1 | //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | |
10 | #include "HexagonFrameLowering.h" |
11 | #include "HexagonBlockRanges.h" |
12 | #include "HexagonInstrInfo.h" |
13 | #include "HexagonMachineFunctionInfo.h" |
14 | #include "HexagonRegisterInfo.h" |
15 | #include "HexagonSubtarget.h" |
16 | #include "HexagonTargetMachine.h" |
17 | #include "MCTargetDesc/HexagonBaseInfo.h" |
18 | #include "llvm/ADT/BitVector.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/PostOrderIterator.h" |
21 | #include "llvm/ADT/SetVector.h" |
22 | #include "llvm/ADT/SmallSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/CodeGen/LivePhysRegs.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineDominators.h" |
27 | #include "llvm/CodeGen/MachineFrameInfo.h" |
28 | #include "llvm/CodeGen/MachineFunction.h" |
29 | #include "llvm/CodeGen/MachineFunctionPass.h" |
30 | #include "llvm/CodeGen/MachineInstr.h" |
31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
32 | #include "llvm/CodeGen/MachineMemOperand.h" |
33 | #include "llvm/CodeGen/MachineModuleInfo.h" |
34 | #include "llvm/CodeGen/MachineOperand.h" |
35 | #include "llvm/CodeGen/MachinePostDominators.h" |
36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
37 | #include "llvm/CodeGen/PseudoSourceValue.h" |
38 | #include "llvm/CodeGen/RegisterScavenging.h" |
39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
40 | #include "llvm/IR/Attributes.h" |
41 | #include "llvm/IR/DebugLoc.h" |
42 | #include "llvm/IR/Function.h" |
43 | #include "llvm/MC/MCDwarf.h" |
44 | #include "llvm/MC/MCRegisterInfo.h" |
45 | #include "llvm/Pass.h" |
46 | #include "llvm/Support/CodeGen.h" |
47 | #include "llvm/Support/CommandLine.h" |
48 | #include "llvm/Support/Compiler.h" |
49 | #include "llvm/Support/Debug.h" |
50 | #include "llvm/Support/ErrorHandling.h" |
51 | #include "llvm/Support/MathExtras.h" |
52 | #include "llvm/Support/raw_ostream.h" |
53 | #include "llvm/Target/TargetMachine.h" |
54 | #include "llvm/Target/TargetOptions.h" |
55 | #include <algorithm> |
56 | #include <cassert> |
57 | #include <cstdint> |
58 | #include <iterator> |
59 | #include <limits> |
60 | #include <map> |
61 | #include <optional> |
62 | #include <utility> |
63 | #include <vector> |
64 | |
65 | #define DEBUG_TYPE "hexagon-pei" |
66 | |
67 | // Hexagon stack frame layout as defined by the ABI: |
68 | // |
69 | // Incoming arguments |
70 | // passed via stack |
71 | // | |
72 | // | |
73 | // SP during function's FP during function's | |
74 | // +-- runtime (top of stack) runtime (bottom) --+ | |
75 | // | | | |
76 | // --++---------------------+------------------+-----------------++-+------- |
77 | // | parameter area for | variable-size | fixed-size |LR| arg |
78 | // | called functions | local objects | local objects |FP| |
79 | // --+----------------------+------------------+-----------------+--+------- |
80 | // <- size known -> <- size unknown -> <- size known -> |
81 | // |
82 | // Low address High address |
83 | // |
84 | // <--- stack growth |
85 | // |
86 | // |
87 | // - In any circumstances, the outgoing function arguments are always accessi- |
88 | // ble using the SP, and the incoming arguments are accessible using the FP. |
89 | // - If the local objects are not aligned, they can always be accessed using |
90 | // the FP. |
91 | // - If there are no variable-sized objects, the local objects can always be |
92 | // accessed using the SP, regardless whether they are aligned or not. (The |
93 | // alignment padding will be at the bottom of the stack (highest address), |
94 | // and so the offset with respect to the SP will be known at the compile- |
95 | // -time.) |
96 | // |
97 | // The only complication occurs if there are both, local aligned objects, and |
98 | // dynamically allocated (variable-sized) objects. The alignment pad will be |
99 | // placed between the FP and the local objects, thus preventing the use of the |
100 | // FP to access the local objects. At the same time, the variable-sized objects |
101 | // will be between the SP and the local objects, thus introducing an unknown |
102 | // distance from the SP to the locals. |
103 | // |
104 | // To avoid this problem, a new register is created that holds the aligned |
105 | // address of the bottom of the stack, referred in the sources as AP (aligned |
106 | // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad |
107 | // that aligns AP to the required boundary (a maximum of the alignments of |
108 | // all stack objects, fixed- and variable-sized). All local objects[1] will |
109 | // then use AP as the base pointer. |
110 | // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get |
111 | // their name from being allocated at fixed locations on the stack, relative |
112 | // to the FP. In the presence of dynamic allocation and local alignment, such |
113 | // objects can only be accessed through the FP. |
114 | // |
115 | // Illustration of the AP: |
116 | // FP --+ |
117 | // | |
118 | // ---------------+---------------------+-----+-----------------------++-+-- |
119 | // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| |
120 | // stack frame | (aligned) | | (CSR, spills, etc.) |FP| |
121 | // ---------------+---------------------+-----+-----------------+-----+--+-- |
122 | // |<-- Multiple of the -->| |
123 | // stack alignment +-- AP |
124 | // |
125 | // The AP is set up at the beginning of the function. Since it is not a dedi- |
126 | // cated (reserved) register, it needs to be kept live throughout the function |
127 | // to be available as the base register for local object accesses. |
128 | // Normally, an address of a stack objects is obtained by a pseudo-instruction |
129 | // PS_fi. To access local objects with the AP register present, a different |
130 | // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra |
131 | // argument compared to PS_fi: the first input register is the AP register. |
132 | // This keeps the register live between its definition and its uses. |
133 | |
134 | // The AP register is originally set up using pseudo-instruction PS_aligna: |
135 | // AP = PS_aligna A |
136 | // where |
137 | // A - required stack alignment |
138 | // The alignment value must be the maximum of all alignments required by |
139 | // any stack object. |
140 | |
141 | // The dynamic allocation uses a pseudo-instruction PS_alloca: |
142 | // Rd = PS_alloca Rs, A |
143 | // where |
144 | // Rd - address of the allocated space |
145 | // Rs - minimum size (the actual allocated can be larger to accommodate |
146 | // alignment) |
147 | // A - required alignment |
148 | |
149 | using namespace llvm; |
150 | |
151 | static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret" , |
152 | cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target" )); |
153 | |
154 | static cl::opt<unsigned> |
155 | NumberScavengerSlots("number-scavenger-slots" , cl::Hidden, |
156 | cl::desc("Set the number of scavenger slots" ), |
157 | cl::init(Val: 2)); |
158 | |
159 | static cl::opt<int> |
160 | SpillFuncThreshold("spill-func-threshold" , cl::Hidden, |
161 | cl::desc("Specify O2(not Os) spill func threshold" ), |
162 | cl::init(Val: 6)); |
163 | |
164 | static cl::opt<int> |
165 | SpillFuncThresholdOs("spill-func-threshold-Os" , cl::Hidden, |
166 | cl::desc("Specify Os spill func threshold" ), |
167 | cl::init(Val: 1)); |
168 | |
169 | static cl::opt<bool> EnableStackOVFSanitizer( |
170 | "enable-stackovf-sanitizer" , cl::Hidden, |
171 | cl::desc("Enable runtime checks for stack overflow." ), cl::init(Val: false)); |
172 | |
173 | static cl::opt<bool> |
174 | EnableShrinkWrapping("hexagon-shrink-frame" , cl::init(Val: true), cl::Hidden, |
175 | cl::desc("Enable stack frame shrink wrapping" )); |
176 | |
177 | static cl::opt<unsigned> |
178 | ShrinkLimit("shrink-frame-limit" , |
179 | cl::init(Val: std::numeric_limits<unsigned>::max()), cl::Hidden, |
180 | cl::desc("Max count of stack frame shrink-wraps" )); |
181 | |
182 | static cl::opt<bool> |
183 | EnableSaveRestoreLong("enable-save-restore-long" , cl::Hidden, |
184 | cl::desc("Enable long calls for save-restore stubs." ), |
185 | cl::init(Val: false)); |
186 | |
187 | static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim" , cl::init(Val: true), |
188 | cl::Hidden, cl::desc("Refrain from using FP whenever possible" )); |
189 | |
190 | static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill" , cl::Hidden, |
191 | cl::init(Val: true), cl::desc("Optimize spill slots" )); |
192 | |
193 | #ifndef NDEBUG |
194 | static cl::opt<unsigned> SpillOptMax("spill-opt-max" , cl::Hidden, |
195 | cl::init(std::numeric_limits<unsigned>::max())); |
196 | static unsigned SpillOptCount = 0; |
197 | #endif |
198 | |
199 | namespace llvm { |
200 | |
201 | void initializeHexagonCallFrameInformationPass(PassRegistry&); |
202 | FunctionPass *createHexagonCallFrameInformation(); |
203 | |
204 | } // end namespace llvm |
205 | |
206 | namespace { |
207 | |
208 | class HexagonCallFrameInformation : public MachineFunctionPass { |
209 | public: |
210 | static char ID; |
211 | |
212 | HexagonCallFrameInformation() : MachineFunctionPass(ID) { |
213 | PassRegistry &PR = *PassRegistry::getPassRegistry(); |
214 | initializeHexagonCallFrameInformationPass(PR); |
215 | } |
216 | |
217 | bool runOnMachineFunction(MachineFunction &MF) override; |
218 | |
219 | MachineFunctionProperties getRequiredProperties() const override { |
220 | return MachineFunctionProperties().set( |
221 | MachineFunctionProperties::Property::NoVRegs); |
222 | } |
223 | }; |
224 | |
225 | char HexagonCallFrameInformation::ID = 0; |
226 | |
227 | } // end anonymous namespace |
228 | |
229 | bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { |
230 | auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); |
231 | bool NeedCFI = MF.needsFrameMoves(); |
232 | |
233 | if (!NeedCFI) |
234 | return false; |
235 | HFI.insertCFIInstructions(MF); |
236 | return true; |
237 | } |
238 | |
239 | INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi" , |
240 | "Hexagon call frame information" , false, false) |
241 | |
242 | FunctionPass *llvm::createHexagonCallFrameInformation() { |
243 | return new HexagonCallFrameInformation(); |
244 | } |
245 | |
246 | /// Map a register pair Reg to the subregister that has the greater "number", |
247 | /// i.e. D3 (aka R7:6) will be mapped to R7, etc. |
248 | static Register getMax32BitSubRegister(Register Reg, |
249 | const TargetRegisterInfo &TRI, |
250 | bool hireg = true) { |
251 | if (Reg < Hexagon::D0 || Reg > Hexagon::D15) |
252 | return Reg; |
253 | |
254 | Register RegNo = 0; |
255 | for (MCPhysReg SubReg : TRI.subregs(Reg)) { |
256 | if (hireg) { |
257 | if (SubReg > RegNo) |
258 | RegNo = SubReg; |
259 | } else { |
260 | if (!RegNo || SubReg < RegNo) |
261 | RegNo = SubReg; |
262 | } |
263 | } |
264 | return RegNo; |
265 | } |
266 | |
267 | /// Returns the callee saved register with the largest id in the vector. |
268 | static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, |
269 | const TargetRegisterInfo &TRI) { |
270 | static_assert(Hexagon::R1 > 0, |
271 | "Assume physical registers are encoded as positive integers" ); |
272 | if (CSI.empty()) |
273 | return 0; |
274 | |
275 | Register Max = getMax32BitSubRegister(Reg: CSI[0].getReg(), TRI); |
276 | for (unsigned I = 1, E = CSI.size(); I < E; ++I) { |
277 | Register Reg = getMax32BitSubRegister(Reg: CSI[I].getReg(), TRI); |
278 | if (Reg > Max) |
279 | Max = Reg; |
280 | } |
281 | return Max; |
282 | } |
283 | |
284 | /// Checks if the basic block contains any instruction that needs a stack |
285 | /// frame to be already in place. |
286 | static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, |
287 | const HexagonRegisterInfo &HRI) { |
288 | for (const MachineInstr &MI : MBB) { |
289 | if (MI.isCall()) |
290 | return true; |
291 | unsigned Opc = MI.getOpcode(); |
292 | switch (Opc) { |
293 | case Hexagon::PS_alloca: |
294 | case Hexagon::PS_aligna: |
295 | return true; |
296 | default: |
297 | break; |
298 | } |
299 | // Check individual operands. |
300 | for (const MachineOperand &MO : MI.operands()) { |
301 | // While the presence of a frame index does not prove that a stack |
302 | // frame will be required, all frame indexes should be within alloc- |
303 | // frame/deallocframe. Otherwise, the code that translates a frame |
304 | // index into an offset would have to be aware of the placement of |
305 | // the frame creation/destruction instructions. |
306 | if (MO.isFI()) |
307 | return true; |
308 | if (MO.isReg()) { |
309 | Register R = MO.getReg(); |
310 | // Debug instructions may refer to $noreg. |
311 | if (!R) |
312 | continue; |
313 | // Virtual registers will need scavenging, which then may require |
314 | // a stack slot. |
315 | if (R.isVirtual()) |
316 | return true; |
317 | for (MCPhysReg S : HRI.subregs_inclusive(Reg: R)) |
318 | if (CSR[S]) |
319 | return true; |
320 | continue; |
321 | } |
322 | if (MO.isRegMask()) { |
323 | // A regmask would normally have all callee-saved registers marked |
324 | // as preserved, so this check would not be needed, but in case of |
325 | // ever having other regmasks (for other calling conventions), |
326 | // make sure they would be processed correctly. |
327 | const uint32_t *BM = MO.getRegMask(); |
328 | for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(Prev: x)) { |
329 | unsigned R = x; |
330 | // If this regmask does not preserve a CSR, a frame will be needed. |
331 | if (!(BM[R/32] & (1u << (R%32)))) |
332 | return true; |
333 | } |
334 | } |
335 | } |
336 | } |
337 | return false; |
338 | } |
339 | |
340 | /// Returns true if MBB has a machine instructions that indicates a tail call |
341 | /// in the block. |
342 | static bool hasTailCall(const MachineBasicBlock &MBB) { |
343 | MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); |
344 | if (I == MBB.end()) |
345 | return false; |
346 | unsigned RetOpc = I->getOpcode(); |
347 | return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; |
348 | } |
349 | |
350 | /// Returns true if MBB contains an instruction that returns. |
351 | static bool hasReturn(const MachineBasicBlock &MBB) { |
352 | for (const MachineInstr &MI : MBB.terminators()) |
353 | if (MI.isReturn()) |
354 | return true; |
355 | return false; |
356 | } |
357 | |
358 | /// Returns the "return" instruction from this block, or nullptr if there |
359 | /// isn't any. |
360 | static MachineInstr *getReturn(MachineBasicBlock &MBB) { |
361 | for (auto &I : MBB) |
362 | if (I.isReturn()) |
363 | return &I; |
364 | return nullptr; |
365 | } |
366 | |
367 | static bool isRestoreCall(unsigned Opc) { |
368 | switch (Opc) { |
369 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: |
370 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: |
371 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: |
372 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: |
373 | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: |
374 | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: |
375 | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: |
376 | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: |
377 | return true; |
378 | } |
379 | return false; |
380 | } |
381 | |
382 | static inline bool isOptNone(const MachineFunction &MF) { |
383 | return MF.getFunction().hasOptNone() || |
384 | MF.getTarget().getOptLevel() == CodeGenOptLevel::None; |
385 | } |
386 | |
387 | static inline bool isOptSize(const MachineFunction &MF) { |
388 | const Function &F = MF.getFunction(); |
389 | return F.hasOptSize() && !F.hasMinSize(); |
390 | } |
391 | |
392 | static inline bool isMinSize(const MachineFunction &MF) { |
393 | return MF.getFunction().hasMinSize(); |
394 | } |
395 | |
396 | /// Implements shrink-wrapping of the stack frame. By default, stack frame |
397 | /// is created in the function entry block, and is cleaned up in every block |
398 | /// that returns. This function finds alternate blocks: one for the frame |
399 | /// setup (prolog) and one for the cleanup (epilog). |
400 | void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, |
401 | MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { |
402 | static unsigned ShrinkCounter = 0; |
403 | |
404 | if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && |
405 | MF.getFunction().isVarArg()) |
406 | return; |
407 | if (ShrinkLimit.getPosition()) { |
408 | if (ShrinkCounter >= ShrinkLimit) |
409 | return; |
410 | ShrinkCounter++; |
411 | } |
412 | |
413 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
414 | |
415 | MachineDominatorTree MDT; |
416 | MDT.calculate(F&: MF); |
417 | MachinePostDominatorTree MPT; |
418 | MPT.recalculate(Func&: MF); |
419 | |
420 | using UnsignedMap = DenseMap<unsigned, unsigned>; |
421 | using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; |
422 | |
423 | UnsignedMap RPO; |
424 | RPOTType RPOT(&MF); |
425 | unsigned RPON = 0; |
426 | for (auto &I : RPOT) |
427 | RPO[I->getNumber()] = RPON++; |
428 | |
429 | // Don't process functions that have loops, at least for now. Placement |
430 | // of prolog and epilog must take loop structure into account. For simpli- |
431 | // city don't do it right now. |
432 | for (auto &I : MF) { |
433 | unsigned BN = RPO[I.getNumber()]; |
434 | for (MachineBasicBlock *Succ : I.successors()) |
435 | // If found a back-edge, return. |
436 | if (RPO[Succ->getNumber()] <= BN) |
437 | return; |
438 | } |
439 | |
440 | // Collect the set of blocks that need a stack frame to execute. Scan |
441 | // each block for uses/defs of callee-saved registers, calls, etc. |
442 | SmallVector<MachineBasicBlock*,16> SFBlocks; |
443 | BitVector CSR(Hexagon::NUM_TARGET_REGS); |
444 | for (const MCPhysReg *P = HRI.getCalleeSavedRegs(MF: &MF); *P; ++P) |
445 | for (MCPhysReg S : HRI.subregs_inclusive(Reg: *P)) |
446 | CSR[S] = true; |
447 | |
448 | for (auto &I : MF) |
449 | if (needsStackFrame(MBB: I, CSR, HRI)) |
450 | SFBlocks.push_back(Elt: &I); |
451 | |
452 | LLVM_DEBUG({ |
453 | dbgs() << "Blocks needing SF: {" ; |
454 | for (auto &B : SFBlocks) |
455 | dbgs() << " " << printMBBReference(*B); |
456 | dbgs() << " }\n" ; |
457 | }); |
458 | // No frame needed? |
459 | if (SFBlocks.empty()) |
460 | return; |
461 | |
462 | // Pick a common dominator and a common post-dominator. |
463 | MachineBasicBlock *DomB = SFBlocks[0]; |
464 | for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { |
465 | DomB = MDT.findNearestCommonDominator(A: DomB, B: SFBlocks[i]); |
466 | if (!DomB) |
467 | break; |
468 | } |
469 | MachineBasicBlock *PDomB = SFBlocks[0]; |
470 | for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { |
471 | PDomB = MPT.findNearestCommonDominator(A: PDomB, B: SFBlocks[i]); |
472 | if (!PDomB) |
473 | break; |
474 | } |
475 | LLVM_DEBUG({ |
476 | dbgs() << "Computed dom block: " ; |
477 | if (DomB) |
478 | dbgs() << printMBBReference(*DomB); |
479 | else |
480 | dbgs() << "<null>" ; |
481 | dbgs() << ", computed pdom block: " ; |
482 | if (PDomB) |
483 | dbgs() << printMBBReference(*PDomB); |
484 | else |
485 | dbgs() << "<null>" ; |
486 | dbgs() << "\n" ; |
487 | }); |
488 | if (!DomB || !PDomB) |
489 | return; |
490 | |
491 | // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. |
492 | if (!MDT.dominates(A: DomB, B: PDomB)) { |
493 | LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n" ); |
494 | return; |
495 | } |
496 | if (!MPT.dominates(A: PDomB, B: DomB)) { |
497 | LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n" ); |
498 | return; |
499 | } |
500 | |
501 | // Finally, everything seems right. |
502 | PrologB = DomB; |
503 | EpilogB = PDomB; |
504 | } |
505 | |
506 | /// Perform most of the PEI work here: |
507 | /// - saving/restoring of the callee-saved registers, |
508 | /// - stack frame creation and destruction. |
509 | /// Normally, this work is distributed among various functions, but doing it |
510 | /// in one place allows shrink-wrapping of the stack frame. |
511 | void HexagonFrameLowering::emitPrologue(MachineFunction &MF, |
512 | MachineBasicBlock &MBB) const { |
513 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
514 | |
515 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
516 | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
517 | |
518 | MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; |
519 | if (EnableShrinkWrapping) |
520 | findShrunkPrologEpilog(MF, PrologB, EpilogB); |
521 | |
522 | bool PrologueStubs = false; |
523 | insertCSRSpillsInBlock(MBB&: *PrologB, CSI, HRI, PrologueStubs); |
524 | insertPrologueInBlock(MBB&: *PrologB, PrologueStubs); |
525 | updateEntryPaths(MF, SaveB&: *PrologB); |
526 | |
527 | if (EpilogB) { |
528 | insertCSRRestoresInBlock(MBB&: *EpilogB, CSI, HRI); |
529 | insertEpilogueInBlock(MBB&: *EpilogB); |
530 | } else { |
531 | for (auto &B : MF) |
532 | if (B.isReturnBlock()) |
533 | insertCSRRestoresInBlock(MBB&: B, CSI, HRI); |
534 | |
535 | for (auto &B : MF) |
536 | if (B.isReturnBlock()) |
537 | insertEpilogueInBlock(MBB&: B); |
538 | |
539 | for (auto &B : MF) { |
540 | if (B.empty()) |
541 | continue; |
542 | MachineInstr *RetI = getReturn(MBB&: B); |
543 | if (!RetI || isRestoreCall(Opc: RetI->getOpcode())) |
544 | continue; |
545 | for (auto &R : CSI) |
546 | RetI->addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: false, isImp: true)); |
547 | } |
548 | } |
549 | |
550 | if (EpilogB) { |
551 | // If there is an epilog block, it may not have a return instruction. |
552 | // In such case, we need to add the callee-saved registers as live-ins |
553 | // in all blocks on all paths from the epilog to any return block. |
554 | unsigned MaxBN = MF.getNumBlockIDs(); |
555 | BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); |
556 | updateExitPaths(MBB&: *EpilogB, RestoreB&: *EpilogB, DoneT, DoneF, Path); |
557 | } |
558 | } |
559 | |
560 | /// Returns true if the target can safely skip saving callee-saved registers |
561 | /// for noreturn nounwind functions. |
562 | bool HexagonFrameLowering::enableCalleeSaveSkip( |
563 | const MachineFunction &MF) const { |
564 | const auto &F = MF.getFunction(); |
565 | assert(F.hasFnAttribute(Attribute::NoReturn) && |
566 | F.getFunction().hasFnAttribute(Attribute::NoUnwind) && |
567 | !F.getFunction().hasFnAttribute(Attribute::UWTable)); |
568 | (void)F; |
569 | |
570 | // No need to save callee saved registers if the function does not return. |
571 | return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); |
572 | } |
573 | |
574 | // Helper function used to determine when to eliminate the stack frame for |
575 | // functions marked as noreturn and when the noreturn-stack-elim options are |
576 | // specified. When both these conditions are true, then a FP may not be needed |
577 | // if the function makes a call. It is very similar to enableCalleeSaveSkip, |
578 | // but it used to check if the allocframe can be eliminated as well. |
579 | static bool enableAllocFrameElim(const MachineFunction &MF) { |
580 | const auto &F = MF.getFunction(); |
581 | const auto &MFI = MF.getFrameInfo(); |
582 | const auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
583 | assert(!MFI.hasVarSizedObjects() && |
584 | !HST.getRegisterInfo()->hasStackRealignment(MF)); |
585 | return F.hasFnAttribute(Kind: Attribute::NoReturn) && |
586 | F.hasFnAttribute(Kind: Attribute::NoUnwind) && |
587 | !F.hasFnAttribute(Kind: Attribute::UWTable) && HST.noreturnStackElim() && |
588 | MFI.getStackSize() == 0; |
589 | } |
590 | |
591 | void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, |
592 | bool PrologueStubs) const { |
593 | MachineFunction &MF = *MBB.getParent(); |
594 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
595 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
596 | auto &HII = *HST.getInstrInfo(); |
597 | auto &HRI = *HST.getRegisterInfo(); |
598 | |
599 | Align MaxAlign = std::max(a: MFI.getMaxAlign(), b: getStackAlign()); |
600 | |
601 | // Calculate the total stack frame size. |
602 | // Get the number of bytes to allocate from the FrameInfo. |
603 | unsigned FrameSize = MFI.getStackSize(); |
604 | // Round up the max call frame size to the max alignment on the stack. |
605 | unsigned MaxCFA = alignTo(Size: MFI.getMaxCallFrameSize(), A: MaxAlign); |
606 | MFI.setMaxCallFrameSize(MaxCFA); |
607 | |
608 | FrameSize = MaxCFA + alignTo(Size: FrameSize, A: MaxAlign); |
609 | MFI.setStackSize(FrameSize); |
610 | |
611 | bool AlignStack = (MaxAlign > getStackAlign()); |
612 | |
613 | // Get the number of bytes to allocate from the FrameInfo. |
614 | unsigned NumBytes = MFI.getStackSize(); |
615 | Register SP = HRI.getStackRegister(); |
616 | unsigned MaxCF = MFI.getMaxCallFrameSize(); |
617 | MachineBasicBlock::iterator InsertPt = MBB.begin(); |
618 | |
619 | SmallVector<MachineInstr *, 4> AdjustRegs; |
620 | for (auto &MBB : MF) |
621 | for (auto &MI : MBB) |
622 | if (MI.getOpcode() == Hexagon::PS_alloca) |
623 | AdjustRegs.push_back(Elt: &MI); |
624 | |
625 | for (auto *MI : AdjustRegs) { |
626 | assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca" ); |
627 | expandAlloca(AI: MI, TII: HII, SP, CF: MaxCF); |
628 | MI->eraseFromParent(); |
629 | } |
630 | |
631 | DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt); |
632 | |
633 | if (MF.getFunction().isVarArg() && |
634 | MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { |
635 | // Calculate the size of register saved area. |
636 | int NumVarArgRegs = 6 - FirstVarArgSavedReg; |
637 | int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) |
638 | ? NumVarArgRegs * 4 |
639 | : NumVarArgRegs * 4 + 4; |
640 | if (RegisterSavedAreaSizePlusPadding > 0) { |
641 | // Decrement the stack pointer by size of register saved area plus |
642 | // padding if any. |
643 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP) |
644 | .addReg(RegNo: SP) |
645 | .addImm(Val: -RegisterSavedAreaSizePlusPadding) |
646 | .setMIFlag(MachineInstr::FrameSetup); |
647 | |
648 | int NumBytes = 0; |
649 | // Copy all the named arguments below register saved area. |
650 | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
651 | for (int i = HMFI.getFirstNamedArgFrameIndex(), |
652 | e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { |
653 | uint64_t ObjSize = MFI.getObjectSize(ObjectIdx: i); |
654 | Align ObjAlign = MFI.getObjectAlign(ObjectIdx: i); |
655 | |
656 | // Determine the kind of load/store that should be used. |
657 | unsigned LDOpc, STOpc; |
658 | uint64_t OpcodeChecker = ObjAlign.value(); |
659 | |
660 | // Handle cases where alignment of an object is > its size. |
661 | if (ObjAlign > ObjSize) { |
662 | if (ObjSize <= 1) |
663 | OpcodeChecker = 1; |
664 | else if (ObjSize <= 2) |
665 | OpcodeChecker = 2; |
666 | else if (ObjSize <= 4) |
667 | OpcodeChecker = 4; |
668 | else if (ObjSize > 4) |
669 | OpcodeChecker = 8; |
670 | } |
671 | |
672 | switch (OpcodeChecker) { |
673 | case 1: |
674 | LDOpc = Hexagon::L2_loadrb_io; |
675 | STOpc = Hexagon::S2_storerb_io; |
676 | break; |
677 | case 2: |
678 | LDOpc = Hexagon::L2_loadrh_io; |
679 | STOpc = Hexagon::S2_storerh_io; |
680 | break; |
681 | case 4: |
682 | LDOpc = Hexagon::L2_loadri_io; |
683 | STOpc = Hexagon::S2_storeri_io; |
684 | break; |
685 | case 8: |
686 | default: |
687 | LDOpc = Hexagon::L2_loadrd_io; |
688 | STOpc = Hexagon::S2_storerd_io; |
689 | break; |
690 | } |
691 | |
692 | Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 |
693 | : Hexagon::R6; |
694 | int LoadStoreCount = ObjSize / OpcodeChecker; |
695 | |
696 | if (ObjSize % OpcodeChecker) |
697 | ++LoadStoreCount; |
698 | |
699 | // Get the start location of the load. NumBytes is basically the |
700 | // offset from the stack pointer of previous function, which would be |
701 | // the caller in this case, as this function has variable argument |
702 | // list. |
703 | if (NumBytes != 0) |
704 | NumBytes = alignTo(Size: NumBytes, A: ObjAlign); |
705 | |
706 | int Count = 0; |
707 | while (Count < LoadStoreCount) { |
708 | // Load the value of the named argument on stack. |
709 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: LDOpc), DestReg: RegUsed) |
710 | .addReg(RegNo: SP) |
711 | .addImm(Val: RegisterSavedAreaSizePlusPadding + |
712 | ObjAlign.value() * Count + NumBytes) |
713 | .setMIFlag(MachineInstr::FrameSetup); |
714 | |
715 | // Store it below the register saved area plus padding. |
716 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: STOpc)) |
717 | .addReg(RegNo: SP) |
718 | .addImm(Val: ObjAlign.value() * Count + NumBytes) |
719 | .addReg(RegNo: RegUsed) |
720 | .setMIFlag(MachineInstr::FrameSetup); |
721 | |
722 | Count++; |
723 | } |
724 | NumBytes += MFI.getObjectSize(ObjectIdx: i); |
725 | } |
726 | |
727 | // Make NumBytes 8 byte aligned |
728 | NumBytes = alignTo(Value: NumBytes, Align: 8); |
729 | |
730 | // If the number of registers having variable arguments is odd, |
731 | // leave 4 bytes of padding to get to the location where first |
732 | // variable argument which was passed through register was copied. |
733 | NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; |
734 | |
735 | for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { |
736 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_storeri_io)) |
737 | .addReg(RegNo: SP) |
738 | .addImm(Val: NumBytes + 4 * i) |
739 | .addReg(RegNo: Hexagon::R0 + j) |
740 | .setMIFlag(MachineInstr::FrameSetup); |
741 | } |
742 | } |
743 | } |
744 | |
745 | if (hasFP(MF)) { |
746 | insertAllocframe(MBB, InsertPt, NumBytes); |
747 | if (AlignStack) { |
748 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: SP) |
749 | .addReg(RegNo: SP) |
750 | .addImm(Val: -int64_t(MaxAlign.value())); |
751 | } |
752 | // If the stack-checking is enabled, and we spilled the callee-saved |
753 | // registers inline (i.e. did not use a spill function), then call |
754 | // the stack checker directly. |
755 | if (EnableStackOVFSanitizer && !PrologueStubs) |
756 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::PS_call_stk)) |
757 | .addExternalSymbol(FnName: "__runtime_stack_check" ); |
758 | } else if (NumBytes > 0) { |
759 | assert(alignTo(NumBytes, 8) == NumBytes); |
760 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP) |
761 | .addReg(RegNo: SP) |
762 | .addImm(Val: -int(NumBytes)); |
763 | } |
764 | } |
765 | |
766 | void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { |
767 | MachineFunction &MF = *MBB.getParent(); |
768 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
769 | auto &HII = *HST.getInstrInfo(); |
770 | auto &HRI = *HST.getRegisterInfo(); |
771 | Register SP = HRI.getStackRegister(); |
772 | |
773 | MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); |
774 | DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt); |
775 | |
776 | if (!hasFP(MF)) { |
777 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
778 | unsigned NumBytes = MFI.getStackSize(); |
779 | if (MF.getFunction().isVarArg() && |
780 | MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { |
781 | // On Hexagon Linux, deallocate the stack for the register saved area. |
782 | int NumVarArgRegs = 6 - FirstVarArgSavedReg; |
783 | int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? |
784 | (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); |
785 | NumBytes += RegisterSavedAreaSizePlusPadding; |
786 | } |
787 | if (NumBytes) { |
788 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP) |
789 | .addReg(RegNo: SP) |
790 | .addImm(Val: NumBytes); |
791 | } |
792 | return; |
793 | } |
794 | |
795 | MachineInstr *RetI = getReturn(MBB); |
796 | unsigned RetOpc = RetI ? RetI->getOpcode() : 0; |
797 | |
798 | // Handle EH_RETURN. |
799 | if (RetOpc == Hexagon::EH_RETURN_JMPR) { |
800 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe)) |
801 | .addDef(RegNo: Hexagon::D15) |
802 | .addReg(RegNo: Hexagon::R30); |
803 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_add), DestReg: SP) |
804 | .addReg(RegNo: SP) |
805 | .addReg(RegNo: Hexagon::R28); |
806 | return; |
807 | } |
808 | |
809 | // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- |
810 | // frame instruction if we encounter it. |
811 | if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || |
812 | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || |
813 | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || |
814 | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { |
815 | MachineBasicBlock::iterator It = RetI; |
816 | ++It; |
817 | // Delete all instructions after the RESTORE (except labels). |
818 | while (It != MBB.end()) { |
819 | if (!It->isLabel()) |
820 | It = MBB.erase(I: It); |
821 | else |
822 | ++It; |
823 | } |
824 | return; |
825 | } |
826 | |
827 | // It is possible that the restoring code is a call to a library function. |
828 | // All of the restore* functions include "deallocframe", so we need to make |
829 | // sure that we don't add an extra one. |
830 | bool NeedsDeallocframe = true; |
831 | if (!MBB.empty() && InsertPt != MBB.begin()) { |
832 | MachineBasicBlock::iterator PrevIt = std::prev(x: InsertPt); |
833 | unsigned COpc = PrevIt->getOpcode(); |
834 | if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || |
835 | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || |
836 | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || |
837 | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || |
838 | COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) |
839 | NeedsDeallocframe = false; |
840 | } |
841 | |
842 | if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || |
843 | !MF.getFunction().isVarArg()) { |
844 | if (!NeedsDeallocframe) |
845 | return; |
846 | // If the returning instruction is PS_jmpret, replace it with |
847 | // dealloc_return, otherwise just add deallocframe. The function |
848 | // could be returning via a tail call. |
849 | if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { |
850 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe)) |
851 | .addDef(RegNo: Hexagon::D15) |
852 | .addReg(RegNo: Hexagon::R30); |
853 | return; |
854 | } |
855 | unsigned NewOpc = Hexagon::L4_return; |
856 | MachineInstr *NewI = BuildMI(BB&: MBB, I: RetI, MIMD: dl, MCID: HII.get(Opcode: NewOpc)) |
857 | .addDef(RegNo: Hexagon::D15) |
858 | .addReg(RegNo: Hexagon::R30); |
859 | // Transfer the function live-out registers. |
860 | NewI->copyImplicitOps(MF, MI: *RetI); |
861 | MBB.erase(I: RetI); |
862 | } else { |
863 | // L2_deallocframe instruction after it. |
864 | // Calculate the size of register saved area. |
865 | int NumVarArgRegs = 6 - FirstVarArgSavedReg; |
866 | int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? |
867 | (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); |
868 | |
869 | MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); |
870 | MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() |
871 | : std::prev(x: Term); |
872 | if (I == MBB.end() || |
873 | (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && |
874 | I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && |
875 | I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && |
876 | I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) |
877 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe)) |
878 | .addDef(RegNo: Hexagon::D15) |
879 | .addReg(RegNo: Hexagon::R30); |
880 | if (RegisterSavedAreaSizePlusPadding != 0) |
881 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP) |
882 | .addReg(RegNo: SP) |
883 | .addImm(Val: RegisterSavedAreaSizePlusPadding); |
884 | } |
885 | } |
886 | |
887 | void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, |
888 | MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { |
889 | MachineFunction &MF = *MBB.getParent(); |
890 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
891 | auto &HII = *HST.getInstrInfo(); |
892 | auto &HRI = *HST.getRegisterInfo(); |
893 | |
894 | // Check for overflow. |
895 | // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? |
896 | const unsigned int ALLOCFRAME_MAX = 16384; |
897 | |
898 | // Create a dummy memory operand to avoid allocframe from being treated as |
899 | // a volatile memory reference. |
900 | auto *MMO = MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getStack(MF, Offset: 0), |
901 | F: MachineMemOperand::MOStore, Size: 4, BaseAlignment: Align(4)); |
902 | |
903 | DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt); |
904 | Register SP = HRI.getStackRegister(); |
905 | |
906 | if (NumBytes >= ALLOCFRAME_MAX) { |
907 | // Emit allocframe(#0). |
908 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_allocframe)) |
909 | .addDef(RegNo: SP) |
910 | .addReg(RegNo: SP) |
911 | .addImm(Val: 0) |
912 | .addMemOperand(MMO); |
913 | |
914 | // Subtract the size from the stack pointer. |
915 | Register SP = HRI.getStackRegister(); |
916 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP) |
917 | .addReg(RegNo: SP) |
918 | .addImm(Val: -int(NumBytes)); |
919 | } else { |
920 | BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_allocframe)) |
921 | .addDef(RegNo: SP) |
922 | .addReg(RegNo: SP) |
923 | .addImm(Val: NumBytes) |
924 | .addMemOperand(MMO); |
925 | } |
926 | } |
927 | |
928 | void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, |
929 | MachineBasicBlock &SaveB) const { |
930 | SetVector<unsigned> Worklist; |
931 | |
932 | MachineBasicBlock &EntryB = MF.front(); |
933 | Worklist.insert(X: EntryB.getNumber()); |
934 | |
935 | unsigned SaveN = SaveB.getNumber(); |
936 | auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); |
937 | |
938 | for (unsigned i = 0; i < Worklist.size(); ++i) { |
939 | unsigned BN = Worklist[i]; |
940 | MachineBasicBlock &MBB = *MF.getBlockNumbered(N: BN); |
941 | for (auto &R : CSI) |
942 | if (!MBB.isLiveIn(Reg: R.getReg())) |
943 | MBB.addLiveIn(PhysReg: R.getReg()); |
944 | if (BN != SaveN) |
945 | for (auto &SB : MBB.successors()) |
946 | Worklist.insert(X: SB->getNumber()); |
947 | } |
948 | } |
949 | |
950 | bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, |
951 | MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, |
952 | BitVector &Path) const { |
953 | assert(MBB.getNumber() >= 0); |
954 | unsigned BN = MBB.getNumber(); |
955 | if (Path[BN] || DoneF[BN]) |
956 | return false; |
957 | if (DoneT[BN]) |
958 | return true; |
959 | |
960 | auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); |
961 | |
962 | Path[BN] = true; |
963 | bool ReachedExit = false; |
964 | for (auto &SB : MBB.successors()) |
965 | ReachedExit |= updateExitPaths(MBB&: *SB, RestoreB, DoneT, DoneF, Path); |
966 | |
967 | if (!MBB.empty() && MBB.back().isReturn()) { |
968 | // Add implicit uses of all callee-saved registers to the reached |
969 | // return instructions. This is to prevent the anti-dependency breaker |
970 | // from renaming these registers. |
971 | MachineInstr &RetI = MBB.back(); |
972 | if (!isRestoreCall(Opc: RetI.getOpcode())) |
973 | for (auto &R : CSI) |
974 | RetI.addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: false, isImp: true)); |
975 | ReachedExit = true; |
976 | } |
977 | |
978 | // We don't want to add unnecessary live-ins to the restore block: since |
979 | // the callee-saved registers are being defined in it, the entry of the |
980 | // restore block cannot be on the path from the definitions to any exit. |
981 | if (ReachedExit && &MBB != &RestoreB) { |
982 | for (auto &R : CSI) |
983 | if (!MBB.isLiveIn(Reg: R.getReg())) |
984 | MBB.addLiveIn(PhysReg: R.getReg()); |
985 | DoneT[BN] = true; |
986 | } |
987 | if (!ReachedExit) |
988 | DoneF[BN] = true; |
989 | |
990 | Path[BN] = false; |
991 | return ReachedExit; |
992 | } |
993 | |
994 | static std::optional<MachineBasicBlock::iterator> |
995 | findCFILocation(MachineBasicBlock &B) { |
996 | // The CFI instructions need to be inserted right after allocframe. |
997 | // An exception to this is a situation where allocframe is bundled |
998 | // with a call: then the CFI instructions need to be inserted before |
999 | // the packet with the allocframe+call (in case the call throws an |
1000 | // exception). |
1001 | auto End = B.instr_end(); |
1002 | |
1003 | for (MachineInstr &I : B) { |
1004 | MachineBasicBlock::iterator It = I.getIterator(); |
1005 | if (!I.isBundle()) { |
1006 | if (I.getOpcode() == Hexagon::S2_allocframe) |
1007 | return std::next(x: It); |
1008 | continue; |
1009 | } |
1010 | // I is a bundle. |
1011 | bool HasCall = false, HasAllocFrame = false; |
1012 | auto T = It.getInstrIterator(); |
1013 | while (++T != End && T->isBundled()) { |
1014 | if (T->getOpcode() == Hexagon::S2_allocframe) |
1015 | HasAllocFrame = true; |
1016 | else if (T->isCall()) |
1017 | HasCall = true; |
1018 | } |
1019 | if (HasAllocFrame) |
1020 | return HasCall ? It : std::next(x: It); |
1021 | } |
1022 | return std::nullopt; |
1023 | } |
1024 | |
1025 | void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { |
1026 | for (auto &B : MF) |
1027 | if (auto At = findCFILocation(B)) |
1028 | insertCFIInstructionsAt(MBB&: B, At: *At); |
1029 | } |
1030 | |
1031 | void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, |
1032 | MachineBasicBlock::iterator At) const { |
1033 | MachineFunction &MF = *MBB.getParent(); |
1034 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
1035 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
1036 | auto &HII = *HST.getInstrInfo(); |
1037 | auto &HRI = *HST.getRegisterInfo(); |
1038 | |
1039 | // If CFI instructions have debug information attached, something goes |
1040 | // wrong with the final assembly generation: the prolog_end is placed |
1041 | // in a wrong location. |
1042 | DebugLoc DL; |
1043 | const MCInstrDesc &CFID = HII.get(Opcode: TargetOpcode::CFI_INSTRUCTION); |
1044 | |
1045 | MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); |
1046 | bool HasFP = hasFP(MF); |
1047 | |
1048 | if (HasFP) { |
1049 | unsigned DwFPReg = HRI.getDwarfRegNum(RegNum: HRI.getFrameRegister(), isEH: true); |
1050 | unsigned DwRAReg = HRI.getDwarfRegNum(RegNum: HRI.getRARegister(), isEH: true); |
1051 | |
1052 | // Define CFA via an offset from the value of FP. |
1053 | // |
1054 | // -8 -4 0 (SP) |
1055 | // --+----+----+--------------------- |
1056 | // | FP | LR | increasing addresses --> |
1057 | // --+----+----+--------------------- |
1058 | // | +-- Old SP (before allocframe) |
1059 | // +-- New FP (after allocframe) |
1060 | // |
1061 | // MCCFIInstruction::cfiDefCfa adds the offset from the register. |
1062 | // MCCFIInstruction::createOffset takes the offset without sign change. |
1063 | auto DefCfa = MCCFIInstruction::cfiDefCfa(L: FrameLabel, Register: DwFPReg, Offset: 8); |
1064 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1065 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: DefCfa)); |
1066 | // R31 (return addr) = CFA - 4 |
1067 | auto OffR31 = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwRAReg, Offset: -4); |
1068 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1069 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffR31)); |
1070 | // R30 (frame ptr) = CFA - 8 |
1071 | auto OffR30 = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwFPReg, Offset: -8); |
1072 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1073 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffR30)); |
1074 | } |
1075 | |
1076 | static Register RegsToMove[] = { |
1077 | Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, |
1078 | Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, |
1079 | Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, |
1080 | Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, |
1081 | Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, |
1082 | Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, |
1083 | Hexagon::NoRegister |
1084 | }; |
1085 | |
1086 | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
1087 | |
1088 | for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { |
1089 | Register Reg = RegsToMove[i]; |
1090 | auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { |
1091 | return C.getReg() == Reg; |
1092 | }; |
1093 | auto F = find_if(Range: CSI, P: IfR); |
1094 | if (F == CSI.end()) |
1095 | continue; |
1096 | |
1097 | int64_t Offset; |
1098 | if (HasFP) { |
1099 | // If the function has a frame pointer (i.e. has an allocframe), |
1100 | // then the CFA has been defined in terms of FP. Any offsets in |
1101 | // the following CFI instructions have to be defined relative |
1102 | // to FP, which points to the bottom of the stack frame. |
1103 | // The function getFrameIndexReference can still choose to use SP |
1104 | // for the offset calculation, so we cannot simply call it here. |
1105 | // Instead, get the offset (relative to the FP) directly. |
1106 | Offset = MFI.getObjectOffset(ObjectIdx: F->getFrameIdx()); |
1107 | } else { |
1108 | Register FrameReg; |
1109 | Offset = |
1110 | getFrameIndexReference(MF, FI: F->getFrameIdx(), FrameReg).getFixed(); |
1111 | } |
1112 | // Subtract 8 to make room for R30 and R31, which are added above. |
1113 | Offset -= 8; |
1114 | |
1115 | if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { |
1116 | unsigned DwarfReg = HRI.getDwarfRegNum(RegNum: Reg, isEH: true); |
1117 | auto OffReg = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwarfReg, |
1118 | Offset); |
1119 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1120 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffReg)); |
1121 | } else { |
1122 | // Split the double regs into subregs, and generate appropriate |
1123 | // cfi_offsets. |
1124 | // The only reason, we are split double regs is, llvm-mc does not |
1125 | // understand paired registers for cfi_offset. |
1126 | // Eg .cfi_offset r1:0, -64 |
1127 | |
1128 | Register HiReg = HRI.getSubReg(Reg, Idx: Hexagon::isub_hi); |
1129 | Register LoReg = HRI.getSubReg(Reg, Idx: Hexagon::isub_lo); |
1130 | unsigned HiDwarfReg = HRI.getDwarfRegNum(RegNum: HiReg, isEH: true); |
1131 | unsigned LoDwarfReg = HRI.getDwarfRegNum(RegNum: LoReg, isEH: true); |
1132 | auto OffHi = MCCFIInstruction::createOffset(L: FrameLabel, Register: HiDwarfReg, |
1133 | Offset: Offset+4); |
1134 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1135 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffHi)); |
1136 | auto OffLo = MCCFIInstruction::createOffset(L: FrameLabel, Register: LoDwarfReg, |
1137 | Offset); |
1138 | BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID) |
1139 | .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffLo)); |
1140 | } |
1141 | } |
1142 | } |
1143 | |
1144 | bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { |
1145 | if (MF.getFunction().hasFnAttribute(Kind: Attribute::Naked)) |
1146 | return false; |
1147 | |
1148 | auto &MFI = MF.getFrameInfo(); |
1149 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1150 | bool = HRI.hasStackRealignment(MF); |
1151 | bool HasAlloca = MFI.hasVarSizedObjects(); |
1152 | |
1153 | // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think |
1154 | // that this shouldn't be required, but doing so now because gcc does and |
1155 | // gdb can't break at the start of the function without it. Will remove if |
1156 | // this turns out to be a gdb bug. |
1157 | // |
1158 | if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None) |
1159 | return true; |
1160 | |
1161 | // By default we want to use SP (since it's always there). FP requires |
1162 | // some setup (i.e. ALLOCFRAME). |
1163 | // Both, alloca and stack alignment modify the stack pointer by an |
1164 | // undetermined value, so we need to save it at the entry to the function |
1165 | // (i.e. use allocframe). |
1166 | if (HasAlloca || HasExtraAlign) |
1167 | return true; |
1168 | |
1169 | if (MFI.getStackSize() > 0) { |
1170 | // If FP-elimination is disabled, we have to use FP at this point. |
1171 | const TargetMachine &TM = MF.getTarget(); |
1172 | if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) |
1173 | return true; |
1174 | if (EnableStackOVFSanitizer) |
1175 | return true; |
1176 | } |
1177 | |
1178 | const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
1179 | if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) |
1180 | return true; |
1181 | |
1182 | return false; |
1183 | } |
1184 | |
1185 | enum SpillKind { |
1186 | SK_ToMem, |
1187 | SK_FromMem, |
1188 | SK_FromMemTailcall |
1189 | }; |
1190 | |
1191 | static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType, |
1192 | bool Stkchk = false) { |
1193 | const char * V4SpillToMemoryFunctions[] = { |
1194 | "__save_r16_through_r17" , |
1195 | "__save_r16_through_r19" , |
1196 | "__save_r16_through_r21" , |
1197 | "__save_r16_through_r23" , |
1198 | "__save_r16_through_r25" , |
1199 | "__save_r16_through_r27" }; |
1200 | |
1201 | const char * V4SpillToMemoryStkchkFunctions[] = { |
1202 | "__save_r16_through_r17_stkchk" , |
1203 | "__save_r16_through_r19_stkchk" , |
1204 | "__save_r16_through_r21_stkchk" , |
1205 | "__save_r16_through_r23_stkchk" , |
1206 | "__save_r16_through_r25_stkchk" , |
1207 | "__save_r16_through_r27_stkchk" }; |
1208 | |
1209 | const char * V4SpillFromMemoryFunctions[] = { |
1210 | "__restore_r16_through_r17_and_deallocframe" , |
1211 | "__restore_r16_through_r19_and_deallocframe" , |
1212 | "__restore_r16_through_r21_and_deallocframe" , |
1213 | "__restore_r16_through_r23_and_deallocframe" , |
1214 | "__restore_r16_through_r25_and_deallocframe" , |
1215 | "__restore_r16_through_r27_and_deallocframe" }; |
1216 | |
1217 | const char * V4SpillFromMemoryTailcallFunctions[] = { |
1218 | "__restore_r16_through_r17_and_deallocframe_before_tailcall" , |
1219 | "__restore_r16_through_r19_and_deallocframe_before_tailcall" , |
1220 | "__restore_r16_through_r21_and_deallocframe_before_tailcall" , |
1221 | "__restore_r16_through_r23_and_deallocframe_before_tailcall" , |
1222 | "__restore_r16_through_r25_and_deallocframe_before_tailcall" , |
1223 | "__restore_r16_through_r27_and_deallocframe_before_tailcall" |
1224 | }; |
1225 | |
1226 | const char **SpillFunc = nullptr; |
1227 | |
1228 | switch(SpillType) { |
1229 | case SK_ToMem: |
1230 | SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions |
1231 | : V4SpillToMemoryFunctions; |
1232 | break; |
1233 | case SK_FromMem: |
1234 | SpillFunc = V4SpillFromMemoryFunctions; |
1235 | break; |
1236 | case SK_FromMemTailcall: |
1237 | SpillFunc = V4SpillFromMemoryTailcallFunctions; |
1238 | break; |
1239 | } |
1240 | assert(SpillFunc && "Unknown spill kind" ); |
1241 | |
1242 | // Spill all callee-saved registers up to the highest register used. |
1243 | switch (MaxReg) { |
1244 | case Hexagon::R17: |
1245 | return SpillFunc[0]; |
1246 | case Hexagon::R19: |
1247 | return SpillFunc[1]; |
1248 | case Hexagon::R21: |
1249 | return SpillFunc[2]; |
1250 | case Hexagon::R23: |
1251 | return SpillFunc[3]; |
1252 | case Hexagon::R25: |
1253 | return SpillFunc[4]; |
1254 | case Hexagon::R27: |
1255 | return SpillFunc[5]; |
1256 | default: |
1257 | llvm_unreachable("Unhandled maximum callee save register" ); |
1258 | } |
1259 | return nullptr; |
1260 | } |
1261 | |
1262 | StackOffset |
1263 | HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, |
1264 | Register &FrameReg) const { |
1265 | auto &MFI = MF.getFrameInfo(); |
1266 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1267 | |
1268 | int Offset = MFI.getObjectOffset(ObjectIdx: FI); |
1269 | bool HasAlloca = MFI.hasVarSizedObjects(); |
1270 | bool = HRI.hasStackRealignment(MF); |
1271 | bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None; |
1272 | |
1273 | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
1274 | unsigned FrameSize = MFI.getStackSize(); |
1275 | Register SP = HRI.getStackRegister(); |
1276 | Register FP = HRI.getFrameRegister(); |
1277 | Register AP = HMFI.getStackAlignBaseReg(); |
1278 | // It may happen that AP will be absent even HasAlloca && HasExtraAlign |
1279 | // is true. HasExtraAlign may be set because of vector spills, without |
1280 | // aligned locals or aligned outgoing function arguments. Since vector |
1281 | // spills will ultimately be "unaligned", it is safe to use FP as the |
1282 | // base register. |
1283 | // In fact, in such a scenario the stack is actually not required to be |
1284 | // aligned, although it may end up being aligned anyway, since this |
1285 | // particular case is not easily detectable. The alignment will be |
1286 | // unnecessary, but not incorrect. |
1287 | // Unfortunately there is no quick way to verify that the above is |
1288 | // indeed the case (and that it's not a result of an error), so just |
1289 | // assume that missing AP will be replaced by FP. |
1290 | // (A better fix would be to rematerialize AP from FP and always align |
1291 | // vector spills.) |
1292 | bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). |
1293 | // Use FP at -O0, except when there are objects with extra alignment. |
1294 | // That additional alignment requirement may cause a pad to be inserted, |
1295 | // which will make it impossible to use FP to access objects located |
1296 | // past the pad. |
1297 | if (NoOpt && !HasExtraAlign) |
1298 | UseFP = true; |
1299 | if (MFI.isFixedObjectIndex(ObjectIdx: FI) || MFI.isObjectPreAllocated(ObjectIdx: FI)) { |
1300 | // Fixed and preallocated objects will be located before any padding |
1301 | // so FP must be used to access them. |
1302 | UseFP |= (HasAlloca || HasExtraAlign); |
1303 | } else { |
1304 | if (HasAlloca) { |
1305 | if (HasExtraAlign) |
1306 | UseAP = true; |
1307 | else |
1308 | UseFP = true; |
1309 | } |
1310 | } |
1311 | |
1312 | // If FP was picked, then there had better be FP. |
1313 | bool HasFP = hasFP(MF); |
1314 | assert((HasFP || !UseFP) && "This function must have frame pointer" ); |
1315 | |
1316 | // Having FP implies allocframe. Allocframe will store extra 8 bytes: |
1317 | // FP/LR. If the base register is used to access an object across these |
1318 | // 8 bytes, then the offset will need to be adjusted by 8. |
1319 | // |
1320 | // After allocframe: |
1321 | // HexagonISelLowering adds 8 to ---+ |
1322 | // the offsets of all stack-based | |
1323 | // arguments (*) | |
1324 | // | |
1325 | // getObjectOffset < 0 0 8 getObjectOffset >= 8 |
1326 | // ------------------------+-----+------------------------> increasing |
1327 | // <local objects> |FP/LR| <input arguments> addresses |
1328 | // -----------------+------+-----+------------------------> |
1329 | // | | |
1330 | // SP/AP point --+ +-- FP points here (**) |
1331 | // somewhere on |
1332 | // this side of FP/LR |
1333 | // |
1334 | // (*) See LowerFormalArguments. The FP/LR is assumed to be present. |
1335 | // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. |
1336 | |
1337 | // The lowering assumes that FP/LR is present, and so the offsets of |
1338 | // the formal arguments start at 8. If FP/LR is not there we need to |
1339 | // reduce the offset by 8. |
1340 | if (Offset > 0 && !HasFP) |
1341 | Offset -= 8; |
1342 | |
1343 | if (UseFP) |
1344 | FrameReg = FP; |
1345 | else if (UseAP) |
1346 | FrameReg = AP; |
1347 | else |
1348 | FrameReg = SP; |
1349 | |
1350 | // Calculate the actual offset in the instruction. If there is no FP |
1351 | // (in other words, no allocframe), then SP will not be adjusted (i.e. |
1352 | // there will be no SP -= FrameSize), so the frame size should not be |
1353 | // added to the calculated offset. |
1354 | int RealOffset = Offset; |
1355 | if (!UseFP && !UseAP) |
1356 | RealOffset = FrameSize+Offset; |
1357 | return StackOffset::getFixed(Fixed: RealOffset); |
1358 | } |
1359 | |
1360 | bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, |
1361 | const CSIVect &CSI, const HexagonRegisterInfo &HRI, |
1362 | bool &PrologueStubs) const { |
1363 | if (CSI.empty()) |
1364 | return true; |
1365 | |
1366 | MachineBasicBlock::iterator MI = MBB.begin(); |
1367 | PrologueStubs = false; |
1368 | MachineFunction &MF = *MBB.getParent(); |
1369 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
1370 | auto &HII = *HST.getInstrInfo(); |
1371 | |
1372 | if (useSpillFunction(MF, CSI)) { |
1373 | PrologueStubs = true; |
1374 | Register MaxReg = getMaxCalleeSavedReg(CSI, TRI: HRI); |
1375 | bool StkOvrFlowEnabled = EnableStackOVFSanitizer; |
1376 | const char *SpillFun = getSpillFunctionFor(MaxReg, SpillType: SK_ToMem, |
1377 | Stkchk: StkOvrFlowEnabled); |
1378 | auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); |
1379 | bool IsPIC = HTM.isPositionIndependent(); |
1380 | bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; |
1381 | |
1382 | // Call spill function. |
1383 | DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); |
1384 | unsigned SpillOpc; |
1385 | if (StkOvrFlowEnabled) { |
1386 | if (LongCalls) |
1387 | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC |
1388 | : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; |
1389 | else |
1390 | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC |
1391 | : Hexagon::SAVE_REGISTERS_CALL_V4STK; |
1392 | } else { |
1393 | if (LongCalls) |
1394 | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC |
1395 | : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; |
1396 | else |
1397 | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC |
1398 | : Hexagon::SAVE_REGISTERS_CALL_V4; |
1399 | } |
1400 | |
1401 | MachineInstr *SaveRegsCall = |
1402 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: HII.get(Opcode: SpillOpc)) |
1403 | .addExternalSymbol(FnName: SpillFun); |
1404 | |
1405 | // Add callee-saved registers as use. |
1406 | addCalleeSaveRegistersAsImpOperand(MI: SaveRegsCall, CSI, IsDef: false, IsKill: true); |
1407 | // Add live in registers. |
1408 | for (const CalleeSavedInfo &I : CSI) |
1409 | MBB.addLiveIn(PhysReg: I.getReg()); |
1410 | return true; |
1411 | } |
1412 | |
1413 | for (const CalleeSavedInfo &I : CSI) { |
1414 | Register Reg = I.getReg(); |
1415 | // Add live in registers. We treat eh_return callee saved register r0 - r3 |
1416 | // specially. They are not really callee saved registers as they are not |
1417 | // supposed to be killed. |
1418 | bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); |
1419 | int FI = I.getFrameIdx(); |
1420 | const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); |
1421 | HII.storeRegToStackSlot(MBB, MBBI: MI, SrcReg: Reg, isKill: IsKill, FrameIndex: FI, RC, TRI: &HRI, VReg: Register()); |
1422 | if (IsKill) |
1423 | MBB.addLiveIn(PhysReg: Reg); |
1424 | } |
1425 | return true; |
1426 | } |
1427 | |
1428 | bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, |
1429 | const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { |
1430 | if (CSI.empty()) |
1431 | return false; |
1432 | |
1433 | MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); |
1434 | MachineFunction &MF = *MBB.getParent(); |
1435 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
1436 | auto &HII = *HST.getInstrInfo(); |
1437 | |
1438 | if (useRestoreFunction(MF, CSI)) { |
1439 | bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); |
1440 | Register MaxR = getMaxCalleeSavedReg(CSI, TRI: HRI); |
1441 | SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; |
1442 | const char *RestoreFn = getSpillFunctionFor(MaxReg: MaxR, SpillType: Kind); |
1443 | auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); |
1444 | bool IsPIC = HTM.isPositionIndependent(); |
1445 | bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; |
1446 | |
1447 | // Call spill function. |
1448 | DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() |
1449 | : MBB.findDebugLoc(MBBI: MBB.end()); |
1450 | MachineInstr *DeallocCall = nullptr; |
1451 | |
1452 | if (HasTC) { |
1453 | unsigned RetOpc; |
1454 | if (LongCalls) |
1455 | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC |
1456 | : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; |
1457 | else |
1458 | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC |
1459 | : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; |
1460 | DeallocCall = BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: HII.get(Opcode: RetOpc)) |
1461 | .addExternalSymbol(FnName: RestoreFn); |
1462 | } else { |
1463 | // The block has a return. |
1464 | MachineBasicBlock::iterator It = MBB.getFirstTerminator(); |
1465 | assert(It->isReturn() && std::next(It) == MBB.end()); |
1466 | unsigned RetOpc; |
1467 | if (LongCalls) |
1468 | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC |
1469 | : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; |
1470 | else |
1471 | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC |
1472 | : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; |
1473 | DeallocCall = BuildMI(BB&: MBB, I: It, MIMD: DL, MCID: HII.get(Opcode: RetOpc)) |
1474 | .addExternalSymbol(FnName: RestoreFn); |
1475 | // Transfer the function live-out registers. |
1476 | DeallocCall->copyImplicitOps(MF, MI: *It); |
1477 | } |
1478 | addCalleeSaveRegistersAsImpOperand(MI: DeallocCall, CSI, IsDef: true, IsKill: false); |
1479 | return true; |
1480 | } |
1481 | |
1482 | for (const CalleeSavedInfo &I : CSI) { |
1483 | Register Reg = I.getReg(); |
1484 | const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); |
1485 | int FI = I.getFrameIdx(); |
1486 | HII.loadRegFromStackSlot(MBB, MBBI: MI, DestReg: Reg, FrameIndex: FI, RC, TRI: &HRI, VReg: Register()); |
1487 | } |
1488 | |
1489 | return true; |
1490 | } |
1491 | |
1492 | MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( |
1493 | MachineFunction &MF, MachineBasicBlock &MBB, |
1494 | MachineBasicBlock::iterator I) const { |
1495 | MachineInstr &MI = *I; |
1496 | unsigned Opc = MI.getOpcode(); |
1497 | (void)Opc; // Silence compiler warning. |
1498 | assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && |
1499 | "Cannot handle this call frame pseudo instruction" ); |
1500 | return MBB.erase(I); |
1501 | } |
1502 | |
1503 | void HexagonFrameLowering::processFunctionBeforeFrameFinalized( |
1504 | MachineFunction &MF, RegScavenger *RS) const { |
1505 | // If this function has uses aligned stack and also has variable sized stack |
1506 | // objects, then we need to map all spill slots to fixed positions, so that |
1507 | // they can be accessed through FP. Otherwise they would have to be accessed |
1508 | // via AP, which may not be available at the particular place in the program. |
1509 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
1510 | bool HasAlloca = MFI.hasVarSizedObjects(); |
1511 | bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); |
1512 | |
1513 | if (!HasAlloca || !NeedsAlign) |
1514 | return; |
1515 | |
1516 | // Set the physical aligned-stack base address register. |
1517 | Register AP = 0; |
1518 | if (const MachineInstr *AI = getAlignaInstr(MF)) |
1519 | AP = AI->getOperand(i: 0).getReg(); |
1520 | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); |
1521 | assert(!AP.isValid() || AP.isPhysical()); |
1522 | HMFI.setStackAlignBaseReg(AP); |
1523 | } |
1524 | |
1525 | /// Returns true if there are no caller-saved registers available in class RC. |
1526 | static bool needToReserveScavengingSpillSlots(MachineFunction &MF, |
1527 | const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { |
1528 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
1529 | |
1530 | auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool { |
1531 | for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) |
1532 | if (MRI.isPhysRegUsed(PhysReg: *AI)) |
1533 | return true; |
1534 | return false; |
1535 | }; |
1536 | |
1537 | // Check for an unused caller-saved register. Callee-saved registers |
1538 | // have become pristine by now. |
1539 | for (const MCPhysReg *P = HRI.getCallerSavedRegs(MF: &MF, RC); *P; ++P) |
1540 | if (!IsUsed(*P)) |
1541 | return false; |
1542 | |
1543 | // All caller-saved registers are used. |
1544 | return true; |
1545 | } |
1546 | |
1547 | #ifndef NDEBUG |
1548 | static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { |
1549 | dbgs() << '{'; |
1550 | for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { |
1551 | Register R = x; |
1552 | dbgs() << ' ' << printReg(R, &TRI); |
1553 | } |
1554 | dbgs() << " }" ; |
1555 | } |
1556 | #endif |
1557 | |
1558 | bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, |
1559 | const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { |
1560 | LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); |
1561 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
1562 | BitVector SRegs(Hexagon::NUM_TARGET_REGS); |
1563 | |
1564 | // Generate a set of unique, callee-saved registers (SRegs), where each |
1565 | // register in the set is maximal in terms of sub-/super-register relation, |
1566 | // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. |
1567 | |
1568 | // (1) For each callee-saved register, add that register and all of its |
1569 | // sub-registers to SRegs. |
1570 | LLVM_DEBUG(dbgs() << "Initial CS registers: {" ); |
1571 | for (const CalleeSavedInfo &I : CSI) { |
1572 | Register R = I.getReg(); |
1573 | LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); |
1574 | for (MCPhysReg SR : TRI->subregs_inclusive(Reg: R)) |
1575 | SRegs[SR] = true; |
1576 | } |
1577 | LLVM_DEBUG(dbgs() << " }\n" ); |
1578 | LLVM_DEBUG(dbgs() << "SRegs.1: " ; dump_registers(SRegs, *TRI); |
1579 | dbgs() << "\n" ); |
1580 | |
1581 | // (2) For each reserved register, remove that register and all of its |
1582 | // sub- and super-registers from SRegs. |
1583 | BitVector Reserved = TRI->getReservedRegs(MF); |
1584 | // Unreserve the stack align register: it is reserved for this function |
1585 | // only, it still needs to be saved/restored. |
1586 | Register AP = |
1587 | MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg(); |
1588 | if (AP.isValid()) { |
1589 | Reserved[AP] = false; |
1590 | // Unreserve super-regs if no other subregisters are reserved. |
1591 | for (MCPhysReg SP : TRI->superregs(Reg: AP)) { |
1592 | bool HasResSub = false; |
1593 | for (MCPhysReg SB : TRI->subregs(Reg: SP)) { |
1594 | if (!Reserved[SB]) |
1595 | continue; |
1596 | HasResSub = true; |
1597 | break; |
1598 | } |
1599 | if (!HasResSub) |
1600 | Reserved[SP] = false; |
1601 | } |
1602 | } |
1603 | |
1604 | for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(Prev: x)) { |
1605 | Register R = x; |
1606 | for (MCPhysReg SR : TRI->superregs_inclusive(Reg: R)) |
1607 | SRegs[SR] = false; |
1608 | } |
1609 | LLVM_DEBUG(dbgs() << "Res: " ; dump_registers(Reserved, *TRI); |
1610 | dbgs() << "\n" ); |
1611 | LLVM_DEBUG(dbgs() << "SRegs.2: " ; dump_registers(SRegs, *TRI); |
1612 | dbgs() << "\n" ); |
1613 | |
1614 | // (3) Collect all registers that have at least one sub-register in SRegs, |
1615 | // and also have no sub-registers that are reserved. These will be the can- |
1616 | // didates for saving as a whole instead of their individual sub-registers. |
1617 | // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) |
1618 | BitVector TmpSup(Hexagon::NUM_TARGET_REGS); |
1619 | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) { |
1620 | Register R = x; |
1621 | for (MCPhysReg SR : TRI->superregs(Reg: R)) |
1622 | TmpSup[SR] = true; |
1623 | } |
1624 | for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(Prev: x)) { |
1625 | Register R = x; |
1626 | for (MCPhysReg SR : TRI->subregs_inclusive(Reg: R)) { |
1627 | if (!Reserved[SR]) |
1628 | continue; |
1629 | TmpSup[R] = false; |
1630 | break; |
1631 | } |
1632 | } |
1633 | LLVM_DEBUG(dbgs() << "TmpSup: " ; dump_registers(TmpSup, *TRI); |
1634 | dbgs() << "\n" ); |
1635 | |
1636 | // (4) Include all super-registers found in (3) into SRegs. |
1637 | SRegs |= TmpSup; |
1638 | LLVM_DEBUG(dbgs() << "SRegs.4: " ; dump_registers(SRegs, *TRI); |
1639 | dbgs() << "\n" ); |
1640 | |
1641 | // (5) For each register R in SRegs, if any super-register of R is in SRegs, |
1642 | // remove R from SRegs. |
1643 | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) { |
1644 | Register R = x; |
1645 | for (MCPhysReg SR : TRI->superregs(Reg: R)) { |
1646 | if (!SRegs[SR]) |
1647 | continue; |
1648 | SRegs[R] = false; |
1649 | break; |
1650 | } |
1651 | } |
1652 | LLVM_DEBUG(dbgs() << "SRegs.5: " ; dump_registers(SRegs, *TRI); |
1653 | dbgs() << "\n" ); |
1654 | |
1655 | // Now, for each register that has a fixed stack slot, create the stack |
1656 | // object for it. |
1657 | CSI.clear(); |
1658 | |
1659 | using SpillSlot = TargetFrameLowering::SpillSlot; |
1660 | |
1661 | unsigned NumFixed; |
1662 | int64_t MinOffset = 0; // CS offsets are negative. |
1663 | const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumEntries&: NumFixed); |
1664 | for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { |
1665 | if (!SRegs[S->Reg]) |
1666 | continue; |
1667 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg: S->Reg); |
1668 | int FI = MFI.CreateFixedSpillStackObject(Size: TRI->getSpillSize(RC: *RC), SPOffset: S->Offset); |
1669 | MinOffset = std::min(a: MinOffset, b: S->Offset); |
1670 | CSI.push_back(x: CalleeSavedInfo(S->Reg, FI)); |
1671 | SRegs[S->Reg] = false; |
1672 | } |
1673 | |
1674 | // There can be some registers that don't have fixed slots. For example, |
1675 | // we need to store R0-R3 in functions with exception handling. For each |
1676 | // such register, create a non-fixed stack object. |
1677 | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) { |
1678 | Register R = x; |
1679 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg: R); |
1680 | unsigned Size = TRI->getSpillSize(RC: *RC); |
1681 | int64_t Off = MinOffset - Size; |
1682 | Align Alignment = std::min(a: TRI->getSpillAlign(RC: *RC), b: getStackAlign()); |
1683 | Off &= -Alignment.value(); |
1684 | int FI = MFI.CreateFixedSpillStackObject(Size, SPOffset: Off); |
1685 | MinOffset = std::min(a: MinOffset, b: Off); |
1686 | CSI.push_back(x: CalleeSavedInfo(R, FI)); |
1687 | SRegs[R] = false; |
1688 | } |
1689 | |
1690 | LLVM_DEBUG({ |
1691 | dbgs() << "CS information: {" ; |
1692 | for (const CalleeSavedInfo &I : CSI) { |
1693 | int FI = I.getFrameIdx(); |
1694 | int Off = MFI.getObjectOffset(FI); |
1695 | dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp" ; |
1696 | if (Off >= 0) |
1697 | dbgs() << '+'; |
1698 | dbgs() << Off; |
1699 | } |
1700 | dbgs() << " }\n" ; |
1701 | }); |
1702 | |
1703 | #ifndef NDEBUG |
1704 | // Verify that all registers were handled. |
1705 | bool MissedReg = false; |
1706 | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { |
1707 | Register R = x; |
1708 | dbgs() << printReg(R, TRI) << ' '; |
1709 | MissedReg = true; |
1710 | } |
1711 | if (MissedReg) |
1712 | llvm_unreachable("...there are unhandled callee-saved registers!" ); |
1713 | #endif |
1714 | |
1715 | return true; |
1716 | } |
1717 | |
1718 | bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, |
1719 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1720 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1721 | MachineInstr *MI = &*It; |
1722 | DebugLoc DL = MI->getDebugLoc(); |
1723 | Register DstR = MI->getOperand(i: 0).getReg(); |
1724 | Register SrcR = MI->getOperand(i: 1).getReg(); |
1725 | if (!Hexagon::ModRegsRegClass.contains(Reg: DstR) || |
1726 | !Hexagon::ModRegsRegClass.contains(Reg: SrcR)) |
1727 | return false; |
1728 | |
1729 | Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1730 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: TmpR).add(MO: MI->getOperand(i: 1)); |
1731 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: DstR) |
1732 | .addReg(RegNo: TmpR, flags: RegState::Kill); |
1733 | |
1734 | NewRegs.push_back(Elt: TmpR); |
1735 | B.erase(I: It); |
1736 | return true; |
1737 | } |
1738 | |
1739 | bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, |
1740 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1741 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1742 | MachineInstr *MI = &*It; |
1743 | if (!MI->getOperand(i: 0).isFI()) |
1744 | return false; |
1745 | |
1746 | DebugLoc DL = MI->getDebugLoc(); |
1747 | unsigned Opc = MI->getOpcode(); |
1748 | Register SrcR = MI->getOperand(i: 2).getReg(); |
1749 | bool IsKill = MI->getOperand(i: 2).isKill(); |
1750 | int FI = MI->getOperand(i: 0).getIndex(); |
1751 | |
1752 | // TmpR = C2_tfrpr SrcR if SrcR is a predicate register |
1753 | // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register |
1754 | Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1755 | unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr |
1756 | : Hexagon::A2_tfrcrr; |
1757 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TfrOpc), DestReg: TmpR) |
1758 | .addReg(RegNo: SrcR, flags: getKillRegState(B: IsKill)); |
1759 | |
1760 | // S2_storeri_io FI, 0, TmpR |
1761 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::S2_storeri_io)) |
1762 | .addFrameIndex(Idx: FI) |
1763 | .addImm(Val: 0) |
1764 | .addReg(RegNo: TmpR, flags: RegState::Kill) |
1765 | .cloneMemRefs(OtherMI: *MI); |
1766 | |
1767 | NewRegs.push_back(Elt: TmpR); |
1768 | B.erase(I: It); |
1769 | return true; |
1770 | } |
1771 | |
1772 | bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, |
1773 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1774 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1775 | MachineInstr *MI = &*It; |
1776 | if (!MI->getOperand(i: 1).isFI()) |
1777 | return false; |
1778 | |
1779 | DebugLoc DL = MI->getDebugLoc(); |
1780 | unsigned Opc = MI->getOpcode(); |
1781 | Register DstR = MI->getOperand(i: 0).getReg(); |
1782 | int FI = MI->getOperand(i: 1).getIndex(); |
1783 | |
1784 | // TmpR = L2_loadri_io FI, 0 |
1785 | Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1786 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::L2_loadri_io), DestReg: TmpR) |
1787 | .addFrameIndex(Idx: FI) |
1788 | .addImm(Val: 0) |
1789 | .cloneMemRefs(OtherMI: *MI); |
1790 | |
1791 | // DstR = C2_tfrrp TmpR if DstR is a predicate register |
1792 | // DstR = A2_tfrrcr TmpR if DstR is a modifier register |
1793 | unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp |
1794 | : Hexagon::A2_tfrrcr; |
1795 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TfrOpc), DestReg: DstR) |
1796 | .addReg(RegNo: TmpR, flags: RegState::Kill); |
1797 | |
1798 | NewRegs.push_back(Elt: TmpR); |
1799 | B.erase(I: It); |
1800 | return true; |
1801 | } |
1802 | |
1803 | bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, |
1804 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1805 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1806 | MachineInstr *MI = &*It; |
1807 | if (!MI->getOperand(i: 0).isFI()) |
1808 | return false; |
1809 | |
1810 | DebugLoc DL = MI->getDebugLoc(); |
1811 | Register SrcR = MI->getOperand(i: 2).getReg(); |
1812 | bool IsKill = MI->getOperand(i: 2).isKill(); |
1813 | int FI = MI->getOperand(i: 0).getIndex(); |
1814 | auto *RC = &Hexagon::HvxVRRegClass; |
1815 | |
1816 | // Insert transfer to general vector register. |
1817 | // TmpR0 = A2_tfrsi 0x01010101 |
1818 | // TmpR1 = V6_vandqrt Qx, TmpR0 |
1819 | // store FI, 0, TmpR1 |
1820 | Register TmpR0 = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1821 | Register TmpR1 = MRI.createVirtualRegister(RegClass: RC); |
1822 | |
1823 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: TmpR0) |
1824 | .addImm(Val: 0x01010101); |
1825 | |
1826 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::V6_vandqrt), DestReg: TmpR1) |
1827 | .addReg(RegNo: SrcR, flags: getKillRegState(B: IsKill)) |
1828 | .addReg(RegNo: TmpR0, flags: RegState::Kill); |
1829 | |
1830 | auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1831 | HII.storeRegToStackSlot(MBB&: B, MBBI: It, SrcReg: TmpR1, isKill: true, FrameIndex: FI, RC, TRI: HRI, VReg: Register()); |
1832 | expandStoreVec(B, It: std::prev(x: It), MRI, HII, NewRegs); |
1833 | |
1834 | NewRegs.push_back(Elt: TmpR0); |
1835 | NewRegs.push_back(Elt: TmpR1); |
1836 | B.erase(I: It); |
1837 | return true; |
1838 | } |
1839 | |
1840 | bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, |
1841 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1842 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1843 | MachineInstr *MI = &*It; |
1844 | if (!MI->getOperand(i: 1).isFI()) |
1845 | return false; |
1846 | |
1847 | DebugLoc DL = MI->getDebugLoc(); |
1848 | Register DstR = MI->getOperand(i: 0).getReg(); |
1849 | int FI = MI->getOperand(i: 1).getIndex(); |
1850 | auto *RC = &Hexagon::HvxVRRegClass; |
1851 | |
1852 | // TmpR0 = A2_tfrsi 0x01010101 |
1853 | // TmpR1 = load FI, 0 |
1854 | // DstR = V6_vandvrt TmpR1, TmpR0 |
1855 | Register TmpR0 = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1856 | Register TmpR1 = MRI.createVirtualRegister(RegClass: RC); |
1857 | |
1858 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: TmpR0) |
1859 | .addImm(Val: 0x01010101); |
1860 | MachineFunction &MF = *B.getParent(); |
1861 | auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1862 | HII.loadRegFromStackSlot(MBB&: B, MBBI: It, DestReg: TmpR1, FrameIndex: FI, RC, TRI: HRI, VReg: Register()); |
1863 | expandLoadVec(B, It: std::prev(x: It), MRI, HII, NewRegs); |
1864 | |
1865 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::V6_vandvrt), DestReg: DstR) |
1866 | .addReg(RegNo: TmpR1, flags: RegState::Kill) |
1867 | .addReg(RegNo: TmpR0, flags: RegState::Kill); |
1868 | |
1869 | NewRegs.push_back(Elt: TmpR0); |
1870 | NewRegs.push_back(Elt: TmpR1); |
1871 | B.erase(I: It); |
1872 | return true; |
1873 | } |
1874 | |
1875 | bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, |
1876 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1877 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1878 | MachineFunction &MF = *B.getParent(); |
1879 | auto &MFI = MF.getFrameInfo(); |
1880 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1881 | MachineInstr *MI = &*It; |
1882 | if (!MI->getOperand(i: 0).isFI()) |
1883 | return false; |
1884 | |
1885 | // It is possible that the double vector being stored is only partially |
1886 | // defined. From the point of view of the liveness tracking, it is ok to |
1887 | // store it as a whole, but if we break it up we may end up storing a |
1888 | // register that is entirely undefined. |
1889 | LivePhysRegs LPR(HRI); |
1890 | LPR.addLiveIns(MBB: B); |
1891 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; |
1892 | for (auto R = B.begin(); R != It; ++R) { |
1893 | Clobbers.clear(); |
1894 | LPR.stepForward(MI: *R, Clobbers); |
1895 | } |
1896 | |
1897 | DebugLoc DL = MI->getDebugLoc(); |
1898 | Register SrcR = MI->getOperand(i: 2).getReg(); |
1899 | Register SrcLo = HRI.getSubReg(Reg: SrcR, Idx: Hexagon::vsub_lo); |
1900 | Register SrcHi = HRI.getSubReg(Reg: SrcR, Idx: Hexagon::vsub_hi); |
1901 | bool IsKill = MI->getOperand(i: 2).isKill(); |
1902 | int FI = MI->getOperand(i: 0).getIndex(); |
1903 | |
1904 | unsigned Size = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
1905 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1906 | Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI); |
1907 | unsigned StoreOpc; |
1908 | |
1909 | // Store low part. |
1910 | if (LPR.contains(Reg: SrcLo)) { |
1911 | StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai |
1912 | : Hexagon::V6_vS32Ub_ai; |
1913 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc)) |
1914 | .addFrameIndex(Idx: FI) |
1915 | .addImm(Val: 0) |
1916 | .addReg(RegNo: SrcLo, flags: getKillRegState(B: IsKill)) |
1917 | .cloneMemRefs(OtherMI: *MI); |
1918 | } |
1919 | |
1920 | // Store high part. |
1921 | if (LPR.contains(Reg: SrcHi)) { |
1922 | StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai |
1923 | : Hexagon::V6_vS32Ub_ai; |
1924 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc)) |
1925 | .addFrameIndex(Idx: FI) |
1926 | .addImm(Val: Size) |
1927 | .addReg(RegNo: SrcHi, flags: getKillRegState(B: IsKill)) |
1928 | .cloneMemRefs(OtherMI: *MI); |
1929 | } |
1930 | |
1931 | B.erase(I: It); |
1932 | return true; |
1933 | } |
1934 | |
1935 | bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, |
1936 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1937 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1938 | MachineFunction &MF = *B.getParent(); |
1939 | auto &MFI = MF.getFrameInfo(); |
1940 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1941 | MachineInstr *MI = &*It; |
1942 | if (!MI->getOperand(i: 1).isFI()) |
1943 | return false; |
1944 | |
1945 | DebugLoc DL = MI->getDebugLoc(); |
1946 | Register DstR = MI->getOperand(i: 0).getReg(); |
1947 | Register DstHi = HRI.getSubReg(Reg: DstR, Idx: Hexagon::vsub_hi); |
1948 | Register DstLo = HRI.getSubReg(Reg: DstR, Idx: Hexagon::vsub_lo); |
1949 | int FI = MI->getOperand(i: 1).getIndex(); |
1950 | |
1951 | unsigned Size = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass); |
1952 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1953 | Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI); |
1954 | unsigned LoadOpc; |
1955 | |
1956 | // Load low part. |
1957 | LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai |
1958 | : Hexagon::V6_vL32Ub_ai; |
1959 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstLo) |
1960 | .addFrameIndex(Idx: FI) |
1961 | .addImm(Val: 0) |
1962 | .cloneMemRefs(OtherMI: *MI); |
1963 | |
1964 | // Load high part. |
1965 | LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai |
1966 | : Hexagon::V6_vL32Ub_ai; |
1967 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstHi) |
1968 | .addFrameIndex(Idx: FI) |
1969 | .addImm(Val: Size) |
1970 | .cloneMemRefs(OtherMI: *MI); |
1971 | |
1972 | B.erase(I: It); |
1973 | return true; |
1974 | } |
1975 | |
1976 | bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, |
1977 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
1978 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
1979 | MachineFunction &MF = *B.getParent(); |
1980 | auto &MFI = MF.getFrameInfo(); |
1981 | MachineInstr *MI = &*It; |
1982 | if (!MI->getOperand(i: 0).isFI()) |
1983 | return false; |
1984 | |
1985 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
1986 | DebugLoc DL = MI->getDebugLoc(); |
1987 | Register SrcR = MI->getOperand(i: 2).getReg(); |
1988 | bool IsKill = MI->getOperand(i: 2).isKill(); |
1989 | int FI = MI->getOperand(i: 0).getIndex(); |
1990 | |
1991 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
1992 | Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI); |
1993 | unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai |
1994 | : Hexagon::V6_vS32Ub_ai; |
1995 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc)) |
1996 | .addFrameIndex(Idx: FI) |
1997 | .addImm(Val: 0) |
1998 | .addReg(RegNo: SrcR, flags: getKillRegState(B: IsKill)) |
1999 | .cloneMemRefs(OtherMI: *MI); |
2000 | |
2001 | B.erase(I: It); |
2002 | return true; |
2003 | } |
2004 | |
2005 | bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, |
2006 | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, |
2007 | const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { |
2008 | MachineFunction &MF = *B.getParent(); |
2009 | auto &MFI = MF.getFrameInfo(); |
2010 | MachineInstr *MI = &*It; |
2011 | if (!MI->getOperand(i: 1).isFI()) |
2012 | return false; |
2013 | |
2014 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
2015 | DebugLoc DL = MI->getDebugLoc(); |
2016 | Register DstR = MI->getOperand(i: 0).getReg(); |
2017 | int FI = MI->getOperand(i: 1).getIndex(); |
2018 | |
2019 | Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass); |
2020 | Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI); |
2021 | unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai |
2022 | : Hexagon::V6_vL32Ub_ai; |
2023 | BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstR) |
2024 | .addFrameIndex(Idx: FI) |
2025 | .addImm(Val: 0) |
2026 | .cloneMemRefs(OtherMI: *MI); |
2027 | |
2028 | B.erase(I: It); |
2029 | return true; |
2030 | } |
2031 | |
2032 | bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, |
2033 | SmallVectorImpl<Register> &NewRegs) const { |
2034 | auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); |
2035 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
2036 | bool Changed = false; |
2037 | |
2038 | for (auto &B : MF) { |
2039 | // Traverse the basic block. |
2040 | MachineBasicBlock::iterator NextI; |
2041 | for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { |
2042 | MachineInstr *MI = &*I; |
2043 | NextI = std::next(x: I); |
2044 | unsigned Opc = MI->getOpcode(); |
2045 | |
2046 | switch (Opc) { |
2047 | case TargetOpcode::COPY: |
2048 | Changed |= expandCopy(B, It: I, MRI, HII, NewRegs); |
2049 | break; |
2050 | case Hexagon::STriw_pred: |
2051 | case Hexagon::STriw_ctr: |
2052 | Changed |= expandStoreInt(B, It: I, MRI, HII, NewRegs); |
2053 | break; |
2054 | case Hexagon::LDriw_pred: |
2055 | case Hexagon::LDriw_ctr: |
2056 | Changed |= expandLoadInt(B, It: I, MRI, HII, NewRegs); |
2057 | break; |
2058 | case Hexagon::PS_vstorerq_ai: |
2059 | Changed |= expandStoreVecPred(B, It: I, MRI, HII, NewRegs); |
2060 | break; |
2061 | case Hexagon::PS_vloadrq_ai: |
2062 | Changed |= expandLoadVecPred(B, It: I, MRI, HII, NewRegs); |
2063 | break; |
2064 | case Hexagon::PS_vloadrw_ai: |
2065 | Changed |= expandLoadVec2(B, It: I, MRI, HII, NewRegs); |
2066 | break; |
2067 | case Hexagon::PS_vstorerw_ai: |
2068 | Changed |= expandStoreVec2(B, It: I, MRI, HII, NewRegs); |
2069 | break; |
2070 | } |
2071 | } |
2072 | } |
2073 | |
2074 | return Changed; |
2075 | } |
2076 | |
2077 | void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, |
2078 | BitVector &SavedRegs, |
2079 | RegScavenger *RS) const { |
2080 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
2081 | |
2082 | SavedRegs.resize(N: HRI.getNumRegs()); |
2083 | |
2084 | // If we have a function containing __builtin_eh_return we want to spill and |
2085 | // restore all callee saved registers. Pretend that they are used. |
2086 | if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) |
2087 | for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF: &MF); *R; ++R) |
2088 | SavedRegs.set(*R); |
2089 | |
2090 | // Replace predicate register pseudo spill code. |
2091 | SmallVector<Register,8> NewRegs; |
2092 | expandSpillMacros(MF, NewRegs); |
2093 | if (OptimizeSpillSlots && !isOptNone(MF)) |
2094 | optimizeSpillSlots(MF, VRegs&: NewRegs); |
2095 | |
2096 | // We need to reserve a spill slot if scavenging could potentially require |
2097 | // spilling a scavenged register. |
2098 | if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { |
2099 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
2100 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
2101 | SetVector<const TargetRegisterClass*> SpillRCs; |
2102 | // Reserve an int register in any case, because it could be used to hold |
2103 | // the stack offset in case it does not fit into a spill instruction. |
2104 | SpillRCs.insert(X: &Hexagon::IntRegsRegClass); |
2105 | |
2106 | for (Register VR : NewRegs) |
2107 | SpillRCs.insert(X: MRI.getRegClass(Reg: VR)); |
2108 | |
2109 | for (const auto *RC : SpillRCs) { |
2110 | if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) |
2111 | continue; |
2112 | unsigned Num = 1; |
2113 | switch (RC->getID()) { |
2114 | case Hexagon::IntRegsRegClassID: |
2115 | Num = NumberScavengerSlots; |
2116 | break; |
2117 | case Hexagon::HvxQRRegClassID: |
2118 | Num = 2; // Vector predicate spills also need a vector register. |
2119 | break; |
2120 | } |
2121 | unsigned S = HRI.getSpillSize(RC: *RC); |
2122 | Align A = HRI.getSpillAlign(RC: *RC); |
2123 | for (unsigned i = 0; i < Num; i++) { |
2124 | int NewFI = MFI.CreateSpillStackObject(Size: S, Alignment: A); |
2125 | RS->addScavengingFrameIndex(FI: NewFI); |
2126 | } |
2127 | } |
2128 | } |
2129 | |
2130 | TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); |
2131 | } |
2132 | |
2133 | Register HexagonFrameLowering::findPhysReg(MachineFunction &MF, |
2134 | HexagonBlockRanges::IndexRange &FIR, |
2135 | HexagonBlockRanges::InstrIndexMap &IndexMap, |
2136 | HexagonBlockRanges::RegToRangeMap &DeadMap, |
2137 | const TargetRegisterClass *RC) const { |
2138 | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
2139 | auto &MRI = MF.getRegInfo(); |
2140 | |
2141 | auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool { |
2142 | auto F = DeadMap.find(x: {.Reg: Reg,.Sub: 0}); |
2143 | if (F == DeadMap.end()) |
2144 | return false; |
2145 | for (auto &DR : F->second) |
2146 | if (DR.contains(A: FIR)) |
2147 | return true; |
2148 | return false; |
2149 | }; |
2150 | |
2151 | for (Register Reg : RC->getRawAllocationOrder(MF)) { |
2152 | bool Dead = true; |
2153 | for (auto R : HexagonBlockRanges::expandToSubRegs(R: {.Reg: Reg,.Sub: 0}, MRI, TRI: HRI)) { |
2154 | if (isDead(R.Reg)) |
2155 | continue; |
2156 | Dead = false; |
2157 | break; |
2158 | } |
2159 | if (Dead) |
2160 | return Reg; |
2161 | } |
2162 | return 0; |
2163 | } |
2164 | |
2165 | void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, |
2166 | SmallVectorImpl<Register> &VRegs) const { |
2167 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
2168 | auto &HII = *HST.getInstrInfo(); |
2169 | auto &HRI = *HST.getRegisterInfo(); |
2170 | auto &MRI = MF.getRegInfo(); |
2171 | HexagonBlockRanges HBR(MF); |
2172 | |
2173 | using BlockIndexMap = |
2174 | std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; |
2175 | using BlockRangeMap = |
2176 | std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; |
2177 | using IndexType = HexagonBlockRanges::IndexType; |
2178 | |
2179 | struct SlotInfo { |
2180 | BlockRangeMap Map; |
2181 | unsigned Size = 0; |
2182 | const TargetRegisterClass *RC = nullptr; |
2183 | |
2184 | SlotInfo() = default; |
2185 | }; |
2186 | |
2187 | BlockIndexMap BlockIndexes; |
2188 | SmallSet<int,4> BadFIs; |
2189 | std::map<int,SlotInfo> FIRangeMap; |
2190 | |
2191 | // Accumulate register classes: get a common class for a pre-existing |
2192 | // class HaveRC and a new class NewRC. Return nullptr if a common class |
2193 | // cannot be found, otherwise return the resulting class. If HaveRC is |
2194 | // nullptr, assume that it is still unset. |
2195 | auto getCommonRC = |
2196 | [](const TargetRegisterClass *HaveRC, |
2197 | const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { |
2198 | if (HaveRC == nullptr || HaveRC == NewRC) |
2199 | return NewRC; |
2200 | // Different classes, both non-null. Pick the more general one. |
2201 | if (HaveRC->hasSubClassEq(RC: NewRC)) |
2202 | return HaveRC; |
2203 | if (NewRC->hasSubClassEq(RC: HaveRC)) |
2204 | return NewRC; |
2205 | return nullptr; |
2206 | }; |
2207 | |
2208 | // Scan all blocks in the function. Check all occurrences of frame indexes, |
2209 | // and collect relevant information. |
2210 | for (auto &B : MF) { |
2211 | std::map<int,IndexType> LastStore, LastLoad; |
2212 | // Emplace appears not to be supported in gcc 4.7.2-4. |
2213 | //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); |
2214 | auto P = BlockIndexes.insert( |
2215 | x: std::make_pair(x: &B, y: HexagonBlockRanges::InstrIndexMap(B))); |
2216 | auto &IndexMap = P.first->second; |
2217 | LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" |
2218 | << IndexMap << '\n'); |
2219 | |
2220 | for (auto &In : B) { |
2221 | int LFI, SFI; |
2222 | bool Load = HII.isLoadFromStackSlot(MI: In, FrameIndex&: LFI) && !HII.isPredicated(MI: In); |
2223 | bool Store = HII.isStoreToStackSlot(MI: In, FrameIndex&: SFI) && !HII.isPredicated(MI: In); |
2224 | if (Load && Store) { |
2225 | // If it's both a load and a store, then we won't handle it. |
2226 | BadFIs.insert(V: LFI); |
2227 | BadFIs.insert(V: SFI); |
2228 | continue; |
2229 | } |
2230 | // Check for register classes of the register used as the source for |
2231 | // the store, and the register used as the destination for the load. |
2232 | // Also, only accept base+imm_offset addressing modes. Other addressing |
2233 | // modes can have side-effects (post-increments, etc.). For stack |
2234 | // slots they are very unlikely, so there is not much loss due to |
2235 | // this restriction. |
2236 | if (Load || Store) { |
2237 | int TFI = Load ? LFI : SFI; |
2238 | unsigned AM = HII.getAddrMode(MI: In); |
2239 | SlotInfo &SI = FIRangeMap[TFI]; |
2240 | bool Bad = (AM != HexagonII::BaseImmOffset); |
2241 | if (!Bad) { |
2242 | // If the addressing mode is ok, check the register class. |
2243 | unsigned OpNum = Load ? 0 : 2; |
2244 | auto *RC = HII.getRegClass(MCID: In.getDesc(), OpNum, TRI: &HRI, MF); |
2245 | RC = getCommonRC(SI.RC, RC); |
2246 | if (RC == nullptr) |
2247 | Bad = true; |
2248 | else |
2249 | SI.RC = RC; |
2250 | } |
2251 | if (!Bad) { |
2252 | // Check sizes. |
2253 | unsigned S = HII.getMemAccessSize(MI: In); |
2254 | if (SI.Size != 0 && SI.Size != S) |
2255 | Bad = true; |
2256 | else |
2257 | SI.Size = S; |
2258 | } |
2259 | if (!Bad) { |
2260 | for (auto *Mo : In.memoperands()) { |
2261 | if (!Mo->isVolatile() && !Mo->isAtomic()) |
2262 | continue; |
2263 | Bad = true; |
2264 | break; |
2265 | } |
2266 | } |
2267 | if (Bad) |
2268 | BadFIs.insert(V: TFI); |
2269 | } |
2270 | |
2271 | // Locate uses of frame indices. |
2272 | for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { |
2273 | const MachineOperand &Op = In.getOperand(i); |
2274 | if (!Op.isFI()) |
2275 | continue; |
2276 | int FI = Op.getIndex(); |
2277 | // Make sure that the following operand is an immediate and that |
2278 | // it is 0. This is the offset in the stack object. |
2279 | if (i+1 >= n || !In.getOperand(i: i+1).isImm() || |
2280 | In.getOperand(i: i+1).getImm() != 0) |
2281 | BadFIs.insert(V: FI); |
2282 | if (BadFIs.count(V: FI)) |
2283 | continue; |
2284 | |
2285 | IndexType Index = IndexMap.getIndex(MI: &In); |
2286 | if (Load) { |
2287 | if (LastStore[FI] == IndexType::None) |
2288 | LastStore[FI] = IndexType::Entry; |
2289 | LastLoad[FI] = Index; |
2290 | } else if (Store) { |
2291 | HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; |
2292 | if (LastStore[FI] != IndexType::None) |
2293 | RL.add(Start: LastStore[FI], End: LastLoad[FI], Fixed: false, TiedEnd: false); |
2294 | else if (LastLoad[FI] != IndexType::None) |
2295 | RL.add(Start: IndexType::Entry, End: LastLoad[FI], Fixed: false, TiedEnd: false); |
2296 | LastLoad[FI] = IndexType::None; |
2297 | LastStore[FI] = Index; |
2298 | } else { |
2299 | BadFIs.insert(V: FI); |
2300 | } |
2301 | } |
2302 | } |
2303 | |
2304 | for (auto &I : LastLoad) { |
2305 | IndexType LL = I.second; |
2306 | if (LL == IndexType::None) |
2307 | continue; |
2308 | auto &RL = FIRangeMap[I.first].Map[&B]; |
2309 | IndexType &LS = LastStore[I.first]; |
2310 | if (LS != IndexType::None) |
2311 | RL.add(Start: LS, End: LL, Fixed: false, TiedEnd: false); |
2312 | else |
2313 | RL.add(Start: IndexType::Entry, End: LL, Fixed: false, TiedEnd: false); |
2314 | LS = IndexType::None; |
2315 | } |
2316 | for (auto &I : LastStore) { |
2317 | IndexType LS = I.second; |
2318 | if (LS == IndexType::None) |
2319 | continue; |
2320 | auto &RL = FIRangeMap[I.first].Map[&B]; |
2321 | RL.add(Start: LS, End: IndexType::None, Fixed: false, TiedEnd: false); |
2322 | } |
2323 | } |
2324 | |
2325 | LLVM_DEBUG({ |
2326 | for (auto &P : FIRangeMap) { |
2327 | dbgs() << "fi#" << P.first; |
2328 | if (BadFIs.count(P.first)) |
2329 | dbgs() << " (bad)" ; |
2330 | dbgs() << " RC: " ; |
2331 | if (P.second.RC != nullptr) |
2332 | dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; |
2333 | else |
2334 | dbgs() << "<null>\n" ; |
2335 | for (auto &R : P.second.Map) |
2336 | dbgs() << " " << printMBBReference(*R.first) << " { " << R.second |
2337 | << "}\n" ; |
2338 | } |
2339 | }); |
2340 | |
2341 | // When a slot is loaded from in a block without being stored to in the |
2342 | // same block, it is live-on-entry to this block. To avoid CFG analysis, |
2343 | // consider this slot to be live-on-exit from all blocks. |
2344 | SmallSet<int,4> LoxFIs; |
2345 | |
2346 | std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; |
2347 | |
2348 | for (auto &P : FIRangeMap) { |
2349 | // P = pair(FI, map: BB->RangeList) |
2350 | if (BadFIs.count(V: P.first)) |
2351 | continue; |
2352 | for (auto &B : MF) { |
2353 | auto F = P.second.Map.find(x: &B); |
2354 | // F = pair(BB, RangeList) |
2355 | if (F == P.second.Map.end() || F->second.empty()) |
2356 | continue; |
2357 | HexagonBlockRanges::IndexRange &IR = F->second.front(); |
2358 | if (IR.start() == IndexType::Entry) |
2359 | LoxFIs.insert(V: P.first); |
2360 | BlockFIMap[&B].push_back(x: P.first); |
2361 | } |
2362 | } |
2363 | |
2364 | LLVM_DEBUG({ |
2365 | dbgs() << "Block-to-FI map (* -- live-on-exit):\n" ; |
2366 | for (auto &P : BlockFIMap) { |
2367 | auto &FIs = P.second; |
2368 | if (FIs.empty()) |
2369 | continue; |
2370 | dbgs() << " " << printMBBReference(*P.first) << ": {" ; |
2371 | for (auto I : FIs) { |
2372 | dbgs() << " fi#" << I; |
2373 | if (LoxFIs.count(I)) |
2374 | dbgs() << '*'; |
2375 | } |
2376 | dbgs() << " }\n" ; |
2377 | } |
2378 | }); |
2379 | |
2380 | #ifndef NDEBUG |
2381 | bool HasOptLimit = SpillOptMax.getPosition(); |
2382 | #endif |
2383 | |
2384 | // eliminate loads, when all loads eliminated, eliminate all stores. |
2385 | for (auto &B : MF) { |
2386 | auto F = BlockIndexes.find(x: &B); |
2387 | assert(F != BlockIndexes.end()); |
2388 | HexagonBlockRanges::InstrIndexMap &IM = F->second; |
2389 | HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IndexMap&: IM); |
2390 | HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IndexMap&: IM, LiveMap&: LM); |
2391 | LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" |
2392 | << HexagonBlockRanges::PrintRangeMap(DM, HRI)); |
2393 | |
2394 | for (auto FI : BlockFIMap[&B]) { |
2395 | if (BadFIs.count(V: FI)) |
2396 | continue; |
2397 | LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); |
2398 | HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; |
2399 | for (auto &Range : RL) { |
2400 | LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); |
2401 | if (!IndexType::isInstr(X: Range.start()) || |
2402 | !IndexType::isInstr(X: Range.end())) |
2403 | continue; |
2404 | MachineInstr &SI = *IM.getInstr(Idx: Range.start()); |
2405 | MachineInstr &EI = *IM.getInstr(Idx: Range.end()); |
2406 | assert(SI.mayStore() && "Unexpected start instruction" ); |
2407 | assert(EI.mayLoad() && "Unexpected end instruction" ); |
2408 | MachineOperand &SrcOp = SI.getOperand(i: 2); |
2409 | |
2410 | HexagonBlockRanges::RegisterRef SrcRR = { .Reg: SrcOp.getReg(), |
2411 | .Sub: SrcOp.getSubReg() }; |
2412 | auto *RC = HII.getRegClass(MCID: SI.getDesc(), OpNum: 2, TRI: &HRI, MF); |
2413 | // The this-> is needed to unconfuse MSVC. |
2414 | Register FoundR = this->findPhysReg(MF, FIR&: Range, IndexMap&: IM, DeadMap&: DM, RC); |
2415 | LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) |
2416 | << '\n'); |
2417 | if (FoundR == 0) |
2418 | continue; |
2419 | #ifndef NDEBUG |
2420 | if (HasOptLimit) { |
2421 | if (SpillOptCount >= SpillOptMax) |
2422 | return; |
2423 | SpillOptCount++; |
2424 | } |
2425 | #endif |
2426 | |
2427 | // Generate the copy-in: "FoundR = COPY SrcR" at the store location. |
2428 | MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; |
2429 | MachineInstr *CopyIn = nullptr; |
2430 | if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { |
2431 | const DebugLoc &DL = SI.getDebugLoc(); |
2432 | CopyIn = BuildMI(BB&: B, I: StartIt, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: FoundR) |
2433 | .add(MO: SrcOp); |
2434 | } |
2435 | |
2436 | ++StartIt; |
2437 | // Check if this is a last store and the FI is live-on-exit. |
2438 | if (LoxFIs.count(V: FI) && (&Range == &RL.back())) { |
2439 | // Update store's source register. |
2440 | if (unsigned SR = SrcOp.getSubReg()) |
2441 | SrcOp.setReg(HRI.getSubReg(Reg: FoundR, Idx: SR)); |
2442 | else |
2443 | SrcOp.setReg(FoundR); |
2444 | SrcOp.setSubReg(0); |
2445 | // We are keeping this register live. |
2446 | SrcOp.setIsKill(false); |
2447 | } else { |
2448 | B.erase(I: &SI); |
2449 | IM.replaceInstr(OldMI: &SI, NewMI: CopyIn); |
2450 | } |
2451 | |
2452 | auto EndIt = std::next(x: EI.getIterator()); |
2453 | for (auto It = StartIt; It != EndIt; It = NextIt) { |
2454 | MachineInstr &MI = *It; |
2455 | NextIt = std::next(x: It); |
2456 | int TFI; |
2457 | if (!HII.isLoadFromStackSlot(MI, FrameIndex&: TFI) || TFI != FI) |
2458 | continue; |
2459 | Register DstR = MI.getOperand(i: 0).getReg(); |
2460 | assert(MI.getOperand(0).getSubReg() == 0); |
2461 | MachineInstr *CopyOut = nullptr; |
2462 | if (DstR != FoundR) { |
2463 | DebugLoc DL = MI.getDebugLoc(); |
2464 | unsigned MemSize = HII.getMemAccessSize(MI); |
2465 | assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); |
2466 | unsigned CopyOpc = TargetOpcode::COPY; |
2467 | if (HII.isSignExtendingLoad(MI)) |
2468 | CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; |
2469 | else if (HII.isZeroExtendingLoad(MI)) |
2470 | CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; |
2471 | CopyOut = BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: CopyOpc), DestReg: DstR) |
2472 | .addReg(RegNo: FoundR, flags: getKillRegState(B: &MI == &EI)); |
2473 | } |
2474 | IM.replaceInstr(OldMI: &MI, NewMI: CopyOut); |
2475 | B.erase(I: It); |
2476 | } |
2477 | |
2478 | // Update the dead map. |
2479 | HexagonBlockRanges::RegisterRef FoundRR = { .Reg: FoundR, .Sub: 0 }; |
2480 | for (auto RR : HexagonBlockRanges::expandToSubRegs(R: FoundRR, MRI, TRI: HRI)) |
2481 | DM[RR].subtract(Range); |
2482 | } // for Range in range list |
2483 | } |
2484 | } |
2485 | } |
2486 | |
2487 | void HexagonFrameLowering::expandAlloca(MachineInstr *AI, |
2488 | const HexagonInstrInfo &HII, Register SP, unsigned CF) const { |
2489 | MachineBasicBlock &MB = *AI->getParent(); |
2490 | DebugLoc DL = AI->getDebugLoc(); |
2491 | unsigned A = AI->getOperand(i: 2).getImm(); |
2492 | |
2493 | // Have |
2494 | // Rd = alloca Rs, #A |
2495 | // |
2496 | // If Rs and Rd are different registers, use this sequence: |
2497 | // Rd = sub(r29, Rs) |
2498 | // r29 = sub(r29, Rs) |
2499 | // Rd = and(Rd, #-A) ; if necessary |
2500 | // r29 = and(r29, #-A) ; if necessary |
2501 | // Rd = add(Rd, #CF) ; CF size aligned to at most A |
2502 | // otherwise, do |
2503 | // Rd = sub(r29, Rs) |
2504 | // Rd = and(Rd, #-A) ; if necessary |
2505 | // r29 = Rd |
2506 | // Rd = add(Rd, #CF) ; CF size aligned to at most A |
2507 | |
2508 | MachineOperand &RdOp = AI->getOperand(i: 0); |
2509 | MachineOperand &RsOp = AI->getOperand(i: 1); |
2510 | Register Rd = RdOp.getReg(), Rs = RsOp.getReg(); |
2511 | |
2512 | // Rd = sub(r29, Rs) |
2513 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_sub), DestReg: Rd) |
2514 | .addReg(RegNo: SP) |
2515 | .addReg(RegNo: Rs); |
2516 | if (Rs != Rd) { |
2517 | // r29 = sub(r29, Rs) |
2518 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_sub), DestReg: SP) |
2519 | .addReg(RegNo: SP) |
2520 | .addReg(RegNo: Rs); |
2521 | } |
2522 | if (A > 8) { |
2523 | // Rd = and(Rd, #-A) |
2524 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: Rd) |
2525 | .addReg(RegNo: Rd) |
2526 | .addImm(Val: -int64_t(A)); |
2527 | if (Rs != Rd) |
2528 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: SP) |
2529 | .addReg(RegNo: SP) |
2530 | .addImm(Val: -int64_t(A)); |
2531 | } |
2532 | if (Rs == Rd) { |
2533 | // r29 = Rd |
2534 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: SP) |
2535 | .addReg(RegNo: Rd); |
2536 | } |
2537 | if (CF > 0) { |
2538 | // Rd = add(Rd, #CF) |
2539 | BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: Rd) |
2540 | .addReg(RegNo: Rd) |
2541 | .addImm(Val: CF); |
2542 | } |
2543 | } |
2544 | |
2545 | bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { |
2546 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
2547 | if (!MFI.hasVarSizedObjects()) |
2548 | return false; |
2549 | // Do not check for max stack object alignment here, because the stack |
2550 | // may not be complete yet. Assume that we will need PS_aligna if there |
2551 | // are variable-sized objects. |
2552 | return true; |
2553 | } |
2554 | |
2555 | const MachineInstr *HexagonFrameLowering::getAlignaInstr( |
2556 | const MachineFunction &MF) const { |
2557 | for (auto &B : MF) |
2558 | for (auto &I : B) |
2559 | if (I.getOpcode() == Hexagon::PS_aligna) |
2560 | return &I; |
2561 | return nullptr; |
2562 | } |
2563 | |
2564 | /// Adds all callee-saved registers as implicit uses or defs to the |
2565 | /// instruction. |
2566 | void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, |
2567 | const CSIVect &CSI, bool IsDef, bool IsKill) const { |
2568 | // Add the callee-saved registers as implicit uses. |
2569 | for (auto &R : CSI) |
2570 | MI->addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: IsDef, isImp: true, isKill: IsKill)); |
2571 | } |
2572 | |
2573 | /// Determine whether the callee-saved register saves and restores should |
2574 | /// be generated via inline code. If this function returns "true", inline |
2575 | /// code will be generated. If this function returns "false", additional |
2576 | /// checks are performed, which may still lead to the inline code. |
2577 | bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, |
2578 | const CSIVect &CSI) const { |
2579 | if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) |
2580 | return true; |
2581 | if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) |
2582 | return true; |
2583 | if (!hasFP(MF)) |
2584 | return true; |
2585 | if (!isOptSize(MF) && !isMinSize(MF)) |
2586 | if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default) |
2587 | return true; |
2588 | |
2589 | // Check if CSI only has double registers, and if the registers form |
2590 | // a contiguous block starting from D8. |
2591 | BitVector Regs(Hexagon::NUM_TARGET_REGS); |
2592 | for (const CalleeSavedInfo &I : CSI) { |
2593 | Register R = I.getReg(); |
2594 | if (!Hexagon::DoubleRegsRegClass.contains(Reg: R)) |
2595 | return true; |
2596 | Regs[R] = true; |
2597 | } |
2598 | int F = Regs.find_first(); |
2599 | if (F != Hexagon::D8) |
2600 | return true; |
2601 | while (F >= 0) { |
2602 | int N = Regs.find_next(Prev: F); |
2603 | if (N >= 0 && N != F+1) |
2604 | return true; |
2605 | F = N; |
2606 | } |
2607 | |
2608 | return false; |
2609 | } |
2610 | |
2611 | bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, |
2612 | const CSIVect &CSI) const { |
2613 | if (shouldInlineCSR(MF, CSI)) |
2614 | return false; |
2615 | unsigned NumCSI = CSI.size(); |
2616 | if (NumCSI <= 1) |
2617 | return false; |
2618 | |
2619 | unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs |
2620 | : SpillFuncThreshold; |
2621 | return Threshold < NumCSI; |
2622 | } |
2623 | |
2624 | bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, |
2625 | const CSIVect &CSI) const { |
2626 | if (shouldInlineCSR(MF, CSI)) |
2627 | return false; |
2628 | // The restore functions do a bit more than just restoring registers. |
2629 | // The non-returning versions will go back directly to the caller's |
2630 | // caller, others will clean up the stack frame in preparation for |
2631 | // a tail call. Using them can still save code size even if only one |
2632 | // register is getting restores. Make the decision based on -Oz: |
2633 | // using -Os will use inline restore for a single register. |
2634 | if (isMinSize(MF)) |
2635 | return true; |
2636 | unsigned NumCSI = CSI.size(); |
2637 | if (NumCSI <= 1) |
2638 | return false; |
2639 | |
2640 | unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 |
2641 | : SpillFuncThreshold; |
2642 | return Threshold < NumCSI; |
2643 | } |
2644 | |
2645 | bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { |
2646 | unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); |
2647 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
2648 | // A fairly simplistic guess as to whether a potential load/store to a |
2649 | // stack location could require an extra register. |
2650 | if (HST.useHVXOps() && StackSize > 256) |
2651 | return true; |
2652 | |
2653 | // Check if the function has store-immediate instructions that access |
2654 | // the stack. Since the offset field is not extendable, if the stack |
2655 | // size exceeds the offset limit (6 bits, shifted), the stores will |
2656 | // require a new base register. |
2657 | bool HasImmStack = false; |
2658 | unsigned MinLS = ~0u; // Log_2 of the memory access size. |
2659 | |
2660 | for (const MachineBasicBlock &B : MF) { |
2661 | for (const MachineInstr &MI : B) { |
2662 | unsigned LS = 0; |
2663 | switch (MI.getOpcode()) { |
2664 | case Hexagon::S4_storeirit_io: |
2665 | case Hexagon::S4_storeirif_io: |
2666 | case Hexagon::S4_storeiri_io: |
2667 | ++LS; |
2668 | [[fallthrough]]; |
2669 | case Hexagon::S4_storeirht_io: |
2670 | case Hexagon::S4_storeirhf_io: |
2671 | case Hexagon::S4_storeirh_io: |
2672 | ++LS; |
2673 | [[fallthrough]]; |
2674 | case Hexagon::S4_storeirbt_io: |
2675 | case Hexagon::S4_storeirbf_io: |
2676 | case Hexagon::S4_storeirb_io: |
2677 | if (MI.getOperand(i: 0).isFI()) |
2678 | HasImmStack = true; |
2679 | MinLS = std::min(a: MinLS, b: LS); |
2680 | break; |
2681 | } |
2682 | } |
2683 | } |
2684 | |
2685 | if (HasImmStack) |
2686 | return !isUInt<6>(x: StackSize >> MinLS); |
2687 | |
2688 | return false; |
2689 | } |
2690 | |
2691 | namespace { |
2692 | // Struct used by orderFrameObjects to help sort the stack objects. |
2693 | struct HexagonFrameSortingObject { |
2694 | bool IsValid = false; |
2695 | unsigned Index = 0; // Index of Object into MFI list. |
2696 | unsigned Size = 0; |
2697 | Align ObjectAlignment = Align(1); // Alignment of Object in bytes. |
2698 | }; |
2699 | |
2700 | struct HexagonFrameSortingComparator { |
2701 | inline bool operator()(const HexagonFrameSortingObject &A, |
2702 | const HexagonFrameSortingObject &B) const { |
2703 | return std::make_tuple(args: !A.IsValid, args: A.ObjectAlignment, args: A.Size) < |
2704 | std::make_tuple(args: !B.IsValid, args: B.ObjectAlignment, args: B.Size); |
2705 | } |
2706 | }; |
2707 | } // namespace |
2708 | |
2709 | // Sort objects on the stack by alignment value and then by size to minimize |
2710 | // padding. |
2711 | void HexagonFrameLowering::orderFrameObjects( |
2712 | const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { |
2713 | |
2714 | if (ObjectsToAllocate.empty()) |
2715 | return; |
2716 | |
2717 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
2718 | int NObjects = ObjectsToAllocate.size(); |
2719 | |
2720 | // Create an array of all MFI objects. |
2721 | SmallVector<HexagonFrameSortingObject> SortingObjects( |
2722 | MFI.getObjectIndexEnd()); |
2723 | |
2724 | for (int i = 0, j = 0, e = MFI.getObjectIndexEnd(); i < e && j != NObjects; |
2725 | ++i) { |
2726 | if (i != ObjectsToAllocate[j]) |
2727 | continue; |
2728 | j++; |
2729 | |
2730 | // A variable size object has size equal to 0. Since Hexagon sets |
2731 | // getUseLocalStackAllocationBlock() to true, a local block is allocated |
2732 | // earlier. This case is not handled here for now. |
2733 | int Size = MFI.getObjectSize(ObjectIdx: i); |
2734 | if (Size == 0) |
2735 | return; |
2736 | |
2737 | SortingObjects[i].IsValid = true; |
2738 | SortingObjects[i].Index = i; |
2739 | SortingObjects[i].Size = Size; |
2740 | SortingObjects[i].ObjectAlignment = MFI.getObjectAlign(ObjectIdx: i); |
2741 | } |
2742 | |
2743 | // Sort objects by alignment and then by size. |
2744 | llvm::stable_sort(Range&: SortingObjects, C: HexagonFrameSortingComparator()); |
2745 | |
2746 | // Modify the original list to represent the final order. |
2747 | int i = NObjects; |
2748 | for (auto &Obj : SortingObjects) { |
2749 | if (i == 0) |
2750 | break; |
2751 | ObjectsToAllocate[--i] = Obj.Index; |
2752 | } |
2753 | } |
2754 | |