| 1 | //===--- CGCall.cpp - Encapsulate calling convention details --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // These classes wrap the information about a call or function |
| 10 | // definition used to handle ABI compliancy. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "CGCall.h" |
| 15 | #include "ABIInfo.h" |
| 16 | #include "ABIInfoImpl.h" |
| 17 | #include "CGBlocks.h" |
| 18 | #include "CGCXXABI.h" |
| 19 | #include "CGCleanup.h" |
| 20 | #include "CGDebugInfo.h" |
| 21 | #include "CGRecordLayout.h" |
| 22 | #include "CodeGenFunction.h" |
| 23 | #include "CodeGenModule.h" |
| 24 | #include "CodeGenPGO.h" |
| 25 | #include "TargetInfo.h" |
| 26 | #include "clang/AST/Attr.h" |
| 27 | #include "clang/AST/Decl.h" |
| 28 | #include "clang/AST/DeclCXX.h" |
| 29 | #include "clang/AST/DeclObjC.h" |
| 30 | #include "clang/Basic/CodeGenOptions.h" |
| 31 | #include "clang/Basic/TargetInfo.h" |
| 32 | #include "clang/CodeGen/CGFunctionInfo.h" |
| 33 | #include "clang/CodeGen/SwiftCallingConv.h" |
| 34 | #include "llvm/ADT/StringExtras.h" |
| 35 | #include "llvm/Analysis/ValueTracking.h" |
| 36 | #include "llvm/IR/Assumptions.h" |
| 37 | #include "llvm/IR/AttributeMask.h" |
| 38 | #include "llvm/IR/Attributes.h" |
| 39 | #include "llvm/IR/CallingConv.h" |
| 40 | #include "llvm/IR/DataLayout.h" |
| 41 | #include "llvm/IR/InlineAsm.h" |
| 42 | #include "llvm/IR/IntrinsicInst.h" |
| 43 | #include "llvm/IR/Intrinsics.h" |
| 44 | #include "llvm/IR/Type.h" |
| 45 | #include "llvm/Transforms/Utils/Local.h" |
| 46 | #include <optional> |
| 47 | using namespace clang; |
| 48 | using namespace CodeGen; |
| 49 | |
| 50 | /***/ |
| 51 | |
| 52 | unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { |
| 53 | switch (CC) { |
| 54 | default: |
| 55 | return llvm::CallingConv::C; |
| 56 | case CC_X86StdCall: |
| 57 | return llvm::CallingConv::X86_StdCall; |
| 58 | case CC_X86FastCall: |
| 59 | return llvm::CallingConv::X86_FastCall; |
| 60 | case CC_X86RegCall: |
| 61 | return llvm::CallingConv::X86_RegCall; |
| 62 | case CC_X86ThisCall: |
| 63 | return llvm::CallingConv::X86_ThisCall; |
| 64 | case CC_Win64: |
| 65 | return llvm::CallingConv::Win64; |
| 66 | case CC_X86_64SysV: |
| 67 | return llvm::CallingConv::X86_64_SysV; |
| 68 | case CC_AAPCS: |
| 69 | return llvm::CallingConv::ARM_AAPCS; |
| 70 | case CC_AAPCS_VFP: |
| 71 | return llvm::CallingConv::ARM_AAPCS_VFP; |
| 72 | case CC_IntelOclBicc: |
| 73 | return llvm::CallingConv::Intel_OCL_BI; |
| 74 | // TODO: Add support for __pascal to LLVM. |
| 75 | case CC_X86Pascal: |
| 76 | return llvm::CallingConv::C; |
| 77 | // TODO: Add support for __vectorcall to LLVM. |
| 78 | case CC_X86VectorCall: |
| 79 | return llvm::CallingConv::X86_VectorCall; |
| 80 | case CC_AArch64VectorCall: |
| 81 | return llvm::CallingConv::AArch64_VectorCall; |
| 82 | case CC_AArch64SVEPCS: |
| 83 | return llvm::CallingConv::AArch64_SVE_VectorCall; |
| 84 | case CC_SpirFunction: |
| 85 | return llvm::CallingConv::SPIR_FUNC; |
| 86 | case CC_DeviceKernel: |
| 87 | return CGM.getTargetCodeGenInfo().getDeviceKernelCallingConv(); |
| 88 | case CC_PreserveMost: |
| 89 | return llvm::CallingConv::PreserveMost; |
| 90 | case CC_PreserveAll: |
| 91 | return llvm::CallingConv::PreserveAll; |
| 92 | case CC_Swift: |
| 93 | return llvm::CallingConv::Swift; |
| 94 | case CC_SwiftAsync: |
| 95 | return llvm::CallingConv::SwiftTail; |
| 96 | case CC_M68kRTD: |
| 97 | return llvm::CallingConv::M68k_RTD; |
| 98 | case CC_PreserveNone: |
| 99 | return llvm::CallingConv::PreserveNone; |
| 100 | // clang-format off |
| 101 | case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall; |
| 102 | // clang-format on |
| 103 | #define CC_VLS_CASE(ABI_VLEN) \ |
| 104 | case CC_RISCVVLSCall_##ABI_VLEN: \ |
| 105 | return llvm::CallingConv::RISCV_VLSCall_##ABI_VLEN; |
| 106 | CC_VLS_CASE(32) |
| 107 | CC_VLS_CASE(64) |
| 108 | CC_VLS_CASE(128) |
| 109 | CC_VLS_CASE(256) |
| 110 | CC_VLS_CASE(512) |
| 111 | CC_VLS_CASE(1024) |
| 112 | CC_VLS_CASE(2048) |
| 113 | CC_VLS_CASE(4096) |
| 114 | CC_VLS_CASE(8192) |
| 115 | CC_VLS_CASE(16384) |
| 116 | CC_VLS_CASE(32768) |
| 117 | CC_VLS_CASE(65536) |
| 118 | #undef CC_VLS_CASE |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR |
| 123 | /// qualification. Either or both of RD and MD may be null. A null RD indicates |
| 124 | /// that there is no meaningful 'this' type, and a null MD can occur when |
| 125 | /// calling a method pointer. |
| 126 | CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, |
| 127 | const CXXMethodDecl *MD) { |
| 128 | QualType RecTy; |
| 129 | if (RD) |
| 130 | RecTy = Context.getTagDeclType(Decl: RD)->getCanonicalTypeInternal(); |
| 131 | else |
| 132 | RecTy = Context.VoidTy; |
| 133 | |
| 134 | if (MD) |
| 135 | RecTy = Context.getAddrSpaceQualType( |
| 136 | T: RecTy, AddressSpace: MD->getMethodQualifiers().getAddressSpace()); |
| 137 | return Context.getPointerType(T: CanQualType::CreateUnsafe(Other: RecTy)); |
| 138 | } |
| 139 | |
| 140 | /// Returns the canonical formal type of the given C++ method. |
| 141 | static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { |
| 142 | return MD->getType() |
| 143 | ->getCanonicalTypeUnqualified() |
| 144 | .getAs<FunctionProtoType>(); |
| 145 | } |
| 146 | |
| 147 | /// Returns the "extra-canonicalized" return type, which discards |
| 148 | /// qualifiers on the return type. Codegen doesn't care about them, |
| 149 | /// and it makes ABI code a little easier to be able to assume that |
| 150 | /// all parameter and return types are top-level unqualified. |
| 151 | static CanQualType GetReturnType(QualType RetTy) { |
| 152 | return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| 153 | } |
| 154 | |
| 155 | /// Arrange the argument and result information for a value of the given |
| 156 | /// unprototyped freestanding function type. |
| 157 | const CGFunctionInfo & |
| 158 | CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { |
| 159 | // When translating an unprototyped function type, always use a |
| 160 | // variadic type. |
| 161 | return arrangeLLVMFunctionInfo(returnType: FTNP->getReturnType().getUnqualifiedType(), |
| 162 | opts: FnInfoOpts::None, argTypes: {}, info: FTNP->getExtInfo(), paramInfos: {}, |
| 163 | args: RequiredArgs(0)); |
| 164 | } |
| 165 | |
| 166 | static void addExtParameterInfosForCall( |
| 167 | llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, |
| 168 | const FunctionProtoType *proto, unsigned prefixArgs, unsigned totalArgs) { |
| 169 | assert(proto->hasExtParameterInfos()); |
| 170 | assert(paramInfos.size() <= prefixArgs); |
| 171 | assert(proto->getNumParams() + prefixArgs <= totalArgs); |
| 172 | |
| 173 | paramInfos.reserve(N: totalArgs); |
| 174 | |
| 175 | // Add default infos for any prefix args that don't already have infos. |
| 176 | paramInfos.resize(N: prefixArgs); |
| 177 | |
| 178 | // Add infos for the prototype. |
| 179 | for (const auto &ParamInfo : proto->getExtParameterInfos()) { |
| 180 | paramInfos.push_back(Elt: ParamInfo); |
| 181 | // pass_object_size params have no parameter info. |
| 182 | if (ParamInfo.hasPassObjectSize()) |
| 183 | paramInfos.emplace_back(); |
| 184 | } |
| 185 | |
| 186 | assert(paramInfos.size() <= totalArgs && |
| 187 | "Did we forget to insert pass_object_size args?" ); |
| 188 | // Add default infos for the variadic and/or suffix arguments. |
| 189 | paramInfos.resize(N: totalArgs); |
| 190 | } |
| 191 | |
| 192 | /// Adds the formal parameters in FPT to the given prefix. If any parameter in |
| 193 | /// FPT has pass_object_size attrs, then we'll add parameters for those, too. |
| 194 | static void appendParameterTypes( |
| 195 | const CodeGenTypes &CGT, SmallVectorImpl<CanQualType> &prefix, |
| 196 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, |
| 197 | CanQual<FunctionProtoType> FPT) { |
| 198 | // Fast path: don't touch param info if we don't need to. |
| 199 | if (!FPT->hasExtParameterInfos()) { |
| 200 | assert(paramInfos.empty() && |
| 201 | "We have paramInfos, but the prototype doesn't?" ); |
| 202 | prefix.append(in_start: FPT->param_type_begin(), in_end: FPT->param_type_end()); |
| 203 | return; |
| 204 | } |
| 205 | |
| 206 | unsigned PrefixSize = prefix.size(); |
| 207 | // In the vast majority of cases, we'll have precisely FPT->getNumParams() |
| 208 | // parameters; the only thing that can change this is the presence of |
| 209 | // pass_object_size. So, we preallocate for the common case. |
| 210 | prefix.reserve(N: prefix.size() + FPT->getNumParams()); |
| 211 | |
| 212 | auto ExtInfos = FPT->getExtParameterInfos(); |
| 213 | assert(ExtInfos.size() == FPT->getNumParams()); |
| 214 | for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { |
| 215 | prefix.push_back(Elt: FPT->getParamType(i: I)); |
| 216 | if (ExtInfos[I].hasPassObjectSize()) |
| 217 | prefix.push_back(Elt: CGT.getContext().getSizeType()); |
| 218 | } |
| 219 | |
| 220 | addExtParameterInfosForCall(paramInfos, proto: FPT.getTypePtr(), prefixArgs: PrefixSize, |
| 221 | totalArgs: prefix.size()); |
| 222 | } |
| 223 | |
| 224 | using ExtParameterInfoList = |
| 225 | SmallVector<FunctionProtoType::ExtParameterInfo, 16>; |
| 226 | |
| 227 | /// Arrange the LLVM function layout for a value of the given function |
| 228 | /// type, on top of any implicit parameters already stored. |
| 229 | static const CGFunctionInfo & |
| 230 | arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, |
| 231 | SmallVectorImpl<CanQualType> &prefix, |
| 232 | CanQual<FunctionProtoType> FTP) { |
| 233 | ExtParameterInfoList paramInfos; |
| 234 | RequiredArgs Required = RequiredArgs::forPrototypePlus(prototype: FTP, additional: prefix.size()); |
| 235 | appendParameterTypes(CGT, prefix, paramInfos, FPT: FTP); |
| 236 | CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); |
| 237 | |
| 238 | FnInfoOpts opts = |
| 239 | instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None; |
| 240 | return CGT.arrangeLLVMFunctionInfo(returnType: resultType, opts, argTypes: prefix, |
| 241 | info: FTP->getExtInfo(), paramInfos, args: Required); |
| 242 | } |
| 243 | |
| 244 | using CanQualTypeList = SmallVector<CanQualType, 16>; |
| 245 | |
| 246 | /// Arrange the argument and result information for a value of the |
| 247 | /// given freestanding function type. |
| 248 | const CGFunctionInfo & |
| 249 | CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { |
| 250 | CanQualTypeList argTypes; |
| 251 | return ::arrangeLLVMFunctionInfo(CGT&: *this, /*instanceMethod=*/false, prefix&: argTypes, |
| 252 | FTP); |
| 253 | } |
| 254 | |
| 255 | static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, |
| 256 | bool IsTargetDefaultMSABI) { |
| 257 | // Set the appropriate calling convention for the Function. |
| 258 | if (D->hasAttr<StdCallAttr>()) |
| 259 | return CC_X86StdCall; |
| 260 | |
| 261 | if (D->hasAttr<FastCallAttr>()) |
| 262 | return CC_X86FastCall; |
| 263 | |
| 264 | if (D->hasAttr<RegCallAttr>()) |
| 265 | return CC_X86RegCall; |
| 266 | |
| 267 | if (D->hasAttr<ThisCallAttr>()) |
| 268 | return CC_X86ThisCall; |
| 269 | |
| 270 | if (D->hasAttr<VectorCallAttr>()) |
| 271 | return CC_X86VectorCall; |
| 272 | |
| 273 | if (D->hasAttr<PascalAttr>()) |
| 274 | return CC_X86Pascal; |
| 275 | |
| 276 | if (PcsAttr *PCS = D->getAttr<PcsAttr>()) |
| 277 | return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); |
| 278 | |
| 279 | if (D->hasAttr<AArch64VectorPcsAttr>()) |
| 280 | return CC_AArch64VectorCall; |
| 281 | |
| 282 | if (D->hasAttr<AArch64SVEPcsAttr>()) |
| 283 | return CC_AArch64SVEPCS; |
| 284 | |
| 285 | if (D->hasAttr<DeviceKernelAttr>()) |
| 286 | return CC_DeviceKernel; |
| 287 | |
| 288 | if (D->hasAttr<IntelOclBiccAttr>()) |
| 289 | return CC_IntelOclBicc; |
| 290 | |
| 291 | if (D->hasAttr<MSABIAttr>()) |
| 292 | return IsTargetDefaultMSABI ? CC_C : CC_Win64; |
| 293 | |
| 294 | if (D->hasAttr<SysVABIAttr>()) |
| 295 | return IsTargetDefaultMSABI ? CC_X86_64SysV : CC_C; |
| 296 | |
| 297 | if (D->hasAttr<PreserveMostAttr>()) |
| 298 | return CC_PreserveMost; |
| 299 | |
| 300 | if (D->hasAttr<PreserveAllAttr>()) |
| 301 | return CC_PreserveAll; |
| 302 | |
| 303 | if (D->hasAttr<M68kRTDAttr>()) |
| 304 | return CC_M68kRTD; |
| 305 | |
| 306 | if (D->hasAttr<PreserveNoneAttr>()) |
| 307 | return CC_PreserveNone; |
| 308 | |
| 309 | if (D->hasAttr<RISCVVectorCCAttr>()) |
| 310 | return CC_RISCVVectorCall; |
| 311 | |
| 312 | if (RISCVVLSCCAttr *PCS = D->getAttr<RISCVVLSCCAttr>()) { |
| 313 | switch (PCS->getVectorWidth()) { |
| 314 | default: |
| 315 | llvm_unreachable("Invalid RISC-V VLS ABI VLEN" ); |
| 316 | #define CC_VLS_CASE(ABI_VLEN) \ |
| 317 | case ABI_VLEN: \ |
| 318 | return CC_RISCVVLSCall_##ABI_VLEN; |
| 319 | CC_VLS_CASE(32) |
| 320 | CC_VLS_CASE(64) |
| 321 | CC_VLS_CASE(128) |
| 322 | CC_VLS_CASE(256) |
| 323 | CC_VLS_CASE(512) |
| 324 | CC_VLS_CASE(1024) |
| 325 | CC_VLS_CASE(2048) |
| 326 | CC_VLS_CASE(4096) |
| 327 | CC_VLS_CASE(8192) |
| 328 | CC_VLS_CASE(16384) |
| 329 | CC_VLS_CASE(32768) |
| 330 | CC_VLS_CASE(65536) |
| 331 | #undef CC_VLS_CASE |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | return CC_C; |
| 336 | } |
| 337 | |
| 338 | /// Arrange the argument and result information for a call to an |
| 339 | /// unknown C++ non-static member function of the given abstract type. |
| 340 | /// (A null RD means we don't have any meaningful "this" argument type, |
| 341 | /// so fall back to a generic pointer type). |
| 342 | /// The member function must be an ordinary function, i.e. not a |
| 343 | /// constructor or destructor. |
| 344 | const CGFunctionInfo & |
| 345 | CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, |
| 346 | const FunctionProtoType *FTP, |
| 347 | const CXXMethodDecl *MD) { |
| 348 | CanQualTypeList argTypes; |
| 349 | |
| 350 | // Add the 'this' pointer. |
| 351 | argTypes.push_back(Elt: DeriveThisType(RD, MD)); |
| 352 | |
| 353 | return ::arrangeLLVMFunctionInfo( |
| 354 | CGT&: *this, /*instanceMethod=*/true, prefix&: argTypes, |
| 355 | FTP: FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); |
| 356 | } |
| 357 | |
| 358 | /// Set calling convention for CUDA/HIP kernel. |
| 359 | static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, |
| 360 | const FunctionDecl *FD) { |
| 361 | if (FD->hasAttr<CUDAGlobalAttr>()) { |
| 362 | const FunctionType *FT = FTy->getAs<FunctionType>(); |
| 363 | CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); |
| 364 | FTy = FT->getCanonicalTypeUnqualified(); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | /// Arrange the argument and result information for a declaration or |
| 369 | /// definition of the given C++ non-static member function. The |
| 370 | /// member function must be an ordinary function, i.e. not a |
| 371 | /// constructor or destructor. |
| 372 | const CGFunctionInfo & |
| 373 | CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { |
| 374 | assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!" ); |
| 375 | assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!" ); |
| 376 | |
| 377 | CanQualType FT = GetFormalType(MD).getAs<Type>(); |
| 378 | setCUDAKernelCallingConvention(FTy&: FT, CGM, FD: MD); |
| 379 | auto prototype = FT.getAs<FunctionProtoType>(); |
| 380 | |
| 381 | if (MD->isImplicitObjectMemberFunction()) { |
| 382 | // The abstract case is perfectly fine. |
| 383 | const CXXRecordDecl *ThisType = |
| 384 | getCXXABI().getThisArgumentTypeForMethod(GD: MD); |
| 385 | return arrangeCXXMethodType(RD: ThisType, FTP: prototype.getTypePtr(), MD); |
| 386 | } |
| 387 | |
| 388 | return arrangeFreeFunctionType(FTP: prototype); |
| 389 | } |
| 390 | |
| 391 | bool CodeGenTypes::inheritingCtorHasParams( |
| 392 | const InheritedConstructor &Inherited, CXXCtorType Type) { |
| 393 | // Parameters are unnecessary if we're constructing a base class subobject |
| 394 | // and the inherited constructor lives in a virtual base. |
| 395 | return Type == Ctor_Complete || |
| 396 | !Inherited.getShadowDecl()->constructsVirtualBase() || |
| 397 | !Target.getCXXABI().hasConstructorVariants(); |
| 398 | } |
| 399 | |
| 400 | const CGFunctionInfo & |
| 401 | CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { |
| 402 | auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 403 | |
| 404 | CanQualTypeList argTypes; |
| 405 | ExtParameterInfoList paramInfos; |
| 406 | |
| 407 | const CXXRecordDecl *ThisType = getCXXABI().getThisArgumentTypeForMethod(GD); |
| 408 | argTypes.push_back(Elt: DeriveThisType(RD: ThisType, MD)); |
| 409 | |
| 410 | bool PassParams = true; |
| 411 | |
| 412 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD)) { |
| 413 | // A base class inheriting constructor doesn't get forwarded arguments |
| 414 | // needed to construct a virtual base (or base class thereof). |
| 415 | if (auto Inherited = CD->getInheritedConstructor()) |
| 416 | PassParams = inheritingCtorHasParams(Inherited, Type: GD.getCtorType()); |
| 417 | } |
| 418 | |
| 419 | CanQual<FunctionProtoType> FTP = GetFormalType(MD); |
| 420 | |
| 421 | // Add the formal parameters. |
| 422 | if (PassParams) |
| 423 | appendParameterTypes(CGT: *this, prefix&: argTypes, paramInfos, FPT: FTP); |
| 424 | |
| 425 | CGCXXABI::AddedStructorArgCounts AddedArgs = |
| 426 | getCXXABI().buildStructorSignature(GD, ArgTys&: argTypes); |
| 427 | if (!paramInfos.empty()) { |
| 428 | // Note: prefix implies after the first param. |
| 429 | if (AddedArgs.Prefix) |
| 430 | paramInfos.insert(I: paramInfos.begin() + 1, NumToInsert: AddedArgs.Prefix, |
| 431 | Elt: FunctionProtoType::ExtParameterInfo{}); |
| 432 | if (AddedArgs.Suffix) |
| 433 | paramInfos.append(NumInputs: AddedArgs.Suffix, |
| 434 | Elt: FunctionProtoType::ExtParameterInfo{}); |
| 435 | } |
| 436 | |
| 437 | RequiredArgs required = |
| 438 | (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) |
| 439 | : RequiredArgs::All); |
| 440 | |
| 441 | FunctionType::ExtInfo extInfo = FTP->getExtInfo(); |
| 442 | CanQualType resultType = getCXXABI().HasThisReturn(GD) ? argTypes.front() |
| 443 | : getCXXABI().hasMostDerivedReturn(GD) |
| 444 | ? CGM.getContext().VoidPtrTy |
| 445 | : Context.VoidTy; |
| 446 | return arrangeLLVMFunctionInfo(returnType: resultType, opts: FnInfoOpts::IsInstanceMethod, |
| 447 | argTypes, info: extInfo, paramInfos, args: required); |
| 448 | } |
| 449 | |
| 450 | static CanQualTypeList getArgTypesForCall(ASTContext &ctx, |
| 451 | const CallArgList &args) { |
| 452 | CanQualTypeList argTypes; |
| 453 | for (auto &arg : args) |
| 454 | argTypes.push_back(Elt: ctx.getCanonicalParamType(T: arg.Ty)); |
| 455 | return argTypes; |
| 456 | } |
| 457 | |
| 458 | static CanQualTypeList getArgTypesForDeclaration(ASTContext &ctx, |
| 459 | const FunctionArgList &args) { |
| 460 | CanQualTypeList argTypes; |
| 461 | for (auto &arg : args) |
| 462 | argTypes.push_back(Elt: ctx.getCanonicalParamType(T: arg->getType())); |
| 463 | return argTypes; |
| 464 | } |
| 465 | |
| 466 | static ExtParameterInfoList |
| 467 | getExtParameterInfosForCall(const FunctionProtoType *proto, unsigned prefixArgs, |
| 468 | unsigned totalArgs) { |
| 469 | ExtParameterInfoList result; |
| 470 | if (proto->hasExtParameterInfos()) { |
| 471 | addExtParameterInfosForCall(paramInfos&: result, proto, prefixArgs, totalArgs); |
| 472 | } |
| 473 | return result; |
| 474 | } |
| 475 | |
| 476 | /// Arrange a call to a C++ method, passing the given arguments. |
| 477 | /// |
| 478 | /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` |
| 479 | /// parameter. |
| 480 | /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of |
| 481 | /// args. |
| 482 | /// PassProtoArgs indicates whether `args` has args for the parameters in the |
| 483 | /// given CXXConstructorDecl. |
| 484 | const CGFunctionInfo &CodeGenTypes::arrangeCXXConstructorCall( |
| 485 | const CallArgList &args, const CXXConstructorDecl *D, CXXCtorType CtorKind, |
| 486 | unsigned , unsigned , bool PassProtoArgs) { |
| 487 | CanQualTypeList ArgTypes; |
| 488 | for (const auto &Arg : args) |
| 489 | ArgTypes.push_back(Elt: Context.getCanonicalParamType(T: Arg.Ty)); |
| 490 | |
| 491 | // +1 for implicit this, which should always be args[0]. |
| 492 | unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; |
| 493 | |
| 494 | CanQual<FunctionProtoType> FPT = GetFormalType(MD: D); |
| 495 | RequiredArgs Required = PassProtoArgs |
| 496 | ? RequiredArgs::forPrototypePlus( |
| 497 | prototype: FPT, additional: TotalPrefixArgs + ExtraSuffixArgs) |
| 498 | : RequiredArgs::All; |
| 499 | |
| 500 | GlobalDecl GD(D, CtorKind); |
| 501 | CanQualType ResultType = getCXXABI().HasThisReturn(GD) ? ArgTypes.front() |
| 502 | : getCXXABI().hasMostDerivedReturn(GD) |
| 503 | ? CGM.getContext().VoidPtrTy |
| 504 | : Context.VoidTy; |
| 505 | |
| 506 | FunctionType::ExtInfo Info = FPT->getExtInfo(); |
| 507 | ExtParameterInfoList ParamInfos; |
| 508 | // If the prototype args are elided, we should only have ABI-specific args, |
| 509 | // which never have param info. |
| 510 | if (PassProtoArgs && FPT->hasExtParameterInfos()) { |
| 511 | // ABI-specific suffix arguments are treated the same as variadic arguments. |
| 512 | addExtParameterInfosForCall(paramInfos&: ParamInfos, proto: FPT.getTypePtr(), prefixArgs: TotalPrefixArgs, |
| 513 | totalArgs: ArgTypes.size()); |
| 514 | } |
| 515 | |
| 516 | return arrangeLLVMFunctionInfo(returnType: ResultType, opts: FnInfoOpts::IsInstanceMethod, |
| 517 | argTypes: ArgTypes, info: Info, paramInfos: ParamInfos, args: Required); |
| 518 | } |
| 519 | |
| 520 | /// Arrange the argument and result information for the declaration or |
| 521 | /// definition of the given function. |
| 522 | const CGFunctionInfo & |
| 523 | CodeGenTypes::arrangeFunctionDeclaration(const GlobalDecl GD) { |
| 524 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
| 525 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
| 526 | if (MD->isImplicitObjectMemberFunction()) |
| 527 | return arrangeCXXMethodDeclaration(MD); |
| 528 | |
| 529 | CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); |
| 530 | |
| 531 | assert(isa<FunctionType>(FTy)); |
| 532 | setCUDAKernelCallingConvention(FTy, CGM, FD); |
| 533 | |
| 534 | if (DeviceKernelAttr::isOpenCLSpelling(A: FD->getAttr<DeviceKernelAttr>()) && |
| 535 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { |
| 536 | const FunctionType *FT = FTy->getAs<FunctionType>(); |
| 537 | CGM.getTargetCodeGenInfo().setOCLKernelStubCallingConvention(FT); |
| 538 | FTy = FT->getCanonicalTypeUnqualified(); |
| 539 | } |
| 540 | |
| 541 | // When declaring a function without a prototype, always use a |
| 542 | // non-variadic type. |
| 543 | if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { |
| 544 | return arrangeLLVMFunctionInfo(returnType: noProto->getReturnType(), opts: FnInfoOpts::None, |
| 545 | argTypes: {}, info: noProto->getExtInfo(), paramInfos: {}, |
| 546 | args: RequiredArgs::All); |
| 547 | } |
| 548 | |
| 549 | return arrangeFreeFunctionType(FTP: FTy.castAs<FunctionProtoType>()); |
| 550 | } |
| 551 | |
| 552 | /// Arrange the argument and result information for the declaration or |
| 553 | /// definition of an Objective-C method. |
| 554 | const CGFunctionInfo & |
| 555 | CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { |
| 556 | // It happens that this is the same as a call with no optional |
| 557 | // arguments, except also using the formal 'self' type. |
| 558 | return arrangeObjCMessageSendSignature(MD, receiverType: MD->getSelfDecl()->getType()); |
| 559 | } |
| 560 | |
| 561 | /// Arrange the argument and result information for the function type |
| 562 | /// through which to perform a send to the given Objective-C method, |
| 563 | /// using the given receiver type. The receiver type is not always |
| 564 | /// the 'self' type of the method or even an Objective-C pointer type. |
| 565 | /// This is *not* the right method for actually performing such a |
| 566 | /// message send, due to the possibility of optional arguments. |
| 567 | const CGFunctionInfo & |
| 568 | CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, |
| 569 | QualType receiverType) { |
| 570 | CanQualTypeList argTys; |
| 571 | ExtParameterInfoList extParamInfos(MD->isDirectMethod() ? 1 : 2); |
| 572 | argTys.push_back(Elt: Context.getCanonicalParamType(T: receiverType)); |
| 573 | if (!MD->isDirectMethod()) |
| 574 | argTys.push_back(Elt: Context.getCanonicalParamType(T: Context.getObjCSelType())); |
| 575 | for (const auto *I : MD->parameters()) { |
| 576 | argTys.push_back(Elt: Context.getCanonicalParamType(T: I->getType())); |
| 577 | auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( |
| 578 | NoEscape: I->hasAttr<NoEscapeAttr>()); |
| 579 | extParamInfos.push_back(Elt: extParamInfo); |
| 580 | } |
| 581 | |
| 582 | FunctionType::ExtInfo einfo; |
| 583 | bool IsTargetDefaultMSABI = |
| 584 | getContext().getTargetInfo().getTriple().isOSWindows() || |
| 585 | getContext().getTargetInfo().getTriple().isUEFI(); |
| 586 | einfo = einfo.withCallingConv( |
| 587 | cc: getCallingConventionForDecl(D: MD, IsTargetDefaultMSABI)); |
| 588 | |
| 589 | if (getContext().getLangOpts().ObjCAutoRefCount && |
| 590 | MD->hasAttr<NSReturnsRetainedAttr>()) |
| 591 | einfo = einfo.withProducesResult(producesResult: true); |
| 592 | |
| 593 | RequiredArgs required = |
| 594 | (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); |
| 595 | |
| 596 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: MD->getReturnType()), |
| 597 | opts: FnInfoOpts::None, argTypes: argTys, info: einfo, paramInfos: extParamInfos, |
| 598 | args: required); |
| 599 | } |
| 600 | |
| 601 | const CGFunctionInfo & |
| 602 | CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, |
| 603 | const CallArgList &args) { |
| 604 | CanQualTypeList argTypes = getArgTypesForCall(ctx&: Context, args); |
| 605 | FunctionType::ExtInfo einfo; |
| 606 | |
| 607 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: returnType), opts: FnInfoOpts::None, |
| 608 | argTypes, info: einfo, paramInfos: {}, args: RequiredArgs::All); |
| 609 | } |
| 610 | |
| 611 | const CGFunctionInfo &CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { |
| 612 | // FIXME: Do we need to handle ObjCMethodDecl? |
| 613 | if (isa<CXXConstructorDecl>(Val: GD.getDecl()) || |
| 614 | isa<CXXDestructorDecl>(Val: GD.getDecl())) |
| 615 | return arrangeCXXStructorDeclaration(GD); |
| 616 | |
| 617 | return arrangeFunctionDeclaration(GD); |
| 618 | } |
| 619 | |
| 620 | /// Arrange a thunk that takes 'this' as the first parameter followed by |
| 621 | /// varargs. Return a void pointer, regardless of the actual return type. |
| 622 | /// The body of the thunk will end in a musttail call to a function of the |
| 623 | /// correct type, and the caller will bitcast the function to the correct |
| 624 | /// prototype. |
| 625 | const CGFunctionInfo & |
| 626 | CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { |
| 627 | assert(MD->isVirtual() && "only methods have thunks" ); |
| 628 | CanQual<FunctionProtoType> FTP = GetFormalType(MD); |
| 629 | CanQualType ArgTys[] = {DeriveThisType(RD: MD->getParent(), MD)}; |
| 630 | return arrangeLLVMFunctionInfo(returnType: Context.VoidTy, opts: FnInfoOpts::None, argTypes: ArgTys, |
| 631 | info: FTP->getExtInfo(), paramInfos: {}, args: RequiredArgs(1)); |
| 632 | } |
| 633 | |
| 634 | const CGFunctionInfo & |
| 635 | CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, |
| 636 | CXXCtorType CT) { |
| 637 | assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); |
| 638 | |
| 639 | CanQual<FunctionProtoType> FTP = GetFormalType(MD: CD); |
| 640 | SmallVector<CanQualType, 2> ArgTys; |
| 641 | const CXXRecordDecl *RD = CD->getParent(); |
| 642 | ArgTys.push_back(Elt: DeriveThisType(RD, MD: CD)); |
| 643 | if (CT == Ctor_CopyingClosure) |
| 644 | ArgTys.push_back(Elt: *FTP->param_type_begin()); |
| 645 | if (RD->getNumVBases() > 0) |
| 646 | ArgTys.push_back(Elt: Context.IntTy); |
| 647 | CallingConv CC = Context.getDefaultCallingConvention( |
| 648 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
| 649 | return arrangeLLVMFunctionInfo(returnType: Context.VoidTy, opts: FnInfoOpts::IsInstanceMethod, |
| 650 | argTypes: ArgTys, info: FunctionType::ExtInfo(CC), paramInfos: {}, |
| 651 | args: RequiredArgs::All); |
| 652 | } |
| 653 | |
| 654 | /// Arrange a call as unto a free function, except possibly with an |
| 655 | /// additional number of formal parameters considered required. |
| 656 | static const CGFunctionInfo & |
| 657 | arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, CodeGenModule &CGM, |
| 658 | const CallArgList &args, const FunctionType *fnType, |
| 659 | unsigned , bool chainCall) { |
| 660 | assert(args.size() >= numExtraRequiredArgs); |
| 661 | |
| 662 | ExtParameterInfoList paramInfos; |
| 663 | |
| 664 | // In most cases, there are no optional arguments. |
| 665 | RequiredArgs required = RequiredArgs::All; |
| 666 | |
| 667 | // If we have a variadic prototype, the required arguments are the |
| 668 | // extra prefix plus the arguments in the prototype. |
| 669 | if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(Val: fnType)) { |
| 670 | if (proto->isVariadic()) |
| 671 | required = RequiredArgs::forPrototypePlus(prototype: proto, additional: numExtraRequiredArgs); |
| 672 | |
| 673 | if (proto->hasExtParameterInfos()) |
| 674 | addExtParameterInfosForCall(paramInfos, proto, prefixArgs: numExtraRequiredArgs, |
| 675 | totalArgs: args.size()); |
| 676 | |
| 677 | // If we don't have a prototype at all, but we're supposed to |
| 678 | // explicitly use the variadic convention for unprototyped calls, |
| 679 | // treat all of the arguments as required but preserve the nominal |
| 680 | // possibility of variadics. |
| 681 | } else if (CGM.getTargetCodeGenInfo().isNoProtoCallVariadic( |
| 682 | args, fnType: cast<FunctionNoProtoType>(Val: fnType))) { |
| 683 | required = RequiredArgs(args.size()); |
| 684 | } |
| 685 | |
| 686 | CanQualTypeList argTypes; |
| 687 | for (const auto &arg : args) |
| 688 | argTypes.push_back(Elt: CGT.getContext().getCanonicalParamType(T: arg.Ty)); |
| 689 | FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None; |
| 690 | return CGT.arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: fnType->getReturnType()), |
| 691 | opts, argTypes, info: fnType->getExtInfo(), |
| 692 | paramInfos, args: required); |
| 693 | } |
| 694 | |
| 695 | /// Figure out the rules for calling a function with the given formal |
| 696 | /// type using the given arguments. The arguments are necessary |
| 697 | /// because the function might be unprototyped, in which case it's |
| 698 | /// target-dependent in crazy ways. |
| 699 | const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionCall( |
| 700 | const CallArgList &args, const FunctionType *fnType, bool chainCall) { |
| 701 | return arrangeFreeFunctionLikeCall(CGT&: *this, CGM, args, fnType, |
| 702 | numExtraRequiredArgs: chainCall ? 1 : 0, chainCall); |
| 703 | } |
| 704 | |
| 705 | /// A block function is essentially a free function with an |
| 706 | /// extra implicit argument. |
| 707 | const CGFunctionInfo & |
| 708 | CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, |
| 709 | const FunctionType *fnType) { |
| 710 | return arrangeFreeFunctionLikeCall(CGT&: *this, CGM, args, fnType, numExtraRequiredArgs: 1, |
| 711 | /*chainCall=*/false); |
| 712 | } |
| 713 | |
| 714 | const CGFunctionInfo & |
| 715 | CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, |
| 716 | const FunctionArgList ¶ms) { |
| 717 | ExtParameterInfoList paramInfos = |
| 718 | getExtParameterInfosForCall(proto, prefixArgs: 1, totalArgs: params.size()); |
| 719 | CanQualTypeList argTypes = getArgTypesForDeclaration(ctx&: Context, args: params); |
| 720 | |
| 721 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: proto->getReturnType()), |
| 722 | opts: FnInfoOpts::None, argTypes, |
| 723 | info: proto->getExtInfo(), paramInfos, |
| 724 | args: RequiredArgs::forPrototypePlus(prototype: proto, additional: 1)); |
| 725 | } |
| 726 | |
| 727 | const CGFunctionInfo & |
| 728 | CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, |
| 729 | const CallArgList &args) { |
| 730 | CanQualTypeList argTypes; |
| 731 | for (const auto &Arg : args) |
| 732 | argTypes.push_back(Elt: Context.getCanonicalParamType(T: Arg.Ty)); |
| 733 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: resultType), opts: FnInfoOpts::None, |
| 734 | argTypes, info: FunctionType::ExtInfo(), |
| 735 | /*paramInfos=*/{}, args: RequiredArgs::All); |
| 736 | } |
| 737 | |
| 738 | const CGFunctionInfo & |
| 739 | CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, |
| 740 | const FunctionArgList &args) { |
| 741 | CanQualTypeList argTypes = getArgTypesForDeclaration(ctx&: Context, args); |
| 742 | |
| 743 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: resultType), opts: FnInfoOpts::None, |
| 744 | argTypes, info: FunctionType::ExtInfo(), paramInfos: {}, |
| 745 | args: RequiredArgs::All); |
| 746 | } |
| 747 | |
| 748 | const CGFunctionInfo &CodeGenTypes::arrangeBuiltinFunctionDeclaration( |
| 749 | CanQualType resultType, ArrayRef<CanQualType> argTypes) { |
| 750 | return arrangeLLVMFunctionInfo(returnType: resultType, opts: FnInfoOpts::None, argTypes, |
| 751 | info: FunctionType::ExtInfo(), paramInfos: {}, |
| 752 | args: RequiredArgs::All); |
| 753 | } |
| 754 | |
| 755 | const CGFunctionInfo & |
| 756 | CodeGenTypes::arrangeSYCLKernelCallerDeclaration(QualType resultType, |
| 757 | const FunctionArgList &args) { |
| 758 | CanQualTypeList argTypes = getArgTypesForDeclaration(ctx&: Context, args); |
| 759 | |
| 760 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: resultType), opts: FnInfoOpts::None, |
| 761 | argTypes, |
| 762 | info: FunctionType::ExtInfo(CC_DeviceKernel), |
| 763 | /*paramInfos=*/{}, args: RequiredArgs::All); |
| 764 | } |
| 765 | |
| 766 | /// Arrange a call to a C++ method, passing the given arguments. |
| 767 | /// |
| 768 | /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It |
| 769 | /// does not count `this`. |
| 770 | const CGFunctionInfo &CodeGenTypes::arrangeCXXMethodCall( |
| 771 | const CallArgList &args, const FunctionProtoType *proto, |
| 772 | RequiredArgs required, unsigned numPrefixArgs) { |
| 773 | assert(numPrefixArgs + 1 <= args.size() && |
| 774 | "Emitting a call with less args than the required prefix?" ); |
| 775 | // Add one to account for `this`. It's a bit awkward here, but we don't count |
| 776 | // `this` in similar places elsewhere. |
| 777 | ExtParameterInfoList paramInfos = |
| 778 | getExtParameterInfosForCall(proto, prefixArgs: numPrefixArgs + 1, totalArgs: args.size()); |
| 779 | |
| 780 | CanQualTypeList argTypes = getArgTypesForCall(ctx&: Context, args); |
| 781 | |
| 782 | FunctionType::ExtInfo info = proto->getExtInfo(); |
| 783 | return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: proto->getReturnType()), |
| 784 | opts: FnInfoOpts::IsInstanceMethod, argTypes, info, |
| 785 | paramInfos, args: required); |
| 786 | } |
| 787 | |
| 788 | const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { |
| 789 | return arrangeLLVMFunctionInfo(returnType: getContext().VoidTy, opts: FnInfoOpts::None, argTypes: {}, |
| 790 | info: FunctionType::ExtInfo(), paramInfos: {}, |
| 791 | args: RequiredArgs::All); |
| 792 | } |
| 793 | |
| 794 | const CGFunctionInfo &CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, |
| 795 | const CallArgList &args) { |
| 796 | assert(signature.arg_size() <= args.size()); |
| 797 | if (signature.arg_size() == args.size()) |
| 798 | return signature; |
| 799 | |
| 800 | ExtParameterInfoList paramInfos; |
| 801 | auto sigParamInfos = signature.getExtParameterInfos(); |
| 802 | if (!sigParamInfos.empty()) { |
| 803 | paramInfos.append(in_start: sigParamInfos.begin(), in_end: sigParamInfos.end()); |
| 804 | paramInfos.resize(N: args.size()); |
| 805 | } |
| 806 | |
| 807 | CanQualTypeList argTypes = getArgTypesForCall(ctx&: Context, args); |
| 808 | |
| 809 | assert(signature.getRequiredArgs().allowsOptionalArgs()); |
| 810 | FnInfoOpts opts = FnInfoOpts::None; |
| 811 | if (signature.isInstanceMethod()) |
| 812 | opts |= FnInfoOpts::IsInstanceMethod; |
| 813 | if (signature.isChainCall()) |
| 814 | opts |= FnInfoOpts::IsChainCall; |
| 815 | if (signature.isDelegateCall()) |
| 816 | opts |= FnInfoOpts::IsDelegateCall; |
| 817 | return arrangeLLVMFunctionInfo(returnType: signature.getReturnType(), opts, argTypes, |
| 818 | info: signature.getExtInfo(), paramInfos, |
| 819 | args: signature.getRequiredArgs()); |
| 820 | } |
| 821 | |
| 822 | namespace clang { |
| 823 | namespace CodeGen { |
| 824 | void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); |
| 825 | } |
| 826 | } // namespace clang |
| 827 | |
| 828 | /// Arrange the argument and result information for an abstract value |
| 829 | /// of a given function type. This is the method which all of the |
| 830 | /// above functions ultimately defer to. |
| 831 | const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo( |
| 832 | CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes, |
| 833 | FunctionType::ExtInfo info, |
| 834 | ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, |
| 835 | RequiredArgs required) { |
| 836 | assert(llvm::all_of(argTypes, |
| 837 | [](CanQualType T) { return T.isCanonicalAsParam(); })); |
| 838 | |
| 839 | // Lookup or create unique function info. |
| 840 | llvm::FoldingSetNodeID ID; |
| 841 | bool isInstanceMethod = |
| 842 | (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod; |
| 843 | bool isChainCall = |
| 844 | (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall; |
| 845 | bool isDelegateCall = |
| 846 | (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall; |
| 847 | CGFunctionInfo::Profile(ID, InstanceMethod: isInstanceMethod, ChainCall: isChainCall, IsDelegateCall: isDelegateCall, |
| 848 | info, paramInfos, required, resultType, argTypes); |
| 849 | |
| 850 | void *insertPos = nullptr; |
| 851 | CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 852 | if (FI) |
| 853 | return *FI; |
| 854 | |
| 855 | unsigned CC = ClangCallConvToLLVMCallConv(CC: info.getCC()); |
| 856 | |
| 857 | // Construct the function info. We co-allocate the ArgInfos. |
| 858 | FI = CGFunctionInfo::create(llvmCC: CC, instanceMethod: isInstanceMethod, chainCall: isChainCall, delegateCall: isDelegateCall, |
| 859 | extInfo: info, paramInfos, resultType, argTypes, required); |
| 860 | FunctionInfos.InsertNode(N: FI, InsertPos: insertPos); |
| 861 | |
| 862 | bool inserted = FunctionsBeingProcessed.insert(Ptr: FI).second; |
| 863 | (void)inserted; |
| 864 | assert(inserted && "Recursively being processed?" ); |
| 865 | |
| 866 | // Compute ABI information. |
| 867 | if (CC == llvm::CallingConv::SPIR_KERNEL) { |
| 868 | // Force target independent argument handling for the host visible |
| 869 | // kernel functions. |
| 870 | computeSPIRKernelABIInfo(CGM, FI&: *FI); |
| 871 | } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { |
| 872 | swiftcall::computeABIInfo(CGM, FI&: *FI); |
| 873 | } else { |
| 874 | CGM.getABIInfo().computeInfo(FI&: *FI); |
| 875 | } |
| 876 | |
| 877 | // Loop over all of the computed argument and return value info. If any of |
| 878 | // them are direct or extend without a specified coerce type, specify the |
| 879 | // default now. |
| 880 | ABIArgInfo &retInfo = FI->getReturnInfo(); |
| 881 | if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) |
| 882 | retInfo.setCoerceToType(ConvertType(T: FI->getReturnType())); |
| 883 | |
| 884 | for (auto &I : FI->arguments()) |
| 885 | if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) |
| 886 | I.info.setCoerceToType(ConvertType(T: I.type)); |
| 887 | |
| 888 | bool erased = FunctionsBeingProcessed.erase(Ptr: FI); |
| 889 | (void)erased; |
| 890 | assert(erased && "Not in set?" ); |
| 891 | |
| 892 | return *FI; |
| 893 | } |
| 894 | |
| 895 | CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, |
| 896 | bool chainCall, bool delegateCall, |
| 897 | const FunctionType::ExtInfo &info, |
| 898 | ArrayRef<ExtParameterInfo> paramInfos, |
| 899 | CanQualType resultType, |
| 900 | ArrayRef<CanQualType> argTypes, |
| 901 | RequiredArgs required) { |
| 902 | assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); |
| 903 | assert(!required.allowsOptionalArgs() || |
| 904 | required.getNumRequiredArgs() <= argTypes.size()); |
| 905 | |
| 906 | void *buffer = operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( |
| 907 | Counts: argTypes.size() + 1, Counts: paramInfos.size())); |
| 908 | |
| 909 | CGFunctionInfo *FI = new (buffer) CGFunctionInfo(); |
| 910 | FI->CallingConvention = llvmCC; |
| 911 | FI->EffectiveCallingConvention = llvmCC; |
| 912 | FI->ASTCallingConvention = info.getCC(); |
| 913 | FI->InstanceMethod = instanceMethod; |
| 914 | FI->ChainCall = chainCall; |
| 915 | FI->DelegateCall = delegateCall; |
| 916 | FI->CmseNSCall = info.getCmseNSCall(); |
| 917 | FI->NoReturn = info.getNoReturn(); |
| 918 | FI->ReturnsRetained = info.getProducesResult(); |
| 919 | FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); |
| 920 | FI->NoCfCheck = info.getNoCfCheck(); |
| 921 | FI->Required = required; |
| 922 | FI->HasRegParm = info.getHasRegParm(); |
| 923 | FI->RegParm = info.getRegParm(); |
| 924 | FI->ArgStruct = nullptr; |
| 925 | FI->ArgStructAlign = 0; |
| 926 | FI->NumArgs = argTypes.size(); |
| 927 | FI->HasExtParameterInfos = !paramInfos.empty(); |
| 928 | FI->getArgsBuffer()[0].type = resultType; |
| 929 | FI->MaxVectorWidth = 0; |
| 930 | for (unsigned i = 0, e = argTypes.size(); i != e; ++i) |
| 931 | FI->getArgsBuffer()[i + 1].type = argTypes[i]; |
| 932 | for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) |
| 933 | FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; |
| 934 | return FI; |
| 935 | } |
| 936 | |
| 937 | /***/ |
| 938 | |
| 939 | namespace { |
| 940 | // ABIArgInfo::Expand implementation. |
| 941 | |
| 942 | // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. |
| 943 | struct TypeExpansion { |
| 944 | enum TypeExpansionKind { |
| 945 | // Elements of constant arrays are expanded recursively. |
| 946 | TEK_ConstantArray, |
| 947 | // Record fields are expanded recursively (but if record is a union, only |
| 948 | // the field with the largest size is expanded). |
| 949 | TEK_Record, |
| 950 | // For complex types, real and imaginary parts are expanded recursively. |
| 951 | TEK_Complex, |
| 952 | // All other types are not expandable. |
| 953 | TEK_None |
| 954 | }; |
| 955 | |
| 956 | const TypeExpansionKind Kind; |
| 957 | |
| 958 | TypeExpansion(TypeExpansionKind K) : Kind(K) {} |
| 959 | virtual ~TypeExpansion() {} |
| 960 | }; |
| 961 | |
| 962 | struct ConstantArrayExpansion : TypeExpansion { |
| 963 | QualType EltTy; |
| 964 | uint64_t NumElts; |
| 965 | |
| 966 | ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) |
| 967 | : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} |
| 968 | static bool classof(const TypeExpansion *TE) { |
| 969 | return TE->Kind == TEK_ConstantArray; |
| 970 | } |
| 971 | }; |
| 972 | |
| 973 | struct RecordExpansion : TypeExpansion { |
| 974 | SmallVector<const CXXBaseSpecifier *, 1> Bases; |
| 975 | |
| 976 | SmallVector<const FieldDecl *, 1> Fields; |
| 977 | |
| 978 | RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, |
| 979 | SmallVector<const FieldDecl *, 1> &&Fields) |
| 980 | : TypeExpansion(TEK_Record), Bases(std::move(Bases)), |
| 981 | Fields(std::move(Fields)) {} |
| 982 | static bool classof(const TypeExpansion *TE) { |
| 983 | return TE->Kind == TEK_Record; |
| 984 | } |
| 985 | }; |
| 986 | |
| 987 | struct ComplexExpansion : TypeExpansion { |
| 988 | QualType EltTy; |
| 989 | |
| 990 | ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} |
| 991 | static bool classof(const TypeExpansion *TE) { |
| 992 | return TE->Kind == TEK_Complex; |
| 993 | } |
| 994 | }; |
| 995 | |
| 996 | struct NoExpansion : TypeExpansion { |
| 997 | NoExpansion() : TypeExpansion(TEK_None) {} |
| 998 | static bool classof(const TypeExpansion *TE) { return TE->Kind == TEK_None; } |
| 999 | }; |
| 1000 | } // namespace |
| 1001 | |
| 1002 | static std::unique_ptr<TypeExpansion> |
| 1003 | getTypeExpansion(QualType Ty, const ASTContext &Context) { |
| 1004 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: Ty)) { |
| 1005 | return std::make_unique<ConstantArrayExpansion>(args: AT->getElementType(), |
| 1006 | args: AT->getZExtSize()); |
| 1007 | } |
| 1008 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| 1009 | SmallVector<const CXXBaseSpecifier *, 1> Bases; |
| 1010 | SmallVector<const FieldDecl *, 1> Fields; |
| 1011 | const RecordDecl *RD = RT->getDecl(); |
| 1012 | assert(!RD->hasFlexibleArrayMember() && |
| 1013 | "Cannot expand structure with flexible array." ); |
| 1014 | if (RD->isUnion()) { |
| 1015 | // Unions can be here only in degenerative cases - all the fields are same |
| 1016 | // after flattening. Thus we have to use the "largest" field. |
| 1017 | const FieldDecl *LargestFD = nullptr; |
| 1018 | CharUnits UnionSize = CharUnits::Zero(); |
| 1019 | |
| 1020 | for (const auto *FD : RD->fields()) { |
| 1021 | if (FD->isZeroLengthBitField()) |
| 1022 | continue; |
| 1023 | assert(!FD->isBitField() && |
| 1024 | "Cannot expand structure with bit-field members." ); |
| 1025 | CharUnits FieldSize = Context.getTypeSizeInChars(T: FD->getType()); |
| 1026 | if (UnionSize < FieldSize) { |
| 1027 | UnionSize = FieldSize; |
| 1028 | LargestFD = FD; |
| 1029 | } |
| 1030 | } |
| 1031 | if (LargestFD) |
| 1032 | Fields.push_back(Elt: LargestFD); |
| 1033 | } else { |
| 1034 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 1035 | assert(!CXXRD->isDynamicClass() && |
| 1036 | "cannot expand vtable pointers in dynamic classes" ); |
| 1037 | llvm::append_range(C&: Bases, R: llvm::make_pointer_range(Range: CXXRD->bases())); |
| 1038 | } |
| 1039 | |
| 1040 | for (const auto *FD : RD->fields()) { |
| 1041 | if (FD->isZeroLengthBitField()) |
| 1042 | continue; |
| 1043 | assert(!FD->isBitField() && |
| 1044 | "Cannot expand structure with bit-field members." ); |
| 1045 | Fields.push_back(Elt: FD); |
| 1046 | } |
| 1047 | } |
| 1048 | return std::make_unique<RecordExpansion>(args: std::move(Bases), |
| 1049 | args: std::move(Fields)); |
| 1050 | } |
| 1051 | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| 1052 | return std::make_unique<ComplexExpansion>(args: CT->getElementType()); |
| 1053 | } |
| 1054 | return std::make_unique<NoExpansion>(); |
| 1055 | } |
| 1056 | |
| 1057 | static int getExpansionSize(QualType Ty, const ASTContext &Context) { |
| 1058 | auto Exp = getTypeExpansion(Ty, Context); |
| 1059 | if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) { |
| 1060 | return CAExp->NumElts * getExpansionSize(Ty: CAExp->EltTy, Context); |
| 1061 | } |
| 1062 | if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) { |
| 1063 | int Res = 0; |
| 1064 | for (auto BS : RExp->Bases) |
| 1065 | Res += getExpansionSize(Ty: BS->getType(), Context); |
| 1066 | for (auto FD : RExp->Fields) |
| 1067 | Res += getExpansionSize(Ty: FD->getType(), Context); |
| 1068 | return Res; |
| 1069 | } |
| 1070 | if (isa<ComplexExpansion>(Val: Exp.get())) |
| 1071 | return 2; |
| 1072 | assert(isa<NoExpansion>(Exp.get())); |
| 1073 | return 1; |
| 1074 | } |
| 1075 | |
| 1076 | void CodeGenTypes::getExpandedTypes( |
| 1077 | QualType Ty, SmallVectorImpl<llvm::Type *>::iterator &TI) { |
| 1078 | auto Exp = getTypeExpansion(Ty, Context); |
| 1079 | if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) { |
| 1080 | for (int i = 0, n = CAExp->NumElts; i < n; i++) { |
| 1081 | getExpandedTypes(Ty: CAExp->EltTy, TI); |
| 1082 | } |
| 1083 | } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) { |
| 1084 | for (auto BS : RExp->Bases) |
| 1085 | getExpandedTypes(Ty: BS->getType(), TI); |
| 1086 | for (auto FD : RExp->Fields) |
| 1087 | getExpandedTypes(Ty: FD->getType(), TI); |
| 1088 | } else if (auto CExp = dyn_cast<ComplexExpansion>(Val: Exp.get())) { |
| 1089 | llvm::Type *EltTy = ConvertType(T: CExp->EltTy); |
| 1090 | *TI++ = EltTy; |
| 1091 | *TI++ = EltTy; |
| 1092 | } else { |
| 1093 | assert(isa<NoExpansion>(Exp.get())); |
| 1094 | *TI++ = ConvertType(T: Ty); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | static void forConstantArrayExpansion(CodeGenFunction &CGF, |
| 1099 | ConstantArrayExpansion *CAE, |
| 1100 | Address BaseAddr, |
| 1101 | llvm::function_ref<void(Address)> Fn) { |
| 1102 | for (int i = 0, n = CAE->NumElts; i < n; i++) { |
| 1103 | Address EltAddr = CGF.Builder.CreateConstGEP2_32(Addr: BaseAddr, Idx0: 0, Idx1: i); |
| 1104 | Fn(EltAddr); |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, |
| 1109 | llvm::Function::arg_iterator &AI) { |
| 1110 | assert(LV.isSimple() && |
| 1111 | "Unexpected non-simple lvalue during struct expansion." ); |
| 1112 | |
| 1113 | auto Exp = getTypeExpansion(Ty, Context: getContext()); |
| 1114 | if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) { |
| 1115 | forConstantArrayExpansion( |
| 1116 | CGF&: *this, CAE: CAExp, BaseAddr: LV.getAddress(), Fn: [&](Address EltAddr) { |
| 1117 | LValue LV = MakeAddrLValue(Addr: EltAddr, T: CAExp->EltTy); |
| 1118 | ExpandTypeFromArgs(Ty: CAExp->EltTy, LV, AI); |
| 1119 | }); |
| 1120 | } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) { |
| 1121 | Address This = LV.getAddress(); |
| 1122 | for (const CXXBaseSpecifier *BS : RExp->Bases) { |
| 1123 | // Perform a single step derived-to-base conversion. |
| 1124 | Address Base = |
| 1125 | GetAddressOfBaseClass(Value: This, Derived: Ty->getAsCXXRecordDecl(), PathBegin: &BS, PathEnd: &BS + 1, |
| 1126 | /*NullCheckValue=*/false, Loc: SourceLocation()); |
| 1127 | LValue SubLV = MakeAddrLValue(Addr: Base, T: BS->getType()); |
| 1128 | |
| 1129 | // Recurse onto bases. |
| 1130 | ExpandTypeFromArgs(Ty: BS->getType(), LV: SubLV, AI); |
| 1131 | } |
| 1132 | for (auto FD : RExp->Fields) { |
| 1133 | // FIXME: What are the right qualifiers here? |
| 1134 | LValue SubLV = EmitLValueForFieldInitialization(Base: LV, Field: FD); |
| 1135 | ExpandTypeFromArgs(Ty: FD->getType(), LV: SubLV, AI); |
| 1136 | } |
| 1137 | } else if (isa<ComplexExpansion>(Val: Exp.get())) { |
| 1138 | auto realValue = &*AI++; |
| 1139 | auto imagValue = &*AI++; |
| 1140 | EmitStoreOfComplex(V: ComplexPairTy(realValue, imagValue), dest: LV, /*init*/ isInit: true); |
| 1141 | } else { |
| 1142 | // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a |
| 1143 | // primitive store. |
| 1144 | assert(isa<NoExpansion>(Exp.get())); |
| 1145 | llvm::Value *Arg = &*AI++; |
| 1146 | if (LV.isBitField()) { |
| 1147 | EmitStoreThroughLValue(Src: RValue::get(V: Arg), Dst: LV); |
| 1148 | } else { |
| 1149 | // TODO: currently there are some places are inconsistent in what LLVM |
| 1150 | // pointer type they use (see D118744). Once clang uses opaque pointers |
| 1151 | // all LLVM pointer types will be the same and we can remove this check. |
| 1152 | if (Arg->getType()->isPointerTy()) { |
| 1153 | Address Addr = LV.getAddress(); |
| 1154 | Arg = Builder.CreateBitCast(V: Arg, DestTy: Addr.getElementType()); |
| 1155 | } |
| 1156 | EmitStoreOfScalar(value: Arg, lvalue: LV); |
| 1157 | } |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | void CodeGenFunction::ExpandTypeToArgs( |
| 1162 | QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
| 1163 | SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { |
| 1164 | auto Exp = getTypeExpansion(Ty, Context: getContext()); |
| 1165 | if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) { |
| 1166 | Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() |
| 1167 | : Arg.getKnownRValue().getAggregateAddress(); |
| 1168 | forConstantArrayExpansion(CGF&: *this, CAE: CAExp, BaseAddr: Addr, Fn: [&](Address EltAddr) { |
| 1169 | CallArg EltArg = |
| 1170 | CallArg(convertTempToRValue(addr: EltAddr, type: CAExp->EltTy, Loc: SourceLocation()), |
| 1171 | CAExp->EltTy); |
| 1172 | ExpandTypeToArgs(Ty: CAExp->EltTy, Arg: EltArg, IRFuncTy, IRCallArgs, |
| 1173 | IRCallArgPos); |
| 1174 | }); |
| 1175 | } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) { |
| 1176 | Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() |
| 1177 | : Arg.getKnownRValue().getAggregateAddress(); |
| 1178 | for (const CXXBaseSpecifier *BS : RExp->Bases) { |
| 1179 | // Perform a single step derived-to-base conversion. |
| 1180 | Address Base = |
| 1181 | GetAddressOfBaseClass(Value: This, Derived: Ty->getAsCXXRecordDecl(), PathBegin: &BS, PathEnd: &BS + 1, |
| 1182 | /*NullCheckValue=*/false, Loc: SourceLocation()); |
| 1183 | CallArg BaseArg = CallArg(RValue::getAggregate(addr: Base), BS->getType()); |
| 1184 | |
| 1185 | // Recurse onto bases. |
| 1186 | ExpandTypeToArgs(Ty: BS->getType(), Arg: BaseArg, IRFuncTy, IRCallArgs, |
| 1187 | IRCallArgPos); |
| 1188 | } |
| 1189 | |
| 1190 | LValue LV = MakeAddrLValue(Addr: This, T: Ty); |
| 1191 | for (auto FD : RExp->Fields) { |
| 1192 | CallArg FldArg = |
| 1193 | CallArg(EmitRValueForField(LV, FD, Loc: SourceLocation()), FD->getType()); |
| 1194 | ExpandTypeToArgs(Ty: FD->getType(), Arg: FldArg, IRFuncTy, IRCallArgs, |
| 1195 | IRCallArgPos); |
| 1196 | } |
| 1197 | } else if (isa<ComplexExpansion>(Val: Exp.get())) { |
| 1198 | ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); |
| 1199 | IRCallArgs[IRCallArgPos++] = CV.first; |
| 1200 | IRCallArgs[IRCallArgPos++] = CV.second; |
| 1201 | } else { |
| 1202 | assert(isa<NoExpansion>(Exp.get())); |
| 1203 | auto RV = Arg.getKnownRValue(); |
| 1204 | assert(RV.isScalar() && |
| 1205 | "Unexpected non-scalar rvalue during struct expansion." ); |
| 1206 | |
| 1207 | // Insert a bitcast as needed. |
| 1208 | llvm::Value *V = RV.getScalarVal(); |
| 1209 | if (IRCallArgPos < IRFuncTy->getNumParams() && |
| 1210 | V->getType() != IRFuncTy->getParamType(i: IRCallArgPos)) |
| 1211 | V = Builder.CreateBitCast(V, DestTy: IRFuncTy->getParamType(i: IRCallArgPos)); |
| 1212 | |
| 1213 | IRCallArgs[IRCallArgPos++] = V; |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | /// Create a temporary allocation for the purposes of coercion. |
| 1218 | static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF, |
| 1219 | llvm::Type *Ty, |
| 1220 | CharUnits MinAlign, |
| 1221 | const Twine &Name = "tmp" ) { |
| 1222 | // Don't use an alignment that's worse than what LLVM would prefer. |
| 1223 | auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty); |
| 1224 | CharUnits Align = std::max(a: MinAlign, b: CharUnits::fromQuantity(Quantity: PrefAlign)); |
| 1225 | |
| 1226 | return CGF.CreateTempAlloca(Ty, align: Align, Name: Name + ".coerce" ); |
| 1227 | } |
| 1228 | |
| 1229 | /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are |
| 1230 | /// accessing some number of bytes out of it, try to gep into the struct to get |
| 1231 | /// at its inner goodness. Dive as deep as possible without entering an element |
| 1232 | /// with an in-memory size smaller than DstSize. |
| 1233 | static Address EnterStructPointerForCoercedAccess(Address SrcPtr, |
| 1234 | llvm::StructType *SrcSTy, |
| 1235 | uint64_t DstSize, |
| 1236 | CodeGenFunction &CGF) { |
| 1237 | // We can't dive into a zero-element struct. |
| 1238 | if (SrcSTy->getNumElements() == 0) |
| 1239 | return SrcPtr; |
| 1240 | |
| 1241 | llvm::Type *FirstElt = SrcSTy->getElementType(N: 0); |
| 1242 | |
| 1243 | // If the first elt is at least as large as what we're looking for, or if the |
| 1244 | // first element is the same size as the whole struct, we can enter it. The |
| 1245 | // comparison must be made on the store size and not the alloca size. Using |
| 1246 | // the alloca size may overstate the size of the load. |
| 1247 | uint64_t FirstEltSize = CGF.CGM.getDataLayout().getTypeStoreSize(Ty: FirstElt); |
| 1248 | if (FirstEltSize < DstSize && |
| 1249 | FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(Ty: SrcSTy)) |
| 1250 | return SrcPtr; |
| 1251 | |
| 1252 | // GEP into the first element. |
| 1253 | SrcPtr = CGF.Builder.CreateStructGEP(Addr: SrcPtr, Index: 0, Name: "coerce.dive" ); |
| 1254 | |
| 1255 | // If the first element is a struct, recurse. |
| 1256 | llvm::Type *SrcTy = SrcPtr.getElementType(); |
| 1257 | if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(Val: SrcTy)) |
| 1258 | return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| 1259 | |
| 1260 | return SrcPtr; |
| 1261 | } |
| 1262 | |
| 1263 | /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both |
| 1264 | /// are either integers or pointers. This does a truncation of the value if it |
| 1265 | /// is too large or a zero extension if it is too small. |
| 1266 | /// |
| 1267 | /// This behaves as if the value were coerced through memory, so on big-endian |
| 1268 | /// targets the high bits are preserved in a truncation, while little-endian |
| 1269 | /// targets preserve the low bits. |
| 1270 | static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, llvm::Type *Ty, |
| 1271 | CodeGenFunction &CGF) { |
| 1272 | if (Val->getType() == Ty) |
| 1273 | return Val; |
| 1274 | |
| 1275 | if (isa<llvm::PointerType>(Val: Val->getType())) { |
| 1276 | // If this is Pointer->Pointer avoid conversion to and from int. |
| 1277 | if (isa<llvm::PointerType>(Val: Ty)) |
| 1278 | return CGF.Builder.CreateBitCast(V: Val, DestTy: Ty, Name: "coerce.val" ); |
| 1279 | |
| 1280 | // Convert the pointer to an integer so we can play with its width. |
| 1281 | Val = CGF.Builder.CreatePtrToInt(V: Val, DestTy: CGF.IntPtrTy, Name: "coerce.val.pi" ); |
| 1282 | } |
| 1283 | |
| 1284 | llvm::Type *DestIntTy = Ty; |
| 1285 | if (isa<llvm::PointerType>(Val: DestIntTy)) |
| 1286 | DestIntTy = CGF.IntPtrTy; |
| 1287 | |
| 1288 | if (Val->getType() != DestIntTy) { |
| 1289 | const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); |
| 1290 | if (DL.isBigEndian()) { |
| 1291 | // Preserve the high bits on big-endian targets. |
| 1292 | // That is what memory coercion does. |
| 1293 | uint64_t SrcSize = DL.getTypeSizeInBits(Ty: Val->getType()); |
| 1294 | uint64_t DstSize = DL.getTypeSizeInBits(Ty: DestIntTy); |
| 1295 | |
| 1296 | if (SrcSize > DstSize) { |
| 1297 | Val = CGF.Builder.CreateLShr(LHS: Val, RHS: SrcSize - DstSize, Name: "coerce.highbits" ); |
| 1298 | Val = CGF.Builder.CreateTrunc(V: Val, DestTy: DestIntTy, Name: "coerce.val.ii" ); |
| 1299 | } else { |
| 1300 | Val = CGF.Builder.CreateZExt(V: Val, DestTy: DestIntTy, Name: "coerce.val.ii" ); |
| 1301 | Val = CGF.Builder.CreateShl(LHS: Val, RHS: DstSize - SrcSize, Name: "coerce.highbits" ); |
| 1302 | } |
| 1303 | } else { |
| 1304 | // Little-endian targets preserve the low bits. No shifts required. |
| 1305 | Val = CGF.Builder.CreateIntCast(V: Val, DestTy: DestIntTy, isSigned: false, Name: "coerce.val.ii" ); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | if (isa<llvm::PointerType>(Val: Ty)) |
| 1310 | Val = CGF.Builder.CreateIntToPtr(V: Val, DestTy: Ty, Name: "coerce.val.ip" ); |
| 1311 | return Val; |
| 1312 | } |
| 1313 | |
| 1314 | /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as |
| 1315 | /// a pointer to an object of type \arg Ty, known to be aligned to |
| 1316 | /// \arg SrcAlign bytes. |
| 1317 | /// |
| 1318 | /// This safely handles the case when the src type is smaller than the |
| 1319 | /// destination type; in this situation the values of bits which not |
| 1320 | /// present in the src are undefined. |
| 1321 | static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, |
| 1322 | CodeGenFunction &CGF) { |
| 1323 | llvm::Type *SrcTy = Src.getElementType(); |
| 1324 | |
| 1325 | // If SrcTy and Ty are the same, just do a load. |
| 1326 | if (SrcTy == Ty) |
| 1327 | return CGF.Builder.CreateLoad(Addr: Src); |
| 1328 | |
| 1329 | llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); |
| 1330 | |
| 1331 | if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(Val: SrcTy)) { |
| 1332 | Src = EnterStructPointerForCoercedAccess(SrcPtr: Src, SrcSTy, |
| 1333 | DstSize: DstSize.getFixedValue(), CGF); |
| 1334 | SrcTy = Src.getElementType(); |
| 1335 | } |
| 1336 | |
| 1337 | llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy); |
| 1338 | |
| 1339 | // If the source and destination are integer or pointer types, just do an |
| 1340 | // extension or truncation to the desired type. |
| 1341 | if ((isa<llvm::IntegerType>(Val: Ty) || isa<llvm::PointerType>(Val: Ty)) && |
| 1342 | (isa<llvm::IntegerType>(Val: SrcTy) || isa<llvm::PointerType>(Val: SrcTy))) { |
| 1343 | llvm::Value *Load = CGF.Builder.CreateLoad(Addr: Src); |
| 1344 | return CoerceIntOrPtrToIntOrPtr(Val: Load, Ty, CGF); |
| 1345 | } |
| 1346 | |
| 1347 | // If load is legal, just bitcast the src pointer. |
| 1348 | if (!SrcSize.isScalable() && !DstSize.isScalable() && |
| 1349 | SrcSize.getFixedValue() >= DstSize.getFixedValue()) { |
| 1350 | // Generally SrcSize is never greater than DstSize, since this means we are |
| 1351 | // losing bits. However, this can happen in cases where the structure has |
| 1352 | // additional padding, for example due to a user specified alignment. |
| 1353 | // |
| 1354 | // FIXME: Assert that we aren't truncating non-padding bits when have access |
| 1355 | // to that information. |
| 1356 | Src = Src.withElementType(ElemTy: Ty); |
| 1357 | return CGF.Builder.CreateLoad(Addr: Src); |
| 1358 | } |
| 1359 | |
| 1360 | // If coercing a fixed vector to a scalable vector for ABI compatibility, and |
| 1361 | // the types match, use the llvm.vector.insert intrinsic to perform the |
| 1362 | // conversion. |
| 1363 | if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Val: Ty)) { |
| 1364 | if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(Val: SrcTy)) { |
| 1365 | // If we are casting a fixed i8 vector to a scalable i1 predicate |
| 1366 | // vector, use a vector insert and bitcast the result. |
| 1367 | if (ScalableDstTy->getElementType()->isIntegerTy(Bitwidth: 1) && |
| 1368 | FixedSrcTy->getElementType()->isIntegerTy(Bitwidth: 8)) { |
| 1369 | ScalableDstTy = llvm::ScalableVectorType::get( |
| 1370 | ElementType: FixedSrcTy->getElementType(), |
| 1371 | MinNumElts: llvm::divideCeil( |
| 1372 | Numerator: ScalableDstTy->getElementCount().getKnownMinValue(), Denominator: 8)); |
| 1373 | } |
| 1374 | if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) { |
| 1375 | auto *Load = CGF.Builder.CreateLoad(Addr: Src); |
| 1376 | auto *PoisonVec = llvm::PoisonValue::get(T: ScalableDstTy); |
| 1377 | llvm::Value *Result = CGF.Builder.CreateInsertVector( |
| 1378 | DstType: ScalableDstTy, SrcVec: PoisonVec, SubVec: Load, Idx: uint64_t(0), Name: "cast.scalable" ); |
| 1379 | ScalableDstTy = cast<llvm::ScalableVectorType>( |
| 1380 | Val: llvm::VectorType::getWithSizeAndScalar(SizeTy: ScalableDstTy, EltTy: Ty)); |
| 1381 | if (Result->getType() != ScalableDstTy) |
| 1382 | Result = CGF.Builder.CreateBitCast(V: Result, DestTy: ScalableDstTy); |
| 1383 | if (Result->getType() != Ty) |
| 1384 | Result = CGF.Builder.CreateExtractVector(DstType: Ty, SrcVec: Result, Idx: uint64_t(0)); |
| 1385 | return Result; |
| 1386 | } |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | // Otherwise do coercion through memory. This is stupid, but simple. |
| 1391 | RawAddress Tmp = |
| 1392 | CreateTempAllocaForCoercion(CGF, Ty, MinAlign: Src.getAlignment(), Name: Src.getName()); |
| 1393 | CGF.Builder.CreateMemCpy( |
| 1394 | Dst: Tmp.getPointer(), DstAlign: Tmp.getAlignment().getAsAlign(), |
| 1395 | Src: Src.emitRawPointer(CGF), SrcAlign: Src.getAlignment().getAsAlign(), |
| 1396 | Size: llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: SrcSize.getKnownMinValue())); |
| 1397 | return CGF.Builder.CreateLoad(Addr: Tmp); |
| 1398 | } |
| 1399 | |
| 1400 | void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst, |
| 1401 | llvm::TypeSize DstSize, |
| 1402 | bool DstIsVolatile) { |
| 1403 | if (!DstSize) |
| 1404 | return; |
| 1405 | |
| 1406 | llvm::Type *SrcTy = Src->getType(); |
| 1407 | llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy); |
| 1408 | |
| 1409 | // GEP into structs to try to make types match. |
| 1410 | // FIXME: This isn't really that useful with opaque types, but it impacts a |
| 1411 | // lot of regression tests. |
| 1412 | if (SrcTy != Dst.getElementType()) { |
| 1413 | if (llvm::StructType *DstSTy = |
| 1414 | dyn_cast<llvm::StructType>(Val: Dst.getElementType())) { |
| 1415 | assert(!SrcSize.isScalable()); |
| 1416 | Dst = EnterStructPointerForCoercedAccess(SrcPtr: Dst, SrcSTy: DstSTy, |
| 1417 | DstSize: SrcSize.getFixedValue(), CGF&: *this); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | if (SrcSize.isScalable() || SrcSize <= DstSize) { |
| 1422 | if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() && |
| 1423 | SrcSize == CGM.getDataLayout().getTypeAllocSize(Ty: Dst.getElementType())) { |
| 1424 | // If the value is supposed to be a pointer, convert it before storing it. |
| 1425 | Src = CoerceIntOrPtrToIntOrPtr(Val: Src, Ty: Dst.getElementType(), CGF&: *this); |
| 1426 | auto *I = Builder.CreateStore(Val: Src, Addr: Dst, IsVolatile: DstIsVolatile); |
| 1427 | addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Src); |
| 1428 | } else if (llvm::StructType *STy = |
| 1429 | dyn_cast<llvm::StructType>(Val: Src->getType())) { |
| 1430 | // Prefer scalar stores to first-class aggregate stores. |
| 1431 | Dst = Dst.withElementType(ElemTy: SrcTy); |
| 1432 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 1433 | Address EltPtr = Builder.CreateStructGEP(Addr: Dst, Index: i); |
| 1434 | llvm::Value *Elt = Builder.CreateExtractValue(Agg: Src, Idxs: i); |
| 1435 | auto *I = Builder.CreateStore(Val: Elt, Addr: EltPtr, IsVolatile: DstIsVolatile); |
| 1436 | addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Elt); |
| 1437 | } |
| 1438 | } else { |
| 1439 | auto *I = |
| 1440 | Builder.CreateStore(Val: Src, Addr: Dst.withElementType(ElemTy: SrcTy), IsVolatile: DstIsVolatile); |
| 1441 | addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Src); |
| 1442 | } |
| 1443 | } else if (SrcTy->isIntegerTy()) { |
| 1444 | // If the source is a simple integer, coerce it directly. |
| 1445 | llvm::Type *DstIntTy = Builder.getIntNTy(N: DstSize.getFixedValue() * 8); |
| 1446 | Src = CoerceIntOrPtrToIntOrPtr(Val: Src, Ty: DstIntTy, CGF&: *this); |
| 1447 | auto *I = |
| 1448 | Builder.CreateStore(Val: Src, Addr: Dst.withElementType(ElemTy: DstIntTy), IsVolatile: DstIsVolatile); |
| 1449 | addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Src); |
| 1450 | } else { |
| 1451 | // Otherwise do coercion through memory. This is stupid, but |
| 1452 | // simple. |
| 1453 | |
| 1454 | // Generally SrcSize is never greater than DstSize, since this means we are |
| 1455 | // losing bits. However, this can happen in cases where the structure has |
| 1456 | // additional padding, for example due to a user specified alignment. |
| 1457 | // |
| 1458 | // FIXME: Assert that we aren't truncating non-padding bits when have access |
| 1459 | // to that information. |
| 1460 | RawAddress Tmp = |
| 1461 | CreateTempAllocaForCoercion(CGF&: *this, Ty: SrcTy, MinAlign: Dst.getAlignment()); |
| 1462 | Builder.CreateStore(Val: Src, Addr: Tmp); |
| 1463 | auto *I = Builder.CreateMemCpy( |
| 1464 | Dst: Dst.emitRawPointer(CGF&: *this), DstAlign: Dst.getAlignment().getAsAlign(), |
| 1465 | Src: Tmp.getPointer(), SrcAlign: Tmp.getAlignment().getAsAlign(), |
| 1466 | Size: Builder.CreateTypeSize(Ty: IntPtrTy, Size: DstSize)); |
| 1467 | addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Src); |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, |
| 1472 | const ABIArgInfo &info) { |
| 1473 | if (unsigned offset = info.getDirectOffset()) { |
| 1474 | addr = addr.withElementType(ElemTy: CGF.Int8Ty); |
| 1475 | addr = CGF.Builder.CreateConstInBoundsByteGEP( |
| 1476 | Addr: addr, Offset: CharUnits::fromQuantity(Quantity: offset)); |
| 1477 | addr = addr.withElementType(ElemTy: info.getCoerceToType()); |
| 1478 | } |
| 1479 | return addr; |
| 1480 | } |
| 1481 | |
| 1482 | static std::pair<llvm::Value *, bool> |
| 1483 | CoerceScalableToFixed(CodeGenFunction &CGF, llvm::FixedVectorType *ToTy, |
| 1484 | llvm::ScalableVectorType *FromTy, llvm::Value *V, |
| 1485 | StringRef Name = "" ) { |
| 1486 | // If we are casting a scalable i1 predicate vector to a fixed i8 |
| 1487 | // vector, first bitcast the source. |
| 1488 | if (FromTy->getElementType()->isIntegerTy(Bitwidth: 1) && |
| 1489 | ToTy->getElementType() == CGF.Builder.getInt8Ty()) { |
| 1490 | if (!FromTy->getElementCount().isKnownMultipleOf(RHS: 8)) { |
| 1491 | FromTy = llvm::ScalableVectorType::get( |
| 1492 | ElementType: FromTy->getElementType(), |
| 1493 | MinNumElts: llvm::alignTo<8>(Value: FromTy->getElementCount().getKnownMinValue())); |
| 1494 | llvm::Value *ZeroVec = llvm::Constant::getNullValue(Ty: FromTy); |
| 1495 | V = CGF.Builder.CreateInsertVector(DstType: FromTy, SrcVec: ZeroVec, SubVec: V, Idx: uint64_t(0)); |
| 1496 | } |
| 1497 | FromTy = llvm::ScalableVectorType::get( |
| 1498 | ElementType: ToTy->getElementType(), |
| 1499 | MinNumElts: FromTy->getElementCount().getKnownMinValue() / 8); |
| 1500 | V = CGF.Builder.CreateBitCast(V, DestTy: FromTy); |
| 1501 | } |
| 1502 | if (FromTy->getElementType() == ToTy->getElementType()) { |
| 1503 | V->setName(Name + ".coerce" ); |
| 1504 | V = CGF.Builder.CreateExtractVector(DstType: ToTy, SrcVec: V, Idx: uint64_t(0), Name: "cast.fixed" ); |
| 1505 | return {V, true}; |
| 1506 | } |
| 1507 | return {V, false}; |
| 1508 | } |
| 1509 | |
| 1510 | namespace { |
| 1511 | |
| 1512 | /// Encapsulates information about the way function arguments from |
| 1513 | /// CGFunctionInfo should be passed to actual LLVM IR function. |
| 1514 | class ClangToLLVMArgMapping { |
| 1515 | static const unsigned InvalidIndex = ~0U; |
| 1516 | unsigned InallocaArgNo; |
| 1517 | unsigned SRetArgNo; |
| 1518 | unsigned TotalIRArgs; |
| 1519 | |
| 1520 | /// Arguments of LLVM IR function corresponding to single Clang argument. |
| 1521 | struct IRArgs { |
| 1522 | unsigned PaddingArgIndex; |
| 1523 | // Argument is expanded to IR arguments at positions |
| 1524 | // [FirstArgIndex, FirstArgIndex + NumberOfArgs). |
| 1525 | unsigned FirstArgIndex; |
| 1526 | unsigned NumberOfArgs; |
| 1527 | |
| 1528 | IRArgs() |
| 1529 | : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), |
| 1530 | NumberOfArgs(0) {} |
| 1531 | }; |
| 1532 | |
| 1533 | SmallVector<IRArgs, 8> ArgInfo; |
| 1534 | |
| 1535 | public: |
| 1536 | ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, |
| 1537 | bool OnlyRequiredArgs = false) |
| 1538 | : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), |
| 1539 | ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { |
| 1540 | construct(Context, FI, OnlyRequiredArgs); |
| 1541 | } |
| 1542 | |
| 1543 | bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } |
| 1544 | unsigned getInallocaArgNo() const { |
| 1545 | assert(hasInallocaArg()); |
| 1546 | return InallocaArgNo; |
| 1547 | } |
| 1548 | |
| 1549 | bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } |
| 1550 | unsigned getSRetArgNo() const { |
| 1551 | assert(hasSRetArg()); |
| 1552 | return SRetArgNo; |
| 1553 | } |
| 1554 | |
| 1555 | unsigned totalIRArgs() const { return TotalIRArgs; } |
| 1556 | |
| 1557 | bool hasPaddingArg(unsigned ArgNo) const { |
| 1558 | assert(ArgNo < ArgInfo.size()); |
| 1559 | return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; |
| 1560 | } |
| 1561 | unsigned getPaddingArgNo(unsigned ArgNo) const { |
| 1562 | assert(hasPaddingArg(ArgNo)); |
| 1563 | return ArgInfo[ArgNo].PaddingArgIndex; |
| 1564 | } |
| 1565 | |
| 1566 | /// Returns index of first IR argument corresponding to ArgNo, and their |
| 1567 | /// quantity. |
| 1568 | std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { |
| 1569 | assert(ArgNo < ArgInfo.size()); |
| 1570 | return std::make_pair(x: ArgInfo[ArgNo].FirstArgIndex, |
| 1571 | y: ArgInfo[ArgNo].NumberOfArgs); |
| 1572 | } |
| 1573 | |
| 1574 | private: |
| 1575 | void construct(const ASTContext &Context, const CGFunctionInfo &FI, |
| 1576 | bool OnlyRequiredArgs); |
| 1577 | }; |
| 1578 | |
| 1579 | void ClangToLLVMArgMapping::construct(const ASTContext &Context, |
| 1580 | const CGFunctionInfo &FI, |
| 1581 | bool OnlyRequiredArgs) { |
| 1582 | unsigned IRArgNo = 0; |
| 1583 | bool SwapThisWithSRet = false; |
| 1584 | const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| 1585 | |
| 1586 | if (RetAI.getKind() == ABIArgInfo::Indirect) { |
| 1587 | SwapThisWithSRet = RetAI.isSRetAfterThis(); |
| 1588 | SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; |
| 1589 | } |
| 1590 | |
| 1591 | unsigned ArgNo = 0; |
| 1592 | unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); |
| 1593 | for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; |
| 1594 | ++I, ++ArgNo) { |
| 1595 | assert(I != FI.arg_end()); |
| 1596 | QualType ArgType = I->type; |
| 1597 | const ABIArgInfo &AI = I->info; |
| 1598 | // Collect data about IR arguments corresponding to Clang argument ArgNo. |
| 1599 | auto &IRArgs = ArgInfo[ArgNo]; |
| 1600 | |
| 1601 | if (AI.getPaddingType()) |
| 1602 | IRArgs.PaddingArgIndex = IRArgNo++; |
| 1603 | |
| 1604 | switch (AI.getKind()) { |
| 1605 | case ABIArgInfo::Extend: |
| 1606 | case ABIArgInfo::Direct: { |
| 1607 | // FIXME: handle sseregparm someday... |
| 1608 | llvm::StructType *STy = dyn_cast<llvm::StructType>(Val: AI.getCoerceToType()); |
| 1609 | if (AI.isDirect() && AI.getCanBeFlattened() && STy) { |
| 1610 | IRArgs.NumberOfArgs = STy->getNumElements(); |
| 1611 | } else { |
| 1612 | IRArgs.NumberOfArgs = 1; |
| 1613 | } |
| 1614 | break; |
| 1615 | } |
| 1616 | case ABIArgInfo::Indirect: |
| 1617 | case ABIArgInfo::IndirectAliased: |
| 1618 | IRArgs.NumberOfArgs = 1; |
| 1619 | break; |
| 1620 | case ABIArgInfo::Ignore: |
| 1621 | case ABIArgInfo::InAlloca: |
| 1622 | // ignore and inalloca doesn't have matching LLVM parameters. |
| 1623 | IRArgs.NumberOfArgs = 0; |
| 1624 | break; |
| 1625 | case ABIArgInfo::CoerceAndExpand: |
| 1626 | IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); |
| 1627 | break; |
| 1628 | case ABIArgInfo::Expand: |
| 1629 | IRArgs.NumberOfArgs = getExpansionSize(Ty: ArgType, Context); |
| 1630 | break; |
| 1631 | } |
| 1632 | |
| 1633 | if (IRArgs.NumberOfArgs > 0) { |
| 1634 | IRArgs.FirstArgIndex = IRArgNo; |
| 1635 | IRArgNo += IRArgs.NumberOfArgs; |
| 1636 | } |
| 1637 | |
| 1638 | // Skip over the sret parameter when it comes second. We already handled it |
| 1639 | // above. |
| 1640 | if (IRArgNo == 1 && SwapThisWithSRet) |
| 1641 | IRArgNo++; |
| 1642 | } |
| 1643 | assert(ArgNo == ArgInfo.size()); |
| 1644 | |
| 1645 | if (FI.usesInAlloca()) |
| 1646 | InallocaArgNo = IRArgNo++; |
| 1647 | |
| 1648 | TotalIRArgs = IRArgNo; |
| 1649 | } |
| 1650 | } // namespace |
| 1651 | |
| 1652 | /***/ |
| 1653 | |
| 1654 | bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { |
| 1655 | const auto &RI = FI.getReturnInfo(); |
| 1656 | return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); |
| 1657 | } |
| 1658 | |
| 1659 | bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) { |
| 1660 | const auto &RI = FI.getReturnInfo(); |
| 1661 | return RI.getInReg(); |
| 1662 | } |
| 1663 | |
| 1664 | bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { |
| 1665 | return ReturnTypeUsesSRet(FI) && |
| 1666 | getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); |
| 1667 | } |
| 1668 | |
| 1669 | bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { |
| 1670 | if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { |
| 1671 | switch (BT->getKind()) { |
| 1672 | default: |
| 1673 | return false; |
| 1674 | case BuiltinType::Float: |
| 1675 | return getTarget().useObjCFPRetForRealType(T: FloatModeKind::Float); |
| 1676 | case BuiltinType::Double: |
| 1677 | return getTarget().useObjCFPRetForRealType(T: FloatModeKind::Double); |
| 1678 | case BuiltinType::LongDouble: |
| 1679 | return getTarget().useObjCFPRetForRealType(T: FloatModeKind::LongDouble); |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | return false; |
| 1684 | } |
| 1685 | |
| 1686 | bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { |
| 1687 | if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { |
| 1688 | if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { |
| 1689 | if (BT->getKind() == BuiltinType::LongDouble) |
| 1690 | return getTarget().useObjCFP2RetForComplexLongDouble(); |
| 1691 | } |
| 1692 | } |
| 1693 | |
| 1694 | return false; |
| 1695 | } |
| 1696 | |
| 1697 | llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { |
| 1698 | const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); |
| 1699 | return GetFunctionType(Info: FI); |
| 1700 | } |
| 1701 | |
| 1702 | llvm::FunctionType *CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { |
| 1703 | |
| 1704 | bool Inserted = FunctionsBeingProcessed.insert(Ptr: &FI).second; |
| 1705 | (void)Inserted; |
| 1706 | assert(Inserted && "Recursively being processed?" ); |
| 1707 | |
| 1708 | llvm::Type *resultType = nullptr; |
| 1709 | const ABIArgInfo &retAI = FI.getReturnInfo(); |
| 1710 | switch (retAI.getKind()) { |
| 1711 | case ABIArgInfo::Expand: |
| 1712 | case ABIArgInfo::IndirectAliased: |
| 1713 | llvm_unreachable("Invalid ABI kind for return argument" ); |
| 1714 | |
| 1715 | case ABIArgInfo::Extend: |
| 1716 | case ABIArgInfo::Direct: |
| 1717 | resultType = retAI.getCoerceToType(); |
| 1718 | break; |
| 1719 | |
| 1720 | case ABIArgInfo::InAlloca: |
| 1721 | if (retAI.getInAllocaSRet()) { |
| 1722 | // sret things on win32 aren't void, they return the sret pointer. |
| 1723 | QualType ret = FI.getReturnType(); |
| 1724 | unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(T: ret); |
| 1725 | resultType = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: addressSpace); |
| 1726 | } else { |
| 1727 | resultType = llvm::Type::getVoidTy(C&: getLLVMContext()); |
| 1728 | } |
| 1729 | break; |
| 1730 | |
| 1731 | case ABIArgInfo::Indirect: |
| 1732 | case ABIArgInfo::Ignore: |
| 1733 | resultType = llvm::Type::getVoidTy(C&: getLLVMContext()); |
| 1734 | break; |
| 1735 | |
| 1736 | case ABIArgInfo::CoerceAndExpand: |
| 1737 | resultType = retAI.getUnpaddedCoerceAndExpandType(); |
| 1738 | break; |
| 1739 | } |
| 1740 | |
| 1741 | ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); |
| 1742 | SmallVector<llvm::Type *, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); |
| 1743 | |
| 1744 | // Add type for sret argument. |
| 1745 | if (IRFunctionArgs.hasSRetArg()) { |
| 1746 | ArgTypes[IRFunctionArgs.getSRetArgNo()] = llvm::PointerType::get( |
| 1747 | C&: getLLVMContext(), AddressSpace: FI.getReturnInfo().getIndirectAddrSpace()); |
| 1748 | } |
| 1749 | |
| 1750 | // Add type for inalloca argument. |
| 1751 | if (IRFunctionArgs.hasInallocaArg()) |
| 1752 | ArgTypes[IRFunctionArgs.getInallocaArgNo()] = |
| 1753 | llvm::PointerType::getUnqual(C&: getLLVMContext()); |
| 1754 | |
| 1755 | // Add in all of the required arguments. |
| 1756 | unsigned ArgNo = 0; |
| 1757 | CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| 1758 | ie = it + FI.getNumRequiredArgs(); |
| 1759 | for (; it != ie; ++it, ++ArgNo) { |
| 1760 | const ABIArgInfo &ArgInfo = it->info; |
| 1761 | |
| 1762 | // Insert a padding type to ensure proper alignment. |
| 1763 | if (IRFunctionArgs.hasPaddingArg(ArgNo)) |
| 1764 | ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| 1765 | ArgInfo.getPaddingType(); |
| 1766 | |
| 1767 | unsigned FirstIRArg, NumIRArgs; |
| 1768 | std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| 1769 | |
| 1770 | switch (ArgInfo.getKind()) { |
| 1771 | case ABIArgInfo::Ignore: |
| 1772 | case ABIArgInfo::InAlloca: |
| 1773 | assert(NumIRArgs == 0); |
| 1774 | break; |
| 1775 | |
| 1776 | case ABIArgInfo::Indirect: |
| 1777 | assert(NumIRArgs == 1); |
| 1778 | // indirect arguments are always on the stack, which is alloca addr space. |
| 1779 | ArgTypes[FirstIRArg] = llvm::PointerType::get( |
| 1780 | C&: getLLVMContext(), AddressSpace: CGM.getDataLayout().getAllocaAddrSpace()); |
| 1781 | break; |
| 1782 | case ABIArgInfo::IndirectAliased: |
| 1783 | assert(NumIRArgs == 1); |
| 1784 | ArgTypes[FirstIRArg] = llvm::PointerType::get( |
| 1785 | C&: getLLVMContext(), AddressSpace: ArgInfo.getIndirectAddrSpace()); |
| 1786 | break; |
| 1787 | case ABIArgInfo::Extend: |
| 1788 | case ABIArgInfo::Direct: { |
| 1789 | // Fast-isel and the optimizer generally like scalar values better than |
| 1790 | // FCAs, so we flatten them if this is safe to do for this argument. |
| 1791 | llvm::Type *argType = ArgInfo.getCoerceToType(); |
| 1792 | llvm::StructType *st = dyn_cast<llvm::StructType>(Val: argType); |
| 1793 | if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { |
| 1794 | assert(NumIRArgs == st->getNumElements()); |
| 1795 | for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) |
| 1796 | ArgTypes[FirstIRArg + i] = st->getElementType(N: i); |
| 1797 | } else { |
| 1798 | assert(NumIRArgs == 1); |
| 1799 | ArgTypes[FirstIRArg] = argType; |
| 1800 | } |
| 1801 | break; |
| 1802 | } |
| 1803 | |
| 1804 | case ABIArgInfo::CoerceAndExpand: { |
| 1805 | auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; |
| 1806 | for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { |
| 1807 | *ArgTypesIter++ = EltTy; |
| 1808 | } |
| 1809 | assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); |
| 1810 | break; |
| 1811 | } |
| 1812 | |
| 1813 | case ABIArgInfo::Expand: |
| 1814 | auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; |
| 1815 | getExpandedTypes(Ty: it->type, TI&: ArgTypesIter); |
| 1816 | assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); |
| 1817 | break; |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | bool Erased = FunctionsBeingProcessed.erase(Ptr: &FI); |
| 1822 | (void)Erased; |
| 1823 | assert(Erased && "Not in set?" ); |
| 1824 | |
| 1825 | return llvm::FunctionType::get(Result: resultType, Params: ArgTypes, isVarArg: FI.isVariadic()); |
| 1826 | } |
| 1827 | |
| 1828 | llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { |
| 1829 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 1830 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 1831 | |
| 1832 | if (!isFuncTypeConvertible(FT: FPT)) |
| 1833 | return llvm::StructType::get(Context&: getLLVMContext()); |
| 1834 | |
| 1835 | return GetFunctionType(GD); |
| 1836 | } |
| 1837 | |
| 1838 | static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, |
| 1839 | llvm::AttrBuilder &FuncAttrs, |
| 1840 | const FunctionProtoType *FPT) { |
| 1841 | if (!FPT) |
| 1842 | return; |
| 1843 | |
| 1844 | if (!isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()) && |
| 1845 | FPT->isNothrow()) |
| 1846 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 1847 | |
| 1848 | unsigned SMEBits = FPT->getAArch64SMEAttributes(); |
| 1849 | if (SMEBits & FunctionType::SME_PStateSMEnabledMask) |
| 1850 | FuncAttrs.addAttribute(A: "aarch64_pstate_sm_enabled" ); |
| 1851 | if (SMEBits & FunctionType::SME_PStateSMCompatibleMask) |
| 1852 | FuncAttrs.addAttribute(A: "aarch64_pstate_sm_compatible" ); |
| 1853 | if (SMEBits & FunctionType::SME_AgnosticZAStateMask) |
| 1854 | FuncAttrs.addAttribute(A: "aarch64_za_state_agnostic" ); |
| 1855 | |
| 1856 | // ZA |
| 1857 | if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_Preserves) |
| 1858 | FuncAttrs.addAttribute(A: "aarch64_preserves_za" ); |
| 1859 | if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_In) |
| 1860 | FuncAttrs.addAttribute(A: "aarch64_in_za" ); |
| 1861 | if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_Out) |
| 1862 | FuncAttrs.addAttribute(A: "aarch64_out_za" ); |
| 1863 | if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_InOut) |
| 1864 | FuncAttrs.addAttribute(A: "aarch64_inout_za" ); |
| 1865 | |
| 1866 | // ZT0 |
| 1867 | if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_Preserves) |
| 1868 | FuncAttrs.addAttribute(A: "aarch64_preserves_zt0" ); |
| 1869 | if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_In) |
| 1870 | FuncAttrs.addAttribute(A: "aarch64_in_zt0" ); |
| 1871 | if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_Out) |
| 1872 | FuncAttrs.addAttribute(A: "aarch64_out_zt0" ); |
| 1873 | if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_InOut) |
| 1874 | FuncAttrs.addAttribute(A: "aarch64_inout_zt0" ); |
| 1875 | } |
| 1876 | |
| 1877 | static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs, |
| 1878 | const Decl *Callee) { |
| 1879 | if (!Callee) |
| 1880 | return; |
| 1881 | |
| 1882 | SmallVector<StringRef, 4> Attrs; |
| 1883 | |
| 1884 | for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>()) |
| 1885 | AA->getAssumption().split(A&: Attrs, Separator: "," ); |
| 1886 | |
| 1887 | if (!Attrs.empty()) |
| 1888 | FuncAttrs.addAttribute(A: llvm::AssumptionAttrKey, |
| 1889 | V: llvm::join(Begin: Attrs.begin(), End: Attrs.end(), Separator: "," )); |
| 1890 | } |
| 1891 | |
| 1892 | bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, |
| 1893 | QualType ReturnType) const { |
| 1894 | // We can't just discard the return value for a record type with a |
| 1895 | // complex destructor or a non-trivially copyable type. |
| 1896 | if (const RecordType *RT = |
| 1897 | ReturnType.getCanonicalType()->getAs<RecordType>()) { |
| 1898 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
| 1899 | return ClassDecl->hasTrivialDestructor(); |
| 1900 | } |
| 1901 | return ReturnType.isTriviallyCopyableType(Context); |
| 1902 | } |
| 1903 | |
| 1904 | static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy, |
| 1905 | const Decl *TargetDecl) { |
| 1906 | // As-is msan can not tolerate noundef mismatch between caller and |
| 1907 | // implementation. Mismatch is possible for e.g. indirect calls from C-caller |
| 1908 | // into C++. Such mismatches lead to confusing false reports. To avoid |
| 1909 | // expensive workaround on msan we enforce initialization event in uncommon |
| 1910 | // cases where it's allowed. |
| 1911 | if (Module.getLangOpts().Sanitize.has(K: SanitizerKind::Memory)) |
| 1912 | return true; |
| 1913 | // C++ explicitly makes returning undefined values UB. C's rule only applies |
| 1914 | // to used values, so we never mark them noundef for now. |
| 1915 | if (!Module.getLangOpts().CPlusPlus) |
| 1916 | return false; |
| 1917 | if (TargetDecl) { |
| 1918 | if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Val: TargetDecl)) { |
| 1919 | if (FDecl->isExternC()) |
| 1920 | return false; |
| 1921 | } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(Val: TargetDecl)) { |
| 1922 | // Function pointer. |
| 1923 | if (VDecl->isExternC()) |
| 1924 | return false; |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | // We don't want to be too aggressive with the return checking, unless |
| 1929 | // it's explicit in the code opts or we're using an appropriate sanitizer. |
| 1930 | // Try to respect what the programmer intended. |
| 1931 | return Module.getCodeGenOpts().StrictReturn || |
| 1932 | !Module.MayDropFunctionReturn(Context: Module.getContext(), ReturnType: RetTy) || |
| 1933 | Module.getLangOpts().Sanitize.has(K: SanitizerKind::Return); |
| 1934 | } |
| 1935 | |
| 1936 | /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the |
| 1937 | /// requested denormal behavior, accounting for the overriding behavior of the |
| 1938 | /// -f32 case. |
| 1939 | static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode, |
| 1940 | llvm::DenormalMode FP32DenormalMode, |
| 1941 | llvm::AttrBuilder &FuncAttrs) { |
| 1942 | if (FPDenormalMode != llvm::DenormalMode::getDefault()) |
| 1943 | FuncAttrs.addAttribute(A: "denormal-fp-math" , V: FPDenormalMode.str()); |
| 1944 | |
| 1945 | if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid()) |
| 1946 | FuncAttrs.addAttribute(A: "denormal-fp-math-f32" , V: FP32DenormalMode.str()); |
| 1947 | } |
| 1948 | |
| 1949 | /// Add default attributes to a function, which have merge semantics under |
| 1950 | /// -mlink-builtin-bitcode and should not simply overwrite any existing |
| 1951 | /// attributes in the linked library. |
| 1952 | static void |
| 1953 | addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts, |
| 1954 | llvm::AttrBuilder &FuncAttrs) { |
| 1955 | addDenormalModeAttrs(FPDenormalMode: CodeGenOpts.FPDenormalMode, FP32DenormalMode: CodeGenOpts.FP32DenormalMode, |
| 1956 | FuncAttrs); |
| 1957 | } |
| 1958 | |
| 1959 | static void getTrivialDefaultFunctionAttributes( |
| 1960 | StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts, |
| 1961 | const LangOptions &LangOpts, bool AttrOnCallSite, |
| 1962 | llvm::AttrBuilder &FuncAttrs) { |
| 1963 | // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. |
| 1964 | if (!HasOptnone) { |
| 1965 | if (CodeGenOpts.OptimizeSize) |
| 1966 | FuncAttrs.addAttribute(Val: llvm::Attribute::OptimizeForSize); |
| 1967 | if (CodeGenOpts.OptimizeSize == 2) |
| 1968 | FuncAttrs.addAttribute(Val: llvm::Attribute::MinSize); |
| 1969 | } |
| 1970 | |
| 1971 | if (CodeGenOpts.DisableRedZone) |
| 1972 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoRedZone); |
| 1973 | if (CodeGenOpts.IndirectTlsSegRefs) |
| 1974 | FuncAttrs.addAttribute(A: "indirect-tls-seg-refs" ); |
| 1975 | if (CodeGenOpts.NoImplicitFloat) |
| 1976 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoImplicitFloat); |
| 1977 | |
| 1978 | if (AttrOnCallSite) { |
| 1979 | // Attributes that should go on the call site only. |
| 1980 | // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking |
| 1981 | // the -fno-builtin-foo list. |
| 1982 | if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) |
| 1983 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoBuiltin); |
| 1984 | if (!CodeGenOpts.TrapFuncName.empty()) |
| 1985 | FuncAttrs.addAttribute(A: "trap-func-name" , V: CodeGenOpts.TrapFuncName); |
| 1986 | } else { |
| 1987 | switch (CodeGenOpts.getFramePointer()) { |
| 1988 | case CodeGenOptions::FramePointerKind::None: |
| 1989 | // This is the default behavior. |
| 1990 | break; |
| 1991 | case CodeGenOptions::FramePointerKind::Reserved: |
| 1992 | case CodeGenOptions::FramePointerKind::NonLeaf: |
| 1993 | case CodeGenOptions::FramePointerKind::All: |
| 1994 | FuncAttrs.addAttribute(A: "frame-pointer" , |
| 1995 | V: CodeGenOptions::getFramePointerKindName( |
| 1996 | Kind: CodeGenOpts.getFramePointer())); |
| 1997 | } |
| 1998 | |
| 1999 | if (CodeGenOpts.LessPreciseFPMAD) |
| 2000 | FuncAttrs.addAttribute(A: "less-precise-fpmad" , V: "true" ); |
| 2001 | |
| 2002 | if (CodeGenOpts.NullPointerIsValid) |
| 2003 | FuncAttrs.addAttribute(Val: llvm::Attribute::NullPointerIsValid); |
| 2004 | |
| 2005 | if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore) |
| 2006 | FuncAttrs.addAttribute(A: "no-trapping-math" , V: "true" ); |
| 2007 | |
| 2008 | // TODO: Are these all needed? |
| 2009 | // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. |
| 2010 | if (LangOpts.NoHonorInfs) |
| 2011 | FuncAttrs.addAttribute(A: "no-infs-fp-math" , V: "true" ); |
| 2012 | if (LangOpts.NoHonorNaNs) |
| 2013 | FuncAttrs.addAttribute(A: "no-nans-fp-math" , V: "true" ); |
| 2014 | if (LangOpts.ApproxFunc) |
| 2015 | FuncAttrs.addAttribute(A: "approx-func-fp-math" , V: "true" ); |
| 2016 | if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip && |
| 2017 | LangOpts.NoSignedZero && LangOpts.ApproxFunc && |
| 2018 | (LangOpts.getDefaultFPContractMode() == |
| 2019 | LangOptions::FPModeKind::FPM_Fast || |
| 2020 | LangOpts.getDefaultFPContractMode() == |
| 2021 | LangOptions::FPModeKind::FPM_FastHonorPragmas)) |
| 2022 | FuncAttrs.addAttribute(A: "unsafe-fp-math" , V: "true" ); |
| 2023 | if (CodeGenOpts.SoftFloat) |
| 2024 | FuncAttrs.addAttribute(A: "use-soft-float" , V: "true" ); |
| 2025 | FuncAttrs.addAttribute(A: "stack-protector-buffer-size" , |
| 2026 | V: llvm::utostr(X: CodeGenOpts.SSPBufferSize)); |
| 2027 | if (LangOpts.NoSignedZero) |
| 2028 | FuncAttrs.addAttribute(A: "no-signed-zeros-fp-math" , V: "true" ); |
| 2029 | |
| 2030 | // TODO: Reciprocal estimate codegen options should apply to instructions? |
| 2031 | const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; |
| 2032 | if (!Recips.empty()) |
| 2033 | FuncAttrs.addAttribute(A: "reciprocal-estimates" , V: llvm::join(R: Recips, Separator: "," )); |
| 2034 | |
| 2035 | if (!CodeGenOpts.PreferVectorWidth.empty() && |
| 2036 | CodeGenOpts.PreferVectorWidth != "none" ) |
| 2037 | FuncAttrs.addAttribute(A: "prefer-vector-width" , |
| 2038 | V: CodeGenOpts.PreferVectorWidth); |
| 2039 | |
| 2040 | if (CodeGenOpts.StackRealignment) |
| 2041 | FuncAttrs.addAttribute(A: "stackrealign" ); |
| 2042 | if (CodeGenOpts.Backchain) |
| 2043 | FuncAttrs.addAttribute(A: "backchain" ); |
| 2044 | if (CodeGenOpts.EnableSegmentedStacks) |
| 2045 | FuncAttrs.addAttribute(A: "split-stack" ); |
| 2046 | |
| 2047 | if (CodeGenOpts.SpeculativeLoadHardening) |
| 2048 | FuncAttrs.addAttribute(Val: llvm::Attribute::SpeculativeLoadHardening); |
| 2049 | |
| 2050 | // Add zero-call-used-regs attribute. |
| 2051 | switch (CodeGenOpts.getZeroCallUsedRegs()) { |
| 2052 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: |
| 2053 | FuncAttrs.removeAttribute(A: "zero-call-used-regs" ); |
| 2054 | break; |
| 2055 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: |
| 2056 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "used-gpr-arg" ); |
| 2057 | break; |
| 2058 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: |
| 2059 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "used-gpr" ); |
| 2060 | break; |
| 2061 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: |
| 2062 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "used-arg" ); |
| 2063 | break; |
| 2064 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: |
| 2065 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "used" ); |
| 2066 | break; |
| 2067 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: |
| 2068 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "all-gpr-arg" ); |
| 2069 | break; |
| 2070 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: |
| 2071 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "all-gpr" ); |
| 2072 | break; |
| 2073 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: |
| 2074 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "all-arg" ); |
| 2075 | break; |
| 2076 | case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: |
| 2077 | FuncAttrs.addAttribute(A: "zero-call-used-regs" , V: "all" ); |
| 2078 | break; |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | if (LangOpts.assumeFunctionsAreConvergent()) { |
| 2083 | // Conservatively, mark all functions and calls in CUDA and OpenCL as |
| 2084 | // convergent (meaning, they may call an intrinsically convergent op, such |
| 2085 | // as __syncthreads() / barrier(), and so can't have certain optimizations |
| 2086 | // applied around them). LLVM will remove this attribute where it safely |
| 2087 | // can. |
| 2088 | FuncAttrs.addAttribute(Val: llvm::Attribute::Convergent); |
| 2089 | } |
| 2090 | |
| 2091 | // TODO: NoUnwind attribute should be added for other GPU modes HIP, |
| 2092 | // OpenMP offload. AFAIK, neither of them support exceptions in device code. |
| 2093 | if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL || |
| 2094 | LangOpts.SYCLIsDevice) { |
| 2095 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 2096 | } |
| 2097 | |
| 2098 | if (CodeGenOpts.SaveRegParams && !AttrOnCallSite) |
| 2099 | FuncAttrs.addAttribute(A: "save-reg-params" ); |
| 2100 | |
| 2101 | for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { |
| 2102 | StringRef Var, Value; |
| 2103 | std::tie(args&: Var, args&: Value) = Attr.split(Separator: '='); |
| 2104 | FuncAttrs.addAttribute(A: Var, V: Value); |
| 2105 | } |
| 2106 | |
| 2107 | TargetInfo::BranchProtectionInfo BPI(LangOpts); |
| 2108 | TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs); |
| 2109 | } |
| 2110 | |
| 2111 | /// Merges `target-features` from \TargetOpts and \F, and sets the result in |
| 2112 | /// \FuncAttr |
| 2113 | /// * features from \F are always kept |
| 2114 | /// * a feature from \TargetOpts is kept if itself and its opposite are absent |
| 2115 | /// from \F |
| 2116 | static void |
| 2117 | overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr, |
| 2118 | const llvm::Function &F, |
| 2119 | const TargetOptions &TargetOpts) { |
| 2120 | auto FFeatures = F.getFnAttribute(Kind: "target-features" ); |
| 2121 | |
| 2122 | llvm::StringSet<> MergedNames; |
| 2123 | SmallVector<StringRef> MergedFeatures; |
| 2124 | MergedFeatures.reserve(N: TargetOpts.Features.size()); |
| 2125 | |
| 2126 | auto AddUnmergedFeatures = [&](auto &&FeatureRange) { |
| 2127 | for (StringRef Feature : FeatureRange) { |
| 2128 | if (Feature.empty()) |
| 2129 | continue; |
| 2130 | assert(Feature[0] == '+' || Feature[0] == '-'); |
| 2131 | StringRef Name = Feature.drop_front(N: 1); |
| 2132 | bool Merged = !MergedNames.insert(key: Name).second; |
| 2133 | if (!Merged) |
| 2134 | MergedFeatures.push_back(Elt: Feature); |
| 2135 | } |
| 2136 | }; |
| 2137 | |
| 2138 | if (FFeatures.isValid()) |
| 2139 | AddUnmergedFeatures(llvm::split(Str: FFeatures.getValueAsString(), Separator: ',')); |
| 2140 | AddUnmergedFeatures(TargetOpts.Features); |
| 2141 | |
| 2142 | if (!MergedFeatures.empty()) { |
| 2143 | llvm::sort(C&: MergedFeatures); |
| 2144 | FuncAttr.addAttribute(A: "target-features" , V: llvm::join(R&: MergedFeatures, Separator: "," )); |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | void CodeGen::mergeDefaultFunctionDefinitionAttributes( |
| 2149 | llvm::Function &F, const CodeGenOptions &CodeGenOpts, |
| 2150 | const LangOptions &LangOpts, const TargetOptions &TargetOpts, |
| 2151 | bool WillInternalize) { |
| 2152 | |
| 2153 | llvm::AttrBuilder FuncAttrs(F.getContext()); |
| 2154 | // Here we only extract the options that are relevant compared to the version |
| 2155 | // from GetCPUAndFeaturesAttributes. |
| 2156 | if (!TargetOpts.CPU.empty()) |
| 2157 | FuncAttrs.addAttribute(A: "target-cpu" , V: TargetOpts.CPU); |
| 2158 | if (!TargetOpts.TuneCPU.empty()) |
| 2159 | FuncAttrs.addAttribute(A: "tune-cpu" , V: TargetOpts.TuneCPU); |
| 2160 | |
| 2161 | ::getTrivialDefaultFunctionAttributes(Name: F.getName(), HasOptnone: F.hasOptNone(), |
| 2162 | CodeGenOpts, LangOpts, |
| 2163 | /*AttrOnCallSite=*/false, FuncAttrs); |
| 2164 | |
| 2165 | if (!WillInternalize && F.isInterposable()) { |
| 2166 | // Do not promote "dynamic" denormal-fp-math to this translation unit's |
| 2167 | // setting for weak functions that won't be internalized. The user has no |
| 2168 | // real control for how builtin bitcode is linked, so we shouldn't assume |
| 2169 | // later copies will use a consistent mode. |
| 2170 | F.addFnAttrs(Attrs: FuncAttrs); |
| 2171 | return; |
| 2172 | } |
| 2173 | |
| 2174 | llvm::AttributeMask AttrsToRemove; |
| 2175 | |
| 2176 | llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw(); |
| 2177 | llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw(); |
| 2178 | llvm::DenormalMode Merged = |
| 2179 | CodeGenOpts.FPDenormalMode.mergeCalleeMode(Callee: DenormModeToMerge); |
| 2180 | llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode; |
| 2181 | |
| 2182 | if (DenormModeToMergeF32.isValid()) { |
| 2183 | MergedF32 = |
| 2184 | CodeGenOpts.FP32DenormalMode.mergeCalleeMode(Callee: DenormModeToMergeF32); |
| 2185 | } |
| 2186 | |
| 2187 | if (Merged == llvm::DenormalMode::getDefault()) { |
| 2188 | AttrsToRemove.addAttribute(A: "denormal-fp-math" ); |
| 2189 | } else if (Merged != DenormModeToMerge) { |
| 2190 | // Overwrite existing attribute |
| 2191 | FuncAttrs.addAttribute(A: "denormal-fp-math" , |
| 2192 | V: CodeGenOpts.FPDenormalMode.str()); |
| 2193 | } |
| 2194 | |
| 2195 | if (MergedF32 == llvm::DenormalMode::getDefault()) { |
| 2196 | AttrsToRemove.addAttribute(A: "denormal-fp-math-f32" ); |
| 2197 | } else if (MergedF32 != DenormModeToMergeF32) { |
| 2198 | // Overwrite existing attribute |
| 2199 | FuncAttrs.addAttribute(A: "denormal-fp-math-f32" , |
| 2200 | V: CodeGenOpts.FP32DenormalMode.str()); |
| 2201 | } |
| 2202 | |
| 2203 | F.removeFnAttrs(Attrs: AttrsToRemove); |
| 2204 | addDenormalModeAttrs(FPDenormalMode: Merged, FP32DenormalMode: MergedF32, FuncAttrs); |
| 2205 | |
| 2206 | overrideFunctionFeaturesWithTargetFeatures(FuncAttr&: FuncAttrs, F, TargetOpts); |
| 2207 | |
| 2208 | F.addFnAttrs(Attrs: FuncAttrs); |
| 2209 | } |
| 2210 | |
| 2211 | void CodeGenModule::getTrivialDefaultFunctionAttributes( |
| 2212 | StringRef Name, bool HasOptnone, bool AttrOnCallSite, |
| 2213 | llvm::AttrBuilder &FuncAttrs) { |
| 2214 | ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, CodeGenOpts: getCodeGenOpts(), |
| 2215 | LangOpts: getLangOpts(), AttrOnCallSite, |
| 2216 | FuncAttrs); |
| 2217 | } |
| 2218 | |
| 2219 | void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, |
| 2220 | bool HasOptnone, |
| 2221 | bool AttrOnCallSite, |
| 2222 | llvm::AttrBuilder &FuncAttrs) { |
| 2223 | getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, |
| 2224 | FuncAttrs); |
| 2225 | |
| 2226 | if (!AttrOnCallSite) |
| 2227 | TargetCodeGenInfo::initPointerAuthFnAttributes(Opts: CodeGenOpts.PointerAuth, |
| 2228 | FuncAttrs); |
| 2229 | |
| 2230 | // If we're just getting the default, get the default values for mergeable |
| 2231 | // attributes. |
| 2232 | if (!AttrOnCallSite) |
| 2233 | addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs); |
| 2234 | } |
| 2235 | |
| 2236 | void CodeGenModule::addDefaultFunctionDefinitionAttributes( |
| 2237 | llvm::AttrBuilder &attrs) { |
| 2238 | getDefaultFunctionAttributes(/*function name*/ Name: "" , /*optnone*/ HasOptnone: false, |
| 2239 | /*for call*/ AttrOnCallSite: false, FuncAttrs&: attrs); |
| 2240 | GetCPUAndFeaturesAttributes(GD: GlobalDecl(), AttrBuilder&: attrs); |
| 2241 | } |
| 2242 | |
| 2243 | static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, |
| 2244 | const LangOptions &LangOpts, |
| 2245 | const NoBuiltinAttr *NBA = nullptr) { |
| 2246 | auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { |
| 2247 | SmallString<32> AttributeName; |
| 2248 | AttributeName += "no-builtin-" ; |
| 2249 | AttributeName += BuiltinName; |
| 2250 | FuncAttrs.addAttribute(A: AttributeName); |
| 2251 | }; |
| 2252 | |
| 2253 | // First, handle the language options passed through -fno-builtin. |
| 2254 | if (LangOpts.NoBuiltin) { |
| 2255 | // -fno-builtin disables them all. |
| 2256 | FuncAttrs.addAttribute(A: "no-builtins" ); |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | // Then, add attributes for builtins specified through -fno-builtin-<name>. |
| 2261 | llvm::for_each(Range: LangOpts.NoBuiltinFuncs, F: AddNoBuiltinAttr); |
| 2262 | |
| 2263 | // Now, let's check the __attribute__((no_builtin("...")) attribute added to |
| 2264 | // the source. |
| 2265 | if (!NBA) |
| 2266 | return; |
| 2267 | |
| 2268 | // If there is a wildcard in the builtin names specified through the |
| 2269 | // attribute, disable them all. |
| 2270 | if (llvm::is_contained(Range: NBA->builtinNames(), Element: "*" )) { |
| 2271 | FuncAttrs.addAttribute(A: "no-builtins" ); |
| 2272 | return; |
| 2273 | } |
| 2274 | |
| 2275 | // And last, add the rest of the builtin names. |
| 2276 | llvm::for_each(Range: NBA->builtinNames(), F: AddNoBuiltinAttr); |
| 2277 | } |
| 2278 | |
| 2279 | static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, |
| 2280 | const llvm::DataLayout &DL, const ABIArgInfo &AI, |
| 2281 | bool CheckCoerce = true) { |
| 2282 | llvm::Type *Ty = Types.ConvertTypeForMem(T: QTy); |
| 2283 | if (AI.getKind() == ABIArgInfo::Indirect || |
| 2284 | AI.getKind() == ABIArgInfo::IndirectAliased) |
| 2285 | return true; |
| 2286 | if (AI.getKind() == ABIArgInfo::Extend && !AI.isNoExt()) |
| 2287 | return true; |
| 2288 | if (!DL.typeSizeEqualsStoreSize(Ty)) |
| 2289 | // TODO: This will result in a modest amount of values not marked noundef |
| 2290 | // when they could be. We care about values that *invisibly* contain undef |
| 2291 | // bits from the perspective of LLVM IR. |
| 2292 | return false; |
| 2293 | if (CheckCoerce && AI.canHaveCoerceToType()) { |
| 2294 | llvm::Type *CoerceTy = AI.getCoerceToType(); |
| 2295 | if (llvm::TypeSize::isKnownGT(LHS: DL.getTypeSizeInBits(Ty: CoerceTy), |
| 2296 | RHS: DL.getTypeSizeInBits(Ty))) |
| 2297 | // If we're coercing to a type with a greater size than the canonical one, |
| 2298 | // we're introducing new undef bits. |
| 2299 | // Coercing to a type of smaller or equal size is ok, as we know that |
| 2300 | // there's no internal padding (typeSizeEqualsStoreSize). |
| 2301 | return false; |
| 2302 | } |
| 2303 | if (QTy->isBitIntType()) |
| 2304 | return true; |
| 2305 | if (QTy->isReferenceType()) |
| 2306 | return true; |
| 2307 | if (QTy->isNullPtrType()) |
| 2308 | return false; |
| 2309 | if (QTy->isMemberPointerType()) |
| 2310 | // TODO: Some member pointers are `noundef`, but it depends on the ABI. For |
| 2311 | // now, never mark them. |
| 2312 | return false; |
| 2313 | if (QTy->isScalarType()) { |
| 2314 | if (const ComplexType *Complex = dyn_cast<ComplexType>(Val&: QTy)) |
| 2315 | return DetermineNoUndef(QTy: Complex->getElementType(), Types, DL, AI, CheckCoerce: false); |
| 2316 | return true; |
| 2317 | } |
| 2318 | if (const VectorType *Vector = dyn_cast<VectorType>(Val&: QTy)) |
| 2319 | return DetermineNoUndef(QTy: Vector->getElementType(), Types, DL, AI, CheckCoerce: false); |
| 2320 | if (const MatrixType *Matrix = dyn_cast<MatrixType>(Val&: QTy)) |
| 2321 | return DetermineNoUndef(QTy: Matrix->getElementType(), Types, DL, AI, CheckCoerce: false); |
| 2322 | if (const ArrayType *Array = dyn_cast<ArrayType>(Val&: QTy)) |
| 2323 | return DetermineNoUndef(QTy: Array->getElementType(), Types, DL, AI, CheckCoerce: false); |
| 2324 | |
| 2325 | // TODO: Some structs may be `noundef`, in specific situations. |
| 2326 | return false; |
| 2327 | } |
| 2328 | |
| 2329 | /// Check if the argument of a function has maybe_undef attribute. |
| 2330 | static bool IsArgumentMaybeUndef(const Decl *TargetDecl, |
| 2331 | unsigned NumRequiredArgs, unsigned ArgNo) { |
| 2332 | const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl); |
| 2333 | if (!FD) |
| 2334 | return false; |
| 2335 | |
| 2336 | // Assume variadic arguments do not have maybe_undef attribute. |
| 2337 | if (ArgNo >= NumRequiredArgs) |
| 2338 | return false; |
| 2339 | |
| 2340 | // Check if argument has maybe_undef attribute. |
| 2341 | if (ArgNo < FD->getNumParams()) { |
| 2342 | const ParmVarDecl *Param = FD->getParamDecl(i: ArgNo); |
| 2343 | if (Param && Param->hasAttr<MaybeUndefAttr>()) |
| 2344 | return true; |
| 2345 | } |
| 2346 | |
| 2347 | return false; |
| 2348 | } |
| 2349 | |
| 2350 | /// Test if it's legal to apply nofpclass for the given parameter type and it's |
| 2351 | /// lowered IR type. |
| 2352 | static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType, |
| 2353 | bool IsReturn) { |
| 2354 | // Should only apply to FP types in the source, not ABI promoted. |
| 2355 | if (!ParamType->hasFloatingRepresentation()) |
| 2356 | return false; |
| 2357 | |
| 2358 | // The promoted-to IR type also needs to support nofpclass. |
| 2359 | llvm::Type *IRTy = AI.getCoerceToType(); |
| 2360 | if (llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty: IRTy)) |
| 2361 | return true; |
| 2362 | |
| 2363 | if (llvm::StructType *ST = dyn_cast<llvm::StructType>(Val: IRTy)) { |
| 2364 | return !IsReturn && AI.getCanBeFlattened() && |
| 2365 | llvm::all_of(Range: ST->elements(), |
| 2366 | P: llvm::AttributeFuncs::isNoFPClassCompatibleType); |
| 2367 | } |
| 2368 | |
| 2369 | return false; |
| 2370 | } |
| 2371 | |
| 2372 | /// Return the nofpclass mask that can be applied to floating-point parameters. |
| 2373 | static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) { |
| 2374 | llvm::FPClassTest Mask = llvm::fcNone; |
| 2375 | if (LangOpts.NoHonorInfs) |
| 2376 | Mask |= llvm::fcInf; |
| 2377 | if (LangOpts.NoHonorNaNs) |
| 2378 | Mask |= llvm::fcNan; |
| 2379 | return Mask; |
| 2380 | } |
| 2381 | |
| 2382 | void CodeGenModule::AdjustMemoryAttribute(StringRef Name, |
| 2383 | CGCalleeInfo CalleeInfo, |
| 2384 | llvm::AttributeList &Attrs) { |
| 2385 | if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) { |
| 2386 | Attrs = Attrs.removeFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::Memory); |
| 2387 | llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects( |
| 2388 | Context&: getLLVMContext(), ME: llvm::MemoryEffects::writeOnly()); |
| 2389 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Attr: MemoryAttr); |
| 2390 | } |
| 2391 | } |
| 2392 | |
| 2393 | /// Construct the IR attribute list of a function or call. |
| 2394 | /// |
| 2395 | /// When adding an attribute, please consider where it should be handled: |
| 2396 | /// |
| 2397 | /// - getDefaultFunctionAttributes is for attributes that are essentially |
| 2398 | /// part of the global target configuration (but perhaps can be |
| 2399 | /// overridden on a per-function basis). Adding attributes there |
| 2400 | /// will cause them to also be set in frontends that build on Clang's |
| 2401 | /// target-configuration logic, as well as for code defined in library |
| 2402 | /// modules such as CUDA's libdevice. |
| 2403 | /// |
| 2404 | /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes |
| 2405 | /// and adds declaration-specific, convention-specific, and |
| 2406 | /// frontend-specific logic. The last is of particular importance: |
| 2407 | /// attributes that restrict how the frontend generates code must be |
| 2408 | /// added here rather than getDefaultFunctionAttributes. |
| 2409 | /// |
| 2410 | void CodeGenModule::ConstructAttributeList(StringRef Name, |
| 2411 | const CGFunctionInfo &FI, |
| 2412 | CGCalleeInfo CalleeInfo, |
| 2413 | llvm::AttributeList &AttrList, |
| 2414 | unsigned &CallingConv, |
| 2415 | bool AttrOnCallSite, bool IsThunk) { |
| 2416 | llvm::AttrBuilder FuncAttrs(getLLVMContext()); |
| 2417 | llvm::AttrBuilder RetAttrs(getLLVMContext()); |
| 2418 | |
| 2419 | // Collect function IR attributes from the CC lowering. |
| 2420 | // We'll collect the paramete and result attributes later. |
| 2421 | CallingConv = FI.getEffectiveCallingConvention(); |
| 2422 | if (FI.isNoReturn()) |
| 2423 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn); |
| 2424 | if (FI.isCmseNSCall()) |
| 2425 | FuncAttrs.addAttribute(A: "cmse_nonsecure_call" ); |
| 2426 | |
| 2427 | // Collect function IR attributes from the callee prototype if we have one. |
| 2428 | AddAttributesFromFunctionProtoType(Ctx&: getContext(), FuncAttrs, |
| 2429 | FPT: CalleeInfo.getCalleeFunctionProtoType()); |
| 2430 | const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); |
| 2431 | |
| 2432 | // Attach assumption attributes to the declaration. If this is a call |
| 2433 | // site, attach assumptions from the caller to the call as well. |
| 2434 | AddAttributesFromOMPAssumes(FuncAttrs, Callee: TargetDecl); |
| 2435 | |
| 2436 | bool HasOptnone = false; |
| 2437 | // The NoBuiltinAttr attached to the target FunctionDecl. |
| 2438 | const NoBuiltinAttr *NBA = nullptr; |
| 2439 | |
| 2440 | // Some ABIs may result in additional accesses to arguments that may |
| 2441 | // otherwise not be present. |
| 2442 | auto AddPotentialArgAccess = [&]() { |
| 2443 | llvm::Attribute A = FuncAttrs.getAttribute(Kind: llvm::Attribute::Memory); |
| 2444 | if (A.isValid()) |
| 2445 | FuncAttrs.addMemoryAttr(ME: A.getMemoryEffects() | |
| 2446 | llvm::MemoryEffects::argMemOnly()); |
| 2447 | }; |
| 2448 | |
| 2449 | // Collect function IR attributes based on declaration-specific |
| 2450 | // information. |
| 2451 | // FIXME: handle sseregparm someday... |
| 2452 | if (TargetDecl) { |
| 2453 | if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) |
| 2454 | FuncAttrs.addAttribute(Val: llvm::Attribute::ReturnsTwice); |
| 2455 | if (TargetDecl->hasAttr<NoThrowAttr>()) |
| 2456 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 2457 | if (TargetDecl->hasAttr<NoReturnAttr>()) |
| 2458 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn); |
| 2459 | if (TargetDecl->hasAttr<ColdAttr>()) |
| 2460 | FuncAttrs.addAttribute(Val: llvm::Attribute::Cold); |
| 2461 | if (TargetDecl->hasAttr<HotAttr>()) |
| 2462 | FuncAttrs.addAttribute(Val: llvm::Attribute::Hot); |
| 2463 | if (TargetDecl->hasAttr<NoDuplicateAttr>()) |
| 2464 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoDuplicate); |
| 2465 | if (TargetDecl->hasAttr<ConvergentAttr>()) |
| 2466 | FuncAttrs.addAttribute(Val: llvm::Attribute::Convergent); |
| 2467 | |
| 2468 | if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(Val: TargetDecl)) { |
| 2469 | AddAttributesFromFunctionProtoType( |
| 2470 | Ctx&: getContext(), FuncAttrs, FPT: Fn->getType()->getAs<FunctionProtoType>()); |
| 2471 | if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { |
| 2472 | // A sane operator new returns a non-aliasing pointer. |
| 2473 | auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); |
| 2474 | if (getCodeGenOpts().AssumeSaneOperatorNew && |
| 2475 | (Kind == OO_New || Kind == OO_Array_New)) |
| 2476 | RetAttrs.addAttribute(Val: llvm::Attribute::NoAlias); |
| 2477 | } |
| 2478 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Fn); |
| 2479 | const bool IsVirtualCall = MD && MD->isVirtual(); |
| 2480 | // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a |
| 2481 | // virtual function. These attributes are not inherited by overloads. |
| 2482 | if (!(AttrOnCallSite && IsVirtualCall)) { |
| 2483 | if (Fn->isNoReturn()) |
| 2484 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn); |
| 2485 | NBA = Fn->getAttr<NoBuiltinAttr>(); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | if (isa<FunctionDecl>(Val: TargetDecl) || isa<VarDecl>(Val: TargetDecl)) { |
| 2490 | // Only place nomerge attribute on call sites, never functions. This |
| 2491 | // allows it to work on indirect virtual function calls. |
| 2492 | if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) |
| 2493 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoMerge); |
| 2494 | } |
| 2495 | |
| 2496 | // 'const', 'pure' and 'noalias' attributed functions are also nounwind. |
| 2497 | if (TargetDecl->hasAttr<ConstAttr>()) { |
| 2498 | FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::none()); |
| 2499 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 2500 | // gcc specifies that 'const' functions have greater restrictions than |
| 2501 | // 'pure' functions, so they also cannot have infinite loops. |
| 2502 | FuncAttrs.addAttribute(Val: llvm::Attribute::WillReturn); |
| 2503 | } else if (TargetDecl->hasAttr<PureAttr>()) { |
| 2504 | FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::readOnly()); |
| 2505 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 2506 | // gcc specifies that 'pure' functions cannot have infinite loops. |
| 2507 | FuncAttrs.addAttribute(Val: llvm::Attribute::WillReturn); |
| 2508 | } else if (TargetDecl->hasAttr<NoAliasAttr>()) { |
| 2509 | FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::inaccessibleOrArgMemOnly()); |
| 2510 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 2511 | } |
| 2512 | if (const auto *RA = TargetDecl->getAttr<RestrictAttr>(); |
| 2513 | RA && RA->getDeallocator() == nullptr) |
| 2514 | RetAttrs.addAttribute(Val: llvm::Attribute::NoAlias); |
| 2515 | if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && |
| 2516 | !CodeGenOpts.NullPointerIsValid) |
| 2517 | RetAttrs.addAttribute(Val: llvm::Attribute::NonNull); |
| 2518 | if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) |
| 2519 | FuncAttrs.addAttribute(A: "no_caller_saved_registers" ); |
| 2520 | if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) |
| 2521 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoCfCheck); |
| 2522 | if (TargetDecl->hasAttr<LeafAttr>()) |
| 2523 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoCallback); |
| 2524 | if (TargetDecl->hasAttr<BPFFastCallAttr>()) |
| 2525 | FuncAttrs.addAttribute(A: "bpf_fastcall" ); |
| 2526 | |
| 2527 | HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); |
| 2528 | if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { |
| 2529 | std::optional<unsigned> NumElemsParam; |
| 2530 | if (AllocSize->getNumElemsParam().isValid()) |
| 2531 | NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); |
| 2532 | FuncAttrs.addAllocSizeAttr(ElemSizeArg: AllocSize->getElemSizeParam().getLLVMIndex(), |
| 2533 | NumElemsArg: NumElemsParam); |
| 2534 | } |
| 2535 | |
| 2536 | if (DeviceKernelAttr::isOpenCLSpelling( |
| 2537 | A: TargetDecl->getAttr<DeviceKernelAttr>()) && |
| 2538 | CallingConv != CallingConv::CC_C && |
| 2539 | CallingConv != CallingConv::CC_SpirFunction) { |
| 2540 | // Check CallingConv to avoid adding uniform-work-group-size attribute to |
| 2541 | // OpenCL Kernel Stub |
| 2542 | if (getLangOpts().OpenCLVersion <= 120) { |
| 2543 | // OpenCL v1.2 Work groups are always uniform |
| 2544 | FuncAttrs.addAttribute(A: "uniform-work-group-size" , V: "true" ); |
| 2545 | } else { |
| 2546 | // OpenCL v2.0 Work groups may be whether uniform or not. |
| 2547 | // '-cl-uniform-work-group-size' compile option gets a hint |
| 2548 | // to the compiler that the global work-size be a multiple of |
| 2549 | // the work-group size specified to clEnqueueNDRangeKernel |
| 2550 | // (i.e. work groups are uniform). |
| 2551 | FuncAttrs.addAttribute( |
| 2552 | A: "uniform-work-group-size" , |
| 2553 | V: llvm::toStringRef(B: getLangOpts().OffloadUniformBlock)); |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | if (TargetDecl->hasAttr<CUDAGlobalAttr>() && |
| 2558 | getLangOpts().OffloadUniformBlock) |
| 2559 | FuncAttrs.addAttribute(A: "uniform-work-group-size" , V: "true" ); |
| 2560 | |
| 2561 | if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>()) |
| 2562 | FuncAttrs.addAttribute(A: "aarch64_pstate_sm_body" ); |
| 2563 | } |
| 2564 | |
| 2565 | // Attach "no-builtins" attributes to: |
| 2566 | // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". |
| 2567 | // * definitions: "no-builtins" or "no-builtin-<name>" only. |
| 2568 | // The attributes can come from: |
| 2569 | // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> |
| 2570 | // * FunctionDecl attributes: __attribute__((no_builtin(...))) |
| 2571 | addNoBuiltinAttributes(FuncAttrs, LangOpts: getLangOpts(), NBA); |
| 2572 | |
| 2573 | // Collect function IR attributes based on global settiings. |
| 2574 | getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); |
| 2575 | |
| 2576 | // Override some default IR attributes based on declaration-specific |
| 2577 | // information. |
| 2578 | if (TargetDecl) { |
| 2579 | if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) |
| 2580 | FuncAttrs.removeAttribute(Val: llvm::Attribute::SpeculativeLoadHardening); |
| 2581 | if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) |
| 2582 | FuncAttrs.addAttribute(Val: llvm::Attribute::SpeculativeLoadHardening); |
| 2583 | if (TargetDecl->hasAttr<NoSplitStackAttr>()) |
| 2584 | FuncAttrs.removeAttribute(A: "split-stack" ); |
| 2585 | if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { |
| 2586 | // A function "__attribute__((...))" overrides the command-line flag. |
| 2587 | auto Kind = |
| 2588 | TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); |
| 2589 | FuncAttrs.removeAttribute(A: "zero-call-used-regs" ); |
| 2590 | FuncAttrs.addAttribute( |
| 2591 | A: "zero-call-used-regs" , |
| 2592 | V: ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Val: Kind)); |
| 2593 | } |
| 2594 | |
| 2595 | // Add NonLazyBind attribute to function declarations when -fno-plt |
| 2596 | // is used. |
| 2597 | // FIXME: what if we just haven't processed the function definition |
| 2598 | // yet, or if it's an external definition like C99 inline? |
| 2599 | if (CodeGenOpts.NoPLT) { |
| 2600 | if (auto *Fn = dyn_cast<FunctionDecl>(Val: TargetDecl)) { |
| 2601 | if (!Fn->isDefined() && !AttrOnCallSite) { |
| 2602 | FuncAttrs.addAttribute(Val: llvm::Attribute::NonLazyBind); |
| 2603 | } |
| 2604 | } |
| 2605 | } |
| 2606 | // Remove 'convergent' if requested. |
| 2607 | if (TargetDecl->hasAttr<NoConvergentAttr>()) |
| 2608 | FuncAttrs.removeAttribute(Val: llvm::Attribute::Convergent); |
| 2609 | } |
| 2610 | |
| 2611 | // Add "sample-profile-suffix-elision-policy" attribute for internal linkage |
| 2612 | // functions with -funique-internal-linkage-names. |
| 2613 | if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { |
| 2614 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) { |
| 2615 | if (!FD->isExternallyVisible()) |
| 2616 | FuncAttrs.addAttribute(A: "sample-profile-suffix-elision-policy" , |
| 2617 | V: "selected" ); |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | // Collect non-call-site function IR attributes from declaration-specific |
| 2622 | // information. |
| 2623 | if (!AttrOnCallSite) { |
| 2624 | if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) |
| 2625 | FuncAttrs.addAttribute(A: "cmse_nonsecure_entry" ); |
| 2626 | |
| 2627 | // Whether tail calls are enabled. |
| 2628 | auto shouldDisableTailCalls = [&] { |
| 2629 | // Should this be honored in getDefaultFunctionAttributes? |
| 2630 | if (CodeGenOpts.DisableTailCalls) |
| 2631 | return true; |
| 2632 | |
| 2633 | if (!TargetDecl) |
| 2634 | return false; |
| 2635 | |
| 2636 | if (TargetDecl->hasAttr<DisableTailCallsAttr>() || |
| 2637 | TargetDecl->hasAttr<AnyX86InterruptAttr>()) |
| 2638 | return true; |
| 2639 | |
| 2640 | if (CodeGenOpts.NoEscapingBlockTailCalls) { |
| 2641 | if (const auto *BD = dyn_cast<BlockDecl>(Val: TargetDecl)) |
| 2642 | if (!BD->doesNotEscape()) |
| 2643 | return true; |
| 2644 | } |
| 2645 | |
| 2646 | return false; |
| 2647 | }; |
| 2648 | if (shouldDisableTailCalls()) |
| 2649 | FuncAttrs.addAttribute(A: "disable-tail-calls" , V: "true" ); |
| 2650 | |
| 2651 | // These functions require the returns_twice attribute for correct codegen, |
| 2652 | // but the attribute may not be added if -fno-builtin is specified. We |
| 2653 | // explicitly add that attribute here. |
| 2654 | static const llvm::StringSet<> ReturnsTwiceFn{ |
| 2655 | "_setjmpex" , "setjmp" , "_setjmp" , "vfork" , |
| 2656 | "sigsetjmp" , "__sigsetjmp" , "savectx" , "getcontext" }; |
| 2657 | if (ReturnsTwiceFn.contains(key: Name)) |
| 2658 | FuncAttrs.addAttribute(Val: llvm::Attribute::ReturnsTwice); |
| 2659 | |
| 2660 | // CPU/feature overrides. addDefaultFunctionDefinitionAttributes |
| 2661 | // handles these separately to set them based on the global defaults. |
| 2662 | GetCPUAndFeaturesAttributes(GD: CalleeInfo.getCalleeDecl(), AttrBuilder&: FuncAttrs); |
| 2663 | |
| 2664 | // Windows hotpatching support |
| 2665 | if (!MSHotPatchFunctions.empty()) { |
| 2666 | bool IsHotPatched = llvm::binary_search(Range&: MSHotPatchFunctions, Value&: Name); |
| 2667 | if (IsHotPatched) |
| 2668 | FuncAttrs.addAttribute(A: "marked_for_windows_hot_patching" ); |
| 2669 | } |
| 2670 | } |
| 2671 | |
| 2672 | // Mark functions that are replaceable by the loader. |
| 2673 | if (CodeGenOpts.isLoaderReplaceableFunctionName(FuncName: Name)) |
| 2674 | FuncAttrs.addAttribute(A: "loader-replaceable" ); |
| 2675 | |
| 2676 | // Collect attributes from arguments and return values. |
| 2677 | ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); |
| 2678 | |
| 2679 | QualType RetTy = FI.getReturnType(); |
| 2680 | const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| 2681 | const llvm::DataLayout &DL = getDataLayout(); |
| 2682 | |
| 2683 | // Determine if the return type could be partially undef |
| 2684 | if (CodeGenOpts.EnableNoundefAttrs && |
| 2685 | HasStrictReturn(Module: *this, RetTy, TargetDecl)) { |
| 2686 | if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && |
| 2687 | DetermineNoUndef(QTy: RetTy, Types&: getTypes(), DL, AI: RetAI)) |
| 2688 | RetAttrs.addAttribute(Val: llvm::Attribute::NoUndef); |
| 2689 | } |
| 2690 | |
| 2691 | switch (RetAI.getKind()) { |
| 2692 | case ABIArgInfo::Extend: |
| 2693 | if (RetAI.isSignExt()) |
| 2694 | RetAttrs.addAttribute(Val: llvm::Attribute::SExt); |
| 2695 | else if (RetAI.isZeroExt()) |
| 2696 | RetAttrs.addAttribute(Val: llvm::Attribute::ZExt); |
| 2697 | else |
| 2698 | RetAttrs.addAttribute(Val: llvm::Attribute::NoExt); |
| 2699 | [[fallthrough]]; |
| 2700 | case ABIArgInfo::Direct: |
| 2701 | if (RetAI.getInReg()) |
| 2702 | RetAttrs.addAttribute(Val: llvm::Attribute::InReg); |
| 2703 | |
| 2704 | if (canApplyNoFPClass(AI: RetAI, ParamType: RetTy, IsReturn: true)) |
| 2705 | RetAttrs.addNoFPClassAttr(NoFPClassMask: getNoFPClassTestMask(LangOpts: getLangOpts())); |
| 2706 | |
| 2707 | break; |
| 2708 | case ABIArgInfo::Ignore: |
| 2709 | break; |
| 2710 | |
| 2711 | case ABIArgInfo::InAlloca: |
| 2712 | case ABIArgInfo::Indirect: { |
| 2713 | // inalloca and sret disable readnone and readonly |
| 2714 | AddPotentialArgAccess(); |
| 2715 | break; |
| 2716 | } |
| 2717 | |
| 2718 | case ABIArgInfo::CoerceAndExpand: |
| 2719 | break; |
| 2720 | |
| 2721 | case ABIArgInfo::Expand: |
| 2722 | case ABIArgInfo::IndirectAliased: |
| 2723 | llvm_unreachable("Invalid ABI kind for return argument" ); |
| 2724 | } |
| 2725 | |
| 2726 | if (!IsThunk) { |
| 2727 | // FIXME: fix this properly, https://reviews.llvm.org/D100388 |
| 2728 | if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { |
| 2729 | QualType PTy = RefTy->getPointeeType(); |
| 2730 | if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) |
| 2731 | RetAttrs.addDereferenceableAttr( |
| 2732 | Bytes: getMinimumObjectSize(Ty: PTy).getQuantity()); |
| 2733 | if (getTypes().getTargetAddressSpace(T: PTy) == 0 && |
| 2734 | !CodeGenOpts.NullPointerIsValid) |
| 2735 | RetAttrs.addAttribute(Val: llvm::Attribute::NonNull); |
| 2736 | if (PTy->isObjectType()) { |
| 2737 | llvm::Align Alignment = |
| 2738 | getNaturalPointeeTypeAlignment(T: RetTy).getAsAlign(); |
| 2739 | RetAttrs.addAlignmentAttr(Align: Alignment); |
| 2740 | } |
| 2741 | } |
| 2742 | } |
| 2743 | |
| 2744 | bool hasUsedSRet = false; |
| 2745 | SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); |
| 2746 | |
| 2747 | // Attach attributes to sret. |
| 2748 | if (IRFunctionArgs.hasSRetArg()) { |
| 2749 | llvm::AttrBuilder SRETAttrs(getLLVMContext()); |
| 2750 | SRETAttrs.addStructRetAttr(Ty: getTypes().ConvertTypeForMem(T: RetTy)); |
| 2751 | SRETAttrs.addAttribute(Val: llvm::Attribute::Writable); |
| 2752 | SRETAttrs.addAttribute(Val: llvm::Attribute::DeadOnUnwind); |
| 2753 | hasUsedSRet = true; |
| 2754 | if (RetAI.getInReg()) |
| 2755 | SRETAttrs.addAttribute(Val: llvm::Attribute::InReg); |
| 2756 | SRETAttrs.addAlignmentAttr(Align: RetAI.getIndirectAlign().getQuantity()); |
| 2757 | ArgAttrs[IRFunctionArgs.getSRetArgNo()] = |
| 2758 | llvm::AttributeSet::get(C&: getLLVMContext(), B: SRETAttrs); |
| 2759 | } |
| 2760 | |
| 2761 | // Attach attributes to inalloca argument. |
| 2762 | if (IRFunctionArgs.hasInallocaArg()) { |
| 2763 | llvm::AttrBuilder Attrs(getLLVMContext()); |
| 2764 | Attrs.addInAllocaAttr(Ty: FI.getArgStruct()); |
| 2765 | ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = |
| 2766 | llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs); |
| 2767 | } |
| 2768 | |
| 2769 | // Apply `nonnull`, `dereferenceable(N)` and `align N` to the `this` argument, |
| 2770 | // unless this is a thunk function. |
| 2771 | // FIXME: fix this properly, https://reviews.llvm.org/D100388 |
| 2772 | if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && |
| 2773 | !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { |
| 2774 | auto IRArgs = IRFunctionArgs.getIRArgs(ArgNo: 0); |
| 2775 | |
| 2776 | assert(IRArgs.second == 1 && "Expected only a single `this` pointer." ); |
| 2777 | |
| 2778 | llvm::AttrBuilder Attrs(getLLVMContext()); |
| 2779 | |
| 2780 | QualType ThisTy = FI.arg_begin()->type.getTypePtr()->getPointeeType(); |
| 2781 | |
| 2782 | if (!CodeGenOpts.NullPointerIsValid && |
| 2783 | getTypes().getTargetAddressSpace(T: FI.arg_begin()->type) == 0) { |
| 2784 | Attrs.addAttribute(Val: llvm::Attribute::NonNull); |
| 2785 | Attrs.addDereferenceableAttr(Bytes: getMinimumObjectSize(Ty: ThisTy).getQuantity()); |
| 2786 | } else { |
| 2787 | // FIXME dereferenceable should be correct here, regardless of |
| 2788 | // NullPointerIsValid. However, dereferenceable currently does not always |
| 2789 | // respect NullPointerIsValid and may imply nonnull and break the program. |
| 2790 | // See https://reviews.llvm.org/D66618 for discussions. |
| 2791 | Attrs.addDereferenceableOrNullAttr( |
| 2792 | Bytes: getMinimumObjectSize( |
| 2793 | Ty: FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) |
| 2794 | .getQuantity()); |
| 2795 | } |
| 2796 | |
| 2797 | llvm::Align Alignment = |
| 2798 | getNaturalTypeAlignment(T: ThisTy, /*BaseInfo=*/nullptr, |
| 2799 | /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) |
| 2800 | .getAsAlign(); |
| 2801 | Attrs.addAlignmentAttr(Align: Alignment); |
| 2802 | |
| 2803 | ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs); |
| 2804 | } |
| 2805 | |
| 2806 | unsigned ArgNo = 0; |
| 2807 | for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), E = FI.arg_end(); |
| 2808 | I != E; ++I, ++ArgNo) { |
| 2809 | QualType ParamType = I->type; |
| 2810 | const ABIArgInfo &AI = I->info; |
| 2811 | llvm::AttrBuilder Attrs(getLLVMContext()); |
| 2812 | |
| 2813 | // Add attribute for padding argument, if necessary. |
| 2814 | if (IRFunctionArgs.hasPaddingArg(ArgNo)) { |
| 2815 | if (AI.getPaddingInReg()) { |
| 2816 | ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| 2817 | llvm::AttributeSet::get(C&: getLLVMContext(), |
| 2818 | B: llvm::AttrBuilder(getLLVMContext()) |
| 2819 | .addAttribute(Val: llvm::Attribute::InReg)); |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | // Decide whether the argument we're handling could be partially undef |
| 2824 | if (CodeGenOpts.EnableNoundefAttrs && |
| 2825 | DetermineNoUndef(QTy: ParamType, Types&: getTypes(), DL, AI)) { |
| 2826 | Attrs.addAttribute(Val: llvm::Attribute::NoUndef); |
| 2827 | } |
| 2828 | |
| 2829 | // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we |
| 2830 | // have the corresponding parameter variable. It doesn't make |
| 2831 | // sense to do it here because parameters are so messed up. |
| 2832 | switch (AI.getKind()) { |
| 2833 | case ABIArgInfo::Extend: |
| 2834 | if (AI.isSignExt()) |
| 2835 | Attrs.addAttribute(Val: llvm::Attribute::SExt); |
| 2836 | else if (AI.isZeroExt()) |
| 2837 | Attrs.addAttribute(Val: llvm::Attribute::ZExt); |
| 2838 | else |
| 2839 | Attrs.addAttribute(Val: llvm::Attribute::NoExt); |
| 2840 | [[fallthrough]]; |
| 2841 | case ABIArgInfo::Direct: |
| 2842 | if (ArgNo == 0 && FI.isChainCall()) |
| 2843 | Attrs.addAttribute(Val: llvm::Attribute::Nest); |
| 2844 | else if (AI.getInReg()) |
| 2845 | Attrs.addAttribute(Val: llvm::Attribute::InReg); |
| 2846 | Attrs.addStackAlignmentAttr(Align: llvm::MaybeAlign(AI.getDirectAlign())); |
| 2847 | |
| 2848 | if (canApplyNoFPClass(AI, ParamType, IsReturn: false)) |
| 2849 | Attrs.addNoFPClassAttr(NoFPClassMask: getNoFPClassTestMask(LangOpts: getLangOpts())); |
| 2850 | break; |
| 2851 | case ABIArgInfo::Indirect: { |
| 2852 | if (AI.getInReg()) |
| 2853 | Attrs.addAttribute(Val: llvm::Attribute::InReg); |
| 2854 | |
| 2855 | if (AI.getIndirectByVal()) |
| 2856 | Attrs.addByValAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType)); |
| 2857 | |
| 2858 | auto *Decl = ParamType->getAsRecordDecl(); |
| 2859 | if (CodeGenOpts.PassByValueIsNoAlias && Decl && |
| 2860 | Decl->getArgPassingRestrictions() == |
| 2861 | RecordArgPassingKind::CanPassInRegs) |
| 2862 | // When calling the function, the pointer passed in will be the only |
| 2863 | // reference to the underlying object. Mark it accordingly. |
| 2864 | Attrs.addAttribute(Val: llvm::Attribute::NoAlias); |
| 2865 | |
| 2866 | // TODO: We could add the byref attribute if not byval, but it would |
| 2867 | // require updating many testcases. |
| 2868 | |
| 2869 | CharUnits Align = AI.getIndirectAlign(); |
| 2870 | |
| 2871 | // In a byval argument, it is important that the required |
| 2872 | // alignment of the type is honored, as LLVM might be creating a |
| 2873 | // *new* stack object, and needs to know what alignment to give |
| 2874 | // it. (Sometimes it can deduce a sensible alignment on its own, |
| 2875 | // but not if clang decides it must emit a packed struct, or the |
| 2876 | // user specifies increased alignment requirements.) |
| 2877 | // |
| 2878 | // This is different from indirect *not* byval, where the object |
| 2879 | // exists already, and the align attribute is purely |
| 2880 | // informative. |
| 2881 | assert(!Align.isZero()); |
| 2882 | |
| 2883 | // For now, only add this when we have a byval argument. |
| 2884 | // TODO: be less lazy about updating test cases. |
| 2885 | if (AI.getIndirectByVal()) |
| 2886 | Attrs.addAlignmentAttr(Align: Align.getQuantity()); |
| 2887 | |
| 2888 | // byval disables readnone and readonly. |
| 2889 | AddPotentialArgAccess(); |
| 2890 | break; |
| 2891 | } |
| 2892 | case ABIArgInfo::IndirectAliased: { |
| 2893 | CharUnits Align = AI.getIndirectAlign(); |
| 2894 | Attrs.addByRefAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType)); |
| 2895 | Attrs.addAlignmentAttr(Align: Align.getQuantity()); |
| 2896 | break; |
| 2897 | } |
| 2898 | case ABIArgInfo::Ignore: |
| 2899 | case ABIArgInfo::Expand: |
| 2900 | case ABIArgInfo::CoerceAndExpand: |
| 2901 | break; |
| 2902 | |
| 2903 | case ABIArgInfo::InAlloca: |
| 2904 | // inalloca disables readnone and readonly. |
| 2905 | AddPotentialArgAccess(); |
| 2906 | continue; |
| 2907 | } |
| 2908 | |
| 2909 | if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { |
| 2910 | QualType PTy = RefTy->getPointeeType(); |
| 2911 | if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) |
| 2912 | Attrs.addDereferenceableAttr(Bytes: getMinimumObjectSize(Ty: PTy).getQuantity()); |
| 2913 | if (getTypes().getTargetAddressSpace(T: PTy) == 0 && |
| 2914 | !CodeGenOpts.NullPointerIsValid) |
| 2915 | Attrs.addAttribute(Val: llvm::Attribute::NonNull); |
| 2916 | if (PTy->isObjectType()) { |
| 2917 | llvm::Align Alignment = |
| 2918 | getNaturalPointeeTypeAlignment(T: ParamType).getAsAlign(); |
| 2919 | Attrs.addAlignmentAttr(Align: Alignment); |
| 2920 | } |
| 2921 | } |
| 2922 | |
| 2923 | // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: |
| 2924 | // > For arguments to a __kernel function declared to be a pointer to a |
| 2925 | // > data type, the OpenCL compiler can assume that the pointee is always |
| 2926 | // > appropriately aligned as required by the data type. |
| 2927 | if (TargetDecl && |
| 2928 | DeviceKernelAttr::isOpenCLSpelling( |
| 2929 | A: TargetDecl->getAttr<DeviceKernelAttr>()) && |
| 2930 | ParamType->isPointerType()) { |
| 2931 | QualType PTy = ParamType->getPointeeType(); |
| 2932 | if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { |
| 2933 | llvm::Align Alignment = |
| 2934 | getNaturalPointeeTypeAlignment(T: ParamType).getAsAlign(); |
| 2935 | Attrs.addAlignmentAttr(Align: Alignment); |
| 2936 | } |
| 2937 | } |
| 2938 | |
| 2939 | switch (FI.getExtParameterInfo(argIndex: ArgNo).getABI()) { |
| 2940 | case ParameterABI::HLSLOut: |
| 2941 | case ParameterABI::HLSLInOut: |
| 2942 | Attrs.addAttribute(Val: llvm::Attribute::NoAlias); |
| 2943 | break; |
| 2944 | case ParameterABI::Ordinary: |
| 2945 | break; |
| 2946 | |
| 2947 | case ParameterABI::SwiftIndirectResult: { |
| 2948 | // Add 'sret' if we haven't already used it for something, but |
| 2949 | // only if the result is void. |
| 2950 | if (!hasUsedSRet && RetTy->isVoidType()) { |
| 2951 | Attrs.addStructRetAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType)); |
| 2952 | hasUsedSRet = true; |
| 2953 | } |
| 2954 | |
| 2955 | // Add 'noalias' in either case. |
| 2956 | Attrs.addAttribute(Val: llvm::Attribute::NoAlias); |
| 2957 | |
| 2958 | // Add 'dereferenceable' and 'alignment'. |
| 2959 | auto PTy = ParamType->getPointeeType(); |
| 2960 | if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { |
| 2961 | auto info = getContext().getTypeInfoInChars(T: PTy); |
| 2962 | Attrs.addDereferenceableAttr(Bytes: info.Width.getQuantity()); |
| 2963 | Attrs.addAlignmentAttr(Align: info.Align.getAsAlign()); |
| 2964 | } |
| 2965 | break; |
| 2966 | } |
| 2967 | |
| 2968 | case ParameterABI::SwiftErrorResult: |
| 2969 | Attrs.addAttribute(Val: llvm::Attribute::SwiftError); |
| 2970 | break; |
| 2971 | |
| 2972 | case ParameterABI::SwiftContext: |
| 2973 | Attrs.addAttribute(Val: llvm::Attribute::SwiftSelf); |
| 2974 | break; |
| 2975 | |
| 2976 | case ParameterABI::SwiftAsyncContext: |
| 2977 | Attrs.addAttribute(Val: llvm::Attribute::SwiftAsync); |
| 2978 | break; |
| 2979 | } |
| 2980 | |
| 2981 | if (FI.getExtParameterInfo(argIndex: ArgNo).isNoEscape()) |
| 2982 | Attrs.addCapturesAttr(CI: llvm::CaptureInfo::none()); |
| 2983 | |
| 2984 | if (Attrs.hasAttributes()) { |
| 2985 | unsigned FirstIRArg, NumIRArgs; |
| 2986 | std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| 2987 | for (unsigned i = 0; i < NumIRArgs; i++) |
| 2988 | ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( |
| 2989 | C&: getLLVMContext(), AS: llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs)); |
| 2990 | } |
| 2991 | } |
| 2992 | assert(ArgNo == FI.arg_size()); |
| 2993 | |
| 2994 | AttrList = llvm::AttributeList::get( |
| 2995 | C&: getLLVMContext(), FnAttrs: llvm::AttributeSet::get(C&: getLLVMContext(), B: FuncAttrs), |
| 2996 | RetAttrs: llvm::AttributeSet::get(C&: getLLVMContext(), B: RetAttrs), ArgAttrs); |
| 2997 | } |
| 2998 | |
| 2999 | /// An argument came in as a promoted argument; demote it back to its |
| 3000 | /// declared type. |
| 3001 | static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, |
| 3002 | const VarDecl *var, |
| 3003 | llvm::Value *value) { |
| 3004 | llvm::Type *varType = CGF.ConvertType(T: var->getType()); |
| 3005 | |
| 3006 | // This can happen with promotions that actually don't change the |
| 3007 | // underlying type, like the enum promotions. |
| 3008 | if (value->getType() == varType) |
| 3009 | return value; |
| 3010 | |
| 3011 | assert((varType->isIntegerTy() || varType->isFloatingPointTy()) && |
| 3012 | "unexpected promotion type" ); |
| 3013 | |
| 3014 | if (isa<llvm::IntegerType>(Val: varType)) |
| 3015 | return CGF.Builder.CreateTrunc(V: value, DestTy: varType, Name: "arg.unpromote" ); |
| 3016 | |
| 3017 | return CGF.Builder.CreateFPCast(V: value, DestTy: varType, Name: "arg.unpromote" ); |
| 3018 | } |
| 3019 | |
| 3020 | /// Returns the attribute (either parameter attribute, or function |
| 3021 | /// attribute), which declares argument ArgNo to be non-null. |
| 3022 | static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, |
| 3023 | QualType ArgType, unsigned ArgNo) { |
| 3024 | // FIXME: __attribute__((nonnull)) can also be applied to: |
| 3025 | // - references to pointers, where the pointee is known to be |
| 3026 | // nonnull (apparently a Clang extension) |
| 3027 | // - transparent unions containing pointers |
| 3028 | // In the former case, LLVM IR cannot represent the constraint. In |
| 3029 | // the latter case, we have no guarantee that the transparent union |
| 3030 | // is in fact passed as a pointer. |
| 3031 | if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) |
| 3032 | return nullptr; |
| 3033 | // First, check attribute on parameter itself. |
| 3034 | if (PVD) { |
| 3035 | if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) |
| 3036 | return ParmNNAttr; |
| 3037 | } |
| 3038 | // Check function attributes. |
| 3039 | if (!FD) |
| 3040 | return nullptr; |
| 3041 | for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { |
| 3042 | if (NNAttr->isNonNull(IdxAST: ArgNo)) |
| 3043 | return NNAttr; |
| 3044 | } |
| 3045 | return nullptr; |
| 3046 | } |
| 3047 | |
| 3048 | namespace { |
| 3049 | struct CopyBackSwiftError final : EHScopeStack::Cleanup { |
| 3050 | Address Temp; |
| 3051 | Address Arg; |
| 3052 | CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} |
| 3053 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 3054 | llvm::Value *errorValue = CGF.Builder.CreateLoad(Addr: Temp); |
| 3055 | CGF.Builder.CreateStore(Val: errorValue, Addr: Arg); |
| 3056 | } |
| 3057 | }; |
| 3058 | } // namespace |
| 3059 | |
| 3060 | void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, |
| 3061 | llvm::Function *Fn, |
| 3062 | const FunctionArgList &Args) { |
| 3063 | if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) |
| 3064 | // Naked functions don't have prologues. |
| 3065 | return; |
| 3066 | |
| 3067 | // If this is an implicit-return-zero function, go ahead and |
| 3068 | // initialize the return value. TODO: it might be nice to have |
| 3069 | // a more general mechanism for this that didn't require synthesized |
| 3070 | // return statements. |
| 3071 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl)) { |
| 3072 | if (FD->hasImplicitReturnZero()) { |
| 3073 | QualType RetTy = FD->getReturnType().getUnqualifiedType(); |
| 3074 | llvm::Type *LLVMTy = CGM.getTypes().ConvertType(T: RetTy); |
| 3075 | llvm::Constant *Zero = llvm::Constant::getNullValue(Ty: LLVMTy); |
| 3076 | Builder.CreateStore(Val: Zero, Addr: ReturnValue); |
| 3077 | } |
| 3078 | } |
| 3079 | |
| 3080 | // FIXME: We no longer need the types from FunctionArgList; lift up and |
| 3081 | // simplify. |
| 3082 | |
| 3083 | ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); |
| 3084 | assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); |
| 3085 | |
| 3086 | // If we're using inalloca, all the memory arguments are GEPs off of the last |
| 3087 | // parameter, which is a pointer to the complete memory area. |
| 3088 | Address ArgStruct = Address::invalid(); |
| 3089 | if (IRFunctionArgs.hasInallocaArg()) |
| 3090 | ArgStruct = Address(Fn->getArg(i: IRFunctionArgs.getInallocaArgNo()), |
| 3091 | FI.getArgStruct(), FI.getArgStructAlignment()); |
| 3092 | |
| 3093 | // Name the struct return parameter. |
| 3094 | if (IRFunctionArgs.hasSRetArg()) { |
| 3095 | auto AI = Fn->getArg(i: IRFunctionArgs.getSRetArgNo()); |
| 3096 | AI->setName("agg.result" ); |
| 3097 | AI->addAttr(Kind: llvm::Attribute::NoAlias); |
| 3098 | } |
| 3099 | |
| 3100 | // Track if we received the parameter as a pointer (indirect, byval, or |
| 3101 | // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it |
| 3102 | // into a local alloca for us. |
| 3103 | SmallVector<ParamValue, 16> ArgVals; |
| 3104 | ArgVals.reserve(N: Args.size()); |
| 3105 | |
| 3106 | // Create a pointer value for every parameter declaration. This usually |
| 3107 | // entails copying one or more LLVM IR arguments into an alloca. Don't push |
| 3108 | // any cleanups or do anything that might unwind. We do that separately, so |
| 3109 | // we can push the cleanups in the correct order for the ABI. |
| 3110 | assert(FI.arg_size() == Args.size() && |
| 3111 | "Mismatch between function signature & arguments." ); |
| 3112 | unsigned ArgNo = 0; |
| 3113 | CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); |
| 3114 | for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); i != e; |
| 3115 | ++i, ++info_it, ++ArgNo) { |
| 3116 | const VarDecl *Arg = *i; |
| 3117 | const ABIArgInfo &ArgI = info_it->info; |
| 3118 | |
| 3119 | bool isPromoted = |
| 3120 | isa<ParmVarDecl>(Val: Arg) && cast<ParmVarDecl>(Val: Arg)->isKNRPromoted(); |
| 3121 | // We are converting from ABIArgInfo type to VarDecl type directly, unless |
| 3122 | // the parameter is promoted. In this case we convert to |
| 3123 | // CGFunctionInfo::ArgInfo type with subsequent argument demotion. |
| 3124 | QualType Ty = isPromoted ? info_it->type : Arg->getType(); |
| 3125 | assert(hasScalarEvaluationKind(Ty) == |
| 3126 | hasScalarEvaluationKind(Arg->getType())); |
| 3127 | |
| 3128 | unsigned FirstIRArg, NumIRArgs; |
| 3129 | std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| 3130 | |
| 3131 | switch (ArgI.getKind()) { |
| 3132 | case ABIArgInfo::InAlloca: { |
| 3133 | assert(NumIRArgs == 0); |
| 3134 | auto FieldIndex = ArgI.getInAllocaFieldIndex(); |
| 3135 | Address V = |
| 3136 | Builder.CreateStructGEP(Addr: ArgStruct, Index: FieldIndex, Name: Arg->getName()); |
| 3137 | if (ArgI.getInAllocaIndirect()) |
| 3138 | V = Address(Builder.CreateLoad(Addr: V), ConvertTypeForMem(T: Ty), |
| 3139 | getContext().getTypeAlignInChars(T: Ty)); |
| 3140 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: V)); |
| 3141 | break; |
| 3142 | } |
| 3143 | |
| 3144 | case ABIArgInfo::Indirect: |
| 3145 | case ABIArgInfo::IndirectAliased: { |
| 3146 | assert(NumIRArgs == 1); |
| 3147 | Address ParamAddr = makeNaturalAddressForPointer( |
| 3148 | Ptr: Fn->getArg(i: FirstIRArg), T: Ty, Alignment: ArgI.getIndirectAlign(), ForPointeeType: false, BaseInfo: nullptr, |
| 3149 | TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull); |
| 3150 | |
| 3151 | if (!hasScalarEvaluationKind(T: Ty)) { |
| 3152 | // Aggregates and complex variables are accessed by reference. All we |
| 3153 | // need to do is realign the value, if requested. Also, if the address |
| 3154 | // may be aliased, copy it to ensure that the parameter variable is |
| 3155 | // mutable and has a unique adress, as C requires. |
| 3156 | if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { |
| 3157 | RawAddress AlignedTemp = CreateMemTemp(T: Ty, Name: "coerce" ); |
| 3158 | |
| 3159 | // Copy from the incoming argument pointer to the temporary with the |
| 3160 | // appropriate alignment. |
| 3161 | // |
| 3162 | // FIXME: We should have a common utility for generating an aggregate |
| 3163 | // copy. |
| 3164 | CharUnits Size = getContext().getTypeSizeInChars(T: Ty); |
| 3165 | Builder.CreateMemCpy( |
| 3166 | Dst: AlignedTemp.getPointer(), DstAlign: AlignedTemp.getAlignment().getAsAlign(), |
| 3167 | Src: ParamAddr.emitRawPointer(CGF&: *this), |
| 3168 | SrcAlign: ParamAddr.getAlignment().getAsAlign(), |
| 3169 | Size: llvm::ConstantInt::get(Ty: IntPtrTy, V: Size.getQuantity())); |
| 3170 | ParamAddr = AlignedTemp; |
| 3171 | } |
| 3172 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: ParamAddr)); |
| 3173 | } else { |
| 3174 | // Load scalar value from indirect argument. |
| 3175 | llvm::Value *V = |
| 3176 | EmitLoadOfScalar(Addr: ParamAddr, Volatile: false, Ty, Loc: Arg->getBeginLoc()); |
| 3177 | |
| 3178 | if (isPromoted) |
| 3179 | V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V); |
| 3180 | ArgVals.push_back(Elt: ParamValue::forDirect(value: V)); |
| 3181 | } |
| 3182 | break; |
| 3183 | } |
| 3184 | |
| 3185 | case ABIArgInfo::Extend: |
| 3186 | case ABIArgInfo::Direct: { |
| 3187 | auto AI = Fn->getArg(i: FirstIRArg); |
| 3188 | llvm::Type *LTy = ConvertType(T: Arg->getType()); |
| 3189 | |
| 3190 | // Prepare parameter attributes. So far, only attributes for pointer |
| 3191 | // parameters are prepared. See |
| 3192 | // http://llvm.org/docs/LangRef.html#paramattrs. |
| 3193 | if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && |
| 3194 | ArgI.getCoerceToType()->isPointerTy()) { |
| 3195 | assert(NumIRArgs == 1); |
| 3196 | |
| 3197 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: Arg)) { |
| 3198 | // Set `nonnull` attribute if any. |
| 3199 | if (getNonNullAttr(FD: CurCodeDecl, PVD, ArgType: PVD->getType(), |
| 3200 | ArgNo: PVD->getFunctionScopeIndex()) && |
| 3201 | !CGM.getCodeGenOpts().NullPointerIsValid) |
| 3202 | AI->addAttr(Kind: llvm::Attribute::NonNull); |
| 3203 | |
| 3204 | QualType OTy = PVD->getOriginalType(); |
| 3205 | if (const auto *ArrTy = getContext().getAsConstantArrayType(T: OTy)) { |
| 3206 | // A C99 array parameter declaration with the static keyword also |
| 3207 | // indicates dereferenceability, and if the size is constant we can |
| 3208 | // use the dereferenceable attribute (which requires the size in |
| 3209 | // bytes). |
| 3210 | if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { |
| 3211 | QualType ETy = ArrTy->getElementType(); |
| 3212 | llvm::Align Alignment = |
| 3213 | CGM.getNaturalTypeAlignment(T: ETy).getAsAlign(); |
| 3214 | AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()) |
| 3215 | .addAlignmentAttr(Align: Alignment)); |
| 3216 | uint64_t ArrSize = ArrTy->getZExtSize(); |
| 3217 | if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && |
| 3218 | ArrSize) { |
| 3219 | llvm::AttrBuilder Attrs(getLLVMContext()); |
| 3220 | Attrs.addDereferenceableAttr( |
| 3221 | Bytes: getContext().getTypeSizeInChars(T: ETy).getQuantity() * |
| 3222 | ArrSize); |
| 3223 | AI->addAttrs(B&: Attrs); |
| 3224 | } else if (getContext().getTargetInfo().getNullPointerValue( |
| 3225 | AddrSpace: ETy.getAddressSpace()) == 0 && |
| 3226 | !CGM.getCodeGenOpts().NullPointerIsValid) { |
| 3227 | AI->addAttr(Kind: llvm::Attribute::NonNull); |
| 3228 | } |
| 3229 | } |
| 3230 | } else if (const auto *ArrTy = |
| 3231 | getContext().getAsVariableArrayType(T: OTy)) { |
| 3232 | // For C99 VLAs with the static keyword, we don't know the size so |
| 3233 | // we can't use the dereferenceable attribute, but in addrspace(0) |
| 3234 | // we know that it must be nonnull. |
| 3235 | if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) { |
| 3236 | QualType ETy = ArrTy->getElementType(); |
| 3237 | llvm::Align Alignment = |
| 3238 | CGM.getNaturalTypeAlignment(T: ETy).getAsAlign(); |
| 3239 | AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()) |
| 3240 | .addAlignmentAttr(Align: Alignment)); |
| 3241 | if (!getTypes().getTargetAddressSpace(T: ETy) && |
| 3242 | !CGM.getCodeGenOpts().NullPointerIsValid) |
| 3243 | AI->addAttr(Kind: llvm::Attribute::NonNull); |
| 3244 | } |
| 3245 | } |
| 3246 | |
| 3247 | // Set `align` attribute if any. |
| 3248 | const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); |
| 3249 | if (!AVAttr) |
| 3250 | if (const auto *TOTy = OTy->getAs<TypedefType>()) |
| 3251 | AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); |
| 3252 | if (AVAttr && !SanOpts.has(K: SanitizerKind::Alignment)) { |
| 3253 | // If alignment-assumption sanitizer is enabled, we do *not* add |
| 3254 | // alignment attribute here, but emit normal alignment assumption, |
| 3255 | // so the UBSAN check could function. |
| 3256 | llvm::ConstantInt *AlignmentCI = |
| 3257 | cast<llvm::ConstantInt>(Val: EmitScalarExpr(E: AVAttr->getAlignment())); |
| 3258 | uint64_t AlignmentInt = |
| 3259 | AlignmentCI->getLimitedValue(Limit: llvm::Value::MaximumAlignment); |
| 3260 | if (AI->getParamAlign().valueOrOne() < AlignmentInt) { |
| 3261 | AI->removeAttr(Kind: llvm::Attribute::AttrKind::Alignment); |
| 3262 | AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()) |
| 3263 | .addAlignmentAttr(Align: llvm::Align(AlignmentInt))); |
| 3264 | } |
| 3265 | } |
| 3266 | } |
| 3267 | |
| 3268 | // Set 'noalias' if an argument type has the `restrict` qualifier. |
| 3269 | if (Arg->getType().isRestrictQualified()) |
| 3270 | AI->addAttr(Kind: llvm::Attribute::NoAlias); |
| 3271 | } |
| 3272 | |
| 3273 | // Prepare the argument value. If we have the trivial case, handle it |
| 3274 | // with no muss and fuss. |
| 3275 | if (!isa<llvm::StructType>(Val: ArgI.getCoerceToType()) && |
| 3276 | ArgI.getCoerceToType() == ConvertType(T: Ty) && |
| 3277 | ArgI.getDirectOffset() == 0) { |
| 3278 | assert(NumIRArgs == 1); |
| 3279 | |
| 3280 | // LLVM expects swifterror parameters to be used in very restricted |
| 3281 | // ways. Copy the value into a less-restricted temporary. |
| 3282 | llvm::Value *V = AI; |
| 3283 | if (FI.getExtParameterInfo(argIndex: ArgNo).getABI() == |
| 3284 | ParameterABI::SwiftErrorResult) { |
| 3285 | QualType pointeeTy = Ty->getPointeeType(); |
| 3286 | assert(pointeeTy->isPointerType()); |
| 3287 | RawAddress temp = |
| 3288 | CreateMemTemp(T: pointeeTy, Align: getPointerAlign(), Name: "swifterror.temp" ); |
| 3289 | Address arg = makeNaturalAddressForPointer( |
| 3290 | Ptr: V, T: pointeeTy, Alignment: getContext().getTypeAlignInChars(T: pointeeTy)); |
| 3291 | llvm::Value *incomingErrorValue = Builder.CreateLoad(Addr: arg); |
| 3292 | Builder.CreateStore(Val: incomingErrorValue, Addr: temp); |
| 3293 | V = temp.getPointer(); |
| 3294 | |
| 3295 | // Push a cleanup to copy the value back at the end of the function. |
| 3296 | // The convention does not guarantee that the value will be written |
| 3297 | // back if the function exits with an unwind exception. |
| 3298 | EHStack.pushCleanup<CopyBackSwiftError>(Kind: NormalCleanup, A: temp, A: arg); |
| 3299 | } |
| 3300 | |
| 3301 | // Ensure the argument is the correct type. |
| 3302 | if (V->getType() != ArgI.getCoerceToType()) |
| 3303 | V = Builder.CreateBitCast(V, DestTy: ArgI.getCoerceToType()); |
| 3304 | |
| 3305 | if (isPromoted) |
| 3306 | V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V); |
| 3307 | |
| 3308 | // Because of merging of function types from multiple decls it is |
| 3309 | // possible for the type of an argument to not match the corresponding |
| 3310 | // type in the function type. Since we are codegening the callee |
| 3311 | // in here, add a cast to the argument type. |
| 3312 | llvm::Type *LTy = ConvertType(T: Arg->getType()); |
| 3313 | if (V->getType() != LTy) |
| 3314 | V = Builder.CreateBitCast(V, DestTy: LTy); |
| 3315 | |
| 3316 | ArgVals.push_back(Elt: ParamValue::forDirect(value: V)); |
| 3317 | break; |
| 3318 | } |
| 3319 | |
| 3320 | // VLST arguments are coerced to VLATs at the function boundary for |
| 3321 | // ABI consistency. If this is a VLST that was coerced to |
| 3322 | // a VLAT at the function boundary and the types match up, use |
| 3323 | // llvm.vector.extract to convert back to the original VLST. |
| 3324 | if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(Val: ConvertType(T: Ty))) { |
| 3325 | llvm::Value *ArgVal = Fn->getArg(i: FirstIRArg); |
| 3326 | if (auto *VecTyFrom = |
| 3327 | dyn_cast<llvm::ScalableVectorType>(Val: ArgVal->getType())) { |
| 3328 | auto [Coerced, Extracted] = CoerceScalableToFixed( |
| 3329 | CGF&: *this, ToTy: VecTyTo, FromTy: VecTyFrom, V: ArgVal, Name: Arg->getName()); |
| 3330 | if (Extracted) { |
| 3331 | assert(NumIRArgs == 1); |
| 3332 | ArgVals.push_back(Elt: ParamValue::forDirect(value: Coerced)); |
| 3333 | break; |
| 3334 | } |
| 3335 | } |
| 3336 | } |
| 3337 | |
| 3338 | // Struct of fixed-length vectors and struct of array of fixed-length |
| 3339 | // vector in VLS calling convention are coerced to vector tuple |
| 3340 | // type(represented as TargetExtType) and scalable vector type |
| 3341 | // respectively, they're no longer handled as struct. |
| 3342 | if (ArgI.isDirect() && isa<llvm::StructType>(Val: ConvertType(T: Ty)) && |
| 3343 | (isa<llvm::TargetExtType>(Val: ArgI.getCoerceToType()) || |
| 3344 | isa<llvm::ScalableVectorType>(Val: ArgI.getCoerceToType()))) { |
| 3345 | ArgVals.push_back(Elt: ParamValue::forDirect(value: AI)); |
| 3346 | break; |
| 3347 | } |
| 3348 | |
| 3349 | llvm::StructType *STy = |
| 3350 | dyn_cast<llvm::StructType>(Val: ArgI.getCoerceToType()); |
| 3351 | Address Alloca = |
| 3352 | CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg), Name: Arg->getName()); |
| 3353 | |
| 3354 | // Pointer to store into. |
| 3355 | Address Ptr = emitAddressAtOffset(CGF&: *this, addr: Alloca, info: ArgI); |
| 3356 | |
| 3357 | // Fast-isel and the optimizer generally like scalar values better than |
| 3358 | // FCAs, so we flatten them if this is safe to do for this argument. |
| 3359 | if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && |
| 3360 | STy->getNumElements() > 1) { |
| 3361 | llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(Ty: STy); |
| 3362 | llvm::TypeSize PtrElementSize = |
| 3363 | CGM.getDataLayout().getTypeAllocSize(Ty: Ptr.getElementType()); |
| 3364 | if (StructSize.isScalable()) { |
| 3365 | assert(STy->containsHomogeneousScalableVectorTypes() && |
| 3366 | "ABI only supports structure with homogeneous scalable vector " |
| 3367 | "type" ); |
| 3368 | assert(StructSize == PtrElementSize && |
| 3369 | "Only allow non-fractional movement of structure with" |
| 3370 | "homogeneous scalable vector type" ); |
| 3371 | assert(STy->getNumElements() == NumIRArgs); |
| 3372 | |
| 3373 | llvm::Value *LoadedStructValue = llvm::PoisonValue::get(T: STy); |
| 3374 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 3375 | auto *AI = Fn->getArg(i: FirstIRArg + i); |
| 3376 | AI->setName(Arg->getName() + ".coerce" + Twine(i)); |
| 3377 | LoadedStructValue = |
| 3378 | Builder.CreateInsertValue(Agg: LoadedStructValue, Val: AI, Idxs: i); |
| 3379 | } |
| 3380 | |
| 3381 | Builder.CreateStore(Val: LoadedStructValue, Addr: Ptr); |
| 3382 | } else { |
| 3383 | uint64_t SrcSize = StructSize.getFixedValue(); |
| 3384 | uint64_t DstSize = PtrElementSize.getFixedValue(); |
| 3385 | |
| 3386 | Address AddrToStoreInto = Address::invalid(); |
| 3387 | if (SrcSize <= DstSize) { |
| 3388 | AddrToStoreInto = Ptr.withElementType(ElemTy: STy); |
| 3389 | } else { |
| 3390 | AddrToStoreInto = |
| 3391 | CreateTempAlloca(Ty: STy, align: Alloca.getAlignment(), Name: "coerce" ); |
| 3392 | } |
| 3393 | |
| 3394 | assert(STy->getNumElements() == NumIRArgs); |
| 3395 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 3396 | auto AI = Fn->getArg(i: FirstIRArg + i); |
| 3397 | AI->setName(Arg->getName() + ".coerce" + Twine(i)); |
| 3398 | Address EltPtr = Builder.CreateStructGEP(Addr: AddrToStoreInto, Index: i); |
| 3399 | Builder.CreateStore(Val: AI, Addr: EltPtr); |
| 3400 | } |
| 3401 | |
| 3402 | if (SrcSize > DstSize) { |
| 3403 | Builder.CreateMemCpy(Dest: Ptr, Src: AddrToStoreInto, Size: DstSize); |
| 3404 | } |
| 3405 | } |
| 3406 | } else { |
| 3407 | // Simple case, just do a coerced store of the argument into the alloca. |
| 3408 | assert(NumIRArgs == 1); |
| 3409 | auto AI = Fn->getArg(i: FirstIRArg); |
| 3410 | AI->setName(Arg->getName() + ".coerce" ); |
| 3411 | CreateCoercedStore( |
| 3412 | Src: AI, Dst: Ptr, |
| 3413 | DstSize: llvm::TypeSize::getFixed( |
| 3414 | ExactSize: getContext().getTypeSizeInChars(T: Ty).getQuantity() - |
| 3415 | ArgI.getDirectOffset()), |
| 3416 | /*DstIsVolatile=*/false); |
| 3417 | } |
| 3418 | |
| 3419 | // Match to what EmitParmDecl is expecting for this type. |
| 3420 | if (CodeGenFunction::hasScalarEvaluationKind(T: Ty)) { |
| 3421 | llvm::Value *V = |
| 3422 | EmitLoadOfScalar(Addr: Alloca, Volatile: false, Ty, Loc: Arg->getBeginLoc()); |
| 3423 | if (isPromoted) |
| 3424 | V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V); |
| 3425 | ArgVals.push_back(Elt: ParamValue::forDirect(value: V)); |
| 3426 | } else { |
| 3427 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: Alloca)); |
| 3428 | } |
| 3429 | break; |
| 3430 | } |
| 3431 | |
| 3432 | case ABIArgInfo::CoerceAndExpand: { |
| 3433 | // Reconstruct into a temporary. |
| 3434 | Address alloca = CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg)); |
| 3435 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: alloca)); |
| 3436 | |
| 3437 | auto coercionType = ArgI.getCoerceAndExpandType(); |
| 3438 | auto unpaddedCoercionType = ArgI.getUnpaddedCoerceAndExpandType(); |
| 3439 | auto *unpaddedStruct = dyn_cast<llvm::StructType>(Val: unpaddedCoercionType); |
| 3440 | |
| 3441 | alloca = alloca.withElementType(ElemTy: coercionType); |
| 3442 | |
| 3443 | unsigned argIndex = FirstIRArg; |
| 3444 | unsigned unpaddedIndex = 0; |
| 3445 | for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| 3446 | llvm::Type *eltType = coercionType->getElementType(N: i); |
| 3447 | if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) |
| 3448 | continue; |
| 3449 | |
| 3450 | auto eltAddr = Builder.CreateStructGEP(Addr: alloca, Index: i); |
| 3451 | llvm::Value *elt = Fn->getArg(i: argIndex++); |
| 3452 | |
| 3453 | auto paramType = unpaddedStruct |
| 3454 | ? unpaddedStruct->getElementType(N: unpaddedIndex++) |
| 3455 | : unpaddedCoercionType; |
| 3456 | |
| 3457 | if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(Val: eltType)) { |
| 3458 | if (auto *VecTyFrom = dyn_cast<llvm::ScalableVectorType>(Val: paramType)) { |
| 3459 | bool ; |
| 3460 | std::tie(args&: elt, args&: Extracted) = CoerceScalableToFixed( |
| 3461 | CGF&: *this, ToTy: VecTyTo, FromTy: VecTyFrom, V: elt, Name: elt->getName()); |
| 3462 | assert(Extracted && "Unexpected scalable to fixed vector coercion" ); |
| 3463 | } |
| 3464 | } |
| 3465 | Builder.CreateStore(Val: elt, Addr: eltAddr); |
| 3466 | } |
| 3467 | assert(argIndex == FirstIRArg + NumIRArgs); |
| 3468 | break; |
| 3469 | } |
| 3470 | |
| 3471 | case ABIArgInfo::Expand: { |
| 3472 | // If this structure was expanded into multiple arguments then |
| 3473 | // we need to create a temporary and reconstruct it from the |
| 3474 | // arguments. |
| 3475 | Address Alloca = CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg)); |
| 3476 | LValue LV = MakeAddrLValue(Addr: Alloca, T: Ty); |
| 3477 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: Alloca)); |
| 3478 | |
| 3479 | auto FnArgIter = Fn->arg_begin() + FirstIRArg; |
| 3480 | ExpandTypeFromArgs(Ty, LV, AI&: FnArgIter); |
| 3481 | assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); |
| 3482 | for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { |
| 3483 | auto AI = Fn->getArg(i: FirstIRArg + i); |
| 3484 | AI->setName(Arg->getName() + "." + Twine(i)); |
| 3485 | } |
| 3486 | break; |
| 3487 | } |
| 3488 | |
| 3489 | case ABIArgInfo::Ignore: |
| 3490 | assert(NumIRArgs == 0); |
| 3491 | // Initialize the local variable appropriately. |
| 3492 | if (!hasScalarEvaluationKind(T: Ty)) { |
| 3493 | ArgVals.push_back(Elt: ParamValue::forIndirect(addr: CreateMemTemp(T: Ty))); |
| 3494 | } else { |
| 3495 | llvm::Value *U = llvm::UndefValue::get(T: ConvertType(T: Arg->getType())); |
| 3496 | ArgVals.push_back(Elt: ParamValue::forDirect(value: U)); |
| 3497 | } |
| 3498 | break; |
| 3499 | } |
| 3500 | } |
| 3501 | |
| 3502 | if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { |
| 3503 | for (int I = Args.size() - 1; I >= 0; --I) |
| 3504 | EmitParmDecl(D: *Args[I], Arg: ArgVals[I], ArgNo: I + 1); |
| 3505 | } else { |
| 3506 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| 3507 | EmitParmDecl(D: *Args[I], Arg: ArgVals[I], ArgNo: I + 1); |
| 3508 | } |
| 3509 | } |
| 3510 | |
| 3511 | static void eraseUnusedBitCasts(llvm::Instruction *insn) { |
| 3512 | while (insn->use_empty()) { |
| 3513 | llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: insn); |
| 3514 | if (!bitcast) |
| 3515 | return; |
| 3516 | |
| 3517 | // This is "safe" because we would have used a ConstantExpr otherwise. |
| 3518 | insn = cast<llvm::Instruction>(Val: bitcast->getOperand(i_nocapture: 0)); |
| 3519 | bitcast->eraseFromParent(); |
| 3520 | } |
| 3521 | } |
| 3522 | |
| 3523 | /// Try to emit a fused autorelease of a return result. |
| 3524 | static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, |
| 3525 | llvm::Value *result) { |
| 3526 | // We must be immediately followed the cast. |
| 3527 | llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); |
| 3528 | if (BB->empty()) |
| 3529 | return nullptr; |
| 3530 | if (&BB->back() != result) |
| 3531 | return nullptr; |
| 3532 | |
| 3533 | llvm::Type *resultType = result->getType(); |
| 3534 | |
| 3535 | // result is in a BasicBlock and is therefore an Instruction. |
| 3536 | llvm::Instruction *generator = cast<llvm::Instruction>(Val: result); |
| 3537 | |
| 3538 | SmallVector<llvm::Instruction *, 4> InstsToKill; |
| 3539 | |
| 3540 | // Look for: |
| 3541 | // %generator = bitcast %type1* %generator2 to %type2* |
| 3542 | while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: generator)) { |
| 3543 | // We would have emitted this as a constant if the operand weren't |
| 3544 | // an Instruction. |
| 3545 | generator = cast<llvm::Instruction>(Val: bitcast->getOperand(i_nocapture: 0)); |
| 3546 | |
| 3547 | // Require the generator to be immediately followed by the cast. |
| 3548 | if (generator->getNextNode() != bitcast) |
| 3549 | return nullptr; |
| 3550 | |
| 3551 | InstsToKill.push_back(Elt: bitcast); |
| 3552 | } |
| 3553 | |
| 3554 | // Look for: |
| 3555 | // %generator = call i8* @objc_retain(i8* %originalResult) |
| 3556 | // or |
| 3557 | // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) |
| 3558 | llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: generator); |
| 3559 | if (!call) |
| 3560 | return nullptr; |
| 3561 | |
| 3562 | bool doRetainAutorelease; |
| 3563 | |
| 3564 | if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { |
| 3565 | doRetainAutorelease = true; |
| 3566 | } else if (call->getCalledOperand() == |
| 3567 | CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { |
| 3568 | doRetainAutorelease = false; |
| 3569 | |
| 3570 | // If we emitted an assembly marker for this call (and the |
| 3571 | // ARCEntrypoints field should have been set if so), go looking |
| 3572 | // for that call. If we can't find it, we can't do this |
| 3573 | // optimization. But it should always be the immediately previous |
| 3574 | // instruction, unless we needed bitcasts around the call. |
| 3575 | if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { |
| 3576 | llvm::Instruction *prev = call->getPrevNode(); |
| 3577 | assert(prev); |
| 3578 | if (isa<llvm::BitCastInst>(Val: prev)) { |
| 3579 | prev = prev->getPrevNode(); |
| 3580 | assert(prev); |
| 3581 | } |
| 3582 | assert(isa<llvm::CallInst>(prev)); |
| 3583 | assert(cast<llvm::CallInst>(prev)->getCalledOperand() == |
| 3584 | CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); |
| 3585 | InstsToKill.push_back(Elt: prev); |
| 3586 | } |
| 3587 | } else { |
| 3588 | return nullptr; |
| 3589 | } |
| 3590 | |
| 3591 | result = call->getArgOperand(i: 0); |
| 3592 | InstsToKill.push_back(Elt: call); |
| 3593 | |
| 3594 | // Keep killing bitcasts, for sanity. Note that we no longer care |
| 3595 | // about precise ordering as long as there's exactly one use. |
| 3596 | while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: result)) { |
| 3597 | if (!bitcast->hasOneUse()) |
| 3598 | break; |
| 3599 | InstsToKill.push_back(Elt: bitcast); |
| 3600 | result = bitcast->getOperand(i_nocapture: 0); |
| 3601 | } |
| 3602 | |
| 3603 | // Delete all the unnecessary instructions, from latest to earliest. |
| 3604 | for (auto *I : InstsToKill) |
| 3605 | I->eraseFromParent(); |
| 3606 | |
| 3607 | // Do the fused retain/autorelease if we were asked to. |
| 3608 | if (doRetainAutorelease) |
| 3609 | result = CGF.EmitARCRetainAutoreleaseReturnValue(value: result); |
| 3610 | |
| 3611 | // Cast back to the result type. |
| 3612 | return CGF.Builder.CreateBitCast(V: result, DestTy: resultType); |
| 3613 | } |
| 3614 | |
| 3615 | /// If this is a +1 of the value of an immutable 'self', remove it. |
| 3616 | static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, |
| 3617 | llvm::Value *result) { |
| 3618 | // This is only applicable to a method with an immutable 'self'. |
| 3619 | const ObjCMethodDecl *method = |
| 3620 | dyn_cast_or_null<ObjCMethodDecl>(Val: CGF.CurCodeDecl); |
| 3621 | if (!method) |
| 3622 | return nullptr; |
| 3623 | const VarDecl *self = method->getSelfDecl(); |
| 3624 | if (!self->getType().isConstQualified()) |
| 3625 | return nullptr; |
| 3626 | |
| 3627 | // Look for a retain call. Note: stripPointerCasts looks through returned arg |
| 3628 | // functions, which would cause us to miss the retain. |
| 3629 | llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(Val: result); |
| 3630 | if (!retainCall || retainCall->getCalledOperand() != |
| 3631 | CGF.CGM.getObjCEntrypoints().objc_retain) |
| 3632 | return nullptr; |
| 3633 | |
| 3634 | // Look for an ordinary load of 'self'. |
| 3635 | llvm::Value *retainedValue = retainCall->getArgOperand(i: 0); |
| 3636 | llvm::LoadInst *load = |
| 3637 | dyn_cast<llvm::LoadInst>(Val: retainedValue->stripPointerCasts()); |
| 3638 | if (!load || load->isAtomic() || load->isVolatile() || |
| 3639 | load->getPointerOperand() != CGF.GetAddrOfLocalVar(VD: self).getBasePointer()) |
| 3640 | return nullptr; |
| 3641 | |
| 3642 | // Okay! Burn it all down. This relies for correctness on the |
| 3643 | // assumption that the retain is emitted as part of the return and |
| 3644 | // that thereafter everything is used "linearly". |
| 3645 | llvm::Type *resultType = result->getType(); |
| 3646 | eraseUnusedBitCasts(insn: cast<llvm::Instruction>(Val: result)); |
| 3647 | assert(retainCall->use_empty()); |
| 3648 | retainCall->eraseFromParent(); |
| 3649 | eraseUnusedBitCasts(insn: cast<llvm::Instruction>(Val: retainedValue)); |
| 3650 | |
| 3651 | return CGF.Builder.CreateBitCast(V: load, DestTy: resultType); |
| 3652 | } |
| 3653 | |
| 3654 | /// Emit an ARC autorelease of the result of a function. |
| 3655 | /// |
| 3656 | /// \return the value to actually return from the function |
| 3657 | static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, |
| 3658 | llvm::Value *result) { |
| 3659 | // If we're returning 'self', kill the initial retain. This is a |
| 3660 | // heuristic attempt to "encourage correctness" in the really unfortunate |
| 3661 | // case where we have a return of self during a dealloc and we desperately |
| 3662 | // need to avoid the possible autorelease. |
| 3663 | if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) |
| 3664 | return self; |
| 3665 | |
| 3666 | // At -O0, try to emit a fused retain/autorelease. |
| 3667 | if (CGF.shouldUseFusedARCCalls()) |
| 3668 | if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) |
| 3669 | return fused; |
| 3670 | |
| 3671 | return CGF.EmitARCAutoreleaseReturnValue(value: result); |
| 3672 | } |
| 3673 | |
| 3674 | /// Heuristically search for a dominating store to the return-value slot. |
| 3675 | static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { |
| 3676 | llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer(); |
| 3677 | |
| 3678 | // Check if a User is a store which pointerOperand is the ReturnValue. |
| 3679 | // We are looking for stores to the ReturnValue, not for stores of the |
| 3680 | // ReturnValue to some other location. |
| 3681 | auto GetStoreIfValid = [&CGF, |
| 3682 | ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * { |
| 3683 | auto *SI = dyn_cast<llvm::StoreInst>(Val: U); |
| 3684 | if (!SI || SI->getPointerOperand() != ReturnValuePtr || |
| 3685 | SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) |
| 3686 | return nullptr; |
| 3687 | // These aren't actually possible for non-coerced returns, and we |
| 3688 | // only care about non-coerced returns on this code path. |
| 3689 | // All memory instructions inside __try block are volatile. |
| 3690 | assert(!SI->isAtomic() && |
| 3691 | (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry())); |
| 3692 | return SI; |
| 3693 | }; |
| 3694 | // If there are multiple uses of the return-value slot, just check |
| 3695 | // for something immediately preceding the IP. Sometimes this can |
| 3696 | // happen with how we generate implicit-returns; it can also happen |
| 3697 | // with noreturn cleanups. |
| 3698 | if (!ReturnValuePtr->hasOneUse()) { |
| 3699 | llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| 3700 | if (IP->empty()) |
| 3701 | return nullptr; |
| 3702 | |
| 3703 | // Look at directly preceding instruction, skipping bitcasts, lifetime |
| 3704 | // markers, and fake uses and their operands. |
| 3705 | const llvm::Instruction *LoadIntoFakeUse = nullptr; |
| 3706 | for (llvm::Instruction &I : llvm::reverse(C&: *IP)) { |
| 3707 | // Ignore instructions that are just loads for fake uses; the load should |
| 3708 | // immediately precede the fake use, so we only need to remember the |
| 3709 | // operand for the last fake use seen. |
| 3710 | if (LoadIntoFakeUse == &I) |
| 3711 | continue; |
| 3712 | if (isa<llvm::BitCastInst>(Val: &I)) |
| 3713 | continue; |
| 3714 | if (auto *II = dyn_cast<llvm::IntrinsicInst>(Val: &I)) { |
| 3715 | if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) |
| 3716 | continue; |
| 3717 | |
| 3718 | if (II->getIntrinsicID() == llvm::Intrinsic::fake_use) { |
| 3719 | LoadIntoFakeUse = dyn_cast<llvm::Instruction>(Val: II->getArgOperand(i: 0)); |
| 3720 | continue; |
| 3721 | } |
| 3722 | } |
| 3723 | return GetStoreIfValid(&I); |
| 3724 | } |
| 3725 | return nullptr; |
| 3726 | } |
| 3727 | |
| 3728 | llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back()); |
| 3729 | if (!store) |
| 3730 | return nullptr; |
| 3731 | |
| 3732 | // Now do a first-and-dirty dominance check: just walk up the |
| 3733 | // single-predecessors chain from the current insertion point. |
| 3734 | llvm::BasicBlock *StoreBB = store->getParent(); |
| 3735 | llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| 3736 | llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs; |
| 3737 | while (IP != StoreBB) { |
| 3738 | if (!SeenBBs.insert(Ptr: IP).second || !(IP = IP->getSinglePredecessor())) |
| 3739 | return nullptr; |
| 3740 | } |
| 3741 | |
| 3742 | // Okay, the store's basic block dominates the insertion point; we |
| 3743 | // can do our thing. |
| 3744 | return store; |
| 3745 | } |
| 3746 | |
| 3747 | // Helper functions for EmitCMSEClearRecord |
| 3748 | |
| 3749 | // Set the bits corresponding to a field having width `BitWidth` and located at |
| 3750 | // offset `BitOffset` (from the least significant bit) within a storage unit of |
| 3751 | // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. |
| 3752 | // Use little-endian layout, i.e.`Bits[0]` is the LSB. |
| 3753 | static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, |
| 3754 | int BitWidth, int CharWidth) { |
| 3755 | assert(CharWidth <= 64); |
| 3756 | assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); |
| 3757 | |
| 3758 | int Pos = 0; |
| 3759 | if (BitOffset >= CharWidth) { |
| 3760 | Pos += BitOffset / CharWidth; |
| 3761 | BitOffset = BitOffset % CharWidth; |
| 3762 | } |
| 3763 | |
| 3764 | const uint64_t Used = (uint64_t(1) << CharWidth) - 1; |
| 3765 | if (BitOffset + BitWidth >= CharWidth) { |
| 3766 | Bits[Pos++] |= (Used << BitOffset) & Used; |
| 3767 | BitWidth -= CharWidth - BitOffset; |
| 3768 | BitOffset = 0; |
| 3769 | } |
| 3770 | |
| 3771 | while (BitWidth >= CharWidth) { |
| 3772 | Bits[Pos++] = Used; |
| 3773 | BitWidth -= CharWidth; |
| 3774 | } |
| 3775 | |
| 3776 | if (BitWidth > 0) |
| 3777 | Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; |
| 3778 | } |
| 3779 | |
| 3780 | // Set the bits corresponding to a field having width `BitWidth` and located at |
| 3781 | // offset `BitOffset` (from the least significant bit) within a storage unit of |
| 3782 | // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of |
| 3783 | // `Bits` corresponds to one target byte. Use target endian layout. |
| 3784 | static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, |
| 3785 | int StorageSize, int BitOffset, int BitWidth, |
| 3786 | int CharWidth, bool BigEndian) { |
| 3787 | |
| 3788 | SmallVector<uint64_t, 8> TmpBits(StorageSize); |
| 3789 | setBitRange(Bits&: TmpBits, BitOffset, BitWidth, CharWidth); |
| 3790 | |
| 3791 | if (BigEndian) |
| 3792 | std::reverse(first: TmpBits.begin(), last: TmpBits.end()); |
| 3793 | |
| 3794 | for (uint64_t V : TmpBits) |
| 3795 | Bits[StorageOffset++] |= V; |
| 3796 | } |
| 3797 | |
| 3798 | static void setUsedBits(CodeGenModule &, QualType, int, |
| 3799 | SmallVectorImpl<uint64_t> &); |
| 3800 | |
| 3801 | // Set the bits in `Bits`, which correspond to the value representations of |
| 3802 | // the actual members of the record type `RTy`. Note that this function does |
| 3803 | // not handle base classes, virtual tables, etc, since they cannot happen in |
| 3804 | // CMSE function arguments or return. The bit mask corresponds to the target |
| 3805 | // memory layout, i.e. it's endian dependent. |
| 3806 | static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, |
| 3807 | SmallVectorImpl<uint64_t> &Bits) { |
| 3808 | ASTContext &Context = CGM.getContext(); |
| 3809 | int CharWidth = Context.getCharWidth(); |
| 3810 | const RecordDecl *RD = RTy->getDecl()->getDefinition(); |
| 3811 | const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(D: RD); |
| 3812 | const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); |
| 3813 | |
| 3814 | int Idx = 0; |
| 3815 | for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { |
| 3816 | const FieldDecl *F = *I; |
| 3817 | |
| 3818 | if (F->isUnnamedBitField() || F->isZeroLengthBitField() || |
| 3819 | F->getType()->isIncompleteArrayType()) |
| 3820 | continue; |
| 3821 | |
| 3822 | if (F->isBitField()) { |
| 3823 | const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(FD: F); |
| 3824 | setBitRange(Bits, StorageOffset: Offset + BFI.StorageOffset.getQuantity(), |
| 3825 | StorageSize: BFI.StorageSize / CharWidth, BitOffset: BFI.Offset, BitWidth: BFI.Size, CharWidth, |
| 3826 | BigEndian: CGM.getDataLayout().isBigEndian()); |
| 3827 | continue; |
| 3828 | } |
| 3829 | |
| 3830 | setUsedBits(CGM, F->getType(), |
| 3831 | Offset + ASTLayout.getFieldOffset(FieldNo: Idx) / CharWidth, Bits); |
| 3832 | } |
| 3833 | } |
| 3834 | |
| 3835 | // Set the bits in `Bits`, which correspond to the value representations of |
| 3836 | // the elements of an array type `ATy`. |
| 3837 | static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, |
| 3838 | int Offset, SmallVectorImpl<uint64_t> &Bits) { |
| 3839 | const ASTContext &Context = CGM.getContext(); |
| 3840 | |
| 3841 | QualType ETy = Context.getBaseElementType(VAT: ATy); |
| 3842 | int Size = Context.getTypeSizeInChars(T: ETy).getQuantity(); |
| 3843 | SmallVector<uint64_t, 4> TmpBits(Size); |
| 3844 | setUsedBits(CGM, ETy, 0, TmpBits); |
| 3845 | |
| 3846 | for (int I = 0, N = Context.getConstantArrayElementCount(CA: ATy); I < N; ++I) { |
| 3847 | auto Src = TmpBits.begin(); |
| 3848 | auto Dst = Bits.begin() + Offset + I * Size; |
| 3849 | for (int J = 0; J < Size; ++J) |
| 3850 | *Dst++ |= *Src++; |
| 3851 | } |
| 3852 | } |
| 3853 | |
| 3854 | // Set the bits in `Bits`, which correspond to the value representations of |
| 3855 | // the type `QTy`. |
| 3856 | static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, |
| 3857 | SmallVectorImpl<uint64_t> &Bits) { |
| 3858 | if (const auto *RTy = QTy->getAs<RecordType>()) |
| 3859 | return setUsedBits(CGM, RTy, Offset, Bits); |
| 3860 | |
| 3861 | ASTContext &Context = CGM.getContext(); |
| 3862 | if (const auto *ATy = Context.getAsConstantArrayType(T: QTy)) |
| 3863 | return setUsedBits(CGM, ATy, Offset, Bits); |
| 3864 | |
| 3865 | int Size = Context.getTypeSizeInChars(T: QTy).getQuantity(); |
| 3866 | if (Size <= 0) |
| 3867 | return; |
| 3868 | |
| 3869 | std::fill_n(first: Bits.begin() + Offset, n: Size, |
| 3870 | value: (uint64_t(1) << Context.getCharWidth()) - 1); |
| 3871 | } |
| 3872 | |
| 3873 | static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, |
| 3874 | int Pos, int Size, int CharWidth, |
| 3875 | bool BigEndian) { |
| 3876 | assert(Size > 0); |
| 3877 | uint64_t Mask = 0; |
| 3878 | if (BigEndian) { |
| 3879 | for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; |
| 3880 | ++P) |
| 3881 | Mask = (Mask << CharWidth) | *P; |
| 3882 | } else { |
| 3883 | auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; |
| 3884 | do |
| 3885 | Mask = (Mask << CharWidth) | *--P; |
| 3886 | while (P != End); |
| 3887 | } |
| 3888 | return Mask; |
| 3889 | } |
| 3890 | |
| 3891 | // Emit code to clear the bits in a record, which aren't a part of any user |
| 3892 | // declared member, when the record is a function return. |
| 3893 | llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, |
| 3894 | llvm::IntegerType *ITy, |
| 3895 | QualType QTy) { |
| 3896 | assert(Src->getType() == ITy); |
| 3897 | assert(ITy->getScalarSizeInBits() <= 64); |
| 3898 | |
| 3899 | const llvm::DataLayout &DataLayout = CGM.getDataLayout(); |
| 3900 | int Size = DataLayout.getTypeStoreSize(Ty: ITy); |
| 3901 | SmallVector<uint64_t, 4> Bits(Size); |
| 3902 | setUsedBits(CGM, RTy: QTy->castAs<RecordType>(), Offset: 0, Bits); |
| 3903 | |
| 3904 | int CharWidth = CGM.getContext().getCharWidth(); |
| 3905 | uint64_t Mask = |
| 3906 | buildMultiCharMask(Bits, Pos: 0, Size, CharWidth, BigEndian: DataLayout.isBigEndian()); |
| 3907 | |
| 3908 | return Builder.CreateAnd(LHS: Src, RHS: Mask, Name: "cmse.clear" ); |
| 3909 | } |
| 3910 | |
| 3911 | // Emit code to clear the bits in a record, which aren't a part of any user |
| 3912 | // declared member, when the record is a function argument. |
| 3913 | llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, |
| 3914 | llvm::ArrayType *ATy, |
| 3915 | QualType QTy) { |
| 3916 | const llvm::DataLayout &DataLayout = CGM.getDataLayout(); |
| 3917 | int Size = DataLayout.getTypeStoreSize(Ty: ATy); |
| 3918 | SmallVector<uint64_t, 16> Bits(Size); |
| 3919 | setUsedBits(CGM, RTy: QTy->castAs<RecordType>(), Offset: 0, Bits); |
| 3920 | |
| 3921 | // Clear each element of the LLVM array. |
| 3922 | int CharWidth = CGM.getContext().getCharWidth(); |
| 3923 | int CharsPerElt = |
| 3924 | ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; |
| 3925 | int MaskIndex = 0; |
| 3926 | llvm::Value *R = llvm::PoisonValue::get(T: ATy); |
| 3927 | for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { |
| 3928 | uint64_t Mask = buildMultiCharMask(Bits, Pos: MaskIndex, Size: CharsPerElt, CharWidth, |
| 3929 | BigEndian: DataLayout.isBigEndian()); |
| 3930 | MaskIndex += CharsPerElt; |
| 3931 | llvm::Value *T0 = Builder.CreateExtractValue(Agg: Src, Idxs: I); |
| 3932 | llvm::Value *T1 = Builder.CreateAnd(LHS: T0, RHS: Mask, Name: "cmse.clear" ); |
| 3933 | R = Builder.CreateInsertValue(Agg: R, Val: T1, Idxs: I); |
| 3934 | } |
| 3935 | |
| 3936 | return R; |
| 3937 | } |
| 3938 | |
| 3939 | void CodeGenFunction::EmitFunctionEpilog( |
| 3940 | const CGFunctionInfo &FI, bool EmitRetDbgLoc, SourceLocation EndLoc, |
| 3941 | uint64_t RetKeyInstructionsSourceAtom) { |
| 3942 | if (FI.isNoReturn()) { |
| 3943 | // Noreturn functions don't return. |
| 3944 | EmitUnreachable(Loc: EndLoc); |
| 3945 | return; |
| 3946 | } |
| 3947 | |
| 3948 | if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { |
| 3949 | // Naked functions don't have epilogues. |
| 3950 | Builder.CreateUnreachable(); |
| 3951 | return; |
| 3952 | } |
| 3953 | |
| 3954 | // Functions with no result always return void. |
| 3955 | if (!ReturnValue.isValid()) { |
| 3956 | auto *I = Builder.CreateRetVoid(); |
| 3957 | if (RetKeyInstructionsSourceAtom) |
| 3958 | addInstToSpecificSourceAtom(KeyInstruction: I, Backup: nullptr, Atom: RetKeyInstructionsSourceAtom); |
| 3959 | else |
| 3960 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 3961 | return; |
| 3962 | } |
| 3963 | |
| 3964 | llvm::DebugLoc RetDbgLoc; |
| 3965 | llvm::Value *RV = nullptr; |
| 3966 | QualType RetTy = FI.getReturnType(); |
| 3967 | const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| 3968 | |
| 3969 | switch (RetAI.getKind()) { |
| 3970 | case ABIArgInfo::InAlloca: |
| 3971 | // Aggregates get evaluated directly into the destination. Sometimes we |
| 3972 | // need to return the sret value in a register, though. |
| 3973 | assert(hasAggregateEvaluationKind(RetTy)); |
| 3974 | if (RetAI.getInAllocaSRet()) { |
| 3975 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
| 3976 | --EI; |
| 3977 | llvm::Value *ArgStruct = &*EI; |
| 3978 | llvm::Value *SRet = Builder.CreateStructGEP( |
| 3979 | Ty: FI.getArgStruct(), Ptr: ArgStruct, Idx: RetAI.getInAllocaFieldIndex()); |
| 3980 | llvm::Type *Ty = |
| 3981 | cast<llvm::GetElementPtrInst>(Val: SRet)->getResultElementType(); |
| 3982 | RV = Builder.CreateAlignedLoad(Ty, Addr: SRet, Align: getPointerAlign(), Name: "sret" ); |
| 3983 | } |
| 3984 | break; |
| 3985 | |
| 3986 | case ABIArgInfo::Indirect: { |
| 3987 | auto AI = CurFn->arg_begin(); |
| 3988 | if (RetAI.isSRetAfterThis()) |
| 3989 | ++AI; |
| 3990 | switch (getEvaluationKind(T: RetTy)) { |
| 3991 | case TEK_Complex: { |
| 3992 | ComplexPairTy RT = |
| 3993 | EmitLoadOfComplex(src: MakeAddrLValue(Addr: ReturnValue, T: RetTy), loc: EndLoc); |
| 3994 | EmitStoreOfComplex(V: RT, dest: MakeNaturalAlignAddrLValue(V: &*AI, T: RetTy), |
| 3995 | /*isInit*/ true); |
| 3996 | break; |
| 3997 | } |
| 3998 | case TEK_Aggregate: |
| 3999 | // Do nothing; aggregates get evaluated directly into the destination. |
| 4000 | break; |
| 4001 | case TEK_Scalar: { |
| 4002 | LValueBaseInfo BaseInfo; |
| 4003 | TBAAAccessInfo TBAAInfo; |
| 4004 | CharUnits Alignment = |
| 4005 | CGM.getNaturalTypeAlignment(T: RetTy, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo); |
| 4006 | Address ArgAddr(&*AI, ConvertType(T: RetTy), Alignment); |
| 4007 | LValue ArgVal = |
| 4008 | LValue::MakeAddr(Addr: ArgAddr, type: RetTy, Context&: getContext(), BaseInfo, TBAAInfo); |
| 4009 | EmitStoreOfScalar( |
| 4010 | value: EmitLoadOfScalar(lvalue: MakeAddrLValue(Addr: ReturnValue, T: RetTy), Loc: EndLoc), lvalue: ArgVal, |
| 4011 | /*isInit*/ true); |
| 4012 | break; |
| 4013 | } |
| 4014 | } |
| 4015 | break; |
| 4016 | } |
| 4017 | |
| 4018 | case ABIArgInfo::Extend: |
| 4019 | case ABIArgInfo::Direct: |
| 4020 | if (RetAI.getCoerceToType() == ConvertType(T: RetTy) && |
| 4021 | RetAI.getDirectOffset() == 0) { |
| 4022 | // The internal return value temp always will have pointer-to-return-type |
| 4023 | // type, just do a load. |
| 4024 | |
| 4025 | // If there is a dominating store to ReturnValue, we can elide |
| 4026 | // the load, zap the store, and usually zap the alloca. |
| 4027 | if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(CGF&: *this)) { |
| 4028 | // Reuse the debug location from the store unless there is |
| 4029 | // cleanup code to be emitted between the store and return |
| 4030 | // instruction. |
| 4031 | if (EmitRetDbgLoc && !AutoreleaseResult) |
| 4032 | RetDbgLoc = SI->getDebugLoc(); |
| 4033 | // Get the stored value and nuke the now-dead store. |
| 4034 | RV = SI->getValueOperand(); |
| 4035 | SI->eraseFromParent(); |
| 4036 | |
| 4037 | // Otherwise, we have to do a simple load. |
| 4038 | } else { |
| 4039 | RV = Builder.CreateLoad(Addr: ReturnValue); |
| 4040 | } |
| 4041 | } else { |
| 4042 | // If the value is offset in memory, apply the offset now. |
| 4043 | Address V = emitAddressAtOffset(CGF&: *this, addr: ReturnValue, info: RetAI); |
| 4044 | |
| 4045 | RV = CreateCoercedLoad(Src: V, Ty: RetAI.getCoerceToType(), CGF&: *this); |
| 4046 | } |
| 4047 | |
| 4048 | // In ARC, end functions that return a retainable type with a call |
| 4049 | // to objc_autoreleaseReturnValue. |
| 4050 | if (AutoreleaseResult) { |
| 4051 | #ifndef NDEBUG |
| 4052 | // Type::isObjCRetainabletype has to be called on a QualType that hasn't |
| 4053 | // been stripped of the typedefs, so we cannot use RetTy here. Get the |
| 4054 | // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from |
| 4055 | // CurCodeDecl or BlockInfo. |
| 4056 | QualType RT; |
| 4057 | |
| 4058 | if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) |
| 4059 | RT = FD->getReturnType(); |
| 4060 | else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) |
| 4061 | RT = MD->getReturnType(); |
| 4062 | else if (isa<BlockDecl>(CurCodeDecl)) |
| 4063 | RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); |
| 4064 | else |
| 4065 | llvm_unreachable("Unexpected function/method type" ); |
| 4066 | |
| 4067 | assert(getLangOpts().ObjCAutoRefCount && !FI.isReturnsRetained() && |
| 4068 | RT->isObjCRetainableType()); |
| 4069 | #endif |
| 4070 | RV = emitAutoreleaseOfResult(CGF&: *this, result: RV); |
| 4071 | } |
| 4072 | |
| 4073 | break; |
| 4074 | |
| 4075 | case ABIArgInfo::Ignore: |
| 4076 | break; |
| 4077 | |
| 4078 | case ABIArgInfo::CoerceAndExpand: { |
| 4079 | auto coercionType = RetAI.getCoerceAndExpandType(); |
| 4080 | auto unpaddedCoercionType = RetAI.getUnpaddedCoerceAndExpandType(); |
| 4081 | auto *unpaddedStruct = dyn_cast<llvm::StructType>(Val: unpaddedCoercionType); |
| 4082 | |
| 4083 | // Load all of the coerced elements out into results. |
| 4084 | llvm::SmallVector<llvm::Value *, 4> results; |
| 4085 | Address addr = ReturnValue.withElementType(ElemTy: coercionType); |
| 4086 | unsigned unpaddedIndex = 0; |
| 4087 | for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| 4088 | auto coercedEltType = coercionType->getElementType(N: i); |
| 4089 | if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType: coercedEltType)) |
| 4090 | continue; |
| 4091 | |
| 4092 | auto eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i); |
| 4093 | llvm::Value *elt = CreateCoercedLoad( |
| 4094 | Src: eltAddr, |
| 4095 | Ty: unpaddedStruct ? unpaddedStruct->getElementType(N: unpaddedIndex++) |
| 4096 | : unpaddedCoercionType, |
| 4097 | CGF&: *this); |
| 4098 | results.push_back(Elt: elt); |
| 4099 | } |
| 4100 | |
| 4101 | // If we have one result, it's the single direct result type. |
| 4102 | if (results.size() == 1) { |
| 4103 | RV = results[0]; |
| 4104 | |
| 4105 | // Otherwise, we need to make a first-class aggregate. |
| 4106 | } else { |
| 4107 | // Construct a return type that lacks padding elements. |
| 4108 | llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); |
| 4109 | |
| 4110 | RV = llvm::PoisonValue::get(T: returnType); |
| 4111 | for (unsigned i = 0, e = results.size(); i != e; ++i) { |
| 4112 | RV = Builder.CreateInsertValue(Agg: RV, Val: results[i], Idxs: i); |
| 4113 | } |
| 4114 | } |
| 4115 | break; |
| 4116 | } |
| 4117 | case ABIArgInfo::Expand: |
| 4118 | case ABIArgInfo::IndirectAliased: |
| 4119 | llvm_unreachable("Invalid ABI kind for return argument" ); |
| 4120 | } |
| 4121 | |
| 4122 | llvm::Instruction *Ret; |
| 4123 | if (RV) { |
| 4124 | if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { |
| 4125 | // For certain return types, clear padding bits, as they may reveal |
| 4126 | // sensitive information. |
| 4127 | // Small struct/union types are passed as integers. |
| 4128 | auto *ITy = dyn_cast<llvm::IntegerType>(Val: RV->getType()); |
| 4129 | if (ITy != nullptr && isa<RecordType>(Val: RetTy.getCanonicalType())) |
| 4130 | RV = EmitCMSEClearRecord(Src: RV, ITy, QTy: RetTy); |
| 4131 | } |
| 4132 | EmitReturnValueCheck(RV); |
| 4133 | Ret = Builder.CreateRet(V: RV); |
| 4134 | } else { |
| 4135 | Ret = Builder.CreateRetVoid(); |
| 4136 | } |
| 4137 | |
| 4138 | if (RetDbgLoc) |
| 4139 | Ret->setDebugLoc(std::move(RetDbgLoc)); |
| 4140 | |
| 4141 | llvm::Value *Backup = RV ? Ret->getOperand(i: 0) : nullptr; |
| 4142 | if (RetKeyInstructionsSourceAtom) |
| 4143 | addInstToSpecificSourceAtom(KeyInstruction: Ret, Backup, Atom: RetKeyInstructionsSourceAtom); |
| 4144 | else |
| 4145 | addInstToNewSourceAtom(KeyInstruction: Ret, Backup); |
| 4146 | } |
| 4147 | |
| 4148 | void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { |
| 4149 | // A current decl may not be available when emitting vtable thunks. |
| 4150 | if (!CurCodeDecl) |
| 4151 | return; |
| 4152 | |
| 4153 | // If the return block isn't reachable, neither is this check, so don't emit |
| 4154 | // it. |
| 4155 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) |
| 4156 | return; |
| 4157 | |
| 4158 | ReturnsNonNullAttr *RetNNAttr = nullptr; |
| 4159 | if (SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute)) |
| 4160 | RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); |
| 4161 | |
| 4162 | if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) |
| 4163 | return; |
| 4164 | |
| 4165 | // Prefer the returns_nonnull attribute if it's present. |
| 4166 | SourceLocation AttrLoc; |
| 4167 | SanitizerKind::SanitizerOrdinal CheckKind; |
| 4168 | SanitizerHandler Handler; |
| 4169 | if (RetNNAttr) { |
| 4170 | assert(!requiresReturnValueNullabilityCheck() && |
| 4171 | "Cannot check nullability and the nonnull attribute" ); |
| 4172 | AttrLoc = RetNNAttr->getLocation(); |
| 4173 | CheckKind = SanitizerKind::SO_ReturnsNonnullAttribute; |
| 4174 | Handler = SanitizerHandler::NonnullReturn; |
| 4175 | } else { |
| 4176 | if (auto *DD = dyn_cast<DeclaratorDecl>(Val: CurCodeDecl)) |
| 4177 | if (auto *TSI = DD->getTypeSourceInfo()) |
| 4178 | if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) |
| 4179 | AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); |
| 4180 | CheckKind = SanitizerKind::SO_NullabilityReturn; |
| 4181 | Handler = SanitizerHandler::NullabilityReturn; |
| 4182 | } |
| 4183 | |
| 4184 | SanitizerDebugLocation SanScope(this, {CheckKind}, Handler); |
| 4185 | |
| 4186 | // Make sure the "return" source location is valid. If we're checking a |
| 4187 | // nullability annotation, make sure the preconditions for the check are met. |
| 4188 | llvm::BasicBlock *Check = createBasicBlock(name: "nullcheck" ); |
| 4189 | llvm::BasicBlock *NoCheck = createBasicBlock(name: "no.nullcheck" ); |
| 4190 | llvm::Value *SLocPtr = Builder.CreateLoad(Addr: ReturnLocation, Name: "return.sloc.load" ); |
| 4191 | llvm::Value *CanNullCheck = Builder.CreateIsNotNull(Arg: SLocPtr); |
| 4192 | if (requiresReturnValueNullabilityCheck()) |
| 4193 | CanNullCheck = |
| 4194 | Builder.CreateAnd(LHS: CanNullCheck, RHS: RetValNullabilityPrecondition); |
| 4195 | Builder.CreateCondBr(Cond: CanNullCheck, True: Check, False: NoCheck); |
| 4196 | EmitBlock(BB: Check); |
| 4197 | |
| 4198 | // Now do the null check. |
| 4199 | llvm::Value *Cond = Builder.CreateIsNotNull(Arg: RV); |
| 4200 | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc: AttrLoc)}; |
| 4201 | llvm::Value *DynamicData[] = {SLocPtr}; |
| 4202 | EmitCheck(Checked: std::make_pair(x&: Cond, y&: CheckKind), Check: Handler, StaticArgs: StaticData, DynamicArgs: DynamicData); |
| 4203 | |
| 4204 | EmitBlock(BB: NoCheck); |
| 4205 | |
| 4206 | #ifndef NDEBUG |
| 4207 | // The return location should not be used after the check has been emitted. |
| 4208 | ReturnLocation = Address::invalid(); |
| 4209 | #endif |
| 4210 | } |
| 4211 | |
| 4212 | static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { |
| 4213 | const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); |
| 4214 | return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
| 4215 | } |
| 4216 | |
| 4217 | static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { |
| 4218 | // FIXME: Generate IR in one pass, rather than going back and fixing up these |
| 4219 | // placeholders. |
| 4220 | llvm::Type *IRTy = CGF.ConvertTypeForMem(T: Ty); |
| 4221 | llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(C&: CGF.getLLVMContext()); |
| 4222 | llvm::Value *Placeholder = llvm::PoisonValue::get(T: IRPtrTy); |
| 4223 | |
| 4224 | // FIXME: When we generate this IR in one pass, we shouldn't need |
| 4225 | // this win32-specific alignment hack. |
| 4226 | CharUnits Align = CharUnits::fromQuantity(Quantity: 4); |
| 4227 | Placeholder = CGF.Builder.CreateAlignedLoad(Ty: IRPtrTy, Addr: Placeholder, Align); |
| 4228 | |
| 4229 | return AggValueSlot::forAddr( |
| 4230 | addr: Address(Placeholder, IRTy, Align), quals: Ty.getQualifiers(), |
| 4231 | isDestructed: AggValueSlot::IsNotDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
| 4232 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap); |
| 4233 | } |
| 4234 | |
| 4235 | void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, |
| 4236 | const VarDecl *param, |
| 4237 | SourceLocation loc) { |
| 4238 | // StartFunction converted the ABI-lowered parameter(s) into a |
| 4239 | // local alloca. We need to turn that into an r-value suitable |
| 4240 | // for EmitCall. |
| 4241 | Address local = GetAddrOfLocalVar(VD: param); |
| 4242 | |
| 4243 | QualType type = param->getType(); |
| 4244 | |
| 4245 | // GetAddrOfLocalVar returns a pointer-to-pointer for references, |
| 4246 | // but the argument needs to be the original pointer. |
| 4247 | if (type->isReferenceType()) { |
| 4248 | args.add(rvalue: RValue::get(V: Builder.CreateLoad(Addr: local)), type); |
| 4249 | |
| 4250 | // In ARC, move out of consumed arguments so that the release cleanup |
| 4251 | // entered by StartFunction doesn't cause an over-release. This isn't |
| 4252 | // optimal -O0 code generation, but it should get cleaned up when |
| 4253 | // optimization is enabled. This also assumes that delegate calls are |
| 4254 | // performed exactly once for a set of arguments, but that should be safe. |
| 4255 | } else if (getLangOpts().ObjCAutoRefCount && |
| 4256 | param->hasAttr<NSConsumedAttr>() && type->isObjCRetainableType()) { |
| 4257 | llvm::Value *ptr = Builder.CreateLoad(Addr: local); |
| 4258 | auto null = |
| 4259 | llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: ptr->getType())); |
| 4260 | Builder.CreateStore(Val: null, Addr: local); |
| 4261 | args.add(rvalue: RValue::get(V: ptr), type); |
| 4262 | |
| 4263 | // For the most part, we just need to load the alloca, except that |
| 4264 | // aggregate r-values are actually pointers to temporaries. |
| 4265 | } else { |
| 4266 | args.add(rvalue: convertTempToRValue(addr: local, type, Loc: loc), type); |
| 4267 | } |
| 4268 | |
| 4269 | // Deactivate the cleanup for the callee-destructed param that was pushed. |
| 4270 | if (type->isRecordType() && !CurFuncIsThunk && |
| 4271 | type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && |
| 4272 | param->needsDestruction(Ctx: getContext())) { |
| 4273 | EHScopeStack::stable_iterator cleanup = |
| 4274 | CalleeDestructedParamCleanups.lookup(Val: cast<ParmVarDecl>(Val: param)); |
| 4275 | assert(cleanup.isValid() && |
| 4276 | "cleanup for callee-destructed param not recorded" ); |
| 4277 | // This unreachable is a temporary marker which will be removed later. |
| 4278 | llvm::Instruction *isActive = Builder.CreateUnreachable(); |
| 4279 | args.addArgCleanupDeactivation(Cleanup: cleanup, IsActiveIP: isActive); |
| 4280 | } |
| 4281 | } |
| 4282 | |
| 4283 | static bool isProvablyNull(llvm::Value *addr) { |
| 4284 | return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(Val: addr); |
| 4285 | } |
| 4286 | |
| 4287 | static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) { |
| 4288 | return llvm::isKnownNonZero(V: Addr.getBasePointer(), Q: CGF.CGM.getDataLayout()); |
| 4289 | } |
| 4290 | |
| 4291 | /// Emit the actual writing-back of a writeback. |
| 4292 | static void emitWriteback(CodeGenFunction &CGF, |
| 4293 | const CallArgList::Writeback &writeback) { |
| 4294 | const LValue &srcLV = writeback.Source; |
| 4295 | Address srcAddr = srcLV.getAddress(); |
| 4296 | assert(!isProvablyNull(srcAddr.getBasePointer()) && |
| 4297 | "shouldn't have writeback for provably null argument" ); |
| 4298 | |
| 4299 | if (writeback.WritebackExpr) { |
| 4300 | CGF.EmitIgnoredExpr(E: writeback.WritebackExpr); |
| 4301 | |
| 4302 | if (writeback.LifetimeSz) |
| 4303 | CGF.EmitLifetimeEnd(Size: writeback.LifetimeSz, |
| 4304 | Addr: writeback.Temporary.getBasePointer()); |
| 4305 | return; |
| 4306 | } |
| 4307 | |
| 4308 | llvm::BasicBlock *contBB = nullptr; |
| 4309 | |
| 4310 | // If the argument wasn't provably non-null, we need to null check |
| 4311 | // before doing the store. |
| 4312 | bool provablyNonNull = isProvablyNonNull(Addr: srcAddr, CGF); |
| 4313 | |
| 4314 | if (!provablyNonNull) { |
| 4315 | llvm::BasicBlock *writebackBB = CGF.createBasicBlock(name: "icr.writeback" ); |
| 4316 | contBB = CGF.createBasicBlock(name: "icr.done" ); |
| 4317 | |
| 4318 | llvm::Value *isNull = CGF.Builder.CreateIsNull(Addr: srcAddr, Name: "icr.isnull" ); |
| 4319 | CGF.Builder.CreateCondBr(Cond: isNull, True: contBB, False: writebackBB); |
| 4320 | CGF.EmitBlock(BB: writebackBB); |
| 4321 | } |
| 4322 | |
| 4323 | // Load the value to writeback. |
| 4324 | llvm::Value *value = CGF.Builder.CreateLoad(Addr: writeback.Temporary); |
| 4325 | |
| 4326 | // Cast it back, in case we're writing an id to a Foo* or something. |
| 4327 | value = CGF.Builder.CreateBitCast(V: value, DestTy: srcAddr.getElementType(), |
| 4328 | Name: "icr.writeback-cast" ); |
| 4329 | |
| 4330 | // Perform the writeback. |
| 4331 | |
| 4332 | // If we have a "to use" value, it's something we need to emit a use |
| 4333 | // of. This has to be carefully threaded in: if it's done after the |
| 4334 | // release it's potentially undefined behavior (and the optimizer |
| 4335 | // will ignore it), and if it happens before the retain then the |
| 4336 | // optimizer could move the release there. |
| 4337 | if (writeback.ToUse) { |
| 4338 | assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); |
| 4339 | |
| 4340 | // Retain the new value. No need to block-copy here: the block's |
| 4341 | // being passed up the stack. |
| 4342 | value = CGF.EmitARCRetainNonBlock(value); |
| 4343 | |
| 4344 | // Emit the intrinsic use here. |
| 4345 | CGF.EmitARCIntrinsicUse(values: writeback.ToUse); |
| 4346 | |
| 4347 | // Load the old value (primitively). |
| 4348 | llvm::Value *oldValue = CGF.EmitLoadOfScalar(lvalue: srcLV, Loc: SourceLocation()); |
| 4349 | |
| 4350 | // Put the new value in place (primitively). |
| 4351 | CGF.EmitStoreOfScalar(value, lvalue: srcLV, /*init*/ isInit: false); |
| 4352 | |
| 4353 | // Release the old value. |
| 4354 | CGF.EmitARCRelease(value: oldValue, precise: srcLV.isARCPreciseLifetime()); |
| 4355 | |
| 4356 | // Otherwise, we can just do a normal lvalue store. |
| 4357 | } else { |
| 4358 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: srcLV); |
| 4359 | } |
| 4360 | |
| 4361 | // Jump to the continuation block. |
| 4362 | if (!provablyNonNull) |
| 4363 | CGF.EmitBlock(BB: contBB); |
| 4364 | } |
| 4365 | |
| 4366 | static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, |
| 4367 | const CallArgList &CallArgs) { |
| 4368 | ArrayRef<CallArgList::CallArgCleanup> Cleanups = |
| 4369 | CallArgs.getCleanupsToDeactivate(); |
| 4370 | // Iterate in reverse to increase the likelihood of popping the cleanup. |
| 4371 | for (const auto &I : llvm::reverse(C&: Cleanups)) { |
| 4372 | CGF.DeactivateCleanupBlock(Cleanup: I.Cleanup, DominatingIP: I.IsActiveIP); |
| 4373 | I.IsActiveIP->eraseFromParent(); |
| 4374 | } |
| 4375 | } |
| 4376 | |
| 4377 | static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { |
| 4378 | if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) |
| 4379 | if (uop->getOpcode() == UO_AddrOf) |
| 4380 | return uop->getSubExpr(); |
| 4381 | return nullptr; |
| 4382 | } |
| 4383 | |
| 4384 | /// Emit an argument that's being passed call-by-writeback. That is, |
| 4385 | /// we are passing the address of an __autoreleased temporary; it |
| 4386 | /// might be copy-initialized with the current value of the given |
| 4387 | /// address, but it will definitely be copied out of after the call. |
| 4388 | static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, |
| 4389 | const ObjCIndirectCopyRestoreExpr *CRE) { |
| 4390 | LValue srcLV; |
| 4391 | |
| 4392 | // Make an optimistic effort to emit the address as an l-value. |
| 4393 | // This can fail if the argument expression is more complicated. |
| 4394 | if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(E: CRE->getSubExpr())) { |
| 4395 | srcLV = CGF.EmitLValue(E: lvExpr); |
| 4396 | |
| 4397 | // Otherwise, just emit it as a scalar. |
| 4398 | } else { |
| 4399 | Address srcAddr = CGF.EmitPointerWithAlignment(Addr: CRE->getSubExpr()); |
| 4400 | |
| 4401 | QualType srcAddrType = |
| 4402 | CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); |
| 4403 | srcLV = CGF.MakeAddrLValue(Addr: srcAddr, T: srcAddrType); |
| 4404 | } |
| 4405 | Address srcAddr = srcLV.getAddress(); |
| 4406 | |
| 4407 | // The dest and src types don't necessarily match in LLVM terms |
| 4408 | // because of the crazy ObjC compatibility rules. |
| 4409 | |
| 4410 | llvm::PointerType *destType = |
| 4411 | cast<llvm::PointerType>(Val: CGF.ConvertType(T: CRE->getType())); |
| 4412 | llvm::Type *destElemType = |
| 4413 | CGF.ConvertTypeForMem(T: CRE->getType()->getPointeeType()); |
| 4414 | |
| 4415 | // If the address is a constant null, just pass the appropriate null. |
| 4416 | if (isProvablyNull(addr: srcAddr.getBasePointer())) { |
| 4417 | args.add(rvalue: RValue::get(V: llvm::ConstantPointerNull::get(T: destType)), |
| 4418 | type: CRE->getType()); |
| 4419 | return; |
| 4420 | } |
| 4421 | |
| 4422 | // Create the temporary. |
| 4423 | Address temp = |
| 4424 | CGF.CreateTempAlloca(Ty: destElemType, align: CGF.getPointerAlign(), Name: "icr.temp" ); |
| 4425 | // Loading an l-value can introduce a cleanup if the l-value is __weak, |
| 4426 | // and that cleanup will be conditional if we can't prove that the l-value |
| 4427 | // isn't null, so we need to register a dominating point so that the cleanups |
| 4428 | // system will make valid IR. |
| 4429 | CodeGenFunction::ConditionalEvaluation condEval(CGF); |
| 4430 | |
| 4431 | // Zero-initialize it if we're not doing a copy-initialization. |
| 4432 | bool shouldCopy = CRE->shouldCopy(); |
| 4433 | if (!shouldCopy) { |
| 4434 | llvm::Value *null = |
| 4435 | llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: destElemType)); |
| 4436 | CGF.Builder.CreateStore(Val: null, Addr: temp); |
| 4437 | } |
| 4438 | |
| 4439 | llvm::BasicBlock *contBB = nullptr; |
| 4440 | llvm::BasicBlock *originBB = nullptr; |
| 4441 | |
| 4442 | // If the address is *not* known to be non-null, we need to switch. |
| 4443 | llvm::Value *finalArgument; |
| 4444 | |
| 4445 | bool provablyNonNull = isProvablyNonNull(Addr: srcAddr, CGF); |
| 4446 | |
| 4447 | if (provablyNonNull) { |
| 4448 | finalArgument = temp.emitRawPointer(CGF); |
| 4449 | } else { |
| 4450 | llvm::Value *isNull = CGF.Builder.CreateIsNull(Addr: srcAddr, Name: "icr.isnull" ); |
| 4451 | |
| 4452 | finalArgument = CGF.Builder.CreateSelect( |
| 4453 | C: isNull, True: llvm::ConstantPointerNull::get(T: destType), |
| 4454 | False: temp.emitRawPointer(CGF), Name: "icr.argument" ); |
| 4455 | |
| 4456 | // If we need to copy, then the load has to be conditional, which |
| 4457 | // means we need control flow. |
| 4458 | if (shouldCopy) { |
| 4459 | originBB = CGF.Builder.GetInsertBlock(); |
| 4460 | contBB = CGF.createBasicBlock(name: "icr.cont" ); |
| 4461 | llvm::BasicBlock *copyBB = CGF.createBasicBlock(name: "icr.copy" ); |
| 4462 | CGF.Builder.CreateCondBr(Cond: isNull, True: contBB, False: copyBB); |
| 4463 | CGF.EmitBlock(BB: copyBB); |
| 4464 | condEval.begin(CGF); |
| 4465 | } |
| 4466 | } |
| 4467 | |
| 4468 | llvm::Value *valueToUse = nullptr; |
| 4469 | |
| 4470 | // Perform a copy if necessary. |
| 4471 | if (shouldCopy) { |
| 4472 | RValue srcRV = CGF.EmitLoadOfLValue(V: srcLV, Loc: SourceLocation()); |
| 4473 | assert(srcRV.isScalar()); |
| 4474 | |
| 4475 | llvm::Value *src = srcRV.getScalarVal(); |
| 4476 | src = CGF.Builder.CreateBitCast(V: src, DestTy: destElemType, Name: "icr.cast" ); |
| 4477 | |
| 4478 | // Use an ordinary store, not a store-to-lvalue. |
| 4479 | CGF.Builder.CreateStore(Val: src, Addr: temp); |
| 4480 | |
| 4481 | // If optimization is enabled, and the value was held in a |
| 4482 | // __strong variable, we need to tell the optimizer that this |
| 4483 | // value has to stay alive until we're doing the store back. |
| 4484 | // This is because the temporary is effectively unretained, |
| 4485 | // and so otherwise we can violate the high-level semantics. |
| 4486 | if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && |
| 4487 | srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| 4488 | valueToUse = src; |
| 4489 | } |
| 4490 | } |
| 4491 | |
| 4492 | // Finish the control flow if we needed it. |
| 4493 | if (shouldCopy && !provablyNonNull) { |
| 4494 | llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); |
| 4495 | CGF.EmitBlock(BB: contBB); |
| 4496 | |
| 4497 | // Make a phi for the value to intrinsically use. |
| 4498 | if (valueToUse) { |
| 4499 | llvm::PHINode *phiToUse = |
| 4500 | CGF.Builder.CreatePHI(Ty: valueToUse->getType(), NumReservedValues: 2, Name: "icr.to-use" ); |
| 4501 | phiToUse->addIncoming(V: valueToUse, BB: copyBB); |
| 4502 | phiToUse->addIncoming(V: llvm::PoisonValue::get(T: valueToUse->getType()), |
| 4503 | BB: originBB); |
| 4504 | valueToUse = phiToUse; |
| 4505 | } |
| 4506 | |
| 4507 | condEval.end(CGF); |
| 4508 | } |
| 4509 | |
| 4510 | args.addWriteback(srcLV, temporary: temp, toUse: valueToUse); |
| 4511 | args.add(rvalue: RValue::get(V: finalArgument), type: CRE->getType()); |
| 4512 | } |
| 4513 | |
| 4514 | void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { |
| 4515 | assert(!StackBase); |
| 4516 | |
| 4517 | // Save the stack. |
| 4518 | StackBase = CGF.Builder.CreateStackSave(Name: "inalloca.save" ); |
| 4519 | } |
| 4520 | |
| 4521 | void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { |
| 4522 | if (StackBase) { |
| 4523 | // Restore the stack after the call. |
| 4524 | CGF.Builder.CreateStackRestore(Ptr: StackBase); |
| 4525 | } |
| 4526 | } |
| 4527 | |
| 4528 | void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, |
| 4529 | SourceLocation ArgLoc, |
| 4530 | AbstractCallee AC, unsigned ParmNum) { |
| 4531 | if (!AC.getDecl() || !(SanOpts.has(K: SanitizerKind::NonnullAttribute) || |
| 4532 | SanOpts.has(K: SanitizerKind::NullabilityArg))) |
| 4533 | return; |
| 4534 | |
| 4535 | // The param decl may be missing in a variadic function. |
| 4536 | auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(I: ParmNum) : nullptr; |
| 4537 | unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; |
| 4538 | |
| 4539 | // Prefer the nonnull attribute if it's present. |
| 4540 | const NonNullAttr *NNAttr = nullptr; |
| 4541 | if (SanOpts.has(K: SanitizerKind::NonnullAttribute)) |
| 4542 | NNAttr = getNonNullAttr(FD: AC.getDecl(), PVD, ArgType, ArgNo); |
| 4543 | |
| 4544 | bool CanCheckNullability = false; |
| 4545 | if (SanOpts.has(K: SanitizerKind::NullabilityArg) && !NNAttr && PVD && |
| 4546 | !PVD->getType()->isRecordType()) { |
| 4547 | auto Nullability = PVD->getType()->getNullability(); |
| 4548 | CanCheckNullability = Nullability && |
| 4549 | *Nullability == NullabilityKind::NonNull && |
| 4550 | PVD->getTypeSourceInfo(); |
| 4551 | } |
| 4552 | |
| 4553 | if (!NNAttr && !CanCheckNullability) |
| 4554 | return; |
| 4555 | |
| 4556 | SourceLocation AttrLoc; |
| 4557 | SanitizerKind::SanitizerOrdinal CheckKind; |
| 4558 | SanitizerHandler Handler; |
| 4559 | if (NNAttr) { |
| 4560 | AttrLoc = NNAttr->getLocation(); |
| 4561 | CheckKind = SanitizerKind::SO_NonnullAttribute; |
| 4562 | Handler = SanitizerHandler::NonnullArg; |
| 4563 | } else { |
| 4564 | AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); |
| 4565 | CheckKind = SanitizerKind::SO_NullabilityArg; |
| 4566 | Handler = SanitizerHandler::NullabilityArg; |
| 4567 | } |
| 4568 | |
| 4569 | SanitizerDebugLocation SanScope(this, {CheckKind}, Handler); |
| 4570 | llvm::Value *Cond = EmitNonNullRValueCheck(RV, T: ArgType); |
| 4571 | llvm::Constant *StaticData[] = { |
| 4572 | EmitCheckSourceLocation(Loc: ArgLoc), |
| 4573 | EmitCheckSourceLocation(Loc: AttrLoc), |
| 4574 | llvm::ConstantInt::get(Ty: Int32Ty, V: ArgNo + 1), |
| 4575 | }; |
| 4576 | EmitCheck(Checked: std::make_pair(x&: Cond, y&: CheckKind), Check: Handler, StaticArgs: StaticData, DynamicArgs: {}); |
| 4577 | } |
| 4578 | |
| 4579 | void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType, |
| 4580 | SourceLocation ArgLoc, |
| 4581 | AbstractCallee AC, unsigned ParmNum) { |
| 4582 | if (!AC.getDecl() || !(SanOpts.has(K: SanitizerKind::NonnullAttribute) || |
| 4583 | SanOpts.has(K: SanitizerKind::NullabilityArg))) |
| 4584 | return; |
| 4585 | |
| 4586 | EmitNonNullArgCheck(RV: RValue::get(Addr, CGF&: *this), ArgType, ArgLoc, AC, ParmNum); |
| 4587 | } |
| 4588 | |
| 4589 | // Check if the call is going to use the inalloca convention. This needs to |
| 4590 | // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged |
| 4591 | // later, so we can't check it directly. |
| 4592 | static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, |
| 4593 | ArrayRef<QualType> ArgTypes) { |
| 4594 | // The Swift calling conventions don't go through the target-specific |
| 4595 | // argument classification, they never use inalloca. |
| 4596 | // TODO: Consider limiting inalloca use to only calling conventions supported |
| 4597 | // by MSVC. |
| 4598 | if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) |
| 4599 | return false; |
| 4600 | if (!CGM.getTarget().getCXXABI().isMicrosoft()) |
| 4601 | return false; |
| 4602 | return llvm::any_of(Range&: ArgTypes, P: [&](QualType Ty) { |
| 4603 | return isInAllocaArgument(ABI&: CGM.getCXXABI(), type: Ty); |
| 4604 | }); |
| 4605 | } |
| 4606 | |
| 4607 | #ifndef NDEBUG |
| 4608 | // Determine whether the given argument is an Objective-C method |
| 4609 | // that may have type parameters in its signature. |
| 4610 | static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { |
| 4611 | const DeclContext *dc = method->getDeclContext(); |
| 4612 | if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { |
| 4613 | return classDecl->getTypeParamListAsWritten(); |
| 4614 | } |
| 4615 | |
| 4616 | if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { |
| 4617 | return catDecl->getTypeParamList(); |
| 4618 | } |
| 4619 | |
| 4620 | return false; |
| 4621 | } |
| 4622 | #endif |
| 4623 | |
| 4624 | /// EmitCallArgs - Emit call arguments for a function. |
| 4625 | void CodeGenFunction::EmitCallArgs( |
| 4626 | CallArgList &Args, PrototypeWrapper Prototype, |
| 4627 | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
| 4628 | AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { |
| 4629 | SmallVector<QualType, 16> ArgTypes; |
| 4630 | |
| 4631 | assert((ParamsToSkip == 0 || Prototype.P) && |
| 4632 | "Can't skip parameters if type info is not provided" ); |
| 4633 | |
| 4634 | // This variable only captures *explicitly* written conventions, not those |
| 4635 | // applied by default via command line flags or target defaults, such as |
| 4636 | // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would |
| 4637 | // require knowing if this is a C++ instance method or being able to see |
| 4638 | // unprototyped FunctionTypes. |
| 4639 | CallingConv ExplicitCC = CC_C; |
| 4640 | |
| 4641 | // First, if a prototype was provided, use those argument types. |
| 4642 | bool IsVariadic = false; |
| 4643 | if (Prototype.P) { |
| 4644 | const auto *MD = dyn_cast<const ObjCMethodDecl *>(Val&: Prototype.P); |
| 4645 | if (MD) { |
| 4646 | IsVariadic = MD->isVariadic(); |
| 4647 | ExplicitCC = getCallingConventionForDecl( |
| 4648 | D: MD, IsTargetDefaultMSABI: CGM.getTarget().getTriple().isOSWindows()); |
| 4649 | ArgTypes.assign(in_start: MD->param_type_begin() + ParamsToSkip, |
| 4650 | in_end: MD->param_type_end()); |
| 4651 | } else { |
| 4652 | const auto *FPT = cast<const FunctionProtoType *>(Val&: Prototype.P); |
| 4653 | IsVariadic = FPT->isVariadic(); |
| 4654 | ExplicitCC = FPT->getExtInfo().getCC(); |
| 4655 | ArgTypes.assign(in_start: FPT->param_type_begin() + ParamsToSkip, |
| 4656 | in_end: FPT->param_type_end()); |
| 4657 | } |
| 4658 | |
| 4659 | #ifndef NDEBUG |
| 4660 | // Check that the prototyped types match the argument expression types. |
| 4661 | bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); |
| 4662 | CallExpr::const_arg_iterator Arg = ArgRange.begin(); |
| 4663 | for (QualType Ty : ArgTypes) { |
| 4664 | assert(Arg != ArgRange.end() && "Running over edge of argument list!" ); |
| 4665 | assert( |
| 4666 | (isGenericMethod || Ty->isVariablyModifiedType() || |
| 4667 | Ty.getNonReferenceType()->isObjCRetainableType() || |
| 4668 | getContext() |
| 4669 | .getCanonicalType(Ty.getNonReferenceType()) |
| 4670 | .getTypePtr() == |
| 4671 | getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && |
| 4672 | "type mismatch in call argument!" ); |
| 4673 | ++Arg; |
| 4674 | } |
| 4675 | |
| 4676 | // Either we've emitted all the call args, or we have a call to variadic |
| 4677 | // function. |
| 4678 | assert((Arg == ArgRange.end() || IsVariadic) && |
| 4679 | "Extra arguments in non-variadic function!" ); |
| 4680 | #endif |
| 4681 | } |
| 4682 | |
| 4683 | // If we still have any arguments, emit them using the type of the argument. |
| 4684 | for (auto *A : llvm::drop_begin(RangeOrContainer&: ArgRange, N: ArgTypes.size())) |
| 4685 | ArgTypes.push_back(Elt: IsVariadic ? getVarArgType(Arg: A) : A->getType()); |
| 4686 | assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); |
| 4687 | |
| 4688 | // We must evaluate arguments from right to left in the MS C++ ABI, |
| 4689 | // because arguments are destroyed left to right in the callee. As a special |
| 4690 | // case, there are certain language constructs that require left-to-right |
| 4691 | // evaluation, and in those cases we consider the evaluation order requirement |
| 4692 | // to trump the "destruction order is reverse construction order" guarantee. |
| 4693 | bool LeftToRight = |
| 4694 | CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() |
| 4695 | ? Order == EvaluationOrder::ForceLeftToRight |
| 4696 | : Order != EvaluationOrder::ForceRightToLeft; |
| 4697 | |
| 4698 | auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, |
| 4699 | RValue EmittedArg) { |
| 4700 | if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) |
| 4701 | return; |
| 4702 | auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); |
| 4703 | if (PS == nullptr) |
| 4704 | return; |
| 4705 | |
| 4706 | const auto &Context = getContext(); |
| 4707 | auto SizeTy = Context.getSizeType(); |
| 4708 | auto T = Builder.getIntNTy(N: Context.getTypeSize(T: SizeTy)); |
| 4709 | assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?" ); |
| 4710 | llvm::Value *V = evaluateOrEmitBuiltinObjectSize( |
| 4711 | E: Arg, Type: PS->getType(), ResType: T, EmittedE: EmittedArg.getScalarVal(), IsDynamic: PS->isDynamic()); |
| 4712 | Args.add(rvalue: RValue::get(V), type: SizeTy); |
| 4713 | // If we're emitting args in reverse, be sure to do so with |
| 4714 | // pass_object_size, as well. |
| 4715 | if (!LeftToRight) |
| 4716 | std::swap(a&: Args.back(), b&: *(&Args.back() - 1)); |
| 4717 | }; |
| 4718 | |
| 4719 | // Insert a stack save if we're going to need any inalloca args. |
| 4720 | if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { |
| 4721 | assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && |
| 4722 | "inalloca only supported on x86" ); |
| 4723 | Args.allocateArgumentMemory(CGF&: *this); |
| 4724 | } |
| 4725 | |
| 4726 | // Evaluate each argument in the appropriate order. |
| 4727 | size_t CallArgsStart = Args.size(); |
| 4728 | for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { |
| 4729 | unsigned Idx = LeftToRight ? I : E - I - 1; |
| 4730 | CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; |
| 4731 | unsigned InitialArgSize = Args.size(); |
| 4732 | // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of |
| 4733 | // the argument and parameter match or the objc method is parameterized. |
| 4734 | assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || |
| 4735 | getContext().hasSameUnqualifiedType((*Arg)->getType(), |
| 4736 | ArgTypes[Idx]) || |
| 4737 | (isa<ObjCMethodDecl>(AC.getDecl()) && |
| 4738 | isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && |
| 4739 | "Argument and parameter types don't match" ); |
| 4740 | EmitCallArg(args&: Args, E: *Arg, ArgType: ArgTypes[Idx]); |
| 4741 | // In particular, we depend on it being the last arg in Args, and the |
| 4742 | // objectsize bits depend on there only being one arg if !LeftToRight. |
| 4743 | assert(InitialArgSize + 1 == Args.size() && |
| 4744 | "The code below depends on only adding one arg per EmitCallArg" ); |
| 4745 | (void)InitialArgSize; |
| 4746 | // Since pointer argument are never emitted as LValue, it is safe to emit |
| 4747 | // non-null argument check for r-value only. |
| 4748 | if (!Args.back().hasLValue()) { |
| 4749 | RValue RVArg = Args.back().getKnownRValue(); |
| 4750 | EmitNonNullArgCheck(RV: RVArg, ArgType: ArgTypes[Idx], ArgLoc: (*Arg)->getExprLoc(), AC, |
| 4751 | ParmNum: ParamsToSkip + Idx); |
| 4752 | // @llvm.objectsize should never have side-effects and shouldn't need |
| 4753 | // destruction/cleanups, so we can safely "emit" it after its arg, |
| 4754 | // regardless of right-to-leftness |
| 4755 | MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); |
| 4756 | } |
| 4757 | } |
| 4758 | |
| 4759 | if (!LeftToRight) { |
| 4760 | // Un-reverse the arguments we just evaluated so they match up with the LLVM |
| 4761 | // IR function. |
| 4762 | std::reverse(first: Args.begin() + CallArgsStart, last: Args.end()); |
| 4763 | |
| 4764 | // Reverse the writebacks to match the MSVC ABI. |
| 4765 | Args.reverseWritebacks(); |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | namespace { |
| 4770 | |
| 4771 | struct DestroyUnpassedArg final : EHScopeStack::Cleanup { |
| 4772 | DestroyUnpassedArg(Address Addr, QualType Ty) : Addr(Addr), Ty(Ty) {} |
| 4773 | |
| 4774 | Address Addr; |
| 4775 | QualType Ty; |
| 4776 | |
| 4777 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 4778 | QualType::DestructionKind DtorKind = Ty.isDestructedType(); |
| 4779 | if (DtorKind == QualType::DK_cxx_destructor) { |
| 4780 | const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); |
| 4781 | assert(!Dtor->isTrivial()); |
| 4782 | CGF.EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete, /*for vbase*/ ForVirtualBase: false, |
| 4783 | /*Delegating=*/false, This: Addr, ThisTy: Ty); |
| 4784 | } else { |
| 4785 | CGF.callCStructDestructor(Dst: CGF.MakeAddrLValue(Addr, T: Ty)); |
| 4786 | } |
| 4787 | } |
| 4788 | }; |
| 4789 | |
| 4790 | struct DisableDebugLocationUpdates { |
| 4791 | CodeGenFunction &CGF; |
| 4792 | bool disabledDebugInfo; |
| 4793 | DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { |
| 4794 | if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(Val: E) && CGF.getDebugInfo())) |
| 4795 | CGF.disableDebugInfo(); |
| 4796 | } |
| 4797 | ~DisableDebugLocationUpdates() { |
| 4798 | if (disabledDebugInfo) |
| 4799 | CGF.enableDebugInfo(); |
| 4800 | } |
| 4801 | }; |
| 4802 | |
| 4803 | } // end anonymous namespace |
| 4804 | |
| 4805 | RValue CallArg::getRValue(CodeGenFunction &CGF) const { |
| 4806 | if (!HasLV) |
| 4807 | return RV; |
| 4808 | LValue Copy = CGF.MakeAddrLValue(Addr: CGF.CreateMemTemp(T: Ty), T: Ty); |
| 4809 | CGF.EmitAggregateCopy(Dest: Copy, Src: LV, EltTy: Ty, MayOverlap: AggValueSlot::DoesNotOverlap, |
| 4810 | isVolatile: LV.isVolatile()); |
| 4811 | IsUsed = true; |
| 4812 | return RValue::getAggregate(addr: Copy.getAddress()); |
| 4813 | } |
| 4814 | |
| 4815 | void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { |
| 4816 | LValue Dst = CGF.MakeAddrLValue(Addr, T: Ty); |
| 4817 | if (!HasLV && RV.isScalar()) |
| 4818 | CGF.EmitStoreOfScalar(value: RV.getScalarVal(), lvalue: Dst, /*isInit=*/true); |
| 4819 | else if (!HasLV && RV.isComplex()) |
| 4820 | CGF.EmitStoreOfComplex(V: RV.getComplexVal(), dest: Dst, /*init=*/isInit: true); |
| 4821 | else { |
| 4822 | auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); |
| 4823 | LValue SrcLV = CGF.MakeAddrLValue(Addr, T: Ty); |
| 4824 | // We assume that call args are never copied into subobjects. |
| 4825 | CGF.EmitAggregateCopy(Dest: Dst, Src: SrcLV, EltTy: Ty, MayOverlap: AggValueSlot::DoesNotOverlap, |
| 4826 | isVolatile: HasLV ? LV.isVolatileQualified() |
| 4827 | : RV.isVolatileQualified()); |
| 4828 | } |
| 4829 | IsUsed = true; |
| 4830 | } |
| 4831 | |
| 4832 | void CodeGenFunction::EmitWritebacks(const CallArgList &args) { |
| 4833 | for (const auto &I : args.writebacks()) |
| 4834 | emitWriteback(CGF&: *this, writeback: I); |
| 4835 | } |
| 4836 | |
| 4837 | void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, |
| 4838 | QualType type) { |
| 4839 | DisableDebugLocationUpdates Dis(*this, E); |
| 4840 | if (const ObjCIndirectCopyRestoreExpr *CRE = |
| 4841 | dyn_cast<ObjCIndirectCopyRestoreExpr>(Val: E)) { |
| 4842 | assert(getLangOpts().ObjCAutoRefCount); |
| 4843 | return emitWritebackArg(CGF&: *this, args, CRE); |
| 4844 | } |
| 4845 | |
| 4846 | // Add writeback for HLSLOutParamExpr. |
| 4847 | // Needs to be before the assert below because HLSLOutArgExpr is an LValue |
| 4848 | // and is not a reference. |
| 4849 | if (const HLSLOutArgExpr *OE = dyn_cast<HLSLOutArgExpr>(Val: E)) { |
| 4850 | EmitHLSLOutArgExpr(E: OE, Args&: args, Ty: type); |
| 4851 | return; |
| 4852 | } |
| 4853 | |
| 4854 | assert(type->isReferenceType() == E->isGLValue() && |
| 4855 | "reference binding to unmaterialized r-value!" ); |
| 4856 | |
| 4857 | if (E->isGLValue()) { |
| 4858 | assert(E->getObjectKind() == OK_Ordinary); |
| 4859 | return args.add(rvalue: EmitReferenceBindingToExpr(E), type); |
| 4860 | } |
| 4861 | |
| 4862 | bool HasAggregateEvalKind = hasAggregateEvaluationKind(T: type); |
| 4863 | |
| 4864 | // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. |
| 4865 | // However, we still have to push an EH-only cleanup in case we unwind before |
| 4866 | // we make it to the call. |
| 4867 | if (type->isRecordType() && |
| 4868 | type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { |
| 4869 | // If we're using inalloca, use the argument memory. Otherwise, use a |
| 4870 | // temporary. |
| 4871 | AggValueSlot Slot = args.isUsingInAlloca() |
| 4872 | ? createPlaceholderSlot(CGF&: *this, Ty: type) |
| 4873 | : CreateAggTemp(T: type, Name: "agg.tmp" ); |
| 4874 | |
| 4875 | bool DestroyedInCallee = true, NeedsCleanup = true; |
| 4876 | if (const auto *RD = type->getAsCXXRecordDecl()) |
| 4877 | DestroyedInCallee = RD->hasNonTrivialDestructor(); |
| 4878 | else |
| 4879 | NeedsCleanup = type.isDestructedType(); |
| 4880 | |
| 4881 | if (DestroyedInCallee) |
| 4882 | Slot.setExternallyDestructed(); |
| 4883 | |
| 4884 | EmitAggExpr(E, AS: Slot); |
| 4885 | RValue RV = Slot.asRValue(); |
| 4886 | args.add(rvalue: RV, type); |
| 4887 | |
| 4888 | if (DestroyedInCallee && NeedsCleanup) { |
| 4889 | // Create a no-op GEP between the placeholder and the cleanup so we can |
| 4890 | // RAUW it successfully. It also serves as a marker of the first |
| 4891 | // instruction where the cleanup is active. |
| 4892 | pushFullExprCleanup<DestroyUnpassedArg>(kind: NormalAndEHCleanup, |
| 4893 | A: Slot.getAddress(), A: type); |
| 4894 | // This unreachable is a temporary marker which will be removed later. |
| 4895 | llvm::Instruction *IsActive = |
| 4896 | Builder.CreateFlagLoad(Addr: llvm::Constant::getNullValue(Ty: Int8PtrTy)); |
| 4897 | args.addArgCleanupDeactivation(Cleanup: EHStack.stable_begin(), IsActiveIP: IsActive); |
| 4898 | } |
| 4899 | return; |
| 4900 | } |
| 4901 | |
| 4902 | if (HasAggregateEvalKind && isa<ImplicitCastExpr>(Val: E) && |
| 4903 | cast<CastExpr>(Val: E)->getCastKind() == CK_LValueToRValue && |
| 4904 | !type->isArrayParameterType() && !type.isNonTrivialToPrimitiveCopy()) { |
| 4905 | LValue L = EmitLValue(E: cast<CastExpr>(Val: E)->getSubExpr()); |
| 4906 | assert(L.isSimple()); |
| 4907 | args.addUncopiedAggregate(LV: L, type); |
| 4908 | return; |
| 4909 | } |
| 4910 | |
| 4911 | args.add(rvalue: EmitAnyExprToTemp(E), type); |
| 4912 | } |
| 4913 | |
| 4914 | QualType CodeGenFunction::getVarArgType(const Expr *Arg) { |
| 4915 | // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC |
| 4916 | // implicitly widens null pointer constants that are arguments to varargs |
| 4917 | // functions to pointer-sized ints. |
| 4918 | if (!getTarget().getTriple().isOSWindows()) |
| 4919 | return Arg->getType(); |
| 4920 | |
| 4921 | if (Arg->getType()->isIntegerType() && |
| 4922 | getContext().getTypeSize(T: Arg->getType()) < |
| 4923 | getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) && |
| 4924 | Arg->isNullPointerConstant(Ctx&: getContext(), |
| 4925 | NPC: Expr::NPC_ValueDependentIsNotNull)) { |
| 4926 | return getContext().getIntPtrType(); |
| 4927 | } |
| 4928 | |
| 4929 | return Arg->getType(); |
| 4930 | } |
| 4931 | |
| 4932 | // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| 4933 | // optimizer it can aggressively ignore unwind edges. |
| 4934 | void CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { |
| 4935 | if (CGM.getCodeGenOpts().OptimizationLevel != 0 && |
| 4936 | !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) |
| 4937 | Inst->setMetadata(Kind: "clang.arc.no_objc_arc_exceptions" , |
| 4938 | Node: CGM.getNoObjCARCExceptionsMetadata()); |
| 4939 | } |
| 4940 | |
| 4941 | /// Emits a call to the given no-arguments nounwind runtime function. |
| 4942 | llvm::CallInst * |
| 4943 | CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
| 4944 | const llvm::Twine &name) { |
| 4945 | return EmitNounwindRuntimeCall(callee, args: ArrayRef<llvm::Value *>(), name); |
| 4946 | } |
| 4947 | |
| 4948 | /// Emits a call to the given nounwind runtime function. |
| 4949 | llvm::CallInst * |
| 4950 | CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
| 4951 | ArrayRef<Address> args, |
| 4952 | const llvm::Twine &name) { |
| 4953 | SmallVector<llvm::Value *, 3> values; |
| 4954 | for (auto arg : args) |
| 4955 | values.push_back(Elt: arg.emitRawPointer(CGF&: *this)); |
| 4956 | return EmitNounwindRuntimeCall(callee, args: values, name); |
| 4957 | } |
| 4958 | |
| 4959 | llvm::CallInst * |
| 4960 | CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
| 4961 | ArrayRef<llvm::Value *> args, |
| 4962 | const llvm::Twine &name) { |
| 4963 | llvm::CallInst *call = EmitRuntimeCall(callee, args, name); |
| 4964 | call->setDoesNotThrow(); |
| 4965 | return call; |
| 4966 | } |
| 4967 | |
| 4968 | /// Emits a simple call (never an invoke) to the given no-arguments |
| 4969 | /// runtime function. |
| 4970 | llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, |
| 4971 | const llvm::Twine &name) { |
| 4972 | return EmitRuntimeCall(callee, args: {}, name); |
| 4973 | } |
| 4974 | |
| 4975 | // Calls which may throw must have operand bundles indicating which funclet |
| 4976 | // they are nested within. |
| 4977 | SmallVector<llvm::OperandBundleDef, 1> |
| 4978 | CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { |
| 4979 | // There is no need for a funclet operand bundle if we aren't inside a |
| 4980 | // funclet. |
| 4981 | if (!CurrentFuncletPad) |
| 4982 | return (SmallVector<llvm::OperandBundleDef, 1>()); |
| 4983 | |
| 4984 | // Skip intrinsics which cannot throw (as long as they don't lower into |
| 4985 | // regular function calls in the course of IR transformations). |
| 4986 | if (auto *CalleeFn = dyn_cast<llvm::Function>(Val: Callee->stripPointerCasts())) { |
| 4987 | if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) { |
| 4988 | auto IID = CalleeFn->getIntrinsicID(); |
| 4989 | if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID)) |
| 4990 | return (SmallVector<llvm::OperandBundleDef, 1>()); |
| 4991 | } |
| 4992 | } |
| 4993 | |
| 4994 | SmallVector<llvm::OperandBundleDef, 1> BundleList; |
| 4995 | BundleList.emplace_back(Args: "funclet" , Args&: CurrentFuncletPad); |
| 4996 | return BundleList; |
| 4997 | } |
| 4998 | |
| 4999 | /// Emits a simple call (never an invoke) to the given runtime function. |
| 5000 | llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, |
| 5001 | ArrayRef<llvm::Value *> args, |
| 5002 | const llvm::Twine &name) { |
| 5003 | llvm::CallInst *call = Builder.CreateCall( |
| 5004 | Callee: callee, Args: args, OpBundles: getBundlesForFunclet(Callee: callee.getCallee()), Name: name); |
| 5005 | call->setCallingConv(getRuntimeCC()); |
| 5006 | |
| 5007 | if (CGM.shouldEmitConvergenceTokens() && call->isConvergent()) |
| 5008 | return cast<llvm::CallInst>(Val: addConvergenceControlToken(Input: call)); |
| 5009 | return call; |
| 5010 | } |
| 5011 | |
| 5012 | /// Emits a call or invoke to the given noreturn runtime function. |
| 5013 | void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( |
| 5014 | llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { |
| 5015 | SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| 5016 | getBundlesForFunclet(Callee: callee.getCallee()); |
| 5017 | |
| 5018 | if (getInvokeDest()) { |
| 5019 | llvm::InvokeInst *invoke = Builder.CreateInvoke( |
| 5020 | Callee: callee, NormalDest: getUnreachableBlock(), UnwindDest: getInvokeDest(), Args: args, OpBundles: BundleList); |
| 5021 | invoke->setDoesNotReturn(); |
| 5022 | invoke->setCallingConv(getRuntimeCC()); |
| 5023 | } else { |
| 5024 | llvm::CallInst *call = Builder.CreateCall(Callee: callee, Args: args, OpBundles: BundleList); |
| 5025 | call->setDoesNotReturn(); |
| 5026 | call->setCallingConv(getRuntimeCC()); |
| 5027 | Builder.CreateUnreachable(); |
| 5028 | } |
| 5029 | } |
| 5030 | |
| 5031 | /// Emits a call or invoke instruction to the given nullary runtime function. |
| 5032 | llvm::CallBase * |
| 5033 | CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
| 5034 | const Twine &name) { |
| 5035 | return EmitRuntimeCallOrInvoke(callee, args: {}, name); |
| 5036 | } |
| 5037 | |
| 5038 | /// Emits a call or invoke instruction to the given runtime function. |
| 5039 | llvm::CallBase * |
| 5040 | CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
| 5041 | ArrayRef<llvm::Value *> args, |
| 5042 | const Twine &name) { |
| 5043 | llvm::CallBase *call = EmitCallOrInvoke(Callee: callee, Args: args, Name: name); |
| 5044 | call->setCallingConv(getRuntimeCC()); |
| 5045 | return call; |
| 5046 | } |
| 5047 | |
| 5048 | /// Emits a call or invoke instruction to the given function, depending |
| 5049 | /// on the current state of the EH stack. |
| 5050 | llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, |
| 5051 | ArrayRef<llvm::Value *> Args, |
| 5052 | const Twine &Name) { |
| 5053 | llvm::BasicBlock *InvokeDest = getInvokeDest(); |
| 5054 | SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| 5055 | getBundlesForFunclet(Callee: Callee.getCallee()); |
| 5056 | |
| 5057 | llvm::CallBase *Inst; |
| 5058 | if (!InvokeDest) |
| 5059 | Inst = Builder.CreateCall(Callee, Args, OpBundles: BundleList, Name); |
| 5060 | else { |
| 5061 | llvm::BasicBlock *ContBB = createBasicBlock(name: "invoke.cont" ); |
| 5062 | Inst = Builder.CreateInvoke(Callee, NormalDest: ContBB, UnwindDest: InvokeDest, Args, OpBundles: BundleList, |
| 5063 | Name); |
| 5064 | EmitBlock(BB: ContBB); |
| 5065 | } |
| 5066 | |
| 5067 | // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| 5068 | // optimizer it can aggressively ignore unwind edges. |
| 5069 | if (CGM.getLangOpts().ObjCAutoRefCount) |
| 5070 | AddObjCARCExceptionMetadata(Inst); |
| 5071 | |
| 5072 | return Inst; |
| 5073 | } |
| 5074 | |
| 5075 | void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, |
| 5076 | llvm::Value *New) { |
| 5077 | DeferredReplacements.push_back( |
| 5078 | Elt: std::make_pair(x: llvm::WeakTrackingVH(Old), y&: New)); |
| 5079 | } |
| 5080 | |
| 5081 | namespace { |
| 5082 | |
| 5083 | /// Specify given \p NewAlign as the alignment of return value attribute. If |
| 5084 | /// such attribute already exists, re-set it to the maximal one of two options. |
| 5085 | [[nodiscard]] llvm::AttributeList |
| 5086 | maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, |
| 5087 | const llvm::AttributeList &Attrs, |
| 5088 | llvm::Align NewAlign) { |
| 5089 | llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); |
| 5090 | if (CurAlign >= NewAlign) |
| 5091 | return Attrs; |
| 5092 | llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Context&: Ctx, Alignment: NewAlign); |
| 5093 | return Attrs.removeRetAttribute(C&: Ctx, Kind: llvm::Attribute::AttrKind::Alignment) |
| 5094 | .addRetAttribute(C&: Ctx, Attr: AlignAttr); |
| 5095 | } |
| 5096 | |
| 5097 | template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { |
| 5098 | protected: |
| 5099 | CodeGenFunction &CGF; |
| 5100 | |
| 5101 | /// We do nothing if this is, or becomes, nullptr. |
| 5102 | const AlignedAttrTy *AA = nullptr; |
| 5103 | |
| 5104 | llvm::Value *Alignment = nullptr; // May or may not be a constant. |
| 5105 | llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. |
| 5106 | |
| 5107 | AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) |
| 5108 | : CGF(CGF_) { |
| 5109 | if (!FuncDecl) |
| 5110 | return; |
| 5111 | AA = FuncDecl->getAttr<AlignedAttrTy>(); |
| 5112 | } |
| 5113 | |
| 5114 | public: |
| 5115 | /// If we can, materialize the alignment as an attribute on return value. |
| 5116 | [[nodiscard]] llvm::AttributeList |
| 5117 | TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { |
| 5118 | if (!AA || OffsetCI || CGF.SanOpts.has(K: SanitizerKind::Alignment)) |
| 5119 | return Attrs; |
| 5120 | const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Val: Alignment); |
| 5121 | if (!AlignmentCI) |
| 5122 | return Attrs; |
| 5123 | // We may legitimately have non-power-of-2 alignment here. |
| 5124 | // If so, this is UB land, emit it via `@llvm.assume` instead. |
| 5125 | if (!AlignmentCI->getValue().isPowerOf2()) |
| 5126 | return Attrs; |
| 5127 | llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( |
| 5128 | Ctx&: CGF.getLLVMContext(), Attrs, |
| 5129 | NewAlign: llvm::Align( |
| 5130 | AlignmentCI->getLimitedValue(Limit: llvm::Value::MaximumAlignment))); |
| 5131 | AA = nullptr; // We're done. Disallow doing anything else. |
| 5132 | return NewAttrs; |
| 5133 | } |
| 5134 | |
| 5135 | /// Emit alignment assumption. |
| 5136 | /// This is a general fallback that we take if either there is an offset, |
| 5137 | /// or the alignment is variable or we are sanitizing for alignment. |
| 5138 | void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { |
| 5139 | if (!AA) |
| 5140 | return; |
| 5141 | CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, |
| 5142 | AA->getLocation(), Alignment, OffsetCI); |
| 5143 | AA = nullptr; // We're done. Disallow doing anything else. |
| 5144 | } |
| 5145 | }; |
| 5146 | |
| 5147 | /// Helper data structure to emit `AssumeAlignedAttr`. |
| 5148 | class AssumeAlignedAttrEmitter final |
| 5149 | : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { |
| 5150 | public: |
| 5151 | AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) |
| 5152 | : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { |
| 5153 | if (!AA) |
| 5154 | return; |
| 5155 | // It is guaranteed that the alignment/offset are constants. |
| 5156 | Alignment = cast<llvm::ConstantInt>(Val: CGF.EmitScalarExpr(E: AA->getAlignment())); |
| 5157 | if (Expr *Offset = AA->getOffset()) { |
| 5158 | OffsetCI = cast<llvm::ConstantInt>(Val: CGF.EmitScalarExpr(E: Offset)); |
| 5159 | if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. |
| 5160 | OffsetCI = nullptr; |
| 5161 | } |
| 5162 | } |
| 5163 | }; |
| 5164 | |
| 5165 | /// Helper data structure to emit `AllocAlignAttr`. |
| 5166 | class AllocAlignAttrEmitter final |
| 5167 | : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { |
| 5168 | public: |
| 5169 | AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, |
| 5170 | const CallArgList &CallArgs) |
| 5171 | : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { |
| 5172 | if (!AA) |
| 5173 | return; |
| 5174 | // Alignment may or may not be a constant, and that is okay. |
| 5175 | Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] |
| 5176 | .getRValue(CGF) |
| 5177 | .getScalarVal(); |
| 5178 | } |
| 5179 | }; |
| 5180 | |
| 5181 | } // namespace |
| 5182 | |
| 5183 | static unsigned getMaxVectorWidth(const llvm::Type *Ty) { |
| 5184 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: Ty)) |
| 5185 | return VT->getPrimitiveSizeInBits().getKnownMinValue(); |
| 5186 | if (auto *AT = dyn_cast<llvm::ArrayType>(Val: Ty)) |
| 5187 | return getMaxVectorWidth(Ty: AT->getElementType()); |
| 5188 | |
| 5189 | unsigned MaxVectorWidth = 0; |
| 5190 | if (auto *ST = dyn_cast<llvm::StructType>(Val: Ty)) |
| 5191 | for (auto *I : ST->elements()) |
| 5192 | MaxVectorWidth = std::max(a: MaxVectorWidth, b: getMaxVectorWidth(Ty: I)); |
| 5193 | return MaxVectorWidth; |
| 5194 | } |
| 5195 | |
| 5196 | RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, |
| 5197 | const CGCallee &Callee, |
| 5198 | ReturnValueSlot ReturnValue, |
| 5199 | const CallArgList &CallArgs, |
| 5200 | llvm::CallBase **callOrInvoke, bool IsMustTail, |
| 5201 | SourceLocation Loc, |
| 5202 | bool IsVirtualFunctionPointerThunk) { |
| 5203 | // FIXME: We no longer need the types from CallArgs; lift up and simplify. |
| 5204 | |
| 5205 | assert(Callee.isOrdinary() || Callee.isVirtual()); |
| 5206 | |
| 5207 | // Handle struct-return functions by passing a pointer to the |
| 5208 | // location that we would like to return into. |
| 5209 | QualType RetTy = CallInfo.getReturnType(); |
| 5210 | const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); |
| 5211 | |
| 5212 | llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(FI: CallInfo); |
| 5213 | |
| 5214 | const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); |
| 5215 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) { |
| 5216 | // We can only guarantee that a function is called from the correct |
| 5217 | // context/function based on the appropriate target attributes, |
| 5218 | // so only check in the case where we have both always_inline and target |
| 5219 | // since otherwise we could be making a conditional call after a check for |
| 5220 | // the proper cpu features (and it won't cause code generation issues due to |
| 5221 | // function based code generation). |
| 5222 | if (TargetDecl->hasAttr<AlwaysInlineAttr>() && |
| 5223 | (TargetDecl->hasAttr<TargetAttr>() || |
| 5224 | (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>()))) |
| 5225 | checkTargetFeatures(Loc, TargetDecl: FD); |
| 5226 | } |
| 5227 | |
| 5228 | // Some architectures (such as x86-64) have the ABI changed based on |
| 5229 | // attribute-target/features. Give them a chance to diagnose. |
| 5230 | const FunctionDecl *CallerDecl = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
| 5231 | const FunctionDecl *CalleeDecl = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl); |
| 5232 | CGM.getTargetCodeGenInfo().checkFunctionCallABI(CGM, CallLoc: Loc, Caller: CallerDecl, |
| 5233 | Callee: CalleeDecl, Args: CallArgs, ReturnType: RetTy); |
| 5234 | |
| 5235 | // 1. Set up the arguments. |
| 5236 | |
| 5237 | // If we're using inalloca, insert the allocation after the stack save. |
| 5238 | // FIXME: Do this earlier rather than hacking it in here! |
| 5239 | RawAddress ArgMemory = RawAddress::invalid(); |
| 5240 | if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { |
| 5241 | const llvm::DataLayout &DL = CGM.getDataLayout(); |
| 5242 | llvm::Instruction *IP = CallArgs.getStackBase(); |
| 5243 | llvm::AllocaInst *AI; |
| 5244 | if (IP) { |
| 5245 | IP = IP->getNextNode(); |
| 5246 | AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), "argmem" , |
| 5247 | IP->getIterator()); |
| 5248 | } else { |
| 5249 | AI = CreateTempAlloca(Ty: ArgStruct, Name: "argmem" ); |
| 5250 | } |
| 5251 | auto Align = CallInfo.getArgStructAlignment(); |
| 5252 | AI->setAlignment(Align.getAsAlign()); |
| 5253 | AI->setUsedWithInAlloca(true); |
| 5254 | assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); |
| 5255 | ArgMemory = RawAddress(AI, ArgStruct, Align); |
| 5256 | } |
| 5257 | |
| 5258 | ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); |
| 5259 | SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); |
| 5260 | |
| 5261 | // If the call returns a temporary with struct return, create a temporary |
| 5262 | // alloca to hold the result, unless one is given to us. |
| 5263 | Address SRetPtr = Address::invalid(); |
| 5264 | llvm::Value *UnusedReturnSizePtr = nullptr; |
| 5265 | if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { |
| 5266 | // For virtual function pointer thunks and musttail calls, we must always |
| 5267 | // forward an incoming SRet pointer to the callee, because a local alloca |
| 5268 | // would be de-allocated before the call. These cases both guarantee that |
| 5269 | // there will be an incoming SRet argument of the correct type. |
| 5270 | if ((IsVirtualFunctionPointerThunk || IsMustTail) && RetAI.isIndirect()) { |
| 5271 | SRetPtr = makeNaturalAddressForPointer(Ptr: CurFn->arg_begin() + |
| 5272 | IRFunctionArgs.getSRetArgNo(), |
| 5273 | T: RetTy, Alignment: CharUnits::fromQuantity(Quantity: 1)); |
| 5274 | } else if (!ReturnValue.isNull()) { |
| 5275 | SRetPtr = ReturnValue.getAddress(); |
| 5276 | } else { |
| 5277 | SRetPtr = CreateMemTempWithoutCast(T: RetTy, Name: "tmp" ); |
| 5278 | if (HaveInsertPoint() && ReturnValue.isUnused()) { |
| 5279 | llvm::TypeSize size = |
| 5280 | CGM.getDataLayout().getTypeAllocSize(Ty: ConvertTypeForMem(T: RetTy)); |
| 5281 | UnusedReturnSizePtr = EmitLifetimeStart(Size: size, Addr: SRetPtr.getBasePointer()); |
| 5282 | } |
| 5283 | } |
| 5284 | if (IRFunctionArgs.hasSRetArg()) { |
| 5285 | // A mismatch between the allocated return value's AS and the target's |
| 5286 | // chosen IndirectAS can happen e.g. when passing the this pointer through |
| 5287 | // a chain involving stores to / loads from the DefaultAS; we address this |
| 5288 | // here, symmetrically with the handling we have for normal pointer args. |
| 5289 | if (SRetPtr.getAddressSpace() != RetAI.getIndirectAddrSpace()) { |
| 5290 | llvm::Value *V = SRetPtr.getBasePointer(); |
| 5291 | LangAS SAS = getLangASFromTargetAS(TargetAS: SRetPtr.getAddressSpace()); |
| 5292 | llvm::Type *Ty = llvm::PointerType::get(C&: getLLVMContext(), |
| 5293 | AddressSpace: RetAI.getIndirectAddrSpace()); |
| 5294 | |
| 5295 | SRetPtr = SRetPtr.withPointer( |
| 5296 | NewPointer: getTargetHooks().performAddrSpaceCast(CGF&: *this, V, SrcAddr: SAS, DestTy: Ty, IsNonNull: true), |
| 5297 | IsKnownNonNull: SRetPtr.isKnownNonNull()); |
| 5298 | } |
| 5299 | IRCallArgs[IRFunctionArgs.getSRetArgNo()] = |
| 5300 | getAsNaturalPointerTo(Addr: SRetPtr, PointeeType: RetTy); |
| 5301 | } else if (RetAI.isInAlloca()) { |
| 5302 | Address Addr = |
| 5303 | Builder.CreateStructGEP(Addr: ArgMemory, Index: RetAI.getInAllocaFieldIndex()); |
| 5304 | Builder.CreateStore(Val: getAsNaturalPointerTo(Addr: SRetPtr, PointeeType: RetTy), Addr); |
| 5305 | } |
| 5306 | } |
| 5307 | |
| 5308 | RawAddress swiftErrorTemp = RawAddress::invalid(); |
| 5309 | Address swiftErrorArg = Address::invalid(); |
| 5310 | |
| 5311 | // When passing arguments using temporary allocas, we need to add the |
| 5312 | // appropriate lifetime markers. This vector keeps track of all the lifetime |
| 5313 | // markers that need to be ended right after the call. |
| 5314 | SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; |
| 5315 | |
| 5316 | // Translate all of the arguments as necessary to match the IR lowering. |
| 5317 | assert(CallInfo.arg_size() == CallArgs.size() && |
| 5318 | "Mismatch between function signature & arguments." ); |
| 5319 | unsigned ArgNo = 0; |
| 5320 | CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); |
| 5321 | for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); |
| 5322 | I != E; ++I, ++info_it, ++ArgNo) { |
| 5323 | const ABIArgInfo &ArgInfo = info_it->info; |
| 5324 | |
| 5325 | // Insert a padding argument to ensure proper alignment. |
| 5326 | if (IRFunctionArgs.hasPaddingArg(ArgNo)) |
| 5327 | IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| 5328 | llvm::UndefValue::get(T: ArgInfo.getPaddingType()); |
| 5329 | |
| 5330 | unsigned FirstIRArg, NumIRArgs; |
| 5331 | std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| 5332 | |
| 5333 | bool ArgHasMaybeUndefAttr = |
| 5334 | IsArgumentMaybeUndef(TargetDecl, NumRequiredArgs: CallInfo.getNumRequiredArgs(), ArgNo); |
| 5335 | |
| 5336 | switch (ArgInfo.getKind()) { |
| 5337 | case ABIArgInfo::InAlloca: { |
| 5338 | assert(NumIRArgs == 0); |
| 5339 | assert(getTarget().getTriple().getArch() == llvm::Triple::x86); |
| 5340 | if (I->isAggregate()) { |
| 5341 | RawAddress Addr = I->hasLValue() |
| 5342 | ? I->getKnownLValue().getAddress() |
| 5343 | : I->getKnownRValue().getAggregateAddress(); |
| 5344 | llvm::Instruction *Placeholder = |
| 5345 | cast<llvm::Instruction>(Val: Addr.getPointer()); |
| 5346 | |
| 5347 | if (!ArgInfo.getInAllocaIndirect()) { |
| 5348 | // Replace the placeholder with the appropriate argument slot GEP. |
| 5349 | CGBuilderTy::InsertPoint IP = Builder.saveIP(); |
| 5350 | Builder.SetInsertPoint(Placeholder); |
| 5351 | Addr = Builder.CreateStructGEP(Addr: ArgMemory, |
| 5352 | Index: ArgInfo.getInAllocaFieldIndex()); |
| 5353 | Builder.restoreIP(IP); |
| 5354 | } else { |
| 5355 | // For indirect things such as overaligned structs, replace the |
| 5356 | // placeholder with a regular aggregate temporary alloca. Store the |
| 5357 | // address of this alloca into the struct. |
| 5358 | Addr = CreateMemTemp(T: info_it->type, Name: "inalloca.indirect.tmp" ); |
| 5359 | Address ArgSlot = Builder.CreateStructGEP( |
| 5360 | Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex()); |
| 5361 | Builder.CreateStore(Val: Addr.getPointer(), Addr: ArgSlot); |
| 5362 | } |
| 5363 | deferPlaceholderReplacement(Old: Placeholder, New: Addr.getPointer()); |
| 5364 | } else if (ArgInfo.getInAllocaIndirect()) { |
| 5365 | // Make a temporary alloca and store the address of it into the argument |
| 5366 | // struct. |
| 5367 | RawAddress Addr = CreateMemTempWithoutCast( |
| 5368 | T: I->Ty, Align: getContext().getTypeAlignInChars(T: I->Ty), |
| 5369 | Name: "indirect-arg-temp" ); |
| 5370 | I->copyInto(CGF&: *this, Addr); |
| 5371 | Address ArgSlot = |
| 5372 | Builder.CreateStructGEP(Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex()); |
| 5373 | Builder.CreateStore(Val: Addr.getPointer(), Addr: ArgSlot); |
| 5374 | } else { |
| 5375 | // Store the RValue into the argument struct. |
| 5376 | Address Addr = |
| 5377 | Builder.CreateStructGEP(Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex()); |
| 5378 | Addr = Addr.withElementType(ElemTy: ConvertTypeForMem(T: I->Ty)); |
| 5379 | I->copyInto(CGF&: *this, Addr); |
| 5380 | } |
| 5381 | break; |
| 5382 | } |
| 5383 | |
| 5384 | case ABIArgInfo::Indirect: |
| 5385 | case ABIArgInfo::IndirectAliased: { |
| 5386 | assert(NumIRArgs == 1); |
| 5387 | if (I->isAggregate()) { |
| 5388 | // We want to avoid creating an unnecessary temporary+copy here; |
| 5389 | // however, we need one in three cases: |
| 5390 | // 1. If the argument is not byval, and we are required to copy the |
| 5391 | // source. (This case doesn't occur on any common architecture.) |
| 5392 | // 2. If the argument is byval, RV is not sufficiently aligned, and |
| 5393 | // we cannot force it to be sufficiently aligned. |
| 5394 | // 3. If the argument is byval, but RV is not located in default |
| 5395 | // or alloca address space. |
| 5396 | Address Addr = I->hasLValue() |
| 5397 | ? I->getKnownLValue().getAddress() |
| 5398 | : I->getKnownRValue().getAggregateAddress(); |
| 5399 | CharUnits Align = ArgInfo.getIndirectAlign(); |
| 5400 | const llvm::DataLayout *TD = &CGM.getDataLayout(); |
| 5401 | |
| 5402 | assert((FirstIRArg >= IRFuncTy->getNumParams() || |
| 5403 | IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == |
| 5404 | TD->getAllocaAddrSpace()) && |
| 5405 | "indirect argument must be in alloca address space" ); |
| 5406 | |
| 5407 | bool NeedCopy = false; |
| 5408 | if (Addr.getAlignment() < Align && |
| 5409 | llvm::getOrEnforceKnownAlignment(V: Addr.emitRawPointer(CGF&: *this), |
| 5410 | PrefAlign: Align.getAsAlign(), |
| 5411 | DL: *TD) < Align.getAsAlign()) { |
| 5412 | NeedCopy = true; |
| 5413 | } else if (I->hasLValue()) { |
| 5414 | auto LV = I->getKnownLValue(); |
| 5415 | |
| 5416 | bool isByValOrRef = |
| 5417 | ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal(); |
| 5418 | |
| 5419 | if (!isByValOrRef || |
| 5420 | (LV.getAlignment() < getContext().getTypeAlignInChars(T: I->Ty))) { |
| 5421 | NeedCopy = true; |
| 5422 | } |
| 5423 | |
| 5424 | if (isByValOrRef && Addr.getType()->getAddressSpace() != |
| 5425 | ArgInfo.getIndirectAddrSpace()) { |
| 5426 | NeedCopy = true; |
| 5427 | } |
| 5428 | } |
| 5429 | |
| 5430 | if (!NeedCopy) { |
| 5431 | // Skip the extra memcpy call. |
| 5432 | llvm::Value *V = getAsNaturalPointerTo(Addr, PointeeType: I->Ty); |
| 5433 | auto *T = llvm::PointerType::get(C&: CGM.getLLVMContext(), |
| 5434 | AddressSpace: ArgInfo.getIndirectAddrSpace()); |
| 5435 | |
| 5436 | // FIXME: This should not depend on the language address spaces, and |
| 5437 | // only the contextual values. If the address space mismatches, see if |
| 5438 | // we can look through a cast to a compatible address space value, |
| 5439 | // otherwise emit a copy. |
| 5440 | llvm::Value *Val = getTargetHooks().performAddrSpaceCast( |
| 5441 | CGF&: *this, V, SrcAddr: I->Ty.getAddressSpace(), DestTy: T, IsNonNull: true); |
| 5442 | if (ArgHasMaybeUndefAttr) |
| 5443 | Val = Builder.CreateFreeze(V: Val); |
| 5444 | IRCallArgs[FirstIRArg] = Val; |
| 5445 | break; |
| 5446 | } |
| 5447 | } else if (I->getType()->isArrayParameterType()) { |
| 5448 | // Don't produce a temporary for ArrayParameterType arguments. |
| 5449 | // ArrayParameterType arguments are only created from |
| 5450 | // HLSL_ArrayRValue casts and HLSLOutArgExpr expressions, both |
| 5451 | // of which create temporaries already. This allows us to just use the |
| 5452 | // scalar for the decayed array pointer as the argument directly. |
| 5453 | IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal(); |
| 5454 | break; |
| 5455 | } |
| 5456 | |
| 5457 | // For non-aggregate args and aggregate args meeting conditions above |
| 5458 | // we need to create an aligned temporary, and copy to it. |
| 5459 | RawAddress AI = CreateMemTempWithoutCast( |
| 5460 | T: I->Ty, Align: ArgInfo.getIndirectAlign(), Name: "byval-temp" ); |
| 5461 | llvm::Value *Val = getAsNaturalPointerTo(Addr: AI, PointeeType: I->Ty); |
| 5462 | if (ArgHasMaybeUndefAttr) |
| 5463 | Val = Builder.CreateFreeze(V: Val); |
| 5464 | IRCallArgs[FirstIRArg] = Val; |
| 5465 | |
| 5466 | // Emit lifetime markers for the temporary alloca. |
| 5467 | llvm::TypeSize ByvalTempElementSize = |
| 5468 | CGM.getDataLayout().getTypeAllocSize(Ty: AI.getElementType()); |
| 5469 | llvm::Value *LifetimeSize = |
| 5470 | EmitLifetimeStart(Size: ByvalTempElementSize, Addr: AI.getPointer()); |
| 5471 | |
| 5472 | // Add cleanup code to emit the end lifetime marker after the call. |
| 5473 | if (LifetimeSize) // In case we disabled lifetime markers. |
| 5474 | CallLifetimeEndAfterCall.emplace_back(Args&: AI, Args&: LifetimeSize); |
| 5475 | |
| 5476 | // Generate the copy. |
| 5477 | I->copyInto(CGF&: *this, Addr: AI); |
| 5478 | break; |
| 5479 | } |
| 5480 | |
| 5481 | case ABIArgInfo::Ignore: |
| 5482 | assert(NumIRArgs == 0); |
| 5483 | break; |
| 5484 | |
| 5485 | case ABIArgInfo::Extend: |
| 5486 | case ABIArgInfo::Direct: { |
| 5487 | if (!isa<llvm::StructType>(Val: ArgInfo.getCoerceToType()) && |
| 5488 | ArgInfo.getCoerceToType() == ConvertType(T: info_it->type) && |
| 5489 | ArgInfo.getDirectOffset() == 0) { |
| 5490 | assert(NumIRArgs == 1); |
| 5491 | llvm::Value *V; |
| 5492 | if (!I->isAggregate()) |
| 5493 | V = I->getKnownRValue().getScalarVal(); |
| 5494 | else |
| 5495 | V = Builder.CreateLoad( |
| 5496 | Addr: I->hasLValue() ? I->getKnownLValue().getAddress() |
| 5497 | : I->getKnownRValue().getAggregateAddress()); |
| 5498 | |
| 5499 | // Implement swifterror by copying into a new swifterror argument. |
| 5500 | // We'll write back in the normal path out of the call. |
| 5501 | if (CallInfo.getExtParameterInfo(argIndex: ArgNo).getABI() == |
| 5502 | ParameterABI::SwiftErrorResult) { |
| 5503 | assert(!swiftErrorTemp.isValid() && "multiple swifterror args" ); |
| 5504 | |
| 5505 | QualType pointeeTy = I->Ty->getPointeeType(); |
| 5506 | swiftErrorArg = makeNaturalAddressForPointer( |
| 5507 | Ptr: V, T: pointeeTy, Alignment: getContext().getTypeAlignInChars(T: pointeeTy)); |
| 5508 | |
| 5509 | swiftErrorTemp = |
| 5510 | CreateMemTemp(T: pointeeTy, Align: getPointerAlign(), Name: "swifterror.temp" ); |
| 5511 | V = swiftErrorTemp.getPointer(); |
| 5512 | cast<llvm::AllocaInst>(Val: V)->setSwiftError(true); |
| 5513 | |
| 5514 | llvm::Value *errorValue = Builder.CreateLoad(Addr: swiftErrorArg); |
| 5515 | Builder.CreateStore(Val: errorValue, Addr: swiftErrorTemp); |
| 5516 | } |
| 5517 | |
| 5518 | // We might have to widen integers, but we should never truncate. |
| 5519 | if (ArgInfo.getCoerceToType() != V->getType() && |
| 5520 | V->getType()->isIntegerTy()) |
| 5521 | V = Builder.CreateZExt(V, DestTy: ArgInfo.getCoerceToType()); |
| 5522 | |
| 5523 | // The only plausible mismatch here would be for pointer address spaces. |
| 5524 | // We assume that the target has a reasonable mapping for the DefaultAS |
| 5525 | // (it can be casted to from incoming specific ASes), and insert an AS |
| 5526 | // cast to address the mismatch. |
| 5527 | if (FirstIRArg < IRFuncTy->getNumParams() && |
| 5528 | V->getType() != IRFuncTy->getParamType(i: FirstIRArg)) { |
| 5529 | assert(V->getType()->isPointerTy() && "Only pointers can mismatch!" ); |
| 5530 | auto ActualAS = I->Ty.getAddressSpace(); |
| 5531 | V = getTargetHooks().performAddrSpaceCast( |
| 5532 | CGF&: *this, V, SrcAddr: ActualAS, DestTy: IRFuncTy->getParamType(i: FirstIRArg)); |
| 5533 | } |
| 5534 | |
| 5535 | if (ArgHasMaybeUndefAttr) |
| 5536 | V = Builder.CreateFreeze(V); |
| 5537 | IRCallArgs[FirstIRArg] = V; |
| 5538 | break; |
| 5539 | } |
| 5540 | |
| 5541 | llvm::StructType *STy = |
| 5542 | dyn_cast<llvm::StructType>(Val: ArgInfo.getCoerceToType()); |
| 5543 | |
| 5544 | // FIXME: Avoid the conversion through memory if possible. |
| 5545 | Address Src = Address::invalid(); |
| 5546 | if (!I->isAggregate()) { |
| 5547 | Src = CreateMemTemp(T: I->Ty, Name: "coerce" ); |
| 5548 | I->copyInto(CGF&: *this, Addr: Src); |
| 5549 | } else { |
| 5550 | Src = I->hasLValue() ? I->getKnownLValue().getAddress() |
| 5551 | : I->getKnownRValue().getAggregateAddress(); |
| 5552 | } |
| 5553 | |
| 5554 | // If the value is offset in memory, apply the offset now. |
| 5555 | Src = emitAddressAtOffset(CGF&: *this, addr: Src, info: ArgInfo); |
| 5556 | |
| 5557 | // Fast-isel and the optimizer generally like scalar values better than |
| 5558 | // FCAs, so we flatten them if this is safe to do for this argument. |
| 5559 | if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { |
| 5560 | llvm::Type *SrcTy = Src.getElementType(); |
| 5561 | llvm::TypeSize SrcTypeSize = |
| 5562 | CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy); |
| 5563 | llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(Ty: STy); |
| 5564 | if (SrcTypeSize.isScalable()) { |
| 5565 | assert(STy->containsHomogeneousScalableVectorTypes() && |
| 5566 | "ABI only supports structure with homogeneous scalable vector " |
| 5567 | "type" ); |
| 5568 | assert(SrcTypeSize == DstTypeSize && |
| 5569 | "Only allow non-fractional movement of structure with " |
| 5570 | "homogeneous scalable vector type" ); |
| 5571 | assert(NumIRArgs == STy->getNumElements()); |
| 5572 | |
| 5573 | llvm::Value *StoredStructValue = |
| 5574 | Builder.CreateLoad(Addr: Src, Name: Src.getName() + ".tuple" ); |
| 5575 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 5576 | llvm::Value * = Builder.CreateExtractValue( |
| 5577 | Agg: StoredStructValue, Idxs: i, Name: Src.getName() + ".extract" + Twine(i)); |
| 5578 | IRCallArgs[FirstIRArg + i] = Extract; |
| 5579 | } |
| 5580 | } else { |
| 5581 | uint64_t SrcSize = SrcTypeSize.getFixedValue(); |
| 5582 | uint64_t DstSize = DstTypeSize.getFixedValue(); |
| 5583 | |
| 5584 | // If the source type is smaller than the destination type of the |
| 5585 | // coerce-to logic, copy the source value into a temp alloca the size |
| 5586 | // of the destination type to allow loading all of it. The bits past |
| 5587 | // the source value are left undef. |
| 5588 | if (SrcSize < DstSize) { |
| 5589 | Address TempAlloca = CreateTempAlloca(Ty: STy, align: Src.getAlignment(), |
| 5590 | Name: Src.getName() + ".coerce" ); |
| 5591 | Builder.CreateMemCpy(Dest: TempAlloca, Src, Size: SrcSize); |
| 5592 | Src = TempAlloca; |
| 5593 | } else { |
| 5594 | Src = Src.withElementType(ElemTy: STy); |
| 5595 | } |
| 5596 | |
| 5597 | assert(NumIRArgs == STy->getNumElements()); |
| 5598 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 5599 | Address EltPtr = Builder.CreateStructGEP(Addr: Src, Index: i); |
| 5600 | llvm::Value *LI = Builder.CreateLoad(Addr: EltPtr); |
| 5601 | if (ArgHasMaybeUndefAttr) |
| 5602 | LI = Builder.CreateFreeze(V: LI); |
| 5603 | IRCallArgs[FirstIRArg + i] = LI; |
| 5604 | } |
| 5605 | } |
| 5606 | } else { |
| 5607 | // In the simple case, just pass the coerced loaded value. |
| 5608 | assert(NumIRArgs == 1); |
| 5609 | llvm::Value *Load = |
| 5610 | CreateCoercedLoad(Src, Ty: ArgInfo.getCoerceToType(), CGF&: *this); |
| 5611 | |
| 5612 | if (CallInfo.isCmseNSCall()) { |
| 5613 | // For certain parameter types, clear padding bits, as they may reveal |
| 5614 | // sensitive information. |
| 5615 | // Small struct/union types are passed as integer arrays. |
| 5616 | auto *ATy = dyn_cast<llvm::ArrayType>(Val: Load->getType()); |
| 5617 | if (ATy != nullptr && isa<RecordType>(Val: I->Ty.getCanonicalType())) |
| 5618 | Load = EmitCMSEClearRecord(Src: Load, ATy, QTy: I->Ty); |
| 5619 | } |
| 5620 | |
| 5621 | if (ArgHasMaybeUndefAttr) |
| 5622 | Load = Builder.CreateFreeze(V: Load); |
| 5623 | IRCallArgs[FirstIRArg] = Load; |
| 5624 | } |
| 5625 | |
| 5626 | break; |
| 5627 | } |
| 5628 | |
| 5629 | case ABIArgInfo::CoerceAndExpand: { |
| 5630 | auto coercionType = ArgInfo.getCoerceAndExpandType(); |
| 5631 | auto layout = CGM.getDataLayout().getStructLayout(Ty: coercionType); |
| 5632 | auto unpaddedCoercionType = ArgInfo.getUnpaddedCoerceAndExpandType(); |
| 5633 | auto *unpaddedStruct = dyn_cast<llvm::StructType>(Val: unpaddedCoercionType); |
| 5634 | |
| 5635 | llvm::Value *tempSize = nullptr; |
| 5636 | Address addr = Address::invalid(); |
| 5637 | RawAddress AllocaAddr = RawAddress::invalid(); |
| 5638 | if (I->isAggregate()) { |
| 5639 | addr = I->hasLValue() ? I->getKnownLValue().getAddress() |
| 5640 | : I->getKnownRValue().getAggregateAddress(); |
| 5641 | |
| 5642 | } else { |
| 5643 | RValue RV = I->getKnownRValue(); |
| 5644 | assert(RV.isScalar()); // complex should always just be direct |
| 5645 | |
| 5646 | llvm::Type *scalarType = RV.getScalarVal()->getType(); |
| 5647 | auto scalarSize = CGM.getDataLayout().getTypeAllocSize(Ty: scalarType); |
| 5648 | auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(Ty: scalarType); |
| 5649 | |
| 5650 | // Materialize to a temporary. |
| 5651 | addr = CreateTempAlloca(Ty: RV.getScalarVal()->getType(), |
| 5652 | align: CharUnits::fromQuantity(Quantity: std::max( |
| 5653 | a: layout->getAlignment(), b: scalarAlign)), |
| 5654 | Name: "tmp" , |
| 5655 | /*ArraySize=*/nullptr, Alloca: &AllocaAddr); |
| 5656 | tempSize = EmitLifetimeStart(Size: scalarSize, Addr: AllocaAddr.getPointer()); |
| 5657 | |
| 5658 | Builder.CreateStore(Val: RV.getScalarVal(), Addr: addr); |
| 5659 | } |
| 5660 | |
| 5661 | addr = addr.withElementType(ElemTy: coercionType); |
| 5662 | |
| 5663 | unsigned IRArgPos = FirstIRArg; |
| 5664 | unsigned unpaddedIndex = 0; |
| 5665 | for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| 5666 | llvm::Type *eltType = coercionType->getElementType(N: i); |
| 5667 | if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) |
| 5668 | continue; |
| 5669 | Address eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i); |
| 5670 | llvm::Value *elt = CreateCoercedLoad( |
| 5671 | Src: eltAddr, |
| 5672 | Ty: unpaddedStruct ? unpaddedStruct->getElementType(N: unpaddedIndex++) |
| 5673 | : unpaddedCoercionType, |
| 5674 | CGF&: *this); |
| 5675 | if (ArgHasMaybeUndefAttr) |
| 5676 | elt = Builder.CreateFreeze(V: elt); |
| 5677 | IRCallArgs[IRArgPos++] = elt; |
| 5678 | } |
| 5679 | assert(IRArgPos == FirstIRArg + NumIRArgs); |
| 5680 | |
| 5681 | if (tempSize) { |
| 5682 | EmitLifetimeEnd(Size: tempSize, Addr: AllocaAddr.getPointer()); |
| 5683 | } |
| 5684 | |
| 5685 | break; |
| 5686 | } |
| 5687 | |
| 5688 | case ABIArgInfo::Expand: { |
| 5689 | unsigned IRArgPos = FirstIRArg; |
| 5690 | ExpandTypeToArgs(Ty: I->Ty, Arg: *I, IRFuncTy, IRCallArgs, IRCallArgPos&: IRArgPos); |
| 5691 | assert(IRArgPos == FirstIRArg + NumIRArgs); |
| 5692 | break; |
| 5693 | } |
| 5694 | } |
| 5695 | } |
| 5696 | |
| 5697 | const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(CGF&: *this); |
| 5698 | llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); |
| 5699 | |
| 5700 | // If we're using inalloca, set up that argument. |
| 5701 | if (ArgMemory.isValid()) { |
| 5702 | llvm::Value *Arg = ArgMemory.getPointer(); |
| 5703 | assert(IRFunctionArgs.hasInallocaArg()); |
| 5704 | IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; |
| 5705 | } |
| 5706 | |
| 5707 | // 2. Prepare the function pointer. |
| 5708 | |
| 5709 | // If the callee is a bitcast of a non-variadic function to have a |
| 5710 | // variadic function pointer type, check to see if we can remove the |
| 5711 | // bitcast. This comes up with unprototyped functions. |
| 5712 | // |
| 5713 | // This makes the IR nicer, but more importantly it ensures that we |
| 5714 | // can inline the function at -O0 if it is marked always_inline. |
| 5715 | auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, |
| 5716 | llvm::Value *Ptr) -> llvm::Function * { |
| 5717 | if (!CalleeFT->isVarArg()) |
| 5718 | return nullptr; |
| 5719 | |
| 5720 | // Get underlying value if it's a bitcast |
| 5721 | if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Val: Ptr)) { |
| 5722 | if (CE->getOpcode() == llvm::Instruction::BitCast) |
| 5723 | Ptr = CE->getOperand(i_nocapture: 0); |
| 5724 | } |
| 5725 | |
| 5726 | llvm::Function *OrigFn = dyn_cast<llvm::Function>(Val: Ptr); |
| 5727 | if (!OrigFn) |
| 5728 | return nullptr; |
| 5729 | |
| 5730 | llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); |
| 5731 | |
| 5732 | // If the original type is variadic, or if any of the component types |
| 5733 | // disagree, we cannot remove the cast. |
| 5734 | if (OrigFT->isVarArg() || |
| 5735 | OrigFT->getNumParams() != CalleeFT->getNumParams() || |
| 5736 | OrigFT->getReturnType() != CalleeFT->getReturnType()) |
| 5737 | return nullptr; |
| 5738 | |
| 5739 | for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) |
| 5740 | if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) |
| 5741 | return nullptr; |
| 5742 | |
| 5743 | return OrigFn; |
| 5744 | }; |
| 5745 | |
| 5746 | if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { |
| 5747 | CalleePtr = OrigFn; |
| 5748 | IRFuncTy = OrigFn->getFunctionType(); |
| 5749 | } |
| 5750 | |
| 5751 | // 3. Perform the actual call. |
| 5752 | |
| 5753 | // Deactivate any cleanups that we're supposed to do immediately before |
| 5754 | // the call. |
| 5755 | if (!CallArgs.getCleanupsToDeactivate().empty()) |
| 5756 | deactivateArgCleanupsBeforeCall(CGF&: *this, CallArgs); |
| 5757 | |
| 5758 | // Update the largest vector width if any arguments have vector types. |
| 5759 | for (unsigned i = 0; i < IRCallArgs.size(); ++i) |
| 5760 | LargestVectorWidth = std::max(a: LargestVectorWidth, |
| 5761 | b: getMaxVectorWidth(Ty: IRCallArgs[i]->getType())); |
| 5762 | |
| 5763 | // Compute the calling convention and attributes. |
| 5764 | unsigned CallingConv; |
| 5765 | llvm::AttributeList Attrs; |
| 5766 | CGM.ConstructAttributeList(Name: CalleePtr->getName(), FI: CallInfo, |
| 5767 | CalleeInfo: Callee.getAbstractInfo(), AttrList&: Attrs, CallingConv, |
| 5768 | /*AttrOnCallSite=*/true, |
| 5769 | /*IsThunk=*/false); |
| 5770 | |
| 5771 | if (CallingConv == llvm::CallingConv::X86_VectorCall && |
| 5772 | getTarget().getTriple().isWindowsArm64EC()) { |
| 5773 | CGM.Error(loc: Loc, error: "__vectorcall calling convention is not currently " |
| 5774 | "supported" ); |
| 5775 | } |
| 5776 | |
| 5777 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl)) { |
| 5778 | if (FD->hasAttr<StrictFPAttr>()) |
| 5779 | // All calls within a strictfp function are marked strictfp |
| 5780 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::StrictFP); |
| 5781 | |
| 5782 | // If -ffast-math is enabled and the function is guarded by an |
| 5783 | // '__attribute__((optnone)) adjust the memory attribute so the BE emits the |
| 5784 | // library call instead of the intrinsic. |
| 5785 | if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath) |
| 5786 | CGM.AdjustMemoryAttribute(Name: CalleePtr->getName(), CalleeInfo: Callee.getAbstractInfo(), |
| 5787 | Attrs); |
| 5788 | } |
| 5789 | // Add call-site nomerge attribute if exists. |
| 5790 | if (InNoMergeAttributedStmt) |
| 5791 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoMerge); |
| 5792 | |
| 5793 | // Add call-site noinline attribute if exists. |
| 5794 | if (InNoInlineAttributedStmt) |
| 5795 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoInline); |
| 5796 | |
| 5797 | // Add call-site always_inline attribute if exists. |
| 5798 | // Note: This corresponds to the [[clang::always_inline]] statement attribute. |
| 5799 | if (InAlwaysInlineAttributedStmt && |
| 5800 | !CGM.getTargetCodeGenInfo().wouldInliningViolateFunctionCallABI( |
| 5801 | Caller: CallerDecl, Callee: CalleeDecl)) |
| 5802 | Attrs = |
| 5803 | Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::AlwaysInline); |
| 5804 | |
| 5805 | // Remove call-site convergent attribute if requested. |
| 5806 | if (InNoConvergentAttributedStmt) |
| 5807 | Attrs = |
| 5808 | Attrs.removeFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::Convergent); |
| 5809 | |
| 5810 | // Apply some call-site-specific attributes. |
| 5811 | // TODO: work this into building the attribute set. |
| 5812 | |
| 5813 | // Apply always_inline to all calls within flatten functions. |
| 5814 | // FIXME: should this really take priority over __try, below? |
| 5815 | if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && |
| 5816 | !InNoInlineAttributedStmt && |
| 5817 | !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>()) && |
| 5818 | !CGM.getTargetCodeGenInfo().wouldInliningViolateFunctionCallABI( |
| 5819 | Caller: CallerDecl, Callee: CalleeDecl)) { |
| 5820 | Attrs = |
| 5821 | Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::AlwaysInline); |
| 5822 | } |
| 5823 | |
| 5824 | // Disable inlining inside SEH __try blocks. |
| 5825 | if (isSEHTryScope()) { |
| 5826 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoInline); |
| 5827 | } |
| 5828 | |
| 5829 | // Decide whether to use a call or an invoke. |
| 5830 | bool CannotThrow; |
| 5831 | if (currentFunctionUsesSEHTry()) { |
| 5832 | // SEH cares about asynchronous exceptions, so everything can "throw." |
| 5833 | CannotThrow = false; |
| 5834 | } else if (isCleanupPadScope() && |
| 5835 | EHPersonality::get(CGF&: *this).isMSVCXXPersonality()) { |
| 5836 | // The MSVC++ personality will implicitly terminate the program if an |
| 5837 | // exception is thrown during a cleanup outside of a try/catch. |
| 5838 | // We don't need to model anything in IR to get this behavior. |
| 5839 | CannotThrow = true; |
| 5840 | } else { |
| 5841 | // Otherwise, nounwind call sites will never throw. |
| 5842 | CannotThrow = Attrs.hasFnAttr(Kind: llvm::Attribute::NoUnwind); |
| 5843 | |
| 5844 | if (auto *FPtr = dyn_cast<llvm::Function>(Val: CalleePtr)) |
| 5845 | if (FPtr->hasFnAttribute(Kind: llvm::Attribute::NoUnwind)) |
| 5846 | CannotThrow = true; |
| 5847 | } |
| 5848 | |
| 5849 | // If we made a temporary, be sure to clean up after ourselves. Note that we |
| 5850 | // can't depend on being inside of an ExprWithCleanups, so we need to manually |
| 5851 | // pop this cleanup later on. Being eager about this is OK, since this |
| 5852 | // temporary is 'invisible' outside of the callee. |
| 5853 | if (UnusedReturnSizePtr) |
| 5854 | pushFullExprCleanup<CallLifetimeEnd>(kind: NormalEHLifetimeMarker, A: SRetPtr, |
| 5855 | A: UnusedReturnSizePtr); |
| 5856 | |
| 5857 | llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); |
| 5858 | |
| 5859 | SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| 5860 | getBundlesForFunclet(Callee: CalleePtr); |
| 5861 | |
| 5862 | if (SanOpts.has(K: SanitizerKind::KCFI) && |
| 5863 | !isa_and_nonnull<FunctionDecl>(Val: TargetDecl)) |
| 5864 | EmitKCFIOperandBundle(Callee: ConcreteCallee, Bundles&: BundleList); |
| 5865 | |
| 5866 | // Add the pointer-authentication bundle. |
| 5867 | EmitPointerAuthOperandBundle(Info: ConcreteCallee.getPointerAuthInfo(), Bundles&: BundleList); |
| 5868 | |
| 5869 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl)) |
| 5870 | if (FD->hasAttr<StrictFPAttr>()) |
| 5871 | // All calls within a strictfp function are marked strictfp |
| 5872 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::StrictFP); |
| 5873 | |
| 5874 | AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); |
| 5875 | Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); |
| 5876 | |
| 5877 | AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); |
| 5878 | Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); |
| 5879 | |
| 5880 | // Emit the actual call/invoke instruction. |
| 5881 | llvm::CallBase *CI; |
| 5882 | if (!InvokeDest) { |
| 5883 | CI = Builder.CreateCall(FTy: IRFuncTy, Callee: CalleePtr, Args: IRCallArgs, OpBundles: BundleList); |
| 5884 | } else { |
| 5885 | llvm::BasicBlock *Cont = createBasicBlock(name: "invoke.cont" ); |
| 5886 | CI = Builder.CreateInvoke(Ty: IRFuncTy, Callee: CalleePtr, NormalDest: Cont, UnwindDest: InvokeDest, Args: IRCallArgs, |
| 5887 | OpBundles: BundleList); |
| 5888 | EmitBlock(BB: Cont); |
| 5889 | } |
| 5890 | if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() && |
| 5891 | CI->getCalledFunction()->getName().starts_with(Prefix: "_Z4sqrt" )) { |
| 5892 | SetSqrtFPAccuracy(CI); |
| 5893 | } |
| 5894 | if (callOrInvoke) |
| 5895 | *callOrInvoke = CI; |
| 5896 | |
| 5897 | // If this is within a function that has the guard(nocf) attribute and is an |
| 5898 | // indirect call, add the "guard_nocf" attribute to this call to indicate that |
| 5899 | // Control Flow Guard checks should not be added, even if the call is inlined. |
| 5900 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl)) { |
| 5901 | if (const auto *A = FD->getAttr<CFGuardAttr>()) { |
| 5902 | if (A->getGuard() == CFGuardAttr::GuardArg::nocf && |
| 5903 | !CI->getCalledFunction()) |
| 5904 | Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: "guard_nocf" ); |
| 5905 | } |
| 5906 | } |
| 5907 | |
| 5908 | // Apply the attributes and calling convention. |
| 5909 | CI->setAttributes(Attrs); |
| 5910 | CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| 5911 | |
| 5912 | // Apply various metadata. |
| 5913 | |
| 5914 | if (!CI->getType()->isVoidTy()) |
| 5915 | CI->setName("call" ); |
| 5916 | |
| 5917 | if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent()) |
| 5918 | CI = addConvergenceControlToken(Input: CI); |
| 5919 | |
| 5920 | // Update largest vector width from the return type. |
| 5921 | LargestVectorWidth = |
| 5922 | std::max(a: LargestVectorWidth, b: getMaxVectorWidth(Ty: CI->getType())); |
| 5923 | |
| 5924 | // Insert instrumentation or attach profile metadata at indirect call sites. |
| 5925 | // For more details, see the comment before the definition of |
| 5926 | // IPVK_IndirectCallTarget in InstrProfData.inc. |
| 5927 | if (!CI->getCalledFunction()) |
| 5928 | PGO->valueProfile(Builder, ValueKind: llvm::IPVK_IndirectCallTarget, ValueSite: CI, ValuePtr: CalleePtr); |
| 5929 | |
| 5930 | // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| 5931 | // optimizer it can aggressively ignore unwind edges. |
| 5932 | if (CGM.getLangOpts().ObjCAutoRefCount) |
| 5933 | AddObjCARCExceptionMetadata(Inst: CI); |
| 5934 | |
| 5935 | // Set tail call kind if necessary. |
| 5936 | if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(Val: CI)) { |
| 5937 | if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) |
| 5938 | Call->setTailCallKind(llvm::CallInst::TCK_NoTail); |
| 5939 | else if (IsMustTail) { |
| 5940 | if (getTarget().getTriple().isPPC()) { |
| 5941 | if (getTarget().getTriple().isOSAIX()) |
| 5942 | CGM.getDiags().Report(Loc, DiagID: diag::err_aix_musttail_unsupported); |
| 5943 | else if (!getTarget().hasFeature(Feature: "pcrelative-memops" )) { |
| 5944 | if (getTarget().hasFeature(Feature: "longcall" )) |
| 5945 | CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail) << 0; |
| 5946 | else if (Call->isIndirectCall()) |
| 5947 | CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail) << 1; |
| 5948 | else if (isa_and_nonnull<FunctionDecl>(Val: TargetDecl)) { |
| 5949 | if (!cast<FunctionDecl>(Val: TargetDecl)->isDefined()) |
| 5950 | // The undefined callee may be a forward declaration. Without |
| 5951 | // knowning all symbols in the module, we won't know the symbol is |
| 5952 | // defined or not. Collect all these symbols for later diagnosing. |
| 5953 | CGM.addUndefinedGlobalForTailCall( |
| 5954 | Global: {cast<FunctionDecl>(Val: TargetDecl), Loc}); |
| 5955 | else { |
| 5956 | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage( |
| 5957 | GD: GlobalDecl(cast<FunctionDecl>(Val: TargetDecl))); |
| 5958 | if (llvm::GlobalValue::isWeakForLinker(Linkage) || |
| 5959 | llvm::GlobalValue::isDiscardableIfUnused(Linkage)) |
| 5960 | CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail) |
| 5961 | << 2; |
| 5962 | } |
| 5963 | } |
| 5964 | } |
| 5965 | } |
| 5966 | Call->setTailCallKind(llvm::CallInst::TCK_MustTail); |
| 5967 | } |
| 5968 | } |
| 5969 | |
| 5970 | // Add metadata for calls to MSAllocator functions |
| 5971 | if (getDebugInfo() && TargetDecl && TargetDecl->hasAttr<MSAllocatorAttr>()) |
| 5972 | getDebugInfo()->addHeapAllocSiteMetadata(CallSite: CI, AllocatedTy: RetTy->getPointeeType(), Loc); |
| 5973 | |
| 5974 | // Add metadata if calling an __attribute__((error(""))) or warning fn. |
| 5975 | if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { |
| 5976 | llvm::ConstantInt *Line = |
| 5977 | llvm::ConstantInt::get(Ty: Int64Ty, V: Loc.getRawEncoding()); |
| 5978 | llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(C: Line); |
| 5979 | llvm::MDTuple *MDT = llvm::MDNode::get(Context&: getLLVMContext(), MDs: {MD}); |
| 5980 | CI->setMetadata(Kind: "srcloc" , Node: MDT); |
| 5981 | } |
| 5982 | |
| 5983 | // 4. Finish the call. |
| 5984 | |
| 5985 | // If the call doesn't return, finish the basic block and clear the |
| 5986 | // insertion point; this allows the rest of IRGen to discard |
| 5987 | // unreachable code. |
| 5988 | if (CI->doesNotReturn()) { |
| 5989 | if (UnusedReturnSizePtr) |
| 5990 | PopCleanupBlock(); |
| 5991 | |
| 5992 | // Strip away the noreturn attribute to better diagnose unreachable UB. |
| 5993 | if (SanOpts.has(K: SanitizerKind::Unreachable)) { |
| 5994 | // Also remove from function since CallBase::hasFnAttr additionally checks |
| 5995 | // attributes of the called function. |
| 5996 | if (auto *F = CI->getCalledFunction()) |
| 5997 | F->removeFnAttr(Kind: llvm::Attribute::NoReturn); |
| 5998 | CI->removeFnAttr(Kind: llvm::Attribute::NoReturn); |
| 5999 | |
| 6000 | // Avoid incompatibility with ASan which relies on the `noreturn` |
| 6001 | // attribute to insert handler calls. |
| 6002 | if (SanOpts.hasOneOf(K: SanitizerKind::Address | |
| 6003 | SanitizerKind::KernelAddress)) { |
| 6004 | SanitizerScope SanScope(this); |
| 6005 | llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); |
| 6006 | Builder.SetInsertPoint(CI); |
| 6007 | auto *FnType = llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 6008 | llvm::FunctionCallee Fn = |
| 6009 | CGM.CreateRuntimeFunction(Ty: FnType, Name: "__asan_handle_no_return" ); |
| 6010 | EmitNounwindRuntimeCall(callee: Fn); |
| 6011 | } |
| 6012 | } |
| 6013 | |
| 6014 | EmitUnreachable(Loc); |
| 6015 | Builder.ClearInsertionPoint(); |
| 6016 | |
| 6017 | // FIXME: For now, emit a dummy basic block because expr emitters in |
| 6018 | // generally are not ready to handle emitting expressions at unreachable |
| 6019 | // points. |
| 6020 | EnsureInsertPoint(); |
| 6021 | |
| 6022 | // Return a reasonable RValue. |
| 6023 | return GetUndefRValue(Ty: RetTy); |
| 6024 | } |
| 6025 | |
| 6026 | // If this is a musttail call, return immediately. We do not branch to the |
| 6027 | // epilogue in this case. |
| 6028 | if (IsMustTail) { |
| 6029 | for (auto it = EHStack.find(sp: CurrentCleanupScopeDepth); it != EHStack.end(); |
| 6030 | ++it) { |
| 6031 | EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(Val: &*it); |
| 6032 | // Fake uses can be safely emitted immediately prior to the tail call, so |
| 6033 | // we choose to emit them just before the call here. |
| 6034 | if (Cleanup && Cleanup->isFakeUse()) { |
| 6035 | CGBuilderTy::InsertPointGuard IPG(Builder); |
| 6036 | Builder.SetInsertPoint(CI); |
| 6037 | Cleanup->getCleanup()->Emit(CGF&: *this, flags: EHScopeStack::Cleanup::Flags()); |
| 6038 | } else if (!(Cleanup && |
| 6039 | Cleanup->getCleanup()->isRedundantBeforeReturn())) { |
| 6040 | CGM.ErrorUnsupported(S: MustTailCall, Type: "tail call skipping over cleanups" ); |
| 6041 | } |
| 6042 | } |
| 6043 | if (CI->getType()->isVoidTy()) |
| 6044 | Builder.CreateRetVoid(); |
| 6045 | else |
| 6046 | Builder.CreateRet(V: CI); |
| 6047 | Builder.ClearInsertionPoint(); |
| 6048 | EnsureInsertPoint(); |
| 6049 | return GetUndefRValue(Ty: RetTy); |
| 6050 | } |
| 6051 | |
| 6052 | // Perform the swifterror writeback. |
| 6053 | if (swiftErrorTemp.isValid()) { |
| 6054 | llvm::Value *errorResult = Builder.CreateLoad(Addr: swiftErrorTemp); |
| 6055 | Builder.CreateStore(Val: errorResult, Addr: swiftErrorArg); |
| 6056 | } |
| 6057 | |
| 6058 | // Emit any call-associated writebacks immediately. Arguably this |
| 6059 | // should happen after any return-value munging. |
| 6060 | if (CallArgs.hasWritebacks()) |
| 6061 | EmitWritebacks(args: CallArgs); |
| 6062 | |
| 6063 | // The stack cleanup for inalloca arguments has to run out of the normal |
| 6064 | // lexical order, so deactivate it and run it manually here. |
| 6065 | CallArgs.freeArgumentMemory(CGF&: *this); |
| 6066 | |
| 6067 | // Extract the return value. |
| 6068 | RValue Ret; |
| 6069 | |
| 6070 | // If the current function is a virtual function pointer thunk, avoid copying |
| 6071 | // the return value of the musttail call to a temporary. |
| 6072 | if (IsVirtualFunctionPointerThunk) { |
| 6073 | Ret = RValue::get(V: CI); |
| 6074 | } else { |
| 6075 | Ret = [&] { |
| 6076 | switch (RetAI.getKind()) { |
| 6077 | case ABIArgInfo::CoerceAndExpand: { |
| 6078 | auto coercionType = RetAI.getCoerceAndExpandType(); |
| 6079 | |
| 6080 | Address addr = SRetPtr.withElementType(ElemTy: coercionType); |
| 6081 | |
| 6082 | assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); |
| 6083 | bool = isa<llvm::StructType>(Val: CI->getType()); |
| 6084 | |
| 6085 | unsigned unpaddedIndex = 0; |
| 6086 | for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| 6087 | llvm::Type *eltType = coercionType->getElementType(N: i); |
| 6088 | if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) |
| 6089 | continue; |
| 6090 | Address eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i); |
| 6091 | llvm::Value *elt = CI; |
| 6092 | if (requiresExtract) |
| 6093 | elt = Builder.CreateExtractValue(Agg: elt, Idxs: unpaddedIndex++); |
| 6094 | else |
| 6095 | assert(unpaddedIndex == 0); |
| 6096 | Builder.CreateStore(Val: elt, Addr: eltAddr); |
| 6097 | } |
| 6098 | [[fallthrough]]; |
| 6099 | } |
| 6100 | |
| 6101 | case ABIArgInfo::InAlloca: |
| 6102 | case ABIArgInfo::Indirect: { |
| 6103 | RValue ret = convertTempToRValue(addr: SRetPtr, type: RetTy, Loc: SourceLocation()); |
| 6104 | if (UnusedReturnSizePtr) |
| 6105 | PopCleanupBlock(); |
| 6106 | return ret; |
| 6107 | } |
| 6108 | |
| 6109 | case ABIArgInfo::Ignore: |
| 6110 | // If we are ignoring an argument that had a result, make sure to |
| 6111 | // construct the appropriate return value for our caller. |
| 6112 | return GetUndefRValue(Ty: RetTy); |
| 6113 | |
| 6114 | case ABIArgInfo::Extend: |
| 6115 | case ABIArgInfo::Direct: { |
| 6116 | llvm::Type *RetIRTy = ConvertType(T: RetTy); |
| 6117 | if (RetAI.getCoerceToType() == RetIRTy && |
| 6118 | RetAI.getDirectOffset() == 0) { |
| 6119 | switch (getEvaluationKind(T: RetTy)) { |
| 6120 | case TEK_Complex: { |
| 6121 | llvm::Value *Real = Builder.CreateExtractValue(Agg: CI, Idxs: 0); |
| 6122 | llvm::Value *Imag = Builder.CreateExtractValue(Agg: CI, Idxs: 1); |
| 6123 | return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag)); |
| 6124 | } |
| 6125 | case TEK_Aggregate: |
| 6126 | break; |
| 6127 | case TEK_Scalar: { |
| 6128 | // If the argument doesn't match, perform a bitcast to coerce it. |
| 6129 | // This can happen due to trivial type mismatches. |
| 6130 | llvm::Value *V = CI; |
| 6131 | if (V->getType() != RetIRTy) |
| 6132 | V = Builder.CreateBitCast(V, DestTy: RetIRTy); |
| 6133 | return RValue::get(V); |
| 6134 | } |
| 6135 | } |
| 6136 | } |
| 6137 | |
| 6138 | // If coercing a fixed vector from a scalable vector for ABI |
| 6139 | // compatibility, and the types match, use the llvm.vector.extract |
| 6140 | // intrinsic to perform the conversion. |
| 6141 | if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(Val: RetIRTy)) { |
| 6142 | llvm::Value *V = CI; |
| 6143 | if (auto *ScalableSrcTy = |
| 6144 | dyn_cast<llvm::ScalableVectorType>(Val: V->getType())) { |
| 6145 | if (FixedDstTy->getElementType() == |
| 6146 | ScalableSrcTy->getElementType()) { |
| 6147 | V = Builder.CreateExtractVector(DstType: FixedDstTy, SrcVec: V, Idx: uint64_t(0), |
| 6148 | Name: "cast.fixed" ); |
| 6149 | return RValue::get(V); |
| 6150 | } |
| 6151 | } |
| 6152 | } |
| 6153 | |
| 6154 | Address DestPtr = ReturnValue.getValue(); |
| 6155 | bool DestIsVolatile = ReturnValue.isVolatile(); |
| 6156 | uint64_t DestSize = |
| 6157 | getContext().getTypeInfoDataSizeInChars(T: RetTy).Width.getQuantity(); |
| 6158 | |
| 6159 | if (!DestPtr.isValid()) { |
| 6160 | DestPtr = CreateMemTemp(T: RetTy, Name: "coerce" ); |
| 6161 | DestIsVolatile = false; |
| 6162 | DestSize = getContext().getTypeSizeInChars(T: RetTy).getQuantity(); |
| 6163 | } |
| 6164 | |
| 6165 | // An empty record can overlap other data (if declared with |
| 6166 | // no_unique_address); omit the store for such types - as there is no |
| 6167 | // actual data to store. |
| 6168 | if (!isEmptyRecord(Context&: getContext(), T: RetTy, AllowArrays: true)) { |
| 6169 | // If the value is offset in memory, apply the offset now. |
| 6170 | Address StorePtr = emitAddressAtOffset(CGF&: *this, addr: DestPtr, info: RetAI); |
| 6171 | CreateCoercedStore( |
| 6172 | Src: CI, Dst: StorePtr, |
| 6173 | DstSize: llvm::TypeSize::getFixed(ExactSize: DestSize - RetAI.getDirectOffset()), |
| 6174 | DstIsVolatile: DestIsVolatile); |
| 6175 | } |
| 6176 | |
| 6177 | return convertTempToRValue(addr: DestPtr, type: RetTy, Loc: SourceLocation()); |
| 6178 | } |
| 6179 | |
| 6180 | case ABIArgInfo::Expand: |
| 6181 | case ABIArgInfo::IndirectAliased: |
| 6182 | llvm_unreachable("Invalid ABI kind for return argument" ); |
| 6183 | } |
| 6184 | |
| 6185 | llvm_unreachable("Unhandled ABIArgInfo::Kind" ); |
| 6186 | }(); |
| 6187 | } |
| 6188 | |
| 6189 | // Emit the assume_aligned check on the return value. |
| 6190 | if (Ret.isScalar() && TargetDecl) { |
| 6191 | AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); |
| 6192 | AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); |
| 6193 | } |
| 6194 | |
| 6195 | // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though |
| 6196 | // we can't use the full cleanup mechanism. |
| 6197 | for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) |
| 6198 | LifetimeEnd.Emit(CGF&: *this, /*Flags=*/flags: {}); |
| 6199 | |
| 6200 | if (!ReturnValue.isExternallyDestructed() && |
| 6201 | RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) |
| 6202 | pushDestroy(dtorKind: QualType::DK_nontrivial_c_struct, addr: Ret.getAggregateAddress(), |
| 6203 | type: RetTy); |
| 6204 | |
| 6205 | return Ret; |
| 6206 | } |
| 6207 | |
| 6208 | CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { |
| 6209 | if (isVirtual()) { |
| 6210 | const CallExpr *CE = getVirtualCallExpr(); |
| 6211 | return CGF.CGM.getCXXABI().getVirtualFunctionPointer( |
| 6212 | CGF, GD: getVirtualMethodDecl(), This: getThisAddress(), Ty: getVirtualFunctionType(), |
| 6213 | Loc: CE ? CE->getBeginLoc() : SourceLocation()); |
| 6214 | } |
| 6215 | |
| 6216 | return *this; |
| 6217 | } |
| 6218 | |
| 6219 | /* VarArg handling */ |
| 6220 | |
| 6221 | RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr, |
| 6222 | AggValueSlot Slot) { |
| 6223 | VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(E: VE->getSubExpr()) |
| 6224 | : EmitVAListRef(E: VE->getSubExpr()); |
| 6225 | QualType Ty = VE->getType(); |
| 6226 | if (Ty->isVariablyModifiedType()) |
| 6227 | EmitVariablyModifiedType(Ty); |
| 6228 | if (VE->isMicrosoftABI()) |
| 6229 | return CGM.getABIInfo().EmitMSVAArg(CGF&: *this, VAListAddr, Ty, Slot); |
| 6230 | return CGM.getABIInfo().EmitVAArg(CGF&: *this, VAListAddr, Ty, Slot); |
| 6231 | } |
| 6232 | |