| 1 | //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the SystemZTargetLowering class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "SystemZISelLowering.h" |
| 14 | #include "SystemZCallingConv.h" |
| 15 | #include "SystemZConstantPoolValue.h" |
| 16 | #include "SystemZMachineFunctionInfo.h" |
| 17 | #include "SystemZTargetMachine.h" |
| 18 | #include "llvm/ADT/SmallSet.h" |
| 19 | #include "llvm/CodeGen/CallingConvLower.h" |
| 20 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 21 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 22 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 23 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 24 | #include "llvm/IR/GlobalAlias.h" |
| 25 | #include "llvm/IR/IntrinsicInst.h" |
| 26 | #include "llvm/IR/Intrinsics.h" |
| 27 | #include "llvm/IR/IntrinsicsS390.h" |
| 28 | #include "llvm/IR/PatternMatch.h" |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | #include "llvm/Support/ErrorHandling.h" |
| 31 | #include "llvm/Support/KnownBits.h" |
| 32 | #include <cctype> |
| 33 | #include <optional> |
| 34 | |
| 35 | using namespace llvm; |
| 36 | |
| 37 | #define DEBUG_TYPE "systemz-lower" |
| 38 | |
| 39 | // Temporarily let this be disabled by default until all known problems |
| 40 | // related to argument extensions are fixed. |
| 41 | static cl::opt<bool> EnableIntArgExtCheck( |
| 42 | "argext-abi-check" , cl::init(Val: false), |
| 43 | cl::desc("Verify that narrow int args are properly extended per the " |
| 44 | "SystemZ ABI." )); |
| 45 | |
| 46 | namespace { |
| 47 | // Represents information about a comparison. |
| 48 | struct Comparison { |
| 49 | Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) |
| 50 | : Op0(Op0In), Op1(Op1In), Chain(ChainIn), |
| 51 | Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} |
| 52 | |
| 53 | // The operands to the comparison. |
| 54 | SDValue Op0, Op1; |
| 55 | |
| 56 | // Chain if this is a strict floating-point comparison. |
| 57 | SDValue Chain; |
| 58 | |
| 59 | // The opcode that should be used to compare Op0 and Op1. |
| 60 | unsigned Opcode; |
| 61 | |
| 62 | // A SystemZICMP value. Only used for integer comparisons. |
| 63 | unsigned ICmpType; |
| 64 | |
| 65 | // The mask of CC values that Opcode can produce. |
| 66 | unsigned CCValid; |
| 67 | |
| 68 | // The mask of CC values for which the original condition is true. |
| 69 | unsigned CCMask; |
| 70 | }; |
| 71 | } // end anonymous namespace |
| 72 | |
| 73 | // Classify VT as either 32 or 64 bit. |
| 74 | static bool is32Bit(EVT VT) { |
| 75 | switch (VT.getSimpleVT().SimpleTy) { |
| 76 | case MVT::i32: |
| 77 | return true; |
| 78 | case MVT::i64: |
| 79 | return false; |
| 80 | default: |
| 81 | llvm_unreachable("Unsupported type" ); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | // Return a version of MachineOperand that can be safely used before the |
| 86 | // final use. |
| 87 | static MachineOperand earlyUseOperand(MachineOperand Op) { |
| 88 | if (Op.isReg()) |
| 89 | Op.setIsKill(false); |
| 90 | return Op; |
| 91 | } |
| 92 | |
| 93 | SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, |
| 94 | const SystemZSubtarget &STI) |
| 95 | : TargetLowering(TM, STI), Subtarget(STI) { |
| 96 | MVT PtrVT = MVT::getIntegerVT(BitWidth: TM.getPointerSizeInBits(AS: 0)); |
| 97 | |
| 98 | auto *Regs = STI.getSpecialRegisters(); |
| 99 | |
| 100 | // Set up the register classes. |
| 101 | if (Subtarget.hasHighWord()) |
| 102 | addRegisterClass(VT: MVT::i32, RC: &SystemZ::GRX32BitRegClass); |
| 103 | else |
| 104 | addRegisterClass(VT: MVT::i32, RC: &SystemZ::GR32BitRegClass); |
| 105 | addRegisterClass(VT: MVT::i64, RC: &SystemZ::GR64BitRegClass); |
| 106 | if (!useSoftFloat()) { |
| 107 | if (Subtarget.hasVector()) { |
| 108 | addRegisterClass(VT: MVT::f16, RC: &SystemZ::VR16BitRegClass); |
| 109 | addRegisterClass(VT: MVT::f32, RC: &SystemZ::VR32BitRegClass); |
| 110 | addRegisterClass(VT: MVT::f64, RC: &SystemZ::VR64BitRegClass); |
| 111 | } else { |
| 112 | addRegisterClass(VT: MVT::f16, RC: &SystemZ::FP16BitRegClass); |
| 113 | addRegisterClass(VT: MVT::f32, RC: &SystemZ::FP32BitRegClass); |
| 114 | addRegisterClass(VT: MVT::f64, RC: &SystemZ::FP64BitRegClass); |
| 115 | } |
| 116 | if (Subtarget.hasVectorEnhancements1()) |
| 117 | addRegisterClass(VT: MVT::f128, RC: &SystemZ::VR128BitRegClass); |
| 118 | else |
| 119 | addRegisterClass(VT: MVT::f128, RC: &SystemZ::FP128BitRegClass); |
| 120 | |
| 121 | if (Subtarget.hasVector()) { |
| 122 | addRegisterClass(VT: MVT::v16i8, RC: &SystemZ::VR128BitRegClass); |
| 123 | addRegisterClass(VT: MVT::v8i16, RC: &SystemZ::VR128BitRegClass); |
| 124 | addRegisterClass(VT: MVT::v4i32, RC: &SystemZ::VR128BitRegClass); |
| 125 | addRegisterClass(VT: MVT::v2i64, RC: &SystemZ::VR128BitRegClass); |
| 126 | addRegisterClass(VT: MVT::v8f16, RC: &SystemZ::VR128BitRegClass); |
| 127 | addRegisterClass(VT: MVT::v4f32, RC: &SystemZ::VR128BitRegClass); |
| 128 | addRegisterClass(VT: MVT::v2f64, RC: &SystemZ::VR128BitRegClass); |
| 129 | } |
| 130 | |
| 131 | if (Subtarget.hasVector()) |
| 132 | addRegisterClass(VT: MVT::i128, RC: &SystemZ::VR128BitRegClass); |
| 133 | } |
| 134 | |
| 135 | // Compute derived properties from the register classes |
| 136 | computeRegisterProperties(TRI: Subtarget.getRegisterInfo()); |
| 137 | |
| 138 | // Set up special registers. |
| 139 | setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); |
| 140 | |
| 141 | // TODO: It may be better to default to latency-oriented scheduling, however |
| 142 | // LLVM's current latency-oriented scheduler can't handle physreg definitions |
| 143 | // such as SystemZ has with CC, so set this to the register-pressure |
| 144 | // scheduler, because it can. |
| 145 | setSchedulingPreference(Sched::RegPressure); |
| 146 | |
| 147 | setBooleanContents(ZeroOrOneBooleanContent); |
| 148 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| 149 | |
| 150 | setMaxAtomicSizeInBitsSupported(128); |
| 151 | |
| 152 | // Instructions are strings of 2-byte aligned 2-byte values. |
| 153 | setMinFunctionAlignment(Align(2)); |
| 154 | // For performance reasons we prefer 16-byte alignment. |
| 155 | setPrefFunctionAlignment(Align(16)); |
| 156 | |
| 157 | // Handle operations that are handled in a similar way for all types. |
| 158 | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| 159 | I <= MVT::LAST_FP_VALUETYPE; |
| 160 | ++I) { |
| 161 | MVT VT = MVT::SimpleValueType(I); |
| 162 | if (isTypeLegal(VT)) { |
| 163 | // Lower SET_CC into an IPM-based sequence. |
| 164 | setOperationAction(Op: ISD::SETCC, VT, Action: Custom); |
| 165 | setOperationAction(Op: ISD::STRICT_FSETCC, VT, Action: Custom); |
| 166 | setOperationAction(Op: ISD::STRICT_FSETCCS, VT, Action: Custom); |
| 167 | |
| 168 | // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). |
| 169 | setOperationAction(Op: ISD::SELECT, VT, Action: Expand); |
| 170 | |
| 171 | // Lower SELECT_CC and BR_CC into separate comparisons and branches. |
| 172 | setOperationAction(Op: ISD::SELECT_CC, VT, Action: Custom); |
| 173 | setOperationAction(Op: ISD::BR_CC, VT, Action: Custom); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | // Expand jump table branches as address arithmetic followed by an |
| 178 | // indirect jump. |
| 179 | setOperationAction(Op: ISD::BR_JT, VT: MVT::Other, Action: Expand); |
| 180 | |
| 181 | // Expand BRCOND into a BR_CC (see above). |
| 182 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Expand); |
| 183 | |
| 184 | // Handle integer types except i128. |
| 185 | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| 186 | I <= MVT::LAST_INTEGER_VALUETYPE; |
| 187 | ++I) { |
| 188 | MVT VT = MVT::SimpleValueType(I); |
| 189 | if (isTypeLegal(VT) && VT != MVT::i128) { |
| 190 | setOperationAction(Op: ISD::ABS, VT, Action: Legal); |
| 191 | |
| 192 | // Expand individual DIV and REMs into DIVREMs. |
| 193 | setOperationAction(Op: ISD::SDIV, VT, Action: Expand); |
| 194 | setOperationAction(Op: ISD::UDIV, VT, Action: Expand); |
| 195 | setOperationAction(Op: ISD::SREM, VT, Action: Expand); |
| 196 | setOperationAction(Op: ISD::UREM, VT, Action: Expand); |
| 197 | setOperationAction(Op: ISD::SDIVREM, VT, Action: Custom); |
| 198 | setOperationAction(Op: ISD::UDIVREM, VT, Action: Custom); |
| 199 | |
| 200 | // Support addition/subtraction with overflow. |
| 201 | setOperationAction(Op: ISD::SADDO, VT, Action: Custom); |
| 202 | setOperationAction(Op: ISD::SSUBO, VT, Action: Custom); |
| 203 | |
| 204 | // Support addition/subtraction with carry. |
| 205 | setOperationAction(Op: ISD::UADDO, VT, Action: Custom); |
| 206 | setOperationAction(Op: ISD::USUBO, VT, Action: Custom); |
| 207 | |
| 208 | // Support carry in as value rather than glue. |
| 209 | setOperationAction(Op: ISD::UADDO_CARRY, VT, Action: Custom); |
| 210 | setOperationAction(Op: ISD::USUBO_CARRY, VT, Action: Custom); |
| 211 | |
| 212 | // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are |
| 213 | // available, or if the operand is constant. |
| 214 | setOperationAction(Op: ISD::ATOMIC_LOAD_SUB, VT, Action: Custom); |
| 215 | |
| 216 | // Use POPCNT on z196 and above. |
| 217 | if (Subtarget.hasPopulationCount()) |
| 218 | setOperationAction(Op: ISD::CTPOP, VT, Action: Custom); |
| 219 | else |
| 220 | setOperationAction(Op: ISD::CTPOP, VT, Action: Expand); |
| 221 | |
| 222 | // No special instructions for these. |
| 223 | setOperationAction(Op: ISD::CTTZ, VT, Action: Expand); |
| 224 | setOperationAction(Op: ISD::ROTR, VT, Action: Expand); |
| 225 | |
| 226 | // Use *MUL_LOHI where possible instead of MULH*. |
| 227 | setOperationAction(Op: ISD::MULHS, VT, Action: Expand); |
| 228 | setOperationAction(Op: ISD::MULHU, VT, Action: Expand); |
| 229 | setOperationAction(Op: ISD::SMUL_LOHI, VT, Action: Custom); |
| 230 | setOperationAction(Op: ISD::UMUL_LOHI, VT, Action: Custom); |
| 231 | |
| 232 | // The fp<=>i32/i64 conversions are all Legal except for f16 and for |
| 233 | // unsigned on z10 (only z196 and above have native support for |
| 234 | // unsigned conversions). |
| 235 | for (auto Op : {ISD::FP_TO_SINT, ISD::STRICT_FP_TO_SINT, |
| 236 | ISD::SINT_TO_FP, ISD::STRICT_SINT_TO_FP}) |
| 237 | setOperationAction(Op, VT, Action: Custom); |
| 238 | for (auto Op : {ISD::FP_TO_UINT, ISD::STRICT_FP_TO_UINT}) |
| 239 | setOperationAction(Op, VT, Action: Custom); |
| 240 | for (auto Op : {ISD::UINT_TO_FP, ISD::STRICT_UINT_TO_FP}) { |
| 241 | // Handle unsigned 32-bit input types as signed 64-bit types on z10. |
| 242 | auto OpAction = |
| 243 | (!Subtarget.hasFPExtension() && VT == MVT::i32) ? Promote : Custom; |
| 244 | setOperationAction(Op, VT, Action: OpAction); |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | // Handle i128 if legal. |
| 250 | if (isTypeLegal(VT: MVT::i128)) { |
| 251 | // No special instructions for these. |
| 252 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i128, Action: Expand); |
| 253 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i128, Action: Expand); |
| 254 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i128, Action: Expand); |
| 255 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i128, Action: Expand); |
| 256 | setOperationAction(Op: ISD::ROTR, VT: MVT::i128, Action: Expand); |
| 257 | setOperationAction(Op: ISD::ROTL, VT: MVT::i128, Action: Expand); |
| 258 | |
| 259 | // We may be able to use VSLDB/VSLD/VSRD for these. |
| 260 | setOperationAction(Op: ISD::FSHL, VT: MVT::i128, Action: Custom); |
| 261 | setOperationAction(Op: ISD::FSHR, VT: MVT::i128, Action: Custom); |
| 262 | |
| 263 | // No special instructions for these before z17. |
| 264 | if (!Subtarget.hasVectorEnhancements3()) { |
| 265 | setOperationAction(Op: ISD::MUL, VT: MVT::i128, Action: Expand); |
| 266 | setOperationAction(Op: ISD::MULHS, VT: MVT::i128, Action: Expand); |
| 267 | setOperationAction(Op: ISD::MULHU, VT: MVT::i128, Action: Expand); |
| 268 | setOperationAction(Op: ISD::SDIV, VT: MVT::i128, Action: Expand); |
| 269 | setOperationAction(Op: ISD::UDIV, VT: MVT::i128, Action: Expand); |
| 270 | setOperationAction(Op: ISD::SREM, VT: MVT::i128, Action: Expand); |
| 271 | setOperationAction(Op: ISD::UREM, VT: MVT::i128, Action: Expand); |
| 272 | setOperationAction(Op: ISD::CTLZ, VT: MVT::i128, Action: Expand); |
| 273 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i128, Action: Expand); |
| 274 | } else { |
| 275 | // Even if we do have a legal 128-bit multiply, we do not |
| 276 | // want 64-bit multiply-high operations to use it. |
| 277 | setOperationAction(Op: ISD::MULHS, VT: MVT::i64, Action: Custom); |
| 278 | setOperationAction(Op: ISD::MULHU, VT: MVT::i64, Action: Custom); |
| 279 | } |
| 280 | |
| 281 | // Support addition/subtraction with carry. |
| 282 | setOperationAction(Op: ISD::UADDO, VT: MVT::i128, Action: Custom); |
| 283 | setOperationAction(Op: ISD::USUBO, VT: MVT::i128, Action: Custom); |
| 284 | setOperationAction(Op: ISD::UADDO_CARRY, VT: MVT::i128, Action: Custom); |
| 285 | setOperationAction(Op: ISD::USUBO_CARRY, VT: MVT::i128, Action: Custom); |
| 286 | |
| 287 | // Use VPOPCT and add up partial results. |
| 288 | setOperationAction(Op: ISD::CTPOP, VT: MVT::i128, Action: Custom); |
| 289 | |
| 290 | // Additional instructions available with z17. |
| 291 | if (Subtarget.hasVectorEnhancements3()) { |
| 292 | setOperationAction(Op: ISD::ABS, VT: MVT::i128, Action: Legal); |
| 293 | |
| 294 | setOperationAction(Ops: {ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, |
| 295 | VT: MVT::i128, Action: Legal); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | // These need custom handling in order to handle the f16 conversions. |
| 300 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::i128, Action: Custom); |
| 301 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::i128, Action: Custom); |
| 302 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::i128, Action: Custom); |
| 303 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::i128, Action: Custom); |
| 304 | setOperationAction(Op: ISD::STRICT_FP_TO_UINT, VT: MVT::i128, Action: Custom); |
| 305 | setOperationAction(Op: ISD::STRICT_FP_TO_SINT, VT: MVT::i128, Action: Custom); |
| 306 | setOperationAction(Op: ISD::STRICT_UINT_TO_FP, VT: MVT::i128, Action: Custom); |
| 307 | setOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: MVT::i128, Action: Custom); |
| 308 | |
| 309 | // Type legalization will convert 8- and 16-bit atomic operations into |
| 310 | // forms that operate on i32s (but still keeping the original memory VT). |
| 311 | // Lower them into full i32 operations. |
| 312 | setOperationAction(Op: ISD::ATOMIC_SWAP, VT: MVT::i32, Action: Custom); |
| 313 | setOperationAction(Op: ISD::ATOMIC_LOAD_ADD, VT: MVT::i32, Action: Custom); |
| 314 | setOperationAction(Op: ISD::ATOMIC_LOAD_SUB, VT: MVT::i32, Action: Custom); |
| 315 | setOperationAction(Op: ISD::ATOMIC_LOAD_AND, VT: MVT::i32, Action: Custom); |
| 316 | setOperationAction(Op: ISD::ATOMIC_LOAD_OR, VT: MVT::i32, Action: Custom); |
| 317 | setOperationAction(Op: ISD::ATOMIC_LOAD_XOR, VT: MVT::i32, Action: Custom); |
| 318 | setOperationAction(Op: ISD::ATOMIC_LOAD_NAND, VT: MVT::i32, Action: Custom); |
| 319 | setOperationAction(Op: ISD::ATOMIC_LOAD_MIN, VT: MVT::i32, Action: Custom); |
| 320 | setOperationAction(Op: ISD::ATOMIC_LOAD_MAX, VT: MVT::i32, Action: Custom); |
| 321 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMIN, VT: MVT::i32, Action: Custom); |
| 322 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMAX, VT: MVT::i32, Action: Custom); |
| 323 | |
| 324 | // Whether or not i128 is not a legal type, we need to custom lower |
| 325 | // the atomic operations in order to exploit SystemZ instructions. |
| 326 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::i128, Action: Custom); |
| 327 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::i128, Action: Custom); |
| 328 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f128, Action: Custom); |
| 329 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f128, Action: Custom); |
| 330 | |
| 331 | // Mark sign/zero extending atomic loads as legal, which will make |
| 332 | // DAGCombiner fold extensions into atomic loads if possible. |
| 333 | setAtomicLoadExtAction(ExtTypes: {ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::i64, |
| 334 | MemVTs: {MVT::i8, MVT::i16, MVT::i32}, Action: Legal); |
| 335 | setAtomicLoadExtAction(ExtTypes: {ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::i32, |
| 336 | MemVTs: {MVT::i8, MVT::i16}, Action: Legal); |
| 337 | setAtomicLoadExtAction(ExtTypes: {ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::i16, |
| 338 | MemVT: MVT::i8, Action: Legal); |
| 339 | |
| 340 | // We can use the CC result of compare-and-swap to implement |
| 341 | // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. |
| 342 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT: MVT::i32, Action: Custom); |
| 343 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT: MVT::i64, Action: Custom); |
| 344 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT: MVT::i128, Action: Custom); |
| 345 | |
| 346 | setOperationAction(Op: ISD::ATOMIC_FENCE, VT: MVT::Other, Action: Custom); |
| 347 | |
| 348 | // Traps are legal, as we will convert them to "j .+2". |
| 349 | setOperationAction(Op: ISD::TRAP, VT: MVT::Other, Action: Legal); |
| 350 | |
| 351 | // We have native support for a 64-bit CTLZ, via FLOGR. |
| 352 | setOperationAction(Op: ISD::CTLZ, VT: MVT::i32, Action: Promote); |
| 353 | setOperationAction(Op: ISD::CTLZ_ZERO_UNDEF, VT: MVT::i32, Action: Promote); |
| 354 | setOperationAction(Op: ISD::CTLZ, VT: MVT::i64, Action: Legal); |
| 355 | |
| 356 | // On z17 we have native support for a 64-bit CTTZ. |
| 357 | if (Subtarget.hasMiscellaneousExtensions4()) { |
| 358 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i32, Action: Promote); |
| 359 | setOperationAction(Op: ISD::CTTZ_ZERO_UNDEF, VT: MVT::i32, Action: Promote); |
| 360 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i64, Action: Legal); |
| 361 | } |
| 362 | |
| 363 | // On z15 we have native support for a 64-bit CTPOP. |
| 364 | if (Subtarget.hasMiscellaneousExtensions3()) { |
| 365 | setOperationAction(Op: ISD::CTPOP, VT: MVT::i32, Action: Promote); |
| 366 | setOperationAction(Op: ISD::CTPOP, VT: MVT::i64, Action: Legal); |
| 367 | } |
| 368 | |
| 369 | // Give LowerOperation the chance to replace 64-bit ORs with subregs. |
| 370 | setOperationAction(Op: ISD::OR, VT: MVT::i64, Action: Custom); |
| 371 | |
| 372 | // Expand 128 bit shifts without using a libcall. |
| 373 | setOperationAction(Op: ISD::SRL_PARTS, VT: MVT::i64, Action: Expand); |
| 374 | setOperationAction(Op: ISD::SHL_PARTS, VT: MVT::i64, Action: Expand); |
| 375 | setOperationAction(Op: ISD::SRA_PARTS, VT: MVT::i64, Action: Expand); |
| 376 | |
| 377 | // Also expand 256 bit shifts if i128 is a legal type. |
| 378 | if (isTypeLegal(VT: MVT::i128)) { |
| 379 | setOperationAction(Op: ISD::SRL_PARTS, VT: MVT::i128, Action: Expand); |
| 380 | setOperationAction(Op: ISD::SHL_PARTS, VT: MVT::i128, Action: Expand); |
| 381 | setOperationAction(Op: ISD::SRA_PARTS, VT: MVT::i128, Action: Expand); |
| 382 | } |
| 383 | |
| 384 | // Handle bitcast from fp128 to i128. |
| 385 | if (!isTypeLegal(VT: MVT::i128)) |
| 386 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i128, Action: Custom); |
| 387 | |
| 388 | // We have native instructions for i8, i16 and i32 extensions, but not i1. |
| 389 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i1, Action: Expand); |
| 390 | for (MVT VT : MVT::integer_valuetypes()) { |
| 391 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 392 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 393 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 394 | } |
| 395 | |
| 396 | // Handle the various types of symbolic address. |
| 397 | setOperationAction(Op: ISD::ConstantPool, VT: PtrVT, Action: Custom); |
| 398 | setOperationAction(Op: ISD::GlobalAddress, VT: PtrVT, Action: Custom); |
| 399 | setOperationAction(Op: ISD::GlobalTLSAddress, VT: PtrVT, Action: Custom); |
| 400 | setOperationAction(Op: ISD::BlockAddress, VT: PtrVT, Action: Custom); |
| 401 | setOperationAction(Op: ISD::JumpTable, VT: PtrVT, Action: Custom); |
| 402 | |
| 403 | // We need to handle dynamic allocations specially because of the |
| 404 | // 160-byte area at the bottom of the stack. |
| 405 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: PtrVT, Action: Custom); |
| 406 | setOperationAction(Op: ISD::GET_DYNAMIC_AREA_OFFSET, VT: PtrVT, Action: Custom); |
| 407 | |
| 408 | setOperationAction(Op: ISD::STACKSAVE, VT: MVT::Other, Action: Custom); |
| 409 | setOperationAction(Op: ISD::STACKRESTORE, VT: MVT::Other, Action: Custom); |
| 410 | |
| 411 | // Handle prefetches with PFD or PFDRL. |
| 412 | setOperationAction(Op: ISD::PREFETCH, VT: MVT::Other, Action: Custom); |
| 413 | |
| 414 | // Handle readcyclecounter with STCKF. |
| 415 | setOperationAction(Op: ISD::READCYCLECOUNTER, VT: MVT::i64, Action: Custom); |
| 416 | |
| 417 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| 418 | // Assume by default that all vector operations need to be expanded. |
| 419 | for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) |
| 420 | if (getOperationAction(Op: Opcode, VT) == Legal) |
| 421 | setOperationAction(Op: Opcode, VT, Action: Expand); |
| 422 | |
| 423 | // Likewise all truncating stores and extending loads. |
| 424 | for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { |
| 425 | setTruncStoreAction(ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 426 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 427 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 428 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 429 | } |
| 430 | |
| 431 | if (isTypeLegal(VT)) { |
| 432 | // These operations are legal for anything that can be stored in a |
| 433 | // vector register, even if there is no native support for the format |
| 434 | // as such. In particular, we can do these for v4f32 even though there |
| 435 | // are no specific instructions for that format. |
| 436 | setOperationAction(Op: ISD::LOAD, VT, Action: Legal); |
| 437 | setOperationAction(Op: ISD::STORE, VT, Action: Legal); |
| 438 | setOperationAction(Op: ISD::VSELECT, VT, Action: Legal); |
| 439 | setOperationAction(Op: ISD::BITCAST, VT, Action: Legal); |
| 440 | setOperationAction(Op: ISD::UNDEF, VT, Action: Legal); |
| 441 | |
| 442 | // Likewise, except that we need to replace the nodes with something |
| 443 | // more specific. |
| 444 | setOperationAction(Op: ISD::BUILD_VECTOR, VT, Action: Custom); |
| 445 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT, Action: Custom); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | // Handle integer vector types. |
| 450 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| 451 | if (isTypeLegal(VT)) { |
| 452 | // These operations have direct equivalents. |
| 453 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT, Action: Legal); |
| 454 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT, Action: Legal); |
| 455 | setOperationAction(Op: ISD::ADD, VT, Action: Legal); |
| 456 | setOperationAction(Op: ISD::SUB, VT, Action: Legal); |
| 457 | if (VT != MVT::v2i64 || Subtarget.hasVectorEnhancements3()) { |
| 458 | setOperationAction(Op: ISD::MUL, VT, Action: Legal); |
| 459 | setOperationAction(Op: ISD::MULHS, VT, Action: Legal); |
| 460 | setOperationAction(Op: ISD::MULHU, VT, Action: Legal); |
| 461 | } |
| 462 | if (Subtarget.hasVectorEnhancements3() && |
| 463 | VT != MVT::v16i8 && VT != MVT::v8i16) { |
| 464 | setOperationAction(Op: ISD::SDIV, VT, Action: Legal); |
| 465 | setOperationAction(Op: ISD::UDIV, VT, Action: Legal); |
| 466 | setOperationAction(Op: ISD::SREM, VT, Action: Legal); |
| 467 | setOperationAction(Op: ISD::UREM, VT, Action: Legal); |
| 468 | } |
| 469 | setOperationAction(Op: ISD::ABS, VT, Action: Legal); |
| 470 | setOperationAction(Op: ISD::AND, VT, Action: Legal); |
| 471 | setOperationAction(Op: ISD::OR, VT, Action: Legal); |
| 472 | setOperationAction(Op: ISD::XOR, VT, Action: Legal); |
| 473 | if (Subtarget.hasVectorEnhancements1()) |
| 474 | setOperationAction(Op: ISD::CTPOP, VT, Action: Legal); |
| 475 | else |
| 476 | setOperationAction(Op: ISD::CTPOP, VT, Action: Custom); |
| 477 | setOperationAction(Op: ISD::CTTZ, VT, Action: Legal); |
| 478 | setOperationAction(Op: ISD::CTLZ, VT, Action: Legal); |
| 479 | |
| 480 | // Convert a GPR scalar to a vector by inserting it into element 0. |
| 481 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT, Action: Custom); |
| 482 | |
| 483 | // Use a series of unpacks for extensions. |
| 484 | setOperationAction(Op: ISD::SIGN_EXTEND_VECTOR_INREG, VT, Action: Custom); |
| 485 | setOperationAction(Op: ISD::ZERO_EXTEND_VECTOR_INREG, VT, Action: Custom); |
| 486 | |
| 487 | // Detect shifts/rotates by a scalar amount and convert them into |
| 488 | // V*_BY_SCALAR. |
| 489 | setOperationAction(Op: ISD::SHL, VT, Action: Custom); |
| 490 | setOperationAction(Op: ISD::SRA, VT, Action: Custom); |
| 491 | setOperationAction(Op: ISD::SRL, VT, Action: Custom); |
| 492 | setOperationAction(Op: ISD::ROTL, VT, Action: Custom); |
| 493 | |
| 494 | // Add ISD::VECREDUCE_ADD as custom in order to implement |
| 495 | // it with VZERO+VSUM |
| 496 | setOperationAction(Op: ISD::VECREDUCE_ADD, VT, Action: Custom); |
| 497 | |
| 498 | // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands |
| 499 | // and inverting the result as necessary. |
| 500 | setOperationAction(Op: ISD::SETCC, VT, Action: Custom); |
| 501 | |
| 502 | setOperationAction(Ops: {ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, VT, |
| 503 | Action: Legal); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | if (Subtarget.hasVector()) { |
| 508 | // There should be no need to check for float types other than v2f64 |
| 509 | // since <2 x f32> isn't a legal type. |
| 510 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::v2i64, Action: Legal); |
| 511 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::v2f64, Action: Legal); |
| 512 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::v2i64, Action: Legal); |
| 513 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::v2f64, Action: Legal); |
| 514 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::v2i64, Action: Legal); |
| 515 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::v2f64, Action: Legal); |
| 516 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::v2i64, Action: Legal); |
| 517 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::v2f64, Action: Legal); |
| 518 | |
| 519 | setOperationAction(Op: ISD::STRICT_FP_TO_SINT, VT: MVT::v2i64, Action: Legal); |
| 520 | setOperationAction(Op: ISD::STRICT_FP_TO_SINT, VT: MVT::v2f64, Action: Legal); |
| 521 | setOperationAction(Op: ISD::STRICT_FP_TO_UINT, VT: MVT::v2i64, Action: Legal); |
| 522 | setOperationAction(Op: ISD::STRICT_FP_TO_UINT, VT: MVT::v2f64, Action: Legal); |
| 523 | setOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: MVT::v2i64, Action: Legal); |
| 524 | setOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: MVT::v2f64, Action: Legal); |
| 525 | setOperationAction(Op: ISD::STRICT_UINT_TO_FP, VT: MVT::v2i64, Action: Legal); |
| 526 | setOperationAction(Op: ISD::STRICT_UINT_TO_FP, VT: MVT::v2f64, Action: Legal); |
| 527 | } |
| 528 | |
| 529 | if (Subtarget.hasVectorEnhancements2()) { |
| 530 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::v4i32, Action: Legal); |
| 531 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::v4f32, Action: Legal); |
| 532 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::v4i32, Action: Legal); |
| 533 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::v4f32, Action: Legal); |
| 534 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::v4i32, Action: Legal); |
| 535 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::v4f32, Action: Legal); |
| 536 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::v4i32, Action: Legal); |
| 537 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::v4f32, Action: Legal); |
| 538 | |
| 539 | setOperationAction(Op: ISD::STRICT_FP_TO_SINT, VT: MVT::v4i32, Action: Legal); |
| 540 | setOperationAction(Op: ISD::STRICT_FP_TO_SINT, VT: MVT::v4f32, Action: Legal); |
| 541 | setOperationAction(Op: ISD::STRICT_FP_TO_UINT, VT: MVT::v4i32, Action: Legal); |
| 542 | setOperationAction(Op: ISD::STRICT_FP_TO_UINT, VT: MVT::v4f32, Action: Legal); |
| 543 | setOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: MVT::v4i32, Action: Legal); |
| 544 | setOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: MVT::v4f32, Action: Legal); |
| 545 | setOperationAction(Op: ISD::STRICT_UINT_TO_FP, VT: MVT::v4i32, Action: Legal); |
| 546 | setOperationAction(Op: ISD::STRICT_UINT_TO_FP, VT: MVT::v4f32, Action: Legal); |
| 547 | } |
| 548 | |
| 549 | // Handle floating-point types. |
| 550 | if (!useSoftFloat()) { |
| 551 | // Promote all f16 operations to float, with some exceptions below. |
| 552 | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) |
| 553 | setOperationAction(Op: Opc, VT: MVT::f16, Action: Promote); |
| 554 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f16, Action: Expand); |
| 555 | for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { |
| 556 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: MVT::f16, Action: Expand); |
| 557 | setTruncStoreAction(ValVT: VT, MemVT: MVT::f16, Action: Expand); |
| 558 | } |
| 559 | for (auto Op : {ISD::LOAD, ISD::ATOMIC_LOAD, ISD::STORE, ISD::ATOMIC_STORE}) |
| 560 | setOperationAction(Op, VT: MVT::f16, Action: Subtarget.hasVector() ? Legal : Custom); |
| 561 | setOperationAction(Op: ISD::FP_ROUND, VT: MVT::f16, Action: LibCall); |
| 562 | setOperationAction(Op: ISD::STRICT_FP_ROUND, VT: MVT::f16, Action: LibCall); |
| 563 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i16, Action: Custom); |
| 564 | setOperationAction(Op: ISD::IS_FPCLASS, VT: MVT::f16, Action: Custom); |
| 565 | for (auto Op : {ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN}) |
| 566 | setOperationAction(Op, VT: MVT::f16, Action: Legal); |
| 567 | } |
| 568 | |
| 569 | for (unsigned I = MVT::FIRST_FP_VALUETYPE; |
| 570 | I <= MVT::LAST_FP_VALUETYPE; |
| 571 | ++I) { |
| 572 | MVT VT = MVT::SimpleValueType(I); |
| 573 | if (isTypeLegal(VT) && VT != MVT::f16) { |
| 574 | // We can use FI for FRINT. |
| 575 | setOperationAction(Op: ISD::FRINT, VT, Action: Legal); |
| 576 | |
| 577 | // We can use the extended form of FI for other rounding operations. |
| 578 | if (Subtarget.hasFPExtension()) { |
| 579 | setOperationAction(Op: ISD::FNEARBYINT, VT, Action: Legal); |
| 580 | setOperationAction(Op: ISD::FFLOOR, VT, Action: Legal); |
| 581 | setOperationAction(Op: ISD::FCEIL, VT, Action: Legal); |
| 582 | setOperationAction(Op: ISD::FTRUNC, VT, Action: Legal); |
| 583 | setOperationAction(Op: ISD::FROUND, VT, Action: Legal); |
| 584 | setOperationAction(Op: ISD::FROUNDEVEN, VT, Action: Legal); |
| 585 | } |
| 586 | |
| 587 | // No special instructions for these. |
| 588 | setOperationAction(Op: ISD::FSIN, VT, Action: Expand); |
| 589 | setOperationAction(Op: ISD::FCOS, VT, Action: Expand); |
| 590 | setOperationAction(Op: ISD::FSINCOS, VT, Action: Expand); |
| 591 | setOperationAction(Op: ISD::FREM, VT, Action: LibCall); |
| 592 | setOperationAction(Op: ISD::FPOW, VT, Action: Expand); |
| 593 | |
| 594 | // Special treatment. |
| 595 | setOperationAction(Op: ISD::IS_FPCLASS, VT, Action: Custom); |
| 596 | |
| 597 | // Handle constrained floating-point operations. |
| 598 | setOperationAction(Op: ISD::STRICT_FADD, VT, Action: Legal); |
| 599 | setOperationAction(Op: ISD::STRICT_FSUB, VT, Action: Legal); |
| 600 | setOperationAction(Op: ISD::STRICT_FMUL, VT, Action: Legal); |
| 601 | setOperationAction(Op: ISD::STRICT_FDIV, VT, Action: Legal); |
| 602 | setOperationAction(Op: ISD::STRICT_FMA, VT, Action: Legal); |
| 603 | setOperationAction(Op: ISD::STRICT_FSQRT, VT, Action: Legal); |
| 604 | setOperationAction(Op: ISD::STRICT_FRINT, VT, Action: Legal); |
| 605 | setOperationAction(Op: ISD::STRICT_FP_ROUND, VT, Action: Legal); |
| 606 | if (Subtarget.hasFPExtension()) { |
| 607 | setOperationAction(Op: ISD::STRICT_FNEARBYINT, VT, Action: Legal); |
| 608 | setOperationAction(Op: ISD::STRICT_FFLOOR, VT, Action: Legal); |
| 609 | setOperationAction(Op: ISD::STRICT_FCEIL, VT, Action: Legal); |
| 610 | setOperationAction(Op: ISD::STRICT_FTRUNC, VT, Action: Legal); |
| 611 | setOperationAction(Op: ISD::STRICT_FROUND, VT, Action: Legal); |
| 612 | setOperationAction(Op: ISD::STRICT_FROUNDEVEN, VT, Action: Legal); |
| 613 | } |
| 614 | |
| 615 | // Extension from f16 needs libcall. |
| 616 | setOperationAction(Op: ISD::FP_EXTEND, VT, Action: Custom); |
| 617 | setOperationAction(Op: ISD::STRICT_FP_EXTEND, VT, Action: Custom); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | // Handle floating-point vector types. |
| 622 | if (Subtarget.hasVector()) { |
| 623 | // Scalar-to-vector conversion is just a subreg. |
| 624 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT: MVT::v8f16, Action: Legal); |
| 625 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT: MVT::v4f32, Action: Legal); |
| 626 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT: MVT::v2f64, Action: Legal); |
| 627 | |
| 628 | // Some insertions and extractions can be done directly but others |
| 629 | // need to go via integers. |
| 630 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v8f16, Action: Custom); |
| 631 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v4f32, Action: Custom); |
| 632 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v2f64, Action: Custom); |
| 633 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v8f16, Action: Custom); |
| 634 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v4f32, Action: Custom); |
| 635 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v2f64, Action: Custom); |
| 636 | |
| 637 | // These operations have direct equivalents. |
| 638 | setOperationAction(Op: ISD::FADD, VT: MVT::v2f64, Action: Legal); |
| 639 | setOperationAction(Op: ISD::FNEG, VT: MVT::v2f64, Action: Legal); |
| 640 | setOperationAction(Op: ISD::FSUB, VT: MVT::v2f64, Action: Legal); |
| 641 | setOperationAction(Op: ISD::FMUL, VT: MVT::v2f64, Action: Legal); |
| 642 | setOperationAction(Op: ISD::FMA, VT: MVT::v2f64, Action: Legal); |
| 643 | setOperationAction(Op: ISD::FDIV, VT: MVT::v2f64, Action: Legal); |
| 644 | setOperationAction(Op: ISD::FABS, VT: MVT::v2f64, Action: Legal); |
| 645 | setOperationAction(Op: ISD::FSQRT, VT: MVT::v2f64, Action: Legal); |
| 646 | setOperationAction(Op: ISD::FRINT, VT: MVT::v2f64, Action: Legal); |
| 647 | setOperationAction(Op: ISD::FNEARBYINT, VT: MVT::v2f64, Action: Legal); |
| 648 | setOperationAction(Op: ISD::FFLOOR, VT: MVT::v2f64, Action: Legal); |
| 649 | setOperationAction(Op: ISD::FCEIL, VT: MVT::v2f64, Action: Legal); |
| 650 | setOperationAction(Op: ISD::FTRUNC, VT: MVT::v2f64, Action: Legal); |
| 651 | setOperationAction(Op: ISD::FROUND, VT: MVT::v2f64, Action: Legal); |
| 652 | setOperationAction(Op: ISD::FROUNDEVEN, VT: MVT::v2f64, Action: Legal); |
| 653 | |
| 654 | // Handle constrained floating-point operations. |
| 655 | setOperationAction(Op: ISD::STRICT_FADD, VT: MVT::v2f64, Action: Legal); |
| 656 | setOperationAction(Op: ISD::STRICT_FSUB, VT: MVT::v2f64, Action: Legal); |
| 657 | setOperationAction(Op: ISD::STRICT_FMUL, VT: MVT::v2f64, Action: Legal); |
| 658 | setOperationAction(Op: ISD::STRICT_FMA, VT: MVT::v2f64, Action: Legal); |
| 659 | setOperationAction(Op: ISD::STRICT_FDIV, VT: MVT::v2f64, Action: Legal); |
| 660 | setOperationAction(Op: ISD::STRICT_FSQRT, VT: MVT::v2f64, Action: Legal); |
| 661 | setOperationAction(Op: ISD::STRICT_FRINT, VT: MVT::v2f64, Action: Legal); |
| 662 | setOperationAction(Op: ISD::STRICT_FNEARBYINT, VT: MVT::v2f64, Action: Legal); |
| 663 | setOperationAction(Op: ISD::STRICT_FFLOOR, VT: MVT::v2f64, Action: Legal); |
| 664 | setOperationAction(Op: ISD::STRICT_FCEIL, VT: MVT::v2f64, Action: Legal); |
| 665 | setOperationAction(Op: ISD::STRICT_FTRUNC, VT: MVT::v2f64, Action: Legal); |
| 666 | setOperationAction(Op: ISD::STRICT_FROUND, VT: MVT::v2f64, Action: Legal); |
| 667 | setOperationAction(Op: ISD::STRICT_FROUNDEVEN, VT: MVT::v2f64, Action: Legal); |
| 668 | |
| 669 | setOperationAction(Op: ISD::SETCC, VT: MVT::v2f64, Action: Custom); |
| 670 | setOperationAction(Op: ISD::SETCC, VT: MVT::v4f32, Action: Custom); |
| 671 | setOperationAction(Op: ISD::STRICT_FSETCC, VT: MVT::v2f64, Action: Custom); |
| 672 | setOperationAction(Op: ISD::STRICT_FSETCC, VT: MVT::v4f32, Action: Custom); |
| 673 | if (Subtarget.hasVectorEnhancements1()) { |
| 674 | setOperationAction(Op: ISD::STRICT_FSETCCS, VT: MVT::v2f64, Action: Custom); |
| 675 | setOperationAction(Op: ISD::STRICT_FSETCCS, VT: MVT::v4f32, Action: Custom); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | // The vector enhancements facility 1 has instructions for these. |
| 680 | if (Subtarget.hasVectorEnhancements1()) { |
| 681 | setOperationAction(Op: ISD::FADD, VT: MVT::v4f32, Action: Legal); |
| 682 | setOperationAction(Op: ISD::FNEG, VT: MVT::v4f32, Action: Legal); |
| 683 | setOperationAction(Op: ISD::FSUB, VT: MVT::v4f32, Action: Legal); |
| 684 | setOperationAction(Op: ISD::FMUL, VT: MVT::v4f32, Action: Legal); |
| 685 | setOperationAction(Op: ISD::FMA, VT: MVT::v4f32, Action: Legal); |
| 686 | setOperationAction(Op: ISD::FDIV, VT: MVT::v4f32, Action: Legal); |
| 687 | setOperationAction(Op: ISD::FABS, VT: MVT::v4f32, Action: Legal); |
| 688 | setOperationAction(Op: ISD::FSQRT, VT: MVT::v4f32, Action: Legal); |
| 689 | setOperationAction(Op: ISD::FRINT, VT: MVT::v4f32, Action: Legal); |
| 690 | setOperationAction(Op: ISD::FNEARBYINT, VT: MVT::v4f32, Action: Legal); |
| 691 | setOperationAction(Op: ISD::FFLOOR, VT: MVT::v4f32, Action: Legal); |
| 692 | setOperationAction(Op: ISD::FCEIL, VT: MVT::v4f32, Action: Legal); |
| 693 | setOperationAction(Op: ISD::FTRUNC, VT: MVT::v4f32, Action: Legal); |
| 694 | setOperationAction(Op: ISD::FROUND, VT: MVT::v4f32, Action: Legal); |
| 695 | setOperationAction(Op: ISD::FROUNDEVEN, VT: MVT::v4f32, Action: Legal); |
| 696 | |
| 697 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f64, Action: Legal); |
| 698 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::f64, Action: Legal); |
| 699 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f64, Action: Legal); |
| 700 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::f64, Action: Legal); |
| 701 | |
| 702 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::v2f64, Action: Legal); |
| 703 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::v2f64, Action: Legal); |
| 704 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::v2f64, Action: Legal); |
| 705 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::v2f64, Action: Legal); |
| 706 | |
| 707 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f32, Action: Legal); |
| 708 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::f32, Action: Legal); |
| 709 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f32, Action: Legal); |
| 710 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::f32, Action: Legal); |
| 711 | |
| 712 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::v4f32, Action: Legal); |
| 713 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::v4f32, Action: Legal); |
| 714 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::v4f32, Action: Legal); |
| 715 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::v4f32, Action: Legal); |
| 716 | |
| 717 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f128, Action: Legal); |
| 718 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::f128, Action: Legal); |
| 719 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f128, Action: Legal); |
| 720 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::f128, Action: Legal); |
| 721 | |
| 722 | // Handle constrained floating-point operations. |
| 723 | setOperationAction(Op: ISD::STRICT_FADD, VT: MVT::v4f32, Action: Legal); |
| 724 | setOperationAction(Op: ISD::STRICT_FSUB, VT: MVT::v4f32, Action: Legal); |
| 725 | setOperationAction(Op: ISD::STRICT_FMUL, VT: MVT::v4f32, Action: Legal); |
| 726 | setOperationAction(Op: ISD::STRICT_FMA, VT: MVT::v4f32, Action: Legal); |
| 727 | setOperationAction(Op: ISD::STRICT_FDIV, VT: MVT::v4f32, Action: Legal); |
| 728 | setOperationAction(Op: ISD::STRICT_FSQRT, VT: MVT::v4f32, Action: Legal); |
| 729 | setOperationAction(Op: ISD::STRICT_FRINT, VT: MVT::v4f32, Action: Legal); |
| 730 | setOperationAction(Op: ISD::STRICT_FNEARBYINT, VT: MVT::v4f32, Action: Legal); |
| 731 | setOperationAction(Op: ISD::STRICT_FFLOOR, VT: MVT::v4f32, Action: Legal); |
| 732 | setOperationAction(Op: ISD::STRICT_FCEIL, VT: MVT::v4f32, Action: Legal); |
| 733 | setOperationAction(Op: ISD::STRICT_FTRUNC, VT: MVT::v4f32, Action: Legal); |
| 734 | setOperationAction(Op: ISD::STRICT_FROUND, VT: MVT::v4f32, Action: Legal); |
| 735 | setOperationAction(Op: ISD::STRICT_FROUNDEVEN, VT: MVT::v4f32, Action: Legal); |
| 736 | for (auto VT : { MVT::f32, MVT::f64, MVT::f128, |
| 737 | MVT::v4f32, MVT::v2f64 }) { |
| 738 | setOperationAction(Op: ISD::STRICT_FMAXNUM, VT, Action: Legal); |
| 739 | setOperationAction(Op: ISD::STRICT_FMINNUM, VT, Action: Legal); |
| 740 | setOperationAction(Op: ISD::STRICT_FMAXIMUM, VT, Action: Legal); |
| 741 | setOperationAction(Op: ISD::STRICT_FMINIMUM, VT, Action: Legal); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | // We only have fused f128 multiply-addition on vector registers. |
| 746 | if (!Subtarget.hasVectorEnhancements1()) { |
| 747 | setOperationAction(Op: ISD::FMA, VT: MVT::f128, Action: Expand); |
| 748 | setOperationAction(Op: ISD::STRICT_FMA, VT: MVT::f128, Action: Expand); |
| 749 | } |
| 750 | |
| 751 | // We don't have a copysign instruction on vector registers. |
| 752 | if (Subtarget.hasVectorEnhancements1()) |
| 753 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::f128, Action: Expand); |
| 754 | |
| 755 | // Needed so that we don't try to implement f128 constant loads using |
| 756 | // a load-and-extend of a f80 constant (in cases where the constant |
| 757 | // would fit in an f80). |
| 758 | for (MVT VT : MVT::fp_valuetypes()) |
| 759 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: MVT::f80, Action: Expand); |
| 760 | |
| 761 | // We don't have extending load instruction on vector registers. |
| 762 | if (Subtarget.hasVectorEnhancements1()) { |
| 763 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f128, MemVT: MVT::f32, Action: Expand); |
| 764 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f128, MemVT: MVT::f64, Action: Expand); |
| 765 | } |
| 766 | |
| 767 | // Floating-point truncation and stores need to be done separately. |
| 768 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 769 | setTruncStoreAction(ValVT: MVT::f128, MemVT: MVT::f32, Action: Expand); |
| 770 | setTruncStoreAction(ValVT: MVT::f128, MemVT: MVT::f64, Action: Expand); |
| 771 | |
| 772 | // We have 64-bit FPR<->GPR moves, but need special handling for |
| 773 | // 32-bit forms. |
| 774 | if (!Subtarget.hasVector()) { |
| 775 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i32, Action: Custom); |
| 776 | setOperationAction(Op: ISD::BITCAST, VT: MVT::f32, Action: Custom); |
| 777 | } |
| 778 | |
| 779 | // VASTART and VACOPY need to deal with the SystemZ-specific varargs |
| 780 | // structure, but VAEND is a no-op. |
| 781 | setOperationAction(Op: ISD::VASTART, VT: MVT::Other, Action: Custom); |
| 782 | setOperationAction(Op: ISD::VACOPY, VT: MVT::Other, Action: Custom); |
| 783 | setOperationAction(Op: ISD::VAEND, VT: MVT::Other, Action: Expand); |
| 784 | |
| 785 | if (Subtarget.isTargetzOS()) { |
| 786 | // Handle address space casts between mixed sized pointers. |
| 787 | setOperationAction(Op: ISD::ADDRSPACECAST, VT: MVT::i32, Action: Custom); |
| 788 | setOperationAction(Op: ISD::ADDRSPACECAST, VT: MVT::i64, Action: Custom); |
| 789 | } |
| 790 | |
| 791 | setOperationAction(Op: ISD::GET_ROUNDING, VT: MVT::i32, Action: Custom); |
| 792 | |
| 793 | // Codes for which we want to perform some z-specific combinations. |
| 794 | setTargetDAGCombine({ISD::ZERO_EXTEND, |
| 795 | ISD::SIGN_EXTEND, |
| 796 | ISD::SIGN_EXTEND_INREG, |
| 797 | ISD::LOAD, |
| 798 | ISD::STORE, |
| 799 | ISD::VECTOR_SHUFFLE, |
| 800 | ISD::EXTRACT_VECTOR_ELT, |
| 801 | ISD::FP_ROUND, |
| 802 | ISD::STRICT_FP_ROUND, |
| 803 | ISD::FP_EXTEND, |
| 804 | ISD::SINT_TO_FP, |
| 805 | ISD::UINT_TO_FP, |
| 806 | ISD::STRICT_FP_EXTEND, |
| 807 | ISD::FCOPYSIGN, |
| 808 | ISD::BSWAP, |
| 809 | ISD::SETCC, |
| 810 | ISD::SRL, |
| 811 | ISD::SRA, |
| 812 | ISD::MUL, |
| 813 | ISD::SDIV, |
| 814 | ISD::UDIV, |
| 815 | ISD::SREM, |
| 816 | ISD::UREM, |
| 817 | ISD::INTRINSIC_VOID, |
| 818 | ISD::INTRINSIC_W_CHAIN}); |
| 819 | |
| 820 | // Handle intrinsics. |
| 821 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::Other, Action: Custom); |
| 822 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 823 | |
| 824 | // We're not using SJLJ for exception handling, but they're implemented |
| 825 | // solely to support use of __builtin_setjmp / __builtin_longjmp. |
| 826 | setOperationAction(Op: ISD::EH_SJLJ_SETJMP, VT: MVT::i32, Action: Custom); |
| 827 | setOperationAction(Op: ISD::EH_SJLJ_LONGJMP, VT: MVT::Other, Action: Custom); |
| 828 | |
| 829 | // We want to use MVC in preference to even a single load/store pair. |
| 830 | MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; |
| 831 | MaxStoresPerMemcpyOptSize = 0; |
| 832 | |
| 833 | // The main memset sequence is a byte store followed by an MVC. |
| 834 | // Two STC or MV..I stores win over that, but the kind of fused stores |
| 835 | // generated by target-independent code don't when the byte value is |
| 836 | // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better |
| 837 | // than "STC;MVC". Handle the choice in target-specific code instead. |
| 838 | MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; |
| 839 | MaxStoresPerMemsetOptSize = 0; |
| 840 | |
| 841 | // Default to having -disable-strictnode-mutation on |
| 842 | IsStrictFPEnabled = true; |
| 843 | } |
| 844 | |
| 845 | bool SystemZTargetLowering::useSoftFloat() const { |
| 846 | return Subtarget.hasSoftFloat(); |
| 847 | } |
| 848 | |
| 849 | unsigned SystemZTargetLowering::getVectorTypeBreakdownForCallingConv( |
| 850 | LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, |
| 851 | unsigned &NumIntermediates, MVT &RegisterVT) const { |
| 852 | // Pass fp16 vectors in VR(s). |
| 853 | if (Subtarget.hasVector() && VT.isVector() && VT.getScalarType() == MVT::f16) { |
| 854 | IntermediateVT = RegisterVT = MVT::v8f16; |
| 855 | return NumIntermediates = |
| 856 | divideCeil(Numerator: VT.getVectorNumElements(), Denominator: SystemZ::VectorBytes / 2); |
| 857 | } |
| 858 | return TargetLowering::getVectorTypeBreakdownForCallingConv( |
| 859 | Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); |
| 860 | } |
| 861 | |
| 862 | MVT SystemZTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| 863 | CallingConv::ID CC, |
| 864 | EVT VT) const { |
| 865 | // 128-bit single-element vector types are passed like other vectors, |
| 866 | // not like their element type. |
| 867 | if (VT.isVector() && VT.getSizeInBits() == 128 && |
| 868 | VT.getVectorNumElements() == 1) |
| 869 | return MVT::v16i8; |
| 870 | // Pass fp16 vectors in VR(s). |
| 871 | if (Subtarget.hasVector() && VT.isVector() && VT.getScalarType() == MVT::f16) |
| 872 | return MVT::v8f16; |
| 873 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| 874 | } |
| 875 | |
| 876 | unsigned SystemZTargetLowering::getNumRegistersForCallingConv( |
| 877 | LLVMContext &Context, CallingConv::ID CC, EVT VT) const { |
| 878 | // Pass fp16 vectors in VR(s). |
| 879 | if (Subtarget.hasVector() && VT.isVector() && VT.getScalarType() == MVT::f16) |
| 880 | return divideCeil(Numerator: VT.getVectorNumElements(), Denominator: SystemZ::VectorBytes / 2); |
| 881 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| 882 | } |
| 883 | |
| 884 | EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, |
| 885 | LLVMContext &, EVT VT) const { |
| 886 | if (!VT.isVector()) |
| 887 | return MVT::i32; |
| 888 | return VT.changeVectorElementTypeToInteger(); |
| 889 | } |
| 890 | |
| 891 | bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( |
| 892 | const MachineFunction &MF, EVT VT) const { |
| 893 | if (useSoftFloat()) |
| 894 | return false; |
| 895 | |
| 896 | VT = VT.getScalarType(); |
| 897 | |
| 898 | if (!VT.isSimple()) |
| 899 | return false; |
| 900 | |
| 901 | switch (VT.getSimpleVT().SimpleTy) { |
| 902 | case MVT::f32: |
| 903 | case MVT::f64: |
| 904 | return true; |
| 905 | case MVT::f128: |
| 906 | return Subtarget.hasVectorEnhancements1(); |
| 907 | default: |
| 908 | break; |
| 909 | } |
| 910 | |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | // Return true if the constant can be generated with a vector instruction, |
| 915 | // such as VGM, VGMB or VREPI. |
| 916 | bool SystemZVectorConstantInfo::isVectorConstantLegal( |
| 917 | const SystemZSubtarget &Subtarget) { |
| 918 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 919 | if (!Subtarget.hasVector() || |
| 920 | (isFP128 && !Subtarget.hasVectorEnhancements1())) |
| 921 | return false; |
| 922 | |
| 923 | // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- |
| 924 | // preferred way of creating all-zero and all-one vectors so give it |
| 925 | // priority over other methods below. |
| 926 | unsigned Mask = 0; |
| 927 | unsigned I = 0; |
| 928 | for (; I < SystemZ::VectorBytes; ++I) { |
| 929 | uint64_t Byte = IntBits.lshr(shiftAmt: I * 8).trunc(width: 8).getZExtValue(); |
| 930 | if (Byte == 0xff) |
| 931 | Mask |= 1ULL << I; |
| 932 | else if (Byte != 0) |
| 933 | break; |
| 934 | } |
| 935 | if (I == SystemZ::VectorBytes) { |
| 936 | Opcode = SystemZISD::BYTE_MASK; |
| 937 | OpVals.push_back(Elt: Mask); |
| 938 | VecVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: 8), NumElements: 16); |
| 939 | return true; |
| 940 | } |
| 941 | |
| 942 | if (SplatBitSize > 64) |
| 943 | return false; |
| 944 | |
| 945 | auto TryValue = [&](uint64_t Value) -> bool { |
| 946 | // Try VECTOR REPLICATE IMMEDIATE |
| 947 | int64_t SignedValue = SignExtend64(X: Value, B: SplatBitSize); |
| 948 | if (isInt<16>(x: SignedValue)) { |
| 949 | OpVals.push_back(Elt: ((unsigned) SignedValue)); |
| 950 | Opcode = SystemZISD::REPLICATE; |
| 951 | VecVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: SplatBitSize), |
| 952 | NumElements: SystemZ::VectorBits / SplatBitSize); |
| 953 | return true; |
| 954 | } |
| 955 | // Try VECTOR GENERATE MASK |
| 956 | unsigned Start, End; |
| 957 | if (TII->isRxSBGMask(Mask: Value, BitSize: SplatBitSize, Start, End)) { |
| 958 | // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 |
| 959 | // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for |
| 960 | // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). |
| 961 | OpVals.push_back(Elt: Start - (64 - SplatBitSize)); |
| 962 | OpVals.push_back(Elt: End - (64 - SplatBitSize)); |
| 963 | Opcode = SystemZISD::ROTATE_MASK; |
| 964 | VecVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: SplatBitSize), |
| 965 | NumElements: SystemZ::VectorBits / SplatBitSize); |
| 966 | return true; |
| 967 | } |
| 968 | return false; |
| 969 | }; |
| 970 | |
| 971 | // First try assuming that any undefined bits above the highest set bit |
| 972 | // and below the lowest set bit are 1s. This increases the likelihood of |
| 973 | // being able to use a sign-extended element value in VECTOR REPLICATE |
| 974 | // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. |
| 975 | uint64_t SplatBitsZ = SplatBits.getZExtValue(); |
| 976 | uint64_t SplatUndefZ = SplatUndef.getZExtValue(); |
| 977 | unsigned LowerBits = llvm::countr_zero(Val: SplatBitsZ); |
| 978 | unsigned UpperBits = llvm::countl_zero(Val: SplatBitsZ); |
| 979 | uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(N: LowerBits); |
| 980 | uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(N: UpperBits); |
| 981 | if (TryValue(SplatBitsZ | Upper | Lower)) |
| 982 | return true; |
| 983 | |
| 984 | // Now try assuming that any undefined bits between the first and |
| 985 | // last defined set bits are set. This increases the chances of |
| 986 | // using a non-wraparound mask. |
| 987 | uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; |
| 988 | return TryValue(SplatBitsZ | Middle); |
| 989 | } |
| 990 | |
| 991 | SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { |
| 992 | if (IntImm.isSingleWord()) { |
| 993 | IntBits = APInt(128, IntImm.getZExtValue()); |
| 994 | IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); |
| 995 | } else |
| 996 | IntBits = IntImm; |
| 997 | assert(IntBits.getBitWidth() == 128 && "Unsupported APInt." ); |
| 998 | |
| 999 | // Find the smallest splat. |
| 1000 | SplatBits = IntImm; |
| 1001 | unsigned Width = SplatBits.getBitWidth(); |
| 1002 | while (Width > 8) { |
| 1003 | unsigned HalfSize = Width / 2; |
| 1004 | APInt HighValue = SplatBits.lshr(shiftAmt: HalfSize).trunc(width: HalfSize); |
| 1005 | APInt LowValue = SplatBits.trunc(width: HalfSize); |
| 1006 | |
| 1007 | // If the two halves do not match, stop here. |
| 1008 | if (HighValue != LowValue || 8 > HalfSize) |
| 1009 | break; |
| 1010 | |
| 1011 | SplatBits = HighValue; |
| 1012 | Width = HalfSize; |
| 1013 | } |
| 1014 | SplatUndef = 0; |
| 1015 | SplatBitSize = Width; |
| 1016 | } |
| 1017 | |
| 1018 | SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { |
| 1019 | assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR" ); |
| 1020 | bool HasAnyUndefs; |
| 1021 | |
| 1022 | // Get IntBits by finding the 128 bit splat. |
| 1023 | BVN->isConstantSplat(SplatValue&: IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, MinSplatBits: 128, |
| 1024 | isBigEndian: true); |
| 1025 | |
| 1026 | // Get SplatBits by finding the 8 bit or greater splat. |
| 1027 | BVN->isConstantSplat(SplatValue&: SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, MinSplatBits: 8, |
| 1028 | isBigEndian: true); |
| 1029 | } |
| 1030 | |
| 1031 | bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| 1032 | bool ForCodeSize) const { |
| 1033 | // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. |
| 1034 | if (Imm.isZero() || Imm.isNegZero()) |
| 1035 | return true; |
| 1036 | |
| 1037 | return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); |
| 1038 | } |
| 1039 | |
| 1040 | MachineBasicBlock * |
| 1041 | SystemZTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, |
| 1042 | MachineBasicBlock *MBB) const { |
| 1043 | DebugLoc DL = MI.getDebugLoc(); |
| 1044 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 1045 | const SystemZRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 1046 | |
| 1047 | MachineFunction *MF = MBB->getParent(); |
| 1048 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 1049 | |
| 1050 | const BasicBlock *BB = MBB->getBasicBlock(); |
| 1051 | MachineFunction::iterator I = ++MBB->getIterator(); |
| 1052 | |
| 1053 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1054 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: DstReg); |
| 1055 | assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!" ); |
| 1056 | (void)TRI; |
| 1057 | Register MainDstReg = MRI.createVirtualRegister(RegClass: RC); |
| 1058 | Register RestoreDstReg = MRI.createVirtualRegister(RegClass: RC); |
| 1059 | |
| 1060 | MVT PVT = getPointerTy(DL: MF->getDataLayout()); |
| 1061 | assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!" ); |
| 1062 | // For v = setjmp(buf), we generate. |
| 1063 | // Algorithm: |
| 1064 | // |
| 1065 | // --------- |
| 1066 | // | thisMBB | |
| 1067 | // --------- |
| 1068 | // | |
| 1069 | // ------------------------ |
| 1070 | // | | |
| 1071 | // ---------- --------------- |
| 1072 | // | mainMBB | | restoreMBB | |
| 1073 | // | v = 0 | | v = 1 | |
| 1074 | // ---------- --------------- |
| 1075 | // | | |
| 1076 | // ------------------------- |
| 1077 | // | |
| 1078 | // ----------------------------- |
| 1079 | // | sinkMBB | |
| 1080 | // | phi(v_mainMBB,v_restoreMBB) | |
| 1081 | // ----------------------------- |
| 1082 | // thisMBB: |
| 1083 | // buf[FPOffset] = Frame Pointer if hasFP. |
| 1084 | // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB. |
| 1085 | // buf[BCOffset] = Backchain value if building with -mbackchain. |
| 1086 | // buf[SPOffset] = Stack Pointer. |
| 1087 | // buf[LPOffset] = We never write this slot with R13, gcc stores R13 always. |
| 1088 | // SjLjSetup restoreMBB |
| 1089 | // mainMBB: |
| 1090 | // v_main = 0 |
| 1091 | // sinkMBB: |
| 1092 | // v = phi(v_main, v_restore) |
| 1093 | // restoreMBB: |
| 1094 | // v_restore = 1 |
| 1095 | |
| 1096 | MachineBasicBlock *ThisMBB = MBB; |
| 1097 | MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); |
| 1098 | MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); |
| 1099 | MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); |
| 1100 | |
| 1101 | MF->insert(MBBI: I, MBB: MainMBB); |
| 1102 | MF->insert(MBBI: I, MBB: SinkMBB); |
| 1103 | MF->push_back(MBB: RestoreMBB); |
| 1104 | RestoreMBB->setMachineBlockAddressTaken(); |
| 1105 | |
| 1106 | MachineInstrBuilder MIB; |
| 1107 | |
| 1108 | // Transfer the remainder of BB and its successor edges to sinkMBB. |
| 1109 | SinkMBB->splice(Where: SinkMBB->begin(), Other: MBB, |
| 1110 | From: std::next(x: MachineBasicBlock::iterator(MI)), To: MBB->end()); |
| 1111 | SinkMBB->transferSuccessorsAndUpdatePHIs(FromMBB: MBB); |
| 1112 | |
| 1113 | // thisMBB: |
| 1114 | const int64_t FPOffset = 0; // Slot 1. |
| 1115 | const int64_t LabelOffset = 1 * PVT.getStoreSize(); // Slot 2. |
| 1116 | const int64_t BCOffset = 2 * PVT.getStoreSize(); // Slot 3. |
| 1117 | const int64_t SPOffset = 3 * PVT.getStoreSize(); // Slot 4. |
| 1118 | |
| 1119 | // Buf address. |
| 1120 | Register BufReg = MI.getOperand(i: 1).getReg(); |
| 1121 | |
| 1122 | const TargetRegisterClass *PtrRC = getRegClassFor(VT: PVT); |
| 1123 | Register LabelReg = MRI.createVirtualRegister(RegClass: PtrRC); |
| 1124 | |
| 1125 | // Prepare IP for longjmp. |
| 1126 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LARL), DestReg: LabelReg) |
| 1127 | .addMBB(MBB: RestoreMBB); |
| 1128 | // Store IP for return from jmp, slot 2, offset = 1. |
| 1129 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STG)) |
| 1130 | .addReg(RegNo: LabelReg) |
| 1131 | .addReg(RegNo: BufReg) |
| 1132 | .addImm(Val: LabelOffset) |
| 1133 | .addReg(RegNo: 0); |
| 1134 | |
| 1135 | auto *SpecialRegs = Subtarget.getSpecialRegisters(); |
| 1136 | bool HasFP = Subtarget.getFrameLowering()->hasFP(MF: *MF); |
| 1137 | if (HasFP) { |
| 1138 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STG)) |
| 1139 | .addReg(RegNo: SpecialRegs->getFramePointerRegister()) |
| 1140 | .addReg(RegNo: BufReg) |
| 1141 | .addImm(Val: FPOffset) |
| 1142 | .addReg(RegNo: 0); |
| 1143 | } |
| 1144 | |
| 1145 | // Store SP. |
| 1146 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STG)) |
| 1147 | .addReg(RegNo: SpecialRegs->getStackPointerRegister()) |
| 1148 | .addReg(RegNo: BufReg) |
| 1149 | .addImm(Val: SPOffset) |
| 1150 | .addReg(RegNo: 0); |
| 1151 | |
| 1152 | // Slot 3(Offset = 2) Backchain value (if building with -mbackchain). |
| 1153 | bool BackChain = MF->getSubtarget<SystemZSubtarget>().hasBackChain(); |
| 1154 | if (BackChain) { |
| 1155 | Register BCReg = MRI.createVirtualRegister(RegClass: PtrRC); |
| 1156 | auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>(); |
| 1157 | MIB = BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), DestReg: BCReg) |
| 1158 | .addReg(RegNo: SpecialRegs->getStackPointerRegister()) |
| 1159 | .addImm(Val: TFL->getBackchainOffset(MF&: *MF)) |
| 1160 | .addReg(RegNo: 0); |
| 1161 | |
| 1162 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STG)) |
| 1163 | .addReg(RegNo: BCReg) |
| 1164 | .addReg(RegNo: BufReg) |
| 1165 | .addImm(Val: BCOffset) |
| 1166 | .addReg(RegNo: 0); |
| 1167 | } |
| 1168 | |
| 1169 | // Setup. |
| 1170 | MIB = BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::EH_SjLj_Setup)) |
| 1171 | .addMBB(MBB: RestoreMBB); |
| 1172 | |
| 1173 | const SystemZRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| 1174 | MIB.addRegMask(Mask: RegInfo->getNoPreservedMask()); |
| 1175 | |
| 1176 | ThisMBB->addSuccessor(Succ: MainMBB); |
| 1177 | ThisMBB->addSuccessor(Succ: RestoreMBB); |
| 1178 | |
| 1179 | // mainMBB: |
| 1180 | BuildMI(BB: MainMBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LHI), DestReg: MainDstReg).addImm(Val: 0); |
| 1181 | MainMBB->addSuccessor(Succ: SinkMBB); |
| 1182 | |
| 1183 | // sinkMBB: |
| 1184 | BuildMI(BB&: *SinkMBB, I: SinkMBB->begin(), MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: DstReg) |
| 1185 | .addReg(RegNo: MainDstReg) |
| 1186 | .addMBB(MBB: MainMBB) |
| 1187 | .addReg(RegNo: RestoreDstReg) |
| 1188 | .addMBB(MBB: RestoreMBB); |
| 1189 | |
| 1190 | // restoreMBB. |
| 1191 | BuildMI(BB: RestoreMBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LHI), DestReg: RestoreDstReg).addImm(Val: 1); |
| 1192 | BuildMI(BB: RestoreMBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::J)).addMBB(MBB: SinkMBB); |
| 1193 | RestoreMBB->addSuccessor(Succ: SinkMBB); |
| 1194 | |
| 1195 | MI.eraseFromParent(); |
| 1196 | |
| 1197 | return SinkMBB; |
| 1198 | } |
| 1199 | |
| 1200 | MachineBasicBlock * |
| 1201 | SystemZTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, |
| 1202 | MachineBasicBlock *MBB) const { |
| 1203 | |
| 1204 | DebugLoc DL = MI.getDebugLoc(); |
| 1205 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 1206 | |
| 1207 | MachineFunction *MF = MBB->getParent(); |
| 1208 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 1209 | |
| 1210 | MVT PVT = getPointerTy(DL: MF->getDataLayout()); |
| 1211 | assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!" ); |
| 1212 | Register BufReg = MI.getOperand(i: 0).getReg(); |
| 1213 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: BufReg); |
| 1214 | auto *SpecialRegs = Subtarget.getSpecialRegisters(); |
| 1215 | |
| 1216 | Register Tmp = MRI.createVirtualRegister(RegClass: RC); |
| 1217 | Register BCReg = MRI.createVirtualRegister(RegClass: RC); |
| 1218 | |
| 1219 | MachineInstrBuilder MIB; |
| 1220 | |
| 1221 | const int64_t FPOffset = 0; |
| 1222 | const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| 1223 | const int64_t BCOffset = 2 * PVT.getStoreSize(); |
| 1224 | const int64_t SPOffset = 3 * PVT.getStoreSize(); |
| 1225 | const int64_t LPOffset = 4 * PVT.getStoreSize(); |
| 1226 | |
| 1227 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), DestReg: Tmp) |
| 1228 | .addReg(RegNo: BufReg) |
| 1229 | .addImm(Val: LabelOffset) |
| 1230 | .addReg(RegNo: 0); |
| 1231 | |
| 1232 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), |
| 1233 | DestReg: SpecialRegs->getFramePointerRegister()) |
| 1234 | .addReg(RegNo: BufReg) |
| 1235 | .addImm(Val: FPOffset) |
| 1236 | .addReg(RegNo: 0); |
| 1237 | |
| 1238 | // We are restoring R13 even though we never stored in setjmp from llvm, |
| 1239 | // as gcc always stores R13 in builtin_setjmp. We could have mixed code |
| 1240 | // gcc setjmp and llvm longjmp. |
| 1241 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), DestReg: SystemZ::R13D) |
| 1242 | .addReg(RegNo: BufReg) |
| 1243 | .addImm(Val: LPOffset) |
| 1244 | .addReg(RegNo: 0); |
| 1245 | |
| 1246 | bool BackChain = MF->getSubtarget<SystemZSubtarget>().hasBackChain(); |
| 1247 | if (BackChain) { |
| 1248 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), DestReg: BCReg) |
| 1249 | .addReg(RegNo: BufReg) |
| 1250 | .addImm(Val: BCOffset) |
| 1251 | .addReg(RegNo: 0); |
| 1252 | } |
| 1253 | |
| 1254 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LG), |
| 1255 | DestReg: SpecialRegs->getStackPointerRegister()) |
| 1256 | .addReg(RegNo: BufReg) |
| 1257 | .addImm(Val: SPOffset) |
| 1258 | .addReg(RegNo: 0); |
| 1259 | |
| 1260 | if (BackChain) { |
| 1261 | auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>(); |
| 1262 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STG)) |
| 1263 | .addReg(RegNo: BCReg) |
| 1264 | .addReg(RegNo: SpecialRegs->getStackPointerRegister()) |
| 1265 | .addImm(Val: TFL->getBackchainOffset(MF&: *MF)) |
| 1266 | .addReg(RegNo: 0); |
| 1267 | } |
| 1268 | |
| 1269 | MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BR)).addReg(RegNo: Tmp); |
| 1270 | |
| 1271 | MI.eraseFromParent(); |
| 1272 | return MBB; |
| 1273 | } |
| 1274 | |
| 1275 | /// Returns true if stack probing through inline assembly is requested. |
| 1276 | bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { |
| 1277 | // If the function specifically requests inline stack probes, emit them. |
| 1278 | if (MF.getFunction().hasFnAttribute(Kind: "probe-stack" )) |
| 1279 | return MF.getFunction().getFnAttribute(Kind: "probe-stack" ).getValueAsString() == |
| 1280 | "inline-asm" ; |
| 1281 | return false; |
| 1282 | } |
| 1283 | |
| 1284 | TargetLowering::AtomicExpansionKind |
| 1285 | SystemZTargetLowering::shouldCastAtomicLoadInIR(LoadInst *LI) const { |
| 1286 | return AtomicExpansionKind::None; |
| 1287 | } |
| 1288 | |
| 1289 | TargetLowering::AtomicExpansionKind |
| 1290 | SystemZTargetLowering::shouldCastAtomicStoreInIR(StoreInst *SI) const { |
| 1291 | return AtomicExpansionKind::None; |
| 1292 | } |
| 1293 | |
| 1294 | TargetLowering::AtomicExpansionKind |
| 1295 | SystemZTargetLowering::shouldExpandAtomicRMWInIR( |
| 1296 | const AtomicRMWInst *RMW) const { |
| 1297 | // Don't expand subword operations as they require special treatment. |
| 1298 | if (RMW->getType()->isIntegerTy(Bitwidth: 8) || RMW->getType()->isIntegerTy(Bitwidth: 16)) |
| 1299 | return AtomicExpansionKind::None; |
| 1300 | |
| 1301 | // Don't expand if there is a target instruction available. |
| 1302 | if (Subtarget.hasInterlockedAccess1() && |
| 1303 | (RMW->getType()->isIntegerTy(Bitwidth: 32) || RMW->getType()->isIntegerTy(Bitwidth: 64)) && |
| 1304 | (RMW->getOperation() == AtomicRMWInst::BinOp::Add || |
| 1305 | RMW->getOperation() == AtomicRMWInst::BinOp::Sub || |
| 1306 | RMW->getOperation() == AtomicRMWInst::BinOp::And || |
| 1307 | RMW->getOperation() == AtomicRMWInst::BinOp::Or || |
| 1308 | RMW->getOperation() == AtomicRMWInst::BinOp::Xor)) |
| 1309 | return AtomicExpansionKind::None; |
| 1310 | |
| 1311 | return AtomicExpansionKind::CmpXChg; |
| 1312 | } |
| 1313 | |
| 1314 | bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| 1315 | // We can use CGFI or CLGFI. |
| 1316 | return isInt<32>(x: Imm) || isUInt<32>(x: Imm); |
| 1317 | } |
| 1318 | |
| 1319 | bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| 1320 | // We can use ALGFI or SLGFI. |
| 1321 | return isUInt<32>(x: Imm) || isUInt<32>(x: -Imm); |
| 1322 | } |
| 1323 | |
| 1324 | bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( |
| 1325 | EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { |
| 1326 | // Unaligned accesses should never be slower than the expanded version. |
| 1327 | // We check specifically for aligned accesses in the few cases where |
| 1328 | // they are required. |
| 1329 | if (Fast) |
| 1330 | *Fast = 1; |
| 1331 | return true; |
| 1332 | } |
| 1333 | |
| 1334 | bool SystemZTargetLowering::hasAndNot(SDValue Y) const { |
| 1335 | EVT VT = Y.getValueType(); |
| 1336 | |
| 1337 | // We can use NC(G)RK for types in GPRs ... |
| 1338 | if (VT == MVT::i32 || VT == MVT::i64) |
| 1339 | return Subtarget.hasMiscellaneousExtensions3(); |
| 1340 | |
| 1341 | // ... or VNC for types in VRs. |
| 1342 | if (VT.isVector() || VT == MVT::i128) |
| 1343 | return Subtarget.hasVector(); |
| 1344 | |
| 1345 | return false; |
| 1346 | } |
| 1347 | |
| 1348 | // Information about the addressing mode for a memory access. |
| 1349 | struct AddressingMode { |
| 1350 | // True if a long displacement is supported. |
| 1351 | bool LongDisplacement; |
| 1352 | |
| 1353 | // True if use of index register is supported. |
| 1354 | bool IndexReg; |
| 1355 | |
| 1356 | AddressingMode(bool LongDispl, bool IdxReg) : |
| 1357 | LongDisplacement(LongDispl), IndexReg(IdxReg) {} |
| 1358 | }; |
| 1359 | |
| 1360 | // Return the desired addressing mode for a Load which has only one use (in |
| 1361 | // the same block) which is a Store. |
| 1362 | static AddressingMode getLoadStoreAddrMode(bool HasVector, |
| 1363 | Type *Ty) { |
| 1364 | // With vector support a Load->Store combination may be combined to either |
| 1365 | // an MVC or vector operations and it seems to work best to allow the |
| 1366 | // vector addressing mode. |
| 1367 | if (HasVector) |
| 1368 | return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); |
| 1369 | |
| 1370 | // Otherwise only the MVC case is special. |
| 1371 | bool MVC = Ty->isIntegerTy(Bitwidth: 8); |
| 1372 | return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); |
| 1373 | } |
| 1374 | |
| 1375 | // Return the addressing mode which seems most desirable given an LLVM |
| 1376 | // Instruction pointer. |
| 1377 | static AddressingMode |
| 1378 | supportedAddressingMode(Instruction *I, bool HasVector) { |
| 1379 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 1380 | switch (II->getIntrinsicID()) { |
| 1381 | default: break; |
| 1382 | case Intrinsic::memset: |
| 1383 | case Intrinsic::memmove: |
| 1384 | case Intrinsic::memcpy: |
| 1385 | return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | if (isa<LoadInst>(Val: I) && I->hasOneUse()) { |
| 1390 | auto *SingleUser = cast<Instruction>(Val: *I->user_begin()); |
| 1391 | if (SingleUser->getParent() == I->getParent()) { |
| 1392 | if (isa<ICmpInst>(Val: SingleUser)) { |
| 1393 | if (auto *C = dyn_cast<ConstantInt>(Val: SingleUser->getOperand(i: 1))) |
| 1394 | if (C->getBitWidth() <= 64 && |
| 1395 | (isInt<16>(x: C->getSExtValue()) || isUInt<16>(x: C->getZExtValue()))) |
| 1396 | // Comparison of memory with 16 bit signed / unsigned immediate |
| 1397 | return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); |
| 1398 | } else if (isa<StoreInst>(Val: SingleUser)) |
| 1399 | // Load->Store |
| 1400 | return getLoadStoreAddrMode(HasVector, Ty: I->getType()); |
| 1401 | } |
| 1402 | } else if (auto *StoreI = dyn_cast<StoreInst>(Val: I)) { |
| 1403 | if (auto *LoadI = dyn_cast<LoadInst>(Val: StoreI->getValueOperand())) |
| 1404 | if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) |
| 1405 | // Load->Store |
| 1406 | return getLoadStoreAddrMode(HasVector, Ty: LoadI->getType()); |
| 1407 | } |
| 1408 | |
| 1409 | if (HasVector && (isa<LoadInst>(Val: I) || isa<StoreInst>(Val: I))) { |
| 1410 | |
| 1411 | // * Use LDE instead of LE/LEY for z13 to avoid partial register |
| 1412 | // dependencies (LDE only supports small offsets). |
| 1413 | // * Utilize the vector registers to hold floating point |
| 1414 | // values (vector load / store instructions only support small |
| 1415 | // offsets). |
| 1416 | |
| 1417 | Type *MemAccessTy = (isa<LoadInst>(Val: I) ? I->getType() : |
| 1418 | I->getOperand(i: 0)->getType()); |
| 1419 | bool IsFPAccess = MemAccessTy->isFloatingPointTy(); |
| 1420 | bool IsVectorAccess = MemAccessTy->isVectorTy(); |
| 1421 | |
| 1422 | // A store of an extracted vector element will be combined into a VSTE type |
| 1423 | // instruction. |
| 1424 | if (!IsVectorAccess && isa<StoreInst>(Val: I)) { |
| 1425 | Value *DataOp = I->getOperand(i: 0); |
| 1426 | if (isa<ExtractElementInst>(Val: DataOp)) |
| 1427 | IsVectorAccess = true; |
| 1428 | } |
| 1429 | |
| 1430 | // A load which gets inserted into a vector element will be combined into a |
| 1431 | // VLE type instruction. |
| 1432 | if (!IsVectorAccess && isa<LoadInst>(Val: I) && I->hasOneUse()) { |
| 1433 | User *LoadUser = *I->user_begin(); |
| 1434 | if (isa<InsertElementInst>(Val: LoadUser)) |
| 1435 | IsVectorAccess = true; |
| 1436 | } |
| 1437 | |
| 1438 | if (IsFPAccess || IsVectorAccess) |
| 1439 | return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); |
| 1440 | } |
| 1441 | |
| 1442 | return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); |
| 1443 | } |
| 1444 | |
| 1445 | bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| 1446 | const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { |
| 1447 | // Punt on globals for now, although they can be used in limited |
| 1448 | // RELATIVE LONG cases. |
| 1449 | if (AM.BaseGV) |
| 1450 | return false; |
| 1451 | |
| 1452 | // Require a 20-bit signed offset. |
| 1453 | if (!isInt<20>(x: AM.BaseOffs)) |
| 1454 | return false; |
| 1455 | |
| 1456 | bool RequireD12 = |
| 1457 | Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(Bitwidth: 128)); |
| 1458 | AddressingMode SupportedAM(!RequireD12, true); |
| 1459 | if (I != nullptr) |
| 1460 | SupportedAM = supportedAddressingMode(I, HasVector: Subtarget.hasVector()); |
| 1461 | |
| 1462 | if (!SupportedAM.LongDisplacement && !isUInt<12>(x: AM.BaseOffs)) |
| 1463 | return false; |
| 1464 | |
| 1465 | if (!SupportedAM.IndexReg) |
| 1466 | // No indexing allowed. |
| 1467 | return AM.Scale == 0; |
| 1468 | else |
| 1469 | // Indexing is OK but no scale factor can be applied. |
| 1470 | return AM.Scale == 0 || AM.Scale == 1; |
| 1471 | } |
| 1472 | |
| 1473 | bool SystemZTargetLowering::findOptimalMemOpLowering( |
| 1474 | LLVMContext &Context, std::vector<EVT> &MemOps, unsigned Limit, |
| 1475 | const MemOp &Op, unsigned DstAS, unsigned SrcAS, |
| 1476 | const AttributeList &FuncAttributes, EVT *LargestVT) const { |
| 1477 | const int MVCFastLen = 16; |
| 1478 | |
| 1479 | if (Limit != ~unsigned(0)) { |
| 1480 | // Don't expand Op into scalar loads/stores in these cases: |
| 1481 | if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) |
| 1482 | return false; // Small memcpy: Use MVC |
| 1483 | if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) |
| 1484 | return false; // Small memset (first byte with STC/MVI): Use MVC |
| 1485 | if (Op.isZeroMemset()) |
| 1486 | return false; // Memset zero: Use XC |
| 1487 | } |
| 1488 | |
| 1489 | return TargetLowering::findOptimalMemOpLowering( |
| 1490 | Context, MemOps, Limit, Op, DstAS, SrcAS, FuncAttributes, LargestVT); |
| 1491 | } |
| 1492 | |
| 1493 | EVT SystemZTargetLowering::getOptimalMemOpType( |
| 1494 | LLVMContext &Context, const MemOp &Op, |
| 1495 | const AttributeList &FuncAttributes) const { |
| 1496 | return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; |
| 1497 | } |
| 1498 | |
| 1499 | bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { |
| 1500 | if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) |
| 1501 | return false; |
| 1502 | unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); |
| 1503 | unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); |
| 1504 | return FromBits > ToBits; |
| 1505 | } |
| 1506 | |
| 1507 | bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { |
| 1508 | if (!FromVT.isInteger() || !ToVT.isInteger()) |
| 1509 | return false; |
| 1510 | unsigned FromBits = FromVT.getFixedSizeInBits(); |
| 1511 | unsigned ToBits = ToVT.getFixedSizeInBits(); |
| 1512 | return FromBits > ToBits; |
| 1513 | } |
| 1514 | |
| 1515 | //===----------------------------------------------------------------------===// |
| 1516 | // Inline asm support |
| 1517 | //===----------------------------------------------------------------------===// |
| 1518 | |
| 1519 | TargetLowering::ConstraintType |
| 1520 | SystemZTargetLowering::getConstraintType(StringRef Constraint) const { |
| 1521 | if (Constraint.size() == 1) { |
| 1522 | switch (Constraint[0]) { |
| 1523 | case 'a': // Address register |
| 1524 | case 'd': // Data register (equivalent to 'r') |
| 1525 | case 'f': // Floating-point register |
| 1526 | case 'h': // High-part register |
| 1527 | case 'r': // General-purpose register |
| 1528 | case 'v': // Vector register |
| 1529 | return C_RegisterClass; |
| 1530 | |
| 1531 | case 'Q': // Memory with base and unsigned 12-bit displacement |
| 1532 | case 'R': // Likewise, plus an index |
| 1533 | case 'S': // Memory with base and signed 20-bit displacement |
| 1534 | case 'T': // Likewise, plus an index |
| 1535 | case 'm': // Equivalent to 'T'. |
| 1536 | return C_Memory; |
| 1537 | |
| 1538 | case 'I': // Unsigned 8-bit constant |
| 1539 | case 'J': // Unsigned 12-bit constant |
| 1540 | case 'K': // Signed 16-bit constant |
| 1541 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 1542 | case 'M': // 0x7fffffff |
| 1543 | return C_Immediate; |
| 1544 | |
| 1545 | default: |
| 1546 | break; |
| 1547 | } |
| 1548 | } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { |
| 1549 | switch (Constraint[1]) { |
| 1550 | case 'Q': // Address with base and unsigned 12-bit displacement |
| 1551 | case 'R': // Likewise, plus an index |
| 1552 | case 'S': // Address with base and signed 20-bit displacement |
| 1553 | case 'T': // Likewise, plus an index |
| 1554 | return C_Address; |
| 1555 | |
| 1556 | default: |
| 1557 | break; |
| 1558 | } |
| 1559 | } else if (Constraint.size() == 5 && Constraint.starts_with(Prefix: "{" )) { |
| 1560 | if (StringRef("{@cc}" ).compare(RHS: Constraint) == 0) |
| 1561 | return C_Other; |
| 1562 | } |
| 1563 | return TargetLowering::getConstraintType(Constraint); |
| 1564 | } |
| 1565 | |
| 1566 | TargetLowering::ConstraintWeight |
| 1567 | SystemZTargetLowering::getSingleConstraintMatchWeight( |
| 1568 | AsmOperandInfo &Info, const char *Constraint) const { |
| 1569 | ConstraintWeight Weight = CW_Invalid; |
| 1570 | Value *CallOperandVal = Info.CallOperandVal; |
| 1571 | // If we don't have a value, we can't do a match, |
| 1572 | // but allow it at the lowest weight. |
| 1573 | if (!CallOperandVal) |
| 1574 | return CW_Default; |
| 1575 | Type *type = CallOperandVal->getType(); |
| 1576 | // Look at the constraint type. |
| 1577 | switch (*Constraint) { |
| 1578 | default: |
| 1579 | Weight = TargetLowering::getSingleConstraintMatchWeight(info&: Info, constraint: Constraint); |
| 1580 | break; |
| 1581 | |
| 1582 | case 'a': // Address register |
| 1583 | case 'd': // Data register (equivalent to 'r') |
| 1584 | case 'h': // High-part register |
| 1585 | case 'r': // General-purpose register |
| 1586 | Weight = |
| 1587 | CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default; |
| 1588 | break; |
| 1589 | |
| 1590 | case 'f': // Floating-point register |
| 1591 | if (!useSoftFloat()) |
| 1592 | Weight = type->isFloatingPointTy() ? CW_Register : CW_Default; |
| 1593 | break; |
| 1594 | |
| 1595 | case 'v': // Vector register |
| 1596 | if (Subtarget.hasVector()) |
| 1597 | Weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register |
| 1598 | : CW_Default; |
| 1599 | break; |
| 1600 | |
| 1601 | case 'I': // Unsigned 8-bit constant |
| 1602 | if (auto *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) |
| 1603 | if (isUInt<8>(x: C->getZExtValue())) |
| 1604 | Weight = CW_Constant; |
| 1605 | break; |
| 1606 | |
| 1607 | case 'J': // Unsigned 12-bit constant |
| 1608 | if (auto *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) |
| 1609 | if (isUInt<12>(x: C->getZExtValue())) |
| 1610 | Weight = CW_Constant; |
| 1611 | break; |
| 1612 | |
| 1613 | case 'K': // Signed 16-bit constant |
| 1614 | if (auto *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) |
| 1615 | if (isInt<16>(x: C->getSExtValue())) |
| 1616 | Weight = CW_Constant; |
| 1617 | break; |
| 1618 | |
| 1619 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 1620 | if (auto *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) |
| 1621 | if (isInt<20>(x: C->getSExtValue())) |
| 1622 | Weight = CW_Constant; |
| 1623 | break; |
| 1624 | |
| 1625 | case 'M': // 0x7fffffff |
| 1626 | if (auto *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) |
| 1627 | if (C->getZExtValue() == 0x7fffffff) |
| 1628 | Weight = CW_Constant; |
| 1629 | break; |
| 1630 | } |
| 1631 | return Weight; |
| 1632 | } |
| 1633 | |
| 1634 | // Parse a "{tNNN}" register constraint for which the register type "t" |
| 1635 | // has already been verified. MC is the class associated with "t" and |
| 1636 | // Map maps 0-based register numbers to LLVM register numbers. |
| 1637 | static std::pair<unsigned, const TargetRegisterClass *> |
| 1638 | parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, |
| 1639 | const unsigned *Map, unsigned Size) { |
| 1640 | assert(*(Constraint.end()-1) == '}' && "Missing '}'" ); |
| 1641 | if (isdigit(Constraint[2])) { |
| 1642 | unsigned Index; |
| 1643 | bool Failed = |
| 1644 | Constraint.slice(Start: 2, End: Constraint.size() - 1).getAsInteger(Radix: 10, Result&: Index); |
| 1645 | if (!Failed && Index < Size && Map[Index]) |
| 1646 | return std::make_pair(x: Map[Index], y&: RC); |
| 1647 | } |
| 1648 | return std::make_pair(x: 0U, y: nullptr); |
| 1649 | } |
| 1650 | |
| 1651 | std::pair<unsigned, const TargetRegisterClass *> |
| 1652 | SystemZTargetLowering::getRegForInlineAsmConstraint( |
| 1653 | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| 1654 | if (Constraint.size() == 1) { |
| 1655 | // GCC Constraint Letters |
| 1656 | switch (Constraint[0]) { |
| 1657 | default: break; |
| 1658 | case 'd': // Data register (equivalent to 'r') |
| 1659 | case 'r': // General-purpose register |
| 1660 | if (VT.getSizeInBits() == 64) |
| 1661 | return std::make_pair(x: 0U, y: &SystemZ::GR64BitRegClass); |
| 1662 | else if (VT.getSizeInBits() == 128) |
| 1663 | return std::make_pair(x: 0U, y: &SystemZ::GR128BitRegClass); |
| 1664 | return std::make_pair(x: 0U, y: &SystemZ::GR32BitRegClass); |
| 1665 | |
| 1666 | case 'a': // Address register |
| 1667 | if (VT == MVT::i64) |
| 1668 | return std::make_pair(x: 0U, y: &SystemZ::ADDR64BitRegClass); |
| 1669 | else if (VT == MVT::i128) |
| 1670 | return std::make_pair(x: 0U, y: &SystemZ::ADDR128BitRegClass); |
| 1671 | return std::make_pair(x: 0U, y: &SystemZ::ADDR32BitRegClass); |
| 1672 | |
| 1673 | case 'h': // High-part register (an LLVM extension) |
| 1674 | return std::make_pair(x: 0U, y: &SystemZ::GRH32BitRegClass); |
| 1675 | |
| 1676 | case 'f': // Floating-point register |
| 1677 | if (!useSoftFloat()) { |
| 1678 | if (VT.getSizeInBits() == 16) |
| 1679 | return std::make_pair(x: 0U, y: &SystemZ::FP16BitRegClass); |
| 1680 | else if (VT.getSizeInBits() == 64) |
| 1681 | return std::make_pair(x: 0U, y: &SystemZ::FP64BitRegClass); |
| 1682 | else if (VT.getSizeInBits() == 128) |
| 1683 | return std::make_pair(x: 0U, y: &SystemZ::FP128BitRegClass); |
| 1684 | return std::make_pair(x: 0U, y: &SystemZ::FP32BitRegClass); |
| 1685 | } |
| 1686 | break; |
| 1687 | |
| 1688 | case 'v': // Vector register |
| 1689 | if (Subtarget.hasVector()) { |
| 1690 | if (VT.getSizeInBits() == 16) |
| 1691 | return std::make_pair(x: 0U, y: &SystemZ::VR16BitRegClass); |
| 1692 | if (VT.getSizeInBits() == 32) |
| 1693 | return std::make_pair(x: 0U, y: &SystemZ::VR32BitRegClass); |
| 1694 | if (VT.getSizeInBits() == 64) |
| 1695 | return std::make_pair(x: 0U, y: &SystemZ::VR64BitRegClass); |
| 1696 | return std::make_pair(x: 0U, y: &SystemZ::VR128BitRegClass); |
| 1697 | } |
| 1698 | break; |
| 1699 | } |
| 1700 | } |
| 1701 | if (Constraint.starts_with(Prefix: "{" )) { |
| 1702 | |
| 1703 | // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal |
| 1704 | // to check the size on. |
| 1705 | auto getVTSizeInBits = [&VT]() { |
| 1706 | return VT == MVT::Other ? 0 : VT.getSizeInBits(); |
| 1707 | }; |
| 1708 | |
| 1709 | // We need to override the default register parsing for GPRs and FPRs |
| 1710 | // because the interpretation depends on VT. The internal names of |
| 1711 | // the registers are also different from the external names |
| 1712 | // (F0D and F0S instead of F0, etc.). |
| 1713 | if (Constraint[1] == 'r') { |
| 1714 | if (getVTSizeInBits() == 32) |
| 1715 | return parseRegisterNumber(Constraint, RC: &SystemZ::GR32BitRegClass, |
| 1716 | Map: SystemZMC::GR32Regs, Size: 16); |
| 1717 | if (getVTSizeInBits() == 128) |
| 1718 | return parseRegisterNumber(Constraint, RC: &SystemZ::GR128BitRegClass, |
| 1719 | Map: SystemZMC::GR128Regs, Size: 16); |
| 1720 | return parseRegisterNumber(Constraint, RC: &SystemZ::GR64BitRegClass, |
| 1721 | Map: SystemZMC::GR64Regs, Size: 16); |
| 1722 | } |
| 1723 | if (Constraint[1] == 'f') { |
| 1724 | if (useSoftFloat()) |
| 1725 | return std::make_pair( |
| 1726 | x: 0u, y: static_cast<const TargetRegisterClass *>(nullptr)); |
| 1727 | if (getVTSizeInBits() == 16) |
| 1728 | return parseRegisterNumber(Constraint, RC: &SystemZ::FP16BitRegClass, |
| 1729 | Map: SystemZMC::FP16Regs, Size: 16); |
| 1730 | if (getVTSizeInBits() == 32) |
| 1731 | return parseRegisterNumber(Constraint, RC: &SystemZ::FP32BitRegClass, |
| 1732 | Map: SystemZMC::FP32Regs, Size: 16); |
| 1733 | if (getVTSizeInBits() == 128) |
| 1734 | return parseRegisterNumber(Constraint, RC: &SystemZ::FP128BitRegClass, |
| 1735 | Map: SystemZMC::FP128Regs, Size: 16); |
| 1736 | return parseRegisterNumber(Constraint, RC: &SystemZ::FP64BitRegClass, |
| 1737 | Map: SystemZMC::FP64Regs, Size: 16); |
| 1738 | } |
| 1739 | if (Constraint[1] == 'v') { |
| 1740 | if (!Subtarget.hasVector()) |
| 1741 | return std::make_pair( |
| 1742 | x: 0u, y: static_cast<const TargetRegisterClass *>(nullptr)); |
| 1743 | if (getVTSizeInBits() == 16) |
| 1744 | return parseRegisterNumber(Constraint, RC: &SystemZ::VR16BitRegClass, |
| 1745 | Map: SystemZMC::VR16Regs, Size: 32); |
| 1746 | if (getVTSizeInBits() == 32) |
| 1747 | return parseRegisterNumber(Constraint, RC: &SystemZ::VR32BitRegClass, |
| 1748 | Map: SystemZMC::VR32Regs, Size: 32); |
| 1749 | if (getVTSizeInBits() == 64) |
| 1750 | return parseRegisterNumber(Constraint, RC: &SystemZ::VR64BitRegClass, |
| 1751 | Map: SystemZMC::VR64Regs, Size: 32); |
| 1752 | return parseRegisterNumber(Constraint, RC: &SystemZ::VR128BitRegClass, |
| 1753 | Map: SystemZMC::VR128Regs, Size: 32); |
| 1754 | } |
| 1755 | if (Constraint[1] == '@') { |
| 1756 | if (StringRef("{@cc}" ).compare(RHS: Constraint) == 0) |
| 1757 | return std::make_pair(x: SystemZ::CC, y: &SystemZ::CCRRegClass); |
| 1758 | } |
| 1759 | } |
| 1760 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| 1761 | } |
| 1762 | |
| 1763 | // FIXME? Maybe this could be a TableGen attribute on some registers and |
| 1764 | // this table could be generated automatically from RegInfo. |
| 1765 | Register |
| 1766 | SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| 1767 | const MachineFunction &MF) const { |
| 1768 | Register Reg = |
| 1769 | StringSwitch<Register>(RegName) |
| 1770 | .Case(S: "r4" , Value: Subtarget.isTargetXPLINK64() ? SystemZ::R4D |
| 1771 | : SystemZ::NoRegister) |
| 1772 | .Case(S: "r15" , |
| 1773 | Value: Subtarget.isTargetELF() ? SystemZ::R15D : SystemZ::NoRegister) |
| 1774 | .Default(Value: Register()); |
| 1775 | |
| 1776 | return Reg; |
| 1777 | } |
| 1778 | |
| 1779 | Register SystemZTargetLowering::getExceptionPointerRegister( |
| 1780 | const Constant *PersonalityFn) const { |
| 1781 | return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D; |
| 1782 | } |
| 1783 | |
| 1784 | Register SystemZTargetLowering::getExceptionSelectorRegister( |
| 1785 | const Constant *PersonalityFn) const { |
| 1786 | return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D; |
| 1787 | } |
| 1788 | |
| 1789 | // Convert condition code in CCReg to an i32 value. |
| 1790 | static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { |
| 1791 | SDLoc DL(CCReg); |
| 1792 | SDValue IPM = DAG.getNode(Opcode: SystemZISD::IPM, DL, VT: MVT::i32, Operand: CCReg); |
| 1793 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: IPM, |
| 1794 | N2: DAG.getConstant(Val: SystemZ::IPM_CC, DL, VT: MVT::i32)); |
| 1795 | } |
| 1796 | |
| 1797 | // Lower @cc targets via setcc. |
| 1798 | SDValue SystemZTargetLowering::LowerAsmOutputForConstraint( |
| 1799 | SDValue &Chain, SDValue &Glue, const SDLoc &DL, |
| 1800 | const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { |
| 1801 | if (StringRef("{@cc}" ).compare(RHS: OpInfo.ConstraintCode) != 0) |
| 1802 | return SDValue(); |
| 1803 | |
| 1804 | // Check that return type is valid. |
| 1805 | if (OpInfo.ConstraintVT.isVector() || !OpInfo.ConstraintVT.isInteger() || |
| 1806 | OpInfo.ConstraintVT.getSizeInBits() < 8) |
| 1807 | report_fatal_error(reason: "Glue output operand is of invalid type" ); |
| 1808 | |
| 1809 | if (Glue.getNode()) { |
| 1810 | Glue = DAG.getCopyFromReg(Chain, dl: DL, Reg: SystemZ::CC, VT: MVT::i32, Glue); |
| 1811 | Chain = Glue.getValue(R: 1); |
| 1812 | } else |
| 1813 | Glue = DAG.getCopyFromReg(Chain, dl: DL, Reg: SystemZ::CC, VT: MVT::i32); |
| 1814 | return getCCResult(DAG, CCReg: Glue); |
| 1815 | } |
| 1816 | |
| 1817 | void SystemZTargetLowering::LowerAsmOperandForConstraint( |
| 1818 | SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, |
| 1819 | SelectionDAG &DAG) const { |
| 1820 | // Only support length 1 constraints for now. |
| 1821 | if (Constraint.size() == 1) { |
| 1822 | switch (Constraint[0]) { |
| 1823 | case 'I': // Unsigned 8-bit constant |
| 1824 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 1825 | if (isUInt<8>(x: C->getZExtValue())) |
| 1826 | Ops.push_back(x: DAG.getTargetConstant(Val: C->getZExtValue(), DL: SDLoc(Op), |
| 1827 | VT: Op.getValueType())); |
| 1828 | return; |
| 1829 | |
| 1830 | case 'J': // Unsigned 12-bit constant |
| 1831 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 1832 | if (isUInt<12>(x: C->getZExtValue())) |
| 1833 | Ops.push_back(x: DAG.getTargetConstant(Val: C->getZExtValue(), DL: SDLoc(Op), |
| 1834 | VT: Op.getValueType())); |
| 1835 | return; |
| 1836 | |
| 1837 | case 'K': // Signed 16-bit constant |
| 1838 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 1839 | if (isInt<16>(x: C->getSExtValue())) |
| 1840 | Ops.push_back(x: DAG.getSignedTargetConstant( |
| 1841 | Val: C->getSExtValue(), DL: SDLoc(Op), VT: Op.getValueType())); |
| 1842 | return; |
| 1843 | |
| 1844 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 1845 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 1846 | if (isInt<20>(x: C->getSExtValue())) |
| 1847 | Ops.push_back(x: DAG.getSignedTargetConstant( |
| 1848 | Val: C->getSExtValue(), DL: SDLoc(Op), VT: Op.getValueType())); |
| 1849 | return; |
| 1850 | |
| 1851 | case 'M': // 0x7fffffff |
| 1852 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 1853 | if (C->getZExtValue() == 0x7fffffff) |
| 1854 | Ops.push_back(x: DAG.getTargetConstant(Val: C->getZExtValue(), DL: SDLoc(Op), |
| 1855 | VT: Op.getValueType())); |
| 1856 | return; |
| 1857 | } |
| 1858 | } |
| 1859 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 1860 | } |
| 1861 | |
| 1862 | //===----------------------------------------------------------------------===// |
| 1863 | // Calling conventions |
| 1864 | //===----------------------------------------------------------------------===// |
| 1865 | |
| 1866 | #include "SystemZGenCallingConv.inc" |
| 1867 | |
| 1868 | const MCPhysReg *SystemZTargetLowering::getScratchRegisters( |
| 1869 | CallingConv::ID) const { |
| 1870 | static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, |
| 1871 | SystemZ::R14D, 0 }; |
| 1872 | return ScratchRegs; |
| 1873 | } |
| 1874 | |
| 1875 | bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, |
| 1876 | Type *ToType) const { |
| 1877 | return isTruncateFree(FromType, ToType); |
| 1878 | } |
| 1879 | |
| 1880 | bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| 1881 | return CI->isTailCall(); |
| 1882 | } |
| 1883 | |
| 1884 | // Value is a value that has been passed to us in the location described by VA |
| 1885 | // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining |
| 1886 | // any loads onto Chain. |
| 1887 | static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, |
| 1888 | CCValAssign &VA, SDValue Chain, |
| 1889 | SDValue Value) { |
| 1890 | // If the argument has been promoted from a smaller type, insert an |
| 1891 | // assertion to capture this. |
| 1892 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 1893 | Value = DAG.getNode(Opcode: ISD::AssertSext, DL, VT: VA.getLocVT(), N1: Value, |
| 1894 | N2: DAG.getValueType(VA.getValVT())); |
| 1895 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 1896 | Value = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: VA.getLocVT(), N1: Value, |
| 1897 | N2: DAG.getValueType(VA.getValVT())); |
| 1898 | |
| 1899 | if (VA.isExtInLoc()) |
| 1900 | Value = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: VA.getValVT(), Operand: Value); |
| 1901 | else if (VA.getLocInfo() == CCValAssign::BCvt) { |
| 1902 | // If this is a short vector argument loaded from the stack, |
| 1903 | // extend from i64 to full vector size and then bitcast. |
| 1904 | assert(VA.getLocVT() == MVT::i64); |
| 1905 | assert(VA.getValVT().isVector()); |
| 1906 | Value = DAG.getBuildVector(VT: MVT::v2i64, DL, Ops: {Value, DAG.getUNDEF(VT: MVT::i64)}); |
| 1907 | Value = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: VA.getValVT(), Operand: Value); |
| 1908 | } else |
| 1909 | assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo" ); |
| 1910 | return Value; |
| 1911 | } |
| 1912 | |
| 1913 | // Value is a value of type VA.getValVT() that we need to copy into |
| 1914 | // the location described by VA. Return a copy of Value converted to |
| 1915 | // VA.getValVT(). The caller is responsible for handling indirect values. |
| 1916 | static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, |
| 1917 | CCValAssign &VA, SDValue Value) { |
| 1918 | switch (VA.getLocInfo()) { |
| 1919 | case CCValAssign::SExt: |
| 1920 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: VA.getLocVT(), Operand: Value); |
| 1921 | case CCValAssign::ZExt: |
| 1922 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: VA.getLocVT(), Operand: Value); |
| 1923 | case CCValAssign::AExt: |
| 1924 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: VA.getLocVT(), Operand: Value); |
| 1925 | case CCValAssign::BCvt: { |
| 1926 | assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); |
| 1927 | assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || |
| 1928 | VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); |
| 1929 | // For an f32 vararg we need to first promote it to an f64 and then |
| 1930 | // bitcast it to an i64. |
| 1931 | if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) |
| 1932 | Value = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f64, Operand: Value); |
| 1933 | MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 |
| 1934 | ? MVT::v2i64 |
| 1935 | : VA.getLocVT(); |
| 1936 | Value = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: BitCastToType, Operand: Value); |
| 1937 | // For ELF, this is a short vector argument to be stored to the stack, |
| 1938 | // bitcast to v2i64 and then extract first element. |
| 1939 | if (BitCastToType == MVT::v2i64) |
| 1940 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: VA.getLocVT(), N1: Value, |
| 1941 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 1942 | return Value; |
| 1943 | } |
| 1944 | case CCValAssign::Full: |
| 1945 | return Value; |
| 1946 | default: |
| 1947 | llvm_unreachable("Unhandled getLocInfo()" ); |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { |
| 1952 | SDLoc DL(In); |
| 1953 | SDValue Lo, Hi; |
| 1954 | if (DAG.getTargetLoweringInfo().isTypeLegal(VT: MVT::i128)) { |
| 1955 | Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i64, Operand: In); |
| 1956 | Hi = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i64, |
| 1957 | Operand: DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i128, N1: In, |
| 1958 | N2: DAG.getConstant(Val: 64, DL, VT: MVT::i32))); |
| 1959 | } else { |
| 1960 | std::tie(args&: Lo, args&: Hi) = DAG.SplitScalar(N: In, DL, LoVT: MVT::i64, HiVT: MVT::i64); |
| 1961 | } |
| 1962 | |
| 1963 | // FIXME: If v2i64 were a legal type, we could use it instead of |
| 1964 | // Untyped here. This might enable improved folding. |
| 1965 | SDNode *Pair = DAG.getMachineNode(Opcode: SystemZ::PAIR128, dl: DL, |
| 1966 | VT: MVT::Untyped, Op1: Hi, Op2: Lo); |
| 1967 | return SDValue(Pair, 0); |
| 1968 | } |
| 1969 | |
| 1970 | static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { |
| 1971 | SDLoc DL(In); |
| 1972 | SDValue Hi = DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_h64, |
| 1973 | DL, VT: MVT::i64, Operand: In); |
| 1974 | SDValue Lo = DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_l64, |
| 1975 | DL, VT: MVT::i64, Operand: In); |
| 1976 | |
| 1977 | if (DAG.getTargetLoweringInfo().isTypeLegal(VT: MVT::i128)) { |
| 1978 | Lo = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i128, Operand: Lo); |
| 1979 | Hi = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i128, Operand: Hi); |
| 1980 | Hi = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i128, N1: Hi, |
| 1981 | N2: DAG.getConstant(Val: 64, DL, VT: MVT::i32)); |
| 1982 | return DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i128, N1: Lo, N2: Hi); |
| 1983 | } else { |
| 1984 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i128, N1: Lo, N2: Hi); |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | bool SystemZTargetLowering::splitValueIntoRegisterParts( |
| 1989 | SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| 1990 | unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| 1991 | EVT ValueVT = Val.getValueType(); |
| 1992 | if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { |
| 1993 | // Inline assembly operand. |
| 1994 | Parts[0] = lowerI128ToGR128(DAG, In: DAG.getBitcast(VT: MVT::i128, V: Val)); |
| 1995 | return true; |
| 1996 | } |
| 1997 | |
| 1998 | return false; |
| 1999 | } |
| 2000 | |
| 2001 | SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( |
| 2002 | SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, |
| 2003 | MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { |
| 2004 | if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { |
| 2005 | // Inline assembly operand. |
| 2006 | SDValue Res = lowerGR128ToI128(DAG, In: Parts[0]); |
| 2007 | return DAG.getBitcast(VT: ValueVT, V: Res); |
| 2008 | } |
| 2009 | |
| 2010 | return SDValue(); |
| 2011 | } |
| 2012 | |
| 2013 | // The first part of a split stack argument is at index I in Args (and |
| 2014 | // ArgLocs). Return the type of a part and the number of them by reference. |
| 2015 | template <class ArgTy> |
| 2016 | static bool analyzeArgSplit(const SmallVectorImpl<ArgTy> &Args, |
| 2017 | SmallVector<CCValAssign, 16> &ArgLocs, unsigned I, |
| 2018 | MVT &PartVT, unsigned &NumParts) { |
| 2019 | if (!Args[I].Flags.isSplit()) |
| 2020 | return false; |
| 2021 | assert(I < ArgLocs.size() && ArgLocs.size() == Args.size() && |
| 2022 | "ArgLocs havoc." ); |
| 2023 | PartVT = ArgLocs[I].getValVT(); |
| 2024 | NumParts = 1; |
| 2025 | for (unsigned PartIdx = I + 1;; ++PartIdx) { |
| 2026 | assert(PartIdx != ArgLocs.size() && "SplitEnd not found." ); |
| 2027 | assert(ArgLocs[PartIdx].getValVT() == PartVT && "Unsupported split." ); |
| 2028 | ++NumParts; |
| 2029 | if (Args[PartIdx].Flags.isSplitEnd()) |
| 2030 | break; |
| 2031 | } |
| 2032 | return true; |
| 2033 | } |
| 2034 | |
| 2035 | SDValue SystemZTargetLowering::LowerFormalArguments( |
| 2036 | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 2037 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| 2038 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 2039 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2040 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2041 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2042 | SystemZMachineFunctionInfo *FuncInfo = |
| 2043 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 2044 | auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); |
| 2045 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 2046 | |
| 2047 | // Assign locations to all of the incoming arguments. |
| 2048 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2049 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| 2050 | CCInfo.AnalyzeFormalArguments(Ins, Fn: CC_SystemZ); |
| 2051 | FuncInfo->setSizeOfFnParams(CCInfo.getStackSize()); |
| 2052 | |
| 2053 | unsigned NumFixedGPRs = 0; |
| 2054 | unsigned NumFixedFPRs = 0; |
| 2055 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 2056 | SDValue ArgValue; |
| 2057 | CCValAssign &VA = ArgLocs[I]; |
| 2058 | EVT LocVT = VA.getLocVT(); |
| 2059 | if (VA.isRegLoc()) { |
| 2060 | // Arguments passed in registers |
| 2061 | const TargetRegisterClass *RC; |
| 2062 | switch (LocVT.getSimpleVT().SimpleTy) { |
| 2063 | default: |
| 2064 | // Integers smaller than i64 should be promoted to i64. |
| 2065 | llvm_unreachable("Unexpected argument type" ); |
| 2066 | case MVT::i32: |
| 2067 | NumFixedGPRs += 1; |
| 2068 | RC = &SystemZ::GR32BitRegClass; |
| 2069 | break; |
| 2070 | case MVT::i64: |
| 2071 | NumFixedGPRs += 1; |
| 2072 | RC = &SystemZ::GR64BitRegClass; |
| 2073 | break; |
| 2074 | case MVT::f16: |
| 2075 | NumFixedFPRs += 1; |
| 2076 | RC = &SystemZ::FP16BitRegClass; |
| 2077 | break; |
| 2078 | case MVT::f32: |
| 2079 | NumFixedFPRs += 1; |
| 2080 | RC = &SystemZ::FP32BitRegClass; |
| 2081 | break; |
| 2082 | case MVT::f64: |
| 2083 | NumFixedFPRs += 1; |
| 2084 | RC = &SystemZ::FP64BitRegClass; |
| 2085 | break; |
| 2086 | case MVT::f128: |
| 2087 | NumFixedFPRs += 2; |
| 2088 | RC = &SystemZ::FP128BitRegClass; |
| 2089 | break; |
| 2090 | case MVT::v16i8: |
| 2091 | case MVT::v8i16: |
| 2092 | case MVT::v4i32: |
| 2093 | case MVT::v2i64: |
| 2094 | case MVT::v8f16: |
| 2095 | case MVT::v4f32: |
| 2096 | case MVT::v2f64: |
| 2097 | RC = &SystemZ::VR128BitRegClass; |
| 2098 | break; |
| 2099 | } |
| 2100 | |
| 2101 | Register VReg = MRI.createVirtualRegister(RegClass: RC); |
| 2102 | MRI.addLiveIn(Reg: VA.getLocReg(), vreg: VReg); |
| 2103 | ArgValue = DAG.getCopyFromReg(Chain, dl: DL, Reg: VReg, VT: LocVT); |
| 2104 | } else { |
| 2105 | assert(VA.isMemLoc() && "Argument not register or memory" ); |
| 2106 | |
| 2107 | // Create the frame index object for this incoming parameter. |
| 2108 | // FIXME: Pre-include call frame size in the offset, should not |
| 2109 | // need to manually add it here. |
| 2110 | int64_t ArgSPOffset = VA.getLocMemOffset(); |
| 2111 | if (Subtarget.isTargetXPLINK64()) { |
| 2112 | auto &XPRegs = |
| 2113 | Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); |
| 2114 | ArgSPOffset += XPRegs.getCallFrameSize(); |
| 2115 | } |
| 2116 | int FI = |
| 2117 | MFI.CreateFixedObject(Size: LocVT.getSizeInBits() / 8, SPOffset: ArgSPOffset, IsImmutable: true); |
| 2118 | |
| 2119 | // Create the SelectionDAG nodes corresponding to a load |
| 2120 | // from this parameter. Unpromoted ints and floats are |
| 2121 | // passed as right-justified 8-byte values. |
| 2122 | SDValue FIN = DAG.getFrameIndex(FI, VT: PtrVT); |
| 2123 | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32 || |
| 2124 | VA.getLocVT() == MVT::f16) { |
| 2125 | unsigned SlotOffs = VA.getLocVT() == MVT::f16 ? 6 : 4; |
| 2126 | FIN = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: FIN, |
| 2127 | N2: DAG.getIntPtrConstant(Val: SlotOffs, DL)); |
| 2128 | } |
| 2129 | ArgValue = DAG.getLoad(VT: LocVT, dl: DL, Chain, Ptr: FIN, |
| 2130 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI)); |
| 2131 | } |
| 2132 | |
| 2133 | // Convert the value of the argument register into the value that's |
| 2134 | // being passed. |
| 2135 | if (VA.getLocInfo() == CCValAssign::Indirect) { |
| 2136 | InVals.push_back(Elt: DAG.getLoad(VT: VA.getValVT(), dl: DL, Chain, Ptr: ArgValue, |
| 2137 | PtrInfo: MachinePointerInfo())); |
| 2138 | // If the original argument was split (e.g. i128), we need |
| 2139 | // to load all parts of it here (using the same address). |
| 2140 | MVT PartVT; |
| 2141 | unsigned NumParts; |
| 2142 | if (analyzeArgSplit(Args: Ins, ArgLocs, I, PartVT, NumParts)) { |
| 2143 | for (unsigned PartIdx = 1; PartIdx < NumParts; ++PartIdx) { |
| 2144 | ++I; |
| 2145 | CCValAssign &PartVA = ArgLocs[I]; |
| 2146 | unsigned PartOffset = Ins[I].PartOffset; |
| 2147 | SDValue Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: ArgValue, |
| 2148 | N2: DAG.getIntPtrConstant(Val: PartOffset, DL)); |
| 2149 | InVals.push_back(Elt: DAG.getLoad(VT: PartVA.getValVT(), dl: DL, Chain, Ptr: Address, |
| 2150 | PtrInfo: MachinePointerInfo())); |
| 2151 | assert(PartOffset && "Offset should be non-zero." ); |
| 2152 | } |
| 2153 | } |
| 2154 | } else |
| 2155 | InVals.push_back(Elt: convertLocVTToValVT(DAG, DL, VA, Chain, Value: ArgValue)); |
| 2156 | } |
| 2157 | |
| 2158 | if (IsVarArg && Subtarget.isTargetXPLINK64()) { |
| 2159 | // Save the number of non-varargs registers for later use by va_start, etc. |
| 2160 | FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); |
| 2161 | FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); |
| 2162 | |
| 2163 | auto *Regs = static_cast<SystemZXPLINK64Registers *>( |
| 2164 | Subtarget.getSpecialRegisters()); |
| 2165 | |
| 2166 | // Likewise the address (in the form of a frame index) of where the |
| 2167 | // first stack vararg would be. The 1-byte size here is arbitrary. |
| 2168 | // FIXME: Pre-include call frame size in the offset, should not |
| 2169 | // need to manually add it here. |
| 2170 | int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize(); |
| 2171 | int FI = MFI.CreateFixedObject(Size: 1, SPOffset: VarArgOffset, IsImmutable: true); |
| 2172 | FuncInfo->setVarArgsFrameIndex(FI); |
| 2173 | } |
| 2174 | |
| 2175 | if (IsVarArg && Subtarget.isTargetELF()) { |
| 2176 | // Save the number of non-varargs registers for later use by va_start, etc. |
| 2177 | FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); |
| 2178 | FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); |
| 2179 | |
| 2180 | // Likewise the address (in the form of a frame index) of where the |
| 2181 | // first stack vararg would be. The 1-byte size here is arbitrary. |
| 2182 | int64_t VarArgsOffset = CCInfo.getStackSize(); |
| 2183 | FuncInfo->setVarArgsFrameIndex( |
| 2184 | MFI.CreateFixedObject(Size: 1, SPOffset: VarArgsOffset, IsImmutable: true)); |
| 2185 | |
| 2186 | // ...and a similar frame index for the caller-allocated save area |
| 2187 | // that will be used to store the incoming registers. |
| 2188 | int64_t RegSaveOffset = |
| 2189 | -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, Reg: SystemZ::R2D) - 16; |
| 2190 | unsigned RegSaveIndex = MFI.CreateFixedObject(Size: 1, SPOffset: RegSaveOffset, IsImmutable: true); |
| 2191 | FuncInfo->setRegSaveFrameIndex(RegSaveIndex); |
| 2192 | |
| 2193 | // Store the FPR varargs in the reserved frame slots. (We store the |
| 2194 | // GPRs as part of the prologue.) |
| 2195 | if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { |
| 2196 | SDValue MemOps[SystemZ::ELFNumArgFPRs]; |
| 2197 | for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { |
| 2198 | unsigned Offset = TFL->getRegSpillOffset(MF, Reg: SystemZ::ELFArgFPRs[I]); |
| 2199 | int FI = |
| 2200 | MFI.CreateFixedObject(Size: 8, SPOffset: -SystemZMC::ELFCallFrameSize + Offset, IsImmutable: true); |
| 2201 | SDValue FIN = DAG.getFrameIndex(FI, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2202 | Register VReg = MF.addLiveIn(PReg: SystemZ::ELFArgFPRs[I], |
| 2203 | RC: &SystemZ::FP64BitRegClass); |
| 2204 | SDValue ArgValue = DAG.getCopyFromReg(Chain, dl: DL, Reg: VReg, VT: MVT::f64); |
| 2205 | MemOps[I] = DAG.getStore(Chain: ArgValue.getValue(R: 1), dl: DL, Val: ArgValue, Ptr: FIN, |
| 2206 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI)); |
| 2207 | } |
| 2208 | // Join the stores, which are independent of one another. |
| 2209 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, |
| 2210 | Ops: ArrayRef(&MemOps[NumFixedFPRs], |
| 2211 | SystemZ::ELFNumArgFPRs - NumFixedFPRs)); |
| 2212 | } |
| 2213 | } |
| 2214 | |
| 2215 | if (Subtarget.isTargetXPLINK64()) { |
| 2216 | // Create virual register for handling incoming "ADA" special register (R5) |
| 2217 | const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; |
| 2218 | Register ADAvReg = MRI.createVirtualRegister(RegClass: RC); |
| 2219 | auto *Regs = static_cast<SystemZXPLINK64Registers *>( |
| 2220 | Subtarget.getSpecialRegisters()); |
| 2221 | MRI.addLiveIn(Reg: Regs->getADARegister(), vreg: ADAvReg); |
| 2222 | FuncInfo->setADAVirtualRegister(ADAvReg); |
| 2223 | } |
| 2224 | return Chain; |
| 2225 | } |
| 2226 | |
| 2227 | static bool canUseSiblingCall(const CCState &ArgCCInfo, |
| 2228 | SmallVectorImpl<CCValAssign> &ArgLocs, |
| 2229 | SmallVectorImpl<ISD::OutputArg> &Outs) { |
| 2230 | // Punt if there are any indirect or stack arguments, or if the call |
| 2231 | // needs the callee-saved argument register R6, or if the call uses |
| 2232 | // the callee-saved register arguments SwiftSelf and SwiftError. |
| 2233 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 2234 | CCValAssign &VA = ArgLocs[I]; |
| 2235 | if (VA.getLocInfo() == CCValAssign::Indirect) |
| 2236 | return false; |
| 2237 | if (!VA.isRegLoc()) |
| 2238 | return false; |
| 2239 | Register Reg = VA.getLocReg(); |
| 2240 | if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) |
| 2241 | return false; |
| 2242 | if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) |
| 2243 | return false; |
| 2244 | } |
| 2245 | return true; |
| 2246 | } |
| 2247 | |
| 2248 | static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL, |
| 2249 | unsigned Offset, bool LoadAdr = false) { |
| 2250 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2251 | SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>(); |
| 2252 | Register ADAvReg = MFI->getADAVirtualRegister(); |
| 2253 | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DL: DAG.getDataLayout()); |
| 2254 | |
| 2255 | SDValue Reg = DAG.getRegister(Reg: ADAvReg, VT: PtrVT); |
| 2256 | SDValue Ofs = DAG.getTargetConstant(Val: Offset, DL, VT: PtrVT); |
| 2257 | |
| 2258 | SDValue Result = DAG.getNode(Opcode: SystemZISD::ADA_ENTRY, DL, VT: PtrVT, N1: Val, N2: Reg, N3: Ofs); |
| 2259 | if (!LoadAdr) |
| 2260 | Result = DAG.getLoad( |
| 2261 | VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Result, PtrInfo: MachinePointerInfo(), Alignment: Align(8), |
| 2262 | MMOFlags: MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); |
| 2263 | |
| 2264 | return Result; |
| 2265 | } |
| 2266 | |
| 2267 | // ADA access using Global value |
| 2268 | // Note: for functions, address of descriptor is returned |
| 2269 | static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL, |
| 2270 | EVT PtrVT) { |
| 2271 | unsigned ADAtype; |
| 2272 | bool LoadAddr = false; |
| 2273 | const GlobalAlias *GA = dyn_cast<GlobalAlias>(Val: GV); |
| 2274 | bool IsFunction = |
| 2275 | (isa<Function>(Val: GV)) || (GA && isa<Function>(Val: GA->getAliaseeObject())); |
| 2276 | bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage()); |
| 2277 | |
| 2278 | if (IsFunction) { |
| 2279 | if (IsInternal) { |
| 2280 | ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC; |
| 2281 | LoadAddr = true; |
| 2282 | } else |
| 2283 | ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC; |
| 2284 | } else { |
| 2285 | ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR; |
| 2286 | } |
| 2287 | SDValue Val = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: 0, TargetFlags: ADAtype); |
| 2288 | |
| 2289 | return getADAEntry(DAG, Val, DL, Offset: 0, LoadAdr: LoadAddr); |
| 2290 | } |
| 2291 | |
| 2292 | static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA, |
| 2293 | SDLoc &DL, SDValue &Chain) { |
| 2294 | unsigned ADADelta = 0; // ADA offset in desc. |
| 2295 | unsigned EPADelta = 8; // EPA offset in desc. |
| 2296 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2297 | EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DL: DAG.getDataLayout()); |
| 2298 | |
| 2299 | // XPLink calling convention. |
| 2300 | if (auto *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) { |
| 2301 | bool IsInternal = (G->getGlobal()->hasInternalLinkage() || |
| 2302 | G->getGlobal()->hasPrivateLinkage()); |
| 2303 | if (IsInternal) { |
| 2304 | SystemZMachineFunctionInfo *MFI = |
| 2305 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 2306 | Register ADAvReg = MFI->getADAVirtualRegister(); |
| 2307 | ADA = DAG.getCopyFromReg(Chain, dl: DL, Reg: ADAvReg, VT: PtrVT); |
| 2308 | Callee = DAG.getTargetGlobalAddress(GV: G->getGlobal(), DL, VT: PtrVT); |
| 2309 | Callee = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Callee); |
| 2310 | return true; |
| 2311 | } else { |
| 2312 | SDValue GA = DAG.getTargetGlobalAddress( |
| 2313 | GV: G->getGlobal(), DL, VT: PtrVT, offset: 0, TargetFlags: SystemZII::MO_ADA_DIRECT_FUNC_DESC); |
| 2314 | ADA = getADAEntry(DAG, Val: GA, DL, Offset: ADADelta); |
| 2315 | Callee = getADAEntry(DAG, Val: GA, DL, Offset: EPADelta); |
| 2316 | } |
| 2317 | } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) { |
| 2318 | SDValue ES = DAG.getTargetExternalSymbol( |
| 2319 | Sym: E->getSymbol(), VT: PtrVT, TargetFlags: SystemZII::MO_ADA_DIRECT_FUNC_DESC); |
| 2320 | ADA = getADAEntry(DAG, Val: ES, DL, Offset: ADADelta); |
| 2321 | Callee = getADAEntry(DAG, Val: ES, DL, Offset: EPADelta); |
| 2322 | } else { |
| 2323 | // Function pointer case |
| 2324 | ADA = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Callee, |
| 2325 | N2: DAG.getConstant(Val: ADADelta, DL, VT: PtrVT)); |
| 2326 | ADA = DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: ADA, |
| 2327 | PtrInfo: MachinePointerInfo::getGOT(MF&: DAG.getMachineFunction())); |
| 2328 | Callee = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Callee, |
| 2329 | N2: DAG.getConstant(Val: EPADelta, DL, VT: PtrVT)); |
| 2330 | Callee = DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Callee, |
| 2331 | PtrInfo: MachinePointerInfo::getGOT(MF&: DAG.getMachineFunction())); |
| 2332 | } |
| 2333 | return false; |
| 2334 | } |
| 2335 | |
| 2336 | SDValue |
| 2337 | SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 2338 | SmallVectorImpl<SDValue> &InVals) const { |
| 2339 | SelectionDAG &DAG = CLI.DAG; |
| 2340 | SDLoc &DL = CLI.DL; |
| 2341 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 2342 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 2343 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 2344 | SDValue Chain = CLI.Chain; |
| 2345 | SDValue Callee = CLI.Callee; |
| 2346 | bool &IsTailCall = CLI.IsTailCall; |
| 2347 | CallingConv::ID CallConv = CLI.CallConv; |
| 2348 | bool IsVarArg = CLI.IsVarArg; |
| 2349 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2350 | EVT PtrVT = getPointerTy(DL: MF.getDataLayout()); |
| 2351 | LLVMContext &Ctx = *DAG.getContext(); |
| 2352 | SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); |
| 2353 | |
| 2354 | // FIXME: z/OS support to be added in later. |
| 2355 | if (Subtarget.isTargetXPLINK64()) |
| 2356 | IsTailCall = false; |
| 2357 | |
| 2358 | // Integer args <=32 bits should have an extension attribute. |
| 2359 | verifyNarrowIntegerArgs_Call(Outs, F: &MF.getFunction(), Callee); |
| 2360 | |
| 2361 | // Analyze the operands of the call, assigning locations to each operand. |
| 2362 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2363 | CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); |
| 2364 | ArgCCInfo.AnalyzeCallOperands(Outs, Fn: CC_SystemZ); |
| 2365 | |
| 2366 | // We don't support GuaranteedTailCallOpt, only automatically-detected |
| 2367 | // sibling calls. |
| 2368 | if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) |
| 2369 | IsTailCall = false; |
| 2370 | |
| 2371 | // Get a count of how many bytes are to be pushed on the stack. |
| 2372 | unsigned NumBytes = ArgCCInfo.getStackSize(); |
| 2373 | |
| 2374 | // Mark the start of the call. |
| 2375 | if (!IsTailCall) |
| 2376 | Chain = DAG.getCALLSEQ_START(Chain, InSize: NumBytes, OutSize: 0, DL); |
| 2377 | |
| 2378 | // Copy argument values to their designated locations. |
| 2379 | SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; |
| 2380 | SmallVector<SDValue, 8> MemOpChains; |
| 2381 | SDValue StackPtr; |
| 2382 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 2383 | CCValAssign &VA = ArgLocs[I]; |
| 2384 | SDValue ArgValue = OutVals[I]; |
| 2385 | |
| 2386 | if (VA.getLocInfo() == CCValAssign::Indirect) { |
| 2387 | // Store the argument in a stack slot and pass its address. |
| 2388 | EVT SlotVT; |
| 2389 | MVT PartVT; |
| 2390 | unsigned NumParts = 1; |
| 2391 | if (analyzeArgSplit(Args: Outs, ArgLocs, I, PartVT, NumParts)) |
| 2392 | SlotVT = EVT::getIntegerVT(Context&: Ctx, BitWidth: PartVT.getSizeInBits() * NumParts); |
| 2393 | else |
| 2394 | SlotVT = Outs[I].VT; |
| 2395 | SDValue SpillSlot = DAG.CreateStackTemporary(VT: SlotVT); |
| 2396 | int FI = cast<FrameIndexSDNode>(Val&: SpillSlot)->getIndex(); |
| 2397 | |
| 2398 | MachinePointerInfo StackPtrInfo = |
| 2399 | MachinePointerInfo::getFixedStack(MF, FI); |
| 2400 | MemOpChains.push_back( |
| 2401 | Elt: DAG.getStore(Chain, dl: DL, Val: ArgValue, Ptr: SpillSlot, PtrInfo: StackPtrInfo)); |
| 2402 | // If the original argument was split (e.g. i128), we need |
| 2403 | // to store all parts of it here (and pass just one address). |
| 2404 | assert(Outs[I].PartOffset == 0); |
| 2405 | for (unsigned PartIdx = 1; PartIdx < NumParts; ++PartIdx) { |
| 2406 | ++I; |
| 2407 | SDValue PartValue = OutVals[I]; |
| 2408 | unsigned PartOffset = Outs[I].PartOffset; |
| 2409 | SDValue Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: SpillSlot, |
| 2410 | N2: DAG.getIntPtrConstant(Val: PartOffset, DL)); |
| 2411 | MemOpChains.push_back( |
| 2412 | Elt: DAG.getStore(Chain, dl: DL, Val: PartValue, Ptr: Address, |
| 2413 | PtrInfo: StackPtrInfo.getWithOffset(O: PartOffset))); |
| 2414 | assert(PartOffset && "Offset should be non-zero." ); |
| 2415 | assert((PartOffset + PartValue.getValueType().getStoreSize() <= |
| 2416 | SlotVT.getStoreSize()) && "Not enough space for argument part!" ); |
| 2417 | } |
| 2418 | ArgValue = SpillSlot; |
| 2419 | } else |
| 2420 | ArgValue = convertValVTToLocVT(DAG, DL, VA, Value: ArgValue); |
| 2421 | |
| 2422 | if (VA.isRegLoc()) { |
| 2423 | // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a |
| 2424 | // MVT::i128 type. We decompose the 128-bit type to a pair of its high |
| 2425 | // and low values. |
| 2426 | if (VA.getLocVT() == MVT::i128) |
| 2427 | ArgValue = lowerI128ToGR128(DAG, In: ArgValue); |
| 2428 | // Queue up the argument copies and emit them at the end. |
| 2429 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: ArgValue)); |
| 2430 | } else { |
| 2431 | assert(VA.isMemLoc() && "Argument not register or memory" ); |
| 2432 | |
| 2433 | // Work out the address of the stack slot. Unpromoted ints and |
| 2434 | // floats are passed as right-justified 8-byte values. |
| 2435 | if (!StackPtr.getNode()) |
| 2436 | StackPtr = DAG.getCopyFromReg(Chain, dl: DL, |
| 2437 | Reg: Regs->getStackPointerRegister(), VT: PtrVT); |
| 2438 | unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + |
| 2439 | VA.getLocMemOffset(); |
| 2440 | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) |
| 2441 | Offset += 4; |
| 2442 | else if (VA.getLocVT() == MVT::f16) |
| 2443 | Offset += 6; |
| 2444 | SDValue Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, |
| 2445 | N2: DAG.getIntPtrConstant(Val: Offset, DL)); |
| 2446 | |
| 2447 | // Emit the store. |
| 2448 | MemOpChains.push_back( |
| 2449 | Elt: DAG.getStore(Chain, dl: DL, Val: ArgValue, Ptr: Address, PtrInfo: MachinePointerInfo())); |
| 2450 | |
| 2451 | // Although long doubles or vectors are passed through the stack when |
| 2452 | // they are vararg (non-fixed arguments), if a long double or vector |
| 2453 | // occupies the third and fourth slot of the argument list GPR3 should |
| 2454 | // still shadow the third slot of the argument list. |
| 2455 | if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { |
| 2456 | SDValue ShadowArgValue = |
| 2457 | DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i64, N1: ArgValue, |
| 2458 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 2459 | RegsToPass.push_back(Elt: std::make_pair(x: SystemZ::R3D, y&: ShadowArgValue)); |
| 2460 | } |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | // Join the stores, which are independent of one another. |
| 2465 | if (!MemOpChains.empty()) |
| 2466 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOpChains); |
| 2467 | |
| 2468 | // Accept direct calls by converting symbolic call addresses to the |
| 2469 | // associated Target* opcodes. Force %r1 to be used for indirect |
| 2470 | // tail calls. |
| 2471 | SDValue Glue; |
| 2472 | |
| 2473 | if (Subtarget.isTargetXPLINK64()) { |
| 2474 | SDValue ADA; |
| 2475 | bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain); |
| 2476 | if (!IsBRASL) { |
| 2477 | unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs) |
| 2478 | ->getAddressOfCalleeRegister(); |
| 2479 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: CalleeReg, N: Callee, Glue); |
| 2480 | Glue = Chain.getValue(R: 1); |
| 2481 | Callee = DAG.getRegister(Reg: CalleeReg, VT: Callee.getValueType()); |
| 2482 | } |
| 2483 | RegsToPass.push_back(Elt: std::make_pair( |
| 2484 | x: static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), y&: ADA)); |
| 2485 | } else { |
| 2486 | if (auto *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) { |
| 2487 | Callee = DAG.getTargetGlobalAddress(GV: G->getGlobal(), DL, VT: PtrVT); |
| 2488 | Callee = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Callee); |
| 2489 | } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) { |
| 2490 | Callee = DAG.getTargetExternalSymbol(Sym: E->getSymbol(), VT: PtrVT); |
| 2491 | Callee = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Callee); |
| 2492 | } else if (IsTailCall) { |
| 2493 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: SystemZ::R1D, N: Callee, Glue); |
| 2494 | Glue = Chain.getValue(R: 1); |
| 2495 | Callee = DAG.getRegister(Reg: SystemZ::R1D, VT: Callee.getValueType()); |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | // Build a sequence of copy-to-reg nodes, chained and glued together. |
| 2500 | for (const auto &[Reg, N] : RegsToPass) { |
| 2501 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg, N, Glue); |
| 2502 | Glue = Chain.getValue(R: 1); |
| 2503 | } |
| 2504 | |
| 2505 | // The first call operand is the chain and the second is the target address. |
| 2506 | SmallVector<SDValue, 8> Ops; |
| 2507 | Ops.push_back(Elt: Chain); |
| 2508 | Ops.push_back(Elt: Callee); |
| 2509 | |
| 2510 | // Add argument registers to the end of the list so that they are |
| 2511 | // known live into the call. |
| 2512 | for (const auto &[Reg, N] : RegsToPass) |
| 2513 | Ops.push_back(Elt: DAG.getRegister(Reg, VT: N.getValueType())); |
| 2514 | |
| 2515 | // Add a register mask operand representing the call-preserved registers. |
| 2516 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 2517 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| 2518 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 2519 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 2520 | |
| 2521 | // Glue the call to the argument copies, if any. |
| 2522 | if (Glue.getNode()) |
| 2523 | Ops.push_back(Elt: Glue); |
| 2524 | |
| 2525 | // Emit the call. |
| 2526 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 2527 | if (IsTailCall) { |
| 2528 | SDValue Ret = DAG.getNode(Opcode: SystemZISD::SIBCALL, DL, VTList: NodeTys, Ops); |
| 2529 | DAG.addNoMergeSiteInfo(Node: Ret.getNode(), NoMerge: CLI.NoMerge); |
| 2530 | return Ret; |
| 2531 | } |
| 2532 | Chain = DAG.getNode(Opcode: SystemZISD::CALL, DL, VTList: NodeTys, Ops); |
| 2533 | DAG.addNoMergeSiteInfo(Node: Chain.getNode(), NoMerge: CLI.NoMerge); |
| 2534 | Glue = Chain.getValue(R: 1); |
| 2535 | |
| 2536 | // Mark the end of the call, which is glued to the call itself. |
| 2537 | Chain = DAG.getCALLSEQ_END(Chain, Size1: NumBytes, Size2: 0, Glue, DL); |
| 2538 | Glue = Chain.getValue(R: 1); |
| 2539 | |
| 2540 | // Assign locations to each value returned by this call. |
| 2541 | SmallVector<CCValAssign, 16> RetLocs; |
| 2542 | CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); |
| 2543 | RetCCInfo.AnalyzeCallResult(Ins, Fn: RetCC_SystemZ); |
| 2544 | |
| 2545 | // Copy all of the result registers out of their specified physreg. |
| 2546 | for (CCValAssign &VA : RetLocs) { |
| 2547 | // Copy the value out, gluing the copy to the end of the call sequence. |
| 2548 | SDValue RetValue = DAG.getCopyFromReg(Chain, dl: DL, Reg: VA.getLocReg(), |
| 2549 | VT: VA.getLocVT(), Glue); |
| 2550 | Chain = RetValue.getValue(R: 1); |
| 2551 | Glue = RetValue.getValue(R: 2); |
| 2552 | |
| 2553 | // Convert the value of the return register into the value that's |
| 2554 | // being returned. |
| 2555 | InVals.push_back(Elt: convertLocVTToValVT(DAG, DL, VA, Chain, Value: RetValue)); |
| 2556 | } |
| 2557 | |
| 2558 | return Chain; |
| 2559 | } |
| 2560 | |
| 2561 | // Generate a call taking the given operands as arguments and returning a |
| 2562 | // result of type RetVT. |
| 2563 | std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( |
| 2564 | SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, |
| 2565 | ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, |
| 2566 | bool DoesNotReturn, bool IsReturnValueUsed) const { |
| 2567 | TargetLowering::ArgListTy Args; |
| 2568 | Args.reserve(n: Ops.size()); |
| 2569 | |
| 2570 | for (SDValue Op : Ops) { |
| 2571 | TargetLowering::ArgListEntry Entry( |
| 2572 | Op, Op.getValueType().getTypeForEVT(Context&: *DAG.getContext())); |
| 2573 | Entry.IsSExt = shouldSignExtendTypeInLibCall(Ty: Entry.Ty, IsSigned); |
| 2574 | Entry.IsZExt = !Entry.IsSExt; |
| 2575 | Args.push_back(x: Entry); |
| 2576 | } |
| 2577 | |
| 2578 | SDValue Callee = |
| 2579 | DAG.getExternalSymbol(Sym: CalleeName, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2580 | |
| 2581 | Type *RetTy = RetVT.getTypeForEVT(Context&: *DAG.getContext()); |
| 2582 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 2583 | bool SignExtend = shouldSignExtendTypeInLibCall(Ty: RetTy, IsSigned); |
| 2584 | CLI.setDebugLoc(DL) |
| 2585 | .setChain(Chain) |
| 2586 | .setCallee(CC: CallConv, ResultType: RetTy, Target: Callee, ArgsList: std::move(Args)) |
| 2587 | .setNoReturn(DoesNotReturn) |
| 2588 | .setDiscardResult(!IsReturnValueUsed) |
| 2589 | .setSExtResult(SignExtend) |
| 2590 | .setZExtResult(!SignExtend); |
| 2591 | return LowerCallTo(CLI); |
| 2592 | } |
| 2593 | |
| 2594 | bool SystemZTargetLowering::CanLowerReturn( |
| 2595 | CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| 2596 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, |
| 2597 | const Type *RetTy) const { |
| 2598 | // Special case that we cannot easily detect in RetCC_SystemZ since |
| 2599 | // i128 may not be a legal type. |
| 2600 | for (auto &Out : Outs) |
| 2601 | if (Out.ArgVT.isScalarInteger() && Out.ArgVT.getSizeInBits() > 64) |
| 2602 | return false; |
| 2603 | |
| 2604 | SmallVector<CCValAssign, 16> RetLocs; |
| 2605 | CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Context); |
| 2606 | return RetCCInfo.CheckReturn(Outs, Fn: RetCC_SystemZ); |
| 2607 | } |
| 2608 | |
| 2609 | SDValue |
| 2610 | SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 2611 | bool IsVarArg, |
| 2612 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 2613 | const SmallVectorImpl<SDValue> &OutVals, |
| 2614 | const SDLoc &DL, SelectionDAG &DAG) const { |
| 2615 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2616 | |
| 2617 | // Integer args <=32 bits should have an extension attribute. |
| 2618 | verifyNarrowIntegerArgs_Ret(Outs, F: &MF.getFunction()); |
| 2619 | |
| 2620 | // Assign locations to each returned value. |
| 2621 | SmallVector<CCValAssign, 16> RetLocs; |
| 2622 | CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); |
| 2623 | RetCCInfo.AnalyzeReturn(Outs, Fn: RetCC_SystemZ); |
| 2624 | |
| 2625 | // Quick exit for void returns |
| 2626 | if (RetLocs.empty()) |
| 2627 | return DAG.getNode(Opcode: SystemZISD::RET_GLUE, DL, VT: MVT::Other, Operand: Chain); |
| 2628 | |
| 2629 | if (CallConv == CallingConv::GHC) |
| 2630 | report_fatal_error(reason: "GHC functions return void only" ); |
| 2631 | |
| 2632 | // Copy the result values into the output registers. |
| 2633 | SDValue Glue; |
| 2634 | SmallVector<SDValue, 4> RetOps; |
| 2635 | RetOps.push_back(Elt: Chain); |
| 2636 | for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { |
| 2637 | CCValAssign &VA = RetLocs[I]; |
| 2638 | SDValue RetValue = OutVals[I]; |
| 2639 | |
| 2640 | // Make the return register live on exit. |
| 2641 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 2642 | |
| 2643 | // Promote the value as required. |
| 2644 | RetValue = convertValVTToLocVT(DAG, DL, VA, Value: RetValue); |
| 2645 | |
| 2646 | // Chain and glue the copies together. |
| 2647 | Register Reg = VA.getLocReg(); |
| 2648 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg, N: RetValue, Glue); |
| 2649 | Glue = Chain.getValue(R: 1); |
| 2650 | RetOps.push_back(Elt: DAG.getRegister(Reg, VT: VA.getLocVT())); |
| 2651 | } |
| 2652 | |
| 2653 | // Update chain and glue. |
| 2654 | RetOps[0] = Chain; |
| 2655 | if (Glue.getNode()) |
| 2656 | RetOps.push_back(Elt: Glue); |
| 2657 | |
| 2658 | return DAG.getNode(Opcode: SystemZISD::RET_GLUE, DL, VT: MVT::Other, Ops: RetOps); |
| 2659 | } |
| 2660 | |
| 2661 | // Return true if Op is an intrinsic node with chain that returns the CC value |
| 2662 | // as its only (other) argument. Provide the associated SystemZISD opcode and |
| 2663 | // the mask of valid CC values if so. |
| 2664 | static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, |
| 2665 | unsigned &CCValid) { |
| 2666 | unsigned Id = Op.getConstantOperandVal(i: 1); |
| 2667 | switch (Id) { |
| 2668 | case Intrinsic::s390_tbegin: |
| 2669 | Opcode = SystemZISD::TBEGIN; |
| 2670 | CCValid = SystemZ::CCMASK_TBEGIN; |
| 2671 | return true; |
| 2672 | |
| 2673 | case Intrinsic::s390_tbegin_nofloat: |
| 2674 | Opcode = SystemZISD::TBEGIN_NOFLOAT; |
| 2675 | CCValid = SystemZ::CCMASK_TBEGIN; |
| 2676 | return true; |
| 2677 | |
| 2678 | case Intrinsic::s390_tend: |
| 2679 | Opcode = SystemZISD::TEND; |
| 2680 | CCValid = SystemZ::CCMASK_TEND; |
| 2681 | return true; |
| 2682 | |
| 2683 | default: |
| 2684 | return false; |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | // Return true if Op is an intrinsic node without chain that returns the |
| 2689 | // CC value as its final argument. Provide the associated SystemZISD |
| 2690 | // opcode and the mask of valid CC values if so. |
| 2691 | static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { |
| 2692 | unsigned Id = Op.getConstantOperandVal(i: 0); |
| 2693 | switch (Id) { |
| 2694 | case Intrinsic::s390_vpkshs: |
| 2695 | case Intrinsic::s390_vpksfs: |
| 2696 | case Intrinsic::s390_vpksgs: |
| 2697 | Opcode = SystemZISD::PACKS_CC; |
| 2698 | CCValid = SystemZ::CCMASK_VCMP; |
| 2699 | return true; |
| 2700 | |
| 2701 | case Intrinsic::s390_vpklshs: |
| 2702 | case Intrinsic::s390_vpklsfs: |
| 2703 | case Intrinsic::s390_vpklsgs: |
| 2704 | Opcode = SystemZISD::PACKLS_CC; |
| 2705 | CCValid = SystemZ::CCMASK_VCMP; |
| 2706 | return true; |
| 2707 | |
| 2708 | case Intrinsic::s390_vceqbs: |
| 2709 | case Intrinsic::s390_vceqhs: |
| 2710 | case Intrinsic::s390_vceqfs: |
| 2711 | case Intrinsic::s390_vceqgs: |
| 2712 | case Intrinsic::s390_vceqqs: |
| 2713 | Opcode = SystemZISD::VICMPES; |
| 2714 | CCValid = SystemZ::CCMASK_VCMP; |
| 2715 | return true; |
| 2716 | |
| 2717 | case Intrinsic::s390_vchbs: |
| 2718 | case Intrinsic::s390_vchhs: |
| 2719 | case Intrinsic::s390_vchfs: |
| 2720 | case Intrinsic::s390_vchgs: |
| 2721 | case Intrinsic::s390_vchqs: |
| 2722 | Opcode = SystemZISD::VICMPHS; |
| 2723 | CCValid = SystemZ::CCMASK_VCMP; |
| 2724 | return true; |
| 2725 | |
| 2726 | case Intrinsic::s390_vchlbs: |
| 2727 | case Intrinsic::s390_vchlhs: |
| 2728 | case Intrinsic::s390_vchlfs: |
| 2729 | case Intrinsic::s390_vchlgs: |
| 2730 | case Intrinsic::s390_vchlqs: |
| 2731 | Opcode = SystemZISD::VICMPHLS; |
| 2732 | CCValid = SystemZ::CCMASK_VCMP; |
| 2733 | return true; |
| 2734 | |
| 2735 | case Intrinsic::s390_vtm: |
| 2736 | Opcode = SystemZISD::VTM; |
| 2737 | CCValid = SystemZ::CCMASK_VCMP; |
| 2738 | return true; |
| 2739 | |
| 2740 | case Intrinsic::s390_vfaebs: |
| 2741 | case Intrinsic::s390_vfaehs: |
| 2742 | case Intrinsic::s390_vfaefs: |
| 2743 | Opcode = SystemZISD::VFAE_CC; |
| 2744 | CCValid = SystemZ::CCMASK_ANY; |
| 2745 | return true; |
| 2746 | |
| 2747 | case Intrinsic::s390_vfaezbs: |
| 2748 | case Intrinsic::s390_vfaezhs: |
| 2749 | case Intrinsic::s390_vfaezfs: |
| 2750 | Opcode = SystemZISD::VFAEZ_CC; |
| 2751 | CCValid = SystemZ::CCMASK_ANY; |
| 2752 | return true; |
| 2753 | |
| 2754 | case Intrinsic::s390_vfeebs: |
| 2755 | case Intrinsic::s390_vfeehs: |
| 2756 | case Intrinsic::s390_vfeefs: |
| 2757 | Opcode = SystemZISD::VFEE_CC; |
| 2758 | CCValid = SystemZ::CCMASK_ANY; |
| 2759 | return true; |
| 2760 | |
| 2761 | case Intrinsic::s390_vfeezbs: |
| 2762 | case Intrinsic::s390_vfeezhs: |
| 2763 | case Intrinsic::s390_vfeezfs: |
| 2764 | Opcode = SystemZISD::VFEEZ_CC; |
| 2765 | CCValid = SystemZ::CCMASK_ANY; |
| 2766 | return true; |
| 2767 | |
| 2768 | case Intrinsic::s390_vfenebs: |
| 2769 | case Intrinsic::s390_vfenehs: |
| 2770 | case Intrinsic::s390_vfenefs: |
| 2771 | Opcode = SystemZISD::VFENE_CC; |
| 2772 | CCValid = SystemZ::CCMASK_ANY; |
| 2773 | return true; |
| 2774 | |
| 2775 | case Intrinsic::s390_vfenezbs: |
| 2776 | case Intrinsic::s390_vfenezhs: |
| 2777 | case Intrinsic::s390_vfenezfs: |
| 2778 | Opcode = SystemZISD::VFENEZ_CC; |
| 2779 | CCValid = SystemZ::CCMASK_ANY; |
| 2780 | return true; |
| 2781 | |
| 2782 | case Intrinsic::s390_vistrbs: |
| 2783 | case Intrinsic::s390_vistrhs: |
| 2784 | case Intrinsic::s390_vistrfs: |
| 2785 | Opcode = SystemZISD::VISTR_CC; |
| 2786 | CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; |
| 2787 | return true; |
| 2788 | |
| 2789 | case Intrinsic::s390_vstrcbs: |
| 2790 | case Intrinsic::s390_vstrchs: |
| 2791 | case Intrinsic::s390_vstrcfs: |
| 2792 | Opcode = SystemZISD::VSTRC_CC; |
| 2793 | CCValid = SystemZ::CCMASK_ANY; |
| 2794 | return true; |
| 2795 | |
| 2796 | case Intrinsic::s390_vstrczbs: |
| 2797 | case Intrinsic::s390_vstrczhs: |
| 2798 | case Intrinsic::s390_vstrczfs: |
| 2799 | Opcode = SystemZISD::VSTRCZ_CC; |
| 2800 | CCValid = SystemZ::CCMASK_ANY; |
| 2801 | return true; |
| 2802 | |
| 2803 | case Intrinsic::s390_vstrsb: |
| 2804 | case Intrinsic::s390_vstrsh: |
| 2805 | case Intrinsic::s390_vstrsf: |
| 2806 | Opcode = SystemZISD::VSTRS_CC; |
| 2807 | CCValid = SystemZ::CCMASK_ANY; |
| 2808 | return true; |
| 2809 | |
| 2810 | case Intrinsic::s390_vstrszb: |
| 2811 | case Intrinsic::s390_vstrszh: |
| 2812 | case Intrinsic::s390_vstrszf: |
| 2813 | Opcode = SystemZISD::VSTRSZ_CC; |
| 2814 | CCValid = SystemZ::CCMASK_ANY; |
| 2815 | return true; |
| 2816 | |
| 2817 | case Intrinsic::s390_vfcedbs: |
| 2818 | case Intrinsic::s390_vfcesbs: |
| 2819 | Opcode = SystemZISD::VFCMPES; |
| 2820 | CCValid = SystemZ::CCMASK_VCMP; |
| 2821 | return true; |
| 2822 | |
| 2823 | case Intrinsic::s390_vfchdbs: |
| 2824 | case Intrinsic::s390_vfchsbs: |
| 2825 | Opcode = SystemZISD::VFCMPHS; |
| 2826 | CCValid = SystemZ::CCMASK_VCMP; |
| 2827 | return true; |
| 2828 | |
| 2829 | case Intrinsic::s390_vfchedbs: |
| 2830 | case Intrinsic::s390_vfchesbs: |
| 2831 | Opcode = SystemZISD::VFCMPHES; |
| 2832 | CCValid = SystemZ::CCMASK_VCMP; |
| 2833 | return true; |
| 2834 | |
| 2835 | case Intrinsic::s390_vftcidb: |
| 2836 | case Intrinsic::s390_vftcisb: |
| 2837 | Opcode = SystemZISD::VFTCI; |
| 2838 | CCValid = SystemZ::CCMASK_VCMP; |
| 2839 | return true; |
| 2840 | |
| 2841 | case Intrinsic::s390_tdc: |
| 2842 | Opcode = SystemZISD::TDC; |
| 2843 | CCValid = SystemZ::CCMASK_TDC; |
| 2844 | return true; |
| 2845 | |
| 2846 | default: |
| 2847 | return false; |
| 2848 | } |
| 2849 | } |
| 2850 | |
| 2851 | // Emit an intrinsic with chain and an explicit CC register result. |
| 2852 | static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, |
| 2853 | unsigned Opcode) { |
| 2854 | // Copy all operands except the intrinsic ID. |
| 2855 | unsigned NumOps = Op.getNumOperands(); |
| 2856 | SmallVector<SDValue, 6> Ops; |
| 2857 | Ops.reserve(N: NumOps - 1); |
| 2858 | Ops.push_back(Elt: Op.getOperand(i: 0)); |
| 2859 | for (unsigned I = 2; I < NumOps; ++I) |
| 2860 | Ops.push_back(Elt: Op.getOperand(i: I)); |
| 2861 | |
| 2862 | assert(Op->getNumValues() == 2 && "Expected only CC result and chain" ); |
| 2863 | SDVTList RawVTs = DAG.getVTList(VT1: MVT::i32, VT2: MVT::Other); |
| 2864 | SDValue Intr = DAG.getNode(Opcode, DL: SDLoc(Op), VTList: RawVTs, Ops); |
| 2865 | SDValue OldChain = SDValue(Op.getNode(), 1); |
| 2866 | SDValue NewChain = SDValue(Intr.getNode(), 1); |
| 2867 | DAG.ReplaceAllUsesOfValueWith(From: OldChain, To: NewChain); |
| 2868 | return Intr.getNode(); |
| 2869 | } |
| 2870 | |
| 2871 | // Emit an intrinsic with an explicit CC register result. |
| 2872 | static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, |
| 2873 | unsigned Opcode) { |
| 2874 | // Copy all operands except the intrinsic ID. |
| 2875 | SDLoc DL(Op); |
| 2876 | unsigned NumOps = Op.getNumOperands(); |
| 2877 | SmallVector<SDValue, 6> Ops; |
| 2878 | Ops.reserve(N: NumOps - 1); |
| 2879 | for (unsigned I = 1; I < NumOps; ++I) { |
| 2880 | SDValue CurrOper = Op.getOperand(i: I); |
| 2881 | if (CurrOper.getValueType() == MVT::f16) { |
| 2882 | assert((Op.getConstantOperandVal(0) == Intrinsic::s390_tdc && I == 1) && |
| 2883 | "Unhandled intrinsic with f16 operand." ); |
| 2884 | CurrOper = DAG.getFPExtendOrRound(Op: CurrOper, DL, VT: MVT::f32); |
| 2885 | } |
| 2886 | Ops.push_back(Elt: CurrOper); |
| 2887 | } |
| 2888 | |
| 2889 | SDValue Intr = DAG.getNode(Opcode, DL, VTList: Op->getVTList(), Ops); |
| 2890 | return Intr.getNode(); |
| 2891 | } |
| 2892 | |
| 2893 | // CC is a comparison that will be implemented using an integer or |
| 2894 | // floating-point comparison. Return the condition code mask for |
| 2895 | // a branch on true. In the integer case, CCMASK_CMP_UO is set for |
| 2896 | // unsigned comparisons and clear for signed ones. In the floating-point |
| 2897 | // case, CCMASK_CMP_UO has its normal mask meaning (unordered). |
| 2898 | static unsigned CCMaskForCondCode(ISD::CondCode CC) { |
| 2899 | #define CONV(X) \ |
| 2900 | case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ |
| 2901 | case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ |
| 2902 | case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X |
| 2903 | |
| 2904 | switch (CC) { |
| 2905 | default: |
| 2906 | llvm_unreachable("Invalid integer condition!" ); |
| 2907 | |
| 2908 | CONV(EQ); |
| 2909 | CONV(NE); |
| 2910 | CONV(GT); |
| 2911 | CONV(GE); |
| 2912 | CONV(LT); |
| 2913 | CONV(LE); |
| 2914 | |
| 2915 | case ISD::SETO: return SystemZ::CCMASK_CMP_O; |
| 2916 | case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; |
| 2917 | } |
| 2918 | #undef CONV |
| 2919 | } |
| 2920 | |
| 2921 | // If C can be converted to a comparison against zero, adjust the operands |
| 2922 | // as necessary. |
| 2923 | static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { |
| 2924 | if (C.ICmpType == SystemZICMP::UnsignedOnly) |
| 2925 | return; |
| 2926 | |
| 2927 | auto *ConstOp1 = dyn_cast<ConstantSDNode>(Val: C.Op1.getNode()); |
| 2928 | if (!ConstOp1 || ConstOp1->getValueSizeInBits(ResNo: 0) > 64) |
| 2929 | return; |
| 2930 | |
| 2931 | int64_t Value = ConstOp1->getSExtValue(); |
| 2932 | if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || |
| 2933 | (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || |
| 2934 | (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || |
| 2935 | (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { |
| 2936 | C.CCMask ^= SystemZ::CCMASK_CMP_EQ; |
| 2937 | C.Op1 = DAG.getConstant(Val: 0, DL, VT: C.Op1.getValueType()); |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, |
| 2942 | // adjust the operands as necessary. |
| 2943 | static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, |
| 2944 | Comparison &C) { |
| 2945 | // For us to make any changes, it must a comparison between a single-use |
| 2946 | // load and a constant. |
| 2947 | if (!C.Op0.hasOneUse() || |
| 2948 | C.Op0.getOpcode() != ISD::LOAD || |
| 2949 | C.Op1.getOpcode() != ISD::Constant) |
| 2950 | return; |
| 2951 | |
| 2952 | // We must have an 8- or 16-bit load. |
| 2953 | auto *Load = cast<LoadSDNode>(Val&: C.Op0); |
| 2954 | unsigned NumBits = Load->getMemoryVT().getSizeInBits(); |
| 2955 | if ((NumBits != 8 && NumBits != 16) || |
| 2956 | NumBits != Load->getMemoryVT().getStoreSizeInBits()) |
| 2957 | return; |
| 2958 | |
| 2959 | // The load must be an extending one and the constant must be within the |
| 2960 | // range of the unextended value. |
| 2961 | auto *ConstOp1 = cast<ConstantSDNode>(Val&: C.Op1); |
| 2962 | if (!ConstOp1 || ConstOp1->getValueSizeInBits(ResNo: 0) > 64) |
| 2963 | return; |
| 2964 | uint64_t Value = ConstOp1->getZExtValue(); |
| 2965 | uint64_t Mask = (1 << NumBits) - 1; |
| 2966 | if (Load->getExtensionType() == ISD::SEXTLOAD) { |
| 2967 | // Make sure that ConstOp1 is in range of C.Op0. |
| 2968 | int64_t SignedValue = ConstOp1->getSExtValue(); |
| 2969 | if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) |
| 2970 | return; |
| 2971 | if (C.ICmpType != SystemZICMP::SignedOnly) { |
| 2972 | // Unsigned comparison between two sign-extended values is equivalent |
| 2973 | // to unsigned comparison between two zero-extended values. |
| 2974 | Value &= Mask; |
| 2975 | } else if (NumBits == 8) { |
| 2976 | // Try to treat the comparison as unsigned, so that we can use CLI. |
| 2977 | // Adjust CCMask and Value as necessary. |
| 2978 | if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) |
| 2979 | // Test whether the high bit of the byte is set. |
| 2980 | Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; |
| 2981 | else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) |
| 2982 | // Test whether the high bit of the byte is clear. |
| 2983 | Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; |
| 2984 | else |
| 2985 | // No instruction exists for this combination. |
| 2986 | return; |
| 2987 | C.ICmpType = SystemZICMP::UnsignedOnly; |
| 2988 | } |
| 2989 | } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { |
| 2990 | if (Value > Mask) |
| 2991 | return; |
| 2992 | // If the constant is in range, we can use any comparison. |
| 2993 | C.ICmpType = SystemZICMP::Any; |
| 2994 | } else |
| 2995 | return; |
| 2996 | |
| 2997 | // Make sure that the first operand is an i32 of the right extension type. |
| 2998 | ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? |
| 2999 | ISD::SEXTLOAD : |
| 3000 | ISD::ZEXTLOAD); |
| 3001 | if (C.Op0.getValueType() != MVT::i32 || |
| 3002 | Load->getExtensionType() != ExtType) { |
| 3003 | C.Op0 = DAG.getExtLoad(ExtType, dl: SDLoc(Load), VT: MVT::i32, Chain: Load->getChain(), |
| 3004 | Ptr: Load->getBasePtr(), PtrInfo: Load->getPointerInfo(), |
| 3005 | MemVT: Load->getMemoryVT(), Alignment: Load->getAlign(), |
| 3006 | MMOFlags: Load->getMemOperand()->getFlags()); |
| 3007 | // Update the chain uses. |
| 3008 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(Load, 1), To: C.Op0.getValue(R: 1)); |
| 3009 | } |
| 3010 | |
| 3011 | // Make sure that the second operand is an i32 with the right value. |
| 3012 | if (C.Op1.getValueType() != MVT::i32 || |
| 3013 | Value != ConstOp1->getZExtValue()) |
| 3014 | C.Op1 = DAG.getConstant(Val: (uint32_t)Value, DL, VT: MVT::i32); |
| 3015 | } |
| 3016 | |
| 3017 | // Return true if Op is either an unextended load, or a load suitable |
| 3018 | // for integer register-memory comparisons of type ICmpType. |
| 3019 | static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { |
| 3020 | auto *Load = dyn_cast<LoadSDNode>(Val: Op.getNode()); |
| 3021 | if (Load) { |
| 3022 | // There are no instructions to compare a register with a memory byte. |
| 3023 | if (Load->getMemoryVT() == MVT::i8) |
| 3024 | return false; |
| 3025 | // Otherwise decide on extension type. |
| 3026 | switch (Load->getExtensionType()) { |
| 3027 | case ISD::NON_EXTLOAD: |
| 3028 | return true; |
| 3029 | case ISD::SEXTLOAD: |
| 3030 | return ICmpType != SystemZICMP::UnsignedOnly; |
| 3031 | case ISD::ZEXTLOAD: |
| 3032 | return ICmpType != SystemZICMP::SignedOnly; |
| 3033 | default: |
| 3034 | break; |
| 3035 | } |
| 3036 | } |
| 3037 | return false; |
| 3038 | } |
| 3039 | |
| 3040 | // Return true if it is better to swap the operands of C. |
| 3041 | static bool shouldSwapCmpOperands(const Comparison &C) { |
| 3042 | // Leave i128 and f128 comparisons alone, since they have no memory forms. |
| 3043 | if (C.Op0.getValueType() == MVT::i128) |
| 3044 | return false; |
| 3045 | if (C.Op0.getValueType() == MVT::f128) |
| 3046 | return false; |
| 3047 | |
| 3048 | // Always keep a floating-point constant second, since comparisons with |
| 3049 | // zero can use LOAD TEST and comparisons with other constants make a |
| 3050 | // natural memory operand. |
| 3051 | if (isa<ConstantFPSDNode>(Val: C.Op1)) |
| 3052 | return false; |
| 3053 | |
| 3054 | // Never swap comparisons with zero since there are many ways to optimize |
| 3055 | // those later. |
| 3056 | auto *ConstOp1 = dyn_cast<ConstantSDNode>(Val: C.Op1); |
| 3057 | if (ConstOp1 && ConstOp1->getZExtValue() == 0) |
| 3058 | return false; |
| 3059 | |
| 3060 | // Also keep natural memory operands second if the loaded value is |
| 3061 | // only used here. Several comparisons have memory forms. |
| 3062 | if (isNaturalMemoryOperand(Op: C.Op1, ICmpType: C.ICmpType) && C.Op1.hasOneUse()) |
| 3063 | return false; |
| 3064 | |
| 3065 | // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. |
| 3066 | // In that case we generally prefer the memory to be second. |
| 3067 | if (isNaturalMemoryOperand(Op: C.Op0, ICmpType: C.ICmpType) && C.Op0.hasOneUse()) { |
| 3068 | // The only exceptions are when the second operand is a constant and |
| 3069 | // we can use things like CHHSI. |
| 3070 | if (!ConstOp1) |
| 3071 | return true; |
| 3072 | // The unsigned memory-immediate instructions can handle 16-bit |
| 3073 | // unsigned integers. |
| 3074 | if (C.ICmpType != SystemZICMP::SignedOnly && |
| 3075 | isUInt<16>(x: ConstOp1->getZExtValue())) |
| 3076 | return false; |
| 3077 | // The signed memory-immediate instructions can handle 16-bit |
| 3078 | // signed integers. |
| 3079 | if (C.ICmpType != SystemZICMP::UnsignedOnly && |
| 3080 | isInt<16>(x: ConstOp1->getSExtValue())) |
| 3081 | return false; |
| 3082 | return true; |
| 3083 | } |
| 3084 | |
| 3085 | // Try to promote the use of CGFR and CLGFR. |
| 3086 | unsigned Opcode0 = C.Op0.getOpcode(); |
| 3087 | if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) |
| 3088 | return true; |
| 3089 | if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) |
| 3090 | return true; |
| 3091 | if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND && |
| 3092 | C.Op0.getOperand(i: 1).getOpcode() == ISD::Constant && |
| 3093 | C.Op0.getConstantOperandVal(i: 1) == 0xffffffff) |
| 3094 | return true; |
| 3095 | |
| 3096 | return false; |
| 3097 | } |
| 3098 | |
| 3099 | // Check whether C tests for equality between X and Y and whether X - Y |
| 3100 | // or Y - X is also computed. In that case it's better to compare the |
| 3101 | // result of the subtraction against zero. |
| 3102 | static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, |
| 3103 | Comparison &C) { |
| 3104 | if (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3105 | C.CCMask == SystemZ::CCMASK_CMP_NE) { |
| 3106 | for (SDNode *N : C.Op0->users()) { |
| 3107 | if (N->getOpcode() == ISD::SUB && |
| 3108 | ((N->getOperand(Num: 0) == C.Op0 && N->getOperand(Num: 1) == C.Op1) || |
| 3109 | (N->getOperand(Num: 0) == C.Op1 && N->getOperand(Num: 1) == C.Op0))) { |
| 3110 | // Disable the nsw and nuw flags: the backend needs to handle |
| 3111 | // overflow as well during comparison elimination. |
| 3112 | N->dropFlags(Mask: SDNodeFlags::NoWrap); |
| 3113 | C.Op0 = SDValue(N, 0); |
| 3114 | C.Op1 = DAG.getConstant(Val: 0, DL, VT: N->getValueType(ResNo: 0)); |
| 3115 | return; |
| 3116 | } |
| 3117 | } |
| 3118 | } |
| 3119 | } |
| 3120 | |
| 3121 | // Check whether C compares a floating-point value with zero and if that |
| 3122 | // floating-point value is also negated. In this case we can use the |
| 3123 | // negation to set CC, so avoiding separate LOAD AND TEST and |
| 3124 | // LOAD (NEGATIVE/COMPLEMENT) instructions. |
| 3125 | static void adjustForFNeg(Comparison &C) { |
| 3126 | // This optimization is invalid for strict comparisons, since FNEG |
| 3127 | // does not raise any exceptions. |
| 3128 | if (C.Chain) |
| 3129 | return; |
| 3130 | auto *C1 = dyn_cast<ConstantFPSDNode>(Val&: C.Op1); |
| 3131 | if (C1 && C1->isZero()) { |
| 3132 | for (SDNode *N : C.Op0->users()) { |
| 3133 | if (N->getOpcode() == ISD::FNEG) { |
| 3134 | C.Op0 = SDValue(N, 0); |
| 3135 | C.CCMask = SystemZ::reverseCCMask(CCMask: C.CCMask); |
| 3136 | return; |
| 3137 | } |
| 3138 | } |
| 3139 | } |
| 3140 | } |
| 3141 | |
| 3142 | // Check whether C compares (shl X, 32) with 0 and whether X is |
| 3143 | // also sign-extended. In that case it is better to test the result |
| 3144 | // of the sign extension using LTGFR. |
| 3145 | // |
| 3146 | // This case is important because InstCombine transforms a comparison |
| 3147 | // with (sext (trunc X)) into a comparison with (shl X, 32). |
| 3148 | static void adjustForLTGFR(Comparison &C) { |
| 3149 | // Check for a comparison between (shl X, 32) and 0. |
| 3150 | if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 && |
| 3151 | C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) { |
| 3152 | auto *C1 = dyn_cast<ConstantSDNode>(Val: C.Op0.getOperand(i: 1)); |
| 3153 | if (C1 && C1->getZExtValue() == 32) { |
| 3154 | SDValue ShlOp0 = C.Op0.getOperand(i: 0); |
| 3155 | // See whether X has any SIGN_EXTEND_INREG uses. |
| 3156 | for (SDNode *N : ShlOp0->users()) { |
| 3157 | if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 3158 | cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT() == MVT::i32) { |
| 3159 | C.Op0 = SDValue(N, 0); |
| 3160 | return; |
| 3161 | } |
| 3162 | } |
| 3163 | } |
| 3164 | } |
| 3165 | } |
| 3166 | |
| 3167 | // If C compares the truncation of an extending load, try to compare |
| 3168 | // the untruncated value instead. This exposes more opportunities to |
| 3169 | // reuse CC. |
| 3170 | static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, |
| 3171 | Comparison &C) { |
| 3172 | if (C.Op0.getOpcode() == ISD::TRUNCATE && |
| 3173 | C.Op0.getOperand(i: 0).getOpcode() == ISD::LOAD && |
| 3174 | C.Op1.getOpcode() == ISD::Constant && |
| 3175 | cast<ConstantSDNode>(Val&: C.Op1)->getValueSizeInBits(ResNo: 0) <= 64 && |
| 3176 | C.Op1->getAsZExtVal() == 0) { |
| 3177 | auto *L = cast<LoadSDNode>(Val: C.Op0.getOperand(i: 0)); |
| 3178 | if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= |
| 3179 | C.Op0.getValueSizeInBits().getFixedValue()) { |
| 3180 | unsigned Type = L->getExtensionType(); |
| 3181 | if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || |
| 3182 | (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { |
| 3183 | C.Op0 = C.Op0.getOperand(i: 0); |
| 3184 | C.Op1 = DAG.getConstant(Val: 0, DL, VT: C.Op0.getValueType()); |
| 3185 | } |
| 3186 | } |
| 3187 | } |
| 3188 | } |
| 3189 | |
| 3190 | // Return true if shift operation N has an in-range constant shift value. |
| 3191 | // Store it in ShiftVal if so. |
| 3192 | static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { |
| 3193 | auto *Shift = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 3194 | if (!Shift) |
| 3195 | return false; |
| 3196 | |
| 3197 | uint64_t Amount = Shift->getZExtValue(); |
| 3198 | if (Amount >= N.getValueSizeInBits()) |
| 3199 | return false; |
| 3200 | |
| 3201 | ShiftVal = Amount; |
| 3202 | return true; |
| 3203 | } |
| 3204 | |
| 3205 | // Check whether an AND with Mask is suitable for a TEST UNDER MASK |
| 3206 | // instruction and whether the CC value is descriptive enough to handle |
| 3207 | // a comparison of type Opcode between the AND result and CmpVal. |
| 3208 | // CCMask says which comparison result is being tested and BitSize is |
| 3209 | // the number of bits in the operands. If TEST UNDER MASK can be used, |
| 3210 | // return the corresponding CC mask, otherwise return 0. |
| 3211 | static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, |
| 3212 | uint64_t Mask, uint64_t CmpVal, |
| 3213 | unsigned ICmpType) { |
| 3214 | assert(Mask != 0 && "ANDs with zero should have been removed by now" ); |
| 3215 | |
| 3216 | // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. |
| 3217 | if (!SystemZ::isImmLL(Val: Mask) && !SystemZ::isImmLH(Val: Mask) && |
| 3218 | !SystemZ::isImmHL(Val: Mask) && !SystemZ::isImmHH(Val: Mask)) |
| 3219 | return 0; |
| 3220 | |
| 3221 | // Work out the masks for the lowest and highest bits. |
| 3222 | uint64_t High = llvm::bit_floor(Value: Mask); |
| 3223 | uint64_t Low = uint64_t(1) << llvm::countr_zero(Val: Mask); |
| 3224 | |
| 3225 | // Signed ordered comparisons are effectively unsigned if the sign |
| 3226 | // bit is dropped. |
| 3227 | bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); |
| 3228 | |
| 3229 | // Check for equality comparisons with 0, or the equivalent. |
| 3230 | if (CmpVal == 0) { |
| 3231 | if (CCMask == SystemZ::CCMASK_CMP_EQ) |
| 3232 | return SystemZ::CCMASK_TM_ALL_0; |
| 3233 | if (CCMask == SystemZ::CCMASK_CMP_NE) |
| 3234 | return SystemZ::CCMASK_TM_SOME_1; |
| 3235 | } |
| 3236 | if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { |
| 3237 | if (CCMask == SystemZ::CCMASK_CMP_LT) |
| 3238 | return SystemZ::CCMASK_TM_ALL_0; |
| 3239 | if (CCMask == SystemZ::CCMASK_CMP_GE) |
| 3240 | return SystemZ::CCMASK_TM_SOME_1; |
| 3241 | } |
| 3242 | if (EffectivelyUnsigned && CmpVal < Low) { |
| 3243 | if (CCMask == SystemZ::CCMASK_CMP_LE) |
| 3244 | return SystemZ::CCMASK_TM_ALL_0; |
| 3245 | if (CCMask == SystemZ::CCMASK_CMP_GT) |
| 3246 | return SystemZ::CCMASK_TM_SOME_1; |
| 3247 | } |
| 3248 | |
| 3249 | // Check for equality comparisons with the mask, or the equivalent. |
| 3250 | if (CmpVal == Mask) { |
| 3251 | if (CCMask == SystemZ::CCMASK_CMP_EQ) |
| 3252 | return SystemZ::CCMASK_TM_ALL_1; |
| 3253 | if (CCMask == SystemZ::CCMASK_CMP_NE) |
| 3254 | return SystemZ::CCMASK_TM_SOME_0; |
| 3255 | } |
| 3256 | if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { |
| 3257 | if (CCMask == SystemZ::CCMASK_CMP_GT) |
| 3258 | return SystemZ::CCMASK_TM_ALL_1; |
| 3259 | if (CCMask == SystemZ::CCMASK_CMP_LE) |
| 3260 | return SystemZ::CCMASK_TM_SOME_0; |
| 3261 | } |
| 3262 | if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { |
| 3263 | if (CCMask == SystemZ::CCMASK_CMP_GE) |
| 3264 | return SystemZ::CCMASK_TM_ALL_1; |
| 3265 | if (CCMask == SystemZ::CCMASK_CMP_LT) |
| 3266 | return SystemZ::CCMASK_TM_SOME_0; |
| 3267 | } |
| 3268 | |
| 3269 | // Check for ordered comparisons with the top bit. |
| 3270 | if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { |
| 3271 | if (CCMask == SystemZ::CCMASK_CMP_LE) |
| 3272 | return SystemZ::CCMASK_TM_MSB_0; |
| 3273 | if (CCMask == SystemZ::CCMASK_CMP_GT) |
| 3274 | return SystemZ::CCMASK_TM_MSB_1; |
| 3275 | } |
| 3276 | if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { |
| 3277 | if (CCMask == SystemZ::CCMASK_CMP_LT) |
| 3278 | return SystemZ::CCMASK_TM_MSB_0; |
| 3279 | if (CCMask == SystemZ::CCMASK_CMP_GE) |
| 3280 | return SystemZ::CCMASK_TM_MSB_1; |
| 3281 | } |
| 3282 | |
| 3283 | // If there are just two bits, we can do equality checks for Low and High |
| 3284 | // as well. |
| 3285 | if (Mask == Low + High) { |
| 3286 | if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) |
| 3287 | return SystemZ::CCMASK_TM_MIXED_MSB_0; |
| 3288 | if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) |
| 3289 | return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; |
| 3290 | if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) |
| 3291 | return SystemZ::CCMASK_TM_MIXED_MSB_1; |
| 3292 | if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) |
| 3293 | return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; |
| 3294 | } |
| 3295 | |
| 3296 | // Looks like we've exhausted our options. |
| 3297 | return 0; |
| 3298 | } |
| 3299 | |
| 3300 | // See whether C can be implemented as a TEST UNDER MASK instruction. |
| 3301 | // Update the arguments with the TM version if so. |
| 3302 | static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, |
| 3303 | Comparison &C) { |
| 3304 | // Use VECTOR TEST UNDER MASK for i128 operations. |
| 3305 | if (C.Op0.getValueType() == MVT::i128) { |
| 3306 | // We can use VTM for EQ/NE comparisons of x & y against 0. |
| 3307 | if (C.Op0.getOpcode() == ISD::AND && |
| 3308 | (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3309 | C.CCMask == SystemZ::CCMASK_CMP_NE)) { |
| 3310 | auto *Mask = dyn_cast<ConstantSDNode>(Val&: C.Op1); |
| 3311 | if (Mask && Mask->getAPIntValue() == 0) { |
| 3312 | C.Opcode = SystemZISD::VTM; |
| 3313 | C.Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v16i8, Operand: C.Op0.getOperand(i: 1)); |
| 3314 | C.Op0 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v16i8, Operand: C.Op0.getOperand(i: 0)); |
| 3315 | C.CCValid = SystemZ::CCMASK_VCMP; |
| 3316 | if (C.CCMask == SystemZ::CCMASK_CMP_EQ) |
| 3317 | C.CCMask = SystemZ::CCMASK_VCMP_ALL; |
| 3318 | else |
| 3319 | C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; |
| 3320 | } |
| 3321 | } |
| 3322 | return; |
| 3323 | } |
| 3324 | |
| 3325 | // Check that we have a comparison with a constant. |
| 3326 | auto *ConstOp1 = dyn_cast<ConstantSDNode>(Val&: C.Op1); |
| 3327 | if (!ConstOp1) |
| 3328 | return; |
| 3329 | uint64_t CmpVal = ConstOp1->getZExtValue(); |
| 3330 | |
| 3331 | // Check whether the nonconstant input is an AND with a constant mask. |
| 3332 | Comparison NewC(C); |
| 3333 | uint64_t MaskVal; |
| 3334 | ConstantSDNode *Mask = nullptr; |
| 3335 | if (C.Op0.getOpcode() == ISD::AND) { |
| 3336 | NewC.Op0 = C.Op0.getOperand(i: 0); |
| 3337 | NewC.Op1 = C.Op0.getOperand(i: 1); |
| 3338 | Mask = dyn_cast<ConstantSDNode>(Val&: NewC.Op1); |
| 3339 | if (!Mask) |
| 3340 | return; |
| 3341 | MaskVal = Mask->getZExtValue(); |
| 3342 | } else { |
| 3343 | // There is no instruction to compare with a 64-bit immediate |
| 3344 | // so use TMHH instead if possible. We need an unsigned ordered |
| 3345 | // comparison with an i64 immediate. |
| 3346 | if (NewC.Op0.getValueType() != MVT::i64 || |
| 3347 | NewC.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3348 | NewC.CCMask == SystemZ::CCMASK_CMP_NE || |
| 3349 | NewC.ICmpType == SystemZICMP::SignedOnly) |
| 3350 | return; |
| 3351 | // Convert LE and GT comparisons into LT and GE. |
| 3352 | if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || |
| 3353 | NewC.CCMask == SystemZ::CCMASK_CMP_GT) { |
| 3354 | if (CmpVal == uint64_t(-1)) |
| 3355 | return; |
| 3356 | CmpVal += 1; |
| 3357 | NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; |
| 3358 | } |
| 3359 | // If the low N bits of Op1 are zero than the low N bits of Op0 can |
| 3360 | // be masked off without changing the result. |
| 3361 | MaskVal = -(CmpVal & -CmpVal); |
| 3362 | NewC.ICmpType = SystemZICMP::UnsignedOnly; |
| 3363 | } |
| 3364 | if (!MaskVal) |
| 3365 | return; |
| 3366 | |
| 3367 | // Check whether the combination of mask, comparison value and comparison |
| 3368 | // type are suitable. |
| 3369 | unsigned BitSize = NewC.Op0.getValueSizeInBits(); |
| 3370 | unsigned NewCCMask, ShiftVal; |
| 3371 | if (NewC.ICmpType != SystemZICMP::SignedOnly && |
| 3372 | NewC.Op0.getOpcode() == ISD::SHL && |
| 3373 | isSimpleShift(N: NewC.Op0, ShiftVal) && |
| 3374 | (MaskVal >> ShiftVal != 0) && |
| 3375 | ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && |
| 3376 | (NewCCMask = getTestUnderMaskCond(BitSize, CCMask: NewC.CCMask, |
| 3377 | Mask: MaskVal >> ShiftVal, |
| 3378 | CmpVal: CmpVal >> ShiftVal, |
| 3379 | ICmpType: SystemZICMP::Any))) { |
| 3380 | NewC.Op0 = NewC.Op0.getOperand(i: 0); |
| 3381 | MaskVal >>= ShiftVal; |
| 3382 | } else if (NewC.ICmpType != SystemZICMP::SignedOnly && |
| 3383 | NewC.Op0.getOpcode() == ISD::SRL && |
| 3384 | isSimpleShift(N: NewC.Op0, ShiftVal) && |
| 3385 | (MaskVal << ShiftVal != 0) && |
| 3386 | ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && |
| 3387 | (NewCCMask = getTestUnderMaskCond(BitSize, CCMask: NewC.CCMask, |
| 3388 | Mask: MaskVal << ShiftVal, |
| 3389 | CmpVal: CmpVal << ShiftVal, |
| 3390 | ICmpType: SystemZICMP::UnsignedOnly))) { |
| 3391 | NewC.Op0 = NewC.Op0.getOperand(i: 0); |
| 3392 | MaskVal <<= ShiftVal; |
| 3393 | } else { |
| 3394 | NewCCMask = getTestUnderMaskCond(BitSize, CCMask: NewC.CCMask, Mask: MaskVal, CmpVal, |
| 3395 | ICmpType: NewC.ICmpType); |
| 3396 | if (!NewCCMask) |
| 3397 | return; |
| 3398 | } |
| 3399 | |
| 3400 | // Go ahead and make the change. |
| 3401 | C.Opcode = SystemZISD::TM; |
| 3402 | C.Op0 = NewC.Op0; |
| 3403 | if (Mask && Mask->getZExtValue() == MaskVal) |
| 3404 | C.Op1 = SDValue(Mask, 0); |
| 3405 | else |
| 3406 | C.Op1 = DAG.getConstant(Val: MaskVal, DL, VT: C.Op0.getValueType()); |
| 3407 | C.CCValid = SystemZ::CCMASK_TM; |
| 3408 | C.CCMask = NewCCMask; |
| 3409 | } |
| 3410 | |
| 3411 | // Implement i128 comparison in vector registers. |
| 3412 | static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL, |
| 3413 | Comparison &C) { |
| 3414 | if (C.Opcode != SystemZISD::ICMP) |
| 3415 | return; |
| 3416 | if (C.Op0.getValueType() != MVT::i128) |
| 3417 | return; |
| 3418 | |
| 3419 | // Recognize vector comparison reductions. |
| 3420 | if ((C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3421 | C.CCMask == SystemZ::CCMASK_CMP_NE) && |
| 3422 | (isNullConstant(V: C.Op1) || isAllOnesConstant(V: C.Op1))) { |
| 3423 | bool CmpEq = C.CCMask == SystemZ::CCMASK_CMP_EQ; |
| 3424 | bool CmpNull = isNullConstant(V: C.Op1); |
| 3425 | SDValue Src = peekThroughBitcasts(V: C.Op0); |
| 3426 | if (Src.hasOneUse() && isBitwiseNot(V: Src)) { |
| 3427 | Src = Src.getOperand(i: 0); |
| 3428 | CmpNull = !CmpNull; |
| 3429 | } |
| 3430 | unsigned Opcode = 0; |
| 3431 | if (Src.hasOneUse()) { |
| 3432 | switch (Src.getOpcode()) { |
| 3433 | case SystemZISD::VICMPE: Opcode = SystemZISD::VICMPES; break; |
| 3434 | case SystemZISD::VICMPH: Opcode = SystemZISD::VICMPHS; break; |
| 3435 | case SystemZISD::VICMPHL: Opcode = SystemZISD::VICMPHLS; break; |
| 3436 | case SystemZISD::VFCMPE: Opcode = SystemZISD::VFCMPES; break; |
| 3437 | case SystemZISD::VFCMPH: Opcode = SystemZISD::VFCMPHS; break; |
| 3438 | case SystemZISD::VFCMPHE: Opcode = SystemZISD::VFCMPHES; break; |
| 3439 | default: break; |
| 3440 | } |
| 3441 | } |
| 3442 | if (Opcode) { |
| 3443 | C.Opcode = Opcode; |
| 3444 | C.Op0 = Src->getOperand(Num: 0); |
| 3445 | C.Op1 = Src->getOperand(Num: 1); |
| 3446 | C.CCValid = SystemZ::CCMASK_VCMP; |
| 3447 | C.CCMask = CmpNull ? SystemZ::CCMASK_VCMP_NONE : SystemZ::CCMASK_VCMP_ALL; |
| 3448 | if (!CmpEq) |
| 3449 | C.CCMask ^= C.CCValid; |
| 3450 | return; |
| 3451 | } |
| 3452 | } |
| 3453 | |
| 3454 | // Everything below here is not useful if we have native i128 compares. |
| 3455 | if (DAG.getSubtarget<SystemZSubtarget>().hasVectorEnhancements3()) |
| 3456 | return; |
| 3457 | |
| 3458 | // (In-)Equality comparisons can be implemented via VCEQGS. |
| 3459 | if (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3460 | C.CCMask == SystemZ::CCMASK_CMP_NE) { |
| 3461 | C.Opcode = SystemZISD::VICMPES; |
| 3462 | C.Op0 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v2i64, Operand: C.Op0); |
| 3463 | C.Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v2i64, Operand: C.Op1); |
| 3464 | C.CCValid = SystemZ::CCMASK_VCMP; |
| 3465 | if (C.CCMask == SystemZ::CCMASK_CMP_EQ) |
| 3466 | C.CCMask = SystemZ::CCMASK_VCMP_ALL; |
| 3467 | else |
| 3468 | C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; |
| 3469 | return; |
| 3470 | } |
| 3471 | |
| 3472 | // Normalize other comparisons to GT. |
| 3473 | bool Swap = false, Invert = false; |
| 3474 | switch (C.CCMask) { |
| 3475 | case SystemZ::CCMASK_CMP_GT: break; |
| 3476 | case SystemZ::CCMASK_CMP_LT: Swap = true; break; |
| 3477 | case SystemZ::CCMASK_CMP_LE: Invert = true; break; |
| 3478 | case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break; |
| 3479 | default: llvm_unreachable("Invalid integer condition!" ); |
| 3480 | } |
| 3481 | if (Swap) |
| 3482 | std::swap(a&: C.Op0, b&: C.Op1); |
| 3483 | |
| 3484 | if (C.ICmpType == SystemZICMP::UnsignedOnly) |
| 3485 | C.Opcode = SystemZISD::UCMP128HI; |
| 3486 | else |
| 3487 | C.Opcode = SystemZISD::SCMP128HI; |
| 3488 | C.CCValid = SystemZ::CCMASK_ANY; |
| 3489 | C.CCMask = SystemZ::CCMASK_1; |
| 3490 | |
| 3491 | if (Invert) |
| 3492 | C.CCMask ^= C.CCValid; |
| 3493 | } |
| 3494 | |
| 3495 | // See whether the comparison argument contains a redundant AND |
| 3496 | // and remove it if so. This sometimes happens due to the generic |
| 3497 | // BRCOND expansion. |
| 3498 | static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, |
| 3499 | Comparison &C) { |
| 3500 | if (C.Op0.getOpcode() != ISD::AND) |
| 3501 | return; |
| 3502 | auto *Mask = dyn_cast<ConstantSDNode>(Val: C.Op0.getOperand(i: 1)); |
| 3503 | if (!Mask || Mask->getValueSizeInBits(ResNo: 0) > 64) |
| 3504 | return; |
| 3505 | KnownBits Known = DAG.computeKnownBits(Op: C.Op0.getOperand(i: 0)); |
| 3506 | if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) |
| 3507 | return; |
| 3508 | |
| 3509 | C.Op0 = C.Op0.getOperand(i: 0); |
| 3510 | } |
| 3511 | |
| 3512 | // Return a Comparison that tests the condition-code result of intrinsic |
| 3513 | // node Call against constant integer CC using comparison code Cond. |
| 3514 | // Opcode is the opcode of the SystemZISD operation for the intrinsic |
| 3515 | // and CCValid is the set of possible condition-code results. |
| 3516 | static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, |
| 3517 | SDValue Call, unsigned CCValid, uint64_t CC, |
| 3518 | ISD::CondCode Cond) { |
| 3519 | Comparison C(Call, SDValue(), SDValue()); |
| 3520 | C.Opcode = Opcode; |
| 3521 | C.CCValid = CCValid; |
| 3522 | if (Cond == ISD::SETEQ) |
| 3523 | // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. |
| 3524 | C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; |
| 3525 | else if (Cond == ISD::SETNE) |
| 3526 | // ...and the inverse of that. |
| 3527 | C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; |
| 3528 | else if (Cond == ISD::SETLT || Cond == ISD::SETULT) |
| 3529 | // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, |
| 3530 | // always true for CC>3. |
| 3531 | C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; |
| 3532 | else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) |
| 3533 | // ...and the inverse of that. |
| 3534 | C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; |
| 3535 | else if (Cond == ISD::SETLE || Cond == ISD::SETULE) |
| 3536 | // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), |
| 3537 | // always true for CC>3. |
| 3538 | C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; |
| 3539 | else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) |
| 3540 | // ...and the inverse of that. |
| 3541 | C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; |
| 3542 | else |
| 3543 | llvm_unreachable("Unexpected integer comparison type" ); |
| 3544 | C.CCMask &= CCValid; |
| 3545 | return C; |
| 3546 | } |
| 3547 | |
| 3548 | // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. |
| 3549 | static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, |
| 3550 | ISD::CondCode Cond, const SDLoc &DL, |
| 3551 | SDValue Chain = SDValue(), |
| 3552 | bool IsSignaling = false) { |
| 3553 | if (CmpOp1.getOpcode() == ISD::Constant) { |
| 3554 | assert(!Chain); |
| 3555 | unsigned Opcode, CCValid; |
| 3556 | if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && |
| 3557 | CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(NUses: 1, Value: 0) && |
| 3558 | isIntrinsicWithCCAndChain(Op: CmpOp0, Opcode, CCValid)) |
| 3559 | return getIntrinsicCmp(DAG, Opcode, Call: CmpOp0, CCValid, |
| 3560 | CC: CmpOp1->getAsZExtVal(), Cond); |
| 3561 | if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| 3562 | CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && |
| 3563 | isIntrinsicWithCC(Op: CmpOp0, Opcode, CCValid)) |
| 3564 | return getIntrinsicCmp(DAG, Opcode, Call: CmpOp0, CCValid, |
| 3565 | CC: CmpOp1->getAsZExtVal(), Cond); |
| 3566 | } |
| 3567 | Comparison C(CmpOp0, CmpOp1, Chain); |
| 3568 | C.CCMask = CCMaskForCondCode(CC: Cond); |
| 3569 | if (C.Op0.getValueType().isFloatingPoint()) { |
| 3570 | C.CCValid = SystemZ::CCMASK_FCMP; |
| 3571 | if (!C.Chain) |
| 3572 | C.Opcode = SystemZISD::FCMP; |
| 3573 | else if (!IsSignaling) |
| 3574 | C.Opcode = SystemZISD::STRICT_FCMP; |
| 3575 | else |
| 3576 | C.Opcode = SystemZISD::STRICT_FCMPS; |
| 3577 | adjustForFNeg(C); |
| 3578 | } else { |
| 3579 | assert(!C.Chain); |
| 3580 | C.CCValid = SystemZ::CCMASK_ICMP; |
| 3581 | C.Opcode = SystemZISD::ICMP; |
| 3582 | // Choose the type of comparison. Equality and inequality tests can |
| 3583 | // use either signed or unsigned comparisons. The choice also doesn't |
| 3584 | // matter if both sign bits are known to be clear. In those cases we |
| 3585 | // want to give the main isel code the freedom to choose whichever |
| 3586 | // form fits best. |
| 3587 | if (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| 3588 | C.CCMask == SystemZ::CCMASK_CMP_NE || |
| 3589 | (DAG.SignBitIsZero(Op: C.Op0) && DAG.SignBitIsZero(Op: C.Op1))) |
| 3590 | C.ICmpType = SystemZICMP::Any; |
| 3591 | else if (C.CCMask & SystemZ::CCMASK_CMP_UO) |
| 3592 | C.ICmpType = SystemZICMP::UnsignedOnly; |
| 3593 | else |
| 3594 | C.ICmpType = SystemZICMP::SignedOnly; |
| 3595 | C.CCMask &= ~SystemZ::CCMASK_CMP_UO; |
| 3596 | adjustForRedundantAnd(DAG, DL, C); |
| 3597 | adjustZeroCmp(DAG, DL, C); |
| 3598 | adjustSubwordCmp(DAG, DL, C); |
| 3599 | adjustForSubtraction(DAG, DL, C); |
| 3600 | adjustForLTGFR(C); |
| 3601 | adjustICmpTruncate(DAG, DL, C); |
| 3602 | } |
| 3603 | |
| 3604 | if (shouldSwapCmpOperands(C)) { |
| 3605 | std::swap(a&: C.Op0, b&: C.Op1); |
| 3606 | C.CCMask = SystemZ::reverseCCMask(CCMask: C.CCMask); |
| 3607 | } |
| 3608 | |
| 3609 | adjustForTestUnderMask(DAG, DL, C); |
| 3610 | adjustICmp128(DAG, DL, C); |
| 3611 | return C; |
| 3612 | } |
| 3613 | |
| 3614 | // Emit the comparison instruction described by C. |
| 3615 | static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { |
| 3616 | if (!C.Op1.getNode()) { |
| 3617 | SDNode *Node; |
| 3618 | switch (C.Op0.getOpcode()) { |
| 3619 | case ISD::INTRINSIC_W_CHAIN: |
| 3620 | Node = emitIntrinsicWithCCAndChain(DAG, Op: C.Op0, Opcode: C.Opcode); |
| 3621 | return SDValue(Node, 0); |
| 3622 | case ISD::INTRINSIC_WO_CHAIN: |
| 3623 | Node = emitIntrinsicWithCC(DAG, Op: C.Op0, Opcode: C.Opcode); |
| 3624 | return SDValue(Node, Node->getNumValues() - 1); |
| 3625 | default: |
| 3626 | llvm_unreachable("Invalid comparison operands" ); |
| 3627 | } |
| 3628 | } |
| 3629 | if (C.Opcode == SystemZISD::ICMP) |
| 3630 | return DAG.getNode(Opcode: SystemZISD::ICMP, DL, VT: MVT::i32, N1: C.Op0, N2: C.Op1, |
| 3631 | N3: DAG.getTargetConstant(Val: C.ICmpType, DL, VT: MVT::i32)); |
| 3632 | if (C.Opcode == SystemZISD::TM) { |
| 3633 | bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != |
| 3634 | bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); |
| 3635 | return DAG.getNode(Opcode: SystemZISD::TM, DL, VT: MVT::i32, N1: C.Op0, N2: C.Op1, |
| 3636 | N3: DAG.getTargetConstant(Val: RegisterOnly, DL, VT: MVT::i32)); |
| 3637 | } |
| 3638 | if (C.Opcode == SystemZISD::VICMPES || |
| 3639 | C.Opcode == SystemZISD::VICMPHS || |
| 3640 | C.Opcode == SystemZISD::VICMPHLS || |
| 3641 | C.Opcode == SystemZISD::VFCMPES || |
| 3642 | C.Opcode == SystemZISD::VFCMPHS || |
| 3643 | C.Opcode == SystemZISD::VFCMPHES) { |
| 3644 | EVT IntVT = C.Op0.getValueType().changeVectorElementTypeToInteger(); |
| 3645 | SDVTList VTs = DAG.getVTList(VT1: IntVT, VT2: MVT::i32); |
| 3646 | SDValue Val = DAG.getNode(Opcode: C.Opcode, DL, VTList: VTs, N1: C.Op0, N2: C.Op1); |
| 3647 | return SDValue(Val.getNode(), 1); |
| 3648 | } |
| 3649 | if (C.Chain) { |
| 3650 | SDVTList VTs = DAG.getVTList(VT1: MVT::i32, VT2: MVT::Other); |
| 3651 | return DAG.getNode(Opcode: C.Opcode, DL, VTList: VTs, N1: C.Chain, N2: C.Op0, N3: C.Op1); |
| 3652 | } |
| 3653 | return DAG.getNode(Opcode: C.Opcode, DL, VT: MVT::i32, N1: C.Op0, N2: C.Op1); |
| 3654 | } |
| 3655 | |
| 3656 | // Implement a 32-bit *MUL_LOHI operation by extending both operands to |
| 3657 | // 64 bits. Extend is the extension type to use. Store the high part |
| 3658 | // in Hi and the low part in Lo. |
| 3659 | static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, |
| 3660 | SDValue Op0, SDValue Op1, SDValue &Hi, |
| 3661 | SDValue &Lo) { |
| 3662 | Op0 = DAG.getNode(Opcode: Extend, DL, VT: MVT::i64, Operand: Op0); |
| 3663 | Op1 = DAG.getNode(Opcode: Extend, DL, VT: MVT::i64, Operand: Op1); |
| 3664 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL, VT: MVT::i64, N1: Op0, N2: Op1); |
| 3665 | Hi = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: Mul, |
| 3666 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i64)); |
| 3667 | Hi = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Hi); |
| 3668 | Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Mul); |
| 3669 | } |
| 3670 | |
| 3671 | // Lower a binary operation that produces two VT results, one in each |
| 3672 | // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, |
| 3673 | // and Opcode performs the GR128 operation. Store the even register result |
| 3674 | // in Even and the odd register result in Odd. |
| 3675 | static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| 3676 | unsigned Opcode, SDValue Op0, SDValue Op1, |
| 3677 | SDValue &Even, SDValue &Odd) { |
| 3678 | SDValue Result = DAG.getNode(Opcode, DL, VT: MVT::Untyped, N1: Op0, N2: Op1); |
| 3679 | bool Is32Bit = is32Bit(VT); |
| 3680 | Even = DAG.getTargetExtractSubreg(SRIdx: SystemZ::even128(Is32bit: Is32Bit), DL, VT, Operand: Result); |
| 3681 | Odd = DAG.getTargetExtractSubreg(SRIdx: SystemZ::odd128(Is32bit: Is32Bit), DL, VT, Operand: Result); |
| 3682 | } |
| 3683 | |
| 3684 | // Return an i32 value that is 1 if the CC value produced by CCReg is |
| 3685 | // in the mask CCMask and 0 otherwise. CC is known to have a value |
| 3686 | // in CCValid, so other values can be ignored. |
| 3687 | static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, |
| 3688 | unsigned CCValid, unsigned CCMask) { |
| 3689 | SDValue Ops[] = {DAG.getConstant(Val: 1, DL, VT: MVT::i32), |
| 3690 | DAG.getConstant(Val: 0, DL, VT: MVT::i32), |
| 3691 | DAG.getTargetConstant(Val: CCValid, DL, VT: MVT::i32), |
| 3692 | DAG.getTargetConstant(Val: CCMask, DL, VT: MVT::i32), CCReg}; |
| 3693 | return DAG.getNode(Opcode: SystemZISD::SELECT_CCMASK, DL, VT: MVT::i32, Ops); |
| 3694 | } |
| 3695 | |
| 3696 | // Return the SystemISD vector comparison operation for CC, or 0 if it cannot |
| 3697 | // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP |
| 3698 | // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) |
| 3699 | // floating-point comparisons, and CmpMode::SignalingFP for strict signaling |
| 3700 | // floating-point comparisons. |
| 3701 | enum class CmpMode { Int, FP, StrictFP, SignalingFP }; |
| 3702 | static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { |
| 3703 | switch (CC) { |
| 3704 | case ISD::SETOEQ: |
| 3705 | case ISD::SETEQ: |
| 3706 | switch (Mode) { |
| 3707 | case CmpMode::Int: return SystemZISD::VICMPE; |
| 3708 | case CmpMode::FP: return SystemZISD::VFCMPE; |
| 3709 | case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; |
| 3710 | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; |
| 3711 | } |
| 3712 | llvm_unreachable("Bad mode" ); |
| 3713 | |
| 3714 | case ISD::SETOGE: |
| 3715 | case ISD::SETGE: |
| 3716 | switch (Mode) { |
| 3717 | case CmpMode::Int: return 0; |
| 3718 | case CmpMode::FP: return SystemZISD::VFCMPHE; |
| 3719 | case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; |
| 3720 | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; |
| 3721 | } |
| 3722 | llvm_unreachable("Bad mode" ); |
| 3723 | |
| 3724 | case ISD::SETOGT: |
| 3725 | case ISD::SETGT: |
| 3726 | switch (Mode) { |
| 3727 | case CmpMode::Int: return SystemZISD::VICMPH; |
| 3728 | case CmpMode::FP: return SystemZISD::VFCMPH; |
| 3729 | case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; |
| 3730 | case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; |
| 3731 | } |
| 3732 | llvm_unreachable("Bad mode" ); |
| 3733 | |
| 3734 | case ISD::SETUGT: |
| 3735 | switch (Mode) { |
| 3736 | case CmpMode::Int: return SystemZISD::VICMPHL; |
| 3737 | case CmpMode::FP: return 0; |
| 3738 | case CmpMode::StrictFP: return 0; |
| 3739 | case CmpMode::SignalingFP: return 0; |
| 3740 | } |
| 3741 | llvm_unreachable("Bad mode" ); |
| 3742 | |
| 3743 | default: |
| 3744 | return 0; |
| 3745 | } |
| 3746 | } |
| 3747 | |
| 3748 | // Return the SystemZISD vector comparison operation for CC or its inverse, |
| 3749 | // or 0 if neither can be done directly. Indicate in Invert whether the |
| 3750 | // result is for the inverse of CC. Mode is as above. |
| 3751 | static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, |
| 3752 | bool &Invert) { |
| 3753 | if (unsigned Opcode = getVectorComparison(CC, Mode)) { |
| 3754 | Invert = false; |
| 3755 | return Opcode; |
| 3756 | } |
| 3757 | |
| 3758 | CC = ISD::getSetCCInverse(Operation: CC, Type: Mode == CmpMode::Int ? MVT::i32 : MVT::f32); |
| 3759 | if (unsigned Opcode = getVectorComparison(CC, Mode)) { |
| 3760 | Invert = true; |
| 3761 | return Opcode; |
| 3762 | } |
| 3763 | |
| 3764 | return 0; |
| 3765 | } |
| 3766 | |
| 3767 | // Return a v2f64 that contains the extended form of elements Start and Start+1 |
| 3768 | // of v4f32 value Op. If Chain is nonnull, return the strict form. |
| 3769 | static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, |
| 3770 | SDValue Op, SDValue Chain) { |
| 3771 | int Mask[] = { Start, -1, Start + 1, -1 }; |
| 3772 | Op = DAG.getVectorShuffle(VT: MVT::v4f32, dl: DL, N1: Op, N2: DAG.getUNDEF(VT: MVT::v4f32), Mask); |
| 3773 | if (Chain) { |
| 3774 | SDVTList VTs = DAG.getVTList(VT1: MVT::v2f64, VT2: MVT::Other); |
| 3775 | return DAG.getNode(Opcode: SystemZISD::STRICT_VEXTEND, DL, VTList: VTs, N1: Chain, N2: Op); |
| 3776 | } |
| 3777 | return DAG.getNode(Opcode: SystemZISD::VEXTEND, DL, VT: MVT::v2f64, Operand: Op); |
| 3778 | } |
| 3779 | |
| 3780 | // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, |
| 3781 | // producing a result of type VT. If Chain is nonnull, return the strict form. |
| 3782 | SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, |
| 3783 | const SDLoc &DL, EVT VT, |
| 3784 | SDValue CmpOp0, |
| 3785 | SDValue CmpOp1, |
| 3786 | SDValue Chain) const { |
| 3787 | // There is no hardware support for v4f32 (unless we have the vector |
| 3788 | // enhancements facility 1), so extend the vector into two v2f64s |
| 3789 | // and compare those. |
| 3790 | if (CmpOp0.getValueType() == MVT::v4f32 && |
| 3791 | !Subtarget.hasVectorEnhancements1()) { |
| 3792 | SDValue H0 = expandV4F32ToV2F64(DAG, Start: 0, DL, Op: CmpOp0, Chain); |
| 3793 | SDValue L0 = expandV4F32ToV2F64(DAG, Start: 2, DL, Op: CmpOp0, Chain); |
| 3794 | SDValue H1 = expandV4F32ToV2F64(DAG, Start: 0, DL, Op: CmpOp1, Chain); |
| 3795 | SDValue L1 = expandV4F32ToV2F64(DAG, Start: 2, DL, Op: CmpOp1, Chain); |
| 3796 | if (Chain) { |
| 3797 | SDVTList VTs = DAG.getVTList(VT1: MVT::v2i64, VT2: MVT::Other); |
| 3798 | SDValue HRes = DAG.getNode(Opcode, DL, VTList: VTs, N1: Chain, N2: H0, N3: H1); |
| 3799 | SDValue LRes = DAG.getNode(Opcode, DL, VTList: VTs, N1: Chain, N2: L0, N3: L1); |
| 3800 | SDValue Res = DAG.getNode(Opcode: SystemZISD::PACK, DL, VT, N1: HRes, N2: LRes); |
| 3801 | SDValue Chains[6] = { H0.getValue(R: 1), L0.getValue(R: 1), |
| 3802 | H1.getValue(R: 1), L1.getValue(R: 1), |
| 3803 | HRes.getValue(R: 1), LRes.getValue(R: 1) }; |
| 3804 | SDValue NewChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: Chains); |
| 3805 | SDValue Ops[2] = { Res, NewChain }; |
| 3806 | return DAG.getMergeValues(Ops, dl: DL); |
| 3807 | } |
| 3808 | SDValue HRes = DAG.getNode(Opcode, DL, VT: MVT::v2i64, N1: H0, N2: H1); |
| 3809 | SDValue LRes = DAG.getNode(Opcode, DL, VT: MVT::v2i64, N1: L0, N2: L1); |
| 3810 | return DAG.getNode(Opcode: SystemZISD::PACK, DL, VT, N1: HRes, N2: LRes); |
| 3811 | } |
| 3812 | if (Chain) { |
| 3813 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: MVT::Other); |
| 3814 | return DAG.getNode(Opcode, DL, VTList: VTs, N1: Chain, N2: CmpOp0, N3: CmpOp1); |
| 3815 | } |
| 3816 | return DAG.getNode(Opcode, DL, VT, N1: CmpOp0, N2: CmpOp1); |
| 3817 | } |
| 3818 | |
| 3819 | // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing |
| 3820 | // an integer mask of type VT. If Chain is nonnull, we have a strict |
| 3821 | // floating-point comparison. If in addition IsSignaling is true, we have |
| 3822 | // a strict signaling floating-point comparison. |
| 3823 | SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, |
| 3824 | const SDLoc &DL, EVT VT, |
| 3825 | ISD::CondCode CC, |
| 3826 | SDValue CmpOp0, |
| 3827 | SDValue CmpOp1, |
| 3828 | SDValue Chain, |
| 3829 | bool IsSignaling) const { |
| 3830 | bool IsFP = CmpOp0.getValueType().isFloatingPoint(); |
| 3831 | assert (!Chain || IsFP); |
| 3832 | assert (!IsSignaling || Chain); |
| 3833 | CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : |
| 3834 | Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; |
| 3835 | bool Invert = false; |
| 3836 | SDValue Cmp; |
| 3837 | switch (CC) { |
| 3838 | // Handle tests for order using (or (ogt y x) (oge x y)). |
| 3839 | case ISD::SETUO: |
| 3840 | Invert = true; |
| 3841 | [[fallthrough]]; |
| 3842 | case ISD::SETO: { |
| 3843 | assert(IsFP && "Unexpected integer comparison" ); |
| 3844 | SDValue LT = getVectorCmp(DAG, Opcode: getVectorComparison(CC: ISD::SETOGT, Mode), |
| 3845 | DL, VT, CmpOp0: CmpOp1, CmpOp1: CmpOp0, Chain); |
| 3846 | SDValue GE = getVectorCmp(DAG, Opcode: getVectorComparison(CC: ISD::SETOGE, Mode), |
| 3847 | DL, VT, CmpOp0, CmpOp1, Chain); |
| 3848 | Cmp = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: LT, N2: GE); |
| 3849 | if (Chain) |
| 3850 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, |
| 3851 | N1: LT.getValue(R: 1), N2: GE.getValue(R: 1)); |
| 3852 | break; |
| 3853 | } |
| 3854 | |
| 3855 | // Handle <> tests using (or (ogt y x) (ogt x y)). |
| 3856 | case ISD::SETUEQ: |
| 3857 | Invert = true; |
| 3858 | [[fallthrough]]; |
| 3859 | case ISD::SETONE: { |
| 3860 | assert(IsFP && "Unexpected integer comparison" ); |
| 3861 | SDValue LT = getVectorCmp(DAG, Opcode: getVectorComparison(CC: ISD::SETOGT, Mode), |
| 3862 | DL, VT, CmpOp0: CmpOp1, CmpOp1: CmpOp0, Chain); |
| 3863 | SDValue GT = getVectorCmp(DAG, Opcode: getVectorComparison(CC: ISD::SETOGT, Mode), |
| 3864 | DL, VT, CmpOp0, CmpOp1, Chain); |
| 3865 | Cmp = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: LT, N2: GT); |
| 3866 | if (Chain) |
| 3867 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, |
| 3868 | N1: LT.getValue(R: 1), N2: GT.getValue(R: 1)); |
| 3869 | break; |
| 3870 | } |
| 3871 | |
| 3872 | // Otherwise a single comparison is enough. It doesn't really |
| 3873 | // matter whether we try the inversion or the swap first, since |
| 3874 | // there are no cases where both work. |
| 3875 | default: |
| 3876 | // Optimize sign-bit comparisons to signed compares. |
| 3877 | if (Mode == CmpMode::Int && (CC == ISD::SETEQ || CC == ISD::SETNE) && |
| 3878 | ISD::isConstantSplatVectorAllZeros(N: CmpOp1.getNode())) { |
| 3879 | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| 3880 | APInt Mask; |
| 3881 | if (CmpOp0.getOpcode() == ISD::AND |
| 3882 | && ISD::isConstantSplatVector(N: CmpOp0.getOperand(i: 1).getNode(), SplatValue&: Mask) |
| 3883 | && Mask == APInt::getSignMask(BitWidth: EltSize)) { |
| 3884 | CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; |
| 3885 | CmpOp0 = CmpOp0.getOperand(i: 0); |
| 3886 | } |
| 3887 | } |
| 3888 | if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) |
| 3889 | Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); |
| 3890 | else { |
| 3891 | CC = ISD::getSetCCSwappedOperands(Operation: CC); |
| 3892 | if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) |
| 3893 | Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0: CmpOp1, CmpOp1: CmpOp0, Chain); |
| 3894 | else |
| 3895 | llvm_unreachable("Unhandled comparison" ); |
| 3896 | } |
| 3897 | if (Chain) |
| 3898 | Chain = Cmp.getValue(R: 1); |
| 3899 | break; |
| 3900 | } |
| 3901 | if (Invert) { |
| 3902 | SDValue Mask = |
| 3903 | DAG.getSplatBuildVector(VT, DL, Op: DAG.getAllOnesConstant(DL, VT: MVT::i64)); |
| 3904 | Cmp = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Cmp, N2: Mask); |
| 3905 | } |
| 3906 | if (Chain && Chain.getNode() != Cmp.getNode()) { |
| 3907 | SDValue Ops[2] = { Cmp, Chain }; |
| 3908 | Cmp = DAG.getMergeValues(Ops, dl: DL); |
| 3909 | } |
| 3910 | return Cmp; |
| 3911 | } |
| 3912 | |
| 3913 | SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, |
| 3914 | SelectionDAG &DAG) const { |
| 3915 | SDValue CmpOp0 = Op.getOperand(i: 0); |
| 3916 | SDValue CmpOp1 = Op.getOperand(i: 1); |
| 3917 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
| 3918 | SDLoc DL(Op); |
| 3919 | EVT VT = Op.getValueType(); |
| 3920 | if (VT.isVector()) |
| 3921 | return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); |
| 3922 | |
| 3923 | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, Cond: CC, DL)); |
| 3924 | SDValue CCReg = emitCmp(DAG, DL, C); |
| 3925 | return emitSETCC(DAG, DL, CCReg, CCValid: C.CCValid, CCMask: C.CCMask); |
| 3926 | } |
| 3927 | |
| 3928 | SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, |
| 3929 | SelectionDAG &DAG, |
| 3930 | bool IsSignaling) const { |
| 3931 | SDValue Chain = Op.getOperand(i: 0); |
| 3932 | SDValue CmpOp0 = Op.getOperand(i: 1); |
| 3933 | SDValue CmpOp1 = Op.getOperand(i: 2); |
| 3934 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 3))->get(); |
| 3935 | SDLoc DL(Op); |
| 3936 | EVT VT = Op.getNode()->getValueType(ResNo: 0); |
| 3937 | if (VT.isVector()) { |
| 3938 | SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, |
| 3939 | Chain, IsSignaling); |
| 3940 | return Res.getValue(R: Op.getResNo()); |
| 3941 | } |
| 3942 | |
| 3943 | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, Cond: CC, DL, Chain, IsSignaling)); |
| 3944 | SDValue CCReg = emitCmp(DAG, DL, C); |
| 3945 | CCReg->setFlags(Op->getFlags()); |
| 3946 | SDValue Result = emitSETCC(DAG, DL, CCReg, CCValid: C.CCValid, CCMask: C.CCMask); |
| 3947 | SDValue Ops[2] = { Result, CCReg.getValue(R: 1) }; |
| 3948 | return DAG.getMergeValues(Ops, dl: DL); |
| 3949 | } |
| 3950 | |
| 3951 | SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 3952 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 1))->get(); |
| 3953 | SDValue CmpOp0 = Op.getOperand(i: 2); |
| 3954 | SDValue CmpOp1 = Op.getOperand(i: 3); |
| 3955 | SDValue Dest = Op.getOperand(i: 4); |
| 3956 | SDLoc DL(Op); |
| 3957 | |
| 3958 | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, Cond: CC, DL)); |
| 3959 | SDValue CCReg = emitCmp(DAG, DL, C); |
| 3960 | return DAG.getNode( |
| 3961 | Opcode: SystemZISD::BR_CCMASK, DL, VT: Op.getValueType(), N1: Op.getOperand(i: 0), |
| 3962 | N2: DAG.getTargetConstant(Val: C.CCValid, DL, VT: MVT::i32), |
| 3963 | N3: DAG.getTargetConstant(Val: C.CCMask, DL, VT: MVT::i32), N4: Dest, N5: CCReg); |
| 3964 | } |
| 3965 | |
| 3966 | // Return true if Pos is CmpOp and Neg is the negative of CmpOp, |
| 3967 | // allowing Pos and Neg to be wider than CmpOp. |
| 3968 | static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { |
| 3969 | return (Neg.getOpcode() == ISD::SUB && |
| 3970 | Neg.getOperand(i: 0).getOpcode() == ISD::Constant && |
| 3971 | Neg.getConstantOperandVal(i: 0) == 0 && Neg.getOperand(i: 1) == Pos && |
| 3972 | (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND && |
| 3973 | Pos.getOperand(i: 0) == CmpOp))); |
| 3974 | } |
| 3975 | |
| 3976 | // Return the absolute or negative absolute of Op; IsNegative decides which. |
| 3977 | static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, |
| 3978 | bool IsNegative) { |
| 3979 | Op = DAG.getNode(Opcode: ISD::ABS, DL, VT: Op.getValueType(), Operand: Op); |
| 3980 | if (IsNegative) |
| 3981 | Op = DAG.getNode(Opcode: ISD::SUB, DL, VT: Op.getValueType(), |
| 3982 | N1: DAG.getConstant(Val: 0, DL, VT: Op.getValueType()), N2: Op); |
| 3983 | return Op; |
| 3984 | } |
| 3985 | |
| 3986 | static SDValue getI128Select(SelectionDAG &DAG, const SDLoc &DL, |
| 3987 | Comparison C, SDValue TrueOp, SDValue FalseOp) { |
| 3988 | EVT VT = MVT::i128; |
| 3989 | unsigned Op; |
| 3990 | |
| 3991 | if (C.CCMask == SystemZ::CCMASK_CMP_NE || |
| 3992 | C.CCMask == SystemZ::CCMASK_CMP_GE || |
| 3993 | C.CCMask == SystemZ::CCMASK_CMP_LE) { |
| 3994 | std::swap(a&: TrueOp, b&: FalseOp); |
| 3995 | C.CCMask ^= C.CCValid; |
| 3996 | } |
| 3997 | if (C.CCMask == SystemZ::CCMASK_CMP_LT) { |
| 3998 | std::swap(a&: C.Op0, b&: C.Op1); |
| 3999 | C.CCMask = SystemZ::CCMASK_CMP_GT; |
| 4000 | } |
| 4001 | switch (C.CCMask) { |
| 4002 | case SystemZ::CCMASK_CMP_EQ: |
| 4003 | Op = SystemZISD::VICMPE; |
| 4004 | break; |
| 4005 | case SystemZ::CCMASK_CMP_GT: |
| 4006 | if (C.ICmpType == SystemZICMP::UnsignedOnly) |
| 4007 | Op = SystemZISD::VICMPHL; |
| 4008 | else |
| 4009 | Op = SystemZISD::VICMPH; |
| 4010 | break; |
| 4011 | default: |
| 4012 | llvm_unreachable("Unhandled comparison" ); |
| 4013 | break; |
| 4014 | } |
| 4015 | |
| 4016 | SDValue Mask = DAG.getNode(Opcode: Op, DL, VT, N1: C.Op0, N2: C.Op1); |
| 4017 | TrueOp = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: TrueOp, N2: Mask); |
| 4018 | FalseOp = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: FalseOp, N2: DAG.getNOT(DL, Val: Mask, VT)); |
| 4019 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: TrueOp, N2: FalseOp); |
| 4020 | } |
| 4021 | |
| 4022 | SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, |
| 4023 | SelectionDAG &DAG) const { |
| 4024 | SDValue CmpOp0 = Op.getOperand(i: 0); |
| 4025 | SDValue CmpOp1 = Op.getOperand(i: 1); |
| 4026 | SDValue TrueOp = Op.getOperand(i: 2); |
| 4027 | SDValue FalseOp = Op.getOperand(i: 3); |
| 4028 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 4))->get(); |
| 4029 | SDLoc DL(Op); |
| 4030 | |
| 4031 | // SELECT_CC involving f16 will not have the cmp-ops promoted by the |
| 4032 | // legalizer, as it will be handled according to the type of the resulting |
| 4033 | // value. Extend them here if needed. |
| 4034 | if (CmpOp0.getSimpleValueType() == MVT::f16) { |
| 4035 | CmpOp0 = DAG.getFPExtendOrRound(Op: CmpOp0, DL: SDLoc(CmpOp0), VT: MVT::f32); |
| 4036 | CmpOp1 = DAG.getFPExtendOrRound(Op: CmpOp1, DL: SDLoc(CmpOp1), VT: MVT::f32); |
| 4037 | } |
| 4038 | |
| 4039 | Comparison C(getCmp(DAG, CmpOp0, CmpOp1, Cond: CC, DL)); |
| 4040 | |
| 4041 | // Check for absolute and negative-absolute selections, including those |
| 4042 | // where the comparison value is sign-extended (for LPGFR and LNGFR). |
| 4043 | // This check supplements the one in DAGCombiner. |
| 4044 | if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ && |
| 4045 | C.CCMask != SystemZ::CCMASK_CMP_NE && |
| 4046 | C.Op1.getOpcode() == ISD::Constant && |
| 4047 | cast<ConstantSDNode>(Val&: C.Op1)->getValueSizeInBits(ResNo: 0) <= 64 && |
| 4048 | C.Op1->getAsZExtVal() == 0) { |
| 4049 | if (isAbsolute(CmpOp: C.Op0, Pos: TrueOp, Neg: FalseOp)) |
| 4050 | return getAbsolute(DAG, DL, Op: TrueOp, IsNegative: C.CCMask & SystemZ::CCMASK_CMP_LT); |
| 4051 | if (isAbsolute(CmpOp: C.Op0, Pos: FalseOp, Neg: TrueOp)) |
| 4052 | return getAbsolute(DAG, DL, Op: FalseOp, IsNegative: C.CCMask & SystemZ::CCMASK_CMP_GT); |
| 4053 | } |
| 4054 | |
| 4055 | if (Subtarget.hasVectorEnhancements3() && |
| 4056 | C.Opcode == SystemZISD::ICMP && |
| 4057 | C.Op0.getValueType() == MVT::i128 && |
| 4058 | TrueOp.getValueType() == MVT::i128) { |
| 4059 | return getI128Select(DAG, DL, C, TrueOp, FalseOp); |
| 4060 | } |
| 4061 | |
| 4062 | SDValue CCReg = emitCmp(DAG, DL, C); |
| 4063 | SDValue Ops[] = {TrueOp, FalseOp, |
| 4064 | DAG.getTargetConstant(Val: C.CCValid, DL, VT: MVT::i32), |
| 4065 | DAG.getTargetConstant(Val: C.CCMask, DL, VT: MVT::i32), CCReg}; |
| 4066 | |
| 4067 | return DAG.getNode(Opcode: SystemZISD::SELECT_CCMASK, DL, VT: Op.getValueType(), Ops); |
| 4068 | } |
| 4069 | |
| 4070 | SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, |
| 4071 | SelectionDAG &DAG) const { |
| 4072 | SDLoc DL(Node); |
| 4073 | const GlobalValue *GV = Node->getGlobal(); |
| 4074 | int64_t Offset = Node->getOffset(); |
| 4075 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4076 | CodeModel::Model CM = DAG.getTarget().getCodeModel(); |
| 4077 | |
| 4078 | SDValue Result; |
| 4079 | if (Subtarget.isPC32DBLSymbol(GV, CM)) { |
| 4080 | if (isInt<32>(x: Offset)) { |
| 4081 | // Assign anchors at 1<<12 byte boundaries. |
| 4082 | uint64_t Anchor = Offset & ~uint64_t(0xfff); |
| 4083 | Result = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: Anchor); |
| 4084 | Result = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4085 | |
| 4086 | // The offset can be folded into the address if it is aligned to a |
| 4087 | // halfword. |
| 4088 | Offset -= Anchor; |
| 4089 | if (Offset != 0 && (Offset & 1) == 0) { |
| 4090 | SDValue Full = |
| 4091 | DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: Anchor + Offset); |
| 4092 | Result = DAG.getNode(Opcode: SystemZISD::PCREL_OFFSET, DL, VT: PtrVT, N1: Full, N2: Result); |
| 4093 | Offset = 0; |
| 4094 | } |
| 4095 | } else { |
| 4096 | // Conservatively load a constant offset greater than 32 bits into a |
| 4097 | // register below. |
| 4098 | Result = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT); |
| 4099 | Result = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4100 | } |
| 4101 | } else if (Subtarget.isTargetELF()) { |
| 4102 | Result = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: 0, TargetFlags: SystemZII::MO_GOT); |
| 4103 | Result = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4104 | Result = DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Result, |
| 4105 | PtrInfo: MachinePointerInfo::getGOT(MF&: DAG.getMachineFunction())); |
| 4106 | } else if (Subtarget.isTargetzOS()) { |
| 4107 | Result = getADAEntry(DAG, GV, DL, PtrVT); |
| 4108 | } else |
| 4109 | llvm_unreachable("Unexpected Subtarget" ); |
| 4110 | |
| 4111 | // If there was a non-zero offset that we didn't fold, create an explicit |
| 4112 | // addition for it. |
| 4113 | if (Offset != 0) |
| 4114 | Result = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Result, |
| 4115 | N2: DAG.getSignedConstant(Val: Offset, DL, VT: PtrVT)); |
| 4116 | |
| 4117 | return Result; |
| 4118 | } |
| 4119 | |
| 4120 | SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, |
| 4121 | SelectionDAG &DAG, |
| 4122 | unsigned Opcode, |
| 4123 | SDValue GOTOffset) const { |
| 4124 | SDLoc DL(Node); |
| 4125 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4126 | SDValue Chain = DAG.getEntryNode(); |
| 4127 | SDValue Glue; |
| 4128 | |
| 4129 | if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| 4130 | CallingConv::GHC) |
| 4131 | report_fatal_error(reason: "In GHC calling convention TLS is not supported" ); |
| 4132 | |
| 4133 | // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. |
| 4134 | SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(VT: PtrVT); |
| 4135 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: SystemZ::R12D, N: GOT, Glue); |
| 4136 | Glue = Chain.getValue(R: 1); |
| 4137 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: SystemZ::R2D, N: GOTOffset, Glue); |
| 4138 | Glue = Chain.getValue(R: 1); |
| 4139 | |
| 4140 | // The first call operand is the chain and the second is the TLS symbol. |
| 4141 | SmallVector<SDValue, 8> Ops; |
| 4142 | Ops.push_back(Elt: Chain); |
| 4143 | Ops.push_back(Elt: DAG.getTargetGlobalAddress(GV: Node->getGlobal(), DL, |
| 4144 | VT: Node->getValueType(ResNo: 0), |
| 4145 | offset: 0, TargetFlags: 0)); |
| 4146 | |
| 4147 | // Add argument registers to the end of the list so that they are |
| 4148 | // known live into the call. |
| 4149 | Ops.push_back(Elt: DAG.getRegister(Reg: SystemZ::R2D, VT: PtrVT)); |
| 4150 | Ops.push_back(Elt: DAG.getRegister(Reg: SystemZ::R12D, VT: PtrVT)); |
| 4151 | |
| 4152 | // Add a register mask operand representing the call-preserved registers. |
| 4153 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 4154 | const uint32_t *Mask = |
| 4155 | TRI->getCallPreservedMask(MF: DAG.getMachineFunction(), CallingConv::C); |
| 4156 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 4157 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 4158 | |
| 4159 | // Glue the call to the argument copies. |
| 4160 | Ops.push_back(Elt: Glue); |
| 4161 | |
| 4162 | // Emit the call. |
| 4163 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 4164 | Chain = DAG.getNode(Opcode, DL, VTList: NodeTys, Ops); |
| 4165 | Glue = Chain.getValue(R: 1); |
| 4166 | |
| 4167 | // Copy the return value from %r2. |
| 4168 | return DAG.getCopyFromReg(Chain, dl: DL, Reg: SystemZ::R2D, VT: PtrVT, Glue); |
| 4169 | } |
| 4170 | |
| 4171 | SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, |
| 4172 | SelectionDAG &DAG) const { |
| 4173 | SDValue Chain = DAG.getEntryNode(); |
| 4174 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4175 | |
| 4176 | // The high part of the thread pointer is in access register 0. |
| 4177 | SDValue TPHi = DAG.getCopyFromReg(Chain, dl: DL, Reg: SystemZ::A0, VT: MVT::i32); |
| 4178 | TPHi = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: PtrVT, Operand: TPHi); |
| 4179 | |
| 4180 | // The low part of the thread pointer is in access register 1. |
| 4181 | SDValue TPLo = DAG.getCopyFromReg(Chain, dl: DL, Reg: SystemZ::A1, VT: MVT::i32); |
| 4182 | TPLo = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: PtrVT, Operand: TPLo); |
| 4183 | |
| 4184 | // Merge them into a single 64-bit address. |
| 4185 | SDValue TPHiShifted = DAG.getNode(Opcode: ISD::SHL, DL, VT: PtrVT, N1: TPHi, |
| 4186 | N2: DAG.getConstant(Val: 32, DL, VT: PtrVT)); |
| 4187 | return DAG.getNode(Opcode: ISD::OR, DL, VT: PtrVT, N1: TPHiShifted, N2: TPLo); |
| 4188 | } |
| 4189 | |
| 4190 | SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, |
| 4191 | SelectionDAG &DAG) const { |
| 4192 | if (DAG.getTarget().useEmulatedTLS()) |
| 4193 | return LowerToTLSEmulatedModel(GA: Node, DAG); |
| 4194 | SDLoc DL(Node); |
| 4195 | const GlobalValue *GV = Node->getGlobal(); |
| 4196 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4197 | TLSModel::Model model = DAG.getTarget().getTLSModel(GV); |
| 4198 | |
| 4199 | if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| 4200 | CallingConv::GHC) |
| 4201 | report_fatal_error(reason: "In GHC calling convention TLS is not supported" ); |
| 4202 | |
| 4203 | SDValue TP = lowerThreadPointer(DL, DAG); |
| 4204 | |
| 4205 | // Get the offset of GA from the thread pointer, based on the TLS model. |
| 4206 | SDValue Offset; |
| 4207 | switch (model) { |
| 4208 | case TLSModel::GeneralDynamic: { |
| 4209 | // Load the GOT offset of the tls_index (module ID / per-symbol offset). |
| 4210 | SystemZConstantPoolValue *CPV = |
| 4211 | SystemZConstantPoolValue::Create(GV, Modifier: SystemZCP::TLSGD); |
| 4212 | |
| 4213 | Offset = DAG.getConstantPool(C: CPV, VT: PtrVT, Align: Align(8)); |
| 4214 | Offset = DAG.getLoad( |
| 4215 | VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Offset, |
| 4216 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction())); |
| 4217 | |
| 4218 | // Call __tls_get_offset to retrieve the offset. |
| 4219 | Offset = lowerTLSGetOffset(Node, DAG, Opcode: SystemZISD::TLS_GDCALL, GOTOffset: Offset); |
| 4220 | break; |
| 4221 | } |
| 4222 | |
| 4223 | case TLSModel::LocalDynamic: { |
| 4224 | // Load the GOT offset of the module ID. |
| 4225 | SystemZConstantPoolValue *CPV = |
| 4226 | SystemZConstantPoolValue::Create(GV, Modifier: SystemZCP::TLSLDM); |
| 4227 | |
| 4228 | Offset = DAG.getConstantPool(C: CPV, VT: PtrVT, Align: Align(8)); |
| 4229 | Offset = DAG.getLoad( |
| 4230 | VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Offset, |
| 4231 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction())); |
| 4232 | |
| 4233 | // Call __tls_get_offset to retrieve the module base offset. |
| 4234 | Offset = lowerTLSGetOffset(Node, DAG, Opcode: SystemZISD::TLS_LDCALL, GOTOffset: Offset); |
| 4235 | |
| 4236 | // Note: The SystemZLDCleanupPass will remove redundant computations |
| 4237 | // of the module base offset. Count total number of local-dynamic |
| 4238 | // accesses to trigger execution of that pass. |
| 4239 | SystemZMachineFunctionInfo* MFI = |
| 4240 | DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); |
| 4241 | MFI->incNumLocalDynamicTLSAccesses(); |
| 4242 | |
| 4243 | // Add the per-symbol offset. |
| 4244 | CPV = SystemZConstantPoolValue::Create(GV, Modifier: SystemZCP::DTPOFF); |
| 4245 | |
| 4246 | SDValue DTPOffset = DAG.getConstantPool(C: CPV, VT: PtrVT, Align: Align(8)); |
| 4247 | DTPOffset = DAG.getLoad( |
| 4248 | VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: DTPOffset, |
| 4249 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction())); |
| 4250 | |
| 4251 | Offset = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Offset, N2: DTPOffset); |
| 4252 | break; |
| 4253 | } |
| 4254 | |
| 4255 | case TLSModel::InitialExec: { |
| 4256 | // Load the offset from the GOT. |
| 4257 | Offset = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: 0, |
| 4258 | TargetFlags: SystemZII::MO_INDNTPOFF); |
| 4259 | Offset = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Offset); |
| 4260 | Offset = |
| 4261 | DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Offset, |
| 4262 | PtrInfo: MachinePointerInfo::getGOT(MF&: DAG.getMachineFunction())); |
| 4263 | break; |
| 4264 | } |
| 4265 | |
| 4266 | case TLSModel::LocalExec: { |
| 4267 | // Force the offset into the constant pool and load it from there. |
| 4268 | SystemZConstantPoolValue *CPV = |
| 4269 | SystemZConstantPoolValue::Create(GV, Modifier: SystemZCP::NTPOFF); |
| 4270 | |
| 4271 | Offset = DAG.getConstantPool(C: CPV, VT: PtrVT, Align: Align(8)); |
| 4272 | Offset = DAG.getLoad( |
| 4273 | VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: Offset, |
| 4274 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction())); |
| 4275 | break; |
| 4276 | } |
| 4277 | } |
| 4278 | |
| 4279 | // Add the base and offset together. |
| 4280 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: TP, N2: Offset); |
| 4281 | } |
| 4282 | |
| 4283 | SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, |
| 4284 | SelectionDAG &DAG) const { |
| 4285 | SDLoc DL(Node); |
| 4286 | const BlockAddress *BA = Node->getBlockAddress(); |
| 4287 | int64_t Offset = Node->getOffset(); |
| 4288 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4289 | |
| 4290 | SDValue Result = DAG.getTargetBlockAddress(BA, VT: PtrVT, Offset); |
| 4291 | Result = DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4292 | return Result; |
| 4293 | } |
| 4294 | |
| 4295 | SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, |
| 4296 | SelectionDAG &DAG) const { |
| 4297 | SDLoc DL(JT); |
| 4298 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4299 | SDValue Result = DAG.getTargetJumpTable(JTI: JT->getIndex(), VT: PtrVT); |
| 4300 | |
| 4301 | // Use LARL to load the address of the table. |
| 4302 | return DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4303 | } |
| 4304 | |
| 4305 | SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, |
| 4306 | SelectionDAG &DAG) const { |
| 4307 | SDLoc DL(CP); |
| 4308 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4309 | |
| 4310 | SDValue Result; |
| 4311 | if (CP->isMachineConstantPoolEntry()) |
| 4312 | Result = |
| 4313 | DAG.getTargetConstantPool(C: CP->getMachineCPVal(), VT: PtrVT, Align: CP->getAlign()); |
| 4314 | else |
| 4315 | Result = DAG.getTargetConstantPool(C: CP->getConstVal(), VT: PtrVT, Align: CP->getAlign(), |
| 4316 | Offset: CP->getOffset()); |
| 4317 | |
| 4318 | // Use LARL to load the address of the constant pool entry. |
| 4319 | return DAG.getNode(Opcode: SystemZISD::PCREL_WRAPPER, DL, VT: PtrVT, Operand: Result); |
| 4320 | } |
| 4321 | |
| 4322 | SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, |
| 4323 | SelectionDAG &DAG) const { |
| 4324 | auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>(); |
| 4325 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4326 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4327 | MFI.setFrameAddressIsTaken(true); |
| 4328 | |
| 4329 | SDLoc DL(Op); |
| 4330 | unsigned Depth = Op.getConstantOperandVal(i: 0); |
| 4331 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4332 | |
| 4333 | // By definition, the frame address is the address of the back chain. (In |
| 4334 | // the case of packed stack without backchain, return the address where the |
| 4335 | // backchain would have been stored. This will either be an unused space or |
| 4336 | // contain a saved register). |
| 4337 | int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); |
| 4338 | SDValue BackChain = DAG.getFrameIndex(FI: BackChainIdx, VT: PtrVT); |
| 4339 | |
| 4340 | if (Depth > 0) { |
| 4341 | // FIXME The frontend should detect this case. |
| 4342 | if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) |
| 4343 | report_fatal_error(reason: "Unsupported stack frame traversal count" ); |
| 4344 | |
| 4345 | SDValue Offset = DAG.getConstant(Val: TFL->getBackchainOffset(MF), DL, VT: PtrVT); |
| 4346 | while (Depth--) { |
| 4347 | BackChain = DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: BackChain, |
| 4348 | PtrInfo: MachinePointerInfo()); |
| 4349 | BackChain = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: BackChain, N2: Offset); |
| 4350 | } |
| 4351 | } |
| 4352 | |
| 4353 | return BackChain; |
| 4354 | } |
| 4355 | |
| 4356 | SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, |
| 4357 | SelectionDAG &DAG) const { |
| 4358 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4359 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4360 | MFI.setReturnAddressIsTaken(true); |
| 4361 | |
| 4362 | SDLoc DL(Op); |
| 4363 | unsigned Depth = Op.getConstantOperandVal(i: 0); |
| 4364 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4365 | |
| 4366 | if (Depth > 0) { |
| 4367 | // FIXME The frontend should detect this case. |
| 4368 | if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) |
| 4369 | report_fatal_error(reason: "Unsupported stack frame traversal count" ); |
| 4370 | |
| 4371 | SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); |
| 4372 | const auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>(); |
| 4373 | int Offset = TFL->getReturnAddressOffset(MF); |
| 4374 | SDValue Ptr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: FrameAddr, |
| 4375 | N2: DAG.getSignedConstant(Val: Offset, DL, VT: PtrVT)); |
| 4376 | return DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr, |
| 4377 | PtrInfo: MachinePointerInfo()); |
| 4378 | } |
| 4379 | |
| 4380 | // Return R14D (Elf) / R7D (XPLINK), which has the return address. Mark it an |
| 4381 | // implicit live-in. |
| 4382 | SystemZCallingConventionRegisters *CCR = Subtarget.getSpecialRegisters(); |
| 4383 | Register LinkReg = MF.addLiveIn(PReg: CCR->getReturnFunctionAddressRegister(), |
| 4384 | RC: &SystemZ::GR64BitRegClass); |
| 4385 | return DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: DL, Reg: LinkReg, VT: PtrVT); |
| 4386 | } |
| 4387 | |
| 4388 | SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, |
| 4389 | SelectionDAG &DAG) const { |
| 4390 | SDLoc DL(Op); |
| 4391 | SDValue In = Op.getOperand(i: 0); |
| 4392 | EVT InVT = In.getValueType(); |
| 4393 | EVT ResVT = Op.getValueType(); |
| 4394 | |
| 4395 | // Convert loads directly. This is normally done by DAGCombiner, |
| 4396 | // but we need this case for bitcasts that are created during lowering |
| 4397 | // and which are then lowered themselves. |
| 4398 | if (auto *LoadN = dyn_cast<LoadSDNode>(Val&: In)) |
| 4399 | if (ISD::isNormalLoad(N: LoadN)) { |
| 4400 | SDValue NewLoad = DAG.getLoad(VT: ResVT, dl: DL, Chain: LoadN->getChain(), |
| 4401 | Ptr: LoadN->getBasePtr(), MMO: LoadN->getMemOperand()); |
| 4402 | // Update the chain uses. |
| 4403 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(LoadN, 1), To: NewLoad.getValue(R: 1)); |
| 4404 | return NewLoad; |
| 4405 | } |
| 4406 | |
| 4407 | if (InVT == MVT::i32 && ResVT == MVT::f32) { |
| 4408 | SDValue In64; |
| 4409 | if (Subtarget.hasHighWord()) { |
| 4410 | SDNode *U64 = DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, |
| 4411 | VT: MVT::i64); |
| 4412 | In64 = DAG.getTargetInsertSubreg(SRIdx: SystemZ::subreg_h32, DL, |
| 4413 | VT: MVT::i64, Operand: SDValue(U64, 0), Subreg: In); |
| 4414 | } else { |
| 4415 | In64 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: In); |
| 4416 | In64 = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i64, N1: In64, |
| 4417 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i64)); |
| 4418 | } |
| 4419 | SDValue Out64 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::f64, Operand: In64); |
| 4420 | return DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_h32, |
| 4421 | DL, VT: MVT::f32, Operand: Out64); |
| 4422 | } |
| 4423 | if (InVT == MVT::f32 && ResVT == MVT::i32) { |
| 4424 | SDNode *U64 = DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MVT::f64); |
| 4425 | SDValue In64 = DAG.getTargetInsertSubreg(SRIdx: SystemZ::subreg_h32, DL, |
| 4426 | VT: MVT::f64, Operand: SDValue(U64, 0), Subreg: In); |
| 4427 | SDValue Out64 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: In64); |
| 4428 | if (Subtarget.hasHighWord()) |
| 4429 | return DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_h32, DL, |
| 4430 | VT: MVT::i32, Operand: Out64); |
| 4431 | SDValue Shift = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: Out64, |
| 4432 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i64)); |
| 4433 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Shift); |
| 4434 | } |
| 4435 | llvm_unreachable("Unexpected bitcast combination" ); |
| 4436 | } |
| 4437 | |
| 4438 | SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, |
| 4439 | SelectionDAG &DAG) const { |
| 4440 | |
| 4441 | if (Subtarget.isTargetXPLINK64()) |
| 4442 | return lowerVASTART_XPLINK(Op, DAG); |
| 4443 | else |
| 4444 | return lowerVASTART_ELF(Op, DAG); |
| 4445 | } |
| 4446 | |
| 4447 | SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, |
| 4448 | SelectionDAG &DAG) const { |
| 4449 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4450 | SystemZMachineFunctionInfo *FuncInfo = |
| 4451 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 4452 | |
| 4453 | SDLoc DL(Op); |
| 4454 | |
| 4455 | // vastart just stores the address of the VarArgsFrameIndex slot into the |
| 4456 | // memory location argument. |
| 4457 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4458 | SDValue FR = DAG.getFrameIndex(FI: FuncInfo->getVarArgsFrameIndex(), VT: PtrVT); |
| 4459 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 4460 | return DAG.getStore(Chain: Op.getOperand(i: 0), dl: DL, Val: FR, Ptr: Op.getOperand(i: 1), |
| 4461 | PtrInfo: MachinePointerInfo(SV)); |
| 4462 | } |
| 4463 | |
| 4464 | SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, |
| 4465 | SelectionDAG &DAG) const { |
| 4466 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4467 | SystemZMachineFunctionInfo *FuncInfo = |
| 4468 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 4469 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 4470 | |
| 4471 | SDValue Chain = Op.getOperand(i: 0); |
| 4472 | SDValue Addr = Op.getOperand(i: 1); |
| 4473 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 4474 | SDLoc DL(Op); |
| 4475 | |
| 4476 | // The initial values of each field. |
| 4477 | const unsigned NumFields = 4; |
| 4478 | SDValue Fields[NumFields] = { |
| 4479 | DAG.getConstant(Val: FuncInfo->getVarArgsFirstGPR(), DL, VT: PtrVT), |
| 4480 | DAG.getConstant(Val: FuncInfo->getVarArgsFirstFPR(), DL, VT: PtrVT), |
| 4481 | DAG.getFrameIndex(FI: FuncInfo->getVarArgsFrameIndex(), VT: PtrVT), |
| 4482 | DAG.getFrameIndex(FI: FuncInfo->getRegSaveFrameIndex(), VT: PtrVT) |
| 4483 | }; |
| 4484 | |
| 4485 | // Store each field into its respective slot. |
| 4486 | SDValue MemOps[NumFields]; |
| 4487 | unsigned Offset = 0; |
| 4488 | for (unsigned I = 0; I < NumFields; ++I) { |
| 4489 | SDValue FieldAddr = Addr; |
| 4490 | if (Offset != 0) |
| 4491 | FieldAddr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: FieldAddr, |
| 4492 | N2: DAG.getIntPtrConstant(Val: Offset, DL)); |
| 4493 | MemOps[I] = DAG.getStore(Chain, dl: DL, Val: Fields[I], Ptr: FieldAddr, |
| 4494 | PtrInfo: MachinePointerInfo(SV, Offset)); |
| 4495 | Offset += 8; |
| 4496 | } |
| 4497 | return DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOps); |
| 4498 | } |
| 4499 | |
| 4500 | SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, |
| 4501 | SelectionDAG &DAG) const { |
| 4502 | SDValue Chain = Op.getOperand(i: 0); |
| 4503 | SDValue DstPtr = Op.getOperand(i: 1); |
| 4504 | SDValue SrcPtr = Op.getOperand(i: 2); |
| 4505 | const Value *DstSV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 3))->getValue(); |
| 4506 | const Value *SrcSV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 4))->getValue(); |
| 4507 | SDLoc DL(Op); |
| 4508 | |
| 4509 | uint32_t Sz = |
| 4510 | Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(AS: 0) : 32; |
| 4511 | return DAG.getMemcpy(Chain, dl: DL, Dst: DstPtr, Src: SrcPtr, Size: DAG.getIntPtrConstant(Val: Sz, DL), |
| 4512 | Alignment: Align(8), /*isVolatile*/ isVol: false, /*AlwaysInline*/ false, |
| 4513 | /*CI=*/nullptr, OverrideTailCall: std::nullopt, DstPtrInfo: MachinePointerInfo(DstSV), |
| 4514 | SrcPtrInfo: MachinePointerInfo(SrcSV)); |
| 4515 | } |
| 4516 | |
| 4517 | SDValue |
| 4518 | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, |
| 4519 | SelectionDAG &DAG) const { |
| 4520 | if (Subtarget.isTargetXPLINK64()) |
| 4521 | return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); |
| 4522 | else |
| 4523 | return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); |
| 4524 | } |
| 4525 | |
| 4526 | SDValue |
| 4527 | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, |
| 4528 | SelectionDAG &DAG) const { |
| 4529 | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| 4530 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4531 | bool RealignOpt = !MF.getFunction().hasFnAttribute(Kind: "no-realign-stack" ); |
| 4532 | SDValue Chain = Op.getOperand(i: 0); |
| 4533 | SDValue Size = Op.getOperand(i: 1); |
| 4534 | SDValue Align = Op.getOperand(i: 2); |
| 4535 | SDLoc DL(Op); |
| 4536 | |
| 4537 | // If user has set the no alignment function attribute, ignore |
| 4538 | // alloca alignments. |
| 4539 | uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); |
| 4540 | |
| 4541 | uint64_t StackAlign = TFI->getStackAlignment(); |
| 4542 | uint64_t RequiredAlign = std::max(a: AlignVal, b: StackAlign); |
| 4543 | uint64_t = RequiredAlign - StackAlign; |
| 4544 | |
| 4545 | SDValue NeededSpace = Size; |
| 4546 | |
| 4547 | // Add extra space for alignment if needed. |
| 4548 | EVT PtrVT = getPointerTy(DL: MF.getDataLayout()); |
| 4549 | if (ExtraAlignSpace) |
| 4550 | NeededSpace = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: NeededSpace, |
| 4551 | N2: DAG.getConstant(Val: ExtraAlignSpace, DL, VT: PtrVT)); |
| 4552 | |
| 4553 | bool IsSigned = false; |
| 4554 | bool DoesNotReturn = false; |
| 4555 | bool IsReturnValueUsed = false; |
| 4556 | EVT VT = Op.getValueType(); |
| 4557 | SDValue AllocaCall = |
| 4558 | makeExternalCall(Chain, DAG, CalleeName: "@@ALCAXP" , RetVT: VT, Ops: ArrayRef(NeededSpace), |
| 4559 | CallConv: CallingConv::C, IsSigned, DL, DoesNotReturn, |
| 4560 | IsReturnValueUsed) |
| 4561 | .first; |
| 4562 | |
| 4563 | // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue |
| 4564 | // to end of call in order to ensure it isn't broken up from the call |
| 4565 | // sequence. |
| 4566 | auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); |
| 4567 | Register SPReg = Regs.getStackPointerRegister(); |
| 4568 | Chain = AllocaCall.getValue(R: 1); |
| 4569 | SDValue Glue = AllocaCall.getValue(R: 2); |
| 4570 | SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, dl: DL, Reg: SPReg, VT: PtrVT, Glue); |
| 4571 | Chain = NewSPRegNode.getValue(R: 1); |
| 4572 | |
| 4573 | MVT PtrMVT = getPointerMemTy(DL: MF.getDataLayout()); |
| 4574 | SDValue ArgAdjust = DAG.getNode(Opcode: SystemZISD::ADJDYNALLOC, DL, VT: PtrMVT); |
| 4575 | SDValue Result = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrMVT, N1: NewSPRegNode, N2: ArgAdjust); |
| 4576 | |
| 4577 | // Dynamically realign if needed. |
| 4578 | if (ExtraAlignSpace) { |
| 4579 | Result = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Result, |
| 4580 | N2: DAG.getConstant(Val: ExtraAlignSpace, DL, VT: PtrVT)); |
| 4581 | Result = DAG.getNode(Opcode: ISD::AND, DL, VT: PtrVT, N1: Result, |
| 4582 | N2: DAG.getConstant(Val: ~(RequiredAlign - 1), DL, VT: PtrVT)); |
| 4583 | } |
| 4584 | |
| 4585 | SDValue Ops[2] = {Result, Chain}; |
| 4586 | return DAG.getMergeValues(Ops, dl: DL); |
| 4587 | } |
| 4588 | |
| 4589 | SDValue |
| 4590 | SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, |
| 4591 | SelectionDAG &DAG) const { |
| 4592 | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| 4593 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4594 | bool RealignOpt = !MF.getFunction().hasFnAttribute(Kind: "no-realign-stack" ); |
| 4595 | bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); |
| 4596 | |
| 4597 | SDValue Chain = Op.getOperand(i: 0); |
| 4598 | SDValue Size = Op.getOperand(i: 1); |
| 4599 | SDValue Align = Op.getOperand(i: 2); |
| 4600 | SDLoc DL(Op); |
| 4601 | |
| 4602 | // If user has set the no alignment function attribute, ignore |
| 4603 | // alloca alignments. |
| 4604 | uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); |
| 4605 | |
| 4606 | uint64_t StackAlign = TFI->getStackAlignment(); |
| 4607 | uint64_t RequiredAlign = std::max(a: AlignVal, b: StackAlign); |
| 4608 | uint64_t = RequiredAlign - StackAlign; |
| 4609 | |
| 4610 | Register SPReg = getStackPointerRegisterToSaveRestore(); |
| 4611 | SDValue NeededSpace = Size; |
| 4612 | |
| 4613 | // Get a reference to the stack pointer. |
| 4614 | SDValue OldSP = DAG.getCopyFromReg(Chain, dl: DL, Reg: SPReg, VT: MVT::i64); |
| 4615 | |
| 4616 | // If we need a backchain, save it now. |
| 4617 | SDValue Backchain; |
| 4618 | if (StoreBackchain) |
| 4619 | Backchain = DAG.getLoad(VT: MVT::i64, dl: DL, Chain, Ptr: getBackchainAddress(SP: OldSP, DAG), |
| 4620 | PtrInfo: MachinePointerInfo()); |
| 4621 | |
| 4622 | // Add extra space for alignment if needed. |
| 4623 | if (ExtraAlignSpace) |
| 4624 | NeededSpace = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i64, N1: NeededSpace, |
| 4625 | N2: DAG.getConstant(Val: ExtraAlignSpace, DL, VT: MVT::i64)); |
| 4626 | |
| 4627 | // Get the new stack pointer value. |
| 4628 | SDValue NewSP; |
| 4629 | if (hasInlineStackProbe(MF)) { |
| 4630 | NewSP = DAG.getNode(Opcode: SystemZISD::PROBED_ALLOCA, DL, |
| 4631 | VTList: DAG.getVTList(VT1: MVT::i64, VT2: MVT::Other), N1: Chain, N2: OldSP, N3: NeededSpace); |
| 4632 | Chain = NewSP.getValue(R: 1); |
| 4633 | } |
| 4634 | else { |
| 4635 | NewSP = DAG.getNode(Opcode: ISD::SUB, DL, VT: MVT::i64, N1: OldSP, N2: NeededSpace); |
| 4636 | // Copy the new stack pointer back. |
| 4637 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: SPReg, N: NewSP); |
| 4638 | } |
| 4639 | |
| 4640 | // The allocated data lives above the 160 bytes allocated for the standard |
| 4641 | // frame, plus any outgoing stack arguments. We don't know how much that |
| 4642 | // amounts to yet, so emit a special ADJDYNALLOC placeholder. |
| 4643 | SDValue ArgAdjust = DAG.getNode(Opcode: SystemZISD::ADJDYNALLOC, DL, VT: MVT::i64); |
| 4644 | SDValue Result = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i64, N1: NewSP, N2: ArgAdjust); |
| 4645 | |
| 4646 | // Dynamically realign if needed. |
| 4647 | if (RequiredAlign > StackAlign) { |
| 4648 | Result = |
| 4649 | DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i64, N1: Result, |
| 4650 | N2: DAG.getConstant(Val: ExtraAlignSpace, DL, VT: MVT::i64)); |
| 4651 | Result = |
| 4652 | DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i64, N1: Result, |
| 4653 | N2: DAG.getConstant(Val: ~(RequiredAlign - 1), DL, VT: MVT::i64)); |
| 4654 | } |
| 4655 | |
| 4656 | if (StoreBackchain) |
| 4657 | Chain = DAG.getStore(Chain, dl: DL, Val: Backchain, Ptr: getBackchainAddress(SP: NewSP, DAG), |
| 4658 | PtrInfo: MachinePointerInfo()); |
| 4659 | |
| 4660 | SDValue Ops[2] = { Result, Chain }; |
| 4661 | return DAG.getMergeValues(Ops, dl: DL); |
| 4662 | } |
| 4663 | |
| 4664 | SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( |
| 4665 | SDValue Op, SelectionDAG &DAG) const { |
| 4666 | SDLoc DL(Op); |
| 4667 | |
| 4668 | return DAG.getNode(Opcode: SystemZISD::ADJDYNALLOC, DL, VT: MVT::i64); |
| 4669 | } |
| 4670 | |
| 4671 | SDValue SystemZTargetLowering::lowerMULH(SDValue Op, |
| 4672 | SelectionDAG &DAG, |
| 4673 | unsigned Opcode) const { |
| 4674 | EVT VT = Op.getValueType(); |
| 4675 | SDLoc DL(Op); |
| 4676 | SDValue Even, Odd; |
| 4677 | |
| 4678 | // This custom expander is only used on z17 and later for 64-bit types. |
| 4679 | assert(!is32Bit(VT)); |
| 4680 | assert(Subtarget.hasMiscellaneousExtensions2()); |
| 4681 | |
| 4682 | // SystemZISD::xMUL_LOHI returns the low result in the odd register and |
| 4683 | // the high result in the even register. Return the latter. |
| 4684 | lowerGR128Binary(DAG, DL, VT, Opcode, |
| 4685 | Op0: Op.getOperand(i: 0), Op1: Op.getOperand(i: 1), Even, Odd); |
| 4686 | return Even; |
| 4687 | } |
| 4688 | |
| 4689 | SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, |
| 4690 | SelectionDAG &DAG) const { |
| 4691 | EVT VT = Op.getValueType(); |
| 4692 | SDLoc DL(Op); |
| 4693 | SDValue Ops[2]; |
| 4694 | if (is32Bit(VT)) |
| 4695 | // Just do a normal 64-bit multiplication and extract the results. |
| 4696 | // We define this so that it can be used for constant division. |
| 4697 | lowerMUL_LOHI32(DAG, DL, Extend: ISD::SIGN_EXTEND, Op0: Op.getOperand(i: 0), |
| 4698 | Op1: Op.getOperand(i: 1), Hi&: Ops[1], Lo&: Ops[0]); |
| 4699 | else if (Subtarget.hasMiscellaneousExtensions2()) |
| 4700 | // SystemZISD::SMUL_LOHI returns the low result in the odd register and |
| 4701 | // the high result in the even register. ISD::SMUL_LOHI is defined to |
| 4702 | // return the low half first, so the results are in reverse order. |
| 4703 | lowerGR128Binary(DAG, DL, VT, Opcode: SystemZISD::SMUL_LOHI, |
| 4704 | Op0: Op.getOperand(i: 0), Op1: Op.getOperand(i: 1), Even&: Ops[1], Odd&: Ops[0]); |
| 4705 | else { |
| 4706 | // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: |
| 4707 | // |
| 4708 | // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) |
| 4709 | // |
| 4710 | // but using the fact that the upper halves are either all zeros |
| 4711 | // or all ones: |
| 4712 | // |
| 4713 | // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) |
| 4714 | // |
| 4715 | // and grouping the right terms together since they are quicker than the |
| 4716 | // multiplication: |
| 4717 | // |
| 4718 | // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) |
| 4719 | SDValue C63 = DAG.getConstant(Val: 63, DL, VT: MVT::i64); |
| 4720 | SDValue LL = Op.getOperand(i: 0); |
| 4721 | SDValue RL = Op.getOperand(i: 1); |
| 4722 | SDValue LH = DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: LL, N2: C63); |
| 4723 | SDValue RH = DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: RL, N2: C63); |
| 4724 | // SystemZISD::UMUL_LOHI returns the low result in the odd register and |
| 4725 | // the high result in the even register. ISD::SMUL_LOHI is defined to |
| 4726 | // return the low half first, so the results are in reverse order. |
| 4727 | lowerGR128Binary(DAG, DL, VT, Opcode: SystemZISD::UMUL_LOHI, |
| 4728 | Op0: LL, Op1: RL, Even&: Ops[1], Odd&: Ops[0]); |
| 4729 | SDValue NegLLTimesRH = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: LL, N2: RH); |
| 4730 | SDValue NegLHTimesRL = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: LH, N2: RL); |
| 4731 | SDValue NegSum = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: NegLLTimesRH, N2: NegLHTimesRL); |
| 4732 | Ops[1] = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Ops[1], N2: NegSum); |
| 4733 | } |
| 4734 | return DAG.getMergeValues(Ops, dl: DL); |
| 4735 | } |
| 4736 | |
| 4737 | SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, |
| 4738 | SelectionDAG &DAG) const { |
| 4739 | EVT VT = Op.getValueType(); |
| 4740 | SDLoc DL(Op); |
| 4741 | SDValue Ops[2]; |
| 4742 | if (is32Bit(VT)) |
| 4743 | // Just do a normal 64-bit multiplication and extract the results. |
| 4744 | // We define this so that it can be used for constant division. |
| 4745 | lowerMUL_LOHI32(DAG, DL, Extend: ISD::ZERO_EXTEND, Op0: Op.getOperand(i: 0), |
| 4746 | Op1: Op.getOperand(i: 1), Hi&: Ops[1], Lo&: Ops[0]); |
| 4747 | else |
| 4748 | // SystemZISD::UMUL_LOHI returns the low result in the odd register and |
| 4749 | // the high result in the even register. ISD::UMUL_LOHI is defined to |
| 4750 | // return the low half first, so the results are in reverse order. |
| 4751 | lowerGR128Binary(DAG, DL, VT, Opcode: SystemZISD::UMUL_LOHI, |
| 4752 | Op0: Op.getOperand(i: 0), Op1: Op.getOperand(i: 1), Even&: Ops[1], Odd&: Ops[0]); |
| 4753 | return DAG.getMergeValues(Ops, dl: DL); |
| 4754 | } |
| 4755 | |
| 4756 | SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, |
| 4757 | SelectionDAG &DAG) const { |
| 4758 | SDValue Op0 = Op.getOperand(i: 0); |
| 4759 | SDValue Op1 = Op.getOperand(i: 1); |
| 4760 | EVT VT = Op.getValueType(); |
| 4761 | SDLoc DL(Op); |
| 4762 | |
| 4763 | // We use DSGF for 32-bit division. This means the first operand must |
| 4764 | // always be 64-bit, and the second operand should be 32-bit whenever |
| 4765 | // that is possible, to improve performance. |
| 4766 | if (is32Bit(VT)) |
| 4767 | Op0 = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: MVT::i64, Operand: Op0); |
| 4768 | else if (DAG.ComputeNumSignBits(Op: Op1) > 32) |
| 4769 | Op1 = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Op1); |
| 4770 | |
| 4771 | // DSG(F) returns the remainder in the even register and the |
| 4772 | // quotient in the odd register. |
| 4773 | SDValue Ops[2]; |
| 4774 | lowerGR128Binary(DAG, DL, VT, Opcode: SystemZISD::SDIVREM, Op0, Op1, Even&: Ops[1], Odd&: Ops[0]); |
| 4775 | return DAG.getMergeValues(Ops, dl: DL); |
| 4776 | } |
| 4777 | |
| 4778 | SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, |
| 4779 | SelectionDAG &DAG) const { |
| 4780 | EVT VT = Op.getValueType(); |
| 4781 | SDLoc DL(Op); |
| 4782 | |
| 4783 | // DL(G) returns the remainder in the even register and the |
| 4784 | // quotient in the odd register. |
| 4785 | SDValue Ops[2]; |
| 4786 | lowerGR128Binary(DAG, DL, VT, Opcode: SystemZISD::UDIVREM, |
| 4787 | Op0: Op.getOperand(i: 0), Op1: Op.getOperand(i: 1), Even&: Ops[1], Odd&: Ops[0]); |
| 4788 | return DAG.getMergeValues(Ops, dl: DL); |
| 4789 | } |
| 4790 | |
| 4791 | SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { |
| 4792 | assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation" ); |
| 4793 | |
| 4794 | // Get the known-zero masks for each operand. |
| 4795 | SDValue Ops[] = {Op.getOperand(i: 0), Op.getOperand(i: 1)}; |
| 4796 | KnownBits Known[2] = {DAG.computeKnownBits(Op: Ops[0]), |
| 4797 | DAG.computeKnownBits(Op: Ops[1])}; |
| 4798 | |
| 4799 | // See if the upper 32 bits of one operand and the lower 32 bits of the |
| 4800 | // other are known zero. They are the low and high operands respectively. |
| 4801 | uint64_t Masks[] = { Known[0].Zero.getZExtValue(), |
| 4802 | Known[1].Zero.getZExtValue() }; |
| 4803 | unsigned High, Low; |
| 4804 | if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) |
| 4805 | High = 1, Low = 0; |
| 4806 | else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) |
| 4807 | High = 0, Low = 1; |
| 4808 | else |
| 4809 | return Op; |
| 4810 | |
| 4811 | SDValue LowOp = Ops[Low]; |
| 4812 | SDValue HighOp = Ops[High]; |
| 4813 | |
| 4814 | // If the high part is a constant, we're better off using IILH. |
| 4815 | if (HighOp.getOpcode() == ISD::Constant) |
| 4816 | return Op; |
| 4817 | |
| 4818 | // If the low part is a constant that is outside the range of LHI, |
| 4819 | // then we're better off using IILF. |
| 4820 | if (LowOp.getOpcode() == ISD::Constant) { |
| 4821 | int64_t Value = int32_t(LowOp->getAsZExtVal()); |
| 4822 | if (!isInt<16>(x: Value)) |
| 4823 | return Op; |
| 4824 | } |
| 4825 | |
| 4826 | // Check whether the high part is an AND that doesn't change the |
| 4827 | // high 32 bits and just masks out low bits. We can skip it if so. |
| 4828 | if (HighOp.getOpcode() == ISD::AND && |
| 4829 | HighOp.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 4830 | SDValue HighOp0 = HighOp.getOperand(i: 0); |
| 4831 | uint64_t Mask = HighOp.getConstantOperandVal(i: 1); |
| 4832 | if (DAG.MaskedValueIsZero(Op: HighOp0, Mask: APInt(64, ~(Mask | 0xffffffff)))) |
| 4833 | HighOp = HighOp0; |
| 4834 | } |
| 4835 | |
| 4836 | // Take advantage of the fact that all GR32 operations only change the |
| 4837 | // low 32 bits by truncating Low to an i32 and inserting it directly |
| 4838 | // using a subreg. The interesting cases are those where the truncation |
| 4839 | // can be folded. |
| 4840 | SDLoc DL(Op); |
| 4841 | SDValue Low32 = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: LowOp); |
| 4842 | return DAG.getTargetInsertSubreg(SRIdx: SystemZ::subreg_l32, DL, |
| 4843 | VT: MVT::i64, Operand: HighOp, Subreg: Low32); |
| 4844 | } |
| 4845 | |
| 4846 | // Lower SADDO/SSUBO/UADDO/USUBO nodes. |
| 4847 | SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, |
| 4848 | SelectionDAG &DAG) const { |
| 4849 | SDNode *N = Op.getNode(); |
| 4850 | SDValue LHS = N->getOperand(Num: 0); |
| 4851 | SDValue RHS = N->getOperand(Num: 1); |
| 4852 | SDLoc DL(N); |
| 4853 | |
| 4854 | if (N->getValueType(ResNo: 0) == MVT::i128) { |
| 4855 | unsigned BaseOp = 0; |
| 4856 | unsigned FlagOp = 0; |
| 4857 | bool IsBorrow = false; |
| 4858 | switch (Op.getOpcode()) { |
| 4859 | default: llvm_unreachable("Unknown instruction!" ); |
| 4860 | case ISD::UADDO: |
| 4861 | BaseOp = ISD::ADD; |
| 4862 | FlagOp = SystemZISD::VACC; |
| 4863 | break; |
| 4864 | case ISD::USUBO: |
| 4865 | BaseOp = ISD::SUB; |
| 4866 | FlagOp = SystemZISD::VSCBI; |
| 4867 | IsBorrow = true; |
| 4868 | break; |
| 4869 | } |
| 4870 | SDValue Result = DAG.getNode(Opcode: BaseOp, DL, VT: MVT::i128, N1: LHS, N2: RHS); |
| 4871 | SDValue Flag = DAG.getNode(Opcode: FlagOp, DL, VT: MVT::i128, N1: LHS, N2: RHS); |
| 4872 | Flag = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: MVT::i128, N1: Flag, |
| 4873 | N2: DAG.getValueType(MVT::i1)); |
| 4874 | Flag = DAG.getZExtOrTrunc(Op: Flag, DL, VT: N->getValueType(ResNo: 1)); |
| 4875 | if (IsBorrow) |
| 4876 | Flag = DAG.getNode(Opcode: ISD::XOR, DL, VT: Flag.getValueType(), |
| 4877 | N1: Flag, N2: DAG.getConstant(Val: 1, DL, VT: Flag.getValueType())); |
| 4878 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL, VTList: N->getVTList(), N1: Result, N2: Flag); |
| 4879 | } |
| 4880 | |
| 4881 | unsigned BaseOp = 0; |
| 4882 | unsigned CCValid = 0; |
| 4883 | unsigned CCMask = 0; |
| 4884 | |
| 4885 | switch (Op.getOpcode()) { |
| 4886 | default: llvm_unreachable("Unknown instruction!" ); |
| 4887 | case ISD::SADDO: |
| 4888 | BaseOp = SystemZISD::SADDO; |
| 4889 | CCValid = SystemZ::CCMASK_ARITH; |
| 4890 | CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; |
| 4891 | break; |
| 4892 | case ISD::SSUBO: |
| 4893 | BaseOp = SystemZISD::SSUBO; |
| 4894 | CCValid = SystemZ::CCMASK_ARITH; |
| 4895 | CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; |
| 4896 | break; |
| 4897 | case ISD::UADDO: |
| 4898 | BaseOp = SystemZISD::UADDO; |
| 4899 | CCValid = SystemZ::CCMASK_LOGICAL; |
| 4900 | CCMask = SystemZ::CCMASK_LOGICAL_CARRY; |
| 4901 | break; |
| 4902 | case ISD::USUBO: |
| 4903 | BaseOp = SystemZISD::USUBO; |
| 4904 | CCValid = SystemZ::CCMASK_LOGICAL; |
| 4905 | CCMask = SystemZ::CCMASK_LOGICAL_BORROW; |
| 4906 | break; |
| 4907 | } |
| 4908 | |
| 4909 | SDVTList VTs = DAG.getVTList(VT1: N->getValueType(ResNo: 0), VT2: MVT::i32); |
| 4910 | SDValue Result = DAG.getNode(Opcode: BaseOp, DL, VTList: VTs, N1: LHS, N2: RHS); |
| 4911 | |
| 4912 | SDValue SetCC = emitSETCC(DAG, DL, CCReg: Result.getValue(R: 1), CCValid, CCMask); |
| 4913 | if (N->getValueType(ResNo: 1) == MVT::i1) |
| 4914 | SetCC = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i1, Operand: SetCC); |
| 4915 | |
| 4916 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL, VTList: N->getVTList(), N1: Result, N2: SetCC); |
| 4917 | } |
| 4918 | |
| 4919 | static bool isAddCarryChain(SDValue Carry) { |
| 4920 | while (Carry.getOpcode() == ISD::UADDO_CARRY && |
| 4921 | Carry->getValueType(ResNo: 0) != MVT::i128) |
| 4922 | Carry = Carry.getOperand(i: 2); |
| 4923 | return Carry.getOpcode() == ISD::UADDO && |
| 4924 | Carry->getValueType(ResNo: 0) != MVT::i128; |
| 4925 | } |
| 4926 | |
| 4927 | static bool isSubBorrowChain(SDValue Carry) { |
| 4928 | while (Carry.getOpcode() == ISD::USUBO_CARRY && |
| 4929 | Carry->getValueType(ResNo: 0) != MVT::i128) |
| 4930 | Carry = Carry.getOperand(i: 2); |
| 4931 | return Carry.getOpcode() == ISD::USUBO && |
| 4932 | Carry->getValueType(ResNo: 0) != MVT::i128; |
| 4933 | } |
| 4934 | |
| 4935 | // Lower UADDO_CARRY/USUBO_CARRY nodes. |
| 4936 | SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op, |
| 4937 | SelectionDAG &DAG) const { |
| 4938 | |
| 4939 | SDNode *N = Op.getNode(); |
| 4940 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 4941 | |
| 4942 | // Let legalize expand this if it isn't a legal type yet. |
| 4943 | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| 4944 | return SDValue(); |
| 4945 | |
| 4946 | SDValue LHS = N->getOperand(Num: 0); |
| 4947 | SDValue RHS = N->getOperand(Num: 1); |
| 4948 | SDValue Carry = Op.getOperand(i: 2); |
| 4949 | SDLoc DL(N); |
| 4950 | |
| 4951 | if (VT == MVT::i128) { |
| 4952 | unsigned BaseOp = 0; |
| 4953 | unsigned FlagOp = 0; |
| 4954 | bool IsBorrow = false; |
| 4955 | switch (Op.getOpcode()) { |
| 4956 | default: llvm_unreachable("Unknown instruction!" ); |
| 4957 | case ISD::UADDO_CARRY: |
| 4958 | BaseOp = SystemZISD::VAC; |
| 4959 | FlagOp = SystemZISD::VACCC; |
| 4960 | break; |
| 4961 | case ISD::USUBO_CARRY: |
| 4962 | BaseOp = SystemZISD::VSBI; |
| 4963 | FlagOp = SystemZISD::VSBCBI; |
| 4964 | IsBorrow = true; |
| 4965 | break; |
| 4966 | } |
| 4967 | if (IsBorrow) |
| 4968 | Carry = DAG.getNode(Opcode: ISD::XOR, DL, VT: Carry.getValueType(), |
| 4969 | N1: Carry, N2: DAG.getConstant(Val: 1, DL, VT: Carry.getValueType())); |
| 4970 | Carry = DAG.getZExtOrTrunc(Op: Carry, DL, VT: MVT::i128); |
| 4971 | SDValue Result = DAG.getNode(Opcode: BaseOp, DL, VT: MVT::i128, N1: LHS, N2: RHS, N3: Carry); |
| 4972 | SDValue Flag = DAG.getNode(Opcode: FlagOp, DL, VT: MVT::i128, N1: LHS, N2: RHS, N3: Carry); |
| 4973 | Flag = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: MVT::i128, N1: Flag, |
| 4974 | N2: DAG.getValueType(MVT::i1)); |
| 4975 | Flag = DAG.getZExtOrTrunc(Op: Flag, DL, VT: N->getValueType(ResNo: 1)); |
| 4976 | if (IsBorrow) |
| 4977 | Flag = DAG.getNode(Opcode: ISD::XOR, DL, VT: Flag.getValueType(), |
| 4978 | N1: Flag, N2: DAG.getConstant(Val: 1, DL, VT: Flag.getValueType())); |
| 4979 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL, VTList: N->getVTList(), N1: Result, N2: Flag); |
| 4980 | } |
| 4981 | |
| 4982 | unsigned BaseOp = 0; |
| 4983 | unsigned CCValid = 0; |
| 4984 | unsigned CCMask = 0; |
| 4985 | |
| 4986 | switch (Op.getOpcode()) { |
| 4987 | default: llvm_unreachable("Unknown instruction!" ); |
| 4988 | case ISD::UADDO_CARRY: |
| 4989 | if (!isAddCarryChain(Carry)) |
| 4990 | return SDValue(); |
| 4991 | |
| 4992 | BaseOp = SystemZISD::ADDCARRY; |
| 4993 | CCValid = SystemZ::CCMASK_LOGICAL; |
| 4994 | CCMask = SystemZ::CCMASK_LOGICAL_CARRY; |
| 4995 | break; |
| 4996 | case ISD::USUBO_CARRY: |
| 4997 | if (!isSubBorrowChain(Carry)) |
| 4998 | return SDValue(); |
| 4999 | |
| 5000 | BaseOp = SystemZISD::SUBCARRY; |
| 5001 | CCValid = SystemZ::CCMASK_LOGICAL; |
| 5002 | CCMask = SystemZ::CCMASK_LOGICAL_BORROW; |
| 5003 | break; |
| 5004 | } |
| 5005 | |
| 5006 | // Set the condition code from the carry flag. |
| 5007 | Carry = DAG.getNode(Opcode: SystemZISD::GET_CCMASK, DL, VT: MVT::i32, N1: Carry, |
| 5008 | N2: DAG.getConstant(Val: CCValid, DL, VT: MVT::i32), |
| 5009 | N3: DAG.getConstant(Val: CCMask, DL, VT: MVT::i32)); |
| 5010 | |
| 5011 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: MVT::i32); |
| 5012 | SDValue Result = DAG.getNode(Opcode: BaseOp, DL, VTList: VTs, N1: LHS, N2: RHS, N3: Carry); |
| 5013 | |
| 5014 | SDValue SetCC = emitSETCC(DAG, DL, CCReg: Result.getValue(R: 1), CCValid, CCMask); |
| 5015 | if (N->getValueType(ResNo: 1) == MVT::i1) |
| 5016 | SetCC = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i1, Operand: SetCC); |
| 5017 | |
| 5018 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL, VTList: N->getVTList(), N1: Result, N2: SetCC); |
| 5019 | } |
| 5020 | |
| 5021 | SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, |
| 5022 | SelectionDAG &DAG) const { |
| 5023 | EVT VT = Op.getValueType(); |
| 5024 | SDLoc DL(Op); |
| 5025 | Op = Op.getOperand(i: 0); |
| 5026 | |
| 5027 | if (VT.getScalarSizeInBits() == 128) { |
| 5028 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v2i64, Operand: Op); |
| 5029 | Op = DAG.getNode(Opcode: ISD::CTPOP, DL, VT: MVT::v2i64, Operand: Op); |
| 5030 | SDValue Tmp = DAG.getSplatBuildVector(VT: MVT::v2i64, DL, |
| 5031 | Op: DAG.getConstant(Val: 0, DL, VT: MVT::i64)); |
| 5032 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT, N1: Op, N2: Tmp); |
| 5033 | return Op; |
| 5034 | } |
| 5035 | |
| 5036 | // Handle vector types via VPOPCT. |
| 5037 | if (VT.isVector()) { |
| 5038 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v16i8, Operand: Op); |
| 5039 | Op = DAG.getNode(Opcode: SystemZISD::POPCNT, DL, VT: MVT::v16i8, Operand: Op); |
| 5040 | switch (VT.getScalarSizeInBits()) { |
| 5041 | case 8: |
| 5042 | break; |
| 5043 | case 16: { |
| 5044 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 5045 | SDValue Shift = DAG.getConstant(Val: 8, DL, VT: MVT::i32); |
| 5046 | SDValue Tmp = DAG.getNode(Opcode: SystemZISD::VSHL_BY_SCALAR, DL, VT, N1: Op, N2: Shift); |
| 5047 | Op = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op, N2: Tmp); |
| 5048 | Op = DAG.getNode(Opcode: SystemZISD::VSRL_BY_SCALAR, DL, VT, N1: Op, N2: Shift); |
| 5049 | break; |
| 5050 | } |
| 5051 | case 32: { |
| 5052 | SDValue Tmp = DAG.getSplatBuildVector(VT: MVT::v16i8, DL, |
| 5053 | Op: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 5054 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT, N1: Op, N2: Tmp); |
| 5055 | break; |
| 5056 | } |
| 5057 | case 64: { |
| 5058 | SDValue Tmp = DAG.getSplatBuildVector(VT: MVT::v16i8, DL, |
| 5059 | Op: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 5060 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT: MVT::v4i32, N1: Op, N2: Tmp); |
| 5061 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT, N1: Op, N2: Tmp); |
| 5062 | break; |
| 5063 | } |
| 5064 | default: |
| 5065 | llvm_unreachable("Unexpected type" ); |
| 5066 | } |
| 5067 | return Op; |
| 5068 | } |
| 5069 | |
| 5070 | // Get the known-zero mask for the operand. |
| 5071 | KnownBits Known = DAG.computeKnownBits(Op); |
| 5072 | unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); |
| 5073 | if (NumSignificantBits == 0) |
| 5074 | return DAG.getConstant(Val: 0, DL, VT); |
| 5075 | |
| 5076 | // Skip known-zero high parts of the operand. |
| 5077 | int64_t OrigBitSize = VT.getSizeInBits(); |
| 5078 | int64_t BitSize = llvm::bit_ceil(Value: NumSignificantBits); |
| 5079 | BitSize = std::min(a: BitSize, b: OrigBitSize); |
| 5080 | |
| 5081 | // The POPCNT instruction counts the number of bits in each byte. |
| 5082 | Op = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op); |
| 5083 | Op = DAG.getNode(Opcode: SystemZISD::POPCNT, DL, VT: MVT::i64, Operand: Op); |
| 5084 | Op = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Op); |
| 5085 | |
| 5086 | // Add up per-byte counts in a binary tree. All bits of Op at |
| 5087 | // position larger than BitSize remain zero throughout. |
| 5088 | for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { |
| 5089 | SDValue Tmp = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Op, N2: DAG.getConstant(Val: I, DL, VT)); |
| 5090 | if (BitSize != OrigBitSize) |
| 5091 | Tmp = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Tmp, |
| 5092 | N2: DAG.getConstant(Val: ((uint64_t)1 << BitSize) - 1, DL, VT)); |
| 5093 | Op = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op, N2: Tmp); |
| 5094 | } |
| 5095 | |
| 5096 | // Extract overall result from high byte. |
| 5097 | if (BitSize > 8) |
| 5098 | Op = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Op, |
| 5099 | N2: DAG.getConstant(Val: BitSize - 8, DL, VT)); |
| 5100 | |
| 5101 | return Op; |
| 5102 | } |
| 5103 | |
| 5104 | SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, |
| 5105 | SelectionDAG &DAG) const { |
| 5106 | SDLoc DL(Op); |
| 5107 | AtomicOrdering FenceOrdering = |
| 5108 | static_cast<AtomicOrdering>(Op.getConstantOperandVal(i: 1)); |
| 5109 | SyncScope::ID FenceSSID = |
| 5110 | static_cast<SyncScope::ID>(Op.getConstantOperandVal(i: 2)); |
| 5111 | |
| 5112 | // The only fence that needs an instruction is a sequentially-consistent |
| 5113 | // cross-thread fence. |
| 5114 | if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && |
| 5115 | FenceSSID == SyncScope::System) { |
| 5116 | return SDValue(DAG.getMachineNode(Opcode: SystemZ::Serialize, dl: DL, VT: MVT::Other, |
| 5117 | Op1: Op.getOperand(i: 0)), |
| 5118 | 0); |
| 5119 | } |
| 5120 | |
| 5121 | // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| 5122 | return DAG.getNode(Opcode: ISD::MEMBARRIER, DL, VT: MVT::Other, Operand: Op.getOperand(i: 0)); |
| 5123 | } |
| 5124 | |
| 5125 | SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, |
| 5126 | SelectionDAG &DAG) const { |
| 5127 | EVT RegVT = Op.getValueType(); |
| 5128 | if (RegVT.getSizeInBits() == 128) |
| 5129 | return lowerATOMIC_LDST_I128(Op, DAG); |
| 5130 | return lowerLoadF16(Op, DAG); |
| 5131 | } |
| 5132 | |
| 5133 | SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, |
| 5134 | SelectionDAG &DAG) const { |
| 5135 | auto *Node = cast<AtomicSDNode>(Val: Op.getNode()); |
| 5136 | if (Node->getMemoryVT().getSizeInBits() == 128) |
| 5137 | return lowerATOMIC_LDST_I128(Op, DAG); |
| 5138 | return lowerStoreF16(Op, DAG); |
| 5139 | } |
| 5140 | |
| 5141 | SDValue SystemZTargetLowering::lowerATOMIC_LDST_I128(SDValue Op, |
| 5142 | SelectionDAG &DAG) const { |
| 5143 | auto *Node = cast<AtomicSDNode>(Val: Op.getNode()); |
| 5144 | assert( |
| 5145 | (Node->getMemoryVT() == MVT::i128 || Node->getMemoryVT() == MVT::f128) && |
| 5146 | "Only custom lowering i128 or f128." ); |
| 5147 | // Use same code to handle both legal and non-legal i128 types. |
| 5148 | SmallVector<SDValue, 2> Results; |
| 5149 | LowerOperationWrapper(N: Node, Results, DAG); |
| 5150 | return DAG.getMergeValues(Ops: Results, dl: SDLoc(Op)); |
| 5151 | } |
| 5152 | |
| 5153 | // Prepare for a Compare And Swap for a subword operation. This needs to be |
| 5154 | // done in memory with 4 bytes at natural alignment. |
| 5155 | static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL, |
| 5156 | SDValue &AlignedAddr, SDValue &BitShift, |
| 5157 | SDValue &NegBitShift) { |
| 5158 | EVT PtrVT = Addr.getValueType(); |
| 5159 | EVT WideVT = MVT::i32; |
| 5160 | |
| 5161 | // Get the address of the containing word. |
| 5162 | AlignedAddr = DAG.getNode(Opcode: ISD::AND, DL, VT: PtrVT, N1: Addr, |
| 5163 | N2: DAG.getSignedConstant(Val: -4, DL, VT: PtrVT)); |
| 5164 | |
| 5165 | // Get the number of bits that the word must be rotated left in order |
| 5166 | // to bring the field to the top bits of a GR32. |
| 5167 | BitShift = DAG.getNode(Opcode: ISD::SHL, DL, VT: PtrVT, N1: Addr, |
| 5168 | N2: DAG.getConstant(Val: 3, DL, VT: PtrVT)); |
| 5169 | BitShift = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: WideVT, Operand: BitShift); |
| 5170 | |
| 5171 | // Get the complementing shift amount, for rotating a field in the top |
| 5172 | // bits back to its proper position. |
| 5173 | NegBitShift = DAG.getNode(Opcode: ISD::SUB, DL, VT: WideVT, |
| 5174 | N1: DAG.getConstant(Val: 0, DL, VT: WideVT), N2: BitShift); |
| 5175 | |
| 5176 | } |
| 5177 | |
| 5178 | // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first |
| 5179 | // two into the fullword ATOMIC_LOADW_* operation given by Opcode. |
| 5180 | SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, |
| 5181 | SelectionDAG &DAG, |
| 5182 | unsigned Opcode) const { |
| 5183 | auto *Node = cast<AtomicSDNode>(Val: Op.getNode()); |
| 5184 | |
| 5185 | // 32-bit operations need no special handling. |
| 5186 | EVT NarrowVT = Node->getMemoryVT(); |
| 5187 | EVT WideVT = MVT::i32; |
| 5188 | if (NarrowVT == WideVT) |
| 5189 | return Op; |
| 5190 | |
| 5191 | int64_t BitSize = NarrowVT.getSizeInBits(); |
| 5192 | SDValue ChainIn = Node->getChain(); |
| 5193 | SDValue Addr = Node->getBasePtr(); |
| 5194 | SDValue Src2 = Node->getVal(); |
| 5195 | MachineMemOperand *MMO = Node->getMemOperand(); |
| 5196 | SDLoc DL(Node); |
| 5197 | |
| 5198 | // Convert atomic subtracts of constants into additions. |
| 5199 | if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) |
| 5200 | if (auto *Const = dyn_cast<ConstantSDNode>(Val&: Src2)) { |
| 5201 | Opcode = SystemZISD::ATOMIC_LOADW_ADD; |
| 5202 | Src2 = DAG.getSignedConstant(Val: -Const->getSExtValue(), DL, |
| 5203 | VT: Src2.getValueType()); |
| 5204 | } |
| 5205 | |
| 5206 | SDValue AlignedAddr, BitShift, NegBitShift; |
| 5207 | getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); |
| 5208 | |
| 5209 | // Extend the source operand to 32 bits and prepare it for the inner loop. |
| 5210 | // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other |
| 5211 | // operations require the source to be shifted in advance. (This shift |
| 5212 | // can be folded if the source is constant.) For AND and NAND, the lower |
| 5213 | // bits must be set, while for other opcodes they should be left clear. |
| 5214 | if (Opcode != SystemZISD::ATOMIC_SWAPW) |
| 5215 | Src2 = DAG.getNode(Opcode: ISD::SHL, DL, VT: WideVT, N1: Src2, |
| 5216 | N2: DAG.getConstant(Val: 32 - BitSize, DL, VT: WideVT)); |
| 5217 | if (Opcode == SystemZISD::ATOMIC_LOADW_AND || |
| 5218 | Opcode == SystemZISD::ATOMIC_LOADW_NAND) |
| 5219 | Src2 = DAG.getNode(Opcode: ISD::OR, DL, VT: WideVT, N1: Src2, |
| 5220 | N2: DAG.getConstant(Val: uint32_t(-1) >> BitSize, DL, VT: WideVT)); |
| 5221 | |
| 5222 | // Construct the ATOMIC_LOADW_* node. |
| 5223 | SDVTList VTList = DAG.getVTList(VT1: WideVT, VT2: MVT::Other); |
| 5224 | SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, |
| 5225 | DAG.getConstant(Val: BitSize, DL, VT: WideVT) }; |
| 5226 | SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, dl: DL, VTList, Ops, |
| 5227 | MemVT: NarrowVT, MMO); |
| 5228 | |
| 5229 | // Rotate the result of the final CS so that the field is in the lower |
| 5230 | // bits of a GR32, then truncate it. |
| 5231 | SDValue ResultShift = DAG.getNode(Opcode: ISD::ADD, DL, VT: WideVT, N1: BitShift, |
| 5232 | N2: DAG.getConstant(Val: BitSize, DL, VT: WideVT)); |
| 5233 | SDValue Result = DAG.getNode(Opcode: ISD::ROTL, DL, VT: WideVT, N1: AtomicOp, N2: ResultShift); |
| 5234 | |
| 5235 | SDValue RetOps[2] = { Result, AtomicOp.getValue(R: 1) }; |
| 5236 | return DAG.getMergeValues(Ops: RetOps, dl: DL); |
| 5237 | } |
| 5238 | |
| 5239 | // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into |
| 5240 | // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions. |
| 5241 | SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, |
| 5242 | SelectionDAG &DAG) const { |
| 5243 | auto *Node = cast<AtomicSDNode>(Val: Op.getNode()); |
| 5244 | EVT MemVT = Node->getMemoryVT(); |
| 5245 | if (MemVT == MVT::i32 || MemVT == MVT::i64) { |
| 5246 | // A full-width operation: negate and use LAA(G). |
| 5247 | assert(Op.getValueType() == MemVT && "Mismatched VTs" ); |
| 5248 | assert(Subtarget.hasInterlockedAccess1() && |
| 5249 | "Should have been expanded by AtomicExpand pass." ); |
| 5250 | SDValue Src2 = Node->getVal(); |
| 5251 | SDLoc DL(Src2); |
| 5252 | SDValue NegSrc2 = |
| 5253 | DAG.getNode(Opcode: ISD::SUB, DL, VT: MemVT, N1: DAG.getConstant(Val: 0, DL, VT: MemVT), N2: Src2); |
| 5254 | return DAG.getAtomic(Opcode: ISD::ATOMIC_LOAD_ADD, dl: DL, MemVT, |
| 5255 | Chain: Node->getChain(), Ptr: Node->getBasePtr(), Val: NegSrc2, |
| 5256 | MMO: Node->getMemOperand()); |
| 5257 | } |
| 5258 | |
| 5259 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_SUB); |
| 5260 | } |
| 5261 | |
| 5262 | // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. |
| 5263 | SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, |
| 5264 | SelectionDAG &DAG) const { |
| 5265 | auto *Node = cast<AtomicSDNode>(Val: Op.getNode()); |
| 5266 | SDValue ChainIn = Node->getOperand(Num: 0); |
| 5267 | SDValue Addr = Node->getOperand(Num: 1); |
| 5268 | SDValue CmpVal = Node->getOperand(Num: 2); |
| 5269 | SDValue SwapVal = Node->getOperand(Num: 3); |
| 5270 | MachineMemOperand *MMO = Node->getMemOperand(); |
| 5271 | SDLoc DL(Node); |
| 5272 | |
| 5273 | if (Node->getMemoryVT() == MVT::i128) { |
| 5274 | // Use same code to handle both legal and non-legal i128 types. |
| 5275 | SmallVector<SDValue, 3> Results; |
| 5276 | LowerOperationWrapper(N: Node, Results, DAG); |
| 5277 | return DAG.getMergeValues(Ops: Results, dl: DL); |
| 5278 | } |
| 5279 | |
| 5280 | // We have native support for 32-bit and 64-bit compare and swap, but we |
| 5281 | // still need to expand extracting the "success" result from the CC. |
| 5282 | EVT NarrowVT = Node->getMemoryVT(); |
| 5283 | EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; |
| 5284 | if (NarrowVT == WideVT) { |
| 5285 | SDVTList Tys = DAG.getVTList(VT1: WideVT, VT2: MVT::i32, VT3: MVT::Other); |
| 5286 | SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; |
| 5287 | SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode: SystemZISD::ATOMIC_CMP_SWAP, |
| 5288 | dl: DL, VTList: Tys, Ops, MemVT: NarrowVT, MMO); |
| 5289 | SDValue Success = emitSETCC(DAG, DL, CCReg: AtomicOp.getValue(R: 1), |
| 5290 | CCValid: SystemZ::CCMASK_CS, CCMask: SystemZ::CCMASK_CS_EQ); |
| 5291 | |
| 5292 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 0), To: AtomicOp.getValue(R: 0)); |
| 5293 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 1), To: Success); |
| 5294 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 2), To: AtomicOp.getValue(R: 2)); |
| 5295 | return SDValue(); |
| 5296 | } |
| 5297 | |
| 5298 | // Convert 8-bit and 16-bit compare and swap to a loop, implemented |
| 5299 | // via a fullword ATOMIC_CMP_SWAPW operation. |
| 5300 | int64_t BitSize = NarrowVT.getSizeInBits(); |
| 5301 | |
| 5302 | SDValue AlignedAddr, BitShift, NegBitShift; |
| 5303 | getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); |
| 5304 | |
| 5305 | // Construct the ATOMIC_CMP_SWAPW node. |
| 5306 | SDVTList VTList = DAG.getVTList(VT1: WideVT, VT2: MVT::i32, VT3: MVT::Other); |
| 5307 | SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, |
| 5308 | NegBitShift, DAG.getConstant(Val: BitSize, DL, VT: WideVT) }; |
| 5309 | SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode: SystemZISD::ATOMIC_CMP_SWAPW, dl: DL, |
| 5310 | VTList, Ops, MemVT: NarrowVT, MMO); |
| 5311 | SDValue Success = emitSETCC(DAG, DL, CCReg: AtomicOp.getValue(R: 1), |
| 5312 | CCValid: SystemZ::CCMASK_ICMP, CCMask: SystemZ::CCMASK_CMP_EQ); |
| 5313 | |
| 5314 | // emitAtomicCmpSwapW() will zero extend the result (original value). |
| 5315 | SDValue OrigVal = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: WideVT, N1: AtomicOp.getValue(R: 0), |
| 5316 | N2: DAG.getValueType(NarrowVT)); |
| 5317 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 0), To: OrigVal); |
| 5318 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 1), To: Success); |
| 5319 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 2), To: AtomicOp.getValue(R: 2)); |
| 5320 | return SDValue(); |
| 5321 | } |
| 5322 | |
| 5323 | MachineMemOperand::Flags |
| 5324 | SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { |
| 5325 | // Because of how we convert atomic_load and atomic_store to normal loads and |
| 5326 | // stores in the DAG, we need to ensure that the MMOs are marked volatile |
| 5327 | // since DAGCombine hasn't been updated to account for atomic, but non |
| 5328 | // volatile loads. (See D57601) |
| 5329 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) |
| 5330 | if (SI->isAtomic()) |
| 5331 | return MachineMemOperand::MOVolatile; |
| 5332 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
| 5333 | if (LI->isAtomic()) |
| 5334 | return MachineMemOperand::MOVolatile; |
| 5335 | if (auto *AI = dyn_cast<AtomicRMWInst>(Val: &I)) |
| 5336 | if (AI->isAtomic()) |
| 5337 | return MachineMemOperand::MOVolatile; |
| 5338 | if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Val: &I)) |
| 5339 | if (AI->isAtomic()) |
| 5340 | return MachineMemOperand::MOVolatile; |
| 5341 | return MachineMemOperand::MONone; |
| 5342 | } |
| 5343 | |
| 5344 | SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, |
| 5345 | SelectionDAG &DAG) const { |
| 5346 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5347 | auto *Regs = Subtarget.getSpecialRegisters(); |
| 5348 | if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| 5349 | report_fatal_error(reason: "Variable-sized stack allocations are not supported " |
| 5350 | "in GHC calling convention" ); |
| 5351 | return DAG.getCopyFromReg(Chain: Op.getOperand(i: 0), dl: SDLoc(Op), |
| 5352 | Reg: Regs->getStackPointerRegister(), VT: Op.getValueType()); |
| 5353 | } |
| 5354 | |
| 5355 | SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, |
| 5356 | SelectionDAG &DAG) const { |
| 5357 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5358 | auto *Regs = Subtarget.getSpecialRegisters(); |
| 5359 | bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); |
| 5360 | |
| 5361 | if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| 5362 | report_fatal_error(reason: "Variable-sized stack allocations are not supported " |
| 5363 | "in GHC calling convention" ); |
| 5364 | |
| 5365 | SDValue Chain = Op.getOperand(i: 0); |
| 5366 | SDValue NewSP = Op.getOperand(i: 1); |
| 5367 | SDValue Backchain; |
| 5368 | SDLoc DL(Op); |
| 5369 | |
| 5370 | if (StoreBackchain) { |
| 5371 | SDValue OldSP = DAG.getCopyFromReg( |
| 5372 | Chain, dl: DL, Reg: Regs->getStackPointerRegister(), VT: MVT::i64); |
| 5373 | Backchain = DAG.getLoad(VT: MVT::i64, dl: DL, Chain, Ptr: getBackchainAddress(SP: OldSP, DAG), |
| 5374 | PtrInfo: MachinePointerInfo()); |
| 5375 | } |
| 5376 | |
| 5377 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: Regs->getStackPointerRegister(), N: NewSP); |
| 5378 | |
| 5379 | if (StoreBackchain) |
| 5380 | Chain = DAG.getStore(Chain, dl: DL, Val: Backchain, Ptr: getBackchainAddress(SP: NewSP, DAG), |
| 5381 | PtrInfo: MachinePointerInfo()); |
| 5382 | |
| 5383 | return Chain; |
| 5384 | } |
| 5385 | |
| 5386 | SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, |
| 5387 | SelectionDAG &DAG) const { |
| 5388 | bool IsData = Op.getConstantOperandVal(i: 4); |
| 5389 | if (!IsData) |
| 5390 | // Just preserve the chain. |
| 5391 | return Op.getOperand(i: 0); |
| 5392 | |
| 5393 | SDLoc DL(Op); |
| 5394 | bool IsWrite = Op.getConstantOperandVal(i: 2); |
| 5395 | unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; |
| 5396 | auto *Node = cast<MemIntrinsicSDNode>(Val: Op.getNode()); |
| 5397 | SDValue Ops[] = {Op.getOperand(i: 0), DAG.getTargetConstant(Val: Code, DL, VT: MVT::i32), |
| 5398 | Op.getOperand(i: 1)}; |
| 5399 | return DAG.getMemIntrinsicNode(Opcode: SystemZISD::PREFETCH, dl: DL, |
| 5400 | VTList: Node->getVTList(), Ops, |
| 5401 | MemVT: Node->getMemoryVT(), MMO: Node->getMemOperand()); |
| 5402 | } |
| 5403 | |
| 5404 | SDValue |
| 5405 | SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, |
| 5406 | SelectionDAG &DAG) const { |
| 5407 | unsigned Opcode, CCValid; |
| 5408 | if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { |
| 5409 | assert(Op->getNumValues() == 2 && "Expected only CC result and chain" ); |
| 5410 | SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); |
| 5411 | SDValue CC = getCCResult(DAG, CCReg: SDValue(Node, 0)); |
| 5412 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(Op.getNode(), 0), To: CC); |
| 5413 | return SDValue(); |
| 5414 | } |
| 5415 | |
| 5416 | return SDValue(); |
| 5417 | } |
| 5418 | |
| 5419 | SDValue |
| 5420 | SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, |
| 5421 | SelectionDAG &DAG) const { |
| 5422 | unsigned Opcode, CCValid; |
| 5423 | if (isIntrinsicWithCC(Op, Opcode, CCValid)) { |
| 5424 | SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); |
| 5425 | if (Op->getNumValues() == 1) |
| 5426 | return getCCResult(DAG, CCReg: SDValue(Node, 0)); |
| 5427 | assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result" ); |
| 5428 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL: SDLoc(Op), VTList: Op->getVTList(), |
| 5429 | N1: SDValue(Node, 0), N2: getCCResult(DAG, CCReg: SDValue(Node, 1))); |
| 5430 | } |
| 5431 | |
| 5432 | unsigned Id = Op.getConstantOperandVal(i: 0); |
| 5433 | switch (Id) { |
| 5434 | case Intrinsic::thread_pointer: |
| 5435 | return lowerThreadPointer(DL: SDLoc(Op), DAG); |
| 5436 | |
| 5437 | case Intrinsic::s390_vpdi: |
| 5438 | return DAG.getNode(Opcode: SystemZISD::PERMUTE_DWORDS, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5439 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5440 | |
| 5441 | case Intrinsic::s390_vperm: |
| 5442 | return DAG.getNode(Opcode: SystemZISD::PERMUTE, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5443 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5444 | |
| 5445 | case Intrinsic::s390_vuphb: |
| 5446 | case Intrinsic::s390_vuphh: |
| 5447 | case Intrinsic::s390_vuphf: |
| 5448 | case Intrinsic::s390_vuphg: |
| 5449 | return DAG.getNode(Opcode: SystemZISD::UNPACK_HIGH, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5450 | Operand: Op.getOperand(i: 1)); |
| 5451 | |
| 5452 | case Intrinsic::s390_vuplhb: |
| 5453 | case Intrinsic::s390_vuplhh: |
| 5454 | case Intrinsic::s390_vuplhf: |
| 5455 | case Intrinsic::s390_vuplhg: |
| 5456 | return DAG.getNode(Opcode: SystemZISD::UNPACKL_HIGH, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5457 | Operand: Op.getOperand(i: 1)); |
| 5458 | |
| 5459 | case Intrinsic::s390_vuplb: |
| 5460 | case Intrinsic::s390_vuplhw: |
| 5461 | case Intrinsic::s390_vuplf: |
| 5462 | case Intrinsic::s390_vuplg: |
| 5463 | return DAG.getNode(Opcode: SystemZISD::UNPACK_LOW, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5464 | Operand: Op.getOperand(i: 1)); |
| 5465 | |
| 5466 | case Intrinsic::s390_vupllb: |
| 5467 | case Intrinsic::s390_vupllh: |
| 5468 | case Intrinsic::s390_vupllf: |
| 5469 | case Intrinsic::s390_vupllg: |
| 5470 | return DAG.getNode(Opcode: SystemZISD::UNPACKL_LOW, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5471 | Operand: Op.getOperand(i: 1)); |
| 5472 | |
| 5473 | case Intrinsic::s390_vsumb: |
| 5474 | case Intrinsic::s390_vsumh: |
| 5475 | case Intrinsic::s390_vsumgh: |
| 5476 | case Intrinsic::s390_vsumgf: |
| 5477 | case Intrinsic::s390_vsumqf: |
| 5478 | case Intrinsic::s390_vsumqg: |
| 5479 | return DAG.getNode(Opcode: SystemZISD::VSUM, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5480 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5481 | |
| 5482 | case Intrinsic::s390_vaq: |
| 5483 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5484 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5485 | case Intrinsic::s390_vaccb: |
| 5486 | case Intrinsic::s390_vacch: |
| 5487 | case Intrinsic::s390_vaccf: |
| 5488 | case Intrinsic::s390_vaccg: |
| 5489 | case Intrinsic::s390_vaccq: |
| 5490 | return DAG.getNode(Opcode: SystemZISD::VACC, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5491 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5492 | case Intrinsic::s390_vacq: |
| 5493 | return DAG.getNode(Opcode: SystemZISD::VAC, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5494 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5495 | case Intrinsic::s390_vacccq: |
| 5496 | return DAG.getNode(Opcode: SystemZISD::VACCC, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5497 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5498 | |
| 5499 | case Intrinsic::s390_vsq: |
| 5500 | return DAG.getNode(Opcode: ISD::SUB, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5501 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5502 | case Intrinsic::s390_vscbib: |
| 5503 | case Intrinsic::s390_vscbih: |
| 5504 | case Intrinsic::s390_vscbif: |
| 5505 | case Intrinsic::s390_vscbig: |
| 5506 | case Intrinsic::s390_vscbiq: |
| 5507 | return DAG.getNode(Opcode: SystemZISD::VSCBI, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5508 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5509 | case Intrinsic::s390_vsbiq: |
| 5510 | return DAG.getNode(Opcode: SystemZISD::VSBI, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5511 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5512 | case Intrinsic::s390_vsbcbiq: |
| 5513 | return DAG.getNode(Opcode: SystemZISD::VSBCBI, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5514 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5515 | |
| 5516 | case Intrinsic::s390_vmhb: |
| 5517 | case Intrinsic::s390_vmhh: |
| 5518 | case Intrinsic::s390_vmhf: |
| 5519 | case Intrinsic::s390_vmhg: |
| 5520 | case Intrinsic::s390_vmhq: |
| 5521 | return DAG.getNode(Opcode: ISD::MULHS, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5522 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5523 | case Intrinsic::s390_vmlhb: |
| 5524 | case Intrinsic::s390_vmlhh: |
| 5525 | case Intrinsic::s390_vmlhf: |
| 5526 | case Intrinsic::s390_vmlhg: |
| 5527 | case Intrinsic::s390_vmlhq: |
| 5528 | return DAG.getNode(Opcode: ISD::MULHU, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5529 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5530 | |
| 5531 | case Intrinsic::s390_vmahb: |
| 5532 | case Intrinsic::s390_vmahh: |
| 5533 | case Intrinsic::s390_vmahf: |
| 5534 | case Intrinsic::s390_vmahg: |
| 5535 | case Intrinsic::s390_vmahq: |
| 5536 | return DAG.getNode(Opcode: SystemZISD::VMAH, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5537 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5538 | case Intrinsic::s390_vmalhb: |
| 5539 | case Intrinsic::s390_vmalhh: |
| 5540 | case Intrinsic::s390_vmalhf: |
| 5541 | case Intrinsic::s390_vmalhg: |
| 5542 | case Intrinsic::s390_vmalhq: |
| 5543 | return DAG.getNode(Opcode: SystemZISD::VMALH, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5544 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2), N3: Op.getOperand(i: 3)); |
| 5545 | |
| 5546 | case Intrinsic::s390_vmeb: |
| 5547 | case Intrinsic::s390_vmeh: |
| 5548 | case Intrinsic::s390_vmef: |
| 5549 | case Intrinsic::s390_vmeg: |
| 5550 | return DAG.getNode(Opcode: SystemZISD::VME, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5551 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5552 | case Intrinsic::s390_vmleb: |
| 5553 | case Intrinsic::s390_vmleh: |
| 5554 | case Intrinsic::s390_vmlef: |
| 5555 | case Intrinsic::s390_vmleg: |
| 5556 | return DAG.getNode(Opcode: SystemZISD::VMLE, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5557 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5558 | case Intrinsic::s390_vmob: |
| 5559 | case Intrinsic::s390_vmoh: |
| 5560 | case Intrinsic::s390_vmof: |
| 5561 | case Intrinsic::s390_vmog: |
| 5562 | return DAG.getNode(Opcode: SystemZISD::VMO, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5563 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5564 | case Intrinsic::s390_vmlob: |
| 5565 | case Intrinsic::s390_vmloh: |
| 5566 | case Intrinsic::s390_vmlof: |
| 5567 | case Intrinsic::s390_vmlog: |
| 5568 | return DAG.getNode(Opcode: SystemZISD::VMLO, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5569 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)); |
| 5570 | |
| 5571 | case Intrinsic::s390_vmaeb: |
| 5572 | case Intrinsic::s390_vmaeh: |
| 5573 | case Intrinsic::s390_vmaef: |
| 5574 | case Intrinsic::s390_vmaeg: |
| 5575 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5576 | N1: DAG.getNode(Opcode: SystemZISD::VME, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5577 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)), |
| 5578 | N2: Op.getOperand(i: 3)); |
| 5579 | case Intrinsic::s390_vmaleb: |
| 5580 | case Intrinsic::s390_vmaleh: |
| 5581 | case Intrinsic::s390_vmalef: |
| 5582 | case Intrinsic::s390_vmaleg: |
| 5583 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5584 | N1: DAG.getNode(Opcode: SystemZISD::VMLE, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5585 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)), |
| 5586 | N2: Op.getOperand(i: 3)); |
| 5587 | case Intrinsic::s390_vmaob: |
| 5588 | case Intrinsic::s390_vmaoh: |
| 5589 | case Intrinsic::s390_vmaof: |
| 5590 | case Intrinsic::s390_vmaog: |
| 5591 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5592 | N1: DAG.getNode(Opcode: SystemZISD::VMO, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5593 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)), |
| 5594 | N2: Op.getOperand(i: 3)); |
| 5595 | case Intrinsic::s390_vmalob: |
| 5596 | case Intrinsic::s390_vmaloh: |
| 5597 | case Intrinsic::s390_vmalof: |
| 5598 | case Intrinsic::s390_vmalog: |
| 5599 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5600 | N1: DAG.getNode(Opcode: SystemZISD::VMLO, DL: SDLoc(Op), VT: Op.getValueType(), |
| 5601 | N1: Op.getOperand(i: 1), N2: Op.getOperand(i: 2)), |
| 5602 | N2: Op.getOperand(i: 3)); |
| 5603 | } |
| 5604 | |
| 5605 | return SDValue(); |
| 5606 | } |
| 5607 | |
| 5608 | namespace { |
| 5609 | // Says that SystemZISD operation Opcode can be used to perform the equivalent |
| 5610 | // of a VPERM with permute vector Bytes. If Opcode takes three operands, |
| 5611 | // Operand is the constant third operand, otherwise it is the number of |
| 5612 | // bytes in each element of the result. |
| 5613 | struct Permute { |
| 5614 | unsigned Opcode; |
| 5615 | unsigned Operand; |
| 5616 | unsigned char Bytes[SystemZ::VectorBytes]; |
| 5617 | }; |
| 5618 | } |
| 5619 | |
| 5620 | static const Permute PermuteForms[] = { |
| 5621 | // VMRHG |
| 5622 | { .Opcode: SystemZISD::MERGE_HIGH, .Operand: 8, |
| 5623 | .Bytes: { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, |
| 5624 | // VMRHF |
| 5625 | { .Opcode: SystemZISD::MERGE_HIGH, .Operand: 4, |
| 5626 | .Bytes: { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, |
| 5627 | // VMRHH |
| 5628 | { .Opcode: SystemZISD::MERGE_HIGH, .Operand: 2, |
| 5629 | .Bytes: { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, |
| 5630 | // VMRHB |
| 5631 | { .Opcode: SystemZISD::MERGE_HIGH, .Operand: 1, |
| 5632 | .Bytes: { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, |
| 5633 | // VMRLG |
| 5634 | { .Opcode: SystemZISD::MERGE_LOW, .Operand: 8, |
| 5635 | .Bytes: { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, |
| 5636 | // VMRLF |
| 5637 | { .Opcode: SystemZISD::MERGE_LOW, .Operand: 4, |
| 5638 | .Bytes: { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, |
| 5639 | // VMRLH |
| 5640 | { .Opcode: SystemZISD::MERGE_LOW, .Operand: 2, |
| 5641 | .Bytes: { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, |
| 5642 | // VMRLB |
| 5643 | { .Opcode: SystemZISD::MERGE_LOW, .Operand: 1, |
| 5644 | .Bytes: { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, |
| 5645 | // VPKG |
| 5646 | { .Opcode: SystemZISD::PACK, .Operand: 4, |
| 5647 | .Bytes: { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, |
| 5648 | // VPKF |
| 5649 | { .Opcode: SystemZISD::PACK, .Operand: 2, |
| 5650 | .Bytes: { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, |
| 5651 | // VPKH |
| 5652 | { .Opcode: SystemZISD::PACK, .Operand: 1, |
| 5653 | .Bytes: { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, |
| 5654 | // VPDI V1, V2, 4 (low half of V1, high half of V2) |
| 5655 | { .Opcode: SystemZISD::PERMUTE_DWORDS, .Operand: 4, |
| 5656 | .Bytes: { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, |
| 5657 | // VPDI V1, V2, 1 (high half of V1, low half of V2) |
| 5658 | { .Opcode: SystemZISD::PERMUTE_DWORDS, .Operand: 1, |
| 5659 | .Bytes: { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } |
| 5660 | }; |
| 5661 | |
| 5662 | // Called after matching a vector shuffle against a particular pattern. |
| 5663 | // Both the original shuffle and the pattern have two vector operands. |
| 5664 | // OpNos[0] is the operand of the original shuffle that should be used for |
| 5665 | // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. |
| 5666 | // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and |
| 5667 | // set OpNo0 and OpNo1 to the shuffle operands that should actually be used |
| 5668 | // for operands 0 and 1 of the pattern. |
| 5669 | static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { |
| 5670 | if (OpNos[0] < 0) { |
| 5671 | if (OpNos[1] < 0) |
| 5672 | return false; |
| 5673 | OpNo0 = OpNo1 = OpNos[1]; |
| 5674 | } else if (OpNos[1] < 0) { |
| 5675 | OpNo0 = OpNo1 = OpNos[0]; |
| 5676 | } else { |
| 5677 | OpNo0 = OpNos[0]; |
| 5678 | OpNo1 = OpNos[1]; |
| 5679 | } |
| 5680 | return true; |
| 5681 | } |
| 5682 | |
| 5683 | // Bytes is a VPERM-like permute vector, except that -1 is used for |
| 5684 | // undefined bytes. Return true if the VPERM can be implemented using P. |
| 5685 | // When returning true set OpNo0 to the VPERM operand that should be |
| 5686 | // used for operand 0 of P and likewise OpNo1 for operand 1 of P. |
| 5687 | // |
| 5688 | // For example, if swapping the VPERM operands allows P to match, OpNo0 |
| 5689 | // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one |
| 5690 | // operand, but rewriting it to use two duplicated operands allows it to |
| 5691 | // match P, then OpNo0 and OpNo1 will be the same. |
| 5692 | static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, |
| 5693 | unsigned &OpNo0, unsigned &OpNo1) { |
| 5694 | int OpNos[] = { -1, -1 }; |
| 5695 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| 5696 | int Elt = Bytes[I]; |
| 5697 | if (Elt >= 0) { |
| 5698 | // Make sure that the two permute vectors use the same suboperand |
| 5699 | // byte number. Only the operand numbers (the high bits) are |
| 5700 | // allowed to differ. |
| 5701 | if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) |
| 5702 | return false; |
| 5703 | int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; |
| 5704 | int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; |
| 5705 | // Make sure that the operand mappings are consistent with previous |
| 5706 | // elements. |
| 5707 | if (OpNos[ModelOpNo] == 1 - RealOpNo) |
| 5708 | return false; |
| 5709 | OpNos[ModelOpNo] = RealOpNo; |
| 5710 | } |
| 5711 | } |
| 5712 | return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); |
| 5713 | } |
| 5714 | |
| 5715 | // As above, but search for a matching permute. |
| 5716 | static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, |
| 5717 | unsigned &OpNo0, unsigned &OpNo1) { |
| 5718 | for (auto &P : PermuteForms) |
| 5719 | if (matchPermute(Bytes, P, OpNo0, OpNo1)) |
| 5720 | return &P; |
| 5721 | return nullptr; |
| 5722 | } |
| 5723 | |
| 5724 | // Bytes is a VPERM-like permute vector, except that -1 is used for |
| 5725 | // undefined bytes. This permute is an operand of an outer permute. |
| 5726 | // See whether redistributing the -1 bytes gives a shuffle that can be |
| 5727 | // implemented using P. If so, set Transform to a VPERM-like permute vector |
| 5728 | // that, when applied to the result of P, gives the original permute in Bytes. |
| 5729 | static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, |
| 5730 | const Permute &P, |
| 5731 | SmallVectorImpl<int> &Transform) { |
| 5732 | unsigned To = 0; |
| 5733 | for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { |
| 5734 | int Elt = Bytes[From]; |
| 5735 | if (Elt < 0) |
| 5736 | // Byte number From of the result is undefined. |
| 5737 | Transform[From] = -1; |
| 5738 | else { |
| 5739 | while (P.Bytes[To] != Elt) { |
| 5740 | To += 1; |
| 5741 | if (To == SystemZ::VectorBytes) |
| 5742 | return false; |
| 5743 | } |
| 5744 | Transform[From] = To; |
| 5745 | } |
| 5746 | } |
| 5747 | return true; |
| 5748 | } |
| 5749 | |
| 5750 | // As above, but search for a matching permute. |
| 5751 | static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, |
| 5752 | SmallVectorImpl<int> &Transform) { |
| 5753 | for (auto &P : PermuteForms) |
| 5754 | if (matchDoublePermute(Bytes, P, Transform)) |
| 5755 | return &P; |
| 5756 | return nullptr; |
| 5757 | } |
| 5758 | |
| 5759 | // Convert the mask of the given shuffle op into a byte-level mask, |
| 5760 | // as if it had type vNi8. |
| 5761 | static bool getVPermMask(SDValue ShuffleOp, |
| 5762 | SmallVectorImpl<int> &Bytes) { |
| 5763 | EVT VT = ShuffleOp.getValueType(); |
| 5764 | unsigned NumElements = VT.getVectorNumElements(); |
| 5765 | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| 5766 | |
| 5767 | if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Val&: ShuffleOp)) { |
| 5768 | Bytes.resize(N: NumElements * BytesPerElement, NV: -1); |
| 5769 | for (unsigned I = 0; I < NumElements; ++I) { |
| 5770 | int Index = VSN->getMaskElt(Idx: I); |
| 5771 | if (Index >= 0) |
| 5772 | for (unsigned J = 0; J < BytesPerElement; ++J) |
| 5773 | Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; |
| 5774 | } |
| 5775 | return true; |
| 5776 | } |
| 5777 | if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && |
| 5778 | isa<ConstantSDNode>(Val: ShuffleOp.getOperand(i: 1))) { |
| 5779 | unsigned Index = ShuffleOp.getConstantOperandVal(i: 1); |
| 5780 | Bytes.resize(N: NumElements * BytesPerElement, NV: -1); |
| 5781 | for (unsigned I = 0; I < NumElements; ++I) |
| 5782 | for (unsigned J = 0; J < BytesPerElement; ++J) |
| 5783 | Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; |
| 5784 | return true; |
| 5785 | } |
| 5786 | return false; |
| 5787 | } |
| 5788 | |
| 5789 | // Bytes is a VPERM-like permute vector, except that -1 is used for |
| 5790 | // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of |
| 5791 | // the result come from a contiguous sequence of bytes from one input. |
| 5792 | // Set Base to the selector for the first byte if so. |
| 5793 | static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, |
| 5794 | unsigned BytesPerElement, int &Base) { |
| 5795 | Base = -1; |
| 5796 | for (unsigned I = 0; I < BytesPerElement; ++I) { |
| 5797 | if (Bytes[Start + I] >= 0) { |
| 5798 | unsigned Elem = Bytes[Start + I]; |
| 5799 | if (Base < 0) { |
| 5800 | Base = Elem - I; |
| 5801 | // Make sure the bytes would come from one input operand. |
| 5802 | if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) |
| 5803 | return false; |
| 5804 | } else if (unsigned(Base) != Elem - I) |
| 5805 | return false; |
| 5806 | } |
| 5807 | } |
| 5808 | return true; |
| 5809 | } |
| 5810 | |
| 5811 | // Bytes is a VPERM-like permute vector, except that -1 is used for |
| 5812 | // undefined bytes. Return true if it can be performed using VSLDB. |
| 5813 | // When returning true, set StartIndex to the shift amount and OpNo0 |
| 5814 | // and OpNo1 to the VPERM operands that should be used as the first |
| 5815 | // and second shift operand respectively. |
| 5816 | static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, |
| 5817 | unsigned &StartIndex, unsigned &OpNo0, |
| 5818 | unsigned &OpNo1) { |
| 5819 | int OpNos[] = { -1, -1 }; |
| 5820 | int Shift = -1; |
| 5821 | for (unsigned I = 0; I < 16; ++I) { |
| 5822 | int Index = Bytes[I]; |
| 5823 | if (Index >= 0) { |
| 5824 | int ExpectedShift = (Index - I) % SystemZ::VectorBytes; |
| 5825 | int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; |
| 5826 | int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; |
| 5827 | if (Shift < 0) |
| 5828 | Shift = ExpectedShift; |
| 5829 | else if (Shift != ExpectedShift) |
| 5830 | return false; |
| 5831 | // Make sure that the operand mappings are consistent with previous |
| 5832 | // elements. |
| 5833 | if (OpNos[ModelOpNo] == 1 - RealOpNo) |
| 5834 | return false; |
| 5835 | OpNos[ModelOpNo] = RealOpNo; |
| 5836 | } |
| 5837 | } |
| 5838 | StartIndex = Shift; |
| 5839 | return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); |
| 5840 | } |
| 5841 | |
| 5842 | // Create a node that performs P on operands Op0 and Op1, casting the |
| 5843 | // operands to the appropriate type. The type of the result is determined by P. |
| 5844 | static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, |
| 5845 | const Permute &P, SDValue Op0, SDValue Op1) { |
| 5846 | // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input |
| 5847 | // elements of a PACK are twice as wide as the outputs. |
| 5848 | unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : |
| 5849 | P.Opcode == SystemZISD::PACK ? P.Operand * 2 : |
| 5850 | P.Operand); |
| 5851 | // Cast both operands to the appropriate type. |
| 5852 | MVT InVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: InBytes * 8), |
| 5853 | NumElements: SystemZ::VectorBytes / InBytes); |
| 5854 | Op0 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: InVT, Operand: Op0); |
| 5855 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: InVT, Operand: Op1); |
| 5856 | SDValue Op; |
| 5857 | if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { |
| 5858 | SDValue Op2 = DAG.getTargetConstant(Val: P.Operand, DL, VT: MVT::i32); |
| 5859 | Op = DAG.getNode(Opcode: SystemZISD::PERMUTE_DWORDS, DL, VT: InVT, N1: Op0, N2: Op1, N3: Op2); |
| 5860 | } else if (P.Opcode == SystemZISD::PACK) { |
| 5861 | MVT OutVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: P.Operand * 8), |
| 5862 | NumElements: SystemZ::VectorBytes / P.Operand); |
| 5863 | Op = DAG.getNode(Opcode: SystemZISD::PACK, DL, VT: OutVT, N1: Op0, N2: Op1); |
| 5864 | } else { |
| 5865 | Op = DAG.getNode(Opcode: P.Opcode, DL, VT: InVT, N1: Op0, N2: Op1); |
| 5866 | } |
| 5867 | return Op; |
| 5868 | } |
| 5869 | |
| 5870 | static bool isZeroVector(SDValue N) { |
| 5871 | if (N->getOpcode() == ISD::BITCAST) |
| 5872 | N = N->getOperand(Num: 0); |
| 5873 | if (N->getOpcode() == ISD::SPLAT_VECTOR) |
| 5874 | if (auto *Op = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 0))) |
| 5875 | return Op->getZExtValue() == 0; |
| 5876 | return ISD::isBuildVectorAllZeros(N: N.getNode()); |
| 5877 | } |
| 5878 | |
| 5879 | // Return the index of the zero/undef vector, or UINT32_MAX if not found. |
| 5880 | static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { |
| 5881 | for (unsigned I = 0; I < Num ; I++) |
| 5882 | if (isZeroVector(N: Ops[I])) |
| 5883 | return I; |
| 5884 | return UINT32_MAX; |
| 5885 | } |
| 5886 | |
| 5887 | // Bytes is a VPERM-like permute vector, except that -1 is used for |
| 5888 | // undefined bytes. Implement it on operands Ops[0] and Ops[1] using |
| 5889 | // VSLDB or VPERM. |
| 5890 | static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, |
| 5891 | SDValue *Ops, |
| 5892 | const SmallVectorImpl<int> &Bytes) { |
| 5893 | for (unsigned I = 0; I < 2; ++I) |
| 5894 | Ops[I] = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v16i8, Operand: Ops[I]); |
| 5895 | |
| 5896 | // First see whether VSLDB can be used. |
| 5897 | unsigned StartIndex, OpNo0, OpNo1; |
| 5898 | if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) |
| 5899 | return DAG.getNode(Opcode: SystemZISD::SHL_DOUBLE, DL, VT: MVT::v16i8, N1: Ops[OpNo0], |
| 5900 | N2: Ops[OpNo1], |
| 5901 | N3: DAG.getTargetConstant(Val: StartIndex, DL, VT: MVT::i32)); |
| 5902 | |
| 5903 | // Fall back on VPERM. Construct an SDNode for the permute vector. Try to |
| 5904 | // eliminate a zero vector by reusing any zero index in the permute vector. |
| 5905 | unsigned ZeroVecIdx = findZeroVectorIdx(Ops: &Ops[0], Num: 2); |
| 5906 | if (ZeroVecIdx != UINT32_MAX) { |
| 5907 | bool MaskFirst = true; |
| 5908 | int ZeroIdx = -1; |
| 5909 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| 5910 | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| 5911 | unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; |
| 5912 | if (OpNo == ZeroVecIdx && I == 0) { |
| 5913 | // If the first byte is zero, use mask as first operand. |
| 5914 | ZeroIdx = 0; |
| 5915 | break; |
| 5916 | } |
| 5917 | if (OpNo != ZeroVecIdx && Byte == 0) { |
| 5918 | // If mask contains a zero, use it by placing that vector first. |
| 5919 | ZeroIdx = I + SystemZ::VectorBytes; |
| 5920 | MaskFirst = false; |
| 5921 | break; |
| 5922 | } |
| 5923 | } |
| 5924 | if (ZeroIdx != -1) { |
| 5925 | SDValue IndexNodes[SystemZ::VectorBytes]; |
| 5926 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| 5927 | if (Bytes[I] >= 0) { |
| 5928 | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| 5929 | unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; |
| 5930 | if (OpNo == ZeroVecIdx) |
| 5931 | IndexNodes[I] = DAG.getConstant(Val: ZeroIdx, DL, VT: MVT::i32); |
| 5932 | else { |
| 5933 | unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; |
| 5934 | IndexNodes[I] = DAG.getConstant(Val: BIdx, DL, VT: MVT::i32); |
| 5935 | } |
| 5936 | } else |
| 5937 | IndexNodes[I] = DAG.getUNDEF(VT: MVT::i32); |
| 5938 | } |
| 5939 | SDValue Mask = DAG.getBuildVector(VT: MVT::v16i8, DL, Ops: IndexNodes); |
| 5940 | SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; |
| 5941 | if (MaskFirst) |
| 5942 | return DAG.getNode(Opcode: SystemZISD::PERMUTE, DL, VT: MVT::v16i8, N1: Mask, N2: Src, |
| 5943 | N3: Mask); |
| 5944 | else |
| 5945 | return DAG.getNode(Opcode: SystemZISD::PERMUTE, DL, VT: MVT::v16i8, N1: Src, N2: Mask, |
| 5946 | N3: Mask); |
| 5947 | } |
| 5948 | } |
| 5949 | |
| 5950 | SDValue IndexNodes[SystemZ::VectorBytes]; |
| 5951 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| 5952 | if (Bytes[I] >= 0) |
| 5953 | IndexNodes[I] = DAG.getConstant(Val: Bytes[I], DL, VT: MVT::i32); |
| 5954 | else |
| 5955 | IndexNodes[I] = DAG.getUNDEF(VT: MVT::i32); |
| 5956 | SDValue Op2 = DAG.getBuildVector(VT: MVT::v16i8, DL, Ops: IndexNodes); |
| 5957 | return DAG.getNode(Opcode: SystemZISD::PERMUTE, DL, VT: MVT::v16i8, N1: Ops[0], |
| 5958 | N2: (!Ops[1].isUndef() ? Ops[1] : Ops[0]), N3: Op2); |
| 5959 | } |
| 5960 | |
| 5961 | namespace { |
| 5962 | // Describes a general N-operand vector shuffle. |
| 5963 | struct GeneralShuffle { |
| 5964 | GeneralShuffle(EVT vt) |
| 5965 | : VT(vt), UnpackFromEltSize(UINT_MAX), UnpackLow(false) {} |
| 5966 | void addUndef(); |
| 5967 | bool add(SDValue, unsigned); |
| 5968 | SDValue getNode(SelectionDAG &, const SDLoc &); |
| 5969 | void tryPrepareForUnpack(); |
| 5970 | bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } |
| 5971 | SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); |
| 5972 | |
| 5973 | // The operands of the shuffle. |
| 5974 | SmallVector<SDValue, SystemZ::VectorBytes> Ops; |
| 5975 | |
| 5976 | // Index I is -1 if byte I of the result is undefined. Otherwise the |
| 5977 | // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand |
| 5978 | // Bytes[I] / SystemZ::VectorBytes. |
| 5979 | SmallVector<int, SystemZ::VectorBytes> Bytes; |
| 5980 | |
| 5981 | // The type of the shuffle result. |
| 5982 | EVT VT; |
| 5983 | |
| 5984 | // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. |
| 5985 | unsigned UnpackFromEltSize; |
| 5986 | // True if the final unpack uses the low half. |
| 5987 | bool UnpackLow; |
| 5988 | }; |
| 5989 | } // namespace |
| 5990 | |
| 5991 | // Add an extra undefined element to the shuffle. |
| 5992 | void GeneralShuffle::addUndef() { |
| 5993 | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| 5994 | for (unsigned I = 0; I < BytesPerElement; ++I) |
| 5995 | Bytes.push_back(Elt: -1); |
| 5996 | } |
| 5997 | |
| 5998 | // Add an extra element to the shuffle, taking it from element Elem of Op. |
| 5999 | // A null Op indicates a vector input whose value will be calculated later; |
| 6000 | // there is at most one such input per shuffle and it always has the same |
| 6001 | // type as the result. Aborts and returns false if the source vector elements |
| 6002 | // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per |
| 6003 | // LLVM they become implicitly extended, but this is rare and not optimized. |
| 6004 | bool GeneralShuffle::add(SDValue Op, unsigned Elem) { |
| 6005 | unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| 6006 | |
| 6007 | // The source vector can have wider elements than the result, |
| 6008 | // either through an explicit TRUNCATE or because of type legalization. |
| 6009 | // We want the least significant part. |
| 6010 | EVT FromVT = Op.getNode() ? Op.getValueType() : VT; |
| 6011 | unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); |
| 6012 | |
| 6013 | // Return false if the source elements are smaller than their destination |
| 6014 | // elements. |
| 6015 | if (FromBytesPerElement < BytesPerElement) |
| 6016 | return false; |
| 6017 | |
| 6018 | unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + |
| 6019 | (FromBytesPerElement - BytesPerElement)); |
| 6020 | |
| 6021 | // Look through things like shuffles and bitcasts. |
| 6022 | while (Op.getNode()) { |
| 6023 | if (Op.getOpcode() == ISD::BITCAST) |
| 6024 | Op = Op.getOperand(i: 0); |
| 6025 | else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { |
| 6026 | // See whether the bytes we need come from a contiguous part of one |
| 6027 | // operand. |
| 6028 | SmallVector<int, SystemZ::VectorBytes> OpBytes; |
| 6029 | if (!getVPermMask(ShuffleOp: Op, Bytes&: OpBytes)) |
| 6030 | break; |
| 6031 | int NewByte; |
| 6032 | if (!getShuffleInput(Bytes: OpBytes, Start: Byte, BytesPerElement, Base&: NewByte)) |
| 6033 | break; |
| 6034 | if (NewByte < 0) { |
| 6035 | addUndef(); |
| 6036 | return true; |
| 6037 | } |
| 6038 | Op = Op.getOperand(i: unsigned(NewByte) / SystemZ::VectorBytes); |
| 6039 | Byte = unsigned(NewByte) % SystemZ::VectorBytes; |
| 6040 | } else if (Op.isUndef()) { |
| 6041 | addUndef(); |
| 6042 | return true; |
| 6043 | } else |
| 6044 | break; |
| 6045 | } |
| 6046 | |
| 6047 | // Make sure that the source of the extraction is in Ops. |
| 6048 | unsigned OpNo = 0; |
| 6049 | for (; OpNo < Ops.size(); ++OpNo) |
| 6050 | if (Ops[OpNo] == Op) |
| 6051 | break; |
| 6052 | if (OpNo == Ops.size()) |
| 6053 | Ops.push_back(Elt: Op); |
| 6054 | |
| 6055 | // Add the element to Bytes. |
| 6056 | unsigned Base = OpNo * SystemZ::VectorBytes + Byte; |
| 6057 | for (unsigned I = 0; I < BytesPerElement; ++I) |
| 6058 | Bytes.push_back(Elt: Base + I); |
| 6059 | |
| 6060 | return true; |
| 6061 | } |
| 6062 | |
| 6063 | // Return SDNodes for the completed shuffle. |
| 6064 | SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { |
| 6065 | assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector" ); |
| 6066 | |
| 6067 | if (Ops.size() == 0) |
| 6068 | return DAG.getUNDEF(VT); |
| 6069 | |
| 6070 | // Use a single unpack if possible as the last operation. |
| 6071 | tryPrepareForUnpack(); |
| 6072 | |
| 6073 | // Make sure that there are at least two shuffle operands. |
| 6074 | if (Ops.size() == 1) |
| 6075 | Ops.push_back(Elt: DAG.getUNDEF(VT: MVT::v16i8)); |
| 6076 | |
| 6077 | // Create a tree of shuffles, deferring root node until after the loop. |
| 6078 | // Try to redistribute the undefined elements of non-root nodes so that |
| 6079 | // the non-root shuffles match something like a pack or merge, then adjust |
| 6080 | // the parent node's permute vector to compensate for the new order. |
| 6081 | // Among other things, this copes with vectors like <2 x i16> that were |
| 6082 | // padded with undefined elements during type legalization. |
| 6083 | // |
| 6084 | // In the best case this redistribution will lead to the whole tree |
| 6085 | // using packs and merges. It should rarely be a loss in other cases. |
| 6086 | unsigned Stride = 1; |
| 6087 | for (; Stride * 2 < Ops.size(); Stride *= 2) { |
| 6088 | for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { |
| 6089 | SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; |
| 6090 | |
| 6091 | // Create a mask for just these two operands. |
| 6092 | SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); |
| 6093 | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { |
| 6094 | unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; |
| 6095 | unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; |
| 6096 | if (OpNo == I) |
| 6097 | NewBytes[J] = Byte; |
| 6098 | else if (OpNo == I + Stride) |
| 6099 | NewBytes[J] = SystemZ::VectorBytes + Byte; |
| 6100 | else |
| 6101 | NewBytes[J] = -1; |
| 6102 | } |
| 6103 | // See if it would be better to reorganize NewMask to avoid using VPERM. |
| 6104 | SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); |
| 6105 | if (const Permute *P = matchDoublePermute(Bytes: NewBytes, Transform&: NewBytesMap)) { |
| 6106 | Ops[I] = getPermuteNode(DAG, DL, P: *P, Op0: SubOps[0], Op1: SubOps[1]); |
| 6107 | // Applying NewBytesMap to Ops[I] gets back to NewBytes. |
| 6108 | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { |
| 6109 | if (NewBytes[J] >= 0) { |
| 6110 | assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && |
| 6111 | "Invalid double permute" ); |
| 6112 | Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; |
| 6113 | } else |
| 6114 | assert(NewBytesMap[J] < 0 && "Invalid double permute" ); |
| 6115 | } |
| 6116 | } else { |
| 6117 | // Just use NewBytes on the operands. |
| 6118 | Ops[I] = getGeneralPermuteNode(DAG, DL, Ops: SubOps, Bytes: NewBytes); |
| 6119 | for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) |
| 6120 | if (NewBytes[J] >= 0) |
| 6121 | Bytes[J] = I * SystemZ::VectorBytes + J; |
| 6122 | } |
| 6123 | } |
| 6124 | } |
| 6125 | |
| 6126 | // Now we just have 2 inputs. Put the second operand in Ops[1]. |
| 6127 | if (Stride > 1) { |
| 6128 | Ops[1] = Ops[Stride]; |
| 6129 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| 6130 | if (Bytes[I] >= int(SystemZ::VectorBytes)) |
| 6131 | Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; |
| 6132 | } |
| 6133 | |
| 6134 | // Look for an instruction that can do the permute without resorting |
| 6135 | // to VPERM. |
| 6136 | unsigned OpNo0, OpNo1; |
| 6137 | SDValue Op; |
| 6138 | if (unpackWasPrepared() && Ops[1].isUndef()) |
| 6139 | Op = Ops[0]; |
| 6140 | else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) |
| 6141 | Op = getPermuteNode(DAG, DL, P: *P, Op0: Ops[OpNo0], Op1: Ops[OpNo1]); |
| 6142 | else |
| 6143 | Op = getGeneralPermuteNode(DAG, DL, Ops: &Ops[0], Bytes); |
| 6144 | |
| 6145 | Op = insertUnpackIfPrepared(DAG, DL, Op); |
| 6146 | |
| 6147 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 6148 | } |
| 6149 | |
| 6150 | #ifndef NDEBUG |
| 6151 | static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { |
| 6152 | dbgs() << Msg.c_str() << " { " ; |
| 6153 | for (unsigned I = 0; I < Bytes.size(); I++) |
| 6154 | dbgs() << Bytes[I] << " " ; |
| 6155 | dbgs() << "}\n" ; |
| 6156 | } |
| 6157 | #endif |
| 6158 | |
| 6159 | // If the Bytes vector matches an unpack operation, prepare to do the unpack |
| 6160 | // after all else by removing the zero vector and the effect of the unpack on |
| 6161 | // Bytes. |
| 6162 | void GeneralShuffle::tryPrepareForUnpack() { |
| 6163 | uint32_t ZeroVecOpNo = findZeroVectorIdx(Ops: &Ops[0], Num: Ops.size()); |
| 6164 | if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) |
| 6165 | return; |
| 6166 | |
| 6167 | // Only do this if removing the zero vector reduces the depth, otherwise |
| 6168 | // the critical path will increase with the final unpack. |
| 6169 | if (Ops.size() > 2 && |
| 6170 | Log2_32_Ceil(Value: Ops.size()) == Log2_32_Ceil(Value: Ops.size() - 1)) |
| 6171 | return; |
| 6172 | |
| 6173 | // Find an unpack that would allow removing the zero vector from Ops. |
| 6174 | UnpackFromEltSize = 1; |
| 6175 | for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { |
| 6176 | bool MatchUnpack = true; |
| 6177 | SmallVector<int, SystemZ::VectorBytes> SrcBytes; |
| 6178 | for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { |
| 6179 | unsigned ToEltSize = UnpackFromEltSize * 2; |
| 6180 | bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; |
| 6181 | if (!IsZextByte) |
| 6182 | SrcBytes.push_back(Elt: Bytes[Elt]); |
| 6183 | if (Bytes[Elt] != -1) { |
| 6184 | unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; |
| 6185 | if (IsZextByte != (OpNo == ZeroVecOpNo)) { |
| 6186 | MatchUnpack = false; |
| 6187 | break; |
| 6188 | } |
| 6189 | } |
| 6190 | } |
| 6191 | if (MatchUnpack) { |
| 6192 | if (Ops.size() == 2) { |
| 6193 | // Don't use unpack if a single source operand needs rearrangement. |
| 6194 | bool CanUseUnpackLow = true, CanUseUnpackHigh = true; |
| 6195 | for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) { |
| 6196 | if (SrcBytes[i] == -1) |
| 6197 | continue; |
| 6198 | if (SrcBytes[i] % 16 != int(i)) |
| 6199 | CanUseUnpackHigh = false; |
| 6200 | if (SrcBytes[i] % 16 != int(i + SystemZ::VectorBytes / 2)) |
| 6201 | CanUseUnpackLow = false; |
| 6202 | if (!CanUseUnpackLow && !CanUseUnpackHigh) { |
| 6203 | UnpackFromEltSize = UINT_MAX; |
| 6204 | return; |
| 6205 | } |
| 6206 | } |
| 6207 | if (!CanUseUnpackHigh) |
| 6208 | UnpackLow = true; |
| 6209 | } |
| 6210 | break; |
| 6211 | } |
| 6212 | } |
| 6213 | if (UnpackFromEltSize > 4) |
| 6214 | return; |
| 6215 | |
| 6216 | LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " |
| 6217 | << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo |
| 6218 | << ".\n" ; |
| 6219 | dumpBytes(Bytes, "Original Bytes vector:" );); |
| 6220 | |
| 6221 | // Apply the unpack in reverse to the Bytes array. |
| 6222 | unsigned B = 0; |
| 6223 | if (UnpackLow) { |
| 6224 | while (B < SystemZ::VectorBytes / 2) |
| 6225 | Bytes[B++] = -1; |
| 6226 | } |
| 6227 | for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { |
| 6228 | Elt += UnpackFromEltSize; |
| 6229 | for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) |
| 6230 | Bytes[B] = Bytes[Elt]; |
| 6231 | } |
| 6232 | if (!UnpackLow) { |
| 6233 | while (B < SystemZ::VectorBytes) |
| 6234 | Bytes[B++] = -1; |
| 6235 | } |
| 6236 | |
| 6237 | // Remove the zero vector from Ops |
| 6238 | Ops.erase(CI: &Ops[ZeroVecOpNo]); |
| 6239 | for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| 6240 | if (Bytes[I] >= 0) { |
| 6241 | unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| 6242 | if (OpNo > ZeroVecOpNo) |
| 6243 | Bytes[I] -= SystemZ::VectorBytes; |
| 6244 | } |
| 6245 | |
| 6246 | LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:" ); |
| 6247 | dbgs() << "\n" ;); |
| 6248 | } |
| 6249 | |
| 6250 | SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, |
| 6251 | const SDLoc &DL, |
| 6252 | SDValue Op) { |
| 6253 | if (!unpackWasPrepared()) |
| 6254 | return Op; |
| 6255 | unsigned InBits = UnpackFromEltSize * 8; |
| 6256 | EVT InVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: InBits), |
| 6257 | NumElements: SystemZ::VectorBits / InBits); |
| 6258 | SDValue PackedOp = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: InVT, Operand: Op); |
| 6259 | unsigned OutBits = InBits * 2; |
| 6260 | EVT OutVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: OutBits), |
| 6261 | NumElements: SystemZ::VectorBits / OutBits); |
| 6262 | return DAG.getNode(Opcode: UnpackLow ? SystemZISD::UNPACKL_LOW |
| 6263 | : SystemZISD::UNPACKL_HIGH, |
| 6264 | DL, VT: OutVT, Operand: PackedOp); |
| 6265 | } |
| 6266 | |
| 6267 | // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. |
| 6268 | static bool isScalarToVector(SDValue Op) { |
| 6269 | for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) |
| 6270 | if (!Op.getOperand(i: I).isUndef()) |
| 6271 | return false; |
| 6272 | return true; |
| 6273 | } |
| 6274 | |
| 6275 | // Return a vector of type VT that contains Value in the first element. |
| 6276 | // The other elements don't matter. |
| 6277 | static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| 6278 | SDValue Value) { |
| 6279 | // If we have a constant, replicate it to all elements and let the |
| 6280 | // BUILD_VECTOR lowering take care of it. |
| 6281 | if (Value.getOpcode() == ISD::Constant || |
| 6282 | Value.getOpcode() == ISD::ConstantFP) { |
| 6283 | SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); |
| 6284 | return DAG.getBuildVector(VT, DL, Ops); |
| 6285 | } |
| 6286 | if (Value.isUndef()) |
| 6287 | return DAG.getUNDEF(VT); |
| 6288 | return DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT, Operand: Value); |
| 6289 | } |
| 6290 | |
| 6291 | // Return a vector of type VT in which Op0 is in element 0 and Op1 is in |
| 6292 | // element 1. Used for cases in which replication is cheap. |
| 6293 | static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| 6294 | SDValue Op0, SDValue Op1) { |
| 6295 | if (Op0.isUndef()) { |
| 6296 | if (Op1.isUndef()) |
| 6297 | return DAG.getUNDEF(VT); |
| 6298 | return DAG.getNode(Opcode: SystemZISD::REPLICATE, DL, VT, Operand: Op1); |
| 6299 | } |
| 6300 | if (Op1.isUndef()) |
| 6301 | return DAG.getNode(Opcode: SystemZISD::REPLICATE, DL, VT, Operand: Op0); |
| 6302 | return DAG.getNode(Opcode: SystemZISD::MERGE_HIGH, DL, VT, |
| 6303 | N1: buildScalarToVector(DAG, DL, VT, Value: Op0), |
| 6304 | N2: buildScalarToVector(DAG, DL, VT, Value: Op1)); |
| 6305 | } |
| 6306 | |
| 6307 | // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 |
| 6308 | // vector for them. |
| 6309 | static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, |
| 6310 | SDValue Op1) { |
| 6311 | if (Op0.isUndef() && Op1.isUndef()) |
| 6312 | return DAG.getUNDEF(VT: MVT::v2i64); |
| 6313 | // If one of the two inputs is undefined then replicate the other one, |
| 6314 | // in order to avoid using another register unnecessarily. |
| 6315 | if (Op0.isUndef()) |
| 6316 | Op0 = Op1 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op1); |
| 6317 | else if (Op1.isUndef()) |
| 6318 | Op0 = Op1 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op0); |
| 6319 | else { |
| 6320 | Op0 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op0); |
| 6321 | Op1 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op1); |
| 6322 | } |
| 6323 | return DAG.getNode(Opcode: SystemZISD::JOIN_DWORDS, DL, VT: MVT::v2i64, N1: Op0, N2: Op1); |
| 6324 | } |
| 6325 | |
| 6326 | // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually |
| 6327 | // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for |
| 6328 | // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR |
| 6329 | // would benefit from this representation and return it if so. |
| 6330 | static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, |
| 6331 | BuildVectorSDNode *BVN) { |
| 6332 | EVT VT = BVN->getValueType(ResNo: 0); |
| 6333 | unsigned NumElements = VT.getVectorNumElements(); |
| 6334 | |
| 6335 | // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation |
| 6336 | // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still |
| 6337 | // need a BUILD_VECTOR, add an additional placeholder operand for that |
| 6338 | // BUILD_VECTOR and store its operands in ResidueOps. |
| 6339 | GeneralShuffle GS(VT); |
| 6340 | SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; |
| 6341 | bool FoundOne = false; |
| 6342 | for (unsigned I = 0; I < NumElements; ++I) { |
| 6343 | SDValue Op = BVN->getOperand(Num: I); |
| 6344 | if (Op.getOpcode() == ISD::TRUNCATE) |
| 6345 | Op = Op.getOperand(i: 0); |
| 6346 | if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 6347 | Op.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 6348 | unsigned Elem = Op.getConstantOperandVal(i: 1); |
| 6349 | if (!GS.add(Op: Op.getOperand(i: 0), Elem)) |
| 6350 | return SDValue(); |
| 6351 | FoundOne = true; |
| 6352 | } else if (Op.isUndef()) { |
| 6353 | GS.addUndef(); |
| 6354 | } else { |
| 6355 | if (!GS.add(Op: SDValue(), Elem: ResidueOps.size())) |
| 6356 | return SDValue(); |
| 6357 | ResidueOps.push_back(Elt: BVN->getOperand(Num: I)); |
| 6358 | } |
| 6359 | } |
| 6360 | |
| 6361 | // Nothing to do if there are no EXTRACT_VECTOR_ELTs. |
| 6362 | if (!FoundOne) |
| 6363 | return SDValue(); |
| 6364 | |
| 6365 | // Create the BUILD_VECTOR for the remaining elements, if any. |
| 6366 | if (!ResidueOps.empty()) { |
| 6367 | while (ResidueOps.size() < NumElements) |
| 6368 | ResidueOps.push_back(Elt: DAG.getUNDEF(VT: ResidueOps[0].getValueType())); |
| 6369 | for (auto &Op : GS.Ops) { |
| 6370 | if (!Op.getNode()) { |
| 6371 | Op = DAG.getBuildVector(VT, DL: SDLoc(BVN), Ops: ResidueOps); |
| 6372 | break; |
| 6373 | } |
| 6374 | } |
| 6375 | } |
| 6376 | return GS.getNode(DAG, DL: SDLoc(BVN)); |
| 6377 | } |
| 6378 | |
| 6379 | bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { |
| 6380 | if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Val&: Op)->isUnindexed()) |
| 6381 | return true; |
| 6382 | if (auto *AL = dyn_cast<AtomicSDNode>(Val&: Op)) |
| 6383 | if (AL->getOpcode() == ISD::ATOMIC_LOAD) |
| 6384 | return true; |
| 6385 | if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) |
| 6386 | return true; |
| 6387 | return false; |
| 6388 | } |
| 6389 | |
| 6390 | static SDValue mergeHighParts(SelectionDAG &DAG, const SDLoc &DL, |
| 6391 | unsigned MergedBits, EVT VT, SDValue Op0, |
| 6392 | SDValue Op1) { |
| 6393 | MVT IntVecVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: MergedBits), |
| 6394 | NumElements: SystemZ::VectorBits / MergedBits); |
| 6395 | assert(VT.getSizeInBits() == 128 && IntVecVT.getSizeInBits() == 128 && |
| 6396 | "Handling full vectors only." ); |
| 6397 | Op0 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVecVT, Operand: Op0); |
| 6398 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVecVT, Operand: Op1); |
| 6399 | SDValue Op = DAG.getNode(Opcode: SystemZISD::MERGE_HIGH, DL, VT: IntVecVT, N1: Op0, N2: Op1); |
| 6400 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 6401 | } |
| 6402 | |
| 6403 | static SDValue buildFPVecFromScalars4(SelectionDAG &DAG, const SDLoc &DL, |
| 6404 | EVT VT, SmallVectorImpl<SDValue> &Elems, |
| 6405 | unsigned Pos) { |
| 6406 | SDValue Op01 = buildMergeScalars(DAG, DL, VT, Op0: Elems[Pos + 0], Op1: Elems[Pos + 1]); |
| 6407 | SDValue Op23 = buildMergeScalars(DAG, DL, VT, Op0: Elems[Pos + 2], Op1: Elems[Pos + 3]); |
| 6408 | // Avoid unnecessary undefs by reusing the other operand. |
| 6409 | if (Op01.isUndef()) { |
| 6410 | if (Op23.isUndef()) |
| 6411 | return Op01; |
| 6412 | Op01 = Op23; |
| 6413 | } else if (Op23.isUndef()) |
| 6414 | Op23 = Op01; |
| 6415 | // Merging identical replications is a no-op. |
| 6416 | if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) |
| 6417 | return Op01; |
| 6418 | unsigned MergedBits = VT.getSimpleVT().getScalarSizeInBits() * 2; |
| 6419 | return mergeHighParts(DAG, DL, MergedBits, VT, Op0: Op01, Op1: Op23); |
| 6420 | } |
| 6421 | |
| 6422 | // Combine GPR scalar values Elems into a vector of type VT. |
| 6423 | SDValue |
| 6424 | SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| 6425 | SmallVectorImpl<SDValue> &Elems) const { |
| 6426 | // See whether there is a single replicated value. |
| 6427 | SDValue Single; |
| 6428 | unsigned int NumElements = Elems.size(); |
| 6429 | unsigned int Count = 0; |
| 6430 | for (auto Elem : Elems) { |
| 6431 | if (!Elem.isUndef()) { |
| 6432 | if (!Single.getNode()) |
| 6433 | Single = Elem; |
| 6434 | else if (Elem != Single) { |
| 6435 | Single = SDValue(); |
| 6436 | break; |
| 6437 | } |
| 6438 | Count += 1; |
| 6439 | } |
| 6440 | } |
| 6441 | // There are three cases here: |
| 6442 | // |
| 6443 | // - if the only defined element is a loaded one, the best sequence |
| 6444 | // is a replicating load. |
| 6445 | // |
| 6446 | // - otherwise, if the only defined element is an i64 value, we will |
| 6447 | // end up with the same VLVGP sequence regardless of whether we short-cut |
| 6448 | // for replication or fall through to the later code. |
| 6449 | // |
| 6450 | // - otherwise, if the only defined element is an i32 or smaller value, |
| 6451 | // we would need 2 instructions to replicate it: VLVGP followed by VREPx. |
| 6452 | // This is only a win if the single defined element is used more than once. |
| 6453 | // In other cases we're better off using a single VLVGx. |
| 6454 | if (Single.getNode() && (Count > 1 || isVectorElementLoad(Op: Single))) |
| 6455 | return DAG.getNode(Opcode: SystemZISD::REPLICATE, DL, VT, Operand: Single); |
| 6456 | |
| 6457 | // If all elements are loads, use VLREP/VLEs (below). |
| 6458 | bool AllLoads = true; |
| 6459 | for (auto Elem : Elems) |
| 6460 | if (!isVectorElementLoad(Op: Elem)) { |
| 6461 | AllLoads = false; |
| 6462 | break; |
| 6463 | } |
| 6464 | |
| 6465 | // The best way of building a v2i64 from two i64s is to use VLVGP. |
| 6466 | if (VT == MVT::v2i64 && !AllLoads) |
| 6467 | return joinDwords(DAG, DL, Op0: Elems[0], Op1: Elems[1]); |
| 6468 | |
| 6469 | // Use a 64-bit merge high to combine two doubles. |
| 6470 | if (VT == MVT::v2f64 && !AllLoads) |
| 6471 | return buildMergeScalars(DAG, DL, VT, Op0: Elems[0], Op1: Elems[1]); |
| 6472 | |
| 6473 | // Build v4f32 values directly from the FPRs: |
| 6474 | // |
| 6475 | // <Axxx> <Bxxx> <Cxxxx> <Dxxx> |
| 6476 | // V V VMRHF |
| 6477 | // <ABxx> <CDxx> |
| 6478 | // V VMRHG |
| 6479 | // <ABCD> |
| 6480 | if (VT == MVT::v4f32 && !AllLoads) |
| 6481 | return buildFPVecFromScalars4(DAG, DL, VT, Elems, Pos: 0); |
| 6482 | |
| 6483 | // Same for v8f16. |
| 6484 | if (VT == MVT::v8f16 && !AllLoads) { |
| 6485 | SDValue Op0123 = buildFPVecFromScalars4(DAG, DL, VT, Elems, Pos: 0); |
| 6486 | SDValue Op4567 = buildFPVecFromScalars4(DAG, DL, VT, Elems, Pos: 4); |
| 6487 | // Avoid unnecessary undefs by reusing the other operand. |
| 6488 | if (Op0123.isUndef()) |
| 6489 | Op0123 = Op4567; |
| 6490 | else if (Op4567.isUndef()) |
| 6491 | Op4567 = Op0123; |
| 6492 | // Merging identical replications is a no-op. |
| 6493 | if (Op0123.getOpcode() == SystemZISD::REPLICATE && Op0123 == Op4567) |
| 6494 | return Op0123; |
| 6495 | return mergeHighParts(DAG, DL, MergedBits: 64, VT, Op0: Op0123, Op1: Op4567); |
| 6496 | } |
| 6497 | |
| 6498 | // Collect the constant terms. |
| 6499 | SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); |
| 6500 | SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); |
| 6501 | |
| 6502 | unsigned NumConstants = 0; |
| 6503 | for (unsigned I = 0; I < NumElements; ++I) { |
| 6504 | SDValue Elem = Elems[I]; |
| 6505 | if (Elem.getOpcode() == ISD::Constant || |
| 6506 | Elem.getOpcode() == ISD::ConstantFP) { |
| 6507 | NumConstants += 1; |
| 6508 | Constants[I] = Elem; |
| 6509 | Done[I] = true; |
| 6510 | } |
| 6511 | } |
| 6512 | // If there was at least one constant, fill in the other elements of |
| 6513 | // Constants with undefs to get a full vector constant and use that |
| 6514 | // as the starting point. |
| 6515 | SDValue Result; |
| 6516 | SDValue ReplicatedVal; |
| 6517 | if (NumConstants > 0) { |
| 6518 | for (unsigned I = 0; I < NumElements; ++I) |
| 6519 | if (!Constants[I].getNode()) |
| 6520 | Constants[I] = DAG.getUNDEF(VT: Elems[I].getValueType()); |
| 6521 | Result = DAG.getBuildVector(VT, DL, Ops: Constants); |
| 6522 | } else { |
| 6523 | // Otherwise try to use VLREP or VLVGP to start the sequence in order to |
| 6524 | // avoid a false dependency on any previous contents of the vector |
| 6525 | // register. |
| 6526 | |
| 6527 | // Use a VLREP if at least one element is a load. Make sure to replicate |
| 6528 | // the load with the most elements having its value. |
| 6529 | std::map<const SDNode*, unsigned> UseCounts; |
| 6530 | SDNode *LoadMaxUses = nullptr; |
| 6531 | for (unsigned I = 0; I < NumElements; ++I) |
| 6532 | if (isVectorElementLoad(Op: Elems[I])) { |
| 6533 | SDNode *Ld = Elems[I].getNode(); |
| 6534 | unsigned Count = ++UseCounts[Ld]; |
| 6535 | if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < Count) |
| 6536 | LoadMaxUses = Ld; |
| 6537 | } |
| 6538 | if (LoadMaxUses != nullptr) { |
| 6539 | ReplicatedVal = SDValue(LoadMaxUses, 0); |
| 6540 | Result = DAG.getNode(Opcode: SystemZISD::REPLICATE, DL, VT, Operand: ReplicatedVal); |
| 6541 | } else { |
| 6542 | // Try to use VLVGP. |
| 6543 | unsigned I1 = NumElements / 2 - 1; |
| 6544 | unsigned I2 = NumElements - 1; |
| 6545 | bool Def1 = !Elems[I1].isUndef(); |
| 6546 | bool Def2 = !Elems[I2].isUndef(); |
| 6547 | if (Def1 || Def2) { |
| 6548 | SDValue Elem1 = Elems[Def1 ? I1 : I2]; |
| 6549 | SDValue Elem2 = Elems[Def2 ? I2 : I1]; |
| 6550 | Result = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, |
| 6551 | Operand: joinDwords(DAG, DL, Op0: Elem1, Op1: Elem2)); |
| 6552 | Done[I1] = true; |
| 6553 | Done[I2] = true; |
| 6554 | } else |
| 6555 | Result = DAG.getUNDEF(VT); |
| 6556 | } |
| 6557 | } |
| 6558 | |
| 6559 | // Use VLVGx to insert the other elements. |
| 6560 | for (unsigned I = 0; I < NumElements; ++I) |
| 6561 | if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) |
| 6562 | Result = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT, N1: Result, N2: Elems[I], |
| 6563 | N3: DAG.getConstant(Val: I, DL, VT: MVT::i32)); |
| 6564 | return Result; |
| 6565 | } |
| 6566 | |
| 6567 | SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| 6568 | SelectionDAG &DAG) const { |
| 6569 | auto *BVN = cast<BuildVectorSDNode>(Val: Op.getNode()); |
| 6570 | SDLoc DL(Op); |
| 6571 | EVT VT = Op.getValueType(); |
| 6572 | |
| 6573 | if (BVN->isConstant()) { |
| 6574 | if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) |
| 6575 | return Op; |
| 6576 | |
| 6577 | // Fall back to loading it from memory. |
| 6578 | return SDValue(); |
| 6579 | } |
| 6580 | |
| 6581 | // See if we should use shuffles to construct the vector from other vectors. |
| 6582 | if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) |
| 6583 | return Res; |
| 6584 | |
| 6585 | // Detect SCALAR_TO_VECTOR conversions. |
| 6586 | if (isOperationLegal(Op: ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) |
| 6587 | return buildScalarToVector(DAG, DL, VT, Value: Op.getOperand(i: 0)); |
| 6588 | |
| 6589 | // Otherwise use buildVector to build the vector up from GPRs. |
| 6590 | unsigned NumElements = Op.getNumOperands(); |
| 6591 | SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); |
| 6592 | for (unsigned I = 0; I < NumElements; ++I) |
| 6593 | Ops[I] = Op.getOperand(i: I); |
| 6594 | return buildVector(DAG, DL, VT, Elems&: Ops); |
| 6595 | } |
| 6596 | |
| 6597 | SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| 6598 | SelectionDAG &DAG) const { |
| 6599 | auto *VSN = cast<ShuffleVectorSDNode>(Val: Op.getNode()); |
| 6600 | SDLoc DL(Op); |
| 6601 | EVT VT = Op.getValueType(); |
| 6602 | unsigned NumElements = VT.getVectorNumElements(); |
| 6603 | |
| 6604 | if (VSN->isSplat()) { |
| 6605 | SDValue Op0 = Op.getOperand(i: 0); |
| 6606 | unsigned Index = VSN->getSplatIndex(); |
| 6607 | assert(Index < VT.getVectorNumElements() && |
| 6608 | "Splat index should be defined and in first operand" ); |
| 6609 | // See whether the value we're splatting is directly available as a scalar. |
| 6610 | if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || |
| 6611 | Op0.getOpcode() == ISD::BUILD_VECTOR) |
| 6612 | return DAG.getNode(Opcode: SystemZISD::REPLICATE, DL, VT, Operand: Op0.getOperand(i: Index)); |
| 6613 | // Otherwise keep it as a vector-to-vector operation. |
| 6614 | return DAG.getNode(Opcode: SystemZISD::SPLAT, DL, VT, N1: Op.getOperand(i: 0), |
| 6615 | N2: DAG.getTargetConstant(Val: Index, DL, VT: MVT::i32)); |
| 6616 | } |
| 6617 | |
| 6618 | GeneralShuffle GS(VT); |
| 6619 | for (unsigned I = 0; I < NumElements; ++I) { |
| 6620 | int Elt = VSN->getMaskElt(Idx: I); |
| 6621 | if (Elt < 0) |
| 6622 | GS.addUndef(); |
| 6623 | else if (!GS.add(Op: Op.getOperand(i: unsigned(Elt) / NumElements), |
| 6624 | Elem: unsigned(Elt) % NumElements)) |
| 6625 | return SDValue(); |
| 6626 | } |
| 6627 | return GS.getNode(DAG, DL: SDLoc(VSN)); |
| 6628 | } |
| 6629 | |
| 6630 | SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, |
| 6631 | SelectionDAG &DAG) const { |
| 6632 | SDLoc DL(Op); |
| 6633 | // Just insert the scalar into element 0 of an undefined vector. |
| 6634 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, |
| 6635 | VT: Op.getValueType(), N1: DAG.getUNDEF(VT: Op.getValueType()), |
| 6636 | N2: Op.getOperand(i: 0), N3: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 6637 | } |
| 6638 | |
| 6639 | // Shift the lower 2 bytes of Op to the left in order to insert into the |
| 6640 | // upper 2 bytes of the FP register. |
| 6641 | static SDValue convertToF16(SDValue Op, SelectionDAG &DAG) { |
| 6642 | assert(Op.getSimpleValueType() == MVT::i64 && |
| 6643 | "Expexted to convert i64 to f16." ); |
| 6644 | SDLoc DL(Op); |
| 6645 | SDValue Shft = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i64, N1: Op, |
| 6646 | N2: DAG.getConstant(Val: 48, DL, VT: MVT::i64)); |
| 6647 | SDValue BCast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::f64, Operand: Shft); |
| 6648 | SDValue F16Val = |
| 6649 | DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_h16, DL, VT: MVT::f16, Operand: BCast); |
| 6650 | return F16Val; |
| 6651 | } |
| 6652 | |
| 6653 | // Extract Op into GPR and shift the 2 f16 bytes to the right. |
| 6654 | static SDValue convertFromF16(SDValue Op, SDLoc DL, SelectionDAG &DAG) { |
| 6655 | assert(Op.getSimpleValueType() == MVT::f16 && |
| 6656 | "Expected to convert f16 to i64." ); |
| 6657 | SDNode *U32 = DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MVT::f64); |
| 6658 | SDValue In64 = DAG.getTargetInsertSubreg(SRIdx: SystemZ::subreg_h16, DL, VT: MVT::f64, |
| 6659 | Operand: SDValue(U32, 0), Subreg: Op); |
| 6660 | SDValue BCast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: In64); |
| 6661 | SDValue Shft = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: BCast, |
| 6662 | N2: DAG.getConstant(Val: 48, DL, VT: MVT::i32)); |
| 6663 | return Shft; |
| 6664 | } |
| 6665 | |
| 6666 | SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| 6667 | SelectionDAG &DAG) const { |
| 6668 | // Handle insertions of floating-point values. |
| 6669 | SDLoc DL(Op); |
| 6670 | SDValue Op0 = Op.getOperand(i: 0); |
| 6671 | SDValue Op1 = Op.getOperand(i: 1); |
| 6672 | SDValue Op2 = Op.getOperand(i: 2); |
| 6673 | EVT VT = Op.getValueType(); |
| 6674 | |
| 6675 | // Insertions into constant indices of a v2f64 can be done using VPDI. |
| 6676 | // However, if the inserted value is a bitcast or a constant then it's |
| 6677 | // better to use GPRs, as below. |
| 6678 | if (VT == MVT::v2f64 && |
| 6679 | Op1.getOpcode() != ISD::BITCAST && |
| 6680 | Op1.getOpcode() != ISD::ConstantFP && |
| 6681 | Op2.getOpcode() == ISD::Constant) { |
| 6682 | uint64_t Index = Op2->getAsZExtVal(); |
| 6683 | unsigned Mask = VT.getVectorNumElements() - 1; |
| 6684 | if (Index <= Mask) |
| 6685 | return Op; |
| 6686 | } |
| 6687 | |
| 6688 | // Otherwise bitcast to the equivalent integer form and insert via a GPR. |
| 6689 | MVT IntVT = MVT::getIntegerVT(BitWidth: VT.getScalarSizeInBits()); |
| 6690 | MVT IntVecVT = MVT::getVectorVT(VT: IntVT, NumElements: VT.getVectorNumElements()); |
| 6691 | SDValue IntOp1 = |
| 6692 | VT == MVT::v8f16 |
| 6693 | ? DAG.getZExtOrTrunc(Op: convertFromF16(Op: Op1, DL, DAG), DL, VT: MVT::i32) |
| 6694 | : DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Op1); |
| 6695 | SDValue Res = |
| 6696 | DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: IntVecVT, |
| 6697 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVecVT, Operand: Op0), N2: IntOp1, N3: Op2); |
| 6698 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Res); |
| 6699 | } |
| 6700 | |
| 6701 | SDValue |
| 6702 | SystemZTargetLowering::(SDValue Op, |
| 6703 | SelectionDAG &DAG) const { |
| 6704 | // Handle extractions of floating-point values. |
| 6705 | SDLoc DL(Op); |
| 6706 | SDValue Op0 = Op.getOperand(i: 0); |
| 6707 | SDValue Op1 = Op.getOperand(i: 1); |
| 6708 | EVT VT = Op.getValueType(); |
| 6709 | EVT VecVT = Op0.getValueType(); |
| 6710 | |
| 6711 | // Extractions of constant indices can be done directly. |
| 6712 | if (auto *CIndexN = dyn_cast<ConstantSDNode>(Val&: Op1)) { |
| 6713 | uint64_t Index = CIndexN->getZExtValue(); |
| 6714 | unsigned Mask = VecVT.getVectorNumElements() - 1; |
| 6715 | if (Index <= Mask) |
| 6716 | return Op; |
| 6717 | } |
| 6718 | |
| 6719 | // Otherwise bitcast to the equivalent integer form and extract via a GPR. |
| 6720 | MVT IntVT = MVT::getIntegerVT(BitWidth: VT.getSizeInBits()); |
| 6721 | MVT IntVecVT = MVT::getVectorVT(VT: IntVT, NumElements: VecVT.getVectorNumElements()); |
| 6722 | MVT ExtrVT = IntVT == MVT::i16 ? MVT::i32 : IntVT; |
| 6723 | SDValue Extr = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: ExtrVT, |
| 6724 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVecVT, Operand: Op0), N2: Op1); |
| 6725 | if (VT == MVT::f16) |
| 6726 | return convertToF16(Op: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Extr), DAG); |
| 6727 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Extr); |
| 6728 | } |
| 6729 | |
| 6730 | SDValue SystemZTargetLowering:: |
| 6731 | lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { |
| 6732 | SDValue PackedOp = Op.getOperand(i: 0); |
| 6733 | EVT OutVT = Op.getValueType(); |
| 6734 | EVT InVT = PackedOp.getValueType(); |
| 6735 | unsigned ToBits = OutVT.getScalarSizeInBits(); |
| 6736 | unsigned FromBits = InVT.getScalarSizeInBits(); |
| 6737 | unsigned StartOffset = 0; |
| 6738 | |
| 6739 | // If the input is a VECTOR_SHUFFLE, there are a number of important |
| 6740 | // cases where we can directly implement the sign-extension of the |
| 6741 | // original input lanes of the shuffle. |
| 6742 | if (PackedOp.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| 6743 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Val: PackedOp.getNode()); |
| 6744 | ArrayRef<int> ShuffleMask = SVN->getMask(); |
| 6745 | int OutNumElts = OutVT.getVectorNumElements(); |
| 6746 | |
| 6747 | // Recognize the special case where the sign-extension can be done |
| 6748 | // by the VSEG instruction. Handled via the default expander. |
| 6749 | if (ToBits == 64 && OutNumElts == 2) { |
| 6750 | int NumElem = ToBits / FromBits; |
| 6751 | if (ShuffleMask[0] == NumElem - 1 && ShuffleMask[1] == 2 * NumElem - 1) |
| 6752 | return SDValue(); |
| 6753 | } |
| 6754 | |
| 6755 | // Recognize the special case where we can fold the shuffle by |
| 6756 | // replacing some of the UNPACK_HIGH with UNPACK_LOW. |
| 6757 | int StartOffsetCandidate = -1; |
| 6758 | for (int Elt = 0; Elt < OutNumElts; Elt++) { |
| 6759 | if (ShuffleMask[Elt] == -1) |
| 6760 | continue; |
| 6761 | if (ShuffleMask[Elt] % OutNumElts == Elt) { |
| 6762 | if (StartOffsetCandidate == -1) |
| 6763 | StartOffsetCandidate = ShuffleMask[Elt] - Elt; |
| 6764 | if (StartOffsetCandidate == ShuffleMask[Elt] - Elt) |
| 6765 | continue; |
| 6766 | } |
| 6767 | StartOffsetCandidate = -1; |
| 6768 | break; |
| 6769 | } |
| 6770 | if (StartOffsetCandidate != -1) { |
| 6771 | StartOffset = StartOffsetCandidate; |
| 6772 | PackedOp = PackedOp.getOperand(i: 0); |
| 6773 | } |
| 6774 | } |
| 6775 | |
| 6776 | do { |
| 6777 | FromBits *= 2; |
| 6778 | unsigned OutNumElts = SystemZ::VectorBits / FromBits; |
| 6779 | EVT OutVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: FromBits), NumElements: OutNumElts); |
| 6780 | unsigned Opcode = SystemZISD::UNPACK_HIGH; |
| 6781 | if (StartOffset >= OutNumElts) { |
| 6782 | Opcode = SystemZISD::UNPACK_LOW; |
| 6783 | StartOffset -= OutNumElts; |
| 6784 | } |
| 6785 | PackedOp = DAG.getNode(Opcode, DL: SDLoc(PackedOp), VT: OutVT, Operand: PackedOp); |
| 6786 | } while (FromBits != ToBits); |
| 6787 | return PackedOp; |
| 6788 | } |
| 6789 | |
| 6790 | // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. |
| 6791 | SDValue SystemZTargetLowering:: |
| 6792 | lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { |
| 6793 | SDValue PackedOp = Op.getOperand(i: 0); |
| 6794 | SDLoc DL(Op); |
| 6795 | EVT OutVT = Op.getValueType(); |
| 6796 | EVT InVT = PackedOp.getValueType(); |
| 6797 | unsigned InNumElts = InVT.getVectorNumElements(); |
| 6798 | unsigned OutNumElts = OutVT.getVectorNumElements(); |
| 6799 | unsigned NumInPerOut = InNumElts / OutNumElts; |
| 6800 | |
| 6801 | SDValue ZeroVec = |
| 6802 | DAG.getSplatVector(VT: InVT, DL, Op: DAG.getConstant(Val: 0, DL, VT: InVT.getScalarType())); |
| 6803 | |
| 6804 | SmallVector<int, 16> Mask(InNumElts); |
| 6805 | unsigned ZeroVecElt = InNumElts; |
| 6806 | for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { |
| 6807 | unsigned MaskElt = PackedElt * NumInPerOut; |
| 6808 | unsigned End = MaskElt + NumInPerOut - 1; |
| 6809 | for (; MaskElt < End; MaskElt++) |
| 6810 | Mask[MaskElt] = ZeroVecElt++; |
| 6811 | Mask[MaskElt] = PackedElt; |
| 6812 | } |
| 6813 | SDValue Shuf = DAG.getVectorShuffle(VT: InVT, dl: DL, N1: PackedOp, N2: ZeroVec, Mask); |
| 6814 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: OutVT, Operand: Shuf); |
| 6815 | } |
| 6816 | |
| 6817 | SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, |
| 6818 | unsigned ByScalar) const { |
| 6819 | // Look for cases where a vector shift can use the *_BY_SCALAR form. |
| 6820 | SDValue Op0 = Op.getOperand(i: 0); |
| 6821 | SDValue Op1 = Op.getOperand(i: 1); |
| 6822 | SDLoc DL(Op); |
| 6823 | EVT VT = Op.getValueType(); |
| 6824 | unsigned ElemBitSize = VT.getScalarSizeInBits(); |
| 6825 | |
| 6826 | // See whether the shift vector is a splat represented as BUILD_VECTOR. |
| 6827 | if (auto *BVN = dyn_cast<BuildVectorSDNode>(Val&: Op1)) { |
| 6828 | APInt SplatBits, SplatUndef; |
| 6829 | unsigned SplatBitSize; |
| 6830 | bool HasAnyUndefs; |
| 6831 | // Check for constant splats. Use ElemBitSize as the minimum element |
| 6832 | // width and reject splats that need wider elements. |
| 6833 | if (BVN->isConstantSplat(SplatValue&: SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, |
| 6834 | MinSplatBits: ElemBitSize, isBigEndian: true) && |
| 6835 | SplatBitSize == ElemBitSize) { |
| 6836 | SDValue Shift = DAG.getConstant(Val: SplatBits.getZExtValue() & 0xfff, |
| 6837 | DL, VT: MVT::i32); |
| 6838 | return DAG.getNode(Opcode: ByScalar, DL, VT, N1: Op0, N2: Shift); |
| 6839 | } |
| 6840 | // Check for variable splats. |
| 6841 | BitVector UndefElements; |
| 6842 | SDValue Splat = BVN->getSplatValue(UndefElements: &UndefElements); |
| 6843 | if (Splat) { |
| 6844 | // Since i32 is the smallest legal type, we either need a no-op |
| 6845 | // or a truncation. |
| 6846 | SDValue Shift = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Splat); |
| 6847 | return DAG.getNode(Opcode: ByScalar, DL, VT, N1: Op0, N2: Shift); |
| 6848 | } |
| 6849 | } |
| 6850 | |
| 6851 | // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, |
| 6852 | // and the shift amount is directly available in a GPR. |
| 6853 | if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Val&: Op1)) { |
| 6854 | if (VSN->isSplat()) { |
| 6855 | SDValue VSNOp0 = VSN->getOperand(Num: 0); |
| 6856 | unsigned Index = VSN->getSplatIndex(); |
| 6857 | assert(Index < VT.getVectorNumElements() && |
| 6858 | "Splat index should be defined and in first operand" ); |
| 6859 | if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || |
| 6860 | VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { |
| 6861 | // Since i32 is the smallest legal type, we either need a no-op |
| 6862 | // or a truncation. |
| 6863 | SDValue Shift = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, |
| 6864 | Operand: VSNOp0.getOperand(i: Index)); |
| 6865 | return DAG.getNode(Opcode: ByScalar, DL, VT, N1: Op0, N2: Shift); |
| 6866 | } |
| 6867 | } |
| 6868 | } |
| 6869 | |
| 6870 | // Otherwise just treat the current form as legal. |
| 6871 | return Op; |
| 6872 | } |
| 6873 | |
| 6874 | SDValue SystemZTargetLowering::lowerFSHL(SDValue Op, SelectionDAG &DAG) const { |
| 6875 | SDLoc DL(Op); |
| 6876 | |
| 6877 | // i128 FSHL with a constant amount that is a multiple of 8 can be |
| 6878 | // implemented via VECTOR_SHUFFLE. If we have the vector-enhancements-2 |
| 6879 | // facility, FSHL with a constant amount less than 8 can be implemented |
| 6880 | // via SHL_DOUBLE_BIT, and FSHL with other constant amounts by a |
| 6881 | // combination of the two. |
| 6882 | if (auto *ShiftAmtNode = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2))) { |
| 6883 | uint64_t ShiftAmt = ShiftAmtNode->getZExtValue() & 127; |
| 6884 | if ((ShiftAmt & 7) == 0 || Subtarget.hasVectorEnhancements2()) { |
| 6885 | SDValue Op0 = DAG.getBitcast(VT: MVT::v16i8, V: Op.getOperand(i: 0)); |
| 6886 | SDValue Op1 = DAG.getBitcast(VT: MVT::v16i8, V: Op.getOperand(i: 1)); |
| 6887 | if (ShiftAmt > 120) { |
| 6888 | // For N in 121..128, fshl N == fshr (128 - N), and for 1 <= N < 8 |
| 6889 | // SHR_DOUBLE_BIT emits fewer instructions. |
| 6890 | SDValue Val = |
| 6891 | DAG.getNode(Opcode: SystemZISD::SHR_DOUBLE_BIT, DL, VT: MVT::v16i8, N1: Op0, N2: Op1, |
| 6892 | N3: DAG.getTargetConstant(Val: 128 - ShiftAmt, DL, VT: MVT::i32)); |
| 6893 | return DAG.getBitcast(VT: MVT::i128, V: Val); |
| 6894 | } |
| 6895 | SmallVector<int, 16> Mask(16); |
| 6896 | for (unsigned Elt = 0; Elt < 16; Elt++) |
| 6897 | Mask[Elt] = (ShiftAmt >> 3) + Elt; |
| 6898 | SDValue Shuf1 = DAG.getVectorShuffle(VT: MVT::v16i8, dl: DL, N1: Op0, N2: Op1, Mask); |
| 6899 | if ((ShiftAmt & 7) == 0) |
| 6900 | return DAG.getBitcast(VT: MVT::i128, V: Shuf1); |
| 6901 | SDValue Shuf2 = DAG.getVectorShuffle(VT: MVT::v16i8, dl: DL, N1: Op1, N2: Op1, Mask); |
| 6902 | SDValue Val = |
| 6903 | DAG.getNode(Opcode: SystemZISD::SHL_DOUBLE_BIT, DL, VT: MVT::v16i8, N1: Shuf1, N2: Shuf2, |
| 6904 | N3: DAG.getTargetConstant(Val: ShiftAmt & 7, DL, VT: MVT::i32)); |
| 6905 | return DAG.getBitcast(VT: MVT::i128, V: Val); |
| 6906 | } |
| 6907 | } |
| 6908 | |
| 6909 | return SDValue(); |
| 6910 | } |
| 6911 | |
| 6912 | SDValue SystemZTargetLowering::lowerFSHR(SDValue Op, SelectionDAG &DAG) const { |
| 6913 | SDLoc DL(Op); |
| 6914 | |
| 6915 | // i128 FSHR with a constant amount that is a multiple of 8 can be |
| 6916 | // implemented via VECTOR_SHUFFLE. If we have the vector-enhancements-2 |
| 6917 | // facility, FSHR with a constant amount less than 8 can be implemented |
| 6918 | // via SHR_DOUBLE_BIT, and FSHR with other constant amounts by a |
| 6919 | // combination of the two. |
| 6920 | if (auto *ShiftAmtNode = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2))) { |
| 6921 | uint64_t ShiftAmt = ShiftAmtNode->getZExtValue() & 127; |
| 6922 | if ((ShiftAmt & 7) == 0 || Subtarget.hasVectorEnhancements2()) { |
| 6923 | SDValue Op0 = DAG.getBitcast(VT: MVT::v16i8, V: Op.getOperand(i: 0)); |
| 6924 | SDValue Op1 = DAG.getBitcast(VT: MVT::v16i8, V: Op.getOperand(i: 1)); |
| 6925 | if (ShiftAmt > 120) { |
| 6926 | // For N in 121..128, fshr N == fshl (128 - N), and for 1 <= N < 8 |
| 6927 | // SHL_DOUBLE_BIT emits fewer instructions. |
| 6928 | SDValue Val = |
| 6929 | DAG.getNode(Opcode: SystemZISD::SHL_DOUBLE_BIT, DL, VT: MVT::v16i8, N1: Op0, N2: Op1, |
| 6930 | N3: DAG.getTargetConstant(Val: 128 - ShiftAmt, DL, VT: MVT::i32)); |
| 6931 | return DAG.getBitcast(VT: MVT::i128, V: Val); |
| 6932 | } |
| 6933 | SmallVector<int, 16> Mask(16); |
| 6934 | for (unsigned Elt = 0; Elt < 16; Elt++) |
| 6935 | Mask[Elt] = 16 - (ShiftAmt >> 3) + Elt; |
| 6936 | SDValue Shuf1 = DAG.getVectorShuffle(VT: MVT::v16i8, dl: DL, N1: Op0, N2: Op1, Mask); |
| 6937 | if ((ShiftAmt & 7) == 0) |
| 6938 | return DAG.getBitcast(VT: MVT::i128, V: Shuf1); |
| 6939 | SDValue Shuf2 = DAG.getVectorShuffle(VT: MVT::v16i8, dl: DL, N1: Op0, N2: Op0, Mask); |
| 6940 | SDValue Val = |
| 6941 | DAG.getNode(Opcode: SystemZISD::SHR_DOUBLE_BIT, DL, VT: MVT::v16i8, N1: Shuf2, N2: Shuf1, |
| 6942 | N3: DAG.getTargetConstant(Val: ShiftAmt & 7, DL, VT: MVT::i32)); |
| 6943 | return DAG.getBitcast(VT: MVT::i128, V: Val); |
| 6944 | } |
| 6945 | } |
| 6946 | |
| 6947 | return SDValue(); |
| 6948 | } |
| 6949 | |
| 6950 | static SDValue lowerAddrSpaceCast(SDValue Op, SelectionDAG &DAG) { |
| 6951 | SDLoc DL(Op); |
| 6952 | SDValue Src = Op.getOperand(i: 0); |
| 6953 | MVT DstVT = Op.getSimpleValueType(); |
| 6954 | |
| 6955 | AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Val: Op.getNode()); |
| 6956 | unsigned SrcAS = N->getSrcAddressSpace(); |
| 6957 | |
| 6958 | assert(SrcAS != N->getDestAddressSpace() && |
| 6959 | "addrspacecast must be between different address spaces" ); |
| 6960 | |
| 6961 | // addrspacecast [0 <- 1] : Assinging a ptr32 value to a 64-bit pointer. |
| 6962 | // addrspacecast [1 <- 0] : Assigining a 64-bit pointer to a ptr32 value. |
| 6963 | if (SrcAS == SYSTEMZAS::PTR32 && DstVT == MVT::i64) { |
| 6964 | Op = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: Src, |
| 6965 | N2: DAG.getConstant(Val: 0x7fffffff, DL, VT: MVT::i32)); |
| 6966 | Op = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: DstVT, Operand: Op); |
| 6967 | } else if (DstVT == MVT::i32) { |
| 6968 | Op = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: DstVT, Operand: Src); |
| 6969 | Op = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: Op, |
| 6970 | N2: DAG.getConstant(Val: 0x7fffffff, DL, VT: MVT::i32)); |
| 6971 | Op = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: DstVT, Operand: Op); |
| 6972 | } else { |
| 6973 | report_fatal_error(reason: "Bad address space in addrspacecast" ); |
| 6974 | } |
| 6975 | return Op; |
| 6976 | } |
| 6977 | |
| 6978 | SDValue SystemZTargetLowering::lowerFP_EXTEND(SDValue Op, |
| 6979 | SelectionDAG &DAG) const { |
| 6980 | SDValue In = Op.getOperand(i: Op->isStrictFPOpcode() ? 1 : 0); |
| 6981 | if (In.getSimpleValueType() != MVT::f16) |
| 6982 | return Op; // Legal |
| 6983 | return SDValue(); // Let legalizer emit the libcall. |
| 6984 | } |
| 6985 | |
| 6986 | SDValue SystemZTargetLowering::useLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, |
| 6987 | MVT VT, SDValue Arg, SDLoc DL, |
| 6988 | SDValue Chain, bool IsStrict) const { |
| 6989 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected request for libcall!" ); |
| 6990 | MakeLibCallOptions CallOptions; |
| 6991 | SDValue Result; |
| 6992 | std::tie(args&: Result, args&: Chain) = |
| 6993 | makeLibCall(DAG, LC, RetVT: VT, Ops: Arg, CallOptions, dl: DL, Chain); |
| 6994 | return IsStrict ? DAG.getMergeValues(Ops: {Result, Chain}, dl: DL) : Result; |
| 6995 | } |
| 6996 | |
| 6997 | SDValue SystemZTargetLowering::lower_FP_TO_INT(SDValue Op, |
| 6998 | SelectionDAG &DAG) const { |
| 6999 | bool IsSigned = (Op->getOpcode() == ISD::FP_TO_SINT || |
| 7000 | Op->getOpcode() == ISD::STRICT_FP_TO_SINT); |
| 7001 | bool IsStrict = Op->isStrictFPOpcode(); |
| 7002 | SDLoc DL(Op); |
| 7003 | MVT VT = Op.getSimpleValueType(); |
| 7004 | SDValue InOp = Op.getOperand(i: IsStrict ? 1 : 0); |
| 7005 | SDValue Chain = IsStrict ? Op.getOperand(i: 0) : DAG.getEntryNode(); |
| 7006 | EVT InVT = InOp.getValueType(); |
| 7007 | |
| 7008 | // FP to unsigned is not directly supported on z10. Promoting an i32 |
| 7009 | // result to (signed) i64 doesn't generate an inexact condition (fp |
| 7010 | // exception) for values that are outside the i32 range but in the i64 |
| 7011 | // range, so use the default expansion. |
| 7012 | if (!Subtarget.hasFPExtension() && !IsSigned) |
| 7013 | // Expand i32/i64. F16 values will be recognized to fit and extended. |
| 7014 | return SDValue(); |
| 7015 | |
| 7016 | // Conversion from f16 is done via f32. |
| 7017 | if (InOp.getSimpleValueType() == MVT::f16) { |
| 7018 | SmallVector<SDValue, 2> Results; |
| 7019 | LowerOperationWrapper(N: Op.getNode(), Results, DAG); |
| 7020 | return DAG.getMergeValues(Ops: Results, dl: DL); |
| 7021 | } |
| 7022 | |
| 7023 | if (VT == MVT::i128) { |
| 7024 | RTLIB::Libcall LC = |
| 7025 | IsSigned ? RTLIB::getFPTOSINT(OpVT: InVT, RetVT: VT) : RTLIB::getFPTOUINT(OpVT: InVT, RetVT: VT); |
| 7026 | return useLibCall(DAG, LC, VT, Arg: InOp, DL, Chain, IsStrict); |
| 7027 | } |
| 7028 | |
| 7029 | return Op; // Legal |
| 7030 | } |
| 7031 | |
| 7032 | SDValue SystemZTargetLowering::lower_INT_TO_FP(SDValue Op, |
| 7033 | SelectionDAG &DAG) const { |
| 7034 | bool IsSigned = (Op->getOpcode() == ISD::SINT_TO_FP || |
| 7035 | Op->getOpcode() == ISD::STRICT_SINT_TO_FP); |
| 7036 | bool IsStrict = Op->isStrictFPOpcode(); |
| 7037 | SDLoc DL(Op); |
| 7038 | MVT VT = Op.getSimpleValueType(); |
| 7039 | SDValue InOp = Op.getOperand(i: IsStrict ? 1 : 0); |
| 7040 | SDValue Chain = IsStrict ? Op.getOperand(i: 0) : DAG.getEntryNode(); |
| 7041 | EVT InVT = InOp.getValueType(); |
| 7042 | |
| 7043 | // Conversion to f16 is done via f32. |
| 7044 | if (VT == MVT::f16) { |
| 7045 | SmallVector<SDValue, 2> Results; |
| 7046 | LowerOperationWrapper(N: Op.getNode(), Results, DAG); |
| 7047 | return DAG.getMergeValues(Ops: Results, dl: DL); |
| 7048 | } |
| 7049 | |
| 7050 | // Unsigned to fp is not directly supported on z10. |
| 7051 | if (!Subtarget.hasFPExtension() && !IsSigned) |
| 7052 | return SDValue(); // Expand i64. |
| 7053 | |
| 7054 | if (InVT == MVT::i128) { |
| 7055 | RTLIB::Libcall LC = |
| 7056 | IsSigned ? RTLIB::getSINTTOFP(OpVT: InVT, RetVT: VT) : RTLIB::getUINTTOFP(OpVT: InVT, RetVT: VT); |
| 7057 | return useLibCall(DAG, LC, VT, Arg: InOp, DL, Chain, IsStrict); |
| 7058 | } |
| 7059 | |
| 7060 | return Op; // Legal |
| 7061 | } |
| 7062 | |
| 7063 | // Lower an f16 LOAD in case of no vector support. |
| 7064 | SDValue SystemZTargetLowering::lowerLoadF16(SDValue Op, |
| 7065 | SelectionDAG &DAG) const { |
| 7066 | EVT RegVT = Op.getValueType(); |
| 7067 | assert(RegVT == MVT::f16 && "Expected to lower an f16 load." ); |
| 7068 | (void)RegVT; |
| 7069 | |
| 7070 | // Load as integer. |
| 7071 | SDLoc DL(Op); |
| 7072 | SDValue NewLd; |
| 7073 | if (auto *AtomicLd = dyn_cast<AtomicSDNode>(Val: Op.getNode())) { |
| 7074 | assert(EVT(RegVT) == AtomicLd->getMemoryVT() && "Unhandled f16 load" ); |
| 7075 | NewLd = DAG.getAtomicLoad(ExtType: ISD::EXTLOAD, dl: DL, MemVT: MVT::i16, VT: MVT::i64, |
| 7076 | Chain: AtomicLd->getChain(), Ptr: AtomicLd->getBasePtr(), |
| 7077 | MMO: AtomicLd->getMemOperand()); |
| 7078 | } else { |
| 7079 | LoadSDNode *Ld = cast<LoadSDNode>(Val: Op.getNode()); |
| 7080 | assert(EVT(RegVT) == Ld->getMemoryVT() && "Unhandled f16 load" ); |
| 7081 | NewLd = DAG.getExtLoad(ExtType: ISD::EXTLOAD, dl: DL, VT: MVT::i64, Chain: Ld->getChain(), |
| 7082 | Ptr: Ld->getBasePtr(), PtrInfo: Ld->getPointerInfo(), MemVT: MVT::i16, |
| 7083 | Alignment: Ld->getBaseAlign(), MMOFlags: Ld->getMemOperand()->getFlags()); |
| 7084 | } |
| 7085 | SDValue F16Val = convertToF16(Op: NewLd, DAG); |
| 7086 | return DAG.getMergeValues(Ops: {F16Val, NewLd.getValue(R: 1)}, dl: DL); |
| 7087 | } |
| 7088 | |
| 7089 | // Lower an f16 STORE in case of no vector support. |
| 7090 | SDValue SystemZTargetLowering::lowerStoreF16(SDValue Op, |
| 7091 | SelectionDAG &DAG) const { |
| 7092 | SDLoc DL(Op); |
| 7093 | SDValue Shft = convertFromF16(Op: Op->getOperand(Num: 1), DL, DAG); |
| 7094 | |
| 7095 | if (auto *AtomicSt = dyn_cast<AtomicSDNode>(Val: Op.getNode())) |
| 7096 | return DAG.getAtomic(Opcode: ISD::ATOMIC_STORE, dl: DL, MemVT: MVT::i16, Chain: AtomicSt->getChain(), |
| 7097 | Ptr: Shft, Val: AtomicSt->getBasePtr(), |
| 7098 | MMO: AtomicSt->getMemOperand()); |
| 7099 | |
| 7100 | StoreSDNode *St = cast<StoreSDNode>(Val: Op.getNode()); |
| 7101 | return DAG.getTruncStore(Chain: St->getChain(), dl: DL, Val: Shft, Ptr: St->getBasePtr(), SVT: MVT::i16, |
| 7102 | MMO: St->getMemOperand()); |
| 7103 | } |
| 7104 | |
| 7105 | SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, |
| 7106 | SelectionDAG &DAG) const { |
| 7107 | SDLoc DL(Op); |
| 7108 | MVT ResultVT = Op.getSimpleValueType(); |
| 7109 | SDValue Arg = Op.getOperand(i: 0); |
| 7110 | unsigned Check = Op.getConstantOperandVal(i: 1); |
| 7111 | |
| 7112 | unsigned TDCMask = 0; |
| 7113 | if (Check & fcSNan) |
| 7114 | TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; |
| 7115 | if (Check & fcQNan) |
| 7116 | TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; |
| 7117 | if (Check & fcPosInf) |
| 7118 | TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; |
| 7119 | if (Check & fcNegInf) |
| 7120 | TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; |
| 7121 | if (Check & fcPosNormal) |
| 7122 | TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; |
| 7123 | if (Check & fcNegNormal) |
| 7124 | TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; |
| 7125 | if (Check & fcPosSubnormal) |
| 7126 | TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; |
| 7127 | if (Check & fcNegSubnormal) |
| 7128 | TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; |
| 7129 | if (Check & fcPosZero) |
| 7130 | TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; |
| 7131 | if (Check & fcNegZero) |
| 7132 | TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; |
| 7133 | SDValue TDCMaskV = DAG.getConstant(Val: TDCMask, DL, VT: MVT::i64); |
| 7134 | |
| 7135 | if (Arg.getSimpleValueType() == MVT::f16) |
| 7136 | Arg = DAG.getFPExtendOrRound(Op: Arg, DL: SDLoc(Arg), VT: MVT::f32); |
| 7137 | SDValue Intr = DAG.getNode(Opcode: SystemZISD::TDC, DL, VT: ResultVT, N1: Arg, N2: TDCMaskV); |
| 7138 | return getCCResult(DAG, CCReg: Intr); |
| 7139 | } |
| 7140 | |
| 7141 | SDValue SystemZTargetLowering::lowerREADCYCLECOUNTER(SDValue Op, |
| 7142 | SelectionDAG &DAG) const { |
| 7143 | SDLoc DL(Op); |
| 7144 | SDValue Chain = Op.getOperand(i: 0); |
| 7145 | |
| 7146 | // STCKF only supports a memory operand, so we have to use a temporary. |
| 7147 | SDValue StackPtr = DAG.CreateStackTemporary(VT: MVT::i64); |
| 7148 | int SPFI = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
| 7149 | MachinePointerInfo MPI = |
| 7150 | MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI: SPFI); |
| 7151 | |
| 7152 | // Use STCFK to store the TOD clock into the temporary. |
| 7153 | SDValue StoreOps[] = {Chain, StackPtr}; |
| 7154 | Chain = DAG.getMemIntrinsicNode( |
| 7155 | Opcode: SystemZISD::STCKF, dl: DL, VTList: DAG.getVTList(VT: MVT::Other), Ops: StoreOps, MemVT: MVT::i64, |
| 7156 | PtrInfo: MPI, Alignment: MaybeAlign(), Flags: MachineMemOperand::MOStore); |
| 7157 | |
| 7158 | // And read it back from there. |
| 7159 | return DAG.getLoad(VT: MVT::i64, dl: DL, Chain, Ptr: StackPtr, PtrInfo: MPI); |
| 7160 | } |
| 7161 | |
| 7162 | SDValue SystemZTargetLowering::LowerOperation(SDValue Op, |
| 7163 | SelectionDAG &DAG) const { |
| 7164 | switch (Op.getOpcode()) { |
| 7165 | case ISD::FRAMEADDR: |
| 7166 | return lowerFRAMEADDR(Op, DAG); |
| 7167 | case ISD::RETURNADDR: |
| 7168 | return lowerRETURNADDR(Op, DAG); |
| 7169 | case ISD::BR_CC: |
| 7170 | return lowerBR_CC(Op, DAG); |
| 7171 | case ISD::SELECT_CC: |
| 7172 | return lowerSELECT_CC(Op, DAG); |
| 7173 | case ISD::SETCC: |
| 7174 | return lowerSETCC(Op, DAG); |
| 7175 | case ISD::STRICT_FSETCC: |
| 7176 | return lowerSTRICT_FSETCC(Op, DAG, IsSignaling: false); |
| 7177 | case ISD::STRICT_FSETCCS: |
| 7178 | return lowerSTRICT_FSETCC(Op, DAG, IsSignaling: true); |
| 7179 | case ISD::GlobalAddress: |
| 7180 | return lowerGlobalAddress(Node: cast<GlobalAddressSDNode>(Val&: Op), DAG); |
| 7181 | case ISD::GlobalTLSAddress: |
| 7182 | return lowerGlobalTLSAddress(Node: cast<GlobalAddressSDNode>(Val&: Op), DAG); |
| 7183 | case ISD::BlockAddress: |
| 7184 | return lowerBlockAddress(Node: cast<BlockAddressSDNode>(Val&: Op), DAG); |
| 7185 | case ISD::JumpTable: |
| 7186 | return lowerJumpTable(JT: cast<JumpTableSDNode>(Val&: Op), DAG); |
| 7187 | case ISD::ConstantPool: |
| 7188 | return lowerConstantPool(CP: cast<ConstantPoolSDNode>(Val&: Op), DAG); |
| 7189 | case ISD::BITCAST: |
| 7190 | return lowerBITCAST(Op, DAG); |
| 7191 | case ISD::VASTART: |
| 7192 | return lowerVASTART(Op, DAG); |
| 7193 | case ISD::VACOPY: |
| 7194 | return lowerVACOPY(Op, DAG); |
| 7195 | case ISD::DYNAMIC_STACKALLOC: |
| 7196 | return lowerDYNAMIC_STACKALLOC(Op, DAG); |
| 7197 | case ISD::GET_DYNAMIC_AREA_OFFSET: |
| 7198 | return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); |
| 7199 | case ISD::MULHS: |
| 7200 | return lowerMULH(Op, DAG, Opcode: SystemZISD::SMUL_LOHI); |
| 7201 | case ISD::MULHU: |
| 7202 | return lowerMULH(Op, DAG, Opcode: SystemZISD::UMUL_LOHI); |
| 7203 | case ISD::SMUL_LOHI: |
| 7204 | return lowerSMUL_LOHI(Op, DAG); |
| 7205 | case ISD::UMUL_LOHI: |
| 7206 | return lowerUMUL_LOHI(Op, DAG); |
| 7207 | case ISD::SDIVREM: |
| 7208 | return lowerSDIVREM(Op, DAG); |
| 7209 | case ISD::UDIVREM: |
| 7210 | return lowerUDIVREM(Op, DAG); |
| 7211 | case ISD::SADDO: |
| 7212 | case ISD::SSUBO: |
| 7213 | case ISD::UADDO: |
| 7214 | case ISD::USUBO: |
| 7215 | return lowerXALUO(Op, DAG); |
| 7216 | case ISD::UADDO_CARRY: |
| 7217 | case ISD::USUBO_CARRY: |
| 7218 | return lowerUADDSUBO_CARRY(Op, DAG); |
| 7219 | case ISD::OR: |
| 7220 | return lowerOR(Op, DAG); |
| 7221 | case ISD::CTPOP: |
| 7222 | return lowerCTPOP(Op, DAG); |
| 7223 | case ISD::VECREDUCE_ADD: |
| 7224 | return lowerVECREDUCE_ADD(Op, DAG); |
| 7225 | case ISD::ATOMIC_FENCE: |
| 7226 | return lowerATOMIC_FENCE(Op, DAG); |
| 7227 | case ISD::ATOMIC_SWAP: |
| 7228 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_SWAPW); |
| 7229 | case ISD::ATOMIC_STORE: |
| 7230 | return lowerATOMIC_STORE(Op, DAG); |
| 7231 | case ISD::ATOMIC_LOAD: |
| 7232 | return lowerATOMIC_LOAD(Op, DAG); |
| 7233 | case ISD::ATOMIC_LOAD_ADD: |
| 7234 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_ADD); |
| 7235 | case ISD::ATOMIC_LOAD_SUB: |
| 7236 | return lowerATOMIC_LOAD_SUB(Op, DAG); |
| 7237 | case ISD::ATOMIC_LOAD_AND: |
| 7238 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_AND); |
| 7239 | case ISD::ATOMIC_LOAD_OR: |
| 7240 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_OR); |
| 7241 | case ISD::ATOMIC_LOAD_XOR: |
| 7242 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_XOR); |
| 7243 | case ISD::ATOMIC_LOAD_NAND: |
| 7244 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_NAND); |
| 7245 | case ISD::ATOMIC_LOAD_MIN: |
| 7246 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_MIN); |
| 7247 | case ISD::ATOMIC_LOAD_MAX: |
| 7248 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_MAX); |
| 7249 | case ISD::ATOMIC_LOAD_UMIN: |
| 7250 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_UMIN); |
| 7251 | case ISD::ATOMIC_LOAD_UMAX: |
| 7252 | return lowerATOMIC_LOAD_OP(Op, DAG, Opcode: SystemZISD::ATOMIC_LOADW_UMAX); |
| 7253 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| 7254 | return lowerATOMIC_CMP_SWAP(Op, DAG); |
| 7255 | case ISD::STACKSAVE: |
| 7256 | return lowerSTACKSAVE(Op, DAG); |
| 7257 | case ISD::STACKRESTORE: |
| 7258 | return lowerSTACKRESTORE(Op, DAG); |
| 7259 | case ISD::PREFETCH: |
| 7260 | return lowerPREFETCH(Op, DAG); |
| 7261 | case ISD::INTRINSIC_W_CHAIN: |
| 7262 | return lowerINTRINSIC_W_CHAIN(Op, DAG); |
| 7263 | case ISD::INTRINSIC_WO_CHAIN: |
| 7264 | return lowerINTRINSIC_WO_CHAIN(Op, DAG); |
| 7265 | case ISD::BUILD_VECTOR: |
| 7266 | return lowerBUILD_VECTOR(Op, DAG); |
| 7267 | case ISD::VECTOR_SHUFFLE: |
| 7268 | return lowerVECTOR_SHUFFLE(Op, DAG); |
| 7269 | case ISD::SCALAR_TO_VECTOR: |
| 7270 | return lowerSCALAR_TO_VECTOR(Op, DAG); |
| 7271 | case ISD::INSERT_VECTOR_ELT: |
| 7272 | return lowerINSERT_VECTOR_ELT(Op, DAG); |
| 7273 | case ISD::EXTRACT_VECTOR_ELT: |
| 7274 | return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 7275 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 7276 | return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); |
| 7277 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
| 7278 | return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); |
| 7279 | case ISD::SHL: |
| 7280 | return lowerShift(Op, DAG, ByScalar: SystemZISD::VSHL_BY_SCALAR); |
| 7281 | case ISD::SRL: |
| 7282 | return lowerShift(Op, DAG, ByScalar: SystemZISD::VSRL_BY_SCALAR); |
| 7283 | case ISD::SRA: |
| 7284 | return lowerShift(Op, DAG, ByScalar: SystemZISD::VSRA_BY_SCALAR); |
| 7285 | case ISD::ADDRSPACECAST: |
| 7286 | return lowerAddrSpaceCast(Op, DAG); |
| 7287 | case ISD::ROTL: |
| 7288 | return lowerShift(Op, DAG, ByScalar: SystemZISD::VROTL_BY_SCALAR); |
| 7289 | case ISD::FSHL: |
| 7290 | return lowerFSHL(Op, DAG); |
| 7291 | case ISD::FSHR: |
| 7292 | return lowerFSHR(Op, DAG); |
| 7293 | case ISD::FP_EXTEND: |
| 7294 | case ISD::STRICT_FP_EXTEND: |
| 7295 | return lowerFP_EXTEND(Op, DAG); |
| 7296 | case ISD::FP_TO_UINT: |
| 7297 | case ISD::FP_TO_SINT: |
| 7298 | case ISD::STRICT_FP_TO_UINT: |
| 7299 | case ISD::STRICT_FP_TO_SINT: |
| 7300 | return lower_FP_TO_INT(Op, DAG); |
| 7301 | case ISD::UINT_TO_FP: |
| 7302 | case ISD::SINT_TO_FP: |
| 7303 | case ISD::STRICT_UINT_TO_FP: |
| 7304 | case ISD::STRICT_SINT_TO_FP: |
| 7305 | return lower_INT_TO_FP(Op, DAG); |
| 7306 | case ISD::LOAD: |
| 7307 | return lowerLoadF16(Op, DAG); |
| 7308 | case ISD::STORE: |
| 7309 | return lowerStoreF16(Op, DAG); |
| 7310 | case ISD::IS_FPCLASS: |
| 7311 | return lowerIS_FPCLASS(Op, DAG); |
| 7312 | case ISD::GET_ROUNDING: |
| 7313 | return lowerGET_ROUNDING(Op, DAG); |
| 7314 | case ISD::READCYCLECOUNTER: |
| 7315 | return lowerREADCYCLECOUNTER(Op, DAG); |
| 7316 | case ISD::EH_SJLJ_SETJMP: |
| 7317 | case ISD::EH_SJLJ_LONGJMP: |
| 7318 | // These operations are legal on our platform, but we cannot actually |
| 7319 | // set the operation action to Legal as common code would treat this |
| 7320 | // as equivalent to Expand. Instead, we keep the operation action to |
| 7321 | // Custom and just leave them unchanged here. |
| 7322 | return Op; |
| 7323 | |
| 7324 | default: |
| 7325 | llvm_unreachable("Unexpected node to lower" ); |
| 7326 | } |
| 7327 | } |
| 7328 | |
| 7329 | static SDValue expandBitCastI128ToF128(SelectionDAG &DAG, SDValue Src, |
| 7330 | const SDLoc &SL) { |
| 7331 | // If i128 is legal, just use a normal bitcast. |
| 7332 | if (DAG.getTargetLoweringInfo().isTypeLegal(VT: MVT::i128)) |
| 7333 | return DAG.getBitcast(VT: MVT::f128, V: Src); |
| 7334 | |
| 7335 | // Otherwise, f128 must live in FP128, so do a partwise move. |
| 7336 | assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) == |
| 7337 | &SystemZ::FP128BitRegClass); |
| 7338 | |
| 7339 | SDValue Hi, Lo; |
| 7340 | std::tie(args&: Lo, args&: Hi) = DAG.SplitScalar(N: Src, DL: SL, LoVT: MVT::i64, HiVT: MVT::i64); |
| 7341 | |
| 7342 | Hi = DAG.getBitcast(VT: MVT::f64, V: Hi); |
| 7343 | Lo = DAG.getBitcast(VT: MVT::f64, V: Lo); |
| 7344 | |
| 7345 | SDNode *Pair = DAG.getMachineNode( |
| 7346 | Opcode: SystemZ::REG_SEQUENCE, dl: SL, VT: MVT::f128, |
| 7347 | Ops: {DAG.getTargetConstant(Val: SystemZ::FP128BitRegClassID, DL: SL, VT: MVT::i32), Lo, |
| 7348 | DAG.getTargetConstant(Val: SystemZ::subreg_l64, DL: SL, VT: MVT::i32), Hi, |
| 7349 | DAG.getTargetConstant(Val: SystemZ::subreg_h64, DL: SL, VT: MVT::i32)}); |
| 7350 | return SDValue(Pair, 0); |
| 7351 | } |
| 7352 | |
| 7353 | static SDValue expandBitCastF128ToI128(SelectionDAG &DAG, SDValue Src, |
| 7354 | const SDLoc &SL) { |
| 7355 | // If i128 is legal, just use a normal bitcast. |
| 7356 | if (DAG.getTargetLoweringInfo().isTypeLegal(VT: MVT::i128)) |
| 7357 | return DAG.getBitcast(VT: MVT::i128, V: Src); |
| 7358 | |
| 7359 | // Otherwise, f128 must live in FP128, so do a partwise move. |
| 7360 | assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) == |
| 7361 | &SystemZ::FP128BitRegClass); |
| 7362 | |
| 7363 | SDValue LoFP = |
| 7364 | DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_l64, DL: SL, VT: MVT::f64, Operand: Src); |
| 7365 | SDValue HiFP = |
| 7366 | DAG.getTargetExtractSubreg(SRIdx: SystemZ::subreg_h64, DL: SL, VT: MVT::f64, Operand: Src); |
| 7367 | SDValue Lo = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: LoFP); |
| 7368 | SDValue Hi = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: HiFP); |
| 7369 | |
| 7370 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: SL, VT: MVT::i128, N1: Lo, N2: Hi); |
| 7371 | } |
| 7372 | |
| 7373 | // Lower operations with invalid operand or result types. |
| 7374 | void |
| 7375 | SystemZTargetLowering::LowerOperationWrapper(SDNode *N, |
| 7376 | SmallVectorImpl<SDValue> &Results, |
| 7377 | SelectionDAG &DAG) const { |
| 7378 | switch (N->getOpcode()) { |
| 7379 | case ISD::ATOMIC_LOAD: { |
| 7380 | SDLoc DL(N); |
| 7381 | SDVTList Tys = DAG.getVTList(VT1: MVT::Untyped, VT2: MVT::Other); |
| 7382 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
| 7383 | MachineMemOperand *MMO = cast<AtomicSDNode>(Val: N)->getMemOperand(); |
| 7384 | SDValue Res = DAG.getMemIntrinsicNode(Opcode: SystemZISD::ATOMIC_LOAD_128, |
| 7385 | dl: DL, VTList: Tys, Ops, MemVT: MVT::i128, MMO); |
| 7386 | |
| 7387 | SDValue Lowered = lowerGR128ToI128(DAG, In: Res); |
| 7388 | if (N->getValueType(ResNo: 0) == MVT::f128) |
| 7389 | Lowered = expandBitCastI128ToF128(DAG, Src: Lowered, SL: DL); |
| 7390 | Results.push_back(Elt: Lowered); |
| 7391 | Results.push_back(Elt: Res.getValue(R: 1)); |
| 7392 | break; |
| 7393 | } |
| 7394 | case ISD::ATOMIC_STORE: { |
| 7395 | SDLoc DL(N); |
| 7396 | SDVTList Tys = DAG.getVTList(VT: MVT::Other); |
| 7397 | SDValue Val = N->getOperand(Num: 1); |
| 7398 | if (Val.getValueType() == MVT::f128) |
| 7399 | Val = expandBitCastF128ToI128(DAG, Src: Val, SL: DL); |
| 7400 | Val = lowerI128ToGR128(DAG, In: Val); |
| 7401 | |
| 7402 | SDValue Ops[] = {N->getOperand(Num: 0), Val, N->getOperand(Num: 2)}; |
| 7403 | MachineMemOperand *MMO = cast<AtomicSDNode>(Val: N)->getMemOperand(); |
| 7404 | SDValue Res = DAG.getMemIntrinsicNode(Opcode: SystemZISD::ATOMIC_STORE_128, |
| 7405 | dl: DL, VTList: Tys, Ops, MemVT: MVT::i128, MMO); |
| 7406 | // We have to enforce sequential consistency by performing a |
| 7407 | // serialization operation after the store. |
| 7408 | if (cast<AtomicSDNode>(Val: N)->getSuccessOrdering() == |
| 7409 | AtomicOrdering::SequentiallyConsistent) |
| 7410 | Res = SDValue(DAG.getMachineNode(Opcode: SystemZ::Serialize, dl: DL, |
| 7411 | VT: MVT::Other, Op1: Res), 0); |
| 7412 | Results.push_back(Elt: Res); |
| 7413 | break; |
| 7414 | } |
| 7415 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { |
| 7416 | SDLoc DL(N); |
| 7417 | SDVTList Tys = DAG.getVTList(VT1: MVT::Untyped, VT2: MVT::i32, VT3: MVT::Other); |
| 7418 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), |
| 7419 | lowerI128ToGR128(DAG, In: N->getOperand(Num: 2)), |
| 7420 | lowerI128ToGR128(DAG, In: N->getOperand(Num: 3)) }; |
| 7421 | MachineMemOperand *MMO = cast<AtomicSDNode>(Val: N)->getMemOperand(); |
| 7422 | SDValue Res = DAG.getMemIntrinsicNode(Opcode: SystemZISD::ATOMIC_CMP_SWAP_128, |
| 7423 | dl: DL, VTList: Tys, Ops, MemVT: MVT::i128, MMO); |
| 7424 | SDValue Success = emitSETCC(DAG, DL, CCReg: Res.getValue(R: 1), |
| 7425 | CCValid: SystemZ::CCMASK_CS, CCMask: SystemZ::CCMASK_CS_EQ); |
| 7426 | Success = DAG.getZExtOrTrunc(Op: Success, DL, VT: N->getValueType(ResNo: 1)); |
| 7427 | Results.push_back(Elt: lowerGR128ToI128(DAG, In: Res)); |
| 7428 | Results.push_back(Elt: Success); |
| 7429 | Results.push_back(Elt: Res.getValue(R: 2)); |
| 7430 | break; |
| 7431 | } |
| 7432 | case ISD::BITCAST: { |
| 7433 | if (useSoftFloat()) |
| 7434 | return; |
| 7435 | SDLoc DL(N); |
| 7436 | SDValue Src = N->getOperand(Num: 0); |
| 7437 | EVT SrcVT = Src.getValueType(); |
| 7438 | EVT ResVT = N->getValueType(ResNo: 0); |
| 7439 | if (ResVT == MVT::i128 && SrcVT == MVT::f128) |
| 7440 | Results.push_back(Elt: expandBitCastF128ToI128(DAG, Src, SL: DL)); |
| 7441 | else if (SrcVT == MVT::i16 && ResVT == MVT::f16) { |
| 7442 | if (Subtarget.hasVector()) { |
| 7443 | SDValue In32 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i32, Operand: Src); |
| 7444 | Results.push_back(Elt: SDValue( |
| 7445 | DAG.getMachineNode(Opcode: SystemZ::LEFR_16, dl: DL, VT: MVT::f16, Op1: In32), 0)); |
| 7446 | } else { |
| 7447 | SDValue In64 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Src); |
| 7448 | Results.push_back(Elt: convertToF16(Op: In64, DAG)); |
| 7449 | } |
| 7450 | } else if (SrcVT == MVT::f16 && ResVT == MVT::i16) { |
| 7451 | SDValue = |
| 7452 | Subtarget.hasVector() |
| 7453 | ? SDValue(DAG.getMachineNode(Opcode: SystemZ::LFER_16, dl: DL, VT: MVT::i32, Op1: Src), |
| 7454 | 0) |
| 7455 | : convertFromF16(Op: Src, DL, DAG); |
| 7456 | Results.push_back(Elt: DAG.getZExtOrTrunc(Op: ExtractedVal, DL, VT: ResVT)); |
| 7457 | } |
| 7458 | break; |
| 7459 | } |
| 7460 | case ISD::UINT_TO_FP: |
| 7461 | case ISD::SINT_TO_FP: |
| 7462 | case ISD::STRICT_UINT_TO_FP: |
| 7463 | case ISD::STRICT_SINT_TO_FP: { |
| 7464 | if (useSoftFloat()) |
| 7465 | return; |
| 7466 | bool IsStrict = N->isStrictFPOpcode(); |
| 7467 | SDLoc DL(N); |
| 7468 | SDValue InOp = N->getOperand(Num: IsStrict ? 1 : 0); |
| 7469 | EVT ResVT = N->getValueType(ResNo: 0); |
| 7470 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : DAG.getEntryNode(); |
| 7471 | if (ResVT == MVT::f16) { |
| 7472 | if (!IsStrict) { |
| 7473 | SDValue OpF32 = DAG.getNode(Opcode: N->getOpcode(), DL, VT: MVT::f32, Operand: InOp); |
| 7474 | Results.push_back(Elt: DAG.getFPExtendOrRound(Op: OpF32, DL, VT: MVT::f16)); |
| 7475 | } else { |
| 7476 | SDValue OpF32 = |
| 7477 | DAG.getNode(Opcode: N->getOpcode(), DL, VTList: DAG.getVTList(VT1: MVT::f32, VT2: MVT::Other), |
| 7478 | Ops: {Chain, InOp}); |
| 7479 | SDValue F16Res; |
| 7480 | std::tie(args&: F16Res, args&: Chain) = DAG.getStrictFPExtendOrRound( |
| 7481 | Op: OpF32, Chain: OpF32.getValue(R: 1), DL, VT: MVT::f16); |
| 7482 | Results.push_back(Elt: F16Res); |
| 7483 | Results.push_back(Elt: Chain); |
| 7484 | } |
| 7485 | } |
| 7486 | break; |
| 7487 | } |
| 7488 | case ISD::FP_TO_UINT: |
| 7489 | case ISD::FP_TO_SINT: |
| 7490 | case ISD::STRICT_FP_TO_UINT: |
| 7491 | case ISD::STRICT_FP_TO_SINT: { |
| 7492 | if (useSoftFloat()) |
| 7493 | return; |
| 7494 | bool IsStrict = N->isStrictFPOpcode(); |
| 7495 | SDLoc DL(N); |
| 7496 | EVT ResVT = N->getValueType(ResNo: 0); |
| 7497 | SDValue InOp = N->getOperand(Num: IsStrict ? 1 : 0); |
| 7498 | EVT InVT = InOp->getValueType(ResNo: 0); |
| 7499 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : DAG.getEntryNode(); |
| 7500 | if (InVT == MVT::f16) { |
| 7501 | if (!IsStrict) { |
| 7502 | SDValue InF32 = DAG.getFPExtendOrRound(Op: InOp, DL, VT: MVT::f32); |
| 7503 | Results.push_back(Elt: DAG.getNode(Opcode: N->getOpcode(), DL, VT: ResVT, Operand: InF32)); |
| 7504 | } else { |
| 7505 | SDValue InF32; |
| 7506 | std::tie(args&: InF32, args&: Chain) = |
| 7507 | DAG.getStrictFPExtendOrRound(Op: InOp, Chain, DL, VT: MVT::f32); |
| 7508 | SDValue OpF32 = |
| 7509 | DAG.getNode(Opcode: N->getOpcode(), DL, VTList: DAG.getVTList(VT1: ResVT, VT2: MVT::Other), |
| 7510 | Ops: {Chain, InF32}); |
| 7511 | Results.push_back(Elt: OpF32); |
| 7512 | Results.push_back(Elt: OpF32.getValue(R: 1)); |
| 7513 | } |
| 7514 | } |
| 7515 | break; |
| 7516 | } |
| 7517 | default: |
| 7518 | llvm_unreachable("Unexpected node to lower" ); |
| 7519 | } |
| 7520 | } |
| 7521 | |
| 7522 | void |
| 7523 | SystemZTargetLowering::ReplaceNodeResults(SDNode *N, |
| 7524 | SmallVectorImpl<SDValue> &Results, |
| 7525 | SelectionDAG &DAG) const { |
| 7526 | return LowerOperationWrapper(N, Results, DAG); |
| 7527 | } |
| 7528 | |
| 7529 | // Return true if VT is a vector whose elements are a whole number of bytes |
| 7530 | // in width. Also check for presence of vector support. |
| 7531 | bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { |
| 7532 | if (!Subtarget.hasVector()) |
| 7533 | return false; |
| 7534 | |
| 7535 | return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); |
| 7536 | } |
| 7537 | |
| 7538 | // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT |
| 7539 | // producing a result of type ResVT. Op is a possibly bitcast version |
| 7540 | // of the input vector and Index is the index (based on type VecVT) that |
| 7541 | // should be extracted. Return the new extraction if a simplification |
| 7542 | // was possible or if Force is true. |
| 7543 | SDValue SystemZTargetLowering::(const SDLoc &DL, EVT ResVT, |
| 7544 | EVT VecVT, SDValue Op, |
| 7545 | unsigned Index, |
| 7546 | DAGCombinerInfo &DCI, |
| 7547 | bool Force) const { |
| 7548 | SelectionDAG &DAG = DCI.DAG; |
| 7549 | |
| 7550 | // The number of bytes being extracted. |
| 7551 | unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); |
| 7552 | |
| 7553 | for (;;) { |
| 7554 | unsigned Opcode = Op.getOpcode(); |
| 7555 | if (Opcode == ISD::BITCAST) |
| 7556 | // Look through bitcasts. |
| 7557 | Op = Op.getOperand(i: 0); |
| 7558 | else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && |
| 7559 | canTreatAsByteVector(VT: Op.getValueType())) { |
| 7560 | // Get a VPERM-like permute mask and see whether the bytes covered |
| 7561 | // by the extracted element are a contiguous sequence from one |
| 7562 | // source operand. |
| 7563 | SmallVector<int, SystemZ::VectorBytes> Bytes; |
| 7564 | if (!getVPermMask(ShuffleOp: Op, Bytes)) |
| 7565 | break; |
| 7566 | int First; |
| 7567 | if (!getShuffleInput(Bytes, Start: Index * BytesPerElement, |
| 7568 | BytesPerElement, Base&: First)) |
| 7569 | break; |
| 7570 | if (First < 0) |
| 7571 | return DAG.getUNDEF(VT: ResVT); |
| 7572 | // Make sure the contiguous sequence starts at a multiple of the |
| 7573 | // original element size. |
| 7574 | unsigned Byte = unsigned(First) % Bytes.size(); |
| 7575 | if (Byte % BytesPerElement != 0) |
| 7576 | break; |
| 7577 | // We can get the extracted value directly from an input. |
| 7578 | Index = Byte / BytesPerElement; |
| 7579 | Op = Op.getOperand(i: unsigned(First) / Bytes.size()); |
| 7580 | Force = true; |
| 7581 | } else if (Opcode == ISD::BUILD_VECTOR && |
| 7582 | canTreatAsByteVector(VT: Op.getValueType())) { |
| 7583 | // We can only optimize this case if the BUILD_VECTOR elements are |
| 7584 | // at least as wide as the extracted value. |
| 7585 | EVT OpVT = Op.getValueType(); |
| 7586 | unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); |
| 7587 | if (OpBytesPerElement < BytesPerElement) |
| 7588 | break; |
| 7589 | // Make sure that the least-significant bit of the extracted value |
| 7590 | // is the least significant bit of an input. |
| 7591 | unsigned End = (Index + 1) * BytesPerElement; |
| 7592 | if (End % OpBytesPerElement != 0) |
| 7593 | break; |
| 7594 | // We're extracting the low part of one operand of the BUILD_VECTOR. |
| 7595 | Op = Op.getOperand(i: End / OpBytesPerElement - 1); |
| 7596 | if (!Op.getValueType().isInteger()) { |
| 7597 | EVT VT = MVT::getIntegerVT(BitWidth: Op.getValueSizeInBits()); |
| 7598 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 7599 | DCI.AddToWorklist(N: Op.getNode()); |
| 7600 | } |
| 7601 | EVT VT = MVT::getIntegerVT(BitWidth: ResVT.getSizeInBits()); |
| 7602 | Op = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Op); |
| 7603 | if (VT != ResVT) { |
| 7604 | DCI.AddToWorklist(N: Op.getNode()); |
| 7605 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ResVT, Operand: Op); |
| 7606 | } |
| 7607 | return Op; |
| 7608 | } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| 7609 | Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || |
| 7610 | Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && |
| 7611 | canTreatAsByteVector(VT: Op.getValueType()) && |
| 7612 | canTreatAsByteVector(VT: Op.getOperand(i: 0).getValueType())) { |
| 7613 | // Make sure that only the unextended bits are significant. |
| 7614 | EVT ExtVT = Op.getValueType(); |
| 7615 | EVT OpVT = Op.getOperand(i: 0).getValueType(); |
| 7616 | unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); |
| 7617 | unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); |
| 7618 | unsigned Byte = Index * BytesPerElement; |
| 7619 | unsigned SubByte = Byte % ExtBytesPerElement; |
| 7620 | unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; |
| 7621 | if (SubByte < MinSubByte || |
| 7622 | SubByte + BytesPerElement > ExtBytesPerElement) |
| 7623 | break; |
| 7624 | // Get the byte offset of the unextended element |
| 7625 | Byte = Byte / ExtBytesPerElement * OpBytesPerElement; |
| 7626 | // ...then add the byte offset relative to that element. |
| 7627 | Byte += SubByte - MinSubByte; |
| 7628 | if (Byte % BytesPerElement != 0) |
| 7629 | break; |
| 7630 | Op = Op.getOperand(i: 0); |
| 7631 | Index = Byte / BytesPerElement; |
| 7632 | Force = true; |
| 7633 | } else |
| 7634 | break; |
| 7635 | } |
| 7636 | if (Force) { |
| 7637 | if (Op.getValueType() != VecVT) { |
| 7638 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: VecVT, Operand: Op); |
| 7639 | DCI.AddToWorklist(N: Op.getNode()); |
| 7640 | } |
| 7641 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: ResVT, N1: Op, |
| 7642 | N2: DAG.getConstant(Val: Index, DL, VT: MVT::i32)); |
| 7643 | } |
| 7644 | return SDValue(); |
| 7645 | } |
| 7646 | |
| 7647 | // Optimize vector operations in scalar value Op on the basis that Op |
| 7648 | // is truncated to TruncVT. |
| 7649 | SDValue SystemZTargetLowering::( |
| 7650 | const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { |
| 7651 | // If we have (trunc (extract_vector_elt X, Y)), try to turn it into |
| 7652 | // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements |
| 7653 | // of type TruncVT. |
| 7654 | if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 7655 | TruncVT.getSizeInBits() % 8 == 0) { |
| 7656 | SDValue Vec = Op.getOperand(i: 0); |
| 7657 | EVT VecVT = Vec.getValueType(); |
| 7658 | if (canTreatAsByteVector(VT: VecVT)) { |
| 7659 | if (auto *IndexN = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1))) { |
| 7660 | unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); |
| 7661 | unsigned TruncBytes = TruncVT.getStoreSize(); |
| 7662 | if (BytesPerElement % TruncBytes == 0) { |
| 7663 | // Calculate the value of Y' in the above description. We are |
| 7664 | // splitting the original elements into Scale equal-sized pieces |
| 7665 | // and for truncation purposes want the last (least-significant) |
| 7666 | // of these pieces for IndexN. This is easiest to do by calculating |
| 7667 | // the start index of the following element and then subtracting 1. |
| 7668 | unsigned Scale = BytesPerElement / TruncBytes; |
| 7669 | unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; |
| 7670 | |
| 7671 | // Defer the creation of the bitcast from X to combineExtract, |
| 7672 | // which might be able to optimize the extraction. |
| 7673 | VecVT = EVT::getVectorVT(Context&: *DCI.DAG.getContext(), |
| 7674 | VT: MVT::getIntegerVT(BitWidth: TruncBytes * 8), |
| 7675 | NumElements: VecVT.getStoreSize() / TruncBytes); |
| 7676 | EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); |
| 7677 | return combineExtract(DL, ResVT, VecVT, Op: Vec, Index: NewIndex, DCI, Force: true); |
| 7678 | } |
| 7679 | } |
| 7680 | } |
| 7681 | } |
| 7682 | return SDValue(); |
| 7683 | } |
| 7684 | |
| 7685 | SDValue SystemZTargetLowering::combineZERO_EXTEND( |
| 7686 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 7687 | // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') |
| 7688 | SelectionDAG &DAG = DCI.DAG; |
| 7689 | SDValue N0 = N->getOperand(Num: 0); |
| 7690 | EVT VT = N->getValueType(ResNo: 0); |
| 7691 | if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { |
| 7692 | auto *TrueOp = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 0)); |
| 7693 | auto *FalseOp = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 7694 | if (TrueOp && FalseOp) { |
| 7695 | SDLoc DL(N0); |
| 7696 | SDValue Ops[] = { DAG.getConstant(Val: TrueOp->getZExtValue(), DL, VT), |
| 7697 | DAG.getConstant(Val: FalseOp->getZExtValue(), DL, VT), |
| 7698 | N0.getOperand(i: 2), N0.getOperand(i: 3), N0.getOperand(i: 4) }; |
| 7699 | SDValue NewSelect = DAG.getNode(Opcode: SystemZISD::SELECT_CCMASK, DL, VT, Ops); |
| 7700 | // If N0 has multiple uses, change other uses as well. |
| 7701 | if (!N0.hasOneUse()) { |
| 7702 | SDValue TruncSelect = |
| 7703 | DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: N0.getValueType(), Operand: NewSelect); |
| 7704 | DCI.CombineTo(N: N0.getNode(), Res: TruncSelect); |
| 7705 | } |
| 7706 | return NewSelect; |
| 7707 | } |
| 7708 | } |
| 7709 | // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size |
| 7710 | // of the result is smaller than the size of X and all the truncated bits |
| 7711 | // of X are already zero. |
| 7712 | if (N0.getOpcode() == ISD::XOR && |
| 7713 | N0.hasOneUse() && N0.getOperand(i: 0).hasOneUse() && |
| 7714 | N0.getOperand(i: 0).getOpcode() == ISD::TRUNCATE && |
| 7715 | N0.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 7716 | SDValue X = N0.getOperand(i: 0).getOperand(i: 0); |
| 7717 | if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) { |
| 7718 | KnownBits Known = DAG.computeKnownBits(Op: X); |
| 7719 | APInt TruncatedBits = APInt::getBitsSet(numBits: X.getValueSizeInBits(), |
| 7720 | loBit: N0.getValueSizeInBits(), |
| 7721 | hiBit: VT.getSizeInBits()); |
| 7722 | if (TruncatedBits.isSubsetOf(RHS: Known.Zero)) { |
| 7723 | X = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SDLoc(X), VT, Operand: X); |
| 7724 | APInt Mask = N0.getConstantOperandAPInt(i: 1).zext(width: VT.getSizeInBits()); |
| 7725 | return DAG.getNode(Opcode: ISD::XOR, DL: SDLoc(N0), VT, |
| 7726 | N1: X, N2: DAG.getConstant(Val: Mask, DL: SDLoc(N0), VT)); |
| 7727 | } |
| 7728 | } |
| 7729 | } |
| 7730 | // Recognize patterns for VECTOR SUBTRACT COMPUTE BORROW INDICATION |
| 7731 | // and VECTOR ADD COMPUTE CARRY for i128: |
| 7732 | // (zext (setcc_uge X Y)) --> (VSCBI X Y) |
| 7733 | // (zext (setcc_ule Y X)) --> (VSCBI X Y) |
| 7734 | // (zext (setcc_ult (add X Y) X/Y) -> (VACC X Y) |
| 7735 | // (zext (setcc_ugt X/Y (add X Y)) -> (VACC X Y) |
| 7736 | // For vector types, these patterns are recognized in the .td file. |
| 7737 | if (N0.getOpcode() == ISD::SETCC && isTypeLegal(VT) && VT == MVT::i128 && |
| 7738 | N0.getOperand(i: 0).getValueType() == VT) { |
| 7739 | SDValue Op0 = N0.getOperand(i: 0); |
| 7740 | SDValue Op1 = N0.getOperand(i: 1); |
| 7741 | const ISD::CondCode CC = cast<CondCodeSDNode>(Val: N0.getOperand(i: 2))->get(); |
| 7742 | switch (CC) { |
| 7743 | case ISD::SETULE: |
| 7744 | std::swap(a&: Op0, b&: Op1); |
| 7745 | [[fallthrough]]; |
| 7746 | case ISD::SETUGE: |
| 7747 | return DAG.getNode(Opcode: SystemZISD::VSCBI, DL: SDLoc(N0), VT, N1: Op0, N2: Op1); |
| 7748 | case ISD::SETUGT: |
| 7749 | std::swap(a&: Op0, b&: Op1); |
| 7750 | [[fallthrough]]; |
| 7751 | case ISD::SETULT: |
| 7752 | if (Op0->hasOneUse() && Op0->getOpcode() == ISD::ADD && |
| 7753 | (Op0->getOperand(Num: 0) == Op1 || Op0->getOperand(Num: 1) == Op1)) |
| 7754 | return DAG.getNode(Opcode: SystemZISD::VACC, DL: SDLoc(N0), VT, N1: Op0->getOperand(Num: 0), |
| 7755 | N2: Op0->getOperand(Num: 1)); |
| 7756 | break; |
| 7757 | default: |
| 7758 | break; |
| 7759 | } |
| 7760 | } |
| 7761 | |
| 7762 | return SDValue(); |
| 7763 | } |
| 7764 | |
| 7765 | SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( |
| 7766 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 7767 | // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) |
| 7768 | // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) |
| 7769 | // into (select_cc LHS, RHS, -1, 0, COND) |
| 7770 | SelectionDAG &DAG = DCI.DAG; |
| 7771 | SDValue N0 = N->getOperand(Num: 0); |
| 7772 | EVT VT = N->getValueType(ResNo: 0); |
| 7773 | EVT EVT = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT(); |
| 7774 | if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) |
| 7775 | N0 = N0.getOperand(i: 0); |
| 7776 | if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { |
| 7777 | SDLoc DL(N0); |
| 7778 | SDValue Ops[] = { N0.getOperand(i: 0), N0.getOperand(i: 1), |
| 7779 | DAG.getAllOnesConstant(DL, VT), |
| 7780 | DAG.getConstant(Val: 0, DL, VT), N0.getOperand(i: 2) }; |
| 7781 | return DAG.getNode(Opcode: ISD::SELECT_CC, DL, VT, Ops); |
| 7782 | } |
| 7783 | return SDValue(); |
| 7784 | } |
| 7785 | |
| 7786 | SDValue SystemZTargetLowering::combineSIGN_EXTEND( |
| 7787 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 7788 | // Convert (sext (ashr (shl X, C1), C2)) to |
| 7789 | // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as |
| 7790 | // cheap as narrower ones. |
| 7791 | SelectionDAG &DAG = DCI.DAG; |
| 7792 | SDValue N0 = N->getOperand(Num: 0); |
| 7793 | EVT VT = N->getValueType(ResNo: 0); |
| 7794 | if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { |
| 7795 | auto *SraAmt = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 7796 | SDValue Inner = N0.getOperand(i: 0); |
| 7797 | if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { |
| 7798 | if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Val: Inner.getOperand(i: 1))) { |
| 7799 | unsigned = (VT.getSizeInBits() - N0.getValueSizeInBits()); |
| 7800 | unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; |
| 7801 | unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; |
| 7802 | EVT ShiftVT = N0.getOperand(i: 1).getValueType(); |
| 7803 | SDValue Ext = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(Inner), VT, |
| 7804 | Operand: Inner.getOperand(i: 0)); |
| 7805 | SDValue Shl = DAG.getNode(Opcode: ISD::SHL, DL: SDLoc(Inner), VT, N1: Ext, |
| 7806 | N2: DAG.getConstant(Val: NewShlAmt, DL: SDLoc(Inner), |
| 7807 | VT: ShiftVT)); |
| 7808 | return DAG.getNode(Opcode: ISD::SRA, DL: SDLoc(N0), VT, N1: Shl, |
| 7809 | N2: DAG.getConstant(Val: NewSraAmt, DL: SDLoc(N0), VT: ShiftVT)); |
| 7810 | } |
| 7811 | } |
| 7812 | } |
| 7813 | |
| 7814 | return SDValue(); |
| 7815 | } |
| 7816 | |
| 7817 | SDValue SystemZTargetLowering::combineMERGE( |
| 7818 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 7819 | SelectionDAG &DAG = DCI.DAG; |
| 7820 | unsigned Opcode = N->getOpcode(); |
| 7821 | SDValue Op0 = N->getOperand(Num: 0); |
| 7822 | SDValue Op1 = N->getOperand(Num: 1); |
| 7823 | if (Op0.getOpcode() == ISD::BITCAST) |
| 7824 | Op0 = Op0.getOperand(i: 0); |
| 7825 | if (ISD::isBuildVectorAllZeros(N: Op0.getNode())) { |
| 7826 | // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF |
| 7827 | // for v4f32. |
| 7828 | if (Op1 == N->getOperand(Num: 0)) |
| 7829 | return Op1; |
| 7830 | // (z_merge_? 0, X) -> (z_unpackl_? 0, X). |
| 7831 | EVT VT = Op1.getValueType(); |
| 7832 | unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); |
| 7833 | if (ElemBytes <= 4) { |
| 7834 | Opcode = (Opcode == SystemZISD::MERGE_HIGH ? |
| 7835 | SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); |
| 7836 | EVT InVT = VT.changeVectorElementTypeToInteger(); |
| 7837 | EVT OutVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: ElemBytes * 16), |
| 7838 | NumElements: SystemZ::VectorBytes / ElemBytes / 2); |
| 7839 | if (VT != InVT) { |
| 7840 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: InVT, Operand: Op1); |
| 7841 | DCI.AddToWorklist(N: Op1.getNode()); |
| 7842 | } |
| 7843 | SDValue Op = DAG.getNode(Opcode, DL: SDLoc(N), VT: OutVT, Operand: Op1); |
| 7844 | DCI.AddToWorklist(N: Op.getNode()); |
| 7845 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT, Operand: Op); |
| 7846 | } |
| 7847 | } |
| 7848 | return SDValue(); |
| 7849 | } |
| 7850 | |
| 7851 | static bool isI128MovedToParts(LoadSDNode *LD, SDNode *&LoPart, |
| 7852 | SDNode *&HiPart) { |
| 7853 | LoPart = HiPart = nullptr; |
| 7854 | |
| 7855 | // Scan through all users. |
| 7856 | for (SDUse &Use : LD->uses()) { |
| 7857 | // Skip the uses of the chain. |
| 7858 | if (Use.getResNo() != 0) |
| 7859 | continue; |
| 7860 | |
| 7861 | // Verify every user is a TRUNCATE to i64 of the low or high half. |
| 7862 | SDNode *User = Use.getUser(); |
| 7863 | bool IsLoPart = true; |
| 7864 | if (User->getOpcode() == ISD::SRL && |
| 7865 | User->getOperand(Num: 1).getOpcode() == ISD::Constant && |
| 7866 | User->getConstantOperandVal(Num: 1) == 64 && User->hasOneUse()) { |
| 7867 | User = *User->user_begin(); |
| 7868 | IsLoPart = false; |
| 7869 | } |
| 7870 | if (User->getOpcode() != ISD::TRUNCATE || User->getValueType(ResNo: 0) != MVT::i64) |
| 7871 | return false; |
| 7872 | |
| 7873 | if (IsLoPart) { |
| 7874 | if (LoPart) |
| 7875 | return false; |
| 7876 | LoPart = User; |
| 7877 | } else { |
| 7878 | if (HiPart) |
| 7879 | return false; |
| 7880 | HiPart = User; |
| 7881 | } |
| 7882 | } |
| 7883 | return true; |
| 7884 | } |
| 7885 | |
| 7886 | static bool isF128MovedToParts(LoadSDNode *LD, SDNode *&LoPart, |
| 7887 | SDNode *&HiPart) { |
| 7888 | LoPart = HiPart = nullptr; |
| 7889 | |
| 7890 | // Scan through all users. |
| 7891 | for (SDUse &Use : LD->uses()) { |
| 7892 | // Skip the uses of the chain. |
| 7893 | if (Use.getResNo() != 0) |
| 7894 | continue; |
| 7895 | |
| 7896 | // Verify every user is an EXTRACT_SUBREG of the low or high half. |
| 7897 | SDNode *User = Use.getUser(); |
| 7898 | if (!User->hasOneUse() || !User->isMachineOpcode() || |
| 7899 | User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) |
| 7900 | return false; |
| 7901 | |
| 7902 | switch (User->getConstantOperandVal(Num: 1)) { |
| 7903 | case SystemZ::subreg_l64: |
| 7904 | if (LoPart) |
| 7905 | return false; |
| 7906 | LoPart = User; |
| 7907 | break; |
| 7908 | case SystemZ::subreg_h64: |
| 7909 | if (HiPart) |
| 7910 | return false; |
| 7911 | HiPart = User; |
| 7912 | break; |
| 7913 | default: |
| 7914 | return false; |
| 7915 | } |
| 7916 | } |
| 7917 | return true; |
| 7918 | } |
| 7919 | |
| 7920 | SDValue SystemZTargetLowering::combineLOAD( |
| 7921 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 7922 | SelectionDAG &DAG = DCI.DAG; |
| 7923 | EVT LdVT = N->getValueType(ResNo: 0); |
| 7924 | if (auto *LN = dyn_cast<LoadSDNode>(Val: N)) { |
| 7925 | if (LN->getAddressSpace() == SYSTEMZAS::PTR32) { |
| 7926 | MVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 7927 | MVT LoadNodeVT = LN->getBasePtr().getSimpleValueType(); |
| 7928 | if (PtrVT != LoadNodeVT) { |
| 7929 | SDLoc DL(LN); |
| 7930 | SDValue AddrSpaceCast = DAG.getAddrSpaceCast( |
| 7931 | dl: DL, VT: PtrVT, Ptr: LN->getBasePtr(), SrcAS: SYSTEMZAS::PTR32, DestAS: 0); |
| 7932 | return DAG.getExtLoad(ExtType: LN->getExtensionType(), dl: DL, VT: LN->getValueType(ResNo: 0), |
| 7933 | Chain: LN->getChain(), Ptr: AddrSpaceCast, MemVT: LN->getMemoryVT(), |
| 7934 | MMO: LN->getMemOperand()); |
| 7935 | } |
| 7936 | } |
| 7937 | } |
| 7938 | SDLoc DL(N); |
| 7939 | |
| 7940 | // Replace a 128-bit load that is used solely to move its value into GPRs |
| 7941 | // by separate loads of both halves. |
| 7942 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 7943 | if (LD->isSimple() && ISD::isNormalLoad(N: LD)) { |
| 7944 | SDNode *LoPart, *HiPart; |
| 7945 | if ((LdVT == MVT::i128 && isI128MovedToParts(LD, LoPart, HiPart)) || |
| 7946 | (LdVT == MVT::f128 && isF128MovedToParts(LD, LoPart, HiPart))) { |
| 7947 | // Rewrite each extraction as an independent load. |
| 7948 | SmallVector<SDValue, 2> ArgChains; |
| 7949 | if (HiPart) { |
| 7950 | SDValue EltLoad = DAG.getLoad( |
| 7951 | VT: HiPart->getValueType(ResNo: 0), dl: DL, Chain: LD->getChain(), Ptr: LD->getBasePtr(), |
| 7952 | PtrInfo: LD->getPointerInfo(), Alignment: LD->getBaseAlign(), |
| 7953 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 7954 | |
| 7955 | DCI.CombineTo(N: HiPart, Res: EltLoad, AddTo: true); |
| 7956 | ArgChains.push_back(Elt: EltLoad.getValue(R: 1)); |
| 7957 | } |
| 7958 | if (LoPart) { |
| 7959 | SDValue EltLoad = DAG.getLoad( |
| 7960 | VT: LoPart->getValueType(ResNo: 0), dl: DL, Chain: LD->getChain(), |
| 7961 | Ptr: DAG.getObjectPtrOffset(SL: DL, Ptr: LD->getBasePtr(), Offset: TypeSize::getFixed(ExactSize: 8)), |
| 7962 | PtrInfo: LD->getPointerInfo().getWithOffset(O: 8), Alignment: LD->getBaseAlign(), |
| 7963 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 7964 | |
| 7965 | DCI.CombineTo(N: LoPart, Res: EltLoad, AddTo: true); |
| 7966 | ArgChains.push_back(Elt: EltLoad.getValue(R: 1)); |
| 7967 | } |
| 7968 | |
| 7969 | // Collect all chains via TokenFactor. |
| 7970 | SDValue Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: ArgChains); |
| 7971 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(N, 1), To: Chain); |
| 7972 | DCI.AddToWorklist(N: Chain.getNode()); |
| 7973 | return SDValue(N, 0); |
| 7974 | } |
| 7975 | } |
| 7976 | |
| 7977 | if (LdVT.isVector() || LdVT.isInteger()) |
| 7978 | return SDValue(); |
| 7979 | // Transform a scalar load that is REPLICATEd as well as having other |
| 7980 | // use(s) to the form where the other use(s) use the first element of the |
| 7981 | // REPLICATE instead of the load. Otherwise instruction selection will not |
| 7982 | // produce a VLREP. Avoid extracting to a GPR, so only do this for floating |
| 7983 | // point loads. |
| 7984 | |
| 7985 | SDValue Replicate; |
| 7986 | SmallVector<SDNode*, 8> OtherUses; |
| 7987 | for (SDUse &Use : N->uses()) { |
| 7988 | if (Use.getUser()->getOpcode() == SystemZISD::REPLICATE) { |
| 7989 | if (Replicate) |
| 7990 | return SDValue(); // Should never happen |
| 7991 | Replicate = SDValue(Use.getUser(), 0); |
| 7992 | } else if (Use.getResNo() == 0) |
| 7993 | OtherUses.push_back(Elt: Use.getUser()); |
| 7994 | } |
| 7995 | if (!Replicate || OtherUses.empty()) |
| 7996 | return SDValue(); |
| 7997 | |
| 7998 | SDValue = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: LdVT, |
| 7999 | N1: Replicate, N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 8000 | // Update uses of the loaded Value while preserving old chains. |
| 8001 | for (SDNode *U : OtherUses) { |
| 8002 | SmallVector<SDValue, 8> Ops; |
| 8003 | for (SDValue Op : U->ops()) |
| 8004 | Ops.push_back(Elt: (Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); |
| 8005 | DAG.UpdateNodeOperands(N: U, Ops); |
| 8006 | } |
| 8007 | return SDValue(N, 0); |
| 8008 | } |
| 8009 | |
| 8010 | bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { |
| 8011 | if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) |
| 8012 | return true; |
| 8013 | if (Subtarget.hasVectorEnhancements2()) |
| 8014 | if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128) |
| 8015 | return true; |
| 8016 | return false; |
| 8017 | } |
| 8018 | |
| 8019 | static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { |
| 8020 | if (!VT.isVector() || !VT.isSimple() || |
| 8021 | VT.getSizeInBits() != 128 || |
| 8022 | VT.getScalarSizeInBits() % 8 != 0) |
| 8023 | return false; |
| 8024 | |
| 8025 | unsigned NumElts = VT.getVectorNumElements(); |
| 8026 | for (unsigned i = 0; i < NumElts; ++i) { |
| 8027 | if (M[i] < 0) continue; // ignore UNDEF indices |
| 8028 | if ((unsigned) M[i] != NumElts - 1 - i) |
| 8029 | return false; |
| 8030 | } |
| 8031 | |
| 8032 | return true; |
| 8033 | } |
| 8034 | |
| 8035 | static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { |
| 8036 | for (auto *U : StoredVal->users()) { |
| 8037 | if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Val: U)) { |
| 8038 | EVT CurrMemVT = ST->getMemoryVT().getScalarType(); |
| 8039 | if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) |
| 8040 | continue; |
| 8041 | } else if (isa<BuildVectorSDNode>(Val: U)) { |
| 8042 | SDValue BuildVector = SDValue(U, 0); |
| 8043 | if (DAG.isSplatValue(V: BuildVector, AllowUndefs: true/*AllowUndefs*/) && |
| 8044 | isOnlyUsedByStores(StoredVal: BuildVector, DAG)) |
| 8045 | continue; |
| 8046 | } |
| 8047 | return false; |
| 8048 | } |
| 8049 | return true; |
| 8050 | } |
| 8051 | |
| 8052 | static bool isI128MovedFromParts(SDValue Val, SDValue &LoPart, |
| 8053 | SDValue &HiPart) { |
| 8054 | if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse()) |
| 8055 | return false; |
| 8056 | |
| 8057 | SDValue Op0 = Val.getOperand(i: 0); |
| 8058 | SDValue Op1 = Val.getOperand(i: 1); |
| 8059 | |
| 8060 | if (Op0.getOpcode() == ISD::SHL) |
| 8061 | std::swap(a&: Op0, b&: Op1); |
| 8062 | if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() || |
| 8063 | Op1.getOperand(i: 1).getOpcode() != ISD::Constant || |
| 8064 | Op1.getConstantOperandVal(i: 1) != 64) |
| 8065 | return false; |
| 8066 | Op1 = Op1.getOperand(i: 0); |
| 8067 | |
| 8068 | if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() || |
| 8069 | Op0.getOperand(i: 0).getValueType() != MVT::i64) |
| 8070 | return false; |
| 8071 | if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() || |
| 8072 | Op1.getOperand(i: 0).getValueType() != MVT::i64) |
| 8073 | return false; |
| 8074 | |
| 8075 | LoPart = Op0.getOperand(i: 0); |
| 8076 | HiPart = Op1.getOperand(i: 0); |
| 8077 | return true; |
| 8078 | } |
| 8079 | |
| 8080 | static bool isF128MovedFromParts(SDValue Val, SDValue &LoPart, |
| 8081 | SDValue &HiPart) { |
| 8082 | if (!Val.getNode()->hasOneUse() || !Val.isMachineOpcode() || |
| 8083 | Val.getMachineOpcode() != TargetOpcode::REG_SEQUENCE) |
| 8084 | return false; |
| 8085 | |
| 8086 | if (Val->getNumOperands() != 5 || |
| 8087 | Val->getOperand(Num: 0)->getAsZExtVal() != SystemZ::FP128BitRegClassID || |
| 8088 | Val->getOperand(Num: 2)->getAsZExtVal() != SystemZ::subreg_l64 || |
| 8089 | Val->getOperand(Num: 4)->getAsZExtVal() != SystemZ::subreg_h64) |
| 8090 | return false; |
| 8091 | |
| 8092 | LoPart = Val->getOperand(Num: 1); |
| 8093 | HiPart = Val->getOperand(Num: 3); |
| 8094 | return true; |
| 8095 | } |
| 8096 | |
| 8097 | SDValue SystemZTargetLowering::combineSTORE( |
| 8098 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8099 | SelectionDAG &DAG = DCI.DAG; |
| 8100 | auto *SN = cast<StoreSDNode>(Val: N); |
| 8101 | auto &Op1 = N->getOperand(Num: 1); |
| 8102 | EVT MemVT = SN->getMemoryVT(); |
| 8103 | |
| 8104 | if (SN->getAddressSpace() == SYSTEMZAS::PTR32) { |
| 8105 | MVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 8106 | MVT StoreNodeVT = SN->getBasePtr().getSimpleValueType(); |
| 8107 | if (PtrVT != StoreNodeVT) { |
| 8108 | SDLoc DL(SN); |
| 8109 | SDValue AddrSpaceCast = DAG.getAddrSpaceCast(dl: DL, VT: PtrVT, Ptr: SN->getBasePtr(), |
| 8110 | SrcAS: SYSTEMZAS::PTR32, DestAS: 0); |
| 8111 | return DAG.getStore(Chain: SN->getChain(), dl: DL, Val: SN->getValue(), Ptr: AddrSpaceCast, |
| 8112 | PtrInfo: SN->getPointerInfo(), Alignment: SN->getBaseAlign(), |
| 8113 | MMOFlags: SN->getMemOperand()->getFlags(), AAInfo: SN->getAAInfo()); |
| 8114 | } |
| 8115 | } |
| 8116 | |
| 8117 | // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better |
| 8118 | // for the extraction to be done on a vMiN value, so that we can use VSTE. |
| 8119 | // If X has wider elements then convert it to: |
| 8120 | // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). |
| 8121 | if (MemVT.isInteger() && SN->isTruncatingStore()) { |
| 8122 | if (SDValue Value = |
| 8123 | combineTruncateExtract(DL: SDLoc(N), TruncVT: MemVT, Op: SN->getValue(), DCI)) { |
| 8124 | DCI.AddToWorklist(N: Value.getNode()); |
| 8125 | |
| 8126 | // Rewrite the store with the new form of stored value. |
| 8127 | return DAG.getTruncStore(Chain: SN->getChain(), dl: SDLoc(SN), Val: Value, |
| 8128 | Ptr: SN->getBasePtr(), SVT: SN->getMemoryVT(), |
| 8129 | MMO: SN->getMemOperand()); |
| 8130 | } |
| 8131 | } |
| 8132 | // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR |
| 8133 | if (!SN->isTruncatingStore() && |
| 8134 | Op1.getOpcode() == ISD::BSWAP && |
| 8135 | Op1.getNode()->hasOneUse() && |
| 8136 | canLoadStoreByteSwapped(VT: Op1.getValueType())) { |
| 8137 | |
| 8138 | SDValue BSwapOp = Op1.getOperand(i: 0); |
| 8139 | |
| 8140 | if (BSwapOp.getValueType() == MVT::i16) |
| 8141 | BSwapOp = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: MVT::i32, Operand: BSwapOp); |
| 8142 | |
| 8143 | SDValue Ops[] = { |
| 8144 | N->getOperand(Num: 0), BSwapOp, N->getOperand(Num: 2) |
| 8145 | }; |
| 8146 | |
| 8147 | return |
| 8148 | DAG.getMemIntrinsicNode(Opcode: SystemZISD::STRV, dl: SDLoc(N), VTList: DAG.getVTList(VT: MVT::Other), |
| 8149 | Ops, MemVT, MMO: SN->getMemOperand()); |
| 8150 | } |
| 8151 | // Combine STORE (element-swap) into VSTER |
| 8152 | if (!SN->isTruncatingStore() && |
| 8153 | Op1.getOpcode() == ISD::VECTOR_SHUFFLE && |
| 8154 | Op1.getNode()->hasOneUse() && |
| 8155 | Subtarget.hasVectorEnhancements2()) { |
| 8156 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Val: Op1.getNode()); |
| 8157 | ArrayRef<int> ShuffleMask = SVN->getMask(); |
| 8158 | if (isVectorElementSwap(M: ShuffleMask, VT: Op1.getValueType())) { |
| 8159 | SDValue Ops[] = { |
| 8160 | N->getOperand(Num: 0), Op1.getOperand(i: 0), N->getOperand(Num: 2) |
| 8161 | }; |
| 8162 | |
| 8163 | return DAG.getMemIntrinsicNode(Opcode: SystemZISD::VSTER, dl: SDLoc(N), |
| 8164 | VTList: DAG.getVTList(VT: MVT::Other), |
| 8165 | Ops, MemVT, MMO: SN->getMemOperand()); |
| 8166 | } |
| 8167 | } |
| 8168 | |
| 8169 | // Combine STORE (READCYCLECOUNTER) into STCKF. |
| 8170 | if (!SN->isTruncatingStore() && |
| 8171 | Op1.getOpcode() == ISD::READCYCLECOUNTER && |
| 8172 | Op1.hasOneUse() && |
| 8173 | N->getOperand(Num: 0).reachesChainWithoutSideEffects(Dest: SDValue(Op1.getNode(), 1))) { |
| 8174 | SDValue Ops[] = { Op1.getOperand(i: 0), N->getOperand(Num: 2) }; |
| 8175 | return DAG.getMemIntrinsicNode(Opcode: SystemZISD::STCKF, dl: SDLoc(N), |
| 8176 | VTList: DAG.getVTList(VT: MVT::Other), |
| 8177 | Ops, MemVT, MMO: SN->getMemOperand()); |
| 8178 | } |
| 8179 | |
| 8180 | // Transform a store of a 128-bit value moved from parts into two stores. |
| 8181 | if (SN->isSimple() && ISD::isNormalStore(N: SN)) { |
| 8182 | SDValue LoPart, HiPart; |
| 8183 | if ((MemVT == MVT::i128 && isI128MovedFromParts(Val: Op1, LoPart, HiPart)) || |
| 8184 | (MemVT == MVT::f128 && isF128MovedFromParts(Val: Op1, LoPart, HiPart))) { |
| 8185 | SDLoc DL(SN); |
| 8186 | SDValue Chain0 = DAG.getStore( |
| 8187 | Chain: SN->getChain(), dl: DL, Val: HiPart, Ptr: SN->getBasePtr(), PtrInfo: SN->getPointerInfo(), |
| 8188 | Alignment: SN->getBaseAlign(), MMOFlags: SN->getMemOperand()->getFlags(), AAInfo: SN->getAAInfo()); |
| 8189 | SDValue Chain1 = DAG.getStore( |
| 8190 | Chain: SN->getChain(), dl: DL, Val: LoPart, |
| 8191 | Ptr: DAG.getObjectPtrOffset(SL: DL, Ptr: SN->getBasePtr(), Offset: TypeSize::getFixed(ExactSize: 8)), |
| 8192 | PtrInfo: SN->getPointerInfo().getWithOffset(O: 8), Alignment: SN->getBaseAlign(), |
| 8193 | MMOFlags: SN->getMemOperand()->getFlags(), AAInfo: SN->getAAInfo()); |
| 8194 | |
| 8195 | return DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, N1: Chain0, N2: Chain1); |
| 8196 | } |
| 8197 | } |
| 8198 | |
| 8199 | // Replicate a reg or immediate with VREP instead of scalar multiply or |
| 8200 | // immediate load. It seems best to do this during the first DAGCombine as |
| 8201 | // it is straight-forward to handle the zero-extend node in the initial |
| 8202 | // DAG, and also not worry about the keeping the new MemVT legal (e.g. when |
| 8203 | // extracting an i16 element from a v16i8 vector). |
| 8204 | if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && |
| 8205 | isOnlyUsedByStores(StoredVal: Op1, DAG)) { |
| 8206 | SDValue Word = SDValue(); |
| 8207 | EVT WordVT; |
| 8208 | |
| 8209 | // Find a replicated immediate and return it if found in Word and its |
| 8210 | // type in WordVT. |
| 8211 | auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { |
| 8212 | // Some constants are better handled with a scalar store. |
| 8213 | if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || |
| 8214 | isInt<16>(x: C->getSExtValue()) || MemVT.getStoreSize() <= 2) |
| 8215 | return; |
| 8216 | |
| 8217 | APInt Val = C->getAPIntValue(); |
| 8218 | // Truncate Val in case of a truncating store. |
| 8219 | if (!llvm::isUIntN(N: TotBytes * 8, x: Val.getZExtValue())) { |
| 8220 | assert(SN->isTruncatingStore() && |
| 8221 | "Non-truncating store and immediate value does not fit?" ); |
| 8222 | Val = Val.trunc(width: TotBytes * 8); |
| 8223 | } |
| 8224 | |
| 8225 | SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, Val.getZExtValue())); |
| 8226 | if (VCI.isVectorConstantLegal(Subtarget) && |
| 8227 | VCI.Opcode == SystemZISD::REPLICATE) { |
| 8228 | Word = DAG.getConstant(Val: VCI.OpVals[0], DL: SDLoc(SN), VT: MVT::i32); |
| 8229 | WordVT = VCI.VecVT.getScalarType(); |
| 8230 | } |
| 8231 | }; |
| 8232 | |
| 8233 | // Find a replicated register and return it if found in Word and its type |
| 8234 | // in WordVT. |
| 8235 | auto FindReplicatedReg = [&](SDValue MulOp) { |
| 8236 | EVT MulVT = MulOp.getValueType(); |
| 8237 | if (MulOp->getOpcode() == ISD::MUL && |
| 8238 | (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { |
| 8239 | // Find a zero extended value and its type. |
| 8240 | SDValue LHS = MulOp->getOperand(Num: 0); |
| 8241 | if (LHS->getOpcode() == ISD::ZERO_EXTEND) |
| 8242 | WordVT = LHS->getOperand(Num: 0).getValueType(); |
| 8243 | else if (LHS->getOpcode() == ISD::AssertZext) |
| 8244 | WordVT = cast<VTSDNode>(Val: LHS->getOperand(Num: 1))->getVT(); |
| 8245 | else |
| 8246 | return; |
| 8247 | // Find a replicating constant, e.g. 0x00010001. |
| 8248 | if (auto *C = dyn_cast<ConstantSDNode>(Val: MulOp->getOperand(Num: 1))) { |
| 8249 | SystemZVectorConstantInfo VCI( |
| 8250 | APInt(MulVT.getSizeInBits(), C->getZExtValue())); |
| 8251 | if (VCI.isVectorConstantLegal(Subtarget) && |
| 8252 | VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && |
| 8253 | WordVT == VCI.VecVT.getScalarType()) |
| 8254 | Word = DAG.getZExtOrTrunc(Op: LHS->getOperand(Num: 0), DL: SDLoc(SN), VT: WordVT); |
| 8255 | } |
| 8256 | } |
| 8257 | }; |
| 8258 | |
| 8259 | if (isa<BuildVectorSDNode>(Val: Op1) && |
| 8260 | DAG.isSplatValue(V: Op1, AllowUndefs: true/*AllowUndefs*/)) { |
| 8261 | SDValue SplatVal = Op1->getOperand(Num: 0); |
| 8262 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: SplatVal)) |
| 8263 | FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); |
| 8264 | else |
| 8265 | FindReplicatedReg(SplatVal); |
| 8266 | } else { |
| 8267 | if (auto *C = dyn_cast<ConstantSDNode>(Val: Op1)) |
| 8268 | FindReplicatedImm(C, MemVT.getStoreSize()); |
| 8269 | else |
| 8270 | FindReplicatedReg(Op1); |
| 8271 | } |
| 8272 | |
| 8273 | if (Word != SDValue()) { |
| 8274 | assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && |
| 8275 | "Bad type handling" ); |
| 8276 | unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); |
| 8277 | EVT SplatVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WordVT, NumElements: NumElts); |
| 8278 | SDValue SplatVal = DAG.getSplatVector(VT: SplatVT, DL: SDLoc(SN), Op: Word); |
| 8279 | return DAG.getStore(Chain: SN->getChain(), dl: SDLoc(SN), Val: SplatVal, |
| 8280 | Ptr: SN->getBasePtr(), MMO: SN->getMemOperand()); |
| 8281 | } |
| 8282 | } |
| 8283 | |
| 8284 | return SDValue(); |
| 8285 | } |
| 8286 | |
| 8287 | SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( |
| 8288 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8289 | SelectionDAG &DAG = DCI.DAG; |
| 8290 | // Combine element-swap (LOAD) into VLER |
| 8291 | if (ISD::isNON_EXTLoad(N: N->getOperand(Num: 0).getNode()) && |
| 8292 | N->getOperand(Num: 0).hasOneUse() && |
| 8293 | Subtarget.hasVectorEnhancements2()) { |
| 8294 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Val: N); |
| 8295 | ArrayRef<int> ShuffleMask = SVN->getMask(); |
| 8296 | if (isVectorElementSwap(M: ShuffleMask, VT: N->getValueType(ResNo: 0))) { |
| 8297 | SDValue Load = N->getOperand(Num: 0); |
| 8298 | LoadSDNode *LD = cast<LoadSDNode>(Val&: Load); |
| 8299 | |
| 8300 | // Create the element-swapping load. |
| 8301 | SDValue Ops[] = { |
| 8302 | LD->getChain(), // Chain |
| 8303 | LD->getBasePtr() // Ptr |
| 8304 | }; |
| 8305 | SDValue ESLoad = |
| 8306 | DAG.getMemIntrinsicNode(Opcode: SystemZISD::VLER, dl: SDLoc(N), |
| 8307 | VTList: DAG.getVTList(VT1: LD->getValueType(ResNo: 0), VT2: MVT::Other), |
| 8308 | Ops, MemVT: LD->getMemoryVT(), MMO: LD->getMemOperand()); |
| 8309 | |
| 8310 | // First, combine the VECTOR_SHUFFLE away. This makes the value produced |
| 8311 | // by the load dead. |
| 8312 | DCI.CombineTo(N, Res: ESLoad); |
| 8313 | |
| 8314 | // Next, combine the load away, we give it a bogus result value but a real |
| 8315 | // chain result. The result value is dead because the shuffle is dead. |
| 8316 | DCI.CombineTo(N: Load.getNode(), Res0: ESLoad, Res1: ESLoad.getValue(R: 1)); |
| 8317 | |
| 8318 | // Return N so it doesn't get rechecked! |
| 8319 | return SDValue(N, 0); |
| 8320 | } |
| 8321 | } |
| 8322 | |
| 8323 | return SDValue(); |
| 8324 | } |
| 8325 | |
| 8326 | SDValue SystemZTargetLowering::( |
| 8327 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8328 | SelectionDAG &DAG = DCI.DAG; |
| 8329 | |
| 8330 | if (!Subtarget.hasVector()) |
| 8331 | return SDValue(); |
| 8332 | |
| 8333 | // Look through bitcasts that retain the number of vector elements. |
| 8334 | SDValue Op = N->getOperand(Num: 0); |
| 8335 | if (Op.getOpcode() == ISD::BITCAST && |
| 8336 | Op.getValueType().isVector() && |
| 8337 | Op.getOperand(i: 0).getValueType().isVector() && |
| 8338 | Op.getValueType().getVectorNumElements() == |
| 8339 | Op.getOperand(i: 0).getValueType().getVectorNumElements()) |
| 8340 | Op = Op.getOperand(i: 0); |
| 8341 | |
| 8342 | // Pull BSWAP out of a vector extraction. |
| 8343 | if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { |
| 8344 | EVT VecVT = Op.getValueType(); |
| 8345 | EVT EltVT = VecVT.getVectorElementType(); |
| 8346 | Op = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(N), VT: EltVT, |
| 8347 | N1: Op.getOperand(i: 0), N2: N->getOperand(Num: 1)); |
| 8348 | DCI.AddToWorklist(N: Op.getNode()); |
| 8349 | Op = DAG.getNode(Opcode: ISD::BSWAP, DL: SDLoc(N), VT: EltVT, Operand: Op); |
| 8350 | if (EltVT != N->getValueType(ResNo: 0)) { |
| 8351 | DCI.AddToWorklist(N: Op.getNode()); |
| 8352 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), Operand: Op); |
| 8353 | } |
| 8354 | return Op; |
| 8355 | } |
| 8356 | |
| 8357 | // Try to simplify a vector extraction. |
| 8358 | if (auto *IndexN = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
| 8359 | SDValue Op0 = N->getOperand(Num: 0); |
| 8360 | EVT VecVT = Op0.getValueType(); |
| 8361 | if (canTreatAsByteVector(VT: VecVT)) |
| 8362 | return combineExtract(DL: SDLoc(N), ResVT: N->getValueType(ResNo: 0), VecVT, Op: Op0, |
| 8363 | Index: IndexN->getZExtValue(), DCI, Force: false); |
| 8364 | } |
| 8365 | return SDValue(); |
| 8366 | } |
| 8367 | |
| 8368 | SDValue SystemZTargetLowering::combineJOIN_DWORDS( |
| 8369 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8370 | SelectionDAG &DAG = DCI.DAG; |
| 8371 | // (join_dwords X, X) == (replicate X) |
| 8372 | if (N->getOperand(Num: 0) == N->getOperand(Num: 1)) |
| 8373 | return DAG.getNode(Opcode: SystemZISD::REPLICATE, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 8374 | Operand: N->getOperand(Num: 0)); |
| 8375 | return SDValue(); |
| 8376 | } |
| 8377 | |
| 8378 | static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { |
| 8379 | SDValue Chain1 = N1->getOperand(Num: 0); |
| 8380 | SDValue Chain2 = N2->getOperand(Num: 0); |
| 8381 | |
| 8382 | // Trivial case: both nodes take the same chain. |
| 8383 | if (Chain1 == Chain2) |
| 8384 | return Chain1; |
| 8385 | |
| 8386 | // FIXME - we could handle more complex cases via TokenFactor, |
| 8387 | // assuming we can verify that this would not create a cycle. |
| 8388 | return SDValue(); |
| 8389 | } |
| 8390 | |
| 8391 | SDValue SystemZTargetLowering::combineFP_ROUND( |
| 8392 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8393 | |
| 8394 | if (!Subtarget.hasVector()) |
| 8395 | return SDValue(); |
| 8396 | |
| 8397 | // (fpround (extract_vector_elt X 0)) |
| 8398 | // (fpround (extract_vector_elt X 1)) -> |
| 8399 | // (extract_vector_elt (VROUND X) 0) |
| 8400 | // (extract_vector_elt (VROUND X) 2) |
| 8401 | // |
| 8402 | // This is a special case since the target doesn't really support v2f32s. |
| 8403 | unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; |
| 8404 | SelectionDAG &DAG = DCI.DAG; |
| 8405 | SDValue Op0 = N->getOperand(Num: OpNo); |
| 8406 | if (N->getValueType(ResNo: 0) == MVT::f32 && Op0.hasOneUse() && |
| 8407 | Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 8408 | Op0.getOperand(i: 0).getValueType() == MVT::v2f64 && |
| 8409 | Op0.getOperand(i: 1).getOpcode() == ISD::Constant && |
| 8410 | Op0.getConstantOperandVal(i: 1) == 0) { |
| 8411 | SDValue Vec = Op0.getOperand(i: 0); |
| 8412 | for (auto *U : Vec->users()) { |
| 8413 | if (U != Op0.getNode() && U->hasOneUse() && |
| 8414 | U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 8415 | U->getOperand(Num: 0) == Vec && |
| 8416 | U->getOperand(Num: 1).getOpcode() == ISD::Constant && |
| 8417 | U->getConstantOperandVal(Num: 1) == 1) { |
| 8418 | SDValue OtherRound = SDValue(*U->user_begin(), 0); |
| 8419 | if (OtherRound.getOpcode() == N->getOpcode() && |
| 8420 | OtherRound.getOperand(i: OpNo) == SDValue(U, 0) && |
| 8421 | OtherRound.getValueType() == MVT::f32) { |
| 8422 | SDValue VRound, Chain; |
| 8423 | if (N->isStrictFPOpcode()) { |
| 8424 | Chain = MergeInputChains(N1: N, N2: OtherRound.getNode()); |
| 8425 | if (!Chain) |
| 8426 | continue; |
| 8427 | VRound = DAG.getNode(Opcode: SystemZISD::STRICT_VROUND, DL: SDLoc(N), |
| 8428 | ResultTys: {MVT::v4f32, MVT::Other}, Ops: {Chain, Vec}); |
| 8429 | Chain = VRound.getValue(R: 1); |
| 8430 | } else |
| 8431 | VRound = DAG.getNode(Opcode: SystemZISD::VROUND, DL: SDLoc(N), |
| 8432 | VT: MVT::v4f32, Operand: Vec); |
| 8433 | DCI.AddToWorklist(N: VRound.getNode()); |
| 8434 | SDValue = |
| 8435 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(U), VT: MVT::f32, |
| 8436 | N1: VRound, N2: DAG.getConstant(Val: 2, DL: SDLoc(U), VT: MVT::i32)); |
| 8437 | DCI.AddToWorklist(N: Extract1.getNode()); |
| 8438 | DAG.ReplaceAllUsesOfValueWith(From: OtherRound, To: Extract1); |
| 8439 | if (Chain) |
| 8440 | DAG.ReplaceAllUsesOfValueWith(From: OtherRound.getValue(R: 1), To: Chain); |
| 8441 | SDValue = |
| 8442 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(Op0), VT: MVT::f32, |
| 8443 | N1: VRound, N2: DAG.getConstant(Val: 0, DL: SDLoc(Op0), VT: MVT::i32)); |
| 8444 | if (Chain) |
| 8445 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL: SDLoc(Op0), |
| 8446 | VTList: N->getVTList(), N1: Extract0, N2: Chain); |
| 8447 | return Extract0; |
| 8448 | } |
| 8449 | } |
| 8450 | } |
| 8451 | } |
| 8452 | return SDValue(); |
| 8453 | } |
| 8454 | |
| 8455 | SDValue SystemZTargetLowering::combineFP_EXTEND( |
| 8456 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8457 | |
| 8458 | if (!Subtarget.hasVector()) |
| 8459 | return SDValue(); |
| 8460 | |
| 8461 | // (fpextend (extract_vector_elt X 0)) |
| 8462 | // (fpextend (extract_vector_elt X 2)) -> |
| 8463 | // (extract_vector_elt (VEXTEND X) 0) |
| 8464 | // (extract_vector_elt (VEXTEND X) 1) |
| 8465 | // |
| 8466 | // This is a special case since the target doesn't really support v2f32s. |
| 8467 | unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; |
| 8468 | SelectionDAG &DAG = DCI.DAG; |
| 8469 | SDValue Op0 = N->getOperand(Num: OpNo); |
| 8470 | if (N->getValueType(ResNo: 0) == MVT::f64 && Op0.hasOneUse() && |
| 8471 | Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 8472 | Op0.getOperand(i: 0).getValueType() == MVT::v4f32 && |
| 8473 | Op0.getOperand(i: 1).getOpcode() == ISD::Constant && |
| 8474 | Op0.getConstantOperandVal(i: 1) == 0) { |
| 8475 | SDValue Vec = Op0.getOperand(i: 0); |
| 8476 | for (auto *U : Vec->users()) { |
| 8477 | if (U != Op0.getNode() && U->hasOneUse() && |
| 8478 | U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 8479 | U->getOperand(Num: 0) == Vec && |
| 8480 | U->getOperand(Num: 1).getOpcode() == ISD::Constant && |
| 8481 | U->getConstantOperandVal(Num: 1) == 2) { |
| 8482 | SDValue OtherExtend = SDValue(*U->user_begin(), 0); |
| 8483 | if (OtherExtend.getOpcode() == N->getOpcode() && |
| 8484 | OtherExtend.getOperand(i: OpNo) == SDValue(U, 0) && |
| 8485 | OtherExtend.getValueType() == MVT::f64) { |
| 8486 | SDValue VExtend, Chain; |
| 8487 | if (N->isStrictFPOpcode()) { |
| 8488 | Chain = MergeInputChains(N1: N, N2: OtherExtend.getNode()); |
| 8489 | if (!Chain) |
| 8490 | continue; |
| 8491 | VExtend = DAG.getNode(Opcode: SystemZISD::STRICT_VEXTEND, DL: SDLoc(N), |
| 8492 | ResultTys: {MVT::v2f64, MVT::Other}, Ops: {Chain, Vec}); |
| 8493 | Chain = VExtend.getValue(R: 1); |
| 8494 | } else |
| 8495 | VExtend = DAG.getNode(Opcode: SystemZISD::VEXTEND, DL: SDLoc(N), |
| 8496 | VT: MVT::v2f64, Operand: Vec); |
| 8497 | DCI.AddToWorklist(N: VExtend.getNode()); |
| 8498 | SDValue = |
| 8499 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(U), VT: MVT::f64, |
| 8500 | N1: VExtend, N2: DAG.getConstant(Val: 1, DL: SDLoc(U), VT: MVT::i32)); |
| 8501 | DCI.AddToWorklist(N: Extract1.getNode()); |
| 8502 | DAG.ReplaceAllUsesOfValueWith(From: OtherExtend, To: Extract1); |
| 8503 | if (Chain) |
| 8504 | DAG.ReplaceAllUsesOfValueWith(From: OtherExtend.getValue(R: 1), To: Chain); |
| 8505 | SDValue = |
| 8506 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(Op0), VT: MVT::f64, |
| 8507 | N1: VExtend, N2: DAG.getConstant(Val: 0, DL: SDLoc(Op0), VT: MVT::i32)); |
| 8508 | if (Chain) |
| 8509 | return DAG.getNode(Opcode: ISD::MERGE_VALUES, DL: SDLoc(Op0), |
| 8510 | VTList: N->getVTList(), N1: Extract0, N2: Chain); |
| 8511 | return Extract0; |
| 8512 | } |
| 8513 | } |
| 8514 | } |
| 8515 | } |
| 8516 | return SDValue(); |
| 8517 | } |
| 8518 | |
| 8519 | SDValue SystemZTargetLowering::combineINT_TO_FP( |
| 8520 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8521 | if (DCI.Level != BeforeLegalizeTypes) |
| 8522 | return SDValue(); |
| 8523 | SelectionDAG &DAG = DCI.DAG; |
| 8524 | LLVMContext &Ctx = *DAG.getContext(); |
| 8525 | unsigned Opcode = N->getOpcode(); |
| 8526 | EVT OutVT = N->getValueType(ResNo: 0); |
| 8527 | Type *OutLLVMTy = OutVT.getTypeForEVT(Context&: Ctx); |
| 8528 | SDValue Op = N->getOperand(Num: 0); |
| 8529 | unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); |
| 8530 | unsigned InScalarBits = Op->getValueType(ResNo: 0).getScalarSizeInBits(); |
| 8531 | |
| 8532 | // Insert an extension before type-legalization to avoid scalarization, e.g.: |
| 8533 | // v2f64 = uint_to_fp v2i16 |
| 8534 | // => |
| 8535 | // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) |
| 8536 | if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && |
| 8537 | OutScalarBits <= 64) { |
| 8538 | unsigned NumElts = cast<FixedVectorType>(Val: OutLLVMTy)->getNumElements(); |
| 8539 | EVT ExtVT = EVT::getVectorVT( |
| 8540 | Context&: Ctx, VT: EVT::getIntegerVT(Context&: Ctx, BitWidth: OutLLVMTy->getScalarSizeInBits()), NumElements: NumElts); |
| 8541 | unsigned ExtOpcode = |
| 8542 | (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); |
| 8543 | SDValue ExtOp = DAG.getNode(Opcode: ExtOpcode, DL: SDLoc(N), VT: ExtVT, Operand: Op); |
| 8544 | return DAG.getNode(Opcode, DL: SDLoc(N), VT: OutVT, Operand: ExtOp); |
| 8545 | } |
| 8546 | return SDValue(); |
| 8547 | } |
| 8548 | |
| 8549 | SDValue SystemZTargetLowering::combineFCOPYSIGN( |
| 8550 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8551 | SelectionDAG &DAG = DCI.DAG; |
| 8552 | EVT VT = N->getValueType(ResNo: 0); |
| 8553 | SDValue ValOp = N->getOperand(Num: 0); |
| 8554 | SDValue SignOp = N->getOperand(Num: 1); |
| 8555 | |
| 8556 | // Remove the rounding which is not needed. |
| 8557 | if (SignOp.getOpcode() == ISD::FP_ROUND) { |
| 8558 | SDValue WideOp = SignOp.getOperand(i: 0); |
| 8559 | return DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SDLoc(N), VT, N1: ValOp, N2: WideOp); |
| 8560 | } |
| 8561 | |
| 8562 | return SDValue(); |
| 8563 | } |
| 8564 | |
| 8565 | SDValue SystemZTargetLowering::combineBSWAP( |
| 8566 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8567 | SelectionDAG &DAG = DCI.DAG; |
| 8568 | // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR |
| 8569 | if (ISD::isNON_EXTLoad(N: N->getOperand(Num: 0).getNode()) && |
| 8570 | N->getOperand(Num: 0).hasOneUse() && |
| 8571 | canLoadStoreByteSwapped(VT: N->getValueType(ResNo: 0))) { |
| 8572 | SDValue Load = N->getOperand(Num: 0); |
| 8573 | LoadSDNode *LD = cast<LoadSDNode>(Val&: Load); |
| 8574 | |
| 8575 | // Create the byte-swapping load. |
| 8576 | SDValue Ops[] = { |
| 8577 | LD->getChain(), // Chain |
| 8578 | LD->getBasePtr() // Ptr |
| 8579 | }; |
| 8580 | EVT LoadVT = N->getValueType(ResNo: 0); |
| 8581 | if (LoadVT == MVT::i16) |
| 8582 | LoadVT = MVT::i32; |
| 8583 | SDValue BSLoad = |
| 8584 | DAG.getMemIntrinsicNode(Opcode: SystemZISD::LRV, dl: SDLoc(N), |
| 8585 | VTList: DAG.getVTList(VT1: LoadVT, VT2: MVT::Other), |
| 8586 | Ops, MemVT: LD->getMemoryVT(), MMO: LD->getMemOperand()); |
| 8587 | |
| 8588 | // If this is an i16 load, insert the truncate. |
| 8589 | SDValue ResVal = BSLoad; |
| 8590 | if (N->getValueType(ResNo: 0) == MVT::i16) |
| 8591 | ResVal = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SDLoc(N), VT: MVT::i16, Operand: BSLoad); |
| 8592 | |
| 8593 | // First, combine the bswap away. This makes the value produced by the |
| 8594 | // load dead. |
| 8595 | DCI.CombineTo(N, Res: ResVal); |
| 8596 | |
| 8597 | // Next, combine the load away, we give it a bogus result value but a real |
| 8598 | // chain result. The result value is dead because the bswap is dead. |
| 8599 | DCI.CombineTo(N: Load.getNode(), Res0: ResVal, Res1: BSLoad.getValue(R: 1)); |
| 8600 | |
| 8601 | // Return N so it doesn't get rechecked! |
| 8602 | return SDValue(N, 0); |
| 8603 | } |
| 8604 | |
| 8605 | // Look through bitcasts that retain the number of vector elements. |
| 8606 | SDValue Op = N->getOperand(Num: 0); |
| 8607 | if (Op.getOpcode() == ISD::BITCAST && |
| 8608 | Op.getValueType().isVector() && |
| 8609 | Op.getOperand(i: 0).getValueType().isVector() && |
| 8610 | Op.getValueType().getVectorNumElements() == |
| 8611 | Op.getOperand(i: 0).getValueType().getVectorNumElements()) |
| 8612 | Op = Op.getOperand(i: 0); |
| 8613 | |
| 8614 | // Push BSWAP into a vector insertion if at least one side then simplifies. |
| 8615 | if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { |
| 8616 | SDValue Vec = Op.getOperand(i: 0); |
| 8617 | SDValue Elt = Op.getOperand(i: 1); |
| 8618 | SDValue Idx = Op.getOperand(i: 2); |
| 8619 | |
| 8620 | if (DAG.isConstantIntBuildVectorOrConstantInt(N: Vec) || |
| 8621 | Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || |
| 8622 | DAG.isConstantIntBuildVectorOrConstantInt(N: Elt) || |
| 8623 | Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || |
| 8624 | (canLoadStoreByteSwapped(VT: N->getValueType(ResNo: 0)) && |
| 8625 | ISD::isNON_EXTLoad(N: Elt.getNode()) && Elt.hasOneUse())) { |
| 8626 | EVT VecVT = N->getValueType(ResNo: 0); |
| 8627 | EVT EltVT = N->getValueType(ResNo: 0).getVectorElementType(); |
| 8628 | if (VecVT != Vec.getValueType()) { |
| 8629 | Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: VecVT, Operand: Vec); |
| 8630 | DCI.AddToWorklist(N: Vec.getNode()); |
| 8631 | } |
| 8632 | if (EltVT != Elt.getValueType()) { |
| 8633 | Elt = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: EltVT, Operand: Elt); |
| 8634 | DCI.AddToWorklist(N: Elt.getNode()); |
| 8635 | } |
| 8636 | Vec = DAG.getNode(Opcode: ISD::BSWAP, DL: SDLoc(N), VT: VecVT, Operand: Vec); |
| 8637 | DCI.AddToWorklist(N: Vec.getNode()); |
| 8638 | Elt = DAG.getNode(Opcode: ISD::BSWAP, DL: SDLoc(N), VT: EltVT, Operand: Elt); |
| 8639 | DCI.AddToWorklist(N: Elt.getNode()); |
| 8640 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(N), VT: VecVT, |
| 8641 | N1: Vec, N2: Elt, N3: Idx); |
| 8642 | } |
| 8643 | } |
| 8644 | |
| 8645 | // Push BSWAP into a vector shuffle if at least one side then simplifies. |
| 8646 | ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Val&: Op); |
| 8647 | if (SV && Op.hasOneUse()) { |
| 8648 | SDValue Op0 = Op.getOperand(i: 0); |
| 8649 | SDValue Op1 = Op.getOperand(i: 1); |
| 8650 | |
| 8651 | if (DAG.isConstantIntBuildVectorOrConstantInt(N: Op0) || |
| 8652 | Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || |
| 8653 | DAG.isConstantIntBuildVectorOrConstantInt(N: Op1) || |
| 8654 | Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { |
| 8655 | EVT VecVT = N->getValueType(ResNo: 0); |
| 8656 | if (VecVT != Op0.getValueType()) { |
| 8657 | Op0 = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: VecVT, Operand: Op0); |
| 8658 | DCI.AddToWorklist(N: Op0.getNode()); |
| 8659 | } |
| 8660 | if (VecVT != Op1.getValueType()) { |
| 8661 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT: VecVT, Operand: Op1); |
| 8662 | DCI.AddToWorklist(N: Op1.getNode()); |
| 8663 | } |
| 8664 | Op0 = DAG.getNode(Opcode: ISD::BSWAP, DL: SDLoc(N), VT: VecVT, Operand: Op0); |
| 8665 | DCI.AddToWorklist(N: Op0.getNode()); |
| 8666 | Op1 = DAG.getNode(Opcode: ISD::BSWAP, DL: SDLoc(N), VT: VecVT, Operand: Op1); |
| 8667 | DCI.AddToWorklist(N: Op1.getNode()); |
| 8668 | return DAG.getVectorShuffle(VT: VecVT, dl: SDLoc(N), N1: Op0, N2: Op1, Mask: SV->getMask()); |
| 8669 | } |
| 8670 | } |
| 8671 | |
| 8672 | return SDValue(); |
| 8673 | } |
| 8674 | |
| 8675 | SDValue SystemZTargetLowering::combineSETCC( |
| 8676 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8677 | SelectionDAG &DAG = DCI.DAG; |
| 8678 | const ISD::CondCode CC = cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get(); |
| 8679 | const SDValue LHS = N->getOperand(Num: 0); |
| 8680 | const SDValue RHS = N->getOperand(Num: 1); |
| 8681 | bool CmpNull = isNullConstant(V: RHS); |
| 8682 | bool CmpAllOnes = isAllOnesConstant(V: RHS); |
| 8683 | EVT VT = N->getValueType(ResNo: 0); |
| 8684 | SDLoc DL(N); |
| 8685 | |
| 8686 | // Match icmp_eq/ne(bitcast(icmp(X,Y)),0/-1) reduction patterns, and |
| 8687 | // change the outer compare to a i128 compare. This will normally |
| 8688 | // allow the reduction to be recognized in adjustICmp128, and even if |
| 8689 | // not, the i128 compare will still generate better code. |
| 8690 | if ((CC == ISD::SETNE || CC == ISD::SETEQ) && (CmpNull || CmpAllOnes)) { |
| 8691 | SDValue Src = peekThroughBitcasts(V: LHS); |
| 8692 | if (Src.getOpcode() == ISD::SETCC && |
| 8693 | Src.getValueType().isFixedLengthVector() && |
| 8694 | Src.getValueType().getScalarType() == MVT::i1) { |
| 8695 | EVT CmpVT = Src.getOperand(i: 0).getValueType(); |
| 8696 | if (CmpVT.getSizeInBits() == 128) { |
| 8697 | EVT IntVT = CmpVT.changeVectorElementTypeToInteger(); |
| 8698 | SDValue LHS = |
| 8699 | DAG.getBitcast(VT: MVT::i128, V: DAG.getSExtOrTrunc(Op: Src, DL, VT: IntVT)); |
| 8700 | SDValue RHS = CmpNull ? DAG.getConstant(Val: 0, DL, VT: MVT::i128) |
| 8701 | : DAG.getAllOnesConstant(DL, VT: MVT::i128); |
| 8702 | return DAG.getNode(Opcode: ISD::SETCC, DL, VT, N1: LHS, N2: RHS, N3: N->getOperand(Num: 2), |
| 8703 | Flags: N->getFlags()); |
| 8704 | } |
| 8705 | } |
| 8706 | } |
| 8707 | |
| 8708 | return SDValue(); |
| 8709 | } |
| 8710 | |
| 8711 | static std::pair<SDValue, int> findCCUse(const SDValue &Val) { |
| 8712 | switch (Val.getOpcode()) { |
| 8713 | default: |
| 8714 | return std::make_pair(x: SDValue(), y: SystemZ::CCMASK_NONE); |
| 8715 | case SystemZISD::IPM: |
| 8716 | if (Val.getOperand(i: 0).getOpcode() == SystemZISD::CLC || |
| 8717 | Val.getOperand(i: 0).getOpcode() == SystemZISD::STRCMP) |
| 8718 | return std::make_pair(x: Val.getOperand(i: 0), y: SystemZ::CCMASK_ICMP); |
| 8719 | return std::make_pair(x: Val.getOperand(i: 0), y: SystemZ::CCMASK_ANY); |
| 8720 | case SystemZISD::SELECT_CCMASK: { |
| 8721 | SDValue Op4CCReg = Val.getOperand(i: 4); |
| 8722 | if (Op4CCReg.getOpcode() == SystemZISD::ICMP || |
| 8723 | Op4CCReg.getOpcode() == SystemZISD::TM) { |
| 8724 | auto [OpCC, OpCCValid] = findCCUse(Val: Op4CCReg.getOperand(i: 0)); |
| 8725 | if (OpCC != SDValue()) |
| 8726 | return std::make_pair(x&: OpCC, y&: OpCCValid); |
| 8727 | } |
| 8728 | auto *CCValid = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 2)); |
| 8729 | if (!CCValid) |
| 8730 | return std::make_pair(x: SDValue(), y: SystemZ::CCMASK_NONE); |
| 8731 | int CCValidVal = CCValid->getZExtValue(); |
| 8732 | return std::make_pair(x&: Op4CCReg, y&: CCValidVal); |
| 8733 | } |
| 8734 | case ISD::ADD: |
| 8735 | case ISD::AND: |
| 8736 | case ISD::OR: |
| 8737 | case ISD::XOR: |
| 8738 | case ISD::SHL: |
| 8739 | case ISD::SRA: |
| 8740 | case ISD::SRL: |
| 8741 | auto [Op0CC, Op0CCValid] = findCCUse(Val: Val.getOperand(i: 0)); |
| 8742 | if (Op0CC != SDValue()) |
| 8743 | return std::make_pair(x&: Op0CC, y&: Op0CCValid); |
| 8744 | return findCCUse(Val: Val.getOperand(i: 1)); |
| 8745 | } |
| 8746 | } |
| 8747 | |
| 8748 | static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask, |
| 8749 | SelectionDAG &DAG); |
| 8750 | |
| 8751 | SmallVector<SDValue, 4> static simplifyAssumingCCVal(SDValue &Val, SDValue &CC, |
| 8752 | SelectionDAG &DAG) { |
| 8753 | SDLoc DL(Val); |
| 8754 | auto Opcode = Val.getOpcode(); |
| 8755 | switch (Opcode) { |
| 8756 | default: |
| 8757 | return {}; |
| 8758 | case ISD::Constant: |
| 8759 | return {Val, Val, Val, Val}; |
| 8760 | case SystemZISD::IPM: { |
| 8761 | SDValue IPMOp0 = Val.getOperand(i: 0); |
| 8762 | if (IPMOp0 != CC) |
| 8763 | return {}; |
| 8764 | SmallVector<SDValue, 4> ShiftedCCVals; |
| 8765 | for (auto CC : {0, 1, 2, 3}) |
| 8766 | ShiftedCCVals.emplace_back( |
| 8767 | Args: DAG.getConstant(Val: (CC << SystemZ::IPM_CC), DL, VT: MVT::i32)); |
| 8768 | return ShiftedCCVals; |
| 8769 | } |
| 8770 | case SystemZISD::SELECT_CCMASK: { |
| 8771 | SDValue TrueVal = Val.getOperand(i: 0), FalseVal = Val.getOperand(i: 1); |
| 8772 | auto *CCValid = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 2)); |
| 8773 | auto *CCMask = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 3)); |
| 8774 | if (!CCValid || !CCMask) |
| 8775 | return {}; |
| 8776 | |
| 8777 | int CCValidVal = CCValid->getZExtValue(); |
| 8778 | int CCMaskVal = CCMask->getZExtValue(); |
| 8779 | // Pruning search tree early - Moving CC test and combineCCMask ahead of |
| 8780 | // recursive call to simplifyAssumingCCVal. |
| 8781 | SDValue Op4CCReg = Val.getOperand(i: 4); |
| 8782 | if (Op4CCReg != CC) |
| 8783 | combineCCMask(CCReg&: Op4CCReg, CCValid&: CCValidVal, CCMask&: CCMaskVal, DAG); |
| 8784 | if (Op4CCReg != CC) |
| 8785 | return {}; |
| 8786 | const auto &&TrueSDVals = simplifyAssumingCCVal(Val&: TrueVal, CC, DAG); |
| 8787 | const auto &&FalseSDVals = simplifyAssumingCCVal(Val&: FalseVal, CC, DAG); |
| 8788 | if (TrueSDVals.empty() || FalseSDVals.empty()) |
| 8789 | return {}; |
| 8790 | SmallVector<SDValue, 4> MergedSDVals; |
| 8791 | for (auto &CCVal : {0, 1, 2, 3}) |
| 8792 | MergedSDVals.emplace_back(Args: ((CCMaskVal & (1 << (3 - CCVal))) != 0) |
| 8793 | ? TrueSDVals[CCVal] |
| 8794 | : FalseSDVals[CCVal]); |
| 8795 | return MergedSDVals; |
| 8796 | } |
| 8797 | case ISD::ADD: |
| 8798 | case ISD::AND: |
| 8799 | case ISD::OR: |
| 8800 | case ISD::XOR: |
| 8801 | case ISD::SRA: |
| 8802 | // Avoid introducing CC spills (because ADD/AND/OR/XOR/SRA |
| 8803 | // would clobber CC). |
| 8804 | if (!Val.hasOneUse()) |
| 8805 | return {}; |
| 8806 | [[fallthrough]]; |
| 8807 | case ISD::SHL: |
| 8808 | case ISD::SRL: |
| 8809 | SDValue Op0 = Val.getOperand(i: 0), Op1 = Val.getOperand(i: 1); |
| 8810 | const auto &&Op0SDVals = simplifyAssumingCCVal(Val&: Op0, CC, DAG); |
| 8811 | const auto &&Op1SDVals = simplifyAssumingCCVal(Val&: Op1, CC, DAG); |
| 8812 | if (Op0SDVals.empty() || Op1SDVals.empty()) |
| 8813 | return {}; |
| 8814 | SmallVector<SDValue, 4> BinaryOpSDVals; |
| 8815 | for (auto CCVal : {0, 1, 2, 3}) |
| 8816 | BinaryOpSDVals.emplace_back(Args: DAG.getNode( |
| 8817 | Opcode, DL, VT: Val.getValueType(), N1: Op0SDVals[CCVal], N2: Op1SDVals[CCVal])); |
| 8818 | return BinaryOpSDVals; |
| 8819 | } |
| 8820 | } |
| 8821 | |
| 8822 | static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask, |
| 8823 | SelectionDAG &DAG) { |
| 8824 | // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code |
| 8825 | // set by the CCReg instruction using the CCValid / CCMask masks, |
| 8826 | // If the CCReg instruction is itself a ICMP / TM testing the condition |
| 8827 | // code set by some other instruction, see whether we can directly |
| 8828 | // use that condition code. |
| 8829 | auto *CCNode = CCReg.getNode(); |
| 8830 | if (!CCNode) |
| 8831 | return false; |
| 8832 | |
| 8833 | if (CCNode->getOpcode() == SystemZISD::TM) { |
| 8834 | if (CCValid != SystemZ::CCMASK_TM) |
| 8835 | return false; |
| 8836 | auto emulateTMCCMask = [](const SDValue &Op0Val, const SDValue &Op1Val) { |
| 8837 | auto *Op0Node = dyn_cast<ConstantSDNode>(Val: Op0Val.getNode()); |
| 8838 | auto *Op1Node = dyn_cast<ConstantSDNode>(Val: Op1Val.getNode()); |
| 8839 | if (!Op0Node || !Op1Node) |
| 8840 | return -1; |
| 8841 | auto Op0APVal = Op0Node->getAPIntValue(); |
| 8842 | auto Op1APVal = Op1Node->getAPIntValue(); |
| 8843 | auto Result = Op0APVal & Op1APVal; |
| 8844 | bool AllOnes = Result == Op1APVal; |
| 8845 | bool AllZeros = Result == 0; |
| 8846 | bool IsLeftMostBitSet = Result[Op1APVal.getActiveBits()] != 0; |
| 8847 | return AllZeros ? 0 : AllOnes ? 3 : IsLeftMostBitSet ? 2 : 1; |
| 8848 | }; |
| 8849 | SDValue Op0 = CCNode->getOperand(Num: 0); |
| 8850 | SDValue Op1 = CCNode->getOperand(Num: 1); |
| 8851 | auto [Op0CC, Op0CCValid] = findCCUse(Val: Op0); |
| 8852 | if (Op0CC == SDValue()) |
| 8853 | return false; |
| 8854 | const auto &&Op0SDVals = simplifyAssumingCCVal(Val&: Op0, CC&: Op0CC, DAG); |
| 8855 | const auto &&Op1SDVals = simplifyAssumingCCVal(Val&: Op1, CC&: Op0CC, DAG); |
| 8856 | if (Op0SDVals.empty() || Op1SDVals.empty()) |
| 8857 | return false; |
| 8858 | int NewCCMask = 0; |
| 8859 | for (auto CC : {0, 1, 2, 3}) { |
| 8860 | auto CCVal = emulateTMCCMask(Op0SDVals[CC], Op1SDVals[CC]); |
| 8861 | if (CCVal < 0) |
| 8862 | return false; |
| 8863 | NewCCMask <<= 1; |
| 8864 | NewCCMask |= (CCMask & (1 << (3 - CCVal))) != 0; |
| 8865 | } |
| 8866 | NewCCMask &= Op0CCValid; |
| 8867 | CCReg = Op0CC; |
| 8868 | CCMask = NewCCMask; |
| 8869 | CCValid = Op0CCValid; |
| 8870 | return true; |
| 8871 | } |
| 8872 | if (CCNode->getOpcode() != SystemZISD::ICMP || |
| 8873 | CCValid != SystemZ::CCMASK_ICMP) |
| 8874 | return false; |
| 8875 | |
| 8876 | SDValue CmpOp0 = CCNode->getOperand(Num: 0); |
| 8877 | SDValue CmpOp1 = CCNode->getOperand(Num: 1); |
| 8878 | SDValue CmpOp2 = CCNode->getOperand(Num: 2); |
| 8879 | auto [Op0CC, Op0CCValid] = findCCUse(Val: CmpOp0); |
| 8880 | if (Op0CC != SDValue()) { |
| 8881 | const auto &&Op0SDVals = simplifyAssumingCCVal(Val&: CmpOp0, CC&: Op0CC, DAG); |
| 8882 | const auto &&Op1SDVals = simplifyAssumingCCVal(Val&: CmpOp1, CC&: Op0CC, DAG); |
| 8883 | if (Op0SDVals.empty() || Op1SDVals.empty()) |
| 8884 | return false; |
| 8885 | |
| 8886 | auto *CmpType = dyn_cast<ConstantSDNode>(Val&: CmpOp2); |
| 8887 | auto CmpTypeVal = CmpType->getZExtValue(); |
| 8888 | const auto compareCCSigned = [&CmpTypeVal](const SDValue &Op0Val, |
| 8889 | const SDValue &Op1Val) { |
| 8890 | auto *Op0Node = dyn_cast<ConstantSDNode>(Val: Op0Val.getNode()); |
| 8891 | auto *Op1Node = dyn_cast<ConstantSDNode>(Val: Op1Val.getNode()); |
| 8892 | if (!Op0Node || !Op1Node) |
| 8893 | return -1; |
| 8894 | auto Op0APVal = Op0Node->getAPIntValue(); |
| 8895 | auto Op1APVal = Op1Node->getAPIntValue(); |
| 8896 | if (CmpTypeVal == SystemZICMP::SignedOnly) |
| 8897 | return Op0APVal == Op1APVal ? 0 : Op0APVal.slt(RHS: Op1APVal) ? 1 : 2; |
| 8898 | return Op0APVal == Op1APVal ? 0 : Op0APVal.ult(RHS: Op1APVal) ? 1 : 2; |
| 8899 | }; |
| 8900 | int NewCCMask = 0; |
| 8901 | for (auto CC : {0, 1, 2, 3}) { |
| 8902 | auto CCVal = compareCCSigned(Op0SDVals[CC], Op1SDVals[CC]); |
| 8903 | if (CCVal < 0) |
| 8904 | return false; |
| 8905 | NewCCMask <<= 1; |
| 8906 | NewCCMask |= (CCMask & (1 << (3 - CCVal))) != 0; |
| 8907 | } |
| 8908 | NewCCMask &= Op0CCValid; |
| 8909 | CCMask = NewCCMask; |
| 8910 | CCReg = Op0CC; |
| 8911 | CCValid = Op0CCValid; |
| 8912 | return true; |
| 8913 | } |
| 8914 | |
| 8915 | return false; |
| 8916 | } |
| 8917 | |
| 8918 | // Merging versus split in multiple branches cost. |
| 8919 | TargetLoweringBase::CondMergingParams |
| 8920 | SystemZTargetLowering::getJumpConditionMergingParams(Instruction::BinaryOps Opc, |
| 8921 | const Value *Lhs, |
| 8922 | const Value *Rhs) const { |
| 8923 | const auto isFlagOutOpCC = [](const Value *V) { |
| 8924 | using namespace llvm::PatternMatch; |
| 8925 | const Value *RHSVal; |
| 8926 | const APInt *RHSC; |
| 8927 | if (const auto *I = dyn_cast<Instruction>(Val: V)) { |
| 8928 | // PatternMatch.h provides concise tree-based pattern match of llvm IR. |
| 8929 | if (match(V: I->getOperand(i: 0), P: m_And(L: m_Value(V&: RHSVal), R: m_APInt(Res&: RHSC))) || |
| 8930 | match(V: I, P: m_Cmp(L: m_Value(V&: RHSVal), R: m_APInt(Res&: RHSC)))) { |
| 8931 | if (const auto *CB = dyn_cast<CallBase>(Val: RHSVal)) { |
| 8932 | if (CB->isInlineAsm()) { |
| 8933 | const InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand()); |
| 8934 | return IA && IA->getConstraintString().contains(Other: "{@cc}" ); |
| 8935 | } |
| 8936 | } |
| 8937 | } |
| 8938 | } |
| 8939 | return false; |
| 8940 | }; |
| 8941 | // Pattern (ICmp %asm) or (ICmp (And %asm)). |
| 8942 | // Cost of longest dependency chain (ICmp, And) is 2. CostThreshold or |
| 8943 | // BaseCost can be set >=2. If cost of instruction <= CostThreshold |
| 8944 | // conditionals will be merged or else conditionals will be split. |
| 8945 | if (isFlagOutOpCC(Lhs) && isFlagOutOpCC(Rhs)) |
| 8946 | return {.BaseCost: 3, .LikelyBias: 0, .UnlikelyBias: -1}; |
| 8947 | // Default. |
| 8948 | return {.BaseCost: -1, .LikelyBias: -1, .UnlikelyBias: -1}; |
| 8949 | } |
| 8950 | |
| 8951 | SDValue SystemZTargetLowering::combineBR_CCMASK(SDNode *N, |
| 8952 | DAGCombinerInfo &DCI) const { |
| 8953 | SelectionDAG &DAG = DCI.DAG; |
| 8954 | |
| 8955 | // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. |
| 8956 | auto *CCValid = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 8957 | auto *CCMask = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
| 8958 | if (!CCValid || !CCMask) |
| 8959 | return SDValue(); |
| 8960 | |
| 8961 | int CCValidVal = CCValid->getZExtValue(); |
| 8962 | int CCMaskVal = CCMask->getZExtValue(); |
| 8963 | SDValue Chain = N->getOperand(Num: 0); |
| 8964 | SDValue CCReg = N->getOperand(Num: 4); |
| 8965 | // If combineCMask was able to merge or simplify ccvalid or ccmask, re-emit |
| 8966 | // the modified BR_CCMASK with the new values. |
| 8967 | // In order to avoid conditional branches with full or empty cc masks, do not |
| 8968 | // do this if ccmask is 0 or equal to ccvalid. |
| 8969 | if (combineCCMask(CCReg, CCValid&: CCValidVal, CCMask&: CCMaskVal, DAG) && CCMaskVal != 0 && |
| 8970 | CCMaskVal != CCValidVal) |
| 8971 | return DAG.getNode(Opcode: SystemZISD::BR_CCMASK, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 8972 | N1: Chain, |
| 8973 | N2: DAG.getTargetConstant(Val: CCValidVal, DL: SDLoc(N), VT: MVT::i32), |
| 8974 | N3: DAG.getTargetConstant(Val: CCMaskVal, DL: SDLoc(N), VT: MVT::i32), |
| 8975 | N4: N->getOperand(Num: 3), N5: CCReg); |
| 8976 | return SDValue(); |
| 8977 | } |
| 8978 | |
| 8979 | SDValue SystemZTargetLowering::combineSELECT_CCMASK( |
| 8980 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 8981 | SelectionDAG &DAG = DCI.DAG; |
| 8982 | |
| 8983 | // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. |
| 8984 | auto *CCValid = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
| 8985 | auto *CCMask = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 3)); |
| 8986 | if (!CCValid || !CCMask) |
| 8987 | return SDValue(); |
| 8988 | |
| 8989 | int CCValidVal = CCValid->getZExtValue(); |
| 8990 | int CCMaskVal = CCMask->getZExtValue(); |
| 8991 | SDValue CCReg = N->getOperand(Num: 4); |
| 8992 | |
| 8993 | bool IsCombinedCCReg = combineCCMask(CCReg, CCValid&: CCValidVal, CCMask&: CCMaskVal, DAG); |
| 8994 | |
| 8995 | // Populate SDVals vector for each condition code ccval for given Val, which |
| 8996 | // can again be another nested select_ccmask with the same CC. |
| 8997 | const auto constructCCSDValsFromSELECT = [&CCReg](SDValue &Val) { |
| 8998 | if (Val.getOpcode() == SystemZISD::SELECT_CCMASK) { |
| 8999 | SmallVector<SDValue, 4> Res; |
| 9000 | if (Val.getOperand(i: 4) != CCReg) |
| 9001 | return SmallVector<SDValue, 4>{}; |
| 9002 | SDValue TrueVal = Val.getOperand(i: 0), FalseVal = Val.getOperand(i: 1); |
| 9003 | auto *CCMask = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 3)); |
| 9004 | if (!CCMask) |
| 9005 | return SmallVector<SDValue, 4>{}; |
| 9006 | |
| 9007 | int CCMaskVal = CCMask->getZExtValue(); |
| 9008 | for (auto &CC : {0, 1, 2, 3}) |
| 9009 | Res.emplace_back(Args&: ((CCMaskVal & (1 << (3 - CC))) != 0) ? TrueVal |
| 9010 | : FalseVal); |
| 9011 | return Res; |
| 9012 | } |
| 9013 | return SmallVector<SDValue, 4>{Val, Val, Val, Val}; |
| 9014 | }; |
| 9015 | // Attempting to optimize TrueVal/FalseVal in outermost select_ccmask either |
| 9016 | // with CCReg found by combineCCMask or original CCReg. |
| 9017 | SDValue TrueVal = N->getOperand(Num: 0); |
| 9018 | SDValue FalseVal = N->getOperand(Num: 1); |
| 9019 | auto &&TrueSDVals = simplifyAssumingCCVal(Val&: TrueVal, CC&: CCReg, DAG); |
| 9020 | auto &&FalseSDVals = simplifyAssumingCCVal(Val&: FalseVal, CC&: CCReg, DAG); |
| 9021 | // TrueSDVals/FalseSDVals might be empty in case of non-constant |
| 9022 | // TrueVal/FalseVal for select_ccmask, which can not be optimized further. |
| 9023 | if (TrueSDVals.empty()) |
| 9024 | TrueSDVals = constructCCSDValsFromSELECT(TrueVal); |
| 9025 | if (FalseSDVals.empty()) |
| 9026 | FalseSDVals = constructCCSDValsFromSELECT(FalseVal); |
| 9027 | if (!TrueSDVals.empty() && !FalseSDVals.empty()) { |
| 9028 | SmallSet<SDValue, 4> MergedSDValsSet; |
| 9029 | // Ignoring CC values outside CCValiid. |
| 9030 | for (auto CC : {0, 1, 2, 3}) { |
| 9031 | if ((CCValidVal & ((1 << (3 - CC)))) != 0) |
| 9032 | MergedSDValsSet.insert(V: ((CCMaskVal & (1 << (3 - CC))) != 0) |
| 9033 | ? TrueSDVals[CC] |
| 9034 | : FalseSDVals[CC]); |
| 9035 | } |
| 9036 | if (MergedSDValsSet.size() == 1) |
| 9037 | return *MergedSDValsSet.begin(); |
| 9038 | if (MergedSDValsSet.size() == 2) { |
| 9039 | auto BeginIt = MergedSDValsSet.begin(); |
| 9040 | SDValue NewTrueVal = *BeginIt, NewFalseVal = *next(x: BeginIt); |
| 9041 | if (NewTrueVal == FalseVal || NewFalseVal == TrueVal) |
| 9042 | std::swap(a&: NewTrueVal, b&: NewFalseVal); |
| 9043 | int NewCCMask = 0; |
| 9044 | for (auto CC : {0, 1, 2, 3}) { |
| 9045 | NewCCMask <<= 1; |
| 9046 | NewCCMask |= ((CCMaskVal & (1 << (3 - CC))) != 0) |
| 9047 | ? (TrueSDVals[CC] == NewTrueVal) |
| 9048 | : (FalseSDVals[CC] == NewTrueVal); |
| 9049 | } |
| 9050 | CCMaskVal = NewCCMask; |
| 9051 | CCMaskVal &= CCValidVal; |
| 9052 | TrueVal = NewTrueVal; |
| 9053 | FalseVal = NewFalseVal; |
| 9054 | IsCombinedCCReg = true; |
| 9055 | } |
| 9056 | } |
| 9057 | // If the condition is trivially false or trivially true after |
| 9058 | // combineCCMask, just collapse this SELECT_CCMASK to the indicated value |
| 9059 | // (possibly modified by constructCCSDValsFromSELECT). |
| 9060 | if (CCMaskVal == 0) |
| 9061 | return FalseVal; |
| 9062 | if (CCMaskVal == CCValidVal) |
| 9063 | return TrueVal; |
| 9064 | |
| 9065 | if (IsCombinedCCReg) |
| 9066 | return DAG.getNode( |
| 9067 | Opcode: SystemZISD::SELECT_CCMASK, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), N1: TrueVal, |
| 9068 | N2: FalseVal, N3: DAG.getTargetConstant(Val: CCValidVal, DL: SDLoc(N), VT: MVT::i32), |
| 9069 | N4: DAG.getTargetConstant(Val: CCMaskVal, DL: SDLoc(N), VT: MVT::i32), N5: CCReg); |
| 9070 | |
| 9071 | return SDValue(); |
| 9072 | } |
| 9073 | |
| 9074 | SDValue SystemZTargetLowering::combineGET_CCMASK( |
| 9075 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 9076 | |
| 9077 | // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible |
| 9078 | auto *CCValid = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 9079 | auto *CCMask = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
| 9080 | if (!CCValid || !CCMask) |
| 9081 | return SDValue(); |
| 9082 | int CCValidVal = CCValid->getZExtValue(); |
| 9083 | int CCMaskVal = CCMask->getZExtValue(); |
| 9084 | |
| 9085 | SDValue Select = N->getOperand(Num: 0); |
| 9086 | if (Select->getOpcode() == ISD::TRUNCATE) |
| 9087 | Select = Select->getOperand(Num: 0); |
| 9088 | if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) |
| 9089 | return SDValue(); |
| 9090 | |
| 9091 | auto *SelectCCValid = dyn_cast<ConstantSDNode>(Val: Select->getOperand(Num: 2)); |
| 9092 | auto *SelectCCMask = dyn_cast<ConstantSDNode>(Val: Select->getOperand(Num: 3)); |
| 9093 | if (!SelectCCValid || !SelectCCMask) |
| 9094 | return SDValue(); |
| 9095 | int SelectCCValidVal = SelectCCValid->getZExtValue(); |
| 9096 | int SelectCCMaskVal = SelectCCMask->getZExtValue(); |
| 9097 | |
| 9098 | auto *TrueVal = dyn_cast<ConstantSDNode>(Val: Select->getOperand(Num: 0)); |
| 9099 | auto *FalseVal = dyn_cast<ConstantSDNode>(Val: Select->getOperand(Num: 1)); |
| 9100 | if (!TrueVal || !FalseVal) |
| 9101 | return SDValue(); |
| 9102 | if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) |
| 9103 | ; |
| 9104 | else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) |
| 9105 | SelectCCMaskVal ^= SelectCCValidVal; |
| 9106 | else |
| 9107 | return SDValue(); |
| 9108 | |
| 9109 | if (SelectCCValidVal & ~CCValidVal) |
| 9110 | return SDValue(); |
| 9111 | if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) |
| 9112 | return SDValue(); |
| 9113 | |
| 9114 | return Select->getOperand(Num: 4); |
| 9115 | } |
| 9116 | |
| 9117 | SDValue SystemZTargetLowering::combineIntDIVREM( |
| 9118 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 9119 | SelectionDAG &DAG = DCI.DAG; |
| 9120 | EVT VT = N->getValueType(ResNo: 0); |
| 9121 | // In the case where the divisor is a vector of constants a cheaper |
| 9122 | // sequence of instructions can replace the divide. BuildSDIV is called to |
| 9123 | // do this during DAG combining, but it only succeeds when it can build a |
| 9124 | // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and |
| 9125 | // since it is not Legal but Custom it can only happen before |
| 9126 | // legalization. Therefore we must scalarize this early before Combine |
| 9127 | // 1. For widened vectors, this is already the result of type legalization. |
| 9128 | if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && |
| 9129 | DAG.isConstantIntBuildVectorOrConstantInt(N: N->getOperand(Num: 1))) |
| 9130 | return DAG.UnrollVectorOp(N); |
| 9131 | return SDValue(); |
| 9132 | } |
| 9133 | |
| 9134 | |
| 9135 | // Transform a right shift of a multiply-and-add into a multiply-and-add-high. |
| 9136 | // This is closely modeled after the common-code combineShiftToMULH. |
| 9137 | SDValue SystemZTargetLowering::combineShiftToMulAddHigh( |
| 9138 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 9139 | SelectionDAG &DAG = DCI.DAG; |
| 9140 | SDLoc DL(N); |
| 9141 | |
| 9142 | assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| 9143 | "SRL or SRA node is required here!" ); |
| 9144 | |
| 9145 | if (!Subtarget.hasVector()) |
| 9146 | return SDValue(); |
| 9147 | |
| 9148 | // Check the shift amount. Proceed with the transformation if the shift |
| 9149 | // amount is constant. |
| 9150 | ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N: N->getOperand(Num: 1)); |
| 9151 | if (!ShiftAmtSrc) |
| 9152 | return SDValue(); |
| 9153 | |
| 9154 | // The operation feeding into the shift must be an add. |
| 9155 | SDValue ShiftOperand = N->getOperand(Num: 0); |
| 9156 | if (ShiftOperand.getOpcode() != ISD::ADD) |
| 9157 | return SDValue(); |
| 9158 | |
| 9159 | // One operand of the add must be a multiply. |
| 9160 | SDValue MulOp = ShiftOperand.getOperand(i: 0); |
| 9161 | SDValue AddOp = ShiftOperand.getOperand(i: 1); |
| 9162 | if (MulOp.getOpcode() != ISD::MUL) { |
| 9163 | if (AddOp.getOpcode() != ISD::MUL) |
| 9164 | return SDValue(); |
| 9165 | std::swap(a&: MulOp, b&: AddOp); |
| 9166 | } |
| 9167 | |
| 9168 | // All operands must be equivalent extend nodes. |
| 9169 | SDValue LeftOp = MulOp.getOperand(i: 0); |
| 9170 | SDValue RightOp = MulOp.getOperand(i: 1); |
| 9171 | |
| 9172 | bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; |
| 9173 | bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; |
| 9174 | |
| 9175 | if (!IsSignExt && !IsZeroExt) |
| 9176 | return SDValue(); |
| 9177 | |
| 9178 | EVT NarrowVT = LeftOp.getOperand(i: 0).getValueType(); |
| 9179 | unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); |
| 9180 | |
| 9181 | SDValue MulhRightOp; |
| 9182 | if (ConstantSDNode *Constant = isConstOrConstSplat(N: RightOp)) { |
| 9183 | unsigned ActiveBits = IsSignExt |
| 9184 | ? Constant->getAPIntValue().getSignificantBits() |
| 9185 | : Constant->getAPIntValue().getActiveBits(); |
| 9186 | if (ActiveBits > NarrowVTSize) |
| 9187 | return SDValue(); |
| 9188 | MulhRightOp = DAG.getConstant( |
| 9189 | Val: Constant->getAPIntValue().trunc(width: NarrowVT.getScalarSizeInBits()), DL, |
| 9190 | VT: NarrowVT); |
| 9191 | } else { |
| 9192 | if (LeftOp.getOpcode() != RightOp.getOpcode()) |
| 9193 | return SDValue(); |
| 9194 | // Check that the two extend nodes are the same type. |
| 9195 | if (NarrowVT != RightOp.getOperand(i: 0).getValueType()) |
| 9196 | return SDValue(); |
| 9197 | MulhRightOp = RightOp.getOperand(i: 0); |
| 9198 | } |
| 9199 | |
| 9200 | SDValue MulhAddOp; |
| 9201 | if (ConstantSDNode *Constant = isConstOrConstSplat(N: AddOp)) { |
| 9202 | unsigned ActiveBits = IsSignExt |
| 9203 | ? Constant->getAPIntValue().getSignificantBits() |
| 9204 | : Constant->getAPIntValue().getActiveBits(); |
| 9205 | if (ActiveBits > NarrowVTSize) |
| 9206 | return SDValue(); |
| 9207 | MulhAddOp = DAG.getConstant( |
| 9208 | Val: Constant->getAPIntValue().trunc(width: NarrowVT.getScalarSizeInBits()), DL, |
| 9209 | VT: NarrowVT); |
| 9210 | } else { |
| 9211 | if (LeftOp.getOpcode() != AddOp.getOpcode()) |
| 9212 | return SDValue(); |
| 9213 | // Check that the two extend nodes are the same type. |
| 9214 | if (NarrowVT != AddOp.getOperand(i: 0).getValueType()) |
| 9215 | return SDValue(); |
| 9216 | MulhAddOp = AddOp.getOperand(i: 0); |
| 9217 | } |
| 9218 | |
| 9219 | EVT WideVT = LeftOp.getValueType(); |
| 9220 | // Proceed with the transformation if the wide types match. |
| 9221 | assert((WideVT == RightOp.getValueType()) && |
| 9222 | "Cannot have a multiply node with two different operand types." ); |
| 9223 | assert((WideVT == AddOp.getValueType()) && |
| 9224 | "Cannot have an add node with two different operand types." ); |
| 9225 | |
| 9226 | // Proceed with the transformation if the wide type is twice as large |
| 9227 | // as the narrow type. |
| 9228 | if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize) |
| 9229 | return SDValue(); |
| 9230 | |
| 9231 | // Check the shift amount with the narrow type size. |
| 9232 | // Proceed with the transformation if the shift amount is the width |
| 9233 | // of the narrow type. |
| 9234 | unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); |
| 9235 | if (ShiftAmt != NarrowVTSize) |
| 9236 | return SDValue(); |
| 9237 | |
| 9238 | // Proceed if we support the multiply-and-add-high operation. |
| 9239 | if (!(NarrowVT == MVT::v16i8 || NarrowVT == MVT::v8i16 || |
| 9240 | NarrowVT == MVT::v4i32 || |
| 9241 | (Subtarget.hasVectorEnhancements3() && |
| 9242 | (NarrowVT == MVT::v2i64 || NarrowVT == MVT::i128)))) |
| 9243 | return SDValue(); |
| 9244 | |
| 9245 | // Emit the VMAH (signed) or VMALH (unsigned) operation. |
| 9246 | SDValue Result = DAG.getNode(Opcode: IsSignExt ? SystemZISD::VMAH : SystemZISD::VMALH, |
| 9247 | DL, VT: NarrowVT, N1: LeftOp.getOperand(i: 0), |
| 9248 | N2: MulhRightOp, N3: MulhAddOp); |
| 9249 | bool IsSigned = N->getOpcode() == ISD::SRA; |
| 9250 | return DAG.getExtOrTrunc(IsSigned, Op: Result, DL, VT: WideVT); |
| 9251 | } |
| 9252 | |
| 9253 | // Op is an operand of a multiplication. Check whether this can be folded |
| 9254 | // into an even/odd widening operation; if so, return the opcode to be used |
| 9255 | // and update Op to the appropriate sub-operand. Note that the caller must |
| 9256 | // verify that *both* operands of the multiplication support the operation. |
| 9257 | static unsigned detectEvenOddMultiplyOperand(const SelectionDAG &DAG, |
| 9258 | const SystemZSubtarget &Subtarget, |
| 9259 | SDValue &Op) { |
| 9260 | EVT VT = Op.getValueType(); |
| 9261 | |
| 9262 | // Check for (sign/zero_extend_vector_inreg (vector_shuffle)) corresponding |
| 9263 | // to selecting the even or odd vector elements. |
| 9264 | if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && |
| 9265 | (Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || |
| 9266 | Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG)) { |
| 9267 | bool IsSigned = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; |
| 9268 | unsigned NumElts = VT.getVectorNumElements(); |
| 9269 | Op = Op.getOperand(i: 0); |
| 9270 | if (Op.getValueType().getVectorNumElements() == 2 * NumElts && |
| 9271 | Op.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| 9272 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Val: Op.getNode()); |
| 9273 | ArrayRef<int> ShuffleMask = SVN->getMask(); |
| 9274 | bool CanUseEven = true, CanUseOdd = true; |
| 9275 | for (unsigned Elt = 0; Elt < NumElts; Elt++) { |
| 9276 | if (ShuffleMask[Elt] == -1) |
| 9277 | continue; |
| 9278 | if (unsigned(ShuffleMask[Elt]) != 2 * Elt) |
| 9279 | CanUseEven = false; |
| 9280 | if (unsigned(ShuffleMask[Elt]) != 2 * Elt + 1) |
| 9281 | CanUseOdd = false; |
| 9282 | } |
| 9283 | Op = Op.getOperand(i: 0); |
| 9284 | if (CanUseEven) |
| 9285 | return IsSigned ? SystemZISD::VME : SystemZISD::VMLE; |
| 9286 | if (CanUseOdd) |
| 9287 | return IsSigned ? SystemZISD::VMO : SystemZISD::VMLO; |
| 9288 | } |
| 9289 | } |
| 9290 | |
| 9291 | // For z17, we can also support the v2i64->i128 case, which looks like |
| 9292 | // (sign/zero_extend (extract_vector_elt X 0/1)) |
| 9293 | if (VT == MVT::i128 && Subtarget.hasVectorEnhancements3() && |
| 9294 | (Op.getOpcode() == ISD::SIGN_EXTEND || |
| 9295 | Op.getOpcode() == ISD::ZERO_EXTEND)) { |
| 9296 | bool IsSigned = Op.getOpcode() == ISD::SIGN_EXTEND; |
| 9297 | Op = Op.getOperand(i: 0); |
| 9298 | if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| 9299 | Op.getOperand(i: 0).getValueType() == MVT::v2i64 && |
| 9300 | Op.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 9301 | unsigned Elem = Op.getConstantOperandVal(i: 1); |
| 9302 | Op = Op.getOperand(i: 0); |
| 9303 | if (Elem == 0) |
| 9304 | return IsSigned ? SystemZISD::VME : SystemZISD::VMLE; |
| 9305 | if (Elem == 1) |
| 9306 | return IsSigned ? SystemZISD::VMO : SystemZISD::VMLO; |
| 9307 | } |
| 9308 | } |
| 9309 | |
| 9310 | return 0; |
| 9311 | } |
| 9312 | |
| 9313 | SDValue SystemZTargetLowering::combineMUL( |
| 9314 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 9315 | SelectionDAG &DAG = DCI.DAG; |
| 9316 | |
| 9317 | // Detect even/odd widening multiplication. |
| 9318 | SDValue Op0 = N->getOperand(Num: 0); |
| 9319 | SDValue Op1 = N->getOperand(Num: 1); |
| 9320 | unsigned OpcodeCand0 = detectEvenOddMultiplyOperand(DAG, Subtarget, Op&: Op0); |
| 9321 | unsigned OpcodeCand1 = detectEvenOddMultiplyOperand(DAG, Subtarget, Op&: Op1); |
| 9322 | if (OpcodeCand0 && OpcodeCand0 == OpcodeCand1) |
| 9323 | return DAG.getNode(Opcode: OpcodeCand0, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), N1: Op0, N2: Op1); |
| 9324 | |
| 9325 | return SDValue(); |
| 9326 | } |
| 9327 | |
| 9328 | SDValue SystemZTargetLowering::combineINTRINSIC( |
| 9329 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 9330 | SelectionDAG &DAG = DCI.DAG; |
| 9331 | |
| 9332 | unsigned Id = N->getConstantOperandVal(Num: 1); |
| 9333 | switch (Id) { |
| 9334 | // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 |
| 9335 | // or larger is simply a vector load. |
| 9336 | case Intrinsic::s390_vll: |
| 9337 | case Intrinsic::s390_vlrl: |
| 9338 | if (auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2))) |
| 9339 | if (C->getZExtValue() >= 15) |
| 9340 | return DAG.getLoad(VT: N->getValueType(ResNo: 0), dl: SDLoc(N), Chain: N->getOperand(Num: 0), |
| 9341 | Ptr: N->getOperand(Num: 3), PtrInfo: MachinePointerInfo()); |
| 9342 | break; |
| 9343 | // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. |
| 9344 | case Intrinsic::s390_vstl: |
| 9345 | case Intrinsic::s390_vstrl: |
| 9346 | if (auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 3))) |
| 9347 | if (C->getZExtValue() >= 15) |
| 9348 | return DAG.getStore(Chain: N->getOperand(Num: 0), dl: SDLoc(N), Val: N->getOperand(Num: 2), |
| 9349 | Ptr: N->getOperand(Num: 4), PtrInfo: MachinePointerInfo()); |
| 9350 | break; |
| 9351 | } |
| 9352 | |
| 9353 | return SDValue(); |
| 9354 | } |
| 9355 | |
| 9356 | SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { |
| 9357 | if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) |
| 9358 | return N->getOperand(Num: 0); |
| 9359 | return N; |
| 9360 | } |
| 9361 | |
| 9362 | SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, |
| 9363 | DAGCombinerInfo &DCI) const { |
| 9364 | switch(N->getOpcode()) { |
| 9365 | default: break; |
| 9366 | case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); |
| 9367 | case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); |
| 9368 | case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); |
| 9369 | case SystemZISD::MERGE_HIGH: |
| 9370 | case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); |
| 9371 | case ISD::LOAD: return combineLOAD(N, DCI); |
| 9372 | case ISD::STORE: return combineSTORE(N, DCI); |
| 9373 | case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); |
| 9374 | case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); |
| 9375 | case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); |
| 9376 | case ISD::STRICT_FP_ROUND: |
| 9377 | case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); |
| 9378 | case ISD::STRICT_FP_EXTEND: |
| 9379 | case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); |
| 9380 | case ISD::SINT_TO_FP: |
| 9381 | case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); |
| 9382 | case ISD::FCOPYSIGN: return combineFCOPYSIGN(N, DCI); |
| 9383 | case ISD::BSWAP: return combineBSWAP(N, DCI); |
| 9384 | case ISD::SETCC: return combineSETCC(N, DCI); |
| 9385 | case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); |
| 9386 | case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); |
| 9387 | case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); |
| 9388 | case ISD::SRL: |
| 9389 | case ISD::SRA: return combineShiftToMulAddHigh(N, DCI); |
| 9390 | case ISD::MUL: return combineMUL(N, DCI); |
| 9391 | case ISD::SDIV: |
| 9392 | case ISD::UDIV: |
| 9393 | case ISD::SREM: |
| 9394 | case ISD::UREM: return combineIntDIVREM(N, DCI); |
| 9395 | case ISD::INTRINSIC_W_CHAIN: |
| 9396 | case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); |
| 9397 | } |
| 9398 | |
| 9399 | return SDValue(); |
| 9400 | } |
| 9401 | |
| 9402 | // Return the demanded elements for the OpNo source operand of Op. DemandedElts |
| 9403 | // are for Op. |
| 9404 | static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, |
| 9405 | unsigned OpNo) { |
| 9406 | EVT VT = Op.getValueType(); |
| 9407 | unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); |
| 9408 | APInt SrcDemE; |
| 9409 | unsigned Opcode = Op.getOpcode(); |
| 9410 | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| 9411 | unsigned Id = Op.getConstantOperandVal(i: 0); |
| 9412 | switch (Id) { |
| 9413 | case Intrinsic::s390_vpksh: // PACKS |
| 9414 | case Intrinsic::s390_vpksf: |
| 9415 | case Intrinsic::s390_vpksg: |
| 9416 | case Intrinsic::s390_vpkshs: // PACKS_CC |
| 9417 | case Intrinsic::s390_vpksfs: |
| 9418 | case Intrinsic::s390_vpksgs: |
| 9419 | case Intrinsic::s390_vpklsh: // PACKLS |
| 9420 | case Intrinsic::s390_vpklsf: |
| 9421 | case Intrinsic::s390_vpklsg: |
| 9422 | case Intrinsic::s390_vpklshs: // PACKLS_CC |
| 9423 | case Intrinsic::s390_vpklsfs: |
| 9424 | case Intrinsic::s390_vpklsgs: |
| 9425 | // VECTOR PACK truncates the elements of two source vectors into one. |
| 9426 | SrcDemE = DemandedElts; |
| 9427 | if (OpNo == 2) |
| 9428 | SrcDemE.lshrInPlace(ShiftAmt: NumElts / 2); |
| 9429 | SrcDemE = SrcDemE.trunc(width: NumElts / 2); |
| 9430 | break; |
| 9431 | // VECTOR UNPACK extends half the elements of the source vector. |
| 9432 | case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| 9433 | case Intrinsic::s390_vuphh: |
| 9434 | case Intrinsic::s390_vuphf: |
| 9435 | case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH |
| 9436 | case Intrinsic::s390_vuplhh: |
| 9437 | case Intrinsic::s390_vuplhf: |
| 9438 | SrcDemE = APInt(NumElts * 2, 0); |
| 9439 | SrcDemE.insertBits(SubBits: DemandedElts, bitPosition: 0); |
| 9440 | break; |
| 9441 | case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| 9442 | case Intrinsic::s390_vuplhw: |
| 9443 | case Intrinsic::s390_vuplf: |
| 9444 | case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW |
| 9445 | case Intrinsic::s390_vupllh: |
| 9446 | case Intrinsic::s390_vupllf: |
| 9447 | SrcDemE = APInt(NumElts * 2, 0); |
| 9448 | SrcDemE.insertBits(SubBits: DemandedElts, bitPosition: NumElts); |
| 9449 | break; |
| 9450 | case Intrinsic::s390_vpdi: { |
| 9451 | // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. |
| 9452 | SrcDemE = APInt(NumElts, 0); |
| 9453 | if (!DemandedElts[OpNo - 1]) |
| 9454 | break; |
| 9455 | unsigned Mask = Op.getConstantOperandVal(i: 3); |
| 9456 | unsigned MaskBit = ((OpNo - 1) ? 1 : 4); |
| 9457 | // Demand input element 0 or 1, given by the mask bit value. |
| 9458 | SrcDemE.setBit((Mask & MaskBit)? 1 : 0); |
| 9459 | break; |
| 9460 | } |
| 9461 | case Intrinsic::s390_vsldb: { |
| 9462 | // VECTOR SHIFT LEFT DOUBLE BY BYTE |
| 9463 | assert(VT == MVT::v16i8 && "Unexpected type." ); |
| 9464 | unsigned FirstIdx = Op.getConstantOperandVal(i: 3); |
| 9465 | assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand." ); |
| 9466 | unsigned NumSrc0Els = 16 - FirstIdx; |
| 9467 | SrcDemE = APInt(NumElts, 0); |
| 9468 | if (OpNo == 1) { |
| 9469 | APInt DemEls = DemandedElts.trunc(width: NumSrc0Els); |
| 9470 | SrcDemE.insertBits(SubBits: DemEls, bitPosition: FirstIdx); |
| 9471 | } else { |
| 9472 | APInt DemEls = DemandedElts.lshr(shiftAmt: NumSrc0Els); |
| 9473 | SrcDemE.insertBits(SubBits: DemEls, bitPosition: 0); |
| 9474 | } |
| 9475 | break; |
| 9476 | } |
| 9477 | case Intrinsic::s390_vperm: |
| 9478 | SrcDemE = APInt::getAllOnes(numBits: NumElts); |
| 9479 | break; |
| 9480 | default: |
| 9481 | llvm_unreachable("Unhandled intrinsic." ); |
| 9482 | break; |
| 9483 | } |
| 9484 | } else { |
| 9485 | switch (Opcode) { |
| 9486 | case SystemZISD::JOIN_DWORDS: |
| 9487 | // Scalar operand. |
| 9488 | SrcDemE = APInt(1, 1); |
| 9489 | break; |
| 9490 | case SystemZISD::SELECT_CCMASK: |
| 9491 | SrcDemE = DemandedElts; |
| 9492 | break; |
| 9493 | default: |
| 9494 | llvm_unreachable("Unhandled opcode." ); |
| 9495 | break; |
| 9496 | } |
| 9497 | } |
| 9498 | return SrcDemE; |
| 9499 | } |
| 9500 | |
| 9501 | static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, |
| 9502 | const APInt &DemandedElts, |
| 9503 | const SelectionDAG &DAG, unsigned Depth, |
| 9504 | unsigned OpNo) { |
| 9505 | APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); |
| 9506 | APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo: OpNo + 1); |
| 9507 | KnownBits LHSKnown = |
| 9508 | DAG.computeKnownBits(Op: Op.getOperand(i: OpNo), DemandedElts: Src0DemE, Depth: Depth + 1); |
| 9509 | KnownBits RHSKnown = |
| 9510 | DAG.computeKnownBits(Op: Op.getOperand(i: OpNo + 1), DemandedElts: Src1DemE, Depth: Depth + 1); |
| 9511 | Known = LHSKnown.intersectWith(RHS: RHSKnown); |
| 9512 | } |
| 9513 | |
| 9514 | void |
| 9515 | SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| 9516 | KnownBits &Known, |
| 9517 | const APInt &DemandedElts, |
| 9518 | const SelectionDAG &DAG, |
| 9519 | unsigned Depth) const { |
| 9520 | Known.resetAll(); |
| 9521 | |
| 9522 | // Intrinsic CC result is returned in the two low bits. |
| 9523 | unsigned Tmp0, Tmp1; // not used |
| 9524 | if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, Opcode&: Tmp0, CCValid&: Tmp1)) { |
| 9525 | Known.Zero.setBitsFrom(2); |
| 9526 | return; |
| 9527 | } |
| 9528 | EVT VT = Op.getValueType(); |
| 9529 | if (Op.getResNo() != 0 || VT == MVT::Untyped) |
| 9530 | return; |
| 9531 | assert (Known.getBitWidth() == VT.getScalarSizeInBits() && |
| 9532 | "KnownBits does not match VT in bitwidth" ); |
| 9533 | assert ((!VT.isVector() || |
| 9534 | (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && |
| 9535 | "DemandedElts does not match VT number of elements" ); |
| 9536 | unsigned BitWidth = Known.getBitWidth(); |
| 9537 | unsigned Opcode = Op.getOpcode(); |
| 9538 | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| 9539 | bool IsLogical = false; |
| 9540 | unsigned Id = Op.getConstantOperandVal(i: 0); |
| 9541 | switch (Id) { |
| 9542 | case Intrinsic::s390_vpksh: // PACKS |
| 9543 | case Intrinsic::s390_vpksf: |
| 9544 | case Intrinsic::s390_vpksg: |
| 9545 | case Intrinsic::s390_vpkshs: // PACKS_CC |
| 9546 | case Intrinsic::s390_vpksfs: |
| 9547 | case Intrinsic::s390_vpksgs: |
| 9548 | case Intrinsic::s390_vpklsh: // PACKLS |
| 9549 | case Intrinsic::s390_vpklsf: |
| 9550 | case Intrinsic::s390_vpklsg: |
| 9551 | case Intrinsic::s390_vpklshs: // PACKLS_CC |
| 9552 | case Intrinsic::s390_vpklsfs: |
| 9553 | case Intrinsic::s390_vpklsgs: |
| 9554 | case Intrinsic::s390_vpdi: |
| 9555 | case Intrinsic::s390_vsldb: |
| 9556 | case Intrinsic::s390_vperm: |
| 9557 | computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, OpNo: 1); |
| 9558 | break; |
| 9559 | case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH |
| 9560 | case Intrinsic::s390_vuplhh: |
| 9561 | case Intrinsic::s390_vuplhf: |
| 9562 | case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW |
| 9563 | case Intrinsic::s390_vupllh: |
| 9564 | case Intrinsic::s390_vupllf: |
| 9565 | IsLogical = true; |
| 9566 | [[fallthrough]]; |
| 9567 | case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| 9568 | case Intrinsic::s390_vuphh: |
| 9569 | case Intrinsic::s390_vuphf: |
| 9570 | case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| 9571 | case Intrinsic::s390_vuplhw: |
| 9572 | case Intrinsic::s390_vuplf: { |
| 9573 | SDValue SrcOp = Op.getOperand(i: 1); |
| 9574 | APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, OpNo: 0); |
| 9575 | Known = DAG.computeKnownBits(Op: SrcOp, DemandedElts: SrcDemE, Depth: Depth + 1); |
| 9576 | if (IsLogical) { |
| 9577 | Known = Known.zext(BitWidth); |
| 9578 | } else |
| 9579 | Known = Known.sext(BitWidth); |
| 9580 | break; |
| 9581 | } |
| 9582 | default: |
| 9583 | break; |
| 9584 | } |
| 9585 | } else { |
| 9586 | switch (Opcode) { |
| 9587 | case SystemZISD::JOIN_DWORDS: |
| 9588 | case SystemZISD::SELECT_CCMASK: |
| 9589 | computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, OpNo: 0); |
| 9590 | break; |
| 9591 | case SystemZISD::REPLICATE: { |
| 9592 | SDValue SrcOp = Op.getOperand(i: 0); |
| 9593 | Known = DAG.computeKnownBits(Op: SrcOp, Depth: Depth + 1); |
| 9594 | if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(Val: SrcOp)) |
| 9595 | Known = Known.sext(BitWidth); // VREPI sign extends the immedate. |
| 9596 | break; |
| 9597 | } |
| 9598 | default: |
| 9599 | break; |
| 9600 | } |
| 9601 | } |
| 9602 | |
| 9603 | // Known has the width of the source operand(s). Adjust if needed to match |
| 9604 | // the passed bitwidth. |
| 9605 | if (Known.getBitWidth() != BitWidth) |
| 9606 | Known = Known.anyextOrTrunc(BitWidth); |
| 9607 | } |
| 9608 | |
| 9609 | static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, |
| 9610 | const SelectionDAG &DAG, unsigned Depth, |
| 9611 | unsigned OpNo) { |
| 9612 | APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); |
| 9613 | unsigned LHS = DAG.ComputeNumSignBits(Op: Op.getOperand(i: OpNo), DemandedElts: Src0DemE, Depth: Depth + 1); |
| 9614 | if (LHS == 1) return 1; // Early out. |
| 9615 | APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo: OpNo + 1); |
| 9616 | unsigned RHS = DAG.ComputeNumSignBits(Op: Op.getOperand(i: OpNo + 1), DemandedElts: Src1DemE, Depth: Depth + 1); |
| 9617 | if (RHS == 1) return 1; // Early out. |
| 9618 | unsigned Common = std::min(a: LHS, b: RHS); |
| 9619 | unsigned SrcBitWidth = Op.getOperand(i: OpNo).getScalarValueSizeInBits(); |
| 9620 | EVT VT = Op.getValueType(); |
| 9621 | unsigned VTBits = VT.getScalarSizeInBits(); |
| 9622 | if (SrcBitWidth > VTBits) { // PACK |
| 9623 | unsigned = SrcBitWidth - VTBits; |
| 9624 | if (Common > SrcExtraBits) |
| 9625 | return (Common - SrcExtraBits); |
| 9626 | return 1; |
| 9627 | } |
| 9628 | assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth." ); |
| 9629 | return Common; |
| 9630 | } |
| 9631 | |
| 9632 | unsigned |
| 9633 | SystemZTargetLowering::ComputeNumSignBitsForTargetNode( |
| 9634 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 9635 | unsigned Depth) const { |
| 9636 | if (Op.getResNo() != 0) |
| 9637 | return 1; |
| 9638 | unsigned Opcode = Op.getOpcode(); |
| 9639 | if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| 9640 | unsigned Id = Op.getConstantOperandVal(i: 0); |
| 9641 | switch (Id) { |
| 9642 | case Intrinsic::s390_vpksh: // PACKS |
| 9643 | case Intrinsic::s390_vpksf: |
| 9644 | case Intrinsic::s390_vpksg: |
| 9645 | case Intrinsic::s390_vpkshs: // PACKS_CC |
| 9646 | case Intrinsic::s390_vpksfs: |
| 9647 | case Intrinsic::s390_vpksgs: |
| 9648 | case Intrinsic::s390_vpklsh: // PACKLS |
| 9649 | case Intrinsic::s390_vpklsf: |
| 9650 | case Intrinsic::s390_vpklsg: |
| 9651 | case Intrinsic::s390_vpklshs: // PACKLS_CC |
| 9652 | case Intrinsic::s390_vpklsfs: |
| 9653 | case Intrinsic::s390_vpklsgs: |
| 9654 | case Intrinsic::s390_vpdi: |
| 9655 | case Intrinsic::s390_vsldb: |
| 9656 | case Intrinsic::s390_vperm: |
| 9657 | return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, OpNo: 1); |
| 9658 | case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| 9659 | case Intrinsic::s390_vuphh: |
| 9660 | case Intrinsic::s390_vuphf: |
| 9661 | case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| 9662 | case Intrinsic::s390_vuplhw: |
| 9663 | case Intrinsic::s390_vuplf: { |
| 9664 | SDValue PackedOp = Op.getOperand(i: 1); |
| 9665 | APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, OpNo: 1); |
| 9666 | unsigned Tmp = DAG.ComputeNumSignBits(Op: PackedOp, DemandedElts: SrcDemE, Depth: Depth + 1); |
| 9667 | EVT VT = Op.getValueType(); |
| 9668 | unsigned VTBits = VT.getScalarSizeInBits(); |
| 9669 | Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); |
| 9670 | return Tmp; |
| 9671 | } |
| 9672 | default: |
| 9673 | break; |
| 9674 | } |
| 9675 | } else { |
| 9676 | switch (Opcode) { |
| 9677 | case SystemZISD::SELECT_CCMASK: |
| 9678 | return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, OpNo: 0); |
| 9679 | default: |
| 9680 | break; |
| 9681 | } |
| 9682 | } |
| 9683 | |
| 9684 | return 1; |
| 9685 | } |
| 9686 | |
| 9687 | bool SystemZTargetLowering:: |
| 9688 | isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, |
| 9689 | const APInt &DemandedElts, const SelectionDAG &DAG, |
| 9690 | bool PoisonOnly, unsigned Depth) const { |
| 9691 | switch (Op->getOpcode()) { |
| 9692 | case SystemZISD::PCREL_WRAPPER: |
| 9693 | case SystemZISD::PCREL_OFFSET: |
| 9694 | return true; |
| 9695 | } |
| 9696 | return false; |
| 9697 | } |
| 9698 | |
| 9699 | unsigned |
| 9700 | SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { |
| 9701 | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| 9702 | unsigned StackAlign = TFI->getStackAlignment(); |
| 9703 | assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && |
| 9704 | "Unexpected stack alignment" ); |
| 9705 | // The default stack probe size is 4096 if the function has no |
| 9706 | // stack-probe-size attribute. |
| 9707 | unsigned StackProbeSize = |
| 9708 | MF.getFunction().getFnAttributeAsParsedInteger(Kind: "stack-probe-size" , Default: 4096); |
| 9709 | // Round down to the stack alignment. |
| 9710 | StackProbeSize &= ~(StackAlign - 1); |
| 9711 | return StackProbeSize ? StackProbeSize : StackAlign; |
| 9712 | } |
| 9713 | |
| 9714 | //===----------------------------------------------------------------------===// |
| 9715 | // Custom insertion |
| 9716 | //===----------------------------------------------------------------------===// |
| 9717 | |
| 9718 | // Force base value Base into a register before MI. Return the register. |
| 9719 | static Register forceReg(MachineInstr &MI, MachineOperand &Base, |
| 9720 | const SystemZInstrInfo *TII) { |
| 9721 | MachineBasicBlock *MBB = MI.getParent(); |
| 9722 | MachineFunction &MF = *MBB->getParent(); |
| 9723 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 9724 | |
| 9725 | if (Base.isReg()) { |
| 9726 | // Copy Base into a new virtual register to help register coalescing in |
| 9727 | // cases with multiple uses. |
| 9728 | Register Reg = MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 9729 | BuildMI(BB&: *MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: SystemZ::COPY), DestReg: Reg) |
| 9730 | .add(MO: Base); |
| 9731 | return Reg; |
| 9732 | } |
| 9733 | |
| 9734 | Register Reg = MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 9735 | BuildMI(BB&: *MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: SystemZ::LA), DestReg: Reg) |
| 9736 | .add(MO: Base) |
| 9737 | .addImm(Val: 0) |
| 9738 | .addReg(RegNo: 0); |
| 9739 | return Reg; |
| 9740 | } |
| 9741 | |
| 9742 | // The CC operand of MI might be missing a kill marker because there |
| 9743 | // were multiple uses of CC, and ISel didn't know which to mark. |
| 9744 | // Figure out whether MI should have had a kill marker. |
| 9745 | static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { |
| 9746 | // Scan forward through BB for a use/def of CC. |
| 9747 | MachineBasicBlock::iterator miI(std::next(x: MachineBasicBlock::iterator(MI))); |
| 9748 | for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { |
| 9749 | const MachineInstr &MI = *miI; |
| 9750 | if (MI.readsRegister(Reg: SystemZ::CC, /*TRI=*/nullptr)) |
| 9751 | return false; |
| 9752 | if (MI.definesRegister(Reg: SystemZ::CC, /*TRI=*/nullptr)) |
| 9753 | break; // Should have kill-flag - update below. |
| 9754 | } |
| 9755 | |
| 9756 | // If we hit the end of the block, check whether CC is live into a |
| 9757 | // successor. |
| 9758 | if (miI == MBB->end()) { |
| 9759 | for (const MachineBasicBlock *Succ : MBB->successors()) |
| 9760 | if (Succ->isLiveIn(Reg: SystemZ::CC)) |
| 9761 | return false; |
| 9762 | } |
| 9763 | |
| 9764 | return true; |
| 9765 | } |
| 9766 | |
| 9767 | // Return true if it is OK for this Select pseudo-opcode to be cascaded |
| 9768 | // together with other Select pseudo-opcodes into a single basic-block with |
| 9769 | // a conditional jump around it. |
| 9770 | static bool isSelectPseudo(MachineInstr &MI) { |
| 9771 | switch (MI.getOpcode()) { |
| 9772 | case SystemZ::Select32: |
| 9773 | case SystemZ::Select64: |
| 9774 | case SystemZ::Select128: |
| 9775 | case SystemZ::SelectF32: |
| 9776 | case SystemZ::SelectF64: |
| 9777 | case SystemZ::SelectF128: |
| 9778 | case SystemZ::SelectVR32: |
| 9779 | case SystemZ::SelectVR64: |
| 9780 | case SystemZ::SelectVR128: |
| 9781 | return true; |
| 9782 | |
| 9783 | default: |
| 9784 | return false; |
| 9785 | } |
| 9786 | } |
| 9787 | |
| 9788 | // Helper function, which inserts PHI functions into SinkMBB: |
| 9789 | // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], |
| 9790 | // where %FalseValue(i) and %TrueValue(i) are taken from Selects. |
| 9791 | static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, |
| 9792 | MachineBasicBlock *TrueMBB, |
| 9793 | MachineBasicBlock *FalseMBB, |
| 9794 | MachineBasicBlock *SinkMBB) { |
| 9795 | MachineFunction *MF = TrueMBB->getParent(); |
| 9796 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| 9797 | |
| 9798 | MachineInstr *FirstMI = Selects.front(); |
| 9799 | unsigned CCValid = FirstMI->getOperand(i: 3).getImm(); |
| 9800 | unsigned CCMask = FirstMI->getOperand(i: 4).getImm(); |
| 9801 | |
| 9802 | MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); |
| 9803 | |
| 9804 | // As we are creating the PHIs, we have to be careful if there is more than |
| 9805 | // one. Later Selects may reference the results of earlier Selects, but later |
| 9806 | // PHIs have to reference the individual true/false inputs from earlier PHIs. |
| 9807 | // That also means that PHI construction must work forward from earlier to |
| 9808 | // later, and that the code must maintain a mapping from earlier PHI's |
| 9809 | // destination registers, and the registers that went into the PHI. |
| 9810 | DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; |
| 9811 | |
| 9812 | for (auto *MI : Selects) { |
| 9813 | Register DestReg = MI->getOperand(i: 0).getReg(); |
| 9814 | Register TrueReg = MI->getOperand(i: 1).getReg(); |
| 9815 | Register FalseReg = MI->getOperand(i: 2).getReg(); |
| 9816 | |
| 9817 | // If this Select we are generating is the opposite condition from |
| 9818 | // the jump we generated, then we have to swap the operands for the |
| 9819 | // PHI that is going to be generated. |
| 9820 | if (MI->getOperand(i: 4).getImm() == (CCValid ^ CCMask)) |
| 9821 | std::swap(a&: TrueReg, b&: FalseReg); |
| 9822 | |
| 9823 | if (auto It = RegRewriteTable.find(Val: TrueReg); It != RegRewriteTable.end()) |
| 9824 | TrueReg = It->second.first; |
| 9825 | |
| 9826 | if (auto It = RegRewriteTable.find(Val: FalseReg); It != RegRewriteTable.end()) |
| 9827 | FalseReg = It->second.second; |
| 9828 | |
| 9829 | DebugLoc DL = MI->getDebugLoc(); |
| 9830 | BuildMI(BB&: *SinkMBB, I: SinkInsertionPoint, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg) |
| 9831 | .addReg(RegNo: TrueReg).addMBB(MBB: TrueMBB) |
| 9832 | .addReg(RegNo: FalseReg).addMBB(MBB: FalseMBB); |
| 9833 | |
| 9834 | // Add this PHI to the rewrite table. |
| 9835 | RegRewriteTable[DestReg] = std::make_pair(x&: TrueReg, y&: FalseReg); |
| 9836 | } |
| 9837 | |
| 9838 | MF->getProperties().resetNoPHIs(); |
| 9839 | } |
| 9840 | |
| 9841 | MachineBasicBlock * |
| 9842 | SystemZTargetLowering::emitAdjCallStack(MachineInstr &MI, |
| 9843 | MachineBasicBlock *BB) const { |
| 9844 | MachineFunction &MF = *BB->getParent(); |
| 9845 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 9846 | auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>(); |
| 9847 | assert(TFL->hasReservedCallFrame(MF) && |
| 9848 | "ADJSTACKDOWN and ADJSTACKUP should be no-ops" ); |
| 9849 | (void)TFL; |
| 9850 | // Get the MaxCallFrameSize value and erase MI since it serves no further |
| 9851 | // purpose as the call frame is statically reserved in the prolog. Set |
| 9852 | // AdjustsStack as MI is *not* mapped as a frame instruction. |
| 9853 | uint32_t NumBytes = MI.getOperand(i: 0).getImm(); |
| 9854 | if (NumBytes > MFI.getMaxCallFrameSize()) |
| 9855 | MFI.setMaxCallFrameSize(NumBytes); |
| 9856 | MFI.setAdjustsStack(true); |
| 9857 | |
| 9858 | MI.eraseFromParent(); |
| 9859 | return BB; |
| 9860 | } |
| 9861 | |
| 9862 | // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. |
| 9863 | MachineBasicBlock * |
| 9864 | SystemZTargetLowering::emitSelect(MachineInstr &MI, |
| 9865 | MachineBasicBlock *MBB) const { |
| 9866 | assert(isSelectPseudo(MI) && "Bad call to emitSelect()" ); |
| 9867 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 9868 | |
| 9869 | unsigned CCValid = MI.getOperand(i: 3).getImm(); |
| 9870 | unsigned CCMask = MI.getOperand(i: 4).getImm(); |
| 9871 | |
| 9872 | // If we have a sequence of Select* pseudo instructions using the |
| 9873 | // same condition code value, we want to expand all of them into |
| 9874 | // a single pair of basic blocks using the same condition. |
| 9875 | SmallVector<MachineInstr*, 8> Selects; |
| 9876 | SmallVector<MachineInstr*, 8> DbgValues; |
| 9877 | Selects.push_back(Elt: &MI); |
| 9878 | unsigned Count = 0; |
| 9879 | for (MachineInstr &NextMI : llvm::make_range( |
| 9880 | x: std::next(x: MachineBasicBlock::iterator(MI)), y: MBB->end())) { |
| 9881 | if (isSelectPseudo(MI&: NextMI)) { |
| 9882 | assert(NextMI.getOperand(3).getImm() == CCValid && |
| 9883 | "Bad CCValid operands since CC was not redefined." ); |
| 9884 | if (NextMI.getOperand(i: 4).getImm() == CCMask || |
| 9885 | NextMI.getOperand(i: 4).getImm() == (CCValid ^ CCMask)) { |
| 9886 | Selects.push_back(Elt: &NextMI); |
| 9887 | continue; |
| 9888 | } |
| 9889 | break; |
| 9890 | } |
| 9891 | if (NextMI.definesRegister(Reg: SystemZ::CC, /*TRI=*/nullptr) || |
| 9892 | NextMI.usesCustomInsertionHook()) |
| 9893 | break; |
| 9894 | bool User = false; |
| 9895 | for (auto *SelMI : Selects) |
| 9896 | if (NextMI.readsVirtualRegister(Reg: SelMI->getOperand(i: 0).getReg())) { |
| 9897 | User = true; |
| 9898 | break; |
| 9899 | } |
| 9900 | if (NextMI.isDebugInstr()) { |
| 9901 | if (User) { |
| 9902 | assert(NextMI.isDebugValue() && "Unhandled debug opcode." ); |
| 9903 | DbgValues.push_back(Elt: &NextMI); |
| 9904 | } |
| 9905 | } else if (User || ++Count > 20) |
| 9906 | break; |
| 9907 | } |
| 9908 | |
| 9909 | MachineInstr *LastMI = Selects.back(); |
| 9910 | bool CCKilled = (LastMI->killsRegister(Reg: SystemZ::CC, /*TRI=*/nullptr) || |
| 9911 | checkCCKill(MI&: *LastMI, MBB)); |
| 9912 | MachineBasicBlock *StartMBB = MBB; |
| 9913 | MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI: LastMI, MBB); |
| 9914 | MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 9915 | |
| 9916 | // Unless CC was killed in the last Select instruction, mark it as |
| 9917 | // live-in to both FalseMBB and JoinMBB. |
| 9918 | if (!CCKilled) { |
| 9919 | FalseMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 9920 | JoinMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 9921 | } |
| 9922 | |
| 9923 | // StartMBB: |
| 9924 | // BRC CCMask, JoinMBB |
| 9925 | // # fallthrough to FalseMBB |
| 9926 | MBB = StartMBB; |
| 9927 | BuildMI(BB: MBB, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: SystemZ::BRC)) |
| 9928 | .addImm(Val: CCValid).addImm(Val: CCMask).addMBB(MBB: JoinMBB); |
| 9929 | MBB->addSuccessor(Succ: JoinMBB); |
| 9930 | MBB->addSuccessor(Succ: FalseMBB); |
| 9931 | |
| 9932 | // FalseMBB: |
| 9933 | // # fallthrough to JoinMBB |
| 9934 | MBB = FalseMBB; |
| 9935 | MBB->addSuccessor(Succ: JoinMBB); |
| 9936 | |
| 9937 | // JoinMBB: |
| 9938 | // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] |
| 9939 | // ... |
| 9940 | MBB = JoinMBB; |
| 9941 | createPHIsForSelects(Selects, TrueMBB: StartMBB, FalseMBB, SinkMBB: MBB); |
| 9942 | for (auto *SelMI : Selects) |
| 9943 | SelMI->eraseFromParent(); |
| 9944 | |
| 9945 | MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); |
| 9946 | for (auto *DbgMI : DbgValues) |
| 9947 | MBB->splice(Where: InsertPos, Other: StartMBB, From: DbgMI); |
| 9948 | |
| 9949 | return JoinMBB; |
| 9950 | } |
| 9951 | |
| 9952 | // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. |
| 9953 | // StoreOpcode is the store to use and Invert says whether the store should |
| 9954 | // happen when the condition is false rather than true. If a STORE ON |
| 9955 | // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. |
| 9956 | MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, |
| 9957 | MachineBasicBlock *MBB, |
| 9958 | unsigned StoreOpcode, |
| 9959 | unsigned STOCOpcode, |
| 9960 | bool Invert) const { |
| 9961 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 9962 | |
| 9963 | Register SrcReg = MI.getOperand(i: 0).getReg(); |
| 9964 | MachineOperand Base = MI.getOperand(i: 1); |
| 9965 | int64_t Disp = MI.getOperand(i: 2).getImm(); |
| 9966 | Register IndexReg = MI.getOperand(i: 3).getReg(); |
| 9967 | unsigned CCValid = MI.getOperand(i: 4).getImm(); |
| 9968 | unsigned CCMask = MI.getOperand(i: 5).getImm(); |
| 9969 | DebugLoc DL = MI.getDebugLoc(); |
| 9970 | |
| 9971 | StoreOpcode = TII->getOpcodeForOffset(Opcode: StoreOpcode, Offset: Disp); |
| 9972 | |
| 9973 | // ISel pattern matching also adds a load memory operand of the same |
| 9974 | // address, so take special care to find the storing memory operand. |
| 9975 | MachineMemOperand *MMO = nullptr; |
| 9976 | for (auto *I : MI.memoperands()) |
| 9977 | if (I->isStore()) { |
| 9978 | MMO = I; |
| 9979 | break; |
| 9980 | } |
| 9981 | |
| 9982 | // Use STOCOpcode if possible. We could use different store patterns in |
| 9983 | // order to avoid matching the index register, but the performance trade-offs |
| 9984 | // might be more complicated in that case. |
| 9985 | if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { |
| 9986 | if (Invert) |
| 9987 | CCMask ^= CCValid; |
| 9988 | |
| 9989 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: STOCOpcode)) |
| 9990 | .addReg(RegNo: SrcReg) |
| 9991 | .add(MO: Base) |
| 9992 | .addImm(Val: Disp) |
| 9993 | .addImm(Val: CCValid) |
| 9994 | .addImm(Val: CCMask) |
| 9995 | .addMemOperand(MMO); |
| 9996 | |
| 9997 | MI.eraseFromParent(); |
| 9998 | return MBB; |
| 9999 | } |
| 10000 | |
| 10001 | // Get the condition needed to branch around the store. |
| 10002 | if (!Invert) |
| 10003 | CCMask ^= CCValid; |
| 10004 | |
| 10005 | MachineBasicBlock *StartMBB = MBB; |
| 10006 | MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10007 | MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10008 | |
| 10009 | // Unless CC was killed in the CondStore instruction, mark it as |
| 10010 | // live-in to both FalseMBB and JoinMBB. |
| 10011 | if (!MI.killsRegister(Reg: SystemZ::CC, /*TRI=*/nullptr) && |
| 10012 | !checkCCKill(MI, MBB: JoinMBB)) { |
| 10013 | FalseMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10014 | JoinMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10015 | } |
| 10016 | |
| 10017 | // StartMBB: |
| 10018 | // BRC CCMask, JoinMBB |
| 10019 | // # fallthrough to FalseMBB |
| 10020 | MBB = StartMBB; |
| 10021 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10022 | .addImm(Val: CCValid).addImm(Val: CCMask).addMBB(MBB: JoinMBB); |
| 10023 | MBB->addSuccessor(Succ: JoinMBB); |
| 10024 | MBB->addSuccessor(Succ: FalseMBB); |
| 10025 | |
| 10026 | // FalseMBB: |
| 10027 | // store %SrcReg, %Disp(%Index,%Base) |
| 10028 | // # fallthrough to JoinMBB |
| 10029 | MBB = FalseMBB; |
| 10030 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: StoreOpcode)) |
| 10031 | .addReg(RegNo: SrcReg) |
| 10032 | .add(MO: Base) |
| 10033 | .addImm(Val: Disp) |
| 10034 | .addReg(RegNo: IndexReg) |
| 10035 | .addMemOperand(MMO); |
| 10036 | MBB->addSuccessor(Succ: JoinMBB); |
| 10037 | |
| 10038 | MI.eraseFromParent(); |
| 10039 | return JoinMBB; |
| 10040 | } |
| 10041 | |
| 10042 | // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI. |
| 10043 | MachineBasicBlock * |
| 10044 | SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI, |
| 10045 | MachineBasicBlock *MBB, |
| 10046 | bool Unsigned) const { |
| 10047 | MachineFunction &MF = *MBB->getParent(); |
| 10048 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10049 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10050 | |
| 10051 | // Synthetic instruction to compare 128-bit values. |
| 10052 | // Sets CC 1 if Op0 > Op1, sets a different CC otherwise. |
| 10053 | Register Op0 = MI.getOperand(i: 0).getReg(); |
| 10054 | Register Op1 = MI.getOperand(i: 1).getReg(); |
| 10055 | |
| 10056 | MachineBasicBlock *StartMBB = MBB; |
| 10057 | MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB); |
| 10058 | MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10059 | |
| 10060 | // StartMBB: |
| 10061 | // |
| 10062 | // Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts. |
| 10063 | // Swap the inputs to get: |
| 10064 | // CC 1 if high(Op0) > high(Op1) |
| 10065 | // CC 2 if high(Op0) < high(Op1) |
| 10066 | // CC 0 if high(Op0) == high(Op1) |
| 10067 | // |
| 10068 | // If CC != 0, we'd done, so jump over the next instruction. |
| 10069 | // |
| 10070 | // VEC[L]G Op1, Op0 |
| 10071 | // JNE JoinMBB |
| 10072 | // # fallthrough to HiEqMBB |
| 10073 | MBB = StartMBB; |
| 10074 | int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG; |
| 10075 | BuildMI(BB: MBB, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: HiOpcode)) |
| 10076 | .addReg(RegNo: Op1).addReg(RegNo: Op0); |
| 10077 | BuildMI(BB: MBB, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10078 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_NE).addMBB(MBB: JoinMBB); |
| 10079 | MBB->addSuccessor(Succ: JoinMBB); |
| 10080 | MBB->addSuccessor(Succ: HiEqMBB); |
| 10081 | |
| 10082 | // HiEqMBB: |
| 10083 | // |
| 10084 | // Otherwise, use VECTOR COMPARE HIGH LOGICAL. |
| 10085 | // Since we already know the high parts are equal, the CC |
| 10086 | // result will only depend on the low parts: |
| 10087 | // CC 1 if low(Op0) > low(Op1) |
| 10088 | // CC 3 if low(Op0) <= low(Op1) |
| 10089 | // |
| 10090 | // VCHLGS Tmp, Op0, Op1 |
| 10091 | // # fallthrough to JoinMBB |
| 10092 | MBB = HiEqMBB; |
| 10093 | Register Temp = MRI.createVirtualRegister(RegClass: &SystemZ::VR128BitRegClass); |
| 10094 | BuildMI(BB: MBB, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: SystemZ::VCHLGS), DestReg: Temp) |
| 10095 | .addReg(RegNo: Op0).addReg(RegNo: Op1); |
| 10096 | MBB->addSuccessor(Succ: JoinMBB); |
| 10097 | |
| 10098 | // Mark CC as live-in to JoinMBB. |
| 10099 | JoinMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10100 | |
| 10101 | MI.eraseFromParent(); |
| 10102 | return JoinMBB; |
| 10103 | } |
| 10104 | |
| 10105 | // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or |
| 10106 | // ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs |
| 10107 | // the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says |
| 10108 | // whether the field should be inverted after performing BinOpcode (e.g. for |
| 10109 | // NAND). |
| 10110 | MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( |
| 10111 | MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, |
| 10112 | bool Invert) const { |
| 10113 | MachineFunction &MF = *MBB->getParent(); |
| 10114 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10115 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10116 | |
| 10117 | // Extract the operands. Base can be a register or a frame index. |
| 10118 | // Src2 can be a register or immediate. |
| 10119 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 10120 | MachineOperand Base = earlyUseOperand(Op: MI.getOperand(i: 1)); |
| 10121 | int64_t Disp = MI.getOperand(i: 2).getImm(); |
| 10122 | MachineOperand Src2 = earlyUseOperand(Op: MI.getOperand(i: 3)); |
| 10123 | Register BitShift = MI.getOperand(i: 4).getReg(); |
| 10124 | Register NegBitShift = MI.getOperand(i: 5).getReg(); |
| 10125 | unsigned BitSize = MI.getOperand(i: 6).getImm(); |
| 10126 | DebugLoc DL = MI.getDebugLoc(); |
| 10127 | |
| 10128 | // Get the right opcodes for the displacement. |
| 10129 | unsigned LOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::L, Offset: Disp); |
| 10130 | unsigned CSOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::CS, Offset: Disp); |
| 10131 | assert(LOpcode && CSOpcode && "Displacement out of range" ); |
| 10132 | |
| 10133 | // Create virtual registers for temporary results. |
| 10134 | Register OrigVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10135 | Register OldVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10136 | Register NewVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10137 | Register RotatedOldVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10138 | Register RotatedNewVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10139 | |
| 10140 | // Insert a basic block for the main loop. |
| 10141 | MachineBasicBlock *StartMBB = MBB; |
| 10142 | MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10143 | MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10144 | |
| 10145 | // StartMBB: |
| 10146 | // ... |
| 10147 | // %OrigVal = L Disp(%Base) |
| 10148 | // # fall through to LoopMBB |
| 10149 | MBB = StartMBB; |
| 10150 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: LOpcode), DestReg: OrigVal).add(MO: Base).addImm(Val: Disp).addReg(RegNo: 0); |
| 10151 | MBB->addSuccessor(Succ: LoopMBB); |
| 10152 | |
| 10153 | // LoopMBB: |
| 10154 | // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] |
| 10155 | // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| 10156 | // %RotatedNewVal = OP %RotatedOldVal, %Src2 |
| 10157 | // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| 10158 | // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| 10159 | // JNE LoopMBB |
| 10160 | // # fall through to DoneMBB |
| 10161 | MBB = LoopMBB; |
| 10162 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: OldVal) |
| 10163 | .addReg(RegNo: OrigVal).addMBB(MBB: StartMBB) |
| 10164 | .addReg(RegNo: Dest).addMBB(MBB: LoopMBB); |
| 10165 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: RotatedOldVal) |
| 10166 | .addReg(RegNo: OldVal).addReg(RegNo: BitShift).addImm(Val: 0); |
| 10167 | if (Invert) { |
| 10168 | // Perform the operation normally and then invert every bit of the field. |
| 10169 | Register Tmp = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10170 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: BinOpcode), DestReg: Tmp).addReg(RegNo: RotatedOldVal).add(MO: Src2); |
| 10171 | // XILF with the upper BitSize bits set. |
| 10172 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::XILF), DestReg: RotatedNewVal) |
| 10173 | .addReg(RegNo: Tmp).addImm(Val: -1U << (32 - BitSize)); |
| 10174 | } else if (BinOpcode) |
| 10175 | // A simply binary operation. |
| 10176 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: BinOpcode), DestReg: RotatedNewVal) |
| 10177 | .addReg(RegNo: RotatedOldVal) |
| 10178 | .add(MO: Src2); |
| 10179 | else |
| 10180 | // Use RISBG to rotate Src2 into position and use it to replace the |
| 10181 | // field in RotatedOldVal. |
| 10182 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RISBG32), DestReg: RotatedNewVal) |
| 10183 | .addReg(RegNo: RotatedOldVal).addReg(RegNo: Src2.getReg()) |
| 10184 | .addImm(Val: 32).addImm(Val: 31 + BitSize).addImm(Val: 32 - BitSize); |
| 10185 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: NewVal) |
| 10186 | .addReg(RegNo: RotatedNewVal).addReg(RegNo: NegBitShift).addImm(Val: 0); |
| 10187 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: CSOpcode), DestReg: Dest) |
| 10188 | .addReg(RegNo: OldVal) |
| 10189 | .addReg(RegNo: NewVal) |
| 10190 | .add(MO: Base) |
| 10191 | .addImm(Val: Disp); |
| 10192 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10193 | .addImm(Val: SystemZ::CCMASK_CS).addImm(Val: SystemZ::CCMASK_CS_NE).addMBB(MBB: LoopMBB); |
| 10194 | MBB->addSuccessor(Succ: LoopMBB); |
| 10195 | MBB->addSuccessor(Succ: DoneMBB); |
| 10196 | |
| 10197 | MI.eraseFromParent(); |
| 10198 | return DoneMBB; |
| 10199 | } |
| 10200 | |
| 10201 | // Implement EmitInstrWithCustomInserter for subword pseudo |
| 10202 | // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the |
| 10203 | // instruction that should be used to compare the current field with the |
| 10204 | // minimum or maximum value. KeepOldMask is the BRC condition-code mask |
| 10205 | // for when the current field should be kept. |
| 10206 | MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( |
| 10207 | MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, |
| 10208 | unsigned KeepOldMask) const { |
| 10209 | MachineFunction &MF = *MBB->getParent(); |
| 10210 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10211 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10212 | |
| 10213 | // Extract the operands. Base can be a register or a frame index. |
| 10214 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 10215 | MachineOperand Base = earlyUseOperand(Op: MI.getOperand(i: 1)); |
| 10216 | int64_t Disp = MI.getOperand(i: 2).getImm(); |
| 10217 | Register Src2 = MI.getOperand(i: 3).getReg(); |
| 10218 | Register BitShift = MI.getOperand(i: 4).getReg(); |
| 10219 | Register NegBitShift = MI.getOperand(i: 5).getReg(); |
| 10220 | unsigned BitSize = MI.getOperand(i: 6).getImm(); |
| 10221 | DebugLoc DL = MI.getDebugLoc(); |
| 10222 | |
| 10223 | // Get the right opcodes for the displacement. |
| 10224 | unsigned LOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::L, Offset: Disp); |
| 10225 | unsigned CSOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::CS, Offset: Disp); |
| 10226 | assert(LOpcode && CSOpcode && "Displacement out of range" ); |
| 10227 | |
| 10228 | // Create virtual registers for temporary results. |
| 10229 | Register OrigVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10230 | Register OldVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10231 | Register NewVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10232 | Register RotatedOldVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10233 | Register RotatedAltVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10234 | Register RotatedNewVal = MRI.createVirtualRegister(RegClass: &SystemZ::GR32BitRegClass); |
| 10235 | |
| 10236 | // Insert 3 basic blocks for the loop. |
| 10237 | MachineBasicBlock *StartMBB = MBB; |
| 10238 | MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10239 | MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10240 | MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(MBB: LoopMBB); |
| 10241 | MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(MBB: UseAltMBB); |
| 10242 | |
| 10243 | // StartMBB: |
| 10244 | // ... |
| 10245 | // %OrigVal = L Disp(%Base) |
| 10246 | // # fall through to LoopMBB |
| 10247 | MBB = StartMBB; |
| 10248 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: LOpcode), DestReg: OrigVal).add(MO: Base).addImm(Val: Disp).addReg(RegNo: 0); |
| 10249 | MBB->addSuccessor(Succ: LoopMBB); |
| 10250 | |
| 10251 | // LoopMBB: |
| 10252 | // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] |
| 10253 | // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| 10254 | // CompareOpcode %RotatedOldVal, %Src2 |
| 10255 | // BRC KeepOldMask, UpdateMBB |
| 10256 | MBB = LoopMBB; |
| 10257 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: OldVal) |
| 10258 | .addReg(RegNo: OrigVal).addMBB(MBB: StartMBB) |
| 10259 | .addReg(RegNo: Dest).addMBB(MBB: UpdateMBB); |
| 10260 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: RotatedOldVal) |
| 10261 | .addReg(RegNo: OldVal).addReg(RegNo: BitShift).addImm(Val: 0); |
| 10262 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: CompareOpcode)) |
| 10263 | .addReg(RegNo: RotatedOldVal).addReg(RegNo: Src2); |
| 10264 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10265 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: KeepOldMask).addMBB(MBB: UpdateMBB); |
| 10266 | MBB->addSuccessor(Succ: UpdateMBB); |
| 10267 | MBB->addSuccessor(Succ: UseAltMBB); |
| 10268 | |
| 10269 | // UseAltMBB: |
| 10270 | // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 |
| 10271 | // # fall through to UpdateMBB |
| 10272 | MBB = UseAltMBB; |
| 10273 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RISBG32), DestReg: RotatedAltVal) |
| 10274 | .addReg(RegNo: RotatedOldVal).addReg(RegNo: Src2) |
| 10275 | .addImm(Val: 32).addImm(Val: 31 + BitSize).addImm(Val: 0); |
| 10276 | MBB->addSuccessor(Succ: UpdateMBB); |
| 10277 | |
| 10278 | // UpdateMBB: |
| 10279 | // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], |
| 10280 | // [ %RotatedAltVal, UseAltMBB ] |
| 10281 | // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| 10282 | // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| 10283 | // JNE LoopMBB |
| 10284 | // # fall through to DoneMBB |
| 10285 | MBB = UpdateMBB; |
| 10286 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: RotatedNewVal) |
| 10287 | .addReg(RegNo: RotatedOldVal).addMBB(MBB: LoopMBB) |
| 10288 | .addReg(RegNo: RotatedAltVal).addMBB(MBB: UseAltMBB); |
| 10289 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: NewVal) |
| 10290 | .addReg(RegNo: RotatedNewVal).addReg(RegNo: NegBitShift).addImm(Val: 0); |
| 10291 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: CSOpcode), DestReg: Dest) |
| 10292 | .addReg(RegNo: OldVal) |
| 10293 | .addReg(RegNo: NewVal) |
| 10294 | .add(MO: Base) |
| 10295 | .addImm(Val: Disp); |
| 10296 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10297 | .addImm(Val: SystemZ::CCMASK_CS).addImm(Val: SystemZ::CCMASK_CS_NE).addMBB(MBB: LoopMBB); |
| 10298 | MBB->addSuccessor(Succ: LoopMBB); |
| 10299 | MBB->addSuccessor(Succ: DoneMBB); |
| 10300 | |
| 10301 | MI.eraseFromParent(); |
| 10302 | return DoneMBB; |
| 10303 | } |
| 10304 | |
| 10305 | // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW |
| 10306 | // instruction MI. |
| 10307 | MachineBasicBlock * |
| 10308 | SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, |
| 10309 | MachineBasicBlock *MBB) const { |
| 10310 | MachineFunction &MF = *MBB->getParent(); |
| 10311 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10312 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10313 | |
| 10314 | // Extract the operands. Base can be a register or a frame index. |
| 10315 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 10316 | MachineOperand Base = earlyUseOperand(Op: MI.getOperand(i: 1)); |
| 10317 | int64_t Disp = MI.getOperand(i: 2).getImm(); |
| 10318 | Register CmpVal = MI.getOperand(i: 3).getReg(); |
| 10319 | Register OrigSwapVal = MI.getOperand(i: 4).getReg(); |
| 10320 | Register BitShift = MI.getOperand(i: 5).getReg(); |
| 10321 | Register NegBitShift = MI.getOperand(i: 6).getReg(); |
| 10322 | int64_t BitSize = MI.getOperand(i: 7).getImm(); |
| 10323 | DebugLoc DL = MI.getDebugLoc(); |
| 10324 | |
| 10325 | const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; |
| 10326 | |
| 10327 | // Get the right opcodes for the displacement and zero-extension. |
| 10328 | unsigned LOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::L, Offset: Disp); |
| 10329 | unsigned CSOpcode = TII->getOpcodeForOffset(Opcode: SystemZ::CS, Offset: Disp); |
| 10330 | unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; |
| 10331 | assert(LOpcode && CSOpcode && "Displacement out of range" ); |
| 10332 | |
| 10333 | // Create virtual registers for temporary results. |
| 10334 | Register OrigOldVal = MRI.createVirtualRegister(RegClass: RC); |
| 10335 | Register OldVal = MRI.createVirtualRegister(RegClass: RC); |
| 10336 | Register SwapVal = MRI.createVirtualRegister(RegClass: RC); |
| 10337 | Register StoreVal = MRI.createVirtualRegister(RegClass: RC); |
| 10338 | Register OldValRot = MRI.createVirtualRegister(RegClass: RC); |
| 10339 | Register RetryOldVal = MRI.createVirtualRegister(RegClass: RC); |
| 10340 | Register RetrySwapVal = MRI.createVirtualRegister(RegClass: RC); |
| 10341 | |
| 10342 | // Insert 2 basic blocks for the loop. |
| 10343 | MachineBasicBlock *StartMBB = MBB; |
| 10344 | MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10345 | MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10346 | MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(MBB: LoopMBB); |
| 10347 | |
| 10348 | // StartMBB: |
| 10349 | // ... |
| 10350 | // %OrigOldVal = L Disp(%Base) |
| 10351 | // # fall through to LoopMBB |
| 10352 | MBB = StartMBB; |
| 10353 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: LOpcode), DestReg: OrigOldVal) |
| 10354 | .add(MO: Base) |
| 10355 | .addImm(Val: Disp) |
| 10356 | .addReg(RegNo: 0); |
| 10357 | MBB->addSuccessor(Succ: LoopMBB); |
| 10358 | |
| 10359 | // LoopMBB: |
| 10360 | // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] |
| 10361 | // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] |
| 10362 | // %OldValRot = RLL %OldVal, BitSize(%BitShift) |
| 10363 | // ^^ The low BitSize bits contain the field |
| 10364 | // of interest. |
| 10365 | // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 |
| 10366 | // ^^ Replace the upper 32-BitSize bits of the |
| 10367 | // swap value with those that we loaded and rotated. |
| 10368 | // %Dest = LL[CH] %OldValRot |
| 10369 | // CR %Dest, %CmpVal |
| 10370 | // JNE DoneMBB |
| 10371 | // # Fall through to SetMBB |
| 10372 | MBB = LoopMBB; |
| 10373 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: OldVal) |
| 10374 | .addReg(RegNo: OrigOldVal).addMBB(MBB: StartMBB) |
| 10375 | .addReg(RegNo: RetryOldVal).addMBB(MBB: SetMBB); |
| 10376 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: SwapVal) |
| 10377 | .addReg(RegNo: OrigSwapVal).addMBB(MBB: StartMBB) |
| 10378 | .addReg(RegNo: RetrySwapVal).addMBB(MBB: SetMBB); |
| 10379 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: OldValRot) |
| 10380 | .addReg(RegNo: OldVal).addReg(RegNo: BitShift).addImm(Val: BitSize); |
| 10381 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RISBG32), DestReg: RetrySwapVal) |
| 10382 | .addReg(RegNo: SwapVal).addReg(RegNo: OldValRot).addImm(Val: 32).addImm(Val: 63 - BitSize).addImm(Val: 0); |
| 10383 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: ZExtOpcode), DestReg: Dest) |
| 10384 | .addReg(RegNo: OldValRot); |
| 10385 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CR)) |
| 10386 | .addReg(RegNo: Dest).addReg(RegNo: CmpVal); |
| 10387 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10388 | .addImm(Val: SystemZ::CCMASK_ICMP) |
| 10389 | .addImm(Val: SystemZ::CCMASK_CMP_NE).addMBB(MBB: DoneMBB); |
| 10390 | MBB->addSuccessor(Succ: DoneMBB); |
| 10391 | MBB->addSuccessor(Succ: SetMBB); |
| 10392 | |
| 10393 | // SetMBB: |
| 10394 | // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) |
| 10395 | // ^^ Rotate the new field to its proper position. |
| 10396 | // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) |
| 10397 | // JNE LoopMBB |
| 10398 | // # fall through to ExitMBB |
| 10399 | MBB = SetMBB; |
| 10400 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::RLL), DestReg: StoreVal) |
| 10401 | .addReg(RegNo: RetrySwapVal).addReg(RegNo: NegBitShift).addImm(Val: -BitSize); |
| 10402 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: CSOpcode), DestReg: RetryOldVal) |
| 10403 | .addReg(RegNo: OldVal) |
| 10404 | .addReg(RegNo: StoreVal) |
| 10405 | .add(MO: Base) |
| 10406 | .addImm(Val: Disp); |
| 10407 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10408 | .addImm(Val: SystemZ::CCMASK_CS).addImm(Val: SystemZ::CCMASK_CS_NE).addMBB(MBB: LoopMBB); |
| 10409 | MBB->addSuccessor(Succ: LoopMBB); |
| 10410 | MBB->addSuccessor(Succ: DoneMBB); |
| 10411 | |
| 10412 | // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in |
| 10413 | // to the block after the loop. At this point, CC may have been defined |
| 10414 | // either by the CR in LoopMBB or by the CS in SetMBB. |
| 10415 | if (!MI.registerDefIsDead(Reg: SystemZ::CC, /*TRI=*/nullptr)) |
| 10416 | DoneMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10417 | |
| 10418 | MI.eraseFromParent(); |
| 10419 | return DoneMBB; |
| 10420 | } |
| 10421 | |
| 10422 | // Emit a move from two GR64s to a GR128. |
| 10423 | MachineBasicBlock * |
| 10424 | SystemZTargetLowering::emitPair128(MachineInstr &MI, |
| 10425 | MachineBasicBlock *MBB) const { |
| 10426 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10427 | const DebugLoc &DL = MI.getDebugLoc(); |
| 10428 | |
| 10429 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 10430 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::REG_SEQUENCE), DestReg: Dest) |
| 10431 | .add(MO: MI.getOperand(i: 1)) |
| 10432 | .addImm(Val: SystemZ::subreg_h64) |
| 10433 | .add(MO: MI.getOperand(i: 2)) |
| 10434 | .addImm(Val: SystemZ::subreg_l64); |
| 10435 | MI.eraseFromParent(); |
| 10436 | return MBB; |
| 10437 | } |
| 10438 | |
| 10439 | // Emit an extension from a GR64 to a GR128. ClearEven is true |
| 10440 | // if the high register of the GR128 value must be cleared or false if |
| 10441 | // it's "don't care". |
| 10442 | MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, |
| 10443 | MachineBasicBlock *MBB, |
| 10444 | bool ClearEven) const { |
| 10445 | MachineFunction &MF = *MBB->getParent(); |
| 10446 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10447 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10448 | DebugLoc DL = MI.getDebugLoc(); |
| 10449 | |
| 10450 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 10451 | Register Src = MI.getOperand(i: 1).getReg(); |
| 10452 | Register In128 = MRI.createVirtualRegister(RegClass: &SystemZ::GR128BitRegClass); |
| 10453 | |
| 10454 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: In128); |
| 10455 | if (ClearEven) { |
| 10456 | Register NewIn128 = MRI.createVirtualRegister(RegClass: &SystemZ::GR128BitRegClass); |
| 10457 | Register Zero64 = MRI.createVirtualRegister(RegClass: &SystemZ::GR64BitRegClass); |
| 10458 | |
| 10459 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LLILL), DestReg: Zero64) |
| 10460 | .addImm(Val: 0); |
| 10461 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::INSERT_SUBREG), DestReg: NewIn128) |
| 10462 | .addReg(RegNo: In128).addReg(RegNo: Zero64).addImm(Val: SystemZ::subreg_h64); |
| 10463 | In128 = NewIn128; |
| 10464 | } |
| 10465 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::INSERT_SUBREG), DestReg: Dest) |
| 10466 | .addReg(RegNo: In128).addReg(RegNo: Src).addImm(Val: SystemZ::subreg_l64); |
| 10467 | |
| 10468 | MI.eraseFromParent(); |
| 10469 | return MBB; |
| 10470 | } |
| 10471 | |
| 10472 | MachineBasicBlock * |
| 10473 | SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, |
| 10474 | MachineBasicBlock *MBB, |
| 10475 | unsigned Opcode, bool IsMemset) const { |
| 10476 | MachineFunction &MF = *MBB->getParent(); |
| 10477 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10478 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10479 | DebugLoc DL = MI.getDebugLoc(); |
| 10480 | |
| 10481 | MachineOperand DestBase = earlyUseOperand(Op: MI.getOperand(i: 0)); |
| 10482 | uint64_t DestDisp = MI.getOperand(i: 1).getImm(); |
| 10483 | MachineOperand SrcBase = MachineOperand::CreateReg(Reg: 0U, isDef: false); |
| 10484 | uint64_t SrcDisp; |
| 10485 | |
| 10486 | // Fold the displacement Disp if it is out of range. |
| 10487 | auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { |
| 10488 | if (!isUInt<12>(x: Disp)) { |
| 10489 | Register Reg = MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10490 | unsigned Opcode = TII->getOpcodeForOffset(Opcode: SystemZ::LA, Offset: Disp); |
| 10491 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode), DestReg: Reg) |
| 10492 | .add(MO: Base).addImm(Val: Disp).addReg(RegNo: 0); |
| 10493 | Base = MachineOperand::CreateReg(Reg, isDef: false); |
| 10494 | Disp = 0; |
| 10495 | } |
| 10496 | }; |
| 10497 | |
| 10498 | if (!IsMemset) { |
| 10499 | SrcBase = earlyUseOperand(Op: MI.getOperand(i: 2)); |
| 10500 | SrcDisp = MI.getOperand(i: 3).getImm(); |
| 10501 | } else { |
| 10502 | SrcBase = DestBase; |
| 10503 | SrcDisp = DestDisp++; |
| 10504 | foldDisplIfNeeded(DestBase, DestDisp); |
| 10505 | } |
| 10506 | |
| 10507 | MachineOperand &LengthMO = MI.getOperand(i: IsMemset ? 2 : 4); |
| 10508 | bool IsImmForm = LengthMO.isImm(); |
| 10509 | bool IsRegForm = !IsImmForm; |
| 10510 | |
| 10511 | // Build and insert one Opcode of Length, with special treatment for memset. |
| 10512 | auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, |
| 10513 | MachineBasicBlock::iterator InsPos, |
| 10514 | MachineOperand DBase, uint64_t DDisp, |
| 10515 | MachineOperand SBase, uint64_t SDisp, |
| 10516 | unsigned Length) -> void { |
| 10517 | assert(Length > 0 && Length <= 256 && "Building memory op with bad length." ); |
| 10518 | if (IsMemset) { |
| 10519 | MachineOperand ByteMO = earlyUseOperand(Op: MI.getOperand(i: 3)); |
| 10520 | if (ByteMO.isImm()) |
| 10521 | BuildMI(BB&: *InsMBB, I: InsPos, MIMD: DL, MCID: TII->get(Opcode: SystemZ::MVI)) |
| 10522 | .add(MO: SBase).addImm(Val: SDisp).add(MO: ByteMO); |
| 10523 | else |
| 10524 | BuildMI(BB&: *InsMBB, I: InsPos, MIMD: DL, MCID: TII->get(Opcode: SystemZ::STC)) |
| 10525 | .add(MO: ByteMO).add(MO: SBase).addImm(Val: SDisp).addReg(RegNo: 0); |
| 10526 | if (--Length == 0) |
| 10527 | return; |
| 10528 | } |
| 10529 | BuildMI(BB&: *MBB, I: InsPos, MIMD: DL, MCID: TII->get(Opcode)) |
| 10530 | .add(MO: DBase).addImm(Val: DDisp).addImm(Val: Length) |
| 10531 | .add(MO: SBase).addImm(Val: SDisp) |
| 10532 | .setMemRefs(MI.memoperands()); |
| 10533 | }; |
| 10534 | |
| 10535 | bool NeedsLoop = false; |
| 10536 | uint64_t ImmLength = 0; |
| 10537 | Register LenAdjReg = SystemZ::NoRegister; |
| 10538 | if (IsImmForm) { |
| 10539 | ImmLength = LengthMO.getImm(); |
| 10540 | ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. |
| 10541 | if (ImmLength == 0) { |
| 10542 | MI.eraseFromParent(); |
| 10543 | return MBB; |
| 10544 | } |
| 10545 | if (Opcode == SystemZ::CLC) { |
| 10546 | if (ImmLength > 3 * 256) |
| 10547 | // A two-CLC sequence is a clear win over a loop, not least because |
| 10548 | // it needs only one branch. A three-CLC sequence needs the same |
| 10549 | // number of branches as a loop (i.e. 2), but is shorter. That |
| 10550 | // brings us to lengths greater than 768 bytes. It seems relatively |
| 10551 | // likely that a difference will be found within the first 768 bytes, |
| 10552 | // so we just optimize for the smallest number of branch |
| 10553 | // instructions, in order to avoid polluting the prediction buffer |
| 10554 | // too much. |
| 10555 | NeedsLoop = true; |
| 10556 | } else if (ImmLength > 6 * 256) |
| 10557 | // The heuristic we use is to prefer loops for anything that would |
| 10558 | // require 7 or more MVCs. With these kinds of sizes there isn't much |
| 10559 | // to choose between straight-line code and looping code, since the |
| 10560 | // time will be dominated by the MVCs themselves. |
| 10561 | NeedsLoop = true; |
| 10562 | } else { |
| 10563 | NeedsLoop = true; |
| 10564 | LenAdjReg = LengthMO.getReg(); |
| 10565 | } |
| 10566 | |
| 10567 | // When generating more than one CLC, all but the last will need to |
| 10568 | // branch to the end when a difference is found. |
| 10569 | MachineBasicBlock *EndMBB = |
| 10570 | (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) |
| 10571 | ? SystemZ::splitBlockAfter(MI, MBB) |
| 10572 | : nullptr); |
| 10573 | |
| 10574 | if (NeedsLoop) { |
| 10575 | Register StartCountReg = |
| 10576 | MRI.createVirtualRegister(RegClass: &SystemZ::GR64BitRegClass); |
| 10577 | if (IsImmForm) { |
| 10578 | TII->loadImmediate(MBB&: *MBB, MBBI: MI, Reg: StartCountReg, Value: ImmLength / 256); |
| 10579 | ImmLength &= 255; |
| 10580 | } else { |
| 10581 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::SRLG), DestReg: StartCountReg) |
| 10582 | .addReg(RegNo: LenAdjReg) |
| 10583 | .addReg(RegNo: 0) |
| 10584 | .addImm(Val: 8); |
| 10585 | } |
| 10586 | |
| 10587 | bool HaveSingleBase = DestBase.isIdenticalTo(Other: SrcBase); |
| 10588 | auto loadZeroAddress = [&]() -> MachineOperand { |
| 10589 | Register Reg = MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10590 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LGHI), DestReg: Reg).addImm(Val: 0); |
| 10591 | return MachineOperand::CreateReg(Reg, isDef: false); |
| 10592 | }; |
| 10593 | if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) |
| 10594 | DestBase = loadZeroAddress(); |
| 10595 | if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) |
| 10596 | SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); |
| 10597 | |
| 10598 | MachineBasicBlock *StartMBB = nullptr; |
| 10599 | MachineBasicBlock *LoopMBB = nullptr; |
| 10600 | MachineBasicBlock *NextMBB = nullptr; |
| 10601 | MachineBasicBlock *DoneMBB = nullptr; |
| 10602 | MachineBasicBlock *AllDoneMBB = nullptr; |
| 10603 | |
| 10604 | Register StartSrcReg = forceReg(MI, Base&: SrcBase, TII); |
| 10605 | Register StartDestReg = |
| 10606 | (HaveSingleBase ? StartSrcReg : forceReg(MI, Base&: DestBase, TII)); |
| 10607 | |
| 10608 | const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; |
| 10609 | Register ThisSrcReg = MRI.createVirtualRegister(RegClass: RC); |
| 10610 | Register ThisDestReg = |
| 10611 | (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RegClass: RC)); |
| 10612 | Register NextSrcReg = MRI.createVirtualRegister(RegClass: RC); |
| 10613 | Register NextDestReg = |
| 10614 | (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RegClass: RC)); |
| 10615 | RC = &SystemZ::GR64BitRegClass; |
| 10616 | Register ThisCountReg = MRI.createVirtualRegister(RegClass: RC); |
| 10617 | Register NextCountReg = MRI.createVirtualRegister(RegClass: RC); |
| 10618 | |
| 10619 | if (IsRegForm) { |
| 10620 | AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10621 | StartMBB = SystemZ::emitBlockAfter(MBB); |
| 10622 | LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10623 | NextMBB = (EndMBB ? SystemZ::emitBlockAfter(MBB: LoopMBB) : LoopMBB); |
| 10624 | DoneMBB = SystemZ::emitBlockAfter(MBB: NextMBB); |
| 10625 | |
| 10626 | // MBB: |
| 10627 | // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. |
| 10628 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CGHI)) |
| 10629 | .addReg(RegNo: LenAdjReg).addImm(Val: IsMemset ? -2 : -1); |
| 10630 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10631 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_EQ) |
| 10632 | .addMBB(MBB: AllDoneMBB); |
| 10633 | MBB->addSuccessor(Succ: AllDoneMBB); |
| 10634 | if (!IsMemset) |
| 10635 | MBB->addSuccessor(Succ: StartMBB); |
| 10636 | else { |
| 10637 | // MemsetOneCheckMBB: |
| 10638 | // # Jump to MemsetOneMBB for a memset of length 1, or |
| 10639 | // # fall thru to StartMBB. |
| 10640 | MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); |
| 10641 | MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(MBB: &*MF.rbegin()); |
| 10642 | MBB->addSuccessor(Succ: MemsetOneCheckMBB); |
| 10643 | MBB = MemsetOneCheckMBB; |
| 10644 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CGHI)) |
| 10645 | .addReg(RegNo: LenAdjReg).addImm(Val: -1); |
| 10646 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10647 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_EQ) |
| 10648 | .addMBB(MBB: MemsetOneMBB); |
| 10649 | MBB->addSuccessor(Succ: MemsetOneMBB, Prob: {10, 100}); |
| 10650 | MBB->addSuccessor(Succ: StartMBB, Prob: {90, 100}); |
| 10651 | |
| 10652 | // MemsetOneMBB: |
| 10653 | // # Jump back to AllDoneMBB after a single MVI or STC. |
| 10654 | MBB = MemsetOneMBB; |
| 10655 | insertMemMemOp(MBB, MBB->end(), |
| 10656 | MachineOperand::CreateReg(Reg: StartDestReg, isDef: false), DestDisp, |
| 10657 | MachineOperand::CreateReg(Reg: StartSrcReg, isDef: false), SrcDisp, |
| 10658 | 1); |
| 10659 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::J)).addMBB(MBB: AllDoneMBB); |
| 10660 | MBB->addSuccessor(Succ: AllDoneMBB); |
| 10661 | } |
| 10662 | |
| 10663 | // StartMBB: |
| 10664 | // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. |
| 10665 | MBB = StartMBB; |
| 10666 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CGHI)) |
| 10667 | .addReg(RegNo: StartCountReg).addImm(Val: 0); |
| 10668 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10669 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_EQ) |
| 10670 | .addMBB(MBB: DoneMBB); |
| 10671 | MBB->addSuccessor(Succ: DoneMBB); |
| 10672 | MBB->addSuccessor(Succ: LoopMBB); |
| 10673 | } |
| 10674 | else { |
| 10675 | StartMBB = MBB; |
| 10676 | DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10677 | LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10678 | NextMBB = (EndMBB ? SystemZ::emitBlockAfter(MBB: LoopMBB) : LoopMBB); |
| 10679 | |
| 10680 | // StartMBB: |
| 10681 | // # fall through to LoopMBB |
| 10682 | MBB->addSuccessor(Succ: LoopMBB); |
| 10683 | |
| 10684 | DestBase = MachineOperand::CreateReg(Reg: NextDestReg, isDef: false); |
| 10685 | SrcBase = MachineOperand::CreateReg(Reg: NextSrcReg, isDef: false); |
| 10686 | if (EndMBB && !ImmLength) |
| 10687 | // If the loop handled the whole CLC range, DoneMBB will be empty with |
| 10688 | // CC live-through into EndMBB, so add it as live-in. |
| 10689 | DoneMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10690 | } |
| 10691 | |
| 10692 | // LoopMBB: |
| 10693 | // %ThisDestReg = phi [ %StartDestReg, StartMBB ], |
| 10694 | // [ %NextDestReg, NextMBB ] |
| 10695 | // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], |
| 10696 | // [ %NextSrcReg, NextMBB ] |
| 10697 | // %ThisCountReg = phi [ %StartCountReg, StartMBB ], |
| 10698 | // [ %NextCountReg, NextMBB ] |
| 10699 | // ( PFD 2, 768+DestDisp(%ThisDestReg) ) |
| 10700 | // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) |
| 10701 | // ( JLH EndMBB ) |
| 10702 | // |
| 10703 | // The prefetch is used only for MVC. The JLH is used only for CLC. |
| 10704 | MBB = LoopMBB; |
| 10705 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: ThisDestReg) |
| 10706 | .addReg(RegNo: StartDestReg).addMBB(MBB: StartMBB) |
| 10707 | .addReg(RegNo: NextDestReg).addMBB(MBB: NextMBB); |
| 10708 | if (!HaveSingleBase) |
| 10709 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: ThisSrcReg) |
| 10710 | .addReg(RegNo: StartSrcReg).addMBB(MBB: StartMBB) |
| 10711 | .addReg(RegNo: NextSrcReg).addMBB(MBB: NextMBB); |
| 10712 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: ThisCountReg) |
| 10713 | .addReg(RegNo: StartCountReg).addMBB(MBB: StartMBB) |
| 10714 | .addReg(RegNo: NextCountReg).addMBB(MBB: NextMBB); |
| 10715 | if (Opcode == SystemZ::MVC) |
| 10716 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PFD)) |
| 10717 | .addImm(Val: SystemZ::PFD_WRITE) |
| 10718 | .addReg(RegNo: ThisDestReg).addImm(Val: DestDisp - IsMemset + 768).addReg(RegNo: 0); |
| 10719 | insertMemMemOp(MBB, MBB->end(), |
| 10720 | MachineOperand::CreateReg(Reg: ThisDestReg, isDef: false), DestDisp, |
| 10721 | MachineOperand::CreateReg(Reg: ThisSrcReg, isDef: false), SrcDisp, 256); |
| 10722 | if (EndMBB) { |
| 10723 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10724 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_NE) |
| 10725 | .addMBB(MBB: EndMBB); |
| 10726 | MBB->addSuccessor(Succ: EndMBB); |
| 10727 | MBB->addSuccessor(Succ: NextMBB); |
| 10728 | } |
| 10729 | |
| 10730 | // NextMBB: |
| 10731 | // %NextDestReg = LA 256(%ThisDestReg) |
| 10732 | // %NextSrcReg = LA 256(%ThisSrcReg) |
| 10733 | // %NextCountReg = AGHI %ThisCountReg, -1 |
| 10734 | // CGHI %NextCountReg, 0 |
| 10735 | // JLH LoopMBB |
| 10736 | // # fall through to DoneMBB |
| 10737 | // |
| 10738 | // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. |
| 10739 | MBB = NextMBB; |
| 10740 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LA), DestReg: NextDestReg) |
| 10741 | .addReg(RegNo: ThisDestReg).addImm(Val: 256).addReg(RegNo: 0); |
| 10742 | if (!HaveSingleBase) |
| 10743 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::LA), DestReg: NextSrcReg) |
| 10744 | .addReg(RegNo: ThisSrcReg).addImm(Val: 256).addReg(RegNo: 0); |
| 10745 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::AGHI), DestReg: NextCountReg) |
| 10746 | .addReg(RegNo: ThisCountReg).addImm(Val: -1); |
| 10747 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CGHI)) |
| 10748 | .addReg(RegNo: NextCountReg).addImm(Val: 0); |
| 10749 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10750 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_NE) |
| 10751 | .addMBB(MBB: LoopMBB); |
| 10752 | MBB->addSuccessor(Succ: LoopMBB); |
| 10753 | MBB->addSuccessor(Succ: DoneMBB); |
| 10754 | |
| 10755 | MBB = DoneMBB; |
| 10756 | if (IsRegForm) { |
| 10757 | // DoneMBB: |
| 10758 | // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. |
| 10759 | // # Use EXecute Relative Long for the remainder of the bytes. The target |
| 10760 | // instruction of the EXRL will have a length field of 1 since 0 is an |
| 10761 | // illegal value. The number of bytes processed becomes (%LenAdjReg & |
| 10762 | // 0xff) + 1. |
| 10763 | // # Fall through to AllDoneMBB. |
| 10764 | Register RemSrcReg = MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10765 | Register RemDestReg = HaveSingleBase ? RemSrcReg |
| 10766 | : MRI.createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10767 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: RemDestReg) |
| 10768 | .addReg(RegNo: StartDestReg).addMBB(MBB: StartMBB) |
| 10769 | .addReg(RegNo: NextDestReg).addMBB(MBB: NextMBB); |
| 10770 | if (!HaveSingleBase) |
| 10771 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: RemSrcReg) |
| 10772 | .addReg(RegNo: StartSrcReg).addMBB(MBB: StartMBB) |
| 10773 | .addReg(RegNo: NextSrcReg).addMBB(MBB: NextMBB); |
| 10774 | if (IsMemset) |
| 10775 | insertMemMemOp(MBB, MBB->end(), |
| 10776 | MachineOperand::CreateReg(Reg: RemDestReg, isDef: false), DestDisp, |
| 10777 | MachineOperand::CreateReg(Reg: RemSrcReg, isDef: false), SrcDisp, 1); |
| 10778 | MachineInstrBuilder EXRL_MIB = |
| 10779 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::EXRL_Pseudo)) |
| 10780 | .addImm(Val: Opcode) |
| 10781 | .addReg(RegNo: LenAdjReg) |
| 10782 | .addReg(RegNo: RemDestReg).addImm(Val: DestDisp) |
| 10783 | .addReg(RegNo: RemSrcReg).addImm(Val: SrcDisp); |
| 10784 | MBB->addSuccessor(Succ: AllDoneMBB); |
| 10785 | MBB = AllDoneMBB; |
| 10786 | if (Opcode != SystemZ::MVC) { |
| 10787 | EXRL_MIB.addReg(RegNo: SystemZ::CC, Flags: RegState::ImplicitDefine); |
| 10788 | if (EndMBB) |
| 10789 | MBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10790 | } |
| 10791 | } |
| 10792 | MF.getProperties().resetNoPHIs(); |
| 10793 | } |
| 10794 | |
| 10795 | // Handle any remaining bytes with straight-line code. |
| 10796 | while (ImmLength > 0) { |
| 10797 | uint64_t ThisLength = std::min(a: ImmLength, b: uint64_t(256)); |
| 10798 | // The previous iteration might have created out-of-range displacements. |
| 10799 | // Apply them using LA/LAY if so. |
| 10800 | foldDisplIfNeeded(DestBase, DestDisp); |
| 10801 | foldDisplIfNeeded(SrcBase, SrcDisp); |
| 10802 | insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); |
| 10803 | DestDisp += ThisLength; |
| 10804 | SrcDisp += ThisLength; |
| 10805 | ImmLength -= ThisLength; |
| 10806 | // If there's another CLC to go, branch to the end if a difference |
| 10807 | // was found. |
| 10808 | if (EndMBB && ImmLength > 0) { |
| 10809 | MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10810 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10811 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_NE) |
| 10812 | .addMBB(MBB: EndMBB); |
| 10813 | MBB->addSuccessor(Succ: EndMBB); |
| 10814 | MBB->addSuccessor(Succ: NextMBB); |
| 10815 | MBB = NextMBB; |
| 10816 | } |
| 10817 | } |
| 10818 | if (EndMBB) { |
| 10819 | MBB->addSuccessor(Succ: EndMBB); |
| 10820 | MBB = EndMBB; |
| 10821 | MBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10822 | } |
| 10823 | |
| 10824 | MI.eraseFromParent(); |
| 10825 | return MBB; |
| 10826 | } |
| 10827 | |
| 10828 | // Decompose string pseudo-instruction MI into a loop that continually performs |
| 10829 | // Opcode until CC != 3. |
| 10830 | MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( |
| 10831 | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { |
| 10832 | MachineFunction &MF = *MBB->getParent(); |
| 10833 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10834 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 10835 | DebugLoc DL = MI.getDebugLoc(); |
| 10836 | |
| 10837 | uint64_t End1Reg = MI.getOperand(i: 0).getReg(); |
| 10838 | uint64_t Start1Reg = MI.getOperand(i: 1).getReg(); |
| 10839 | uint64_t Start2Reg = MI.getOperand(i: 2).getReg(); |
| 10840 | uint64_t CharReg = MI.getOperand(i: 3).getReg(); |
| 10841 | |
| 10842 | const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; |
| 10843 | uint64_t This1Reg = MRI.createVirtualRegister(RegClass: RC); |
| 10844 | uint64_t This2Reg = MRI.createVirtualRegister(RegClass: RC); |
| 10845 | uint64_t End2Reg = MRI.createVirtualRegister(RegClass: RC); |
| 10846 | |
| 10847 | MachineBasicBlock *StartMBB = MBB; |
| 10848 | MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| 10849 | MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10850 | |
| 10851 | // StartMBB: |
| 10852 | // # fall through to LoopMBB |
| 10853 | MBB->addSuccessor(Succ: LoopMBB); |
| 10854 | |
| 10855 | // LoopMBB: |
| 10856 | // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] |
| 10857 | // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] |
| 10858 | // R0L = %CharReg |
| 10859 | // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L |
| 10860 | // JO LoopMBB |
| 10861 | // # fall through to DoneMBB |
| 10862 | // |
| 10863 | // The load of R0L can be hoisted by post-RA LICM. |
| 10864 | MBB = LoopMBB; |
| 10865 | |
| 10866 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: This1Reg) |
| 10867 | .addReg(RegNo: Start1Reg).addMBB(MBB: StartMBB) |
| 10868 | .addReg(RegNo: End1Reg).addMBB(MBB: LoopMBB); |
| 10869 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: This2Reg) |
| 10870 | .addReg(RegNo: Start2Reg).addMBB(MBB: StartMBB) |
| 10871 | .addReg(RegNo: End2Reg).addMBB(MBB: LoopMBB); |
| 10872 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: SystemZ::R0L).addReg(RegNo: CharReg); |
| 10873 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode)) |
| 10874 | .addReg(RegNo: End1Reg, Flags: RegState::Define).addReg(RegNo: End2Reg, Flags: RegState::Define) |
| 10875 | .addReg(RegNo: This1Reg).addReg(RegNo: This2Reg); |
| 10876 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10877 | .addImm(Val: SystemZ::CCMASK_ANY).addImm(Val: SystemZ::CCMASK_3).addMBB(MBB: LoopMBB); |
| 10878 | MBB->addSuccessor(Succ: LoopMBB); |
| 10879 | MBB->addSuccessor(Succ: DoneMBB); |
| 10880 | |
| 10881 | DoneMBB->addLiveIn(PhysReg: SystemZ::CC); |
| 10882 | |
| 10883 | MI.eraseFromParent(); |
| 10884 | return DoneMBB; |
| 10885 | } |
| 10886 | |
| 10887 | // Update TBEGIN instruction with final opcode and register clobbers. |
| 10888 | MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( |
| 10889 | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, |
| 10890 | bool NoFloat) const { |
| 10891 | MachineFunction &MF = *MBB->getParent(); |
| 10892 | const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| 10893 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10894 | |
| 10895 | // Update opcode. |
| 10896 | MI.setDesc(TII->get(Opcode)); |
| 10897 | |
| 10898 | // We cannot handle a TBEGIN that clobbers the stack or frame pointer. |
| 10899 | // Make sure to add the corresponding GRSM bits if they are missing. |
| 10900 | uint64_t Control = MI.getOperand(i: 2).getImm(); |
| 10901 | static const unsigned GPRControlBit[16] = { |
| 10902 | 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, |
| 10903 | 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 |
| 10904 | }; |
| 10905 | Control |= GPRControlBit[15]; |
| 10906 | if (TFI->hasFP(MF)) |
| 10907 | Control |= GPRControlBit[11]; |
| 10908 | MI.getOperand(i: 2).setImm(Control); |
| 10909 | |
| 10910 | // Add GPR clobbers. |
| 10911 | for (int I = 0; I < 16; I++) { |
| 10912 | if ((Control & GPRControlBit[I]) == 0) { |
| 10913 | unsigned Reg = SystemZMC::GR64Regs[I]; |
| 10914 | MI.addOperand(Op: MachineOperand::CreateReg(Reg, isDef: true, isImp: true)); |
| 10915 | } |
| 10916 | } |
| 10917 | |
| 10918 | // Add FPR/VR clobbers. |
| 10919 | if (!NoFloat && (Control & 4) != 0) { |
| 10920 | if (Subtarget.hasVector()) { |
| 10921 | for (unsigned Reg : SystemZMC::VR128Regs) { |
| 10922 | MI.addOperand(Op: MachineOperand::CreateReg(Reg, isDef: true, isImp: true)); |
| 10923 | } |
| 10924 | } else { |
| 10925 | for (unsigned Reg : SystemZMC::FP64Regs) { |
| 10926 | MI.addOperand(Op: MachineOperand::CreateReg(Reg, isDef: true, isImp: true)); |
| 10927 | } |
| 10928 | } |
| 10929 | } |
| 10930 | |
| 10931 | return MBB; |
| 10932 | } |
| 10933 | |
| 10934 | MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( |
| 10935 | MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { |
| 10936 | MachineFunction &MF = *MBB->getParent(); |
| 10937 | MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| 10938 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10939 | DebugLoc DL = MI.getDebugLoc(); |
| 10940 | |
| 10941 | Register SrcReg = MI.getOperand(i: 0).getReg(); |
| 10942 | |
| 10943 | // Create new virtual register of the same class as source. |
| 10944 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: SrcReg); |
| 10945 | Register DstReg = MRI->createVirtualRegister(RegClass: RC); |
| 10946 | |
| 10947 | // Replace pseudo with a normal load-and-test that models the def as |
| 10948 | // well. |
| 10949 | BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode), DestReg: DstReg) |
| 10950 | .addReg(RegNo: SrcReg) |
| 10951 | .setMIFlags(MI.getFlags()); |
| 10952 | MI.eraseFromParent(); |
| 10953 | |
| 10954 | return MBB; |
| 10955 | } |
| 10956 | |
| 10957 | MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( |
| 10958 | MachineInstr &MI, MachineBasicBlock *MBB) const { |
| 10959 | MachineFunction &MF = *MBB->getParent(); |
| 10960 | MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| 10961 | const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| 10962 | DebugLoc DL = MI.getDebugLoc(); |
| 10963 | const unsigned ProbeSize = getStackProbeSize(MF); |
| 10964 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 10965 | Register SizeReg = MI.getOperand(i: 2).getReg(); |
| 10966 | |
| 10967 | MachineBasicBlock *StartMBB = MBB; |
| 10968 | MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); |
| 10969 | MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(MBB: StartMBB); |
| 10970 | MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(MBB: LoopTestMBB); |
| 10971 | MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(MBB: LoopBodyMBB); |
| 10972 | MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(MBB: TailTestMBB); |
| 10973 | |
| 10974 | MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(PtrInfo: MachinePointerInfo(), |
| 10975 | F: MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, Size: 8, BaseAlignment: Align(1)); |
| 10976 | |
| 10977 | Register PHIReg = MRI->createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10978 | Register IncReg = MRI->createVirtualRegister(RegClass: &SystemZ::ADDR64BitRegClass); |
| 10979 | |
| 10980 | // LoopTestMBB |
| 10981 | // BRC TailTestMBB |
| 10982 | // # fallthrough to LoopBodyMBB |
| 10983 | StartMBB->addSuccessor(Succ: LoopTestMBB); |
| 10984 | MBB = LoopTestMBB; |
| 10985 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::PHI), DestReg: PHIReg) |
| 10986 | .addReg(RegNo: SizeReg) |
| 10987 | .addMBB(MBB: StartMBB) |
| 10988 | .addReg(RegNo: IncReg) |
| 10989 | .addMBB(MBB: LoopBodyMBB); |
| 10990 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CLGFI)) |
| 10991 | .addReg(RegNo: PHIReg) |
| 10992 | .addImm(Val: ProbeSize); |
| 10993 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 10994 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_LT) |
| 10995 | .addMBB(MBB: TailTestMBB); |
| 10996 | MBB->addSuccessor(Succ: LoopBodyMBB); |
| 10997 | MBB->addSuccessor(Succ: TailTestMBB); |
| 10998 | |
| 10999 | // LoopBodyMBB: Allocate and probe by means of a volatile compare. |
| 11000 | // J LoopTestMBB |
| 11001 | MBB = LoopBodyMBB; |
| 11002 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::SLGFI), DestReg: IncReg) |
| 11003 | .addReg(RegNo: PHIReg) |
| 11004 | .addImm(Val: ProbeSize); |
| 11005 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::SLGFI), DestReg: SystemZ::R15D) |
| 11006 | .addReg(RegNo: SystemZ::R15D) |
| 11007 | .addImm(Val: ProbeSize); |
| 11008 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CG)).addReg(RegNo: SystemZ::R15D) |
| 11009 | .addReg(RegNo: SystemZ::R15D).addImm(Val: ProbeSize - 8).addReg(RegNo: 0) |
| 11010 | .setMemRefs(VolLdMMO); |
| 11011 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::J)).addMBB(MBB: LoopTestMBB); |
| 11012 | MBB->addSuccessor(Succ: LoopTestMBB); |
| 11013 | |
| 11014 | // TailTestMBB |
| 11015 | // BRC DoneMBB |
| 11016 | // # fallthrough to TailMBB |
| 11017 | MBB = TailTestMBB; |
| 11018 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CGHI)) |
| 11019 | .addReg(RegNo: PHIReg) |
| 11020 | .addImm(Val: 0); |
| 11021 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::BRC)) |
| 11022 | .addImm(Val: SystemZ::CCMASK_ICMP).addImm(Val: SystemZ::CCMASK_CMP_EQ) |
| 11023 | .addMBB(MBB: DoneMBB); |
| 11024 | MBB->addSuccessor(Succ: TailMBB); |
| 11025 | MBB->addSuccessor(Succ: DoneMBB); |
| 11026 | |
| 11027 | // TailMBB |
| 11028 | // # fallthrough to DoneMBB |
| 11029 | MBB = TailMBB; |
| 11030 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::SLGR), DestReg: SystemZ::R15D) |
| 11031 | .addReg(RegNo: SystemZ::R15D) |
| 11032 | .addReg(RegNo: PHIReg); |
| 11033 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: SystemZ::CG)).addReg(RegNo: SystemZ::R15D) |
| 11034 | .addReg(RegNo: SystemZ::R15D).addImm(Val: -8).addReg(RegNo: PHIReg) |
| 11035 | .setMemRefs(VolLdMMO); |
| 11036 | MBB->addSuccessor(Succ: DoneMBB); |
| 11037 | |
| 11038 | // DoneMBB |
| 11039 | MBB = DoneMBB; |
| 11040 | BuildMI(BB&: *MBB, I: MBB->begin(), MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: DstReg) |
| 11041 | .addReg(RegNo: SystemZ::R15D); |
| 11042 | |
| 11043 | MI.eraseFromParent(); |
| 11044 | return DoneMBB; |
| 11045 | } |
| 11046 | |
| 11047 | SDValue SystemZTargetLowering:: |
| 11048 | getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { |
| 11049 | MachineFunction &MF = DAG.getMachineFunction(); |
| 11050 | auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); |
| 11051 | SDLoc DL(SP); |
| 11052 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i64, N1: SP, |
| 11053 | N2: DAG.getIntPtrConstant(Val: TFL->getBackchainOffset(MF), DL)); |
| 11054 | } |
| 11055 | |
| 11056 | MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( |
| 11057 | MachineInstr &MI, MachineBasicBlock *MBB) const { |
| 11058 | switch (MI.getOpcode()) { |
| 11059 | case SystemZ::ADJCALLSTACKDOWN: |
| 11060 | case SystemZ::ADJCALLSTACKUP: |
| 11061 | return emitAdjCallStack(MI, BB: MBB); |
| 11062 | |
| 11063 | case SystemZ::Select32: |
| 11064 | case SystemZ::Select64: |
| 11065 | case SystemZ::Select128: |
| 11066 | case SystemZ::SelectF32: |
| 11067 | case SystemZ::SelectF64: |
| 11068 | case SystemZ::SelectF128: |
| 11069 | case SystemZ::SelectVR32: |
| 11070 | case SystemZ::SelectVR64: |
| 11071 | case SystemZ::SelectVR128: |
| 11072 | return emitSelect(MI, MBB); |
| 11073 | |
| 11074 | case SystemZ::CondStore8Mux: |
| 11075 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STCMux, STOCOpcode: 0, Invert: false); |
| 11076 | case SystemZ::CondStore8MuxInv: |
| 11077 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STCMux, STOCOpcode: 0, Invert: true); |
| 11078 | case SystemZ::CondStore16Mux: |
| 11079 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STHMux, STOCOpcode: 0, Invert: false); |
| 11080 | case SystemZ::CondStore16MuxInv: |
| 11081 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STHMux, STOCOpcode: 0, Invert: true); |
| 11082 | case SystemZ::CondStore32Mux: |
| 11083 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STMux, STOCOpcode: SystemZ::STOCMux, Invert: false); |
| 11084 | case SystemZ::CondStore32MuxInv: |
| 11085 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STMux, STOCOpcode: SystemZ::STOCMux, Invert: true); |
| 11086 | case SystemZ::CondStore8: |
| 11087 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STC, STOCOpcode: 0, Invert: false); |
| 11088 | case SystemZ::CondStore8Inv: |
| 11089 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STC, STOCOpcode: 0, Invert: true); |
| 11090 | case SystemZ::CondStore16: |
| 11091 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STH, STOCOpcode: 0, Invert: false); |
| 11092 | case SystemZ::CondStore16Inv: |
| 11093 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STH, STOCOpcode: 0, Invert: true); |
| 11094 | case SystemZ::CondStore32: |
| 11095 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::ST, STOCOpcode: SystemZ::STOC, Invert: false); |
| 11096 | case SystemZ::CondStore32Inv: |
| 11097 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::ST, STOCOpcode: SystemZ::STOC, Invert: true); |
| 11098 | case SystemZ::CondStore64: |
| 11099 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STG, STOCOpcode: SystemZ::STOCG, Invert: false); |
| 11100 | case SystemZ::CondStore64Inv: |
| 11101 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STG, STOCOpcode: SystemZ::STOCG, Invert: true); |
| 11102 | case SystemZ::CondStoreF32: |
| 11103 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STE, STOCOpcode: 0, Invert: false); |
| 11104 | case SystemZ::CondStoreF32Inv: |
| 11105 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STE, STOCOpcode: 0, Invert: true); |
| 11106 | case SystemZ::CondStoreF64: |
| 11107 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STD, STOCOpcode: 0, Invert: false); |
| 11108 | case SystemZ::CondStoreF64Inv: |
| 11109 | return emitCondStore(MI, MBB, StoreOpcode: SystemZ::STD, STOCOpcode: 0, Invert: true); |
| 11110 | |
| 11111 | case SystemZ::SCmp128Hi: |
| 11112 | return emitICmp128Hi(MI, MBB, Unsigned: false); |
| 11113 | case SystemZ::UCmp128Hi: |
| 11114 | return emitICmp128Hi(MI, MBB, Unsigned: true); |
| 11115 | |
| 11116 | case SystemZ::PAIR128: |
| 11117 | return emitPair128(MI, MBB); |
| 11118 | case SystemZ::AEXT128: |
| 11119 | return emitExt128(MI, MBB, ClearEven: false); |
| 11120 | case SystemZ::ZEXT128: |
| 11121 | return emitExt128(MI, MBB, ClearEven: true); |
| 11122 | |
| 11123 | case SystemZ::ATOMIC_SWAPW: |
| 11124 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: 0); |
| 11125 | |
| 11126 | case SystemZ::ATOMIC_LOADW_AR: |
| 11127 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::AR); |
| 11128 | case SystemZ::ATOMIC_LOADW_AFI: |
| 11129 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::AFI); |
| 11130 | |
| 11131 | case SystemZ::ATOMIC_LOADW_SR: |
| 11132 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::SR); |
| 11133 | |
| 11134 | case SystemZ::ATOMIC_LOADW_NR: |
| 11135 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::NR); |
| 11136 | case SystemZ::ATOMIC_LOADW_NILH: |
| 11137 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::NILH); |
| 11138 | |
| 11139 | case SystemZ::ATOMIC_LOADW_OR: |
| 11140 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::OR); |
| 11141 | case SystemZ::ATOMIC_LOADW_OILH: |
| 11142 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::OILH); |
| 11143 | |
| 11144 | case SystemZ::ATOMIC_LOADW_XR: |
| 11145 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::XR); |
| 11146 | case SystemZ::ATOMIC_LOADW_XILF: |
| 11147 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::XILF); |
| 11148 | |
| 11149 | case SystemZ::ATOMIC_LOADW_NRi: |
| 11150 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::NR, Invert: true); |
| 11151 | case SystemZ::ATOMIC_LOADW_NILHi: |
| 11152 | return emitAtomicLoadBinary(MI, MBB, BinOpcode: SystemZ::NILH, Invert: true); |
| 11153 | |
| 11154 | case SystemZ::ATOMIC_LOADW_MIN: |
| 11155 | return emitAtomicLoadMinMax(MI, MBB, CompareOpcode: SystemZ::CR, KeepOldMask: SystemZ::CCMASK_CMP_LE); |
| 11156 | case SystemZ::ATOMIC_LOADW_MAX: |
| 11157 | return emitAtomicLoadMinMax(MI, MBB, CompareOpcode: SystemZ::CR, KeepOldMask: SystemZ::CCMASK_CMP_GE); |
| 11158 | case SystemZ::ATOMIC_LOADW_UMIN: |
| 11159 | return emitAtomicLoadMinMax(MI, MBB, CompareOpcode: SystemZ::CLR, KeepOldMask: SystemZ::CCMASK_CMP_LE); |
| 11160 | case SystemZ::ATOMIC_LOADW_UMAX: |
| 11161 | return emitAtomicLoadMinMax(MI, MBB, CompareOpcode: SystemZ::CLR, KeepOldMask: SystemZ::CCMASK_CMP_GE); |
| 11162 | |
| 11163 | case SystemZ::ATOMIC_CMP_SWAPW: |
| 11164 | return emitAtomicCmpSwapW(MI, MBB); |
| 11165 | case SystemZ::MVCImm: |
| 11166 | case SystemZ::MVCReg: |
| 11167 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::MVC); |
| 11168 | case SystemZ::NCImm: |
| 11169 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::NC); |
| 11170 | case SystemZ::OCImm: |
| 11171 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::OC); |
| 11172 | case SystemZ::XCImm: |
| 11173 | case SystemZ::XCReg: |
| 11174 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::XC); |
| 11175 | case SystemZ::CLCImm: |
| 11176 | case SystemZ::CLCReg: |
| 11177 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::CLC); |
| 11178 | case SystemZ::MemsetImmImm: |
| 11179 | case SystemZ::MemsetImmReg: |
| 11180 | case SystemZ::MemsetRegImm: |
| 11181 | case SystemZ::MemsetRegReg: |
| 11182 | return emitMemMemWrapper(MI, MBB, Opcode: SystemZ::MVC, IsMemset: true/*IsMemset*/); |
| 11183 | case SystemZ::CLSTLoop: |
| 11184 | return emitStringWrapper(MI, MBB, Opcode: SystemZ::CLST); |
| 11185 | case SystemZ::MVSTLoop: |
| 11186 | return emitStringWrapper(MI, MBB, Opcode: SystemZ::MVST); |
| 11187 | case SystemZ::SRSTLoop: |
| 11188 | return emitStringWrapper(MI, MBB, Opcode: SystemZ::SRST); |
| 11189 | case SystemZ::TBEGIN: |
| 11190 | return emitTransactionBegin(MI, MBB, Opcode: SystemZ::TBEGIN, NoFloat: false); |
| 11191 | case SystemZ::TBEGIN_nofloat: |
| 11192 | return emitTransactionBegin(MI, MBB, Opcode: SystemZ::TBEGIN, NoFloat: true); |
| 11193 | case SystemZ::TBEGINC: |
| 11194 | return emitTransactionBegin(MI, MBB, Opcode: SystemZ::TBEGINC, NoFloat: true); |
| 11195 | case SystemZ::LTEBRCompare_Pseudo: |
| 11196 | return emitLoadAndTestCmp0(MI, MBB, Opcode: SystemZ::LTEBR); |
| 11197 | case SystemZ::LTDBRCompare_Pseudo: |
| 11198 | return emitLoadAndTestCmp0(MI, MBB, Opcode: SystemZ::LTDBR); |
| 11199 | case SystemZ::LTXBRCompare_Pseudo: |
| 11200 | return emitLoadAndTestCmp0(MI, MBB, Opcode: SystemZ::LTXBR); |
| 11201 | |
| 11202 | case SystemZ::PROBED_ALLOCA: |
| 11203 | return emitProbedAlloca(MI, MBB); |
| 11204 | case SystemZ::EH_SjLj_SetJmp: |
| 11205 | return emitEHSjLjSetJmp(MI, MBB); |
| 11206 | case SystemZ::EH_SjLj_LongJmp: |
| 11207 | return emitEHSjLjLongJmp(MI, MBB); |
| 11208 | |
| 11209 | case TargetOpcode::STACKMAP: |
| 11210 | case TargetOpcode::PATCHPOINT: |
| 11211 | return emitPatchPoint(MI, MBB); |
| 11212 | |
| 11213 | default: |
| 11214 | llvm_unreachable("Unexpected instr type to insert" ); |
| 11215 | } |
| 11216 | } |
| 11217 | |
| 11218 | // This is only used by the isel schedulers, and is needed only to prevent |
| 11219 | // compiler from crashing when list-ilp is used. |
| 11220 | const TargetRegisterClass * |
| 11221 | SystemZTargetLowering::getRepRegClassFor(MVT VT) const { |
| 11222 | if (VT == MVT::Untyped) |
| 11223 | return &SystemZ::ADDR128BitRegClass; |
| 11224 | return TargetLowering::getRepRegClassFor(VT); |
| 11225 | } |
| 11226 | |
| 11227 | SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, |
| 11228 | SelectionDAG &DAG) const { |
| 11229 | SDLoc dl(Op); |
| 11230 | /* |
| 11231 | The rounding method is in FPC Byte 3 bits 6-7, and has the following |
| 11232 | settings: |
| 11233 | 00 Round to nearest |
| 11234 | 01 Round to 0 |
| 11235 | 10 Round to +inf |
| 11236 | 11 Round to -inf |
| 11237 | |
| 11238 | FLT_ROUNDS, on the other hand, expects the following: |
| 11239 | -1 Undefined |
| 11240 | 0 Round to 0 |
| 11241 | 1 Round to nearest |
| 11242 | 2 Round to +inf |
| 11243 | 3 Round to -inf |
| 11244 | */ |
| 11245 | |
| 11246 | // Save FPC to register. |
| 11247 | SDValue Chain = Op.getOperand(i: 0); |
| 11248 | SDValue EFPC( |
| 11249 | DAG.getMachineNode(Opcode: SystemZ::EFPC, dl, ResultTys: {MVT::i32, MVT::Other}, Ops: Chain), 0); |
| 11250 | Chain = EFPC.getValue(R: 1); |
| 11251 | |
| 11252 | // Transform as necessary |
| 11253 | SDValue CWD1 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i32, N1: EFPC, |
| 11254 | N2: DAG.getConstant(Val: 3, DL: dl, VT: MVT::i32)); |
| 11255 | // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 |
| 11256 | SDValue CWD2 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: MVT::i32, N1: CWD1, |
| 11257 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MVT::i32, N1: CWD1, |
| 11258 | N2: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32))); |
| 11259 | |
| 11260 | SDValue RetVal = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: MVT::i32, N1: CWD2, |
| 11261 | N2: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32)); |
| 11262 | RetVal = DAG.getZExtOrTrunc(Op: RetVal, DL: dl, VT: Op.getValueType()); |
| 11263 | |
| 11264 | return DAG.getMergeValues(Ops: {RetVal, Chain}, dl); |
| 11265 | } |
| 11266 | |
| 11267 | SDValue SystemZTargetLowering::lowerVECREDUCE_ADD(SDValue Op, |
| 11268 | SelectionDAG &DAG) const { |
| 11269 | EVT VT = Op.getValueType(); |
| 11270 | Op = Op.getOperand(i: 0); |
| 11271 | EVT OpVT = Op.getValueType(); |
| 11272 | |
| 11273 | assert(OpVT.isVector() && "Operand type for VECREDUCE_ADD is not a vector." ); |
| 11274 | |
| 11275 | SDLoc DL(Op); |
| 11276 | |
| 11277 | // load a 0 vector for the third operand of VSUM. |
| 11278 | SDValue Zero = DAG.getSplatBuildVector(VT: OpVT, DL, Op: DAG.getConstant(Val: 0, DL, VT)); |
| 11279 | |
| 11280 | // execute VSUM. |
| 11281 | switch (OpVT.getScalarSizeInBits()) { |
| 11282 | case 8: |
| 11283 | case 16: |
| 11284 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT: MVT::v4i32, N1: Op, N2: Zero); |
| 11285 | [[fallthrough]]; |
| 11286 | case 32: |
| 11287 | case 64: |
| 11288 | Op = DAG.getNode(Opcode: SystemZISD::VSUM, DL, VT: MVT::i128, N1: Op, |
| 11289 | N2: DAG.getBitcast(VT: Op.getValueType(), V: Zero)); |
| 11290 | break; |
| 11291 | case 128: |
| 11292 | break; // VSUM over v1i128 should not happen and would be a noop |
| 11293 | default: |
| 11294 | llvm_unreachable("Unexpected scalar size." ); |
| 11295 | } |
| 11296 | // Cast to original vector type, retrieve last element. |
| 11297 | return DAG.getNode( |
| 11298 | Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT, N1: DAG.getBitcast(VT: OpVT, V: Op), |
| 11299 | N2: DAG.getConstant(Val: OpVT.getVectorNumElements() - 1, DL, VT: MVT::i32)); |
| 11300 | } |
| 11301 | |
| 11302 | static void printFunctionArgExts(const Function *F, raw_fd_ostream &OS) { |
| 11303 | FunctionType *FT = F->getFunctionType(); |
| 11304 | const AttributeList &Attrs = F->getAttributes(); |
| 11305 | if (Attrs.hasRetAttrs()) |
| 11306 | OS << Attrs.getAsString(Index: AttributeList::ReturnIndex) << " " ; |
| 11307 | OS << *F->getReturnType() << " @" << F->getName() << "(" ; |
| 11308 | for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { |
| 11309 | if (I) |
| 11310 | OS << ", " ; |
| 11311 | OS << *FT->getParamType(i: I); |
| 11312 | AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo: I); |
| 11313 | for (auto A : {Attribute::SExt, Attribute::ZExt, Attribute::NoExt}) |
| 11314 | if (ArgAttrs.hasAttribute(Kind: A)) |
| 11315 | OS << " " << Attribute::getNameFromAttrKind(AttrKind: A); |
| 11316 | } |
| 11317 | OS << ")\n" ; |
| 11318 | } |
| 11319 | |
| 11320 | bool SystemZTargetLowering::isInternal(const Function *Fn) const { |
| 11321 | std::map<const Function *, bool>::iterator Itr = IsInternalCache.find(x: Fn); |
| 11322 | if (Itr == IsInternalCache.end()) |
| 11323 | Itr = IsInternalCache |
| 11324 | .insert(x: std::pair<const Function *, bool>( |
| 11325 | Fn, (Fn->hasLocalLinkage() && !Fn->hasAddressTaken()))) |
| 11326 | .first; |
| 11327 | return Itr->second; |
| 11328 | } |
| 11329 | |
| 11330 | void SystemZTargetLowering:: |
| 11331 | verifyNarrowIntegerArgs_Call(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 11332 | const Function *F, SDValue Callee) const { |
| 11333 | // Temporarily only do the check when explicitly requested, until it can be |
| 11334 | // enabled by default. |
| 11335 | if (!EnableIntArgExtCheck) |
| 11336 | return; |
| 11337 | |
| 11338 | bool IsInternal = false; |
| 11339 | const Function *CalleeFn = nullptr; |
| 11340 | if (auto *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) |
| 11341 | if ((CalleeFn = dyn_cast<Function>(Val: G->getGlobal()))) |
| 11342 | IsInternal = isInternal(Fn: CalleeFn); |
| 11343 | if (!IsInternal && !verifyNarrowIntegerArgs(Outs)) { |
| 11344 | errs() << "ERROR: Missing extension attribute of passed " |
| 11345 | << "value in call to function:\n" << "Callee: " ; |
| 11346 | if (CalleeFn != nullptr) |
| 11347 | printFunctionArgExts(F: CalleeFn, OS&: errs()); |
| 11348 | else |
| 11349 | errs() << "-\n" ; |
| 11350 | errs() << "Caller: " ; |
| 11351 | printFunctionArgExts(F, OS&: errs()); |
| 11352 | llvm_unreachable("" ); |
| 11353 | } |
| 11354 | } |
| 11355 | |
| 11356 | void SystemZTargetLowering:: |
| 11357 | verifyNarrowIntegerArgs_Ret(const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 11358 | const Function *F) const { |
| 11359 | // Temporarily only do the check when explicitly requested, until it can be |
| 11360 | // enabled by default. |
| 11361 | if (!EnableIntArgExtCheck) |
| 11362 | return; |
| 11363 | |
| 11364 | if (!isInternal(Fn: F) && !verifyNarrowIntegerArgs(Outs)) { |
| 11365 | errs() << "ERROR: Missing extension attribute of returned " |
| 11366 | << "value from function:\n" ; |
| 11367 | printFunctionArgExts(F, OS&: errs()); |
| 11368 | llvm_unreachable("" ); |
| 11369 | } |
| 11370 | } |
| 11371 | |
| 11372 | // Verify that narrow integer arguments are extended as required by the ABI. |
| 11373 | // Return false if an error is found. |
| 11374 | bool SystemZTargetLowering::verifyNarrowIntegerArgs( |
| 11375 | const SmallVectorImpl<ISD::OutputArg> &Outs) const { |
| 11376 | if (!Subtarget.isTargetELF()) |
| 11377 | return true; |
| 11378 | |
| 11379 | if (EnableIntArgExtCheck.getNumOccurrences()) { |
| 11380 | if (!EnableIntArgExtCheck) |
| 11381 | return true; |
| 11382 | } else if (!getTargetMachine().Options.VerifyArgABICompliance) |
| 11383 | return true; |
| 11384 | |
| 11385 | for (unsigned i = 0; i < Outs.size(); ++i) { |
| 11386 | MVT VT = Outs[i].VT; |
| 11387 | ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| 11388 | if (VT.isInteger()) { |
| 11389 | assert((VT == MVT::i32 || VT.getSizeInBits() >= 64) && |
| 11390 | "Unexpected integer argument VT." ); |
| 11391 | if (VT == MVT::i32 && |
| 11392 | !Flags.isSExt() && !Flags.isZExt() && !Flags.isNoExt()) |
| 11393 | return false; |
| 11394 | } |
| 11395 | } |
| 11396 | |
| 11397 | return true; |
| 11398 | } |
| 11399 | |