondI]).addCondCodeOperands(Inst, N: 2); |
5891 | } else { |
5892 | ARMOperand Op = *ARMOperand::CreateCondCode( |
5893 | CC: llvm::ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5894 | Op.addCondCodeOperands(Inst, N: 2); |
5895 | } |
5896 | } |
5897 | |
5898 | void ARMAsmParser::cvtMVEVMOVQtoDReg( |
5899 | MCInst &Inst, const OperandVector &Operands) { |
5900 | |
5901 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5902 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5903 | |
5904 | // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 |
5905 | assert(Operands.size() == MnemonicOpsEndInd + 6); |
5906 | |
5907 | ((ARMOperand &)*Operands[MnemonicOpsEndInd]).addRegOperands(Inst, N: 1); // Rt |
5908 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 1]) |
5909 | .addRegOperands(Inst, N: 1); // Rt2 |
5910 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 2]) |
5911 | .addRegOperands(Inst, N: 1); // Qd |
5912 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 3]) |
5913 | .addMVEPairVectorIndexOperands(Inst, N: 1); // idx |
5914 | // skip second copy of Qd in Operands[6] |
5915 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 5]) |
5916 | .addMVEPairVectorIndexOperands(Inst, N: 1); // idx2 |
5917 | if (CondI != 0) { |
5918 | ((ARMOperand &)*Operands[CondI]) |
5919 | .addCondCodeOperands(Inst, N: 2); // condition code |
5920 | } else { |
5921 | ARMOperand Op = |
5922 | *ARMOperand::CreateCondCode(CC: ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5923 | Op.addCondCodeOperands(Inst, N: 2); |
5924 | } |
5925 | } |
5926 | |
5927 | /// Parse an ARM memory expression, return false if successful else return true |
5928 | /// or an error. The first token must be a '[' when called. |
5929 | bool ARMAsmParser::parseMemory(OperandVector &Operands) { |
5930 | MCAsmParser &Parser = getParser(); |
5931 | SMLoc S, E; |
5932 | if (Parser.getTok().isNot(K: AsmToken::LBrac)) |
5933 | return TokError(Msg: "Token is not a Left Bracket" ); |
5934 | S = Parser.getTok().getLoc(); |
5935 | Parser.Lex(); // Eat left bracket token. |
5936 | |
5937 | const AsmToken &BaseRegTok = Parser.getTok(); |
5938 | int BaseRegNum = tryParseRegister(); |
5939 | if (BaseRegNum == -1) |
5940 | return Error(L: BaseRegTok.getLoc(), Msg: "register expected" ); |
5941 | |
5942 | // The next token must either be a comma, a colon or a closing bracket. |
5943 | const AsmToken &Tok = Parser.getTok(); |
5944 | if (!Tok.is(K: AsmToken::Colon) && !Tok.is(K: AsmToken::Comma) && |
5945 | !Tok.is(K: AsmToken::RBrac)) |
5946 | return Error(L: Tok.getLoc(), Msg: "malformed memory operand" ); |
5947 | |
5948 | if (Tok.is(K: AsmToken::RBrac)) { |
5949 | E = Tok.getEndLoc(); |
5950 | Parser.Lex(); // Eat right bracket token. |
5951 | |
5952 | Operands.push_back(Elt: ARMOperand::CreateMem( |
5953 | BaseRegNum, OffsetImm: nullptr, OffsetRegNum: 0, ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: 0, isNegative: false, S, E, Parser&: *this)); |
5954 | |
5955 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
5956 | // operand. It's rather odd, but syntactically valid. |
5957 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
5958 | Operands.push_back( |
5959 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
5960 | Parser.Lex(); // Eat the '!'. |
5961 | } |
5962 | |
5963 | return false; |
5964 | } |
5965 | |
5966 | assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && |
5967 | "Lost colon or comma in memory operand?!" ); |
5968 | if (Tok.is(K: AsmToken::Comma)) { |
5969 | Parser.Lex(); // Eat the comma. |
5970 | } |
5971 | |
5972 | // If we have a ':', it's an alignment specifier. |
5973 | if (Parser.getTok().is(K: AsmToken::Colon)) { |
5974 | Parser.Lex(); // Eat the ':'. |
5975 | E = Parser.getTok().getLoc(); |
5976 | SMLoc AlignmentLoc = Tok.getLoc(); |
5977 | |
5978 | const MCExpr *Expr; |
5979 | if (getParser().parseExpression(Res&: Expr)) |
5980 | return true; |
5981 | |
5982 | // The expression has to be a constant. Memory references with relocations |
5983 | // don't come through here, as they use the <label> forms of the relevant |
5984 | // instructions. |
5985 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
5986 | if (!CE) |
5987 | return Error (L: E, Msg: "constant expression expected" ); |
5988 | |
5989 | unsigned Align = 0; |
5990 | switch (CE->getValue()) { |
5991 | default: |
5992 | return Error(L: E, |
5993 | Msg: "alignment specifier must be 16, 32, 64, 128, or 256 bits" ); |
5994 | case 16: Align = 2; break; |
5995 | case 32: Align = 4; break; |
5996 | case 64: Align = 8; break; |
5997 | case 128: Align = 16; break; |
5998 | case 256: Align = 32; break; |
5999 | } |
6000 | |
6001 | // Now we should have the closing ']' |
6002 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6003 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6004 | E = Parser.getTok().getEndLoc(); |
6005 | Parser.Lex(); // Eat right bracket token. |
6006 | |
6007 | // Don't worry about range checking the value here. That's handled by |
6008 | // the is*() predicates. |
6009 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseRegNum, OffsetImm: nullptr, OffsetRegNum: 0, |
6010 | ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: Align, isNegative: false, |
6011 | S, E, Parser&: *this, AlignmentLoc)); |
6012 | |
6013 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6014 | // operand. |
6015 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6016 | Operands.push_back( |
6017 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6018 | Parser.Lex(); // Eat the '!'. |
6019 | } |
6020 | |
6021 | return false; |
6022 | } |
6023 | |
6024 | // If we have a '#' or '$', it's an immediate offset, else assume it's a |
6025 | // register offset. Be friendly and also accept a plain integer or expression |
6026 | // (without a leading hash) for gas compatibility. |
6027 | if (Parser.getTok().is(K: AsmToken::Hash) || |
6028 | Parser.getTok().is(K: AsmToken::Dollar) || |
6029 | Parser.getTok().is(K: AsmToken::LParen) || |
6030 | Parser.getTok().is(K: AsmToken::Integer)) { |
6031 | if (Parser.getTok().is(K: AsmToken::Hash) || |
6032 | Parser.getTok().is(K: AsmToken::Dollar)) |
6033 | Parser.Lex(); // Eat '#' or '$' |
6034 | E = Parser.getTok().getLoc(); |
6035 | |
6036 | bool isNegative = getParser().getTok().is(K: AsmToken::Minus); |
6037 | const MCExpr *Offset, *AdjustedOffset; |
6038 | if (getParser().parseExpression(Res&: Offset)) |
6039 | return true; |
6040 | |
6041 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Offset)) { |
6042 | // If the constant was #-0, represent it as |
6043 | // std::numeric_limits<int32_t>::min(). |
6044 | int32_t Val = CE->getValue(); |
6045 | if (isNegative && Val == 0) |
6046 | CE = MCConstantExpr::create(Value: std::numeric_limits<int32_t>::min(), |
6047 | Ctx&: getContext()); |
6048 | // Don't worry about range checking the value here. That's handled by |
6049 | // the is*() predicates. |
6050 | AdjustedOffset = CE; |
6051 | } else |
6052 | AdjustedOffset = Offset; |
6053 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseRegNum, OffsetImm: AdjustedOffset, OffsetRegNum: 0, |
6054 | ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: 0, isNegative: false, S, |
6055 | E, Parser&: *this)); |
6056 | |
6057 | // Now we should have the closing ']' |
6058 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6059 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6060 | E = Parser.getTok().getEndLoc(); |
6061 | Parser.Lex(); // Eat right bracket token. |
6062 | |
6063 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6064 | // operand. |
6065 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6066 | Operands.push_back( |
6067 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6068 | Parser.Lex(); // Eat the '!'. |
6069 | } |
6070 | |
6071 | return false; |
6072 | } |
6073 | |
6074 | // The register offset is optionally preceded by a '+' or '-' |
6075 | bool isNegative = false; |
6076 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
6077 | isNegative = true; |
6078 | Parser.Lex(); // Eat the '-'. |
6079 | } else if (Parser.getTok().is(K: AsmToken::Plus)) { |
6080 | // Nothing to do. |
6081 | Parser.Lex(); // Eat the '+'. |
6082 | } |
6083 | |
6084 | E = Parser.getTok().getLoc(); |
6085 | int OffsetRegNum = tryParseRegister(); |
6086 | if (OffsetRegNum == -1) |
6087 | return Error(L: E, Msg: "register expected" ); |
6088 | |
6089 | // If there's a shift operator, handle it. |
6090 | ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; |
6091 | unsigned ShiftImm = 0; |
6092 | if (Parser.getTok().is(K: AsmToken::Comma)) { |
6093 | Parser.Lex(); // Eat the ','. |
6094 | if (parseMemRegOffsetShift(ShiftType, ShiftAmount&: ShiftImm)) |
6095 | return true; |
6096 | } |
6097 | |
6098 | // Now we should have the closing ']' |
6099 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6100 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6101 | E = Parser.getTok().getEndLoc(); |
6102 | Parser.Lex(); // Eat right bracket token. |
6103 | |
6104 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseRegNum, OffsetImm: nullptr, OffsetRegNum, |
6105 | ShiftType, ShiftImm, Alignment: 0, isNegative, |
6106 | S, E, Parser&: *this)); |
6107 | |
6108 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6109 | // operand. |
6110 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6111 | Operands.push_back( |
6112 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6113 | Parser.Lex(); // Eat the '!'. |
6114 | } |
6115 | |
6116 | return false; |
6117 | } |
6118 | |
6119 | /// parseMemRegOffsetShift - one of these two: |
6120 | /// ( lsl | lsr | asr | ror ) , # shift_amount |
6121 | /// rrx |
6122 | /// return true if it parses a shift otherwise it returns false. |
6123 | bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, |
6124 | unsigned &Amount) { |
6125 | MCAsmParser &Parser = getParser(); |
6126 | SMLoc Loc = Parser.getTok().getLoc(); |
6127 | const AsmToken &Tok = Parser.getTok(); |
6128 | if (Tok.isNot(K: AsmToken::Identifier)) |
6129 | return Error(L: Loc, Msg: "illegal shift operator" ); |
6130 | StringRef ShiftName = Tok.getString(); |
6131 | if (ShiftName == "lsl" || ShiftName == "LSL" || |
6132 | ShiftName == "asl" || ShiftName == "ASL" ) |
6133 | St = ARM_AM::lsl; |
6134 | else if (ShiftName == "lsr" || ShiftName == "LSR" ) |
6135 | St = ARM_AM::lsr; |
6136 | else if (ShiftName == "asr" || ShiftName == "ASR" ) |
6137 | St = ARM_AM::asr; |
6138 | else if (ShiftName == "ror" || ShiftName == "ROR" ) |
6139 | St = ARM_AM::ror; |
6140 | else if (ShiftName == "rrx" || ShiftName == "RRX" ) |
6141 | St = ARM_AM::rrx; |
6142 | else if (ShiftName == "uxtw" || ShiftName == "UXTW" ) |
6143 | St = ARM_AM::uxtw; |
6144 | else |
6145 | return Error(L: Loc, Msg: "illegal shift operator" ); |
6146 | Parser.Lex(); // Eat shift type token. |
6147 | |
6148 | // rrx stands alone. |
6149 | Amount = 0; |
6150 | if (St != ARM_AM::rrx) { |
6151 | Loc = Parser.getTok().getLoc(); |
6152 | // A '#' and a shift amount. |
6153 | const AsmToken &HashTok = Parser.getTok(); |
6154 | if (HashTok.isNot(K: AsmToken::Hash) && |
6155 | HashTok.isNot(K: AsmToken::Dollar)) |
6156 | return Error(L: HashTok.getLoc(), Msg: "'#' expected" ); |
6157 | Parser.Lex(); // Eat hash token. |
6158 | |
6159 | const MCExpr *Expr; |
6160 | if (getParser().parseExpression(Res&: Expr)) |
6161 | return true; |
6162 | // Range check the immediate. |
6163 | // lsl, ror: 0 <= imm <= 31 |
6164 | // lsr, asr: 0 <= imm <= 32 |
6165 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
6166 | if (!CE) |
6167 | return Error(L: Loc, Msg: "shift amount must be an immediate" ); |
6168 | int64_t Imm = CE->getValue(); |
6169 | if (Imm < 0 || |
6170 | ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || |
6171 | ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) |
6172 | return Error(L: Loc, Msg: "immediate shift value out of range" ); |
6173 | // If <ShiftTy> #0, turn it into a no_shift. |
6174 | if (Imm == 0) |
6175 | St = ARM_AM::lsl; |
6176 | // For consistency, treat lsr #32 and asr #32 as having immediate value 0. |
6177 | if (Imm == 32) |
6178 | Imm = 0; |
6179 | Amount = Imm; |
6180 | } |
6181 | |
6182 | return false; |
6183 | } |
6184 | |
6185 | /// parseFPImm - A floating point immediate expression operand. |
6186 | ParseStatus ARMAsmParser::parseFPImm(OperandVector &Operands) { |
6187 | LLVM_DEBUG(dbgs() << "PARSE FPImm, Ops: " << Operands.size()); |
6188 | |
6189 | MCAsmParser &Parser = getParser(); |
6190 | // Anything that can accept a floating point constant as an operand |
6191 | // needs to go through here, as the regular parseExpression is |
6192 | // integer only. |
6193 | // |
6194 | // This routine still creates a generic Immediate operand, containing |
6195 | // a bitcast of the 64-bit floating point value. The various operands |
6196 | // that accept floats can check whether the value is valid for them |
6197 | // via the standard is*() predicates. |
6198 | |
6199 | SMLoc S = Parser.getTok().getLoc(); |
6200 | |
6201 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
6202 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
6203 | return ParseStatus::NoMatch; |
6204 | |
6205 | // Disambiguate the VMOV forms that can accept an FP immediate. |
6206 | // vmov.f32 <sreg>, #imm |
6207 | // vmov.f64 <dreg>, #imm |
6208 | // vmov.f32 <dreg>, #imm @ vector f32x2 |
6209 | // vmov.f32 <qreg>, #imm @ vector f32x4 |
6210 | // |
6211 | // There are also the NEON VMOV instructions which expect an |
6212 | // integer constant. Make sure we don't try to parse an FPImm |
6213 | // for these: |
6214 | // vmov.i{8|16|32|64} <dreg|qreg>, #imm |
6215 | |
6216 | bool isVmovf = false; |
6217 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
6218 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
6219 | ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[I]); |
6220 | if (TyOp.isToken() && |
6221 | (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || |
6222 | TyOp.getToken() == ".f16" )) { |
6223 | isVmovf = true; |
6224 | break; |
6225 | } |
6226 | } |
6227 | |
6228 | ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); |
6229 | bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || |
6230 | Mnemonic.getToken() == "fconsts" ); |
6231 | if (!(isVmovf || isFconst)) |
6232 | return ParseStatus::NoMatch; |
6233 | |
6234 | Parser.Lex(); // Eat '#' or '$'. |
6235 | |
6236 | // Handle negation, as that still comes through as a separate token. |
6237 | bool isNegative = false; |
6238 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
6239 | isNegative = true; |
6240 | Parser.Lex(); |
6241 | } |
6242 | const AsmToken &Tok = Parser.getTok(); |
6243 | SMLoc Loc = Tok.getLoc(); |
6244 | if (Tok.is(K: AsmToken::Real) && isVmovf) { |
6245 | APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); |
6246 | uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); |
6247 | // If we had a '-' in front, toggle the sign bit. |
6248 | IntVal ^= (uint64_t)isNegative << 31; |
6249 | Parser.Lex(); // Eat the token. |
6250 | Operands.push_back( |
6251 | Elt: ARMOperand::CreateImm(Val: MCConstantExpr::create(Value: IntVal, Ctx&: getContext()), S, |
6252 | E: Parser.getTok().getLoc(), Parser&: *this)); |
6253 | return ParseStatus::Success; |
6254 | } |
6255 | // Also handle plain integers. Instructions which allow floating point |
6256 | // immediates also allow a raw encoded 8-bit value. |
6257 | if (Tok.is(K: AsmToken::Integer) && isFconst) { |
6258 | int64_t Val = Tok.getIntVal(); |
6259 | Parser.Lex(); // Eat the token. |
6260 | if (Val > 255 || Val < 0) |
6261 | return Error(L: Loc, Msg: "encoded floating point value out of range" ); |
6262 | float RealVal = ARM_AM::getFPImmFloat(Imm: Val); |
6263 | Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); |
6264 | |
6265 | Operands.push_back( |
6266 | Elt: ARMOperand::CreateImm(Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, |
6267 | E: Parser.getTok().getLoc(), Parser&: *this)); |
6268 | return ParseStatus::Success; |
6269 | } |
6270 | |
6271 | return Error(L: Loc, Msg: "invalid floating point immediate" ); |
6272 | } |
6273 | |
6274 | /// Parse a arm instruction operand. For now this parses the operand regardless |
6275 | /// of the mnemonic. |
6276 | bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { |
6277 | MCAsmParser &Parser = getParser(); |
6278 | SMLoc S, E; |
6279 | |
6280 | // Check if the current operand has a custom associated parser, if so, try to |
6281 | // custom parse the operand, or fallback to the general approach. |
6282 | ParseStatus ResTy = MatchOperandParserImpl(Operands, Mnemonic); |
6283 | if (ResTy.isSuccess()) |
6284 | return false; |
6285 | // If there wasn't a custom match, try the generic matcher below. Otherwise, |
6286 | // there was a match, but an error occurred, in which case, just return that |
6287 | // the operand parsing failed. |
6288 | if (ResTy.isFailure()) |
6289 | return true; |
6290 | |
6291 | switch (getLexer().getKind()) { |
6292 | default: |
6293 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected token in operand" ); |
6294 | return true; |
6295 | case AsmToken::Identifier: { |
6296 | // If we've seen a branch mnemonic, the next operand must be a label. This |
6297 | // is true even if the label is a register name. So "br r1" means branch to |
6298 | // label "r1". |
6299 | bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl" ; |
6300 | if (!ExpectLabel) { |
6301 | if (!tryParseRegisterWithWriteBack(Operands)) |
6302 | return false; |
6303 | int Res = tryParseShiftRegister(Operands); |
6304 | if (Res == 0) // success |
6305 | return false; |
6306 | else if (Res == -1) // irrecoverable error |
6307 | return true; |
6308 | // If this is VMRS, check for the apsr_nzcv operand. |
6309 | if (Mnemonic == "vmrs" && |
6310 | Parser.getTok().getString().equals_insensitive(RHS: "apsr_nzcv" )) { |
6311 | S = Parser.getTok().getLoc(); |
6312 | Parser.Lex(); |
6313 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: "APSR_nzcv" , S, Parser&: *this)); |
6314 | return false; |
6315 | } |
6316 | } |
6317 | |
6318 | // Fall though for the Identifier case that is not a register or a |
6319 | // special name. |
6320 | [[fallthrough]]; |
6321 | } |
6322 | case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) |
6323 | case AsmToken::Integer: // things like 1f and 2b as a branch targets |
6324 | case AsmToken::String: // quoted label names. |
6325 | case AsmToken::Dot: { // . as a branch target |
6326 | // This was not a register so parse other operands that start with an |
6327 | // identifier (like labels) as expressions and create them as immediates. |
6328 | const MCExpr *IdVal; |
6329 | S = Parser.getTok().getLoc(); |
6330 | if (getParser().parseExpression(Res&: IdVal)) |
6331 | return true; |
6332 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6333 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: IdVal, S, E, Parser&: *this)); |
6334 | return false; |
6335 | } |
6336 | case AsmToken::LBrac: |
6337 | return parseMemory(Operands); |
6338 | case AsmToken::LCurly: { |
6339 | bool AllowOutOfBoundReg = Mnemonic == "vlldm" || Mnemonic == "vlstm" ; |
6340 | return parseRegisterList(Operands, EnforceOrder: !Mnemonic.starts_with(Prefix: "clr" ), AllowRAAC: false, |
6341 | AllowOutOfBoundReg); |
6342 | } |
6343 | case AsmToken::Dollar: |
6344 | case AsmToken::Hash: { |
6345 | // #42 -> immediate |
6346 | // $ 42 -> immediate |
6347 | // $foo -> symbol name |
6348 | // $42 -> symbol name |
6349 | S = Parser.getTok().getLoc(); |
6350 | |
6351 | // Favor the interpretation of $-prefixed operands as symbol names. |
6352 | // Cases where immediates are explicitly expected are handled by their |
6353 | // specific ParseMethod implementations. |
6354 | auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); |
6355 | bool ExpectIdentifier = Parser.getTok().is(K: AsmToken::Dollar) && |
6356 | (AdjacentToken.is(K: AsmToken::Identifier) || |
6357 | AdjacentToken.is(K: AsmToken::Integer)); |
6358 | if (!ExpectIdentifier) { |
6359 | // Token is not part of identifier. Drop leading $ or # before parsing |
6360 | // expression. |
6361 | Parser.Lex(); |
6362 | } |
6363 | |
6364 | if (Parser.getTok().isNot(K: AsmToken::Colon)) { |
6365 | bool IsNegative = Parser.getTok().is(K: AsmToken::Minus); |
6366 | const MCExpr *ImmVal; |
6367 | if (getParser().parseExpression(Res&: ImmVal)) |
6368 | return true; |
6369 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ImmVal); |
6370 | if (CE) { |
6371 | int32_t Val = CE->getValue(); |
6372 | if (IsNegative && Val == 0) |
6373 | ImmVal = MCConstantExpr::create(Value: std::numeric_limits<int32_t>::min(), |
6374 | Ctx&: getContext()); |
6375 | } |
6376 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6377 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: ImmVal, S, E, Parser&: *this)); |
6378 | |
6379 | // There can be a trailing '!' on operands that we want as a separate |
6380 | // '!' Token operand. Handle that here. For example, the compatibility |
6381 | // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. |
6382 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6383 | Operands.push_back(Elt: ARMOperand::CreateToken( |
6384 | Str: Parser.getTok().getString(), S: Parser.getTok().getLoc(), Parser&: *this)); |
6385 | Parser.Lex(); // Eat exclaim token |
6386 | } |
6387 | return false; |
6388 | } |
6389 | // w/ a ':' after the '#', it's just like a plain ':'. |
6390 | [[fallthrough]]; |
6391 | } |
6392 | case AsmToken::Colon: { |
6393 | S = Parser.getTok().getLoc(); |
6394 | // ":lower16:", ":upper16:", ":lower0_7:", ":lower8_15:", ":upper0_7:" and |
6395 | // ":upper8_15:", expression prefixes |
6396 | // FIXME: Check it's an expression prefix, |
6397 | // e.g. (FOO - :lower16:BAR) isn't legal. |
6398 | ARMMCExpr::VariantKind RefKind; |
6399 | if (parsePrefix(RefKind)) |
6400 | return true; |
6401 | |
6402 | const MCExpr *SubExprVal; |
6403 | if (getParser().parseExpression(Res&: SubExprVal)) |
6404 | return true; |
6405 | |
6406 | const MCExpr *ExprVal = ARMMCExpr::create(Kind: RefKind, Expr: SubExprVal, |
6407 | Ctx&: getContext()); |
6408 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6409 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: ExprVal, S, E, Parser&: *this)); |
6410 | return false; |
6411 | } |
6412 | case AsmToken::Equal: { |
6413 | S = Parser.getTok().getLoc(); |
6414 | if (Mnemonic != "ldr" ) // only parse for ldr pseudo (e.g. ldr r0, =val) |
6415 | return Error(L: S, Msg: "unexpected token in operand" ); |
6416 | Parser.Lex(); // Eat '=' |
6417 | const MCExpr *SubExprVal; |
6418 | if (getParser().parseExpression(Res&: SubExprVal)) |
6419 | return true; |
6420 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6421 | |
6422 | // execute-only: we assume that assembly programmers know what they are |
6423 | // doing and allow literal pool creation here |
6424 | Operands.push_back( |
6425 | Elt: ARMOperand::CreateConstantPoolImm(Val: SubExprVal, S, E, Parser&: *this)); |
6426 | return false; |
6427 | } |
6428 | } |
6429 | } |
6430 | |
6431 | bool ARMAsmParser::parseImmExpr(int64_t &Out) { |
6432 | const MCExpr *Expr = nullptr; |
6433 | SMLoc L = getParser().getTok().getLoc(); |
6434 | if (check(P: getParser().parseExpression(Res&: Expr), Loc: L, Msg: "expected expression" )) |
6435 | return true; |
6436 | const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Val: Expr); |
6437 | if (check(P: !Value, Loc: L, Msg: "expected constant expression" )) |
6438 | return true; |
6439 | Out = Value->getValue(); |
6440 | return false; |
6441 | } |
6442 | |
6443 | // parsePrefix - Parse ARM 16-bit relocations expression prefixes, i.e. |
6444 | // :lower16: and :upper16: and Thumb 8-bit relocation expression prefixes, i.e. |
6445 | // :upper8_15:, :upper0_7:, :lower8_15: and :lower0_7: |
6446 | bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { |
6447 | MCAsmParser &Parser = getParser(); |
6448 | RefKind = ARMMCExpr::VK_ARM_None; |
6449 | |
6450 | // consume an optional '#' (GNU compatibility) |
6451 | if (getLexer().is(K: AsmToken::Hash)) |
6452 | Parser.Lex(); |
6453 | |
6454 | assert(getLexer().is(AsmToken::Colon) && "expected a :" ); |
6455 | Parser.Lex(); // Eat ':' |
6456 | |
6457 | if (getLexer().isNot(K: AsmToken::Identifier)) { |
6458 | Error(L: Parser.getTok().getLoc(), Msg: "expected prefix identifier in operand" ); |
6459 | return true; |
6460 | } |
6461 | |
6462 | enum { |
6463 | COFF = (1 << MCContext::IsCOFF), |
6464 | ELF = (1 << MCContext::IsELF), |
6465 | MACHO = (1 << MCContext::IsMachO), |
6466 | WASM = (1 << MCContext::IsWasm), |
6467 | }; |
6468 | static const struct PrefixEntry { |
6469 | const char *Spelling; |
6470 | ARMMCExpr::VariantKind VariantKind; |
6471 | uint8_t SupportedFormats; |
6472 | } PrefixEntries[] = { |
6473 | {.Spelling: "upper16" , .VariantKind: ARMMCExpr::VK_ARM_HI16, .SupportedFormats: COFF | ELF | MACHO}, |
6474 | {.Spelling: "lower16" , .VariantKind: ARMMCExpr::VK_ARM_LO16, .SupportedFormats: COFF | ELF | MACHO}, |
6475 | {.Spelling: "upper8_15" , .VariantKind: ARMMCExpr::VK_ARM_HI_8_15, .SupportedFormats: ELF}, |
6476 | {.Spelling: "upper0_7" , .VariantKind: ARMMCExpr::VK_ARM_HI_0_7, .SupportedFormats: ELF}, |
6477 | {.Spelling: "lower8_15" , .VariantKind: ARMMCExpr::VK_ARM_LO_8_15, .SupportedFormats: ELF}, |
6478 | {.Spelling: "lower0_7" , .VariantKind: ARMMCExpr::VK_ARM_LO_0_7, .SupportedFormats: ELF}, |
6479 | }; |
6480 | |
6481 | StringRef IDVal = Parser.getTok().getIdentifier(); |
6482 | |
6483 | const auto &Prefix = |
6484 | llvm::find_if(Range: PrefixEntries, P: [&IDVal](const PrefixEntry &PE) { |
6485 | return PE.Spelling == IDVal; |
6486 | }); |
6487 | if (Prefix == std::end(arr: PrefixEntries)) { |
6488 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected prefix in operand" ); |
6489 | return true; |
6490 | } |
6491 | |
6492 | uint8_t CurrentFormat; |
6493 | switch (getContext().getObjectFileType()) { |
6494 | case MCContext::IsMachO: |
6495 | CurrentFormat = MACHO; |
6496 | break; |
6497 | case MCContext::IsELF: |
6498 | CurrentFormat = ELF; |
6499 | break; |
6500 | case MCContext::IsCOFF: |
6501 | CurrentFormat = COFF; |
6502 | break; |
6503 | case MCContext::IsWasm: |
6504 | CurrentFormat = WASM; |
6505 | break; |
6506 | case MCContext::IsGOFF: |
6507 | case MCContext::IsSPIRV: |
6508 | case MCContext::IsXCOFF: |
6509 | case MCContext::IsDXContainer: |
6510 | llvm_unreachable("unexpected object format" ); |
6511 | break; |
6512 | } |
6513 | |
6514 | if (~Prefix->SupportedFormats & CurrentFormat) { |
6515 | Error(L: Parser.getTok().getLoc(), |
6516 | Msg: "cannot represent relocation in the current file format" ); |
6517 | return true; |
6518 | } |
6519 | |
6520 | RefKind = Prefix->VariantKind; |
6521 | Parser.Lex(); |
6522 | |
6523 | if (getLexer().isNot(K: AsmToken::Colon)) { |
6524 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected token after prefix" ); |
6525 | return true; |
6526 | } |
6527 | Parser.Lex(); // Eat the last ':' |
6528 | |
6529 | // consume an optional trailing '#' (GNU compatibility) bla |
6530 | parseOptionalToken(T: AsmToken::Hash); |
6531 | |
6532 | return false; |
6533 | } |
6534 | |
6535 | /// Given a mnemonic, split out possible predication code and carry |
6536 | /// setting letters to form a canonical mnemonic and flags. |
6537 | // |
6538 | // FIXME: Would be nice to autogen this. |
6539 | // FIXME: This is a bit of a maze of special cases. |
6540 | StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, StringRef , |
6541 | ARMCC::CondCodes &PredicationCode, |
6542 | ARMVCC::VPTCodes &VPTPredicationCode, |
6543 | bool &CarrySetting, |
6544 | unsigned &ProcessorIMod, |
6545 | StringRef &ITMask) { |
6546 | PredicationCode = ARMCC::AL; |
6547 | VPTPredicationCode = ARMVCC::None; |
6548 | CarrySetting = false; |
6549 | ProcessorIMod = 0; |
6550 | |
6551 | // Ignore some mnemonics we know aren't predicated forms. |
6552 | // |
6553 | // FIXME: Would be nice to autogen this. |
6554 | if ((Mnemonic == "movs" && isThumb()) || Mnemonic == "teq" || |
6555 | Mnemonic == "vceq" || Mnemonic == "svc" || Mnemonic == "mls" || |
6556 | Mnemonic == "smmls" || Mnemonic == "vcls" || Mnemonic == "vmls" || |
6557 | Mnemonic == "vnmls" || Mnemonic == "vacge" || Mnemonic == "vcge" || |
6558 | Mnemonic == "vclt" || Mnemonic == "vacgt" || Mnemonic == "vaclt" || |
6559 | Mnemonic == "vacle" || Mnemonic == "hlt" || Mnemonic == "vcgt" || |
6560 | Mnemonic == "vcle" || Mnemonic == "smlal" || Mnemonic == "umaal" || |
6561 | Mnemonic == "umlal" || Mnemonic == "vabal" || Mnemonic == "vmlal" || |
6562 | Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || Mnemonic == "fmuls" || |
6563 | Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || |
6564 | Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || |
6565 | Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || |
6566 | Mnemonic == "vrintm" || Mnemonic == "hvc" || |
6567 | Mnemonic.starts_with(Prefix: "vsel" ) || Mnemonic == "vins" || |
6568 | Mnemonic == "vmovx" || Mnemonic == "bxns" || Mnemonic == "blxns" || |
6569 | Mnemonic == "vdot" || Mnemonic == "vmmla" || Mnemonic == "vudot" || |
6570 | Mnemonic == "vsdot" || Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
6571 | Mnemonic == "vfmal" || Mnemonic == "vfmsl" || Mnemonic == "wls" || |
6572 | Mnemonic == "le" || Mnemonic == "dls" || Mnemonic == "csel" || |
6573 | Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || |
6574 | Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || |
6575 | Mnemonic == "cset" || Mnemonic == "csetm" || Mnemonic == "aut" || |
6576 | Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "bti" ) |
6577 | return Mnemonic; |
6578 | |
6579 | // First, split out any predication code. Ignore mnemonics we know aren't |
6580 | // predicated but do have a carry-set and so weren't caught above. |
6581 | if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && |
6582 | Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && |
6583 | Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && |
6584 | Mnemonic != "sbcs" && Mnemonic != "rscs" && |
6585 | !(hasMVE() && |
6586 | (Mnemonic == "vmine" || Mnemonic == "vshle" || Mnemonic == "vshlt" || |
6587 | Mnemonic == "vshllt" || Mnemonic == "vrshle" || Mnemonic == "vrshlt" || |
6588 | Mnemonic == "vmvne" || Mnemonic == "vorne" || Mnemonic == "vnege" || |
6589 | Mnemonic == "vnegt" || Mnemonic == "vmule" || Mnemonic == "vmult" || |
6590 | Mnemonic == "vrintne" || Mnemonic == "vcmult" || |
6591 | Mnemonic == "vcmule" || Mnemonic == "vpsele" || Mnemonic == "vpselt" || |
6592 | Mnemonic.starts_with(Prefix: "vq" )))) { |
6593 | unsigned CC = ARMCondCodeFromString(CC: Mnemonic.substr(Start: Mnemonic.size()-2)); |
6594 | if (CC != ~0U) { |
6595 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size() - 2); |
6596 | PredicationCode = static_cast<ARMCC::CondCodes>(CC); |
6597 | } |
6598 | } |
6599 | |
6600 | // Next, determine if we have a carry setting bit. We explicitly ignore all |
6601 | // the instructions we know end in 's'. |
6602 | if (Mnemonic.ends_with(Suffix: "s" ) && |
6603 | !(Mnemonic == "cps" || Mnemonic == "mls" || Mnemonic == "mrs" || |
6604 | Mnemonic == "smmls" || Mnemonic == "vabs" || Mnemonic == "vcls" || |
6605 | Mnemonic == "vmls" || Mnemonic == "vmrs" || Mnemonic == "vnmls" || |
6606 | Mnemonic == "vqabs" || Mnemonic == "vrecps" || Mnemonic == "vrsqrts" || |
6607 | Mnemonic == "srs" || Mnemonic == "flds" || Mnemonic == "fmrs" || |
6608 | Mnemonic == "fsqrts" || Mnemonic == "fsubs" || Mnemonic == "fsts" || |
6609 | Mnemonic == "fcpys" || Mnemonic == "fdivs" || Mnemonic == "fmuls" || |
6610 | Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || Mnemonic == "vfms" || |
6611 | Mnemonic == "vfnms" || Mnemonic == "fconsts" || Mnemonic == "bxns" || |
6612 | Mnemonic == "blxns" || Mnemonic == "vfmas" || Mnemonic == "vmlas" || |
6613 | (Mnemonic == "movs" && isThumb()))) { |
6614 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size() - 1); |
6615 | CarrySetting = true; |
6616 | } |
6617 | |
6618 | // The "cps" instruction can have a interrupt mode operand which is glued into |
6619 | // the mnemonic. Check if this is the case, split it and parse the imod op |
6620 | if (Mnemonic.starts_with(Prefix: "cps" )) { |
6621 | // Split out any imod code. |
6622 | unsigned IMod = |
6623 | StringSwitch<unsigned>(Mnemonic.substr(Start: Mnemonic.size()-2, N: 2)) |
6624 | .Case(S: "ie" , Value: ARM_PROC::IE) |
6625 | .Case(S: "id" , Value: ARM_PROC::ID) |
6626 | .Default(Value: ~0U); |
6627 | if (IMod != ~0U) { |
6628 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size()-2); |
6629 | ProcessorIMod = IMod; |
6630 | } |
6631 | } |
6632 | |
6633 | if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && |
6634 | Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && |
6635 | Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && |
6636 | Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && |
6637 | Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && |
6638 | Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && |
6639 | Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt" ) { |
6640 | unsigned VCC = |
6641 | ARMVectorCondCodeFromString(CC: Mnemonic.substr(Start: Mnemonic.size() - 1)); |
6642 | if (VCC != ~0U) { |
6643 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size()-1); |
6644 | VPTPredicationCode = static_cast<ARMVCC::VPTCodes>(VCC); |
6645 | } |
6646 | return Mnemonic; |
6647 | } |
6648 | |
6649 | // The "it" instruction has the condition mask on the end of the mnemonic. |
6650 | if (Mnemonic.starts_with(Prefix: "it" )) { |
6651 | ITMask = Mnemonic.slice(Start: 2, End: Mnemonic.size()); |
6652 | Mnemonic = Mnemonic.slice(Start: 0, End: 2); |
6653 | } |
6654 | |
6655 | if (Mnemonic.starts_with(Prefix: "vpst" )) { |
6656 | ITMask = Mnemonic.slice(Start: 4, End: Mnemonic.size()); |
6657 | Mnemonic = Mnemonic.slice(Start: 0, End: 4); |
6658 | } else if (Mnemonic.starts_with(Prefix: "vpt" )) { |
6659 | ITMask = Mnemonic.slice(Start: 3, End: Mnemonic.size()); |
6660 | Mnemonic = Mnemonic.slice(Start: 0, End: 3); |
6661 | } |
6662 | |
6663 | return Mnemonic; |
6664 | } |
6665 | |
6666 | /// Given a canonical mnemonic, determine if the instruction ever allows |
6667 | /// inclusion of carry set or predication code operands. |
6668 | // |
6669 | // FIXME: It would be nice to autogen this. |
6670 | void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, |
6671 | StringRef , |
6672 | StringRef FullInst, |
6673 | bool &CanAcceptCarrySet, |
6674 | bool &CanAcceptPredicationCode, |
6675 | bool &CanAcceptVPTPredicationCode) { |
6676 | CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); |
6677 | |
6678 | CanAcceptCarrySet = |
6679 | Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
6680 | Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || |
6681 | Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || |
6682 | Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || |
6683 | Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || |
6684 | Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || |
6685 | Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || |
6686 | (!isThumb() && |
6687 | (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || |
6688 | Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull" )); |
6689 | |
6690 | if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || |
6691 | Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || |
6692 | Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || |
6693 | Mnemonic.starts_with(Prefix: "crc32" ) || Mnemonic.starts_with(Prefix: "cps" ) || |
6694 | Mnemonic.starts_with(Prefix: "vsel" ) || Mnemonic == "vmaxnm" || |
6695 | Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || |
6696 | Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || |
6697 | Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || |
6698 | Mnemonic.starts_with(Prefix: "aes" ) || Mnemonic == "hvc" || |
6699 | Mnemonic == "setpan" || Mnemonic.starts_with(Prefix: "sha1" ) || |
6700 | Mnemonic.starts_with(Prefix: "sha256" ) || |
6701 | (FullInst.starts_with(Prefix: "vmull" ) && FullInst.ends_with(Suffix: ".p64" )) || |
6702 | Mnemonic == "vmovx" || Mnemonic == "vins" || Mnemonic == "vudot" || |
6703 | Mnemonic == "vsdot" || Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
6704 | Mnemonic == "vfmal" || Mnemonic == "vfmsl" || Mnemonic == "vfmat" || |
6705 | Mnemonic == "vfmab" || Mnemonic == "vdot" || Mnemonic == "vmmla" || |
6706 | Mnemonic == "sb" || Mnemonic == "ssbb" || Mnemonic == "pssbb" || |
6707 | Mnemonic == "vsmmla" || Mnemonic == "vummla" || Mnemonic == "vusmmla" || |
6708 | Mnemonic == "vusdot" || Mnemonic == "vsudot" || Mnemonic == "bfcsel" || |
6709 | Mnemonic == "wls" || Mnemonic == "dls" || Mnemonic == "le" || |
6710 | Mnemonic == "csel" || Mnemonic == "csinc" || Mnemonic == "csinv" || |
6711 | Mnemonic == "csneg" || Mnemonic == "cinc" || Mnemonic == "cinv" || |
6712 | Mnemonic == "cneg" || Mnemonic == "cset" || Mnemonic == "csetm" || |
6713 | (hasCDE() && MS.isCDEInstr(Mnemonic) && |
6714 | !MS.isITPredicableCDEInstr(Mnemonic)) || |
6715 | Mnemonic.starts_with(Prefix: "vpt" ) || Mnemonic.starts_with(Prefix: "vpst" ) || |
6716 | Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" || |
6717 | Mnemonic == "bti" || |
6718 | (hasMVE() && |
6719 | (Mnemonic.starts_with(Prefix: "vst2" ) || Mnemonic.starts_with(Prefix: "vld2" ) || |
6720 | Mnemonic.starts_with(Prefix: "vst4" ) || Mnemonic.starts_with(Prefix: "vld4" ) || |
6721 | Mnemonic.starts_with(Prefix: "wlstp" ) || Mnemonic.starts_with(Prefix: "dlstp" ) || |
6722 | Mnemonic.starts_with(Prefix: "letp" )))) { |
6723 | // These mnemonics are never predicable |
6724 | CanAcceptPredicationCode = false; |
6725 | } else if (!isThumb()) { |
6726 | // Some instructions are only predicable in Thumb mode |
6727 | CanAcceptPredicationCode = |
6728 | Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && |
6729 | Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && |
6730 | Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && |
6731 | Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && |
6732 | Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && |
6733 | Mnemonic != "stc2" && Mnemonic != "stc2l" && Mnemonic != "tsb" && |
6734 | !Mnemonic.starts_with(Prefix: "rfe" ) && !Mnemonic.starts_with(Prefix: "srs" ); |
6735 | } else if (isThumbOne()) { |
6736 | if (hasV6MOps()) |
6737 | CanAcceptPredicationCode = Mnemonic != "movs" ; |
6738 | else |
6739 | CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs" ; |
6740 | } else |
6741 | CanAcceptPredicationCode = true; |
6742 | } |
6743 | |
6744 | bool operandsContainWide(OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6745 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) { |
6746 | auto &Op = static_cast<ARMOperand &>(*Operands[I]); |
6747 | if (Op.isToken() && Op.getToken() == ".w" ) |
6748 | return true; |
6749 | } |
6750 | return false; |
6751 | } |
6752 | |
6753 | // Some Thumb instructions have two operand forms that are not |
6754 | // available as three operand, convert to two operand form if possible. |
6755 | // |
6756 | // FIXME: We would really like to be able to tablegen'erate this. |
6757 | void ARMAsmParser::tryConvertingToTwoOperandForm( |
6758 | StringRef Mnemonic, ARMCC::CondCodes PredicationCode, bool CarrySetting, |
6759 | OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6760 | |
6761 | if (operandsContainWide(Operands, MnemonicOpsEndInd)) |
6762 | return; |
6763 | if (Operands.size() != MnemonicOpsEndInd + 3) |
6764 | return; |
6765 | |
6766 | const auto &Op3 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
6767 | auto &Op4 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
6768 | if (!Op3.isReg() || !Op4.isReg()) |
6769 | return; |
6770 | |
6771 | auto Op3Reg = Op3.getReg(); |
6772 | auto Op4Reg = Op4.getReg(); |
6773 | |
6774 | // For most Thumb2 cases we just generate the 3 operand form and reduce |
6775 | // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) |
6776 | // won't accept SP or PC so we do the transformation here taking care |
6777 | // with immediate range in the 'add sp, sp #imm' case. |
6778 | auto &Op5 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 2]); |
6779 | if (isThumbTwo()) { |
6780 | if (Mnemonic != "add" ) |
6781 | return; |
6782 | bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || |
6783 | (Op5.isReg() && Op5.getReg() == ARM::PC); |
6784 | if (!TryTransform) { |
6785 | TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || |
6786 | (Op5.isReg() && Op5.getReg() == ARM::SP)) && |
6787 | !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && |
6788 | Op5.isImm() && !Op5.isImm0_508s4()); |
6789 | } |
6790 | if (!TryTransform) |
6791 | return; |
6792 | } else if (!isThumbOne()) |
6793 | return; |
6794 | |
6795 | if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || |
6796 | Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
6797 | Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || |
6798 | Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic" )) |
6799 | return; |
6800 | |
6801 | // If first 2 operands of a 3 operand instruction are the same |
6802 | // then transform to 2 operand version of the same instruction |
6803 | // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' |
6804 | bool Transform = Op3Reg == Op4Reg; |
6805 | |
6806 | // For communtative operations, we might be able to transform if we swap |
6807 | // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially |
6808 | // as tADDrsp. |
6809 | const ARMOperand *LastOp = &Op5; |
6810 | bool Swap = false; |
6811 | if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && |
6812 | ((Mnemonic == "add" && Op4Reg != ARM::SP) || |
6813 | Mnemonic == "and" || Mnemonic == "eor" || |
6814 | Mnemonic == "adc" || Mnemonic == "orr" )) { |
6815 | Swap = true; |
6816 | LastOp = &Op4; |
6817 | Transform = true; |
6818 | } |
6819 | |
6820 | // If both registers are the same then remove one of them from |
6821 | // the operand list, with certain exceptions. |
6822 | if (Transform) { |
6823 | // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the |
6824 | // 2 operand forms don't exist. |
6825 | if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub" ) && |
6826 | LastOp->isReg()) |
6827 | Transform = false; |
6828 | |
6829 | // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into |
6830 | // 3-bits because the ARMARM says not to. |
6831 | if ((Mnemonic == "add" || Mnemonic == "sub" ) && LastOp->isImm0_7()) |
6832 | Transform = false; |
6833 | } |
6834 | |
6835 | if (Transform) { |
6836 | if (Swap) |
6837 | std::swap(a&: Op4, b&: Op5); |
6838 | Operands.erase(CI: Operands.begin() + MnemonicOpsEndInd); |
6839 | } |
6840 | } |
6841 | |
6842 | // this function returns true if the operand is one of the following |
6843 | // relocations: :upper8_15:, :upper0_7:, :lower8_15: or :lower0_7: |
6844 | static bool isThumbI8Relocation(MCParsedAsmOperand &MCOp) { |
6845 | ARMOperand &Op = static_cast<ARMOperand &>(MCOp); |
6846 | if (!Op.isImm()) |
6847 | return false; |
6848 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
6849 | if (CE) |
6850 | return false; |
6851 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
6852 | if (!E) |
6853 | return false; |
6854 | const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(Val: E); |
6855 | if (ARM16Expr && (ARM16Expr->getKind() == ARMMCExpr::VK_ARM_HI_8_15 || |
6856 | ARM16Expr->getKind() == ARMMCExpr::VK_ARM_HI_0_7 || |
6857 | ARM16Expr->getKind() == ARMMCExpr::VK_ARM_LO_8_15 || |
6858 | ARM16Expr->getKind() == ARMMCExpr::VK_ARM_LO_0_7)) |
6859 | return true; |
6860 | return false; |
6861 | } |
6862 | |
6863 | bool ARMAsmParser::shouldOmitVectorPredicateOperand( |
6864 | StringRef Mnemonic, OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6865 | if (!hasMVE() || Operands.size() <= MnemonicOpsEndInd) |
6866 | return true; |
6867 | |
6868 | if (Mnemonic.starts_with(Prefix: "vld2" ) || Mnemonic.starts_with(Prefix: "vld4" ) || |
6869 | Mnemonic.starts_with(Prefix: "vst2" ) || Mnemonic.starts_with(Prefix: "vst4" )) |
6870 | return true; |
6871 | |
6872 | if (Mnemonic.starts_with(Prefix: "vctp" ) || Mnemonic.starts_with(Prefix: "vpnot" )) |
6873 | return false; |
6874 | |
6875 | if (Mnemonic.starts_with(Prefix: "vmov" ) && |
6876 | !(Mnemonic.starts_with(Prefix: "vmovl" ) || Mnemonic.starts_with(Prefix: "vmovn" ) || |
6877 | Mnemonic.starts_with(Prefix: "vmovx" ))) { |
6878 | for (auto &Operand : Operands) { |
6879 | if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
6880 | ((*Operand).isReg() && |
6881 | (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
6882 | Reg: (*Operand).getReg()) || |
6883 | ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
6884 | Reg: (*Operand).getReg())))) { |
6885 | return true; |
6886 | } |
6887 | } |
6888 | return false; |
6889 | } else { |
6890 | for (auto &Operand : Operands) { |
6891 | // We check the larger class QPR instead of just the legal class |
6892 | // MQPR, to more accurately report errors when using Q registers |
6893 | // outside of the allowed range. |
6894 | if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
6895 | static_cast<ARMOperand &>(*Operand).isQReg()) |
6896 | return false; |
6897 | } |
6898 | return true; |
6899 | } |
6900 | } |
6901 | |
6902 | // FIXME: This bit should probably be handled via an explicit match class |
6903 | // in the .td files that matches the suffix instead of having it be |
6904 | // a literal string token the way it is now. |
6905 | static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { |
6906 | return Mnemonic.starts_with(Prefix: "vldm" ) || Mnemonic.starts_with(Prefix: "vstm" ); |
6907 | } |
6908 | |
6909 | static void applyMnemonicAliases(StringRef &Mnemonic, |
6910 | const FeatureBitset &Features, |
6911 | unsigned VariantID); |
6912 | |
6913 | // The GNU assembler has aliases of ldrd, strd, ldrexd, strexd, ldaexd, and |
6914 | // stlexd with the second register omitted. We don't have a way to do that in |
6915 | // tablegen, so fix it up here. |
6916 | // |
6917 | // We have to be careful to not emit an invalid Rt2 here, because the rest of |
6918 | // the assembly parser could then generate confusing diagnostics refering to |
6919 | // it. If we do find anything that prevents us from doing the transformation we |
6920 | // bail out, and let the assembly parser report an error on the instruction as |
6921 | // it is written. |
6922 | void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, |
6923 | OperandVector &Operands, |
6924 | unsigned MnemonicOpsEndInd) { |
6925 | if (Mnemonic != "ldrd" && Mnemonic != "strd" && Mnemonic != "ldrexd" && |
6926 | Mnemonic != "strexd" && Mnemonic != "ldaexd" && Mnemonic != "stlexd" ) |
6927 | return; |
6928 | |
6929 | unsigned IdX = Mnemonic == "strexd" || Mnemonic == "stlexd" |
6930 | ? MnemonicOpsEndInd + 1 |
6931 | : MnemonicOpsEndInd; |
6932 | |
6933 | if (Operands.size() < IdX + 2) |
6934 | return; |
6935 | |
6936 | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[IdX]); |
6937 | ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[IdX + 1]); |
6938 | |
6939 | if (!Op2.isReg()) |
6940 | return; |
6941 | if (!Op3.isGPRMem()) |
6942 | return; |
6943 | |
6944 | const MCRegisterClass &GPR = MRI->getRegClass(i: ARM::GPRRegClassID); |
6945 | if (!GPR.contains(Reg: Op2.getReg())) |
6946 | return; |
6947 | |
6948 | unsigned RtEncoding = MRI->getEncodingValue(RegNo: Op2.getReg()); |
6949 | if (!isThumb() && (RtEncoding & 1)) { |
6950 | // In ARM mode, the registers must be from an aligned pair, this |
6951 | // restriction does not apply in Thumb mode. |
6952 | return; |
6953 | } |
6954 | if (Op2.getReg() == ARM::PC) |
6955 | return; |
6956 | unsigned PairedReg = GPR.getRegister(i: RtEncoding + 1); |
6957 | if (!PairedReg || PairedReg == ARM::PC || |
6958 | (PairedReg == ARM::SP && !hasV8Ops())) |
6959 | return; |
6960 | |
6961 | Operands.insert(I: Operands.begin() + IdX + 1, |
6962 | Elt: ARMOperand::CreateReg(RegNum: PairedReg, S: Op2.getStartLoc(), |
6963 | E: Op2.getEndLoc(), Parser&: *this)); |
6964 | } |
6965 | |
6966 | // Dual-register instruction have the following syntax: |
6967 | // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm |
6968 | // This function tries to remove <Rdest+1> and replace <Rdest> with a pair |
6969 | // operand. If the conversion fails an error is diagnosed, and the function |
6970 | // returns true. |
6971 | bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, |
6972 | OperandVector &Operands, |
6973 | unsigned MnemonicOpsEndInd) { |
6974 | assert(MS.isCDEDualRegInstr(Mnemonic)); |
6975 | |
6976 | if (Operands.size() < 3 + MnemonicOpsEndInd) |
6977 | return false; |
6978 | |
6979 | StringRef Op2Diag( |
6980 | "operand must be an even-numbered register in the range [r0, r10]" ); |
6981 | |
6982 | const MCParsedAsmOperand &Op2 = *Operands[MnemonicOpsEndInd + 1]; |
6983 | if (!Op2.isReg()) |
6984 | return Error(L: Op2.getStartLoc(), Msg: Op2Diag); |
6985 | |
6986 | unsigned RNext; |
6987 | unsigned RPair; |
6988 | switch (Op2.getReg()) { |
6989 | default: |
6990 | return Error(L: Op2.getStartLoc(), Msg: Op2Diag); |
6991 | case ARM::R0: |
6992 | RNext = ARM::R1; |
6993 | RPair = ARM::R0_R1; |
6994 | break; |
6995 | case ARM::R2: |
6996 | RNext = ARM::R3; |
6997 | RPair = ARM::R2_R3; |
6998 | break; |
6999 | case ARM::R4: |
7000 | RNext = ARM::R5; |
7001 | RPair = ARM::R4_R5; |
7002 | break; |
7003 | case ARM::R6: |
7004 | RNext = ARM::R7; |
7005 | RPair = ARM::R6_R7; |
7006 | break; |
7007 | case ARM::R8: |
7008 | RNext = ARM::R9; |
7009 | RPair = ARM::R8_R9; |
7010 | break; |
7011 | case ARM::R10: |
7012 | RNext = ARM::R11; |
7013 | RPair = ARM::R10_R11; |
7014 | break; |
7015 | } |
7016 | |
7017 | const MCParsedAsmOperand &Op3 = *Operands[MnemonicOpsEndInd + 2]; |
7018 | if (!Op3.isReg() || Op3.getReg() != RNext) |
7019 | return Error(L: Op3.getStartLoc(), Msg: "operand must be a consecutive register" ); |
7020 | |
7021 | Operands.erase(CI: Operands.begin() + MnemonicOpsEndInd + 2); |
7022 | Operands[MnemonicOpsEndInd + 1] = |
7023 | ARMOperand::CreateReg(RegNum: RPair, S: Op2.getStartLoc(), E: Op2.getEndLoc(), Parser&: *this); |
7024 | return false; |
7025 | } |
7026 | |
7027 | void removeCondCode(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7028 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7029 | if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) { |
7030 | Operands.erase(CI: Operands.begin() + I); |
7031 | --MnemonicOpsEndInd; |
7032 | break; |
7033 | } |
7034 | } |
7035 | |
7036 | void removeCCOut(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7037 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7038 | if (static_cast<ARMOperand &>(*Operands[I]).isCCOut()) { |
7039 | Operands.erase(CI: Operands.begin() + I); |
7040 | --MnemonicOpsEndInd; |
7041 | break; |
7042 | } |
7043 | } |
7044 | |
7045 | void removeVPTCondCode(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7046 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7047 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) { |
7048 | Operands.erase(CI: Operands.begin() + I); |
7049 | --MnemonicOpsEndInd; |
7050 | break; |
7051 | } |
7052 | } |
7053 | |
7054 | /// Parse an arm instruction mnemonic followed by its operands. |
7055 | bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
7056 | SMLoc NameLoc, OperandVector &Operands) { |
7057 | MCAsmParser &Parser = getParser(); |
7058 | |
7059 | // Apply mnemonic aliases before doing anything else, as the destination |
7060 | // mnemonic may include suffices and we want to handle them normally. |
7061 | // The generic tblgen'erated code does this later, at the start of |
7062 | // MatchInstructionImpl(), but that's too late for aliases that include |
7063 | // any sort of suffix. |
7064 | const FeatureBitset &AvailableFeatures = getAvailableFeatures(); |
7065 | unsigned AssemblerDialect = getParser().getAssemblerDialect(); |
7066 | applyMnemonicAliases(Mnemonic&: Name, Features: AvailableFeatures, VariantID: AssemblerDialect); |
7067 | |
7068 | // First check for the ARM-specific .req directive. |
7069 | if (Parser.getTok().is(K: AsmToken::Identifier) && |
7070 | Parser.getTok().getIdentifier().lower() == ".req" ) { |
7071 | parseDirectiveReq(Name, L: NameLoc); |
7072 | // We always return 'error' for this, as we're done with this |
7073 | // statement and don't need to match the 'instruction." |
7074 | return true; |
7075 | } |
7076 | |
7077 | // Create the leading tokens for the mnemonic, split by '.' characters. |
7078 | size_t Start = 0, Next = Name.find(C: '.'); |
7079 | StringRef Mnemonic = Name.slice(Start, End: Next); |
7080 | StringRef = Name.slice(Start: Next, End: Name.find(C: ' ', From: Next + 1)); |
7081 | |
7082 | // Split out the predication code and carry setting flag from the mnemonic. |
7083 | ARMCC::CondCodes PredicationCode; |
7084 | ARMVCC::VPTCodes VPTPredicationCode; |
7085 | unsigned ProcessorIMod; |
7086 | bool CarrySetting; |
7087 | StringRef ITMask; |
7088 | Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, |
7089 | CarrySetting, ProcessorIMod, ITMask); |
7090 | |
7091 | // In Thumb1, only the branch (B) instruction can be predicated. |
7092 | if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b" ) { |
7093 | return Error(L: NameLoc, Msg: "conditional execution not supported in Thumb1" ); |
7094 | } |
7095 | |
7096 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: Mnemonic, S: NameLoc, Parser&: *this)); |
7097 | |
7098 | // Handle the mask for IT and VPT instructions. In ARMOperand and |
7099 | // MCOperand, this is stored in a format independent of the |
7100 | // condition code: the lowest set bit indicates the end of the |
7101 | // encoding, and above that, a 1 bit indicates 'else', and an 0 |
7102 | // indicates 'then'. E.g. |
7103 | // IT -> 1000 |
7104 | // ITx -> x100 (ITT -> 0100, ITE -> 1100) |
7105 | // ITxy -> xy10 (e.g. ITET -> 1010) |
7106 | // ITxyz -> xyz1 (e.g. ITEET -> 1101) |
7107 | // Note: See the ARM::PredBlockMask enum in |
7108 | // /lib/Target/ARM/Utils/ARMBaseInfo.h |
7109 | if (Mnemonic == "it" || Mnemonic.starts_with(Prefix: "vpt" ) || |
7110 | Mnemonic.starts_with(Prefix: "vpst" )) { |
7111 | SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 2) : |
7112 | Mnemonic == "vpt" ? SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 3) : |
7113 | SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 4); |
7114 | if (ITMask.size() > 3) { |
7115 | if (Mnemonic == "it" ) |
7116 | return Error(L: Loc, Msg: "too many conditions on IT instruction" ); |
7117 | return Error(L: Loc, Msg: "too many conditions on VPT instruction" ); |
7118 | } |
7119 | unsigned Mask = 8; |
7120 | for (char Pos : llvm::reverse(C&: ITMask)) { |
7121 | if (Pos != 't' && Pos != 'e') { |
7122 | return Error(L: Loc, Msg: "illegal IT block condition mask '" + ITMask + "'" ); |
7123 | } |
7124 | Mask >>= 1; |
7125 | if (Pos == 'e') |
7126 | Mask |= 8; |
7127 | } |
7128 | Operands.push_back(Elt: ARMOperand::CreateITMask(Mask, S: Loc, Parser&: *this)); |
7129 | } |
7130 | |
7131 | // FIXME: This is all a pretty gross hack. We should automatically handle |
7132 | // optional operands like this via tblgen. |
7133 | |
7134 | // Next, add the CCOut and ConditionCode operands, if needed. |
7135 | // |
7136 | // For mnemonics which can ever incorporate a carry setting bit or predication |
7137 | // code, our matching model involves us always generating CCOut and |
7138 | // ConditionCode operands to match the mnemonic "as written" and then we let |
7139 | // the matcher deal with finding the right instruction or generating an |
7140 | // appropriate error. |
7141 | bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; |
7142 | getMnemonicAcceptInfo(Mnemonic, ExtraToken, FullInst: Name, CanAcceptCarrySet, |
7143 | CanAcceptPredicationCode, CanAcceptVPTPredicationCode); |
7144 | |
7145 | // If we had a carry-set on an instruction that can't do that, issue an |
7146 | // error. |
7147 | if (!CanAcceptCarrySet && CarrySetting) { |
7148 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7149 | "' can not set flags, but 's' suffix specified" ); |
7150 | } |
7151 | // If we had a predication code on an instruction that can't do that, issue an |
7152 | // error. |
7153 | if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { |
7154 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7155 | "' is not predicable, but condition code specified" ); |
7156 | } |
7157 | |
7158 | // If we had a VPT predication code on an instruction that can't do that, issue an |
7159 | // error. |
7160 | if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { |
7161 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7162 | "' is not VPT predicable, but VPT code T/E is specified" ); |
7163 | } |
7164 | |
7165 | // Add the carry setting operand, if necessary. |
7166 | if (CanAcceptCarrySet && CarrySetting) { |
7167 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size()); |
7168 | Operands.push_back( |
7169 | Elt: ARMOperand::CreateCCOut(RegNum: CarrySetting ? ARM::CPSR : 0, S: Loc, Parser&: *this)); |
7170 | } |
7171 | |
7172 | // Add the predication code operand, if necessary. |
7173 | if (CanAcceptPredicationCode && PredicationCode != llvm::ARMCC::AL) { |
7174 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size() + |
7175 | CarrySetting); |
7176 | Operands.push_back(Elt: ARMOperand::CreateCondCode( |
7177 | CC: ARMCC::CondCodes(PredicationCode), S: Loc, Parser&: *this)); |
7178 | } |
7179 | |
7180 | // Add the VPT predication code operand, if necessary. |
7181 | // Dont add in certain cases of VCVT as this needs to be disambiguated |
7182 | // after operand parsing. |
7183 | if (CanAcceptVPTPredicationCode && VPTPredicationCode != llvm::ARMVCC::None && |
7184 | !(Mnemonic.starts_with(Prefix: "vcvt" ) && Mnemonic != "vcvta" && |
7185 | Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm" )) { |
7186 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size() + |
7187 | CarrySetting); |
7188 | Operands.push_back(Elt: ARMOperand::CreateVPTPred( |
7189 | CC: ARMVCC::VPTCodes(VPTPredicationCode), S: Loc, Parser&: *this)); |
7190 | } |
7191 | |
7192 | // Add the processor imod operand, if necessary. |
7193 | if (ProcessorIMod) { |
7194 | Operands.push_back(Elt: ARMOperand::CreateImm( |
7195 | Val: MCConstantExpr::create(Value: ProcessorIMod, Ctx&: getContext()), S: NameLoc, E: NameLoc, |
7196 | Parser&: *this)); |
7197 | } else if (Mnemonic == "cps" && isMClass()) { |
7198 | return Error(L: NameLoc, Msg: "instruction 'cps' requires effect for M-class" ); |
7199 | } |
7200 | |
7201 | // Add the remaining tokens in the mnemonic. |
7202 | while (Next != StringRef::npos) { |
7203 | Start = Next; |
7204 | Next = Name.find(C: '.', From: Start + 1); |
7205 | ExtraToken = Name.slice(Start, End: Next); |
7206 | |
7207 | // Some NEON instructions have an optional datatype suffix that is |
7208 | // completely ignored. Check for that. |
7209 | if (isDataTypeToken(Tok: ExtraToken) && |
7210 | doesIgnoreDataTypeSuffix(Mnemonic, DT: ExtraToken)) |
7211 | continue; |
7212 | |
7213 | // For for ARM mode generate an error if the .n qualifier is used. |
7214 | if (ExtraToken == ".n" && !isThumb()) { |
7215 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Start); |
7216 | return Error(L: Loc, Msg: "instruction with .n (narrow) qualifier not allowed in " |
7217 | "arm mode" ); |
7218 | } |
7219 | |
7220 | // The .n qualifier is always discarded as that is what the tables |
7221 | // and matcher expect. In ARM mode the .w qualifier has no effect, |
7222 | // so discard it to avoid errors that can be caused by the matcher. |
7223 | if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w" )) { |
7224 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Start); |
7225 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: ExtraToken, S: Loc, Parser&: *this)); |
7226 | } |
7227 | } |
7228 | |
7229 | // This marks the end of the LHS Mnemonic operators. |
7230 | // This is used for indexing into the non-menmonic operators as some of the |
7231 | // mnemonic operators are optional and therfore indexes can differ. |
7232 | unsigned MnemonicOpsEndInd = Operands.size(); |
7233 | |
7234 | // Read the remaining operands. |
7235 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
7236 | // Read the first operand. |
7237 | if (parseOperand(Operands, Mnemonic)) { |
7238 | return true; |
7239 | } |
7240 | |
7241 | while (parseOptionalToken(T: AsmToken::Comma)) { |
7242 | // Parse and remember the operand. |
7243 | if (parseOperand(Operands, Mnemonic)) { |
7244 | return true; |
7245 | } |
7246 | } |
7247 | } |
7248 | |
7249 | if (parseToken(T: AsmToken::EndOfStatement, Msg: "unexpected token in argument list" )) |
7250 | return true; |
7251 | |
7252 | tryConvertingToTwoOperandForm(Mnemonic, PredicationCode, CarrySetting, |
7253 | Operands, MnemonicOpsEndInd); |
7254 | |
7255 | if (hasCDE() && MS.isCDEInstr(Mnemonic)) { |
7256 | // Dual-register instructions use even-odd register pairs as their |
7257 | // destination operand, in assembly such pair is spelled as two |
7258 | // consecutive registers, without any special syntax. ConvertDualRegOperand |
7259 | // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. |
7260 | // It returns true, if an error message has been emitted. If the function |
7261 | // returns false, the function either succeeded or an error (e.g. missing |
7262 | // operand) will be diagnosed elsewhere. |
7263 | if (MS.isCDEDualRegInstr(Mnemonic)) { |
7264 | bool GotError = |
7265 | CDEConvertDualRegOperand(Mnemonic, Operands, MnemonicOpsEndInd); |
7266 | if (GotError) |
7267 | return GotError; |
7268 | } |
7269 | } |
7270 | |
7271 | if (hasMVE()) { |
7272 | if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7273 | MnemonicOpsEndInd) && |
7274 | Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { |
7275 | // Very nasty hack to deal with the vector predicated variant of vmovlt |
7276 | // the scalar predicated vmov with condition 'lt'. We can not tell them |
7277 | // apart until we have parsed their operands. |
7278 | Operands.erase(CI: Operands.begin() + 1); |
7279 | Operands.erase(CI: Operands.begin()); |
7280 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7281 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7282 | Mnemonic.size() - 1 + CarrySetting); |
7283 | Operands.insert(I: Operands.begin(), |
7284 | Elt: ARMOperand::CreateVPTPred(CC: ARMVCC::None, S: PLoc, Parser&: *this)); |
7285 | Operands.insert(I: Operands.begin(), Elt: ARMOperand::CreateToken( |
7286 | Str: StringRef("vmovlt" ), S: MLoc, Parser&: *this)); |
7287 | } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && |
7288 | !shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7289 | MnemonicOpsEndInd)) { |
7290 | // Another nasty hack to deal with the ambiguity between vcvt with scalar |
7291 | // predication 'ne' and vcvtn with vector predication 'e'. As above we |
7292 | // can only distinguish between the two after we have parsed their |
7293 | // operands. |
7294 | Operands.erase(CI: Operands.begin() + 1); |
7295 | Operands.erase(CI: Operands.begin()); |
7296 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7297 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7298 | Mnemonic.size() - 1 + CarrySetting); |
7299 | Operands.insert(I: Operands.begin(), |
7300 | Elt: ARMOperand::CreateVPTPred(CC: ARMVCC::Else, S: PLoc, Parser&: *this)); |
7301 | Operands.insert(I: Operands.begin(), |
7302 | Elt: ARMOperand::CreateToken(Str: StringRef("vcvtn" ), S: MLoc, Parser&: *this)); |
7303 | } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && |
7304 | !shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7305 | MnemonicOpsEndInd)) { |
7306 | // Another hack, this time to distinguish between scalar predicated vmul |
7307 | // with 'lt' predication code and the vector instruction vmullt with |
7308 | // vector predication code "none" |
7309 | removeCondCode(Operands, MnemonicOpsEndInd); |
7310 | Operands.erase(CI: Operands.begin()); |
7311 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7312 | Operands.insert(I: Operands.begin(), Elt: ARMOperand::CreateToken( |
7313 | Str: StringRef("vmullt" ), S: MLoc, Parser&: *this)); |
7314 | } else if (Mnemonic.starts_with(Prefix: "vcvt" ) && !Mnemonic.starts_with(Prefix: "vcvta" ) && |
7315 | !Mnemonic.starts_with(Prefix: "vcvtn" ) && |
7316 | !Mnemonic.starts_with(Prefix: "vcvtp" ) && |
7317 | !Mnemonic.starts_with(Prefix: "vcvtm" )) { |
7318 | if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7319 | MnemonicOpsEndInd)) { |
7320 | // We could not split the vector predicate off vcvt because it might |
7321 | // have been the scalar vcvtt instruction. Now we know its a vector |
7322 | // instruction, we still need to check whether its the vector |
7323 | // predicated vcvt with 'Then' predication or the vector vcvtt. We can |
7324 | // distinguish the two based on the suffixes, if it is any of |
7325 | // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. |
7326 | if (Mnemonic.starts_with(Prefix: "vcvtt" ) && MnemonicOpsEndInd > 2) { |
7327 | auto Sz1 = |
7328 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd - 2]); |
7329 | auto Sz2 = |
7330 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd - 1]); |
7331 | if (!(Sz1.isToken() && Sz1.getToken().starts_with(Prefix: ".f" ) && |
7332 | Sz2.isToken() && Sz2.getToken().starts_with(Prefix: ".f" ))) { |
7333 | Operands.erase(CI: Operands.begin()); |
7334 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7335 | VPTPredicationCode = ARMVCC::Then; |
7336 | |
7337 | Mnemonic = Mnemonic.substr(Start: 0, N: 4); |
7338 | Operands.insert(I: Operands.begin(), |
7339 | Elt: ARMOperand::CreateToken(Str: Mnemonic, S: MLoc, Parser&: *this)); |
7340 | } |
7341 | } |
7342 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7343 | Mnemonic.size() + CarrySetting); |
7344 | // Add VPTPred |
7345 | Operands.insert(I: Operands.begin() + 1, |
7346 | Elt: ARMOperand::CreateVPTPred( |
7347 | CC: ARMVCC::VPTCodes(VPTPredicationCode), S: PLoc, Parser&: *this)); |
7348 | ++MnemonicOpsEndInd; |
7349 | } |
7350 | } else if (CanAcceptVPTPredicationCode) { |
7351 | // For all other instructions, make sure only one of the two |
7352 | // predication operands is left behind, depending on whether we should |
7353 | // use the vector predication. |
7354 | if (shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7355 | MnemonicOpsEndInd)) { |
7356 | removeVPTCondCode(Operands, MnemonicOpsEndInd); |
7357 | } |
7358 | } |
7359 | } |
7360 | |
7361 | if (VPTPredicationCode != ARMVCC::None) { |
7362 | bool usedVPTPredicationCode = false; |
7363 | for (unsigned I = 1; I < Operands.size(); ++I) |
7364 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
7365 | usedVPTPredicationCode = true; |
7366 | if (!usedVPTPredicationCode) { |
7367 | // If we have a VPT predication code and we haven't just turned it |
7368 | // into an operand, then it was a mistake for splitMnemonic to |
7369 | // separate it from the rest of the mnemonic in the first place, |
7370 | // and this may lead to wrong disassembly (e.g. scalar floating |
7371 | // point VCMPE is actually a different instruction from VCMP, so |
7372 | // we mustn't treat them the same). In that situation, glue it |
7373 | // back on. |
7374 | Mnemonic = Name.slice(Start: 0, End: Mnemonic.size() + 1); |
7375 | Operands.erase(CI: Operands.begin()); |
7376 | Operands.insert(I: Operands.begin(), |
7377 | Elt: ARMOperand::CreateToken(Str: Mnemonic, S: NameLoc, Parser&: *this)); |
7378 | } |
7379 | } |
7380 | |
7381 | // ARM mode 'blx' need special handling, as the register operand version |
7382 | // is predicable, but the label operand version is not. So, we can't rely |
7383 | // on the Mnemonic based checking to correctly figure out when to put |
7384 | // a k_CondCode operand in the list. If we're trying to match the label |
7385 | // version, remove the k_CondCode operand here. |
7386 | if (!isThumb() && Mnemonic == "blx" && |
7387 | Operands.size() == MnemonicOpsEndInd + 1 && |
7388 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).isImm()) |
7389 | removeCondCode(Operands, MnemonicOpsEndInd); |
7390 | |
7391 | // GNU Assembler extension (compatibility). |
7392 | fixupGNULDRDAlias(Mnemonic, Operands, MnemonicOpsEndInd); |
7393 | |
7394 | // Adjust operands of ldrexd/strexd to MCK_GPRPair. |
7395 | // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, |
7396 | // a single GPRPair reg operand is used in the .td file to replace the two |
7397 | // GPRs. However, when parsing from asm, the two GRPs cannot be |
7398 | // automatically |
7399 | // expressed as a GPRPair, so we have to manually merge them. |
7400 | // FIXME: We would really like to be able to tablegen'erate this. |
7401 | bool IsLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd" ); |
7402 | if (!isThumb() && Operands.size() > MnemonicOpsEndInd + 1 + (!IsLoad) && |
7403 | (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || |
7404 | Mnemonic == "stlexd" )) { |
7405 | unsigned Idx = IsLoad ? MnemonicOpsEndInd : MnemonicOpsEndInd + 1; |
7406 | ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); |
7407 | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); |
7408 | |
7409 | const MCRegisterClass &MRC = MRI->getRegClass(i: ARM::GPRRegClassID); |
7410 | // Adjust only if Op1 is a GPR. |
7411 | if (Op1.isReg() && MRC.contains(Reg: Op1.getReg())) { |
7412 | unsigned Reg1 = Op1.getReg(); |
7413 | unsigned Rt = MRI->getEncodingValue(RegNo: Reg1); |
7414 | unsigned Reg2 = Op2.getReg(); |
7415 | unsigned Rt2 = MRI->getEncodingValue(RegNo: Reg2); |
7416 | // Rt2 must be Rt + 1. |
7417 | if (Rt + 1 != Rt2) |
7418 | return Error(L: Op2.getStartLoc(), |
7419 | Msg: IsLoad ? "destination operands must be sequential" |
7420 | : "source operands must be sequential" ); |
7421 | |
7422 | // Rt must be even |
7423 | if (Rt & 1) |
7424 | return Error( |
7425 | L: Op1.getStartLoc(), |
7426 | Msg: IsLoad ? "destination operands must start start at an even register" |
7427 | : "source operands must start start at an even register" ); |
7428 | |
7429 | unsigned NewReg = MRI->getMatchingSuperReg( |
7430 | Reg: Reg1, SubIdx: ARM::gsub_0, RC: &(MRI->getRegClass(i: ARM::GPRPairRegClassID))); |
7431 | Operands[Idx] = ARMOperand::CreateReg(RegNum: NewReg, S: Op1.getStartLoc(), |
7432 | E: Op2.getEndLoc(), Parser&: *this); |
7433 | Operands.erase(CI: Operands.begin() + Idx + 1); |
7434 | } |
7435 | } |
7436 | |
7437 | // FIXME: As said above, this is all a pretty gross hack. This instruction |
7438 | // does not fit with other "subs" and tblgen. |
7439 | // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction |
7440 | // so the Mnemonic is the original name "subs" and delete the predicate |
7441 | // operand so it will match the table entry. |
7442 | if (isThumbTwo() && Mnemonic == "sub" && |
7443 | Operands.size() == MnemonicOpsEndInd + 3 && |
7444 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).isReg() && |
7445 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).getReg() == |
7446 | ARM::PC && |
7447 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]).isReg() && |
7448 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]).getReg() == |
7449 | ARM::LR && |
7450 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 2]).isImm()) { |
7451 | Operands.front() = ARMOperand::CreateToken(Str: Name, S: NameLoc, Parser&: *this); |
7452 | removeCCOut(Operands, MnemonicOpsEndInd); |
7453 | } |
7454 | return false; |
7455 | } |
7456 | |
7457 | // Validate context-sensitive operand constraints. |
7458 | |
7459 | // return 'true' if register list contains non-low GPR registers, |
7460 | // 'false' otherwise. If Reg is in the register list or is HiReg, set |
7461 | // 'containsReg' to true. |
7462 | static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, |
7463 | unsigned Reg, unsigned HiReg, |
7464 | bool &containsReg) { |
7465 | containsReg = false; |
7466 | for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { |
7467 | unsigned OpReg = Inst.getOperand(i).getReg(); |
7468 | if (OpReg == Reg) |
7469 | containsReg = true; |
7470 | // Anything other than a low register isn't legal here. |
7471 | if (!isARMLowRegister(Reg: OpReg) && (!HiReg || OpReg != HiReg)) |
7472 | return true; |
7473 | } |
7474 | return false; |
7475 | } |
7476 | |
7477 | // Check if the specified regisgter is in the register list of the inst, |
7478 | // starting at the indicated operand number. |
7479 | static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { |
7480 | for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { |
7481 | unsigned OpReg = Inst.getOperand(i).getReg(); |
7482 | if (OpReg == Reg) |
7483 | return true; |
7484 | } |
7485 | return false; |
7486 | } |
7487 | |
7488 | // Return true if instruction has the interesting property of being |
7489 | // allowed in IT blocks, but not being predicable. |
7490 | static bool instIsBreakpoint(const MCInst &Inst) { |
7491 | return Inst.getOpcode() == ARM::tBKPT || |
7492 | Inst.getOpcode() == ARM::BKPT || |
7493 | Inst.getOpcode() == ARM::tHLT || |
7494 | Inst.getOpcode() == ARM::HLT; |
7495 | } |
7496 | |
7497 | unsigned getRegListInd(const OperandVector &Operands, |
7498 | unsigned MnemonicOpsEndInd) { |
7499 | for (unsigned I = MnemonicOpsEndInd; I < Operands.size(); ++I) { |
7500 | const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[I]); |
7501 | if (Op.isRegList()) { |
7502 | return I; |
7503 | } |
7504 | } |
7505 | return 0; |
7506 | } |
7507 | |
7508 | bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, |
7509 | const OperandVector &Operands, |
7510 | unsigned MnemonicOpsEndInd, |
7511 | unsigned ListIndex, bool IsARPop) { |
7512 | bool ListContainsSP = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::SP); |
7513 | bool ListContainsLR = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::LR); |
7514 | bool ListContainsPC = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::PC); |
7515 | |
7516 | if (!IsARPop && ListContainsSP) |
7517 | return Error( |
7518 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7519 | Msg: "SP may not be in the register list" ); |
7520 | if (ListContainsPC && ListContainsLR) |
7521 | return Error( |
7522 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7523 | Msg: "PC and LR may not be in the register list simultaneously" ); |
7524 | return false; |
7525 | } |
7526 | |
7527 | bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, |
7528 | const OperandVector &Operands, |
7529 | unsigned MnemonicOpsEndInd, |
7530 | unsigned ListIndex) { |
7531 | bool ListContainsSP = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::SP); |
7532 | bool ListContainsPC = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::PC); |
7533 | |
7534 | if (ListContainsSP && ListContainsPC) |
7535 | return Error( |
7536 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7537 | Msg: "SP and PC may not be in the register list" ); |
7538 | if (ListContainsSP) |
7539 | return Error( |
7540 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7541 | Msg: "SP may not be in the register list" ); |
7542 | if (ListContainsPC) |
7543 | return Error( |
7544 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7545 | Msg: "PC may not be in the register list" ); |
7546 | return false; |
7547 | } |
7548 | |
7549 | bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, |
7550 | bool Load, bool ARMMode, bool Writeback, |
7551 | unsigned MnemonicOpsEndInd) { |
7552 | unsigned RtIndex = Load || !Writeback ? 0 : 1; |
7553 | unsigned Rt = MRI->getEncodingValue(RegNo: Inst.getOperand(i: RtIndex).getReg()); |
7554 | unsigned Rt2 = MRI->getEncodingValue(RegNo: Inst.getOperand(i: RtIndex + 1).getReg()); |
7555 | |
7556 | if (ARMMode) { |
7557 | // Rt can't be R14. |
7558 | if (Rt == 14) |
7559 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7560 | Msg: "Rt can't be R14" ); |
7561 | |
7562 | // Rt must be even-numbered. |
7563 | if ((Rt & 1) == 1) |
7564 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7565 | Msg: "Rt must be even-numbered" ); |
7566 | |
7567 | // Rt2 must be Rt + 1. |
7568 | if (Rt2 != Rt + 1) { |
7569 | if (Load) |
7570 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7571 | Msg: "destination operands must be sequential" ); |
7572 | else |
7573 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7574 | Msg: "source operands must be sequential" ); |
7575 | } |
7576 | |
7577 | // FIXME: Diagnose m == 15 |
7578 | // FIXME: Diagnose ldrd with m == t || m == t2. |
7579 | } |
7580 | |
7581 | if (!ARMMode && Load) { |
7582 | if (Rt2 == Rt) |
7583 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7584 | Msg: "destination operands can't be identical" ); |
7585 | } |
7586 | |
7587 | if (Writeback) { |
7588 | unsigned Rn = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 3).getReg()); |
7589 | |
7590 | if (Rn == Rt || Rn == Rt2) { |
7591 | if (Load) |
7592 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7593 | Msg: "base register needs to be different from destination " |
7594 | "registers" ); |
7595 | else |
7596 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7597 | Msg: "source register and base register can't be identical" ); |
7598 | } |
7599 | |
7600 | // FIXME: Diagnose ldrd/strd with writeback and n == 15. |
7601 | // (Except the immediate form of ldrd?) |
7602 | } |
7603 | |
7604 | return false; |
7605 | } |
7606 | |
7607 | static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { |
7608 | for (unsigned i = 0; i < MCID.NumOperands; ++i) { |
7609 | if (ARM::isVpred(op: MCID.operands()[i].OperandType)) |
7610 | return i; |
7611 | } |
7612 | return -1; |
7613 | } |
7614 | |
7615 | static bool isVectorPredicable(const MCInstrDesc &MCID) { |
7616 | return findFirstVectorPredOperandIdx(MCID) != -1; |
7617 | } |
7618 | |
7619 | static bool isARMMCExpr(MCParsedAsmOperand &MCOp) { |
7620 | ARMOperand &Op = static_cast<ARMOperand &>(MCOp); |
7621 | if (!Op.isImm()) |
7622 | return false; |
7623 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
7624 | if (CE) |
7625 | return false; |
7626 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
7627 | if (!E) |
7628 | return false; |
7629 | return true; |
7630 | } |
7631 | |
7632 | // FIXME: We would really like to be able to tablegen'erate this. |
7633 | bool ARMAsmParser::validateInstruction(MCInst &Inst, |
7634 | const OperandVector &Operands, |
7635 | unsigned MnemonicOpsEndInd) { |
7636 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
7637 | SMLoc Loc = Operands[0]->getStartLoc(); |
7638 | |
7639 | // Check the IT block state first. |
7640 | // NOTE: BKPT and HLT instructions have the interesting property of being |
7641 | // allowed in IT blocks, but not being predicable. They just always execute. |
7642 | if (inITBlock() && !instIsBreakpoint(Inst)) { |
7643 | // The instruction must be predicable. |
7644 | if (!MCID.isPredicable()) |
7645 | return Error(L: Loc, Msg: "instructions in IT block must be predicable" ); |
7646 | ARMCC::CondCodes Cond = ARMCC::CondCodes( |
7647 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm()); |
7648 | if (Cond != currentITCond()) { |
7649 | // Find the condition code Operand to get its SMLoc information. |
7650 | SMLoc CondLoc = Operands[0]->getEndLoc(); |
7651 | for (unsigned I = 1; I < Operands.size(); ++I) |
7652 | if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) |
7653 | CondLoc = Operands[I]->getStartLoc(); |
7654 | return Error(L: CondLoc, Msg: "incorrect condition in IT block; got '" + |
7655 | StringRef(ARMCondCodeToString(CC: Cond)) + |
7656 | "', but expected '" + |
7657 | ARMCondCodeToString(CC: currentITCond()) + "'" ); |
7658 | } |
7659 | // Check for non-'al' condition codes outside of the IT block. |
7660 | } else if (isThumbTwo() && MCID.isPredicable() && |
7661 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm() != |
7662 | ARMCC::AL && Inst.getOpcode() != ARM::tBcc && |
7663 | Inst.getOpcode() != ARM::t2Bcc && |
7664 | Inst.getOpcode() != ARM::t2BFic) { |
7665 | return Error(L: Loc, Msg: "predicated instructions must be in IT block" ); |
7666 | } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && |
7667 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm() != |
7668 | ARMCC::AL) { |
7669 | return Warning(L: Loc, Msg: "predicated instructions should be in IT block" ); |
7670 | } else if (!MCID.isPredicable()) { |
7671 | // Check the instruction doesn't have a predicate operand anyway |
7672 | // that it's not allowed to use. Sometimes this happens in order |
7673 | // to keep instructions the same shape even though one cannot |
7674 | // legally be predicated, e.g. vmul.f16 vs vmul.f32. |
7675 | for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { |
7676 | if (MCID.operands()[i].isPredicate()) { |
7677 | if (Inst.getOperand(i).getImm() != ARMCC::AL) |
7678 | return Error(L: Loc, Msg: "instruction is not predicable" ); |
7679 | break; |
7680 | } |
7681 | } |
7682 | } |
7683 | |
7684 | // PC-setting instructions in an IT block, but not the last instruction of |
7685 | // the block, are UNPREDICTABLE. |
7686 | if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { |
7687 | return Error(L: Loc, Msg: "instruction must be outside of IT block or the last instruction in an IT block" ); |
7688 | } |
7689 | |
7690 | if (inVPTBlock() && !instIsBreakpoint(Inst)) { |
7691 | unsigned Bit = extractITMaskBit(Mask: VPTState.Mask, Position: VPTState.CurPosition); |
7692 | if (!isVectorPredicable(MCID)) |
7693 | return Error(L: Loc, Msg: "instruction in VPT block must be predicable" ); |
7694 | unsigned Pred = Inst.getOperand(i: findFirstVectorPredOperandIdx(MCID)).getImm(); |
7695 | unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; |
7696 | if (Pred != VPTPred) { |
7697 | SMLoc PredLoc; |
7698 | for (unsigned I = 1; I < Operands.size(); ++I) |
7699 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
7700 | PredLoc = Operands[I]->getStartLoc(); |
7701 | return Error(L: PredLoc, Msg: "incorrect predication in VPT block; got '" + |
7702 | StringRef(ARMVPTPredToString(CC: ARMVCC::VPTCodes(Pred))) + |
7703 | "', but expected '" + |
7704 | ARMVPTPredToString(CC: ARMVCC::VPTCodes(VPTPred)) + "'" ); |
7705 | } |
7706 | } |
7707 | else if (isVectorPredicable(MCID) && |
7708 | Inst.getOperand(i: findFirstVectorPredOperandIdx(MCID)).getImm() != |
7709 | ARMVCC::None) |
7710 | return Error(L: Loc, Msg: "VPT predicated instructions must be in VPT block" ); |
7711 | |
7712 | const unsigned Opcode = Inst.getOpcode(); |
7713 | switch (Opcode) { |
7714 | case ARM::VLLDM: |
7715 | case ARM::VLLDM_T2: |
7716 | case ARM::VLSTM: |
7717 | case ARM::VLSTM_T2: { |
7718 | // Since in some cases both T1 and T2 are valid, tablegen can not always |
7719 | // pick the correct instruction. |
7720 | if (Operands.size() == |
7721 | MnemonicOpsEndInd + 2) { // a register list has been provided |
7722 | ARMOperand &Op = static_cast<ARMOperand &>( |
7723 | *Operands[MnemonicOpsEndInd + 1]); // the register list, a dpr_reglist |
7724 | assert(Op.isDPRRegList()); |
7725 | auto &RegList = Op.getRegList(); |
7726 | // T2 requires v8.1-M.Main (cannot be handled by tablegen) |
7727 | if (RegList.size() == 32 && !hasV8_1MMainline()) { |
7728 | return Error(L: Op.getEndLoc(), Msg: "T2 version requires v8.1-M.Main" ); |
7729 | } |
7730 | // When target has 32 D registers, T1 is undefined. |
7731 | if (hasD32() && RegList.size() != 32) { |
7732 | return Error(L: Op.getEndLoc(), Msg: "operand must be exactly {d0-d31}" ); |
7733 | } |
7734 | // When target has 16 D registers, both T1 and T2 are valid. |
7735 | if (!hasD32() && (RegList.size() != 16 && RegList.size() != 32)) { |
7736 | return Error(L: Op.getEndLoc(), |
7737 | Msg: "operand must be exactly {d0-d15} (T1) or {d0-d31} (T2)" ); |
7738 | } |
7739 | } |
7740 | return false; |
7741 | } |
7742 | case ARM::t2IT: { |
7743 | // Encoding is unpredictable if it ever results in a notional 'NV' |
7744 | // predicate. Since we don't parse 'NV' directly this means an 'AL' |
7745 | // predicate with an "else" mask bit. |
7746 | unsigned Cond = Inst.getOperand(i: 0).getImm(); |
7747 | unsigned Mask = Inst.getOperand(i: 1).getImm(); |
7748 | |
7749 | // Conditions only allowing a 't' are those with no set bit except |
7750 | // the lowest-order one that indicates the end of the sequence. In |
7751 | // other words, powers of 2. |
7752 | if (Cond == ARMCC::AL && llvm::popcount(Value: Mask) != 1) |
7753 | return Error(L: Loc, Msg: "unpredictable IT predicate sequence" ); |
7754 | break; |
7755 | } |
7756 | case ARM::LDRD: |
7757 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ true, |
7758 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7759 | return true; |
7760 | break; |
7761 | case ARM::LDRD_PRE: |
7762 | case ARM::LDRD_POST: |
7763 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ true, |
7764 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7765 | return true; |
7766 | break; |
7767 | case ARM::t2LDRDi8: |
7768 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ false, |
7769 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7770 | return true; |
7771 | break; |
7772 | case ARM::t2LDRD_PRE: |
7773 | case ARM::t2LDRD_POST: |
7774 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ false, |
7775 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7776 | return true; |
7777 | break; |
7778 | case ARM::t2BXJ: { |
7779 | const unsigned RmReg = Inst.getOperand(i: 0).getReg(); |
7780 | // Rm = SP is no longer unpredictable in v8-A |
7781 | if (RmReg == ARM::SP && !hasV8Ops()) |
7782 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7783 | Msg: "r13 (SP) is an unpredictable operand to BXJ" ); |
7784 | return false; |
7785 | } |
7786 | case ARM::STRD: |
7787 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ true, |
7788 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7789 | return true; |
7790 | break; |
7791 | case ARM::STRD_PRE: |
7792 | case ARM::STRD_POST: |
7793 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ true, |
7794 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7795 | return true; |
7796 | break; |
7797 | case ARM::t2STRD_PRE: |
7798 | case ARM::t2STRD_POST: |
7799 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ false, |
7800 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7801 | return true; |
7802 | break; |
7803 | case ARM::STR_PRE_IMM: |
7804 | case ARM::STR_PRE_REG: |
7805 | case ARM::t2STR_PRE: |
7806 | case ARM::STR_POST_IMM: |
7807 | case ARM::STR_POST_REG: |
7808 | case ARM::t2STR_POST: |
7809 | case ARM::STRH_PRE: |
7810 | case ARM::t2STRH_PRE: |
7811 | case ARM::STRH_POST: |
7812 | case ARM::t2STRH_POST: |
7813 | case ARM::STRB_PRE_IMM: |
7814 | case ARM::STRB_PRE_REG: |
7815 | case ARM::t2STRB_PRE: |
7816 | case ARM::STRB_POST_IMM: |
7817 | case ARM::STRB_POST_REG: |
7818 | case ARM::t2STRB_POST: { |
7819 | // Rt must be different from Rn. |
7820 | const unsigned Rt = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 1).getReg()); |
7821 | const unsigned Rn = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 2).getReg()); |
7822 | |
7823 | if (Rt == Rn) |
7824 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
7825 | Msg: "source register and base register can't be identical" ); |
7826 | return false; |
7827 | } |
7828 | case ARM::t2LDR_PRE_imm: |
7829 | case ARM::t2LDR_POST_imm: |
7830 | case ARM::t2STR_PRE_imm: |
7831 | case ARM::t2STR_POST_imm: { |
7832 | // Rt must be different from Rn. |
7833 | const unsigned Rt = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 0).getReg()); |
7834 | const unsigned Rn = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 1).getReg()); |
7835 | |
7836 | if (Rt == Rn) |
7837 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7838 | Msg: "destination register and base register can't be identical" ); |
7839 | if (Inst.getOpcode() == ARM::t2LDR_POST_imm || |
7840 | Inst.getOpcode() == ARM::t2STR_POST_imm) { |
7841 | int Imm = Inst.getOperand(i: 2).getImm(); |
7842 | if (Imm > 255 || Imm < -255) |
7843 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7844 | Msg: "operand must be in range [-255, 255]" ); |
7845 | } |
7846 | if (Inst.getOpcode() == ARM::t2STR_PRE_imm || |
7847 | Inst.getOpcode() == ARM::t2STR_POST_imm) { |
7848 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7849 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7850 | Msg: "operand must be a register in range [r0, r14]" ); |
7851 | } |
7852 | } |
7853 | return false; |
7854 | } |
7855 | |
7856 | case ARM::t2LDRB_OFFSET_imm: |
7857 | case ARM::t2LDRB_PRE_imm: |
7858 | case ARM::t2LDRB_POST_imm: |
7859 | case ARM::t2STRB_OFFSET_imm: |
7860 | case ARM::t2STRB_PRE_imm: |
7861 | case ARM::t2STRB_POST_imm: { |
7862 | if (Inst.getOpcode() == ARM::t2LDRB_POST_imm || |
7863 | Inst.getOpcode() == ARM::t2STRB_POST_imm || |
7864 | Inst.getOpcode() == ARM::t2LDRB_PRE_imm || |
7865 | Inst.getOpcode() == ARM::t2STRB_PRE_imm) { |
7866 | int Imm = Inst.getOperand(i: 2).getImm(); |
7867 | if (Imm > 255 || Imm < -255) |
7868 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7869 | Msg: "operand must be in range [-255, 255]" ); |
7870 | } else if (Inst.getOpcode() == ARM::t2LDRB_OFFSET_imm || |
7871 | Inst.getOpcode() == ARM::t2STRB_OFFSET_imm) { |
7872 | int Imm = Inst.getOperand(i: 2).getImm(); |
7873 | if (Imm > 0 || Imm < -255) |
7874 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7875 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7876 | } |
7877 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7878 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7879 | Msg: "if operand is PC, should call the LDRB (literal)" ); |
7880 | } |
7881 | return false; |
7882 | } |
7883 | |
7884 | case ARM::t2LDRH_OFFSET_imm: |
7885 | case ARM::t2LDRH_PRE_imm: |
7886 | case ARM::t2LDRH_POST_imm: |
7887 | case ARM::t2STRH_OFFSET_imm: |
7888 | case ARM::t2STRH_PRE_imm: |
7889 | case ARM::t2STRH_POST_imm: { |
7890 | if (Inst.getOpcode() == ARM::t2LDRH_POST_imm || |
7891 | Inst.getOpcode() == ARM::t2STRH_POST_imm || |
7892 | Inst.getOpcode() == ARM::t2LDRH_PRE_imm || |
7893 | Inst.getOpcode() == ARM::t2STRH_PRE_imm) { |
7894 | int Imm = Inst.getOperand(i: 2).getImm(); |
7895 | if (Imm > 255 || Imm < -255) |
7896 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7897 | Msg: "operand must be in range [-255, 255]" ); |
7898 | } else if (Inst.getOpcode() == ARM::t2LDRH_OFFSET_imm || |
7899 | Inst.getOpcode() == ARM::t2STRH_OFFSET_imm) { |
7900 | int Imm = Inst.getOperand(i: 2).getImm(); |
7901 | if (Imm > 0 || Imm < -255) |
7902 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7903 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7904 | } |
7905 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7906 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7907 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7908 | } |
7909 | return false; |
7910 | } |
7911 | |
7912 | case ARM::t2LDRSB_OFFSET_imm: |
7913 | case ARM::t2LDRSB_PRE_imm: |
7914 | case ARM::t2LDRSB_POST_imm: { |
7915 | if (Inst.getOpcode() == ARM::t2LDRSB_POST_imm || |
7916 | Inst.getOpcode() == ARM::t2LDRSB_PRE_imm) { |
7917 | int Imm = Inst.getOperand(i: 2).getImm(); |
7918 | if (Imm > 255 || Imm < -255) |
7919 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7920 | Msg: "operand must be in range [-255, 255]" ); |
7921 | } else if (Inst.getOpcode() == ARM::t2LDRSB_OFFSET_imm) { |
7922 | int Imm = Inst.getOperand(i: 2).getImm(); |
7923 | if (Imm > 0 || Imm < -255) |
7924 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7925 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7926 | } |
7927 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7928 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7929 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7930 | } |
7931 | return false; |
7932 | } |
7933 | |
7934 | case ARM::t2LDRSH_OFFSET_imm: |
7935 | case ARM::t2LDRSH_PRE_imm: |
7936 | case ARM::t2LDRSH_POST_imm: { |
7937 | if (Inst.getOpcode() == ARM::t2LDRSH_POST_imm || |
7938 | Inst.getOpcode() == ARM::t2LDRSH_PRE_imm) { |
7939 | int Imm = Inst.getOperand(i: 2).getImm(); |
7940 | if (Imm > 255 || Imm < -255) |
7941 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7942 | Msg: "operand must be in range [-255, 255]" ); |
7943 | } else if (Inst.getOpcode() == ARM::t2LDRSH_OFFSET_imm) { |
7944 | int Imm = Inst.getOperand(i: 2).getImm(); |
7945 | if (Imm > 0 || Imm < -255) |
7946 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7947 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7948 | } |
7949 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7950 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7951 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7952 | } |
7953 | return false; |
7954 | } |
7955 | |
7956 | case ARM::LDR_PRE_IMM: |
7957 | case ARM::LDR_PRE_REG: |
7958 | case ARM::t2LDR_PRE: |
7959 | case ARM::LDR_POST_IMM: |
7960 | case ARM::LDR_POST_REG: |
7961 | case ARM::t2LDR_POST: |
7962 | case ARM::LDRH_PRE: |
7963 | case ARM::t2LDRH_PRE: |
7964 | case ARM::LDRH_POST: |
7965 | case ARM::t2LDRH_POST: |
7966 | case ARM::LDRSH_PRE: |
7967 | case ARM::t2LDRSH_PRE: |
7968 | case ARM::LDRSH_POST: |
7969 | case ARM::t2LDRSH_POST: |
7970 | case ARM::LDRB_PRE_IMM: |
7971 | case ARM::LDRB_PRE_REG: |
7972 | case ARM::t2LDRB_PRE: |
7973 | case ARM::LDRB_POST_IMM: |
7974 | case ARM::LDRB_POST_REG: |
7975 | case ARM::t2LDRB_POST: |
7976 | case ARM::LDRSB_PRE: |
7977 | case ARM::t2LDRSB_PRE: |
7978 | case ARM::LDRSB_POST: |
7979 | case ARM::t2LDRSB_POST: { |
7980 | // Rt must be different from Rn. |
7981 | const unsigned Rt = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 0).getReg()); |
7982 | const unsigned Rn = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 2).getReg()); |
7983 | |
7984 | if (Rt == Rn) |
7985 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7986 | Msg: "destination register and base register can't be identical" ); |
7987 | return false; |
7988 | } |
7989 | |
7990 | case ARM::MVE_VLDRBU8_rq: |
7991 | case ARM::MVE_VLDRBU16_rq: |
7992 | case ARM::MVE_VLDRBS16_rq: |
7993 | case ARM::MVE_VLDRBU32_rq: |
7994 | case ARM::MVE_VLDRBS32_rq: |
7995 | case ARM::MVE_VLDRHU16_rq: |
7996 | case ARM::MVE_VLDRHU16_rq_u: |
7997 | case ARM::MVE_VLDRHU32_rq: |
7998 | case ARM::MVE_VLDRHU32_rq_u: |
7999 | case ARM::MVE_VLDRHS32_rq: |
8000 | case ARM::MVE_VLDRHS32_rq_u: |
8001 | case ARM::MVE_VLDRWU32_rq: |
8002 | case ARM::MVE_VLDRWU32_rq_u: |
8003 | case ARM::MVE_VLDRDU64_rq: |
8004 | case ARM::MVE_VLDRDU64_rq_u: |
8005 | case ARM::MVE_VLDRWU32_qi: |
8006 | case ARM::MVE_VLDRWU32_qi_pre: |
8007 | case ARM::MVE_VLDRDU64_qi: |
8008 | case ARM::MVE_VLDRDU64_qi_pre: { |
8009 | // Qd must be different from Qm. |
8010 | unsigned QdIdx = 0, QmIdx = 2; |
8011 | bool QmIsPointer = false; |
8012 | switch (Opcode) { |
8013 | case ARM::MVE_VLDRWU32_qi: |
8014 | case ARM::MVE_VLDRDU64_qi: |
8015 | QmIdx = 1; |
8016 | QmIsPointer = true; |
8017 | break; |
8018 | case ARM::MVE_VLDRWU32_qi_pre: |
8019 | case ARM::MVE_VLDRDU64_qi_pre: |
8020 | QdIdx = 1; |
8021 | QmIsPointer = true; |
8022 | break; |
8023 | } |
8024 | |
8025 | const unsigned Qd = MRI->getEncodingValue(RegNo: Inst.getOperand(i: QdIdx).getReg()); |
8026 | const unsigned Qm = MRI->getEncodingValue(RegNo: Inst.getOperand(i: QmIdx).getReg()); |
8027 | |
8028 | if (Qd == Qm) { |
8029 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8030 | Msg: Twine("destination vector register and vector " ) + |
8031 | (QmIsPointer ? "pointer" : "offset" ) + |
8032 | " register can't be identical" ); |
8033 | } |
8034 | return false; |
8035 | } |
8036 | |
8037 | case ARM::SBFX: |
8038 | case ARM::t2SBFX: |
8039 | case ARM::UBFX: |
8040 | case ARM::t2UBFX: { |
8041 | // Width must be in range [1, 32-lsb]. |
8042 | unsigned LSB = Inst.getOperand(i: 2).getImm(); |
8043 | unsigned Widthm1 = Inst.getOperand(i: 3).getImm(); |
8044 | if (Widthm1 >= 32 - LSB) |
8045 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8046 | Msg: "bitfield width must be in range [1,32-lsb]" ); |
8047 | return false; |
8048 | } |
8049 | // Notionally handles ARM::tLDMIA_UPD too. |
8050 | case ARM::tLDMIA: { |
8051 | // If we're parsing Thumb2, the .w variant is available and handles |
8052 | // most cases that are normally illegal for a Thumb1 LDM instruction. |
8053 | // We'll make the transformation in processInstruction() if necessary. |
8054 | // |
8055 | // Thumb LDM instructions are writeback iff the base register is not |
8056 | // in the register list. |
8057 | unsigned Rn = Inst.getOperand(i: 0).getReg(); |
8058 | bool HasWritebackToken = |
8059 | (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8060 | .isToken() && |
8061 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8062 | .getToken() == "!" ); |
8063 | |
8064 | bool ListContainsBase; |
8065 | if (checkLowRegisterList(Inst, OpNo: 3, Reg: Rn, HiReg: 0, containsReg&: ListContainsBase) && !isThumbTwo()) |
8066 | return Error( |
8067 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
8068 | Msg: "registers must be in range r0-r7" ); |
8069 | // If we should have writeback, then there should be a '!' token. |
8070 | if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) |
8071 | return Error( |
8072 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
8073 | Msg: "writeback operator '!' expected" ); |
8074 | // If we should not have writeback, there must not be a '!'. This is |
8075 | // true even for the 32-bit wide encodings. |
8076 | if (ListContainsBase && HasWritebackToken) |
8077 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8078 | Msg: "writeback operator '!' not allowed when base register " |
8079 | "in register list" ); |
8080 | |
8081 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8082 | return true; |
8083 | break; |
8084 | } |
8085 | case ARM::LDMIA_UPD: |
8086 | case ARM::LDMDB_UPD: |
8087 | case ARM::LDMIB_UPD: |
8088 | case ARM::LDMDA_UPD: |
8089 | // ARM variants loading and updating the same register are only officially |
8090 | // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. |
8091 | if (!hasV7Ops()) |
8092 | break; |
8093 | if (listContainsReg(Inst, OpNo: 3, Reg: Inst.getOperand(i: 0).getReg())) |
8094 | return Error(L: Operands.back()->getStartLoc(), |
8095 | Msg: "writeback register not allowed in register list" ); |
8096 | break; |
8097 | case ARM::t2LDMIA: |
8098 | case ARM::t2LDMDB: |
8099 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8100 | return true; |
8101 | break; |
8102 | case ARM::t2STMIA: |
8103 | case ARM::t2STMDB: |
8104 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8105 | return true; |
8106 | break; |
8107 | case ARM::t2LDMIA_UPD: |
8108 | case ARM::t2LDMDB_UPD: |
8109 | case ARM::t2STMIA_UPD: |
8110 | case ARM::t2STMDB_UPD: |
8111 | if (listContainsReg(Inst, OpNo: 3, Reg: Inst.getOperand(i: 0).getReg())) |
8112 | return Error(L: Operands.back()->getStartLoc(), |
8113 | Msg: "writeback register not allowed in register list" ); |
8114 | |
8115 | if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { |
8116 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8117 | return true; |
8118 | } else { |
8119 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8120 | return true; |
8121 | } |
8122 | break; |
8123 | |
8124 | case ARM::sysLDMIA_UPD: |
8125 | case ARM::sysLDMDA_UPD: |
8126 | case ARM::sysLDMDB_UPD: |
8127 | case ARM::sysLDMIB_UPD: |
8128 | if (!listContainsReg(Inst, OpNo: 3, Reg: ARM::PC)) |
8129 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8130 | Msg: "writeback register only allowed on system LDM " |
8131 | "if PC in register-list" ); |
8132 | break; |
8133 | case ARM::sysSTMIA_UPD: |
8134 | case ARM::sysSTMDA_UPD: |
8135 | case ARM::sysSTMDB_UPD: |
8136 | case ARM::sysSTMIB_UPD: |
8137 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8138 | Msg: "system STM cannot have writeback register" ); |
8139 | // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, |
8140 | // so only issue a diagnostic for thumb1. The instructions will be |
8141 | // switched to the t2 encodings in processInstruction() if necessary. |
8142 | case ARM::tPOP: { |
8143 | bool ListContainsBase; |
8144 | if (checkLowRegisterList(Inst, OpNo: 2, Reg: 0, HiReg: ARM::PC, containsReg&: ListContainsBase) && |
8145 | !isThumbTwo()) |
8146 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8147 | Msg: "registers must be in range r0-r7 or pc" ); |
8148 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 2, IsARPop: !isMClass())) |
8149 | return true; |
8150 | break; |
8151 | } |
8152 | case ARM::tPUSH: { |
8153 | bool ListContainsBase; |
8154 | if (checkLowRegisterList(Inst, OpNo: 2, Reg: 0, HiReg: ARM::LR, containsReg&: ListContainsBase) && |
8155 | !isThumbTwo()) |
8156 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8157 | Msg: "registers must be in range r0-r7 or lr" ); |
8158 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 2)) |
8159 | return true; |
8160 | break; |
8161 | } |
8162 | case ARM::tSTMIA_UPD: { |
8163 | bool ListContainsBase, InvalidLowList; |
8164 | InvalidLowList = checkLowRegisterList(Inst, OpNo: 4, Reg: Inst.getOperand(i: 0).getReg(), |
8165 | HiReg: 0, containsReg&: ListContainsBase); |
8166 | if (InvalidLowList && !isThumbTwo()) |
8167 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8168 | Msg: "registers must be in range r0-r7" ); |
8169 | |
8170 | // This would be converted to a 32-bit stm, but that's not valid if the |
8171 | // writeback register is in the list. |
8172 | if (InvalidLowList && ListContainsBase) |
8173 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8174 | Msg: "writeback operator '!' not allowed when base register " |
8175 | "in register list" ); |
8176 | |
8177 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 4)) |
8178 | return true; |
8179 | break; |
8180 | } |
8181 | case ARM::tADDrSP: |
8182 | // If the non-SP source operand and the destination operand are not the |
8183 | // same, we need thumb2 (for the wide encoding), or we have an error. |
8184 | if (!isThumbTwo() && |
8185 | Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 2).getReg()) { |
8186 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8187 | Msg: "source register must be the same as destination" ); |
8188 | } |
8189 | break; |
8190 | |
8191 | case ARM::t2ADDrr: |
8192 | case ARM::t2ADDrs: |
8193 | case ARM::t2SUBrr: |
8194 | case ARM::t2SUBrs: |
8195 | if (Inst.getOperand(i: 0).getReg() == ARM::SP && |
8196 | Inst.getOperand(i: 1).getReg() != ARM::SP) |
8197 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8198 | Msg: "source register must be sp if destination is sp" ); |
8199 | break; |
8200 | |
8201 | // Final range checking for Thumb unconditional branch instructions. |
8202 | case ARM::tB: |
8203 | if (!(static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd])) |
8204 | .isSignedOffset<11, 1>()) |
8205 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8206 | Msg: "branch target out of range" ); |
8207 | break; |
8208 | case ARM::t2B: { |
8209 | int op = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8210 | : MnemonicOpsEndInd + 1; |
8211 | ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); |
8212 | // Delay the checks of symbolic expressions until they are resolved. |
8213 | if (!isa<MCBinaryExpr>(Val: Operand.getImm()) && |
8214 | !Operand.isSignedOffset<24, 1>()) |
8215 | return Error(L: Operands[op]->getStartLoc(), Msg: "branch target out of range" ); |
8216 | break; |
8217 | } |
8218 | // Final range checking for Thumb conditional branch instructions. |
8219 | case ARM::tBcc: |
8220 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8221 | .isSignedOffset<8, 1>()) |
8222 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8223 | Msg: "branch target out of range" ); |
8224 | break; |
8225 | case ARM::t2Bcc: { |
8226 | int Op = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8227 | : MnemonicOpsEndInd + 1; |
8228 | if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) |
8229 | return Error(L: Operands[Op]->getStartLoc(), Msg: "branch target out of range" ); |
8230 | break; |
8231 | } |
8232 | case ARM::tCBZ: |
8233 | case ARM::tCBNZ: { |
8234 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8235 | .isUnsignedOffset<6, 1>()) |
8236 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8237 | Msg: "branch target out of range" ); |
8238 | break; |
8239 | } |
8240 | case ARM::MOVi16: |
8241 | case ARM::MOVTi16: |
8242 | case ARM::t2MOVi16: |
8243 | case ARM::t2MOVTi16: |
8244 | { |
8245 | // We want to avoid misleadingly allowing something like "mov r0, <symbol>" |
8246 | // especially when we turn it into a movw and the expression <symbol> does |
8247 | // not have a :lower16: or :upper16 as part of the expression. We don't |
8248 | // want the behavior of silently truncating, which can be unexpected and |
8249 | // lead to bugs that are difficult to find since this is an easy mistake |
8250 | // to make. |
8251 | int i = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8252 | : MnemonicOpsEndInd + 1; |
8253 | ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); |
8254 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
8255 | if (CE) break; |
8256 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
8257 | if (!E) break; |
8258 | const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(Val: E); |
8259 | if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && |
8260 | ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) |
8261 | return Error( |
8262 | L: Op.getStartLoc(), |
8263 | Msg: "immediate expression for mov requires :lower16: or :upper16" ); |
8264 | break; |
8265 | } |
8266 | case ARM::tADDi8: { |
8267 | MCParsedAsmOperand &Op = *Operands[MnemonicOpsEndInd + 1]; |
8268 | if (isARMMCExpr(MCOp&: Op) && !isThumbI8Relocation(MCOp&: Op)) |
8269 | return Error(L: Op.getStartLoc(), |
8270 | Msg: "Immediate expression for Thumb adds requires :lower0_7:," |
8271 | " :lower8_15:, :upper0_7: or :upper8_15:" ); |
8272 | break; |
8273 | } |
8274 | case ARM::tMOVi8: { |
8275 | MCParsedAsmOperand &Op = *Operands[MnemonicOpsEndInd]; |
8276 | if (isARMMCExpr(MCOp&: Op) && !isThumbI8Relocation(MCOp&: Op)) |
8277 | return Error(L: Op.getStartLoc(), |
8278 | Msg: "Immediate expression for Thumb movs requires :lower0_7:," |
8279 | " :lower8_15:, :upper0_7: or :upper8_15:" ); |
8280 | break; |
8281 | } |
8282 | case ARM::HINT: |
8283 | case ARM::t2HINT: { |
8284 | unsigned Imm8 = Inst.getOperand(i: 0).getImm(); |
8285 | unsigned Pred = Inst.getOperand(i: 1).getImm(); |
8286 | // ESB is not predicable (pred must be AL). Without the RAS extension, this |
8287 | // behaves as any other unallocated hint. |
8288 | if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) |
8289 | return Error(L: Operands[1]->getStartLoc(), Msg: "instruction 'esb' is not " |
8290 | "predicable, but condition " |
8291 | "code specified" ); |
8292 | if (Imm8 == 0x14 && Pred != ARMCC::AL) |
8293 | return Error(L: Operands[1]->getStartLoc(), Msg: "instruction 'csdb' is not " |
8294 | "predicable, but condition " |
8295 | "code specified" ); |
8296 | break; |
8297 | } |
8298 | case ARM::t2BFi: |
8299 | case ARM::t2BFr: |
8300 | case ARM::t2BFLi: |
8301 | case ARM::t2BFLr: { |
8302 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8303 | .isUnsignedOffset<4, 1>() || |
8304 | (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 0).getImm() == 0)) { |
8305 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8306 | Msg: "branch location out of range or not a multiple of 2" ); |
8307 | } |
8308 | |
8309 | if (Opcode == ARM::t2BFi) { |
8310 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8311 | .isSignedOffset<16, 1>()) |
8312 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8313 | Msg: "branch target out of range or not a multiple of 2" ); |
8314 | } else if (Opcode == ARM::t2BFLi) { |
8315 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8316 | .isSignedOffset<18, 1>()) |
8317 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8318 | Msg: "branch target out of range or not a multiple of 2" ); |
8319 | } |
8320 | break; |
8321 | } |
8322 | case ARM::t2BFic: { |
8323 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8324 | .isUnsignedOffset<4, 1>() || |
8325 | (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 0).getImm() == 0)) |
8326 | return Error(L: Operands[1]->getStartLoc(), |
8327 | Msg: "branch location out of range or not a multiple of 2" ); |
8328 | |
8329 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8330 | .isSignedOffset<16, 1>()) |
8331 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8332 | Msg: "branch target out of range or not a multiple of 2" ); |
8333 | |
8334 | assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && |
8335 | "branch location and else branch target should either both be " |
8336 | "immediates or both labels" ); |
8337 | |
8338 | if (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 2).isImm()) { |
8339 | int Diff = Inst.getOperand(i: 2).getImm() - Inst.getOperand(i: 0).getImm(); |
8340 | if (Diff != 4 && Diff != 2) |
8341 | return Error( |
8342 | L: Operands[3]->getStartLoc(), |
8343 | Msg: "else branch target must be 2 or 4 greater than the branch location" ); |
8344 | } |
8345 | break; |
8346 | } |
8347 | case ARM::t2CLRM: { |
8348 | for (unsigned i = 2; i < Inst.getNumOperands(); i++) { |
8349 | if (Inst.getOperand(i).isReg() && |
8350 | !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( |
8351 | Reg: Inst.getOperand(i).getReg())) { |
8352 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8353 | Msg: "invalid register in register list. Valid registers are " |
8354 | "r0-r12, lr/r14 and APSR." ); |
8355 | } |
8356 | } |
8357 | break; |
8358 | } |
8359 | case ARM::DSB: |
8360 | case ARM::t2DSB: { |
8361 | |
8362 | if (Inst.getNumOperands() < 2) |
8363 | break; |
8364 | |
8365 | unsigned Option = Inst.getOperand(i: 0).getImm(); |
8366 | unsigned Pred = Inst.getOperand(i: 1).getImm(); |
8367 | |
8368 | // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). |
8369 | if (Option == 0 && Pred != ARMCC::AL) |
8370 | return Error(L: Operands[1]->getStartLoc(), |
8371 | Msg: "instruction 'ssbb' is not predicable, but condition code " |
8372 | "specified" ); |
8373 | if (Option == 4 && Pred != ARMCC::AL) |
8374 | return Error(L: Operands[1]->getStartLoc(), |
8375 | Msg: "instruction 'pssbb' is not predicable, but condition code " |
8376 | "specified" ); |
8377 | break; |
8378 | } |
8379 | case ARM::VMOVRRS: { |
8380 | // Source registers must be sequential. |
8381 | const unsigned Sm = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 2).getReg()); |
8382 | const unsigned Sm1 = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 3).getReg()); |
8383 | if (Sm1 != Sm + 1) |
8384 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8385 | Msg: "source operands must be sequential" ); |
8386 | break; |
8387 | } |
8388 | case ARM::VMOVSRR: { |
8389 | // Destination registers must be sequential. |
8390 | const unsigned Sm = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 0).getReg()); |
8391 | const unsigned Sm1 = MRI->getEncodingValue(RegNo: Inst.getOperand(i: 1).getReg()); |
8392 | if (Sm1 != Sm + 1) |
8393 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8394 | Msg: "destination operands must be sequential" ); |
8395 | break; |
8396 | } |
8397 | case ARM::VLDMDIA: |
8398 | case ARM::VSTMDIA: { |
8399 | ARMOperand &Op = |
8400 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
8401 | auto &RegList = Op.getRegList(); |
8402 | if (RegList.size() < 1 || RegList.size() > 16) |
8403 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8404 | Msg: "list of registers must be at least 1 and at most 16" ); |
8405 | break; |
8406 | } |
8407 | case ARM::MVE_VQDMULLs32bh: |
8408 | case ARM::MVE_VQDMULLs32th: |
8409 | case ARM::MVE_VCMULf32: |
8410 | case ARM::MVE_VMULLBs32: |
8411 | case ARM::MVE_VMULLTs32: |
8412 | case ARM::MVE_VMULLBu32: |
8413 | case ARM::MVE_VMULLTu32: { |
8414 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8415 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8416 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8417 | Msg: "Qd register and Qn register can't be identical" ); |
8418 | } |
8419 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8420 | Operands[MnemonicOpsEndInd + 2]->getReg()) { |
8421 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8422 | Msg: "Qd register and Qm register can't be identical" ); |
8423 | } |
8424 | break; |
8425 | } |
8426 | case ARM::MVE_VREV64_8: |
8427 | case ARM::MVE_VREV64_16: |
8428 | case ARM::MVE_VREV64_32: |
8429 | case ARM::MVE_VQDMULL_qr_s32bh: |
8430 | case ARM::MVE_VQDMULL_qr_s32th: { |
8431 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8432 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8433 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8434 | Msg: "Qd register and Qn register can't be identical" ); |
8435 | } |
8436 | break; |
8437 | } |
8438 | case ARM::MVE_VCADDi32: |
8439 | case ARM::MVE_VCADDf32: |
8440 | case ARM::MVE_VHCADDs32: { |
8441 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8442 | Operands[MnemonicOpsEndInd + 2]->getReg()) { |
8443 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8444 | Msg: "Qd register and Qm register can't be identical" ); |
8445 | } |
8446 | break; |
8447 | } |
8448 | case ARM::MVE_VMOV_rr_q: { |
8449 | if (Operands[MnemonicOpsEndInd + 2]->getReg() != |
8450 | Operands[MnemonicOpsEndInd + 4]->getReg()) |
8451 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8452 | Msg: "Q-registers must be the same" ); |
8453 | if (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 3]) |
8454 | .getVectorIndex() != |
8455 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 5]) |
8456 | .getVectorIndex() + |
8457 | 2) |
8458 | return Error(L: Operands[MnemonicOpsEndInd + 3]->getStartLoc(), |
8459 | Msg: "Q-register indexes must be 2 and 0 or 3 and 1" ); |
8460 | break; |
8461 | } |
8462 | case ARM::MVE_VMOV_q_rr: { |
8463 | if (Operands[MnemonicOpsEndInd]->getReg() != |
8464 | Operands[MnemonicOpsEndInd + 2]->getReg()) |
8465 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8466 | Msg: "Q-registers must be the same" ); |
8467 | if (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8468 | .getVectorIndex() != |
8469 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 3]) |
8470 | .getVectorIndex() + |
8471 | 2) |
8472 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8473 | Msg: "Q-register indexes must be 2 and 0 or 3 and 1" ); |
8474 | break; |
8475 | } |
8476 | case ARM::MVE_SQRSHR: |
8477 | case ARM::MVE_UQRSHL: { |
8478 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8479 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8480 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8481 | Msg: "Rda register and Rm register can't be identical" ); |
8482 | } |
8483 | break; |
8484 | } |
8485 | case ARM::UMAAL: |
8486 | case ARM::UMLAL: |
8487 | case ARM::UMULL: |
8488 | case ARM::t2UMAAL: |
8489 | case ARM::t2UMLAL: |
8490 | case ARM::t2UMULL: |
8491 | case ARM::SMLAL: |
8492 | case ARM::SMLALBB: |
8493 | case ARM::SMLALBT: |
8494 | case ARM::SMLALD: |
8495 | case ARM::SMLALDX: |
8496 | case ARM::SMLALTB: |
8497 | case ARM::SMLALTT: |
8498 | case ARM::SMLSLD: |
8499 | case ARM::SMLSLDX: |
8500 | case ARM::SMULL: |
8501 | case ARM::t2SMLAL: |
8502 | case ARM::t2SMLALBB: |
8503 | case ARM::t2SMLALBT: |
8504 | case ARM::t2SMLALD: |
8505 | case ARM::t2SMLALDX: |
8506 | case ARM::t2SMLALTB: |
8507 | case ARM::t2SMLALTT: |
8508 | case ARM::t2SMLSLD: |
8509 | case ARM::t2SMLSLDX: |
8510 | case ARM::t2SMULL: { |
8511 | unsigned RdHi = Inst.getOperand(i: 0).getReg(); |
8512 | unsigned RdLo = Inst.getOperand(i: 1).getReg(); |
8513 | if(RdHi == RdLo) { |
8514 | return Error(L: Loc, |
8515 | Msg: "unpredictable instruction, RdHi and RdLo must be different" ); |
8516 | } |
8517 | break; |
8518 | } |
8519 | |
8520 | case ARM::CDE_CX1: |
8521 | case ARM::CDE_CX1A: |
8522 | case ARM::CDE_CX1D: |
8523 | case ARM::CDE_CX1DA: |
8524 | case ARM::CDE_CX2: |
8525 | case ARM::CDE_CX2A: |
8526 | case ARM::CDE_CX2D: |
8527 | case ARM::CDE_CX2DA: |
8528 | case ARM::CDE_CX3: |
8529 | case ARM::CDE_CX3A: |
8530 | case ARM::CDE_CX3D: |
8531 | case ARM::CDE_CX3DA: |
8532 | case ARM::CDE_VCX1_vec: |
8533 | case ARM::CDE_VCX1_fpsp: |
8534 | case ARM::CDE_VCX1_fpdp: |
8535 | case ARM::CDE_VCX1A_vec: |
8536 | case ARM::CDE_VCX1A_fpsp: |
8537 | case ARM::CDE_VCX1A_fpdp: |
8538 | case ARM::CDE_VCX2_vec: |
8539 | case ARM::CDE_VCX2_fpsp: |
8540 | case ARM::CDE_VCX2_fpdp: |
8541 | case ARM::CDE_VCX2A_vec: |
8542 | case ARM::CDE_VCX2A_fpsp: |
8543 | case ARM::CDE_VCX2A_fpdp: |
8544 | case ARM::CDE_VCX3_vec: |
8545 | case ARM::CDE_VCX3_fpsp: |
8546 | case ARM::CDE_VCX3_fpdp: |
8547 | case ARM::CDE_VCX3A_vec: |
8548 | case ARM::CDE_VCX3A_fpsp: |
8549 | case ARM::CDE_VCX3A_fpdp: { |
8550 | assert(Inst.getOperand(1).isImm() && |
8551 | "CDE operand 1 must be a coprocessor ID" ); |
8552 | int64_t Coproc = Inst.getOperand(i: 1).getImm(); |
8553 | if (Coproc < 8 && !ARM::isCDECoproc(Coproc, STI: *STI)) |
8554 | return Error(L: Operands[1]->getStartLoc(), |
8555 | Msg: "coprocessor must be configured as CDE" ); |
8556 | else if (Coproc >= 8) |
8557 | return Error(L: Operands[1]->getStartLoc(), |
8558 | Msg: "coprocessor must be in the range [p0, p7]" ); |
8559 | break; |
8560 | } |
8561 | |
8562 | case ARM::t2CDP: |
8563 | case ARM::t2CDP2: |
8564 | case ARM::t2LDC2L_OFFSET: |
8565 | case ARM::t2LDC2L_OPTION: |
8566 | case ARM::t2LDC2L_POST: |
8567 | case ARM::t2LDC2L_PRE: |
8568 | case ARM::t2LDC2_OFFSET: |
8569 | case ARM::t2LDC2_OPTION: |
8570 | case ARM::t2LDC2_POST: |
8571 | case ARM::t2LDC2_PRE: |
8572 | case ARM::t2LDCL_OFFSET: |
8573 | case ARM::t2LDCL_OPTION: |
8574 | case ARM::t2LDCL_POST: |
8575 | case ARM::t2LDCL_PRE: |
8576 | case ARM::t2LDC_OFFSET: |
8577 | case ARM::t2LDC_OPTION: |
8578 | case ARM::t2LDC_POST: |
8579 | case ARM::t2LDC_PRE: |
8580 | case ARM::t2MCR: |
8581 | case ARM::t2MCR2: |
8582 | case ARM::t2MCRR: |
8583 | case ARM::t2MCRR2: |
8584 | case ARM::t2MRC: |
8585 | case ARM::t2MRC2: |
8586 | case ARM::t2MRRC: |
8587 | case ARM::t2MRRC2: |
8588 | case ARM::t2STC2L_OFFSET: |
8589 | case ARM::t2STC2L_OPTION: |
8590 | case ARM::t2STC2L_POST: |
8591 | case ARM::t2STC2L_PRE: |
8592 | case ARM::t2STC2_OFFSET: |
8593 | case ARM::t2STC2_OPTION: |
8594 | case ARM::t2STC2_POST: |
8595 | case ARM::t2STC2_PRE: |
8596 | case ARM::t2STCL_OFFSET: |
8597 | case ARM::t2STCL_OPTION: |
8598 | case ARM::t2STCL_POST: |
8599 | case ARM::t2STCL_PRE: |
8600 | case ARM::t2STC_OFFSET: |
8601 | case ARM::t2STC_OPTION: |
8602 | case ARM::t2STC_POST: |
8603 | case ARM::t2STC_PRE: { |
8604 | unsigned Opcode = Inst.getOpcode(); |
8605 | // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, |
8606 | // CopInd is the index of the coprocessor operand. |
8607 | size_t CopInd = 0; |
8608 | if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) |
8609 | CopInd = 2; |
8610 | else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) |
8611 | CopInd = 1; |
8612 | assert(Inst.getOperand(CopInd).isImm() && |
8613 | "Operand must be a coprocessor ID" ); |
8614 | int64_t Coproc = Inst.getOperand(i: CopInd).getImm(); |
8615 | // Operands[2] is the coprocessor operand at syntactic level |
8616 | if (ARM::isCDECoproc(Coproc, STI: *STI)) |
8617 | return Error(L: Operands[2]->getStartLoc(), |
8618 | Msg: "coprocessor must be configured as GCP" ); |
8619 | break; |
8620 | } |
8621 | } |
8622 | |
8623 | return false; |
8624 | } |
8625 | |
8626 | static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { |
8627 | switch(Opc) { |
8628 | default: llvm_unreachable("unexpected opcode!" ); |
8629 | // VST1LN |
8630 | case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
8631 | case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
8632 | case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
8633 | case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
8634 | case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
8635 | case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
8636 | case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; |
8637 | case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; |
8638 | case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; |
8639 | |
8640 | // VST2LN |
8641 | case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
8642 | case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
8643 | case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
8644 | case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
8645 | case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
8646 | |
8647 | case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
8648 | case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
8649 | case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
8650 | case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
8651 | case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
8652 | |
8653 | case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; |
8654 | case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; |
8655 | case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; |
8656 | case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; |
8657 | case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; |
8658 | |
8659 | // VST3LN |
8660 | case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
8661 | case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
8662 | case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
8663 | case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; |
8664 | case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
8665 | case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
8666 | case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
8667 | case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
8668 | case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; |
8669 | case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
8670 | case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; |
8671 | case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; |
8672 | case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; |
8673 | case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; |
8674 | case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; |
8675 | |
8676 | // VST3 |
8677 | case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
8678 | case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
8679 | case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
8680 | case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
8681 | case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
8682 | case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
8683 | case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
8684 | case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
8685 | case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
8686 | case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
8687 | case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
8688 | case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
8689 | case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; |
8690 | case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; |
8691 | case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; |
8692 | case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; |
8693 | case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; |
8694 | case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; |
8695 | |
8696 | // VST4LN |
8697 | case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
8698 | case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
8699 | case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
8700 | case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; |
8701 | case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
8702 | case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
8703 | case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
8704 | case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
8705 | case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; |
8706 | case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
8707 | case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; |
8708 | case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; |
8709 | case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; |
8710 | case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; |
8711 | case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; |
8712 | |
8713 | // VST4 |
8714 | case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
8715 | case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
8716 | case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
8717 | case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
8718 | case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
8719 | case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
8720 | case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
8721 | case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
8722 | case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
8723 | case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
8724 | case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
8725 | case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
8726 | case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; |
8727 | case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; |
8728 | case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; |
8729 | case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; |
8730 | case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; |
8731 | case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; |
8732 | } |
8733 | } |
8734 | |
8735 | static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { |
8736 | switch(Opc) { |
8737 | default: llvm_unreachable("unexpected opcode!" ); |
8738 | // VLD1LN |
8739 | case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
8740 | case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
8741 | case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
8742 | case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
8743 | case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
8744 | case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
8745 | case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; |
8746 | case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; |
8747 | case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; |
8748 | |
8749 | // VLD2LN |
8750 | case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
8751 | case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
8752 | case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
8753 | case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; |
8754 | case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
8755 | case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
8756 | case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
8757 | case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
8758 | case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; |
8759 | case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
8760 | case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; |
8761 | case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; |
8762 | case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; |
8763 | case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; |
8764 | case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; |
8765 | |
8766 | // VLD3DUP |
8767 | case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
8768 | case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
8769 | case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
8770 | case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; |
8771 | case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
8772 | case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
8773 | case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
8774 | case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
8775 | case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
8776 | case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; |
8777 | case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
8778 | case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
8779 | case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; |
8780 | case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; |
8781 | case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; |
8782 | case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; |
8783 | case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; |
8784 | case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; |
8785 | |
8786 | // VLD3LN |
8787 | case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
8788 | case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
8789 | case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
8790 | case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; |
8791 | case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
8792 | case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
8793 | case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
8794 | case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
8795 | case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; |
8796 | case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
8797 | case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; |
8798 | case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; |
8799 | case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; |
8800 | case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; |
8801 | case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; |
8802 | |
8803 | // VLD3 |
8804 | case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
8805 | case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
8806 | case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
8807 | case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
8808 | case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
8809 | case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
8810 | case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
8811 | case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
8812 | case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
8813 | case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
8814 | case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
8815 | case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
8816 | case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; |
8817 | case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; |
8818 | case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; |
8819 | case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; |
8820 | case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; |
8821 | case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; |
8822 | |
8823 | // VLD4LN |
8824 | case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
8825 | case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
8826 | case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
8827 | case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
8828 | case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
8829 | case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
8830 | case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
8831 | case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
8832 | case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
8833 | case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
8834 | case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; |
8835 | case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; |
8836 | case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; |
8837 | case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; |
8838 | case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; |
8839 | |
8840 | // VLD4DUP |
8841 | case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
8842 | case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
8843 | case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
8844 | case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; |
8845 | case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; |
8846 | case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
8847 | case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
8848 | case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
8849 | case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
8850 | case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; |
8851 | case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; |
8852 | case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
8853 | case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; |
8854 | case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; |
8855 | case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; |
8856 | case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; |
8857 | case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; |
8858 | case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; |
8859 | |
8860 | // VLD4 |
8861 | case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
8862 | case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
8863 | case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
8864 | case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
8865 | case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
8866 | case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
8867 | case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
8868 | case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
8869 | case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
8870 | case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
8871 | case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
8872 | case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
8873 | case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; |
8874 | case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; |
8875 | case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; |
8876 | case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; |
8877 | case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; |
8878 | case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; |
8879 | } |
8880 | } |
8881 | |
8882 | bool ARMAsmParser::processInstruction(MCInst &Inst, |
8883 | const OperandVector &Operands, |
8884 | unsigned MnemonicOpsEndInd, |
8885 | MCStreamer &Out) { |
8886 | // Check if we have the wide qualifier, because if it's present we |
8887 | // must avoid selecting a 16-bit thumb instruction. |
8888 | bool HasWideQualifier = false; |
8889 | for (auto &Op : Operands) { |
8890 | ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); |
8891 | if (ARMOp.isToken() && ARMOp.getToken() == ".w" ) { |
8892 | HasWideQualifier = true; |
8893 | break; |
8894 | } |
8895 | } |
8896 | |
8897 | switch (Inst.getOpcode()) { |
8898 | case ARM::VLLDM: |
8899 | case ARM::VLSTM: { |
8900 | // In some cases both T1 and T2 are valid, causing tablegen pick T1 instead |
8901 | // of T2 |
8902 | if (Operands.size() == |
8903 | MnemonicOpsEndInd + 2) { // a register list has been provided |
8904 | ARMOperand &Op = static_cast<ARMOperand &>( |
8905 | *Operands[MnemonicOpsEndInd + 1]); // the register list, a dpr_reglist |
8906 | assert(Op.isDPRRegList()); |
8907 | auto &RegList = Op.getRegList(); |
8908 | // When the register list is {d0-d31} the instruction has to be the T2 |
8909 | // variant |
8910 | if (RegList.size() == 32) { |
8911 | const unsigned Opcode = |
8912 | (Inst.getOpcode() == ARM::VLLDM) ? ARM::VLLDM_T2 : ARM::VLSTM_T2; |
8913 | MCInst TmpInst; |
8914 | TmpInst.setOpcode(Opcode); |
8915 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8916 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8917 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
8918 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
8919 | Inst = TmpInst; |
8920 | return true; |
8921 | } |
8922 | } |
8923 | return false; |
8924 | } |
8925 | // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. |
8926 | case ARM::LDRT_POST: |
8927 | case ARM::LDRBT_POST: { |
8928 | const unsigned Opcode = |
8929 | (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM |
8930 | : ARM::LDRBT_POST_IMM; |
8931 | MCInst TmpInst; |
8932 | TmpInst.setOpcode(Opcode); |
8933 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8934 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8935 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8936 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
8937 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); |
8938 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
8939 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
8940 | Inst = TmpInst; |
8941 | return true; |
8942 | } |
8943 | // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. |
8944 | case ARM::LDRSBTii: |
8945 | case ARM::LDRHTii: |
8946 | case ARM::LDRSHTii: { |
8947 | MCInst TmpInst; |
8948 | |
8949 | if (Inst.getOpcode() == ARM::LDRSBTii) |
8950 | TmpInst.setOpcode(ARM::LDRSBTi); |
8951 | else if (Inst.getOpcode() == ARM::LDRHTii) |
8952 | TmpInst.setOpcode(ARM::LDRHTi); |
8953 | else if (Inst.getOpcode() == ARM::LDRSHTii) |
8954 | TmpInst.setOpcode(ARM::LDRSHTi); |
8955 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8956 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8957 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8958 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 256)); |
8959 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
8960 | Inst = TmpInst; |
8961 | return true; |
8962 | } |
8963 | // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. |
8964 | case ARM::STRT_POST: |
8965 | case ARM::STRBT_POST: { |
8966 | const unsigned Opcode = |
8967 | (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM |
8968 | : ARM::STRBT_POST_IMM; |
8969 | MCInst TmpInst; |
8970 | TmpInst.setOpcode(Opcode); |
8971 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8972 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8973 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8974 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
8975 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); |
8976 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
8977 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
8978 | Inst = TmpInst; |
8979 | return true; |
8980 | } |
8981 | // Alias for alternate form of 'ADR Rd, #imm' instruction. |
8982 | case ARM::ADDri: { |
8983 | if (Inst.getOperand(i: 1).getReg() != ARM::PC || |
8984 | Inst.getOperand(i: 5).getReg() != 0 || |
8985 | !(Inst.getOperand(i: 2).isExpr() || Inst.getOperand(i: 2).isImm())) |
8986 | return false; |
8987 | MCInst TmpInst; |
8988 | TmpInst.setOpcode(ARM::ADR); |
8989 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8990 | if (Inst.getOperand(i: 2).isImm()) { |
8991 | // Immediate (mod_imm) will be in its encoded form, we must unencode it |
8992 | // before passing it to the ADR instruction. |
8993 | unsigned Enc = Inst.getOperand(i: 2).getImm(); |
8994 | TmpInst.addOperand(Op: MCOperand::createImm( |
8995 | Val: llvm::rotr<uint32_t>(V: Enc & 0xFF, R: (Enc & 0xF00) >> 7))); |
8996 | } else { |
8997 | // Turn PC-relative expression into absolute expression. |
8998 | // Reading PC provides the start of the current instruction + 8 and |
8999 | // the transform to adr is biased by that. |
9000 | MCSymbol *Dot = getContext().createTempSymbol(); |
9001 | Out.emitLabel(Symbol: Dot); |
9002 | const MCExpr *OpExpr = Inst.getOperand(i: 2).getExpr(); |
9003 | const MCExpr *InstPC = MCSymbolRefExpr::create(Symbol: Dot, |
9004 | Kind: MCSymbolRefExpr::VK_None, |
9005 | Ctx&: getContext()); |
9006 | const MCExpr *Const8 = MCConstantExpr::create(Value: 8, Ctx&: getContext()); |
9007 | const MCExpr *ReadPC = MCBinaryExpr::createAdd(LHS: InstPC, RHS: Const8, |
9008 | Ctx&: getContext()); |
9009 | const MCExpr *FixupAddr = MCBinaryExpr::createAdd(LHS: ReadPC, RHS: OpExpr, |
9010 | Ctx&: getContext()); |
9011 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: FixupAddr)); |
9012 | } |
9013 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
9014 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9015 | Inst = TmpInst; |
9016 | return true; |
9017 | } |
9018 | // Aliases for imm syntax of LDR instructions. |
9019 | case ARM::t2LDR_PRE_imm: |
9020 | case ARM::t2LDR_POST_imm: { |
9021 | MCInst TmpInst; |
9022 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE |
9023 | : ARM::t2LDR_POST); |
9024 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9025 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9026 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9027 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9028 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9029 | Inst = TmpInst; |
9030 | return true; |
9031 | } |
9032 | // Aliases for imm syntax of STR instructions. |
9033 | case ARM::t2STR_PRE_imm: |
9034 | case ARM::t2STR_POST_imm: { |
9035 | MCInst TmpInst; |
9036 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE |
9037 | : ARM::t2STR_POST); |
9038 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9039 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9040 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9041 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9042 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9043 | Inst = TmpInst; |
9044 | return true; |
9045 | } |
9046 | // Aliases for imm syntax of LDRB instructions. |
9047 | case ARM::t2LDRB_OFFSET_imm: { |
9048 | MCInst TmpInst; |
9049 | TmpInst.setOpcode(ARM::t2LDRBi8); |
9050 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9051 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9052 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9053 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9054 | Inst = TmpInst; |
9055 | return true; |
9056 | } |
9057 | case ARM::t2LDRB_PRE_imm: |
9058 | case ARM::t2LDRB_POST_imm: { |
9059 | MCInst TmpInst; |
9060 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRB_PRE_imm |
9061 | ? ARM::t2LDRB_PRE |
9062 | : ARM::t2LDRB_POST); |
9063 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9064 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9065 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9066 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9067 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9068 | Inst = TmpInst; |
9069 | return true; |
9070 | } |
9071 | // Aliases for imm syntax of STRB instructions. |
9072 | case ARM::t2STRB_OFFSET_imm: { |
9073 | MCInst TmpInst; |
9074 | TmpInst.setOpcode(ARM::t2STRBi8); |
9075 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9076 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9077 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9078 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9079 | Inst = TmpInst; |
9080 | return true; |
9081 | } |
9082 | case ARM::t2STRB_PRE_imm: |
9083 | case ARM::t2STRB_POST_imm: { |
9084 | MCInst TmpInst; |
9085 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STRB_PRE_imm |
9086 | ? ARM::t2STRB_PRE |
9087 | : ARM::t2STRB_POST); |
9088 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9089 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9090 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9091 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9092 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9093 | Inst = TmpInst; |
9094 | return true; |
9095 | } |
9096 | // Aliases for imm syntax of LDRH instructions. |
9097 | case ARM::t2LDRH_OFFSET_imm: { |
9098 | MCInst TmpInst; |
9099 | TmpInst.setOpcode(ARM::t2LDRHi8); |
9100 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9101 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9102 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9103 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9104 | Inst = TmpInst; |
9105 | return true; |
9106 | } |
9107 | case ARM::t2LDRH_PRE_imm: |
9108 | case ARM::t2LDRH_POST_imm: { |
9109 | MCInst TmpInst; |
9110 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRH_PRE_imm |
9111 | ? ARM::t2LDRH_PRE |
9112 | : ARM::t2LDRH_POST); |
9113 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9114 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9115 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9116 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9117 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9118 | Inst = TmpInst; |
9119 | return true; |
9120 | } |
9121 | // Aliases for imm syntax of STRH instructions. |
9122 | case ARM::t2STRH_OFFSET_imm: { |
9123 | MCInst TmpInst; |
9124 | TmpInst.setOpcode(ARM::t2STRHi8); |
9125 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9126 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9127 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9128 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9129 | Inst = TmpInst; |
9130 | return true; |
9131 | } |
9132 | case ARM::t2STRH_PRE_imm: |
9133 | case ARM::t2STRH_POST_imm: { |
9134 | MCInst TmpInst; |
9135 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STRH_PRE_imm |
9136 | ? ARM::t2STRH_PRE |
9137 | : ARM::t2STRH_POST); |
9138 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9139 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9140 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9141 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9142 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9143 | Inst = TmpInst; |
9144 | return true; |
9145 | } |
9146 | // Aliases for imm syntax of LDRSB instructions. |
9147 | case ARM::t2LDRSB_OFFSET_imm: { |
9148 | MCInst TmpInst; |
9149 | TmpInst.setOpcode(ARM::t2LDRSBi8); |
9150 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9151 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9152 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9153 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9154 | Inst = TmpInst; |
9155 | return true; |
9156 | } |
9157 | case ARM::t2LDRSB_PRE_imm: |
9158 | case ARM::t2LDRSB_POST_imm: { |
9159 | MCInst TmpInst; |
9160 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRSB_PRE_imm |
9161 | ? ARM::t2LDRSB_PRE |
9162 | : ARM::t2LDRSB_POST); |
9163 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9164 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9165 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9166 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9167 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9168 | Inst = TmpInst; |
9169 | return true; |
9170 | } |
9171 | // Aliases for imm syntax of LDRSH instructions. |
9172 | case ARM::t2LDRSH_OFFSET_imm: { |
9173 | MCInst TmpInst; |
9174 | TmpInst.setOpcode(ARM::t2LDRSHi8); |
9175 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9176 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9177 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9178 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9179 | Inst = TmpInst; |
9180 | return true; |
9181 | } |
9182 | case ARM::t2LDRSH_PRE_imm: |
9183 | case ARM::t2LDRSH_POST_imm: { |
9184 | MCInst TmpInst; |
9185 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRSH_PRE_imm |
9186 | ? ARM::t2LDRSH_PRE |
9187 | : ARM::t2LDRSH_POST); |
9188 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9189 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt_wb |
9190 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9191 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9192 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9193 | Inst = TmpInst; |
9194 | return true; |
9195 | } |
9196 | // Aliases for alternate PC+imm syntax of LDR instructions. |
9197 | case ARM::t2LDRpcrel: |
9198 | // Select the narrow version if the immediate will fit. |
9199 | if (Inst.getOperand(i: 1).getImm() > 0 && |
9200 | Inst.getOperand(i: 1).getImm() <= 0xff && |
9201 | !HasWideQualifier) |
9202 | Inst.setOpcode(ARM::tLDRpci); |
9203 | else |
9204 | Inst.setOpcode(ARM::t2LDRpci); |
9205 | return true; |
9206 | case ARM::t2LDRBpcrel: |
9207 | Inst.setOpcode(ARM::t2LDRBpci); |
9208 | return true; |
9209 | case ARM::t2LDRHpcrel: |
9210 | Inst.setOpcode(ARM::t2LDRHpci); |
9211 | return true; |
9212 | case ARM::t2LDRSBpcrel: |
9213 | Inst.setOpcode(ARM::t2LDRSBpci); |
9214 | return true; |
9215 | case ARM::t2LDRSHpcrel: |
9216 | Inst.setOpcode(ARM::t2LDRSHpci); |
9217 | return true; |
9218 | case ARM::LDRConstPool: |
9219 | case ARM::tLDRConstPool: |
9220 | case ARM::t2LDRConstPool: { |
9221 | // Pseudo instruction ldr rt, =immediate is converted to a |
9222 | // MOV rt, immediate if immediate is known and representable |
9223 | // otherwise we create a constant pool entry that we load from. |
9224 | MCInst TmpInst; |
9225 | if (Inst.getOpcode() == ARM::LDRConstPool) |
9226 | TmpInst.setOpcode(ARM::LDRi12); |
9227 | else if (Inst.getOpcode() == ARM::tLDRConstPool) |
9228 | TmpInst.setOpcode(ARM::tLDRpci); |
9229 | else if (Inst.getOpcode() == ARM::t2LDRConstPool) |
9230 | TmpInst.setOpcode(ARM::t2LDRpci); |
9231 | const ARMOperand &PoolOperand = |
9232 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
9233 | const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); |
9234 | // If SubExprVal is a constant we may be able to use a MOV |
9235 | if (isa<MCConstantExpr>(Val: SubExprVal) && |
9236 | Inst.getOperand(i: 0).getReg() != ARM::PC && |
9237 | Inst.getOperand(i: 0).getReg() != ARM::SP) { |
9238 | int64_t Value = |
9239 | (int64_t) (cast<MCConstantExpr>(Val: SubExprVal))->getValue(); |
9240 | bool UseMov = true; |
9241 | bool MovHasS = true; |
9242 | if (Inst.getOpcode() == ARM::LDRConstPool) { |
9243 | // ARM Constant |
9244 | if (ARM_AM::getSOImmVal(Arg: Value) != -1) { |
9245 | Value = ARM_AM::getSOImmVal(Arg: Value); |
9246 | TmpInst.setOpcode(ARM::MOVi); |
9247 | } |
9248 | else if (ARM_AM::getSOImmVal(Arg: ~Value) != -1) { |
9249 | Value = ARM_AM::getSOImmVal(Arg: ~Value); |
9250 | TmpInst.setOpcode(ARM::MVNi); |
9251 | } |
9252 | else if (hasV6T2Ops() && |
9253 | Value >=0 && Value < 65536) { |
9254 | TmpInst.setOpcode(ARM::MOVi16); |
9255 | MovHasS = false; |
9256 | } |
9257 | else |
9258 | UseMov = false; |
9259 | } |
9260 | else { |
9261 | // Thumb/Thumb2 Constant |
9262 | if (hasThumb2() && |
9263 | ARM_AM::getT2SOImmVal(Arg: Value) != -1) |
9264 | TmpInst.setOpcode(ARM::t2MOVi); |
9265 | else if (hasThumb2() && |
9266 | ARM_AM::getT2SOImmVal(Arg: ~Value) != -1) { |
9267 | TmpInst.setOpcode(ARM::t2MVNi); |
9268 | Value = ~Value; |
9269 | } |
9270 | else if (hasV8MBaseline() && |
9271 | Value >=0 && Value < 65536) { |
9272 | TmpInst.setOpcode(ARM::t2MOVi16); |
9273 | MovHasS = false; |
9274 | } |
9275 | else |
9276 | UseMov = false; |
9277 | } |
9278 | if (UseMov) { |
9279 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9280 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Value)); // Immediate |
9281 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
9282 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9283 | if (MovHasS) |
9284 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // S |
9285 | Inst = TmpInst; |
9286 | return true; |
9287 | } |
9288 | } |
9289 | // No opportunity to use MOV/MVN create constant pool |
9290 | const MCExpr *CPLoc = |
9291 | getTargetStreamer().addConstantPoolEntry(SubExprVal, |
9292 | Loc: PoolOperand.getStartLoc()); |
9293 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9294 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: CPLoc)); // offset to constpool |
9295 | if (TmpInst.getOpcode() == ARM::LDRi12) |
9296 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); // unused offset |
9297 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
9298 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9299 | Inst = TmpInst; |
9300 | return true; |
9301 | } |
9302 | // Handle NEON VST complex aliases. |
9303 | case ARM::VST1LNdWB_register_Asm_8: |
9304 | case ARM::VST1LNdWB_register_Asm_16: |
9305 | case ARM::VST1LNdWB_register_Asm_32: { |
9306 | MCInst TmpInst; |
9307 | // Shuffle the operands around so the lane index operand is in the |
9308 | // right place. |
9309 | unsigned Spacing; |
9310 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9311 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9312 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9313 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9314 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9315 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9316 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9317 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9318 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9319 | Inst = TmpInst; |
9320 | return true; |
9321 | } |
9322 | |
9323 | case ARM::VST2LNdWB_register_Asm_8: |
9324 | case ARM::VST2LNdWB_register_Asm_16: |
9325 | case ARM::VST2LNdWB_register_Asm_32: |
9326 | case ARM::VST2LNqWB_register_Asm_16: |
9327 | case ARM::VST2LNqWB_register_Asm_32: { |
9328 | MCInst TmpInst; |
9329 | // Shuffle the operands around so the lane index operand is in the |
9330 | // right place. |
9331 | unsigned Spacing; |
9332 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9333 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9334 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9335 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9336 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9337 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9338 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9339 | Spacing)); |
9340 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9341 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9342 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9343 | Inst = TmpInst; |
9344 | return true; |
9345 | } |
9346 | |
9347 | case ARM::VST3LNdWB_register_Asm_8: |
9348 | case ARM::VST3LNdWB_register_Asm_16: |
9349 | case ARM::VST3LNdWB_register_Asm_32: |
9350 | case ARM::VST3LNqWB_register_Asm_16: |
9351 | case ARM::VST3LNqWB_register_Asm_32: { |
9352 | MCInst TmpInst; |
9353 | // Shuffle the operands around so the lane index operand is in the |
9354 | // right place. |
9355 | unsigned Spacing; |
9356 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9357 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9358 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9359 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9360 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9361 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9362 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9363 | Spacing)); |
9364 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9365 | Spacing * 2)); |
9366 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9367 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9368 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9369 | Inst = TmpInst; |
9370 | return true; |
9371 | } |
9372 | |
9373 | case ARM::VST4LNdWB_register_Asm_8: |
9374 | case ARM::VST4LNdWB_register_Asm_16: |
9375 | case ARM::VST4LNdWB_register_Asm_32: |
9376 | case ARM::VST4LNqWB_register_Asm_16: |
9377 | case ARM::VST4LNqWB_register_Asm_32: { |
9378 | MCInst TmpInst; |
9379 | // Shuffle the operands around so the lane index operand is in the |
9380 | // right place. |
9381 | unsigned Spacing; |
9382 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9383 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9384 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9385 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9386 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9387 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9388 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9389 | Spacing)); |
9390 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9391 | Spacing * 2)); |
9392 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9393 | Spacing * 3)); |
9394 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9395 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9396 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9397 | Inst = TmpInst; |
9398 | return true; |
9399 | } |
9400 | |
9401 | case ARM::VST1LNdWB_fixed_Asm_8: |
9402 | case ARM::VST1LNdWB_fixed_Asm_16: |
9403 | case ARM::VST1LNdWB_fixed_Asm_32: { |
9404 | MCInst TmpInst; |
9405 | // Shuffle the operands around so the lane index operand is in the |
9406 | // right place. |
9407 | unsigned Spacing; |
9408 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9409 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9410 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9411 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9412 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9413 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9414 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9415 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9416 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9417 | Inst = TmpInst; |
9418 | return true; |
9419 | } |
9420 | |
9421 | case ARM::VST2LNdWB_fixed_Asm_8: |
9422 | case ARM::VST2LNdWB_fixed_Asm_16: |
9423 | case ARM::VST2LNdWB_fixed_Asm_32: |
9424 | case ARM::VST2LNqWB_fixed_Asm_16: |
9425 | case ARM::VST2LNqWB_fixed_Asm_32: { |
9426 | MCInst TmpInst; |
9427 | // Shuffle the operands around so the lane index operand is in the |
9428 | // right place. |
9429 | unsigned Spacing; |
9430 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9431 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9432 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9433 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9434 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9435 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9436 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9437 | Spacing)); |
9438 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9439 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9440 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9441 | Inst = TmpInst; |
9442 | return true; |
9443 | } |
9444 | |
9445 | case ARM::VST3LNdWB_fixed_Asm_8: |
9446 | case ARM::VST3LNdWB_fixed_Asm_16: |
9447 | case ARM::VST3LNdWB_fixed_Asm_32: |
9448 | case ARM::VST3LNqWB_fixed_Asm_16: |
9449 | case ARM::VST3LNqWB_fixed_Asm_32: { |
9450 | MCInst TmpInst; |
9451 | // Shuffle the operands around so the lane index operand is in the |
9452 | // right place. |
9453 | unsigned Spacing; |
9454 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9455 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9456 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9457 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9458 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9459 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9460 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9461 | Spacing)); |
9462 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9463 | Spacing * 2)); |
9464 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9465 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9466 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9467 | Inst = TmpInst; |
9468 | return true; |
9469 | } |
9470 | |
9471 | case ARM::VST4LNdWB_fixed_Asm_8: |
9472 | case ARM::VST4LNdWB_fixed_Asm_16: |
9473 | case ARM::VST4LNdWB_fixed_Asm_32: |
9474 | case ARM::VST4LNqWB_fixed_Asm_16: |
9475 | case ARM::VST4LNqWB_fixed_Asm_32: { |
9476 | MCInst TmpInst; |
9477 | // Shuffle the operands around so the lane index operand is in the |
9478 | // right place. |
9479 | unsigned Spacing; |
9480 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9481 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9482 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9483 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9484 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9485 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9486 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9487 | Spacing)); |
9488 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9489 | Spacing * 2)); |
9490 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9491 | Spacing * 3)); |
9492 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9493 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9494 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9495 | Inst = TmpInst; |
9496 | return true; |
9497 | } |
9498 | |
9499 | case ARM::VST1LNdAsm_8: |
9500 | case ARM::VST1LNdAsm_16: |
9501 | case ARM::VST1LNdAsm_32: { |
9502 | MCInst TmpInst; |
9503 | // Shuffle the operands around so the lane index operand is in the |
9504 | // right place. |
9505 | unsigned Spacing; |
9506 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9507 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9508 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9509 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9510 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9511 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9512 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9513 | Inst = TmpInst; |
9514 | return true; |
9515 | } |
9516 | |
9517 | case ARM::VST2LNdAsm_8: |
9518 | case ARM::VST2LNdAsm_16: |
9519 | case ARM::VST2LNdAsm_32: |
9520 | case ARM::VST2LNqAsm_16: |
9521 | case ARM::VST2LNqAsm_32: { |
9522 | MCInst TmpInst; |
9523 | // Shuffle the operands around so the lane index operand is in the |
9524 | // right place. |
9525 | unsigned Spacing; |
9526 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9527 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9528 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9529 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9530 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9531 | Spacing)); |
9532 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9533 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9534 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9535 | Inst = TmpInst; |
9536 | return true; |
9537 | } |
9538 | |
9539 | case ARM::VST3LNdAsm_8: |
9540 | case ARM::VST3LNdAsm_16: |
9541 | case ARM::VST3LNdAsm_32: |
9542 | case ARM::VST3LNqAsm_16: |
9543 | case ARM::VST3LNqAsm_32: { |
9544 | MCInst TmpInst; |
9545 | // Shuffle the operands around so the lane index operand is in the |
9546 | // right place. |
9547 | unsigned Spacing; |
9548 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9549 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9550 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9551 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9552 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9553 | Spacing)); |
9554 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9555 | Spacing * 2)); |
9556 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9557 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9558 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9559 | Inst = TmpInst; |
9560 | return true; |
9561 | } |
9562 | |
9563 | case ARM::VST4LNdAsm_8: |
9564 | case ARM::VST4LNdAsm_16: |
9565 | case ARM::VST4LNdAsm_32: |
9566 | case ARM::VST4LNqAsm_16: |
9567 | case ARM::VST4LNqAsm_32: { |
9568 | MCInst TmpInst; |
9569 | // Shuffle the operands around so the lane index operand is in the |
9570 | // right place. |
9571 | unsigned Spacing; |
9572 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9573 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9574 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9575 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9576 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9577 | Spacing)); |
9578 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9579 | Spacing * 2)); |
9580 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9581 | Spacing * 3)); |
9582 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9583 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9584 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9585 | Inst = TmpInst; |
9586 | return true; |
9587 | } |
9588 | |
9589 | // Handle NEON VLD complex aliases. |
9590 | case ARM::VLD1LNdWB_register_Asm_8: |
9591 | case ARM::VLD1LNdWB_register_Asm_16: |
9592 | case ARM::VLD1LNdWB_register_Asm_32: { |
9593 | MCInst TmpInst; |
9594 | // Shuffle the operands around so the lane index operand is in the |
9595 | // right place. |
9596 | unsigned Spacing; |
9597 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9598 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9599 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9600 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9601 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9602 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9603 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9604 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9605 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9606 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9607 | Inst = TmpInst; |
9608 | return true; |
9609 | } |
9610 | |
9611 | case ARM::VLD2LNdWB_register_Asm_8: |
9612 | case ARM::VLD2LNdWB_register_Asm_16: |
9613 | case ARM::VLD2LNdWB_register_Asm_32: |
9614 | case ARM::VLD2LNqWB_register_Asm_16: |
9615 | case ARM::VLD2LNqWB_register_Asm_32: { |
9616 | MCInst TmpInst; |
9617 | // Shuffle the operands around so the lane index operand is in the |
9618 | // right place. |
9619 | unsigned Spacing; |
9620 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9621 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9622 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9623 | Spacing)); |
9624 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9625 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9626 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9627 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9628 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9629 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9630 | Spacing)); |
9631 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9632 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9633 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9634 | Inst = TmpInst; |
9635 | return true; |
9636 | } |
9637 | |
9638 | case ARM::VLD3LNdWB_register_Asm_8: |
9639 | case ARM::VLD3LNdWB_register_Asm_16: |
9640 | case ARM::VLD3LNdWB_register_Asm_32: |
9641 | case ARM::VLD3LNqWB_register_Asm_16: |
9642 | case ARM::VLD3LNqWB_register_Asm_32: { |
9643 | MCInst TmpInst; |
9644 | // Shuffle the operands around so the lane index operand is in the |
9645 | // right place. |
9646 | unsigned Spacing; |
9647 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9648 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9649 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9650 | Spacing)); |
9651 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9652 | Spacing * 2)); |
9653 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9654 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9655 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9656 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9657 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9658 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9659 | Spacing)); |
9660 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9661 | Spacing * 2)); |
9662 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9663 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9664 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9665 | Inst = TmpInst; |
9666 | return true; |
9667 | } |
9668 | |
9669 | case ARM::VLD4LNdWB_register_Asm_8: |
9670 | case ARM::VLD4LNdWB_register_Asm_16: |
9671 | case ARM::VLD4LNdWB_register_Asm_32: |
9672 | case ARM::VLD4LNqWB_register_Asm_16: |
9673 | case ARM::VLD4LNqWB_register_Asm_32: { |
9674 | MCInst TmpInst; |
9675 | // Shuffle the operands around so the lane index operand is in the |
9676 | // right place. |
9677 | unsigned Spacing; |
9678 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9679 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9680 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9681 | Spacing)); |
9682 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9683 | Spacing * 2)); |
9684 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9685 | Spacing * 3)); |
9686 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9687 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9688 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9689 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9690 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9691 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9692 | Spacing)); |
9693 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9694 | Spacing * 2)); |
9695 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9696 | Spacing * 3)); |
9697 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9698 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9699 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9700 | Inst = TmpInst; |
9701 | return true; |
9702 | } |
9703 | |
9704 | case ARM::VLD1LNdWB_fixed_Asm_8: |
9705 | case ARM::VLD1LNdWB_fixed_Asm_16: |
9706 | case ARM::VLD1LNdWB_fixed_Asm_32: { |
9707 | MCInst TmpInst; |
9708 | // Shuffle the operands around so the lane index operand is in the |
9709 | // right place. |
9710 | unsigned Spacing; |
9711 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9712 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9713 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9714 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9715 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9716 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9717 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9718 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9719 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9720 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9721 | Inst = TmpInst; |
9722 | return true; |
9723 | } |
9724 | |
9725 | case ARM::VLD2LNdWB_fixed_Asm_8: |
9726 | case ARM::VLD2LNdWB_fixed_Asm_16: |
9727 | case ARM::VLD2LNdWB_fixed_Asm_32: |
9728 | case ARM::VLD2LNqWB_fixed_Asm_16: |
9729 | case ARM::VLD2LNqWB_fixed_Asm_32: { |
9730 | MCInst TmpInst; |
9731 | // Shuffle the operands around so the lane index operand is in the |
9732 | // right place. |
9733 | unsigned Spacing; |
9734 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9735 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9736 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9737 | Spacing)); |
9738 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9739 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9740 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9741 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9742 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9743 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9744 | Spacing)); |
9745 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9746 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9747 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9748 | Inst = TmpInst; |
9749 | return true; |
9750 | } |
9751 | |
9752 | case ARM::VLD3LNdWB_fixed_Asm_8: |
9753 | case ARM::VLD3LNdWB_fixed_Asm_16: |
9754 | case ARM::VLD3LNdWB_fixed_Asm_32: |
9755 | case ARM::VLD3LNqWB_fixed_Asm_16: |
9756 | case ARM::VLD3LNqWB_fixed_Asm_32: { |
9757 | MCInst TmpInst; |
9758 | // Shuffle the operands around so the lane index operand is in the |
9759 | // right place. |
9760 | unsigned Spacing; |
9761 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9762 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9763 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9764 | Spacing)); |
9765 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9766 | Spacing * 2)); |
9767 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9768 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9769 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9770 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9771 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9772 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9773 | Spacing)); |
9774 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9775 | Spacing * 2)); |
9776 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9777 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9778 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9779 | Inst = TmpInst; |
9780 | return true; |
9781 | } |
9782 | |
9783 | case ARM::VLD4LNdWB_fixed_Asm_8: |
9784 | case ARM::VLD4LNdWB_fixed_Asm_16: |
9785 | case ARM::VLD4LNdWB_fixed_Asm_32: |
9786 | case ARM::VLD4LNqWB_fixed_Asm_16: |
9787 | case ARM::VLD4LNqWB_fixed_Asm_32: { |
9788 | MCInst TmpInst; |
9789 | // Shuffle the operands around so the lane index operand is in the |
9790 | // right place. |
9791 | unsigned Spacing; |
9792 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9793 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9794 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9795 | Spacing)); |
9796 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9797 | Spacing * 2)); |
9798 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9799 | Spacing * 3)); |
9800 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9801 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9802 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9803 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9804 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9805 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9806 | Spacing)); |
9807 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9808 | Spacing * 2)); |
9809 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9810 | Spacing * 3)); |
9811 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9812 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9813 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9814 | Inst = TmpInst; |
9815 | return true; |
9816 | } |
9817 | |
9818 | case ARM::VLD1LNdAsm_8: |
9819 | case ARM::VLD1LNdAsm_16: |
9820 | case ARM::VLD1LNdAsm_32: { |
9821 | MCInst TmpInst; |
9822 | // Shuffle the operands around so the lane index operand is in the |
9823 | // right place. |
9824 | unsigned Spacing; |
9825 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9826 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9827 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9828 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9829 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9830 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9831 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9832 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9833 | Inst = TmpInst; |
9834 | return true; |
9835 | } |
9836 | |
9837 | case ARM::VLD2LNdAsm_8: |
9838 | case ARM::VLD2LNdAsm_16: |
9839 | case ARM::VLD2LNdAsm_32: |
9840 | case ARM::VLD2LNqAsm_16: |
9841 | case ARM::VLD2LNqAsm_32: { |
9842 | MCInst TmpInst; |
9843 | // Shuffle the operands around so the lane index operand is in the |
9844 | // right place. |
9845 | unsigned Spacing; |
9846 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9847 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9848 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9849 | Spacing)); |
9850 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9851 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9852 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9853 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9854 | Spacing)); |
9855 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9856 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9857 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9858 | Inst = TmpInst; |
9859 | return true; |
9860 | } |
9861 | |
9862 | case ARM::VLD3LNdAsm_8: |
9863 | case ARM::VLD3LNdAsm_16: |
9864 | case ARM::VLD3LNdAsm_32: |
9865 | case ARM::VLD3LNqAsm_16: |
9866 | case ARM::VLD3LNqAsm_32: { |
9867 | MCInst TmpInst; |
9868 | // Shuffle the operands around so the lane index operand is in the |
9869 | // right place. |
9870 | unsigned Spacing; |
9871 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9872 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9873 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9874 | Spacing)); |
9875 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9876 | Spacing * 2)); |
9877 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9878 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9879 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9880 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9881 | Spacing)); |
9882 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9883 | Spacing * 2)); |
9884 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9885 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9886 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9887 | Inst = TmpInst; |
9888 | return true; |
9889 | } |
9890 | |
9891 | case ARM::VLD4LNdAsm_8: |
9892 | case ARM::VLD4LNdAsm_16: |
9893 | case ARM::VLD4LNdAsm_32: |
9894 | case ARM::VLD4LNqAsm_16: |
9895 | case ARM::VLD4LNqAsm_32: { |
9896 | MCInst TmpInst; |
9897 | // Shuffle the operands around so the lane index operand is in the |
9898 | // right place. |
9899 | unsigned Spacing; |
9900 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9901 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9902 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9903 | Spacing)); |
9904 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9905 | Spacing * 2)); |
9906 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9907 | Spacing * 3)); |
9908 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9909 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9910 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9911 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9912 | Spacing)); |
9913 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9914 | Spacing * 2)); |
9915 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9916 | Spacing * 3)); |
9917 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9918 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9919 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9920 | Inst = TmpInst; |
9921 | return true; |
9922 | } |
9923 | |
9924 | // VLD3DUP single 3-element structure to all lanes instructions. |
9925 | case ARM::VLD3DUPdAsm_8: |
9926 | case ARM::VLD3DUPdAsm_16: |
9927 | case ARM::VLD3DUPdAsm_32: |
9928 | case ARM::VLD3DUPqAsm_8: |
9929 | case ARM::VLD3DUPqAsm_16: |
9930 | case ARM::VLD3DUPqAsm_32: { |
9931 | MCInst TmpInst; |
9932 | unsigned Spacing; |
9933 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9934 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9935 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9936 | Spacing)); |
9937 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9938 | Spacing * 2)); |
9939 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9940 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
9941 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9942 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9943 | Inst = TmpInst; |
9944 | return true; |
9945 | } |
9946 | |
9947 | case ARM::VLD3DUPdWB_fixed_Asm_8: |
9948 | case ARM::VLD3DUPdWB_fixed_Asm_16: |
9949 | case ARM::VLD3DUPdWB_fixed_Asm_32: |
9950 | case ARM::VLD3DUPqWB_fixed_Asm_8: |
9951 | case ARM::VLD3DUPqWB_fixed_Asm_16: |
9952 | case ARM::VLD3DUPqWB_fixed_Asm_32: { |
9953 | MCInst TmpInst; |
9954 | unsigned Spacing; |
9955 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9956 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9957 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9958 | Spacing)); |
9959 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9960 | Spacing * 2)); |
9961 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9962 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
9963 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
9964 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9965 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9966 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9967 | Inst = TmpInst; |
9968 | return true; |
9969 | } |
9970 | |
9971 | case ARM::VLD3DUPdWB_register_Asm_8: |
9972 | case ARM::VLD3DUPdWB_register_Asm_16: |
9973 | case ARM::VLD3DUPdWB_register_Asm_32: |
9974 | case ARM::VLD3DUPqWB_register_Asm_8: |
9975 | case ARM::VLD3DUPqWB_register_Asm_16: |
9976 | case ARM::VLD3DUPqWB_register_Asm_32: { |
9977 | MCInst TmpInst; |
9978 | unsigned Spacing; |
9979 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9980 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9981 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9982 | Spacing)); |
9983 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9984 | Spacing * 2)); |
9985 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9986 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
9987 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
9988 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
9989 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9990 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9991 | Inst = TmpInst; |
9992 | return true; |
9993 | } |
9994 | |
9995 | // VLD3 multiple 3-element structure instructions. |
9996 | case ARM::VLD3dAsm_8: |
9997 | case ARM::VLD3dAsm_16: |
9998 | case ARM::VLD3dAsm_32: |
9999 | case ARM::VLD3qAsm_8: |
10000 | case ARM::VLD3qAsm_16: |
10001 | case ARM::VLD3qAsm_32: { |
10002 | MCInst TmpInst; |
10003 | unsigned Spacing; |
10004 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10005 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10006 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10007 | Spacing)); |
10008 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10009 | Spacing * 2)); |
10010 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10011 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10012 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10013 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10014 | Inst = TmpInst; |
10015 | return true; |
10016 | } |
10017 | |
10018 | case ARM::VLD3dWB_fixed_Asm_8: |
10019 | case ARM::VLD3dWB_fixed_Asm_16: |
10020 | case ARM::VLD3dWB_fixed_Asm_32: |
10021 | case ARM::VLD3qWB_fixed_Asm_8: |
10022 | case ARM::VLD3qWB_fixed_Asm_16: |
10023 | case ARM::VLD3qWB_fixed_Asm_32: { |
10024 | MCInst TmpInst; |
10025 | unsigned Spacing; |
10026 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10027 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10028 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10029 | Spacing)); |
10030 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10031 | Spacing * 2)); |
10032 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10033 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10034 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10035 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10036 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10037 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10038 | Inst = TmpInst; |
10039 | return true; |
10040 | } |
10041 | |
10042 | case ARM::VLD3dWB_register_Asm_8: |
10043 | case ARM::VLD3dWB_register_Asm_16: |
10044 | case ARM::VLD3dWB_register_Asm_32: |
10045 | case ARM::VLD3qWB_register_Asm_8: |
10046 | case ARM::VLD3qWB_register_Asm_16: |
10047 | case ARM::VLD3qWB_register_Asm_32: { |
10048 | MCInst TmpInst; |
10049 | unsigned Spacing; |
10050 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10051 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10052 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10053 | Spacing)); |
10054 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10055 | Spacing * 2)); |
10056 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10057 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10058 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10059 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10060 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10061 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10062 | Inst = TmpInst; |
10063 | return true; |
10064 | } |
10065 | |
10066 | // VLD4DUP single 3-element structure to all lanes instructions. |
10067 | case ARM::VLD4DUPdAsm_8: |
10068 | case ARM::VLD4DUPdAsm_16: |
10069 | case ARM::VLD4DUPdAsm_32: |
10070 | case ARM::VLD4DUPqAsm_8: |
10071 | case ARM::VLD4DUPqAsm_16: |
10072 | case ARM::VLD4DUPqAsm_32: { |
10073 | MCInst TmpInst; |
10074 | unsigned Spacing; |
10075 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10076 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10077 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10078 | Spacing)); |
10079 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10080 | Spacing * 2)); |
10081 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10082 | Spacing * 3)); |
10083 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10084 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10085 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10086 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10087 | Inst = TmpInst; |
10088 | return true; |
10089 | } |
10090 | |
10091 | case ARM::VLD4DUPdWB_fixed_Asm_8: |
10092 | case ARM::VLD4DUPdWB_fixed_Asm_16: |
10093 | case ARM::VLD4DUPdWB_fixed_Asm_32: |
10094 | case ARM::VLD4DUPqWB_fixed_Asm_8: |
10095 | case ARM::VLD4DUPqWB_fixed_Asm_16: |
10096 | case ARM::VLD4DUPqWB_fixed_Asm_32: { |
10097 | MCInst TmpInst; |
10098 | unsigned Spacing; |
10099 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10100 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10101 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10102 | Spacing)); |
10103 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10104 | Spacing * 2)); |
10105 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10106 | Spacing * 3)); |
10107 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10108 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10109 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10110 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10111 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10112 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10113 | Inst = TmpInst; |
10114 | return true; |
10115 | } |
10116 | |
10117 | case ARM::VLD4DUPdWB_register_Asm_8: |
10118 | case ARM::VLD4DUPdWB_register_Asm_16: |
10119 | case ARM::VLD4DUPdWB_register_Asm_32: |
10120 | case ARM::VLD4DUPqWB_register_Asm_8: |
10121 | case ARM::VLD4DUPqWB_register_Asm_16: |
10122 | case ARM::VLD4DUPqWB_register_Asm_32: { |
10123 | MCInst TmpInst; |
10124 | unsigned Spacing; |
10125 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10126 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10127 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10128 | Spacing)); |
10129 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10130 | Spacing * 2)); |
10131 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10132 | Spacing * 3)); |
10133 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10134 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10135 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10136 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10137 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10138 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10139 | Inst = TmpInst; |
10140 | return true; |
10141 | } |
10142 | |
10143 | // VLD4 multiple 4-element structure instructions. |
10144 | case ARM::VLD4dAsm_8: |
10145 | case ARM::VLD4dAsm_16: |
10146 | case ARM::VLD4dAsm_32: |
10147 | case ARM::VLD4qAsm_8: |
10148 | case ARM::VLD4qAsm_16: |
10149 | case ARM::VLD4qAsm_32: { |
10150 | MCInst TmpInst; |
10151 | unsigned Spacing; |
10152 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10153 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10154 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10155 | Spacing)); |
10156 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10157 | Spacing * 2)); |
10158 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10159 | Spacing * 3)); |
10160 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10161 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10162 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10163 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10164 | Inst = TmpInst; |
10165 | return true; |
10166 | } |
10167 | |
10168 | case ARM::VLD4dWB_fixed_Asm_8: |
10169 | case ARM::VLD4dWB_fixed_Asm_16: |
10170 | case ARM::VLD4dWB_fixed_Asm_32: |
10171 | case ARM::VLD4qWB_fixed_Asm_8: |
10172 | case ARM::VLD4qWB_fixed_Asm_16: |
10173 | case ARM::VLD4qWB_fixed_Asm_32: { |
10174 | MCInst TmpInst; |
10175 | unsigned Spacing; |
10176 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10177 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10178 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10179 | Spacing)); |
10180 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10181 | Spacing * 2)); |
10182 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10183 | Spacing * 3)); |
10184 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10185 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10186 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10187 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10188 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10189 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10190 | Inst = TmpInst; |
10191 | return true; |
10192 | } |
10193 | |
10194 | case ARM::VLD4dWB_register_Asm_8: |
10195 | case ARM::VLD4dWB_register_Asm_16: |
10196 | case ARM::VLD4dWB_register_Asm_32: |
10197 | case ARM::VLD4qWB_register_Asm_8: |
10198 | case ARM::VLD4qWB_register_Asm_16: |
10199 | case ARM::VLD4qWB_register_Asm_32: { |
10200 | MCInst TmpInst; |
10201 | unsigned Spacing; |
10202 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10203 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10204 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10205 | Spacing)); |
10206 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10207 | Spacing * 2)); |
10208 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10209 | Spacing * 3)); |
10210 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10211 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10212 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10213 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10214 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10215 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10216 | Inst = TmpInst; |
10217 | return true; |
10218 | } |
10219 | |
10220 | // VST3 multiple 3-element structure instructions. |
10221 | case ARM::VST3dAsm_8: |
10222 | case ARM::VST3dAsm_16: |
10223 | case ARM::VST3dAsm_32: |
10224 | case ARM::VST3qAsm_8: |
10225 | case ARM::VST3qAsm_16: |
10226 | case ARM::VST3qAsm_32: { |
10227 | MCInst TmpInst; |
10228 | unsigned Spacing; |
10229 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10230 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10231 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10232 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10233 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10234 | Spacing)); |
10235 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10236 | Spacing * 2)); |
10237 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10238 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10239 | Inst = TmpInst; |
10240 | return true; |
10241 | } |
10242 | |
10243 | case ARM::VST3dWB_fixed_Asm_8: |
10244 | case ARM::VST3dWB_fixed_Asm_16: |
10245 | case ARM::VST3dWB_fixed_Asm_32: |
10246 | case ARM::VST3qWB_fixed_Asm_8: |
10247 | case ARM::VST3qWB_fixed_Asm_16: |
10248 | case ARM::VST3qWB_fixed_Asm_32: { |
10249 | MCInst TmpInst; |
10250 | unsigned Spacing; |
10251 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10252 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10253 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10254 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10255 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10256 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10257 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10258 | Spacing)); |
10259 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10260 | Spacing * 2)); |
10261 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10262 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10263 | Inst = TmpInst; |
10264 | return true; |
10265 | } |
10266 | |
10267 | case ARM::VST3dWB_register_Asm_8: |
10268 | case ARM::VST3dWB_register_Asm_16: |
10269 | case ARM::VST3dWB_register_Asm_32: |
10270 | case ARM::VST3qWB_register_Asm_8: |
10271 | case ARM::VST3qWB_register_Asm_16: |
10272 | case ARM::VST3qWB_register_Asm_32: { |
10273 | MCInst TmpInst; |
10274 | unsigned Spacing; |
10275 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10276 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10277 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10278 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10279 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10280 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10281 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10282 | Spacing)); |
10283 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10284 | Spacing * 2)); |
10285 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10286 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10287 | Inst = TmpInst; |
10288 | return true; |
10289 | } |
10290 | |
10291 | // VST4 multiple 3-element structure instructions. |
10292 | case ARM::VST4dAsm_8: |
10293 | case ARM::VST4dAsm_16: |
10294 | case ARM::VST4dAsm_32: |
10295 | case ARM::VST4qAsm_8: |
10296 | case ARM::VST4qAsm_16: |
10297 | case ARM::VST4qAsm_32: { |
10298 | MCInst TmpInst; |
10299 | unsigned Spacing; |
10300 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10301 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10302 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10303 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10304 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10305 | Spacing)); |
10306 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10307 | Spacing * 2)); |
10308 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10309 | Spacing * 3)); |
10310 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10311 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10312 | Inst = TmpInst; |
10313 | return true; |
10314 | } |
10315 | |
10316 | case ARM::VST4dWB_fixed_Asm_8: |
10317 | case ARM::VST4dWB_fixed_Asm_16: |
10318 | case ARM::VST4dWB_fixed_Asm_32: |
10319 | case ARM::VST4qWB_fixed_Asm_8: |
10320 | case ARM::VST4qWB_fixed_Asm_16: |
10321 | case ARM::VST4qWB_fixed_Asm_32: { |
10322 | MCInst TmpInst; |
10323 | unsigned Spacing; |
10324 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10325 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10326 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10327 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10328 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10329 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10330 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10331 | Spacing)); |
10332 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10333 | Spacing * 2)); |
10334 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10335 | Spacing * 3)); |
10336 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10337 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10338 | Inst = TmpInst; |
10339 | return true; |
10340 | } |
10341 | |
10342 | case ARM::VST4dWB_register_Asm_8: |
10343 | case ARM::VST4dWB_register_Asm_16: |
10344 | case ARM::VST4dWB_register_Asm_32: |
10345 | case ARM::VST4qWB_register_Asm_8: |
10346 | case ARM::VST4qWB_register_Asm_16: |
10347 | case ARM::VST4qWB_register_Asm_32: { |
10348 | MCInst TmpInst; |
10349 | unsigned Spacing; |
10350 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10351 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10352 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10353 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10354 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10355 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10356 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10357 | Spacing)); |
10358 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10359 | Spacing * 2)); |
10360 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10361 | Spacing * 3)); |
10362 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10363 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10364 | Inst = TmpInst; |
10365 | return true; |
10366 | } |
10367 | |
10368 | // Handle encoding choice for the shift-immediate instructions. |
10369 | case ARM::t2LSLri: |
10370 | case ARM::t2LSRri: |
10371 | case ARM::t2ASRri: |
10372 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10373 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10374 | Inst.getOperand(i: 5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
10375 | !HasWideQualifier) { |
10376 | unsigned NewOpc; |
10377 | switch (Inst.getOpcode()) { |
10378 | default: llvm_unreachable("unexpected opcode" ); |
10379 | case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; |
10380 | case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; |
10381 | case ARM::t2ASRri: NewOpc = ARM::tASRri; break; |
10382 | } |
10383 | // The Thumb1 operands aren't in the same order. Awesome, eh? |
10384 | MCInst TmpInst; |
10385 | TmpInst.setOpcode(NewOpc); |
10386 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10387 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10388 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10389 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10390 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10391 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10392 | Inst = TmpInst; |
10393 | return true; |
10394 | } |
10395 | return false; |
10396 | |
10397 | // Handle the Thumb2 mode MOV complex aliases. |
10398 | case ARM::t2MOVsr: |
10399 | case ARM::t2MOVSsr: { |
10400 | // Which instruction to expand to depends on the CCOut operand and |
10401 | // whether we're in an IT block if the register operands are low |
10402 | // registers. |
10403 | bool isNarrow = false; |
10404 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10405 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10406 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg()) && |
10407 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() && |
10408 | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && |
10409 | !HasWideQualifier) |
10410 | isNarrow = true; |
10411 | MCInst TmpInst; |
10412 | unsigned newOpc; |
10413 | switch(ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 3).getImm())) { |
10414 | default: llvm_unreachable("unexpected opcode!" ); |
10415 | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; |
10416 | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; |
10417 | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; |
10418 | case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; |
10419 | } |
10420 | TmpInst.setOpcode(newOpc); |
10421 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10422 | if (isNarrow) |
10423 | TmpInst.addOperand(Op: MCOperand::createReg( |
10424 | Reg: Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
10425 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10426 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rm |
10427 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10428 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10429 | if (!isNarrow) |
10430 | TmpInst.addOperand(Op: MCOperand::createReg( |
10431 | Reg: Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
10432 | Inst = TmpInst; |
10433 | return true; |
10434 | } |
10435 | case ARM::t2MOVsi: |
10436 | case ARM::t2MOVSsi: { |
10437 | // Which instruction to expand to depends on the CCOut operand and |
10438 | // whether we're in an IT block if the register operands are low |
10439 | // registers. |
10440 | bool isNarrow = false; |
10441 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10442 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10443 | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && |
10444 | !HasWideQualifier) |
10445 | isNarrow = true; |
10446 | MCInst TmpInst; |
10447 | unsigned newOpc; |
10448 | unsigned Shift = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 2).getImm()); |
10449 | unsigned Amount = ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 2).getImm()); |
10450 | bool isMov = false; |
10451 | // MOV rd, rm, LSL #0 is actually a MOV instruction |
10452 | if (Shift == ARM_AM::lsl && Amount == 0) { |
10453 | isMov = true; |
10454 | // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of |
10455 | // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is |
10456 | // unpredictable in an IT block so the 32-bit encoding T3 has to be used |
10457 | // instead. |
10458 | if (inITBlock()) { |
10459 | isNarrow = false; |
10460 | } |
10461 | newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; |
10462 | } else { |
10463 | switch(Shift) { |
10464 | default: llvm_unreachable("unexpected opcode!" ); |
10465 | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; |
10466 | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; |
10467 | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; |
10468 | case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; |
10469 | case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; |
10470 | } |
10471 | } |
10472 | if (Amount == 32) Amount = 0; |
10473 | TmpInst.setOpcode(newOpc); |
10474 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10475 | if (isNarrow && !isMov) |
10476 | TmpInst.addOperand(Op: MCOperand::createReg( |
10477 | Reg: Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
10478 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10479 | if (newOpc != ARM::t2RRX && !isMov) |
10480 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Amount)); |
10481 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10482 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10483 | if (!isNarrow) |
10484 | TmpInst.addOperand(Op: MCOperand::createReg( |
10485 | Reg: Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
10486 | Inst = TmpInst; |
10487 | return true; |
10488 | } |
10489 | // Handle the ARM mode MOV complex aliases. |
10490 | case ARM::ASRr: |
10491 | case ARM::LSRr: |
10492 | case ARM::LSLr: |
10493 | case ARM::RORr: { |
10494 | ARM_AM::ShiftOpc ShiftTy; |
10495 | switch(Inst.getOpcode()) { |
10496 | default: llvm_unreachable("unexpected opcode!" ); |
10497 | case ARM::ASRr: ShiftTy = ARM_AM::asr; break; |
10498 | case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; |
10499 | case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; |
10500 | case ARM::RORr: ShiftTy = ARM_AM::ror; break; |
10501 | } |
10502 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: 0); |
10503 | MCInst TmpInst; |
10504 | TmpInst.setOpcode(ARM::MOVsr); |
10505 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10506 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10507 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rm |
10508 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10509 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10510 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10511 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // cc_out |
10512 | Inst = TmpInst; |
10513 | return true; |
10514 | } |
10515 | case ARM::ASRi: |
10516 | case ARM::LSRi: |
10517 | case ARM::LSLi: |
10518 | case ARM::RORi: { |
10519 | ARM_AM::ShiftOpc ShiftTy; |
10520 | switch(Inst.getOpcode()) { |
10521 | default: llvm_unreachable("unexpected opcode!" ); |
10522 | case ARM::ASRi: ShiftTy = ARM_AM::asr; break; |
10523 | case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; |
10524 | case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; |
10525 | case ARM::RORi: ShiftTy = ARM_AM::ror; break; |
10526 | } |
10527 | // A shift by zero is a plain MOVr, not a MOVsi. |
10528 | unsigned Amt = Inst.getOperand(i: 2).getImm(); |
10529 | unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; |
10530 | // A shift by 32 should be encoded as 0 when permitted |
10531 | if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) |
10532 | Amt = 0; |
10533 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: Amt); |
10534 | MCInst TmpInst; |
10535 | TmpInst.setOpcode(Opc); |
10536 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10537 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10538 | if (Opc == ARM::MOVsi) |
10539 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10540 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10541 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10542 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // cc_out |
10543 | Inst = TmpInst; |
10544 | return true; |
10545 | } |
10546 | case ARM::RRXi: { |
10547 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ARM_AM::rrx, Imm: 0); |
10548 | MCInst TmpInst; |
10549 | TmpInst.setOpcode(ARM::MOVsi); |
10550 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10551 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10552 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10553 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10554 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10555 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // cc_out |
10556 | Inst = TmpInst; |
10557 | return true; |
10558 | } |
10559 | case ARM::t2LDMIA_UPD: { |
10560 | // If this is a load of a single register, then we should use |
10561 | // a post-indexed LDR instruction instead, per the ARM ARM. |
10562 | if (Inst.getNumOperands() != 5) |
10563 | return false; |
10564 | MCInst TmpInst; |
10565 | TmpInst.setOpcode(ARM::t2LDR_POST); |
10566 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10567 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10568 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10569 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 4)); |
10570 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10571 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10572 | Inst = TmpInst; |
10573 | return true; |
10574 | } |
10575 | case ARM::t2STMDB_UPD: { |
10576 | // If this is a store of a single register, then we should use |
10577 | // a pre-indexed STR instruction instead, per the ARM ARM. |
10578 | if (Inst.getNumOperands() != 5) |
10579 | return false; |
10580 | MCInst TmpInst; |
10581 | TmpInst.setOpcode(ARM::t2STR_PRE); |
10582 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10583 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10584 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10585 | TmpInst.addOperand(Op: MCOperand::createImm(Val: -4)); |
10586 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10587 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10588 | Inst = TmpInst; |
10589 | return true; |
10590 | } |
10591 | case ARM::LDMIA_UPD: |
10592 | // If this is a load of a single register via a 'pop', then we should use |
10593 | // a post-indexed LDR instruction instead, per the ARM ARM. |
10594 | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && |
10595 | Inst.getNumOperands() == 5) { |
10596 | MCInst TmpInst; |
10597 | TmpInst.setOpcode(ARM::LDR_POST_IMM); |
10598 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10599 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10600 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10601 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // am2offset |
10602 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 4)); |
10603 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10604 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10605 | Inst = TmpInst; |
10606 | return true; |
10607 | } |
10608 | break; |
10609 | case ARM::STMDB_UPD: |
10610 | // If this is a store of a single register via a 'push', then we should use |
10611 | // a pre-indexed STR instruction instead, per the ARM ARM. |
10612 | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && |
10613 | Inst.getNumOperands() == 5) { |
10614 | MCInst TmpInst; |
10615 | TmpInst.setOpcode(ARM::STR_PRE_IMM); |
10616 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10617 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10618 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // addrmode_imm12 |
10619 | TmpInst.addOperand(Op: MCOperand::createImm(Val: -4)); |
10620 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10621 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10622 | Inst = TmpInst; |
10623 | } |
10624 | break; |
10625 | case ARM::t2ADDri12: |
10626 | case ARM::t2SUBri12: |
10627 | case ARM::t2ADDspImm12: |
10628 | case ARM::t2SUBspImm12: { |
10629 | // If the immediate fits for encoding T3 and the generic |
10630 | // mnemonic was used, encoding T3 is preferred. |
10631 | const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); |
10632 | if ((Token != "add" && Token != "sub" ) || |
10633 | ARM_AM::getT2SOImmVal(Arg: Inst.getOperand(i: 2).getImm()) == -1) |
10634 | break; |
10635 | switch (Inst.getOpcode()) { |
10636 | case ARM::t2ADDri12: |
10637 | Inst.setOpcode(ARM::t2ADDri); |
10638 | break; |
10639 | case ARM::t2SUBri12: |
10640 | Inst.setOpcode(ARM::t2SUBri); |
10641 | break; |
10642 | case ARM::t2ADDspImm12: |
10643 | Inst.setOpcode(ARM::t2ADDspImm); |
10644 | break; |
10645 | case ARM::t2SUBspImm12: |
10646 | Inst.setOpcode(ARM::t2SUBspImm); |
10647 | break; |
10648 | } |
10649 | |
10650 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); // cc_out |
10651 | return true; |
10652 | } |
10653 | case ARM::tADDi8: |
10654 | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
10655 | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
10656 | // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
10657 | // to encoding T1 if <Rd> is omitted." |
10658 | if (Inst.getOperand(i: 3).isImm() && |
10659 | (unsigned)Inst.getOperand(i: 3).getImm() < 8 && |
10660 | Operands.size() == MnemonicOpsEndInd + 3) { |
10661 | Inst.setOpcode(ARM::tADDi3); |
10662 | return true; |
10663 | } |
10664 | break; |
10665 | case ARM::tSUBi8: |
10666 | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
10667 | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
10668 | // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
10669 | // to encoding T1 if <Rd> is omitted." |
10670 | if ((unsigned)Inst.getOperand(i: 3).getImm() < 8 && |
10671 | Operands.size() == MnemonicOpsEndInd + 3) { |
10672 | Inst.setOpcode(ARM::tSUBi3); |
10673 | return true; |
10674 | } |
10675 | break; |
10676 | case ARM::t2ADDri: |
10677 | case ARM::t2SUBri: { |
10678 | // If the destination and first source operand are the same, and |
10679 | // the flags are compatible with the current IT status, use encoding T2 |
10680 | // instead of T3. For compatibility with the system 'as'. Make sure the |
10681 | // wide encoding wasn't explicit. |
10682 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 1).getReg() || |
10683 | !isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) || |
10684 | (Inst.getOperand(i: 2).isImm() && |
10685 | (unsigned)Inst.getOperand(i: 2).getImm() > 255) || |
10686 | Inst.getOperand(i: 5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || |
10687 | HasWideQualifier) |
10688 | break; |
10689 | MCInst TmpInst; |
10690 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? |
10691 | ARM::tADDi8 : ARM::tSUBi8); |
10692 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10693 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10694 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10695 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10696 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10697 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10698 | Inst = TmpInst; |
10699 | return true; |
10700 | } |
10701 | case ARM::t2ADDspImm: |
10702 | case ARM::t2SUBspImm: { |
10703 | // Prefer T1 encoding if possible |
10704 | if (Inst.getOperand(i: 5).getReg() != 0 || HasWideQualifier) |
10705 | break; |
10706 | unsigned V = Inst.getOperand(i: 2).getImm(); |
10707 | if (V & 3 || V > ((1 << 7) - 1) << 2) |
10708 | break; |
10709 | MCInst TmpInst; |
10710 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi |
10711 | : ARM::tSUBspi); |
10712 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::SP)); // destination reg |
10713 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::SP)); // source reg |
10714 | TmpInst.addOperand(Op: MCOperand::createImm(Val: V / 4)); // immediate |
10715 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // pred |
10716 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10717 | Inst = TmpInst; |
10718 | return true; |
10719 | } |
10720 | case ARM::t2ADDrr: { |
10721 | // If the destination and first source operand are the same, and |
10722 | // there's no setting of the flags, use encoding T2 instead of T3. |
10723 | // Note that this is only for ADD, not SUB. This mirrors the system |
10724 | // 'as' behaviour. Also take advantage of ADD being commutative. |
10725 | // Make sure the wide encoding wasn't explicit. |
10726 | bool Swap = false; |
10727 | auto DestReg = Inst.getOperand(i: 0).getReg(); |
10728 | bool Transform = DestReg == Inst.getOperand(i: 1).getReg(); |
10729 | if (!Transform && DestReg == Inst.getOperand(i: 2).getReg()) { |
10730 | Transform = true; |
10731 | Swap = true; |
10732 | } |
10733 | if (!Transform || |
10734 | Inst.getOperand(i: 5).getReg() != 0 || |
10735 | HasWideQualifier) |
10736 | break; |
10737 | MCInst TmpInst; |
10738 | TmpInst.setOpcode(ARM::tADDhirr); |
10739 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10740 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10741 | TmpInst.addOperand(Op: Inst.getOperand(i: Swap ? 1 : 2)); |
10742 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10743 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10744 | Inst = TmpInst; |
10745 | return true; |
10746 | } |
10747 | case ARM::tADDrSP: |
10748 | // If the non-SP source operand and the destination operand are not the |
10749 | // same, we need to use the 32-bit encoding if it's available. |
10750 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 2).getReg()) { |
10751 | Inst.setOpcode(ARM::t2ADDrr); |
10752 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); // cc_out |
10753 | return true; |
10754 | } |
10755 | break; |
10756 | case ARM::tB: |
10757 | // A Thumb conditional branch outside of an IT block is a tBcc. |
10758 | if (Inst.getOperand(i: 1).getImm() != ARMCC::AL && !inITBlock()) { |
10759 | Inst.setOpcode(ARM::tBcc); |
10760 | return true; |
10761 | } |
10762 | break; |
10763 | case ARM::t2B: |
10764 | // A Thumb2 conditional branch outside of an IT block is a t2Bcc. |
10765 | if (Inst.getOperand(i: 1).getImm() != ARMCC::AL && !inITBlock()){ |
10766 | Inst.setOpcode(ARM::t2Bcc); |
10767 | return true; |
10768 | } |
10769 | break; |
10770 | case ARM::t2Bcc: |
10771 | // If the conditional is AL or we're in an IT block, we really want t2B. |
10772 | if (Inst.getOperand(i: 1).getImm() == ARMCC::AL || inITBlock()) { |
10773 | Inst.setOpcode(ARM::t2B); |
10774 | return true; |
10775 | } |
10776 | break; |
10777 | case ARM::tBcc: |
10778 | // If the conditional is AL, we really want tB. |
10779 | if (Inst.getOperand(i: 1).getImm() == ARMCC::AL) { |
10780 | Inst.setOpcode(ARM::tB); |
10781 | return true; |
10782 | } |
10783 | break; |
10784 | case ARM::tLDMIA: { |
10785 | // If the register list contains any high registers, or if the writeback |
10786 | // doesn't match what tLDMIA can do, we need to use the 32-bit encoding |
10787 | // instead if we're in Thumb2. Otherwise, this should have generated |
10788 | // an error in validateInstruction(). |
10789 | unsigned Rn = Inst.getOperand(i: 0).getReg(); |
10790 | bool hasWritebackToken = |
10791 | (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
10792 | .isToken() && |
10793 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
10794 | .getToken() == "!" ); |
10795 | bool listContainsBase; |
10796 | if (checkLowRegisterList(Inst, OpNo: 3, Reg: Rn, HiReg: 0, containsReg&: listContainsBase) || |
10797 | (!listContainsBase && !hasWritebackToken) || |
10798 | (listContainsBase && hasWritebackToken)) { |
10799 | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
10800 | assert(isThumbTwo()); |
10801 | Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); |
10802 | // If we're switching to the updating version, we need to insert |
10803 | // the writeback tied operand. |
10804 | if (hasWritebackToken) |
10805 | Inst.insert(I: Inst.begin(), |
10806 | Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg())); |
10807 | return true; |
10808 | } |
10809 | break; |
10810 | } |
10811 | case ARM::tSTMIA_UPD: { |
10812 | // If the register list contains any high registers, we need to use |
10813 | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
10814 | // should have generated an error in validateInstruction(). |
10815 | unsigned Rn = Inst.getOperand(i: 0).getReg(); |
10816 | bool listContainsBase; |
10817 | if (checkLowRegisterList(Inst, OpNo: 4, Reg: Rn, HiReg: 0, containsReg&: listContainsBase)) { |
10818 | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
10819 | assert(isThumbTwo()); |
10820 | Inst.setOpcode(ARM::t2STMIA_UPD); |
10821 | return true; |
10822 | } |
10823 | break; |
10824 | } |
10825 | case ARM::tPOP: { |
10826 | bool listContainsBase; |
10827 | // If the register list contains any high registers, we need to use |
10828 | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
10829 | // should have generated an error in validateInstruction(). |
10830 | if (!checkLowRegisterList(Inst, OpNo: 2, Reg: 0, HiReg: ARM::PC, containsReg&: listContainsBase)) |
10831 | return false; |
10832 | assert(isThumbTwo()); |
10833 | Inst.setOpcode(ARM::t2LDMIA_UPD); |
10834 | // Add the base register and writeback operands. |
10835 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10836 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10837 | return true; |
10838 | } |
10839 | case ARM::tPUSH: { |
10840 | bool listContainsBase; |
10841 | if (!checkLowRegisterList(Inst, OpNo: 2, Reg: 0, HiReg: ARM::LR, containsReg&: listContainsBase)) |
10842 | return false; |
10843 | assert(isThumbTwo()); |
10844 | Inst.setOpcode(ARM::t2STMDB_UPD); |
10845 | // Add the base register and writeback operands. |
10846 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10847 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10848 | return true; |
10849 | } |
10850 | case ARM::t2MOVi: |
10851 | // If we can use the 16-bit encoding and the user didn't explicitly |
10852 | // request the 32-bit variant, transform it here. |
10853 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10854 | (Inst.getOperand(i: 1).isImm() && |
10855 | (unsigned)Inst.getOperand(i: 1).getImm() <= 255) && |
10856 | Inst.getOperand(i: 4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
10857 | !HasWideQualifier) { |
10858 | // The operands aren't in the same order for tMOVi8... |
10859 | MCInst TmpInst; |
10860 | TmpInst.setOpcode(ARM::tMOVi8); |
10861 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10862 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10863 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10864 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10865 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10866 | Inst = TmpInst; |
10867 | return true; |
10868 | } |
10869 | break; |
10870 | |
10871 | case ARM::t2MOVr: |
10872 | // If we can use the 16-bit encoding and the user didn't explicitly |
10873 | // request the 32-bit variant, transform it here. |
10874 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10875 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10876 | Inst.getOperand(i: 2).getImm() == ARMCC::AL && |
10877 | Inst.getOperand(i: 4).getReg() == ARM::CPSR && |
10878 | !HasWideQualifier) { |
10879 | // The operands aren't the same for tMOV[S]r... (no cc_out) |
10880 | MCInst TmpInst; |
10881 | unsigned Op = Inst.getOperand(i: 4).getReg() ? ARM::tMOVSr : ARM::tMOVr; |
10882 | TmpInst.setOpcode(Op); |
10883 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10884 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10885 | if (Op == ARM::tMOVr) { |
10886 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10887 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10888 | } |
10889 | Inst = TmpInst; |
10890 | return true; |
10891 | } |
10892 | break; |
10893 | |
10894 | case ARM::t2SXTH: |
10895 | case ARM::t2SXTB: |
10896 | case ARM::t2UXTH: |
10897 | case ARM::t2UXTB: |
10898 | // If we can use the 16-bit encoding and the user didn't explicitly |
10899 | // request the 32-bit variant, transform it here. |
10900 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10901 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10902 | Inst.getOperand(i: 2).getImm() == 0 && |
10903 | !HasWideQualifier) { |
10904 | unsigned NewOpc; |
10905 | switch (Inst.getOpcode()) { |
10906 | default: llvm_unreachable("Illegal opcode!" ); |
10907 | case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; |
10908 | case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; |
10909 | case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; |
10910 | case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; |
10911 | } |
10912 | // The operands aren't the same for thumb1 (no rotate operand). |
10913 | MCInst TmpInst; |
10914 | TmpInst.setOpcode(NewOpc); |
10915 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10916 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10917 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10918 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10919 | Inst = TmpInst; |
10920 | return true; |
10921 | } |
10922 | break; |
10923 | |
10924 | case ARM::MOVsi: { |
10925 | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 2).getImm()); |
10926 | // rrx shifts and asr/lsr of #32 is encoded as 0 |
10927 | if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) |
10928 | return false; |
10929 | if (ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 2).getImm()) == 0) { |
10930 | // Shifting by zero is accepted as a vanilla 'MOVr' |
10931 | MCInst TmpInst; |
10932 | TmpInst.setOpcode(ARM::MOVr); |
10933 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10934 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10935 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10936 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10937 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10938 | Inst = TmpInst; |
10939 | return true; |
10940 | } |
10941 | return false; |
10942 | } |
10943 | case ARM::ANDrsi: |
10944 | case ARM::ORRrsi: |
10945 | case ARM::EORrsi: |
10946 | case ARM::BICrsi: |
10947 | case ARM::SUBrsi: |
10948 | case ARM::ADDrsi: { |
10949 | unsigned newOpc; |
10950 | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 3).getImm()); |
10951 | if (SOpc == ARM_AM::rrx) return false; |
10952 | switch (Inst.getOpcode()) { |
10953 | default: llvm_unreachable("unexpected opcode!" ); |
10954 | case ARM::ANDrsi: newOpc = ARM::ANDrr; break; |
10955 | case ARM::ORRrsi: newOpc = ARM::ORRrr; break; |
10956 | case ARM::EORrsi: newOpc = ARM::EORrr; break; |
10957 | case ARM::BICrsi: newOpc = ARM::BICrr; break; |
10958 | case ARM::SUBrsi: newOpc = ARM::SUBrr; break; |
10959 | case ARM::ADDrsi: newOpc = ARM::ADDrr; break; |
10960 | } |
10961 | // If the shift is by zero, use the non-shifted instruction definition. |
10962 | // The exception is for right shifts, where 0 == 32 |
10963 | if (ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 3).getImm()) == 0 && |
10964 | !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { |
10965 | MCInst TmpInst; |
10966 | TmpInst.setOpcode(newOpc); |
10967 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10968 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10969 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10970 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10971 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10972 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
10973 | Inst = TmpInst; |
10974 | return true; |
10975 | } |
10976 | return false; |
10977 | } |
10978 | case ARM::ITasm: |
10979 | case ARM::t2IT: { |
10980 | // Set up the IT block state according to the IT instruction we just |
10981 | // matched. |
10982 | assert(!inITBlock() && "nested IT blocks?!" ); |
10983 | startExplicitITBlock(Cond: ARMCC::CondCodes(Inst.getOperand(i: 0).getImm()), |
10984 | Mask: Inst.getOperand(i: 1).getImm()); |
10985 | break; |
10986 | } |
10987 | case ARM::t2LSLrr: |
10988 | case ARM::t2LSRrr: |
10989 | case ARM::t2ASRrr: |
10990 | case ARM::t2SBCrr: |
10991 | case ARM::t2RORrr: |
10992 | case ARM::t2BICrr: |
10993 | // Assemblers should use the narrow encodings of these instructions when permissible. |
10994 | if ((isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10995 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) && |
10996 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() && |
10997 | Inst.getOperand(i: 5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
10998 | !HasWideQualifier) { |
10999 | unsigned NewOpc; |
11000 | switch (Inst.getOpcode()) { |
11001 | default: llvm_unreachable("unexpected opcode" ); |
11002 | case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; |
11003 | case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; |
11004 | case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; |
11005 | case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; |
11006 | case ARM::t2RORrr: NewOpc = ARM::tROR; break; |
11007 | case ARM::t2BICrr: NewOpc = ARM::tBIC; break; |
11008 | } |
11009 | MCInst TmpInst; |
11010 | TmpInst.setOpcode(NewOpc); |
11011 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11012 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11013 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11014 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11015 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11016 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11017 | Inst = TmpInst; |
11018 | return true; |
11019 | } |
11020 | return false; |
11021 | |
11022 | case ARM::t2ANDrr: |
11023 | case ARM::t2EORrr: |
11024 | case ARM::t2ADCrr: |
11025 | case ARM::t2ORRrr: |
11026 | // Assemblers should use the narrow encodings of these instructions when permissible. |
11027 | // These instructions are special in that they are commutable, so shorter encodings |
11028 | // are available more often. |
11029 | if ((isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
11030 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) && |
11031 | (Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() || |
11032 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 2).getReg()) && |
11033 | Inst.getOperand(i: 5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
11034 | !HasWideQualifier) { |
11035 | unsigned NewOpc; |
11036 | switch (Inst.getOpcode()) { |
11037 | default: llvm_unreachable("unexpected opcode" ); |
11038 | case ARM::t2ADCrr: NewOpc = ARM::tADC; break; |
11039 | case ARM::t2ANDrr: NewOpc = ARM::tAND; break; |
11040 | case ARM::t2EORrr: NewOpc = ARM::tEOR; break; |
11041 | case ARM::t2ORRrr: NewOpc = ARM::tORR; break; |
11042 | } |
11043 | MCInst TmpInst; |
11044 | TmpInst.setOpcode(NewOpc); |
11045 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11046 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11047 | if (Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg()) { |
11048 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11049 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11050 | } else { |
11051 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11052 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11053 | } |
11054 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11055 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11056 | Inst = TmpInst; |
11057 | return true; |
11058 | } |
11059 | return false; |
11060 | case ARM::MVE_VPST: |
11061 | case ARM::MVE_VPTv16i8: |
11062 | case ARM::MVE_VPTv8i16: |
11063 | case ARM::MVE_VPTv4i32: |
11064 | case ARM::MVE_VPTv16u8: |
11065 | case ARM::MVE_VPTv8u16: |
11066 | case ARM::MVE_VPTv4u32: |
11067 | case ARM::MVE_VPTv16s8: |
11068 | case ARM::MVE_VPTv8s16: |
11069 | case ARM::MVE_VPTv4s32: |
11070 | case ARM::MVE_VPTv4f32: |
11071 | case ARM::MVE_VPTv8f16: |
11072 | case ARM::MVE_VPTv16i8r: |
11073 | case ARM::MVE_VPTv8i16r: |
11074 | case ARM::MVE_VPTv4i32r: |
11075 | case ARM::MVE_VPTv16u8r: |
11076 | case ARM::MVE_VPTv8u16r: |
11077 | case ARM::MVE_VPTv4u32r: |
11078 | case ARM::MVE_VPTv16s8r: |
11079 | case ARM::MVE_VPTv8s16r: |
11080 | case ARM::MVE_VPTv4s32r: |
11081 | case ARM::MVE_VPTv4f32r: |
11082 | case ARM::MVE_VPTv8f16r: { |
11083 | assert(!inVPTBlock() && "Nested VPT blocks are not allowed" ); |
11084 | MCOperand &MO = Inst.getOperand(i: 0); |
11085 | VPTState.Mask = MO.getImm(); |
11086 | VPTState.CurPosition = 0; |
11087 | break; |
11088 | } |
11089 | } |
11090 | return false; |
11091 | } |
11092 | |
11093 | unsigned |
11094 | ARMAsmParser::checkEarlyTargetMatchPredicate(MCInst &Inst, |
11095 | const OperandVector &Operands) { |
11096 | unsigned Opc = Inst.getOpcode(); |
11097 | switch (Opc) { |
11098 | // Prevent the mov r8 r8 encoding for nop being selected when the v6/thumb 2 |
11099 | // encoding is available. |
11100 | case ARM::tMOVr: { |
11101 | if (Operands[0]->isToken() && |
11102 | static_cast<ARMOperand &>(*Operands[0]).getToken() == "nop" && |
11103 | ((isThumb() && !isThumbOne()) || hasV6MOps())) { |
11104 | return Match_MnemonicFail; |
11105 | } |
11106 | } |
11107 | [[fallthrough]]; |
11108 | default: |
11109 | return Match_Success; |
11110 | } |
11111 | } |
11112 | |
11113 | unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { |
11114 | // 16-bit thumb arithmetic instructions either require or preclude the 'S' |
11115 | // suffix depending on whether they're in an IT block or not. |
11116 | unsigned Opc = Inst.getOpcode(); |
11117 | const MCInstrDesc &MCID = MII.get(Opcode: Opc); |
11118 | if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
11119 | assert(MCID.hasOptionalDef() && |
11120 | "optionally flag setting instruction missing optional def operand" ); |
11121 | assert(MCID.NumOperands == Inst.getNumOperands() && |
11122 | "operand count mismatch!" ); |
11123 | bool IsCPSR = false; |
11124 | // Check if the instruction has CPSR set. |
11125 | for (unsigned OpNo = 0; OpNo < MCID.NumOperands; ++OpNo) { |
11126 | if (MCID.operands()[OpNo].isOptionalDef() && |
11127 | Inst.getOperand(i: OpNo).isReg() && |
11128 | Inst.getOperand(i: OpNo).getReg() == ARM::CPSR) |
11129 | IsCPSR = true; |
11130 | } |
11131 | |
11132 | // If we're parsing Thumb1, reject it completely. |
11133 | if (isThumbOne() && !IsCPSR) |
11134 | return Match_RequiresFlagSetting; |
11135 | // If we're parsing Thumb2, which form is legal depends on whether we're |
11136 | // in an IT block. |
11137 | if (isThumbTwo() && !IsCPSR && !inITBlock()) |
11138 | return Match_RequiresITBlock; |
11139 | if (isThumbTwo() && IsCPSR && inITBlock()) |
11140 | return Match_RequiresNotITBlock; |
11141 | // LSL with zero immediate is not allowed in an IT block |
11142 | if (Opc == ARM::tLSLri && Inst.getOperand(i: 3).getImm() == 0 && inITBlock()) |
11143 | return Match_RequiresNotITBlock; |
11144 | } else if (isThumbOne()) { |
11145 | // Some high-register supporting Thumb1 encodings only allow both registers |
11146 | // to be from r0-r7 when in Thumb2. |
11147 | if (Opc == ARM::tADDhirr && !hasV6MOps() && |
11148 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
11149 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) |
11150 | return Match_RequiresThumb2; |
11151 | // Others only require ARMv6 or later. |
11152 | else if (Opc == ARM::tMOVr && !hasV6Ops() && |
11153 | isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
11154 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg())) |
11155 | return Match_RequiresV6; |
11156 | } |
11157 | |
11158 | // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex |
11159 | // than the loop below can handle, so it uses the GPRnopc register class and |
11160 | // we do SP handling here. |
11161 | if (Opc == ARM::t2MOVr && !hasV8Ops()) |
11162 | { |
11163 | // SP as both source and destination is not allowed |
11164 | if (Inst.getOperand(i: 0).getReg() == ARM::SP && |
11165 | Inst.getOperand(i: 1).getReg() == ARM::SP) |
11166 | return Match_RequiresV8; |
11167 | // When flags-setting SP as either source or destination is not allowed |
11168 | if (Inst.getOperand(i: 4).getReg() == ARM::CPSR && |
11169 | (Inst.getOperand(i: 0).getReg() == ARM::SP || |
11170 | Inst.getOperand(i: 1).getReg() == ARM::SP)) |
11171 | return Match_RequiresV8; |
11172 | } |
11173 | |
11174 | switch (Inst.getOpcode()) { |
11175 | case ARM::VMRS: |
11176 | case ARM::VMSR: |
11177 | case ARM::VMRS_FPCXTS: |
11178 | case ARM::VMRS_FPCXTNS: |
11179 | case ARM::VMSR_FPCXTS: |
11180 | case ARM::VMSR_FPCXTNS: |
11181 | case ARM::VMRS_FPSCR_NZCVQC: |
11182 | case ARM::VMSR_FPSCR_NZCVQC: |
11183 | case ARM::FMSTAT: |
11184 | case ARM::VMRS_VPR: |
11185 | case ARM::VMRS_P0: |
11186 | case ARM::VMSR_VPR: |
11187 | case ARM::VMSR_P0: |
11188 | // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of |
11189 | // ARMv8-A. |
11190 | if (Inst.getOperand(i: 0).isReg() && Inst.getOperand(i: 0).getReg() == ARM::SP && |
11191 | (isThumb() && !hasV8Ops())) |
11192 | return Match_InvalidOperand; |
11193 | break; |
11194 | case ARM::t2TBB: |
11195 | case ARM::t2TBH: |
11196 | // Rn = sp is only allowed with ARMv8-A |
11197 | if (!hasV8Ops() && (Inst.getOperand(i: 0).getReg() == ARM::SP)) |
11198 | return Match_RequiresV8; |
11199 | break; |
11200 | case ARM::tMUL: |
11201 | // The second source operand must be the same register as the destination |
11202 | // operand. |
11203 | // FIXME: Ideally this would be handled by ARMGenAsmMatcher and |
11204 | // emitAsmTiedOperandConstraints. |
11205 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 3).getReg()) |
11206 | return Match_InvalidTiedOperand; |
11207 | break; |
11208 | default: |
11209 | break; |
11210 | } |
11211 | |
11212 | for (unsigned I = 0; I < MCID.NumOperands; ++I) |
11213 | if (MCID.operands()[I].RegClass == ARM::rGPRRegClassID) { |
11214 | // rGPRRegClass excludes PC, and also excluded SP before ARMv8 |
11215 | const auto &Op = Inst.getOperand(i: I); |
11216 | if (!Op.isReg()) { |
11217 | // This can happen in awkward cases with tied operands, e.g. a |
11218 | // writeback load/store with a complex addressing mode in |
11219 | // which there's an output operand corresponding to the |
11220 | // updated written-back base register: the Tablegen-generated |
11221 | // AsmMatcher will have written a placeholder operand to that |
11222 | // slot in the form of an immediate 0, because it can't |
11223 | // generate the register part of the complex addressing-mode |
11224 | // operand ahead of time. |
11225 | continue; |
11226 | } |
11227 | |
11228 | unsigned Reg = Op.getReg(); |
11229 | if ((Reg == ARM::SP) && !hasV8Ops()) |
11230 | return Match_RequiresV8; |
11231 | else if (Reg == ARM::PC) |
11232 | return Match_InvalidOperand; |
11233 | } |
11234 | |
11235 | return Match_Success; |
11236 | } |
11237 | |
11238 | namespace llvm { |
11239 | |
11240 | template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { |
11241 | return true; // In an assembly source, no need to second-guess |
11242 | } |
11243 | |
11244 | } // end namespace llvm |
11245 | |
11246 | // Returns true if Inst is unpredictable if it is in and IT block, but is not |
11247 | // the last instruction in the block. |
11248 | bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { |
11249 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11250 | |
11251 | // All branch & call instructions terminate IT blocks with the exception of |
11252 | // SVC. |
11253 | if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || |
11254 | MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) |
11255 | return true; |
11256 | |
11257 | // Any arithmetic instruction which writes to the PC also terminates the IT |
11258 | // block. |
11259 | if (MCID.hasDefOfPhysReg(MI: Inst, Reg: ARM::PC, RI: *MRI)) |
11260 | return true; |
11261 | |
11262 | return false; |
11263 | } |
11264 | |
11265 | unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, |
11266 | SmallVectorImpl<NearMissInfo> &NearMisses, |
11267 | bool MatchingInlineAsm, |
11268 | bool &EmitInITBlock, |
11269 | MCStreamer &Out) { |
11270 | // If we can't use an implicit IT block here, just match as normal. |
11271 | if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) |
11272 | return MatchInstructionImpl(Operands, Inst, NearMisses: &NearMisses, matchingInlineAsm: MatchingInlineAsm); |
11273 | |
11274 | // Try to match the instruction in an extension of the current IT block (if |
11275 | // there is one). |
11276 | if (inImplicitITBlock()) { |
11277 | extendImplicitITBlock(Cond: ITState.Cond); |
11278 | if (MatchInstructionImpl(Operands, Inst, NearMisses: nullptr, matchingInlineAsm: MatchingInlineAsm) == |
11279 | Match_Success) { |
11280 | // The match succeded, but we still have to check that the instruction is |
11281 | // valid in this implicit IT block. |
11282 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11283 | if (MCID.isPredicable()) { |
11284 | ARMCC::CondCodes InstCond = |
11285 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11286 | .getImm(); |
11287 | ARMCC::CondCodes ITCond = currentITCond(); |
11288 | if (InstCond == ITCond) { |
11289 | EmitInITBlock = true; |
11290 | return Match_Success; |
11291 | } else if (InstCond == ARMCC::getOppositeCondition(CC: ITCond)) { |
11292 | invertCurrentITCondition(); |
11293 | EmitInITBlock = true; |
11294 | return Match_Success; |
11295 | } |
11296 | } |
11297 | } |
11298 | rewindImplicitITPosition(); |
11299 | } |
11300 | |
11301 | // Finish the current IT block, and try to match outside any IT block. |
11302 | flushPendingInstructions(Out); |
11303 | unsigned PlainMatchResult = |
11304 | MatchInstructionImpl(Operands, Inst, NearMisses: &NearMisses, matchingInlineAsm: MatchingInlineAsm); |
11305 | if (PlainMatchResult == Match_Success) { |
11306 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11307 | if (MCID.isPredicable()) { |
11308 | ARMCC::CondCodes InstCond = |
11309 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11310 | .getImm(); |
11311 | // Some forms of the branch instruction have their own condition code |
11312 | // fields, so can be conditionally executed without an IT block. |
11313 | if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { |
11314 | EmitInITBlock = false; |
11315 | return Match_Success; |
11316 | } |
11317 | if (InstCond == ARMCC::AL) { |
11318 | EmitInITBlock = false; |
11319 | return Match_Success; |
11320 | } |
11321 | } else { |
11322 | EmitInITBlock = false; |
11323 | return Match_Success; |
11324 | } |
11325 | } |
11326 | |
11327 | // Try to match in a new IT block. The matcher doesn't check the actual |
11328 | // condition, so we create an IT block with a dummy condition, and fix it up |
11329 | // once we know the actual condition. |
11330 | startImplicitITBlock(); |
11331 | if (MatchInstructionImpl(Operands, Inst, NearMisses: nullptr, matchingInlineAsm: MatchingInlineAsm) == |
11332 | Match_Success) { |
11333 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11334 | if (MCID.isPredicable()) { |
11335 | ITState.Cond = |
11336 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11337 | .getImm(); |
11338 | EmitInITBlock = true; |
11339 | return Match_Success; |
11340 | } |
11341 | } |
11342 | discardImplicitITBlock(); |
11343 | |
11344 | // If none of these succeed, return the error we got when trying to match |
11345 | // outside any IT blocks. |
11346 | EmitInITBlock = false; |
11347 | return PlainMatchResult; |
11348 | } |
11349 | |
11350 | static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, |
11351 | unsigned VariantID = 0); |
11352 | |
11353 | static const char *getSubtargetFeatureName(uint64_t Val); |
11354 | bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
11355 | OperandVector &Operands, |
11356 | MCStreamer &Out, uint64_t &ErrorInfo, |
11357 | bool MatchingInlineAsm) { |
11358 | MCInst Inst; |
11359 | unsigned MatchResult; |
11360 | bool PendConditionalInstruction = false; |
11361 | |
11362 | SmallVector<NearMissInfo, 4> NearMisses; |
11363 | MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, |
11364 | EmitInITBlock&: PendConditionalInstruction, Out); |
11365 | |
11366 | // Find the number of operators that are part of the Mnumonic (LHS). |
11367 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
11368 | |
11369 | switch (MatchResult) { |
11370 | case Match_Success: |
11371 | LLVM_DEBUG(dbgs() << "Parsed as: " ; |
11372 | Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
11373 | dbgs() << "\n" ); |
11374 | |
11375 | // Context sensitive operand constraints aren't handled by the matcher, |
11376 | // so check them here. |
11377 | if (validateInstruction(Inst, Operands, MnemonicOpsEndInd)) { |
11378 | // Still progress the IT block, otherwise one wrong condition causes |
11379 | // nasty cascading errors. |
11380 | forwardITPosition(); |
11381 | forwardVPTPosition(); |
11382 | return true; |
11383 | } |
11384 | |
11385 | { |
11386 | // Some instructions need post-processing to, for example, tweak which |
11387 | // encoding is selected. Loop on it while changes happen so the |
11388 | // individual transformations can chain off each other. E.g., |
11389 | // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) |
11390 | while (processInstruction(Inst, Operands, MnemonicOpsEndInd, Out)) |
11391 | LLVM_DEBUG(dbgs() << "Changed to: " ; |
11392 | Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
11393 | dbgs() << "\n" ); |
11394 | } |
11395 | |
11396 | // Only move forward at the very end so that everything in validate |
11397 | // and process gets a consistent answer about whether we're in an IT |
11398 | // block. |
11399 | forwardITPosition(); |
11400 | forwardVPTPosition(); |
11401 | |
11402 | // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and |
11403 | // doesn't actually encode. |
11404 | if (Inst.getOpcode() == ARM::ITasm) |
11405 | return false; |
11406 | |
11407 | Inst.setLoc(IDLoc); |
11408 | if (PendConditionalInstruction) { |
11409 | PendingConditionalInsts.push_back(Elt: Inst); |
11410 | if (isITBlockFull() || isITBlockTerminator(Inst)) |
11411 | flushPendingInstructions(Out); |
11412 | } else { |
11413 | Out.emitInstruction(Inst, STI: getSTI()); |
11414 | } |
11415 | return false; |
11416 | case Match_NearMisses: |
11417 | ReportNearMisses(NearMisses, IDLoc, Operands); |
11418 | return true; |
11419 | case Match_MnemonicFail: { |
11420 | FeatureBitset FBS = ComputeAvailableFeatures(FB: getSTI().getFeatureBits()); |
11421 | std::string Suggestion = ARMMnemonicSpellCheck( |
11422 | S: ((ARMOperand &)*Operands[0]).getToken(), FBS); |
11423 | return Error(L: IDLoc, Msg: "invalid instruction" + Suggestion, |
11424 | Range: ((ARMOperand &)*Operands[0]).getLocRange()); |
11425 | } |
11426 | } |
11427 | |
11428 | llvm_unreachable("Implement any new match types added!" ); |
11429 | } |
11430 | |
11431 | /// parseDirective parses the arm specific directives |
11432 | bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { |
11433 | const MCContext::Environment Format = getContext().getObjectFileType(); |
11434 | bool IsMachO = Format == MCContext::IsMachO; |
11435 | bool IsCOFF = Format == MCContext::IsCOFF; |
11436 | |
11437 | std::string IDVal = DirectiveID.getIdentifier().lower(); |
11438 | if (IDVal == ".word" ) |
11439 | parseLiteralValues(Size: 4, L: DirectiveID.getLoc()); |
11440 | else if (IDVal == ".short" || IDVal == ".hword" ) |
11441 | parseLiteralValues(Size: 2, L: DirectiveID.getLoc()); |
11442 | else if (IDVal == ".thumb" ) |
11443 | parseDirectiveThumb(L: DirectiveID.getLoc()); |
11444 | else if (IDVal == ".arm" ) |
11445 | parseDirectiveARM(L: DirectiveID.getLoc()); |
11446 | else if (IDVal == ".thumb_func" ) |
11447 | parseDirectiveThumbFunc(L: DirectiveID.getLoc()); |
11448 | else if (IDVal == ".code" ) |
11449 | parseDirectiveCode(L: DirectiveID.getLoc()); |
11450 | else if (IDVal == ".syntax" ) |
11451 | parseDirectiveSyntax(L: DirectiveID.getLoc()); |
11452 | else if (IDVal == ".unreq" ) |
11453 | parseDirectiveUnreq(L: DirectiveID.getLoc()); |
11454 | else if (IDVal == ".fnend" ) |
11455 | parseDirectiveFnEnd(L: DirectiveID.getLoc()); |
11456 | else if (IDVal == ".cantunwind" ) |
11457 | parseDirectiveCantUnwind(L: DirectiveID.getLoc()); |
11458 | else if (IDVal == ".personality" ) |
11459 | parseDirectivePersonality(L: DirectiveID.getLoc()); |
11460 | else if (IDVal == ".handlerdata" ) |
11461 | parseDirectiveHandlerData(L: DirectiveID.getLoc()); |
11462 | else if (IDVal == ".setfp" ) |
11463 | parseDirectiveSetFP(L: DirectiveID.getLoc()); |
11464 | else if (IDVal == ".pad" ) |
11465 | parseDirectivePad(L: DirectiveID.getLoc()); |
11466 | else if (IDVal == ".save" ) |
11467 | parseDirectiveRegSave(L: DirectiveID.getLoc(), IsVector: false); |
11468 | else if (IDVal == ".vsave" ) |
11469 | parseDirectiveRegSave(L: DirectiveID.getLoc(), IsVector: true); |
11470 | else if (IDVal == ".ltorg" || IDVal == ".pool" ) |
11471 | parseDirectiveLtorg(L: DirectiveID.getLoc()); |
11472 | else if (IDVal == ".even" ) |
11473 | parseDirectiveEven(L: DirectiveID.getLoc()); |
11474 | else if (IDVal == ".personalityindex" ) |
11475 | parseDirectivePersonalityIndex(L: DirectiveID.getLoc()); |
11476 | else if (IDVal == ".unwind_raw" ) |
11477 | parseDirectiveUnwindRaw(L: DirectiveID.getLoc()); |
11478 | else if (IDVal == ".movsp" ) |
11479 | parseDirectiveMovSP(L: DirectiveID.getLoc()); |
11480 | else if (IDVal == ".arch_extension" ) |
11481 | parseDirectiveArchExtension(L: DirectiveID.getLoc()); |
11482 | else if (IDVal == ".align" ) |
11483 | return parseDirectiveAlign(L: DirectiveID.getLoc()); // Use Generic on failure. |
11484 | else if (IDVal == ".thumb_set" ) |
11485 | parseDirectiveThumbSet(L: DirectiveID.getLoc()); |
11486 | else if (IDVal == ".inst" ) |
11487 | parseDirectiveInst(L: DirectiveID.getLoc()); |
11488 | else if (IDVal == ".inst.n" ) |
11489 | parseDirectiveInst(L: DirectiveID.getLoc(), Suffix: 'n'); |
11490 | else if (IDVal == ".inst.w" ) |
11491 | parseDirectiveInst(L: DirectiveID.getLoc(), Suffix: 'w'); |
11492 | else if (!IsMachO && !IsCOFF) { |
11493 | if (IDVal == ".arch" ) |
11494 | parseDirectiveArch(L: DirectiveID.getLoc()); |
11495 | else if (IDVal == ".cpu" ) |
11496 | parseDirectiveCPU(L: DirectiveID.getLoc()); |
11497 | else if (IDVal == ".eabi_attribute" ) |
11498 | parseDirectiveEabiAttr(L: DirectiveID.getLoc()); |
11499 | else if (IDVal == ".fpu" ) |
11500 | parseDirectiveFPU(L: DirectiveID.getLoc()); |
11501 | else if (IDVal == ".fnstart" ) |
11502 | parseDirectiveFnStart(L: DirectiveID.getLoc()); |
11503 | else if (IDVal == ".object_arch" ) |
11504 | parseDirectiveObjectArch(L: DirectiveID.getLoc()); |
11505 | else if (IDVal == ".tlsdescseq" ) |
11506 | parseDirectiveTLSDescSeq(L: DirectiveID.getLoc()); |
11507 | else |
11508 | return true; |
11509 | } else if (IsCOFF) { |
11510 | if (IDVal == ".seh_stackalloc" ) |
11511 | parseDirectiveSEHAllocStack(L: DirectiveID.getLoc(), /*Wide=*/false); |
11512 | else if (IDVal == ".seh_stackalloc_w" ) |
11513 | parseDirectiveSEHAllocStack(L: DirectiveID.getLoc(), /*Wide=*/true); |
11514 | else if (IDVal == ".seh_save_regs" ) |
11515 | parseDirectiveSEHSaveRegs(L: DirectiveID.getLoc(), /*Wide=*/false); |
11516 | else if (IDVal == ".seh_save_regs_w" ) |
11517 | parseDirectiveSEHSaveRegs(L: DirectiveID.getLoc(), /*Wide=*/true); |
11518 | else if (IDVal == ".seh_save_sp" ) |
11519 | parseDirectiveSEHSaveSP(L: DirectiveID.getLoc()); |
11520 | else if (IDVal == ".seh_save_fregs" ) |
11521 | parseDirectiveSEHSaveFRegs(L: DirectiveID.getLoc()); |
11522 | else if (IDVal == ".seh_save_lr" ) |
11523 | parseDirectiveSEHSaveLR(L: DirectiveID.getLoc()); |
11524 | else if (IDVal == ".seh_endprologue" ) |
11525 | parseDirectiveSEHPrologEnd(L: DirectiveID.getLoc(), /*Fragment=*/false); |
11526 | else if (IDVal == ".seh_endprologue_fragment" ) |
11527 | parseDirectiveSEHPrologEnd(L: DirectiveID.getLoc(), /*Fragment=*/true); |
11528 | else if (IDVal == ".seh_nop" ) |
11529 | parseDirectiveSEHNop(L: DirectiveID.getLoc(), /*Wide=*/false); |
11530 | else if (IDVal == ".seh_nop_w" ) |
11531 | parseDirectiveSEHNop(L: DirectiveID.getLoc(), /*Wide=*/true); |
11532 | else if (IDVal == ".seh_startepilogue" ) |
11533 | parseDirectiveSEHEpilogStart(L: DirectiveID.getLoc(), /*Condition=*/false); |
11534 | else if (IDVal == ".seh_startepilogue_cond" ) |
11535 | parseDirectiveSEHEpilogStart(L: DirectiveID.getLoc(), /*Condition=*/true); |
11536 | else if (IDVal == ".seh_endepilogue" ) |
11537 | parseDirectiveSEHEpilogEnd(L: DirectiveID.getLoc()); |
11538 | else if (IDVal == ".seh_custom" ) |
11539 | parseDirectiveSEHCustom(L: DirectiveID.getLoc()); |
11540 | else |
11541 | return true; |
11542 | } else |
11543 | return true; |
11544 | return false; |
11545 | } |
11546 | |
11547 | /// parseLiteralValues |
11548 | /// ::= .hword expression [, expression]* |
11549 | /// ::= .short expression [, expression]* |
11550 | /// ::= .word expression [, expression]* |
11551 | bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { |
11552 | auto parseOne = [&]() -> bool { |
11553 | const MCExpr *Value; |
11554 | if (getParser().parseExpression(Res&: Value)) |
11555 | return true; |
11556 | getParser().getStreamer().emitValue(Value, Size, Loc: L); |
11557 | return false; |
11558 | }; |
11559 | return (parseMany(parseOne)); |
11560 | } |
11561 | |
11562 | /// parseDirectiveThumb |
11563 | /// ::= .thumb |
11564 | bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { |
11565 | if (parseEOL() || check(P: !hasThumb(), Loc: L, Msg: "target does not support Thumb mode" )) |
11566 | return true; |
11567 | |
11568 | if (!isThumb()) |
11569 | SwitchMode(); |
11570 | |
11571 | getParser().getStreamer().emitAssemblerFlag(Flag: MCAF_Code16); |
11572 | getParser().getStreamer().emitCodeAlignment(Alignment: Align(2), STI: &getSTI(), MaxBytesToEmit: 0); |
11573 | return false; |
11574 | } |
11575 | |
11576 | /// parseDirectiveARM |
11577 | /// ::= .arm |
11578 | bool ARMAsmParser::parseDirectiveARM(SMLoc L) { |
11579 | if (parseEOL() || check(P: !hasARM(), Loc: L, Msg: "target does not support ARM mode" )) |
11580 | return true; |
11581 | |
11582 | if (isThumb()) |
11583 | SwitchMode(); |
11584 | getParser().getStreamer().emitAssemblerFlag(Flag: MCAF_Code32); |
11585 | getParser().getStreamer().emitCodeAlignment(Alignment: Align(4), STI: &getSTI(), MaxBytesToEmit: 0); |
11586 | return false; |
11587 | } |
11588 | |
11589 | MCSymbolRefExpr::VariantKind |
11590 | ARMAsmParser::getVariantKindForName(StringRef Name) const { |
11591 | return StringSwitch<MCSymbolRefExpr::VariantKind>(Name.lower()) |
11592 | .Case(S: "funcdesc" , Value: MCSymbolRefExpr::VK_FUNCDESC) |
11593 | .Case(S: "got" , Value: MCSymbolRefExpr::VK_GOT) |
11594 | .Case(S: "got_prel" , Value: MCSymbolRefExpr::VK_ARM_GOT_PREL) |
11595 | .Case(S: "gotfuncdesc" , Value: MCSymbolRefExpr::VK_GOTFUNCDESC) |
11596 | .Case(S: "gotoff" , Value: MCSymbolRefExpr::VK_GOTOFF) |
11597 | .Case(S: "gotofffuncdesc" , Value: MCSymbolRefExpr::VK_GOTOFFFUNCDESC) |
11598 | .Case(S: "gottpoff" , Value: MCSymbolRefExpr::VK_GOTTPOFF) |
11599 | .Case(S: "gottpoff_fdpic" , Value: MCSymbolRefExpr::VK_GOTTPOFF_FDPIC) |
11600 | .Case(S: "imgrel" , Value: MCSymbolRefExpr::VK_COFF_IMGREL32) |
11601 | .Case(S: "none" , Value: MCSymbolRefExpr::VK_ARM_NONE) |
11602 | .Case(S: "plt" , Value: MCSymbolRefExpr::VK_PLT) |
11603 | .Case(S: "prel31" , Value: MCSymbolRefExpr::VK_ARM_PREL31) |
11604 | .Case(S: "sbrel" , Value: MCSymbolRefExpr::VK_ARM_SBREL) |
11605 | .Case(S: "secrel32" , Value: MCSymbolRefExpr::VK_SECREL) |
11606 | .Case(S: "target1" , Value: MCSymbolRefExpr::VK_ARM_TARGET1) |
11607 | .Case(S: "target2" , Value: MCSymbolRefExpr::VK_ARM_TARGET2) |
11608 | .Case(S: "tlscall" , Value: MCSymbolRefExpr::VK_TLSCALL) |
11609 | .Case(S: "tlsdesc" , Value: MCSymbolRefExpr::VK_TLSDESC) |
11610 | .Case(S: "tlsgd" , Value: MCSymbolRefExpr::VK_TLSGD) |
11611 | .Case(S: "tlsgd_fdpic" , Value: MCSymbolRefExpr::VK_TLSGD_FDPIC) |
11612 | .Case(S: "tlsld" , Value: MCSymbolRefExpr::VK_TLSLD) |
11613 | .Case(S: "tlsldm" , Value: MCSymbolRefExpr::VK_TLSLDM) |
11614 | .Case(S: "tlsldm_fdpic" , Value: MCSymbolRefExpr::VK_TLSLDM_FDPIC) |
11615 | .Case(S: "tlsldo" , Value: MCSymbolRefExpr::VK_ARM_TLSLDO) |
11616 | .Case(S: "tpoff" , Value: MCSymbolRefExpr::VK_TPOFF) |
11617 | .Default(Value: MCSymbolRefExpr::VK_Invalid); |
11618 | } |
11619 | |
11620 | void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) { |
11621 | // We need to flush the current implicit IT block on a label, because it is |
11622 | // not legal to branch into an IT block. |
11623 | flushPendingInstructions(Out&: getStreamer()); |
11624 | } |
11625 | |
11626 | void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { |
11627 | if (NextSymbolIsThumb) { |
11628 | getParser().getStreamer().emitThumbFunc(Func: Symbol); |
11629 | NextSymbolIsThumb = false; |
11630 | } |
11631 | } |
11632 | |
11633 | /// parseDirectiveThumbFunc |
11634 | /// ::= .thumbfunc symbol_name |
11635 | bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { |
11636 | MCAsmParser &Parser = getParser(); |
11637 | const auto Format = getContext().getObjectFileType(); |
11638 | bool IsMachO = Format == MCContext::IsMachO; |
11639 | |
11640 | // Darwin asm has (optionally) function name after .thumb_func direction |
11641 | // ELF doesn't |
11642 | |
11643 | if (IsMachO) { |
11644 | if (Parser.getTok().is(K: AsmToken::Identifier) || |
11645 | Parser.getTok().is(K: AsmToken::String)) { |
11646 | MCSymbol *Func = getParser().getContext().getOrCreateSymbol( |
11647 | Name: Parser.getTok().getIdentifier()); |
11648 | getParser().getStreamer().emitThumbFunc(Func); |
11649 | Parser.Lex(); |
11650 | if (parseEOL()) |
11651 | return true; |
11652 | return false; |
11653 | } |
11654 | } |
11655 | |
11656 | if (parseEOL()) |
11657 | return true; |
11658 | |
11659 | // .thumb_func implies .thumb |
11660 | if (!isThumb()) |
11661 | SwitchMode(); |
11662 | |
11663 | getParser().getStreamer().emitAssemblerFlag(Flag: MCAF_Code16); |
11664 | |
11665 | NextSymbolIsThumb = true; |
11666 | return false; |
11667 | } |
11668 | |
11669 | /// parseDirectiveSyntax |
11670 | /// ::= .syntax unified | divided |
11671 | bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { |
11672 | MCAsmParser &Parser = getParser(); |
11673 | const AsmToken &Tok = Parser.getTok(); |
11674 | if (Tok.isNot(K: AsmToken::Identifier)) { |
11675 | Error(L, Msg: "unexpected token in .syntax directive" ); |
11676 | return false; |
11677 | } |
11678 | |
11679 | StringRef Mode = Tok.getString(); |
11680 | Parser.Lex(); |
11681 | if (check(P: Mode == "divided" || Mode == "DIVIDED" , Loc: L, |
11682 | Msg: "'.syntax divided' arm assembly not supported" ) || |
11683 | check(P: Mode != "unified" && Mode != "UNIFIED" , Loc: L, |
11684 | Msg: "unrecognized syntax mode in .syntax directive" ) || |
11685 | parseEOL()) |
11686 | return true; |
11687 | |
11688 | // TODO tell the MC streamer the mode |
11689 | // getParser().getStreamer().Emit???(); |
11690 | return false; |
11691 | } |
11692 | |
11693 | /// parseDirectiveCode |
11694 | /// ::= .code 16 | 32 |
11695 | bool ARMAsmParser::parseDirectiveCode(SMLoc L) { |
11696 | MCAsmParser &Parser = getParser(); |
11697 | const AsmToken &Tok = Parser.getTok(); |
11698 | if (Tok.isNot(K: AsmToken::Integer)) |
11699 | return Error(L, Msg: "unexpected token in .code directive" ); |
11700 | int64_t Val = Parser.getTok().getIntVal(); |
11701 | if (Val != 16 && Val != 32) { |
11702 | Error(L, Msg: "invalid operand to .code directive" ); |
11703 | return false; |
11704 | } |
11705 | Parser.Lex(); |
11706 | |
11707 | if (parseEOL()) |
11708 | return true; |
11709 | |
11710 | if (Val == 16) { |
11711 | if (!hasThumb()) |
11712 | return Error(L, Msg: "target does not support Thumb mode" ); |
11713 | |
11714 | if (!isThumb()) |
11715 | SwitchMode(); |
11716 | getParser().getStreamer().emitAssemblerFlag(Flag: MCAF_Code16); |
11717 | } else { |
11718 | if (!hasARM()) |
11719 | return Error(L, Msg: "target does not support ARM mode" ); |
11720 | |
11721 | if (isThumb()) |
11722 | SwitchMode(); |
11723 | getParser().getStreamer().emitAssemblerFlag(Flag: MCAF_Code32); |
11724 | } |
11725 | |
11726 | return false; |
11727 | } |
11728 | |
11729 | /// parseDirectiveReq |
11730 | /// ::= name .req registername |
11731 | bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { |
11732 | MCAsmParser &Parser = getParser(); |
11733 | Parser.Lex(); // Eat the '.req' token. |
11734 | MCRegister Reg; |
11735 | SMLoc SRegLoc, ERegLoc; |
11736 | if (check(P: parseRegister(Reg, StartLoc&: SRegLoc, EndLoc&: ERegLoc), Loc: SRegLoc, |
11737 | Msg: "register name expected" ) || |
11738 | parseEOL()) |
11739 | return true; |
11740 | |
11741 | if (RegisterReqs.insert(KV: std::make_pair(x&: Name, y&: Reg)).first->second != Reg) |
11742 | return Error(L: SRegLoc, |
11743 | Msg: "redefinition of '" + Name + "' does not match original." ); |
11744 | |
11745 | return false; |
11746 | } |
11747 | |
11748 | /// parseDirectiveUneq |
11749 | /// ::= .unreq registername |
11750 | bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { |
11751 | MCAsmParser &Parser = getParser(); |
11752 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
11753 | return Error(L, Msg: "unexpected input in .unreq directive." ); |
11754 | RegisterReqs.erase(Key: Parser.getTok().getIdentifier().lower()); |
11755 | Parser.Lex(); // Eat the identifier. |
11756 | return parseEOL(); |
11757 | } |
11758 | |
11759 | // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was |
11760 | // before, if supported by the new target, or emit mapping symbols for the mode |
11761 | // switch. |
11762 | void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { |
11763 | if (WasThumb != isThumb()) { |
11764 | if (WasThumb && hasThumb()) { |
11765 | // Stay in Thumb mode |
11766 | SwitchMode(); |
11767 | } else if (!WasThumb && hasARM()) { |
11768 | // Stay in ARM mode |
11769 | SwitchMode(); |
11770 | } else { |
11771 | // Mode switch forced, because the new arch doesn't support the old mode. |
11772 | getParser().getStreamer().emitAssemblerFlag(Flag: isThumb() ? MCAF_Code16 |
11773 | : MCAF_Code32); |
11774 | // Warn about the implcit mode switch. GAS does not switch modes here, |
11775 | // but instead stays in the old mode, reporting an error on any following |
11776 | // instructions as the mode does not exist on the target. |
11777 | Warning(L: Loc, Msg: Twine("new target does not support " ) + |
11778 | (WasThumb ? "thumb" : "arm" ) + " mode, switching to " + |
11779 | (!WasThumb ? "thumb" : "arm" ) + " mode" ); |
11780 | } |
11781 | } |
11782 | } |
11783 | |
11784 | /// parseDirectiveArch |
11785 | /// ::= .arch token |
11786 | bool ARMAsmParser::parseDirectiveArch(SMLoc L) { |
11787 | StringRef Arch = getParser().parseStringToEndOfStatement().trim(); |
11788 | ARM::ArchKind ID = ARM::parseArch(Arch); |
11789 | |
11790 | if (ID == ARM::ArchKind::INVALID) |
11791 | return Error(L, Msg: "Unknown arch name" ); |
11792 | |
11793 | bool WasThumb = isThumb(); |
11794 | Triple T; |
11795 | MCSubtargetInfo &STI = copySTI(); |
11796 | STI.setDefaultFeatures(CPU: "" , /*TuneCPU*/ "" , |
11797 | FS: ("+" + ARM::getArchName(AK: ID)).str()); |
11798 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11799 | FixModeAfterArchChange(WasThumb, Loc: L); |
11800 | |
11801 | getTargetStreamer().emitArch(Arch: ID); |
11802 | return false; |
11803 | } |
11804 | |
11805 | /// parseDirectiveEabiAttr |
11806 | /// ::= .eabi_attribute int, int [, "str"] |
11807 | /// ::= .eabi_attribute Tag_name, int [, "str"] |
11808 | bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { |
11809 | MCAsmParser &Parser = getParser(); |
11810 | int64_t Tag; |
11811 | SMLoc TagLoc; |
11812 | TagLoc = Parser.getTok().getLoc(); |
11813 | if (Parser.getTok().is(K: AsmToken::Identifier)) { |
11814 | StringRef Name = Parser.getTok().getIdentifier(); |
11815 | std::optional<unsigned> Ret = ELFAttrs::attrTypeFromString( |
11816 | tag: Name, tagNameMap: ARMBuildAttrs::getARMAttributeTags()); |
11817 | if (!Ret) { |
11818 | Error(L: TagLoc, Msg: "attribute name not recognised: " + Name); |
11819 | return false; |
11820 | } |
11821 | Tag = *Ret; |
11822 | Parser.Lex(); |
11823 | } else { |
11824 | const MCExpr *AttrExpr; |
11825 | |
11826 | TagLoc = Parser.getTok().getLoc(); |
11827 | if (Parser.parseExpression(Res&: AttrExpr)) |
11828 | return true; |
11829 | |
11830 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: AttrExpr); |
11831 | if (check(P: !CE, Loc: TagLoc, Msg: "expected numeric constant" )) |
11832 | return true; |
11833 | |
11834 | Tag = CE->getValue(); |
11835 | } |
11836 | |
11837 | if (Parser.parseComma()) |
11838 | return true; |
11839 | |
11840 | StringRef StringValue = "" ; |
11841 | bool IsStringValue = false; |
11842 | |
11843 | int64_t IntegerValue = 0; |
11844 | bool IsIntegerValue = false; |
11845 | |
11846 | if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) |
11847 | IsStringValue = true; |
11848 | else if (Tag == ARMBuildAttrs::compatibility) { |
11849 | IsStringValue = true; |
11850 | IsIntegerValue = true; |
11851 | } else if (Tag < 32 || Tag % 2 == 0) |
11852 | IsIntegerValue = true; |
11853 | else if (Tag % 2 == 1) |
11854 | IsStringValue = true; |
11855 | else |
11856 | llvm_unreachable("invalid tag type" ); |
11857 | |
11858 | if (IsIntegerValue) { |
11859 | const MCExpr *ValueExpr; |
11860 | SMLoc ValueExprLoc = Parser.getTok().getLoc(); |
11861 | if (Parser.parseExpression(Res&: ValueExpr)) |
11862 | return true; |
11863 | |
11864 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ValueExpr); |
11865 | if (!CE) |
11866 | return Error(L: ValueExprLoc, Msg: "expected numeric constant" ); |
11867 | IntegerValue = CE->getValue(); |
11868 | } |
11869 | |
11870 | if (Tag == ARMBuildAttrs::compatibility) { |
11871 | if (Parser.parseComma()) |
11872 | return true; |
11873 | } |
11874 | |
11875 | std::string EscapedValue; |
11876 | if (IsStringValue) { |
11877 | if (Parser.getTok().isNot(K: AsmToken::String)) |
11878 | return Error(L: Parser.getTok().getLoc(), Msg: "bad string constant" ); |
11879 | |
11880 | if (Tag == ARMBuildAttrs::also_compatible_with) { |
11881 | if (Parser.parseEscapedString(Data&: EscapedValue)) |
11882 | return Error(L: Parser.getTok().getLoc(), Msg: "bad escaped string constant" ); |
11883 | |
11884 | StringValue = EscapedValue; |
11885 | } else { |
11886 | StringValue = Parser.getTok().getStringContents(); |
11887 | Parser.Lex(); |
11888 | } |
11889 | } |
11890 | |
11891 | if (Parser.parseEOL()) |
11892 | return true; |
11893 | |
11894 | if (IsIntegerValue && IsStringValue) { |
11895 | assert(Tag == ARMBuildAttrs::compatibility); |
11896 | getTargetStreamer().emitIntTextAttribute(Attribute: Tag, IntValue: IntegerValue, StringValue); |
11897 | } else if (IsIntegerValue) |
11898 | getTargetStreamer().emitAttribute(Attribute: Tag, Value: IntegerValue); |
11899 | else if (IsStringValue) |
11900 | getTargetStreamer().emitTextAttribute(Attribute: Tag, String: StringValue); |
11901 | return false; |
11902 | } |
11903 | |
11904 | /// parseDirectiveCPU |
11905 | /// ::= .cpu str |
11906 | bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { |
11907 | StringRef CPU = getParser().parseStringToEndOfStatement().trim(); |
11908 | getTargetStreamer().emitTextAttribute(Attribute: ARMBuildAttrs::CPU_name, String: CPU); |
11909 | |
11910 | // FIXME: This is using table-gen data, but should be moved to |
11911 | // ARMTargetParser once that is table-gen'd. |
11912 | if (!getSTI().isCPUStringValid(CPU)) |
11913 | return Error(L, Msg: "Unknown CPU name" ); |
11914 | |
11915 | bool WasThumb = isThumb(); |
11916 | MCSubtargetInfo &STI = copySTI(); |
11917 | STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, FS: "" ); |
11918 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11919 | FixModeAfterArchChange(WasThumb, Loc: L); |
11920 | |
11921 | return false; |
11922 | } |
11923 | |
11924 | /// parseDirectiveFPU |
11925 | /// ::= .fpu str |
11926 | bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { |
11927 | SMLoc FPUNameLoc = getTok().getLoc(); |
11928 | StringRef FPU = getParser().parseStringToEndOfStatement().trim(); |
11929 | |
11930 | ARM::FPUKind ID = ARM::parseFPU(FPU); |
11931 | std::vector<StringRef> Features; |
11932 | if (!ARM::getFPUFeatures(FPUKind: ID, Features)) |
11933 | return Error(L: FPUNameLoc, Msg: "Unknown FPU name" ); |
11934 | |
11935 | MCSubtargetInfo &STI = copySTI(); |
11936 | for (auto Feature : Features) |
11937 | STI.ApplyFeatureFlag(FS: Feature); |
11938 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11939 | |
11940 | getTargetStreamer().emitFPU(FPU: ID); |
11941 | return false; |
11942 | } |
11943 | |
11944 | /// parseDirectiveFnStart |
11945 | /// ::= .fnstart |
11946 | bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { |
11947 | if (parseEOL()) |
11948 | return true; |
11949 | |
11950 | if (UC.hasFnStart()) { |
11951 | Error(L, Msg: ".fnstart starts before the end of previous one" ); |
11952 | UC.emitFnStartLocNotes(); |
11953 | return true; |
11954 | } |
11955 | |
11956 | // Reset the unwind directives parser state |
11957 | UC.reset(); |
11958 | |
11959 | getTargetStreamer().emitFnStart(); |
11960 | |
11961 | UC.recordFnStart(L); |
11962 | return false; |
11963 | } |
11964 | |
11965 | /// parseDirectiveFnEnd |
11966 | /// ::= .fnend |
11967 | bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { |
11968 | if (parseEOL()) |
11969 | return true; |
11970 | // Check the ordering of unwind directives |
11971 | if (!UC.hasFnStart()) |
11972 | return Error(L, Msg: ".fnstart must precede .fnend directive" ); |
11973 | |
11974 | // Reset the unwind directives parser state |
11975 | getTargetStreamer().emitFnEnd(); |
11976 | |
11977 | UC.reset(); |
11978 | return false; |
11979 | } |
11980 | |
11981 | /// parseDirectiveCantUnwind |
11982 | /// ::= .cantunwind |
11983 | bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { |
11984 | if (parseEOL()) |
11985 | return true; |
11986 | |
11987 | UC.recordCantUnwind(L); |
11988 | // Check the ordering of unwind directives |
11989 | if (check(P: !UC.hasFnStart(), Loc: L, Msg: ".fnstart must precede .cantunwind directive" )) |
11990 | return true; |
11991 | |
11992 | if (UC.hasHandlerData()) { |
11993 | Error(L, Msg: ".cantunwind can't be used with .handlerdata directive" ); |
11994 | UC.emitHandlerDataLocNotes(); |
11995 | return true; |
11996 | } |
11997 | if (UC.hasPersonality()) { |
11998 | Error(L, Msg: ".cantunwind can't be used with .personality directive" ); |
11999 | UC.emitPersonalityLocNotes(); |
12000 | return true; |
12001 | } |
12002 | |
12003 | getTargetStreamer().emitCantUnwind(); |
12004 | return false; |
12005 | } |
12006 | |
12007 | /// parseDirectivePersonality |
12008 | /// ::= .personality name |
12009 | bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { |
12010 | MCAsmParser &Parser = getParser(); |
12011 | bool HasExistingPersonality = UC.hasPersonality(); |
12012 | |
12013 | // Parse the name of the personality routine |
12014 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
12015 | return Error(L, Msg: "unexpected input in .personality directive." ); |
12016 | StringRef Name(Parser.getTok().getIdentifier()); |
12017 | Parser.Lex(); |
12018 | |
12019 | if (parseEOL()) |
12020 | return true; |
12021 | |
12022 | UC.recordPersonality(L); |
12023 | |
12024 | // Check the ordering of unwind directives |
12025 | if (!UC.hasFnStart()) |
12026 | return Error(L, Msg: ".fnstart must precede .personality directive" ); |
12027 | if (UC.cantUnwind()) { |
12028 | Error(L, Msg: ".personality can't be used with .cantunwind directive" ); |
12029 | UC.emitCantUnwindLocNotes(); |
12030 | return true; |
12031 | } |
12032 | if (UC.hasHandlerData()) { |
12033 | Error(L, Msg: ".personality must precede .handlerdata directive" ); |
12034 | UC.emitHandlerDataLocNotes(); |
12035 | return true; |
12036 | } |
12037 | if (HasExistingPersonality) { |
12038 | Error(L, Msg: "multiple personality directives" ); |
12039 | UC.emitPersonalityLocNotes(); |
12040 | return true; |
12041 | } |
12042 | |
12043 | MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); |
12044 | getTargetStreamer().emitPersonality(Personality: PR); |
12045 | return false; |
12046 | } |
12047 | |
12048 | /// parseDirectiveHandlerData |
12049 | /// ::= .handlerdata |
12050 | bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { |
12051 | if (parseEOL()) |
12052 | return true; |
12053 | |
12054 | UC.recordHandlerData(L); |
12055 | // Check the ordering of unwind directives |
12056 | if (!UC.hasFnStart()) |
12057 | return Error(L, Msg: ".fnstart must precede .personality directive" ); |
12058 | if (UC.cantUnwind()) { |
12059 | Error(L, Msg: ".handlerdata can't be used with .cantunwind directive" ); |
12060 | UC.emitCantUnwindLocNotes(); |
12061 | return true; |
12062 | } |
12063 | |
12064 | getTargetStreamer().emitHandlerData(); |
12065 | return false; |
12066 | } |
12067 | |
12068 | /// parseDirectiveSetFP |
12069 | /// ::= .setfp fpreg, spreg [, offset] |
12070 | bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { |
12071 | MCAsmParser &Parser = getParser(); |
12072 | // Check the ordering of unwind directives |
12073 | if (check(P: !UC.hasFnStart(), Loc: L, Msg: ".fnstart must precede .setfp directive" ) || |
12074 | check(P: UC.hasHandlerData(), Loc: L, |
12075 | Msg: ".setfp must precede .handlerdata directive" )) |
12076 | return true; |
12077 | |
12078 | // Parse fpreg |
12079 | SMLoc FPRegLoc = Parser.getTok().getLoc(); |
12080 | int FPReg = tryParseRegister(); |
12081 | |
12082 | if (check(P: FPReg == -1, Loc: FPRegLoc, Msg: "frame pointer register expected" ) || |
12083 | Parser.parseComma()) |
12084 | return true; |
12085 | |
12086 | // Parse spreg |
12087 | SMLoc SPRegLoc = Parser.getTok().getLoc(); |
12088 | int SPReg = tryParseRegister(); |
12089 | if (check(P: SPReg == -1, Loc: SPRegLoc, Msg: "stack pointer register expected" ) || |
12090 | check(P: SPReg != ARM::SP && SPReg != UC.getFPReg(), Loc: SPRegLoc, |
12091 | Msg: "register should be either $sp or the latest fp register" )) |
12092 | return true; |
12093 | |
12094 | // Update the frame pointer register |
12095 | UC.saveFPReg(Reg: FPReg); |
12096 | |
12097 | // Parse offset |
12098 | int64_t Offset = 0; |
12099 | if (Parser.parseOptionalToken(T: AsmToken::Comma)) { |
12100 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
12101 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
12102 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
12103 | Parser.Lex(); // skip hash token. |
12104 | |
12105 | const MCExpr *OffsetExpr; |
12106 | SMLoc ExLoc = Parser.getTok().getLoc(); |
12107 | SMLoc EndLoc; |
12108 | if (getParser().parseExpression(Res&: OffsetExpr, EndLoc)) |
12109 | return Error(L: ExLoc, Msg: "malformed setfp offset" ); |
12110 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12111 | if (check(P: !CE, Loc: ExLoc, Msg: "setfp offset must be an immediate" )) |
12112 | return true; |
12113 | Offset = CE->getValue(); |
12114 | } |
12115 | |
12116 | if (Parser.parseEOL()) |
12117 | return true; |
12118 | |
12119 | getTargetStreamer().emitSetFP(FpReg: static_cast<unsigned>(FPReg), |
12120 | SpReg: static_cast<unsigned>(SPReg), Offset); |
12121 | return false; |
12122 | } |
12123 | |
12124 | /// parseDirective |
12125 | /// ::= .pad offset |
12126 | bool ARMAsmParser::parseDirectivePad(SMLoc L) { |
12127 | MCAsmParser &Parser = getParser(); |
12128 | // Check the ordering of unwind directives |
12129 | if (!UC.hasFnStart()) |
12130 | return Error(L, Msg: ".fnstart must precede .pad directive" ); |
12131 | if (UC.hasHandlerData()) |
12132 | return Error(L, Msg: ".pad must precede .handlerdata directive" ); |
12133 | |
12134 | // Parse the offset |
12135 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
12136 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
12137 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
12138 | Parser.Lex(); // skip hash token. |
12139 | |
12140 | const MCExpr *OffsetExpr; |
12141 | SMLoc ExLoc = Parser.getTok().getLoc(); |
12142 | SMLoc EndLoc; |
12143 | if (getParser().parseExpression(Res&: OffsetExpr, EndLoc)) |
12144 | return Error(L: ExLoc, Msg: "malformed pad offset" ); |
12145 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12146 | if (!CE) |
12147 | return Error(L: ExLoc, Msg: "pad offset must be an immediate" ); |
12148 | |
12149 | if (parseEOL()) |
12150 | return true; |
12151 | |
12152 | getTargetStreamer().emitPad(Offset: CE->getValue()); |
12153 | return false; |
12154 | } |
12155 | |
12156 | /// parseDirectiveRegSave |
12157 | /// ::= .save { registers } |
12158 | /// ::= .vsave { registers } |
12159 | bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { |
12160 | // Check the ordering of unwind directives |
12161 | if (!UC.hasFnStart()) |
12162 | return Error(L, Msg: ".fnstart must precede .save or .vsave directives" ); |
12163 | if (UC.hasHandlerData()) |
12164 | return Error(L, Msg: ".save or .vsave must precede .handlerdata directive" ); |
12165 | |
12166 | // RAII object to make sure parsed operands are deleted. |
12167 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12168 | |
12169 | // Parse the register list |
12170 | if (parseRegisterList(Operands, EnforceOrder: true, AllowRAAC: true) || parseEOL()) |
12171 | return true; |
12172 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12173 | if (!IsVector && !Op.isRegList()) |
12174 | return Error(L, Msg: ".save expects GPR registers" ); |
12175 | if (IsVector && !Op.isDPRRegList()) |
12176 | return Error(L, Msg: ".vsave expects DPR registers" ); |
12177 | |
12178 | getTargetStreamer().emitRegSave(RegList: Op.getRegList(), isVector: IsVector); |
12179 | return false; |
12180 | } |
12181 | |
12182 | /// parseDirectiveInst |
12183 | /// ::= .inst opcode [, ...] |
12184 | /// ::= .inst.n opcode [, ...] |
12185 | /// ::= .inst.w opcode [, ...] |
12186 | bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { |
12187 | int Width = 4; |
12188 | |
12189 | if (isThumb()) { |
12190 | switch (Suffix) { |
12191 | case 'n': |
12192 | Width = 2; |
12193 | break; |
12194 | case 'w': |
12195 | break; |
12196 | default: |
12197 | Width = 0; |
12198 | break; |
12199 | } |
12200 | } else { |
12201 | if (Suffix) |
12202 | return Error(L: Loc, Msg: "width suffixes are invalid in ARM mode" ); |
12203 | } |
12204 | |
12205 | auto parseOne = [&]() -> bool { |
12206 | const MCExpr *Expr; |
12207 | if (getParser().parseExpression(Res&: Expr)) |
12208 | return true; |
12209 | const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Val: Expr); |
12210 | if (!Value) { |
12211 | return Error(L: Loc, Msg: "expected constant expression" ); |
12212 | } |
12213 | |
12214 | char CurSuffix = Suffix; |
12215 | switch (Width) { |
12216 | case 2: |
12217 | if (Value->getValue() > 0xffff) |
12218 | return Error(L: Loc, Msg: "inst.n operand is too big, use inst.w instead" ); |
12219 | break; |
12220 | case 4: |
12221 | if (Value->getValue() > 0xffffffff) |
12222 | return Error(L: Loc, Msg: StringRef(Suffix ? "inst.w" : "inst" ) + |
12223 | " operand is too big" ); |
12224 | break; |
12225 | case 0: |
12226 | // Thumb mode, no width indicated. Guess from the opcode, if possible. |
12227 | if (Value->getValue() < 0xe800) |
12228 | CurSuffix = 'n'; |
12229 | else if (Value->getValue() >= 0xe8000000) |
12230 | CurSuffix = 'w'; |
12231 | else |
12232 | return Error(L: Loc, Msg: "cannot determine Thumb instruction size, " |
12233 | "use inst.n/inst.w instead" ); |
12234 | break; |
12235 | default: |
12236 | llvm_unreachable("only supported widths are 2 and 4" ); |
12237 | } |
12238 | |
12239 | getTargetStreamer().emitInst(Inst: Value->getValue(), Suffix: CurSuffix); |
12240 | forwardITPosition(); |
12241 | forwardVPTPosition(); |
12242 | return false; |
12243 | }; |
12244 | |
12245 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) |
12246 | return Error(L: Loc, Msg: "expected expression following directive" ); |
12247 | if (parseMany(parseOne)) |
12248 | return true; |
12249 | return false; |
12250 | } |
12251 | |
12252 | /// parseDirectiveLtorg |
12253 | /// ::= .ltorg | .pool |
12254 | bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { |
12255 | if (parseEOL()) |
12256 | return true; |
12257 | getTargetStreamer().emitCurrentConstantPool(); |
12258 | return false; |
12259 | } |
12260 | |
12261 | bool ARMAsmParser::parseDirectiveEven(SMLoc L) { |
12262 | const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
12263 | |
12264 | if (parseEOL()) |
12265 | return true; |
12266 | |
12267 | if (!Section) { |
12268 | getStreamer().initSections(NoExecStack: false, STI: getSTI()); |
12269 | Section = getStreamer().getCurrentSectionOnly(); |
12270 | } |
12271 | |
12272 | assert(Section && "must have section to emit alignment" ); |
12273 | if (Section->useCodeAlign()) |
12274 | getStreamer().emitCodeAlignment(Alignment: Align(2), STI: &getSTI()); |
12275 | else |
12276 | getStreamer().emitValueToAlignment(Alignment: Align(2)); |
12277 | |
12278 | return false; |
12279 | } |
12280 | |
12281 | /// parseDirectivePersonalityIndex |
12282 | /// ::= .personalityindex index |
12283 | bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { |
12284 | MCAsmParser &Parser = getParser(); |
12285 | bool HasExistingPersonality = UC.hasPersonality(); |
12286 | |
12287 | const MCExpr *IndexExpression; |
12288 | SMLoc IndexLoc = Parser.getTok().getLoc(); |
12289 | if (Parser.parseExpression(Res&: IndexExpression) || parseEOL()) { |
12290 | return true; |
12291 | } |
12292 | |
12293 | UC.recordPersonalityIndex(L); |
12294 | |
12295 | if (!UC.hasFnStart()) { |
12296 | return Error(L, Msg: ".fnstart must precede .personalityindex directive" ); |
12297 | } |
12298 | if (UC.cantUnwind()) { |
12299 | Error(L, Msg: ".personalityindex cannot be used with .cantunwind" ); |
12300 | UC.emitCantUnwindLocNotes(); |
12301 | return true; |
12302 | } |
12303 | if (UC.hasHandlerData()) { |
12304 | Error(L, Msg: ".personalityindex must precede .handlerdata directive" ); |
12305 | UC.emitHandlerDataLocNotes(); |
12306 | return true; |
12307 | } |
12308 | if (HasExistingPersonality) { |
12309 | Error(L, Msg: "multiple personality directives" ); |
12310 | UC.emitPersonalityLocNotes(); |
12311 | return true; |
12312 | } |
12313 | |
12314 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: IndexExpression); |
12315 | if (!CE) |
12316 | return Error(L: IndexLoc, Msg: "index must be a constant number" ); |
12317 | if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) |
12318 | return Error(L: IndexLoc, |
12319 | Msg: "personality routine index should be in range [0-3]" ); |
12320 | |
12321 | getTargetStreamer().emitPersonalityIndex(Index: CE->getValue()); |
12322 | return false; |
12323 | } |
12324 | |
12325 | /// parseDirectiveUnwindRaw |
12326 | /// ::= .unwind_raw offset, opcode [, opcode...] |
12327 | bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { |
12328 | MCAsmParser &Parser = getParser(); |
12329 | int64_t StackOffset; |
12330 | const MCExpr *OffsetExpr; |
12331 | SMLoc OffsetLoc = getLexer().getLoc(); |
12332 | |
12333 | if (!UC.hasFnStart()) |
12334 | return Error(L, Msg: ".fnstart must precede .unwind_raw directives" ); |
12335 | if (getParser().parseExpression(Res&: OffsetExpr)) |
12336 | return Error(L: OffsetLoc, Msg: "expected expression" ); |
12337 | |
12338 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12339 | if (!CE) |
12340 | return Error(L: OffsetLoc, Msg: "offset must be a constant" ); |
12341 | |
12342 | StackOffset = CE->getValue(); |
12343 | |
12344 | if (Parser.parseComma()) |
12345 | return true; |
12346 | |
12347 | SmallVector<uint8_t, 16> Opcodes; |
12348 | |
12349 | auto parseOne = [&]() -> bool { |
12350 | const MCExpr *OE = nullptr; |
12351 | SMLoc OpcodeLoc = getLexer().getLoc(); |
12352 | if (check(P: getLexer().is(K: AsmToken::EndOfStatement) || |
12353 | Parser.parseExpression(Res&: OE), |
12354 | Loc: OpcodeLoc, Msg: "expected opcode expression" )) |
12355 | return true; |
12356 | const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(Val: OE); |
12357 | if (!OC) |
12358 | return Error(L: OpcodeLoc, Msg: "opcode value must be a constant" ); |
12359 | const int64_t Opcode = OC->getValue(); |
12360 | if (Opcode & ~0xff) |
12361 | return Error(L: OpcodeLoc, Msg: "invalid opcode" ); |
12362 | Opcodes.push_back(Elt: uint8_t(Opcode)); |
12363 | return false; |
12364 | }; |
12365 | |
12366 | // Must have at least 1 element |
12367 | SMLoc OpcodeLoc = getLexer().getLoc(); |
12368 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) |
12369 | return Error(L: OpcodeLoc, Msg: "expected opcode expression" ); |
12370 | if (parseMany(parseOne)) |
12371 | return true; |
12372 | |
12373 | getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); |
12374 | return false; |
12375 | } |
12376 | |
12377 | /// parseDirectiveTLSDescSeq |
12378 | /// ::= .tlsdescseq tls-variable |
12379 | bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { |
12380 | MCAsmParser &Parser = getParser(); |
12381 | |
12382 | if (getLexer().isNot(K: AsmToken::Identifier)) |
12383 | return TokError(Msg: "expected variable after '.tlsdescseq' directive" ); |
12384 | |
12385 | const MCSymbolRefExpr *SRE = |
12386 | MCSymbolRefExpr::create(Name: Parser.getTok().getIdentifier(), |
12387 | Kind: MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, Ctx&: getContext()); |
12388 | Lex(); |
12389 | |
12390 | if (parseEOL()) |
12391 | return true; |
12392 | |
12393 | getTargetStreamer().annotateTLSDescriptorSequence(SRE); |
12394 | return false; |
12395 | } |
12396 | |
12397 | /// parseDirectiveMovSP |
12398 | /// ::= .movsp reg [, #offset] |
12399 | bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { |
12400 | MCAsmParser &Parser = getParser(); |
12401 | if (!UC.hasFnStart()) |
12402 | return Error(L, Msg: ".fnstart must precede .movsp directives" ); |
12403 | if (UC.getFPReg() != ARM::SP) |
12404 | return Error(L, Msg: "unexpected .movsp directive" ); |
12405 | |
12406 | SMLoc SPRegLoc = Parser.getTok().getLoc(); |
12407 | int SPReg = tryParseRegister(); |
12408 | if (SPReg == -1) |
12409 | return Error(L: SPRegLoc, Msg: "register expected" ); |
12410 | if (SPReg == ARM::SP || SPReg == ARM::PC) |
12411 | return Error(L: SPRegLoc, Msg: "sp and pc are not permitted in .movsp directive" ); |
12412 | |
12413 | int64_t Offset = 0; |
12414 | if (Parser.parseOptionalToken(T: AsmToken::Comma)) { |
12415 | if (Parser.parseToken(T: AsmToken::Hash, Msg: "expected #constant" )) |
12416 | return true; |
12417 | |
12418 | const MCExpr *OffsetExpr; |
12419 | SMLoc OffsetLoc = Parser.getTok().getLoc(); |
12420 | |
12421 | if (Parser.parseExpression(Res&: OffsetExpr)) |
12422 | return Error(L: OffsetLoc, Msg: "malformed offset expression" ); |
12423 | |
12424 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12425 | if (!CE) |
12426 | return Error(L: OffsetLoc, Msg: "offset must be an immediate constant" ); |
12427 | |
12428 | Offset = CE->getValue(); |
12429 | } |
12430 | |
12431 | if (parseEOL()) |
12432 | return true; |
12433 | |
12434 | getTargetStreamer().emitMovSP(Reg: SPReg, Offset); |
12435 | UC.saveFPReg(Reg: SPReg); |
12436 | |
12437 | return false; |
12438 | } |
12439 | |
12440 | /// parseDirectiveObjectArch |
12441 | /// ::= .object_arch name |
12442 | bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { |
12443 | MCAsmParser &Parser = getParser(); |
12444 | if (getLexer().isNot(K: AsmToken::Identifier)) |
12445 | return Error(L: getLexer().getLoc(), Msg: "unexpected token" ); |
12446 | |
12447 | StringRef Arch = Parser.getTok().getString(); |
12448 | SMLoc ArchLoc = Parser.getTok().getLoc(); |
12449 | Lex(); |
12450 | |
12451 | ARM::ArchKind ID = ARM::parseArch(Arch); |
12452 | |
12453 | if (ID == ARM::ArchKind::INVALID) |
12454 | return Error(L: ArchLoc, Msg: "unknown architecture '" + Arch + "'" ); |
12455 | if (parseToken(T: AsmToken::EndOfStatement)) |
12456 | return true; |
12457 | |
12458 | getTargetStreamer().emitObjectArch(Arch: ID); |
12459 | return false; |
12460 | } |
12461 | |
12462 | /// parseDirectiveAlign |
12463 | /// ::= .align |
12464 | bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { |
12465 | // NOTE: if this is not the end of the statement, fall back to the target |
12466 | // agnostic handling for this directive which will correctly handle this. |
12467 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) { |
12468 | // '.align' is target specifically handled to mean 2**2 byte alignment. |
12469 | const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
12470 | assert(Section && "must have section to emit alignment" ); |
12471 | if (Section->useCodeAlign()) |
12472 | getStreamer().emitCodeAlignment(Alignment: Align(4), STI: &getSTI(), MaxBytesToEmit: 0); |
12473 | else |
12474 | getStreamer().emitValueToAlignment(Alignment: Align(4), Value: 0, ValueSize: 1, MaxBytesToEmit: 0); |
12475 | return false; |
12476 | } |
12477 | return true; |
12478 | } |
12479 | |
12480 | /// parseDirectiveThumbSet |
12481 | /// ::= .thumb_set name, value |
12482 | bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { |
12483 | MCAsmParser &Parser = getParser(); |
12484 | |
12485 | StringRef Name; |
12486 | if (check(P: Parser.parseIdentifier(Res&: Name), |
12487 | Msg: "expected identifier after '.thumb_set'" ) || |
12488 | Parser.parseComma()) |
12489 | return true; |
12490 | |
12491 | MCSymbol *Sym; |
12492 | const MCExpr *Value; |
12493 | if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, |
12494 | Parser, Symbol&: Sym, Value)) |
12495 | return true; |
12496 | |
12497 | getTargetStreamer().emitThumbSet(Symbol: Sym, Value); |
12498 | return false; |
12499 | } |
12500 | |
12501 | /// parseDirectiveSEHAllocStack |
12502 | /// ::= .seh_stackalloc |
12503 | /// ::= .seh_stackalloc_w |
12504 | bool ARMAsmParser::parseDirectiveSEHAllocStack(SMLoc L, bool Wide) { |
12505 | int64_t Size; |
12506 | if (parseImmExpr(Out&: Size)) |
12507 | return true; |
12508 | getTargetStreamer().emitARMWinCFIAllocStack(Size, Wide); |
12509 | return false; |
12510 | } |
12511 | |
12512 | /// parseDirectiveSEHSaveRegs |
12513 | /// ::= .seh_save_regs |
12514 | /// ::= .seh_save_regs_w |
12515 | bool ARMAsmParser::parseDirectiveSEHSaveRegs(SMLoc L, bool Wide) { |
12516 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12517 | |
12518 | if (parseRegisterList(Operands) || parseEOL()) |
12519 | return true; |
12520 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12521 | if (!Op.isRegList()) |
12522 | return Error(L, Msg: ".seh_save_regs{_w} expects GPR registers" ); |
12523 | const SmallVectorImpl<unsigned> &RegList = Op.getRegList(); |
12524 | uint32_t Mask = 0; |
12525 | for (size_t i = 0; i < RegList.size(); ++i) { |
12526 | unsigned Reg = MRI->getEncodingValue(RegNo: RegList[i]); |
12527 | if (Reg == 15) // pc -> lr |
12528 | Reg = 14; |
12529 | if (Reg == 13) |
12530 | return Error(L, Msg: ".seh_save_regs{_w} can't include SP" ); |
12531 | assert(Reg < 16U && "Register out of range" ); |
12532 | unsigned Bit = (1u << Reg); |
12533 | Mask |= Bit; |
12534 | } |
12535 | if (!Wide && (Mask & 0x1f00) != 0) |
12536 | return Error(L, |
12537 | Msg: ".seh_save_regs cannot save R8-R12, needs .seh_save_regs_w" ); |
12538 | getTargetStreamer().emitARMWinCFISaveRegMask(Mask, Wide); |
12539 | return false; |
12540 | } |
12541 | |
12542 | /// parseDirectiveSEHSaveSP |
12543 | /// ::= .seh_save_sp |
12544 | bool ARMAsmParser::parseDirectiveSEHSaveSP(SMLoc L) { |
12545 | int Reg = tryParseRegister(); |
12546 | if (Reg == -1 || !MRI->getRegClass(i: ARM::GPRRegClassID).contains(Reg)) |
12547 | return Error(L, Msg: "expected GPR" ); |
12548 | unsigned Index = MRI->getEncodingValue(RegNo: Reg); |
12549 | if (Index > 14 || Index == 13) |
12550 | return Error(L, Msg: "invalid register for .seh_save_sp" ); |
12551 | getTargetStreamer().emitARMWinCFISaveSP(Reg: Index); |
12552 | return false; |
12553 | } |
12554 | |
12555 | /// parseDirectiveSEHSaveFRegs |
12556 | /// ::= .seh_save_fregs |
12557 | bool ARMAsmParser::parseDirectiveSEHSaveFRegs(SMLoc L) { |
12558 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12559 | |
12560 | if (parseRegisterList(Operands) || parseEOL()) |
12561 | return true; |
12562 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12563 | if (!Op.isDPRRegList()) |
12564 | return Error(L, Msg: ".seh_save_fregs expects DPR registers" ); |
12565 | const SmallVectorImpl<unsigned> &RegList = Op.getRegList(); |
12566 | uint32_t Mask = 0; |
12567 | for (size_t i = 0; i < RegList.size(); ++i) { |
12568 | unsigned Reg = MRI->getEncodingValue(RegNo: RegList[i]); |
12569 | assert(Reg < 32U && "Register out of range" ); |
12570 | unsigned Bit = (1u << Reg); |
12571 | Mask |= Bit; |
12572 | } |
12573 | |
12574 | if (Mask == 0) |
12575 | return Error(L, Msg: ".seh_save_fregs missing registers" ); |
12576 | |
12577 | unsigned First = 0; |
12578 | while ((Mask & 1) == 0) { |
12579 | First++; |
12580 | Mask >>= 1; |
12581 | } |
12582 | if (((Mask + 1) & Mask) != 0) |
12583 | return Error(L, |
12584 | Msg: ".seh_save_fregs must take a contiguous range of registers" ); |
12585 | unsigned Last = First; |
12586 | while ((Mask & 2) != 0) { |
12587 | Last++; |
12588 | Mask >>= 1; |
12589 | } |
12590 | if (First < 16 && Last >= 16) |
12591 | return Error(L, Msg: ".seh_save_fregs must be all d0-d15 or d16-d31" ); |
12592 | getTargetStreamer().emitARMWinCFISaveFRegs(First, Last); |
12593 | return false; |
12594 | } |
12595 | |
12596 | /// parseDirectiveSEHSaveLR |
12597 | /// ::= .seh_save_lr |
12598 | bool ARMAsmParser::parseDirectiveSEHSaveLR(SMLoc L) { |
12599 | int64_t Offset; |
12600 | if (parseImmExpr(Out&: Offset)) |
12601 | return true; |
12602 | getTargetStreamer().emitARMWinCFISaveLR(Offset); |
12603 | return false; |
12604 | } |
12605 | |
12606 | /// parseDirectiveSEHPrologEnd |
12607 | /// ::= .seh_endprologue |
12608 | /// ::= .seh_endprologue_fragment |
12609 | bool ARMAsmParser::parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment) { |
12610 | getTargetStreamer().emitARMWinCFIPrologEnd(Fragment); |
12611 | return false; |
12612 | } |
12613 | |
12614 | /// parseDirectiveSEHNop |
12615 | /// ::= .seh_nop |
12616 | /// ::= .seh_nop_w |
12617 | bool ARMAsmParser::parseDirectiveSEHNop(SMLoc L, bool Wide) { |
12618 | getTargetStreamer().emitARMWinCFINop(Wide); |
12619 | return false; |
12620 | } |
12621 | |
12622 | /// parseDirectiveSEHEpilogStart |
12623 | /// ::= .seh_startepilogue |
12624 | /// ::= .seh_startepilogue_cond |
12625 | bool ARMAsmParser::parseDirectiveSEHEpilogStart(SMLoc L, bool Condition) { |
12626 | unsigned CC = ARMCC::AL; |
12627 | if (Condition) { |
12628 | MCAsmParser &Parser = getParser(); |
12629 | SMLoc S = Parser.getTok().getLoc(); |
12630 | const AsmToken &Tok = Parser.getTok(); |
12631 | if (!Tok.is(K: AsmToken::Identifier)) |
12632 | return Error(L: S, Msg: ".seh_startepilogue_cond missing condition" ); |
12633 | CC = ARMCondCodeFromString(CC: Tok.getString()); |
12634 | if (CC == ~0U) |
12635 | return Error(L: S, Msg: "invalid condition" ); |
12636 | Parser.Lex(); // Eat the token. |
12637 | } |
12638 | |
12639 | getTargetStreamer().emitARMWinCFIEpilogStart(Condition: CC); |
12640 | return false; |
12641 | } |
12642 | |
12643 | /// parseDirectiveSEHEpilogEnd |
12644 | /// ::= .seh_endepilogue |
12645 | bool ARMAsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) { |
12646 | getTargetStreamer().emitARMWinCFIEpilogEnd(); |
12647 | return false; |
12648 | } |
12649 | |
12650 | /// parseDirectiveSEHCustom |
12651 | /// ::= .seh_custom |
12652 | bool ARMAsmParser::parseDirectiveSEHCustom(SMLoc L) { |
12653 | unsigned Opcode = 0; |
12654 | do { |
12655 | int64_t Byte; |
12656 | if (parseImmExpr(Out&: Byte)) |
12657 | return true; |
12658 | if (Byte > 0xff || Byte < 0) |
12659 | return Error(L, Msg: "Invalid byte value in .seh_custom" ); |
12660 | if (Opcode > 0x00ffffff) |
12661 | return Error(L, Msg: "Too many bytes in .seh_custom" ); |
12662 | // Store the bytes as one big endian number in Opcode. In a multi byte |
12663 | // opcode sequence, the first byte can't be zero. |
12664 | Opcode = (Opcode << 8) | Byte; |
12665 | } while (parseOptionalToken(T: AsmToken::Comma)); |
12666 | getTargetStreamer().emitARMWinCFICustom(Opcode); |
12667 | return false; |
12668 | } |
12669 | |
12670 | /// Force static initialization. |
12671 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { |
12672 | RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); |
12673 | RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); |
12674 | RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); |
12675 | RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); |
12676 | } |
12677 | |
12678 | #define GET_REGISTER_MATCHER |
12679 | #define GET_SUBTARGET_FEATURE_NAME |
12680 | #define GET_MATCHER_IMPLEMENTATION |
12681 | #define GET_MNEMONIC_SPELL_CHECKER |
12682 | #include "ARMGenAsmMatcher.inc" |
12683 | |
12684 | // Some diagnostics need to vary with subtarget features, so they are handled |
12685 | // here. For example, the DPR class has either 16 or 32 registers, depending |
12686 | // on the FPU available. |
12687 | const char * |
12688 | ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { |
12689 | switch (MatchError) { |
12690 | // rGPR contains sp starting with ARMv8. |
12691 | case Match_rGPR: |
12692 | return hasV8Ops() ? "operand must be a register in range [r0, r14]" |
12693 | : "operand must be a register in range [r0, r12] or r14" ; |
12694 | // DPR contains 16 registers for some FPUs, and 32 for others. |
12695 | case Match_DPR: |
12696 | return hasD32() ? "operand must be a register in range [d0, d31]" |
12697 | : "operand must be a register in range [d0, d15]" ; |
12698 | case Match_DPR_RegList: |
12699 | return hasD32() ? "operand must be a list of registers in range [d0, d31]" |
12700 | : "operand must be a list of registers in range [d0, d15]" ; |
12701 | |
12702 | // For all other diags, use the static string from tablegen. |
12703 | default: |
12704 | return getMatchKindDiag(MatchResult: MatchError); |
12705 | } |
12706 | } |
12707 | |
12708 | // Process the list of near-misses, throwing away ones we don't want to report |
12709 | // to the user, and converting the rest to a source location and string that |
12710 | // should be reported. |
12711 | void |
12712 | ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
12713 | SmallVectorImpl<NearMissMessage> &NearMissesOut, |
12714 | SMLoc IDLoc, OperandVector &Operands) { |
12715 | // TODO: If operand didn't match, sub in a dummy one and run target |
12716 | // predicate, so that we can avoid reporting near-misses that are invalid? |
12717 | // TODO: Many operand types dont have SuperClasses set, so we report |
12718 | // redundant ones. |
12719 | // TODO: Some operands are superclasses of registers (e.g. |
12720 | // MCK_RegShiftedImm), we don't have any way to represent that currently. |
12721 | // TODO: This is not all ARM-specific, can some of it be factored out? |
12722 | |
12723 | // Record some information about near-misses that we have already seen, so |
12724 | // that we can avoid reporting redundant ones. For example, if there are |
12725 | // variants of an instruction that take 8- and 16-bit immediates, we want |
12726 | // to only report the widest one. |
12727 | std::multimap<unsigned, unsigned> OperandMissesSeen; |
12728 | SmallSet<FeatureBitset, 4> FeatureMissesSeen; |
12729 | bool ReportedTooFewOperands = false; |
12730 | |
12731 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
12732 | |
12733 | // Process the near-misses in reverse order, so that we see more general ones |
12734 | // first, and so can avoid emitting more specific ones. |
12735 | for (NearMissInfo &I : reverse(C&: NearMissesIn)) { |
12736 | switch (I.getKind()) { |
12737 | case NearMissInfo::NearMissOperand: { |
12738 | SMLoc OperandLoc = |
12739 | ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); |
12740 | const char *OperandDiag = |
12741 | getCustomOperandDiag(MatchError: (ARMMatchResultTy)I.getOperandError()); |
12742 | |
12743 | // If we have already emitted a message for a superclass, don't also report |
12744 | // the sub-class. We consider all operand classes that we don't have a |
12745 | // specialised diagnostic for to be equal for the propose of this check, |
12746 | // so that we don't report the generic error multiple times on the same |
12747 | // operand. |
12748 | unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; |
12749 | auto PrevReports = OperandMissesSeen.equal_range(x: I.getOperandIndex()); |
12750 | if (std::any_of(first: PrevReports.first, last: PrevReports.second, |
12751 | pred: [DupCheckMatchClass]( |
12752 | const std::pair<unsigned, unsigned> Pair) { |
12753 | if (DupCheckMatchClass == ~0U || Pair.second == ~0U) |
12754 | return Pair.second == DupCheckMatchClass; |
12755 | else |
12756 | return isSubclass(A: (MatchClassKind)DupCheckMatchClass, |
12757 | B: (MatchClassKind)Pair.second); |
12758 | })) |
12759 | break; |
12760 | OperandMissesSeen.insert( |
12761 | x: std::make_pair(x: I.getOperandIndex(), y&: DupCheckMatchClass)); |
12762 | |
12763 | NearMissMessage Message; |
12764 | Message.Loc = OperandLoc; |
12765 | if (OperandDiag) { |
12766 | Message.Message = OperandDiag; |
12767 | } else if (I.getOperandClass() == InvalidMatchClass) { |
12768 | Message.Message = "too many operands for instruction" ; |
12769 | } else { |
12770 | Message.Message = "invalid operand for instruction" ; |
12771 | LLVM_DEBUG( |
12772 | dbgs() << "Missing diagnostic string for operand class " |
12773 | << getMatchClassName((MatchClassKind)I.getOperandClass()) |
12774 | << I.getOperandClass() << ", error " << I.getOperandError() |
12775 | << ", opcode " << MII.getName(I.getOpcode()) << "\n" ); |
12776 | } |
12777 | NearMissesOut.emplace_back(Args&: Message); |
12778 | break; |
12779 | } |
12780 | case NearMissInfo::NearMissFeature: { |
12781 | const FeatureBitset &MissingFeatures = I.getFeatures(); |
12782 | // Don't report the same set of features twice. |
12783 | if (FeatureMissesSeen.count(V: MissingFeatures)) |
12784 | break; |
12785 | FeatureMissesSeen.insert(V: MissingFeatures); |
12786 | |
12787 | // Special case: don't report a feature set which includes arm-mode for |
12788 | // targets that don't have ARM mode. |
12789 | if (MissingFeatures.test(I: Feature_IsARMBit) && !hasARM()) |
12790 | break; |
12791 | // Don't report any near-misses that both require switching instruction |
12792 | // set, and adding other subtarget features. |
12793 | if (isThumb() && MissingFeatures.test(I: Feature_IsARMBit) && |
12794 | MissingFeatures.count() > 1) |
12795 | break; |
12796 | if (!isThumb() && MissingFeatures.test(I: Feature_IsThumbBit) && |
12797 | MissingFeatures.count() > 1) |
12798 | break; |
12799 | if (!isThumb() && MissingFeatures.test(I: Feature_IsThumb2Bit) && |
12800 | (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, |
12801 | Feature_IsThumbBit})).any()) |
12802 | break; |
12803 | if (isMClass() && MissingFeatures.test(I: Feature_HasNEONBit)) |
12804 | break; |
12805 | |
12806 | NearMissMessage Message; |
12807 | Message.Loc = IDLoc; |
12808 | raw_svector_ostream OS(Message.Message); |
12809 | |
12810 | OS << "instruction requires:" ; |
12811 | for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) |
12812 | if (MissingFeatures.test(I: i)) |
12813 | OS << ' ' << getSubtargetFeatureName(Val: i); |
12814 | |
12815 | NearMissesOut.emplace_back(Args&: Message); |
12816 | |
12817 | break; |
12818 | } |
12819 | case NearMissInfo::NearMissPredicate: { |
12820 | NearMissMessage Message; |
12821 | Message.Loc = IDLoc; |
12822 | switch (I.getPredicateError()) { |
12823 | case Match_RequiresNotITBlock: |
12824 | Message.Message = "flag setting instruction only valid outside IT block" ; |
12825 | break; |
12826 | case Match_RequiresITBlock: |
12827 | Message.Message = "instruction only valid inside IT block" ; |
12828 | break; |
12829 | case Match_RequiresV6: |
12830 | Message.Message = "instruction variant requires ARMv6 or later" ; |
12831 | break; |
12832 | case Match_RequiresThumb2: |
12833 | Message.Message = "instruction variant requires Thumb2" ; |
12834 | break; |
12835 | case Match_RequiresV8: |
12836 | Message.Message = "instruction variant requires ARMv8 or later" ; |
12837 | break; |
12838 | case Match_RequiresFlagSetting: |
12839 | Message.Message = "no flag-preserving variant of this instruction available" ; |
12840 | break; |
12841 | case Match_InvalidTiedOperand: { |
12842 | ARMOperand &Op = static_cast<ARMOperand &>(*Operands[0]); |
12843 | if (Op.isToken() && Op.getToken() == "mul" ) { |
12844 | Message.Message = "destination register must match a source register" ; |
12845 | Message.Loc = Operands[MnemonicOpsEndInd]->getStartLoc(); |
12846 | } else { |
12847 | llvm_unreachable("Match_InvalidTiedOperand only used for tMUL." ); |
12848 | } |
12849 | break; |
12850 | } |
12851 | case Match_InvalidOperand: |
12852 | Message.Message = "invalid operand for instruction" ; |
12853 | break; |
12854 | default: |
12855 | llvm_unreachable("Unhandled target predicate error" ); |
12856 | break; |
12857 | } |
12858 | NearMissesOut.emplace_back(Args&: Message); |
12859 | break; |
12860 | } |
12861 | case NearMissInfo::NearMissTooFewOperands: { |
12862 | if (!ReportedTooFewOperands) { |
12863 | SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); |
12864 | NearMissesOut.emplace_back(Args: NearMissMessage{ |
12865 | .Loc: EndLoc, .Message: StringRef("too few operands for instruction" )}); |
12866 | ReportedTooFewOperands = true; |
12867 | } |
12868 | break; |
12869 | } |
12870 | case NearMissInfo::NoNearMiss: |
12871 | // This should never leave the matcher. |
12872 | llvm_unreachable("not a near-miss" ); |
12873 | break; |
12874 | } |
12875 | } |
12876 | } |
12877 | |
12878 | void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, |
12879 | SMLoc IDLoc, OperandVector &Operands) { |
12880 | SmallVector<NearMissMessage, 4> Messages; |
12881 | FilterNearMisses(NearMissesIn&: NearMisses, NearMissesOut&: Messages, IDLoc, Operands); |
12882 | |
12883 | if (Messages.size() == 0) { |
12884 | // No near-misses were found, so the best we can do is "invalid |
12885 | // instruction". |
12886 | Error(L: IDLoc, Msg: "invalid instruction" ); |
12887 | } else if (Messages.size() == 1) { |
12888 | // One near miss was found, report it as the sole error. |
12889 | Error(L: Messages[0].Loc, Msg: Messages[0].Message); |
12890 | } else { |
12891 | // More than one near miss, so report a generic "invalid instruction" |
12892 | // error, followed by notes for each of the near-misses. |
12893 | Error(L: IDLoc, Msg: "invalid instruction, any one of the following would fix this:" ); |
12894 | for (auto &M : Messages) { |
12895 | Note(L: M.Loc, Msg: M.Message); |
12896 | } |
12897 | } |
12898 | } |
12899 | |
12900 | bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { |
12901 | // FIXME: This structure should be moved inside ARMTargetParser |
12902 | // when we start to table-generate them, and we can use the ARM |
12903 | // flags below, that were generated by table-gen. |
12904 | static const struct { |
12905 | const uint64_t Kind; |
12906 | const FeatureBitset ArchCheck; |
12907 | const FeatureBitset Features; |
12908 | } Extensions[] = { |
12909 | {.Kind: ARM::AEK_CRC, .ArchCheck: {Feature_HasV8Bit}, .Features: {ARM::FeatureCRC}}, |
12910 | {.Kind: ARM::AEK_AES, |
12911 | .ArchCheck: {Feature_HasV8Bit}, |
12912 | .Features: {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12913 | {.Kind: ARM::AEK_SHA2, |
12914 | .ArchCheck: {Feature_HasV8Bit}, |
12915 | .Features: {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12916 | {.Kind: ARM::AEK_CRYPTO, |
12917 | .ArchCheck: {Feature_HasV8Bit}, |
12918 | .Features: {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12919 | {.Kind: (ARM::AEK_DSP | ARM::AEK_SIMD | ARM::AEK_FP), |
12920 | .ArchCheck: {Feature_HasV8_1MMainlineBit}, |
12921 | .Features: {ARM::HasMVEFloatOps}}, |
12922 | {.Kind: ARM::AEK_FP, |
12923 | .ArchCheck: {Feature_HasV8Bit}, |
12924 | .Features: {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, |
12925 | {.Kind: (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), |
12926 | .ArchCheck: {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
12927 | .Features: {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, |
12928 | {.Kind: ARM::AEK_MP, |
12929 | .ArchCheck: {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
12930 | .Features: {ARM::FeatureMP}}, |
12931 | {.Kind: ARM::AEK_SIMD, |
12932 | .ArchCheck: {Feature_HasV8Bit}, |
12933 | .Features: {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, |
12934 | {.Kind: ARM::AEK_SEC, .ArchCheck: {Feature_HasV6KBit}, .Features: {ARM::FeatureTrustZone}}, |
12935 | // FIXME: Only available in A-class, isel not predicated |
12936 | {.Kind: ARM::AEK_VIRT, .ArchCheck: {Feature_HasV7Bit}, .Features: {ARM::FeatureVirtualization}}, |
12937 | {.Kind: ARM::AEK_FP16, |
12938 | .ArchCheck: {Feature_HasV8_2aBit}, |
12939 | .Features: {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, |
12940 | {.Kind: ARM::AEK_RAS, .ArchCheck: {Feature_HasV8Bit}, .Features: {ARM::FeatureRAS}}, |
12941 | {.Kind: ARM::AEK_LOB, .ArchCheck: {Feature_HasV8_1MMainlineBit}, .Features: {ARM::FeatureLOB}}, |
12942 | {.Kind: ARM::AEK_PACBTI, .ArchCheck: {Feature_HasV8_1MMainlineBit}, .Features: {ARM::FeaturePACBTI}}, |
12943 | // FIXME: Unsupported extensions. |
12944 | {.Kind: ARM::AEK_OS, .ArchCheck: {}, .Features: {}}, |
12945 | {.Kind: ARM::AEK_IWMMXT, .ArchCheck: {}, .Features: {}}, |
12946 | {.Kind: ARM::AEK_IWMMXT2, .ArchCheck: {}, .Features: {}}, |
12947 | {.Kind: ARM::AEK_MAVERICK, .ArchCheck: {}, .Features: {}}, |
12948 | {.Kind: ARM::AEK_XSCALE, .ArchCheck: {}, .Features: {}}, |
12949 | }; |
12950 | bool EnableFeature = !Name.consume_front_insensitive(Prefix: "no" ); |
12951 | uint64_t FeatureKind = ARM::parseArchExt(ArchExt: Name); |
12952 | if (FeatureKind == ARM::AEK_INVALID) |
12953 | return Error(L: ExtLoc, Msg: "unknown architectural extension: " + Name); |
12954 | |
12955 | for (const auto &Extension : Extensions) { |
12956 | if (Extension.Kind != FeatureKind) |
12957 | continue; |
12958 | |
12959 | if (Extension.Features.none()) |
12960 | return Error(L: ExtLoc, Msg: "unsupported architectural extension: " + Name); |
12961 | |
12962 | if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) |
12963 | return Error(L: ExtLoc, Msg: "architectural extension '" + Name + |
12964 | "' is not " |
12965 | "allowed for the current base architecture" ); |
12966 | |
12967 | MCSubtargetInfo &STI = copySTI(); |
12968 | if (EnableFeature) { |
12969 | STI.SetFeatureBitsTransitively(Extension.Features); |
12970 | } else { |
12971 | STI.ClearFeatureBitsTransitively(FB: Extension.Features); |
12972 | } |
12973 | FeatureBitset Features = ComputeAvailableFeatures(FB: STI.getFeatureBits()); |
12974 | setAvailableFeatures(Features); |
12975 | return true; |
12976 | } |
12977 | return false; |
12978 | } |
12979 | |
12980 | /// parseDirectiveArchExtension |
12981 | /// ::= .arch_extension [no]feature |
12982 | bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { |
12983 | |
12984 | MCAsmParser &Parser = getParser(); |
12985 | |
12986 | if (getLexer().isNot(K: AsmToken::Identifier)) |
12987 | return Error(L: getLexer().getLoc(), Msg: "expected architecture extension name" ); |
12988 | |
12989 | StringRef Name = Parser.getTok().getString(); |
12990 | SMLoc ExtLoc = Parser.getTok().getLoc(); |
12991 | Lex(); |
12992 | |
12993 | if (parseEOL()) |
12994 | return true; |
12995 | |
12996 | if (Name == "nocrypto" ) { |
12997 | enableArchExtFeature(Name: "nosha2" , ExtLoc); |
12998 | enableArchExtFeature(Name: "noaes" , ExtLoc); |
12999 | } |
13000 | |
13001 | if (enableArchExtFeature(Name, ExtLoc)) |
13002 | return false; |
13003 | |
13004 | return Error(L: ExtLoc, Msg: "unknown architectural extension: " + Name); |
13005 | } |
13006 | |
13007 | // Define this matcher function after the auto-generated include so we |
13008 | // have the match class enum definitions. |
13009 | unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, |
13010 | unsigned Kind) { |
13011 | ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); |
13012 | // If the kind is a token for a literal immediate, check if our asm |
13013 | // operand matches. This is for InstAliases which have a fixed-value |
13014 | // immediate in the syntax. |
13015 | switch (Kind) { |
13016 | default: break; |
13017 | case MCK__HASH_0: |
13018 | if (Op.isImm()) |
13019 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13020 | if (CE->getValue() == 0) |
13021 | return Match_Success; |
13022 | break; |
13023 | case MCK__HASH_8: |
13024 | if (Op.isImm()) |
13025 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13026 | if (CE->getValue() == 8) |
13027 | return Match_Success; |
13028 | break; |
13029 | case MCK__HASH_16: |
13030 | if (Op.isImm()) |
13031 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13032 | if (CE->getValue() == 16) |
13033 | return Match_Success; |
13034 | break; |
13035 | case MCK_ModImm: |
13036 | if (Op.isImm()) { |
13037 | const MCExpr *SOExpr = Op.getImm(); |
13038 | int64_t Value; |
13039 | if (!SOExpr->evaluateAsAbsolute(Res&: Value)) |
13040 | return Match_Success; |
13041 | assert((Value >= std::numeric_limits<int32_t>::min() && |
13042 | Value <= std::numeric_limits<uint32_t>::max()) && |
13043 | "expression value must be representable in 32 bits" ); |
13044 | } |
13045 | break; |
13046 | case MCK_rGPR: |
13047 | if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) |
13048 | return Match_Success; |
13049 | return Match_rGPR; |
13050 | } |
13051 | return Match_InvalidOperand; |
13052 | } |
13053 | |
13054 | bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, |
13055 | StringRef ) { |
13056 | if (!hasMVE()) |
13057 | return false; |
13058 | |
13059 | if (MS.isVPTPredicableCDEInstr(Mnemonic) || |
13060 | (Mnemonic.starts_with(Prefix: "vldrh" ) && Mnemonic != "vldrhi" ) || |
13061 | (Mnemonic.starts_with(Prefix: "vmov" ) && |
13062 | !(ExtraToken == ".f16" || ExtraToken == ".32" || ExtraToken == ".16" || |
13063 | ExtraToken == ".8" )) || |
13064 | (Mnemonic.starts_with(Prefix: "vrint" ) && Mnemonic != "vrintr" ) || |
13065 | (Mnemonic.starts_with(Prefix: "vstrh" ) && Mnemonic != "vstrhi" )) |
13066 | return true; |
13067 | |
13068 | const char *predicable_prefixes[] = { |
13069 | "vabav" , "vabd" , "vabs" , "vadc" , "vadd" , |
13070 | "vaddlv" , "vaddv" , "vand" , "vbic" , "vbrsr" , |
13071 | "vcadd" , "vcls" , "vclz" , "vcmla" , "vcmp" , |
13072 | "vcmul" , "vctp" , "vcvt" , "vddup" , "vdup" , |
13073 | "vdwdup" , "veor" , "vfma" , "vfmas" , "vfms" , |
13074 | "vhadd" , "vhcadd" , "vhsub" , "vidup" , "viwdup" , |
13075 | "vldrb" , "vldrd" , "vldrw" , "vmax" , "vmaxa" , |
13076 | "vmaxav" , "vmaxnm" , "vmaxnma" , "vmaxnmav" , "vmaxnmv" , |
13077 | "vmaxv" , "vmin" , "vminav" , "vminnm" , "vminnmav" , |
13078 | "vminnmv" , "vminv" , "vmla" , "vmladav" , "vmlaldav" , |
13079 | "vmlalv" , "vmlas" , "vmlav" , "vmlsdav" , "vmlsldav" , |
13080 | "vmovlb" , "vmovlt" , "vmovnb" , "vmovnt" , "vmul" , |
13081 | "vmvn" , "vneg" , "vorn" , "vorr" , "vpnot" , |
13082 | "vpsel" , "vqabs" , "vqadd" , "vqdmladh" , "vqdmlah" , |
13083 | "vqdmlash" , "vqdmlsdh" , "vqdmulh" , "vqdmull" , "vqmovn" , |
13084 | "vqmovun" , "vqneg" , "vqrdmladh" , "vqrdmlah" , "vqrdmlash" , |
13085 | "vqrdmlsdh" , "vqrdmulh" , "vqrshl" , "vqrshrn" , "vqrshrun" , |
13086 | "vqshl" , "vqshrn" , "vqshrun" , "vqsub" , "vrev16" , |
13087 | "vrev32" , "vrev64" , "vrhadd" , "vrmlaldavh" , "vrmlalvh" , |
13088 | "vrmlsldavh" , "vrmulh" , "vrshl" , "vrshr" , "vrshrn" , |
13089 | "vsbc" , "vshl" , "vshlc" , "vshll" , "vshr" , |
13090 | "vshrn" , "vsli" , "vsri" , "vstrb" , "vstrd" , |
13091 | "vstrw" , "vsub" }; |
13092 | |
13093 | return std::any_of( |
13094 | first: std::begin(arr&: predicable_prefixes), last: std::end(arr&: predicable_prefixes), |
13095 | pred: [&Mnemonic](const char *prefix) { return Mnemonic.starts_with(Prefix: prefix); }); |
13096 | } |
13097 | |
13098 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultCondCodeOp() { |
13099 | return ARMOperand::CreateCondCode(CC: ARMCC::AL, S: SMLoc(), Parser&: *this); |
13100 | } |
13101 | |
13102 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultCCOutOp() { |
13103 | return ARMOperand::CreateCCOut(RegNum: 0, S: SMLoc(), Parser&: *this); |
13104 | } |
13105 | |
13106 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultVPTPredOp() { |
13107 | return ARMOperand::CreateVPTPred(CC: ARMVCC::None, S: SMLoc(), Parser&: *this); |
13108 | } |
13109 | |