1 | //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual |
11 | /// flag bits. |
12 | /// |
13 | /// We have to do this by carefully analyzing and rewriting the usage of the |
14 | /// copied EFLAGS register because there is no general way to rematerialize the |
15 | /// entire EFLAGS register safely and efficiently. Using `popf` both forces |
16 | /// dynamic stack adjustment and can create correctness issues due to IF, TF, |
17 | /// and other non-status flags being overwritten. Using sequences involving |
18 | /// SAHF don't work on all x86 processors and are often quite slow compared to |
19 | /// directly testing a single status preserved in its own GPR. |
20 | /// |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "X86.h" |
24 | #include "X86InstrBuilder.h" |
25 | #include "X86InstrInfo.h" |
26 | #include "X86Subtarget.h" |
27 | #include "llvm/ADT/DepthFirstIterator.h" |
28 | #include "llvm/ADT/PostOrderIterator.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/ScopeExit.h" |
31 | #include "llvm/ADT/SmallPtrSet.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/Statistic.h" |
34 | #include "llvm/CodeGen/MachineBasicBlock.h" |
35 | #include "llvm/CodeGen/MachineConstantPool.h" |
36 | #include "llvm/CodeGen/MachineDominators.h" |
37 | #include "llvm/CodeGen/MachineFunction.h" |
38 | #include "llvm/CodeGen/MachineFunctionPass.h" |
39 | #include "llvm/CodeGen/MachineInstr.h" |
40 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
41 | #include "llvm/CodeGen/MachineModuleInfo.h" |
42 | #include "llvm/CodeGen/MachineOperand.h" |
43 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
44 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
45 | #include "llvm/CodeGen/TargetInstrInfo.h" |
46 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
47 | #include "llvm/CodeGen/TargetSchedule.h" |
48 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
49 | #include "llvm/IR/DebugLoc.h" |
50 | #include "llvm/MC/MCSchedule.h" |
51 | #include "llvm/Pass.h" |
52 | #include "llvm/Support/CommandLine.h" |
53 | #include "llvm/Support/Debug.h" |
54 | #include "llvm/Support/raw_ostream.h" |
55 | #include <algorithm> |
56 | #include <cassert> |
57 | #include <iterator> |
58 | #include <utility> |
59 | |
60 | using namespace llvm; |
61 | |
62 | #define PASS_KEY "x86-flags-copy-lowering" |
63 | #define DEBUG_TYPE PASS_KEY |
64 | |
65 | STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated" ); |
66 | STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted" ); |
67 | STATISTIC(NumTestsInserted, "Number of test instructions inserted" ); |
68 | STATISTIC(NumAddsInserted, "Number of adds instructions inserted" ); |
69 | STATISTIC(NumNFsConvertedTo, "Number of NF instructions converted to" ); |
70 | |
71 | namespace { |
72 | |
73 | // Convenient array type for storing registers associated with each condition. |
74 | using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>; |
75 | |
76 | class X86FlagsCopyLoweringPass : public MachineFunctionPass { |
77 | public: |
78 | X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {} |
79 | |
80 | StringRef getPassName() const override { return "X86 EFLAGS copy lowering" ; } |
81 | bool runOnMachineFunction(MachineFunction &MF) override; |
82 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
83 | |
84 | /// Pass identification, replacement for typeid. |
85 | static char ID; |
86 | |
87 | private: |
88 | MachineRegisterInfo *MRI = nullptr; |
89 | const X86Subtarget *Subtarget = nullptr; |
90 | const X86InstrInfo *TII = nullptr; |
91 | const TargetRegisterInfo *TRI = nullptr; |
92 | const TargetRegisterClass *PromoteRC = nullptr; |
93 | MachineDominatorTree *MDT = nullptr; |
94 | |
95 | CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, |
96 | MachineBasicBlock::iterator CopyDefI); |
97 | |
98 | Register promoteCondToReg(MachineBasicBlock &MBB, |
99 | MachineBasicBlock::iterator TestPos, |
100 | const DebugLoc &TestLoc, X86::CondCode Cond); |
101 | std::pair<unsigned, bool> getCondOrInverseInReg( |
102 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
103 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs); |
104 | void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
105 | const DebugLoc &Loc, unsigned Reg); |
106 | |
107 | void rewriteSetCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
108 | const DebugLoc &Loc, MachineInstr &MI, |
109 | CondRegArray &CondRegs); |
110 | void rewriteArithmetic(MachineBasicBlock &MBB, |
111 | MachineBasicBlock::iterator Pos, const DebugLoc &Loc, |
112 | MachineInstr &MI, CondRegArray &CondRegs); |
113 | void rewriteMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
114 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs); |
115 | }; |
116 | |
117 | } // end anonymous namespace |
118 | |
119 | INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
120 | "X86 EFLAGS copy lowering" , false, false) |
121 | INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
122 | "X86 EFLAGS copy lowering" , false, false) |
123 | |
124 | FunctionPass *llvm::createX86FlagsCopyLoweringPass() { |
125 | return new X86FlagsCopyLoweringPass(); |
126 | } |
127 | |
128 | char X86FlagsCopyLoweringPass::ID = 0; |
129 | |
130 | void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { |
131 | AU.addUsedIfAvailable<MachineDominatorTreeWrapperPass>(); |
132 | MachineFunctionPass::getAnalysisUsage(AU); |
133 | } |
134 | |
135 | static bool isArithmeticOp(unsigned Opc) { |
136 | return X86::isADC(Opcode: Opc) || X86::isSBB(Opcode: Opc) || X86::isRCL(Opcode: Opc) || |
137 | X86::isRCR(Opcode: Opc) || (Opc == X86::SETB_C32r || Opc == X86::SETB_C64r); |
138 | } |
139 | |
140 | static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, |
141 | MachineInstr &SplitI, |
142 | const X86InstrInfo &TII) { |
143 | MachineFunction &MF = *MBB.getParent(); |
144 | |
145 | assert(SplitI.getParent() == &MBB && |
146 | "Split instruction must be in the split block!" ); |
147 | assert(SplitI.isBranch() && |
148 | "Only designed to split a tail of branch instructions!" ); |
149 | assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID && |
150 | "Must split on an actual jCC instruction!" ); |
151 | |
152 | // Dig out the previous instruction to the split point. |
153 | MachineInstr &PrevI = *std::prev(x: SplitI.getIterator()); |
154 | assert(PrevI.isBranch() && "Must split after a branch!" ); |
155 | assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID && |
156 | "Must split after an actual jCC instruction!" ); |
157 | assert(!std::prev(PrevI.getIterator())->isTerminator() && |
158 | "Must only have this one terminator prior to the split!" ); |
159 | |
160 | // Grab the one successor edge that will stay in `MBB`. |
161 | MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(i: 0).getMBB(); |
162 | |
163 | // Analyze the original block to see if we are actually splitting an edge |
164 | // into two edges. This can happen when we have multiple conditional jumps to |
165 | // the same successor. |
166 | bool IsEdgeSplit = |
167 | std::any_of(first: SplitI.getIterator(), last: MBB.instr_end(), |
168 | pred: [&](MachineInstr &MI) { |
169 | assert(MI.isTerminator() && |
170 | "Should only have spliced terminators!" ); |
171 | return llvm::any_of( |
172 | Range: MI.operands(), P: [&](MachineOperand &MOp) { |
173 | return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; |
174 | }); |
175 | }) || |
176 | MBB.getFallThrough() == &UnsplitSucc; |
177 | |
178 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
179 | |
180 | // Insert the new block immediately after the current one. Any existing |
181 | // fallthrough will be sunk into this new block anyways. |
182 | MF.insert(MBBI: std::next(x: MachineFunction::iterator(&MBB)), MBB: &NewMBB); |
183 | |
184 | // Splice the tail of instructions into the new block. |
185 | NewMBB.splice(Where: NewMBB.end(), Other: &MBB, From: SplitI.getIterator(), To: MBB.end()); |
186 | |
187 | // Copy the necessary succesors (and their probability info) into the new |
188 | // block. |
189 | for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) |
190 | if (IsEdgeSplit || *SI != &UnsplitSucc) |
191 | NewMBB.copySuccessor(Orig: &MBB, I: SI); |
192 | // Normalize the probabilities if we didn't end up splitting the edge. |
193 | if (!IsEdgeSplit) |
194 | NewMBB.normalizeSuccProbs(); |
195 | |
196 | // Now replace all of the moved successors in the original block with the new |
197 | // block. This will merge their probabilities. |
198 | for (MachineBasicBlock *Succ : NewMBB.successors()) |
199 | if (Succ != &UnsplitSucc) |
200 | MBB.replaceSuccessor(Old: Succ, New: &NewMBB); |
201 | |
202 | // We should always end up replacing at least one successor. |
203 | assert(MBB.isSuccessor(&NewMBB) && |
204 | "Failed to make the new block a successor!" ); |
205 | |
206 | // Now update all the PHIs. |
207 | for (MachineBasicBlock *Succ : NewMBB.successors()) { |
208 | for (MachineInstr &MI : *Succ) { |
209 | if (!MI.isPHI()) |
210 | break; |
211 | |
212 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
213 | OpIdx += 2) { |
214 | MachineOperand &OpV = MI.getOperand(i: OpIdx); |
215 | MachineOperand &OpMBB = MI.getOperand(i: OpIdx + 1); |
216 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!" ); |
217 | if (OpMBB.getMBB() != &MBB) |
218 | continue; |
219 | |
220 | // Replace the operand for unsplit successors |
221 | if (!IsEdgeSplit || Succ != &UnsplitSucc) { |
222 | OpMBB.setMBB(&NewMBB); |
223 | |
224 | // We have to continue scanning as there may be multiple entries in |
225 | // the PHI. |
226 | continue; |
227 | } |
228 | |
229 | // When we have split the edge append a new successor. |
230 | MI.addOperand(MF, Op: OpV); |
231 | MI.addOperand(MF, Op: MachineOperand::CreateMBB(MBB: &NewMBB)); |
232 | break; |
233 | } |
234 | } |
235 | } |
236 | |
237 | return NewMBB; |
238 | } |
239 | |
240 | enum EFLAGSClobber { NoClobber, EvitableClobber, InevitableClobber }; |
241 | |
242 | static EFLAGSClobber getClobberType(const MachineInstr &MI) { |
243 | const MachineOperand *FlagDef = |
244 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
245 | if (!FlagDef) |
246 | return NoClobber; |
247 | if (FlagDef->isDead() && X86::getNFVariant(Opc: MI.getOpcode())) |
248 | return EvitableClobber; |
249 | |
250 | return InevitableClobber; |
251 | } |
252 | |
253 | bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { |
254 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
255 | << " **********\n" ); |
256 | |
257 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
258 | MRI = &MF.getRegInfo(); |
259 | TII = Subtarget->getInstrInfo(); |
260 | TRI = Subtarget->getRegisterInfo(); |
261 | PromoteRC = &X86::GR8RegClass; |
262 | |
263 | if (MF.empty()) |
264 | // Nothing to do for a degenerate empty function... |
265 | return false; |
266 | |
267 | if (none_of(Range: MRI->def_instructions(Reg: X86::EFLAGS), P: [](const MachineInstr &MI) { |
268 | return MI.getOpcode() == TargetOpcode::COPY; |
269 | })) |
270 | return false; |
271 | |
272 | // We change the code, so we don't preserve the dominator tree anyway. If we |
273 | // got a valid MDT from the pass manager, use that, otherwise construct one |
274 | // now. This is an optimization that avoids unnecessary MDT construction for |
275 | // functions that have no flag copies. |
276 | |
277 | auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
278 | std::unique_ptr<MachineDominatorTree> OwnedMDT; |
279 | if (MDTWrapper) { |
280 | MDT = &MDTWrapper->getDomTree(); |
281 | } else { |
282 | OwnedMDT = std::make_unique<MachineDominatorTree>(); |
283 | OwnedMDT->getBase().recalculate(Func&: MF); |
284 | MDT = OwnedMDT.get(); |
285 | } |
286 | |
287 | // Collect the copies in RPO so that when there are chains where a copy is in |
288 | // turn copied again we visit the first one first. This ensures we can find |
289 | // viable locations for testing the original EFLAGS that dominate all the |
290 | // uses across complex CFGs. |
291 | SmallSetVector<MachineInstr *, 4> Copies; |
292 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
293 | for (MachineBasicBlock *MBB : RPOT) |
294 | for (MachineInstr &MI : *MBB) |
295 | if (MI.getOpcode() == TargetOpcode::COPY && |
296 | MI.getOperand(i: 0).getReg() == X86::EFLAGS) |
297 | Copies.insert(X: &MI); |
298 | |
299 | // Try to elminate the copys by transform the instructions between copy and |
300 | // copydef to the NF (no flags update) variants, e.g. |
301 | // |
302 | // %1:gr64 = COPY $eflags |
303 | // OP1 implicit-def dead $eflags |
304 | // $eflags = COPY %1 |
305 | // OP2 cc, implicit $eflags |
306 | // |
307 | // -> |
308 | // |
309 | // OP1_NF |
310 | // OP2 implicit $eflags |
311 | if (Subtarget->hasNF()) { |
312 | SmallSetVector<MachineInstr *, 4> RemovedCopies; |
313 | // CopyIIt may be invalidated by removing copies. |
314 | auto CopyIIt = Copies.begin(), CopyIEnd = Copies.end(); |
315 | while (CopyIIt != CopyIEnd) { |
316 | auto NCopyIIt = std::next(x: CopyIIt); |
317 | SmallSetVector<MachineInstr *, 4> EvitableClobbers; |
318 | MachineInstr *CopyI = *CopyIIt; |
319 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
320 | MachineInstr *CopyDefI = MRI->getVRegDef(Reg: VOp.getReg()); |
321 | MachineBasicBlock *CopyIMBB = CopyI->getParent(); |
322 | MachineBasicBlock *CopyDefIMBB = CopyDefI->getParent(); |
323 | // Walk all basic blocks reachable in depth-first iteration on the inverse |
324 | // CFG from CopyIMBB to CopyDefIMBB. These blocks are all the blocks that |
325 | // may be executed between the execution of CopyDefIMBB and CopyIMBB. On |
326 | // all execution paths, instructions from CopyDefI to CopyI (exclusive) |
327 | // has to be NF-convertible if it clobbers flags. |
328 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
329 | ++BI) { |
330 | MachineBasicBlock *MBB = *BI; |
331 | for (auto I = (MBB != CopyDefIMBB) |
332 | ? MBB->begin() |
333 | : std::next(x: MachineBasicBlock::iterator(CopyDefI)), |
334 | E = (MBB != CopyIMBB) ? MBB->end() |
335 | : MachineBasicBlock::iterator(CopyI); |
336 | I != E; ++I) { |
337 | MachineInstr &MI = *I; |
338 | EFLAGSClobber ClobberType = getClobberType(MI); |
339 | if (ClobberType == NoClobber) |
340 | continue; |
341 | |
342 | if (ClobberType == InevitableClobber) |
343 | goto ProcessNextCopyI; |
344 | |
345 | assert(ClobberType == EvitableClobber && "unexpected workflow" ); |
346 | EvitableClobbers.insert(X: &MI); |
347 | } |
348 | } |
349 | // Covert evitable clobbers into NF variants and remove the copyies. |
350 | RemovedCopies.insert(X: CopyI); |
351 | CopyI->eraseFromParent(); |
352 | if (MRI->use_nodbg_empty(RegNo: CopyDefI->getOperand(i: 0).getReg())) { |
353 | RemovedCopies.insert(X: CopyDefI); |
354 | CopyDefI->eraseFromParent(); |
355 | } |
356 | ++NumCopiesEliminated; |
357 | for (auto *Clobber : EvitableClobbers) { |
358 | unsigned NewOpc = X86::getNFVariant(Opc: Clobber->getOpcode()); |
359 | assert(NewOpc && "evitable clobber must have a NF variant" ); |
360 | Clobber->setDesc(TII->get(Opcode: NewOpc)); |
361 | Clobber->removeOperand( |
362 | OpNo: Clobber->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr) |
363 | ->getOperandNo()); |
364 | ++NumNFsConvertedTo; |
365 | } |
366 | // Update liveins for basic blocks in the path |
367 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
368 | ++BI) |
369 | if (*BI != CopyDefIMBB) |
370 | BI->addLiveIn(PhysReg: X86::EFLAGS); |
371 | ProcessNextCopyI: |
372 | CopyIIt = NCopyIIt; |
373 | } |
374 | Copies.set_subtract(RemovedCopies); |
375 | } |
376 | |
377 | // For the rest of copies that cannot be eliminated by NF transform, we use |
378 | // setcc to preserve the flags in GPR32 before OP1, and recheck its value |
379 | // before using the flags, e.g. |
380 | // |
381 | // %1:gr64 = COPY $eflags |
382 | // OP1 implicit-def dead $eflags |
383 | // $eflags = COPY %1 |
384 | // OP2 cc, implicit $eflags |
385 | // |
386 | // -> |
387 | // |
388 | // %1:gr8 = SETCCr cc, implicit $eflags |
389 | // OP1 implicit-def dead $eflags |
390 | // TEST8rr %1, %1, implicit-def $eflags |
391 | // OP2 ne, implicit $eflags |
392 | for (MachineInstr *CopyI : Copies) { |
393 | MachineBasicBlock &MBB = *CopyI->getParent(); |
394 | |
395 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
396 | assert(VOp.isReg() && |
397 | "The input to the copy for EFLAGS should always be a register!" ); |
398 | MachineInstr &CopyDefI = *MRI->getVRegDef(Reg: VOp.getReg()); |
399 | if (CopyDefI.getOpcode() != TargetOpcode::COPY) { |
400 | // FIXME: The big likely candidate here are PHI nodes. We could in theory |
401 | // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard |
402 | // enough that it is probably better to change every other part of LLVM |
403 | // to avoid creating them. The issue is that once we have PHIs we won't |
404 | // know which original EFLAGS value we need to capture with our setCCs |
405 | // below. The end result will be computing a complete set of setCCs that |
406 | // we *might* want, computing them in every place where we copy *out* of |
407 | // EFLAGS and then doing SSA formation on all of them to insert necessary |
408 | // PHI nodes and consume those here. Then hoping that somehow we DCE the |
409 | // unnecessary ones. This DCE seems very unlikely to be successful and so |
410 | // we will almost certainly end up with a glut of dead setCC |
411 | // instructions. Until we have a motivating test case and fail to avoid |
412 | // it by changing other parts of LLVM's lowering, we refuse to handle |
413 | // this complex case here. |
414 | LLVM_DEBUG( |
415 | dbgs() << "ERROR: Encountered unexpected def of an eflags copy: " ; |
416 | CopyDefI.dump()); |
417 | report_fatal_error( |
418 | reason: "Cannot lower EFLAGS copy unless it is defined in turn by a copy!" ); |
419 | } |
420 | |
421 | auto Cleanup = make_scope_exit(F: [&] { |
422 | // All uses of the EFLAGS copy are now rewritten, kill the copy into |
423 | // eflags and if dead the copy from. |
424 | CopyI->eraseFromParent(); |
425 | if (MRI->use_empty(RegNo: CopyDefI.getOperand(i: 0).getReg())) |
426 | CopyDefI.eraseFromParent(); |
427 | ++NumCopiesEliminated; |
428 | }); |
429 | |
430 | MachineOperand &DOp = CopyI->getOperand(i: 0); |
431 | assert(DOp.isDef() && "Expected register def!" ); |
432 | assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!" ); |
433 | if (DOp.isDead()) |
434 | continue; |
435 | |
436 | MachineBasicBlock *TestMBB = CopyDefI.getParent(); |
437 | auto TestPos = CopyDefI.getIterator(); |
438 | DebugLoc TestLoc = CopyDefI.getDebugLoc(); |
439 | |
440 | LLVM_DEBUG(dbgs() << "Rewriting copy: " ; CopyI->dump()); |
441 | |
442 | // Walk up across live-in EFLAGS to find where they were actually def'ed. |
443 | // |
444 | // This copy's def may just be part of a region of blocks covered by |
445 | // a single def of EFLAGS and we want to find the top of that region where |
446 | // possible. |
447 | // |
448 | // This is essentially a search for a *candidate* reaching definition |
449 | // location. We don't need to ever find the actual reaching definition here, |
450 | // but we want to walk up the dominator tree to find the highest point which |
451 | // would be viable for such a definition. |
452 | auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, |
453 | MachineBasicBlock::iterator End) { |
454 | // Scan backwards as we expect these to be relatively short and often find |
455 | // a clobber near the end. |
456 | return llvm::any_of( |
457 | Range: llvm::reverse(C: llvm::make_range(x: Begin, y: End)), P: [&](MachineInstr &MI) { |
458 | // Flag any instruction (other than the copy we are |
459 | // currently rewriting) that defs EFLAGS. |
460 | return &MI != CopyI && |
461 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
462 | }); |
463 | }; |
464 | auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, |
465 | MachineBasicBlock *EndMBB) { |
466 | assert(MDT->dominates(BeginMBB, EndMBB) && |
467 | "Only support paths down the dominator tree!" ); |
468 | SmallPtrSet<MachineBasicBlock *, 4> Visited; |
469 | SmallVector<MachineBasicBlock *, 4> Worklist; |
470 | // We terminate at the beginning. No need to scan it. |
471 | Visited.insert(Ptr: BeginMBB); |
472 | Worklist.push_back(Elt: EndMBB); |
473 | do { |
474 | auto *MBB = Worklist.pop_back_val(); |
475 | for (auto *PredMBB : MBB->predecessors()) { |
476 | if (!Visited.insert(Ptr: PredMBB).second) |
477 | continue; |
478 | if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) |
479 | return true; |
480 | // Enqueue this block to walk its predecessors. |
481 | Worklist.push_back(Elt: PredMBB); |
482 | } |
483 | } while (!Worklist.empty()); |
484 | // No clobber found along a path from the begin to end. |
485 | return false; |
486 | }; |
487 | while (TestMBB->isLiveIn(Reg: X86::EFLAGS) && !TestMBB->pred_empty() && |
488 | !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { |
489 | // Find the nearest common dominator of the predecessors, as |
490 | // that will be the best candidate to hoist into. |
491 | MachineBasicBlock *HoistMBB = |
492 | std::accumulate(first: std::next(x: TestMBB->pred_begin()), last: TestMBB->pred_end(), |
493 | init: *TestMBB->pred_begin(), |
494 | binary_op: [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { |
495 | return MDT->findNearestCommonDominator(A: LHS, B: RHS); |
496 | }); |
497 | |
498 | // Now we need to scan all predecessors that may be reached along paths to |
499 | // the hoist block. A clobber anywhere in any of these blocks the hoist. |
500 | // Note that this even handles loops because we require *no* clobbers. |
501 | if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) |
502 | break; |
503 | |
504 | // We also need the terminators to not sneakily clobber flags. |
505 | if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), |
506 | HoistMBB->instr_end())) |
507 | break; |
508 | |
509 | // We found a viable location, hoist our test position to it. |
510 | TestMBB = HoistMBB; |
511 | TestPos = TestMBB->getFirstTerminator()->getIterator(); |
512 | // Clear the debug location as it would just be confusing after hoisting. |
513 | TestLoc = DebugLoc(); |
514 | } |
515 | LLVM_DEBUG({ |
516 | auto DefIt = llvm::find_if( |
517 | llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)), |
518 | [&](MachineInstr &MI) { |
519 | return MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); |
520 | }); |
521 | if (DefIt.base() != TestMBB->instr_begin()) { |
522 | dbgs() << " Using EFLAGS defined by: " ; |
523 | DefIt->dump(); |
524 | } else { |
525 | dbgs() << " Using live-in flags for BB:\n" ; |
526 | TestMBB->dump(); |
527 | } |
528 | }); |
529 | |
530 | // While rewriting uses, we buffer jumps and rewrite them in a second pass |
531 | // because doing so will perturb the CFG that we are walking to find the |
532 | // uses in the first place. |
533 | SmallVector<MachineInstr *, 4> JmpIs; |
534 | |
535 | // Gather the condition flags that have already been preserved in |
536 | // registers. We do this from scratch each time as we expect there to be |
537 | // very few of them and we expect to not revisit the same copy definition |
538 | // many times. If either of those change sufficiently we could build a map |
539 | // of these up front instead. |
540 | CondRegArray CondRegs = collectCondsInRegs(MBB&: *TestMBB, CopyDefI: TestPos); |
541 | |
542 | // Collect the basic blocks we need to scan. Typically this will just be |
543 | // a single basic block but we may have to scan multiple blocks if the |
544 | // EFLAGS copy lives into successors. |
545 | SmallVector<MachineBasicBlock *, 2> Blocks; |
546 | SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; |
547 | Blocks.push_back(Elt: &MBB); |
548 | |
549 | do { |
550 | MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); |
551 | |
552 | // Track when if/when we find a kill of the flags in this block. |
553 | bool FlagsKilled = false; |
554 | |
555 | // In most cases, we walk from the beginning to the end of the block. But |
556 | // when the block is the same block as the copy is from, we will visit it |
557 | // twice. The first time we start from the copy and go to the end. The |
558 | // second time we start from the beginning and go to the copy. This lets |
559 | // us handle copies inside of cycles. |
560 | // FIXME: This loop is *super* confusing. This is at least in part |
561 | // a symptom of all of this routine needing to be refactored into |
562 | // documentable components. Once done, there may be a better way to write |
563 | // this loop. |
564 | for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(Ptr: &UseMBB)) |
565 | ? std::next(x: CopyI->getIterator()) |
566 | : UseMBB.instr_begin(), |
567 | MIE = UseMBB.instr_end(); |
568 | MII != MIE;) { |
569 | MachineInstr &MI = *MII++; |
570 | // If we are in the original copy block and encounter either the copy |
571 | // def or the copy itself, break so that we don't re-process any part of |
572 | // the block or process the instructions in the range that was copied |
573 | // over. |
574 | if (&MI == CopyI || &MI == &CopyDefI) { |
575 | assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) && |
576 | "Should only encounter these on the second pass over the " |
577 | "original block." ); |
578 | break; |
579 | } |
580 | |
581 | MachineOperand *FlagUse = |
582 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
583 | FlagsKilled = MI.modifiesRegister(Reg: X86::EFLAGS, TRI); |
584 | |
585 | if (!FlagUse && FlagsKilled) |
586 | break; |
587 | else if (!FlagUse) |
588 | continue; |
589 | |
590 | LLVM_DEBUG(dbgs() << " Rewriting use: " ; MI.dump()); |
591 | |
592 | // Check the kill flag before we rewrite as that may change it. |
593 | if (FlagUse->isKill()) |
594 | FlagsKilled = true; |
595 | |
596 | // Once we encounter a branch, the rest of the instructions must also be |
597 | // branches. We can't rewrite in place here, so we handle them below. |
598 | // |
599 | // Note that we don't have to handle tail calls here, even conditional |
600 | // tail calls, as those are not introduced into the X86 MI until post-RA |
601 | // branch folding or black placement. As a consequence, we get to deal |
602 | // with the simpler formulation of conditional branches followed by tail |
603 | // calls. |
604 | if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { |
605 | auto JmpIt = MI.getIterator(); |
606 | do { |
607 | JmpIs.push_back(Elt: &*JmpIt); |
608 | ++JmpIt; |
609 | } while (JmpIt != UseMBB.instr_end() && |
610 | X86::getCondFromBranch(MI: *JmpIt) != X86::COND_INVALID); |
611 | break; |
612 | } |
613 | |
614 | // Otherwise we can just rewrite in-place. |
615 | unsigned Opc = MI.getOpcode(); |
616 | if (Opc == TargetOpcode::COPY) { |
617 | // Just replace this copy with the original copy def. |
618 | MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), |
619 | ToReg: CopyDefI.getOperand(i: 0).getReg()); |
620 | MI.eraseFromParent(); |
621 | } else if (X86::isSETCC(Opcode: Opc)) { |
622 | rewriteSetCC(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
623 | } else if (isArithmeticOp(Opc)) { |
624 | rewriteArithmetic(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
625 | } else { |
626 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
627 | } |
628 | |
629 | // If this was the last use of the flags, we're done. |
630 | if (FlagsKilled) |
631 | break; |
632 | } |
633 | |
634 | // If the flags were killed, we're done with this block. |
635 | if (FlagsKilled) |
636 | continue; |
637 | |
638 | // Otherwise we need to scan successors for ones where the flags live-in |
639 | // and queue those up for processing. |
640 | for (MachineBasicBlock *SuccMBB : UseMBB.successors()) |
641 | if (SuccMBB->isLiveIn(Reg: X86::EFLAGS) && |
642 | VisitedBlocks.insert(Ptr: SuccMBB).second) { |
643 | // We currently don't do any PHI insertion and so we require that the |
644 | // test basic block dominates all of the use basic blocks. Further, we |
645 | // can't have a cycle from the test block back to itself as that would |
646 | // create a cycle requiring a PHI to break it. |
647 | // |
648 | // We could in theory do PHI insertion here if it becomes useful by |
649 | // just taking undef values in along every edge that we don't trace |
650 | // this EFLAGS copy along. This isn't as bad as fully general PHI |
651 | // insertion, but still seems like a great deal of complexity. |
652 | // |
653 | // Because it is theoretically possible that some earlier MI pass or |
654 | // other lowering transformation could induce this to happen, we do |
655 | // a hard check even in non-debug builds here. |
656 | if (SuccMBB == TestMBB || !MDT->dominates(A: TestMBB, B: SuccMBB)) { |
657 | LLVM_DEBUG({ |
658 | dbgs() |
659 | << "ERROR: Encountered use that is not dominated by our test " |
660 | "basic block! Rewriting this would require inserting PHI " |
661 | "nodes to track the flag state across the CFG.\n\nTest " |
662 | "block:\n" ; |
663 | TestMBB->dump(); |
664 | dbgs() << "Use block:\n" ; |
665 | SuccMBB->dump(); |
666 | }); |
667 | report_fatal_error( |
668 | reason: "Cannot lower EFLAGS copy when original copy def " |
669 | "does not dominate all uses." ); |
670 | } |
671 | |
672 | Blocks.push_back(Elt: SuccMBB); |
673 | |
674 | // After this, EFLAGS will be recreated before each use. |
675 | SuccMBB->removeLiveIn(Reg: X86::EFLAGS); |
676 | } |
677 | } while (!Blocks.empty()); |
678 | |
679 | // Now rewrite the jumps that use the flags. These we handle specially |
680 | // because if there are multiple jumps in a single basic block we'll have |
681 | // to do surgery on the CFG. |
682 | MachineBasicBlock *LastJmpMBB = nullptr; |
683 | for (MachineInstr *JmpI : JmpIs) { |
684 | // Past the first jump within a basic block we need to split the blocks |
685 | // apart. |
686 | if (JmpI->getParent() == LastJmpMBB) |
687 | splitBlock(MBB&: *JmpI->getParent(), SplitI&: *JmpI, TII: *TII); |
688 | else |
689 | LastJmpMBB = JmpI->getParent(); |
690 | |
691 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI&: *JmpI, CondRegs); |
692 | } |
693 | |
694 | // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if |
695 | // the copy's def operand is itself a kill. |
696 | } |
697 | |
698 | #ifndef NDEBUG |
699 | for (MachineBasicBlock &MBB : MF) |
700 | for (MachineInstr &MI : MBB) |
701 | if (MI.getOpcode() == TargetOpcode::COPY && |
702 | (MI.getOperand(0).getReg() == X86::EFLAGS || |
703 | MI.getOperand(1).getReg() == X86::EFLAGS)) { |
704 | LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: " ; |
705 | MI.dump()); |
706 | llvm_unreachable("Unlowered EFLAGS copy!" ); |
707 | } |
708 | #endif |
709 | |
710 | return true; |
711 | } |
712 | |
713 | /// Collect any conditions that have already been set in registers so that we |
714 | /// can re-use them rather than adding duplicates. |
715 | CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( |
716 | MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { |
717 | CondRegArray CondRegs = {}; |
718 | |
719 | // Scan backwards across the range of instructions with live EFLAGS. |
720 | for (MachineInstr &MI : |
721 | llvm::reverse(C: llvm::make_range(x: MBB.begin(), y: TestPos))) { |
722 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
723 | if (Cond != X86::COND_INVALID && !MI.mayStore() && |
724 | MI.getOperand(i: 0).isReg() && MI.getOperand(i: 0).getReg().isVirtual()) { |
725 | assert(MI.getOperand(0).isDef() && |
726 | "A non-storing SETcc should always define a register!" ); |
727 | CondRegs[Cond] = MI.getOperand(i: 0).getReg(); |
728 | } |
729 | |
730 | // Stop scanning when we see the first definition of the EFLAGS as prior to |
731 | // this we would potentially capture the wrong flag state. |
732 | if (MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)) |
733 | break; |
734 | } |
735 | return CondRegs; |
736 | } |
737 | |
738 | Register X86FlagsCopyLoweringPass::promoteCondToReg( |
739 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
740 | const DebugLoc &TestLoc, X86::CondCode Cond) { |
741 | Register Reg = MRI->createVirtualRegister(RegClass: PromoteRC); |
742 | auto SetI = BuildMI(BB&: TestMBB, I: TestPos, MIMD: TestLoc, MCID: TII->get(Opcode: X86::SETCCr), DestReg: Reg) |
743 | .addImm(Val: Cond); |
744 | (void)SetI; |
745 | LLVM_DEBUG(dbgs() << " save cond: " ; SetI->dump()); |
746 | ++NumSetCCsInserted; |
747 | return Reg; |
748 | } |
749 | |
750 | std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( |
751 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
752 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { |
753 | unsigned &CondReg = CondRegs[Cond]; |
754 | unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(CC: Cond)]; |
755 | if (!CondReg && !InvCondReg) |
756 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
757 | |
758 | if (CondReg) |
759 | return {CondReg, false}; |
760 | else |
761 | return {InvCondReg, true}; |
762 | } |
763 | |
764 | void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, |
765 | MachineBasicBlock::iterator Pos, |
766 | const DebugLoc &Loc, unsigned Reg) { |
767 | auto TestI = |
768 | BuildMI(BB&: MBB, I: Pos, MIMD: Loc, MCID: TII->get(Opcode: X86::TEST8rr)).addReg(RegNo: Reg).addReg(RegNo: Reg); |
769 | (void)TestI; |
770 | LLVM_DEBUG(dbgs() << " test cond: " ; TestI->dump()); |
771 | ++NumTestsInserted; |
772 | } |
773 | |
774 | void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &MBB, |
775 | MachineBasicBlock::iterator Pos, |
776 | const DebugLoc &Loc, |
777 | MachineInstr &MI, |
778 | CondRegArray &CondRegs) { |
779 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
780 | // Note that we can't usefully rewrite this to the inverse without complex |
781 | // analysis of the users of the setCC. Largely we rely on duplicates which |
782 | // could have been avoided already being avoided here. |
783 | unsigned &CondReg = CondRegs[Cond]; |
784 | if (!CondReg) |
785 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
786 | |
787 | // Rewriting a register def is trivial: we just replace the register and |
788 | // remove the setcc. |
789 | if (!MI.mayStore()) { |
790 | assert(MI.getOperand(0).isReg() && |
791 | "Cannot have a non-register defined operand to SETcc!" ); |
792 | Register OldReg = MI.getOperand(i: 0).getReg(); |
793 | // Drop Kill flags on the old register before replacing. CondReg may have |
794 | // a longer live range. |
795 | MRI->clearKillFlags(Reg: OldReg); |
796 | MRI->replaceRegWith(FromReg: OldReg, ToReg: CondReg); |
797 | MI.eraseFromParent(); |
798 | return; |
799 | } |
800 | |
801 | // Otherwise, we need to emit a store. |
802 | auto MIB = BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
803 | MCID: TII->get(Opcode: X86::MOV8mr)); |
804 | // Copy the address operands. |
805 | for (int i = 0; i < X86::AddrNumOperands; ++i) |
806 | MIB.add(MO: MI.getOperand(i)); |
807 | |
808 | MIB.addReg(RegNo: CondReg); |
809 | MIB.setMemRefs(MI.memoperands()); |
810 | MI.eraseFromParent(); |
811 | } |
812 | |
813 | void X86FlagsCopyLoweringPass::rewriteArithmetic( |
814 | MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
815 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs) { |
816 | // Arithmetic is either reading CF or OF. |
817 | X86::CondCode Cond = X86::COND_B; // CF == 1 |
818 | // The addend to use to reset CF or OF when added to the flag value. |
819 | // Set up an addend that when one is added will need a carry due to not |
820 | // having a higher bit available. |
821 | int Addend = 255; |
822 | |
823 | // Now get a register that contains the value of the flag input to the |
824 | // arithmetic. We require exactly this flag to simplify the arithmetic |
825 | // required to materialize it back into the flag. |
826 | unsigned &CondReg = CondRegs[Cond]; |
827 | if (!CondReg) |
828 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
829 | |
830 | // Insert an instruction that will set the flag back to the desired value. |
831 | Register TmpReg = MRI->createVirtualRegister(RegClass: PromoteRC); |
832 | auto AddI = |
833 | BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
834 | MCID: TII->get(Opcode: Subtarget->hasNDD() ? X86::ADD8ri_ND : X86::ADD8ri)) |
835 | .addDef(RegNo: TmpReg, Flags: RegState::Dead) |
836 | .addReg(RegNo: CondReg) |
837 | .addImm(Val: Addend); |
838 | (void)AddI; |
839 | LLVM_DEBUG(dbgs() << " add cond: " ; AddI->dump()); |
840 | ++NumAddsInserted; |
841 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
842 | } |
843 | |
844 | static X86::CondCode getImplicitCondFromMI(unsigned Opc) { |
845 | #define FROM_TO(A, B) \ |
846 | case X86::CMOV##A##_Fp32: \ |
847 | case X86::CMOV##A##_Fp64: \ |
848 | case X86::CMOV##A##_Fp80: \ |
849 | return X86::COND_##B; |
850 | |
851 | switch (Opc) { |
852 | default: |
853 | return X86::COND_INVALID; |
854 | FROM_TO(B, B) |
855 | FROM_TO(E, E) |
856 | FROM_TO(P, P) |
857 | FROM_TO(BE, BE) |
858 | FROM_TO(NB, AE) |
859 | FROM_TO(NE, NE) |
860 | FROM_TO(NP, NP) |
861 | FROM_TO(NBE, A) |
862 | } |
863 | #undef FROM_TO |
864 | } |
865 | |
866 | static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC) { |
867 | assert((CC == X86::COND_E || CC == X86::COND_NE) && "Unexpected CC" ); |
868 | #define CASE(A) \ |
869 | case X86::CMOVB_##A: \ |
870 | case X86::CMOVE_##A: \ |
871 | case X86::CMOVP_##A: \ |
872 | case X86::CMOVBE_##A: \ |
873 | case X86::CMOVNB_##A: \ |
874 | case X86::CMOVNE_##A: \ |
875 | case X86::CMOVNP_##A: \ |
876 | case X86::CMOVNBE_##A: \ |
877 | return (CC == X86::COND_E) ? X86::CMOVE_##A : X86::CMOVNE_##A; |
878 | switch (Opc) { |
879 | default: |
880 | llvm_unreachable("Unexpected opcode" ); |
881 | CASE(Fp32) |
882 | CASE(Fp64) |
883 | CASE(Fp80) |
884 | } |
885 | #undef CASE |
886 | } |
887 | |
888 | void X86FlagsCopyLoweringPass::rewriteMI(MachineBasicBlock &MBB, |
889 | MachineBasicBlock::iterator Pos, |
890 | const DebugLoc &Loc, MachineInstr &MI, |
891 | CondRegArray &CondRegs) { |
892 | // First get the register containing this specific condition. |
893 | bool IsImplicitCC = false; |
894 | X86::CondCode CC = X86::getCondFromMI(MI); |
895 | if (CC == X86::COND_INVALID) { |
896 | CC = getImplicitCondFromMI(Opc: MI.getOpcode()); |
897 | IsImplicitCC = true; |
898 | } |
899 | assert(CC != X86::COND_INVALID && "Unknown EFLAG user!" ); |
900 | unsigned CondReg; |
901 | bool Inverted; |
902 | std::tie(args&: CondReg, args&: Inverted) = |
903 | getCondOrInverseInReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond: CC, CondRegs); |
904 | |
905 | // Insert a direct test of the saved register. |
906 | insertTest(MBB&: *MI.getParent(), Pos: MI.getIterator(), Loc: MI.getDebugLoc(), Reg: CondReg); |
907 | |
908 | // Rewrite the instruction to use the !ZF flag from the test, and then kill |
909 | // its use of the flags afterward. |
910 | X86::CondCode NewCC = Inverted ? X86::COND_E : X86::COND_NE; |
911 | if (IsImplicitCC) |
912 | MI.setDesc(TII->get(Opcode: getOpcodeWithCC(Opc: MI.getOpcode(), CC: NewCC))); |
913 | else |
914 | MI.getOperand(i: MI.getDesc().getNumOperands() - 1).setImm(NewCC); |
915 | |
916 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
917 | LLVM_DEBUG(dbgs() << " fixed instruction: " ; MI.dump()); |
918 | } |
919 | |