| 1 | //===-- GCNSchedStrategy.h - GCN Scheduler Strategy -*- C++ -*-------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_LIB_TARGET_AMDGPU_GCNSCHEDSTRATEGY_H |
| 14 | #define LLVM_LIB_TARGET_AMDGPU_GCNSCHEDSTRATEGY_H |
| 15 | |
| 16 | #include "GCNRegPressure.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/MapVector.h" |
| 19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 20 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 21 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
| 23 | #include "llvm/CodeGen/MachineScheduler.h" |
| 24 | |
| 25 | namespace llvm { |
| 26 | |
| 27 | class SIMachineFunctionInfo; |
| 28 | class SIRegisterInfo; |
| 29 | class GCNSubtarget; |
| 30 | class GCNSchedStage; |
| 31 | |
| 32 | enum class GCNSchedStageID : unsigned { |
| 33 | OccInitialSchedule = 0, |
| 34 | RewriteMFMAForm = 1, |
| 35 | UnclusteredHighRPReschedule = 2, |
| 36 | ClusteredLowOccupancyReschedule = 3, |
| 37 | PreRARematerialize = 4, |
| 38 | ILPInitialSchedule = 5, |
| 39 | MemoryClauseInitialSchedule = 6 |
| 40 | }; |
| 41 | |
| 42 | #ifndef NDEBUG |
| 43 | raw_ostream &operator<<(raw_ostream &OS, const GCNSchedStageID &StageID); |
| 44 | #endif |
| 45 | |
| 46 | /// This is a minimal scheduler strategy. The main difference between this |
| 47 | /// and the GenericScheduler is that GCNSchedStrategy uses different |
| 48 | /// heuristics to determine excess/critical pressure sets. |
| 49 | class GCNSchedStrategy : public GenericScheduler { |
| 50 | protected: |
| 51 | SUnit *pickNodeBidirectional(bool &IsTopNode, bool &PickedPending); |
| 52 | |
| 53 | void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, |
| 54 | const RegPressureTracker &RPTracker, |
| 55 | SchedCandidate &Cand, bool &IsPending, |
| 56 | bool IsBottomUp); |
| 57 | |
| 58 | void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, |
| 59 | const RegPressureTracker &RPTracker, |
| 60 | const SIRegisterInfo *SRI, unsigned SGPRPressure, |
| 61 | unsigned VGPRPressure, bool IsBottomUp); |
| 62 | |
| 63 | /// Evaluates instructions in the pending queue using a subset of scheduling |
| 64 | /// heuristics. |
| 65 | /// |
| 66 | /// Instructions that cannot be issued due to hardware constraints are placed |
| 67 | /// in the pending queue rather than the available queue, making them normally |
| 68 | /// invisible to scheduling heuristics. However, in certain scenarios (such as |
| 69 | /// avoiding register spilling), it may be beneficial to consider scheduling |
| 70 | /// these not-yet-ready instructions. |
| 71 | bool tryPendingCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, |
| 72 | SchedBoundary *Zone) const; |
| 73 | |
| 74 | void printCandidateDecision(const SchedCandidate &Current, |
| 75 | const SchedCandidate &Preferred); |
| 76 | |
| 77 | std::vector<unsigned> Pressure; |
| 78 | |
| 79 | std::vector<unsigned> MaxPressure; |
| 80 | |
| 81 | unsigned SGPRExcessLimit; |
| 82 | |
| 83 | unsigned VGPRExcessLimit; |
| 84 | |
| 85 | unsigned TargetOccupancy; |
| 86 | |
| 87 | MachineFunction *MF; |
| 88 | |
| 89 | // Scheduling stages for this strategy. |
| 90 | SmallVector<GCNSchedStageID, 4> SchedStages; |
| 91 | |
| 92 | // Pointer to the current SchedStageID. |
| 93 | SmallVectorImpl<GCNSchedStageID>::iterator CurrentStage = nullptr; |
| 94 | |
| 95 | // GCN RP Tracker for top-down scheduling |
| 96 | mutable GCNDownwardRPTracker DownwardTracker; |
| 97 | |
| 98 | // GCN RP Tracker for botttom-up scheduling |
| 99 | mutable GCNUpwardRPTracker UpwardTracker; |
| 100 | |
| 101 | public: |
| 102 | // schedule() have seen register pressure over the critical limits and had to |
| 103 | // track register pressure for actual scheduling heuristics. |
| 104 | bool HasHighPressure; |
| 105 | |
| 106 | // Schedule known to have excess register pressure. Be more conservative in |
| 107 | // increasing ILP and preserving VGPRs. |
| 108 | bool KnownExcessRP = false; |
| 109 | |
| 110 | // An error margin is necessary because of poor performance of the generic RP |
| 111 | // tracker and can be adjusted up for tuning heuristics to try and more |
| 112 | // aggressively reduce register pressure. |
| 113 | unsigned ErrorMargin = 3; |
| 114 | |
| 115 | // Bias for SGPR limits under a high register pressure. |
| 116 | const unsigned HighRPSGPRBias = 7; |
| 117 | |
| 118 | // Bias for VGPR limits under a high register pressure. |
| 119 | const unsigned HighRPVGPRBias = 7; |
| 120 | |
| 121 | unsigned SGPRCriticalLimit; |
| 122 | |
| 123 | unsigned VGPRCriticalLimit; |
| 124 | |
| 125 | unsigned SGPRLimitBias = 0; |
| 126 | |
| 127 | unsigned VGPRLimitBias = 0; |
| 128 | |
| 129 | GCNSchedStrategy(const MachineSchedContext *C); |
| 130 | |
| 131 | SUnit *pickNode(bool &IsTopNode) override; |
| 132 | |
| 133 | void schedNode(SUnit *SU, bool IsTopNode) override; |
| 134 | |
| 135 | void initialize(ScheduleDAGMI *DAG) override; |
| 136 | |
| 137 | unsigned getTargetOccupancy() { return TargetOccupancy; } |
| 138 | |
| 139 | void setTargetOccupancy(unsigned Occ) { TargetOccupancy = Occ; } |
| 140 | |
| 141 | GCNSchedStageID getCurrentStage(); |
| 142 | |
| 143 | // Advances stage. Returns true if there are remaining stages. |
| 144 | bool advanceStage(); |
| 145 | |
| 146 | bool hasNextStage() const; |
| 147 | |
| 148 | GCNSchedStageID getNextStage() const; |
| 149 | |
| 150 | GCNDownwardRPTracker *getDownwardTracker() { return &DownwardTracker; } |
| 151 | |
| 152 | GCNUpwardRPTracker *getUpwardTracker() { return &UpwardTracker; } |
| 153 | }; |
| 154 | |
| 155 | /// The goal of this scheduling strategy is to maximize kernel occupancy (i.e. |
| 156 | /// maximum number of waves per simd). |
| 157 | class GCNMaxOccupancySchedStrategy final : public GCNSchedStrategy { |
| 158 | public: |
| 159 | GCNMaxOccupancySchedStrategy(const MachineSchedContext *C, |
| 160 | bool IsLegacyScheduler = false); |
| 161 | }; |
| 162 | |
| 163 | /// The goal of this scheduling strategy is to maximize ILP for a single wave |
| 164 | /// (i.e. latency hiding). |
| 165 | class GCNMaxILPSchedStrategy final : public GCNSchedStrategy { |
| 166 | protected: |
| 167 | bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, |
| 168 | SchedBoundary *Zone) const override; |
| 169 | |
| 170 | public: |
| 171 | GCNMaxILPSchedStrategy(const MachineSchedContext *C); |
| 172 | }; |
| 173 | |
| 174 | /// The goal of this scheduling strategy is to maximize memory clause for a |
| 175 | /// single wave. |
| 176 | class GCNMaxMemoryClauseSchedStrategy final : public GCNSchedStrategy { |
| 177 | protected: |
| 178 | bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, |
| 179 | SchedBoundary *Zone) const override; |
| 180 | |
| 181 | public: |
| 182 | GCNMaxMemoryClauseSchedStrategy(const MachineSchedContext *C); |
| 183 | }; |
| 184 | |
| 185 | class ScheduleMetrics { |
| 186 | unsigned ScheduleLength; |
| 187 | unsigned BubbleCycles; |
| 188 | |
| 189 | public: |
| 190 | ScheduleMetrics() = default; |
| 191 | ScheduleMetrics(unsigned L, unsigned BC) |
| 192 | : ScheduleLength(L), BubbleCycles(BC) {} |
| 193 | unsigned getLength() const { return ScheduleLength; } |
| 194 | unsigned getBubbles() const { return BubbleCycles; } |
| 195 | unsigned getMetric() const { |
| 196 | unsigned Metric = (BubbleCycles * ScaleFactor) / ScheduleLength; |
| 197 | // Metric is zero if the amount of bubbles is less than 1% which is too |
| 198 | // small. So, return 1. |
| 199 | return Metric ? Metric : 1; |
| 200 | } |
| 201 | static const unsigned ScaleFactor; |
| 202 | }; |
| 203 | |
| 204 | inline raw_ostream &operator<<(raw_ostream &OS, const ScheduleMetrics &Sm) { |
| 205 | dbgs() << "\n Schedule Metric (scaled by " << ScheduleMetrics::ScaleFactor |
| 206 | << " ) is: " << Sm.getMetric() << " [ " << Sm.getBubbles() << "/" |
| 207 | << Sm.getLength() << " ]\n" ; |
| 208 | return OS; |
| 209 | } |
| 210 | |
| 211 | class GCNScheduleDAGMILive; |
| 212 | class RegionPressureMap { |
| 213 | GCNScheduleDAGMILive *DAG; |
| 214 | // The live in/out pressure as indexed by the first or last MI in the region |
| 215 | // before scheduling. |
| 216 | DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> RegionLiveRegMap; |
| 217 | // The mapping of RegionIDx to key instruction |
| 218 | DenseMap<unsigned, MachineInstr *> IdxToInstruction; |
| 219 | // Whether we are calculating LiveOuts or LiveIns |
| 220 | bool IsLiveOut; |
| 221 | |
| 222 | public: |
| 223 | RegionPressureMap() = default; |
| 224 | RegionPressureMap(GCNScheduleDAGMILive *GCNDAG, bool LiveOut) |
| 225 | : DAG(GCNDAG), IsLiveOut(LiveOut) {} |
| 226 | // Build the Instr->LiveReg and RegionIdx->Instr maps |
| 227 | void buildLiveRegMap(); |
| 228 | |
| 229 | // Retrieve the LiveReg for a given RegionIdx |
| 230 | GCNRPTracker::LiveRegSet &getLiveRegsForRegionIdx(unsigned RegionIdx) { |
| 231 | assert(IdxToInstruction.contains(RegionIdx)); |
| 232 | MachineInstr *Key = IdxToInstruction[RegionIdx]; |
| 233 | return RegionLiveRegMap[Key]; |
| 234 | } |
| 235 | }; |
| 236 | |
| 237 | /// A region's boundaries i.e. a pair of instruction bundle iterators. The lower |
| 238 | /// boundary is inclusive, the upper boundary is exclusive. |
| 239 | using RegionBoundaries = |
| 240 | std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>; |
| 241 | |
| 242 | class GCNScheduleDAGMILive final : public ScheduleDAGMILive { |
| 243 | friend class GCNSchedStage; |
| 244 | friend class OccInitialScheduleStage; |
| 245 | friend class RewriteMFMAFormStage; |
| 246 | friend class UnclusteredHighRPStage; |
| 247 | friend class ClusteredLowOccStage; |
| 248 | friend class PreRARematStage; |
| 249 | friend class ILPInitialScheduleStage; |
| 250 | friend class RegionPressureMap; |
| 251 | |
| 252 | const GCNSubtarget &ST; |
| 253 | |
| 254 | SIMachineFunctionInfo &MFI; |
| 255 | |
| 256 | // Occupancy target at the beginning of function scheduling cycle. |
| 257 | unsigned StartingOccupancy; |
| 258 | |
| 259 | // Minimal real occupancy recorder for the function. |
| 260 | unsigned MinOccupancy; |
| 261 | |
| 262 | // Vector of regions recorder for later rescheduling |
| 263 | SmallVector<RegionBoundaries, 32> Regions; |
| 264 | |
| 265 | // Record regions with high register pressure. |
| 266 | BitVector RegionsWithHighRP; |
| 267 | |
| 268 | // Record regions with excess register pressure over the physical register |
| 269 | // limit. Register pressure in these regions usually will result in spilling. |
| 270 | BitVector RegionsWithExcessRP; |
| 271 | |
| 272 | // Regions that have IGLP instructions (SCHED_GROUP_BARRIER or IGLP_OPT). |
| 273 | BitVector RegionsWithIGLPInstrs; |
| 274 | |
| 275 | // Region live-in cache. |
| 276 | SmallVector<GCNRPTracker::LiveRegSet, 32> LiveIns; |
| 277 | |
| 278 | // Region pressure cache. |
| 279 | SmallVector<GCNRegPressure, 32> Pressure; |
| 280 | |
| 281 | // Temporary basic block live-in cache. |
| 282 | DenseMap<const MachineBasicBlock *, GCNRPTracker::LiveRegSet> MBBLiveIns; |
| 283 | |
| 284 | // The map of the initial first region instruction to region live in registers |
| 285 | DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> BBLiveInMap; |
| 286 | |
| 287 | // Calculate the map of the initial first region instruction to region live in |
| 288 | // registers |
| 289 | DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> getRegionLiveInMap() const; |
| 290 | |
| 291 | // Calculate the map of the initial last region instruction to region live out |
| 292 | // registers |
| 293 | DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> |
| 294 | getRegionLiveOutMap() const; |
| 295 | |
| 296 | // The live out registers per region. These are internally stored as a map of |
| 297 | // the initial last region instruction to region live out registers, but can |
| 298 | // be retreived with the regionIdx by calls to getLiveRegsForRegionIdx. |
| 299 | RegionPressureMap RegionLiveOuts; |
| 300 | |
| 301 | // Return current region pressure. |
| 302 | GCNRegPressure getRealRegPressure(unsigned RegionIdx) const; |
| 303 | |
| 304 | // Compute and cache live-ins and pressure for all regions in block. |
| 305 | void computeBlockPressure(unsigned RegionIdx, const MachineBasicBlock *MBB); |
| 306 | |
| 307 | /// Makes the scheduler try to achieve an occupancy of \p TargetOccupancy. |
| 308 | void setTargetOccupancy(unsigned TargetOccupancy); |
| 309 | |
| 310 | void runSchedStages(); |
| 311 | |
| 312 | std::unique_ptr<GCNSchedStage> createSchedStage(GCNSchedStageID SchedStageID); |
| 313 | |
| 314 | void deleteMI(unsigned RegionIdx, MachineInstr *MI); |
| 315 | |
| 316 | public: |
| 317 | GCNScheduleDAGMILive(MachineSchedContext *C, |
| 318 | std::unique_ptr<MachineSchedStrategy> S); |
| 319 | |
| 320 | void schedule() override; |
| 321 | |
| 322 | void finalizeSchedule() override; |
| 323 | }; |
| 324 | |
| 325 | // GCNSchedStrategy applies multiple scheduling stages to a function. |
| 326 | class GCNSchedStage { |
| 327 | protected: |
| 328 | GCNScheduleDAGMILive &DAG; |
| 329 | |
| 330 | GCNSchedStrategy &S; |
| 331 | |
| 332 | MachineFunction &MF; |
| 333 | |
| 334 | SIMachineFunctionInfo &MFI; |
| 335 | |
| 336 | const GCNSubtarget &ST; |
| 337 | |
| 338 | const GCNSchedStageID StageID; |
| 339 | |
| 340 | // The current block being scheduled. |
| 341 | MachineBasicBlock *CurrentMBB = nullptr; |
| 342 | |
| 343 | // Current region index. |
| 344 | unsigned RegionIdx = 0; |
| 345 | |
| 346 | // Record the original order of instructions before scheduling. |
| 347 | std::vector<MachineInstr *> Unsched; |
| 348 | |
| 349 | // RP before scheduling the current region. |
| 350 | GCNRegPressure PressureBefore; |
| 351 | |
| 352 | // RP after scheduling the current region. |
| 353 | GCNRegPressure PressureAfter; |
| 354 | |
| 355 | std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations; |
| 356 | |
| 357 | GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG); |
| 358 | |
| 359 | public: |
| 360 | // Initialize state for a scheduling stage. Returns false if the current stage |
| 361 | // should be skipped. |
| 362 | virtual bool initGCNSchedStage(); |
| 363 | |
| 364 | // Finalize state after finishing a scheduling pass on the function. |
| 365 | virtual void finalizeGCNSchedStage(); |
| 366 | |
| 367 | // Setup for scheduling a region. Returns false if the current region should |
| 368 | // be skipped. |
| 369 | virtual bool initGCNRegion(); |
| 370 | |
| 371 | // Finalize state after scheduling a region. |
| 372 | virtual void finalizeGCNRegion(); |
| 373 | |
| 374 | // Track whether a new region is also a new MBB. |
| 375 | void setupNewBlock(); |
| 376 | |
| 377 | // Check result of scheduling. |
| 378 | void checkScheduling(); |
| 379 | |
| 380 | // computes the given schedule virtual execution time in clocks |
| 381 | ScheduleMetrics getScheduleMetrics(const std::vector<SUnit> &InputSchedule); |
| 382 | ScheduleMetrics getScheduleMetrics(const GCNScheduleDAGMILive &DAG); |
| 383 | unsigned computeSUnitReadyCycle(const SUnit &SU, unsigned CurrCycle, |
| 384 | DenseMap<unsigned, unsigned> &ReadyCycles, |
| 385 | const TargetSchedModel &SM); |
| 386 | |
| 387 | // Returns true if scheduling should be reverted. |
| 388 | virtual bool shouldRevertScheduling(unsigned WavesAfter); |
| 389 | |
| 390 | // Returns true if current region has known excess pressure. |
| 391 | bool isRegionWithExcessRP() const { |
| 392 | return DAG.RegionsWithExcessRP[RegionIdx]; |
| 393 | } |
| 394 | |
| 395 | // The region number this stage is currently working on |
| 396 | unsigned getRegionIdx() { return RegionIdx; } |
| 397 | |
| 398 | // Returns true if the new schedule may result in more spilling. |
| 399 | bool mayCauseSpilling(unsigned WavesAfter); |
| 400 | |
| 401 | /// Sets the schedule of region \p RegionIdx in block \p MBB to \p MIOrder. |
| 402 | /// The MIs in \p MIOrder must be exactly the same as the ones currently |
| 403 | /// existing inside the region, only in a different order that honors def-use |
| 404 | /// chains. |
| 405 | void modifyRegionSchedule(unsigned RegionIdx, MachineBasicBlock *MBB, |
| 406 | ArrayRef<MachineInstr *> MIOrder); |
| 407 | |
| 408 | void advanceRegion() { RegionIdx++; } |
| 409 | |
| 410 | virtual ~GCNSchedStage() = default; |
| 411 | }; |
| 412 | |
| 413 | class OccInitialScheduleStage : public GCNSchedStage { |
| 414 | public: |
| 415 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 416 | |
| 417 | OccInitialScheduleStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 418 | : GCNSchedStage(StageID, DAG) {} |
| 419 | }; |
| 420 | |
| 421 | class RewriteMFMAFormStage : public GCNSchedStage { |
| 422 | private: |
| 423 | // Record regions with excess archvgpr register pressure over the physical |
| 424 | // register limit. Register pressure in these regions usually will result in |
| 425 | // spilling. |
| 426 | BitVector RegionsWithExcessArchVGPR; |
| 427 | |
| 428 | const SIInstrInfo *TII; |
| 429 | const SIRegisterInfo *SRI; |
| 430 | |
| 431 | /// Do a speculative rewrite and collect copy locations. The speculative |
| 432 | /// rewrite allows us to calculate the RP of the code after the rewrite, and |
| 433 | /// the copy locations allow us to calculate the total cost of copies required |
| 434 | /// for the rewrite. Stores the rewritten instructions in \p RewriteCands , |
| 435 | /// the copy locations for uses (of the MFMA result) in \p CopyForUse and the |
| 436 | /// copy locations for defs (of the MFMA operands) in \p CopyForDef |
| 437 | bool |
| 438 | initHeuristics(std::vector<std::pair<MachineInstr *, unsigned>> &RewriteCands, |
| 439 | DenseMap<MachineBasicBlock *, std::set<Register>> &CopyForUse, |
| 440 | SmallPtrSetImpl<MachineInstr *> &CopyForDef); |
| 441 | |
| 442 | /// Calculate the rewrite cost and undo the state change (e.g. rewriting) done |
| 443 | /// in initHeuristics. Uses \p CopyForUse and \p CopyForDef to calculate copy |
| 444 | /// costs, and \p RewriteCands to undo rewriting. |
| 445 | int64_t getRewriteCost( |
| 446 | const std::vector<std::pair<MachineInstr *, unsigned>> &RewriteCands, |
| 447 | const DenseMap<MachineBasicBlock *, std::set<Register>> &CopyForUse, |
| 448 | const SmallPtrSetImpl<MachineInstr *> &CopyForDef); |
| 449 | |
| 450 | /// Do the final rewrite on \p RewriteCands and insert any needed copies. |
| 451 | bool |
| 452 | rewrite(const std::vector<std::pair<MachineInstr *, unsigned>> &RewriteCands); |
| 453 | |
| 454 | /// \returns true if this MI is a rewrite candidate. |
| 455 | bool isRewriteCandidate(MachineInstr *MI) const; |
| 456 | |
| 457 | /// Finds all the reaching defs of \p UseMO and stores the SlotIndexes into \p |
| 458 | /// DefIdxs |
| 459 | void findReachingDefs(MachineOperand &UseMO, LiveIntervals *LIS, |
| 460 | SmallVectorImpl<SlotIndex> &DefIdxs); |
| 461 | |
| 462 | /// Finds all the reaching uses of \p DefMI and stores the use operands in \p |
| 463 | /// ReachingUses |
| 464 | void findReachingUses(MachineInstr *DefMI, LiveIntervals *LIS, |
| 465 | SmallVectorImpl<MachineOperand *> &ReachingUses); |
| 466 | |
| 467 | public: |
| 468 | bool initGCNSchedStage() override; |
| 469 | |
| 470 | RewriteMFMAFormStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 471 | : GCNSchedStage(StageID, DAG) {} |
| 472 | }; |
| 473 | |
| 474 | class UnclusteredHighRPStage : public GCNSchedStage { |
| 475 | private: |
| 476 | // Save the initial occupancy before starting this stage. |
| 477 | unsigned InitialOccupancy; |
| 478 | // Save the temporary target occupancy before starting this stage. |
| 479 | unsigned TempTargetOccupancy; |
| 480 | // Track whether any region was scheduled by this stage. |
| 481 | bool IsAnyRegionScheduled; |
| 482 | |
| 483 | public: |
| 484 | bool initGCNSchedStage() override; |
| 485 | |
| 486 | void finalizeGCNSchedStage() override; |
| 487 | |
| 488 | bool initGCNRegion() override; |
| 489 | |
| 490 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 491 | |
| 492 | UnclusteredHighRPStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 493 | : GCNSchedStage(StageID, DAG) {} |
| 494 | }; |
| 495 | |
| 496 | // Retry function scheduling if we found resulting occupancy and it is |
| 497 | // lower than used for other scheduling passes. This will give more freedom |
| 498 | // to schedule low register pressure blocks. |
| 499 | class ClusteredLowOccStage : public GCNSchedStage { |
| 500 | public: |
| 501 | bool initGCNSchedStage() override; |
| 502 | |
| 503 | bool initGCNRegion() override; |
| 504 | |
| 505 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 506 | |
| 507 | ClusteredLowOccStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 508 | : GCNSchedStage(StageID, DAG) {} |
| 509 | }; |
| 510 | |
| 511 | /// Attempts to reduce function spilling or, if there is no spilling, to |
| 512 | /// increase function occupancy by one with respect to register usage by sinking |
| 513 | /// rematerializable instructions to their use. When the stage estimates that |
| 514 | /// reducing spilling or increasing occupancy is possible, it tries to |
| 515 | /// rematerialize as few registers as possible to reduce potential negative |
| 516 | /// effects on function latency. |
| 517 | /// |
| 518 | /// The stage only supports rematerializing registers that meet all of the |
| 519 | /// following constraints. |
| 520 | /// 1. The register is virtual and has a single defining instruction. |
| 521 | /// 2. The single defining instruction is either deemed rematerializable by the |
| 522 | /// target-independent logic, or if not, has no non-constant and |
| 523 | /// non-ignorable physical register use. |
| 524 | /// 3 The register has no virtual register use whose live range would be |
| 525 | /// extended by the rematerialization. |
| 526 | /// 4. The register has a single non-debug user in a different region from its |
| 527 | /// defining region. |
| 528 | /// 5. The register is not used by or using another register that is going to be |
| 529 | /// rematerialized. |
| 530 | class PreRARematStage : public GCNSchedStage { |
| 531 | private: |
| 532 | /// A rematerializable register. |
| 533 | struct RematReg { |
| 534 | /// Single MI defining the rematerializable register. |
| 535 | MachineInstr *DefMI; |
| 536 | /// Single user of the rematerializable register. |
| 537 | MachineInstr *UseMI; |
| 538 | /// Regions in which the register is live-in/live-out/live anywhere. |
| 539 | BitVector LiveIn, LiveOut, Live; |
| 540 | /// The rematerializable register's lane bitmask. |
| 541 | LaneBitmask Mask; |
| 542 | /// Defining and using regions. |
| 543 | unsigned DefRegion, UseRegion; |
| 544 | |
| 545 | RematReg(MachineInstr *DefMI, MachineInstr *UseMI, |
| 546 | GCNScheduleDAGMILive &DAG, |
| 547 | const DenseMap<MachineInstr *, unsigned> &MIRegion); |
| 548 | |
| 549 | /// Returns the rematerializable register. Do not call after deleting the |
| 550 | /// original defining instruction. |
| 551 | Register getReg() const { return DefMI->getOperand(i: 0).getReg(); } |
| 552 | |
| 553 | /// Determines whether this rematerialization may be beneficial in at least |
| 554 | /// one target region. |
| 555 | bool maybeBeneficial(const BitVector &TargetRegions, |
| 556 | ArrayRef<GCNRPTarget> RPTargets) const; |
| 557 | |
| 558 | /// Determines if the register is both unused and live-through in region \p |
| 559 | /// I. This guarantees that rematerializing it will reduce RP in the region. |
| 560 | bool isUnusedLiveThrough(unsigned I) const { |
| 561 | assert(I < Live.size() && "region index out of range" ); |
| 562 | return LiveIn[I] && LiveOut[I] && I != UseRegion; |
| 563 | } |
| 564 | |
| 565 | /// Updates internal structures following a MI rematerialization. Part of |
| 566 | /// the stage instead of the DAG because it makes assumptions that are |
| 567 | /// specific to the rematerialization process. |
| 568 | void insertMI(unsigned RegionIdx, MachineInstr *RematMI, |
| 569 | GCNScheduleDAGMILive &DAG) const; |
| 570 | }; |
| 571 | |
| 572 | /// A scored rematerialization candidate. Higher scores indicate more |
| 573 | /// beneficial rematerializations. A null score indicate the rematerialization |
| 574 | /// is not helpful to reduce RP in target regions. |
| 575 | struct ScoredRemat { |
| 576 | /// The rematerializable register under consideration. |
| 577 | RematReg *Remat; |
| 578 | |
| 579 | /// Execution frequency information required by scoring heuristics. |
| 580 | /// Frequencies are scaled down if they are high to avoid overflow/underflow |
| 581 | /// when combining them. |
| 582 | struct FreqInfo { |
| 583 | /// Per-region execution frequencies. 0 when unknown. |
| 584 | SmallVector<uint64_t> Regions; |
| 585 | /// Minimum and maximum observed frequencies. |
| 586 | uint64_t MinFreq, MaxFreq; |
| 587 | |
| 588 | FreqInfo(MachineFunction &MF, const GCNScheduleDAGMILive &DAG); |
| 589 | |
| 590 | private: |
| 591 | static const uint64_t ScaleFactor = 1024; |
| 592 | }; |
| 593 | |
| 594 | /// This only initializes state-independent characteristics of \p Remat, not |
| 595 | /// the actual score. |
| 596 | ScoredRemat(RematReg *Remat, const FreqInfo &Freq, |
| 597 | const GCNScheduleDAGMILive &DAG); |
| 598 | |
| 599 | /// Updates the rematerialization's score w.r.t. the current \p RPTargets. |
| 600 | /// \p RegionFreq indicates the frequency of each region |
| 601 | void update(const BitVector &TargetRegions, ArrayRef<GCNRPTarget> RPTargets, |
| 602 | const FreqInfo &Freq, bool ReduceSpill); |
| 603 | |
| 604 | /// Returns whether the current score is null, indicating the |
| 605 | /// rematerialization is useless. |
| 606 | bool hasNullScore() const { return !RegionImpact; } |
| 607 | |
| 608 | /// Compare score components of non-null scores pair-wise. A null score is |
| 609 | /// always strictly lesser than another non-null score. |
| 610 | bool operator<(const ScoredRemat &O) const { |
| 611 | if (hasNullScore()) |
| 612 | return !O.hasNullScore(); |
| 613 | if (O.hasNullScore()) |
| 614 | return false; |
| 615 | if (MaxFreq != O.MaxFreq) |
| 616 | return MaxFreq < O.MaxFreq; |
| 617 | if (FreqDiff != O.FreqDiff) |
| 618 | return FreqDiff < O.FreqDiff; |
| 619 | if (RegionImpact != O.RegionImpact) |
| 620 | return RegionImpact < O.RegionImpact; |
| 621 | // Break ties using pointer to rematerializable register. Rematerializable |
| 622 | // registers are collected in instruction order so, within the same |
| 623 | // region, this will prefer registers defined earlier that have longer |
| 624 | // live ranges in their defining region (since the registers we consider |
| 625 | // are always live-out in their defining region). |
| 626 | return Remat > O.Remat; |
| 627 | } |
| 628 | |
| 629 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 630 | Printable print() const; |
| 631 | #endif |
| 632 | |
| 633 | private: |
| 634 | /// Number of 32-bit registers this rematerialization covers. |
| 635 | unsigned NumRegs; |
| 636 | |
| 637 | // The three members below are the scoring components, top to bottom from |
| 638 | // most important to least important when comparing candidates. |
| 639 | |
| 640 | /// Frequency of impacted target region with highest known frequency. This |
| 641 | /// only matters when the stage is trying to reduce spilling, so it is |
| 642 | /// always 0 when it is not. |
| 643 | uint64_t MaxFreq; |
| 644 | /// Frequency difference between defining and using regions. Negative values |
| 645 | /// indicate we are rematerializing to higher frequency regions; positive |
| 646 | /// values indicate the contrary. |
| 647 | int64_t FreqDiff; |
| 648 | /// Expected number of target regions impacted by the rematerialization, |
| 649 | /// scaled by the size of the register being rematerialized. |
| 650 | unsigned RegionImpact; |
| 651 | |
| 652 | unsigned getNumRegs(const GCNScheduleDAGMILive &DAG) const; |
| 653 | |
| 654 | int64_t getFreqDiff(const FreqInfo &Freq) const; |
| 655 | }; |
| 656 | |
| 657 | /// Parent MBB to each region, in region order. |
| 658 | SmallVector<MachineBasicBlock *> RegionBB; |
| 659 | /// Register pressure targets for all regions. |
| 660 | SmallVector<GCNRPTarget> RPTargets; |
| 661 | /// Regions which are above the stage's RP target. |
| 662 | BitVector TargetRegions; |
| 663 | /// The target occupancy the set is trying to achieve. Empty when the |
| 664 | /// objective is spilling reduction. |
| 665 | std::optional<unsigned> TargetOcc; |
| 666 | /// Achieved occupancy *only* through rematerializations (pre-rescheduling). |
| 667 | unsigned AchievedOcc; |
| 668 | /// After successful stage initialization, indicates which regions should be |
| 669 | /// rescheduled. |
| 670 | BitVector RescheduleRegions; |
| 671 | |
| 672 | /// List of rematerializable registers. |
| 673 | SmallVector<RematReg> RematRegs; |
| 674 | |
| 675 | /// Holds enough information to rollback a rematerialization decision post |
| 676 | /// re-scheduling. |
| 677 | struct RollbackInfo { |
| 678 | /// The rematerializable register under consideration. |
| 679 | const RematReg *Remat; |
| 680 | /// The rematerialized MI replacing the original defining MI. |
| 681 | MachineInstr *RematMI; |
| 682 | /// Maps register machine operand indices to their original register. |
| 683 | SmallDenseMap<unsigned, Register, 4> RegMap; |
| 684 | |
| 685 | RollbackInfo(const RematReg *Remat) : Remat(Remat) {} |
| 686 | }; |
| 687 | /// List of rematerializations to rollback if rematerialization does not end |
| 688 | /// up being beneficial. |
| 689 | SmallVector<RollbackInfo> Rollbacks; |
| 690 | |
| 691 | /// State of a region pre-re-scheduling but post-rematerializations that we |
| 692 | /// must keep to be able to revert re-scheduling effects. |
| 693 | struct RegionSchedRevert { |
| 694 | /// Region number; |
| 695 | unsigned RegionIdx; |
| 696 | /// Original instruction order (both debug and non-debug MIs). |
| 697 | std::vector<MachineInstr *> OrigMIOrder; |
| 698 | /// Maximum pressure recorded in the region. |
| 699 | GCNRegPressure MaxPressure; |
| 700 | |
| 701 | RegionSchedRevert(unsigned RegionIdx, ArrayRef<MachineInstr *> OrigMIOrder, |
| 702 | const GCNRegPressure &MaxPressure) |
| 703 | : RegionIdx(RegionIdx), OrigMIOrder(OrigMIOrder), |
| 704 | MaxPressure(MaxPressure) {} |
| 705 | }; |
| 706 | /// After re-scheduling, contains pre-re-scheduling data for all re-scheduled |
| 707 | /// regions. |
| 708 | SmallVector<RegionSchedRevert> RegionReverts; |
| 709 | |
| 710 | /// Returns the occupancy the stage is trying to achieve. |
| 711 | unsigned getStageTargetOccupancy() const; |
| 712 | |
| 713 | /// Determines the stage's objective (increasing occupancy or reducing |
| 714 | /// spilling, set in \ref TargetOcc). Defines \ref RPTargets in all regions to |
| 715 | /// achieve that objective and mark those that don't achieve it in \ref |
| 716 | /// TargetRegions. Returns whether there is any target region. |
| 717 | bool setObjective(); |
| 718 | |
| 719 | /// Unsets target regions in \p Regions whose RP target has been reached. |
| 720 | void unsetSatisifedRPTargets(const BitVector &Regions); |
| 721 | |
| 722 | /// Fully recomputes RP from the DAG in \p Regions. Among those regions, sets |
| 723 | /// again all \ref TargetRegions that were optimistically marked as satisfied |
| 724 | /// but are actually not, and returns whether there were any such regions. |
| 725 | bool updateAndVerifyRPTargets(const BitVector &Regions); |
| 726 | |
| 727 | /// Collects all rematerializable registers and appends them to \ref |
| 728 | /// RematRegs. \p MIRegion maps MIs to their region. Returns whether any |
| 729 | /// rematerializable register was found. |
| 730 | bool collectRematRegs(const DenseMap<MachineInstr *, unsigned> &MIRegion); |
| 731 | |
| 732 | /// Rematerializes \p Remat. This removes the rematerialized register from |
| 733 | /// live-in/out lists in the DAG and updates RP targets in all affected |
| 734 | /// regions, which are also marked in \ref RescheduleRegions. Regions in which |
| 735 | /// RP savings are not guaranteed are set in \p RecomputeRP. When \p Rollback |
| 736 | /// is non-null, fills it with required information to be able to rollback the |
| 737 | /// rematerialization post-rescheduling. |
| 738 | void rematerialize(const RematReg &Remat, BitVector &RecomputeRP, |
| 739 | RollbackInfo *Rollback); |
| 740 | |
| 741 | /// Rollbacks the rematerialization decision represented by \p Rollback. This |
| 742 | /// update live-in/out lists in the DAG but does not update cached register |
| 743 | /// pressures. |
| 744 | void rollback(const RollbackInfo &Rollback) const; |
| 745 | |
| 746 | /// Deletes all rematerialized MIs from the MIR when they were kept around for |
| 747 | /// potential rollback. |
| 748 | void commitRematerializations() const; |
| 749 | |
| 750 | /// Whether the MI is rematerializable |
| 751 | bool isReMaterializable(const MachineInstr &MI); |
| 752 | |
| 753 | /// If remat alone did not increase occupancy to the target one, rollbacks all |
| 754 | /// rematerializations and resets live-ins/RP in all regions impacted by the |
| 755 | /// stage to their pre-stage values. |
| 756 | void finalizeGCNSchedStage() override; |
| 757 | |
| 758 | public: |
| 759 | bool initGCNSchedStage() override; |
| 760 | |
| 761 | bool initGCNRegion() override; |
| 762 | |
| 763 | void finalizeGCNRegion() override; |
| 764 | |
| 765 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 766 | |
| 767 | PreRARematStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 768 | : GCNSchedStage(StageID, DAG), TargetRegions(DAG.Regions.size()), |
| 769 | RescheduleRegions(DAG.Regions.size()) { |
| 770 | const unsigned NumRegions = DAG.Regions.size(); |
| 771 | RPTargets.reserve(N: NumRegions); |
| 772 | RegionBB.reserve(N: NumRegions); |
| 773 | } |
| 774 | }; |
| 775 | |
| 776 | class ILPInitialScheduleStage : public GCNSchedStage { |
| 777 | public: |
| 778 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 779 | |
| 780 | ILPInitialScheduleStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG) |
| 781 | : GCNSchedStage(StageID, DAG) {} |
| 782 | }; |
| 783 | |
| 784 | class MemoryClauseInitialScheduleStage : public GCNSchedStage { |
| 785 | public: |
| 786 | bool shouldRevertScheduling(unsigned WavesAfter) override; |
| 787 | |
| 788 | MemoryClauseInitialScheduleStage(GCNSchedStageID StageID, |
| 789 | GCNScheduleDAGMILive &DAG) |
| 790 | : GCNSchedStage(StageID, DAG) {} |
| 791 | }; |
| 792 | |
| 793 | class GCNPostScheduleDAGMILive final : public ScheduleDAGMI { |
| 794 | private: |
| 795 | std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations; |
| 796 | |
| 797 | bool HasIGLPInstrs = false; |
| 798 | |
| 799 | public: |
| 800 | void schedule() override; |
| 801 | |
| 802 | void finalizeSchedule() override; |
| 803 | |
| 804 | GCNPostScheduleDAGMILive(MachineSchedContext *C, |
| 805 | std::unique_ptr<MachineSchedStrategy> S, |
| 806 | bool RemoveKillFlags); |
| 807 | }; |
| 808 | |
| 809 | } // End namespace llvm |
| 810 | |
| 811 | #endif // LLVM_LIB_TARGET_AMDGPU_GCNSCHEDSTRATEGY_H |
| 812 | |