| 1 | //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the PowerPC-specific support for the FastISel class. Some |
| 10 | // of the target-specific code is generated by tablegen in the file |
| 11 | // PPCGenFastISel.inc, which is #included here. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "MCTargetDesc/PPCPredicates.h" |
| 16 | #include "PPC.h" |
| 17 | #include "PPCCallingConv.h" |
| 18 | #include "PPCISelLowering.h" |
| 19 | #include "PPCMachineFunctionInfo.h" |
| 20 | #include "PPCSelectionDAGInfo.h" |
| 21 | #include "PPCSubtarget.h" |
| 22 | #include "llvm/CodeGen/CallingConvLower.h" |
| 23 | #include "llvm/CodeGen/FastISel.h" |
| 24 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 25 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 26 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 27 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 28 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 29 | #include "llvm/CodeGen/TargetLowering.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 32 | #include "llvm/IR/GlobalVariable.h" |
| 33 | #include "llvm/IR/Operator.h" |
| 34 | #include "llvm/Target/TargetMachine.h" |
| 35 | |
| 36 | //===----------------------------------------------------------------------===// |
| 37 | // |
| 38 | // TBD: |
| 39 | // fastLowerArguments: Handle simple cases. |
| 40 | // PPCMaterializeGV: Handle TLS. |
| 41 | // SelectCall: Handle function pointers. |
| 42 | // SelectCall: Handle multi-register return values. |
| 43 | // SelectCall: Optimize away nops for local calls. |
| 44 | // processCallArgs: Handle bit-converted arguments. |
| 45 | // finishCall: Handle multi-register return values. |
| 46 | // PPCComputeAddress: Handle parameter references as FrameIndex's. |
| 47 | // PPCEmitCmp: Handle immediate as operand 1. |
| 48 | // SelectCall: Handle small byval arguments. |
| 49 | // SelectIntrinsicCall: Implement. |
| 50 | // SelectSelect: Implement. |
| 51 | // Consider factoring isTypeLegal into the base class. |
| 52 | // Implement switches and jump tables. |
| 53 | // |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | using namespace llvm; |
| 56 | |
| 57 | #define DEBUG_TYPE "ppcfastisel" |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | struct Address { |
| 62 | enum { |
| 63 | RegBase, |
| 64 | FrameIndexBase |
| 65 | } BaseType; |
| 66 | |
| 67 | union { |
| 68 | unsigned Reg; |
| 69 | int FI; |
| 70 | } Base; |
| 71 | |
| 72 | int64_t Offset; |
| 73 | |
| 74 | // Innocuous defaults for our address. |
| 75 | Address() |
| 76 | : BaseType(RegBase), Offset(0) { |
| 77 | Base.Reg = 0; |
| 78 | } |
| 79 | }; |
| 80 | |
| 81 | class PPCFastISel final : public FastISel { |
| 82 | |
| 83 | const TargetMachine &TM; |
| 84 | const PPCSubtarget *Subtarget; |
| 85 | PPCFunctionInfo *PPCFuncInfo; |
| 86 | const TargetInstrInfo &TII; |
| 87 | const TargetLowering &TLI; |
| 88 | LLVMContext *Context; |
| 89 | |
| 90 | public: |
| 91 | explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, |
| 92 | const TargetLibraryInfo *LibInfo, |
| 93 | const LibcallLoweringInfo *LibcallLowering) |
| 94 | : FastISel(FuncInfo, LibInfo, LibcallLowering), |
| 95 | TM(FuncInfo.MF->getTarget()), |
| 96 | Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), |
| 97 | PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), |
| 98 | TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()), |
| 99 | Context(&FuncInfo.Fn->getContext()) {} |
| 100 | |
| 101 | // Backend specific FastISel code. |
| 102 | private: |
| 103 | bool fastSelectInstruction(const Instruction *I) override; |
| 104 | Register fastMaterializeConstant(const Constant *C) override; |
| 105 | Register fastMaterializeAlloca(const AllocaInst *AI) override; |
| 106 | bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| 107 | const LoadInst *LI) override; |
| 108 | bool fastLowerArguments() override; |
| 109 | Register fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; |
| 110 | Register fastEmitInst_ri(unsigned MachineInstOpcode, |
| 111 | const TargetRegisterClass *RC, Register Op0, |
| 112 | uint64_t Imm); |
| 113 | Register fastEmitInst_r(unsigned MachineInstOpcode, |
| 114 | const TargetRegisterClass *RC, Register Op0); |
| 115 | Register fastEmitInst_rr(unsigned MachineInstOpcode, |
| 116 | const TargetRegisterClass *RC, Register Op0, |
| 117 | Register Op1); |
| 118 | |
| 119 | bool fastLowerCall(CallLoweringInfo &CLI) override; |
| 120 | |
| 121 | // Instruction selection routines. |
| 122 | private: |
| 123 | bool SelectLoad(const Instruction *I); |
| 124 | bool SelectStore(const Instruction *I); |
| 125 | bool SelectBranch(const Instruction *I); |
| 126 | bool SelectIndirectBr(const Instruction *I); |
| 127 | bool SelectFPExt(const Instruction *I); |
| 128 | bool SelectFPTrunc(const Instruction *I); |
| 129 | bool SelectIToFP(const Instruction *I, bool IsSigned); |
| 130 | bool SelectFPToI(const Instruction *I, bool IsSigned); |
| 131 | bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); |
| 132 | bool SelectRet(const Instruction *I); |
| 133 | bool SelectTrunc(const Instruction *I); |
| 134 | bool SelectIntExt(const Instruction *I); |
| 135 | |
| 136 | // Utility routines. |
| 137 | private: |
| 138 | bool isTypeLegal(Type *Ty, MVT &VT); |
| 139 | bool isLoadTypeLegal(Type *Ty, MVT &VT); |
| 140 | bool isValueAvailable(const Value *V) const; |
| 141 | bool isVSFRCRegClass(const TargetRegisterClass *RC) const { |
| 142 | return RC->getID() == PPC::VSFRCRegClassID; |
| 143 | } |
| 144 | bool isVSSRCRegClass(const TargetRegisterClass *RC) const { |
| 145 | return RC->getID() == PPC::VSSRCRegClassID; |
| 146 | } |
| 147 | Register copyRegToRegClass(const TargetRegisterClass *ToRC, Register SrcReg, |
| 148 | RegState Flag = {}, unsigned SubReg = 0) { |
| 149 | Register TmpReg = createResultReg(RC: ToRC); |
| 150 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 151 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: TmpReg).addReg(RegNo: SrcReg, Flags: Flag, SubReg); |
| 152 | return TmpReg; |
| 153 | } |
| 154 | bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, bool isZExt, |
| 155 | Register DestReg, const PPC::Predicate Pred); |
| 156 | bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
| 157 | const TargetRegisterClass *RC, bool IsZExt = true, |
| 158 | unsigned FP64LoadOpc = PPC::LFD); |
| 159 | bool PPCEmitStore(MVT VT, Register SrcReg, Address &Addr); |
| 160 | bool PPCComputeAddress(const Value *Obj, Address &Addr); |
| 161 | void PPCSimplifyAddress(Address &Addr, bool &UseOffset, Register &IndexReg); |
| 162 | bool PPCEmitIntExt(MVT SrcVT, Register SrcReg, MVT DestVT, Register DestReg, |
| 163 | bool IsZExt); |
| 164 | Register PPCMaterializeFP(const ConstantFP *CFP, MVT VT); |
| 165 | Register PPCMaterializeGV(const GlobalValue *GV, MVT VT); |
| 166 | Register PPCMaterializeInt(const ConstantInt *CI, MVT VT, |
| 167 | bool UseSExt = true); |
| 168 | Register PPCMaterialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); |
| 169 | Register PPCMaterialize64BitInt(int64_t Imm, const TargetRegisterClass *RC); |
| 170 | Register PPCMoveToIntReg(const Instruction *I, MVT VT, Register SrcReg, |
| 171 | bool IsSigned); |
| 172 | Register PPCMoveToFPReg(MVT VT, Register SrcReg, bool IsSigned); |
| 173 | |
| 174 | // Call handling routines. |
| 175 | private: |
| 176 | bool processCallArgs(SmallVectorImpl<Value *> &Args, |
| 177 | SmallVectorImpl<Register> &ArgRegs, |
| 178 | SmallVectorImpl<MVT> &ArgVTs, |
| 179 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| 180 | SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC, |
| 181 | unsigned &NumBytes, bool IsVarArg); |
| 182 | bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); |
| 183 | |
| 184 | private: |
| 185 | #include "PPCGenFastISel.inc" |
| 186 | |
| 187 | }; |
| 188 | |
| 189 | } // end anonymous namespace |
| 190 | |
| 191 | static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { |
| 192 | switch (Pred) { |
| 193 | // These are not representable with any single compare. |
| 194 | case CmpInst::FCMP_FALSE: |
| 195 | case CmpInst::FCMP_TRUE: |
| 196 | // Major concern about the following 6 cases is NaN result. The comparison |
| 197 | // result consists of 4 bits, indicating lt, eq, gt and un (unordered), |
| 198 | // only one of which will be set. The result is generated by fcmpu |
| 199 | // instruction. However, bc instruction only inspects one of the first 3 |
| 200 | // bits, so when un is set, bc instruction may jump to an undesired |
| 201 | // place. |
| 202 | // |
| 203 | // More specifically, if we expect an unordered comparison and un is set, we |
| 204 | // expect to always go to true branch; in such case UEQ, UGT and ULT still |
| 205 | // give false, which are undesired; but UNE, UGE, ULE happen to give true, |
| 206 | // since they are tested by inspecting !eq, !lt, !gt, respectively. |
| 207 | // |
| 208 | // Similarly, for ordered comparison, when un is set, we always expect the |
| 209 | // result to be false. In such case OGT, OLT and OEQ is good, since they are |
| 210 | // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE |
| 211 | // and ONE are tested through !lt, !gt and !eq, and these are true. |
| 212 | case CmpInst::FCMP_UEQ: |
| 213 | case CmpInst::FCMP_UGT: |
| 214 | case CmpInst::FCMP_ULT: |
| 215 | case CmpInst::FCMP_OGE: |
| 216 | case CmpInst::FCMP_OLE: |
| 217 | case CmpInst::FCMP_ONE: |
| 218 | default: |
| 219 | return std::nullopt; |
| 220 | |
| 221 | case CmpInst::FCMP_OEQ: |
| 222 | case CmpInst::ICMP_EQ: |
| 223 | return PPC::PRED_EQ; |
| 224 | |
| 225 | case CmpInst::FCMP_OGT: |
| 226 | case CmpInst::ICMP_UGT: |
| 227 | case CmpInst::ICMP_SGT: |
| 228 | return PPC::PRED_GT; |
| 229 | |
| 230 | case CmpInst::FCMP_UGE: |
| 231 | case CmpInst::ICMP_UGE: |
| 232 | case CmpInst::ICMP_SGE: |
| 233 | return PPC::PRED_GE; |
| 234 | |
| 235 | case CmpInst::FCMP_OLT: |
| 236 | case CmpInst::ICMP_ULT: |
| 237 | case CmpInst::ICMP_SLT: |
| 238 | return PPC::PRED_LT; |
| 239 | |
| 240 | case CmpInst::FCMP_ULE: |
| 241 | case CmpInst::ICMP_ULE: |
| 242 | case CmpInst::ICMP_SLE: |
| 243 | return PPC::PRED_LE; |
| 244 | |
| 245 | case CmpInst::FCMP_UNE: |
| 246 | case CmpInst::ICMP_NE: |
| 247 | return PPC::PRED_NE; |
| 248 | |
| 249 | case CmpInst::FCMP_ORD: |
| 250 | return PPC::PRED_NU; |
| 251 | |
| 252 | case CmpInst::FCMP_UNO: |
| 253 | return PPC::PRED_UN; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // Determine whether the type Ty is simple enough to be handled by |
| 258 | // fast-isel, and return its equivalent machine type in VT. |
| 259 | // FIXME: Copied directly from ARM -- factor into base class? |
| 260 | bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { |
| 261 | EVT Evt = TLI.getValueType(DL, Ty, AllowUnknown: true); |
| 262 | |
| 263 | // Only handle simple types. |
| 264 | if (Evt == MVT::Other || !Evt.isSimple()) return false; |
| 265 | VT = Evt.getSimpleVT(); |
| 266 | |
| 267 | // Handle all legal types, i.e. a register that will directly hold this |
| 268 | // value. |
| 269 | return TLI.isTypeLegal(VT); |
| 270 | } |
| 271 | |
| 272 | // Determine whether the type Ty is simple enough to be handled by |
| 273 | // fast-isel as a load target, and return its equivalent machine type in VT. |
| 274 | bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { |
| 275 | if (isTypeLegal(Ty, VT)) return true; |
| 276 | |
| 277 | // If this is a type than can be sign or zero-extended to a basic operation |
| 278 | // go ahead and accept it now. |
| 279 | if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { |
| 280 | return true; |
| 281 | } |
| 282 | |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | bool PPCFastISel::isValueAvailable(const Value *V) const { |
| 287 | if (!isa<Instruction>(Val: V)) |
| 288 | return true; |
| 289 | |
| 290 | const auto *I = cast<Instruction>(Val: V); |
| 291 | return FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB; |
| 292 | } |
| 293 | |
| 294 | // Given a value Obj, create an Address object Addr that represents its |
| 295 | // address. Return false if we can't handle it. |
| 296 | bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { |
| 297 | const User *U = nullptr; |
| 298 | unsigned Opcode = Instruction::UserOp1; |
| 299 | if (const Instruction *I = dyn_cast<Instruction>(Val: Obj)) { |
| 300 | // Don't walk into other basic blocks unless the object is an alloca from |
| 301 | // another block, otherwise it may not have a virtual register assigned. |
| 302 | if (FuncInfo.StaticAllocaMap.count(Val: static_cast<const AllocaInst *>(Obj)) || |
| 303 | FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB) { |
| 304 | Opcode = I->getOpcode(); |
| 305 | U = I; |
| 306 | } |
| 307 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Val: Obj)) { |
| 308 | Opcode = C->getOpcode(); |
| 309 | U = C; |
| 310 | } |
| 311 | |
| 312 | switch (Opcode) { |
| 313 | default: |
| 314 | break; |
| 315 | case Instruction::BitCast: |
| 316 | // Look through bitcasts. |
| 317 | return PPCComputeAddress(Obj: U->getOperand(i: 0), Addr); |
| 318 | case Instruction::IntToPtr: |
| 319 | // Look past no-op inttoptrs. |
| 320 | if (TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
| 321 | TLI.getPointerTy(DL)) |
| 322 | return PPCComputeAddress(Obj: U->getOperand(i: 0), Addr); |
| 323 | break; |
| 324 | case Instruction::PtrToInt: |
| 325 | // Look past no-op ptrtoints. |
| 326 | if (TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
| 327 | return PPCComputeAddress(Obj: U->getOperand(i: 0), Addr); |
| 328 | break; |
| 329 | case Instruction::GetElementPtr: { |
| 330 | Address SavedAddr = Addr; |
| 331 | int64_t TmpOffset = Addr.Offset; |
| 332 | |
| 333 | // Iterate through the GEP folding the constants into offsets where |
| 334 | // we can. |
| 335 | gep_type_iterator GTI = gep_type_begin(GEP: U); |
| 336 | for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); |
| 337 | II != IE; ++II, ++GTI) { |
| 338 | const Value *Op = *II; |
| 339 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
| 340 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
| 341 | unsigned Idx = cast<ConstantInt>(Val: Op)->getZExtValue(); |
| 342 | TmpOffset += SL->getElementOffset(Idx); |
| 343 | } else { |
| 344 | uint64_t S = GTI.getSequentialElementStride(DL); |
| 345 | for (;;) { |
| 346 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: Op)) { |
| 347 | // Constant-offset addressing. |
| 348 | TmpOffset += CI->getSExtValue() * S; |
| 349 | break; |
| 350 | } |
| 351 | if (canFoldAddIntoGEP(GEP: U, Add: Op)) { |
| 352 | // A compatible add with a constant operand. Fold the constant. |
| 353 | ConstantInt *CI = |
| 354 | cast<ConstantInt>(Val: cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 1)); |
| 355 | TmpOffset += CI->getSExtValue() * S; |
| 356 | // Iterate on the other operand. |
| 357 | Op = cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 0); |
| 358 | continue; |
| 359 | } |
| 360 | // Unsupported |
| 361 | goto unsupported_gep; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // Try to grab the base operand now. |
| 367 | Addr.Offset = TmpOffset; |
| 368 | if (PPCComputeAddress(Obj: U->getOperand(i: 0), Addr)) return true; |
| 369 | |
| 370 | // We failed, restore everything and try the other options. |
| 371 | Addr = SavedAddr; |
| 372 | |
| 373 | unsupported_gep: |
| 374 | break; |
| 375 | } |
| 376 | case Instruction::Alloca: { |
| 377 | const AllocaInst *AI = cast<AllocaInst>(Val: Obj); |
| 378 | DenseMap<const AllocaInst*, int>::iterator SI = |
| 379 | FuncInfo.StaticAllocaMap.find(Val: AI); |
| 380 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 381 | Addr.BaseType = Address::FrameIndexBase; |
| 382 | Addr.Base.FI = SI->second; |
| 383 | return true; |
| 384 | } |
| 385 | break; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | // FIXME: References to parameters fall through to the behavior |
| 390 | // below. They should be able to reference a frame index since |
| 391 | // they are stored to the stack, so we can get "ld rx, offset(r1)" |
| 392 | // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will |
| 393 | // just contain the parameter. Try to handle this with a FI. |
| 394 | |
| 395 | // Try to get this in a register if nothing else has worked. |
| 396 | if (Addr.Base.Reg == 0) |
| 397 | Addr.Base.Reg = getRegForValue(V: Obj); |
| 398 | |
| 399 | // Prevent assignment of base register to X0, which is inappropriate |
| 400 | // for loads and stores alike. |
| 401 | if (Addr.Base.Reg != 0) |
| 402 | MRI.setRegClass(Reg: Addr.Base.Reg, RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 403 | |
| 404 | return Addr.Base.Reg != 0; |
| 405 | } |
| 406 | |
| 407 | // Fix up some addresses that can't be used directly. For example, if |
| 408 | // an offset won't fit in an instruction field, we may need to move it |
| 409 | // into an index register. |
| 410 | void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, |
| 411 | Register &IndexReg) { |
| 412 | |
| 413 | // Check whether the offset fits in the instruction field. |
| 414 | if (!isInt<16>(x: Addr.Offset)) |
| 415 | UseOffset = false; |
| 416 | |
| 417 | // If this is a stack pointer and the offset needs to be simplified then |
| 418 | // put the alloca address into a register, set the base type back to |
| 419 | // register and continue. This should almost never happen. |
| 420 | if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { |
| 421 | Register ResultReg = createResultReg(RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 422 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ADDI8), |
| 423 | DestReg: ResultReg).addFrameIndex(Idx: Addr.Base.FI).addImm(Val: 0); |
| 424 | Addr.Base.Reg = ResultReg; |
| 425 | Addr.BaseType = Address::RegBase; |
| 426 | } |
| 427 | |
| 428 | if (!UseOffset) { |
| 429 | IntegerType *OffsetTy = Type::getInt64Ty(C&: *Context); |
| 430 | const ConstantInt *Offset = ConstantInt::getSigned(Ty: OffsetTy, V: Addr.Offset); |
| 431 | IndexReg = PPCMaterializeInt(CI: Offset, VT: MVT::i64); |
| 432 | assert(IndexReg && "Unexpected error in PPCMaterializeInt!" ); |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | // Emit a load instruction if possible, returning true if we succeeded, |
| 437 | // otherwise false. See commentary below for how the register class of |
| 438 | // the load is determined. |
| 439 | bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
| 440 | const TargetRegisterClass *RC, |
| 441 | bool IsZExt, unsigned FP64LoadOpc) { |
| 442 | unsigned Opc; |
| 443 | bool UseOffset = true; |
| 444 | bool HasSPE = Subtarget->hasSPE(); |
| 445 | |
| 446 | // If ResultReg is given, it determines the register class of the load. |
| 447 | // Otherwise, RC is the register class to use. If the result of the |
| 448 | // load isn't anticipated in this block, both may be zero, in which |
| 449 | // case we must make a conservative guess. In particular, don't assign |
| 450 | // R0 or X0 to the result register, as the result may be used in a load, |
| 451 | // store, add-immediate, or isel that won't permit this. (Though |
| 452 | // perhaps the spill and reload of live-exit values would handle this?) |
| 453 | const TargetRegisterClass *UseRC = |
| 454 | (ResultReg ? MRI.getRegClass(Reg: ResultReg) : |
| 455 | (RC ? RC : |
| 456 | (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : |
| 457 | (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) : |
| 458 | (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : |
| 459 | &PPC::GPRC_and_GPRC_NOR0RegClass))))); |
| 460 | |
| 461 | bool Is32BitInt = UseRC->hasSuperClassEq(RC: &PPC::GPRCRegClass); |
| 462 | |
| 463 | switch (VT.SimpleTy) { |
| 464 | default: // e.g., vector types not handled |
| 465 | return false; |
| 466 | case MVT::i8: |
| 467 | Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; |
| 468 | break; |
| 469 | case MVT::i16: |
| 470 | Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) |
| 471 | : (Is32BitInt ? PPC::LHA : PPC::LHA8)); |
| 472 | break; |
| 473 | case MVT::i32: |
| 474 | Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) |
| 475 | : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); |
| 476 | if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) |
| 477 | UseOffset = false; |
| 478 | break; |
| 479 | case MVT::i64: |
| 480 | Opc = PPC::LD; |
| 481 | assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && |
| 482 | "64-bit load with 32-bit target??" ); |
| 483 | UseOffset = ((Addr.Offset & 3) == 0); |
| 484 | break; |
| 485 | case MVT::f32: |
| 486 | Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; |
| 487 | break; |
| 488 | case MVT::f64: |
| 489 | Opc = FP64LoadOpc; |
| 490 | break; |
| 491 | } |
| 492 | |
| 493 | // If necessary, materialize the offset into a register and use |
| 494 | // the indexed form. Also handle stack pointers with special needs. |
| 495 | Register IndexReg; |
| 496 | PPCSimplifyAddress(Addr, UseOffset, IndexReg); |
| 497 | |
| 498 | // If this is a potential VSX load with an offset of 0, a VSX indexed load can |
| 499 | // be used. |
| 500 | bool IsVSSRC = isVSSRCRegClass(RC: UseRC); |
| 501 | bool IsVSFRC = isVSFRCRegClass(RC: UseRC); |
| 502 | bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; |
| 503 | bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; |
| 504 | if ((Is32VSXLoad || Is64VSXLoad) && |
| 505 | (Addr.BaseType != Address::FrameIndexBase) && UseOffset && |
| 506 | (Addr.Offset == 0)) { |
| 507 | UseOffset = false; |
| 508 | } |
| 509 | |
| 510 | if (!ResultReg) |
| 511 | ResultReg = createResultReg(RC: UseRC); |
| 512 | |
| 513 | // Note: If we still have a frame index here, we know the offset is |
| 514 | // in range, as otherwise PPCSimplifyAddress would have converted it |
| 515 | // into a RegBase. |
| 516 | if (Addr.BaseType == Address::FrameIndexBase) { |
| 517 | // VSX only provides an indexed load. |
| 518 | if (Is32VSXLoad || Is64VSXLoad) return false; |
| 519 | |
| 520 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| 521 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *FuncInfo.MF, FI: Addr.Base.FI, |
| 522 | Offset: Addr.Offset), |
| 523 | F: MachineMemOperand::MOLoad, Size: MFI.getObjectSize(ObjectIdx: Addr.Base.FI), |
| 524 | BaseAlignment: MFI.getObjectAlign(ObjectIdx: Addr.Base.FI)); |
| 525 | |
| 526 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 527 | .addImm(Val: Addr.Offset).addFrameIndex(Idx: Addr.Base.FI).addMemOperand(MMO); |
| 528 | |
| 529 | // Base reg with offset in range. |
| 530 | } else if (UseOffset) { |
| 531 | // VSX only provides an indexed load. |
| 532 | if (Is32VSXLoad || Is64VSXLoad) return false; |
| 533 | |
| 534 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 535 | .addImm(Val: Addr.Offset).addReg(RegNo: Addr.Base.Reg); |
| 536 | |
| 537 | // Indexed form. |
| 538 | } else { |
| 539 | // Get the RR opcode corresponding to the RI one. FIXME: It would be |
| 540 | // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it |
| 541 | // is hard to get at. |
| 542 | switch (Opc) { |
| 543 | default: llvm_unreachable("Unexpected opcode!" ); |
| 544 | case PPC::LBZ: Opc = PPC::LBZX; break; |
| 545 | case PPC::LBZ8: Opc = PPC::LBZX8; break; |
| 546 | case PPC::LHZ: Opc = PPC::LHZX; break; |
| 547 | case PPC::LHZ8: Opc = PPC::LHZX8; break; |
| 548 | case PPC::LHA: Opc = PPC::LHAX; break; |
| 549 | case PPC::LHA8: Opc = PPC::LHAX8; break; |
| 550 | case PPC::LWZ: Opc = PPC::LWZX; break; |
| 551 | case PPC::LWZ8: Opc = PPC::LWZX8; break; |
| 552 | case PPC::LWA: Opc = PPC::LWAX; break; |
| 553 | case PPC::LWA_32: Opc = PPC::LWAX_32; break; |
| 554 | case PPC::LD: Opc = PPC::LDX; break; |
| 555 | case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; |
| 556 | case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; |
| 557 | case PPC::EVLDD: Opc = PPC::EVLDDX; break; |
| 558 | case PPC::SPELWZ: Opc = PPC::SPELWZX; break; |
| 559 | } |
| 560 | |
| 561 | auto MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), |
| 562 | DestReg: ResultReg); |
| 563 | |
| 564 | // If we have an index register defined we use it in the store inst, |
| 565 | // otherwise we use X0 as base as it makes the vector instructions to |
| 566 | // use zero in the computation of the effective address regardless the |
| 567 | // content of the register. |
| 568 | if (IndexReg) |
| 569 | MIB.addReg(RegNo: Addr.Base.Reg).addReg(RegNo: IndexReg); |
| 570 | else |
| 571 | MIB.addReg(RegNo: PPC::ZERO8).addReg(RegNo: Addr.Base.Reg); |
| 572 | } |
| 573 | |
| 574 | return true; |
| 575 | } |
| 576 | |
| 577 | // Attempt to fast-select a load instruction. |
| 578 | bool PPCFastISel::SelectLoad(const Instruction *I) { |
| 579 | // FIXME: No atomic loads are supported. |
| 580 | if (cast<LoadInst>(Val: I)->isAtomic()) |
| 581 | return false; |
| 582 | |
| 583 | // Verify we have a legal type before going any further. |
| 584 | MVT VT; |
| 585 | if (!isLoadTypeLegal(Ty: I->getType(), VT)) |
| 586 | return false; |
| 587 | |
| 588 | // See if we can handle this address. |
| 589 | Address Addr; |
| 590 | if (!PPCComputeAddress(Obj: I->getOperand(i: 0), Addr)) |
| 591 | return false; |
| 592 | |
| 593 | // Look at the currently assigned register for this instruction |
| 594 | // to determine the required register class. This is necessary |
| 595 | // to constrain RA from using R0/X0 when this is not legal. |
| 596 | Register AssignedReg = FuncInfo.ValueMap[I]; |
| 597 | const TargetRegisterClass *RC = |
| 598 | AssignedReg ? MRI.getRegClass(Reg: AssignedReg) : nullptr; |
| 599 | |
| 600 | Register ResultReg = 0; |
| 601 | if (!PPCEmitLoad(VT, ResultReg, Addr, RC, IsZExt: true, |
| 602 | FP64LoadOpc: Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) |
| 603 | return false; |
| 604 | updateValueMap(I, Reg: ResultReg); |
| 605 | return true; |
| 606 | } |
| 607 | |
| 608 | // Emit a store instruction to store SrcReg at Addr. |
| 609 | bool PPCFastISel::PPCEmitStore(MVT VT, Register SrcReg, Address &Addr) { |
| 610 | assert(SrcReg && "Nothing to store!" ); |
| 611 | unsigned Opc; |
| 612 | bool UseOffset = true; |
| 613 | |
| 614 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: SrcReg); |
| 615 | bool Is32BitInt = RC->hasSuperClassEq(RC: &PPC::GPRCRegClass); |
| 616 | |
| 617 | switch (VT.SimpleTy) { |
| 618 | default: // e.g., vector types not handled |
| 619 | return false; |
| 620 | case MVT::i8: |
| 621 | Opc = Is32BitInt ? PPC::STB : PPC::STB8; |
| 622 | break; |
| 623 | case MVT::i16: |
| 624 | Opc = Is32BitInt ? PPC::STH : PPC::STH8; |
| 625 | break; |
| 626 | case MVT::i32: |
| 627 | assert(Is32BitInt && "Not GPRC for i32??" ); |
| 628 | Opc = PPC::STW; |
| 629 | break; |
| 630 | case MVT::i64: |
| 631 | Opc = PPC::STD; |
| 632 | UseOffset = ((Addr.Offset & 3) == 0); |
| 633 | break; |
| 634 | case MVT::f32: |
| 635 | Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS; |
| 636 | break; |
| 637 | case MVT::f64: |
| 638 | Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; |
| 639 | break; |
| 640 | } |
| 641 | |
| 642 | // If necessary, materialize the offset into a register and use |
| 643 | // the indexed form. Also handle stack pointers with special needs. |
| 644 | Register IndexReg; |
| 645 | PPCSimplifyAddress(Addr, UseOffset, IndexReg); |
| 646 | |
| 647 | // If this is a potential VSX store with an offset of 0, a VSX indexed store |
| 648 | // can be used. |
| 649 | bool IsVSSRC = isVSSRCRegClass(RC); |
| 650 | bool IsVSFRC = isVSFRCRegClass(RC); |
| 651 | bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; |
| 652 | bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; |
| 653 | if ((Is32VSXStore || Is64VSXStore) && |
| 654 | (Addr.BaseType != Address::FrameIndexBase) && UseOffset && |
| 655 | (Addr.Offset == 0)) { |
| 656 | UseOffset = false; |
| 657 | } |
| 658 | |
| 659 | // Note: If we still have a frame index here, we know the offset is |
| 660 | // in range, as otherwise PPCSimplifyAddress would have converted it |
| 661 | // into a RegBase. |
| 662 | if (Addr.BaseType == Address::FrameIndexBase) { |
| 663 | // VSX only provides an indexed store. |
| 664 | if (Is32VSXStore || Is64VSXStore) return false; |
| 665 | |
| 666 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| 667 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *FuncInfo.MF, FI: Addr.Base.FI, |
| 668 | Offset: Addr.Offset), |
| 669 | F: MachineMemOperand::MOStore, Size: MFI.getObjectSize(ObjectIdx: Addr.Base.FI), |
| 670 | BaseAlignment: MFI.getObjectAlign(ObjectIdx: Addr.Base.FI)); |
| 671 | |
| 672 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 673 | .addReg(RegNo: SrcReg) |
| 674 | .addImm(Val: Addr.Offset) |
| 675 | .addFrameIndex(Idx: Addr.Base.FI) |
| 676 | .addMemOperand(MMO); |
| 677 | |
| 678 | // Base reg with offset in range. |
| 679 | } else if (UseOffset) { |
| 680 | // VSX only provides an indexed store. |
| 681 | if (Is32VSXStore || Is64VSXStore) |
| 682 | return false; |
| 683 | |
| 684 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 685 | .addReg(RegNo: SrcReg).addImm(Val: Addr.Offset).addReg(RegNo: Addr.Base.Reg); |
| 686 | |
| 687 | // Indexed form. |
| 688 | } else { |
| 689 | // Get the RR opcode corresponding to the RI one. FIXME: It would be |
| 690 | // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it |
| 691 | // is hard to get at. |
| 692 | switch (Opc) { |
| 693 | default: llvm_unreachable("Unexpected opcode!" ); |
| 694 | case PPC::STB: Opc = PPC::STBX; break; |
| 695 | case PPC::STH : Opc = PPC::STHX; break; |
| 696 | case PPC::STW : Opc = PPC::STWX; break; |
| 697 | case PPC::STB8: Opc = PPC::STBX8; break; |
| 698 | case PPC::STH8: Opc = PPC::STHX8; break; |
| 699 | case PPC::STW8: Opc = PPC::STWX8; break; |
| 700 | case PPC::STD: Opc = PPC::STDX; break; |
| 701 | case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; |
| 702 | case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; |
| 703 | case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; |
| 704 | case PPC::SPESTW: Opc = PPC::SPESTWX; break; |
| 705 | } |
| 706 | |
| 707 | auto MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 708 | .addReg(RegNo: SrcReg); |
| 709 | |
| 710 | // If we have an index register defined we use it in the store inst, |
| 711 | // otherwise we use X0 as base as it makes the vector instructions to |
| 712 | // use zero in the computation of the effective address regardless the |
| 713 | // content of the register. |
| 714 | if (IndexReg) |
| 715 | MIB.addReg(RegNo: Addr.Base.Reg).addReg(RegNo: IndexReg); |
| 716 | else |
| 717 | MIB.addReg(RegNo: PPC::ZERO8).addReg(RegNo: Addr.Base.Reg); |
| 718 | } |
| 719 | |
| 720 | return true; |
| 721 | } |
| 722 | |
| 723 | // Attempt to fast-select a store instruction. |
| 724 | bool PPCFastISel::SelectStore(const Instruction *I) { |
| 725 | Value *Op0 = I->getOperand(i: 0); |
| 726 | Register SrcReg; |
| 727 | |
| 728 | // FIXME: No atomics loads are supported. |
| 729 | if (cast<StoreInst>(Val: I)->isAtomic()) |
| 730 | return false; |
| 731 | |
| 732 | // Verify we have a legal type before going any further. |
| 733 | MVT VT; |
| 734 | if (!isLoadTypeLegal(Ty: Op0->getType(), VT)) |
| 735 | return false; |
| 736 | |
| 737 | // Get the value to be stored into a register. |
| 738 | SrcReg = getRegForValue(V: Op0); |
| 739 | if (!SrcReg) |
| 740 | return false; |
| 741 | |
| 742 | // See if we can handle this address. |
| 743 | Address Addr; |
| 744 | if (!PPCComputeAddress(Obj: I->getOperand(i: 1), Addr)) |
| 745 | return false; |
| 746 | |
| 747 | if (!PPCEmitStore(VT, SrcReg, Addr)) |
| 748 | return false; |
| 749 | |
| 750 | return true; |
| 751 | } |
| 752 | |
| 753 | // Attempt to fast-select a branch instruction. |
| 754 | bool PPCFastISel::SelectBranch(const Instruction *I) { |
| 755 | const BranchInst *BI = cast<BranchInst>(Val: I); |
| 756 | MachineBasicBlock *BrBB = FuncInfo.MBB; |
| 757 | MachineBasicBlock *TBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 0)); |
| 758 | MachineBasicBlock *FBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 1)); |
| 759 | |
| 760 | // For now, just try the simplest case where it's fed by a compare. |
| 761 | if (const CmpInst *CI = dyn_cast<CmpInst>(Val: BI->getCondition())) { |
| 762 | if (isValueAvailable(V: CI)) { |
| 763 | std::optional<PPC::Predicate> OptPPCPred = |
| 764 | getComparePred(Pred: CI->getPredicate()); |
| 765 | if (!OptPPCPred) |
| 766 | return false; |
| 767 | |
| 768 | PPC::Predicate PPCPred = *OptPPCPred; |
| 769 | |
| 770 | // Take advantage of fall-through opportunities. |
| 771 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
| 772 | std::swap(a&: TBB, b&: FBB); |
| 773 | PPCPred = PPC::InvertPredicate(Opcode: PPCPred); |
| 774 | } |
| 775 | |
| 776 | Register CondReg = createResultReg(RC: &PPC::CRRCRegClass); |
| 777 | |
| 778 | if (!PPCEmitCmp(Src1Value: CI->getOperand(i_nocapture: 0), Src2Value: CI->getOperand(i_nocapture: 1), isZExt: CI->isUnsigned(), |
| 779 | DestReg: CondReg, Pred: PPCPred)) |
| 780 | return false; |
| 781 | |
| 782 | BuildMI(BB&: *BrBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::BCC)) |
| 783 | .addImm(Val: Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred) |
| 784 | .addReg(RegNo: CondReg) |
| 785 | .addMBB(MBB: TBB); |
| 786 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
| 787 | return true; |
| 788 | } |
| 789 | } else if (const ConstantInt *CI = |
| 790 | dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
| 791 | uint64_t Imm = CI->getZExtValue(); |
| 792 | MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
| 793 | fastEmitBranch(MSucc: Target, DbgLoc: MIMD.getDL()); |
| 794 | return true; |
| 795 | } |
| 796 | |
| 797 | // FIXME: ARM looks for a case where the block containing the compare |
| 798 | // has been split from the block containing the branch. If this happens, |
| 799 | // there is a vreg available containing the result of the compare. I'm |
| 800 | // not sure we can do much, as we've lost the predicate information with |
| 801 | // the compare instruction -- we have a 4-bit CR but don't know which bit |
| 802 | // to test here. |
| 803 | return false; |
| 804 | } |
| 805 | |
| 806 | // Attempt to emit a compare of the two source values. Signed and unsigned |
| 807 | // comparisons are supported. Return false if we can't handle it. |
| 808 | bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, |
| 809 | bool IsZExt, Register DestReg, |
| 810 | const PPC::Predicate Pred) { |
| 811 | Type *Ty = SrcValue1->getType(); |
| 812 | EVT SrcEVT = TLI.getValueType(DL, Ty, AllowUnknown: true); |
| 813 | if (!SrcEVT.isSimple()) |
| 814 | return false; |
| 815 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 816 | |
| 817 | if (SrcVT == MVT::i1 && Subtarget->useCRBits()) |
| 818 | return false; |
| 819 | |
| 820 | // See if operand 2 is an immediate encodeable in the compare. |
| 821 | // FIXME: Operands are not in canonical order at -O0, so an immediate |
| 822 | // operand in position 1 is a lost opportunity for now. We are |
| 823 | // similar to ARM in this regard. |
| 824 | int64_t Imm = 0; |
| 825 | bool UseImm = false; |
| 826 | const bool HasSPE = Subtarget->hasSPE(); |
| 827 | |
| 828 | // Only 16-bit integer constants can be represented in compares for |
| 829 | // PowerPC. Others will be materialized into a register. |
| 830 | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: SrcValue2)) { |
| 831 | if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || |
| 832 | SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| 833 | const APInt &CIVal = ConstInt->getValue(); |
| 834 | Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() : |
| 835 | (int64_t)CIVal.getSExtValue(); |
| 836 | if ((IsZExt && isUInt<16>(x: Imm)) || (!IsZExt && isInt<16>(x: Imm))) |
| 837 | UseImm = true; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | Register SrcReg1 = getRegForValue(V: SrcValue1); |
| 842 | if (!SrcReg1) |
| 843 | return false; |
| 844 | |
| 845 | Register SrcReg2; |
| 846 | if (!UseImm) { |
| 847 | SrcReg2 = getRegForValue(V: SrcValue2); |
| 848 | if (!SrcReg2) |
| 849 | return false; |
| 850 | } |
| 851 | |
| 852 | unsigned CmpOpc; |
| 853 | bool NeedsExt = false; |
| 854 | |
| 855 | auto RC1 = MRI.getRegClass(Reg: SrcReg1); |
| 856 | auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(Reg: SrcReg2) : nullptr; |
| 857 | |
| 858 | switch (SrcVT.SimpleTy) { |
| 859 | default: return false; |
| 860 | case MVT::f32: |
| 861 | if (HasSPE) { |
| 862 | switch (Pred) { |
| 863 | default: return false; |
| 864 | case PPC::PRED_EQ: |
| 865 | CmpOpc = PPC::EFSCMPEQ; |
| 866 | break; |
| 867 | case PPC::PRED_LT: |
| 868 | CmpOpc = PPC::EFSCMPLT; |
| 869 | break; |
| 870 | case PPC::PRED_GT: |
| 871 | CmpOpc = PPC::EFSCMPGT; |
| 872 | break; |
| 873 | } |
| 874 | } else { |
| 875 | CmpOpc = PPC::FCMPUS; |
| 876 | if (isVSSRCRegClass(RC: RC1)) |
| 877 | SrcReg1 = copyRegToRegClass(ToRC: &PPC::F4RCRegClass, SrcReg: SrcReg1); |
| 878 | if (RC2 && isVSSRCRegClass(RC: RC2)) |
| 879 | SrcReg2 = copyRegToRegClass(ToRC: &PPC::F4RCRegClass, SrcReg: SrcReg2); |
| 880 | } |
| 881 | break; |
| 882 | case MVT::f64: |
| 883 | if (HasSPE) { |
| 884 | switch (Pred) { |
| 885 | default: return false; |
| 886 | case PPC::PRED_EQ: |
| 887 | CmpOpc = PPC::EFDCMPEQ; |
| 888 | break; |
| 889 | case PPC::PRED_LT: |
| 890 | CmpOpc = PPC::EFDCMPLT; |
| 891 | break; |
| 892 | case PPC::PRED_GT: |
| 893 | CmpOpc = PPC::EFDCMPGT; |
| 894 | break; |
| 895 | } |
| 896 | } else if (isVSFRCRegClass(RC: RC1) || (RC2 && isVSFRCRegClass(RC: RC2))) { |
| 897 | CmpOpc = PPC::XSCMPUDP; |
| 898 | } else { |
| 899 | CmpOpc = PPC::FCMPUD; |
| 900 | } |
| 901 | break; |
| 902 | case MVT::i1: |
| 903 | case MVT::i8: |
| 904 | case MVT::i16: |
| 905 | NeedsExt = true; |
| 906 | [[fallthrough]]; |
| 907 | case MVT::i32: |
| 908 | if (!UseImm) |
| 909 | CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; |
| 910 | else |
| 911 | CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; |
| 912 | break; |
| 913 | case MVT::i64: |
| 914 | if (!UseImm) |
| 915 | CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; |
| 916 | else |
| 917 | CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; |
| 918 | break; |
| 919 | } |
| 920 | |
| 921 | if (NeedsExt) { |
| 922 | Register ExtReg = createResultReg(RC: &PPC::GPRCRegClass); |
| 923 | if (!PPCEmitIntExt(SrcVT, SrcReg: SrcReg1, DestVT: MVT::i32, DestReg: ExtReg, IsZExt)) |
| 924 | return false; |
| 925 | SrcReg1 = ExtReg; |
| 926 | |
| 927 | if (!UseImm) { |
| 928 | Register ExtReg = createResultReg(RC: &PPC::GPRCRegClass); |
| 929 | if (!PPCEmitIntExt(SrcVT, SrcReg: SrcReg2, DestVT: MVT::i32, DestReg: ExtReg, IsZExt)) |
| 930 | return false; |
| 931 | SrcReg2 = ExtReg; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | if (!UseImm) |
| 936 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: CmpOpc), DestReg) |
| 937 | .addReg(RegNo: SrcReg1).addReg(RegNo: SrcReg2); |
| 938 | else |
| 939 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: CmpOpc), DestReg) |
| 940 | .addReg(RegNo: SrcReg1).addImm(Val: Imm); |
| 941 | |
| 942 | return true; |
| 943 | } |
| 944 | |
| 945 | // Attempt to fast-select a floating-point extend instruction. |
| 946 | bool PPCFastISel::SelectFPExt(const Instruction *I) { |
| 947 | Value *Src = I->getOperand(i: 0); |
| 948 | EVT SrcVT = TLI.getValueType(DL, Ty: Src->getType(), AllowUnknown: true); |
| 949 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
| 950 | |
| 951 | if (SrcVT != MVT::f32 || DestVT != MVT::f64) |
| 952 | return false; |
| 953 | |
| 954 | Register SrcReg = getRegForValue(V: Src); |
| 955 | if (!SrcReg) |
| 956 | return false; |
| 957 | |
| 958 | // No code is generated for a FP extend. |
| 959 | updateValueMap(I, Reg: SrcReg); |
| 960 | return true; |
| 961 | } |
| 962 | |
| 963 | // Attempt to fast-select a floating-point truncate instruction. |
| 964 | bool PPCFastISel::SelectFPTrunc(const Instruction *I) { |
| 965 | Value *Src = I->getOperand(i: 0); |
| 966 | EVT SrcVT = TLI.getValueType(DL, Ty: Src->getType(), AllowUnknown: true); |
| 967 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
| 968 | |
| 969 | if (SrcVT != MVT::f64 || DestVT != MVT::f32) |
| 970 | return false; |
| 971 | |
| 972 | Register SrcReg = getRegForValue(V: Src); |
| 973 | if (!SrcReg) |
| 974 | return false; |
| 975 | |
| 976 | // Round the result to single precision. |
| 977 | Register DestReg; |
| 978 | auto RC = MRI.getRegClass(Reg: SrcReg); |
| 979 | if (Subtarget->hasSPE()) { |
| 980 | DestReg = createResultReg(RC: &PPC::GPRCRegClass); |
| 981 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::EFSCFD), |
| 982 | DestReg) |
| 983 | .addReg(RegNo: SrcReg); |
| 984 | } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) { |
| 985 | DestReg = createResultReg(RC: &PPC::VSSRCRegClass); |
| 986 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::XSRSP), |
| 987 | DestReg) |
| 988 | .addReg(RegNo: SrcReg); |
| 989 | } else { |
| 990 | SrcReg = copyRegToRegClass(ToRC: &PPC::F8RCRegClass, SrcReg); |
| 991 | DestReg = createResultReg(RC: &PPC::F4RCRegClass); |
| 992 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 993 | MCID: TII.get(Opcode: PPC::FRSP), DestReg) |
| 994 | .addReg(RegNo: SrcReg); |
| 995 | } |
| 996 | |
| 997 | updateValueMap(I, Reg: DestReg); |
| 998 | return true; |
| 999 | } |
| 1000 | |
| 1001 | // Move an i32 or i64 value in a GPR to an f64 value in an FPR. |
| 1002 | // FIXME: When direct register moves are implemented (see PowerISA 2.07), |
| 1003 | // those should be used instead of moving via a stack slot when the |
| 1004 | // subtarget permits. |
| 1005 | // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte |
| 1006 | // stack slot and 4-byte store/load sequence. Or just sext the 4-byte |
| 1007 | // case to 8 bytes which produces tighter code but wastes stack space. |
| 1008 | Register PPCFastISel::PPCMoveToFPReg(MVT SrcVT, Register SrcReg, |
| 1009 | bool IsSigned) { |
| 1010 | |
| 1011 | // If necessary, extend 32-bit int to 64-bit. |
| 1012 | if (SrcVT == MVT::i32) { |
| 1013 | Register TmpReg = createResultReg(RC: &PPC::G8RCRegClass); |
| 1014 | if (!PPCEmitIntExt(SrcVT: MVT::i32, SrcReg, DestVT: MVT::i64, DestReg: TmpReg, IsZExt: !IsSigned)) |
| 1015 | return Register(); |
| 1016 | SrcReg = TmpReg; |
| 1017 | } |
| 1018 | |
| 1019 | // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. |
| 1020 | Address Addr; |
| 1021 | Addr.BaseType = Address::FrameIndexBase; |
| 1022 | Addr.Base.FI = MFI.CreateStackObject(Size: 8, Alignment: Align(8), isSpillSlot: false); |
| 1023 | |
| 1024 | // Store the value from the GPR. |
| 1025 | if (!PPCEmitStore(VT: MVT::i64, SrcReg, Addr)) |
| 1026 | return Register(); |
| 1027 | |
| 1028 | // Load the integer value into an FPR. The kind of load used depends |
| 1029 | // on a number of conditions. |
| 1030 | unsigned LoadOpc = PPC::LFD; |
| 1031 | |
| 1032 | if (SrcVT == MVT::i32) { |
| 1033 | if (!IsSigned) { |
| 1034 | LoadOpc = PPC::LFIWZX; |
| 1035 | Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; |
| 1036 | } else if (Subtarget->hasLFIWAX()) { |
| 1037 | LoadOpc = PPC::LFIWAX; |
| 1038 | Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | const TargetRegisterClass *RC = &PPC::F8RCRegClass; |
| 1043 | Register ResultReg; |
| 1044 | if (!PPCEmitLoad(VT: MVT::f64, ResultReg, Addr, RC, IsZExt: !IsSigned, FP64LoadOpc: LoadOpc)) |
| 1045 | return Register(); |
| 1046 | |
| 1047 | return ResultReg; |
| 1048 | } |
| 1049 | |
| 1050 | // Attempt to fast-select an integer-to-floating-point conversion. |
| 1051 | // FIXME: Once fast-isel has better support for VSX, conversions using |
| 1052 | // direct moves should be implemented. |
| 1053 | bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { |
| 1054 | MVT DstVT; |
| 1055 | Type *DstTy = I->getType(); |
| 1056 | if (!isTypeLegal(Ty: DstTy, VT&: DstVT)) |
| 1057 | return false; |
| 1058 | |
| 1059 | if (DstVT != MVT::f32 && DstVT != MVT::f64) |
| 1060 | return false; |
| 1061 | |
| 1062 | Value *Src = I->getOperand(i: 0); |
| 1063 | EVT SrcEVT = TLI.getValueType(DL, Ty: Src->getType(), AllowUnknown: true); |
| 1064 | if (!SrcEVT.isSimple()) |
| 1065 | return false; |
| 1066 | |
| 1067 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1068 | |
| 1069 | if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && |
| 1070 | SrcVT != MVT::i32 && SrcVT != MVT::i64) |
| 1071 | return false; |
| 1072 | |
| 1073 | Register SrcReg = getRegForValue(V: Src); |
| 1074 | if (!SrcReg) |
| 1075 | return false; |
| 1076 | |
| 1077 | // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs |
| 1078 | if (Subtarget->hasSPE()) { |
| 1079 | unsigned Opc; |
| 1080 | if (DstVT == MVT::f32) |
| 1081 | Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; |
| 1082 | else |
| 1083 | Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; |
| 1084 | |
| 1085 | Register DestReg = createResultReg(RC: &PPC::SPERCRegClass); |
| 1086 | // Generate the convert. |
| 1087 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 1088 | .addReg(RegNo: SrcReg); |
| 1089 | updateValueMap(I, Reg: DestReg); |
| 1090 | return true; |
| 1091 | } |
| 1092 | |
| 1093 | // We can only lower an unsigned convert if we have the newer |
| 1094 | // floating-point conversion operations. |
| 1095 | if (!IsSigned && !Subtarget->hasFPCVT()) |
| 1096 | return false; |
| 1097 | |
| 1098 | // FIXME: For now we require the newer floating-point conversion operations |
| 1099 | // (which are present only on P7 and A2 server models) when converting |
| 1100 | // to single-precision float. Otherwise we have to generate a lot of |
| 1101 | // fiddly code to avoid double rounding. If necessary, the fiddly code |
| 1102 | // can be found in PPCTargetLowering::LowerINT_TO_FP(). |
| 1103 | if (DstVT == MVT::f32 && !Subtarget->hasFPCVT()) |
| 1104 | return false; |
| 1105 | |
| 1106 | // Extend the input if necessary. |
| 1107 | if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { |
| 1108 | Register TmpReg = createResultReg(RC: &PPC::G8RCRegClass); |
| 1109 | if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT: MVT::i64, DestReg: TmpReg, IsZExt: !IsSigned)) |
| 1110 | return false; |
| 1111 | SrcVT = MVT::i64; |
| 1112 | SrcReg = TmpReg; |
| 1113 | } |
| 1114 | |
| 1115 | // Move the integer value to an FPR. |
| 1116 | Register FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); |
| 1117 | if (!FPReg) |
| 1118 | return false; |
| 1119 | |
| 1120 | // Determine the opcode for the conversion. |
| 1121 | const TargetRegisterClass *RC = &PPC::F8RCRegClass; |
| 1122 | Register DestReg = createResultReg(RC); |
| 1123 | unsigned Opc; |
| 1124 | |
| 1125 | if (DstVT == MVT::f32) |
| 1126 | Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; |
| 1127 | else |
| 1128 | Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; |
| 1129 | |
| 1130 | // Generate the convert. |
| 1131 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 1132 | .addReg(RegNo: FPReg); |
| 1133 | |
| 1134 | updateValueMap(I, Reg: DestReg); |
| 1135 | return true; |
| 1136 | } |
| 1137 | |
| 1138 | // Move the floating-point value in SrcReg into an integer destination |
| 1139 | // register, and return the register (or zero if we can't handle it). |
| 1140 | // FIXME: When direct register moves are implemented (see PowerISA 2.07), |
| 1141 | // those should be used instead of moving via a stack slot when the |
| 1142 | // subtarget permits. |
| 1143 | Register PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, |
| 1144 | Register SrcReg, bool IsSigned) { |
| 1145 | // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. |
| 1146 | // Note that if have STFIWX available, we could use a 4-byte stack |
| 1147 | // slot for i32, but this being fast-isel we'll just go with the |
| 1148 | // easiest code gen possible. |
| 1149 | Address Addr; |
| 1150 | Addr.BaseType = Address::FrameIndexBase; |
| 1151 | Addr.Base.FI = MFI.CreateStackObject(Size: 8, Alignment: Align(8), isSpillSlot: false); |
| 1152 | |
| 1153 | // Store the value from the FPR. |
| 1154 | if (!PPCEmitStore(VT: MVT::f64, SrcReg, Addr)) |
| 1155 | return Register(); |
| 1156 | |
| 1157 | // Reload it into a GPR. If we want an i32 on big endian, modify the |
| 1158 | // address to have a 4-byte offset so we load from the right place. |
| 1159 | if (VT == MVT::i32) |
| 1160 | Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; |
| 1161 | |
| 1162 | // Look at the currently assigned register for this instruction |
| 1163 | // to determine the required register class. |
| 1164 | Register AssignedReg = FuncInfo.ValueMap[I]; |
| 1165 | const TargetRegisterClass *RC = |
| 1166 | AssignedReg ? MRI.getRegClass(Reg: AssignedReg) : nullptr; |
| 1167 | |
| 1168 | Register ResultReg; |
| 1169 | if (!PPCEmitLoad(VT, ResultReg, Addr, RC, IsZExt: !IsSigned)) |
| 1170 | return Register(); |
| 1171 | |
| 1172 | return ResultReg; |
| 1173 | } |
| 1174 | |
| 1175 | // Attempt to fast-select a floating-point-to-integer conversion. |
| 1176 | // FIXME: Once fast-isel has better support for VSX, conversions using |
| 1177 | // direct moves should be implemented. |
| 1178 | bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { |
| 1179 | MVT DstVT, SrcVT; |
| 1180 | Type *DstTy = I->getType(); |
| 1181 | if (!isTypeLegal(Ty: DstTy, VT&: DstVT)) |
| 1182 | return false; |
| 1183 | |
| 1184 | if (DstVT != MVT::i32 && DstVT != MVT::i64) |
| 1185 | return false; |
| 1186 | |
| 1187 | // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. |
| 1188 | if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() && |
| 1189 | !Subtarget->hasSPE()) |
| 1190 | return false; |
| 1191 | |
| 1192 | Value *Src = I->getOperand(i: 0); |
| 1193 | Type *SrcTy = Src->getType(); |
| 1194 | if (!isTypeLegal(Ty: SrcTy, VT&: SrcVT)) |
| 1195 | return false; |
| 1196 | |
| 1197 | if (SrcVT != MVT::f32 && SrcVT != MVT::f64) |
| 1198 | return false; |
| 1199 | |
| 1200 | Register SrcReg = getRegForValue(V: Src); |
| 1201 | if (!SrcReg) |
| 1202 | return false; |
| 1203 | |
| 1204 | // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a |
| 1205 | // meaningless copy to get the register class right. |
| 1206 | const TargetRegisterClass *InRC = MRI.getRegClass(Reg: SrcReg); |
| 1207 | if (InRC == &PPC::F4RCRegClass) |
| 1208 | SrcReg = copyRegToRegClass(ToRC: &PPC::F8RCRegClass, SrcReg); |
| 1209 | else if (InRC == &PPC::VSSRCRegClass) |
| 1210 | SrcReg = copyRegToRegClass(ToRC: &PPC::VSFRCRegClass, SrcReg); |
| 1211 | |
| 1212 | // Determine the opcode for the conversion, which takes place |
| 1213 | // entirely within FPRs or VSRs. |
| 1214 | Register DestReg; |
| 1215 | unsigned Opc; |
| 1216 | auto RC = MRI.getRegClass(Reg: SrcReg); |
| 1217 | |
| 1218 | if (Subtarget->hasSPE()) { |
| 1219 | DestReg = createResultReg(RC: &PPC::GPRCRegClass); |
| 1220 | if (IsSigned) |
| 1221 | Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; |
| 1222 | else |
| 1223 | Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; |
| 1224 | } else if (isVSFRCRegClass(RC)) { |
| 1225 | DestReg = createResultReg(RC: &PPC::VSFRCRegClass); |
| 1226 | if (DstVT == MVT::i32) |
| 1227 | Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS; |
| 1228 | else |
| 1229 | Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS; |
| 1230 | } else { |
| 1231 | DestReg = createResultReg(RC: &PPC::F8RCRegClass); |
| 1232 | if (DstVT == MVT::i32) |
| 1233 | if (IsSigned) |
| 1234 | Opc = PPC::FCTIWZ; |
| 1235 | else |
| 1236 | Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; |
| 1237 | else |
| 1238 | Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; |
| 1239 | } |
| 1240 | |
| 1241 | // Generate the convert. |
| 1242 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 1243 | .addReg(RegNo: SrcReg); |
| 1244 | |
| 1245 | // Now move the integer value from a float register to an integer register. |
| 1246 | Register IntReg = Subtarget->hasSPE() |
| 1247 | ? DestReg |
| 1248 | : PPCMoveToIntReg(I, VT: DstVT, SrcReg: DestReg, IsSigned); |
| 1249 | |
| 1250 | if (!IntReg) |
| 1251 | return false; |
| 1252 | |
| 1253 | updateValueMap(I, Reg: IntReg); |
| 1254 | return true; |
| 1255 | } |
| 1256 | |
| 1257 | // Attempt to fast-select a binary integer operation that isn't already |
| 1258 | // handled automatically. |
| 1259 | bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { |
| 1260 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
| 1261 | |
| 1262 | // We can get here in the case when we have a binary operation on a non-legal |
| 1263 | // type and the target independent selector doesn't know how to handle it. |
| 1264 | if (DestVT != MVT::i16 && DestVT != MVT::i8) |
| 1265 | return false; |
| 1266 | |
| 1267 | // Look at the currently assigned register for this instruction |
| 1268 | // to determine the required register class. If there is no register, |
| 1269 | // make a conservative choice (don't assign R0). |
| 1270 | Register AssignedReg = FuncInfo.ValueMap[I]; |
| 1271 | const TargetRegisterClass *RC = |
| 1272 | (AssignedReg ? MRI.getRegClass(Reg: AssignedReg) : |
| 1273 | &PPC::GPRC_and_GPRC_NOR0RegClass); |
| 1274 | bool IsGPRC = RC->hasSuperClassEq(RC: &PPC::GPRCRegClass); |
| 1275 | |
| 1276 | unsigned Opc; |
| 1277 | switch (ISDOpcode) { |
| 1278 | default: return false; |
| 1279 | case ISD::ADD: |
| 1280 | Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; |
| 1281 | break; |
| 1282 | case ISD::OR: |
| 1283 | Opc = IsGPRC ? PPC::OR : PPC::OR8; |
| 1284 | break; |
| 1285 | case ISD::SUB: |
| 1286 | Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; |
| 1287 | break; |
| 1288 | } |
| 1289 | |
| 1290 | Register ResultReg = createResultReg(RC: RC ? RC : &PPC::G8RCRegClass); |
| 1291 | Register SrcReg1 = getRegForValue(V: I->getOperand(i: 0)); |
| 1292 | if (!SrcReg1) |
| 1293 | return false; |
| 1294 | |
| 1295 | // Handle case of small immediate operand. |
| 1296 | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1))) { |
| 1297 | const APInt &CIVal = ConstInt->getValue(); |
| 1298 | int Imm = (int)CIVal.getSExtValue(); |
| 1299 | bool UseImm = true; |
| 1300 | if (isInt<16>(x: Imm)) { |
| 1301 | switch (Opc) { |
| 1302 | default: |
| 1303 | llvm_unreachable("Missing case!" ); |
| 1304 | case PPC::ADD4: |
| 1305 | Opc = PPC::ADDI; |
| 1306 | MRI.setRegClass(Reg: SrcReg1, RC: &PPC::GPRC_and_GPRC_NOR0RegClass); |
| 1307 | break; |
| 1308 | case PPC::ADD8: |
| 1309 | Opc = PPC::ADDI8; |
| 1310 | MRI.setRegClass(Reg: SrcReg1, RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 1311 | break; |
| 1312 | case PPC::OR: |
| 1313 | Opc = PPC::ORI; |
| 1314 | break; |
| 1315 | case PPC::OR8: |
| 1316 | Opc = PPC::ORI8; |
| 1317 | break; |
| 1318 | case PPC::SUBF: |
| 1319 | if (Imm == -32768) |
| 1320 | UseImm = false; |
| 1321 | else { |
| 1322 | Opc = PPC::ADDI; |
| 1323 | MRI.setRegClass(Reg: SrcReg1, RC: &PPC::GPRC_and_GPRC_NOR0RegClass); |
| 1324 | Imm = -Imm; |
| 1325 | } |
| 1326 | break; |
| 1327 | case PPC::SUBF8: |
| 1328 | if (Imm == -32768) |
| 1329 | UseImm = false; |
| 1330 | else { |
| 1331 | Opc = PPC::ADDI8; |
| 1332 | MRI.setRegClass(Reg: SrcReg1, RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 1333 | Imm = -Imm; |
| 1334 | } |
| 1335 | break; |
| 1336 | } |
| 1337 | |
| 1338 | if (UseImm) { |
| 1339 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), |
| 1340 | DestReg: ResultReg) |
| 1341 | .addReg(RegNo: SrcReg1) |
| 1342 | .addImm(Val: Imm); |
| 1343 | updateValueMap(I, Reg: ResultReg); |
| 1344 | return true; |
| 1345 | } |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | // Reg-reg case. |
| 1350 | Register SrcReg2 = getRegForValue(V: I->getOperand(i: 1)); |
| 1351 | if (!SrcReg2) |
| 1352 | return false; |
| 1353 | |
| 1354 | // Reverse operands for subtract-from. |
| 1355 | if (ISDOpcode == ISD::SUB) |
| 1356 | std::swap(a&: SrcReg1, b&: SrcReg2); |
| 1357 | |
| 1358 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 1359 | .addReg(RegNo: SrcReg1).addReg(RegNo: SrcReg2); |
| 1360 | updateValueMap(I, Reg: ResultReg); |
| 1361 | return true; |
| 1362 | } |
| 1363 | |
| 1364 | // Handle arguments to a call that we're attempting to fast-select. |
| 1365 | // Return false if the arguments are too complex for us at the moment. |
| 1366 | bool PPCFastISel::processCallArgs(SmallVectorImpl<Value *> &Args, |
| 1367 | SmallVectorImpl<Register> &ArgRegs, |
| 1368 | SmallVectorImpl<MVT> &ArgVTs, |
| 1369 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| 1370 | SmallVectorImpl<unsigned> &RegArgs, |
| 1371 | CallingConv::ID CC, unsigned &NumBytes, |
| 1372 | bool IsVarArg) { |
| 1373 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1374 | CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); |
| 1375 | |
| 1376 | // Reserve space for the linkage area on the stack. |
| 1377 | unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize(); |
| 1378 | CCInfo.AllocateStack(Size: LinkageSize, Alignment: Align(8)); |
| 1379 | |
| 1380 | SmallVector<Type *, 16> ArgTys; |
| 1381 | for (Value *Arg : Args) |
| 1382 | ArgTys.push_back(Elt: Arg->getType()); |
| 1383 | CCInfo.AnalyzeCallOperands(ArgVTs, Flags&: ArgFlags, OrigTys&: ArgTys, Fn: CC_PPC64_ELF_FIS); |
| 1384 | |
| 1385 | // Bail out if we can't handle any of the arguments. |
| 1386 | for (const CCValAssign &VA : ArgLocs) { |
| 1387 | MVT ArgVT = ArgVTs[VA.getValNo()]; |
| 1388 | |
| 1389 | // Skip vector arguments for now, as well as long double and |
| 1390 | // uint128_t, and anything that isn't passed in a register. |
| 1391 | if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || |
| 1392 | !VA.isRegLoc() || VA.needsCustom()) |
| 1393 | return false; |
| 1394 | |
| 1395 | // Skip bit-converted arguments for now. |
| 1396 | if (VA.getLocInfo() == CCValAssign::BCvt) |
| 1397 | return false; |
| 1398 | } |
| 1399 | |
| 1400 | // Get a count of how many bytes are to be pushed onto the stack. |
| 1401 | NumBytes = CCInfo.getStackSize(); |
| 1402 | |
| 1403 | // The prolog code of the callee may store up to 8 GPR argument registers to |
| 1404 | // the stack, allowing va_start to index over them in memory if its varargs. |
| 1405 | // Because we cannot tell if this is needed on the caller side, we have to |
| 1406 | // conservatively assume that it is needed. As such, make sure we have at |
| 1407 | // least enough stack space for the caller to store the 8 GPRs. |
| 1408 | // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. |
| 1409 | NumBytes = std::max(a: NumBytes, b: LinkageSize + 64); |
| 1410 | |
| 1411 | // Issue CALLSEQ_START. |
| 1412 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1413 | MCID: TII.get(Opcode: TII.getCallFrameSetupOpcode())) |
| 1414 | .addImm(Val: NumBytes).addImm(Val: 0); |
| 1415 | |
| 1416 | // Prepare to assign register arguments. Every argument uses up a |
| 1417 | // GPR protocol register even if it's passed in a floating-point |
| 1418 | // register (unless we're using the fast calling convention). |
| 1419 | unsigned NextGPR = PPC::X3; |
| 1420 | unsigned NextFPR = PPC::F1; |
| 1421 | |
| 1422 | // Process arguments. |
| 1423 | for (const CCValAssign &VA : ArgLocs) { |
| 1424 | Register Arg = ArgRegs[VA.getValNo()]; |
| 1425 | MVT ArgVT = ArgVTs[VA.getValNo()]; |
| 1426 | |
| 1427 | // Handle argument promotion and bitcasts. |
| 1428 | switch (VA.getLocInfo()) { |
| 1429 | default: |
| 1430 | llvm_unreachable("Unknown loc info!" ); |
| 1431 | case CCValAssign::Full: |
| 1432 | break; |
| 1433 | case CCValAssign::SExt: { |
| 1434 | MVT DestVT = VA.getLocVT(); |
| 1435 | const TargetRegisterClass *RC = |
| 1436 | (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| 1437 | Register TmpReg = createResultReg(RC); |
| 1438 | if (!PPCEmitIntExt(SrcVT: ArgVT, SrcReg: Arg, DestVT, DestReg: TmpReg, /*IsZExt*/false)) |
| 1439 | llvm_unreachable("Failed to emit a sext!" ); |
| 1440 | ArgVT = DestVT; |
| 1441 | Arg = TmpReg; |
| 1442 | break; |
| 1443 | } |
| 1444 | case CCValAssign::AExt: |
| 1445 | case CCValAssign::ZExt: { |
| 1446 | MVT DestVT = VA.getLocVT(); |
| 1447 | const TargetRegisterClass *RC = |
| 1448 | (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| 1449 | Register TmpReg = createResultReg(RC); |
| 1450 | if (!PPCEmitIntExt(SrcVT: ArgVT, SrcReg: Arg, DestVT, DestReg: TmpReg, /*IsZExt*/true)) |
| 1451 | llvm_unreachable("Failed to emit a zext!" ); |
| 1452 | ArgVT = DestVT; |
| 1453 | Arg = TmpReg; |
| 1454 | break; |
| 1455 | } |
| 1456 | case CCValAssign::BCvt: { |
| 1457 | // FIXME: Not yet handled. |
| 1458 | llvm_unreachable("Should have bailed before getting here!" ); |
| 1459 | break; |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | // Copy this argument to the appropriate register. |
| 1464 | unsigned ArgReg; |
| 1465 | if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { |
| 1466 | ArgReg = NextFPR++; |
| 1467 | if (CC != CallingConv::Fast) |
| 1468 | ++NextGPR; |
| 1469 | } else |
| 1470 | ArgReg = NextGPR++; |
| 1471 | |
| 1472 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1473 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ArgReg).addReg(RegNo: Arg); |
| 1474 | RegArgs.push_back(Elt: ArgReg); |
| 1475 | } |
| 1476 | |
| 1477 | return true; |
| 1478 | } |
| 1479 | |
| 1480 | // For a call that we've determined we can fast-select, finish the |
| 1481 | // call sequence and generate a copy to obtain the return value (if any). |
| 1482 | bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { |
| 1483 | CallingConv::ID CC = CLI.CallConv; |
| 1484 | |
| 1485 | // Issue CallSEQ_END. |
| 1486 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1487 | MCID: TII.get(Opcode: TII.getCallFrameDestroyOpcode())) |
| 1488 | .addImm(Val: NumBytes).addImm(Val: 0); |
| 1489 | |
| 1490 | // Next, generate a copy to obtain the return value. |
| 1491 | // FIXME: No multi-register return values yet, though I don't foresee |
| 1492 | // any real difficulties there. |
| 1493 | if (RetVT != MVT::isVoid) { |
| 1494 | SmallVector<CCValAssign, 16> RVLocs; |
| 1495 | CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); |
| 1496 | CCInfo.AnalyzeCallResult(VT: RetVT, OrigTy: CLI.RetTy, Fn: RetCC_PPC64_ELF_FIS); |
| 1497 | CCValAssign &VA = RVLocs[0]; |
| 1498 | assert(RVLocs.size() == 1 && "No support for multi-reg return values!" ); |
| 1499 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 1500 | |
| 1501 | MVT DestVT = VA.getValVT(); |
| 1502 | MVT CopyVT = DestVT; |
| 1503 | |
| 1504 | // Ints smaller than a register still arrive in a full 64-bit |
| 1505 | // register, so make sure we recognize this. |
| 1506 | if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) |
| 1507 | CopyVT = MVT::i64; |
| 1508 | |
| 1509 | Register SourcePhysReg = VA.getLocReg(); |
| 1510 | Register ResultReg; |
| 1511 | |
| 1512 | if (RetVT == CopyVT) { |
| 1513 | const TargetRegisterClass *CpyRC = TLI.getRegClassFor(VT: CopyVT); |
| 1514 | ResultReg = copyRegToRegClass(ToRC: CpyRC, SrcReg: SourcePhysReg); |
| 1515 | |
| 1516 | // If necessary, round the floating result to single precision. |
| 1517 | } else if (CopyVT == MVT::f64) { |
| 1518 | ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: RetVT)); |
| 1519 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::FRSP), |
| 1520 | DestReg: ResultReg).addReg(RegNo: SourcePhysReg); |
| 1521 | |
| 1522 | // If only the low half of a general register is needed, generate |
| 1523 | // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be |
| 1524 | // used along the fast-isel path (not lowered), and downstream logic |
| 1525 | // also doesn't like a direct subreg copy on a physical reg.) |
| 1526 | } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { |
| 1527 | // Convert physical register from G8RC to GPRC. |
| 1528 | SourcePhysReg = (SourcePhysReg - PPC::X0) + PPC::R0; |
| 1529 | ResultReg = copyRegToRegClass(ToRC: &PPC::GPRCRegClass, SrcReg: SourcePhysReg); |
| 1530 | } |
| 1531 | |
| 1532 | assert(ResultReg && "ResultReg unset!" ); |
| 1533 | CLI.InRegs.push_back(Elt: SourcePhysReg); |
| 1534 | CLI.ResultReg = ResultReg; |
| 1535 | CLI.NumResultRegs = 1; |
| 1536 | } |
| 1537 | |
| 1538 | return true; |
| 1539 | } |
| 1540 | |
| 1541 | bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { |
| 1542 | CallingConv::ID CC = CLI.CallConv; |
| 1543 | bool IsTailCall = CLI.IsTailCall; |
| 1544 | bool IsVarArg = CLI.IsVarArg; |
| 1545 | const Value *Callee = CLI.Callee; |
| 1546 | const MCSymbol *Symbol = CLI.Symbol; |
| 1547 | |
| 1548 | if (!Callee && !Symbol) |
| 1549 | return false; |
| 1550 | |
| 1551 | // Allow SelectionDAG isel to handle tail calls and long calls. |
| 1552 | if (IsTailCall || Subtarget->useLongCalls()) |
| 1553 | return false; |
| 1554 | |
| 1555 | // Let SDISel handle vararg functions. |
| 1556 | if (IsVarArg) |
| 1557 | return false; |
| 1558 | |
| 1559 | // If this is a PC-Rel function, let SDISel handle the call. |
| 1560 | if (Subtarget->isUsingPCRelativeCalls()) |
| 1561 | return false; |
| 1562 | |
| 1563 | // Handle simple calls for now, with legal return types and |
| 1564 | // those that can be extended. |
| 1565 | Type *RetTy = CLI.RetTy; |
| 1566 | MVT RetVT; |
| 1567 | if (RetTy->isVoidTy()) |
| 1568 | RetVT = MVT::isVoid; |
| 1569 | else if (!isTypeLegal(Ty: RetTy, VT&: RetVT) && RetVT != MVT::i16 && |
| 1570 | RetVT != MVT::i8) |
| 1571 | return false; |
| 1572 | else if (RetVT == MVT::i1 && Subtarget->useCRBits()) |
| 1573 | // We can't handle boolean returns when CR bits are in use. |
| 1574 | return false; |
| 1575 | |
| 1576 | // FIXME: No multi-register return values yet. |
| 1577 | if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && |
| 1578 | RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && |
| 1579 | RetVT != MVT::f64) { |
| 1580 | SmallVector<CCValAssign, 16> RVLocs; |
| 1581 | CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); |
| 1582 | CCInfo.AnalyzeCallResult(VT: RetVT, OrigTy: RetTy, Fn: RetCC_PPC64_ELF_FIS); |
| 1583 | if (RVLocs.size() > 1) |
| 1584 | return false; |
| 1585 | } |
| 1586 | |
| 1587 | // Bail early if more than 8 arguments, as we only currently |
| 1588 | // handle arguments passed in registers. |
| 1589 | unsigned NumArgs = CLI.OutVals.size(); |
| 1590 | if (NumArgs > 8) |
| 1591 | return false; |
| 1592 | |
| 1593 | // Set up the argument vectors. |
| 1594 | SmallVector<Value*, 8> Args; |
| 1595 | SmallVector<Register, 8> ArgRegs; |
| 1596 | SmallVector<MVT, 8> ArgVTs; |
| 1597 | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| 1598 | |
| 1599 | Args.reserve(N: NumArgs); |
| 1600 | ArgRegs.reserve(N: NumArgs); |
| 1601 | ArgVTs.reserve(N: NumArgs); |
| 1602 | ArgFlags.reserve(N: NumArgs); |
| 1603 | |
| 1604 | for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { |
| 1605 | // Only handle easy calls for now. It would be reasonably easy |
| 1606 | // to handle <= 8-byte structures passed ByVal in registers, but we |
| 1607 | // have to ensure they are right-justified in the register. |
| 1608 | ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; |
| 1609 | if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) |
| 1610 | return false; |
| 1611 | |
| 1612 | Value *ArgValue = CLI.OutVals[i]; |
| 1613 | Type *ArgTy = ArgValue->getType(); |
| 1614 | MVT ArgVT; |
| 1615 | if (!isTypeLegal(Ty: ArgTy, VT&: ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) |
| 1616 | return false; |
| 1617 | |
| 1618 | // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP |
| 1619 | // types, which is passed through vector register. Skip these types and |
| 1620 | // fallback to default SelectionDAG based selection. |
| 1621 | if (ArgVT.isVector() || ArgVT == MVT::f128) |
| 1622 | return false; |
| 1623 | |
| 1624 | Register Arg = getRegForValue(V: ArgValue); |
| 1625 | if (!Arg) |
| 1626 | return false; |
| 1627 | |
| 1628 | Args.push_back(Elt: ArgValue); |
| 1629 | ArgRegs.push_back(Elt: Arg); |
| 1630 | ArgVTs.push_back(Elt: ArgVT); |
| 1631 | ArgFlags.push_back(Elt: Flags); |
| 1632 | } |
| 1633 | |
| 1634 | // Process the arguments. |
| 1635 | SmallVector<unsigned, 8> RegArgs; |
| 1636 | unsigned NumBytes; |
| 1637 | |
| 1638 | if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, |
| 1639 | RegArgs, CC, NumBytes, IsVarArg)) |
| 1640 | return false; |
| 1641 | |
| 1642 | MachineInstrBuilder MIB; |
| 1643 | // FIXME: No handling for function pointers yet. This requires |
| 1644 | // implementing the function descriptor (OPD) setup. |
| 1645 | const GlobalValue *GV = dyn_cast<GlobalValue>(Val: Callee); |
| 1646 | if (!GV) { |
| 1647 | // patchpoints are a special case; they always dispatch to a pointer value. |
| 1648 | // However, we don't actually want to generate the indirect call sequence |
| 1649 | // here (that will be generated, as necessary, during asm printing), and |
| 1650 | // the call we generate here will be erased by FastISel::selectPatchpoint, |
| 1651 | // so don't try very hard... |
| 1652 | if (CLI.IsPatchPoint) |
| 1653 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::NOP)); |
| 1654 | else |
| 1655 | return false; |
| 1656 | } else { |
| 1657 | // Build direct call with NOP for TOC restore. |
| 1658 | // FIXME: We can and should optimize away the NOP for local calls. |
| 1659 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1660 | MCID: TII.get(Opcode: PPC::BL8_NOP)); |
| 1661 | // Add callee. |
| 1662 | MIB.addGlobalAddress(GV); |
| 1663 | } |
| 1664 | |
| 1665 | // Add implicit physical register uses to the call. |
| 1666 | for (unsigned Reg : RegArgs) |
| 1667 | MIB.addReg(RegNo: Reg, Flags: RegState::Implicit); |
| 1668 | |
| 1669 | // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live |
| 1670 | // into the call. |
| 1671 | PPCFuncInfo->setUsesTOCBasePtr(); |
| 1672 | MIB.addReg(RegNo: PPC::X2, Flags: RegState::Implicit); |
| 1673 | |
| 1674 | // Add a register mask with the call-preserved registers. Proper |
| 1675 | // defs for return values will be added by setPhysRegsDeadExcept(). |
| 1676 | MIB.addRegMask(Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC)); |
| 1677 | |
| 1678 | CLI.Call = MIB; |
| 1679 | |
| 1680 | // Finish off the call including any return values. |
| 1681 | return finishCall(RetVT, CLI, NumBytes); |
| 1682 | } |
| 1683 | |
| 1684 | // Attempt to fast-select a return instruction. |
| 1685 | bool PPCFastISel::SelectRet(const Instruction *I) { |
| 1686 | |
| 1687 | if (!FuncInfo.CanLowerReturn) |
| 1688 | return false; |
| 1689 | |
| 1690 | const ReturnInst *Ret = cast<ReturnInst>(Val: I); |
| 1691 | const Function &F = *I->getParent()->getParent(); |
| 1692 | |
| 1693 | // Build a list of return value registers. |
| 1694 | SmallVector<Register, 4> RetRegs; |
| 1695 | CallingConv::ID CC = F.getCallingConv(); |
| 1696 | |
| 1697 | if (Ret->getNumOperands() > 0) { |
| 1698 | SmallVector<ISD::OutputArg, 4> Outs; |
| 1699 | GetReturnInfo(CC, ReturnType: F.getReturnType(), attr: F.getAttributes(), Outs, TLI, DL); |
| 1700 | |
| 1701 | // Analyze operands of the call, assigning locations to each operand. |
| 1702 | SmallVector<CCValAssign, 16> ValLocs; |
| 1703 | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); |
| 1704 | CCInfo.AnalyzeReturn(Outs, Fn: RetCC_PPC64_ELF_FIS); |
| 1705 | const Value *RV = Ret->getOperand(i_nocapture: 0); |
| 1706 | |
| 1707 | // FIXME: Only one output register for now. |
| 1708 | if (ValLocs.size() > 1) |
| 1709 | return false; |
| 1710 | |
| 1711 | // Special case for returning a constant integer of any size - materialize |
| 1712 | // the constant as an i64 and copy it to the return register. |
| 1713 | if (isa<ConstantInt>(Val: RV) && RV->getType()->isIntegerTy()) { |
| 1714 | const ConstantInt *CI = cast<ConstantInt>(Val: RV); |
| 1715 | CCValAssign &VA = ValLocs[0]; |
| 1716 | |
| 1717 | Register RetReg = VA.getLocReg(); |
| 1718 | // We still need to worry about properly extending the sign. For example, |
| 1719 | // we could have only a single bit or a constant that needs zero |
| 1720 | // extension rather than sign extension. Make sure we pass the return |
| 1721 | // value extension property to integer materialization. |
| 1722 | Register SrcReg = |
| 1723 | PPCMaterializeInt(CI, VT: MVT::i64, UseSExt: VA.getLocInfo() != CCValAssign::ZExt); |
| 1724 | |
| 1725 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1726 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: RetReg).addReg(RegNo: SrcReg); |
| 1727 | |
| 1728 | RetRegs.push_back(Elt: RetReg); |
| 1729 | |
| 1730 | } else { |
| 1731 | Register Reg = getRegForValue(V: RV); |
| 1732 | |
| 1733 | if (!Reg) |
| 1734 | return false; |
| 1735 | |
| 1736 | // Copy the result values into the output registers. |
| 1737 | for (unsigned i = 0; i < ValLocs.size(); ++i) { |
| 1738 | |
| 1739 | CCValAssign &VA = ValLocs[i]; |
| 1740 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 1741 | RetRegs.push_back(Elt: VA.getLocReg()); |
| 1742 | Register SrcReg = Reg + VA.getValNo(); |
| 1743 | |
| 1744 | EVT RVEVT = TLI.getValueType(DL, Ty: RV->getType()); |
| 1745 | if (!RVEVT.isSimple()) |
| 1746 | return false; |
| 1747 | MVT RVVT = RVEVT.getSimpleVT(); |
| 1748 | MVT DestVT = VA.getLocVT(); |
| 1749 | |
| 1750 | if (RVVT != DestVT && RVVT != MVT::i8 && |
| 1751 | RVVT != MVT::i16 && RVVT != MVT::i32) |
| 1752 | return false; |
| 1753 | |
| 1754 | if (RVVT != DestVT) { |
| 1755 | switch (VA.getLocInfo()) { |
| 1756 | default: |
| 1757 | llvm_unreachable("Unknown loc info!" ); |
| 1758 | case CCValAssign::Full: |
| 1759 | llvm_unreachable("Full value assign but types don't match?" ); |
| 1760 | case CCValAssign::AExt: |
| 1761 | case CCValAssign::ZExt: { |
| 1762 | const TargetRegisterClass *RC = |
| 1763 | (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| 1764 | Register TmpReg = createResultReg(RC); |
| 1765 | if (!PPCEmitIntExt(SrcVT: RVVT, SrcReg, DestVT, DestReg: TmpReg, IsZExt: true)) |
| 1766 | return false; |
| 1767 | SrcReg = TmpReg; |
| 1768 | break; |
| 1769 | } |
| 1770 | case CCValAssign::SExt: { |
| 1771 | const TargetRegisterClass *RC = |
| 1772 | (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| 1773 | Register TmpReg = createResultReg(RC); |
| 1774 | if (!PPCEmitIntExt(SrcVT: RVVT, SrcReg, DestVT, DestReg: TmpReg, IsZExt: false)) |
| 1775 | return false; |
| 1776 | SrcReg = TmpReg; |
| 1777 | break; |
| 1778 | } |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1783 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: RetRegs[i]) |
| 1784 | .addReg(RegNo: SrcReg); |
| 1785 | } |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1790 | MCID: TII.get(Opcode: PPC::BLR8)); |
| 1791 | |
| 1792 | for (Register Reg : RetRegs) |
| 1793 | MIB.addReg(RegNo: Reg, Flags: RegState::Implicit); |
| 1794 | |
| 1795 | return true; |
| 1796 | } |
| 1797 | |
| 1798 | // Attempt to emit an integer extend of SrcReg into DestReg. Both |
| 1799 | // signed and zero extensions are supported. Return false if we |
| 1800 | // can't handle it. |
| 1801 | bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, Register SrcReg, MVT DestVT, |
| 1802 | Register DestReg, bool IsZExt) { |
| 1803 | if (DestVT != MVT::i32 && DestVT != MVT::i64) |
| 1804 | return false; |
| 1805 | if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) |
| 1806 | return false; |
| 1807 | |
| 1808 | // Signed extensions use EXTSB, EXTSH, EXTSW. |
| 1809 | if (!IsZExt) { |
| 1810 | unsigned Opc; |
| 1811 | if (SrcVT == MVT::i8) |
| 1812 | Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; |
| 1813 | else if (SrcVT == MVT::i16) |
| 1814 | Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; |
| 1815 | else { |
| 1816 | assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??" ); |
| 1817 | Opc = PPC::EXTSW_32_64; |
| 1818 | } |
| 1819 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 1820 | .addReg(RegNo: SrcReg); |
| 1821 | |
| 1822 | // Unsigned 32-bit extensions use RLWINM. |
| 1823 | } else if (DestVT == MVT::i32) { |
| 1824 | unsigned MB; |
| 1825 | if (SrcVT == MVT::i8) |
| 1826 | MB = 24; |
| 1827 | else { |
| 1828 | assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??" ); |
| 1829 | MB = 16; |
| 1830 | } |
| 1831 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::RLWINM), |
| 1832 | DestReg) |
| 1833 | .addReg(RegNo: SrcReg).addImm(/*SH=*/Val: 0).addImm(Val: MB).addImm(/*ME=*/Val: 31); |
| 1834 | |
| 1835 | // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). |
| 1836 | } else { |
| 1837 | unsigned MB; |
| 1838 | if (SrcVT == MVT::i8) |
| 1839 | MB = 56; |
| 1840 | else if (SrcVT == MVT::i16) |
| 1841 | MB = 48; |
| 1842 | else |
| 1843 | MB = 32; |
| 1844 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1845 | MCID: TII.get(Opcode: PPC::RLDICL_32_64), DestReg) |
| 1846 | .addReg(RegNo: SrcReg).addImm(/*SH=*/Val: 0).addImm(Val: MB); |
| 1847 | } |
| 1848 | |
| 1849 | return true; |
| 1850 | } |
| 1851 | |
| 1852 | // Attempt to fast-select an indirect branch instruction. |
| 1853 | bool PPCFastISel::SelectIndirectBr(const Instruction *I) { |
| 1854 | Register AddrReg = getRegForValue(V: I->getOperand(i: 0)); |
| 1855 | if (!AddrReg) |
| 1856 | return false; |
| 1857 | |
| 1858 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::MTCTR8)) |
| 1859 | .addReg(RegNo: AddrReg); |
| 1860 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::BCTR8)); |
| 1861 | |
| 1862 | const IndirectBrInst *IB = cast<IndirectBrInst>(Val: I); |
| 1863 | for (const BasicBlock *SuccBB : IB->successors()) |
| 1864 | FuncInfo.MBB->addSuccessor(Succ: FuncInfo.getMBB(BB: SuccBB)); |
| 1865 | |
| 1866 | return true; |
| 1867 | } |
| 1868 | |
| 1869 | // Attempt to fast-select an integer truncate instruction. |
| 1870 | bool PPCFastISel::SelectTrunc(const Instruction *I) { |
| 1871 | Value *Src = I->getOperand(i: 0); |
| 1872 | EVT SrcVT = TLI.getValueType(DL, Ty: Src->getType(), AllowUnknown: true); |
| 1873 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
| 1874 | |
| 1875 | if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) |
| 1876 | return false; |
| 1877 | |
| 1878 | if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) |
| 1879 | return false; |
| 1880 | |
| 1881 | Register SrcReg = getRegForValue(V: Src); |
| 1882 | if (!SrcReg) |
| 1883 | return false; |
| 1884 | |
| 1885 | // The only interesting case is when we need to switch register classes. |
| 1886 | if (SrcVT == MVT::i64) |
| 1887 | SrcReg = copyRegToRegClass(ToRC: &PPC::GPRCRegClass, SrcReg, Flag: {}, SubReg: PPC::sub_32); |
| 1888 | |
| 1889 | updateValueMap(I, Reg: SrcReg); |
| 1890 | return true; |
| 1891 | } |
| 1892 | |
| 1893 | // Attempt to fast-select an integer extend instruction. |
| 1894 | bool PPCFastISel::SelectIntExt(const Instruction *I) { |
| 1895 | Type *DestTy = I->getType(); |
| 1896 | Value *Src = I->getOperand(i: 0); |
| 1897 | Type *SrcTy = Src->getType(); |
| 1898 | |
| 1899 | bool IsZExt = isa<ZExtInst>(Val: I); |
| 1900 | Register SrcReg = getRegForValue(V: Src); |
| 1901 | if (!SrcReg) return false; |
| 1902 | |
| 1903 | EVT SrcEVT, DestEVT; |
| 1904 | SrcEVT = TLI.getValueType(DL, Ty: SrcTy, AllowUnknown: true); |
| 1905 | DestEVT = TLI.getValueType(DL, Ty: DestTy, AllowUnknown: true); |
| 1906 | if (!SrcEVT.isSimple()) |
| 1907 | return false; |
| 1908 | if (!DestEVT.isSimple()) |
| 1909 | return false; |
| 1910 | |
| 1911 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1912 | MVT DestVT = DestEVT.getSimpleVT(); |
| 1913 | |
| 1914 | // If we know the register class needed for the result of this |
| 1915 | // instruction, use it. Otherwise pick the register class of the |
| 1916 | // correct size that does not contain X0/R0, since we don't know |
| 1917 | // whether downstream uses permit that assignment. |
| 1918 | Register AssignedReg = FuncInfo.ValueMap[I]; |
| 1919 | const TargetRegisterClass *RC = |
| 1920 | (AssignedReg ? MRI.getRegClass(Reg: AssignedReg) : |
| 1921 | (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : |
| 1922 | &PPC::GPRC_and_GPRC_NOR0RegClass)); |
| 1923 | Register ResultReg = createResultReg(RC); |
| 1924 | |
| 1925 | if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, DestReg: ResultReg, IsZExt)) |
| 1926 | return false; |
| 1927 | |
| 1928 | updateValueMap(I, Reg: ResultReg); |
| 1929 | return true; |
| 1930 | } |
| 1931 | |
| 1932 | // Attempt to fast-select an instruction that wasn't handled by |
| 1933 | // the table-generated machinery. |
| 1934 | bool PPCFastISel::fastSelectInstruction(const Instruction *I) { |
| 1935 | |
| 1936 | switch (I->getOpcode()) { |
| 1937 | case Instruction::Load: |
| 1938 | return SelectLoad(I); |
| 1939 | case Instruction::Store: |
| 1940 | return SelectStore(I); |
| 1941 | case Instruction::Br: |
| 1942 | return SelectBranch(I); |
| 1943 | case Instruction::IndirectBr: |
| 1944 | return SelectIndirectBr(I); |
| 1945 | case Instruction::FPExt: |
| 1946 | return SelectFPExt(I); |
| 1947 | case Instruction::FPTrunc: |
| 1948 | return SelectFPTrunc(I); |
| 1949 | case Instruction::SIToFP: |
| 1950 | return SelectIToFP(I, /*IsSigned*/ true); |
| 1951 | case Instruction::UIToFP: |
| 1952 | return SelectIToFP(I, /*IsSigned*/ false); |
| 1953 | case Instruction::FPToSI: |
| 1954 | return SelectFPToI(I, /*IsSigned*/ true); |
| 1955 | case Instruction::FPToUI: |
| 1956 | return SelectFPToI(I, /*IsSigned*/ false); |
| 1957 | case Instruction::Add: |
| 1958 | return SelectBinaryIntOp(I, ISDOpcode: ISD::ADD); |
| 1959 | case Instruction::Or: |
| 1960 | return SelectBinaryIntOp(I, ISDOpcode: ISD::OR); |
| 1961 | case Instruction::Sub: |
| 1962 | return SelectBinaryIntOp(I, ISDOpcode: ISD::SUB); |
| 1963 | case Instruction::Ret: |
| 1964 | return SelectRet(I); |
| 1965 | case Instruction::Trunc: |
| 1966 | return SelectTrunc(I); |
| 1967 | case Instruction::ZExt: |
| 1968 | case Instruction::SExt: |
| 1969 | return SelectIntExt(I); |
| 1970 | // Here add other flavors of Instruction::XXX that automated |
| 1971 | // cases don't catch. For example, switches are terminators |
| 1972 | // that aren't yet handled. |
| 1973 | default: |
| 1974 | break; |
| 1975 | } |
| 1976 | return false; |
| 1977 | } |
| 1978 | |
| 1979 | // Materialize a floating-point constant into a register, and return |
| 1980 | // the register number (or zero if we failed to handle it). |
| 1981 | Register PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { |
| 1982 | // If this is a PC-Rel function, let SDISel handle constant pool. |
| 1983 | if (Subtarget->isUsingPCRelativeCalls()) |
| 1984 | return Register(); |
| 1985 | |
| 1986 | // No plans to handle long double here. |
| 1987 | if (VT != MVT::f32 && VT != MVT::f64) |
| 1988 | return Register(); |
| 1989 | |
| 1990 | // All FP constants are loaded from the constant pool. |
| 1991 | Align Alignment = DL.getPrefTypeAlign(Ty: CFP->getType()); |
| 1992 | unsigned Idx = MCP.getConstantPoolIndex(C: cast<Constant>(Val: CFP), Alignment); |
| 1993 | const bool HasSPE = Subtarget->hasSPE(); |
| 1994 | const TargetRegisterClass *RC; |
| 1995 | if (HasSPE) |
| 1996 | RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass); |
| 1997 | else |
| 1998 | RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); |
| 1999 | |
| 2000 | Register DestReg = createResultReg(RC); |
| 2001 | CodeModel::Model CModel = TM.getCodeModel(); |
| 2002 | |
| 2003 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| 2004 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: *FuncInfo.MF), |
| 2005 | F: MachineMemOperand::MOLoad, Size: (VT == MVT::f32) ? 4 : 8, BaseAlignment: Alignment); |
| 2006 | |
| 2007 | unsigned Opc; |
| 2008 | |
| 2009 | if (HasSPE) |
| 2010 | Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); |
| 2011 | else |
| 2012 | Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); |
| 2013 | |
| 2014 | Register TmpReg = createResultReg(RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 2015 | |
| 2016 | PPCFuncInfo->setUsesTOCBasePtr(); |
| 2017 | // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). |
| 2018 | if (CModel == CodeModel::Small) { |
| 2019 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::LDtocCPT), |
| 2020 | DestReg: TmpReg) |
| 2021 | .addConstantPoolIndex(Idx).addReg(RegNo: PPC::X2); |
| 2022 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 2023 | .addImm(Val: 0).addReg(RegNo: TmpReg).addMemOperand(MMO); |
| 2024 | } else { |
| 2025 | // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)). |
| 2026 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ADDIStocHA8), |
| 2027 | DestReg: TmpReg).addReg(RegNo: PPC::X2).addConstantPoolIndex(Idx); |
| 2028 | // But for large code model, we must generate a LDtocL followed |
| 2029 | // by the LF[SD]. |
| 2030 | if (CModel == CodeModel::Large) { |
| 2031 | Register TmpReg2 = createResultReg(RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 2032 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::LDtocL), |
| 2033 | DestReg: TmpReg2).addConstantPoolIndex(Idx).addReg(RegNo: TmpReg); |
| 2034 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 2035 | .addImm(Val: 0) |
| 2036 | .addReg(RegNo: TmpReg2); |
| 2037 | } else |
| 2038 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
| 2039 | .addConstantPoolIndex(Idx, Offset: 0, TargetFlags: PPCII::MO_TOC_LO) |
| 2040 | .addReg(RegNo: TmpReg) |
| 2041 | .addMemOperand(MMO); |
| 2042 | } |
| 2043 | |
| 2044 | return DestReg; |
| 2045 | } |
| 2046 | |
| 2047 | // Materialize the address of a global value into a register, and return |
| 2048 | // the register number (or zero if we failed to handle it). |
| 2049 | Register PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { |
| 2050 | // If this is a PC-Rel function, let SDISel handle GV materialization. |
| 2051 | if (Subtarget->isUsingPCRelativeCalls()) |
| 2052 | return Register(); |
| 2053 | |
| 2054 | assert(VT == MVT::i64 && "Non-address!" ); |
| 2055 | const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; |
| 2056 | Register DestReg = createResultReg(RC); |
| 2057 | |
| 2058 | // Global values may be plain old object addresses, TLS object |
| 2059 | // addresses, constant pool entries, or jump tables. How we generate |
| 2060 | // code for these may depend on small, medium, or large code model. |
| 2061 | CodeModel::Model CModel = TM.getCodeModel(); |
| 2062 | |
| 2063 | // FIXME: Jump tables are not yet required because fast-isel doesn't |
| 2064 | // handle switches; if that changes, we need them as well. For now, |
| 2065 | // what follows assumes everything's a generic (or TLS) global address. |
| 2066 | |
| 2067 | // FIXME: We don't yet handle the complexity of TLS. |
| 2068 | if (GV->isThreadLocal()) |
| 2069 | return Register(); |
| 2070 | |
| 2071 | PPCFuncInfo->setUsesTOCBasePtr(); |
| 2072 | bool IsAIXTocData = TM.getTargetTriple().isOSAIX() && |
| 2073 | isa<GlobalVariable>(Val: GV) && |
| 2074 | cast<GlobalVariable>(Val: GV)->hasAttribute(Kind: "toc-data" ); |
| 2075 | |
| 2076 | // For small code model, generate a simple TOC load. |
| 2077 | if (CModel == CodeModel::Small) { |
| 2078 | auto MIB = BuildMI( |
| 2079 | BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2080 | MCID: IsAIXTocData ? TII.get(Opcode: PPC::ADDItoc8) : TII.get(Opcode: PPC::LDtoc), DestReg); |
| 2081 | if (IsAIXTocData) |
| 2082 | MIB.addReg(RegNo: PPC::X2).addGlobalAddress(GV); |
| 2083 | else |
| 2084 | MIB.addGlobalAddress(GV).addReg(RegNo: PPC::X2); |
| 2085 | } else { |
| 2086 | // If the address is an externally defined symbol, a symbol with common |
| 2087 | // or externally available linkage, a non-local function address, or a |
| 2088 | // jump table address (not yet needed), or if we are generating code |
| 2089 | // for large code model, we generate: |
| 2090 | // LDtocL(GV, ADDIStocHA8(%x2, GV)) |
| 2091 | // Otherwise we generate: |
| 2092 | // ADDItocL8(ADDIStocHA8(%x2, GV), GV) |
| 2093 | // Either way, start with the ADDIStocHA8: |
| 2094 | Register HighPartReg = createResultReg(RC); |
| 2095 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ADDIStocHA8), |
| 2096 | DestReg: HighPartReg).addReg(RegNo: PPC::X2).addGlobalAddress(GV); |
| 2097 | |
| 2098 | if (Subtarget->isGVIndirectSymbol(GV)) { |
| 2099 | assert(!IsAIXTocData && "TOC data should always be direct." ); |
| 2100 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::LDtocL), |
| 2101 | DestReg).addGlobalAddress(GV).addReg(RegNo: HighPartReg); |
| 2102 | } else { |
| 2103 | // Otherwise generate the ADDItocL8. |
| 2104 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ADDItocL8), |
| 2105 | DestReg) |
| 2106 | .addReg(RegNo: HighPartReg) |
| 2107 | .addGlobalAddress(GV); |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | return DestReg; |
| 2112 | } |
| 2113 | |
| 2114 | // Materialize a 32-bit integer constant into a register, and return |
| 2115 | // the register number (or zero if we failed to handle it). |
| 2116 | Register PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, |
| 2117 | const TargetRegisterClass *RC) { |
| 2118 | unsigned Lo = Imm & 0xFFFF; |
| 2119 | unsigned Hi = (Imm >> 16) & 0xFFFF; |
| 2120 | |
| 2121 | Register ResultReg = createResultReg(RC); |
| 2122 | bool IsGPRC = RC->hasSuperClassEq(RC: &PPC::GPRCRegClass); |
| 2123 | |
| 2124 | if (isInt<16>(x: Imm)) |
| 2125 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2126 | MCID: TII.get(Opcode: IsGPRC ? PPC::LI : PPC::LI8), DestReg: ResultReg) |
| 2127 | .addImm(Val: Imm); |
| 2128 | else if (Lo) { |
| 2129 | // Both Lo and Hi have nonzero bits. |
| 2130 | Register TmpReg = createResultReg(RC); |
| 2131 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2132 | MCID: TII.get(Opcode: IsGPRC ? PPC::LIS : PPC::LIS8), DestReg: TmpReg) |
| 2133 | .addImm(Val: Hi); |
| 2134 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2135 | MCID: TII.get(Opcode: IsGPRC ? PPC::ORI : PPC::ORI8), DestReg: ResultReg) |
| 2136 | .addReg(RegNo: TmpReg).addImm(Val: Lo); |
| 2137 | } else |
| 2138 | // Just Hi bits. |
| 2139 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2140 | MCID: TII.get(Opcode: IsGPRC ? PPC::LIS : PPC::LIS8), DestReg: ResultReg) |
| 2141 | .addImm(Val: Hi); |
| 2142 | |
| 2143 | return ResultReg; |
| 2144 | } |
| 2145 | |
| 2146 | // Materialize a 64-bit integer constant into a register, and return |
| 2147 | // the register number (or zero if we failed to handle it). |
| 2148 | Register PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, |
| 2149 | const TargetRegisterClass *RC) { |
| 2150 | unsigned Remainder = 0; |
| 2151 | unsigned Shift = 0; |
| 2152 | |
| 2153 | // If the value doesn't fit in 32 bits, see if we can shift it |
| 2154 | // so that it fits in 32 bits. |
| 2155 | if (!isInt<32>(x: Imm)) { |
| 2156 | Shift = llvm::countr_zero<uint64_t>(Val: Imm); |
| 2157 | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; |
| 2158 | |
| 2159 | if (isInt<32>(x: ImmSh)) |
| 2160 | Imm = ImmSh; |
| 2161 | else { |
| 2162 | Remainder = Imm; |
| 2163 | Shift = 32; |
| 2164 | Imm >>= 32; |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | // Handle the high-order 32 bits (if shifted) or the whole 32 bits |
| 2169 | // (if not shifted). |
| 2170 | Register TmpReg1 = PPCMaterialize32BitInt(Imm, RC); |
| 2171 | if (!Shift) |
| 2172 | return TmpReg1; |
| 2173 | |
| 2174 | // If upper 32 bits were not zero, we've built them and need to shift |
| 2175 | // them into place. |
| 2176 | Register TmpReg2; |
| 2177 | if (Imm) { |
| 2178 | TmpReg2 = createResultReg(RC); |
| 2179 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::RLDICR), |
| 2180 | DestReg: TmpReg2).addReg(RegNo: TmpReg1).addImm(Val: Shift).addImm(Val: 63 - Shift); |
| 2181 | } else |
| 2182 | TmpReg2 = TmpReg1; |
| 2183 | |
| 2184 | Register TmpReg3; |
| 2185 | unsigned Hi, Lo; |
| 2186 | if ((Hi = (Remainder >> 16) & 0xFFFF)) { |
| 2187 | TmpReg3 = createResultReg(RC); |
| 2188 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ORIS8), |
| 2189 | DestReg: TmpReg3).addReg(RegNo: TmpReg2).addImm(Val: Hi); |
| 2190 | } else |
| 2191 | TmpReg3 = TmpReg2; |
| 2192 | |
| 2193 | if ((Lo = Remainder & 0xFFFF)) { |
| 2194 | Register ResultReg = createResultReg(RC); |
| 2195 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ORI8), |
| 2196 | DestReg: ResultReg).addReg(RegNo: TmpReg3).addImm(Val: Lo); |
| 2197 | return ResultReg; |
| 2198 | } |
| 2199 | |
| 2200 | return TmpReg3; |
| 2201 | } |
| 2202 | |
| 2203 | // Materialize an integer constant into a register, and return |
| 2204 | // the register number (or zero if we failed to handle it). |
| 2205 | Register PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, |
| 2206 | bool UseSExt) { |
| 2207 | // If we're using CR bit registers for i1 values, handle that as a special |
| 2208 | // case first. |
| 2209 | if (VT == MVT::i1 && Subtarget->useCRBits()) { |
| 2210 | Register ImmReg = createResultReg(RC: &PPC::CRBITRCRegClass); |
| 2211 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2212 | MCID: TII.get(Opcode: CI->isZero() ? PPC::CRUNSET : PPC::CRSET), DestReg: ImmReg); |
| 2213 | return ImmReg; |
| 2214 | } |
| 2215 | |
| 2216 | if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && |
| 2217 | VT != MVT::i1) |
| 2218 | return Register(); |
| 2219 | |
| 2220 | const TargetRegisterClass *RC = |
| 2221 | ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); |
| 2222 | int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); |
| 2223 | |
| 2224 | // If the constant is in range, use a load-immediate. |
| 2225 | // Since LI will sign extend the constant we need to make sure that for |
| 2226 | // our zeroext constants that the sign extended constant fits into 16-bits - |
| 2227 | // a range of 0..0x7fff. |
| 2228 | if (isInt<16>(x: Imm)) { |
| 2229 | unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; |
| 2230 | Register ImmReg = createResultReg(RC); |
| 2231 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ImmReg) |
| 2232 | .addImm(Val: Imm); |
| 2233 | return ImmReg; |
| 2234 | } |
| 2235 | |
| 2236 | // Construct the constant piecewise. |
| 2237 | if (VT == MVT::i64) |
| 2238 | return PPCMaterialize64BitInt(Imm, RC); |
| 2239 | else if (VT == MVT::i32) |
| 2240 | return PPCMaterialize32BitInt(Imm, RC); |
| 2241 | |
| 2242 | return Register(); |
| 2243 | } |
| 2244 | |
| 2245 | // Materialize a constant into a register, and return the register |
| 2246 | // number (or zero if we failed to handle it). |
| 2247 | Register PPCFastISel::fastMaterializeConstant(const Constant *C) { |
| 2248 | EVT CEVT = TLI.getValueType(DL, Ty: C->getType(), AllowUnknown: true); |
| 2249 | |
| 2250 | // Only handle simple types. |
| 2251 | if (!CEVT.isSimple()) |
| 2252 | return Register(); |
| 2253 | MVT VT = CEVT.getSimpleVT(); |
| 2254 | |
| 2255 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) |
| 2256 | return PPCMaterializeFP(CFP, VT); |
| 2257 | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: C)) |
| 2258 | return PPCMaterializeGV(GV, VT); |
| 2259 | else if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: C)) |
| 2260 | // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo |
| 2261 | // assumes that constant PHI operands will be zero extended, and failure to |
| 2262 | // match that assumption will cause problems if we sign extend here but |
| 2263 | // some user of a PHI is in a block for which we fall back to full SDAG |
| 2264 | // instruction selection. |
| 2265 | return PPCMaterializeInt(CI, VT, UseSExt: false); |
| 2266 | |
| 2267 | return Register(); |
| 2268 | } |
| 2269 | |
| 2270 | // Materialize the address created by an alloca into a register, and |
| 2271 | // return the register number (or zero if we failed to handle it). |
| 2272 | Register PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { |
| 2273 | DenseMap<const AllocaInst *, int>::iterator SI = |
| 2274 | FuncInfo.StaticAllocaMap.find(Val: AI); |
| 2275 | |
| 2276 | // Don't handle dynamic allocas. |
| 2277 | if (SI == FuncInfo.StaticAllocaMap.end()) |
| 2278 | return Register(); |
| 2279 | |
| 2280 | MVT VT; |
| 2281 | if (!isLoadTypeLegal(Ty: AI->getType(), VT)) |
| 2282 | return Register(); |
| 2283 | |
| 2284 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 2285 | Register ResultReg = createResultReg(RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 2286 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: PPC::ADDI8), |
| 2287 | DestReg: ResultReg).addFrameIndex(Idx: SI->second).addImm(Val: 0); |
| 2288 | return ResultReg; |
| 2289 | } |
| 2290 | |
| 2291 | return Register(); |
| 2292 | } |
| 2293 | |
| 2294 | // Fold loads into extends when possible. |
| 2295 | // FIXME: We can have multiple redundant extend/trunc instructions |
| 2296 | // following a load. The folding only picks up one. Extend this |
| 2297 | // to check subsequent instructions for the same pattern and remove |
| 2298 | // them. Thus ResultReg should be the def reg for the last redundant |
| 2299 | // instruction in a chain, and all intervening instructions can be |
| 2300 | // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll |
| 2301 | // to add ELF64-NOT: rldicl to the appropriate tests when this works. |
| 2302 | bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| 2303 | const LoadInst *LI) { |
| 2304 | // Verify we have a legal type before going any further. |
| 2305 | MVT VT; |
| 2306 | if (!isLoadTypeLegal(Ty: LI->getType(), VT)) |
| 2307 | return false; |
| 2308 | |
| 2309 | // Combine load followed by zero- or sign-extend. |
| 2310 | bool IsZExt = false; |
| 2311 | switch(MI->getOpcode()) { |
| 2312 | default: |
| 2313 | return false; |
| 2314 | |
| 2315 | case PPC::RLDICL: |
| 2316 | case PPC::RLDICL_32_64: { |
| 2317 | IsZExt = true; |
| 2318 | unsigned MB = MI->getOperand(i: 3).getImm(); |
| 2319 | if ((VT == MVT::i8 && MB <= 56) || |
| 2320 | (VT == MVT::i16 && MB <= 48) || |
| 2321 | (VT == MVT::i32 && MB <= 32)) |
| 2322 | break; |
| 2323 | return false; |
| 2324 | } |
| 2325 | |
| 2326 | case PPC::RLWINM: |
| 2327 | case PPC::RLWINM8: { |
| 2328 | IsZExt = true; |
| 2329 | unsigned MB = MI->getOperand(i: 3).getImm(); |
| 2330 | if ((VT == MVT::i8 && MB <= 24) || |
| 2331 | (VT == MVT::i16 && MB <= 16)) |
| 2332 | break; |
| 2333 | return false; |
| 2334 | } |
| 2335 | |
| 2336 | case PPC::EXTSB: |
| 2337 | case PPC::EXTSB8: |
| 2338 | case PPC::EXTSB8_32_64: |
| 2339 | /* There is no sign-extending load-byte instruction. */ |
| 2340 | return false; |
| 2341 | |
| 2342 | case PPC::EXTSH: |
| 2343 | case PPC::EXTSH8: |
| 2344 | case PPC::EXTSH8_32_64: { |
| 2345 | if (VT != MVT::i16 && VT != MVT::i8) |
| 2346 | return false; |
| 2347 | break; |
| 2348 | } |
| 2349 | |
| 2350 | case PPC::EXTSW: |
| 2351 | case PPC::EXTSW_32: |
| 2352 | case PPC::EXTSW_32_64: { |
| 2353 | if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) |
| 2354 | return false; |
| 2355 | break; |
| 2356 | } |
| 2357 | } |
| 2358 | |
| 2359 | // See if we can handle this address. |
| 2360 | Address Addr; |
| 2361 | if (!PPCComputeAddress(Obj: LI->getOperand(i_nocapture: 0), Addr)) |
| 2362 | return false; |
| 2363 | |
| 2364 | Register ResultReg = MI->getOperand(i: 0).getReg(); |
| 2365 | |
| 2366 | if (!PPCEmitLoad(VT, ResultReg, Addr, RC: nullptr, IsZExt, |
| 2367 | FP64LoadOpc: Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) |
| 2368 | return false; |
| 2369 | |
| 2370 | MachineBasicBlock::iterator I(MI); |
| 2371 | removeDeadCode(I, E: std::next(x: I)); |
| 2372 | return true; |
| 2373 | } |
| 2374 | |
| 2375 | // Attempt to lower call arguments in a faster way than done by |
| 2376 | // the selection DAG code. |
| 2377 | bool PPCFastISel::fastLowerArguments() { |
| 2378 | // Defer to normal argument lowering for now. It's reasonably |
| 2379 | // efficient. Consider doing something like ARM to handle the |
| 2380 | // case where all args fit in registers, no varargs, no float |
| 2381 | // or vector args. |
| 2382 | return false; |
| 2383 | } |
| 2384 | |
| 2385 | // Handle materializing integer constants into a register. This is not |
| 2386 | // automatically generated for PowerPC, so must be explicitly created here. |
| 2387 | Register PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { |
| 2388 | |
| 2389 | if (Opc != ISD::Constant) |
| 2390 | return Register(); |
| 2391 | |
| 2392 | // If we're using CR bit registers for i1 values, handle that as a special |
| 2393 | // case first. |
| 2394 | if (VT == MVT::i1 && Subtarget->useCRBits()) { |
| 2395 | Register ImmReg = createResultReg(RC: &PPC::CRBITRCRegClass); |
| 2396 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2397 | MCID: TII.get(Opcode: Imm == 0 ? PPC::CRUNSET : PPC::CRSET), DestReg: ImmReg); |
| 2398 | return ImmReg; |
| 2399 | } |
| 2400 | |
| 2401 | if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && |
| 2402 | VT != MVT::i1) |
| 2403 | return Register(); |
| 2404 | |
| 2405 | const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : |
| 2406 | &PPC::GPRCRegClass); |
| 2407 | if (VT == MVT::i64) |
| 2408 | return PPCMaterialize64BitInt(Imm, RC); |
| 2409 | else |
| 2410 | return PPCMaterialize32BitInt(Imm, RC); |
| 2411 | } |
| 2412 | |
| 2413 | // Override for ADDI and ADDI8 to set the correct register class |
| 2414 | // on RHS operand 0. The automatic infrastructure naively assumes |
| 2415 | // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost |
| 2416 | // for these cases. At the moment, none of the other automatically |
| 2417 | // generated RI instructions require special treatment. However, once |
| 2418 | // SelectSelect is implemented, "isel" requires similar handling. |
| 2419 | // |
| 2420 | // Also be conservative about the output register class. Avoid |
| 2421 | // assigning R0 or X0 to the output register for GPRC and G8RC |
| 2422 | // register classes, as any such result could be used in ADDI, etc., |
| 2423 | // where those regs have another meaning. |
| 2424 | Register PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, |
| 2425 | const TargetRegisterClass *RC, |
| 2426 | Register Op0, uint64_t Imm) { |
| 2427 | if (MachineInstOpcode == PPC::ADDI) |
| 2428 | MRI.setRegClass(Reg: Op0, RC: &PPC::GPRC_and_GPRC_NOR0RegClass); |
| 2429 | else if (MachineInstOpcode == PPC::ADDI8) |
| 2430 | MRI.setRegClass(Reg: Op0, RC: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 2431 | |
| 2432 | const TargetRegisterClass *UseRC = |
| 2433 | (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : |
| 2434 | (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); |
| 2435 | |
| 2436 | return FastISel::fastEmitInst_ri(MachineInstOpcode, RC: UseRC, Op0, Imm); |
| 2437 | } |
| 2438 | |
| 2439 | // Override for instructions with one register operand to avoid use of |
| 2440 | // R0/X0. The automatic infrastructure isn't aware of the context so |
| 2441 | // we must be conservative. |
| 2442 | Register PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, |
| 2443 | const TargetRegisterClass *RC, |
| 2444 | Register Op0) { |
| 2445 | const TargetRegisterClass *UseRC = |
| 2446 | (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : |
| 2447 | (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); |
| 2448 | |
| 2449 | return FastISel::fastEmitInst_r(MachineInstOpcode, RC: UseRC, Op0); |
| 2450 | } |
| 2451 | |
| 2452 | // Override for instructions with two register operands to avoid use |
| 2453 | // of R0/X0. The automatic infrastructure isn't aware of the context |
| 2454 | // so we must be conservative. |
| 2455 | Register PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, |
| 2456 | const TargetRegisterClass *RC, |
| 2457 | Register Op0, Register Op1) { |
| 2458 | const TargetRegisterClass *UseRC = |
| 2459 | (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : |
| 2460 | (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); |
| 2461 | |
| 2462 | return FastISel::fastEmitInst_rr(MachineInstOpcode, RC: UseRC, Op0, Op1); |
| 2463 | } |
| 2464 | |
| 2465 | namespace llvm { |
| 2466 | // Create the fast instruction selector for PowerPC64 ELF. |
| 2467 | FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, |
| 2468 | const TargetLibraryInfo *LibInfo, |
| 2469 | const LibcallLoweringInfo *LibcallLowering) { |
| 2470 | // Only available on 64-bit for now. |
| 2471 | const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); |
| 2472 | if (Subtarget.isPPC64()) |
| 2473 | return new PPCFastISel(FuncInfo, LibInfo, LibcallLowering); |
| 2474 | return nullptr; |
| 2475 | } |
| 2476 | } |
| 2477 | |