1 | //===- HexagonGenInsert.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "BitTracker.h" |
10 | #include "HexagonBitTracker.h" |
11 | #include "HexagonInstrInfo.h" |
12 | #include "HexagonRegisterInfo.h" |
13 | #include "HexagonSubtarget.h" |
14 | #include "llvm/ADT/BitVector.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/GraphTraits.h" |
17 | #include "llvm/ADT/PostOrderIterator.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/StringRef.h" |
22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
23 | #include "llvm/CodeGen/MachineDominators.h" |
24 | #include "llvm/CodeGen/MachineFunction.h" |
25 | #include "llvm/CodeGen/MachineFunctionPass.h" |
26 | #include "llvm/CodeGen/MachineInstr.h" |
27 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
28 | #include "llvm/CodeGen/MachineOperand.h" |
29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
30 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
31 | #include "llvm/IR/DebugLoc.h" |
32 | #include "llvm/InitializePasses.h" |
33 | #include "llvm/Pass.h" |
34 | #include "llvm/Support/CommandLine.h" |
35 | #include "llvm/Support/Debug.h" |
36 | #include "llvm/Support/MathExtras.h" |
37 | #include "llvm/Support/Timer.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include <algorithm> |
40 | #include <cassert> |
41 | #include <cstdint> |
42 | #include <iterator> |
43 | #include <utility> |
44 | #include <vector> |
45 | |
46 | #define DEBUG_TYPE "hexinsert" |
47 | |
48 | using namespace llvm; |
49 | |
50 | static cl::opt<unsigned> |
51 | VRegIndexCutoff("insert-vreg-cutoff" , cl::init(Val: ~0U), cl::Hidden, |
52 | cl::desc("Vreg# cutoff for insert generation." )); |
53 | // The distance cutoff is selected based on the precheckin-perf results: |
54 | // cutoffs 20, 25, 35, and 40 are worse than 30. |
55 | static cl::opt<unsigned> |
56 | VRegDistCutoff("insert-dist-cutoff" , cl::init(Val: 30U), cl::Hidden, |
57 | cl::desc("Vreg distance cutoff for insert " |
58 | "generation." )); |
59 | |
60 | // Limit the container sizes for extreme cases where we run out of memory. |
61 | static cl::opt<unsigned> |
62 | MaxORLSize("insert-max-orl" , cl::init(Val: 4096), cl::Hidden, |
63 | cl::desc("Maximum size of OrderedRegisterList" )); |
64 | static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap" , cl::init(Val: 1024), |
65 | cl::Hidden, |
66 | cl::desc("Maximum size of IFMap" )); |
67 | |
68 | static cl::opt<bool> OptTiming("insert-timing" , cl::Hidden, |
69 | cl::desc("Enable timing of insert generation" )); |
70 | static cl::opt<bool> |
71 | OptTimingDetail("insert-timing-detail" , cl::Hidden, |
72 | cl::desc("Enable detailed timing of insert " |
73 | "generation" )); |
74 | |
75 | static cl::opt<bool> OptSelectAll0("insert-all0" , cl::init(Val: false), cl::Hidden); |
76 | static cl::opt<bool> OptSelectHas0("insert-has0" , cl::init(Val: false), cl::Hidden); |
77 | // Whether to construct constant values via "insert". Could eliminate constant |
78 | // extenders, but often not practical. |
79 | static cl::opt<bool> OptConst("insert-const" , cl::init(Val: false), cl::Hidden); |
80 | |
81 | // The preprocessor gets confused when the DEBUG macro is passed larger |
82 | // chunks of code. Use this function to detect debugging. |
83 | inline static bool isDebug() { |
84 | #ifndef NDEBUG |
85 | return DebugFlag && isCurrentDebugType(DEBUG_TYPE); |
86 | #else |
87 | return false; |
88 | #endif |
89 | } |
90 | |
91 | namespace { |
92 | |
93 | // Set of virtual registers, based on BitVector. |
94 | struct RegisterSet : private BitVector { |
95 | RegisterSet() = default; |
96 | explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} |
97 | RegisterSet(const RegisterSet &RS) = default; |
98 | RegisterSet &operator=(const RegisterSet &RS) = default; |
99 | |
100 | using BitVector::clear; |
101 | |
102 | unsigned find_first() const { |
103 | int First = BitVector::find_first(); |
104 | if (First < 0) |
105 | return 0; |
106 | return x2v(x: First); |
107 | } |
108 | |
109 | unsigned find_next(unsigned Prev) const { |
110 | int Next = BitVector::find_next(Prev: v2x(v: Prev)); |
111 | if (Next < 0) |
112 | return 0; |
113 | return x2v(x: Next); |
114 | } |
115 | |
116 | RegisterSet &insert(unsigned R) { |
117 | unsigned Idx = v2x(v: R); |
118 | ensure(Idx); |
119 | return static_cast<RegisterSet&>(BitVector::set(Idx)); |
120 | } |
121 | RegisterSet &remove(unsigned R) { |
122 | unsigned Idx = v2x(v: R); |
123 | if (Idx >= size()) |
124 | return *this; |
125 | return static_cast<RegisterSet&>(BitVector::reset(Idx)); |
126 | } |
127 | |
128 | RegisterSet &insert(const RegisterSet &Rs) { |
129 | return static_cast<RegisterSet&>(BitVector::operator|=(RHS: Rs)); |
130 | } |
131 | RegisterSet &remove(const RegisterSet &Rs) { |
132 | return static_cast<RegisterSet&>(BitVector::reset(RHS: Rs)); |
133 | } |
134 | |
135 | reference operator[](unsigned R) { |
136 | unsigned Idx = v2x(v: R); |
137 | ensure(Idx); |
138 | return BitVector::operator[](Idx); |
139 | } |
140 | bool operator[](unsigned R) const { |
141 | unsigned Idx = v2x(v: R); |
142 | assert(Idx < size()); |
143 | return BitVector::operator[](Idx); |
144 | } |
145 | bool has(unsigned R) const { |
146 | unsigned Idx = v2x(v: R); |
147 | if (Idx >= size()) |
148 | return false; |
149 | return BitVector::test(Idx); |
150 | } |
151 | |
152 | bool empty() const { |
153 | return !BitVector::any(); |
154 | } |
155 | bool includes(const RegisterSet &Rs) const { |
156 | // A.BitVector::test(B) <=> A-B != {} |
157 | return !Rs.BitVector::test(RHS: *this); |
158 | } |
159 | bool intersects(const RegisterSet &Rs) const { |
160 | return BitVector::anyCommon(RHS: Rs); |
161 | } |
162 | |
163 | private: |
164 | void ensure(unsigned Idx) { |
165 | if (size() <= Idx) |
166 | resize(N: std::max(a: Idx+1, b: 32U)); |
167 | } |
168 | |
169 | static inline unsigned v2x(unsigned v) { |
170 | return Register::virtReg2Index(Reg: v); |
171 | } |
172 | |
173 | static inline unsigned x2v(unsigned x) { |
174 | return Register::index2VirtReg(Index: x); |
175 | } |
176 | }; |
177 | |
178 | struct PrintRegSet { |
179 | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) |
180 | : RS(S), TRI(RI) {} |
181 | |
182 | friend raw_ostream &operator<< (raw_ostream &OS, |
183 | const PrintRegSet &P); |
184 | |
185 | private: |
186 | const RegisterSet &RS; |
187 | const TargetRegisterInfo *TRI; |
188 | }; |
189 | |
190 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { |
191 | OS << '{'; |
192 | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(Prev: R)) |
193 | OS << ' ' << printReg(Reg: R, TRI: P.TRI); |
194 | OS << " }" ; |
195 | return OS; |
196 | } |
197 | |
198 | // A convenience class to associate unsigned numbers (such as virtual |
199 | // registers) with unsigned numbers. |
200 | struct UnsignedMap : public DenseMap<unsigned,unsigned> { |
201 | UnsignedMap() = default; |
202 | |
203 | private: |
204 | using BaseType = DenseMap<unsigned, unsigned>; |
205 | }; |
206 | |
207 | // A utility to establish an ordering between virtual registers: |
208 | // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB] |
209 | // This is meant as a cache for the ordering of virtual registers defined |
210 | // by a potentially expensive comparison function, or obtained by a proce- |
211 | // dure that should not be repeated each time two registers are compared. |
212 | struct RegisterOrdering : public UnsignedMap { |
213 | RegisterOrdering() = default; |
214 | |
215 | unsigned operator[](unsigned VR) const { |
216 | const_iterator F = find(Val: VR); |
217 | assert(F != end()); |
218 | return F->second; |
219 | } |
220 | |
221 | // Add operator(), so that objects of this class can be used as |
222 | // comparators in std::sort et al. |
223 | bool operator() (unsigned VR1, unsigned VR2) const { |
224 | return operator[](VR: VR1) < operator[](VR: VR2); |
225 | } |
226 | }; |
227 | |
228 | // Ordering of bit values. This class does not have operator[], but |
229 | // is supplies a comparison operator() for use in std:: algorithms. |
230 | // The order is as follows: |
231 | // - 0 < 1 < ref |
232 | // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), |
233 | // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. |
234 | struct BitValueOrdering { |
235 | BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} |
236 | |
237 | bool operator() (const BitTracker::BitValue &V1, |
238 | const BitTracker::BitValue &V2) const; |
239 | |
240 | const RegisterOrdering &BaseOrd; |
241 | }; |
242 | |
243 | } // end anonymous namespace |
244 | |
245 | bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, |
246 | const BitTracker::BitValue &V2) const { |
247 | if (V1 == V2) |
248 | return false; |
249 | // V1==0 => true, V2==0 => false |
250 | if (V1.is(T: 0) || V2.is(T: 0)) |
251 | return V1.is(T: 0); |
252 | // Neither of V1,V2 is 0, and V1!=V2. |
253 | // V2==1 => false, V1==1 => true |
254 | if (V2.is(T: 1) || V1.is(T: 1)) |
255 | return !V2.is(T: 1); |
256 | // Both V1,V2 are refs. |
257 | unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; |
258 | if (Ind1 != Ind2) |
259 | return Ind1 < Ind2; |
260 | // If V1.Pos==V2.Pos |
261 | assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different" ); |
262 | return V1.RefI.Pos < V2.RefI.Pos; |
263 | } |
264 | |
265 | namespace { |
266 | |
267 | // Cache for the BitTracker's cell map. Map lookup has a logarithmic |
268 | // complexity, this class will memoize the lookup results to reduce |
269 | // the access time for repeated lookups of the same cell. |
270 | struct CellMapShadow { |
271 | CellMapShadow(const BitTracker &T) : BT(T) {} |
272 | |
273 | const BitTracker::RegisterCell &lookup(unsigned VR) { |
274 | unsigned RInd = Register::virtReg2Index(Reg: VR); |
275 | // Grow the vector to at least 32 elements. |
276 | if (RInd >= CVect.size()) |
277 | CVect.resize(new_size: std::max(a: RInd+16, b: 32U), x: nullptr); |
278 | const BitTracker::RegisterCell *CP = CVect[RInd]; |
279 | if (CP == nullptr) |
280 | CP = CVect[RInd] = &BT.lookup(Reg: VR); |
281 | return *CP; |
282 | } |
283 | |
284 | const BitTracker &BT; |
285 | |
286 | private: |
287 | using CellVectType = std::vector<const BitTracker::RegisterCell *>; |
288 | |
289 | CellVectType CVect; |
290 | }; |
291 | |
292 | // Comparator class for lexicographic ordering of virtual registers |
293 | // according to the corresponding BitTracker::RegisterCell objects. |
294 | struct RegisterCellLexCompare { |
295 | RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) |
296 | : BitOrd(BO), CM(M) {} |
297 | |
298 | bool operator() (unsigned VR1, unsigned VR2) const; |
299 | |
300 | private: |
301 | const BitValueOrdering &BitOrd; |
302 | CellMapShadow &CM; |
303 | }; |
304 | |
305 | // Comparator class for lexicographic ordering of virtual registers |
306 | // according to the specified bits of the corresponding BitTracker:: |
307 | // RegisterCell objects. |
308 | // Specifically, this class will be used to compare bit B of a register |
309 | // cell for a selected virtual register R with bit N of any register |
310 | // other than R. |
311 | struct RegisterCellBitCompareSel { |
312 | RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, |
313 | const BitValueOrdering &BO, CellMapShadow &M) |
314 | : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} |
315 | |
316 | bool operator() (unsigned VR1, unsigned VR2) const; |
317 | |
318 | private: |
319 | const unsigned SelR, SelB; |
320 | const unsigned BitN; |
321 | const BitValueOrdering &BitOrd; |
322 | CellMapShadow &CM; |
323 | }; |
324 | |
325 | } // end anonymous namespace |
326 | |
327 | bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { |
328 | // Ordering of registers, made up from two given orderings: |
329 | // - the ordering of the register numbers, and |
330 | // - the ordering of register cells. |
331 | // Def. R1 < R2 if: |
332 | // - cell(R1) < cell(R2), or |
333 | // - cell(R1) == cell(R2), and index(R1) < index(R2). |
334 | // |
335 | // For register cells, the ordering is lexicographic, with index 0 being |
336 | // the most significant. |
337 | if (VR1 == VR2) |
338 | return false; |
339 | |
340 | const BitTracker::RegisterCell &RC1 = CM.lookup(VR: VR1), &RC2 = CM.lookup(VR: VR2); |
341 | uint16_t W1 = RC1.width(), W2 = RC2.width(); |
342 | for (uint16_t i = 0, w = std::min(a: W1, b: W2); i < w; ++i) { |
343 | const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; |
344 | if (V1 != V2) |
345 | return BitOrd(V1, V2); |
346 | } |
347 | // Cells are equal up until the common length. |
348 | if (W1 != W2) |
349 | return W1 < W2; |
350 | |
351 | return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; |
352 | } |
353 | |
354 | bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { |
355 | if (VR1 == VR2) |
356 | return false; |
357 | const BitTracker::RegisterCell &RC1 = CM.lookup(VR: VR1); |
358 | const BitTracker::RegisterCell &RC2 = CM.lookup(VR: VR2); |
359 | uint16_t W1 = RC1.width(), W2 = RC2.width(); |
360 | uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; |
361 | uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; |
362 | // If Bit1 exceeds the width of VR1, then: |
363 | // - return false, if at the same time Bit2 exceeds VR2, or |
364 | // - return true, otherwise. |
365 | // (I.e. "a bit value that does not exist is less than any bit value |
366 | // that does exist".) |
367 | if (W1 <= Bit1) |
368 | return Bit2 < W2; |
369 | // If Bit1 is within VR1, but Bit2 is not within VR2, return false. |
370 | if (W2 <= Bit2) |
371 | return false; |
372 | |
373 | const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; |
374 | if (V1 != V2) |
375 | return BitOrd(V1, V2); |
376 | return false; |
377 | } |
378 | |
379 | namespace { |
380 | |
381 | class OrderedRegisterList { |
382 | using ListType = std::vector<unsigned>; |
383 | const unsigned MaxSize; |
384 | |
385 | public: |
386 | OrderedRegisterList(const RegisterOrdering &RO) |
387 | : MaxSize(MaxORLSize), Ord(RO) {} |
388 | |
389 | void insert(unsigned VR); |
390 | void remove(unsigned VR); |
391 | |
392 | unsigned operator[](unsigned Idx) const { |
393 | assert(Idx < Seq.size()); |
394 | return Seq[Idx]; |
395 | } |
396 | |
397 | unsigned size() const { |
398 | return Seq.size(); |
399 | } |
400 | |
401 | using iterator = ListType::iterator; |
402 | using const_iterator = ListType::const_iterator; |
403 | |
404 | iterator begin() { return Seq.begin(); } |
405 | iterator end() { return Seq.end(); } |
406 | const_iterator begin() const { return Seq.begin(); } |
407 | const_iterator end() const { return Seq.end(); } |
408 | |
409 | // Convenience function to convert an iterator to the corresponding index. |
410 | unsigned idx(iterator It) const { return It-begin(); } |
411 | |
412 | private: |
413 | ListType Seq; |
414 | const RegisterOrdering &Ord; |
415 | }; |
416 | |
417 | struct PrintORL { |
418 | PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) |
419 | : RL(L), TRI(RI) {} |
420 | |
421 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); |
422 | |
423 | private: |
424 | const OrderedRegisterList &RL; |
425 | const TargetRegisterInfo *TRI; |
426 | }; |
427 | |
428 | raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { |
429 | OS << '('; |
430 | OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); |
431 | for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { |
432 | if (I != B) |
433 | OS << ", " ; |
434 | OS << printReg(Reg: *I, TRI: P.TRI); |
435 | } |
436 | OS << ')'; |
437 | return OS; |
438 | } |
439 | |
440 | } // end anonymous namespace |
441 | |
442 | void OrderedRegisterList::insert(unsigned VR) { |
443 | iterator L = llvm::lower_bound(Range&: Seq, Value&: VR, C: Ord); |
444 | if (L == Seq.end()) |
445 | Seq.push_back(x: VR); |
446 | else |
447 | Seq.insert(position: L, x: VR); |
448 | |
449 | unsigned S = Seq.size(); |
450 | if (S > MaxSize) |
451 | Seq.resize(new_size: MaxSize); |
452 | assert(Seq.size() <= MaxSize); |
453 | } |
454 | |
455 | void OrderedRegisterList::remove(unsigned VR) { |
456 | iterator L = llvm::lower_bound(Range&: Seq, Value&: VR, C: Ord); |
457 | if (L != Seq.end()) |
458 | Seq.erase(position: L); |
459 | } |
460 | |
461 | namespace { |
462 | |
463 | // A record of the insert form. The fields correspond to the operands |
464 | // of the "insert" instruction: |
465 | // ... = insert(SrcR, InsR, #Wdh, #Off) |
466 | struct IFRecord { |
467 | IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) |
468 | : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} |
469 | |
470 | unsigned SrcR, InsR; |
471 | uint16_t Wdh, Off; |
472 | }; |
473 | |
474 | struct PrintIFR { |
475 | PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) |
476 | : IFR(R), TRI(RI) {} |
477 | |
478 | private: |
479 | friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); |
480 | |
481 | const IFRecord &IFR; |
482 | const TargetRegisterInfo *TRI; |
483 | }; |
484 | |
485 | raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { |
486 | unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; |
487 | OS << '(' << printReg(Reg: SrcR, TRI: P.TRI) << ',' << printReg(Reg: InsR, TRI: P.TRI) |
488 | << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; |
489 | return OS; |
490 | } |
491 | |
492 | using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>; |
493 | |
494 | } // end anonymous namespace |
495 | |
496 | namespace llvm { |
497 | |
498 | void initializeHexagonGenInsertPass(PassRegistry&); |
499 | FunctionPass *createHexagonGenInsert(); |
500 | |
501 | } // end namespace llvm |
502 | |
503 | namespace { |
504 | |
505 | class HexagonGenInsert : public MachineFunctionPass { |
506 | public: |
507 | static char ID; |
508 | |
509 | HexagonGenInsert() : MachineFunctionPass(ID) { |
510 | initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); |
511 | } |
512 | |
513 | StringRef getPassName() const override { |
514 | return "Hexagon generate \"insert\" instructions" ; |
515 | } |
516 | |
517 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
518 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
519 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
520 | MachineFunctionPass::getAnalysisUsage(AU); |
521 | } |
522 | |
523 | bool runOnMachineFunction(MachineFunction &MF) override; |
524 | |
525 | private: |
526 | using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>; |
527 | |
528 | void buildOrderingMF(RegisterOrdering &RO) const; |
529 | void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; |
530 | bool isIntClass(const TargetRegisterClass *RC) const; |
531 | bool isConstant(unsigned VR) const; |
532 | bool isSmallConstant(unsigned VR) const; |
533 | bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, |
534 | uint16_t L, uint16_t S) const; |
535 | bool findSelfReference(unsigned VR) const; |
536 | bool findNonSelfReference(unsigned VR) const; |
537 | void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; |
538 | void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; |
539 | unsigned distance(const MachineBasicBlock *FromB, |
540 | const MachineBasicBlock *ToB, const UnsignedMap &RPO, |
541 | PairMapType &M) const; |
542 | unsigned distance(MachineBasicBlock::const_iterator FromI, |
543 | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, |
544 | PairMapType &M) const; |
545 | bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); |
546 | void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); |
547 | void findRemovableRegisters(unsigned VR, IFRecord IF, |
548 | RegisterSet &RMs) const; |
549 | void computeRemovableRegisters(); |
550 | |
551 | void pruneEmptyLists(); |
552 | void pruneCoveredSets(unsigned VR); |
553 | void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); |
554 | void pruneRegCopies(unsigned VR); |
555 | void pruneCandidates(); |
556 | void selectCandidates(); |
557 | bool generateInserts(); |
558 | |
559 | bool removeDeadCode(MachineDomTreeNode *N); |
560 | |
561 | // IFRecord coupled with a set of potentially removable registers: |
562 | using IFListType = std::vector<IFRecordWithRegSet>; |
563 | using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType |
564 | |
565 | void dump_map() const; |
566 | |
567 | const HexagonInstrInfo *HII = nullptr; |
568 | const HexagonRegisterInfo *HRI = nullptr; |
569 | |
570 | MachineFunction *MFN; |
571 | MachineRegisterInfo *MRI; |
572 | MachineDominatorTree *MDT; |
573 | CellMapShadow *CMS; |
574 | |
575 | RegisterOrdering BaseOrd; |
576 | RegisterOrdering CellOrd; |
577 | IFMapType IFMap; |
578 | }; |
579 | |
580 | } // end anonymous namespace |
581 | |
582 | char HexagonGenInsert::ID = 0; |
583 | |
584 | void HexagonGenInsert::dump_map() const { |
585 | for (const auto &I : IFMap) { |
586 | dbgs() << " " << printReg(Reg: I.first, TRI: HRI) << ":\n" ; |
587 | const IFListType &LL = I.second; |
588 | for (const auto &J : LL) |
589 | dbgs() << " " << PrintIFR(J.first, HRI) << ", " |
590 | << PrintRegSet(J.second, HRI) << '\n'; |
591 | } |
592 | } |
593 | |
594 | void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { |
595 | unsigned Index = 0; |
596 | |
597 | for (const MachineBasicBlock &B : *MFN) { |
598 | if (!CMS->BT.reached(B: &B)) |
599 | continue; |
600 | |
601 | for (const MachineInstr &MI : B) { |
602 | for (const MachineOperand &MO : MI.operands()) { |
603 | if (MO.isReg() && MO.isDef()) { |
604 | Register R = MO.getReg(); |
605 | assert(MO.getSubReg() == 0 && "Unexpected subregister in definition" ); |
606 | if (R.isVirtual()) |
607 | RO.insert(KV: std::make_pair(x&: R, y: Index++)); |
608 | } |
609 | } |
610 | } |
611 | } |
612 | // Since some virtual registers may have had their def and uses eliminated, |
613 | // they are no longer referenced in the code, and so they will not appear |
614 | // in the map. |
615 | } |
616 | |
617 | void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, |
618 | RegisterOrdering &RO) const { |
619 | // Create a vector of all virtual registers (collect them from the base |
620 | // ordering RB), and then sort it using the RegisterCell comparator. |
621 | BitValueOrdering BVO(RB); |
622 | RegisterCellLexCompare LexCmp(BVO, *CMS); |
623 | |
624 | using SortableVectorType = std::vector<unsigned>; |
625 | |
626 | SortableVectorType VRs; |
627 | for (auto &I : RB) |
628 | VRs.push_back(x: I.first); |
629 | llvm::sort(C&: VRs, Comp: LexCmp); |
630 | // Transfer the results to the outgoing register ordering. |
631 | for (unsigned i = 0, n = VRs.size(); i < n; ++i) |
632 | RO.insert(KV: std::make_pair(x&: VRs[i], y&: i)); |
633 | } |
634 | |
635 | inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { |
636 | return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; |
637 | } |
638 | |
639 | bool HexagonGenInsert::isConstant(unsigned VR) const { |
640 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
641 | uint16_t W = RC.width(); |
642 | for (uint16_t i = 0; i < W; ++i) { |
643 | const BitTracker::BitValue &BV = RC[i]; |
644 | if (BV.is(T: 0) || BV.is(T: 1)) |
645 | continue; |
646 | return false; |
647 | } |
648 | return true; |
649 | } |
650 | |
651 | bool HexagonGenInsert::isSmallConstant(unsigned VR) const { |
652 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
653 | uint16_t W = RC.width(); |
654 | if (W > 64) |
655 | return false; |
656 | uint64_t V = 0, B = 1; |
657 | for (uint16_t i = 0; i < W; ++i) { |
658 | const BitTracker::BitValue &BV = RC[i]; |
659 | if (BV.is(T: 1)) |
660 | V |= B; |
661 | else if (!BV.is(T: 0)) |
662 | return false; |
663 | B <<= 1; |
664 | } |
665 | |
666 | // For 32-bit registers, consider: Rd = #s16. |
667 | if (W == 32) |
668 | return isInt<16>(x: V); |
669 | |
670 | // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) |
671 | return isInt<8>(x: Lo_32(Value: V)) && isInt<8>(x: Hi_32(Value: V)); |
672 | } |
673 | |
674 | bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, |
675 | unsigned InsR, uint16_t L, uint16_t S) const { |
676 | const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstR); |
677 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: SrcR); |
678 | const TargetRegisterClass *InsRC = MRI->getRegClass(Reg: InsR); |
679 | // Only integet (32-/64-bit) register classes. |
680 | if (!isIntClass(RC: DstRC) || !isIntClass(RC: SrcRC) || !isIntClass(RC: InsRC)) |
681 | return false; |
682 | // The "source" register must be of the same class as DstR. |
683 | if (DstRC != SrcRC) |
684 | return false; |
685 | if (DstRC == InsRC) |
686 | return true; |
687 | // A 64-bit register can only be generated from other 64-bit registers. |
688 | if (DstRC == &Hexagon::DoubleRegsRegClass) |
689 | return false; |
690 | // Otherwise, the L and S cannot span 32-bit word boundary. |
691 | if (S < 32 && S+L > 32) |
692 | return false; |
693 | return true; |
694 | } |
695 | |
696 | bool HexagonGenInsert::findSelfReference(unsigned VR) const { |
697 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
698 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
699 | const BitTracker::BitValue &V = RC[i]; |
700 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) |
701 | return true; |
702 | } |
703 | return false; |
704 | } |
705 | |
706 | bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { |
707 | BitTracker::RegisterCell RC = CMS->lookup(VR); |
708 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
709 | const BitTracker::BitValue &V = RC[i]; |
710 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) |
711 | return true; |
712 | } |
713 | return false; |
714 | } |
715 | |
716 | void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, |
717 | RegisterSet &Defs) const { |
718 | for (const MachineOperand &MO : MI->operands()) { |
719 | if (!MO.isReg() || !MO.isDef()) |
720 | continue; |
721 | Register R = MO.getReg(); |
722 | if (!R.isVirtual()) |
723 | continue; |
724 | Defs.insert(R); |
725 | } |
726 | } |
727 | |
728 | void HexagonGenInsert::getInstrUses(const MachineInstr *MI, |
729 | RegisterSet &Uses) const { |
730 | for (const MachineOperand &MO : MI->operands()) { |
731 | if (!MO.isReg() || !MO.isUse()) |
732 | continue; |
733 | Register R = MO.getReg(); |
734 | if (!R.isVirtual()) |
735 | continue; |
736 | Uses.insert(R); |
737 | } |
738 | } |
739 | |
740 | unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, |
741 | const MachineBasicBlock *ToB, const UnsignedMap &RPO, |
742 | PairMapType &M) const { |
743 | // Forward distance from the end of a block to the beginning of it does |
744 | // not make sense. This function should not be called with FromB == ToB. |
745 | assert(FromB != ToB); |
746 | |
747 | unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); |
748 | // If we have already computed it, return the cached result. |
749 | PairMapType::iterator F = M.find(Val: std::make_pair(x&: FromN, y&: ToN)); |
750 | if (F != M.end()) |
751 | return F->second; |
752 | unsigned ToRPO = RPO.lookup(Val: ToN); |
753 | |
754 | unsigned MaxD = 0; |
755 | |
756 | for (const MachineBasicBlock *PB : ToB->predecessors()) { |
757 | // Skip back edges. Also, if FromB is a predecessor of ToB, the distance |
758 | // along that path will be 0, and we don't need to do any calculations |
759 | // on it. |
760 | if (PB == FromB || RPO.lookup(Val: PB->getNumber()) >= ToRPO) |
761 | continue; |
762 | unsigned D = PB->size() + distance(FromB, ToB: PB, RPO, M); |
763 | if (D > MaxD) |
764 | MaxD = D; |
765 | } |
766 | |
767 | // Memoize the result for later lookup. |
768 | M.insert(KV: std::make_pair(x: std::make_pair(x&: FromN, y&: ToN), y&: MaxD)); |
769 | return MaxD; |
770 | } |
771 | |
772 | unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, |
773 | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, |
774 | PairMapType &M) const { |
775 | const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); |
776 | if (FB == TB) |
777 | return std::distance(first: FromI, last: ToI); |
778 | unsigned D1 = std::distance(first: TB->begin(), last: ToI); |
779 | unsigned D2 = distance(FromB: FB, ToB: TB, RPO, M); |
780 | unsigned D3 = std::distance(first: FromI, last: FB->end()); |
781 | return D1+D2+D3; |
782 | } |
783 | |
784 | bool HexagonGenInsert::findRecordInsertForms(unsigned VR, |
785 | OrderedRegisterList &AVs) { |
786 | if (isDebug()) { |
787 | dbgs() << __func__ << ": " << printReg(Reg: VR, TRI: HRI) |
788 | << " AVs: " << PrintORL(AVs, HRI) << "\n" ; |
789 | } |
790 | if (AVs.size() == 0) |
791 | return false; |
792 | |
793 | using iterator = OrderedRegisterList::iterator; |
794 | |
795 | BitValueOrdering BVO(BaseOrd); |
796 | const BitTracker::RegisterCell &RC = CMS->lookup(VR); |
797 | uint16_t W = RC.width(); |
798 | |
799 | using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift) |
800 | using RSListType = std::vector<RSRecord>; |
801 | // Have a map, with key being the matching prefix length, and the value |
802 | // being the list of pairs (R,S), where R's prefix matches VR at S. |
803 | // (DenseMap<uint16_t,RSListType> fails to instantiate.) |
804 | using LRSMapType = DenseMap<unsigned, RSListType>; |
805 | LRSMapType LM; |
806 | |
807 | // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, |
808 | // and find matching prefixes from AVs with the rotated RC. Such a prefix |
809 | // would match a string of bits (of length L) in RC starting at S. |
810 | for (uint16_t S = 0; S < W; ++S) { |
811 | iterator B = AVs.begin(), E = AVs.end(); |
812 | // The registers in AVs are ordered according to the lexical order of |
813 | // the corresponding register cells. This means that the range of regis- |
814 | // ters in AVs that match a prefix of length L+1 will be contained in |
815 | // the range that matches a prefix of length L. This means that we can |
816 | // keep narrowing the search space as the prefix length goes up. This |
817 | // helps reduce the overall complexity of the search. |
818 | uint16_t L; |
819 | for (L = 0; L < W-S; ++L) { |
820 | // Compare against VR's bits starting at S, which emulates rotation |
821 | // of VR by S. |
822 | RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); |
823 | iterator NewB = std::lower_bound(first: B, last: E, val: VR, comp: RCB); |
824 | iterator NewE = std::upper_bound(first: NewB, last: E, val: VR, comp: RCB); |
825 | // For the registers that are eliminated from the next range, L is |
826 | // the longest prefix matching VR at position S (their prefixes |
827 | // differ from VR at S+L). If L>0, record this information for later |
828 | // use. |
829 | if (L > 0) { |
830 | for (iterator I = B; I != NewB; ++I) |
831 | LM[L].push_back(x: std::make_pair(x&: *I, y&: S)); |
832 | for (iterator I = NewE; I != E; ++I) |
833 | LM[L].push_back(x: std::make_pair(x&: *I, y&: S)); |
834 | } |
835 | B = NewB, E = NewE; |
836 | if (B == E) |
837 | break; |
838 | } |
839 | // Record the final register range. If this range is non-empty, then |
840 | // L=W-S. |
841 | assert(B == E || L == W-S); |
842 | if (B != E) { |
843 | for (iterator I = B; I != E; ++I) |
844 | LM[L].push_back(x: std::make_pair(x&: *I, y&: S)); |
845 | // If B!=E, then we found a range of registers whose prefixes cover the |
846 | // rest of VR from position S. There is no need to further advance S. |
847 | break; |
848 | } |
849 | } |
850 | |
851 | if (isDebug()) { |
852 | dbgs() << "Prefixes matching register " << printReg(Reg: VR, TRI: HRI) << "\n" ; |
853 | for (const auto &I : LM) { |
854 | dbgs() << " L=" << I.first << ':'; |
855 | const RSListType &LL = I.second; |
856 | for (const auto &J : LL) |
857 | dbgs() << " (" << printReg(Reg: J.first, TRI: HRI) << ",@" << J.second << ')'; |
858 | dbgs() << '\n'; |
859 | } |
860 | } |
861 | |
862 | bool Recorded = false; |
863 | |
864 | for (unsigned SrcR : AVs) { |
865 | int FDi = -1, LDi = -1; // First/last different bit. |
866 | const BitTracker::RegisterCell &AC = CMS->lookup(VR: SrcR); |
867 | uint16_t AW = AC.width(); |
868 | for (uint16_t i = 0, w = std::min(a: W, b: AW); i < w; ++i) { |
869 | if (RC[i] == AC[i]) |
870 | continue; |
871 | if (FDi == -1) |
872 | FDi = i; |
873 | LDi = i; |
874 | } |
875 | if (FDi == -1) |
876 | continue; // TODO (future): Record identical registers. |
877 | // Look for a register whose prefix could patch the range [FD..LD] |
878 | // where VR and SrcR differ. |
879 | uint16_t FD = FDi, LD = LDi; // Switch to unsigned type. |
880 | uint16_t MinL = LD-FD+1; |
881 | for (uint16_t L = MinL; L < W; ++L) { |
882 | LRSMapType::iterator F = LM.find(Val: L); |
883 | if (F == LM.end()) |
884 | continue; |
885 | RSListType &LL = F->second; |
886 | for (const auto &I : LL) { |
887 | uint16_t S = I.second; |
888 | // MinL is the minimum length of the prefix. Any length above MinL |
889 | // allows some flexibility as to where the prefix can start: |
890 | // given the extra length EL=L-MinL, the prefix must start between |
891 | // max(0,FD-EL) and FD. |
892 | if (S > FD) // Starts too late. |
893 | continue; |
894 | uint16_t EL = L-MinL; |
895 | uint16_t LowS = (EL < FD) ? FD-EL : 0; |
896 | if (S < LowS) // Starts too early. |
897 | continue; |
898 | unsigned InsR = I.first; |
899 | if (!isValidInsertForm(DstR: VR, SrcR, InsR, L, S)) |
900 | continue; |
901 | if (isDebug()) { |
902 | dbgs() << printReg(Reg: VR, TRI: HRI) << " = insert(" << printReg(Reg: SrcR, TRI: HRI) |
903 | << ',' << printReg(Reg: InsR, TRI: HRI) << ",#" << L << ",#" |
904 | << S << ")\n" ; |
905 | } |
906 | IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); |
907 | IFMap[VR].push_back(x: RR); |
908 | Recorded = true; |
909 | } |
910 | } |
911 | } |
912 | |
913 | return Recorded; |
914 | } |
915 | |
916 | void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, |
917 | OrderedRegisterList &AVs) { |
918 | if (isDebug()) |
919 | dbgs() << "visiting block " << printMBBReference(MBB: *B) << "\n" ; |
920 | |
921 | // First, check if this block is reachable at all. If not, the bit tracker |
922 | // will not have any information about registers in it. |
923 | if (!CMS->BT.reached(B)) |
924 | return; |
925 | |
926 | bool DoConst = OptConst; |
927 | // Keep a separate set of registers defined in this block, so that we |
928 | // can remove them from the list of available registers once all DT |
929 | // successors have been processed. |
930 | RegisterSet BlockDefs, InsDefs; |
931 | for (MachineInstr &MI : *B) { |
932 | InsDefs.clear(); |
933 | getInstrDefs(MI: &MI, Defs&: InsDefs); |
934 | // Leave those alone. They are more transparent than "insert". |
935 | bool Skip = MI.isCopy() || MI.isRegSequence(); |
936 | |
937 | if (!Skip) { |
938 | // Visit all defined registers, and attempt to find the corresponding |
939 | // "insert" representations. |
940 | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(Prev: VR)) { |
941 | // Do not collect registers that are known to be compile-time cons- |
942 | // tants, unless requested. |
943 | if (!DoConst && isConstant(VR)) |
944 | continue; |
945 | // If VR's cell contains a reference to VR, then VR cannot be defined |
946 | // via "insert". If VR is a constant that can be generated in a single |
947 | // instruction (without constant extenders), generating it via insert |
948 | // makes no sense. |
949 | if (findSelfReference(VR) || isSmallConstant(VR)) |
950 | continue; |
951 | |
952 | findRecordInsertForms(VR, AVs); |
953 | // Stop if the map size is too large. |
954 | if (IFMap.size() > MaxIFMSize) |
955 | return; |
956 | } |
957 | } |
958 | |
959 | // Insert the defined registers into the list of available registers |
960 | // after they have been processed. |
961 | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(Prev: VR)) |
962 | AVs.insert(VR); |
963 | BlockDefs.insert(Rs: InsDefs); |
964 | } |
965 | |
966 | for (auto *DTN : children<MachineDomTreeNode*>(G: MDT->getNode(BB: B))) { |
967 | MachineBasicBlock *SB = DTN->getBlock(); |
968 | collectInBlock(B: SB, AVs); |
969 | } |
970 | |
971 | for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(Prev: VR)) |
972 | AVs.remove(VR); |
973 | } |
974 | |
975 | void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, |
976 | RegisterSet &RMs) const { |
977 | // For a given register VR and a insert form, find the registers that are |
978 | // used by the current definition of VR, and which would no longer be |
979 | // needed for it after the definition of VR is replaced with the insert |
980 | // form. These are the registers that could potentially become dead. |
981 | RegisterSet Regs[2]; |
982 | |
983 | unsigned S = 0; // Register set selector. |
984 | Regs[S].insert(R: VR); |
985 | |
986 | while (!Regs[S].empty()) { |
987 | // Breadth-first search. |
988 | unsigned OtherS = 1-S; |
989 | Regs[OtherS].clear(); |
990 | for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(Prev: R)) { |
991 | Regs[S].remove(R); |
992 | if (R == IF.SrcR || R == IF.InsR) |
993 | continue; |
994 | // Check if a given register has bits that are references to any other |
995 | // registers. This is to detect situations where the instruction that |
996 | // defines register R takes register Q as an operand, but R itself does |
997 | // not contain any bits from Q. Loads are examples of how this could |
998 | // happen: |
999 | // R = load Q |
1000 | // In this case (assuming we do not have any knowledge about the loaded |
1001 | // value), we must not treat R as a "conveyance" of the bits from Q. |
1002 | // (The information in BT about R's bits would have them as constants, |
1003 | // in case of zero-extending loads, or refs to R.) |
1004 | if (!findNonSelfReference(VR: R)) |
1005 | continue; |
1006 | RMs.insert(R); |
1007 | const MachineInstr *DefI = MRI->getVRegDef(Reg: R); |
1008 | assert(DefI); |
1009 | // Do not iterate past PHI nodes to avoid infinite loops. This can |
1010 | // make the final set a bit less accurate, but the removable register |
1011 | // sets are an approximation anyway. |
1012 | if (DefI->isPHI()) |
1013 | continue; |
1014 | getInstrUses(MI: DefI, Uses&: Regs[OtherS]); |
1015 | } |
1016 | S = OtherS; |
1017 | } |
1018 | // The register VR is added to the list as a side-effect of the algorithm, |
1019 | // but it is not "potentially removable". A potentially removable register |
1020 | // is one that may become unused (dead) after conversion to the insert form |
1021 | // IF, and obviously VR (or its replacement) will not become dead by apply- |
1022 | // ing IF. |
1023 | RMs.remove(R: VR); |
1024 | } |
1025 | |
1026 | void HexagonGenInsert::computeRemovableRegisters() { |
1027 | for (auto &I : IFMap) { |
1028 | IFListType &LL = I.second; |
1029 | for (auto &J : LL) |
1030 | findRemovableRegisters(VR: I.first, IF: J.first, RMs&: J.second); |
1031 | } |
1032 | } |
1033 | |
1034 | void HexagonGenInsert::pruneEmptyLists() { |
1035 | // Remove all entries from the map, where the register has no insert forms |
1036 | // associated with it. |
1037 | using IterListType = SmallVector<IFMapType::iterator, 16>; |
1038 | IterListType Prune; |
1039 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
1040 | if (I->second.empty()) |
1041 | Prune.push_back(Elt: I); |
1042 | } |
1043 | for (const auto &It : Prune) |
1044 | IFMap.erase(I: It); |
1045 | } |
1046 | |
1047 | void HexagonGenInsert::pruneCoveredSets(unsigned VR) { |
1048 | IFMapType::iterator F = IFMap.find(Val: VR); |
1049 | assert(F != IFMap.end()); |
1050 | IFListType &LL = F->second; |
1051 | |
1052 | // First, examine the IF candidates for register VR whose removable-regis- |
1053 | // ter sets are empty. This means that a given candidate will not help eli- |
1054 | // minate any registers, but since "insert" is not a constant-extendable |
1055 | // instruction, using such a candidate may reduce code size if the defini- |
1056 | // tion of VR is constant-extended. |
1057 | // If there exists a candidate with a non-empty set, the ones with empty |
1058 | // sets will not be used and can be removed. |
1059 | MachineInstr *DefVR = MRI->getVRegDef(Reg: VR); |
1060 | bool DefEx = HII->isConstExtended(MI: *DefVR); |
1061 | bool HasNE = false; |
1062 | for (const auto &I : LL) { |
1063 | if (I.second.empty()) |
1064 | continue; |
1065 | HasNE = true; |
1066 | break; |
1067 | } |
1068 | if (!DefEx || HasNE) { |
1069 | // The definition of VR is not constant-extended, or there is a candidate |
1070 | // with a non-empty set. Remove all candidates with empty sets. |
1071 | auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { |
1072 | return IR.second.empty(); |
1073 | }; |
1074 | llvm::erase_if(C&: LL, P: IsEmpty); |
1075 | } else { |
1076 | // The definition of VR is constant-extended, and all candidates have |
1077 | // empty removable-register sets. Pick the maximum candidate, and remove |
1078 | // all others. The "maximum" does not have any special meaning here, it |
1079 | // is only so that the candidate that will remain on the list is selec- |
1080 | // ted deterministically. |
1081 | IFRecord MaxIF = LL[0].first; |
1082 | for (unsigned i = 1, n = LL.size(); i < n; ++i) { |
1083 | // If LL[MaxI] < LL[i], then MaxI = i. |
1084 | const IFRecord &IF = LL[i].first; |
1085 | unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; |
1086 | unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; |
1087 | if (M0 > R0) |
1088 | continue; |
1089 | if (M0 == R0) { |
1090 | if (M1 > R1) |
1091 | continue; |
1092 | if (M1 == R1) { |
1093 | if (MaxIF.Wdh > IF.Wdh) |
1094 | continue; |
1095 | if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) |
1096 | continue; |
1097 | } |
1098 | } |
1099 | // MaxIF < IF. |
1100 | MaxIF = IF; |
1101 | } |
1102 | // Remove everything except the maximum candidate. All register sets |
1103 | // are empty, so no need to preserve anything. |
1104 | LL.clear(); |
1105 | LL.push_back(x: std::make_pair(x&: MaxIF, y: RegisterSet())); |
1106 | } |
1107 | |
1108 | // Now, remove those whose sets of potentially removable registers are |
1109 | // contained in another IF candidate for VR. For example, given these |
1110 | // candidates for %45, |
1111 | // %45: |
1112 | // (%44,%41,#9,#8), { %42 } |
1113 | // (%43,%41,#9,#8), { %42 %44 } |
1114 | // remove the first one, since it is contained in the second one. |
1115 | for (unsigned i = 0, n = LL.size(); i < n; ) { |
1116 | const RegisterSet &RMi = LL[i].second; |
1117 | unsigned j = 0; |
1118 | while (j < n) { |
1119 | if (j != i && LL[j].second.includes(Rs: RMi)) |
1120 | break; |
1121 | j++; |
1122 | } |
1123 | if (j == n) { // RMi not contained in anything else. |
1124 | i++; |
1125 | continue; |
1126 | } |
1127 | LL.erase(position: LL.begin()+i); |
1128 | n = LL.size(); |
1129 | } |
1130 | } |
1131 | |
1132 | void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, |
1133 | PairMapType &M) { |
1134 | IFMapType::iterator F = IFMap.find(Val: VR); |
1135 | assert(F != IFMap.end()); |
1136 | IFListType &LL = F->second; |
1137 | unsigned Cutoff = VRegDistCutoff; |
1138 | const MachineInstr *DefV = MRI->getVRegDef(Reg: VR); |
1139 | |
1140 | for (unsigned i = LL.size(); i > 0; --i) { |
1141 | unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; |
1142 | const MachineInstr *DefS = MRI->getVRegDef(Reg: SR); |
1143 | const MachineInstr *DefI = MRI->getVRegDef(Reg: IR); |
1144 | unsigned DSV = distance(FromI: DefS, ToI: DefV, RPO, M); |
1145 | if (DSV < Cutoff) { |
1146 | unsigned DIV = distance(FromI: DefI, ToI: DefV, RPO, M); |
1147 | if (DIV < Cutoff) |
1148 | continue; |
1149 | } |
1150 | LL.erase(position: LL.begin()+(i-1)); |
1151 | } |
1152 | } |
1153 | |
1154 | void HexagonGenInsert::pruneRegCopies(unsigned VR) { |
1155 | IFMapType::iterator F = IFMap.find(Val: VR); |
1156 | assert(F != IFMap.end()); |
1157 | IFListType &LL = F->second; |
1158 | |
1159 | auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { |
1160 | return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); |
1161 | }; |
1162 | llvm::erase_if(C&: LL, P: IsCopy); |
1163 | } |
1164 | |
1165 | void HexagonGenInsert::pruneCandidates() { |
1166 | // Remove candidates that are not beneficial, regardless of the final |
1167 | // selection method. |
1168 | // First, remove candidates whose potentially removable set is a subset |
1169 | // of another candidate's set. |
1170 | for (const auto &I : IFMap) |
1171 | pruneCoveredSets(VR: I.first); |
1172 | |
1173 | UnsignedMap RPO; |
1174 | |
1175 | using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; |
1176 | |
1177 | RPOTType RPOT(MFN); |
1178 | unsigned RPON = 0; |
1179 | for (const auto &I : RPOT) |
1180 | RPO[I->getNumber()] = RPON++; |
1181 | |
1182 | PairMapType Memo; // Memoization map for distance calculation. |
1183 | // Remove candidates that would use registers defined too far away. |
1184 | for (const auto &I : IFMap) |
1185 | pruneUsesTooFar(VR: I.first, RPO, M&: Memo); |
1186 | |
1187 | pruneEmptyLists(); |
1188 | |
1189 | for (const auto &I : IFMap) |
1190 | pruneRegCopies(VR: I.first); |
1191 | } |
1192 | |
1193 | namespace { |
1194 | |
1195 | // Class for comparing IF candidates for registers that have multiple of |
1196 | // them. The smaller the candidate, according to this ordering, the better. |
1197 | // First, compare the number of zeros in the associated potentially remova- |
1198 | // ble register sets. "Zero" indicates that the register is very likely to |
1199 | // become dead after this transformation. |
1200 | // Second, compare "averages", i.e. use-count per size. The lower wins. |
1201 | // After that, it does not really matter which one is smaller. Resolve |
1202 | // the tie in some deterministic way. |
1203 | struct IFOrdering { |
1204 | IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) |
1205 | : UseC(UC), BaseOrd(BO) {} |
1206 | |
1207 | bool operator() (const IFRecordWithRegSet &A, |
1208 | const IFRecordWithRegSet &B) const; |
1209 | |
1210 | private: |
1211 | void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, |
1212 | unsigned &Sum) const; |
1213 | |
1214 | const UnsignedMap &UseC; |
1215 | const RegisterOrdering &BaseOrd; |
1216 | }; |
1217 | |
1218 | } // end anonymous namespace |
1219 | |
1220 | bool IFOrdering::operator() (const IFRecordWithRegSet &A, |
1221 | const IFRecordWithRegSet &B) const { |
1222 | unsigned SizeA = 0, ZeroA = 0, SumA = 0; |
1223 | unsigned SizeB = 0, ZeroB = 0, SumB = 0; |
1224 | stats(Rs: A.second, Size&: SizeA, Zero&: ZeroA, Sum&: SumA); |
1225 | stats(Rs: B.second, Size&: SizeB, Zero&: ZeroB, Sum&: SumB); |
1226 | |
1227 | // We will pick the minimum element. The more zeros, the better. |
1228 | if (ZeroA != ZeroB) |
1229 | return ZeroA > ZeroB; |
1230 | // Compare SumA/SizeA with SumB/SizeB, lower is better. |
1231 | uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; |
1232 | if (AvgA != AvgB) |
1233 | return AvgA < AvgB; |
1234 | |
1235 | // The sets compare identical so far. Resort to comparing the IF records. |
1236 | // The actual values don't matter, this is only for determinism. |
1237 | unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; |
1238 | if (OSA != OSB) |
1239 | return OSA < OSB; |
1240 | unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; |
1241 | if (OIA != OIB) |
1242 | return OIA < OIB; |
1243 | if (A.first.Wdh != B.first.Wdh) |
1244 | return A.first.Wdh < B.first.Wdh; |
1245 | return A.first.Off < B.first.Off; |
1246 | } |
1247 | |
1248 | void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, |
1249 | unsigned &Sum) const { |
1250 | for (unsigned R = Rs.find_first(); R; R = Rs.find_next(Prev: R)) { |
1251 | UnsignedMap::const_iterator F = UseC.find(Val: R); |
1252 | assert(F != UseC.end()); |
1253 | unsigned UC = F->second; |
1254 | if (UC == 0) |
1255 | Zero++; |
1256 | Sum += UC; |
1257 | Size++; |
1258 | } |
1259 | } |
1260 | |
1261 | void HexagonGenInsert::selectCandidates() { |
1262 | // Some registers may have multiple valid candidates. Pick the best one |
1263 | // (or decide not to use any). |
1264 | |
1265 | // Compute the "removability" measure of R: |
1266 | // For each potentially removable register R, record the number of regis- |
1267 | // ters with IF candidates, where R appears in at least one set. |
1268 | RegisterSet AllRMs; |
1269 | UnsignedMap UseC, RemC; |
1270 | IFMapType::iterator End = IFMap.end(); |
1271 | |
1272 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
1273 | const IFListType &LL = I->second; |
1274 | RegisterSet TT; |
1275 | for (const auto &J : LL) |
1276 | TT.insert(Rs: J.second); |
1277 | for (unsigned R = TT.find_first(); R; R = TT.find_next(Prev: R)) |
1278 | RemC[R]++; |
1279 | AllRMs.insert(Rs: TT); |
1280 | } |
1281 | |
1282 | for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(Prev: R)) { |
1283 | using use_iterator = MachineRegisterInfo::use_nodbg_iterator; |
1284 | using InstrSet = SmallSet<const MachineInstr *, 16>; |
1285 | |
1286 | InstrSet UIs; |
1287 | // Count as the number of instructions in which R is used, not the |
1288 | // number of operands. |
1289 | use_iterator E = MRI->use_nodbg_end(); |
1290 | for (use_iterator I = MRI->use_nodbg_begin(RegNo: R); I != E; ++I) |
1291 | UIs.insert(Ptr: I->getParent()); |
1292 | unsigned C = UIs.size(); |
1293 | // Calculate a measure, which is the number of instructions using R, |
1294 | // minus the "removability" count computed earlier. |
1295 | unsigned D = RemC[R]; |
1296 | UseC[R] = (C > D) ? C-D : 0; // doz |
1297 | } |
1298 | |
1299 | bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; |
1300 | if (!SelectAll0 && !SelectHas0) |
1301 | SelectAll0 = true; |
1302 | |
1303 | // The smaller the number UseC for a given register R, the "less used" |
1304 | // R is aside from the opportunities for removal offered by generating |
1305 | // "insert" instructions. |
1306 | // Iterate over the IF map, and for those registers that have multiple |
1307 | // candidates, pick the minimum one according to IFOrdering. |
1308 | IFOrdering IFO(UseC, BaseOrd); |
1309 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
1310 | IFListType &LL = I->second; |
1311 | if (LL.empty()) |
1312 | continue; |
1313 | // Get the minimum element, remember it and clear the list. If the |
1314 | // element found is adequate, we will put it back on the list, other- |
1315 | // wise the list will remain empty, and the entry for this register |
1316 | // will be removed (i.e. this register will not be replaced by insert). |
1317 | IFListType::iterator MinI = llvm::min_element(Range&: LL, C: IFO); |
1318 | assert(MinI != LL.end()); |
1319 | IFRecordWithRegSet M = *MinI; |
1320 | LL.clear(); |
1321 | |
1322 | // We want to make sure that this replacement will have a chance to be |
1323 | // beneficial, and that means that we want to have indication that some |
1324 | // register will be removed. The most likely registers to be eliminated |
1325 | // are the use operands in the definition of I->first. Accept/reject a |
1326 | // candidate based on how many of its uses it can potentially eliminate. |
1327 | |
1328 | RegisterSet Us; |
1329 | const MachineInstr *DefI = MRI->getVRegDef(Reg: I->first); |
1330 | getInstrUses(MI: DefI, Uses&: Us); |
1331 | bool Accept = false; |
1332 | |
1333 | if (SelectAll0) { |
1334 | bool All0 = true; |
1335 | for (unsigned R = Us.find_first(); R; R = Us.find_next(Prev: R)) { |
1336 | if (UseC[R] == 0) |
1337 | continue; |
1338 | All0 = false; |
1339 | break; |
1340 | } |
1341 | Accept = All0; |
1342 | } else if (SelectHas0) { |
1343 | bool Has0 = false; |
1344 | for (unsigned R = Us.find_first(); R; R = Us.find_next(Prev: R)) { |
1345 | if (UseC[R] != 0) |
1346 | continue; |
1347 | Has0 = true; |
1348 | break; |
1349 | } |
1350 | Accept = Has0; |
1351 | } |
1352 | if (Accept) |
1353 | LL.push_back(x: M); |
1354 | } |
1355 | |
1356 | // Remove candidates that add uses of removable registers, unless the |
1357 | // removable registers are among replacement candidates. |
1358 | // Recompute the removable registers, since some candidates may have |
1359 | // been eliminated. |
1360 | AllRMs.clear(); |
1361 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
1362 | const IFListType &LL = I->second; |
1363 | if (!LL.empty()) |
1364 | AllRMs.insert(Rs: LL[0].second); |
1365 | } |
1366 | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { |
1367 | IFListType &LL = I->second; |
1368 | if (LL.empty()) |
1369 | continue; |
1370 | unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; |
1371 | if (AllRMs[SR] || AllRMs[IR]) |
1372 | LL.clear(); |
1373 | } |
1374 | |
1375 | pruneEmptyLists(); |
1376 | } |
1377 | |
1378 | bool HexagonGenInsert::generateInserts() { |
1379 | // Create a new register for each one from IFMap, and store them in the |
1380 | // map. |
1381 | UnsignedMap RegMap; |
1382 | for (auto &I : IFMap) { |
1383 | unsigned VR = I.first; |
1384 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: VR); |
1385 | Register NewVR = MRI->createVirtualRegister(RegClass: RC); |
1386 | RegMap[VR] = NewVR; |
1387 | } |
1388 | |
1389 | // We can generate the "insert" instructions using potentially stale re- |
1390 | // gisters: SrcR and InsR for a given VR may be among other registers that |
1391 | // are also replaced. This is fine, we will do the mass "rauw" a bit later. |
1392 | for (auto &I : IFMap) { |
1393 | MachineInstr *MI = MRI->getVRegDef(Reg: I.first); |
1394 | MachineBasicBlock &B = *MI->getParent(); |
1395 | DebugLoc DL = MI->getDebugLoc(); |
1396 | unsigned NewR = RegMap[I.first]; |
1397 | bool R32 = MRI->getRegClass(Reg: NewR) == &Hexagon::IntRegsRegClass; |
1398 | const MCInstrDesc &D = R32 ? HII->get(Opcode: Hexagon::S2_insert) |
1399 | : HII->get(Opcode: Hexagon::S2_insertp); |
1400 | IFRecord IF = I.second[0].first; |
1401 | unsigned Wdh = IF.Wdh, Off = IF.Off; |
1402 | unsigned InsS = 0; |
1403 | if (R32 && MRI->getRegClass(Reg: IF.InsR) == &Hexagon::DoubleRegsRegClass) { |
1404 | InsS = Hexagon::isub_lo; |
1405 | if (Off >= 32) { |
1406 | InsS = Hexagon::isub_hi; |
1407 | Off -= 32; |
1408 | } |
1409 | } |
1410 | // Advance to the proper location for inserting instructions. This could |
1411 | // be B.end(). |
1412 | MachineBasicBlock::iterator At = MI; |
1413 | if (MI->isPHI()) |
1414 | At = B.getFirstNonPHI(); |
1415 | |
1416 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: D, DestReg: NewR) |
1417 | .addReg(RegNo: IF.SrcR) |
1418 | .addReg(RegNo: IF.InsR, flags: 0, SubReg: InsS) |
1419 | .addImm(Val: Wdh) |
1420 | .addImm(Val: Off); |
1421 | |
1422 | MRI->clearKillFlags(Reg: IF.SrcR); |
1423 | MRI->clearKillFlags(Reg: IF.InsR); |
1424 | } |
1425 | |
1426 | for (const auto &I : IFMap) { |
1427 | MachineInstr *DefI = MRI->getVRegDef(Reg: I.first); |
1428 | MRI->replaceRegWith(FromReg: I.first, ToReg: RegMap[I.first]); |
1429 | DefI->eraseFromParent(); |
1430 | } |
1431 | |
1432 | return true; |
1433 | } |
1434 | |
1435 | bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { |
1436 | bool Changed = false; |
1437 | |
1438 | for (auto *DTN : children<MachineDomTreeNode*>(G: N)) |
1439 | Changed |= removeDeadCode(N: DTN); |
1440 | |
1441 | MachineBasicBlock *B = N->getBlock(); |
1442 | std::vector<MachineInstr*> Instrs; |
1443 | for (MachineInstr &MI : llvm::reverse(C&: *B)) |
1444 | Instrs.push_back(x: &MI); |
1445 | |
1446 | for (MachineInstr *MI : Instrs) { |
1447 | unsigned Opc = MI->getOpcode(); |
1448 | // Do not touch lifetime markers. This is why the target-independent DCE |
1449 | // cannot be used. |
1450 | if (Opc == TargetOpcode::LIFETIME_START || |
1451 | Opc == TargetOpcode::LIFETIME_END) |
1452 | continue; |
1453 | bool Store = false; |
1454 | if (MI->isInlineAsm() || !MI->isSafeToMove(AA: nullptr, SawStore&: Store)) |
1455 | continue; |
1456 | |
1457 | bool AllDead = true; |
1458 | SmallVector<unsigned,2> Regs; |
1459 | for (const MachineOperand &MO : MI->operands()) { |
1460 | if (!MO.isReg() || !MO.isDef()) |
1461 | continue; |
1462 | Register R = MO.getReg(); |
1463 | if (!R.isVirtual() || !MRI->use_nodbg_empty(RegNo: R)) { |
1464 | AllDead = false; |
1465 | break; |
1466 | } |
1467 | Regs.push_back(Elt: R); |
1468 | } |
1469 | if (!AllDead) |
1470 | continue; |
1471 | |
1472 | B->erase(I: MI); |
1473 | for (unsigned Reg : Regs) |
1474 | MRI->markUsesInDebugValueAsUndef(Reg); |
1475 | Changed = true; |
1476 | } |
1477 | |
1478 | return Changed; |
1479 | } |
1480 | |
1481 | bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { |
1482 | if (skipFunction(F: MF.getFunction())) |
1483 | return false; |
1484 | |
1485 | bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; |
1486 | bool Changed = false; |
1487 | |
1488 | // Verify: one, but not both. |
1489 | assert(!OptSelectAll0 || !OptSelectHas0); |
1490 | |
1491 | IFMap.clear(); |
1492 | BaseOrd.clear(); |
1493 | CellOrd.clear(); |
1494 | |
1495 | const auto &ST = MF.getSubtarget<HexagonSubtarget>(); |
1496 | HII = ST.getInstrInfo(); |
1497 | HRI = ST.getRegisterInfo(); |
1498 | MFN = &MF; |
1499 | MRI = &MF.getRegInfo(); |
1500 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1501 | |
1502 | // Clean up before any further processing, so that dead code does not |
1503 | // get used in a newly generated "insert" instruction. Have a custom |
1504 | // version of DCE that preserves lifetime markers. Without it, merging |
1505 | // of stack objects can fail to recognize and merge disjoint objects |
1506 | // leading to unnecessary stack growth. |
1507 | Changed = removeDeadCode(N: MDT->getRootNode()); |
1508 | |
1509 | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); |
1510 | BitTracker BTLoc(HE, MF); |
1511 | BTLoc.trace(On: isDebug()); |
1512 | BTLoc.run(); |
1513 | CellMapShadow MS(BTLoc); |
1514 | CMS = &MS; |
1515 | |
1516 | buildOrderingMF(RO&: BaseOrd); |
1517 | buildOrderingBT(RB&: BaseOrd, RO&: CellOrd); |
1518 | |
1519 | if (isDebug()) { |
1520 | dbgs() << "Cell ordering:\n" ; |
1521 | for (const auto &I : CellOrd) { |
1522 | unsigned VR = I.first, Pos = I.second; |
1523 | dbgs() << printReg(Reg: VR, TRI: HRI) << " -> " << Pos << "\n" ; |
1524 | } |
1525 | } |
1526 | |
1527 | // Collect candidates for conversion into the insert forms. |
1528 | MachineBasicBlock *RootB = MDT->getRoot(); |
1529 | OrderedRegisterList AvailR(CellOrd); |
1530 | |
1531 | const char *const TGName = "hexinsert" ; |
1532 | const char *const TGDesc = "Generate Insert Instructions" ; |
1533 | |
1534 | { |
1535 | NamedRegionTimer _T("collection" , "collection" , TGName, TGDesc, |
1536 | TimingDetail); |
1537 | collectInBlock(B: RootB, AVs&: AvailR); |
1538 | // Complete the information gathered in IFMap. |
1539 | computeRemovableRegisters(); |
1540 | } |
1541 | |
1542 | if (isDebug()) { |
1543 | dbgs() << "Candidates after collection:\n" ; |
1544 | dump_map(); |
1545 | } |
1546 | |
1547 | if (IFMap.empty()) |
1548 | return Changed; |
1549 | |
1550 | { |
1551 | NamedRegionTimer _T("pruning" , "pruning" , TGName, TGDesc, TimingDetail); |
1552 | pruneCandidates(); |
1553 | } |
1554 | |
1555 | if (isDebug()) { |
1556 | dbgs() << "Candidates after pruning:\n" ; |
1557 | dump_map(); |
1558 | } |
1559 | |
1560 | if (IFMap.empty()) |
1561 | return Changed; |
1562 | |
1563 | { |
1564 | NamedRegionTimer _T("selection" , "selection" , TGName, TGDesc, TimingDetail); |
1565 | selectCandidates(); |
1566 | } |
1567 | |
1568 | if (isDebug()) { |
1569 | dbgs() << "Candidates after selection:\n" ; |
1570 | dump_map(); |
1571 | } |
1572 | |
1573 | // Filter out vregs beyond the cutoff. |
1574 | if (VRegIndexCutoff.getPosition()) { |
1575 | unsigned Cutoff = VRegIndexCutoff; |
1576 | |
1577 | using IterListType = SmallVector<IFMapType::iterator, 16>; |
1578 | |
1579 | IterListType Out; |
1580 | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { |
1581 | unsigned Idx = Register::virtReg2Index(Reg: I->first); |
1582 | if (Idx >= Cutoff) |
1583 | Out.push_back(Elt: I); |
1584 | } |
1585 | for (const auto &It : Out) |
1586 | IFMap.erase(I: It); |
1587 | } |
1588 | if (IFMap.empty()) |
1589 | return Changed; |
1590 | |
1591 | { |
1592 | NamedRegionTimer _T("generation" , "generation" , TGName, TGDesc, |
1593 | TimingDetail); |
1594 | generateInserts(); |
1595 | } |
1596 | |
1597 | return true; |
1598 | } |
1599 | |
1600 | FunctionPass *llvm::createHexagonGenInsert() { |
1601 | return new HexagonGenInsert(); |
1602 | } |
1603 | |
1604 | //===----------------------------------------------------------------------===// |
1605 | // Public Constructor Functions |
1606 | //===----------------------------------------------------------------------===// |
1607 | |
1608 | INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert" , |
1609 | "Hexagon generate \"insert\" instructions" , false, false) |
1610 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
1611 | INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert" , |
1612 | "Hexagon generate \"insert\" instructions" , false, false) |
1613 | |