| 1 | //===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains miscellaneous utility functions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "SPIRVUtils.h" |
| 14 | #include "MCTargetDesc/SPIRVBaseInfo.h" |
| 15 | #include "SPIRV.h" |
| 16 | #include "SPIRVGlobalRegistry.h" |
| 17 | #include "SPIRVInstrInfo.h" |
| 18 | #include "SPIRVSubtarget.h" |
| 19 | #include "llvm/ADT/StringRef.h" |
| 20 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 21 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
| 23 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 24 | #include "llvm/Demangle/Demangle.h" |
| 25 | #include "llvm/IR/IntrinsicInst.h" |
| 26 | #include "llvm/IR/IntrinsicsSPIRV.h" |
| 27 | #include <queue> |
| 28 | #include <vector> |
| 29 | |
| 30 | namespace llvm { |
| 31 | namespace SPIRV { |
| 32 | // This code restores function args/retvalue types for composite cases |
| 33 | // because the final types should still be aggregate whereas they're i32 |
| 34 | // during the translation to cope with aggregate flattening etc. |
| 35 | // TODO: should these just return nullptr when there's no metadata? |
| 36 | static FunctionType *(NamedMDNode *NMD, |
| 37 | FunctionType *FTy, |
| 38 | StringRef Name) { |
| 39 | if (!NMD) |
| 40 | return FTy; |
| 41 | |
| 42 | constexpr auto getConstInt = [](MDNode *MD, unsigned OpId) -> ConstantInt * { |
| 43 | if (MD->getNumOperands() <= OpId) |
| 44 | return nullptr; |
| 45 | if (auto *CMeta = dyn_cast<ConstantAsMetadata>(Val: MD->getOperand(I: OpId))) |
| 46 | return dyn_cast<ConstantInt>(Val: CMeta->getValue()); |
| 47 | return nullptr; |
| 48 | }; |
| 49 | |
| 50 | auto It = find_if(Range: NMD->operands(), P: [Name](MDNode *N) { |
| 51 | if (auto *MDS = dyn_cast_or_null<MDString>(Val: N->getOperand(I: 0))) |
| 52 | return MDS->getString() == Name; |
| 53 | return false; |
| 54 | }); |
| 55 | |
| 56 | if (It == NMD->op_end()) |
| 57 | return FTy; |
| 58 | |
| 59 | Type *RetTy = FTy->getReturnType(); |
| 60 | SmallVector<Type *, 4> PTys(FTy->params()); |
| 61 | |
| 62 | for (unsigned I = 1; I != (*It)->getNumOperands(); ++I) { |
| 63 | MDNode *MD = dyn_cast<MDNode>(Val: (*It)->getOperand(I)); |
| 64 | assert(MD && "MDNode operand is expected" ); |
| 65 | |
| 66 | if (auto *Const = getConstInt(MD, 0)) { |
| 67 | auto *CMeta = dyn_cast<ConstantAsMetadata>(Val: MD->getOperand(I: 1)); |
| 68 | assert(CMeta && "ConstantAsMetadata operand is expected" ); |
| 69 | assert(Const->getSExtValue() >= -1); |
| 70 | // Currently -1 indicates return value, greater values mean |
| 71 | // argument numbers. |
| 72 | if (Const->getSExtValue() == -1) |
| 73 | RetTy = CMeta->getType(); |
| 74 | else |
| 75 | PTys[Const->getSExtValue()] = CMeta->getType(); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | return FunctionType::get(Result: RetTy, Params: PTys, isVarArg: FTy->isVarArg()); |
| 80 | } |
| 81 | |
| 82 | FunctionType *getOriginalFunctionType(const Function &F) { |
| 83 | return extractFunctionTypeFromMetadata( |
| 84 | NMD: F.getParent()->getNamedMetadata(Name: "spv.cloned_funcs" ), FTy: F.getFunctionType(), |
| 85 | Name: F.getName()); |
| 86 | } |
| 87 | |
| 88 | FunctionType *getOriginalFunctionType(const CallBase &CB) { |
| 89 | return extractFunctionTypeFromMetadata( |
| 90 | NMD: CB.getModule()->getNamedMetadata(Name: "spv.mutated_callsites" ), |
| 91 | FTy: CB.getFunctionType(), Name: CB.getName()); |
| 92 | } |
| 93 | } // Namespace SPIRV |
| 94 | |
| 95 | // The following functions are used to add these string literals as a series of |
| 96 | // 32-bit integer operands with the correct format, and unpack them if necessary |
| 97 | // when making string comparisons in compiler passes. |
| 98 | // SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment. |
| 99 | static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) { |
| 100 | uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars. |
| 101 | for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) { |
| 102 | unsigned StrIndex = i + WordIndex; |
| 103 | uint8_t CharToAdd = 0; // Initilize char as padding/null. |
| 104 | if (StrIndex < Str.size()) { // If it's within the string, get a real char. |
| 105 | CharToAdd = Str[StrIndex]; |
| 106 | } |
| 107 | Word |= (CharToAdd << (WordIndex * 8)); |
| 108 | } |
| 109 | return Word; |
| 110 | } |
| 111 | |
| 112 | // Get length including padding and null terminator. |
| 113 | static size_t getPaddedLen(const StringRef &Str) { |
| 114 | return (Str.size() + 4) & ~3; |
| 115 | } |
| 116 | |
| 117 | void addStringImm(const StringRef &Str, MCInst &Inst) { |
| 118 | const size_t PaddedLen = getPaddedLen(Str); |
| 119 | for (unsigned i = 0; i < PaddedLen; i += 4) { |
| 120 | // Add an operand for the 32-bits of chars or padding. |
| 121 | Inst.addOperand(Op: MCOperand::createImm(Val: convertCharsToWord(Str, i))); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) { |
| 126 | const size_t PaddedLen = getPaddedLen(Str); |
| 127 | for (unsigned i = 0; i < PaddedLen; i += 4) { |
| 128 | // Add an operand for the 32-bits of chars or padding. |
| 129 | MIB.addImm(Val: convertCharsToWord(Str, i)); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | void addStringImm(const StringRef &Str, IRBuilder<> &B, |
| 134 | std::vector<Value *> &Args) { |
| 135 | const size_t PaddedLen = getPaddedLen(Str); |
| 136 | for (unsigned i = 0; i < PaddedLen; i += 4) { |
| 137 | // Add a vector element for the 32-bits of chars or padding. |
| 138 | Args.push_back(x: B.getInt32(C: convertCharsToWord(Str, i))); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) { |
| 143 | return getSPIRVStringOperand(MI, StartIndex); |
| 144 | } |
| 145 | |
| 146 | std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI) { |
| 147 | MachineInstr *Def = getVRegDef(MRI, Reg); |
| 148 | assert(Def && Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE && |
| 149 | "Expected G_GLOBAL_VALUE" ); |
| 150 | const GlobalValue *GV = Def->getOperand(i: 1).getGlobal(); |
| 151 | Value *V = GV->getOperand(i: 0); |
| 152 | const ConstantDataArray *CDA = cast<ConstantDataArray>(Val: V); |
| 153 | return CDA->getAsCString().str(); |
| 154 | } |
| 155 | |
| 156 | void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) { |
| 157 | const auto Bitwidth = Imm.getBitWidth(); |
| 158 | if (Bitwidth == 1) |
| 159 | return; // Already handled |
| 160 | else if (Bitwidth <= 32) { |
| 161 | MIB.addImm(Val: Imm.getZExtValue()); |
| 162 | // Asm Printer needs this info to print floating-type correctly |
| 163 | if (Bitwidth == 16) |
| 164 | MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH16); |
| 165 | return; |
| 166 | } else if (Bitwidth <= 64) { |
| 167 | uint64_t FullImm = Imm.getZExtValue(); |
| 168 | uint32_t LowBits = FullImm & 0xffffffff; |
| 169 | uint32_t HighBits = (FullImm >> 32) & 0xffffffff; |
| 170 | MIB.addImm(Val: LowBits).addImm(Val: HighBits); |
| 171 | // Asm Printer needs this info to print 64-bit operands correctly |
| 172 | MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH64); |
| 173 | return; |
| 174 | } else if (Bitwidth <= 128) { |
| 175 | uint32_t LowBits = Imm.getRawData()[0] & 0xffffffff; |
| 176 | uint32_t MidBits0 = (Imm.getRawData()[0] >> 32) & 0xffffffff; |
| 177 | uint32_t MidBits1 = Imm.getRawData()[1] & 0xffffffff; |
| 178 | uint32_t HighBits = (Imm.getRawData()[1] >> 32) & 0xffffffff; |
| 179 | MIB.addImm(Val: LowBits).addImm(Val: MidBits0).addImm(Val: MidBits1).addImm(Val: HighBits); |
| 180 | return; |
| 181 | } |
| 182 | report_fatal_error(reason: "Unsupported constant bitwidth" ); |
| 183 | } |
| 184 | |
| 185 | void buildOpName(Register Target, const StringRef &Name, |
| 186 | MachineIRBuilder &MIRBuilder) { |
| 187 | if (!Name.empty()) { |
| 188 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpName).addUse(RegNo: Target); |
| 189 | addStringImm(Str: Name, MIB); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | void buildOpName(Register Target, const StringRef &Name, MachineInstr &I, |
| 194 | const SPIRVInstrInfo &TII) { |
| 195 | if (!Name.empty()) { |
| 196 | auto MIB = |
| 197 | BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: SPIRV::OpName)) |
| 198 | .addUse(RegNo: Target); |
| 199 | addStringImm(Str: Name, MIB); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | static void finishBuildOpDecorate(MachineInstrBuilder &MIB, |
| 204 | const std::vector<uint32_t> &DecArgs, |
| 205 | StringRef StrImm) { |
| 206 | if (!StrImm.empty()) |
| 207 | addStringImm(Str: StrImm, MIB); |
| 208 | for (const auto &DecArg : DecArgs) |
| 209 | MIB.addImm(Val: DecArg); |
| 210 | } |
| 211 | |
| 212 | void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, |
| 213 | SPIRV::Decoration::Decoration Dec, |
| 214 | const std::vector<uint32_t> &DecArgs, StringRef StrImm) { |
| 215 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpDecorate) |
| 216 | .addUse(RegNo: Reg) |
| 217 | .addImm(Val: static_cast<uint32_t>(Dec)); |
| 218 | finishBuildOpDecorate(MIB, DecArgs, StrImm); |
| 219 | } |
| 220 | |
| 221 | void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII, |
| 222 | SPIRV::Decoration::Decoration Dec, |
| 223 | const std::vector<uint32_t> &DecArgs, StringRef StrImm) { |
| 224 | MachineBasicBlock &MBB = *I.getParent(); |
| 225 | auto MIB = BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: SPIRV::OpDecorate)) |
| 226 | .addUse(RegNo: Reg) |
| 227 | .addImm(Val: static_cast<uint32_t>(Dec)); |
| 228 | finishBuildOpDecorate(MIB, DecArgs, StrImm); |
| 229 | } |
| 230 | |
| 231 | void buildOpMemberDecorate(Register Reg, MachineIRBuilder &MIRBuilder, |
| 232 | SPIRV::Decoration::Decoration Dec, uint32_t Member, |
| 233 | const std::vector<uint32_t> &DecArgs, |
| 234 | StringRef StrImm) { |
| 235 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpMemberDecorate) |
| 236 | .addUse(RegNo: Reg) |
| 237 | .addImm(Val: Member) |
| 238 | .addImm(Val: static_cast<uint32_t>(Dec)); |
| 239 | finishBuildOpDecorate(MIB, DecArgs, StrImm); |
| 240 | } |
| 241 | |
| 242 | void buildOpMemberDecorate(Register Reg, MachineInstr &I, |
| 243 | const SPIRVInstrInfo &TII, |
| 244 | SPIRV::Decoration::Decoration Dec, uint32_t Member, |
| 245 | const std::vector<uint32_t> &DecArgs, |
| 246 | StringRef StrImm) { |
| 247 | MachineBasicBlock &MBB = *I.getParent(); |
| 248 | auto MIB = BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: SPIRV::OpMemberDecorate)) |
| 249 | .addUse(RegNo: Reg) |
| 250 | .addImm(Val: Member) |
| 251 | .addImm(Val: static_cast<uint32_t>(Dec)); |
| 252 | finishBuildOpDecorate(MIB, DecArgs, StrImm); |
| 253 | } |
| 254 | |
| 255 | void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder, |
| 256 | const MDNode *GVarMD, const SPIRVSubtarget &ST) { |
| 257 | for (unsigned I = 0, E = GVarMD->getNumOperands(); I != E; ++I) { |
| 258 | auto *OpMD = dyn_cast<MDNode>(Val: GVarMD->getOperand(I)); |
| 259 | if (!OpMD) |
| 260 | report_fatal_error(reason: "Invalid decoration" ); |
| 261 | if (OpMD->getNumOperands() == 0) |
| 262 | report_fatal_error(reason: "Expect operand(s) of the decoration" ); |
| 263 | ConstantInt *DecorationId = |
| 264 | mdconst::dyn_extract<ConstantInt>(MD: OpMD->getOperand(I: 0)); |
| 265 | if (!DecorationId) |
| 266 | report_fatal_error(reason: "Expect SPIR-V <Decoration> operand to be the first " |
| 267 | "element of the decoration" ); |
| 268 | |
| 269 | // The goal of `spirv.Decorations` metadata is to provide a way to |
| 270 | // represent SPIR-V entities that do not map to LLVM in an obvious way. |
| 271 | // FP flags do have obvious matches between LLVM IR and SPIR-V. |
| 272 | // Additionally, we have no guarantee at this point that the flags passed |
| 273 | // through the decoration are not violated already in the optimizer passes. |
| 274 | // Therefore, we simply ignore FP flags, including NoContraction, and |
| 275 | // FPFastMathMode. |
| 276 | if (DecorationId->getZExtValue() == |
| 277 | static_cast<uint32_t>(SPIRV::Decoration::NoContraction) || |
| 278 | DecorationId->getZExtValue() == |
| 279 | static_cast<uint32_t>(SPIRV::Decoration::FPFastMathMode)) { |
| 280 | continue; // Ignored. |
| 281 | } |
| 282 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpDecorate) |
| 283 | .addUse(RegNo: Reg) |
| 284 | .addImm(Val: static_cast<uint32_t>(DecorationId->getZExtValue())); |
| 285 | for (unsigned OpI = 1, OpE = OpMD->getNumOperands(); OpI != OpE; ++OpI) { |
| 286 | if (ConstantInt *OpV = |
| 287 | mdconst::dyn_extract<ConstantInt>(MD: OpMD->getOperand(I: OpI))) |
| 288 | MIB.addImm(Val: static_cast<uint32_t>(OpV->getZExtValue())); |
| 289 | else if (MDString *OpV = dyn_cast<MDString>(Val: OpMD->getOperand(I: OpI))) |
| 290 | addStringImm(Str: OpV->getString(), MIB); |
| 291 | else |
| 292 | report_fatal_error(reason: "Unexpected operand of the decoration" ); |
| 293 | } |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I) { |
| 298 | MachineFunction *MF = I.getParent()->getParent(); |
| 299 | MachineBasicBlock *MBB = &MF->front(); |
| 300 | MachineBasicBlock::iterator It = MBB->SkipPHIsAndLabels(I: MBB->begin()), |
| 301 | E = MBB->end(); |
| 302 | bool = false; |
| 303 | unsigned Opcode; |
| 304 | for (; It != E && It != I; ++It) { |
| 305 | Opcode = It->getOpcode(); |
| 306 | if (Opcode == SPIRV::OpFunction || Opcode == SPIRV::OpFunctionParameter) { |
| 307 | IsHeader = true; |
| 308 | } else if (IsHeader && |
| 309 | !(Opcode == SPIRV::ASSIGN_TYPE || Opcode == SPIRV::OpLabel)) { |
| 310 | ++It; |
| 311 | break; |
| 312 | } |
| 313 | } |
| 314 | return It; |
| 315 | } |
| 316 | |
| 317 | MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB) { |
| 318 | MachineBasicBlock::iterator I = MBB->end(); |
| 319 | if (I == MBB->begin()) |
| 320 | return I; |
| 321 | --I; |
| 322 | while (I->isTerminator() || I->isDebugValue()) { |
| 323 | if (I == MBB->begin()) |
| 324 | break; |
| 325 | --I; |
| 326 | } |
| 327 | return I; |
| 328 | } |
| 329 | |
| 330 | SPIRV::StorageClass::StorageClass |
| 331 | addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI) { |
| 332 | switch (AddrSpace) { |
| 333 | case 0: |
| 334 | return SPIRV::StorageClass::Function; |
| 335 | case 1: |
| 336 | return SPIRV::StorageClass::CrossWorkgroup; |
| 337 | case 2: |
| 338 | return SPIRV::StorageClass::UniformConstant; |
| 339 | case 3: |
| 340 | return SPIRV::StorageClass::Workgroup; |
| 341 | case 4: |
| 342 | return SPIRV::StorageClass::Generic; |
| 343 | case 5: |
| 344 | return STI.canUseExtension(E: SPIRV::Extension::SPV_INTEL_usm_storage_classes) |
| 345 | ? SPIRV::StorageClass::DeviceOnlyINTEL |
| 346 | : SPIRV::StorageClass::CrossWorkgroup; |
| 347 | case 6: |
| 348 | return STI.canUseExtension(E: SPIRV::Extension::SPV_INTEL_usm_storage_classes) |
| 349 | ? SPIRV::StorageClass::HostOnlyINTEL |
| 350 | : SPIRV::StorageClass::CrossWorkgroup; |
| 351 | case 7: |
| 352 | return SPIRV::StorageClass::Input; |
| 353 | case 8: |
| 354 | return SPIRV::StorageClass::Output; |
| 355 | case 9: |
| 356 | return SPIRV::StorageClass::CodeSectionINTEL; |
| 357 | case 10: |
| 358 | return SPIRV::StorageClass::Private; |
| 359 | case 11: |
| 360 | return SPIRV::StorageClass::StorageBuffer; |
| 361 | case 12: |
| 362 | return SPIRV::StorageClass::Uniform; |
| 363 | case 13: |
| 364 | return SPIRV::StorageClass::PushConstant; |
| 365 | default: |
| 366 | report_fatal_error(reason: "Unknown address space" ); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | SPIRV::MemorySemantics::MemorySemantics |
| 371 | getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC) { |
| 372 | switch (SC) { |
| 373 | case SPIRV::StorageClass::StorageBuffer: |
| 374 | case SPIRV::StorageClass::Uniform: |
| 375 | return SPIRV::MemorySemantics::UniformMemory; |
| 376 | case SPIRV::StorageClass::Workgroup: |
| 377 | return SPIRV::MemorySemantics::WorkgroupMemory; |
| 378 | case SPIRV::StorageClass::CrossWorkgroup: |
| 379 | return SPIRV::MemorySemantics::CrossWorkgroupMemory; |
| 380 | case SPIRV::StorageClass::AtomicCounter: |
| 381 | return SPIRV::MemorySemantics::AtomicCounterMemory; |
| 382 | case SPIRV::StorageClass::Image: |
| 383 | return SPIRV::MemorySemantics::ImageMemory; |
| 384 | default: |
| 385 | return SPIRV::MemorySemantics::None; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord) { |
| 390 | switch (Ord) { |
| 391 | case AtomicOrdering::Acquire: |
| 392 | return SPIRV::MemorySemantics::Acquire; |
| 393 | case AtomicOrdering::Release: |
| 394 | return SPIRV::MemorySemantics::Release; |
| 395 | case AtomicOrdering::AcquireRelease: |
| 396 | return SPIRV::MemorySemantics::AcquireRelease; |
| 397 | case AtomicOrdering::SequentiallyConsistent: |
| 398 | return SPIRV::MemorySemantics::SequentiallyConsistent; |
| 399 | case AtomicOrdering::Unordered: |
| 400 | case AtomicOrdering::Monotonic: |
| 401 | case AtomicOrdering::NotAtomic: |
| 402 | return SPIRV::MemorySemantics::None; |
| 403 | } |
| 404 | llvm_unreachable(nullptr); |
| 405 | } |
| 406 | |
| 407 | SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id) { |
| 408 | // Named by |
| 409 | // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_scope_id. |
| 410 | // We don't need aliases for Invocation and CrossDevice, as we already have |
| 411 | // them covered by "singlethread" and "" strings respectively (see |
| 412 | // implementation of LLVMContext::LLVMContext()). |
| 413 | static const llvm::SyncScope::ID SubGroup = |
| 414 | Ctx.getOrInsertSyncScopeID(SSN: "subgroup" ); |
| 415 | static const llvm::SyncScope::ID WorkGroup = |
| 416 | Ctx.getOrInsertSyncScopeID(SSN: "workgroup" ); |
| 417 | static const llvm::SyncScope::ID Device = |
| 418 | Ctx.getOrInsertSyncScopeID(SSN: "device" ); |
| 419 | |
| 420 | if (Id == llvm::SyncScope::SingleThread) |
| 421 | return SPIRV::Scope::Invocation; |
| 422 | else if (Id == llvm::SyncScope::System) |
| 423 | return SPIRV::Scope::CrossDevice; |
| 424 | else if (Id == SubGroup) |
| 425 | return SPIRV::Scope::Subgroup; |
| 426 | else if (Id == WorkGroup) |
| 427 | return SPIRV::Scope::Workgroup; |
| 428 | else if (Id == Device) |
| 429 | return SPIRV::Scope::Device; |
| 430 | return SPIRV::Scope::CrossDevice; |
| 431 | } |
| 432 | |
| 433 | MachineInstr *getDefInstrMaybeConstant(Register &ConstReg, |
| 434 | const MachineRegisterInfo *MRI) { |
| 435 | MachineInstr *MI = MRI->getVRegDef(Reg: ConstReg); |
| 436 | MachineInstr *ConstInstr = |
| 437 | MI->getOpcode() == SPIRV::G_TRUNC || MI->getOpcode() == SPIRV::G_ZEXT |
| 438 | ? MRI->getVRegDef(Reg: MI->getOperand(i: 1).getReg()) |
| 439 | : MI; |
| 440 | if (auto *GI = dyn_cast<GIntrinsic>(Val: ConstInstr)) { |
| 441 | if (GI->is(ID: Intrinsic::spv_track_constant)) { |
| 442 | ConstReg = ConstInstr->getOperand(i: 2).getReg(); |
| 443 | return MRI->getVRegDef(Reg: ConstReg); |
| 444 | } |
| 445 | } else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) { |
| 446 | ConstReg = ConstInstr->getOperand(i: 1).getReg(); |
| 447 | return MRI->getVRegDef(Reg: ConstReg); |
| 448 | } else if (ConstInstr->getOpcode() == TargetOpcode::G_CONSTANT || |
| 449 | ConstInstr->getOpcode() == TargetOpcode::G_FCONSTANT) { |
| 450 | ConstReg = ConstInstr->getOperand(i: 0).getReg(); |
| 451 | return ConstInstr; |
| 452 | } |
| 453 | return MRI->getVRegDef(Reg: ConstReg); |
| 454 | } |
| 455 | |
| 456 | uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) { |
| 457 | const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI); |
| 458 | assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT); |
| 459 | return MI->getOperand(i: 1).getCImm()->getValue().getZExtValue(); |
| 460 | } |
| 461 | |
| 462 | int64_t getIConstValSext(Register ConstReg, const MachineRegisterInfo *MRI) { |
| 463 | const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI); |
| 464 | assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT); |
| 465 | return MI->getOperand(i: 1).getCImm()->getSExtValue(); |
| 466 | } |
| 467 | |
| 468 | bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID) { |
| 469 | if (const auto *GI = dyn_cast<GIntrinsic>(Val: &MI)) |
| 470 | return GI->is(ID: IntrinsicID); |
| 471 | return false; |
| 472 | } |
| 473 | |
| 474 | Type *getMDOperandAsType(const MDNode *N, unsigned I) { |
| 475 | Type *ElementTy = cast<ValueAsMetadata>(Val: N->getOperand(I))->getType(); |
| 476 | return toTypedPointer(Ty: ElementTy); |
| 477 | } |
| 478 | |
| 479 | // The set of names is borrowed from the SPIR-V translator. |
| 480 | // TODO: may be implemented in SPIRVBuiltins.td. |
| 481 | static bool isPipeOrAddressSpaceCastBI(const StringRef MangledName) { |
| 482 | return MangledName == "write_pipe_2" || MangledName == "read_pipe_2" || |
| 483 | MangledName == "write_pipe_2_bl" || MangledName == "read_pipe_2_bl" || |
| 484 | MangledName == "write_pipe_4" || MangledName == "read_pipe_4" || |
| 485 | MangledName == "reserve_write_pipe" || |
| 486 | MangledName == "reserve_read_pipe" || |
| 487 | MangledName == "commit_write_pipe" || |
| 488 | MangledName == "commit_read_pipe" || |
| 489 | MangledName == "work_group_reserve_write_pipe" || |
| 490 | MangledName == "work_group_reserve_read_pipe" || |
| 491 | MangledName == "work_group_commit_write_pipe" || |
| 492 | MangledName == "work_group_commit_read_pipe" || |
| 493 | MangledName == "get_pipe_num_packets_ro" || |
| 494 | MangledName == "get_pipe_max_packets_ro" || |
| 495 | MangledName == "get_pipe_num_packets_wo" || |
| 496 | MangledName == "get_pipe_max_packets_wo" || |
| 497 | MangledName == "sub_group_reserve_write_pipe" || |
| 498 | MangledName == "sub_group_reserve_read_pipe" || |
| 499 | MangledName == "sub_group_commit_write_pipe" || |
| 500 | MangledName == "sub_group_commit_read_pipe" || |
| 501 | MangledName == "to_global" || MangledName == "to_local" || |
| 502 | MangledName == "to_private" ; |
| 503 | } |
| 504 | |
| 505 | static bool isEnqueueKernelBI(const StringRef MangledName) { |
| 506 | return MangledName == "__enqueue_kernel_basic" || |
| 507 | MangledName == "__enqueue_kernel_basic_events" || |
| 508 | MangledName == "__enqueue_kernel_varargs" || |
| 509 | MangledName == "__enqueue_kernel_events_varargs" ; |
| 510 | } |
| 511 | |
| 512 | static bool isKernelQueryBI(const StringRef MangledName) { |
| 513 | return MangledName == "__get_kernel_work_group_size_impl" || |
| 514 | MangledName == "__get_kernel_sub_group_count_for_ndrange_impl" || |
| 515 | MangledName == "__get_kernel_max_sub_group_size_for_ndrange_impl" || |
| 516 | MangledName == "__get_kernel_preferred_work_group_size_multiple_impl" ; |
| 517 | } |
| 518 | |
| 519 | static bool isNonMangledOCLBuiltin(StringRef Name) { |
| 520 | if (!Name.starts_with(Prefix: "__" )) |
| 521 | return false; |
| 522 | |
| 523 | return isEnqueueKernelBI(MangledName: Name) || isKernelQueryBI(MangledName: Name) || |
| 524 | isPipeOrAddressSpaceCastBI(MangledName: Name.drop_front(N: 2)) || |
| 525 | Name == "__translate_sampler_initializer" ; |
| 526 | } |
| 527 | |
| 528 | std::string getOclOrSpirvBuiltinDemangledName(StringRef Name) { |
| 529 | bool IsNonMangledOCL = isNonMangledOCLBuiltin(Name); |
| 530 | bool IsNonMangledSPIRV = Name.starts_with(Prefix: "__spirv_" ); |
| 531 | bool IsNonMangledHLSL = Name.starts_with(Prefix: "__hlsl_" ); |
| 532 | bool IsMangled = Name.starts_with(Prefix: "_Z" ); |
| 533 | |
| 534 | // Otherwise use simple demangling to return the function name. |
| 535 | if (IsNonMangledOCL || IsNonMangledSPIRV || IsNonMangledHLSL || !IsMangled) |
| 536 | return Name.str(); |
| 537 | |
| 538 | // Try to use the itanium demangler. |
| 539 | if (char *DemangledName = itaniumDemangle(mangled_name: Name.data())) { |
| 540 | std::string Result = DemangledName; |
| 541 | free(ptr: DemangledName); |
| 542 | return Result; |
| 543 | } |
| 544 | |
| 545 | // Autocheck C++, maybe need to do explicit check of the source language. |
| 546 | // OpenCL C++ built-ins are declared in cl namespace. |
| 547 | // TODO: consider using 'St' abbriviation for cl namespace mangling. |
| 548 | // Similar to ::std:: in C++. |
| 549 | size_t Start, Len = 0; |
| 550 | size_t DemangledNameLenStart = 2; |
| 551 | if (Name.starts_with(Prefix: "_ZN" )) { |
| 552 | // Skip CV and ref qualifiers. |
| 553 | size_t NameSpaceStart = Name.find_first_not_of(Chars: "rVKRO" , From: 3); |
| 554 | // All built-ins are in the ::cl:: namespace. |
| 555 | if (Name.substr(Start: NameSpaceStart, N: 11) != "2cl7__spirv" ) |
| 556 | return std::string(); |
| 557 | DemangledNameLenStart = NameSpaceStart + 11; |
| 558 | } |
| 559 | Start = Name.find_first_not_of(Chars: "0123456789" , From: DemangledNameLenStart); |
| 560 | [[maybe_unused]] bool Error = |
| 561 | Name.substr(Start: DemangledNameLenStart, N: Start - DemangledNameLenStart) |
| 562 | .getAsInteger(Radix: 10, Result&: Len); |
| 563 | assert(!Error && "Failed to parse demangled name length" ); |
| 564 | return Name.substr(Start, N: Len).str(); |
| 565 | } |
| 566 | |
| 567 | bool hasBuiltinTypePrefix(StringRef Name) { |
| 568 | if (Name.starts_with(Prefix: "opencl." ) || Name.starts_with(Prefix: "ocl_" ) || |
| 569 | Name.starts_with(Prefix: "spirv." )) |
| 570 | return true; |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | bool isSpecialOpaqueType(const Type *Ty) { |
| 575 | if (const TargetExtType *ExtTy = dyn_cast<TargetExtType>(Val: Ty)) |
| 576 | return isTypedPointerWrapper(ExtTy) |
| 577 | ? false |
| 578 | : hasBuiltinTypePrefix(Name: ExtTy->getName()); |
| 579 | |
| 580 | return false; |
| 581 | } |
| 582 | |
| 583 | bool isEntryPoint(const Function &F) { |
| 584 | // OpenCL handling: any function with the SPIR_KERNEL |
| 585 | // calling convention will be a potential entry point. |
| 586 | if (F.getCallingConv() == CallingConv::SPIR_KERNEL) |
| 587 | return true; |
| 588 | |
| 589 | // HLSL handling: special attribute are emitted from the |
| 590 | // front-end. |
| 591 | if (F.getFnAttribute(Kind: "hlsl.shader" ).isValid()) |
| 592 | return true; |
| 593 | |
| 594 | return false; |
| 595 | } |
| 596 | |
| 597 | Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx) { |
| 598 | TypeName.consume_front(Prefix: "atomic_" ); |
| 599 | if (TypeName.consume_front(Prefix: "void" )) |
| 600 | return Type::getVoidTy(C&: Ctx); |
| 601 | else if (TypeName.consume_front(Prefix: "bool" ) || TypeName.consume_front(Prefix: "_Bool" )) |
| 602 | return Type::getIntNTy(C&: Ctx, N: 1); |
| 603 | else if (TypeName.consume_front(Prefix: "char" ) || |
| 604 | TypeName.consume_front(Prefix: "signed char" ) || |
| 605 | TypeName.consume_front(Prefix: "unsigned char" ) || |
| 606 | TypeName.consume_front(Prefix: "uchar" )) |
| 607 | return Type::getInt8Ty(C&: Ctx); |
| 608 | else if (TypeName.consume_front(Prefix: "short" ) || |
| 609 | TypeName.consume_front(Prefix: "signed short" ) || |
| 610 | TypeName.consume_front(Prefix: "unsigned short" ) || |
| 611 | TypeName.consume_front(Prefix: "ushort" )) |
| 612 | return Type::getInt16Ty(C&: Ctx); |
| 613 | else if (TypeName.consume_front(Prefix: "int" ) || |
| 614 | TypeName.consume_front(Prefix: "signed int" ) || |
| 615 | TypeName.consume_front(Prefix: "unsigned int" ) || |
| 616 | TypeName.consume_front(Prefix: "uint" )) |
| 617 | return Type::getInt32Ty(C&: Ctx); |
| 618 | else if (TypeName.consume_front(Prefix: "long" ) || |
| 619 | TypeName.consume_front(Prefix: "signed long" ) || |
| 620 | TypeName.consume_front(Prefix: "unsigned long" ) || |
| 621 | TypeName.consume_front(Prefix: "ulong" )) |
| 622 | return Type::getInt64Ty(C&: Ctx); |
| 623 | else if (TypeName.consume_front(Prefix: "half" ) || |
| 624 | TypeName.consume_front(Prefix: "_Float16" ) || |
| 625 | TypeName.consume_front(Prefix: "__fp16" )) |
| 626 | return Type::getHalfTy(C&: Ctx); |
| 627 | else if (TypeName.consume_front(Prefix: "float" )) |
| 628 | return Type::getFloatTy(C&: Ctx); |
| 629 | else if (TypeName.consume_front(Prefix: "double" )) |
| 630 | return Type::getDoubleTy(C&: Ctx); |
| 631 | |
| 632 | // Unable to recognize SPIRV type name |
| 633 | return nullptr; |
| 634 | } |
| 635 | |
| 636 | std::unordered_set<BasicBlock *> |
| 637 | PartialOrderingVisitor::getReachableFrom(BasicBlock *Start) { |
| 638 | std::queue<BasicBlock *> ToVisit; |
| 639 | ToVisit.push(x: Start); |
| 640 | |
| 641 | std::unordered_set<BasicBlock *> Output; |
| 642 | while (ToVisit.size() != 0) { |
| 643 | BasicBlock *BB = ToVisit.front(); |
| 644 | ToVisit.pop(); |
| 645 | |
| 646 | if (Output.count(x: BB) != 0) |
| 647 | continue; |
| 648 | Output.insert(x: BB); |
| 649 | |
| 650 | for (BasicBlock *Successor : successors(BB)) { |
| 651 | if (DT.dominates(A: Successor, B: BB)) |
| 652 | continue; |
| 653 | ToVisit.push(x: Successor); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | return Output; |
| 658 | } |
| 659 | |
| 660 | bool PartialOrderingVisitor::CanBeVisited(BasicBlock *BB) const { |
| 661 | for (BasicBlock *P : predecessors(BB)) { |
| 662 | // Ignore back-edges. |
| 663 | if (DT.dominates(A: BB, B: P)) |
| 664 | continue; |
| 665 | |
| 666 | // One of the predecessor hasn't been visited. Not ready yet. |
| 667 | if (BlockToOrder.count(x: P) == 0) |
| 668 | return false; |
| 669 | |
| 670 | // If the block is a loop exit, the loop must be finished before |
| 671 | // we can continue. |
| 672 | Loop *L = LI.getLoopFor(BB: P); |
| 673 | if (L == nullptr || L->contains(BB)) |
| 674 | continue; |
| 675 | |
| 676 | // SPIR-V requires a single back-edge. And the backend first |
| 677 | // step transforms loops into the simplified format. If we have |
| 678 | // more than 1 back-edge, something is wrong. |
| 679 | assert(L->getNumBackEdges() <= 1); |
| 680 | |
| 681 | // If the loop has no latch, loop's rank won't matter, so we can |
| 682 | // proceed. |
| 683 | BasicBlock *Latch = L->getLoopLatch(); |
| 684 | assert(Latch); |
| 685 | if (Latch == nullptr) |
| 686 | continue; |
| 687 | |
| 688 | // The latch is not ready yet, let's wait. |
| 689 | if (BlockToOrder.count(x: Latch) == 0) |
| 690 | return false; |
| 691 | } |
| 692 | |
| 693 | return true; |
| 694 | } |
| 695 | |
| 696 | size_t PartialOrderingVisitor::GetNodeRank(BasicBlock *BB) const { |
| 697 | auto It = BlockToOrder.find(x: BB); |
| 698 | if (It != BlockToOrder.end()) |
| 699 | return It->second.Rank; |
| 700 | |
| 701 | size_t result = 0; |
| 702 | for (BasicBlock *P : predecessors(BB)) { |
| 703 | // Ignore back-edges. |
| 704 | if (DT.dominates(A: BB, B: P)) |
| 705 | continue; |
| 706 | |
| 707 | auto Iterator = BlockToOrder.end(); |
| 708 | Loop *L = LI.getLoopFor(BB: P); |
| 709 | BasicBlock *Latch = L ? L->getLoopLatch() : nullptr; |
| 710 | |
| 711 | // If the predecessor is either outside a loop, or part of |
| 712 | // the same loop, simply take its rank + 1. |
| 713 | if (L == nullptr || L->contains(BB) || Latch == nullptr) { |
| 714 | Iterator = BlockToOrder.find(x: P); |
| 715 | } else { |
| 716 | // Otherwise, take the loop's rank (highest rank in the loop) as base. |
| 717 | // Since loops have a single latch, highest rank is easy to find. |
| 718 | // If the loop has no latch, then it doesn't matter. |
| 719 | Iterator = BlockToOrder.find(x: Latch); |
| 720 | } |
| 721 | |
| 722 | assert(Iterator != BlockToOrder.end()); |
| 723 | result = std::max(a: result, b: Iterator->second.Rank + 1); |
| 724 | } |
| 725 | |
| 726 | return result; |
| 727 | } |
| 728 | |
| 729 | size_t PartialOrderingVisitor::visit(BasicBlock *BB, size_t Unused) { |
| 730 | ToVisit.push(x: BB); |
| 731 | Queued.insert(x: BB); |
| 732 | |
| 733 | size_t QueueIndex = 0; |
| 734 | while (ToVisit.size() != 0) { |
| 735 | BasicBlock *BB = ToVisit.front(); |
| 736 | ToVisit.pop(); |
| 737 | |
| 738 | if (!CanBeVisited(BB)) { |
| 739 | ToVisit.push(x: BB); |
| 740 | if (QueueIndex >= ToVisit.size()) |
| 741 | llvm::report_fatal_error( |
| 742 | reason: "No valid candidate in the queue. Is the graph reducible?" ); |
| 743 | QueueIndex++; |
| 744 | continue; |
| 745 | } |
| 746 | |
| 747 | QueueIndex = 0; |
| 748 | size_t Rank = GetNodeRank(BB); |
| 749 | OrderInfo Info = {.Rank: Rank, .TraversalIndex: BlockToOrder.size()}; |
| 750 | BlockToOrder.emplace(args&: BB, args&: Info); |
| 751 | |
| 752 | for (BasicBlock *S : successors(BB)) { |
| 753 | if (Queued.count(x: S) != 0) |
| 754 | continue; |
| 755 | ToVisit.push(x: S); |
| 756 | Queued.insert(x: S); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | PartialOrderingVisitor::PartialOrderingVisitor(Function &F) { |
| 764 | DT.recalculate(Func&: F); |
| 765 | LI = LoopInfo(DT); |
| 766 | |
| 767 | visit(BB: &*F.begin(), Unused: 0); |
| 768 | |
| 769 | Order.reserve(n: F.size()); |
| 770 | for (auto &[BB, Info] : BlockToOrder) |
| 771 | Order.emplace_back(args: BB); |
| 772 | |
| 773 | std::sort(first: Order.begin(), last: Order.end(), comp: [&](const auto &LHS, const auto &RHS) { |
| 774 | return compare(LHS, RHS); |
| 775 | }); |
| 776 | } |
| 777 | |
| 778 | bool PartialOrderingVisitor::compare(const BasicBlock *LHS, |
| 779 | const BasicBlock *RHS) const { |
| 780 | const OrderInfo &InfoLHS = BlockToOrder.at(k: const_cast<BasicBlock *>(LHS)); |
| 781 | const OrderInfo &InfoRHS = BlockToOrder.at(k: const_cast<BasicBlock *>(RHS)); |
| 782 | if (InfoLHS.Rank != InfoRHS.Rank) |
| 783 | return InfoLHS.Rank < InfoRHS.Rank; |
| 784 | return InfoLHS.TraversalIndex < InfoRHS.TraversalIndex; |
| 785 | } |
| 786 | |
| 787 | void PartialOrderingVisitor::partialOrderVisit( |
| 788 | BasicBlock &Start, std::function<bool(BasicBlock *)> Op) { |
| 789 | std::unordered_set<BasicBlock *> Reachable = getReachableFrom(Start: &Start); |
| 790 | assert(BlockToOrder.count(&Start) != 0); |
| 791 | |
| 792 | // Skipping blocks with a rank inferior to |Start|'s rank. |
| 793 | auto It = Order.begin(); |
| 794 | while (It != Order.end() && *It != &Start) |
| 795 | ++It; |
| 796 | |
| 797 | // This is unexpected. Worst case |Start| is the last block, |
| 798 | // so It should point to the last block, not past-end. |
| 799 | assert(It != Order.end()); |
| 800 | |
| 801 | // By default, there is no rank limit. Setting it to the maximum value. |
| 802 | std::optional<size_t> EndRank = std::nullopt; |
| 803 | for (; It != Order.end(); ++It) { |
| 804 | if (EndRank.has_value() && BlockToOrder[*It].Rank > *EndRank) |
| 805 | break; |
| 806 | |
| 807 | if (Reachable.count(x: *It) == 0) { |
| 808 | continue; |
| 809 | } |
| 810 | |
| 811 | if (!Op(*It)) { |
| 812 | EndRank = BlockToOrder[*It].Rank; |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | bool sortBlocks(Function &F) { |
| 818 | if (F.size() == 0) |
| 819 | return false; |
| 820 | |
| 821 | bool Modified = false; |
| 822 | std::vector<BasicBlock *> Order; |
| 823 | Order.reserve(n: F.size()); |
| 824 | |
| 825 | ReversePostOrderTraversal<Function *> RPOT(&F); |
| 826 | llvm::append_range(C&: Order, R&: RPOT); |
| 827 | |
| 828 | assert(&*F.begin() == Order[0]); |
| 829 | BasicBlock *LastBlock = &*F.begin(); |
| 830 | for (BasicBlock *BB : Order) { |
| 831 | if (BB != LastBlock && &*LastBlock->getNextNode() != BB) { |
| 832 | Modified = true; |
| 833 | BB->moveAfter(MovePos: LastBlock); |
| 834 | } |
| 835 | LastBlock = BB; |
| 836 | } |
| 837 | |
| 838 | return Modified; |
| 839 | } |
| 840 | |
| 841 | MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg) { |
| 842 | MachineInstr *MaybeDef = MRI.getVRegDef(Reg); |
| 843 | if (MaybeDef && MaybeDef->getOpcode() == SPIRV::ASSIGN_TYPE) |
| 844 | MaybeDef = MRI.getVRegDef(Reg: MaybeDef->getOperand(i: 1).getReg()); |
| 845 | return MaybeDef; |
| 846 | } |
| 847 | |
| 848 | bool getVacantFunctionName(Module &M, std::string &Name) { |
| 849 | // It's a bit of paranoia, but still we don't want to have even a chance that |
| 850 | // the loop will work for too long. |
| 851 | constexpr unsigned MaxIters = 1024; |
| 852 | for (unsigned I = 0; I < MaxIters; ++I) { |
| 853 | std::string OrdName = Name + Twine(I).str(); |
| 854 | if (!M.getFunction(Name: OrdName)) { |
| 855 | Name = std::move(OrdName); |
| 856 | return true; |
| 857 | } |
| 858 | } |
| 859 | return false; |
| 860 | } |
| 861 | |
| 862 | // Assign SPIR-V type to the register. If the register has no valid assigned |
| 863 | // class, set register LLT type and class according to the SPIR-V type. |
| 864 | void setRegClassType(Register Reg, SPIRVType *SpvType, SPIRVGlobalRegistry *GR, |
| 865 | MachineRegisterInfo *MRI, const MachineFunction &MF, |
| 866 | bool Force) { |
| 867 | GR->assignSPIRVTypeToVReg(Type: SpvType, VReg: Reg, MF); |
| 868 | if (!MRI->getRegClassOrNull(Reg) || Force) { |
| 869 | MRI->setRegClass(Reg, RC: GR->getRegClass(SpvType)); |
| 870 | MRI->setType(VReg: Reg, Ty: GR->getRegType(SpvType)); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | // Create a SPIR-V type, assign SPIR-V type to the register. If the register has |
| 875 | // no valid assigned class, set register LLT type and class according to the |
| 876 | // SPIR-V type. |
| 877 | void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR, |
| 878 | MachineIRBuilder &MIRBuilder, |
| 879 | SPIRV::AccessQualifier::AccessQualifier AccessQual, |
| 880 | bool EmitIR, bool Force) { |
| 881 | setRegClassType(Reg, |
| 882 | SpvType: GR->getOrCreateSPIRVType(Type: Ty, MIRBuilder, AQ: AccessQual, EmitIR), |
| 883 | GR, MRI: MIRBuilder.getMRI(), MF: MIRBuilder.getMF(), Force); |
| 884 | } |
| 885 | |
| 886 | // Create a virtual register and assign SPIR-V type to the register. Set |
| 887 | // register LLT type and class according to the SPIR-V type. |
| 888 | Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, |
| 889 | MachineRegisterInfo *MRI, |
| 890 | const MachineFunction &MF) { |
| 891 | Register Reg = MRI->createVirtualRegister(RegClass: GR->getRegClass(SpvType)); |
| 892 | MRI->setType(VReg: Reg, Ty: GR->getRegType(SpvType)); |
| 893 | GR->assignSPIRVTypeToVReg(Type: SpvType, VReg: Reg, MF); |
| 894 | return Reg; |
| 895 | } |
| 896 | |
| 897 | // Create a virtual register and assign SPIR-V type to the register. Set |
| 898 | // register LLT type and class according to the SPIR-V type. |
| 899 | Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, |
| 900 | MachineIRBuilder &MIRBuilder) { |
| 901 | return createVirtualRegister(SpvType, GR, MRI: MIRBuilder.getMRI(), |
| 902 | MF: MIRBuilder.getMF()); |
| 903 | } |
| 904 | |
| 905 | // Create a SPIR-V type, virtual register and assign SPIR-V type to the |
| 906 | // register. Set register LLT type and class according to the SPIR-V type. |
| 907 | Register createVirtualRegister( |
| 908 | const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder, |
| 909 | SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR) { |
| 910 | return createVirtualRegister( |
| 911 | SpvType: GR->getOrCreateSPIRVType(Type: Ty, MIRBuilder, AQ: AccessQual, EmitIR), GR, |
| 912 | MIRBuilder); |
| 913 | } |
| 914 | |
| 915 | CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types, |
| 916 | Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms, |
| 917 | IRBuilder<> &B) { |
| 918 | SmallVector<Value *, 4> Args; |
| 919 | Args.push_back(Elt: Arg2); |
| 920 | Args.push_back(Elt: buildMD(Arg)); |
| 921 | llvm::append_range(C&: Args, R&: Imms); |
| 922 | return B.CreateIntrinsic(ID: IntrID, Types: {Types}, Args); |
| 923 | } |
| 924 | |
| 925 | // Return true if there is an opaque pointer type nested in the argument. |
| 926 | bool isNestedPointer(const Type *Ty) { |
| 927 | if (Ty->isPtrOrPtrVectorTy()) |
| 928 | return true; |
| 929 | if (const FunctionType *RefTy = dyn_cast<FunctionType>(Val: Ty)) { |
| 930 | if (isNestedPointer(Ty: RefTy->getReturnType())) |
| 931 | return true; |
| 932 | for (const Type *ArgTy : RefTy->params()) |
| 933 | if (isNestedPointer(Ty: ArgTy)) |
| 934 | return true; |
| 935 | return false; |
| 936 | } |
| 937 | if (const ArrayType *RefTy = dyn_cast<ArrayType>(Val: Ty)) |
| 938 | return isNestedPointer(Ty: RefTy->getElementType()); |
| 939 | return false; |
| 940 | } |
| 941 | |
| 942 | bool isSpvIntrinsic(const Value *Arg) { |
| 943 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: Arg)) |
| 944 | if (Function *F = II->getCalledFunction()) |
| 945 | if (F->getName().starts_with(Prefix: "llvm.spv." )) |
| 946 | return true; |
| 947 | return false; |
| 948 | } |
| 949 | |
| 950 | // Function to create continued instructions for SPV_INTEL_long_composites |
| 951 | // extension |
| 952 | SmallVector<MachineInstr *, 4> |
| 953 | createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, |
| 954 | unsigned MinWC, unsigned ContinuedOpcode, |
| 955 | ArrayRef<Register> Args, Register ReturnRegister, |
| 956 | Register TypeID) { |
| 957 | |
| 958 | SmallVector<MachineInstr *, 4> Instructions; |
| 959 | constexpr unsigned MaxWordCount = UINT16_MAX; |
| 960 | const size_t NumElements = Args.size(); |
| 961 | size_t MaxNumElements = MaxWordCount - MinWC; |
| 962 | size_t SPIRVStructNumElements = NumElements; |
| 963 | |
| 964 | if (NumElements > MaxNumElements) { |
| 965 | // Do adjustments for continued instructions which always had only one |
| 966 | // minumum word count. |
| 967 | SPIRVStructNumElements = MaxNumElements; |
| 968 | MaxNumElements = MaxWordCount - 1; |
| 969 | } |
| 970 | |
| 971 | auto MIB = |
| 972 | MIRBuilder.buildInstr(Opcode).addDef(RegNo: ReturnRegister).addUse(RegNo: TypeID); |
| 973 | |
| 974 | for (size_t I = 0; I < SPIRVStructNumElements; ++I) |
| 975 | MIB.addUse(RegNo: Args[I]); |
| 976 | |
| 977 | Instructions.push_back(Elt: MIB.getInstr()); |
| 978 | |
| 979 | for (size_t I = SPIRVStructNumElements; I < NumElements; |
| 980 | I += MaxNumElements) { |
| 981 | auto MIB = MIRBuilder.buildInstr(Opcode: ContinuedOpcode); |
| 982 | for (size_t J = I; J < std::min(a: I + MaxNumElements, b: NumElements); ++J) |
| 983 | MIB.addUse(RegNo: Args[J]); |
| 984 | Instructions.push_back(Elt: MIB.getInstr()); |
| 985 | } |
| 986 | return Instructions; |
| 987 | } |
| 988 | |
| 989 | SmallVector<unsigned, 1> |
| 990 | getSpirvLoopControlOperandsFromLoopMetadata(MDNode *LoopMD) { |
| 991 | unsigned LC = SPIRV::LoopControl::None; |
| 992 | // Currently used only to store PartialCount value. Later when other |
| 993 | // LoopControls are added - this map should be sorted before making |
| 994 | // them loop_merge operands to satisfy 3.23. Loop Control requirements. |
| 995 | std::vector<std::pair<unsigned, unsigned>> MaskToValueMap; |
| 996 | if (findOptionMDForLoopID(LoopID: LoopMD, Name: "llvm.loop.unroll.disable" )) { |
| 997 | LC |= SPIRV::LoopControl::DontUnroll; |
| 998 | } else { |
| 999 | if (findOptionMDForLoopID(LoopID: LoopMD, Name: "llvm.loop.unroll.enable" ) || |
| 1000 | findOptionMDForLoopID(LoopID: LoopMD, Name: "llvm.loop.unroll.full" )) { |
| 1001 | LC |= SPIRV::LoopControl::Unroll; |
| 1002 | } |
| 1003 | if (MDNode *CountMD = |
| 1004 | findOptionMDForLoopID(LoopID: LoopMD, Name: "llvm.loop.unroll.count" )) { |
| 1005 | if (auto *CI = |
| 1006 | mdconst::extract_or_null<ConstantInt>(MD: CountMD->getOperand(I: 1))) { |
| 1007 | unsigned Count = CI->getZExtValue(); |
| 1008 | if (Count != 1) { |
| 1009 | LC |= SPIRV::LoopControl::PartialCount; |
| 1010 | MaskToValueMap.emplace_back( |
| 1011 | args: std::make_pair(x: SPIRV::LoopControl::PartialCount, y&: Count)); |
| 1012 | } |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | SmallVector<unsigned, 1> Result = {LC}; |
| 1017 | for (auto &[Mask, Val] : MaskToValueMap) |
| 1018 | Result.push_back(Elt: Val); |
| 1019 | return Result; |
| 1020 | } |
| 1021 | |
| 1022 | SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L) { |
| 1023 | return getSpirvLoopControlOperandsFromLoopMetadata(LoopMD: L->getLoopID()); |
| 1024 | } |
| 1025 | |
| 1026 | const std::set<unsigned> &getTypeFoldingSupportedOpcodes() { |
| 1027 | // clang-format off |
| 1028 | static const std::set<unsigned> TypeFoldingSupportingOpcs = { |
| 1029 | TargetOpcode::G_ADD, |
| 1030 | TargetOpcode::G_FADD, |
| 1031 | TargetOpcode::G_STRICT_FADD, |
| 1032 | TargetOpcode::G_SUB, |
| 1033 | TargetOpcode::G_FSUB, |
| 1034 | TargetOpcode::G_STRICT_FSUB, |
| 1035 | TargetOpcode::G_MUL, |
| 1036 | TargetOpcode::G_FMUL, |
| 1037 | TargetOpcode::G_STRICT_FMUL, |
| 1038 | TargetOpcode::G_SDIV, |
| 1039 | TargetOpcode::G_UDIV, |
| 1040 | TargetOpcode::G_FDIV, |
| 1041 | TargetOpcode::G_STRICT_FDIV, |
| 1042 | TargetOpcode::G_SREM, |
| 1043 | TargetOpcode::G_UREM, |
| 1044 | TargetOpcode::G_FREM, |
| 1045 | TargetOpcode::G_STRICT_FREM, |
| 1046 | TargetOpcode::G_FNEG, |
| 1047 | TargetOpcode::G_CONSTANT, |
| 1048 | TargetOpcode::G_FCONSTANT, |
| 1049 | TargetOpcode::G_AND, |
| 1050 | TargetOpcode::G_OR, |
| 1051 | TargetOpcode::G_XOR, |
| 1052 | TargetOpcode::G_SHL, |
| 1053 | TargetOpcode::G_ASHR, |
| 1054 | TargetOpcode::G_LSHR, |
| 1055 | TargetOpcode::G_SELECT, |
| 1056 | TargetOpcode::G_EXTRACT_VECTOR_ELT, |
| 1057 | }; |
| 1058 | // clang-format on |
| 1059 | return TypeFoldingSupportingOpcs; |
| 1060 | } |
| 1061 | |
| 1062 | bool isTypeFoldingSupported(unsigned Opcode) { |
| 1063 | return getTypeFoldingSupportedOpcodes().count(x: Opcode) > 0; |
| 1064 | } |
| 1065 | |
| 1066 | // Traversing [g]MIR accounting for pseudo-instructions. |
| 1067 | MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI) { |
| 1068 | return (Def->getOpcode() == SPIRV::ASSIGN_TYPE || |
| 1069 | Def->getOpcode() == TargetOpcode::COPY) |
| 1070 | ? MRI->getVRegDef(Reg: Def->getOperand(i: 1).getReg()) |
| 1071 | : Def; |
| 1072 | } |
| 1073 | |
| 1074 | MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI) { |
| 1075 | if (MachineInstr *Def = MRI->getVRegDef(Reg: MO.getReg())) |
| 1076 | return passCopy(Def, MRI); |
| 1077 | return nullptr; |
| 1078 | } |
| 1079 | |
| 1080 | MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) { |
| 1081 | if (MachineInstr *Def = getDef(MO, MRI)) { |
| 1082 | if (Def->getOpcode() == TargetOpcode::G_CONSTANT || |
| 1083 | Def->getOpcode() == SPIRV::OpConstantI) |
| 1084 | return Def; |
| 1085 | } |
| 1086 | return nullptr; |
| 1087 | } |
| 1088 | |
| 1089 | int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) { |
| 1090 | if (MachineInstr *Def = getImm(MO, MRI)) { |
| 1091 | if (Def->getOpcode() == SPIRV::OpConstantI) |
| 1092 | return Def->getOperand(i: 2).getImm(); |
| 1093 | if (Def->getOpcode() == TargetOpcode::G_CONSTANT) |
| 1094 | return Def->getOperand(i: 1).getCImm()->getZExtValue(); |
| 1095 | } |
| 1096 | llvm_unreachable("Unexpected integer constant pattern" ); |
| 1097 | } |
| 1098 | |
| 1099 | unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, |
| 1100 | const MachineInstr *ResType) { |
| 1101 | return foldImm(MO: ResType->getOperand(i: 2), MRI); |
| 1102 | } |
| 1103 | |
| 1104 | MachineBasicBlock::iterator |
| 1105 | getFirstValidInstructionInsertPoint(MachineBasicBlock &BB) { |
| 1106 | // Find the position to insert the OpVariable instruction. |
| 1107 | // We will insert it after the last OpFunctionParameter, if any, or |
| 1108 | // after OpFunction otherwise. |
| 1109 | MachineBasicBlock::iterator VarPos = BB.begin(); |
| 1110 | while (VarPos != BB.end() && VarPos->getOpcode() != SPIRV::OpFunction) { |
| 1111 | ++VarPos; |
| 1112 | } |
| 1113 | // Advance VarPos to the next instruction after OpFunction, it will either |
| 1114 | // be an OpFunctionParameter, so that we can start the next loop, or the |
| 1115 | // position to insert the OpVariable instruction. |
| 1116 | ++VarPos; |
| 1117 | while (VarPos != BB.end() && |
| 1118 | VarPos->getOpcode() == SPIRV::OpFunctionParameter) { |
| 1119 | ++VarPos; |
| 1120 | } |
| 1121 | // VarPos is now pointing at after the last OpFunctionParameter, if any, |
| 1122 | // or after OpFunction, if no parameters. |
| 1123 | return VarPos != BB.end() && VarPos->getOpcode() == SPIRV::OpLabel ? ++VarPos |
| 1124 | : VarPos; |
| 1125 | } |
| 1126 | |
| 1127 | bool matchPeeledArrayPattern(const StructType *Ty, Type *&OriginalElementType, |
| 1128 | uint64_t &TotalSize) { |
| 1129 | // An array of N padded structs is represented as {[N-1 x <{T, pad}>], T}. |
| 1130 | if (Ty->getStructNumElements() != 2) |
| 1131 | return false; |
| 1132 | |
| 1133 | Type *FirstElement = Ty->getStructElementType(N: 0); |
| 1134 | Type *SecondElement = Ty->getStructElementType(N: 1); |
| 1135 | |
| 1136 | if (!FirstElement->isArrayTy()) |
| 1137 | return false; |
| 1138 | |
| 1139 | Type *ArrayElementType = FirstElement->getArrayElementType(); |
| 1140 | if (!ArrayElementType->isStructTy() || |
| 1141 | ArrayElementType->getStructNumElements() != 2) |
| 1142 | return false; |
| 1143 | |
| 1144 | Type *T_in_struct = ArrayElementType->getStructElementType(N: 0); |
| 1145 | if (T_in_struct != SecondElement) |
| 1146 | return false; |
| 1147 | |
| 1148 | auto *Padding_in_struct = |
| 1149 | dyn_cast<TargetExtType>(Val: ArrayElementType->getStructElementType(N: 1)); |
| 1150 | if (!Padding_in_struct || Padding_in_struct->getName() != "spirv.Padding" ) |
| 1151 | return false; |
| 1152 | |
| 1153 | const uint64_t ArraySize = FirstElement->getArrayNumElements(); |
| 1154 | TotalSize = ArraySize + 1; |
| 1155 | OriginalElementType = ArrayElementType; |
| 1156 | return true; |
| 1157 | } |
| 1158 | |
| 1159 | Type *reconstitutePeeledArrayType(Type *Ty) { |
| 1160 | if (!Ty->isStructTy()) |
| 1161 | return Ty; |
| 1162 | |
| 1163 | auto *STy = cast<StructType>(Val: Ty); |
| 1164 | Type *OriginalElementType = nullptr; |
| 1165 | uint64_t TotalSize = 0; |
| 1166 | if (matchPeeledArrayPattern(Ty: STy, OriginalElementType, TotalSize)) { |
| 1167 | Type *ResultTy = ArrayType::get( |
| 1168 | ElementType: reconstitutePeeledArrayType(Ty: OriginalElementType), NumElements: TotalSize); |
| 1169 | return ResultTy; |
| 1170 | } |
| 1171 | |
| 1172 | SmallVector<Type *, 4> NewElementTypes; |
| 1173 | bool Changed = false; |
| 1174 | for (Type *ElementTy : STy->elements()) { |
| 1175 | Type *NewElementTy = reconstitutePeeledArrayType(Ty: ElementTy); |
| 1176 | if (NewElementTy != ElementTy) |
| 1177 | Changed = true; |
| 1178 | NewElementTypes.push_back(Elt: NewElementTy); |
| 1179 | } |
| 1180 | |
| 1181 | if (!Changed) |
| 1182 | return Ty; |
| 1183 | |
| 1184 | Type *ResultTy; |
| 1185 | if (STy->isLiteral()) |
| 1186 | ResultTy = |
| 1187 | StructType::get(Context&: STy->getContext(), Elements: NewElementTypes, isPacked: STy->isPacked()); |
| 1188 | else { |
| 1189 | auto *NewTy = StructType::create(Context&: STy->getContext(), Name: STy->getName()); |
| 1190 | NewTy->setBody(Elements: NewElementTypes, isPacked: STy->isPacked()); |
| 1191 | ResultTy = NewTy; |
| 1192 | } |
| 1193 | return ResultTy; |
| 1194 | } |
| 1195 | |
| 1196 | std::optional<SPIRV::LinkageType::LinkageType> |
| 1197 | getSpirvLinkageTypeFor(const SPIRVSubtarget &ST, const GlobalValue &GV) { |
| 1198 | if (GV.hasLocalLinkage() || GV.hasHiddenVisibility()) |
| 1199 | return std::nullopt; |
| 1200 | |
| 1201 | if (GV.isDeclarationForLinker()) |
| 1202 | return SPIRV::LinkageType::Import; |
| 1203 | |
| 1204 | if (GV.hasLinkOnceODRLinkage() && |
| 1205 | ST.canUseExtension(E: SPIRV::Extension::SPV_KHR_linkonce_odr)) |
| 1206 | return SPIRV::LinkageType::LinkOnceODR; |
| 1207 | |
| 1208 | return SPIRV::LinkageType::Export; |
| 1209 | } |
| 1210 | |
| 1211 | } // namespace llvm |
| 1212 | |