1 | //===- HexagonEarlyIfConv.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements a Hexagon-specific if-conversion pass that runs on the |
10 | // SSA form. |
11 | // In SSA it is not straightforward to represent instructions that condi- |
12 | // tionally define registers, since a conditionally-defined register may |
13 | // only be used under the same condition on which the definition was based. |
14 | // To avoid complications of this nature, this patch will only generate |
15 | // predicated stores, and speculate other instructions from the "if-conver- |
16 | // ted" block. |
17 | // The code will recognize CFG patterns where a block with a conditional |
18 | // branch "splits" into a "true block" and a "false block". Either of these |
19 | // could be omitted (in case of a triangle, for example). |
20 | // If after conversion of the side block(s) the CFG allows it, the resul- |
21 | // ting blocks may be merged. If the "join" block contained PHI nodes, they |
22 | // will be replaced with MUX (or MUX-like) instructions to maintain the |
23 | // semantics of the PHI. |
24 | // |
25 | // Example: |
26 | // |
27 | // %40 = L2_loadrub_io killed %39, 1 |
28 | // %41 = S2_tstbit_i killed %40, 0 |
29 | // J2_jumpt killed %41, <%bb.5>, implicit dead %pc |
30 | // J2_jump <%bb.4>, implicit dead %pc |
31 | // Successors according to CFG: %bb.4(62) %bb.5(62) |
32 | // |
33 | // %bb.4: derived from LLVM BB %if.then |
34 | // Predecessors according to CFG: %bb.3 |
35 | // %11 = A2_addp %6, %10 |
36 | // S2_storerd_io %32, 16, %11 |
37 | // Successors according to CFG: %bb.5 |
38 | // |
39 | // %bb.5: derived from LLVM BB %if.end |
40 | // Predecessors according to CFG: %bb.3 %bb.4 |
41 | // %12 = PHI %6, <%bb.3>, %11, <%bb.4> |
42 | // %13 = A2_addp %7, %12 |
43 | // %42 = C2_cmpeqi %9, 10 |
44 | // J2_jumpf killed %42, <%bb.3>, implicit dead %pc |
45 | // J2_jump <%bb.6>, implicit dead %pc |
46 | // Successors according to CFG: %bb.6(4) %bb.3(124) |
47 | // |
48 | // would become: |
49 | // |
50 | // %40 = L2_loadrub_io killed %39, 1 |
51 | // %41 = S2_tstbit_i killed %40, 0 |
52 | // spec-> %11 = A2_addp %6, %10 |
53 | // pred-> S2_pstorerdf_io %41, %32, 16, %11 |
54 | // %46 = PS_pselect %41, %6, %11 |
55 | // %13 = A2_addp %7, %46 |
56 | // %42 = C2_cmpeqi %9, 10 |
57 | // J2_jumpf killed %42, <%bb.3>, implicit dead %pc |
58 | // J2_jump <%bb.6>, implicit dead %pc |
59 | // Successors according to CFG: %bb.6 %bb.3 |
60 | |
61 | #include "Hexagon.h" |
62 | #include "HexagonInstrInfo.h" |
63 | #include "HexagonSubtarget.h" |
64 | #include "llvm/ADT/DenseSet.h" |
65 | #include "llvm/ADT/SmallVector.h" |
66 | #include "llvm/ADT/StringRef.h" |
67 | #include "llvm/ADT/iterator_range.h" |
68 | #include "llvm/CodeGen/MachineBasicBlock.h" |
69 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
70 | #include "llvm/CodeGen/MachineDominators.h" |
71 | #include "llvm/CodeGen/MachineFunction.h" |
72 | #include "llvm/CodeGen/MachineFunctionPass.h" |
73 | #include "llvm/CodeGen/MachineInstr.h" |
74 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
75 | #include "llvm/CodeGen/MachineLoopInfo.h" |
76 | #include "llvm/CodeGen/MachineOperand.h" |
77 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
78 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
79 | #include "llvm/IR/DebugLoc.h" |
80 | #include "llvm/Pass.h" |
81 | #include "llvm/Support/BranchProbability.h" |
82 | #include "llvm/Support/CommandLine.h" |
83 | #include "llvm/Support/Compiler.h" |
84 | #include "llvm/Support/Debug.h" |
85 | #include "llvm/Support/ErrorHandling.h" |
86 | #include "llvm/Support/raw_ostream.h" |
87 | #include <cassert> |
88 | #include <iterator> |
89 | |
90 | #define DEBUG_TYPE "hexagon-eif" |
91 | |
92 | using namespace llvm; |
93 | |
94 | namespace llvm { |
95 | |
96 | FunctionPass *createHexagonEarlyIfConversion(); |
97 | void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); |
98 | |
99 | } // end namespace llvm |
100 | |
101 | static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob" , cl::Hidden, |
102 | cl::init(Val: true), cl::desc("Enable branch probability info" )); |
103 | static cl::opt<unsigned> SizeLimit("eif-limit" , cl::init(Val: 6), cl::Hidden, |
104 | cl::desc("Size limit in Hexagon early if-conversion" )); |
105 | static cl::opt<bool> SkipExitBranches("eif-no-loop-exit" , cl::init(Val: false), |
106 | cl::Hidden, cl::desc("Do not convert branches that may exit the loop" )); |
107 | |
108 | namespace { |
109 | |
110 | struct PrintMB { |
111 | PrintMB(const MachineBasicBlock *B) : MB(B) {} |
112 | |
113 | const MachineBasicBlock *MB; |
114 | }; |
115 | raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { |
116 | if (!P.MB) |
117 | return OS << "<none>" ; |
118 | return OS << '#' << P.MB->getNumber(); |
119 | } |
120 | |
121 | struct FlowPattern { |
122 | FlowPattern() = default; |
123 | FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, |
124 | MachineBasicBlock *FB, MachineBasicBlock *JB) |
125 | : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} |
126 | |
127 | MachineBasicBlock *SplitB = nullptr; |
128 | MachineBasicBlock *TrueB = nullptr; |
129 | MachineBasicBlock *FalseB = nullptr; |
130 | MachineBasicBlock *JoinB = nullptr; |
131 | unsigned PredR = 0; |
132 | }; |
133 | |
134 | struct PrintFP { |
135 | PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) |
136 | : FP(P), TRI(T) {} |
137 | |
138 | const FlowPattern &FP; |
139 | const TargetRegisterInfo &TRI; |
140 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); |
141 | }; |
142 | raw_ostream &operator<<(raw_ostream &OS, |
143 | const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; |
144 | raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { |
145 | OS << "{ SplitB:" << PrintMB(P.FP.SplitB) |
146 | << ", PredR:" << printReg(Reg: P.FP.PredR, TRI: &P.TRI) |
147 | << ", TrueB:" << PrintMB(P.FP.TrueB) |
148 | << ", FalseB:" << PrintMB(P.FP.FalseB) |
149 | << ", JoinB:" << PrintMB(P.FP.JoinB) << " }" ; |
150 | return OS; |
151 | } |
152 | |
153 | class HexagonEarlyIfConversion : public MachineFunctionPass { |
154 | public: |
155 | static char ID; |
156 | |
157 | HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} |
158 | |
159 | StringRef getPassName() const override { |
160 | return "Hexagon early if conversion" ; |
161 | } |
162 | |
163 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
164 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
165 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
166 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
167 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
168 | MachineFunctionPass::getAnalysisUsage(AU); |
169 | } |
170 | |
171 | bool runOnMachineFunction(MachineFunction &MF) override; |
172 | |
173 | private: |
174 | using BlockSetType = DenseSet<MachineBasicBlock *>; |
175 | |
176 | bool isPreheader(const MachineBasicBlock *B) const; |
177 | bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, |
178 | FlowPattern &FP); |
179 | bool visitBlock(MachineBasicBlock *B, MachineLoop *L); |
180 | bool visitLoop(MachineLoop *L); |
181 | |
182 | bool hasEHLabel(const MachineBasicBlock *B) const; |
183 | bool hasUncondBranch(const MachineBasicBlock *B) const; |
184 | bool isValidCandidate(const MachineBasicBlock *B) const; |
185 | bool usesUndefVReg(const MachineInstr *MI) const; |
186 | bool isValid(const FlowPattern &FP) const; |
187 | unsigned countPredicateDefs(const MachineBasicBlock *B) const; |
188 | unsigned computePhiCost(const MachineBasicBlock *B, |
189 | const FlowPattern &FP) const; |
190 | bool isProfitable(const FlowPattern &FP) const; |
191 | bool isPredicableStore(const MachineInstr *MI) const; |
192 | bool isSafeToSpeculate(const MachineInstr *MI) const; |
193 | bool isPredicate(unsigned R) const; |
194 | |
195 | unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; |
196 | void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, |
197 | MachineInstr *MI, unsigned PredR, bool IfTrue); |
198 | void predicateBlockNB(MachineBasicBlock *ToB, |
199 | MachineBasicBlock::iterator At, MachineBasicBlock *FromB, |
200 | unsigned PredR, bool IfTrue); |
201 | |
202 | unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, |
203 | const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, |
204 | unsigned TSR, unsigned FR, unsigned FSR); |
205 | void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); |
206 | void convert(const FlowPattern &FP); |
207 | |
208 | void removeBlock(MachineBasicBlock *B); |
209 | void eliminatePhis(MachineBasicBlock *B); |
210 | void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); |
211 | void simplifyFlowGraph(const FlowPattern &FP); |
212 | |
213 | const HexagonInstrInfo *HII = nullptr; |
214 | const TargetRegisterInfo *TRI = nullptr; |
215 | MachineFunction *MFN = nullptr; |
216 | MachineRegisterInfo *MRI = nullptr; |
217 | MachineDominatorTree *MDT = nullptr; |
218 | MachineLoopInfo *MLI = nullptr; |
219 | BlockSetType Deleted; |
220 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
221 | }; |
222 | |
223 | } // end anonymous namespace |
224 | |
225 | char HexagonEarlyIfConversion::ID = 0; |
226 | |
227 | INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if" , |
228 | "Hexagon early if conversion" , false, false) |
229 | |
230 | bool HexagonEarlyIfConversion::(const MachineBasicBlock *B) const { |
231 | if (B->succ_size() != 1) |
232 | return false; |
233 | MachineBasicBlock *SB = *B->succ_begin(); |
234 | MachineLoop *L = MLI->getLoopFor(BB: SB); |
235 | return L && SB == L->getHeader() && MDT->dominates(A: B, B: SB); |
236 | } |
237 | |
238 | bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, |
239 | MachineLoop *L, FlowPattern &FP) { |
240 | LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) |
241 | << "\n" ); |
242 | |
243 | // Interested only in conditional branches, no .new, no new-value, etc. |
244 | // Check the terminators directly, it's easier than handling all responses |
245 | // from analyzeBranch. |
246 | MachineBasicBlock *TB = nullptr, *FB = nullptr; |
247 | MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); |
248 | if (T1I == B->end()) |
249 | return false; |
250 | unsigned Opc = T1I->getOpcode(); |
251 | if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) |
252 | return false; |
253 | Register PredR = T1I->getOperand(i: 0).getReg(); |
254 | |
255 | // Get the layout successor, or 0 if B does not have one. |
256 | MachineFunction::iterator NextBI = std::next(x: MachineFunction::iterator(B)); |
257 | MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; |
258 | |
259 | MachineBasicBlock *T1B = T1I->getOperand(i: 1).getMBB(); |
260 | MachineBasicBlock::const_iterator T2I = std::next(x: T1I); |
261 | // The second terminator should be an unconditional branch. |
262 | assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); |
263 | MachineBasicBlock *T2B = (T2I == B->end()) ? NextB |
264 | : T2I->getOperand(i: 0).getMBB(); |
265 | if (T1B == T2B) { |
266 | // XXX merge if T1B == NextB, or convert branch to unconditional. |
267 | // mark as diamond with both sides equal? |
268 | return false; |
269 | } |
270 | |
271 | // Record the true/false blocks in such a way that "true" means "if (PredR)", |
272 | // and "false" means "if (!PredR)". |
273 | if (Opc == Hexagon::J2_jumpt) |
274 | TB = T1B, FB = T2B; |
275 | else |
276 | TB = T2B, FB = T1B; |
277 | |
278 | if (!MDT->properlyDominates(A: B, B: TB) || !MDT->properlyDominates(A: B, B: FB)) |
279 | return false; |
280 | |
281 | // Detect triangle first. In case of a triangle, one of the blocks TB/FB |
282 | // can fall through into the other, in other words, it will be executed |
283 | // in both cases. We only want to predicate the block that is executed |
284 | // conditionally. |
285 | assert(TB && FB && "Failed to find triangle control flow blocks" ); |
286 | unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); |
287 | unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); |
288 | |
289 | // A block is predicable if it has one predecessor (it must be B), and |
290 | // it has a single successor. In fact, the block has to end either with |
291 | // an unconditional branch (which can be predicated), or with a fall- |
292 | // through. |
293 | // Also, skip blocks that do not belong to the same loop. |
294 | bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(BB: TB) == L); |
295 | bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(BB: FB) == L); |
296 | |
297 | // If requested (via an option), do not consider branches where the |
298 | // true and false targets do not belong to the same loop. |
299 | if (SkipExitBranches && MLI->getLoopFor(BB: TB) != MLI->getLoopFor(BB: FB)) |
300 | return false; |
301 | |
302 | // If neither is predicable, there is nothing interesting. |
303 | if (!TOk && !FOk) |
304 | return false; |
305 | |
306 | MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; |
307 | MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; |
308 | MachineBasicBlock *JB = nullptr; |
309 | |
310 | if (TOk) { |
311 | if (FOk) { |
312 | if (TSB == FSB) |
313 | JB = TSB; |
314 | // Diamond: "if (P) then TB; else FB;". |
315 | } else { |
316 | // TOk && !FOk |
317 | if (TSB == FB) |
318 | JB = FB; |
319 | FB = nullptr; |
320 | } |
321 | } else { |
322 | // !TOk && FOk (at least one must be true by now). |
323 | if (FSB == TB) |
324 | JB = TB; |
325 | TB = nullptr; |
326 | } |
327 | // Don't try to predicate loop preheaders. |
328 | if ((TB && isPreheader(B: TB)) || (FB && isPreheader(B: FB))) { |
329 | LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) |
330 | << " is a loop preheader. Skipping.\n" ); |
331 | return false; |
332 | } |
333 | |
334 | FP = FlowPattern(B, PredR, TB, FB, JB); |
335 | LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n" ); |
336 | return true; |
337 | } |
338 | |
339 | // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that |
340 | // contains EH_LABEL. |
341 | bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { |
342 | for (auto &I : *B) |
343 | if (I.isEHLabel()) |
344 | return true; |
345 | return false; |
346 | } |
347 | |
348 | // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize |
349 | // that a block can never fall-through. |
350 | bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) |
351 | const { |
352 | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); |
353 | while (I != E) { |
354 | if (I->isBarrier()) |
355 | return true; |
356 | ++I; |
357 | } |
358 | return false; |
359 | } |
360 | |
361 | bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) |
362 | const { |
363 | if (!B) |
364 | return true; |
365 | if (B->isEHPad() || B->hasAddressTaken()) |
366 | return false; |
367 | if (B->succ_empty()) |
368 | return false; |
369 | |
370 | for (auto &MI : *B) { |
371 | if (MI.isDebugInstr()) |
372 | continue; |
373 | if (MI.isConditionalBranch()) |
374 | return false; |
375 | unsigned Opc = MI.getOpcode(); |
376 | bool IsJMP = (Opc == Hexagon::J2_jump); |
377 | if (!isPredicableStore(MI: &MI) && !IsJMP && !isSafeToSpeculate(MI: &MI)) |
378 | return false; |
379 | // Look for predicate registers defined by this instruction. It's ok |
380 | // to speculate such an instruction, but the predicate register cannot |
381 | // be used outside of this block (or else it won't be possible to |
382 | // update the use of it after predication). PHI uses will be updated |
383 | // to use a result of a MUX, and a MUX cannot be created for predicate |
384 | // registers. |
385 | for (const MachineOperand &MO : MI.operands()) { |
386 | if (!MO.isReg() || !MO.isDef()) |
387 | continue; |
388 | Register R = MO.getReg(); |
389 | if (!R.isVirtual()) |
390 | continue; |
391 | if (!isPredicate(R)) |
392 | continue; |
393 | for (const MachineOperand &U : MRI->use_operands(Reg: R)) |
394 | if (U.getParent()->isPHI()) |
395 | return false; |
396 | } |
397 | } |
398 | return true; |
399 | } |
400 | |
401 | bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { |
402 | for (const MachineOperand &MO : MI->operands()) { |
403 | if (!MO.isReg() || !MO.isUse()) |
404 | continue; |
405 | Register R = MO.getReg(); |
406 | if (!R.isVirtual()) |
407 | continue; |
408 | const MachineInstr *DefI = MRI->getVRegDef(Reg: R); |
409 | // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. |
410 | assert(DefI && "Expecting a reaching def in MRI" ); |
411 | if (DefI->isImplicitDef()) |
412 | return true; |
413 | } |
414 | return false; |
415 | } |
416 | |
417 | bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { |
418 | if (hasEHLabel(B: FP.SplitB)) // KLUDGE: see function definition |
419 | return false; |
420 | if (FP.TrueB && !isValidCandidate(B: FP.TrueB)) |
421 | return false; |
422 | if (FP.FalseB && !isValidCandidate(B: FP.FalseB)) |
423 | return false; |
424 | // Check the PHIs in the join block. If any of them use a register |
425 | // that is defined as IMPLICIT_DEF, do not convert this. This can |
426 | // legitimately happen if one side of the split never executes, but |
427 | // the compiler is unable to prove it. That side may then seem to |
428 | // provide an "undef" value to the join block, however it will never |
429 | // execute at run-time. If we convert this case, the "undef" will |
430 | // be used in a MUX instruction, and that may seem like actually |
431 | // using an undefined value to other optimizations. This could lead |
432 | // to trouble further down the optimization stream, cause assertions |
433 | // to fail, etc. |
434 | if (FP.JoinB) { |
435 | const MachineBasicBlock &B = *FP.JoinB; |
436 | for (auto &MI : B) { |
437 | if (!MI.isPHI()) |
438 | break; |
439 | if (usesUndefVReg(MI: &MI)) |
440 | return false; |
441 | Register DefR = MI.getOperand(i: 0).getReg(); |
442 | if (isPredicate(R: DefR)) |
443 | return false; |
444 | } |
445 | } |
446 | return true; |
447 | } |
448 | |
449 | unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, |
450 | const FlowPattern &FP) const { |
451 | if (B->pred_size() < 2) |
452 | return 0; |
453 | |
454 | unsigned Cost = 0; |
455 | for (const MachineInstr &MI : *B) { |
456 | if (!MI.isPHI()) |
457 | break; |
458 | // If both incoming blocks are one of the TrueB/FalseB/SplitB, then |
459 | // a MUX may be needed. Otherwise the PHI will need to be updated at |
460 | // no extra cost. |
461 | // Find the interesting PHI operands for further checks. |
462 | SmallVector<unsigned,2> Inc; |
463 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
464 | const MachineBasicBlock *BB = MI.getOperand(i: i+1).getMBB(); |
465 | if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) |
466 | Inc.push_back(Elt: i); |
467 | } |
468 | assert(Inc.size() <= 2); |
469 | if (Inc.size() < 2) |
470 | continue; |
471 | |
472 | const MachineOperand &RA = MI.getOperand(i: 1); |
473 | const MachineOperand &RB = MI.getOperand(i: 3); |
474 | assert(RA.isReg() && RB.isReg()); |
475 | // Must have a MUX if the phi uses a subregister. |
476 | if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { |
477 | Cost++; |
478 | continue; |
479 | } |
480 | const MachineInstr *Def1 = MRI->getVRegDef(Reg: RA.getReg()); |
481 | const MachineInstr *Def3 = MRI->getVRegDef(Reg: RB.getReg()); |
482 | if (!HII->isPredicable(MI: *Def1) || !HII->isPredicable(MI: *Def3)) |
483 | Cost++; |
484 | } |
485 | return Cost; |
486 | } |
487 | |
488 | unsigned HexagonEarlyIfConversion::countPredicateDefs( |
489 | const MachineBasicBlock *B) const { |
490 | unsigned PredDefs = 0; |
491 | for (auto &MI : *B) { |
492 | for (const MachineOperand &MO : MI.operands()) { |
493 | if (!MO.isReg() || !MO.isDef()) |
494 | continue; |
495 | Register R = MO.getReg(); |
496 | if (!R.isVirtual()) |
497 | continue; |
498 | if (isPredicate(R)) |
499 | PredDefs++; |
500 | } |
501 | } |
502 | return PredDefs; |
503 | } |
504 | |
505 | bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { |
506 | BranchProbability JumpProb(1, 10); |
507 | BranchProbability Prob(9, 10); |
508 | if (MBPI && FP.TrueB && !FP.FalseB && |
509 | (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) < JumpProb || |
510 | MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) > Prob)) |
511 | return false; |
512 | |
513 | if (MBPI && !FP.TrueB && FP.FalseB && |
514 | (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) < JumpProb || |
515 | MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) > Prob)) |
516 | return false; |
517 | |
518 | if (FP.TrueB && FP.FalseB) { |
519 | // Do not IfCovert if the branch is one sided. |
520 | if (MBPI) { |
521 | if (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.TrueB) > Prob) |
522 | return false; |
523 | if (MBPI->getEdgeProbability(Src: FP.SplitB, Dst: FP.FalseB) > Prob) |
524 | return false; |
525 | } |
526 | |
527 | // If both sides are predicable, convert them if they join, and the |
528 | // join block has no other predecessors. |
529 | MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); |
530 | MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); |
531 | if (TSB != FSB) |
532 | return false; |
533 | if (TSB->pred_size() != 2) |
534 | return false; |
535 | } |
536 | |
537 | // Calculate the total size of the predicated blocks. |
538 | // Assume instruction counts without branches to be the approximation of |
539 | // the code size. If the predicated blocks are smaller than a packet size, |
540 | // approximate the spare room in the packet that could be filled with the |
541 | // predicated/speculated instructions. |
542 | auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { |
543 | if (!B) |
544 | return 0u; |
545 | unsigned T = std::count_if(first: B->begin(), last: B->getFirstTerminator(), |
546 | pred: [](const MachineInstr &MI) { |
547 | return !MI.isMetaInstruction(); |
548 | }); |
549 | if (T < HEXAGON_PACKET_SIZE) |
550 | Spare += HEXAGON_PACKET_SIZE-T; |
551 | return T; |
552 | }; |
553 | unsigned Spare = 0; |
554 | unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); |
555 | LLVM_DEBUG( |
556 | dbgs() << "Total number of instructions to be predicated/speculated: " |
557 | << TotalIn << ", spare room: " << Spare << "\n" ); |
558 | if (TotalIn >= SizeLimit+Spare) |
559 | return false; |
560 | |
561 | // Count the number of PHI nodes that will need to be updated (converted |
562 | // to MUX). Those can be later converted to predicated instructions, so |
563 | // they aren't always adding extra cost. |
564 | // KLUDGE: Also, count the number of predicate register definitions in |
565 | // each block. The scheduler may increase the pressure of these and cause |
566 | // expensive spills (e.g. bitmnp01). |
567 | unsigned TotalPh = 0; |
568 | unsigned PredDefs = countPredicateDefs(B: FP.SplitB); |
569 | if (FP.JoinB) { |
570 | TotalPh = computePhiCost(B: FP.JoinB, FP); |
571 | PredDefs += countPredicateDefs(B: FP.JoinB); |
572 | } else { |
573 | if (FP.TrueB && !FP.TrueB->succ_empty()) { |
574 | MachineBasicBlock *SB = *FP.TrueB->succ_begin(); |
575 | TotalPh += computePhiCost(B: SB, FP); |
576 | PredDefs += countPredicateDefs(B: SB); |
577 | } |
578 | if (FP.FalseB && !FP.FalseB->succ_empty()) { |
579 | MachineBasicBlock *SB = *FP.FalseB->succ_begin(); |
580 | TotalPh += computePhiCost(B: SB, FP); |
581 | PredDefs += countPredicateDefs(B: SB); |
582 | } |
583 | } |
584 | LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: " |
585 | << TotalPh << "\n" ); |
586 | if (TotalIn+TotalPh >= SizeLimit+Spare) |
587 | return false; |
588 | |
589 | LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs |
590 | << "\n" ); |
591 | if (PredDefs > 4) |
592 | return false; |
593 | |
594 | return true; |
595 | } |
596 | |
597 | bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, |
598 | MachineLoop *L) { |
599 | bool Changed = false; |
600 | |
601 | // Visit all dominated blocks from the same loop first, then process B. |
602 | MachineDomTreeNode *N = MDT->getNode(BB: B); |
603 | |
604 | // We will change CFG/DT during this traversal, so take precautions to |
605 | // avoid problems related to invalidated iterators. In fact, processing |
606 | // a child C of B cannot cause another child to be removed, but it can |
607 | // cause a new child to be added (which was a child of C before C itself |
608 | // was removed. This new child C, however, would have been processed |
609 | // prior to processing B, so there is no need to process it again. |
610 | // Simply keep a list of children of B, and traverse that list. |
611 | using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; |
612 | DTNodeVectType Cn(llvm::children<MachineDomTreeNode *>(G: N)); |
613 | for (auto &I : Cn) { |
614 | MachineBasicBlock *SB = I->getBlock(); |
615 | if (!Deleted.count(V: SB)) |
616 | Changed |= visitBlock(B: SB, L); |
617 | } |
618 | // When walking down the dominator tree, we want to traverse through |
619 | // blocks from nested (other) loops, because they can dominate blocks |
620 | // that are in L. Skip the non-L blocks only after the tree traversal. |
621 | if (MLI->getLoopFor(BB: B) != L) |
622 | return Changed; |
623 | |
624 | FlowPattern FP; |
625 | if (!matchFlowPattern(B, L, FP)) |
626 | return Changed; |
627 | |
628 | if (!isValid(FP)) { |
629 | LLVM_DEBUG(dbgs() << "Conversion is not valid\n" ); |
630 | return Changed; |
631 | } |
632 | if (!isProfitable(FP)) { |
633 | LLVM_DEBUG(dbgs() << "Conversion is not profitable\n" ); |
634 | return Changed; |
635 | } |
636 | |
637 | convert(FP); |
638 | simplifyFlowGraph(FP); |
639 | return true; |
640 | } |
641 | |
642 | bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { |
643 | MachineBasicBlock *HB = L ? L->getHeader() : nullptr; |
644 | LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) |
645 | : dbgs() << "Visiting function" ) |
646 | << "\n" ); |
647 | bool Changed = false; |
648 | if (L) { |
649 | for (MachineLoop *I : *L) |
650 | Changed |= visitLoop(L: I); |
651 | } |
652 | |
653 | MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(F: MFN); |
654 | Changed |= visitBlock(B: L ? HB : EntryB, L); |
655 | return Changed; |
656 | } |
657 | |
658 | bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) |
659 | const { |
660 | // HexagonInstrInfo::isPredicable will consider these stores are non- |
661 | // -predicable if the offset would become constant-extended after |
662 | // predication. |
663 | unsigned Opc = MI->getOpcode(); |
664 | switch (Opc) { |
665 | case Hexagon::S2_storerb_io: |
666 | case Hexagon::S2_storerbnew_io: |
667 | case Hexagon::S2_storerh_io: |
668 | case Hexagon::S2_storerhnew_io: |
669 | case Hexagon::S2_storeri_io: |
670 | case Hexagon::S2_storerinew_io: |
671 | case Hexagon::S2_storerd_io: |
672 | case Hexagon::S4_storeirb_io: |
673 | case Hexagon::S4_storeirh_io: |
674 | case Hexagon::S4_storeiri_io: |
675 | return true; |
676 | } |
677 | |
678 | // TargetInstrInfo::isPredicable takes a non-const pointer. |
679 | return MI->mayStore() && HII->isPredicable(MI: const_cast<MachineInstr&>(*MI)); |
680 | } |
681 | |
682 | bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) |
683 | const { |
684 | if (MI->mayLoadOrStore()) |
685 | return false; |
686 | if (MI->isCall() || MI->isBarrier() || MI->isBranch()) |
687 | return false; |
688 | if (MI->hasUnmodeledSideEffects()) |
689 | return false; |
690 | if (MI->getOpcode() == TargetOpcode::LIFETIME_END) |
691 | return false; |
692 | |
693 | return true; |
694 | } |
695 | |
696 | bool HexagonEarlyIfConversion::isPredicate(unsigned R) const { |
697 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: R); |
698 | return RC == &Hexagon::PredRegsRegClass || |
699 | RC == &Hexagon::HvxQRRegClass; |
700 | } |
701 | |
702 | unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, |
703 | bool IfTrue) const { |
704 | return HII->getCondOpcode(Opc, sense: !IfTrue); |
705 | } |
706 | |
707 | void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, |
708 | MachineBasicBlock::iterator At, MachineInstr *MI, |
709 | unsigned PredR, bool IfTrue) { |
710 | DebugLoc DL; |
711 | if (At != ToB->end()) |
712 | DL = At->getDebugLoc(); |
713 | else if (!ToB->empty()) |
714 | DL = ToB->back().getDebugLoc(); |
715 | |
716 | unsigned Opc = MI->getOpcode(); |
717 | |
718 | if (isPredicableStore(MI)) { |
719 | unsigned COpc = getCondStoreOpcode(Opc, IfTrue); |
720 | assert(COpc); |
721 | MachineInstrBuilder MIB = BuildMI(BB&: *ToB, I: At, MIMD: DL, MCID: HII->get(Opcode: COpc)); |
722 | MachineInstr::mop_iterator MOI = MI->operands_begin(); |
723 | if (HII->isPostIncrement(MI: *MI)) { |
724 | MIB.add(MO: *MOI); |
725 | ++MOI; |
726 | } |
727 | MIB.addReg(RegNo: PredR); |
728 | for (const MachineOperand &MO : make_range(x: MOI, y: MI->operands_end())) |
729 | MIB.add(MO); |
730 | |
731 | // Set memory references. |
732 | MIB.cloneMemRefs(OtherMI: *MI); |
733 | |
734 | MI->eraseFromParent(); |
735 | return; |
736 | } |
737 | |
738 | if (Opc == Hexagon::J2_jump) { |
739 | MachineBasicBlock *TB = MI->getOperand(i: 0).getMBB(); |
740 | const MCInstrDesc &D = HII->get(Opcode: IfTrue ? Hexagon::J2_jumpt |
741 | : Hexagon::J2_jumpf); |
742 | BuildMI(BB&: *ToB, I: At, MIMD: DL, MCID: D) |
743 | .addReg(RegNo: PredR) |
744 | .addMBB(MBB: TB); |
745 | MI->eraseFromParent(); |
746 | return; |
747 | } |
748 | |
749 | // Print the offending instruction unconditionally as we are about to |
750 | // abort. |
751 | dbgs() << *MI; |
752 | llvm_unreachable("Unexpected instruction" ); |
753 | } |
754 | |
755 | // Predicate/speculate non-branch instructions from FromB into block ToB. |
756 | // Leave the branches alone, they will be handled later. Btw, at this point |
757 | // FromB should have at most one branch, and it should be unconditional. |
758 | void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, |
759 | MachineBasicBlock::iterator At, MachineBasicBlock *FromB, |
760 | unsigned PredR, bool IfTrue) { |
761 | LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n" ); |
762 | MachineBasicBlock::iterator End = FromB->getFirstTerminator(); |
763 | MachineBasicBlock::iterator I, NextI; |
764 | |
765 | for (I = FromB->begin(); I != End; I = NextI) { |
766 | assert(!I->isPHI()); |
767 | NextI = std::next(x: I); |
768 | if (isSafeToSpeculate(MI: &*I)) |
769 | ToB->splice(Where: At, Other: FromB, From: I); |
770 | else |
771 | predicateInstr(ToB, At, MI: &*I, PredR, IfTrue); |
772 | } |
773 | } |
774 | |
775 | unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, |
776 | MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, |
777 | unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { |
778 | unsigned Opc = 0; |
779 | switch (DRC->getID()) { |
780 | case Hexagon::IntRegsRegClassID: |
781 | case Hexagon::IntRegsLow8RegClassID: |
782 | Opc = Hexagon::C2_mux; |
783 | break; |
784 | case Hexagon::DoubleRegsRegClassID: |
785 | case Hexagon::GeneralDoubleLow8RegsRegClassID: |
786 | Opc = Hexagon::PS_pselect; |
787 | break; |
788 | case Hexagon::HvxVRRegClassID: |
789 | Opc = Hexagon::PS_vselect; |
790 | break; |
791 | case Hexagon::HvxWRRegClassID: |
792 | Opc = Hexagon::PS_wselect; |
793 | break; |
794 | default: |
795 | llvm_unreachable("unexpected register type" ); |
796 | } |
797 | const MCInstrDesc &D = HII->get(Opcode: Opc); |
798 | |
799 | DebugLoc DL = B->findBranchDebugLoc(); |
800 | Register MuxR = MRI->createVirtualRegister(RegClass: DRC); |
801 | BuildMI(BB&: *B, I: At, MIMD: DL, MCID: D, DestReg: MuxR) |
802 | .addReg(RegNo: PredR) |
803 | .addReg(RegNo: TR, flags: 0, SubReg: TSR) |
804 | .addReg(RegNo: FR, flags: 0, SubReg: FSR); |
805 | return MuxR; |
806 | } |
807 | |
808 | void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, |
809 | const FlowPattern &FP) { |
810 | // Visit all PHI nodes in the WhereB block and generate MUX instructions |
811 | // in the split block. Update the PHI nodes with the values of the MUX. |
812 | auto NonPHI = WhereB->getFirstNonPHI(); |
813 | for (auto I = WhereB->begin(); I != NonPHI; ++I) { |
814 | MachineInstr *PN = &*I; |
815 | // Registers and subregisters corresponding to TrueB, FalseB and SplitB. |
816 | unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; |
817 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
818 | const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i: i+1); |
819 | if (BO.getMBB() == FP.SplitB) |
820 | SR = RO.getReg(), SSR = RO.getSubReg(); |
821 | else if (BO.getMBB() == FP.TrueB) |
822 | TR = RO.getReg(), TSR = RO.getSubReg(); |
823 | else if (BO.getMBB() == FP.FalseB) |
824 | FR = RO.getReg(), FSR = RO.getSubReg(); |
825 | else |
826 | continue; |
827 | PN->removeOperand(OpNo: i+1); |
828 | PN->removeOperand(OpNo: i); |
829 | } |
830 | if (TR == 0) |
831 | TR = SR, TSR = SSR; |
832 | else if (FR == 0) |
833 | FR = SR, FSR = SSR; |
834 | |
835 | assert(TR || FR); |
836 | unsigned MuxR = 0, MuxSR = 0; |
837 | |
838 | if (TR && FR) { |
839 | Register DR = PN->getOperand(i: 0).getReg(); |
840 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DR); |
841 | MuxR = buildMux(B: FP.SplitB, At: FP.SplitB->getFirstTerminator(), DRC: RC, |
842 | PredR: FP.PredR, TR, TSR, FR, FSR); |
843 | } else if (TR) { |
844 | MuxR = TR; |
845 | MuxSR = TSR; |
846 | } else { |
847 | MuxR = FR; |
848 | MuxSR = FSR; |
849 | } |
850 | |
851 | PN->addOperand(Op: MachineOperand::CreateReg(Reg: MuxR, isDef: false, isImp: false, isKill: false, isDead: false, |
852 | isUndef: false, isEarlyClobber: false, SubReg: MuxSR)); |
853 | PN->addOperand(Op: MachineOperand::CreateMBB(MBB: FP.SplitB)); |
854 | } |
855 | } |
856 | |
857 | void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { |
858 | MachineBasicBlock *TSB = nullptr, *FSB = nullptr; |
859 | MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); |
860 | assert(OldTI != FP.SplitB->end()); |
861 | DebugLoc DL = OldTI->getDebugLoc(); |
862 | |
863 | if (FP.TrueB) { |
864 | TSB = *FP.TrueB->succ_begin(); |
865 | predicateBlockNB(ToB: FP.SplitB, At: OldTI, FromB: FP.TrueB, PredR: FP.PredR, IfTrue: true); |
866 | } |
867 | if (FP.FalseB) { |
868 | FSB = *FP.FalseB->succ_begin(); |
869 | MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); |
870 | predicateBlockNB(ToB: FP.SplitB, At, FromB: FP.FalseB, PredR: FP.PredR, IfTrue: false); |
871 | } |
872 | |
873 | // Regenerate new terminators in the split block and update the successors. |
874 | // First, remember any information that may be needed later and remove the |
875 | // existing terminators/successors from the split block. |
876 | MachineBasicBlock *SSB = nullptr; |
877 | FP.SplitB->erase(I: OldTI, E: FP.SplitB->end()); |
878 | while (!FP.SplitB->succ_empty()) { |
879 | MachineBasicBlock *T = *FP.SplitB->succ_begin(); |
880 | // It's possible that the split block had a successor that is not a pre- |
881 | // dicated block. This could only happen if there was only one block to |
882 | // be predicated. Example: |
883 | // split_b: |
884 | // if (p) jump true_b |
885 | // jump unrelated2_b |
886 | // unrelated1_b: |
887 | // ... |
888 | // unrelated2_b: ; can have other predecessors, so it's not "false_b" |
889 | // jump other_b |
890 | // true_b: ; only reachable from split_b, can be predicated |
891 | // ... |
892 | // |
893 | // Find this successor (SSB) if it exists. |
894 | if (T != FP.TrueB && T != FP.FalseB) { |
895 | assert(!SSB); |
896 | SSB = T; |
897 | } |
898 | FP.SplitB->removeSuccessor(I: FP.SplitB->succ_begin()); |
899 | } |
900 | |
901 | // Insert new branches and update the successors of the split block. This |
902 | // may create unconditional branches to the layout successor, etc., but |
903 | // that will be cleaned up later. For now, make sure that correct code is |
904 | // generated. |
905 | if (FP.JoinB) { |
906 | assert(!SSB || SSB == FP.JoinB); |
907 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jump)) |
908 | .addMBB(MBB: FP.JoinB); |
909 | FP.SplitB->addSuccessor(Succ: FP.JoinB); |
910 | } else { |
911 | bool HasBranch = false; |
912 | if (TSB) { |
913 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jumpt)) |
914 | .addReg(RegNo: FP.PredR) |
915 | .addMBB(MBB: TSB); |
916 | FP.SplitB->addSuccessor(Succ: TSB); |
917 | HasBranch = true; |
918 | } |
919 | if (FSB) { |
920 | const MCInstrDesc &D = HasBranch ? HII->get(Opcode: Hexagon::J2_jump) |
921 | : HII->get(Opcode: Hexagon::J2_jumpf); |
922 | MachineInstrBuilder MIB = BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: D); |
923 | if (!HasBranch) |
924 | MIB.addReg(RegNo: FP.PredR); |
925 | MIB.addMBB(MBB: FSB); |
926 | FP.SplitB->addSuccessor(Succ: FSB); |
927 | } |
928 | if (SSB) { |
929 | // This cannot happen if both TSB and FSB are set. [TF]SB are the |
930 | // successor blocks of the TrueB and FalseB (or null of the TrueB |
931 | // or FalseB block is null). SSB is the potential successor block |
932 | // of the SplitB that is neither TrueB nor FalseB. |
933 | BuildMI(BB&: *FP.SplitB, I: FP.SplitB->end(), MIMD: DL, MCID: HII->get(Opcode: Hexagon::J2_jump)) |
934 | .addMBB(MBB: SSB); |
935 | FP.SplitB->addSuccessor(Succ: SSB); |
936 | } |
937 | } |
938 | |
939 | // What is left to do is to update the PHI nodes that could have entries |
940 | // referring to predicated blocks. |
941 | if (FP.JoinB) { |
942 | updatePhiNodes(WhereB: FP.JoinB, FP); |
943 | } else { |
944 | if (TSB) |
945 | updatePhiNodes(WhereB: TSB, FP); |
946 | if (FSB) |
947 | updatePhiNodes(WhereB: FSB, FP); |
948 | // Nothing to update in SSB, since SSB's predecessors haven't changed. |
949 | } |
950 | } |
951 | |
952 | void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { |
953 | LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n" ); |
954 | |
955 | // Transfer the immediate dominator information from B to its descendants. |
956 | MachineDomTreeNode *N = MDT->getNode(BB: B); |
957 | MachineDomTreeNode *IDN = N->getIDom(); |
958 | if (IDN) { |
959 | MachineBasicBlock *IDB = IDN->getBlock(); |
960 | |
961 | using GTN = GraphTraits<MachineDomTreeNode *>; |
962 | using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; |
963 | |
964 | DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); |
965 | for (auto &I : Cn) { |
966 | MachineBasicBlock *SB = I->getBlock(); |
967 | MDT->changeImmediateDominator(N: SB, NewIDom: IDB); |
968 | } |
969 | } |
970 | |
971 | while (!B->succ_empty()) |
972 | B->removeSuccessor(I: B->succ_begin()); |
973 | |
974 | for (MachineBasicBlock *Pred : B->predecessors()) |
975 | Pred->removeSuccessor(Succ: B, NormalizeSuccProbs: true); |
976 | |
977 | Deleted.insert(V: B); |
978 | MDT->eraseNode(BB: B); |
979 | MFN->erase(MBBI: B->getIterator()); |
980 | } |
981 | |
982 | void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { |
983 | LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n" ); |
984 | MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); |
985 | for (I = B->begin(); I != NonPHI; I = NextI) { |
986 | NextI = std::next(x: I); |
987 | MachineInstr *PN = &*I; |
988 | assert(PN->getNumOperands() == 3 && "Invalid phi node" ); |
989 | MachineOperand &UO = PN->getOperand(i: 1); |
990 | Register UseR = UO.getReg(), UseSR = UO.getSubReg(); |
991 | Register DefR = PN->getOperand(i: 0).getReg(); |
992 | unsigned NewR = UseR; |
993 | if (UseSR) { |
994 | // MRI.replaceVregUsesWith does not allow to update the subregister, |
995 | // so instead of doing the use-iteration here, create a copy into a |
996 | // "non-subregistered" register. |
997 | const DebugLoc &DL = PN->getDebugLoc(); |
998 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DefR); |
999 | NewR = MRI->createVirtualRegister(RegClass: RC); |
1000 | NonPHI = BuildMI(BB&: *B, I: NonPHI, MIMD: DL, MCID: HII->get(Opcode: TargetOpcode::COPY), DestReg: NewR) |
1001 | .addReg(RegNo: UseR, flags: 0, SubReg: UseSR); |
1002 | } |
1003 | MRI->replaceRegWith(FromReg: DefR, ToReg: NewR); |
1004 | B->erase(I); |
1005 | } |
1006 | } |
1007 | |
1008 | void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, |
1009 | MachineBasicBlock *SuccB) { |
1010 | LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " |
1011 | << PrintMB(SuccB) << "\n" ); |
1012 | bool TermOk = hasUncondBranch(B: SuccB); |
1013 | eliminatePhis(B: SuccB); |
1014 | HII->removeBranch(MBB&: *PredB); |
1015 | PredB->removeSuccessor(Succ: SuccB); |
1016 | PredB->splice(Where: PredB->end(), Other: SuccB, From: SuccB->begin(), To: SuccB->end()); |
1017 | PredB->transferSuccessorsAndUpdatePHIs(FromMBB: SuccB); |
1018 | MachineBasicBlock *OldLayoutSuccessor = SuccB->getNextNode(); |
1019 | removeBlock(B: SuccB); |
1020 | if (!TermOk) |
1021 | PredB->updateTerminator(PreviousLayoutSuccessor: OldLayoutSuccessor); |
1022 | } |
1023 | |
1024 | void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { |
1025 | MachineBasicBlock *OldLayoutSuccessor = FP.SplitB->getNextNode(); |
1026 | if (FP.TrueB) |
1027 | removeBlock(B: FP.TrueB); |
1028 | if (FP.FalseB) |
1029 | removeBlock(B: FP.FalseB); |
1030 | |
1031 | FP.SplitB->updateTerminator(PreviousLayoutSuccessor: OldLayoutSuccessor); |
1032 | if (FP.SplitB->succ_size() != 1) |
1033 | return; |
1034 | |
1035 | MachineBasicBlock *SB = *FP.SplitB->succ_begin(); |
1036 | if (SB->pred_size() != 1) |
1037 | return; |
1038 | |
1039 | // By now, the split block has only one successor (SB), and SB has only |
1040 | // one predecessor. We can try to merge them. We will need to update ter- |
1041 | // minators in FP.Split+SB, and that requires working analyzeBranch, which |
1042 | // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends |
1043 | // with an unconditional branch, we won't need to touch the terminators. |
1044 | if (!hasEHLabel(B: SB) || hasUncondBranch(B: SB)) |
1045 | mergeBlocks(PredB: FP.SplitB, SuccB: SB); |
1046 | } |
1047 | |
1048 | bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { |
1049 | if (skipFunction(F: MF.getFunction())) |
1050 | return false; |
1051 | |
1052 | auto &ST = MF.getSubtarget<HexagonSubtarget>(); |
1053 | HII = ST.getInstrInfo(); |
1054 | TRI = ST.getRegisterInfo(); |
1055 | MFN = &MF; |
1056 | MRI = &MF.getRegInfo(); |
1057 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1058 | MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
1059 | MBPI = EnableHexagonBP |
1060 | ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() |
1061 | : nullptr; |
1062 | |
1063 | Deleted.clear(); |
1064 | bool Changed = false; |
1065 | |
1066 | for (MachineLoop *L : *MLI) |
1067 | Changed |= visitLoop(L); |
1068 | Changed |= visitLoop(L: nullptr); |
1069 | |
1070 | return Changed; |
1071 | } |
1072 | |
1073 | //===----------------------------------------------------------------------===// |
1074 | // Public Constructor Functions |
1075 | //===----------------------------------------------------------------------===// |
1076 | FunctionPass *llvm::createHexagonEarlyIfConversion() { |
1077 | return new HexagonEarlyIfConversion(); |
1078 | } |
1079 | |