| 1 | //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGCXXABI.h" |
| 14 | #include "CGCleanup.h" |
| 15 | #include "CGDebugInfo.h" |
| 16 | #include "CGHLSLRuntime.h" |
| 17 | #include "CGObjCRuntime.h" |
| 18 | #include "CGOpenMPRuntime.h" |
| 19 | #include "CGRecordLayout.h" |
| 20 | #include "CodeGenFunction.h" |
| 21 | #include "CodeGenModule.h" |
| 22 | #include "ConstantEmitter.h" |
| 23 | #include "TargetInfo.h" |
| 24 | #include "clang/AST/ASTContext.h" |
| 25 | #include "clang/AST/Attr.h" |
| 26 | #include "clang/AST/DeclObjC.h" |
| 27 | #include "clang/AST/Expr.h" |
| 28 | #include "clang/AST/ParentMapContext.h" |
| 29 | #include "clang/AST/RecordLayout.h" |
| 30 | #include "clang/AST/StmtVisitor.h" |
| 31 | #include "clang/Basic/CodeGenOptions.h" |
| 32 | #include "clang/Basic/TargetInfo.h" |
| 33 | #include "llvm/ADT/APFixedPoint.h" |
| 34 | #include "llvm/IR/Argument.h" |
| 35 | #include "llvm/IR/CFG.h" |
| 36 | #include "llvm/IR/Constants.h" |
| 37 | #include "llvm/IR/DataLayout.h" |
| 38 | #include "llvm/IR/DerivedTypes.h" |
| 39 | #include "llvm/IR/FixedPointBuilder.h" |
| 40 | #include "llvm/IR/Function.h" |
| 41 | #include "llvm/IR/GEPNoWrapFlags.h" |
| 42 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 43 | #include "llvm/IR/GlobalVariable.h" |
| 44 | #include "llvm/IR/Intrinsics.h" |
| 45 | #include "llvm/IR/IntrinsicsPowerPC.h" |
| 46 | #include "llvm/IR/MatrixBuilder.h" |
| 47 | #include "llvm/IR/Module.h" |
| 48 | #include "llvm/Support/TypeSize.h" |
| 49 | #include <cstdarg> |
| 50 | #include <optional> |
| 51 | |
| 52 | using namespace clang; |
| 53 | using namespace CodeGen; |
| 54 | using llvm::Value; |
| 55 | |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | // Scalar Expression Emitter |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | |
| 60 | namespace llvm { |
| 61 | extern cl::opt<bool> EnableSingleByteCoverage; |
| 62 | } // namespace llvm |
| 63 | |
| 64 | namespace { |
| 65 | |
| 66 | /// Determine whether the given binary operation may overflow. |
| 67 | /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, |
| 68 | /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, |
| 69 | /// the returned overflow check is precise. The returned value is 'true' for |
| 70 | /// all other opcodes, to be conservative. |
| 71 | bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, |
| 72 | BinaryOperator::Opcode Opcode, bool Signed, |
| 73 | llvm::APInt &Result) { |
| 74 | // Assume overflow is possible, unless we can prove otherwise. |
| 75 | bool Overflow = true; |
| 76 | const auto &LHSAP = LHS->getValue(); |
| 77 | const auto &RHSAP = RHS->getValue(); |
| 78 | if (Opcode == BO_Add) { |
| 79 | Result = Signed ? LHSAP.sadd_ov(RHS: RHSAP, Overflow) |
| 80 | : LHSAP.uadd_ov(RHS: RHSAP, Overflow); |
| 81 | } else if (Opcode == BO_Sub) { |
| 82 | Result = Signed ? LHSAP.ssub_ov(RHS: RHSAP, Overflow) |
| 83 | : LHSAP.usub_ov(RHS: RHSAP, Overflow); |
| 84 | } else if (Opcode == BO_Mul) { |
| 85 | Result = Signed ? LHSAP.smul_ov(RHS: RHSAP, Overflow) |
| 86 | : LHSAP.umul_ov(RHS: RHSAP, Overflow); |
| 87 | } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
| 88 | if (Signed && !RHS->isZero()) |
| 89 | Result = LHSAP.sdiv_ov(RHS: RHSAP, Overflow); |
| 90 | else |
| 91 | return false; |
| 92 | } |
| 93 | return Overflow; |
| 94 | } |
| 95 | |
| 96 | struct BinOpInfo { |
| 97 | Value *LHS; |
| 98 | Value *RHS; |
| 99 | QualType Ty; // Computation Type. |
| 100 | BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform |
| 101 | FPOptions FPFeatures; |
| 102 | const Expr *E; // Entire expr, for error unsupported. May not be binop. |
| 103 | |
| 104 | /// Check if the binop can result in integer overflow. |
| 105 | bool mayHaveIntegerOverflow() const { |
| 106 | // Without constant input, we can't rule out overflow. |
| 107 | auto *LHSCI = dyn_cast<llvm::ConstantInt>(Val: LHS); |
| 108 | auto *RHSCI = dyn_cast<llvm::ConstantInt>(Val: RHS); |
| 109 | if (!LHSCI || !RHSCI) |
| 110 | return true; |
| 111 | |
| 112 | llvm::APInt Result; |
| 113 | return ::mayHaveIntegerOverflow( |
| 114 | LHS: LHSCI, RHS: RHSCI, Opcode, Signed: Ty->hasSignedIntegerRepresentation(), Result); |
| 115 | } |
| 116 | |
| 117 | /// Check if the binop computes a division or a remainder. |
| 118 | bool isDivremOp() const { |
| 119 | return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || |
| 120 | Opcode == BO_RemAssign; |
| 121 | } |
| 122 | |
| 123 | /// Check if the binop can result in an integer division by zero. |
| 124 | bool mayHaveIntegerDivisionByZero() const { |
| 125 | if (isDivremOp()) |
| 126 | if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: RHS)) |
| 127 | return CI->isZero(); |
| 128 | return true; |
| 129 | } |
| 130 | |
| 131 | /// Check if the binop can result in a float division by zero. |
| 132 | bool mayHaveFloatDivisionByZero() const { |
| 133 | if (isDivremOp()) |
| 134 | if (auto *CFP = dyn_cast<llvm::ConstantFP>(Val: RHS)) |
| 135 | return CFP->isZero(); |
| 136 | return true; |
| 137 | } |
| 138 | |
| 139 | /// Check if at least one operand is a fixed point type. In such cases, this |
| 140 | /// operation did not follow usual arithmetic conversion and both operands |
| 141 | /// might not be of the same type. |
| 142 | bool isFixedPointOp() const { |
| 143 | // We cannot simply check the result type since comparison operations return |
| 144 | // an int. |
| 145 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: E)) { |
| 146 | QualType LHSType = BinOp->getLHS()->getType(); |
| 147 | QualType RHSType = BinOp->getRHS()->getType(); |
| 148 | return LHSType->isFixedPointType() || RHSType->isFixedPointType(); |
| 149 | } |
| 150 | if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: E)) |
| 151 | return UnOp->getSubExpr()->getType()->isFixedPointType(); |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | /// Check if the RHS has a signed integer representation. |
| 156 | bool rhsHasSignedIntegerRepresentation() const { |
| 157 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: E)) { |
| 158 | QualType RHSType = BinOp->getRHS()->getType(); |
| 159 | return RHSType->hasSignedIntegerRepresentation(); |
| 160 | } |
| 161 | return false; |
| 162 | } |
| 163 | }; |
| 164 | |
| 165 | static bool MustVisitNullValue(const Expr *E) { |
| 166 | // If a null pointer expression's type is the C++0x nullptr_t, then |
| 167 | // it's not necessarily a simple constant and it must be evaluated |
| 168 | // for its potential side effects. |
| 169 | return E->getType()->isNullPtrType(); |
| 170 | } |
| 171 | |
| 172 | /// If \p E is a widened promoted integer, get its base (unpromoted) type. |
| 173 | static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, |
| 174 | const Expr *E) { |
| 175 | const Expr *Base = E->IgnoreImpCasts(); |
| 176 | if (E == Base) |
| 177 | return std::nullopt; |
| 178 | |
| 179 | QualType BaseTy = Base->getType(); |
| 180 | if (!Ctx.isPromotableIntegerType(T: BaseTy) || |
| 181 | Ctx.getTypeSize(T: BaseTy) >= Ctx.getTypeSize(T: E->getType())) |
| 182 | return std::nullopt; |
| 183 | |
| 184 | return BaseTy; |
| 185 | } |
| 186 | |
| 187 | /// Check if \p E is a widened promoted integer. |
| 188 | static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { |
| 189 | return getUnwidenedIntegerType(Ctx, E).has_value(); |
| 190 | } |
| 191 | |
| 192 | /// Check if we can skip the overflow check for \p Op. |
| 193 | static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { |
| 194 | assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && |
| 195 | "Expected a unary or binary operator" ); |
| 196 | |
| 197 | // If the binop has constant inputs and we can prove there is no overflow, |
| 198 | // we can elide the overflow check. |
| 199 | if (!Op.mayHaveIntegerOverflow()) |
| 200 | return true; |
| 201 | |
| 202 | if (Op.Ty->isSignedIntegerType() && |
| 203 | Ctx.isTypeIgnoredBySanitizer(Mask: SanitizerKind::SignedIntegerOverflow, |
| 204 | Ty: Op.Ty)) { |
| 205 | return true; |
| 206 | } |
| 207 | |
| 208 | if (Op.Ty->isUnsignedIntegerType() && |
| 209 | Ctx.isTypeIgnoredBySanitizer(Mask: SanitizerKind::UnsignedIntegerOverflow, |
| 210 | Ty: Op.Ty)) { |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: Op.E); |
| 215 | |
| 216 | if (UO && UO->getOpcode() == UO_Minus && |
| 217 | Ctx.getLangOpts().isOverflowPatternExcluded( |
| 218 | Kind: LangOptions::OverflowPatternExclusionKind::NegUnsignedConst) && |
| 219 | UO->isIntegerConstantExpr(Ctx)) |
| 220 | return true; |
| 221 | |
| 222 | // If a unary op has a widened operand, the op cannot overflow. |
| 223 | if (UO) |
| 224 | return !UO->canOverflow(); |
| 225 | |
| 226 | // We usually don't need overflow checks for binops with widened operands. |
| 227 | // Multiplication with promoted unsigned operands is a special case. |
| 228 | const auto *BO = cast<BinaryOperator>(Val: Op.E); |
| 229 | if (BO->hasExcludedOverflowPattern()) |
| 230 | return true; |
| 231 | |
| 232 | auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, E: BO->getLHS()); |
| 233 | if (!OptionalLHSTy) |
| 234 | return false; |
| 235 | |
| 236 | auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, E: BO->getRHS()); |
| 237 | if (!OptionalRHSTy) |
| 238 | return false; |
| 239 | |
| 240 | QualType LHSTy = *OptionalLHSTy; |
| 241 | QualType RHSTy = *OptionalRHSTy; |
| 242 | |
| 243 | // This is the simple case: binops without unsigned multiplication, and with |
| 244 | // widened operands. No overflow check is needed here. |
| 245 | if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || |
| 246 | !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) |
| 247 | return true; |
| 248 | |
| 249 | // For unsigned multiplication the overflow check can be elided if either one |
| 250 | // of the unpromoted types are less than half the size of the promoted type. |
| 251 | unsigned PromotedSize = Ctx.getTypeSize(T: Op.E->getType()); |
| 252 | return (2 * Ctx.getTypeSize(T: LHSTy)) < PromotedSize || |
| 253 | (2 * Ctx.getTypeSize(T: RHSTy)) < PromotedSize; |
| 254 | } |
| 255 | |
| 256 | class ScalarExprEmitter |
| 257 | : public StmtVisitor<ScalarExprEmitter, Value*> { |
| 258 | CodeGenFunction &CGF; |
| 259 | CGBuilderTy &Builder; |
| 260 | bool IgnoreResultAssign; |
| 261 | llvm::LLVMContext &VMContext; |
| 262 | public: |
| 263 | |
| 264 | ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) |
| 265 | : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), |
| 266 | VMContext(cgf.getLLVMContext()) { |
| 267 | } |
| 268 | |
| 269 | //===--------------------------------------------------------------------===// |
| 270 | // Utilities |
| 271 | //===--------------------------------------------------------------------===// |
| 272 | |
| 273 | bool TestAndClearIgnoreResultAssign() { |
| 274 | bool I = IgnoreResultAssign; |
| 275 | IgnoreResultAssign = false; |
| 276 | return I; |
| 277 | } |
| 278 | |
| 279 | llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
| 280 | LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
| 281 | LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { |
| 282 | return CGF.EmitCheckedLValue(E, TCK); |
| 283 | } |
| 284 | |
| 285 | void EmitBinOpCheck( |
| 286 | ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks, |
| 287 | const BinOpInfo &Info); |
| 288 | |
| 289 | Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { |
| 290 | return CGF.EmitLoadOfLValue(V: LV, Loc).getScalarVal(); |
| 291 | } |
| 292 | |
| 293 | void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { |
| 294 | const AlignValueAttr *AVAttr = nullptr; |
| 295 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
| 296 | const ValueDecl *VD = DRE->getDecl(); |
| 297 | |
| 298 | if (VD->getType()->isReferenceType()) { |
| 299 | if (const auto *TTy = |
| 300 | VD->getType().getNonReferenceType()->getAs<TypedefType>()) |
| 301 | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
| 302 | } else { |
| 303 | // Assumptions for function parameters are emitted at the start of the |
| 304 | // function, so there is no need to repeat that here, |
| 305 | // unless the alignment-assumption sanitizer is enabled, |
| 306 | // then we prefer the assumption over alignment attribute |
| 307 | // on IR function param. |
| 308 | if (isa<ParmVarDecl>(Val: VD) && !CGF.SanOpts.has(K: SanitizerKind::Alignment)) |
| 309 | return; |
| 310 | |
| 311 | AVAttr = VD->getAttr<AlignValueAttr>(); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | if (!AVAttr) |
| 316 | if (const auto *TTy = E->getType()->getAs<TypedefType>()) |
| 317 | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
| 318 | |
| 319 | if (!AVAttr) |
| 320 | return; |
| 321 | |
| 322 | Value *AlignmentValue = CGF.EmitScalarExpr(E: AVAttr->getAlignment()); |
| 323 | llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Val: AlignmentValue); |
| 324 | CGF.emitAlignmentAssumption(PtrValue: V, E, AssumptionLoc: AVAttr->getLocation(), Alignment: AlignmentCI); |
| 325 | } |
| 326 | |
| 327 | /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| 328 | /// value l-value, this method emits the address of the l-value, then loads |
| 329 | /// and returns the result. |
| 330 | Value *EmitLoadOfLValue(const Expr *E) { |
| 331 | Value *V = EmitLoadOfLValue(LV: EmitCheckedLValue(E, TCK: CodeGenFunction::TCK_Load), |
| 332 | Loc: E->getExprLoc()); |
| 333 | |
| 334 | EmitLValueAlignmentAssumption(E, V); |
| 335 | return V; |
| 336 | } |
| 337 | |
| 338 | /// EmitConversionToBool - Convert the specified expression value to a |
| 339 | /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| 340 | Value *EmitConversionToBool(Value *Src, QualType DstTy); |
| 341 | |
| 342 | /// Emit a check that a conversion from a floating-point type does not |
| 343 | /// overflow. |
| 344 | void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, |
| 345 | Value *Src, QualType SrcType, QualType DstType, |
| 346 | llvm::Type *DstTy, SourceLocation Loc); |
| 347 | |
| 348 | /// Known implicit conversion check kinds. |
| 349 | /// This is used for bitfield conversion checks as well. |
| 350 | /// Keep in sync with the enum of the same name in ubsan_handlers.h |
| 351 | enum ImplicitConversionCheckKind : unsigned char { |
| 352 | ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. |
| 353 | ICCK_UnsignedIntegerTruncation = 1, |
| 354 | ICCK_SignedIntegerTruncation = 2, |
| 355 | ICCK_IntegerSignChange = 3, |
| 356 | ICCK_SignedIntegerTruncationOrSignChange = 4, |
| 357 | }; |
| 358 | |
| 359 | /// Emit a check that an [implicit] truncation of an integer does not |
| 360 | /// discard any bits. It is not UB, so we use the value after truncation. |
| 361 | void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, |
| 362 | QualType DstType, SourceLocation Loc); |
| 363 | |
| 364 | /// Emit a check that an [implicit] conversion of an integer does not change |
| 365 | /// the sign of the value. It is not UB, so we use the value after conversion. |
| 366 | /// NOTE: Src and Dst may be the exact same value! (point to the same thing) |
| 367 | void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, |
| 368 | QualType DstType, SourceLocation Loc); |
| 369 | |
| 370 | /// Emit a conversion from the specified type to the specified destination |
| 371 | /// type, both of which are LLVM scalar types. |
| 372 | struct ScalarConversionOpts { |
| 373 | bool TreatBooleanAsSigned; |
| 374 | bool EmitImplicitIntegerTruncationChecks; |
| 375 | bool EmitImplicitIntegerSignChangeChecks; |
| 376 | |
| 377 | ScalarConversionOpts() |
| 378 | : TreatBooleanAsSigned(false), |
| 379 | EmitImplicitIntegerTruncationChecks(false), |
| 380 | EmitImplicitIntegerSignChangeChecks(false) {} |
| 381 | |
| 382 | ScalarConversionOpts(clang::SanitizerSet SanOpts) |
| 383 | : TreatBooleanAsSigned(false), |
| 384 | EmitImplicitIntegerTruncationChecks( |
| 385 | SanOpts.hasOneOf(K: SanitizerKind::ImplicitIntegerTruncation)), |
| 386 | EmitImplicitIntegerSignChangeChecks( |
| 387 | SanOpts.has(K: SanitizerKind::ImplicitIntegerSignChange)) {} |
| 388 | }; |
| 389 | Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, |
| 390 | llvm::Type *SrcTy, llvm::Type *DstTy, |
| 391 | ScalarConversionOpts Opts); |
| 392 | Value * |
| 393 | EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, |
| 394 | SourceLocation Loc, |
| 395 | ScalarConversionOpts Opts = ScalarConversionOpts()); |
| 396 | |
| 397 | /// Convert between either a fixed point and other fixed point or fixed point |
| 398 | /// and an integer. |
| 399 | Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, |
| 400 | SourceLocation Loc); |
| 401 | |
| 402 | /// Emit a conversion from the specified complex type to the specified |
| 403 | /// destination type, where the destination type is an LLVM scalar type. |
| 404 | Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
| 405 | QualType SrcTy, QualType DstTy, |
| 406 | SourceLocation Loc); |
| 407 | |
| 408 | /// EmitNullValue - Emit a value that corresponds to null for the given type. |
| 409 | Value *EmitNullValue(QualType Ty); |
| 410 | |
| 411 | /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. |
| 412 | Value *EmitFloatToBoolConversion(Value *V) { |
| 413 | // Compare against 0.0 for fp scalars. |
| 414 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: V->getType()); |
| 415 | return Builder.CreateFCmpUNE(LHS: V, RHS: Zero, Name: "tobool" ); |
| 416 | } |
| 417 | |
| 418 | /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. |
| 419 | Value *EmitPointerToBoolConversion(Value *V, QualType QT) { |
| 420 | Value *Zero = CGF.CGM.getNullPointer(T: cast<llvm::PointerType>(Val: V->getType()), QT); |
| 421 | |
| 422 | return Builder.CreateICmpNE(LHS: V, RHS: Zero, Name: "tobool" ); |
| 423 | } |
| 424 | |
| 425 | Value *EmitIntToBoolConversion(Value *V) { |
| 426 | // Because of the type rules of C, we often end up computing a |
| 427 | // logical value, then zero extending it to int, then wanting it |
| 428 | // as a logical value again. Optimize this common case. |
| 429 | if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Val: V)) { |
| 430 | if (ZI->getOperand(i_nocapture: 0)->getType() == Builder.getInt1Ty()) { |
| 431 | Value *Result = ZI->getOperand(i_nocapture: 0); |
| 432 | // If there aren't any more uses, zap the instruction to save space. |
| 433 | // Note that there can be more uses, for example if this |
| 434 | // is the result of an assignment. |
| 435 | if (ZI->use_empty()) |
| 436 | ZI->eraseFromParent(); |
| 437 | return Result; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | return Builder.CreateIsNotNull(Arg: V, Name: "tobool" ); |
| 442 | } |
| 443 | |
| 444 | //===--------------------------------------------------------------------===// |
| 445 | // Visitor Methods |
| 446 | //===--------------------------------------------------------------------===// |
| 447 | |
| 448 | Value *Visit(Expr *E) { |
| 449 | ApplyDebugLocation DL(CGF, E); |
| 450 | return StmtVisitor<ScalarExprEmitter, Value*>::Visit(S: E); |
| 451 | } |
| 452 | |
| 453 | Value *VisitStmt(Stmt *S) { |
| 454 | S->dump(OS&: llvm::errs(), Context: CGF.getContext()); |
| 455 | llvm_unreachable("Stmt can't have complex result type!" ); |
| 456 | } |
| 457 | Value *VisitExpr(Expr *S); |
| 458 | |
| 459 | Value *VisitConstantExpr(ConstantExpr *E) { |
| 460 | // A constant expression of type 'void' generates no code and produces no |
| 461 | // value. |
| 462 | if (E->getType()->isVoidType()) |
| 463 | return nullptr; |
| 464 | |
| 465 | if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(CE: E)) { |
| 466 | if (E->isGLValue()) |
| 467 | return CGF.EmitLoadOfScalar( |
| 468 | Addr: Address(Result, CGF.convertTypeForLoadStore(ASTTy: E->getType()), |
| 469 | CGF.getContext().getTypeAlignInChars(T: E->getType())), |
| 470 | /*Volatile*/ false, Ty: E->getType(), Loc: E->getExprLoc()); |
| 471 | return Result; |
| 472 | } |
| 473 | return Visit(E: E->getSubExpr()); |
| 474 | } |
| 475 | Value *VisitParenExpr(ParenExpr *PE) { |
| 476 | return Visit(E: PE->getSubExpr()); |
| 477 | } |
| 478 | Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { |
| 479 | return Visit(E: E->getReplacement()); |
| 480 | } |
| 481 | Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
| 482 | return Visit(E: GE->getResultExpr()); |
| 483 | } |
| 484 | Value *VisitCoawaitExpr(CoawaitExpr *S) { |
| 485 | return CGF.EmitCoawaitExpr(E: *S).getScalarVal(); |
| 486 | } |
| 487 | Value *VisitCoyieldExpr(CoyieldExpr *S) { |
| 488 | return CGF.EmitCoyieldExpr(E: *S).getScalarVal(); |
| 489 | } |
| 490 | Value *VisitUnaryCoawait(const UnaryOperator *E) { |
| 491 | return Visit(E: E->getSubExpr()); |
| 492 | } |
| 493 | |
| 494 | // Leaves. |
| 495 | Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
| 496 | return Builder.getInt(AI: E->getValue()); |
| 497 | } |
| 498 | Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { |
| 499 | return Builder.getInt(AI: E->getValue()); |
| 500 | } |
| 501 | Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
| 502 | return llvm::ConstantFP::get(Context&: VMContext, V: E->getValue()); |
| 503 | } |
| 504 | Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
| 505 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue()); |
| 506 | } |
| 507 | Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| 508 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue()); |
| 509 | } |
| 510 | Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| 511 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue()); |
| 512 | } |
| 513 | Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
| 514 | if (E->getType()->isVoidType()) |
| 515 | return nullptr; |
| 516 | |
| 517 | return EmitNullValue(Ty: E->getType()); |
| 518 | } |
| 519 | Value *VisitGNUNullExpr(const GNUNullExpr *E) { |
| 520 | return EmitNullValue(Ty: E->getType()); |
| 521 | } |
| 522 | Value *VisitOffsetOfExpr(OffsetOfExpr *E); |
| 523 | Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
| 524 | Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| 525 | llvm::Value *V = CGF.GetAddrOfLabel(L: E->getLabel()); |
| 526 | return Builder.CreateBitCast(V, DestTy: ConvertType(T: E->getType())); |
| 527 | } |
| 528 | |
| 529 | Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { |
| 530 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()),V: E->getPackLength()); |
| 531 | } |
| 532 | |
| 533 | Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
| 534 | return CGF.EmitPseudoObjectRValue(e: E).getScalarVal(); |
| 535 | } |
| 536 | |
| 537 | Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); |
| 538 | Value *VisitEmbedExpr(EmbedExpr *E); |
| 539 | |
| 540 | Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
| 541 | if (E->isGLValue()) |
| 542 | return EmitLoadOfLValue(LV: CGF.getOrCreateOpaqueLValueMapping(e: E), |
| 543 | Loc: E->getExprLoc()); |
| 544 | |
| 545 | // Otherwise, assume the mapping is the scalar directly. |
| 546 | return CGF.getOrCreateOpaqueRValueMapping(e: E).getScalarVal(); |
| 547 | } |
| 548 | |
| 549 | Value *VisitOpenACCAsteriskSizeExpr(OpenACCAsteriskSizeExpr *E) { |
| 550 | llvm_unreachable("Codegen for this isn't defined/implemented" ); |
| 551 | } |
| 552 | |
| 553 | // l-values. |
| 554 | Value *VisitDeclRefExpr(DeclRefExpr *E) { |
| 555 | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(RefExpr: E)) |
| 556 | return CGF.emitScalarConstant(Constant, E); |
| 557 | return EmitLoadOfLValue(E); |
| 558 | } |
| 559 | |
| 560 | Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { |
| 561 | return CGF.EmitObjCSelectorExpr(E); |
| 562 | } |
| 563 | Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { |
| 564 | return CGF.EmitObjCProtocolExpr(E); |
| 565 | } |
| 566 | Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| 567 | return EmitLoadOfLValue(E); |
| 568 | } |
| 569 | Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| 570 | if (E->getMethodDecl() && |
| 571 | E->getMethodDecl()->getReturnType()->isReferenceType()) |
| 572 | return EmitLoadOfLValue(E); |
| 573 | return CGF.EmitObjCMessageExpr(E).getScalarVal(); |
| 574 | } |
| 575 | |
| 576 | Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { |
| 577 | LValue LV = CGF.EmitObjCIsaExpr(E); |
| 578 | Value *V = CGF.EmitLoadOfLValue(V: LV, Loc: E->getExprLoc()).getScalarVal(); |
| 579 | return V; |
| 580 | } |
| 581 | |
| 582 | Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { |
| 583 | VersionTuple Version = E->getVersion(); |
| 584 | |
| 585 | // If we're checking for a platform older than our minimum deployment |
| 586 | // target, we can fold the check away. |
| 587 | if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) |
| 588 | return llvm::ConstantInt::get(Ty: Builder.getInt1Ty(), V: 1); |
| 589 | |
| 590 | return CGF.EmitBuiltinAvailable(Version); |
| 591 | } |
| 592 | |
| 593 | Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| 594 | Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); |
| 595 | Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); |
| 596 | Value *VisitConvertVectorExpr(ConvertVectorExpr *E); |
| 597 | Value *VisitMemberExpr(MemberExpr *E); |
| 598 | Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| 599 | Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| 600 | // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which |
| 601 | // transitively calls EmitCompoundLiteralLValue, here in C++ since compound |
| 602 | // literals aren't l-values in C++. We do so simply because that's the |
| 603 | // cleanest way to handle compound literals in C++. |
| 604 | // See the discussion here: https://reviews.llvm.org/D64464 |
| 605 | return EmitLoadOfLValue(E); |
| 606 | } |
| 607 | |
| 608 | Value *VisitInitListExpr(InitListExpr *E); |
| 609 | |
| 610 | Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { |
| 611 | assert(CGF.getArrayInitIndex() && |
| 612 | "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?" ); |
| 613 | return CGF.getArrayInitIndex(); |
| 614 | } |
| 615 | |
| 616 | Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| 617 | return EmitNullValue(Ty: E->getType()); |
| 618 | } |
| 619 | Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { |
| 620 | CGF.CGM.EmitExplicitCastExprType(E, CGF: &CGF); |
| 621 | return VisitCastExpr(E); |
| 622 | } |
| 623 | Value *VisitCastExpr(CastExpr *E); |
| 624 | |
| 625 | Value *VisitCallExpr(const CallExpr *E) { |
| 626 | if (E->getCallReturnType(Ctx: CGF.getContext())->isReferenceType()) |
| 627 | return EmitLoadOfLValue(E); |
| 628 | |
| 629 | Value *V = CGF.EmitCallExpr(E).getScalarVal(); |
| 630 | |
| 631 | EmitLValueAlignmentAssumption(E, V); |
| 632 | return V; |
| 633 | } |
| 634 | |
| 635 | Value *VisitStmtExpr(const StmtExpr *E); |
| 636 | |
| 637 | // Unary Operators. |
| 638 | Value *VisitUnaryPostDec(const UnaryOperator *E) { |
| 639 | LValue LV = EmitLValue(E: E->getSubExpr()); |
| 640 | return EmitScalarPrePostIncDec(E, LV, isInc: false, isPre: false); |
| 641 | } |
| 642 | Value *VisitUnaryPostInc(const UnaryOperator *E) { |
| 643 | LValue LV = EmitLValue(E: E->getSubExpr()); |
| 644 | return EmitScalarPrePostIncDec(E, LV, isInc: true, isPre: false); |
| 645 | } |
| 646 | Value *VisitUnaryPreDec(const UnaryOperator *E) { |
| 647 | LValue LV = EmitLValue(E: E->getSubExpr()); |
| 648 | return EmitScalarPrePostIncDec(E, LV, isInc: false, isPre: true); |
| 649 | } |
| 650 | Value *VisitUnaryPreInc(const UnaryOperator *E) { |
| 651 | LValue LV = EmitLValue(E: E->getSubExpr()); |
| 652 | return EmitScalarPrePostIncDec(E, LV, isInc: true, isPre: true); |
| 653 | } |
| 654 | |
| 655 | llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, |
| 656 | llvm::Value *InVal, |
| 657 | bool IsInc); |
| 658 | |
| 659 | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| 660 | bool isInc, bool isPre); |
| 661 | |
| 662 | |
| 663 | Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
| 664 | if (isa<MemberPointerType>(Val: E->getType())) // never sugared |
| 665 | return CGF.CGM.getMemberPointerConstant(e: E); |
| 666 | |
| 667 | return EmitLValue(E: E->getSubExpr()).getPointer(CGF); |
| 668 | } |
| 669 | Value *VisitUnaryDeref(const UnaryOperator *E) { |
| 670 | if (E->getType()->isVoidType()) |
| 671 | return Visit(E: E->getSubExpr()); // the actual value should be unused |
| 672 | return EmitLoadOfLValue(E); |
| 673 | } |
| 674 | |
| 675 | Value *VisitUnaryPlus(const UnaryOperator *E, |
| 676 | QualType PromotionType = QualType()); |
| 677 | Value *VisitPlus(const UnaryOperator *E, QualType PromotionType); |
| 678 | Value *VisitUnaryMinus(const UnaryOperator *E, |
| 679 | QualType PromotionType = QualType()); |
| 680 | Value *VisitMinus(const UnaryOperator *E, QualType PromotionType); |
| 681 | |
| 682 | Value *VisitUnaryNot (const UnaryOperator *E); |
| 683 | Value *VisitUnaryLNot (const UnaryOperator *E); |
| 684 | Value *VisitUnaryReal(const UnaryOperator *E, |
| 685 | QualType PromotionType = QualType()); |
| 686 | Value *VisitReal(const UnaryOperator *E, QualType PromotionType); |
| 687 | Value *VisitUnaryImag(const UnaryOperator *E, |
| 688 | QualType PromotionType = QualType()); |
| 689 | Value *VisitImag(const UnaryOperator *E, QualType PromotionType); |
| 690 | Value *VisitUnaryExtension(const UnaryOperator *E) { |
| 691 | return Visit(E: E->getSubExpr()); |
| 692 | } |
| 693 | |
| 694 | // C++ |
| 695 | Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { |
| 696 | return EmitLoadOfLValue(E); |
| 697 | } |
| 698 | Value *VisitSourceLocExpr(SourceLocExpr *SLE) { |
| 699 | auto &Ctx = CGF.getContext(); |
| 700 | APValue Evaluated = |
| 701 | SLE->EvaluateInContext(Ctx, DefaultExpr: CGF.CurSourceLocExprScope.getDefaultExpr()); |
| 702 | return ConstantEmitter(CGF).emitAbstract(loc: SLE->getLocation(), value: Evaluated, |
| 703 | T: SLE->getType()); |
| 704 | } |
| 705 | |
| 706 | Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| 707 | CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); |
| 708 | return Visit(E: DAE->getExpr()); |
| 709 | } |
| 710 | Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
| 711 | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); |
| 712 | return Visit(E: DIE->getExpr()); |
| 713 | } |
| 714 | Value *VisitCXXThisExpr(CXXThisExpr *TE) { |
| 715 | return CGF.LoadCXXThis(); |
| 716 | } |
| 717 | |
| 718 | Value *VisitExprWithCleanups(ExprWithCleanups *E); |
| 719 | Value *VisitCXXNewExpr(const CXXNewExpr *E) { |
| 720 | return CGF.EmitCXXNewExpr(E); |
| 721 | } |
| 722 | Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| 723 | CGF.EmitCXXDeleteExpr(E); |
| 724 | return nullptr; |
| 725 | } |
| 726 | |
| 727 | Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| 728 | if (E->isStoredAsBoolean()) |
| 729 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), |
| 730 | V: E->getBoolValue()); |
| 731 | assert(E->getAPValue().isInt() && "APValue type not supported" ); |
| 732 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), |
| 733 | V: E->getAPValue().getInt()); |
| 734 | } |
| 735 | |
| 736 | Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { |
| 737 | return Builder.getInt1(V: E->isSatisfied()); |
| 738 | } |
| 739 | |
| 740 | Value *VisitRequiresExpr(const RequiresExpr *E) { |
| 741 | return Builder.getInt1(V: E->isSatisfied()); |
| 742 | } |
| 743 | |
| 744 | Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| 745 | return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue()); |
| 746 | } |
| 747 | |
| 748 | Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| 749 | return llvm::ConstantInt::get(Ty: Builder.getInt1Ty(), V: E->getValue()); |
| 750 | } |
| 751 | |
| 752 | Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { |
| 753 | // C++ [expr.pseudo]p1: |
| 754 | // The result shall only be used as the operand for the function call |
| 755 | // operator (), and the result of such a call has type void. The only |
| 756 | // effect is the evaluation of the postfix-expression before the dot or |
| 757 | // arrow. |
| 758 | CGF.EmitScalarExpr(E: E->getBase()); |
| 759 | return nullptr; |
| 760 | } |
| 761 | |
| 762 | Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| 763 | return EmitNullValue(Ty: E->getType()); |
| 764 | } |
| 765 | |
| 766 | Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| 767 | CGF.EmitCXXThrowExpr(E); |
| 768 | return nullptr; |
| 769 | } |
| 770 | |
| 771 | Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| 772 | return Builder.getInt1(V: E->getValue()); |
| 773 | } |
| 774 | |
| 775 | // Binary Operators. |
| 776 | Value *EmitMul(const BinOpInfo &Ops) { |
| 777 | if (Ops.Ty->isSignedIntegerOrEnumerationType()) { |
| 778 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| 779 | case LangOptions::SOB_Defined: |
| 780 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 781 | return Builder.CreateMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul" ); |
| 782 | [[fallthrough]]; |
| 783 | case LangOptions::SOB_Undefined: |
| 784 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 785 | return Builder.CreateNSWMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul" ); |
| 786 | [[fallthrough]]; |
| 787 | case LangOptions::SOB_Trapping: |
| 788 | if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: Ops)) |
| 789 | return Builder.CreateNSWMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul" ); |
| 790 | return EmitOverflowCheckedBinOp(Ops); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | if (Ops.Ty->isConstantMatrixType()) { |
| 795 | llvm::MatrixBuilder MB(Builder); |
| 796 | // We need to check the types of the operands of the operator to get the |
| 797 | // correct matrix dimensions. |
| 798 | auto *BO = cast<BinaryOperator>(Val: Ops.E); |
| 799 | auto *LHSMatTy = dyn_cast<ConstantMatrixType>( |
| 800 | Val: BO->getLHS()->getType().getCanonicalType()); |
| 801 | auto *RHSMatTy = dyn_cast<ConstantMatrixType>( |
| 802 | Val: BO->getRHS()->getType().getCanonicalType()); |
| 803 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
| 804 | if (LHSMatTy && RHSMatTy) |
| 805 | return MB.CreateMatrixMultiply(LHS: Ops.LHS, RHS: Ops.RHS, LHSRows: LHSMatTy->getNumRows(), |
| 806 | LHSColumns: LHSMatTy->getNumColumns(), |
| 807 | RHSColumns: RHSMatTy->getNumColumns()); |
| 808 | return MB.CreateScalarMultiply(LHS: Ops.LHS, RHS: Ops.RHS); |
| 809 | } |
| 810 | |
| 811 | if (Ops.Ty->isUnsignedIntegerType() && |
| 812 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) && |
| 813 | !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: Ops)) |
| 814 | return EmitOverflowCheckedBinOp(Ops); |
| 815 | |
| 816 | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
| 817 | // Preserve the old values |
| 818 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
| 819 | return Builder.CreateFMul(L: Ops.LHS, R: Ops.RHS, Name: "mul" ); |
| 820 | } |
| 821 | if (Ops.isFixedPointOp()) |
| 822 | return EmitFixedPointBinOp(Ops); |
| 823 | return Builder.CreateMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul" ); |
| 824 | } |
| 825 | /// Create a binary op that checks for overflow. |
| 826 | /// Currently only supports +, - and *. |
| 827 | Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); |
| 828 | |
| 829 | // Check for undefined division and modulus behaviors. |
| 830 | void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, |
| 831 | llvm::Value *Zero,bool isDiv); |
| 832 | // Common helper for getting how wide LHS of shift is. |
| 833 | static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned); |
| 834 | |
| 835 | // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for |
| 836 | // non powers of two. |
| 837 | Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); |
| 838 | |
| 839 | Value *EmitDiv(const BinOpInfo &Ops); |
| 840 | Value *EmitRem(const BinOpInfo &Ops); |
| 841 | Value *EmitAdd(const BinOpInfo &Ops); |
| 842 | Value *EmitSub(const BinOpInfo &Ops); |
| 843 | Value *EmitShl(const BinOpInfo &Ops); |
| 844 | Value *EmitShr(const BinOpInfo &Ops); |
| 845 | Value *EmitAnd(const BinOpInfo &Ops) { |
| 846 | return Builder.CreateAnd(LHS: Ops.LHS, RHS: Ops.RHS, Name: "and" ); |
| 847 | } |
| 848 | Value *EmitXor(const BinOpInfo &Ops) { |
| 849 | return Builder.CreateXor(LHS: Ops.LHS, RHS: Ops.RHS, Name: "xor" ); |
| 850 | } |
| 851 | Value *EmitOr (const BinOpInfo &Ops) { |
| 852 | return Builder.CreateOr(LHS: Ops.LHS, RHS: Ops.RHS, Name: "or" ); |
| 853 | } |
| 854 | |
| 855 | // Helper functions for fixed point binary operations. |
| 856 | Value *EmitFixedPointBinOp(const BinOpInfo &Ops); |
| 857 | |
| 858 | BinOpInfo EmitBinOps(const BinaryOperator *E, |
| 859 | QualType PromotionTy = QualType()); |
| 860 | |
| 861 | Value *EmitPromotedValue(Value *result, QualType PromotionType); |
| 862 | Value *EmitUnPromotedValue(Value *result, QualType ExprType); |
| 863 | Value *EmitPromoted(const Expr *E, QualType PromotionType); |
| 864 | |
| 865 | LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
| 866 | Value *(ScalarExprEmitter::*F)(const BinOpInfo &), |
| 867 | Value *&Result); |
| 868 | |
| 869 | Value *EmitCompoundAssign(const CompoundAssignOperator *E, |
| 870 | Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
| 871 | |
| 872 | QualType getPromotionType(QualType Ty) { |
| 873 | const auto &Ctx = CGF.getContext(); |
| 874 | if (auto *CT = Ty->getAs<ComplexType>()) { |
| 875 | QualType ElementType = CT->getElementType(); |
| 876 | if (ElementType.UseExcessPrecision(Ctx)) |
| 877 | return Ctx.getComplexType(T: Ctx.FloatTy); |
| 878 | } |
| 879 | |
| 880 | if (Ty.UseExcessPrecision(Ctx)) { |
| 881 | if (auto *VT = Ty->getAs<VectorType>()) { |
| 882 | unsigned NumElements = VT->getNumElements(); |
| 883 | return Ctx.getVectorType(VectorType: Ctx.FloatTy, NumElts: NumElements, VecKind: VT->getVectorKind()); |
| 884 | } |
| 885 | return Ctx.FloatTy; |
| 886 | } |
| 887 | |
| 888 | return QualType(); |
| 889 | } |
| 890 | |
| 891 | // Binary operators and binary compound assignment operators. |
| 892 | #define HANDLEBINOP(OP) \ |
| 893 | Value *VisitBin##OP(const BinaryOperator *E) { \ |
| 894 | QualType promotionTy = getPromotionType(E->getType()); \ |
| 895 | auto result = Emit##OP(EmitBinOps(E, promotionTy)); \ |
| 896 | if (result && !promotionTy.isNull()) \ |
| 897 | result = EmitUnPromotedValue(result, E->getType()); \ |
| 898 | return result; \ |
| 899 | } \ |
| 900 | Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \ |
| 901 | ApplyAtomGroup Grp(CGF.getDebugInfo()); \ |
| 902 | return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \ |
| 903 | } |
| 904 | HANDLEBINOP(Mul) |
| 905 | HANDLEBINOP(Div) |
| 906 | HANDLEBINOP(Rem) |
| 907 | HANDLEBINOP(Add) |
| 908 | HANDLEBINOP(Sub) |
| 909 | HANDLEBINOP(Shl) |
| 910 | HANDLEBINOP(Shr) |
| 911 | HANDLEBINOP(And) |
| 912 | HANDLEBINOP(Xor) |
| 913 | HANDLEBINOP(Or) |
| 914 | #undef HANDLEBINOP |
| 915 | |
| 916 | // Comparisons. |
| 917 | Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, |
| 918 | llvm::CmpInst::Predicate SICmpOpc, |
| 919 | llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); |
| 920 | #define VISITCOMP(CODE, UI, SI, FP, SIG) \ |
| 921 | Value *VisitBin##CODE(const BinaryOperator *E) { \ |
| 922 | return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
| 923 | llvm::FCmpInst::FP, SIG); } |
| 924 | VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) |
| 925 | VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) |
| 926 | VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) |
| 927 | VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) |
| 928 | VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) |
| 929 | VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) |
| 930 | #undef VISITCOMP |
| 931 | |
| 932 | Value *VisitBinAssign (const BinaryOperator *E); |
| 933 | |
| 934 | Value *VisitBinLAnd (const BinaryOperator *E); |
| 935 | Value *VisitBinLOr (const BinaryOperator *E); |
| 936 | Value *VisitBinComma (const BinaryOperator *E); |
| 937 | |
| 938 | Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } |
| 939 | Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } |
| 940 | |
| 941 | Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { |
| 942 | return Visit(E: E->getSemanticForm()); |
| 943 | } |
| 944 | |
| 945 | // Other Operators. |
| 946 | Value *VisitBlockExpr(const BlockExpr *BE); |
| 947 | Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); |
| 948 | Value *VisitChooseExpr(ChooseExpr *CE); |
| 949 | Value *VisitVAArgExpr(VAArgExpr *VE); |
| 950 | Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| 951 | return CGF.EmitObjCStringLiteral(E); |
| 952 | } |
| 953 | Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { |
| 954 | return CGF.EmitObjCBoxedExpr(E); |
| 955 | } |
| 956 | Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { |
| 957 | return CGF.EmitObjCArrayLiteral(E); |
| 958 | } |
| 959 | Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { |
| 960 | return CGF.EmitObjCDictionaryLiteral(E); |
| 961 | } |
| 962 | Value *VisitAsTypeExpr(AsTypeExpr *CE); |
| 963 | Value *VisitAtomicExpr(AtomicExpr *AE); |
| 964 | Value *VisitPackIndexingExpr(PackIndexingExpr *E) { |
| 965 | return Visit(E: E->getSelectedExpr()); |
| 966 | } |
| 967 | }; |
| 968 | } // end anonymous namespace. |
| 969 | |
| 970 | //===----------------------------------------------------------------------===// |
| 971 | // Utilities |
| 972 | //===----------------------------------------------------------------------===// |
| 973 | |
| 974 | /// EmitConversionToBool - Convert the specified expression value to a |
| 975 | /// boolean (i1) truth value. This is equivalent to "Val != 0". |
| 976 | Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { |
| 977 | assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs" ); |
| 978 | |
| 979 | if (SrcType->isRealFloatingType()) |
| 980 | return EmitFloatToBoolConversion(V: Src); |
| 981 | |
| 982 | if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(Val&: SrcType)) |
| 983 | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr: Src, MPT); |
| 984 | |
| 985 | assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && |
| 986 | "Unknown scalar type to convert" ); |
| 987 | |
| 988 | if (isa<llvm::IntegerType>(Val: Src->getType())) |
| 989 | return EmitIntToBoolConversion(V: Src); |
| 990 | |
| 991 | assert(isa<llvm::PointerType>(Src->getType())); |
| 992 | return EmitPointerToBoolConversion(V: Src, QT: SrcType); |
| 993 | } |
| 994 | |
| 995 | void ScalarExprEmitter::EmitFloatConversionCheck( |
| 996 | Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, |
| 997 | QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { |
| 998 | assert(SrcType->isFloatingType() && "not a conversion from floating point" ); |
| 999 | if (!isa<llvm::IntegerType>(Val: DstTy)) |
| 1000 | return; |
| 1001 | |
| 1002 | auto CheckOrdinal = SanitizerKind::SO_FloatCastOverflow; |
| 1003 | auto CheckHandler = SanitizerHandler::FloatCastOverflow; |
| 1004 | SanitizerDebugLocation SanScope(&CGF, {CheckOrdinal}, CheckHandler); |
| 1005 | using llvm::APFloat; |
| 1006 | using llvm::APSInt; |
| 1007 | |
| 1008 | llvm::Value *Check = nullptr; |
| 1009 | const llvm::fltSemantics &SrcSema = |
| 1010 | CGF.getContext().getFloatTypeSemantics(T: OrigSrcType); |
| 1011 | |
| 1012 | // Floating-point to integer. This has undefined behavior if the source is |
| 1013 | // +-Inf, NaN, or doesn't fit into the destination type (after truncation |
| 1014 | // to an integer). |
| 1015 | unsigned Width = CGF.getContext().getIntWidth(T: DstType); |
| 1016 | bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); |
| 1017 | |
| 1018 | APSInt Min = APSInt::getMinValue(numBits: Width, Unsigned); |
| 1019 | APFloat MinSrc(SrcSema, APFloat::uninitialized); |
| 1020 | if (MinSrc.convertFromAPInt(Input: Min, IsSigned: !Unsigned, RM: APFloat::rmTowardZero) & |
| 1021 | APFloat::opOverflow) |
| 1022 | // Don't need an overflow check for lower bound. Just check for |
| 1023 | // -Inf/NaN. |
| 1024 | MinSrc = APFloat::getInf(Sem: SrcSema, Negative: true); |
| 1025 | else |
| 1026 | // Find the largest value which is too small to represent (before |
| 1027 | // truncation toward zero). |
| 1028 | MinSrc.subtract(RHS: APFloat(SrcSema, 1), RM: APFloat::rmTowardNegative); |
| 1029 | |
| 1030 | APSInt Max = APSInt::getMaxValue(numBits: Width, Unsigned); |
| 1031 | APFloat MaxSrc(SrcSema, APFloat::uninitialized); |
| 1032 | if (MaxSrc.convertFromAPInt(Input: Max, IsSigned: !Unsigned, RM: APFloat::rmTowardZero) & |
| 1033 | APFloat::opOverflow) |
| 1034 | // Don't need an overflow check for upper bound. Just check for |
| 1035 | // +Inf/NaN. |
| 1036 | MaxSrc = APFloat::getInf(Sem: SrcSema, Negative: false); |
| 1037 | else |
| 1038 | // Find the smallest value which is too large to represent (before |
| 1039 | // truncation toward zero). |
| 1040 | MaxSrc.add(RHS: APFloat(SrcSema, 1), RM: APFloat::rmTowardPositive); |
| 1041 | |
| 1042 | // If we're converting from __half, convert the range to float to match |
| 1043 | // the type of src. |
| 1044 | if (OrigSrcType->isHalfType()) { |
| 1045 | const llvm::fltSemantics &Sema = |
| 1046 | CGF.getContext().getFloatTypeSemantics(T: SrcType); |
| 1047 | bool IsInexact; |
| 1048 | MinSrc.convert(ToSemantics: Sema, RM: APFloat::rmTowardZero, losesInfo: &IsInexact); |
| 1049 | MaxSrc.convert(ToSemantics: Sema, RM: APFloat::rmTowardZero, losesInfo: &IsInexact); |
| 1050 | } |
| 1051 | |
| 1052 | llvm::Value *GE = |
| 1053 | Builder.CreateFCmpOGT(LHS: Src, RHS: llvm::ConstantFP::get(Context&: VMContext, V: MinSrc)); |
| 1054 | llvm::Value *LE = |
| 1055 | Builder.CreateFCmpOLT(LHS: Src, RHS: llvm::ConstantFP::get(Context&: VMContext, V: MaxSrc)); |
| 1056 | Check = Builder.CreateAnd(LHS: GE, RHS: LE); |
| 1057 | |
| 1058 | llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), |
| 1059 | CGF.EmitCheckTypeDescriptor(T: OrigSrcType), |
| 1060 | CGF.EmitCheckTypeDescriptor(T: DstType)}; |
| 1061 | CGF.EmitCheck(Checked: std::make_pair(x&: Check, y&: CheckOrdinal), Check: CheckHandler, StaticArgs, |
| 1062 | DynamicArgs: OrigSrc); |
| 1063 | } |
| 1064 | |
| 1065 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
| 1066 | // Returns 'i1 false' when the truncation Src -> Dst was lossy. |
| 1067 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1068 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1069 | EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
| 1070 | QualType DstType, CGBuilderTy &Builder) { |
| 1071 | llvm::Type *SrcTy = Src->getType(); |
| 1072 | llvm::Type *DstTy = Dst->getType(); |
| 1073 | (void)DstTy; // Only used in assert() |
| 1074 | |
| 1075 | // This should be truncation of integral types. |
| 1076 | assert(Src != Dst); |
| 1077 | assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); |
| 1078 | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && |
| 1079 | "non-integer llvm type" ); |
| 1080 | |
| 1081 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1082 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1083 | |
| 1084 | // If both (src and dst) types are unsigned, then it's an unsigned truncation. |
| 1085 | // Else, it is a signed truncation. |
| 1086 | ScalarExprEmitter::ImplicitConversionCheckKind Kind; |
| 1087 | SanitizerKind::SanitizerOrdinal Ordinal; |
| 1088 | if (!SrcSigned && !DstSigned) { |
| 1089 | Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; |
| 1090 | Ordinal = SanitizerKind::SO_ImplicitUnsignedIntegerTruncation; |
| 1091 | } else { |
| 1092 | Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; |
| 1093 | Ordinal = SanitizerKind::SO_ImplicitSignedIntegerTruncation; |
| 1094 | } |
| 1095 | |
| 1096 | llvm::Value *Check = nullptr; |
| 1097 | // 1. Extend the truncated value back to the same width as the Src. |
| 1098 | Check = Builder.CreateIntCast(V: Dst, DestTy: SrcTy, isSigned: DstSigned, Name: "anyext" ); |
| 1099 | // 2. Equality-compare with the original source value |
| 1100 | Check = Builder.CreateICmpEQ(LHS: Check, RHS: Src, Name: "truncheck" ); |
| 1101 | // If the comparison result is 'i1 false', then the truncation was lossy. |
| 1102 | return std::make_pair(x&: Kind, y: std::make_pair(x&: Check, y&: Ordinal)); |
| 1103 | } |
| 1104 | |
| 1105 | static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( |
| 1106 | QualType SrcType, QualType DstType) { |
| 1107 | return SrcType->isIntegerType() && DstType->isIntegerType(); |
| 1108 | } |
| 1109 | |
| 1110 | void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, |
| 1111 | Value *Dst, QualType DstType, |
| 1112 | SourceLocation Loc) { |
| 1113 | if (!CGF.SanOpts.hasOneOf(K: SanitizerKind::ImplicitIntegerTruncation)) |
| 1114 | return; |
| 1115 | |
| 1116 | // We only care about int->int conversions here. |
| 1117 | // We ignore conversions to/from pointer and/or bool. |
| 1118 | if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, |
| 1119 | DstType)) |
| 1120 | return; |
| 1121 | |
| 1122 | unsigned SrcBits = Src->getType()->getScalarSizeInBits(); |
| 1123 | unsigned DstBits = Dst->getType()->getScalarSizeInBits(); |
| 1124 | // This must be truncation. Else we do not care. |
| 1125 | if (SrcBits <= DstBits) |
| 1126 | return; |
| 1127 | |
| 1128 | assert(!DstType->isBooleanType() && "we should not get here with booleans." ); |
| 1129 | |
| 1130 | // If the integer sign change sanitizer is enabled, |
| 1131 | // and we are truncating from larger unsigned type to smaller signed type, |
| 1132 | // let that next sanitizer deal with it. |
| 1133 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1134 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1135 | if (CGF.SanOpts.has(K: SanitizerKind::ImplicitIntegerSignChange) && |
| 1136 | (!SrcSigned && DstSigned)) |
| 1137 | return; |
| 1138 | |
| 1139 | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1140 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1141 | Check; |
| 1142 | |
| 1143 | auto CheckHandler = SanitizerHandler::ImplicitConversion; |
| 1144 | { |
| 1145 | // We don't know the check kind until we call |
| 1146 | // EmitIntegerTruncationCheckHelper, but we want to annotate |
| 1147 | // EmitIntegerTruncationCheckHelper's instructions too. |
| 1148 | SanitizerDebugLocation SanScope( |
| 1149 | &CGF, |
| 1150 | {SanitizerKind::SO_ImplicitUnsignedIntegerTruncation, |
| 1151 | SanitizerKind::SO_ImplicitSignedIntegerTruncation}, |
| 1152 | CheckHandler); |
| 1153 | Check = |
| 1154 | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); |
| 1155 | // If the comparison result is 'i1 false', then the truncation was lossy. |
| 1156 | } |
| 1157 | |
| 1158 | // Do we care about this type of truncation? |
| 1159 | if (!CGF.SanOpts.has(O: Check.second.second)) |
| 1160 | return; |
| 1161 | |
| 1162 | SanitizerDebugLocation SanScope(&CGF, {Check.second.second}, CheckHandler); |
| 1163 | |
| 1164 | // Does some SSCL ignore this type? |
| 1165 | if (CGF.getContext().isTypeIgnoredBySanitizer( |
| 1166 | Mask: SanitizerMask::bitPosToMask(Pos: Check.second.second), Ty: DstType)) |
| 1167 | return; |
| 1168 | |
| 1169 | llvm::Constant *StaticArgs[] = { |
| 1170 | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(T: SrcType), |
| 1171 | CGF.EmitCheckTypeDescriptor(T: DstType), |
| 1172 | llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: Check.first), |
| 1173 | llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: 0)}; |
| 1174 | |
| 1175 | CGF.EmitCheck(Checked: Check.second, Check: CheckHandler, StaticArgs, DynamicArgs: {Src, Dst}); |
| 1176 | } |
| 1177 | |
| 1178 | static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType, |
| 1179 | const char *Name, |
| 1180 | CGBuilderTy &Builder) { |
| 1181 | bool VSigned = VType->isSignedIntegerOrEnumerationType(); |
| 1182 | llvm::Type *VTy = V->getType(); |
| 1183 | if (!VSigned) { |
| 1184 | // If the value is unsigned, then it is never negative. |
| 1185 | return llvm::ConstantInt::getFalse(Context&: VTy->getContext()); |
| 1186 | } |
| 1187 | llvm::Constant *Zero = llvm::ConstantInt::get(Ty: VTy, V: 0); |
| 1188 | return Builder.CreateICmp(P: llvm::ICmpInst::ICMP_SLT, LHS: V, RHS: Zero, |
| 1189 | Name: llvm::Twine(Name) + "." + V->getName() + |
| 1190 | ".negativitycheck" ); |
| 1191 | } |
| 1192 | |
| 1193 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
| 1194 | // Returns 'i1 false' when the conversion Src -> Dst changed the sign. |
| 1195 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1196 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1197 | EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
| 1198 | QualType DstType, CGBuilderTy &Builder) { |
| 1199 | llvm::Type *SrcTy = Src->getType(); |
| 1200 | llvm::Type *DstTy = Dst->getType(); |
| 1201 | |
| 1202 | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && |
| 1203 | "non-integer llvm type" ); |
| 1204 | |
| 1205 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1206 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1207 | (void)SrcSigned; // Only used in assert() |
| 1208 | (void)DstSigned; // Only used in assert() |
| 1209 | unsigned SrcBits = SrcTy->getScalarSizeInBits(); |
| 1210 | unsigned DstBits = DstTy->getScalarSizeInBits(); |
| 1211 | (void)SrcBits; // Only used in assert() |
| 1212 | (void)DstBits; // Only used in assert() |
| 1213 | |
| 1214 | assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && |
| 1215 | "either the widths should be different, or the signednesses." ); |
| 1216 | |
| 1217 | // 1. Was the old Value negative? |
| 1218 | llvm::Value *SrcIsNegative = |
| 1219 | EmitIsNegativeTestHelper(V: Src, VType: SrcType, Name: "src" , Builder); |
| 1220 | // 2. Is the new Value negative? |
| 1221 | llvm::Value *DstIsNegative = |
| 1222 | EmitIsNegativeTestHelper(V: Dst, VType: DstType, Name: "dst" , Builder); |
| 1223 | // 3. Now, was the 'negativity status' preserved during the conversion? |
| 1224 | // NOTE: conversion from negative to zero is considered to change the sign. |
| 1225 | // (We want to get 'false' when the conversion changed the sign) |
| 1226 | // So we should just equality-compare the negativity statuses. |
| 1227 | llvm::Value *Check = nullptr; |
| 1228 | Check = Builder.CreateICmpEQ(LHS: SrcIsNegative, RHS: DstIsNegative, Name: "signchangecheck" ); |
| 1229 | // If the comparison result is 'false', then the conversion changed the sign. |
| 1230 | return std::make_pair( |
| 1231 | x: ScalarExprEmitter::ICCK_IntegerSignChange, |
| 1232 | y: std::make_pair(x&: Check, y: SanitizerKind::SO_ImplicitIntegerSignChange)); |
| 1233 | } |
| 1234 | |
| 1235 | void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, |
| 1236 | Value *Dst, QualType DstType, |
| 1237 | SourceLocation Loc) { |
| 1238 | if (!CGF.SanOpts.has(O: SanitizerKind::SO_ImplicitIntegerSignChange)) |
| 1239 | return; |
| 1240 | |
| 1241 | llvm::Type *SrcTy = Src->getType(); |
| 1242 | llvm::Type *DstTy = Dst->getType(); |
| 1243 | |
| 1244 | // We only care about int->int conversions here. |
| 1245 | // We ignore conversions to/from pointer and/or bool. |
| 1246 | if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, |
| 1247 | DstType)) |
| 1248 | return; |
| 1249 | |
| 1250 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1251 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1252 | unsigned SrcBits = SrcTy->getScalarSizeInBits(); |
| 1253 | unsigned DstBits = DstTy->getScalarSizeInBits(); |
| 1254 | |
| 1255 | // Now, we do not need to emit the check in *all* of the cases. |
| 1256 | // We can avoid emitting it in some obvious cases where it would have been |
| 1257 | // dropped by the opt passes (instcombine) always anyways. |
| 1258 | // If it's a cast between effectively the same type, no check. |
| 1259 | // NOTE: this is *not* equivalent to checking the canonical types. |
| 1260 | if (SrcSigned == DstSigned && SrcBits == DstBits) |
| 1261 | return; |
| 1262 | // At least one of the values needs to have signed type. |
| 1263 | // If both are unsigned, then obviously, neither of them can be negative. |
| 1264 | if (!SrcSigned && !DstSigned) |
| 1265 | return; |
| 1266 | // If the conversion is to *larger* *signed* type, then no check is needed. |
| 1267 | // Because either sign-extension happens (so the sign will remain), |
| 1268 | // or zero-extension will happen (the sign bit will be zero.) |
| 1269 | if ((DstBits > SrcBits) && DstSigned) |
| 1270 | return; |
| 1271 | if (CGF.SanOpts.has(K: SanitizerKind::ImplicitSignedIntegerTruncation) && |
| 1272 | (SrcBits > DstBits) && SrcSigned) { |
| 1273 | // If the signed integer truncation sanitizer is enabled, |
| 1274 | // and this is a truncation from signed type, then no check is needed. |
| 1275 | // Because here sign change check is interchangeable with truncation check. |
| 1276 | return; |
| 1277 | } |
| 1278 | // Does an SSCL have an entry for the DstType under its respective sanitizer |
| 1279 | // section? |
| 1280 | if (DstSigned && CGF.getContext().isTypeIgnoredBySanitizer( |
| 1281 | Mask: SanitizerKind::ImplicitSignedIntegerTruncation, Ty: DstType)) |
| 1282 | return; |
| 1283 | if (!DstSigned && |
| 1284 | CGF.getContext().isTypeIgnoredBySanitizer( |
| 1285 | Mask: SanitizerKind::ImplicitUnsignedIntegerTruncation, Ty: DstType)) |
| 1286 | return; |
| 1287 | // That's it. We can't rule out any more cases with the data we have. |
| 1288 | |
| 1289 | auto CheckHandler = SanitizerHandler::ImplicitConversion; |
| 1290 | SanitizerDebugLocation SanScope( |
| 1291 | &CGF, |
| 1292 | {SanitizerKind::SO_ImplicitIntegerSignChange, |
| 1293 | SanitizerKind::SO_ImplicitUnsignedIntegerTruncation, |
| 1294 | SanitizerKind::SO_ImplicitSignedIntegerTruncation}, |
| 1295 | CheckHandler); |
| 1296 | |
| 1297 | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1298 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1299 | Check; |
| 1300 | |
| 1301 | // Each of these checks needs to return 'false' when an issue was detected. |
| 1302 | ImplicitConversionCheckKind CheckKind; |
| 1303 | llvm::SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, |
| 1304 | 2> |
| 1305 | Checks; |
| 1306 | // So we can 'and' all the checks together, and still get 'false', |
| 1307 | // if at least one of the checks detected an issue. |
| 1308 | |
| 1309 | Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); |
| 1310 | CheckKind = Check.first; |
| 1311 | Checks.emplace_back(Args&: Check.second); |
| 1312 | |
| 1313 | if (CGF.SanOpts.has(K: SanitizerKind::ImplicitSignedIntegerTruncation) && |
| 1314 | (SrcBits > DstBits) && !SrcSigned && DstSigned) { |
| 1315 | // If the signed integer truncation sanitizer was enabled, |
| 1316 | // and we are truncating from larger unsigned type to smaller signed type, |
| 1317 | // let's handle the case we skipped in that check. |
| 1318 | Check = |
| 1319 | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); |
| 1320 | CheckKind = ICCK_SignedIntegerTruncationOrSignChange; |
| 1321 | Checks.emplace_back(Args&: Check.second); |
| 1322 | // If the comparison result is 'i1 false', then the truncation was lossy. |
| 1323 | } |
| 1324 | |
| 1325 | llvm::Constant *StaticArgs[] = { |
| 1326 | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(T: SrcType), |
| 1327 | CGF.EmitCheckTypeDescriptor(T: DstType), |
| 1328 | llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: CheckKind), |
| 1329 | llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: 0)}; |
| 1330 | // EmitCheck() will 'and' all the checks together. |
| 1331 | CGF.EmitCheck(Checked: Checks, Check: CheckHandler, StaticArgs, DynamicArgs: {Src, Dst}); |
| 1332 | } |
| 1333 | |
| 1334 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
| 1335 | // Returns 'i1 false' when the truncation Src -> Dst was lossy. |
| 1336 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1337 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1338 | EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
| 1339 | QualType DstType, CGBuilderTy &Builder) { |
| 1340 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1341 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1342 | |
| 1343 | ScalarExprEmitter::ImplicitConversionCheckKind Kind; |
| 1344 | if (!SrcSigned && !DstSigned) |
| 1345 | Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; |
| 1346 | else |
| 1347 | Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; |
| 1348 | |
| 1349 | llvm::Value *Check = nullptr; |
| 1350 | // 1. Extend the truncated value back to the same width as the Src. |
| 1351 | Check = Builder.CreateIntCast(V: Dst, DestTy: Src->getType(), isSigned: DstSigned, Name: "bf.anyext" ); |
| 1352 | // 2. Equality-compare with the original source value |
| 1353 | Check = Builder.CreateICmpEQ(LHS: Check, RHS: Src, Name: "bf.truncheck" ); |
| 1354 | // If the comparison result is 'i1 false', then the truncation was lossy. |
| 1355 | |
| 1356 | return std::make_pair( |
| 1357 | x&: Kind, |
| 1358 | y: std::make_pair(x&: Check, y: SanitizerKind::SO_ImplicitBitfieldConversion)); |
| 1359 | } |
| 1360 | |
| 1361 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
| 1362 | // Returns 'i1 false' when the conversion Src -> Dst changed the sign. |
| 1363 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1364 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1365 | EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
| 1366 | QualType DstType, CGBuilderTy &Builder) { |
| 1367 | // 1. Was the old Value negative? |
| 1368 | llvm::Value *SrcIsNegative = |
| 1369 | EmitIsNegativeTestHelper(V: Src, VType: SrcType, Name: "bf.src" , Builder); |
| 1370 | // 2. Is the new Value negative? |
| 1371 | llvm::Value *DstIsNegative = |
| 1372 | EmitIsNegativeTestHelper(V: Dst, VType: DstType, Name: "bf.dst" , Builder); |
| 1373 | // 3. Now, was the 'negativity status' preserved during the conversion? |
| 1374 | // NOTE: conversion from negative to zero is considered to change the sign. |
| 1375 | // (We want to get 'false' when the conversion changed the sign) |
| 1376 | // So we should just equality-compare the negativity statuses. |
| 1377 | llvm::Value *Check = nullptr; |
| 1378 | Check = |
| 1379 | Builder.CreateICmpEQ(LHS: SrcIsNegative, RHS: DstIsNegative, Name: "bf.signchangecheck" ); |
| 1380 | // If the comparison result is 'false', then the conversion changed the sign. |
| 1381 | return std::make_pair( |
| 1382 | x: ScalarExprEmitter::ICCK_IntegerSignChange, |
| 1383 | y: std::make_pair(x&: Check, y: SanitizerKind::SO_ImplicitBitfieldConversion)); |
| 1384 | } |
| 1385 | |
| 1386 | void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType, |
| 1387 | Value *Dst, QualType DstType, |
| 1388 | const CGBitFieldInfo &Info, |
| 1389 | SourceLocation Loc) { |
| 1390 | |
| 1391 | if (!SanOpts.has(K: SanitizerKind::ImplicitBitfieldConversion)) |
| 1392 | return; |
| 1393 | |
| 1394 | // We only care about int->int conversions here. |
| 1395 | // We ignore conversions to/from pointer and/or bool. |
| 1396 | if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, |
| 1397 | DstType)) |
| 1398 | return; |
| 1399 | |
| 1400 | if (DstType->isBooleanType() || SrcType->isBooleanType()) |
| 1401 | return; |
| 1402 | |
| 1403 | // This should be truncation of integral types. |
| 1404 | assert(isa<llvm::IntegerType>(Src->getType()) && |
| 1405 | isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type" ); |
| 1406 | |
| 1407 | // TODO: Calculate src width to avoid emitting code |
| 1408 | // for unecessary cases. |
| 1409 | unsigned SrcBits = ConvertType(T: SrcType)->getScalarSizeInBits(); |
| 1410 | unsigned DstBits = Info.Size; |
| 1411 | |
| 1412 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1413 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1414 | |
| 1415 | auto CheckHandler = SanitizerHandler::ImplicitConversion; |
| 1416 | SanitizerDebugLocation SanScope( |
| 1417 | this, {SanitizerKind::SO_ImplicitBitfieldConversion}, CheckHandler); |
| 1418 | |
| 1419 | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
| 1420 | std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> |
| 1421 | Check; |
| 1422 | |
| 1423 | // Truncation |
| 1424 | bool EmitTruncation = DstBits < SrcBits; |
| 1425 | // If Dst is signed and Src unsigned, we want to be more specific |
| 1426 | // about the CheckKind we emit, in this case we want to emit |
| 1427 | // ICCK_SignedIntegerTruncationOrSignChange. |
| 1428 | bool EmitTruncationFromUnsignedToSigned = |
| 1429 | EmitTruncation && DstSigned && !SrcSigned; |
| 1430 | // Sign change |
| 1431 | bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits; |
| 1432 | bool BothUnsigned = !SrcSigned && !DstSigned; |
| 1433 | bool LargerSigned = (DstBits > SrcBits) && DstSigned; |
| 1434 | // We can avoid emitting sign change checks in some obvious cases |
| 1435 | // 1. If Src and Dst have the same signedness and size |
| 1436 | // 2. If both are unsigned sign check is unecessary! |
| 1437 | // 3. If Dst is signed and bigger than Src, either |
| 1438 | // sign-extension or zero-extension will make sure |
| 1439 | // the sign remains. |
| 1440 | bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned; |
| 1441 | |
| 1442 | if (EmitTruncation) |
| 1443 | Check = |
| 1444 | EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); |
| 1445 | else if (EmitSignChange) { |
| 1446 | assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && |
| 1447 | "either the widths should be different, or the signednesses." ); |
| 1448 | Check = |
| 1449 | EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); |
| 1450 | } else |
| 1451 | return; |
| 1452 | |
| 1453 | ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first; |
| 1454 | if (EmitTruncationFromUnsignedToSigned) |
| 1455 | CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange; |
| 1456 | |
| 1457 | llvm::Constant *StaticArgs[] = { |
| 1458 | EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(T: SrcType), |
| 1459 | EmitCheckTypeDescriptor(T: DstType), |
| 1460 | llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: CheckKind), |
| 1461 | llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: Info.Size)}; |
| 1462 | |
| 1463 | EmitCheck(Checked: Check.second, Check: CheckHandler, StaticArgs, DynamicArgs: {Src, Dst}); |
| 1464 | } |
| 1465 | |
| 1466 | Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, |
| 1467 | QualType DstType, llvm::Type *SrcTy, |
| 1468 | llvm::Type *DstTy, |
| 1469 | ScalarConversionOpts Opts) { |
| 1470 | // The Element types determine the type of cast to perform. |
| 1471 | llvm::Type *SrcElementTy; |
| 1472 | llvm::Type *DstElementTy; |
| 1473 | QualType SrcElementType; |
| 1474 | QualType DstElementType; |
| 1475 | if (SrcType->isMatrixType() && DstType->isMatrixType()) { |
| 1476 | SrcElementTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType(); |
| 1477 | DstElementTy = cast<llvm::VectorType>(Val: DstTy)->getElementType(); |
| 1478 | SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); |
| 1479 | DstElementType = DstType->castAs<MatrixType>()->getElementType(); |
| 1480 | } else { |
| 1481 | assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && |
| 1482 | "cannot cast between matrix and non-matrix types" ); |
| 1483 | SrcElementTy = SrcTy; |
| 1484 | DstElementTy = DstTy; |
| 1485 | SrcElementType = SrcType; |
| 1486 | DstElementType = DstType; |
| 1487 | } |
| 1488 | |
| 1489 | if (isa<llvm::IntegerType>(Val: SrcElementTy)) { |
| 1490 | bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); |
| 1491 | if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { |
| 1492 | InputSigned = true; |
| 1493 | } |
| 1494 | |
| 1495 | if (isa<llvm::IntegerType>(Val: DstElementTy)) |
| 1496 | return Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: InputSigned, Name: "conv" ); |
| 1497 | if (InputSigned) |
| 1498 | return Builder.CreateSIToFP(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1499 | return Builder.CreateUIToFP(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1500 | } |
| 1501 | |
| 1502 | if (isa<llvm::IntegerType>(Val: DstElementTy)) { |
| 1503 | assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion" ); |
| 1504 | bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); |
| 1505 | |
| 1506 | // If we can't recognize overflow as undefined behavior, assume that |
| 1507 | // overflow saturates. This protects against normal optimizations if we are |
| 1508 | // compiling with non-standard FP semantics. |
| 1509 | if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { |
| 1510 | llvm::Intrinsic::ID IID = |
| 1511 | IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; |
| 1512 | return Builder.CreateCall(Callee: CGF.CGM.getIntrinsic(IID, Tys: {DstTy, SrcTy}), Args: Src); |
| 1513 | } |
| 1514 | |
| 1515 | if (IsSigned) |
| 1516 | return Builder.CreateFPToSI(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1517 | return Builder.CreateFPToUI(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1518 | } |
| 1519 | |
| 1520 | if ((DstElementTy->is16bitFPTy() && SrcElementTy->is16bitFPTy())) { |
| 1521 | Value *FloatVal = Builder.CreateFPExt(V: Src, DestTy: Builder.getFloatTy(), Name: "fpext" ); |
| 1522 | return Builder.CreateFPTrunc(V: FloatVal, DestTy: DstTy, Name: "fptrunc" ); |
| 1523 | } |
| 1524 | if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) |
| 1525 | return Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1526 | return Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1527 | } |
| 1528 | |
| 1529 | /// Emit a conversion from the specified type to the specified destination type, |
| 1530 | /// both of which are LLVM scalar types. |
| 1531 | Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, |
| 1532 | QualType DstType, |
| 1533 | SourceLocation Loc, |
| 1534 | ScalarConversionOpts Opts) { |
| 1535 | // All conversions involving fixed point types should be handled by the |
| 1536 | // EmitFixedPoint family functions. This is done to prevent bloating up this |
| 1537 | // function more, and although fixed point numbers are represented by |
| 1538 | // integers, we do not want to follow any logic that assumes they should be |
| 1539 | // treated as integers. |
| 1540 | // TODO(leonardchan): When necessary, add another if statement checking for |
| 1541 | // conversions to fixed point types from other types. |
| 1542 | if (SrcType->isFixedPointType()) { |
| 1543 | if (DstType->isBooleanType()) |
| 1544 | // It is important that we check this before checking if the dest type is |
| 1545 | // an integer because booleans are technically integer types. |
| 1546 | // We do not need to check the padding bit on unsigned types if unsigned |
| 1547 | // padding is enabled because overflow into this bit is undefined |
| 1548 | // behavior. |
| 1549 | return Builder.CreateIsNotNull(Arg: Src, Name: "tobool" ); |
| 1550 | if (DstType->isFixedPointType() || DstType->isIntegerType() || |
| 1551 | DstType->isRealFloatingType()) |
| 1552 | return EmitFixedPointConversion(Src, SrcTy: SrcType, DstTy: DstType, Loc); |
| 1553 | |
| 1554 | llvm_unreachable( |
| 1555 | "Unhandled scalar conversion from a fixed point type to another type." ); |
| 1556 | } else if (DstType->isFixedPointType()) { |
| 1557 | if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) |
| 1558 | // This also includes converting booleans and enums to fixed point types. |
| 1559 | return EmitFixedPointConversion(Src, SrcTy: SrcType, DstTy: DstType, Loc); |
| 1560 | |
| 1561 | llvm_unreachable( |
| 1562 | "Unhandled scalar conversion to a fixed point type from another type." ); |
| 1563 | } |
| 1564 | |
| 1565 | QualType NoncanonicalSrcType = SrcType; |
| 1566 | QualType NoncanonicalDstType = DstType; |
| 1567 | |
| 1568 | SrcType = CGF.getContext().getCanonicalType(T: SrcType); |
| 1569 | DstType = CGF.getContext().getCanonicalType(T: DstType); |
| 1570 | if (SrcType == DstType) return Src; |
| 1571 | |
| 1572 | if (DstType->isVoidType()) return nullptr; |
| 1573 | |
| 1574 | llvm::Value *OrigSrc = Src; |
| 1575 | QualType OrigSrcType = SrcType; |
| 1576 | llvm::Type *SrcTy = Src->getType(); |
| 1577 | |
| 1578 | // Handle conversions to bool first, they are special: comparisons against 0. |
| 1579 | if (DstType->isBooleanType()) |
| 1580 | return EmitConversionToBool(Src, SrcType); |
| 1581 | |
| 1582 | llvm::Type *DstTy = ConvertType(T: DstType); |
| 1583 | |
| 1584 | // Cast from half through float if half isn't a native type. |
| 1585 | if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| 1586 | // Cast to FP using the intrinsic if the half type itself isn't supported. |
| 1587 | if (DstTy->isFloatingPointTy()) { |
| 1588 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
| 1589 | return Builder.CreateCall( |
| 1590 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16, Tys: DstTy), |
| 1591 | Args: Src); |
| 1592 | } else { |
| 1593 | // Cast to other types through float, using either the intrinsic or FPExt, |
| 1594 | // depending on whether the half type itself is supported |
| 1595 | // (as opposed to operations on half, available with NativeHalfType). |
| 1596 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| 1597 | Src = Builder.CreateCall( |
| 1598 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16, |
| 1599 | Tys: CGF.CGM.FloatTy), |
| 1600 | Args: Src); |
| 1601 | } else { |
| 1602 | Src = Builder.CreateFPExt(V: Src, DestTy: CGF.CGM.FloatTy, Name: "conv" ); |
| 1603 | } |
| 1604 | SrcType = CGF.getContext().FloatTy; |
| 1605 | SrcTy = CGF.FloatTy; |
| 1606 | } |
| 1607 | } |
| 1608 | |
| 1609 | // Ignore conversions like int -> uint. |
| 1610 | if (SrcTy == DstTy) { |
| 1611 | if (Opts.EmitImplicitIntegerSignChangeChecks) |
| 1612 | EmitIntegerSignChangeCheck(Src, SrcType: NoncanonicalSrcType, Dst: Src, |
| 1613 | DstType: NoncanonicalDstType, Loc); |
| 1614 | |
| 1615 | return Src; |
| 1616 | } |
| 1617 | |
| 1618 | // Handle pointer conversions next: pointers can only be converted to/from |
| 1619 | // other pointers and integers. Check for pointer types in terms of LLVM, as |
| 1620 | // some native types (like Obj-C id) may map to a pointer type. |
| 1621 | if (auto DstPT = dyn_cast<llvm::PointerType>(Val: DstTy)) { |
| 1622 | // The source value may be an integer, or a pointer. |
| 1623 | if (isa<llvm::PointerType>(Val: SrcTy)) |
| 1624 | return Src; |
| 1625 | |
| 1626 | assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?" ); |
| 1627 | // First, convert to the correct width so that we control the kind of |
| 1628 | // extension. |
| 1629 | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); |
| 1630 | bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); |
| 1631 | llvm::Value* IntResult = |
| 1632 | Builder.CreateIntCast(V: Src, DestTy: MiddleTy, isSigned: InputSigned, Name: "conv" ); |
| 1633 | // Then, cast to pointer. |
| 1634 | return Builder.CreateIntToPtr(V: IntResult, DestTy: DstTy, Name: "conv" ); |
| 1635 | } |
| 1636 | |
| 1637 | if (isa<llvm::PointerType>(Val: SrcTy)) { |
| 1638 | // Must be an ptr to int cast. |
| 1639 | assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?" ); |
| 1640 | return Builder.CreatePtrToInt(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1641 | } |
| 1642 | |
| 1643 | // A scalar can be splatted to an extended vector of the same element type |
| 1644 | if (DstType->isExtVectorType() && !SrcType->isVectorType()) { |
| 1645 | // Sema should add casts to make sure that the source expression's type is |
| 1646 | // the same as the vector's element type (sans qualifiers) |
| 1647 | assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == |
| 1648 | SrcType.getTypePtr() && |
| 1649 | "Splatted expr doesn't match with vector element type?" ); |
| 1650 | |
| 1651 | // Splat the element across to all elements |
| 1652 | unsigned NumElements = cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements(); |
| 1653 | return Builder.CreateVectorSplat(NumElts: NumElements, V: Src, Name: "splat" ); |
| 1654 | } |
| 1655 | |
| 1656 | if (SrcType->isMatrixType() && DstType->isMatrixType()) |
| 1657 | return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); |
| 1658 | |
| 1659 | if (isa<llvm::VectorType>(Val: SrcTy) || isa<llvm::VectorType>(Val: DstTy)) { |
| 1660 | // Allow bitcast from vector to integer/fp of the same size. |
| 1661 | llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits(); |
| 1662 | llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits(); |
| 1663 | if (SrcSize == DstSize) |
| 1664 | return Builder.CreateBitCast(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1665 | |
| 1666 | // Conversions between vectors of different sizes are not allowed except |
| 1667 | // when vectors of half are involved. Operations on storage-only half |
| 1668 | // vectors require promoting half vector operands to float vectors and |
| 1669 | // truncating the result, which is either an int or float vector, to a |
| 1670 | // short or half vector. |
| 1671 | |
| 1672 | // Source and destination are both expected to be vectors. |
| 1673 | llvm::Type *SrcElementTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType(); |
| 1674 | llvm::Type *DstElementTy = cast<llvm::VectorType>(Val: DstTy)->getElementType(); |
| 1675 | (void)DstElementTy; |
| 1676 | |
| 1677 | assert(((SrcElementTy->isIntegerTy() && |
| 1678 | DstElementTy->isIntegerTy()) || |
| 1679 | (SrcElementTy->isFloatingPointTy() && |
| 1680 | DstElementTy->isFloatingPointTy())) && |
| 1681 | "unexpected conversion between a floating-point vector and an " |
| 1682 | "integer vector" ); |
| 1683 | |
| 1684 | // Truncate an i32 vector to an i16 vector. |
| 1685 | if (SrcElementTy->isIntegerTy()) |
| 1686 | return Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: false, Name: "conv" ); |
| 1687 | |
| 1688 | // Truncate a float vector to a half vector. |
| 1689 | if (SrcSize > DstSize) |
| 1690 | return Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1691 | |
| 1692 | // Promote a half vector to a float vector. |
| 1693 | return Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1694 | } |
| 1695 | |
| 1696 | // Finally, we have the arithmetic types: real int/float. |
| 1697 | Value *Res = nullptr; |
| 1698 | llvm::Type *ResTy = DstTy; |
| 1699 | |
| 1700 | // An overflowing conversion has undefined behavior if either the source type |
| 1701 | // or the destination type is a floating-point type. However, we consider the |
| 1702 | // range of representable values for all floating-point types to be |
| 1703 | // [-inf,+inf], so no overflow can ever happen when the destination type is a |
| 1704 | // floating-point type. |
| 1705 | if (CGF.SanOpts.has(K: SanitizerKind::FloatCastOverflow) && |
| 1706 | OrigSrcType->isFloatingType()) |
| 1707 | EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, |
| 1708 | Loc); |
| 1709 | |
| 1710 | // Cast to half through float if half isn't a native type. |
| 1711 | if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| 1712 | // Make sure we cast in a single step if from another FP type. |
| 1713 | if (SrcTy->isFloatingPointTy()) { |
| 1714 | // Use the intrinsic if the half type itself isn't supported |
| 1715 | // (as opposed to operations on half, available with NativeHalfType). |
| 1716 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
| 1717 | return Builder.CreateCall( |
| 1718 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16, Tys: SrcTy), Args: Src); |
| 1719 | // If the half type is supported, just use an fptrunc. |
| 1720 | return Builder.CreateFPTrunc(V: Src, DestTy: DstTy); |
| 1721 | } |
| 1722 | DstTy = CGF.FloatTy; |
| 1723 | } |
| 1724 | |
| 1725 | Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); |
| 1726 | |
| 1727 | if (DstTy != ResTy) { |
| 1728 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| 1729 | assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion" ); |
| 1730 | Res = Builder.CreateCall( |
| 1731 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16, Tys: CGF.CGM.FloatTy), |
| 1732 | Args: Res); |
| 1733 | } else { |
| 1734 | Res = Builder.CreateFPTrunc(V: Res, DestTy: ResTy, Name: "conv" ); |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | if (Opts.EmitImplicitIntegerTruncationChecks) |
| 1739 | EmitIntegerTruncationCheck(Src, SrcType: NoncanonicalSrcType, Dst: Res, |
| 1740 | DstType: NoncanonicalDstType, Loc); |
| 1741 | |
| 1742 | if (Opts.EmitImplicitIntegerSignChangeChecks) |
| 1743 | EmitIntegerSignChangeCheck(Src, SrcType: NoncanonicalSrcType, Dst: Res, |
| 1744 | DstType: NoncanonicalDstType, Loc); |
| 1745 | |
| 1746 | return Res; |
| 1747 | } |
| 1748 | |
| 1749 | Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, |
| 1750 | QualType DstTy, |
| 1751 | SourceLocation Loc) { |
| 1752 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
| 1753 | llvm::Value *Result; |
| 1754 | if (SrcTy->isRealFloatingType()) |
| 1755 | Result = FPBuilder.CreateFloatingToFixed(Src, |
| 1756 | DstSema: CGF.getContext().getFixedPointSemantics(Ty: DstTy)); |
| 1757 | else if (DstTy->isRealFloatingType()) |
| 1758 | Result = FPBuilder.CreateFixedToFloating(Src, |
| 1759 | SrcSema: CGF.getContext().getFixedPointSemantics(Ty: SrcTy), |
| 1760 | DstTy: ConvertType(T: DstTy)); |
| 1761 | else { |
| 1762 | auto SrcFPSema = CGF.getContext().getFixedPointSemantics(Ty: SrcTy); |
| 1763 | auto DstFPSema = CGF.getContext().getFixedPointSemantics(Ty: DstTy); |
| 1764 | |
| 1765 | if (DstTy->isIntegerType()) |
| 1766 | Result = FPBuilder.CreateFixedToInteger(Src, SrcSema: SrcFPSema, |
| 1767 | DstWidth: DstFPSema.getWidth(), |
| 1768 | DstIsSigned: DstFPSema.isSigned()); |
| 1769 | else if (SrcTy->isIntegerType()) |
| 1770 | Result = FPBuilder.CreateIntegerToFixed(Src, SrcIsSigned: SrcFPSema.isSigned(), |
| 1771 | DstSema: DstFPSema); |
| 1772 | else |
| 1773 | Result = FPBuilder.CreateFixedToFixed(Src, SrcSema: SrcFPSema, DstSema: DstFPSema); |
| 1774 | } |
| 1775 | return Result; |
| 1776 | } |
| 1777 | |
| 1778 | /// Emit a conversion from the specified complex type to the specified |
| 1779 | /// destination type, where the destination type is an LLVM scalar type. |
| 1780 | Value *ScalarExprEmitter::EmitComplexToScalarConversion( |
| 1781 | CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, |
| 1782 | SourceLocation Loc) { |
| 1783 | // Get the source element type. |
| 1784 | SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); |
| 1785 | |
| 1786 | // Handle conversions to bool first, they are special: comparisons against 0. |
| 1787 | if (DstTy->isBooleanType()) { |
| 1788 | // Complex != 0 -> (Real != 0) | (Imag != 0) |
| 1789 | Src.first = EmitScalarConversion(Src: Src.first, SrcType: SrcTy, DstType: DstTy, Loc); |
| 1790 | Src.second = EmitScalarConversion(Src: Src.second, SrcType: SrcTy, DstType: DstTy, Loc); |
| 1791 | return Builder.CreateOr(LHS: Src.first, RHS: Src.second, Name: "tobool" ); |
| 1792 | } |
| 1793 | |
| 1794 | // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, |
| 1795 | // the imaginary part of the complex value is discarded and the value of the |
| 1796 | // real part is converted according to the conversion rules for the |
| 1797 | // corresponding real type. |
| 1798 | return EmitScalarConversion(Src: Src.first, SrcType: SrcTy, DstType: DstTy, Loc); |
| 1799 | } |
| 1800 | |
| 1801 | Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { |
| 1802 | return CGF.EmitFromMemory(Value: CGF.CGM.EmitNullConstant(T: Ty), Ty); |
| 1803 | } |
| 1804 | |
| 1805 | /// Emit a sanitization check for the given "binary" operation (which |
| 1806 | /// might actually be a unary increment which has been lowered to a binary |
| 1807 | /// operation). The check passes if all values in \p Checks (which are \c i1), |
| 1808 | /// are \c true. |
| 1809 | void ScalarExprEmitter::EmitBinOpCheck( |
| 1810 | ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks, |
| 1811 | const BinOpInfo &Info) { |
| 1812 | assert(CGF.IsSanitizerScope); |
| 1813 | SanitizerHandler Check; |
| 1814 | SmallVector<llvm::Constant *, 4> StaticData; |
| 1815 | SmallVector<llvm::Value *, 2> DynamicData; |
| 1816 | |
| 1817 | BinaryOperatorKind Opcode = Info.Opcode; |
| 1818 | if (BinaryOperator::isCompoundAssignmentOp(Opc: Opcode)) |
| 1819 | Opcode = BinaryOperator::getOpForCompoundAssignment(Opc: Opcode); |
| 1820 | |
| 1821 | StaticData.push_back(Elt: CGF.EmitCheckSourceLocation(Loc: Info.E->getExprLoc())); |
| 1822 | const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: Info.E); |
| 1823 | if (UO && UO->getOpcode() == UO_Minus) { |
| 1824 | Check = SanitizerHandler::NegateOverflow; |
| 1825 | StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: UO->getType())); |
| 1826 | DynamicData.push_back(Elt: Info.RHS); |
| 1827 | } else { |
| 1828 | if (BinaryOperator::isShiftOp(Opc: Opcode)) { |
| 1829 | // Shift LHS negative or too large, or RHS out of bounds. |
| 1830 | Check = SanitizerHandler::ShiftOutOfBounds; |
| 1831 | const BinaryOperator *BO = cast<BinaryOperator>(Val: Info.E); |
| 1832 | StaticData.push_back( |
| 1833 | Elt: CGF.EmitCheckTypeDescriptor(T: BO->getLHS()->getType())); |
| 1834 | StaticData.push_back( |
| 1835 | Elt: CGF.EmitCheckTypeDescriptor(T: BO->getRHS()->getType())); |
| 1836 | } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
| 1837 | // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). |
| 1838 | Check = SanitizerHandler::DivremOverflow; |
| 1839 | StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: Info.Ty)); |
| 1840 | } else { |
| 1841 | // Arithmetic overflow (+, -, *). |
| 1842 | switch (Opcode) { |
| 1843 | case BO_Add: Check = SanitizerHandler::AddOverflow; break; |
| 1844 | case BO_Sub: Check = SanitizerHandler::SubOverflow; break; |
| 1845 | case BO_Mul: Check = SanitizerHandler::MulOverflow; break; |
| 1846 | default: llvm_unreachable("unexpected opcode for bin op check" ); |
| 1847 | } |
| 1848 | StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: Info.Ty)); |
| 1849 | } |
| 1850 | DynamicData.push_back(Elt: Info.LHS); |
| 1851 | DynamicData.push_back(Elt: Info.RHS); |
| 1852 | } |
| 1853 | |
| 1854 | CGF.EmitCheck(Checked: Checks, Check, StaticArgs: StaticData, DynamicArgs: DynamicData); |
| 1855 | } |
| 1856 | |
| 1857 | //===----------------------------------------------------------------------===// |
| 1858 | // Visitor Methods |
| 1859 | //===----------------------------------------------------------------------===// |
| 1860 | |
| 1861 | Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
| 1862 | CGF.ErrorUnsupported(S: E, Type: "scalar expression" ); |
| 1863 | if (E->getType()->isVoidType()) |
| 1864 | return nullptr; |
| 1865 | return llvm::PoisonValue::get(T: CGF.ConvertType(T: E->getType())); |
| 1866 | } |
| 1867 | |
| 1868 | Value * |
| 1869 | ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { |
| 1870 | ASTContext &Context = CGF.getContext(); |
| 1871 | unsigned AddrSpace = |
| 1872 | Context.getTargetAddressSpace(AS: CGF.CGM.GetGlobalConstantAddressSpace()); |
| 1873 | llvm::Constant *GlobalConstStr = Builder.CreateGlobalString( |
| 1874 | Str: E->ComputeName(Context), Name: "__usn_str" , AddressSpace: AddrSpace); |
| 1875 | |
| 1876 | llvm::Type *ExprTy = ConvertType(T: E->getType()); |
| 1877 | return Builder.CreatePointerBitCastOrAddrSpaceCast(V: GlobalConstStr, DestTy: ExprTy, |
| 1878 | Name: "usn_addr_cast" ); |
| 1879 | } |
| 1880 | |
| 1881 | Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) { |
| 1882 | assert(E->getDataElementCount() == 1); |
| 1883 | auto It = E->begin(); |
| 1884 | return Builder.getInt(AI: (*It)->getValue()); |
| 1885 | } |
| 1886 | |
| 1887 | Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { |
| 1888 | // Vector Mask Case |
| 1889 | if (E->getNumSubExprs() == 2) { |
| 1890 | Value *LHS = CGF.EmitScalarExpr(E: E->getExpr(Index: 0)); |
| 1891 | Value *RHS = CGF.EmitScalarExpr(E: E->getExpr(Index: 1)); |
| 1892 | Value *Mask; |
| 1893 | |
| 1894 | auto *LTy = cast<llvm::FixedVectorType>(Val: LHS->getType()); |
| 1895 | unsigned LHSElts = LTy->getNumElements(); |
| 1896 | |
| 1897 | Mask = RHS; |
| 1898 | |
| 1899 | auto *MTy = cast<llvm::FixedVectorType>(Val: Mask->getType()); |
| 1900 | |
| 1901 | // Mask off the high bits of each shuffle index. |
| 1902 | Value *MaskBits = |
| 1903 | llvm::ConstantInt::get(Ty: MTy, V: llvm::NextPowerOf2(A: LHSElts - 1) - 1); |
| 1904 | Mask = Builder.CreateAnd(LHS: Mask, RHS: MaskBits, Name: "mask" ); |
| 1905 | |
| 1906 | // newv = undef |
| 1907 | // mask = mask & maskbits |
| 1908 | // for each elt |
| 1909 | // n = extract mask i |
| 1910 | // x = extract val n |
| 1911 | // newv = insert newv, x, i |
| 1912 | auto *RTy = llvm::FixedVectorType::get(ElementType: LTy->getElementType(), |
| 1913 | NumElts: MTy->getNumElements()); |
| 1914 | Value* NewV = llvm::PoisonValue::get(T: RTy); |
| 1915 | for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { |
| 1916 | Value *IIndx = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: i); |
| 1917 | Value *Indx = Builder.CreateExtractElement(Vec: Mask, Idx: IIndx, Name: "shuf_idx" ); |
| 1918 | |
| 1919 | Value *VExt = Builder.CreateExtractElement(Vec: LHS, Idx: Indx, Name: "shuf_elt" ); |
| 1920 | NewV = Builder.CreateInsertElement(Vec: NewV, NewElt: VExt, Idx: IIndx, Name: "shuf_ins" ); |
| 1921 | } |
| 1922 | return NewV; |
| 1923 | } |
| 1924 | |
| 1925 | Value* V1 = CGF.EmitScalarExpr(E: E->getExpr(Index: 0)); |
| 1926 | Value* V2 = CGF.EmitScalarExpr(E: E->getExpr(Index: 1)); |
| 1927 | |
| 1928 | SmallVector<int, 32> Indices; |
| 1929 | for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { |
| 1930 | llvm::APSInt Idx = E->getShuffleMaskIdx(N: i - 2); |
| 1931 | // Check for -1 and output it as undef in the IR. |
| 1932 | if (Idx.isSigned() && Idx.isAllOnes()) |
| 1933 | Indices.push_back(Elt: -1); |
| 1934 | else |
| 1935 | Indices.push_back(Elt: Idx.getZExtValue()); |
| 1936 | } |
| 1937 | |
| 1938 | return Builder.CreateShuffleVector(V1, V2, Mask: Indices, Name: "shuffle" ); |
| 1939 | } |
| 1940 | |
| 1941 | Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { |
| 1942 | QualType SrcType = E->getSrcExpr()->getType(), |
| 1943 | DstType = E->getType(); |
| 1944 | |
| 1945 | Value *Src = CGF.EmitScalarExpr(E: E->getSrcExpr()); |
| 1946 | |
| 1947 | SrcType = CGF.getContext().getCanonicalType(T: SrcType); |
| 1948 | DstType = CGF.getContext().getCanonicalType(T: DstType); |
| 1949 | if (SrcType == DstType) return Src; |
| 1950 | |
| 1951 | assert(SrcType->isVectorType() && |
| 1952 | "ConvertVector source type must be a vector" ); |
| 1953 | assert(DstType->isVectorType() && |
| 1954 | "ConvertVector destination type must be a vector" ); |
| 1955 | |
| 1956 | llvm::Type *SrcTy = Src->getType(); |
| 1957 | llvm::Type *DstTy = ConvertType(T: DstType); |
| 1958 | |
| 1959 | // Ignore conversions like int -> uint. |
| 1960 | if (SrcTy == DstTy) |
| 1961 | return Src; |
| 1962 | |
| 1963 | QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), |
| 1964 | DstEltType = DstType->castAs<VectorType>()->getElementType(); |
| 1965 | |
| 1966 | assert(SrcTy->isVectorTy() && |
| 1967 | "ConvertVector source IR type must be a vector" ); |
| 1968 | assert(DstTy->isVectorTy() && |
| 1969 | "ConvertVector destination IR type must be a vector" ); |
| 1970 | |
| 1971 | llvm::Type *SrcEltTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType(), |
| 1972 | *DstEltTy = cast<llvm::VectorType>(Val: DstTy)->getElementType(); |
| 1973 | |
| 1974 | if (DstEltType->isBooleanType()) { |
| 1975 | assert((SrcEltTy->isFloatingPointTy() || |
| 1976 | isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion" ); |
| 1977 | |
| 1978 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: SrcTy); |
| 1979 | if (SrcEltTy->isFloatingPointTy()) { |
| 1980 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, E); |
| 1981 | return Builder.CreateFCmpUNE(LHS: Src, RHS: Zero, Name: "tobool" ); |
| 1982 | } else { |
| 1983 | return Builder.CreateICmpNE(LHS: Src, RHS: Zero, Name: "tobool" ); |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | // We have the arithmetic types: real int/float. |
| 1988 | Value *Res = nullptr; |
| 1989 | |
| 1990 | if (isa<llvm::IntegerType>(Val: SrcEltTy)) { |
| 1991 | bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); |
| 1992 | if (isa<llvm::IntegerType>(Val: DstEltTy)) |
| 1993 | Res = Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: InputSigned, Name: "conv" ); |
| 1994 | else { |
| 1995 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, E); |
| 1996 | if (InputSigned) |
| 1997 | Res = Builder.CreateSIToFP(V: Src, DestTy: DstTy, Name: "conv" ); |
| 1998 | else |
| 1999 | Res = Builder.CreateUIToFP(V: Src, DestTy: DstTy, Name: "conv" ); |
| 2000 | } |
| 2001 | } else if (isa<llvm::IntegerType>(Val: DstEltTy)) { |
| 2002 | assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion" ); |
| 2003 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, E); |
| 2004 | if (DstEltType->isSignedIntegerOrEnumerationType()) |
| 2005 | Res = Builder.CreateFPToSI(V: Src, DestTy: DstTy, Name: "conv" ); |
| 2006 | else |
| 2007 | Res = Builder.CreateFPToUI(V: Src, DestTy: DstTy, Name: "conv" ); |
| 2008 | } else { |
| 2009 | assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && |
| 2010 | "Unknown real conversion" ); |
| 2011 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, E); |
| 2012 | if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) |
| 2013 | Res = Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv" ); |
| 2014 | else |
| 2015 | Res = Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv" ); |
| 2016 | } |
| 2017 | |
| 2018 | return Res; |
| 2019 | } |
| 2020 | |
| 2021 | Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { |
| 2022 | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(ME: E)) { |
| 2023 | CGF.EmitIgnoredExpr(E: E->getBase()); |
| 2024 | return CGF.emitScalarConstant(Constant, E); |
| 2025 | } else { |
| 2026 | Expr::EvalResult Result; |
| 2027 | if (E->EvaluateAsInt(Result, Ctx: CGF.getContext(), AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 2028 | llvm::APSInt Value = Result.Val.getInt(); |
| 2029 | CGF.EmitIgnoredExpr(E: E->getBase()); |
| 2030 | return Builder.getInt(AI: Value); |
| 2031 | } |
| 2032 | } |
| 2033 | |
| 2034 | llvm::Value *Result = EmitLoadOfLValue(E); |
| 2035 | |
| 2036 | // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its |
| 2037 | // debug info for the pointer, even if there is no variable associated with |
| 2038 | // the pointer's expression. |
| 2039 | if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) { |
| 2040 | if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Val: Result)) { |
| 2041 | if (llvm::GetElementPtrInst *GEP = |
| 2042 | dyn_cast<llvm::GetElementPtrInst>(Val: Load->getPointerOperand())) { |
| 2043 | if (llvm::Instruction *Pointer = |
| 2044 | dyn_cast<llvm::Instruction>(Val: GEP->getPointerOperand())) { |
| 2045 | QualType Ty = E->getBase()->getType(); |
| 2046 | if (!E->isArrow()) |
| 2047 | Ty = CGF.getContext().getPointerType(T: Ty); |
| 2048 | CGF.getDebugInfo()->EmitPseudoVariable(Builder, Value: Pointer, Ty); |
| 2049 | } |
| 2050 | } |
| 2051 | } |
| 2052 | } |
| 2053 | return Result; |
| 2054 | } |
| 2055 | |
| 2056 | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| 2057 | TestAndClearIgnoreResultAssign(); |
| 2058 | |
| 2059 | // Emit subscript expressions in rvalue context's. For most cases, this just |
| 2060 | // loads the lvalue formed by the subscript expr. However, we have to be |
| 2061 | // careful, because the base of a vector subscript is occasionally an rvalue, |
| 2062 | // so we can't get it as an lvalue. |
| 2063 | if (!E->getBase()->getType()->isVectorType() && |
| 2064 | !E->getBase()->getType()->isSveVLSBuiltinType()) |
| 2065 | return EmitLoadOfLValue(E); |
| 2066 | |
| 2067 | // Handle the vector case. The base must be a vector, the index must be an |
| 2068 | // integer value. |
| 2069 | Value *Base = Visit(E: E->getBase()); |
| 2070 | Value *Idx = Visit(E: E->getIdx()); |
| 2071 | QualType IdxTy = E->getIdx()->getType(); |
| 2072 | |
| 2073 | if (CGF.SanOpts.has(K: SanitizerKind::ArrayBounds)) |
| 2074 | CGF.EmitBoundsCheck(E, Base: E->getBase(), Index: Idx, IndexType: IdxTy, /*Accessed*/true); |
| 2075 | |
| 2076 | return Builder.CreateExtractElement(Vec: Base, Idx, Name: "vecext" ); |
| 2077 | } |
| 2078 | |
| 2079 | Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { |
| 2080 | TestAndClearIgnoreResultAssign(); |
| 2081 | |
| 2082 | // Handle the vector case. The base must be a vector, the index must be an |
| 2083 | // integer value. |
| 2084 | Value *RowIdx = CGF.EmitMatrixIndexExpr(E: E->getRowIdx()); |
| 2085 | Value *ColumnIdx = CGF.EmitMatrixIndexExpr(E: E->getColumnIdx()); |
| 2086 | |
| 2087 | const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); |
| 2088 | unsigned NumRows = MatrixTy->getNumRows(); |
| 2089 | llvm::MatrixBuilder MB(Builder); |
| 2090 | Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); |
| 2091 | if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) |
| 2092 | MB.CreateIndexAssumption(Idx, NumElements: MatrixTy->getNumElementsFlattened()); |
| 2093 | |
| 2094 | Value *Matrix = Visit(E: E->getBase()); |
| 2095 | |
| 2096 | // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? |
| 2097 | return Builder.CreateExtractElement(Vec: Matrix, Idx, Name: "matrixext" ); |
| 2098 | } |
| 2099 | |
| 2100 | static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, |
| 2101 | unsigned Off) { |
| 2102 | int MV = SVI->getMaskValue(Elt: Idx); |
| 2103 | if (MV == -1) |
| 2104 | return -1; |
| 2105 | return Off + MV; |
| 2106 | } |
| 2107 | |
| 2108 | static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { |
| 2109 | assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && |
| 2110 | "Index operand too large for shufflevector mask!" ); |
| 2111 | return C->getZExtValue(); |
| 2112 | } |
| 2113 | |
| 2114 | Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { |
| 2115 | bool Ignore = TestAndClearIgnoreResultAssign(); |
| 2116 | (void)Ignore; |
| 2117 | assert (Ignore == false && "init list ignored" ); |
| 2118 | unsigned NumInitElements = E->getNumInits(); |
| 2119 | |
| 2120 | // HLSL initialization lists in the AST are an expansion which can contain |
| 2121 | // side-effecting expressions wrapped in opaque value expressions. To properly |
| 2122 | // emit these we need to emit the opaque values before we emit the argument |
| 2123 | // expressions themselves. This is a little hacky, but it prevents us needing |
| 2124 | // to do a bigger AST-level change for a language feature that we need |
| 2125 | // deprecate in the near future. See related HLSL language proposals in the |
| 2126 | // proposals (https://github.com/microsoft/hlsl-specs/blob/main/proposals): |
| 2127 | // * 0005-strict-initializer-lists.md |
| 2128 | // * 0032-constructors.md |
| 2129 | if (CGF.getLangOpts().HLSL) |
| 2130 | CGF.CGM.getHLSLRuntime().emitInitListOpaqueValues(CGF, E); |
| 2131 | |
| 2132 | if (E->hadArrayRangeDesignator()) |
| 2133 | CGF.ErrorUnsupported(S: E, Type: "GNU array range designator extension" ); |
| 2134 | |
| 2135 | llvm::VectorType *VType = |
| 2136 | dyn_cast<llvm::VectorType>(Val: ConvertType(T: E->getType())); |
| 2137 | |
| 2138 | if (!VType) { |
| 2139 | if (NumInitElements == 0) { |
| 2140 | // C++11 value-initialization for the scalar. |
| 2141 | return EmitNullValue(Ty: E->getType()); |
| 2142 | } |
| 2143 | // We have a scalar in braces. Just use the first element. |
| 2144 | return Visit(E: E->getInit(Init: 0)); |
| 2145 | } |
| 2146 | |
| 2147 | if (isa<llvm::ScalableVectorType>(Val: VType)) { |
| 2148 | if (NumInitElements == 0) { |
| 2149 | // C++11 value-initialization for the vector. |
| 2150 | return EmitNullValue(Ty: E->getType()); |
| 2151 | } |
| 2152 | |
| 2153 | if (NumInitElements == 1) { |
| 2154 | Expr *InitVector = E->getInit(Init: 0); |
| 2155 | |
| 2156 | // Initialize from another scalable vector of the same type. |
| 2157 | if (InitVector->getType().getCanonicalType() == |
| 2158 | E->getType().getCanonicalType()) |
| 2159 | return Visit(E: InitVector); |
| 2160 | } |
| 2161 | |
| 2162 | llvm_unreachable("Unexpected initialization of a scalable vector!" ); |
| 2163 | } |
| 2164 | |
| 2165 | unsigned ResElts = cast<llvm::FixedVectorType>(Val: VType)->getNumElements(); |
| 2166 | |
| 2167 | // Loop over initializers collecting the Value for each, and remembering |
| 2168 | // whether the source was swizzle (ExtVectorElementExpr). This will allow |
| 2169 | // us to fold the shuffle for the swizzle into the shuffle for the vector |
| 2170 | // initializer, since LLVM optimizers generally do not want to touch |
| 2171 | // shuffles. |
| 2172 | unsigned CurIdx = 0; |
| 2173 | bool VIsPoisonShuffle = false; |
| 2174 | llvm::Value *V = llvm::PoisonValue::get(T: VType); |
| 2175 | for (unsigned i = 0; i != NumInitElements; ++i) { |
| 2176 | Expr *IE = E->getInit(Init: i); |
| 2177 | Value *Init = Visit(E: IE); |
| 2178 | SmallVector<int, 16> Args; |
| 2179 | |
| 2180 | llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Val: Init->getType()); |
| 2181 | |
| 2182 | // Handle scalar elements. If the scalar initializer is actually one |
| 2183 | // element of a different vector of the same width, use shuffle instead of |
| 2184 | // extract+insert. |
| 2185 | if (!VVT) { |
| 2186 | if (isa<ExtVectorElementExpr>(Val: IE)) { |
| 2187 | llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Val: Init); |
| 2188 | |
| 2189 | if (cast<llvm::FixedVectorType>(Val: EI->getVectorOperandType()) |
| 2190 | ->getNumElements() == ResElts) { |
| 2191 | llvm::ConstantInt *C = cast<llvm::ConstantInt>(Val: EI->getIndexOperand()); |
| 2192 | Value *LHS = nullptr, *RHS = nullptr; |
| 2193 | if (CurIdx == 0) { |
| 2194 | // insert into poison -> shuffle (src, poison) |
| 2195 | // shufflemask must use an i32 |
| 2196 | Args.push_back(Elt: getAsInt32(C, I32Ty: CGF.Int32Ty)); |
| 2197 | Args.resize(N: ResElts, NV: -1); |
| 2198 | |
| 2199 | LHS = EI->getVectorOperand(); |
| 2200 | RHS = V; |
| 2201 | VIsPoisonShuffle = true; |
| 2202 | } else if (VIsPoisonShuffle) { |
| 2203 | // insert into poison shuffle && size match -> shuffle (v, src) |
| 2204 | llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(Val: V); |
| 2205 | for (unsigned j = 0; j != CurIdx; ++j) |
| 2206 | Args.push_back(Elt: getMaskElt(SVI: SVV, Idx: j, Off: 0)); |
| 2207 | Args.push_back(Elt: ResElts + C->getZExtValue()); |
| 2208 | Args.resize(N: ResElts, NV: -1); |
| 2209 | |
| 2210 | LHS = cast<llvm::ShuffleVectorInst>(Val: V)->getOperand(i_nocapture: 0); |
| 2211 | RHS = EI->getVectorOperand(); |
| 2212 | VIsPoisonShuffle = false; |
| 2213 | } |
| 2214 | if (!Args.empty()) { |
| 2215 | V = Builder.CreateShuffleVector(V1: LHS, V2: RHS, Mask: Args); |
| 2216 | ++CurIdx; |
| 2217 | continue; |
| 2218 | } |
| 2219 | } |
| 2220 | } |
| 2221 | V = Builder.CreateInsertElement(Vec: V, NewElt: Init, Idx: Builder.getInt32(C: CurIdx), |
| 2222 | Name: "vecinit" ); |
| 2223 | VIsPoisonShuffle = false; |
| 2224 | ++CurIdx; |
| 2225 | continue; |
| 2226 | } |
| 2227 | |
| 2228 | unsigned InitElts = cast<llvm::FixedVectorType>(Val: VVT)->getNumElements(); |
| 2229 | |
| 2230 | // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's |
| 2231 | // input is the same width as the vector being constructed, generate an |
| 2232 | // optimized shuffle of the swizzle input into the result. |
| 2233 | unsigned Offset = (CurIdx == 0) ? 0 : ResElts; |
| 2234 | if (isa<ExtVectorElementExpr>(Val: IE)) { |
| 2235 | llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Val: Init); |
| 2236 | Value *SVOp = SVI->getOperand(i_nocapture: 0); |
| 2237 | auto *OpTy = cast<llvm::FixedVectorType>(Val: SVOp->getType()); |
| 2238 | |
| 2239 | if (OpTy->getNumElements() == ResElts) { |
| 2240 | for (unsigned j = 0; j != CurIdx; ++j) { |
| 2241 | // If the current vector initializer is a shuffle with poison, merge |
| 2242 | // this shuffle directly into it. |
| 2243 | if (VIsPoisonShuffle) { |
| 2244 | Args.push_back(Elt: getMaskElt(SVI: cast<llvm::ShuffleVectorInst>(Val: V), Idx: j, Off: 0)); |
| 2245 | } else { |
| 2246 | Args.push_back(Elt: j); |
| 2247 | } |
| 2248 | } |
| 2249 | for (unsigned j = 0, je = InitElts; j != je; ++j) |
| 2250 | Args.push_back(Elt: getMaskElt(SVI, Idx: j, Off: Offset)); |
| 2251 | Args.resize(N: ResElts, NV: -1); |
| 2252 | |
| 2253 | if (VIsPoisonShuffle) |
| 2254 | V = cast<llvm::ShuffleVectorInst>(Val: V)->getOperand(i_nocapture: 0); |
| 2255 | |
| 2256 | Init = SVOp; |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | // Extend init to result vector length, and then shuffle its contribution |
| 2261 | // to the vector initializer into V. |
| 2262 | if (Args.empty()) { |
| 2263 | for (unsigned j = 0; j != InitElts; ++j) |
| 2264 | Args.push_back(Elt: j); |
| 2265 | Args.resize(N: ResElts, NV: -1); |
| 2266 | Init = Builder.CreateShuffleVector(V: Init, Mask: Args, Name: "vext" ); |
| 2267 | |
| 2268 | Args.clear(); |
| 2269 | for (unsigned j = 0; j != CurIdx; ++j) |
| 2270 | Args.push_back(Elt: j); |
| 2271 | for (unsigned j = 0; j != InitElts; ++j) |
| 2272 | Args.push_back(Elt: j + Offset); |
| 2273 | Args.resize(N: ResElts, NV: -1); |
| 2274 | } |
| 2275 | |
| 2276 | // If V is poison, make sure it ends up on the RHS of the shuffle to aid |
| 2277 | // merging subsequent shuffles into this one. |
| 2278 | if (CurIdx == 0) |
| 2279 | std::swap(a&: V, b&: Init); |
| 2280 | V = Builder.CreateShuffleVector(V1: V, V2: Init, Mask: Args, Name: "vecinit" ); |
| 2281 | VIsPoisonShuffle = isa<llvm::PoisonValue>(Val: Init); |
| 2282 | CurIdx += InitElts; |
| 2283 | } |
| 2284 | |
| 2285 | // FIXME: evaluate codegen vs. shuffling against constant null vector. |
| 2286 | // Emit remaining default initializers. |
| 2287 | llvm::Type *EltTy = VType->getElementType(); |
| 2288 | |
| 2289 | // Emit remaining default initializers |
| 2290 | for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { |
| 2291 | Value *Idx = Builder.getInt32(C: CurIdx); |
| 2292 | llvm::Value *Init = llvm::Constant::getNullValue(Ty: EltTy); |
| 2293 | V = Builder.CreateInsertElement(Vec: V, NewElt: Init, Idx, Name: "vecinit" ); |
| 2294 | } |
| 2295 | return V; |
| 2296 | } |
| 2297 | |
| 2298 | static bool isDeclRefKnownNonNull(CodeGenFunction &CGF, const ValueDecl *D) { |
| 2299 | return !D->isWeak(); |
| 2300 | } |
| 2301 | |
| 2302 | static bool isLValueKnownNonNull(CodeGenFunction &CGF, const Expr *E) { |
| 2303 | E = E->IgnoreParens(); |
| 2304 | |
| 2305 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
| 2306 | if (UO->getOpcode() == UO_Deref) |
| 2307 | return CGF.isPointerKnownNonNull(E: UO->getSubExpr()); |
| 2308 | |
| 2309 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 2310 | return isDeclRefKnownNonNull(CGF, D: DRE->getDecl()); |
| 2311 | |
| 2312 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) { |
| 2313 | if (isa<FieldDecl>(Val: ME->getMemberDecl())) |
| 2314 | return true; |
| 2315 | return isDeclRefKnownNonNull(CGF, D: ME->getMemberDecl()); |
| 2316 | } |
| 2317 | |
| 2318 | // Array subscripts? Anything else? |
| 2319 | |
| 2320 | return false; |
| 2321 | } |
| 2322 | |
| 2323 | bool CodeGenFunction::isPointerKnownNonNull(const Expr *E) { |
| 2324 | assert(E->getType()->isSignableType(getContext())); |
| 2325 | |
| 2326 | E = E->IgnoreParens(); |
| 2327 | |
| 2328 | if (isa<CXXThisExpr>(Val: E)) |
| 2329 | return true; |
| 2330 | |
| 2331 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
| 2332 | if (UO->getOpcode() == UO_AddrOf) |
| 2333 | return isLValueKnownNonNull(CGF&: *this, E: UO->getSubExpr()); |
| 2334 | |
| 2335 | if (const auto *CE = dyn_cast<CastExpr>(Val: E)) |
| 2336 | if (CE->getCastKind() == CK_FunctionToPointerDecay || |
| 2337 | CE->getCastKind() == CK_ArrayToPointerDecay) |
| 2338 | return isLValueKnownNonNull(CGF&: *this, E: CE->getSubExpr()); |
| 2339 | |
| 2340 | // Maybe honor __nonnull? |
| 2341 | |
| 2342 | return false; |
| 2343 | } |
| 2344 | |
| 2345 | bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { |
| 2346 | const Expr *E = CE->getSubExpr(); |
| 2347 | |
| 2348 | if (CE->getCastKind() == CK_UncheckedDerivedToBase) |
| 2349 | return false; |
| 2350 | |
| 2351 | if (isa<CXXThisExpr>(Val: E->IgnoreParens())) { |
| 2352 | // We always assume that 'this' is never null. |
| 2353 | return false; |
| 2354 | } |
| 2355 | |
| 2356 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: CE)) { |
| 2357 | // And that glvalue casts are never null. |
| 2358 | if (ICE->isGLValue()) |
| 2359 | return false; |
| 2360 | } |
| 2361 | |
| 2362 | return true; |
| 2363 | } |
| 2364 | |
| 2365 | // RHS is an aggregate type |
| 2366 | static Value *EmitHLSLElementwiseCast(CodeGenFunction &CGF, Address RHSVal, |
| 2367 | QualType RHSTy, QualType LHSTy, |
| 2368 | SourceLocation Loc) { |
| 2369 | SmallVector<std::pair<Address, llvm::Value *>, 16> LoadGEPList; |
| 2370 | SmallVector<QualType, 16> SrcTypes; // Flattened type |
| 2371 | CGF.FlattenAccessAndType(Addr: RHSVal, AddrTy: RHSTy, AccessList&: LoadGEPList, FlatTypes&: SrcTypes); |
| 2372 | // LHS is either a vector or a builtin? |
| 2373 | // if its a vector create a temp alloca to store into and return that |
| 2374 | if (auto *VecTy = LHSTy->getAs<VectorType>()) { |
| 2375 | assert(SrcTypes.size() >= VecTy->getNumElements() && |
| 2376 | "Flattened type on RHS must have more elements than vector on LHS." ); |
| 2377 | llvm::Value *V = |
| 2378 | CGF.Builder.CreateLoad(Addr: CGF.CreateIRTemp(T: LHSTy, Name: "flatcast.tmp" )); |
| 2379 | // write to V. |
| 2380 | for (unsigned I = 0, E = VecTy->getNumElements(); I < E; I++) { |
| 2381 | llvm::Value *Load = CGF.Builder.CreateLoad(Addr: LoadGEPList[I].first, Name: "load" ); |
| 2382 | llvm::Value *Idx = LoadGEPList[I].second; |
| 2383 | Load = Idx ? CGF.Builder.CreateExtractElement(Vec: Load, Idx, Name: "vec.extract" ) |
| 2384 | : Load; |
| 2385 | llvm::Value *Cast = CGF.EmitScalarConversion( |
| 2386 | Src: Load, SrcTy: SrcTypes[I], DstTy: VecTy->getElementType(), Loc); |
| 2387 | V = CGF.Builder.CreateInsertElement(Vec: V, NewElt: Cast, Idx: I); |
| 2388 | } |
| 2389 | return V; |
| 2390 | } |
| 2391 | // i its a builtin just do an extract element or load. |
| 2392 | assert(LHSTy->isBuiltinType() && |
| 2393 | "Destination type must be a vector or builtin type." ); |
| 2394 | llvm::Value *Load = CGF.Builder.CreateLoad(Addr: LoadGEPList[0].first, Name: "load" ); |
| 2395 | llvm::Value *Idx = LoadGEPList[0].second; |
| 2396 | Load = |
| 2397 | Idx ? CGF.Builder.CreateExtractElement(Vec: Load, Idx, Name: "vec.extract" ) : Load; |
| 2398 | return CGF.EmitScalarConversion(Src: Load, SrcTy: LHSTy, DstTy: SrcTypes[0], Loc); |
| 2399 | } |
| 2400 | |
| 2401 | // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| 2402 | // have to handle a more broad range of conversions than explicit casts, as they |
| 2403 | // handle things like function to ptr-to-function decay etc. |
| 2404 | Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { |
| 2405 | Expr *E = CE->getSubExpr(); |
| 2406 | QualType DestTy = CE->getType(); |
| 2407 | CastKind Kind = CE->getCastKind(); |
| 2408 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE); |
| 2409 | |
| 2410 | // These cases are generally not written to ignore the result of |
| 2411 | // evaluating their sub-expressions, so we clear this now. |
| 2412 | bool Ignored = TestAndClearIgnoreResultAssign(); |
| 2413 | |
| 2414 | // Since almost all cast kinds apply to scalars, this switch doesn't have |
| 2415 | // a default case, so the compiler will warn on a missing case. The cases |
| 2416 | // are in the same order as in the CastKind enum. |
| 2417 | switch (Kind) { |
| 2418 | case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!" ); |
| 2419 | case CK_BuiltinFnToFnPtr: |
| 2420 | llvm_unreachable("builtin functions are handled elsewhere" ); |
| 2421 | |
| 2422 | case CK_LValueBitCast: |
| 2423 | case CK_ObjCObjectLValueCast: { |
| 2424 | Address Addr = EmitLValue(E).getAddress(); |
| 2425 | Addr = Addr.withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy)); |
| 2426 | LValue LV = CGF.MakeAddrLValue(Addr, T: DestTy); |
| 2427 | return EmitLoadOfLValue(LV, Loc: CE->getExprLoc()); |
| 2428 | } |
| 2429 | |
| 2430 | case CK_LValueToRValueBitCast: { |
| 2431 | LValue SourceLVal = CGF.EmitLValue(E); |
| 2432 | Address Addr = |
| 2433 | SourceLVal.getAddress().withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy)); |
| 2434 | LValue DestLV = CGF.MakeAddrLValue(Addr, T: DestTy); |
| 2435 | DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); |
| 2436 | return EmitLoadOfLValue(LV: DestLV, Loc: CE->getExprLoc()); |
| 2437 | } |
| 2438 | |
| 2439 | case CK_CPointerToObjCPointerCast: |
| 2440 | case CK_BlockPointerToObjCPointerCast: |
| 2441 | case CK_AnyPointerToBlockPointerCast: |
| 2442 | case CK_BitCast: { |
| 2443 | Value *Src = Visit(E); |
| 2444 | llvm::Type *SrcTy = Src->getType(); |
| 2445 | llvm::Type *DstTy = ConvertType(T: DestTy); |
| 2446 | |
| 2447 | // FIXME: this is a gross but seemingly necessary workaround for an issue |
| 2448 | // manifesting when a target uses a non-default AS for indirect sret args, |
| 2449 | // but the source HLL is generic, wherein a valid C-cast or reinterpret_cast |
| 2450 | // on the address of a local struct that gets returned by value yields an |
| 2451 | // invalid bitcast from the a pointer to the IndirectAS to a pointer to the |
| 2452 | // DefaultAS. We can only do this subversive thing because sret args are |
| 2453 | // manufactured and them residing in the IndirectAS is a target specific |
| 2454 | // detail, and doing an AS cast here still retains the semantics the user |
| 2455 | // expects. It is desirable to remove this iff a better solution is found. |
| 2456 | if (auto A = dyn_cast<llvm::Argument>(Val: Src); A && A->hasStructRetAttr()) |
| 2457 | return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( |
| 2458 | CGF, V: Src, SrcAddr: E->getType().getAddressSpace(), DestTy: DstTy); |
| 2459 | |
| 2460 | assert( |
| 2461 | (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() || |
| 2462 | SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) && |
| 2463 | "Address-space cast must be used to convert address spaces" ); |
| 2464 | |
| 2465 | if (CGF.SanOpts.has(K: SanitizerKind::CFIUnrelatedCast)) { |
| 2466 | if (auto *PT = DestTy->getAs<PointerType>()) { |
| 2467 | CGF.EmitVTablePtrCheckForCast( |
| 2468 | T: PT->getPointeeType(), |
| 2469 | Derived: Address(Src, |
| 2470 | CGF.ConvertTypeForMem( |
| 2471 | T: E->getType()->castAs<PointerType>()->getPointeeType()), |
| 2472 | CGF.getPointerAlign()), |
| 2473 | /*MayBeNull=*/true, TCK: CodeGenFunction::CFITCK_UnrelatedCast, |
| 2474 | Loc: CE->getBeginLoc()); |
| 2475 | } |
| 2476 | } |
| 2477 | |
| 2478 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| 2479 | const QualType SrcType = E->getType(); |
| 2480 | |
| 2481 | if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { |
| 2482 | // Casting to pointer that could carry dynamic information (provided by |
| 2483 | // invariant.group) requires launder. |
| 2484 | Src = Builder.CreateLaunderInvariantGroup(Ptr: Src); |
| 2485 | } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { |
| 2486 | // Casting to pointer that does not carry dynamic information (provided |
| 2487 | // by invariant.group) requires stripping it. Note that we don't do it |
| 2488 | // if the source could not be dynamic type and destination could be |
| 2489 | // dynamic because dynamic information is already laundered. It is |
| 2490 | // because launder(strip(src)) == launder(src), so there is no need to |
| 2491 | // add extra strip before launder. |
| 2492 | Src = Builder.CreateStripInvariantGroup(Ptr: Src); |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | // Update heapallocsite metadata when there is an explicit pointer cast. |
| 2497 | if (auto *CI = dyn_cast<llvm::CallBase>(Val: Src)) { |
| 2498 | if (CI->getMetadata(Kind: "heapallocsite" ) && isa<ExplicitCastExpr>(Val: CE) && |
| 2499 | !isa<CastExpr>(Val: E)) { |
| 2500 | QualType PointeeType = DestTy->getPointeeType(); |
| 2501 | if (!PointeeType.isNull()) |
| 2502 | CGF.getDebugInfo()->addHeapAllocSiteMetadata(CallSite: CI, AllocatedTy: PointeeType, |
| 2503 | Loc: CE->getExprLoc()); |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | // If Src is a fixed vector and Dst is a scalable vector, and both have the |
| 2508 | // same element type, use the llvm.vector.insert intrinsic to perform the |
| 2509 | // bitcast. |
| 2510 | if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(Val: SrcTy)) { |
| 2511 | if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Val: DstTy)) { |
| 2512 | // If we are casting a fixed i8 vector to a scalable i1 predicate |
| 2513 | // vector, use a vector insert and bitcast the result. |
| 2514 | if (ScalableDstTy->getElementType()->isIntegerTy(Bitwidth: 1) && |
| 2515 | FixedSrcTy->getElementType()->isIntegerTy(Bitwidth: 8)) { |
| 2516 | ScalableDstTy = llvm::ScalableVectorType::get( |
| 2517 | ElementType: FixedSrcTy->getElementType(), |
| 2518 | MinNumElts: llvm::divideCeil( |
| 2519 | Numerator: ScalableDstTy->getElementCount().getKnownMinValue(), Denominator: 8)); |
| 2520 | } |
| 2521 | if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) { |
| 2522 | llvm::Value *PoisonVec = llvm::PoisonValue::get(T: ScalableDstTy); |
| 2523 | llvm::Value *Result = Builder.CreateInsertVector( |
| 2524 | DstType: ScalableDstTy, SrcVec: PoisonVec, SubVec: Src, Idx: uint64_t(0), Name: "cast.scalable" ); |
| 2525 | ScalableDstTy = cast<llvm::ScalableVectorType>( |
| 2526 | Val: llvm::VectorType::getWithSizeAndScalar(SizeTy: ScalableDstTy, EltTy: DstTy)); |
| 2527 | if (Result->getType() != ScalableDstTy) |
| 2528 | Result = Builder.CreateBitCast(V: Result, DestTy: ScalableDstTy); |
| 2529 | if (Result->getType() != DstTy) |
| 2530 | Result = Builder.CreateExtractVector(DstType: DstTy, SrcVec: Result, Idx: uint64_t(0)); |
| 2531 | return Result; |
| 2532 | } |
| 2533 | } |
| 2534 | } |
| 2535 | |
| 2536 | // If Src is a scalable vector and Dst is a fixed vector, and both have the |
| 2537 | // same element type, use the llvm.vector.extract intrinsic to perform the |
| 2538 | // bitcast. |
| 2539 | if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(Val: SrcTy)) { |
| 2540 | if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(Val: DstTy)) { |
| 2541 | // If we are casting a scalable i1 predicate vector to a fixed i8 |
| 2542 | // vector, bitcast the source and use a vector extract. |
| 2543 | if (ScalableSrcTy->getElementType()->isIntegerTy(Bitwidth: 1) && |
| 2544 | FixedDstTy->getElementType()->isIntegerTy(Bitwidth: 8)) { |
| 2545 | if (!ScalableSrcTy->getElementCount().isKnownMultipleOf(RHS: 8)) { |
| 2546 | ScalableSrcTy = llvm::ScalableVectorType::get( |
| 2547 | ElementType: ScalableSrcTy->getElementType(), |
| 2548 | MinNumElts: llvm::alignTo<8>( |
| 2549 | Value: ScalableSrcTy->getElementCount().getKnownMinValue())); |
| 2550 | llvm::Value *ZeroVec = llvm::Constant::getNullValue(Ty: ScalableSrcTy); |
| 2551 | Src = Builder.CreateInsertVector(DstType: ScalableSrcTy, SrcVec: ZeroVec, SubVec: Src, |
| 2552 | Idx: uint64_t(0)); |
| 2553 | } |
| 2554 | |
| 2555 | ScalableSrcTy = llvm::ScalableVectorType::get( |
| 2556 | ElementType: FixedDstTy->getElementType(), |
| 2557 | MinNumElts: ScalableSrcTy->getElementCount().getKnownMinValue() / 8); |
| 2558 | Src = Builder.CreateBitCast(V: Src, DestTy: ScalableSrcTy); |
| 2559 | } |
| 2560 | if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) |
| 2561 | return Builder.CreateExtractVector(DstType: DstTy, SrcVec: Src, Idx: uint64_t(0), |
| 2562 | Name: "cast.fixed" ); |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | // Perform VLAT <-> VLST bitcast through memory. |
| 2567 | // TODO: since the llvm.vector.{insert,extract} intrinsics |
| 2568 | // require the element types of the vectors to be the same, we |
| 2569 | // need to keep this around for bitcasts between VLAT <-> VLST where |
| 2570 | // the element types of the vectors are not the same, until we figure |
| 2571 | // out a better way of doing these casts. |
| 2572 | if ((isa<llvm::FixedVectorType>(Val: SrcTy) && |
| 2573 | isa<llvm::ScalableVectorType>(Val: DstTy)) || |
| 2574 | (isa<llvm::ScalableVectorType>(Val: SrcTy) && |
| 2575 | isa<llvm::FixedVectorType>(Val: DstTy))) { |
| 2576 | Address Addr = CGF.CreateDefaultAlignTempAlloca(Ty: SrcTy, Name: "saved-value" ); |
| 2577 | LValue LV = CGF.MakeAddrLValue(Addr, T: E->getType()); |
| 2578 | CGF.EmitStoreOfScalar(value: Src, lvalue: LV); |
| 2579 | Addr = Addr.withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy)); |
| 2580 | LValue DestLV = CGF.MakeAddrLValue(Addr, T: DestTy); |
| 2581 | DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); |
| 2582 | return EmitLoadOfLValue(LV: DestLV, Loc: CE->getExprLoc()); |
| 2583 | } |
| 2584 | |
| 2585 | llvm::Value *Result = Builder.CreateBitCast(V: Src, DestTy: DstTy); |
| 2586 | return CGF.authPointerToPointerCast(ResultPtr: Result, SourceType: E->getType(), DestType: DestTy); |
| 2587 | } |
| 2588 | case CK_AddressSpaceConversion: { |
| 2589 | Expr::EvalResult Result; |
| 2590 | if (E->EvaluateAsRValue(Result, Ctx: CGF.getContext()) && |
| 2591 | Result.Val.isNullPointer()) { |
| 2592 | // If E has side effect, it is emitted even if its final result is a |
| 2593 | // null pointer. In that case, a DCE pass should be able to |
| 2594 | // eliminate the useless instructions emitted during translating E. |
| 2595 | if (Result.HasSideEffects) |
| 2596 | Visit(E); |
| 2597 | return CGF.CGM.getNullPointer(T: cast<llvm::PointerType>( |
| 2598 | Val: ConvertType(T: DestTy)), QT: DestTy); |
| 2599 | } |
| 2600 | // Since target may map different address spaces in AST to the same address |
| 2601 | // space, an address space conversion may end up as a bitcast. |
| 2602 | return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( |
| 2603 | CGF, V: Visit(E), SrcAddr: E->getType()->getPointeeType().getAddressSpace(), |
| 2604 | DestTy: ConvertType(T: DestTy)); |
| 2605 | } |
| 2606 | case CK_AtomicToNonAtomic: |
| 2607 | case CK_NonAtomicToAtomic: |
| 2608 | case CK_UserDefinedConversion: |
| 2609 | return Visit(E); |
| 2610 | |
| 2611 | case CK_NoOp: { |
| 2612 | return CE->changesVolatileQualification() ? EmitLoadOfLValue(E: CE) : Visit(E); |
| 2613 | } |
| 2614 | |
| 2615 | case CK_BaseToDerived: { |
| 2616 | const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); |
| 2617 | assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!" ); |
| 2618 | |
| 2619 | Address Base = CGF.EmitPointerWithAlignment(Addr: E); |
| 2620 | Address Derived = |
| 2621 | CGF.GetAddressOfDerivedClass(Value: Base, Derived: DerivedClassDecl, |
| 2622 | PathBegin: CE->path_begin(), PathEnd: CE->path_end(), |
| 2623 | NullCheckValue: CGF.ShouldNullCheckClassCastValue(CE)); |
| 2624 | |
| 2625 | // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is |
| 2626 | // performed and the object is not of the derived type. |
| 2627 | if (CGF.sanitizePerformTypeCheck()) |
| 2628 | CGF.EmitTypeCheck(TCK: CodeGenFunction::TCK_DowncastPointer, Loc: CE->getExprLoc(), |
| 2629 | Addr: Derived, Type: DestTy->getPointeeType()); |
| 2630 | |
| 2631 | if (CGF.SanOpts.has(K: SanitizerKind::CFIDerivedCast)) |
| 2632 | CGF.EmitVTablePtrCheckForCast(T: DestTy->getPointeeType(), Derived, |
| 2633 | /*MayBeNull=*/true, |
| 2634 | TCK: CodeGenFunction::CFITCK_DerivedCast, |
| 2635 | Loc: CE->getBeginLoc()); |
| 2636 | |
| 2637 | return CGF.getAsNaturalPointerTo(Addr: Derived, PointeeType: CE->getType()->getPointeeType()); |
| 2638 | } |
| 2639 | case CK_UncheckedDerivedToBase: |
| 2640 | case CK_DerivedToBase: { |
| 2641 | // The EmitPointerWithAlignment path does this fine; just discard |
| 2642 | // the alignment. |
| 2643 | return CGF.getAsNaturalPointerTo(Addr: CGF.EmitPointerWithAlignment(Addr: CE), |
| 2644 | PointeeType: CE->getType()->getPointeeType()); |
| 2645 | } |
| 2646 | |
| 2647 | case CK_Dynamic: { |
| 2648 | Address V = CGF.EmitPointerWithAlignment(Addr: E); |
| 2649 | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(Val: CE); |
| 2650 | return CGF.EmitDynamicCast(V, DCE); |
| 2651 | } |
| 2652 | |
| 2653 | case CK_ArrayToPointerDecay: |
| 2654 | return CGF.getAsNaturalPointerTo(Addr: CGF.EmitArrayToPointerDecay(Array: E), |
| 2655 | PointeeType: CE->getType()->getPointeeType()); |
| 2656 | case CK_FunctionToPointerDecay: |
| 2657 | return EmitLValue(E).getPointer(CGF); |
| 2658 | |
| 2659 | case CK_NullToPointer: |
| 2660 | if (MustVisitNullValue(E)) |
| 2661 | CGF.EmitIgnoredExpr(E); |
| 2662 | |
| 2663 | return CGF.CGM.getNullPointer(T: cast<llvm::PointerType>(Val: ConvertType(T: DestTy)), |
| 2664 | QT: DestTy); |
| 2665 | |
| 2666 | case CK_NullToMemberPointer: { |
| 2667 | if (MustVisitNullValue(E)) |
| 2668 | CGF.EmitIgnoredExpr(E); |
| 2669 | |
| 2670 | const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); |
| 2671 | return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); |
| 2672 | } |
| 2673 | |
| 2674 | case CK_ReinterpretMemberPointer: |
| 2675 | case CK_BaseToDerivedMemberPointer: |
| 2676 | case CK_DerivedToBaseMemberPointer: { |
| 2677 | Value *Src = Visit(E); |
| 2678 | |
| 2679 | // Note that the AST doesn't distinguish between checked and |
| 2680 | // unchecked member pointer conversions, so we always have to |
| 2681 | // implement checked conversions here. This is inefficient when |
| 2682 | // actual control flow may be required in order to perform the |
| 2683 | // check, which it is for data member pointers (but not member |
| 2684 | // function pointers on Itanium and ARM). |
| 2685 | return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, E: CE, Src); |
| 2686 | } |
| 2687 | |
| 2688 | case CK_ARCProduceObject: |
| 2689 | return CGF.EmitARCRetainScalarExpr(expr: E); |
| 2690 | case CK_ARCConsumeObject: |
| 2691 | return CGF.EmitObjCConsumeObject(T: E->getType(), Ptr: Visit(E)); |
| 2692 | case CK_ARCReclaimReturnedObject: |
| 2693 | return CGF.EmitARCReclaimReturnedObject(e: E, /*allowUnsafe*/ allowUnsafeClaim: Ignored); |
| 2694 | case CK_ARCExtendBlockObject: |
| 2695 | return CGF.EmitARCExtendBlockObject(expr: E); |
| 2696 | |
| 2697 | case CK_CopyAndAutoreleaseBlockObject: |
| 2698 | return CGF.EmitBlockCopyAndAutorelease(Block: Visit(E), Ty: E->getType()); |
| 2699 | |
| 2700 | case CK_FloatingRealToComplex: |
| 2701 | case CK_FloatingComplexCast: |
| 2702 | case CK_IntegralRealToComplex: |
| 2703 | case CK_IntegralComplexCast: |
| 2704 | case CK_IntegralComplexToFloatingComplex: |
| 2705 | case CK_FloatingComplexToIntegralComplex: |
| 2706 | case CK_ConstructorConversion: |
| 2707 | case CK_ToUnion: |
| 2708 | case CK_HLSLArrayRValue: |
| 2709 | llvm_unreachable("scalar cast to non-scalar value" ); |
| 2710 | |
| 2711 | case CK_LValueToRValue: |
| 2712 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); |
| 2713 | assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!" ); |
| 2714 | return Visit(E); |
| 2715 | |
| 2716 | case CK_IntegralToPointer: { |
| 2717 | Value *Src = Visit(E); |
| 2718 | |
| 2719 | // First, convert to the correct width so that we control the kind of |
| 2720 | // extension. |
| 2721 | auto DestLLVMTy = ConvertType(T: DestTy); |
| 2722 | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); |
| 2723 | bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
| 2724 | llvm::Value* IntResult = |
| 2725 | Builder.CreateIntCast(V: Src, DestTy: MiddleTy, isSigned: InputSigned, Name: "conv" ); |
| 2726 | |
| 2727 | auto *IntToPtr = Builder.CreateIntToPtr(V: IntResult, DestTy: DestLLVMTy); |
| 2728 | |
| 2729 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| 2730 | // Going from integer to pointer that could be dynamic requires reloading |
| 2731 | // dynamic information from invariant.group. |
| 2732 | if (DestTy.mayBeDynamicClass()) |
| 2733 | IntToPtr = Builder.CreateLaunderInvariantGroup(Ptr: IntToPtr); |
| 2734 | } |
| 2735 | |
| 2736 | IntToPtr = CGF.authPointerToPointerCast(ResultPtr: IntToPtr, SourceType: E->getType(), DestType: DestTy); |
| 2737 | return IntToPtr; |
| 2738 | } |
| 2739 | case CK_PointerToIntegral: { |
| 2740 | assert(!DestTy->isBooleanType() && "bool should use PointerToBool" ); |
| 2741 | auto *PtrExpr = Visit(E); |
| 2742 | |
| 2743 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
| 2744 | const QualType SrcType = E->getType(); |
| 2745 | |
| 2746 | // Casting to integer requires stripping dynamic information as it does |
| 2747 | // not carries it. |
| 2748 | if (SrcType.mayBeDynamicClass()) |
| 2749 | PtrExpr = Builder.CreateStripInvariantGroup(Ptr: PtrExpr); |
| 2750 | } |
| 2751 | |
| 2752 | PtrExpr = CGF.authPointerToPointerCast(ResultPtr: PtrExpr, SourceType: E->getType(), DestType: DestTy); |
| 2753 | return Builder.CreatePtrToInt(V: PtrExpr, DestTy: ConvertType(T: DestTy)); |
| 2754 | } |
| 2755 | case CK_ToVoid: { |
| 2756 | CGF.EmitIgnoredExpr(E); |
| 2757 | return nullptr; |
| 2758 | } |
| 2759 | case CK_MatrixCast: { |
| 2760 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2761 | Loc: CE->getExprLoc()); |
| 2762 | } |
| 2763 | // CK_HLSLAggregateSplatCast only handles splatting to vectors from a vec1 |
| 2764 | // Casts were inserted in Sema to Cast the Src Expr to a Scalar and |
| 2765 | // To perform any necessary Scalar Cast, so this Cast can be handled |
| 2766 | // by the regular Vector Splat cast code. |
| 2767 | case CK_HLSLAggregateSplatCast: |
| 2768 | case CK_VectorSplat: { |
| 2769 | llvm::Type *DstTy = ConvertType(T: DestTy); |
| 2770 | Value *Elt = Visit(E); |
| 2771 | // Splat the element across to all elements |
| 2772 | llvm::ElementCount NumElements = |
| 2773 | cast<llvm::VectorType>(Val: DstTy)->getElementCount(); |
| 2774 | return Builder.CreateVectorSplat(EC: NumElements, V: Elt, Name: "splat" ); |
| 2775 | } |
| 2776 | |
| 2777 | case CK_FixedPointCast: |
| 2778 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2779 | Loc: CE->getExprLoc()); |
| 2780 | |
| 2781 | case CK_FixedPointToBoolean: |
| 2782 | assert(E->getType()->isFixedPointType() && |
| 2783 | "Expected src type to be fixed point type" ); |
| 2784 | assert(DestTy->isBooleanType() && "Expected dest type to be boolean type" ); |
| 2785 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2786 | Loc: CE->getExprLoc()); |
| 2787 | |
| 2788 | case CK_FixedPointToIntegral: |
| 2789 | assert(E->getType()->isFixedPointType() && |
| 2790 | "Expected src type to be fixed point type" ); |
| 2791 | assert(DestTy->isIntegerType() && "Expected dest type to be an integer" ); |
| 2792 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2793 | Loc: CE->getExprLoc()); |
| 2794 | |
| 2795 | case CK_IntegralToFixedPoint: |
| 2796 | assert(E->getType()->isIntegerType() && |
| 2797 | "Expected src type to be an integer" ); |
| 2798 | assert(DestTy->isFixedPointType() && |
| 2799 | "Expected dest type to be fixed point type" ); |
| 2800 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2801 | Loc: CE->getExprLoc()); |
| 2802 | |
| 2803 | case CK_IntegralCast: { |
| 2804 | if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) { |
| 2805 | QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType(); |
| 2806 | return Builder.CreateIntCast(V: Visit(E), DestTy: ConvertType(T: DestTy), |
| 2807 | isSigned: SrcElTy->isSignedIntegerOrEnumerationType(), |
| 2808 | Name: "conv" ); |
| 2809 | } |
| 2810 | ScalarConversionOpts Opts; |
| 2811 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: CE)) { |
| 2812 | if (!ICE->isPartOfExplicitCast()) |
| 2813 | Opts = ScalarConversionOpts(CGF.SanOpts); |
| 2814 | } |
| 2815 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2816 | Loc: CE->getExprLoc(), Opts); |
| 2817 | } |
| 2818 | case CK_IntegralToFloating: { |
| 2819 | if (E->getType()->isVectorType() && DestTy->isVectorType()) { |
| 2820 | // TODO: Support constrained FP intrinsics. |
| 2821 | QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType(); |
| 2822 | if (SrcElTy->isSignedIntegerOrEnumerationType()) |
| 2823 | return Builder.CreateSIToFP(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2824 | return Builder.CreateUIToFP(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2825 | } |
| 2826 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
| 2827 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2828 | Loc: CE->getExprLoc()); |
| 2829 | } |
| 2830 | case CK_FloatingToIntegral: { |
| 2831 | if (E->getType()->isVectorType() && DestTy->isVectorType()) { |
| 2832 | // TODO: Support constrained FP intrinsics. |
| 2833 | QualType DstElTy = DestTy->castAs<VectorType>()->getElementType(); |
| 2834 | if (DstElTy->isSignedIntegerOrEnumerationType()) |
| 2835 | return Builder.CreateFPToSI(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2836 | return Builder.CreateFPToUI(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2837 | } |
| 2838 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
| 2839 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2840 | Loc: CE->getExprLoc()); |
| 2841 | } |
| 2842 | case CK_FloatingCast: { |
| 2843 | if (E->getType()->isVectorType() && DestTy->isVectorType()) { |
| 2844 | // TODO: Support constrained FP intrinsics. |
| 2845 | QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType(); |
| 2846 | QualType DstElTy = DestTy->castAs<VectorType>()->getElementType(); |
| 2847 | if (DstElTy->castAs<BuiltinType>()->getKind() < |
| 2848 | SrcElTy->castAs<BuiltinType>()->getKind()) |
| 2849 | return Builder.CreateFPTrunc(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2850 | return Builder.CreateFPExt(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv" ); |
| 2851 | } |
| 2852 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
| 2853 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2854 | Loc: CE->getExprLoc()); |
| 2855 | } |
| 2856 | case CK_FixedPointToFloating: |
| 2857 | case CK_FloatingToFixedPoint: { |
| 2858 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
| 2859 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2860 | Loc: CE->getExprLoc()); |
| 2861 | } |
| 2862 | case CK_BooleanToSignedIntegral: { |
| 2863 | ScalarConversionOpts Opts; |
| 2864 | Opts.TreatBooleanAsSigned = true; |
| 2865 | return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy, |
| 2866 | Loc: CE->getExprLoc(), Opts); |
| 2867 | } |
| 2868 | case CK_IntegralToBoolean: |
| 2869 | return EmitIntToBoolConversion(V: Visit(E)); |
| 2870 | case CK_PointerToBoolean: |
| 2871 | return EmitPointerToBoolConversion(V: Visit(E), QT: E->getType()); |
| 2872 | case CK_FloatingToBoolean: { |
| 2873 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
| 2874 | return EmitFloatToBoolConversion(V: Visit(E)); |
| 2875 | } |
| 2876 | case CK_MemberPointerToBoolean: { |
| 2877 | llvm::Value *MemPtr = Visit(E); |
| 2878 | const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); |
| 2879 | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); |
| 2880 | } |
| 2881 | |
| 2882 | case CK_FloatingComplexToReal: |
| 2883 | case CK_IntegralComplexToReal: |
| 2884 | return CGF.EmitComplexExpr(E, IgnoreReal: false, IgnoreImag: true).first; |
| 2885 | |
| 2886 | case CK_FloatingComplexToBoolean: |
| 2887 | case CK_IntegralComplexToBoolean: { |
| 2888 | CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); |
| 2889 | |
| 2890 | // TODO: kill this function off, inline appropriate case here |
| 2891 | return EmitComplexToScalarConversion(Src: V, SrcTy: E->getType(), DstTy: DestTy, |
| 2892 | Loc: CE->getExprLoc()); |
| 2893 | } |
| 2894 | |
| 2895 | case CK_ZeroToOCLOpaqueType: { |
| 2896 | assert((DestTy->isEventT() || DestTy->isQueueT() || |
| 2897 | DestTy->isOCLIntelSubgroupAVCType()) && |
| 2898 | "CK_ZeroToOCLEvent cast on non-event type" ); |
| 2899 | return llvm::Constant::getNullValue(Ty: ConvertType(T: DestTy)); |
| 2900 | } |
| 2901 | |
| 2902 | case CK_IntToOCLSampler: |
| 2903 | return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); |
| 2904 | |
| 2905 | case CK_HLSLVectorTruncation: { |
| 2906 | assert((DestTy->isVectorType() || DestTy->isBuiltinType()) && |
| 2907 | "Destination type must be a vector or builtin type." ); |
| 2908 | Value *Vec = Visit(E); |
| 2909 | if (auto *VecTy = DestTy->getAs<VectorType>()) { |
| 2910 | SmallVector<int> Mask; |
| 2911 | unsigned NumElts = VecTy->getNumElements(); |
| 2912 | for (unsigned I = 0; I != NumElts; ++I) |
| 2913 | Mask.push_back(Elt: I); |
| 2914 | |
| 2915 | return Builder.CreateShuffleVector(V: Vec, Mask, Name: "trunc" ); |
| 2916 | } |
| 2917 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: CGF.SizeTy); |
| 2918 | return Builder.CreateExtractElement(Vec, Idx: Zero, Name: "cast.vtrunc" ); |
| 2919 | } |
| 2920 | case CK_HLSLElementwiseCast: { |
| 2921 | RValue RV = CGF.EmitAnyExpr(E); |
| 2922 | SourceLocation Loc = CE->getExprLoc(); |
| 2923 | QualType SrcTy = E->getType(); |
| 2924 | |
| 2925 | assert(RV.isAggregate() && "Not a valid HLSL Elementwise Cast." ); |
| 2926 | // RHS is an aggregate |
| 2927 | Address SrcVal = RV.getAggregateAddress(); |
| 2928 | return EmitHLSLElementwiseCast(CGF, RHSVal: SrcVal, RHSTy: SrcTy, LHSTy: DestTy, Loc); |
| 2929 | } |
| 2930 | } // end of switch |
| 2931 | |
| 2932 | llvm_unreachable("unknown scalar cast" ); |
| 2933 | } |
| 2934 | |
| 2935 | Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
| 2936 | CodeGenFunction::StmtExprEvaluation eval(CGF); |
| 2937 | Address RetAlloca = CGF.EmitCompoundStmt(S: *E->getSubStmt(), |
| 2938 | GetLast: !E->getType()->isVoidType()); |
| 2939 | if (!RetAlloca.isValid()) |
| 2940 | return nullptr; |
| 2941 | return CGF.EmitLoadOfScalar(lvalue: CGF.MakeAddrLValue(Addr: RetAlloca, T: E->getType()), |
| 2942 | Loc: E->getExprLoc()); |
| 2943 | } |
| 2944 | |
| 2945 | Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { |
| 2946 | CodeGenFunction::RunCleanupsScope Scope(CGF); |
| 2947 | Value *V = Visit(E: E->getSubExpr()); |
| 2948 | // Defend against dominance problems caused by jumps out of expression |
| 2949 | // evaluation through the shared cleanup block. |
| 2950 | Scope.ForceCleanup(ValuesToReload: {&V}); |
| 2951 | return V; |
| 2952 | } |
| 2953 | |
| 2954 | //===----------------------------------------------------------------------===// |
| 2955 | // Unary Operators |
| 2956 | //===----------------------------------------------------------------------===// |
| 2957 | |
| 2958 | static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, |
| 2959 | llvm::Value *InVal, bool IsInc, |
| 2960 | FPOptions FPFeatures) { |
| 2961 | BinOpInfo BinOp; |
| 2962 | BinOp.LHS = InVal; |
| 2963 | BinOp.RHS = llvm::ConstantInt::get(Ty: InVal->getType(), V: 1, IsSigned: false); |
| 2964 | BinOp.Ty = E->getType(); |
| 2965 | BinOp.Opcode = IsInc ? BO_Add : BO_Sub; |
| 2966 | BinOp.FPFeatures = FPFeatures; |
| 2967 | BinOp.E = E; |
| 2968 | return BinOp; |
| 2969 | } |
| 2970 | |
| 2971 | llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( |
| 2972 | const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { |
| 2973 | llvm::Value *Amount = |
| 2974 | llvm::ConstantInt::get(Ty: InVal->getType(), V: IsInc ? 1 : -1, IsSigned: true); |
| 2975 | StringRef Name = IsInc ? "inc" : "dec" ; |
| 2976 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| 2977 | case LangOptions::SOB_Defined: |
| 2978 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 2979 | return Builder.CreateAdd(LHS: InVal, RHS: Amount, Name); |
| 2980 | [[fallthrough]]; |
| 2981 | case LangOptions::SOB_Undefined: |
| 2982 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 2983 | return Builder.CreateNSWAdd(LHS: InVal, RHS: Amount, Name); |
| 2984 | [[fallthrough]]; |
| 2985 | case LangOptions::SOB_Trapping: |
| 2986 | BinOpInfo Info = createBinOpInfoFromIncDec( |
| 2987 | E, InVal, IsInc, FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
| 2988 | if (!E->canOverflow() || CanElideOverflowCheck(Ctx: CGF.getContext(), Op: Info)) |
| 2989 | return Builder.CreateNSWAdd(LHS: InVal, RHS: Amount, Name); |
| 2990 | return EmitOverflowCheckedBinOp(Ops: Info); |
| 2991 | } |
| 2992 | llvm_unreachable("Unknown SignedOverflowBehaviorTy" ); |
| 2993 | } |
| 2994 | |
| 2995 | /// For the purposes of overflow pattern exclusion, does this match the |
| 2996 | /// "while(i--)" pattern? |
| 2997 | static bool matchesPostDecrInWhile(const UnaryOperator *UO, bool isInc, |
| 2998 | bool isPre, ASTContext &Ctx) { |
| 2999 | if (isInc || isPre) |
| 3000 | return false; |
| 3001 | |
| 3002 | // -fsanitize-undefined-ignore-overflow-pattern=unsigned-post-decr-while |
| 3003 | if (!Ctx.getLangOpts().isOverflowPatternExcluded( |
| 3004 | Kind: LangOptions::OverflowPatternExclusionKind::PostDecrInWhile)) |
| 3005 | return false; |
| 3006 | |
| 3007 | // all Parents (usually just one) must be a WhileStmt |
| 3008 | for (const auto &Parent : Ctx.getParentMapContext().getParents(Node: *UO)) |
| 3009 | if (!Parent.get<WhileStmt>()) |
| 3010 | return false; |
| 3011 | |
| 3012 | return true; |
| 3013 | } |
| 3014 | |
| 3015 | namespace { |
| 3016 | /// Handles check and update for lastprivate conditional variables. |
| 3017 | class OMPLastprivateConditionalUpdateRAII { |
| 3018 | private: |
| 3019 | CodeGenFunction &CGF; |
| 3020 | const UnaryOperator *E; |
| 3021 | |
| 3022 | public: |
| 3023 | OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, |
| 3024 | const UnaryOperator *E) |
| 3025 | : CGF(CGF), E(E) {} |
| 3026 | ~OMPLastprivateConditionalUpdateRAII() { |
| 3027 | if (CGF.getLangOpts().OpenMP) |
| 3028 | CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( |
| 3029 | CGF, LHS: E->getSubExpr()); |
| 3030 | } |
| 3031 | }; |
| 3032 | } // namespace |
| 3033 | |
| 3034 | llvm::Value * |
| 3035 | ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| 3036 | bool isInc, bool isPre) { |
| 3037 | ApplyAtomGroup Grp(CGF.getDebugInfo()); |
| 3038 | OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); |
| 3039 | QualType type = E->getSubExpr()->getType(); |
| 3040 | llvm::PHINode *atomicPHI = nullptr; |
| 3041 | llvm::Value *value; |
| 3042 | llvm::Value *input; |
| 3043 | llvm::Value *Previous = nullptr; |
| 3044 | QualType SrcType = E->getType(); |
| 3045 | |
| 3046 | int amount = (isInc ? 1 : -1); |
| 3047 | bool isSubtraction = !isInc; |
| 3048 | |
| 3049 | if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { |
| 3050 | type = atomicTy->getValueType(); |
| 3051 | if (isInc && type->isBooleanType()) { |
| 3052 | llvm::Value *True = CGF.EmitToMemory(Value: Builder.getTrue(), Ty: type); |
| 3053 | if (isPre) { |
| 3054 | Builder.CreateStore(Val: True, Addr: LV.getAddress(), IsVolatile: LV.isVolatileQualified()) |
| 3055 | ->setAtomic(Ordering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 3056 | return Builder.getTrue(); |
| 3057 | } |
| 3058 | // For atomic bool increment, we just store true and return it for |
| 3059 | // preincrement, do an atomic swap with true for postincrement |
| 3060 | return Builder.CreateAtomicRMW( |
| 3061 | Op: llvm::AtomicRMWInst::Xchg, Addr: LV.getAddress(), Val: True, |
| 3062 | Ordering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 3063 | } |
| 3064 | // Special case for atomic increment / decrement on integers, emit |
| 3065 | // atomicrmw instructions. We skip this if we want to be doing overflow |
| 3066 | // checking, and fall into the slow path with the atomic cmpxchg loop. |
| 3067 | if (!type->isBooleanType() && type->isIntegerType() && |
| 3068 | !(type->isUnsignedIntegerType() && |
| 3069 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow)) && |
| 3070 | CGF.getLangOpts().getSignedOverflowBehavior() != |
| 3071 | LangOptions::SOB_Trapping) { |
| 3072 | llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : |
| 3073 | llvm::AtomicRMWInst::Sub; |
| 3074 | llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : |
| 3075 | llvm::Instruction::Sub; |
| 3076 | llvm::Value *amt = CGF.EmitToMemory( |
| 3077 | Value: llvm::ConstantInt::get(Ty: ConvertType(T: type), V: 1, IsSigned: true), Ty: type); |
| 3078 | llvm::Value *old = |
| 3079 | Builder.CreateAtomicRMW(Op: aop, Addr: LV.getAddress(), Val: amt, |
| 3080 | Ordering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 3081 | return isPre ? Builder.CreateBinOp(Opc: op, LHS: old, RHS: amt) : old; |
| 3082 | } |
| 3083 | // Special case for atomic increment/decrement on floats. |
| 3084 | // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80). |
| 3085 | if (type->isFloatingType()) { |
| 3086 | llvm::Type *Ty = ConvertType(T: type); |
| 3087 | if (llvm::has_single_bit(Value: Ty->getScalarSizeInBits())) { |
| 3088 | llvm::AtomicRMWInst::BinOp aop = |
| 3089 | isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub; |
| 3090 | llvm::Instruction::BinaryOps op = |
| 3091 | isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub; |
| 3092 | llvm::Value *amt = llvm::ConstantFP::get(Ty, V: 1.0); |
| 3093 | llvm::AtomicRMWInst *old = |
| 3094 | CGF.emitAtomicRMWInst(Op: aop, Addr: LV.getAddress(), Val: amt, |
| 3095 | Order: llvm::AtomicOrdering::SequentiallyConsistent); |
| 3096 | |
| 3097 | return isPre ? Builder.CreateBinOp(Opc: op, LHS: old, RHS: amt) : old; |
| 3098 | } |
| 3099 | } |
| 3100 | value = EmitLoadOfLValue(LV, Loc: E->getExprLoc()); |
| 3101 | input = value; |
| 3102 | // For every other atomic operation, we need to emit a load-op-cmpxchg loop |
| 3103 | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
| 3104 | llvm::BasicBlock *opBB = CGF.createBasicBlock(name: "atomic_op" , parent: CGF.CurFn); |
| 3105 | value = CGF.EmitToMemory(Value: value, Ty: type); |
| 3106 | Builder.CreateBr(Dest: opBB); |
| 3107 | Builder.SetInsertPoint(opBB); |
| 3108 | atomicPHI = Builder.CreatePHI(Ty: value->getType(), NumReservedValues: 2); |
| 3109 | atomicPHI->addIncoming(V: value, BB: startBB); |
| 3110 | value = atomicPHI; |
| 3111 | } else { |
| 3112 | value = EmitLoadOfLValue(LV, Loc: E->getExprLoc()); |
| 3113 | input = value; |
| 3114 | } |
| 3115 | |
| 3116 | // Special case of integer increment that we have to check first: bool++. |
| 3117 | // Due to promotion rules, we get: |
| 3118 | // bool++ -> bool = bool + 1 |
| 3119 | // -> bool = (int)bool + 1 |
| 3120 | // -> bool = ((int)bool + 1 != 0) |
| 3121 | // An interesting aspect of this is that increment is always true. |
| 3122 | // Decrement does not have this property. |
| 3123 | if (isInc && type->isBooleanType()) { |
| 3124 | value = Builder.getTrue(); |
| 3125 | |
| 3126 | // Most common case by far: integer increment. |
| 3127 | } else if (type->isIntegerType()) { |
| 3128 | QualType promotedType; |
| 3129 | bool canPerformLossyDemotionCheck = false; |
| 3130 | |
| 3131 | bool excludeOverflowPattern = |
| 3132 | matchesPostDecrInWhile(UO: E, isInc, isPre, Ctx&: CGF.getContext()); |
| 3133 | |
| 3134 | if (CGF.getContext().isPromotableIntegerType(T: type)) { |
| 3135 | promotedType = CGF.getContext().getPromotedIntegerType(PromotableType: type); |
| 3136 | assert(promotedType != type && "Shouldn't promote to the same type." ); |
| 3137 | canPerformLossyDemotionCheck = true; |
| 3138 | canPerformLossyDemotionCheck &= |
| 3139 | CGF.getContext().getCanonicalType(T: type) != |
| 3140 | CGF.getContext().getCanonicalType(T: promotedType); |
| 3141 | canPerformLossyDemotionCheck &= |
| 3142 | PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( |
| 3143 | SrcType: type, DstType: promotedType); |
| 3144 | assert((!canPerformLossyDemotionCheck || |
| 3145 | type->isSignedIntegerOrEnumerationType() || |
| 3146 | promotedType->isSignedIntegerOrEnumerationType() || |
| 3147 | ConvertType(type)->getScalarSizeInBits() == |
| 3148 | ConvertType(promotedType)->getScalarSizeInBits()) && |
| 3149 | "The following check expects that if we do promotion to different " |
| 3150 | "underlying canonical type, at least one of the types (either " |
| 3151 | "base or promoted) will be signed, or the bitwidths will match." ); |
| 3152 | } |
| 3153 | if (CGF.SanOpts.hasOneOf( |
| 3154 | K: SanitizerKind::ImplicitIntegerArithmeticValueChange | |
| 3155 | SanitizerKind::ImplicitBitfieldConversion) && |
| 3156 | canPerformLossyDemotionCheck) { |
| 3157 | // While `x += 1` (for `x` with width less than int) is modeled as |
| 3158 | // promotion+arithmetics+demotion, and we can catch lossy demotion with |
| 3159 | // ease; inc/dec with width less than int can't overflow because of |
| 3160 | // promotion rules, so we omit promotion+demotion, which means that we can |
| 3161 | // not catch lossy "demotion". Because we still want to catch these cases |
| 3162 | // when the sanitizer is enabled, we perform the promotion, then perform |
| 3163 | // the increment/decrement in the wider type, and finally |
| 3164 | // perform the demotion. This will catch lossy demotions. |
| 3165 | |
| 3166 | // We have a special case for bitfields defined using all the bits of the |
| 3167 | // type. In this case we need to do the same trick as for the integer |
| 3168 | // sanitizer checks, i.e., promotion -> increment/decrement -> demotion. |
| 3169 | |
| 3170 | value = EmitScalarConversion(Src: value, SrcType: type, DstType: promotedType, Loc: E->getExprLoc()); |
| 3171 | Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount, IsSigned: true); |
| 3172 | value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec" ); |
| 3173 | // Do pass non-default ScalarConversionOpts so that sanitizer check is |
| 3174 | // emitted if LV is not a bitfield, otherwise the bitfield sanitizer |
| 3175 | // checks will take care of the conversion. |
| 3176 | ScalarConversionOpts Opts; |
| 3177 | if (!LV.isBitField()) |
| 3178 | Opts = ScalarConversionOpts(CGF.SanOpts); |
| 3179 | else if (CGF.SanOpts.has(K: SanitizerKind::ImplicitBitfieldConversion)) { |
| 3180 | Previous = value; |
| 3181 | SrcType = promotedType; |
| 3182 | } |
| 3183 | |
| 3184 | value = EmitScalarConversion(Src: value, SrcType: promotedType, DstType: type, Loc: E->getExprLoc(), |
| 3185 | Opts); |
| 3186 | |
| 3187 | // Note that signed integer inc/dec with width less than int can't |
| 3188 | // overflow because of promotion rules; we're just eliding a few steps |
| 3189 | // here. |
| 3190 | } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { |
| 3191 | value = EmitIncDecConsiderOverflowBehavior(E, InVal: value, IsInc: isInc); |
| 3192 | } else if (E->canOverflow() && type->isUnsignedIntegerType() && |
| 3193 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) && |
| 3194 | !excludeOverflowPattern && |
| 3195 | !CGF.getContext().isTypeIgnoredBySanitizer( |
| 3196 | Mask: SanitizerKind::UnsignedIntegerOverflow, Ty: E->getType())) { |
| 3197 | value = EmitOverflowCheckedBinOp(Ops: createBinOpInfoFromIncDec( |
| 3198 | E, InVal: value, IsInc: isInc, FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts()))); |
| 3199 | } else { |
| 3200 | llvm::Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount, IsSigned: true); |
| 3201 | value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec" ); |
| 3202 | } |
| 3203 | |
| 3204 | // Next most common: pointer increment. |
| 3205 | } else if (const PointerType *ptr = type->getAs<PointerType>()) { |
| 3206 | QualType type = ptr->getPointeeType(); |
| 3207 | |
| 3208 | // VLA types don't have constant size. |
| 3209 | if (const VariableArrayType *vla |
| 3210 | = CGF.getContext().getAsVariableArrayType(T: type)) { |
| 3211 | llvm::Value *numElts = CGF.getVLASize(vla).NumElts; |
| 3212 | if (!isInc) numElts = Builder.CreateNSWNeg(V: numElts, Name: "vla.negsize" ); |
| 3213 | llvm::Type *elemTy = CGF.ConvertTypeForMem(T: vla->getElementType()); |
| 3214 | if (CGF.getLangOpts().PointerOverflowDefined) |
| 3215 | value = Builder.CreateGEP(Ty: elemTy, Ptr: value, IdxList: numElts, Name: "vla.inc" ); |
| 3216 | else |
| 3217 | value = CGF.EmitCheckedInBoundsGEP( |
| 3218 | ElemTy: elemTy, Ptr: value, IdxList: numElts, /*SignedIndices=*/false, IsSubtraction: isSubtraction, |
| 3219 | Loc: E->getExprLoc(), Name: "vla.inc" ); |
| 3220 | |
| 3221 | // Arithmetic on function pointers (!) is just +-1. |
| 3222 | } else if (type->isFunctionType()) { |
| 3223 | llvm::Value *amt = Builder.getInt32(C: amount); |
| 3224 | |
| 3225 | if (CGF.getLangOpts().PointerOverflowDefined) |
| 3226 | value = Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: value, IdxList: amt, Name: "incdec.funcptr" ); |
| 3227 | else |
| 3228 | value = |
| 3229 | CGF.EmitCheckedInBoundsGEP(ElemTy: CGF.Int8Ty, Ptr: value, IdxList: amt, |
| 3230 | /*SignedIndices=*/false, IsSubtraction: isSubtraction, |
| 3231 | Loc: E->getExprLoc(), Name: "incdec.funcptr" ); |
| 3232 | |
| 3233 | // For everything else, we can just do a simple increment. |
| 3234 | } else { |
| 3235 | llvm::Value *amt = Builder.getInt32(C: amount); |
| 3236 | llvm::Type *elemTy = CGF.ConvertTypeForMem(T: type); |
| 3237 | if (CGF.getLangOpts().PointerOverflowDefined) |
| 3238 | value = Builder.CreateGEP(Ty: elemTy, Ptr: value, IdxList: amt, Name: "incdec.ptr" ); |
| 3239 | else |
| 3240 | value = CGF.EmitCheckedInBoundsGEP( |
| 3241 | ElemTy: elemTy, Ptr: value, IdxList: amt, /*SignedIndices=*/false, IsSubtraction: isSubtraction, |
| 3242 | Loc: E->getExprLoc(), Name: "incdec.ptr" ); |
| 3243 | } |
| 3244 | |
| 3245 | // Vector increment/decrement. |
| 3246 | } else if (type->isVectorType()) { |
| 3247 | if (type->hasIntegerRepresentation()) { |
| 3248 | llvm::Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount); |
| 3249 | |
| 3250 | value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec" ); |
| 3251 | } else { |
| 3252 | value = Builder.CreateFAdd( |
| 3253 | L: value, |
| 3254 | R: llvm::ConstantFP::get(Ty: value->getType(), V: amount), |
| 3255 | Name: isInc ? "inc" : "dec" ); |
| 3256 | } |
| 3257 | |
| 3258 | // Floating point. |
| 3259 | } else if (type->isRealFloatingType()) { |
| 3260 | // Add the inc/dec to the real part. |
| 3261 | llvm::Value *amt; |
| 3262 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 3263 | |
| 3264 | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| 3265 | // Another special case: half FP increment should be done via float |
| 3266 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| 3267 | value = Builder.CreateCall( |
| 3268 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16, |
| 3269 | Tys: CGF.CGM.FloatTy), |
| 3270 | Args: input, Name: "incdec.conv" ); |
| 3271 | } else { |
| 3272 | value = Builder.CreateFPExt(V: input, DestTy: CGF.CGM.FloatTy, Name: "incdec.conv" ); |
| 3273 | } |
| 3274 | } |
| 3275 | |
| 3276 | if (value->getType()->isFloatTy()) |
| 3277 | amt = llvm::ConstantFP::get(Context&: VMContext, |
| 3278 | V: llvm::APFloat(static_cast<float>(amount))); |
| 3279 | else if (value->getType()->isDoubleTy()) |
| 3280 | amt = llvm::ConstantFP::get(Context&: VMContext, |
| 3281 | V: llvm::APFloat(static_cast<double>(amount))); |
| 3282 | else { |
| 3283 | // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128. |
| 3284 | // Convert from float. |
| 3285 | llvm::APFloat F(static_cast<float>(amount)); |
| 3286 | bool ignored; |
| 3287 | const llvm::fltSemantics *FS; |
| 3288 | // Don't use getFloatTypeSemantics because Half isn't |
| 3289 | // necessarily represented using the "half" LLVM type. |
| 3290 | if (value->getType()->isFP128Ty()) |
| 3291 | FS = &CGF.getTarget().getFloat128Format(); |
| 3292 | else if (value->getType()->isHalfTy()) |
| 3293 | FS = &CGF.getTarget().getHalfFormat(); |
| 3294 | else if (value->getType()->isBFloatTy()) |
| 3295 | FS = &CGF.getTarget().getBFloat16Format(); |
| 3296 | else if (value->getType()->isPPC_FP128Ty()) |
| 3297 | FS = &CGF.getTarget().getIbm128Format(); |
| 3298 | else |
| 3299 | FS = &CGF.getTarget().getLongDoubleFormat(); |
| 3300 | F.convert(ToSemantics: *FS, RM: llvm::APFloat::rmTowardZero, losesInfo: &ignored); |
| 3301 | amt = llvm::ConstantFP::get(Context&: VMContext, V: F); |
| 3302 | } |
| 3303 | value = Builder.CreateFAdd(L: value, R: amt, Name: isInc ? "inc" : "dec" ); |
| 3304 | |
| 3305 | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
| 3306 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
| 3307 | value = Builder.CreateCall( |
| 3308 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16, |
| 3309 | Tys: CGF.CGM.FloatTy), |
| 3310 | Args: value, Name: "incdec.conv" ); |
| 3311 | } else { |
| 3312 | value = Builder.CreateFPTrunc(V: value, DestTy: input->getType(), Name: "incdec.conv" ); |
| 3313 | } |
| 3314 | } |
| 3315 | |
| 3316 | // Fixed-point types. |
| 3317 | } else if (type->isFixedPointType()) { |
| 3318 | // Fixed-point types are tricky. In some cases, it isn't possible to |
| 3319 | // represent a 1 or a -1 in the type at all. Piggyback off of |
| 3320 | // EmitFixedPointBinOp to avoid having to reimplement saturation. |
| 3321 | BinOpInfo Info; |
| 3322 | Info.E = E; |
| 3323 | Info.Ty = E->getType(); |
| 3324 | Info.Opcode = isInc ? BO_Add : BO_Sub; |
| 3325 | Info.LHS = value; |
| 3326 | Info.RHS = llvm::ConstantInt::get(Ty: value->getType(), V: 1, IsSigned: false); |
| 3327 | // If the type is signed, it's better to represent this as +(-1) or -(-1), |
| 3328 | // since -1 is guaranteed to be representable. |
| 3329 | if (type->isSignedFixedPointType()) { |
| 3330 | Info.Opcode = isInc ? BO_Sub : BO_Add; |
| 3331 | Info.RHS = Builder.CreateNeg(V: Info.RHS); |
| 3332 | } |
| 3333 | // Now, convert from our invented integer literal to the type of the unary |
| 3334 | // op. This will upscale and saturate if necessary. This value can become |
| 3335 | // undef in some cases. |
| 3336 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
| 3337 | auto DstSema = CGF.getContext().getFixedPointSemantics(Ty: Info.Ty); |
| 3338 | Info.RHS = FPBuilder.CreateIntegerToFixed(Src: Info.RHS, SrcIsSigned: true, DstSema); |
| 3339 | value = EmitFixedPointBinOp(Ops: Info); |
| 3340 | |
| 3341 | // Objective-C pointer types. |
| 3342 | } else { |
| 3343 | const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); |
| 3344 | |
| 3345 | CharUnits size = CGF.getContext().getTypeSizeInChars(T: OPT->getObjectType()); |
| 3346 | if (!isInc) size = -size; |
| 3347 | llvm::Value *sizeValue = |
| 3348 | llvm::ConstantInt::get(Ty: CGF.SizeTy, V: size.getQuantity()); |
| 3349 | |
| 3350 | if (CGF.getLangOpts().PointerOverflowDefined) |
| 3351 | value = Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: value, IdxList: sizeValue, Name: "incdec.objptr" ); |
| 3352 | else |
| 3353 | value = CGF.EmitCheckedInBoundsGEP( |
| 3354 | ElemTy: CGF.Int8Ty, Ptr: value, IdxList: sizeValue, /*SignedIndices=*/false, IsSubtraction: isSubtraction, |
| 3355 | Loc: E->getExprLoc(), Name: "incdec.objptr" ); |
| 3356 | value = Builder.CreateBitCast(V: value, DestTy: input->getType()); |
| 3357 | } |
| 3358 | |
| 3359 | if (atomicPHI) { |
| 3360 | llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); |
| 3361 | llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "atomic_cont" , parent: CGF.CurFn); |
| 3362 | auto Pair = CGF.EmitAtomicCompareExchange( |
| 3363 | Obj: LV, Expected: RValue::get(V: atomicPHI), Desired: RValue::get(V: value), Loc: E->getExprLoc()); |
| 3364 | llvm::Value *old = CGF.EmitToMemory(Value: Pair.first.getScalarVal(), Ty: type); |
| 3365 | llvm::Value *success = Pair.second; |
| 3366 | atomicPHI->addIncoming(V: old, BB: curBlock); |
| 3367 | Builder.CreateCondBr(Cond: success, True: contBB, False: atomicPHI->getParent()); |
| 3368 | Builder.SetInsertPoint(contBB); |
| 3369 | return isPre ? value : input; |
| 3370 | } |
| 3371 | |
| 3372 | // Store the updated result through the lvalue. |
| 3373 | if (LV.isBitField()) { |
| 3374 | Value *Src = Previous ? Previous : value; |
| 3375 | CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: value), Dst: LV, Result: &value); |
| 3376 | CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: value, DstType: E->getType(), |
| 3377 | Info: LV.getBitFieldInfo(), Loc: E->getExprLoc()); |
| 3378 | } else |
| 3379 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: LV); |
| 3380 | |
| 3381 | // If this is a postinc, return the value read from memory, otherwise use the |
| 3382 | // updated value. |
| 3383 | return isPre ? value : input; |
| 3384 | } |
| 3385 | |
| 3386 | |
| 3387 | Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E, |
| 3388 | QualType PromotionType) { |
| 3389 | QualType promotionTy = PromotionType.isNull() |
| 3390 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
| 3391 | : PromotionType; |
| 3392 | Value *result = VisitPlus(E, PromotionType: promotionTy); |
| 3393 | if (result && !promotionTy.isNull()) |
| 3394 | result = EmitUnPromotedValue(result, ExprType: E->getType()); |
| 3395 | return result; |
| 3396 | } |
| 3397 | |
| 3398 | Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E, |
| 3399 | QualType PromotionType) { |
| 3400 | // This differs from gcc, though, most likely due to a bug in gcc. |
| 3401 | TestAndClearIgnoreResultAssign(); |
| 3402 | if (!PromotionType.isNull()) |
| 3403 | return CGF.EmitPromotedScalarExpr(E: E->getSubExpr(), PromotionType); |
| 3404 | return Visit(E: E->getSubExpr()); |
| 3405 | } |
| 3406 | |
| 3407 | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E, |
| 3408 | QualType PromotionType) { |
| 3409 | QualType promotionTy = PromotionType.isNull() |
| 3410 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
| 3411 | : PromotionType; |
| 3412 | Value *result = VisitMinus(E, PromotionType: promotionTy); |
| 3413 | if (result && !promotionTy.isNull()) |
| 3414 | result = EmitUnPromotedValue(result, ExprType: E->getType()); |
| 3415 | return result; |
| 3416 | } |
| 3417 | |
| 3418 | Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E, |
| 3419 | QualType PromotionType) { |
| 3420 | TestAndClearIgnoreResultAssign(); |
| 3421 | Value *Op; |
| 3422 | if (!PromotionType.isNull()) |
| 3423 | Op = CGF.EmitPromotedScalarExpr(E: E->getSubExpr(), PromotionType); |
| 3424 | else |
| 3425 | Op = Visit(E: E->getSubExpr()); |
| 3426 | |
| 3427 | // Generate a unary FNeg for FP ops. |
| 3428 | if (Op->getType()->isFPOrFPVectorTy()) |
| 3429 | return Builder.CreateFNeg(V: Op, Name: "fneg" ); |
| 3430 | |
| 3431 | // Emit unary minus with EmitSub so we handle overflow cases etc. |
| 3432 | BinOpInfo BinOp; |
| 3433 | BinOp.RHS = Op; |
| 3434 | BinOp.LHS = llvm::Constant::getNullValue(Ty: BinOp.RHS->getType()); |
| 3435 | BinOp.Ty = E->getType(); |
| 3436 | BinOp.Opcode = BO_Sub; |
| 3437 | BinOp.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts()); |
| 3438 | BinOp.E = E; |
| 3439 | return EmitSub(Ops: BinOp); |
| 3440 | } |
| 3441 | |
| 3442 | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| 3443 | TestAndClearIgnoreResultAssign(); |
| 3444 | Value *Op = Visit(E: E->getSubExpr()); |
| 3445 | return Builder.CreateNot(V: Op, Name: "not" ); |
| 3446 | } |
| 3447 | |
| 3448 | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
| 3449 | // Perform vector logical not on comparison with zero vector. |
| 3450 | if (E->getType()->isVectorType() && |
| 3451 | E->getType()->castAs<VectorType>()->getVectorKind() == |
| 3452 | VectorKind::Generic) { |
| 3453 | Value *Oper = Visit(E: E->getSubExpr()); |
| 3454 | Value *Zero = llvm::Constant::getNullValue(Ty: Oper->getType()); |
| 3455 | Value *Result; |
| 3456 | if (Oper->getType()->isFPOrFPVectorTy()) { |
| 3457 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
| 3458 | CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
| 3459 | Result = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_OEQ, LHS: Oper, RHS: Zero, Name: "cmp" ); |
| 3460 | } else |
| 3461 | Result = Builder.CreateICmp(P: llvm::CmpInst::ICMP_EQ, LHS: Oper, RHS: Zero, Name: "cmp" ); |
| 3462 | return Builder.CreateSExt(V: Result, DestTy: ConvertType(T: E->getType()), Name: "sext" ); |
| 3463 | } |
| 3464 | |
| 3465 | // Compare operand to zero. |
| 3466 | Value *BoolVal = CGF.EvaluateExprAsBool(E: E->getSubExpr()); |
| 3467 | |
| 3468 | // Invert value. |
| 3469 | // TODO: Could dynamically modify easy computations here. For example, if |
| 3470 | // the operand is an icmp ne, turn into icmp eq. |
| 3471 | BoolVal = Builder.CreateNot(V: BoolVal, Name: "lnot" ); |
| 3472 | |
| 3473 | // ZExt result to the expr type. |
| 3474 | return Builder.CreateZExt(V: BoolVal, DestTy: ConvertType(T: E->getType()), Name: "lnot.ext" ); |
| 3475 | } |
| 3476 | |
| 3477 | Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { |
| 3478 | // Try folding the offsetof to a constant. |
| 3479 | Expr::EvalResult EVResult; |
| 3480 | if (E->EvaluateAsInt(Result&: EVResult, Ctx: CGF.getContext())) { |
| 3481 | llvm::APSInt Value = EVResult.Val.getInt(); |
| 3482 | return Builder.getInt(AI: Value); |
| 3483 | } |
| 3484 | |
| 3485 | // Loop over the components of the offsetof to compute the value. |
| 3486 | unsigned n = E->getNumComponents(); |
| 3487 | llvm::Type* ResultType = ConvertType(T: E->getType()); |
| 3488 | llvm::Value* Result = llvm::Constant::getNullValue(Ty: ResultType); |
| 3489 | QualType CurrentType = E->getTypeSourceInfo()->getType(); |
| 3490 | for (unsigned i = 0; i != n; ++i) { |
| 3491 | OffsetOfNode ON = E->getComponent(Idx: i); |
| 3492 | llvm::Value *Offset = nullptr; |
| 3493 | switch (ON.getKind()) { |
| 3494 | case OffsetOfNode::Array: { |
| 3495 | // Compute the index |
| 3496 | Expr *IdxExpr = E->getIndexExpr(Idx: ON.getArrayExprIndex()); |
| 3497 | llvm::Value* Idx = CGF.EmitScalarExpr(E: IdxExpr); |
| 3498 | bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); |
| 3499 | Idx = Builder.CreateIntCast(V: Idx, DestTy: ResultType, isSigned: IdxSigned, Name: "conv" ); |
| 3500 | |
| 3501 | // Save the element type |
| 3502 | CurrentType = |
| 3503 | CGF.getContext().getAsArrayType(T: CurrentType)->getElementType(); |
| 3504 | |
| 3505 | // Compute the element size |
| 3506 | llvm::Value* ElemSize = llvm::ConstantInt::get(Ty: ResultType, |
| 3507 | V: CGF.getContext().getTypeSizeInChars(T: CurrentType).getQuantity()); |
| 3508 | |
| 3509 | // Multiply out to compute the result |
| 3510 | Offset = Builder.CreateMul(LHS: Idx, RHS: ElemSize); |
| 3511 | break; |
| 3512 | } |
| 3513 | |
| 3514 | case OffsetOfNode::Field: { |
| 3515 | FieldDecl *MemberDecl = ON.getField(); |
| 3516 | RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); |
| 3517 | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(D: RD); |
| 3518 | |
| 3519 | // Compute the index of the field in its parent. |
| 3520 | unsigned i = 0; |
| 3521 | // FIXME: It would be nice if we didn't have to loop here! |
| 3522 | for (RecordDecl::field_iterator Field = RD->field_begin(), |
| 3523 | FieldEnd = RD->field_end(); |
| 3524 | Field != FieldEnd; ++Field, ++i) { |
| 3525 | if (*Field == MemberDecl) |
| 3526 | break; |
| 3527 | } |
| 3528 | assert(i < RL.getFieldCount() && "offsetof field in wrong type" ); |
| 3529 | |
| 3530 | // Compute the offset to the field |
| 3531 | int64_t OffsetInt = RL.getFieldOffset(FieldNo: i) / |
| 3532 | CGF.getContext().getCharWidth(); |
| 3533 | Offset = llvm::ConstantInt::get(Ty: ResultType, V: OffsetInt); |
| 3534 | |
| 3535 | // Save the element type. |
| 3536 | CurrentType = MemberDecl->getType(); |
| 3537 | break; |
| 3538 | } |
| 3539 | |
| 3540 | case OffsetOfNode::Identifier: |
| 3541 | llvm_unreachable("dependent __builtin_offsetof" ); |
| 3542 | |
| 3543 | case OffsetOfNode::Base: { |
| 3544 | if (ON.getBase()->isVirtual()) { |
| 3545 | CGF.ErrorUnsupported(S: E, Type: "virtual base in offsetof" ); |
| 3546 | continue; |
| 3547 | } |
| 3548 | |
| 3549 | RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); |
| 3550 | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(D: RD); |
| 3551 | |
| 3552 | // Save the element type. |
| 3553 | CurrentType = ON.getBase()->getType(); |
| 3554 | |
| 3555 | // Compute the offset to the base. |
| 3556 | auto *BaseRT = CurrentType->castAs<RecordType>(); |
| 3557 | auto *BaseRD = cast<CXXRecordDecl>(Val: BaseRT->getDecl()); |
| 3558 | CharUnits OffsetInt = RL.getBaseClassOffset(Base: BaseRD); |
| 3559 | Offset = llvm::ConstantInt::get(Ty: ResultType, V: OffsetInt.getQuantity()); |
| 3560 | break; |
| 3561 | } |
| 3562 | } |
| 3563 | Result = Builder.CreateAdd(LHS: Result, RHS: Offset); |
| 3564 | } |
| 3565 | return Result; |
| 3566 | } |
| 3567 | |
| 3568 | /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of |
| 3569 | /// argument of the sizeof expression as an integer. |
| 3570 | Value * |
| 3571 | ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( |
| 3572 | const UnaryExprOrTypeTraitExpr *E) { |
| 3573 | QualType TypeToSize = E->getTypeOfArgument(); |
| 3574 | if (auto Kind = E->getKind(); |
| 3575 | Kind == UETT_SizeOf || Kind == UETT_DataSizeOf || Kind == UETT_CountOf) { |
| 3576 | if (const VariableArrayType *VAT = |
| 3577 | CGF.getContext().getAsVariableArrayType(T: TypeToSize)) { |
| 3578 | // For _Countof, we only want to evaluate if the extent is actually |
| 3579 | // variable as opposed to a multi-dimensional array whose extent is |
| 3580 | // constant but whose element type is variable. |
| 3581 | bool EvaluateExtent = true; |
| 3582 | if (Kind == UETT_CountOf && VAT->getElementType()->isArrayType()) { |
| 3583 | EvaluateExtent = |
| 3584 | !VAT->getSizeExpr()->isIntegerConstantExpr(Ctx: CGF.getContext()); |
| 3585 | } |
| 3586 | if (EvaluateExtent) { |
| 3587 | if (E->isArgumentType()) { |
| 3588 | // sizeof(type) - make sure to emit the VLA size. |
| 3589 | CGF.EmitVariablyModifiedType(Ty: TypeToSize); |
| 3590 | } else { |
| 3591 | // C99 6.5.3.4p2: If the argument is an expression of type |
| 3592 | // VLA, it is evaluated. |
| 3593 | CGF.EmitIgnoredExpr(E: E->getArgumentExpr()); |
| 3594 | } |
| 3595 | |
| 3596 | // For _Countof, we just want to return the size of a single dimension. |
| 3597 | if (Kind == UETT_CountOf) |
| 3598 | return CGF.getVLAElements1D(vla: VAT).NumElts; |
| 3599 | |
| 3600 | // For sizeof and __datasizeof, we need to scale the number of elements |
| 3601 | // by the size of the array element type. |
| 3602 | auto VlaSize = CGF.getVLASize(vla: VAT); |
| 3603 | |
| 3604 | // Scale the number of non-VLA elements by the non-VLA element size. |
| 3605 | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(T: VlaSize.Type); |
| 3606 | if (!eltSize.isOne()) |
| 3607 | return CGF.Builder.CreateNUWMul(LHS: CGF.CGM.getSize(numChars: eltSize), |
| 3608 | RHS: VlaSize.NumElts); |
| 3609 | return VlaSize.NumElts; |
| 3610 | } |
| 3611 | } |
| 3612 | } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { |
| 3613 | auto Alignment = |
| 3614 | CGF.getContext() |
| 3615 | .toCharUnitsFromBits(BitSize: CGF.getContext().getOpenMPDefaultSimdAlign( |
| 3616 | T: E->getTypeOfArgument()->getPointeeType())) |
| 3617 | .getQuantity(); |
| 3618 | return llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Alignment); |
| 3619 | } else if (E->getKind() == UETT_VectorElements) { |
| 3620 | auto *VecTy = cast<llvm::VectorType>(Val: ConvertType(T: E->getTypeOfArgument())); |
| 3621 | return Builder.CreateElementCount(Ty: CGF.SizeTy, EC: VecTy->getElementCount()); |
| 3622 | } |
| 3623 | |
| 3624 | // If this isn't sizeof(vla), the result must be constant; use the constant |
| 3625 | // folding logic so we don't have to duplicate it here. |
| 3626 | return Builder.getInt(AI: E->EvaluateKnownConstInt(Ctx: CGF.getContext())); |
| 3627 | } |
| 3628 | |
| 3629 | Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E, |
| 3630 | QualType PromotionType) { |
| 3631 | QualType promotionTy = PromotionType.isNull() |
| 3632 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
| 3633 | : PromotionType; |
| 3634 | Value *result = VisitReal(E, PromotionType: promotionTy); |
| 3635 | if (result && !promotionTy.isNull()) |
| 3636 | result = EmitUnPromotedValue(result, ExprType: E->getType()); |
| 3637 | return result; |
| 3638 | } |
| 3639 | |
| 3640 | Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E, |
| 3641 | QualType PromotionType) { |
| 3642 | Expr *Op = E->getSubExpr(); |
| 3643 | if (Op->getType()->isAnyComplexType()) { |
| 3644 | // If it's an l-value, load through the appropriate subobject l-value. |
| 3645 | // Note that we have to ask E because Op might be an l-value that |
| 3646 | // this won't work for, e.g. an Obj-C property. |
| 3647 | if (E->isGLValue()) { |
| 3648 | if (!PromotionType.isNull()) { |
| 3649 | CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( |
| 3650 | E: Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true); |
| 3651 | if (result.first) |
| 3652 | result.first = CGF.EmitPromotedValue(result, PromotionType).first; |
| 3653 | return result.first; |
| 3654 | } else { |
| 3655 | return CGF.EmitLoadOfLValue(V: CGF.EmitLValue(E), Loc: E->getExprLoc()) |
| 3656 | .getScalarVal(); |
| 3657 | } |
| 3658 | } |
| 3659 | // Otherwise, calculate and project. |
| 3660 | return CGF.EmitComplexExpr(E: Op, IgnoreReal: false, IgnoreImag: true).first; |
| 3661 | } |
| 3662 | |
| 3663 | if (!PromotionType.isNull()) |
| 3664 | return CGF.EmitPromotedScalarExpr(E: Op, PromotionType); |
| 3665 | return Visit(E: Op); |
| 3666 | } |
| 3667 | |
| 3668 | Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E, |
| 3669 | QualType PromotionType) { |
| 3670 | QualType promotionTy = PromotionType.isNull() |
| 3671 | ? getPromotionType(Ty: E->getSubExpr()->getType()) |
| 3672 | : PromotionType; |
| 3673 | Value *result = VisitImag(E, PromotionType: promotionTy); |
| 3674 | if (result && !promotionTy.isNull()) |
| 3675 | result = EmitUnPromotedValue(result, ExprType: E->getType()); |
| 3676 | return result; |
| 3677 | } |
| 3678 | |
| 3679 | Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E, |
| 3680 | QualType PromotionType) { |
| 3681 | Expr *Op = E->getSubExpr(); |
| 3682 | if (Op->getType()->isAnyComplexType()) { |
| 3683 | // If it's an l-value, load through the appropriate subobject l-value. |
| 3684 | // Note that we have to ask E because Op might be an l-value that |
| 3685 | // this won't work for, e.g. an Obj-C property. |
| 3686 | if (Op->isGLValue()) { |
| 3687 | if (!PromotionType.isNull()) { |
| 3688 | CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( |
| 3689 | E: Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign); |
| 3690 | if (result.second) |
| 3691 | result.second = CGF.EmitPromotedValue(result, PromotionType).second; |
| 3692 | return result.second; |
| 3693 | } else { |
| 3694 | return CGF.EmitLoadOfLValue(V: CGF.EmitLValue(E), Loc: E->getExprLoc()) |
| 3695 | .getScalarVal(); |
| 3696 | } |
| 3697 | } |
| 3698 | // Otherwise, calculate and project. |
| 3699 | return CGF.EmitComplexExpr(E: Op, IgnoreReal: true, IgnoreImag: false).second; |
| 3700 | } |
| 3701 | |
| 3702 | // __imag on a scalar returns zero. Emit the subexpr to ensure side |
| 3703 | // effects are evaluated, but not the actual value. |
| 3704 | if (Op->isGLValue()) |
| 3705 | CGF.EmitLValue(E: Op); |
| 3706 | else if (!PromotionType.isNull()) |
| 3707 | CGF.EmitPromotedScalarExpr(E: Op, PromotionType); |
| 3708 | else |
| 3709 | CGF.EmitScalarExpr(E: Op, IgnoreResultAssign: true); |
| 3710 | if (!PromotionType.isNull()) |
| 3711 | return llvm::Constant::getNullValue(Ty: ConvertType(T: PromotionType)); |
| 3712 | return llvm::Constant::getNullValue(Ty: ConvertType(T: E->getType())); |
| 3713 | } |
| 3714 | |
| 3715 | //===----------------------------------------------------------------------===// |
| 3716 | // Binary Operators |
| 3717 | //===----------------------------------------------------------------------===// |
| 3718 | |
| 3719 | Value *ScalarExprEmitter::EmitPromotedValue(Value *result, |
| 3720 | QualType PromotionType) { |
| 3721 | return CGF.Builder.CreateFPExt(V: result, DestTy: ConvertType(T: PromotionType), Name: "ext" ); |
| 3722 | } |
| 3723 | |
| 3724 | Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result, |
| 3725 | QualType ExprType) { |
| 3726 | return CGF.Builder.CreateFPTrunc(V: result, DestTy: ConvertType(T: ExprType), Name: "unpromotion" ); |
| 3727 | } |
| 3728 | |
| 3729 | Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) { |
| 3730 | E = E->IgnoreParens(); |
| 3731 | if (auto BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 3732 | switch (BO->getOpcode()) { |
| 3733 | #define HANDLE_BINOP(OP) \ |
| 3734 | case BO_##OP: \ |
| 3735 | return Emit##OP(EmitBinOps(BO, PromotionType)); |
| 3736 | HANDLE_BINOP(Add) |
| 3737 | HANDLE_BINOP(Sub) |
| 3738 | HANDLE_BINOP(Mul) |
| 3739 | HANDLE_BINOP(Div) |
| 3740 | #undef HANDLE_BINOP |
| 3741 | default: |
| 3742 | break; |
| 3743 | } |
| 3744 | } else if (auto UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 3745 | switch (UO->getOpcode()) { |
| 3746 | case UO_Imag: |
| 3747 | return VisitImag(E: UO, PromotionType); |
| 3748 | case UO_Real: |
| 3749 | return VisitReal(E: UO, PromotionType); |
| 3750 | case UO_Minus: |
| 3751 | return VisitMinus(E: UO, PromotionType); |
| 3752 | case UO_Plus: |
| 3753 | return VisitPlus(E: UO, PromotionType); |
| 3754 | default: |
| 3755 | break; |
| 3756 | } |
| 3757 | } |
| 3758 | auto result = Visit(E: const_cast<Expr *>(E)); |
| 3759 | if (result) { |
| 3760 | if (!PromotionType.isNull()) |
| 3761 | return EmitPromotedValue(result, PromotionType); |
| 3762 | else |
| 3763 | return EmitUnPromotedValue(result, ExprType: E->getType()); |
| 3764 | } |
| 3765 | return result; |
| 3766 | } |
| 3767 | |
| 3768 | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E, |
| 3769 | QualType PromotionType) { |
| 3770 | TestAndClearIgnoreResultAssign(); |
| 3771 | BinOpInfo Result; |
| 3772 | Result.LHS = CGF.EmitPromotedScalarExpr(E: E->getLHS(), PromotionType); |
| 3773 | Result.RHS = CGF.EmitPromotedScalarExpr(E: E->getRHS(), PromotionType); |
| 3774 | if (!PromotionType.isNull()) |
| 3775 | Result.Ty = PromotionType; |
| 3776 | else |
| 3777 | Result.Ty = E->getType(); |
| 3778 | Result.Opcode = E->getOpcode(); |
| 3779 | Result.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts()); |
| 3780 | Result.E = E; |
| 3781 | return Result; |
| 3782 | } |
| 3783 | |
| 3784 | LValue ScalarExprEmitter::EmitCompoundAssignLValue( |
| 3785 | const CompoundAssignOperator *E, |
| 3786 | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), |
| 3787 | Value *&Result) { |
| 3788 | QualType LHSTy = E->getLHS()->getType(); |
| 3789 | BinOpInfo OpInfo; |
| 3790 | |
| 3791 | if (E->getComputationResultType()->isAnyComplexType()) |
| 3792 | return CGF.EmitScalarCompoundAssignWithComplex(E, Result); |
| 3793 | |
| 3794 | // Emit the RHS first. __block variables need to have the rhs evaluated |
| 3795 | // first, plus this should improve codegen a little. |
| 3796 | |
| 3797 | QualType PromotionTypeCR; |
| 3798 | PromotionTypeCR = getPromotionType(Ty: E->getComputationResultType()); |
| 3799 | if (PromotionTypeCR.isNull()) |
| 3800 | PromotionTypeCR = E->getComputationResultType(); |
| 3801 | QualType PromotionTypeLHS = getPromotionType(Ty: E->getComputationLHSType()); |
| 3802 | QualType PromotionTypeRHS = getPromotionType(Ty: E->getRHS()->getType()); |
| 3803 | if (!PromotionTypeRHS.isNull()) |
| 3804 | OpInfo.RHS = CGF.EmitPromotedScalarExpr(E: E->getRHS(), PromotionType: PromotionTypeRHS); |
| 3805 | else |
| 3806 | OpInfo.RHS = Visit(E: E->getRHS()); |
| 3807 | OpInfo.Ty = PromotionTypeCR; |
| 3808 | OpInfo.Opcode = E->getOpcode(); |
| 3809 | OpInfo.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts()); |
| 3810 | OpInfo.E = E; |
| 3811 | // Load/convert the LHS. |
| 3812 | LValue LHSLV = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store); |
| 3813 | |
| 3814 | llvm::PHINode *atomicPHI = nullptr; |
| 3815 | if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { |
| 3816 | QualType type = atomicTy->getValueType(); |
| 3817 | if (!type->isBooleanType() && type->isIntegerType() && |
| 3818 | !(type->isUnsignedIntegerType() && |
| 3819 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow)) && |
| 3820 | CGF.getLangOpts().getSignedOverflowBehavior() != |
| 3821 | LangOptions::SOB_Trapping) { |
| 3822 | llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; |
| 3823 | llvm::Instruction::BinaryOps Op; |
| 3824 | switch (OpInfo.Opcode) { |
| 3825 | // We don't have atomicrmw operands for *, %, /, <<, >> |
| 3826 | case BO_MulAssign: case BO_DivAssign: |
| 3827 | case BO_RemAssign: |
| 3828 | case BO_ShlAssign: |
| 3829 | case BO_ShrAssign: |
| 3830 | break; |
| 3831 | case BO_AddAssign: |
| 3832 | AtomicOp = llvm::AtomicRMWInst::Add; |
| 3833 | Op = llvm::Instruction::Add; |
| 3834 | break; |
| 3835 | case BO_SubAssign: |
| 3836 | AtomicOp = llvm::AtomicRMWInst::Sub; |
| 3837 | Op = llvm::Instruction::Sub; |
| 3838 | break; |
| 3839 | case BO_AndAssign: |
| 3840 | AtomicOp = llvm::AtomicRMWInst::And; |
| 3841 | Op = llvm::Instruction::And; |
| 3842 | break; |
| 3843 | case BO_XorAssign: |
| 3844 | AtomicOp = llvm::AtomicRMWInst::Xor; |
| 3845 | Op = llvm::Instruction::Xor; |
| 3846 | break; |
| 3847 | case BO_OrAssign: |
| 3848 | AtomicOp = llvm::AtomicRMWInst::Or; |
| 3849 | Op = llvm::Instruction::Or; |
| 3850 | break; |
| 3851 | default: |
| 3852 | llvm_unreachable("Invalid compound assignment type" ); |
| 3853 | } |
| 3854 | if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { |
| 3855 | llvm::Value *Amt = CGF.EmitToMemory( |
| 3856 | Value: EmitScalarConversion(Src: OpInfo.RHS, SrcType: E->getRHS()->getType(), DstType: LHSTy, |
| 3857 | Loc: E->getExprLoc()), |
| 3858 | Ty: LHSTy); |
| 3859 | |
| 3860 | llvm::AtomicRMWInst *OldVal = |
| 3861 | CGF.emitAtomicRMWInst(Op: AtomicOp, Addr: LHSLV.getAddress(), Val: Amt); |
| 3862 | |
| 3863 | // Since operation is atomic, the result type is guaranteed to be the |
| 3864 | // same as the input in LLVM terms. |
| 3865 | Result = Builder.CreateBinOp(Opc: Op, LHS: OldVal, RHS: Amt); |
| 3866 | return LHSLV; |
| 3867 | } |
| 3868 | } |
| 3869 | // FIXME: For floating point types, we should be saving and restoring the |
| 3870 | // floating point environment in the loop. |
| 3871 | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
| 3872 | llvm::BasicBlock *opBB = CGF.createBasicBlock(name: "atomic_op" , parent: CGF.CurFn); |
| 3873 | OpInfo.LHS = EmitLoadOfLValue(LV: LHSLV, Loc: E->getExprLoc()); |
| 3874 | OpInfo.LHS = CGF.EmitToMemory(Value: OpInfo.LHS, Ty: type); |
| 3875 | Builder.CreateBr(Dest: opBB); |
| 3876 | Builder.SetInsertPoint(opBB); |
| 3877 | atomicPHI = Builder.CreatePHI(Ty: OpInfo.LHS->getType(), NumReservedValues: 2); |
| 3878 | atomicPHI->addIncoming(V: OpInfo.LHS, BB: startBB); |
| 3879 | OpInfo.LHS = atomicPHI; |
| 3880 | } |
| 3881 | else |
| 3882 | OpInfo.LHS = EmitLoadOfLValue(LV: LHSLV, Loc: E->getExprLoc()); |
| 3883 | |
| 3884 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); |
| 3885 | SourceLocation Loc = E->getExprLoc(); |
| 3886 | if (!PromotionTypeLHS.isNull()) |
| 3887 | OpInfo.LHS = EmitScalarConversion(Src: OpInfo.LHS, SrcType: LHSTy, DstType: PromotionTypeLHS, |
| 3888 | Loc: E->getExprLoc()); |
| 3889 | else |
| 3890 | OpInfo.LHS = EmitScalarConversion(Src: OpInfo.LHS, SrcType: LHSTy, |
| 3891 | DstType: E->getComputationLHSType(), Loc); |
| 3892 | |
| 3893 | // Expand the binary operator. |
| 3894 | Result = (this->*Func)(OpInfo); |
| 3895 | |
| 3896 | // Convert the result back to the LHS type, |
| 3897 | // potentially with Implicit Conversion sanitizer check. |
| 3898 | // If LHSLV is a bitfield, use default ScalarConversionOpts |
| 3899 | // to avoid emit any implicit integer checks. |
| 3900 | Value *Previous = nullptr; |
| 3901 | if (LHSLV.isBitField()) { |
| 3902 | Previous = Result; |
| 3903 | Result = EmitScalarConversion(Src: Result, SrcType: PromotionTypeCR, DstType: LHSTy, Loc); |
| 3904 | } else |
| 3905 | Result = EmitScalarConversion(Src: Result, SrcType: PromotionTypeCR, DstType: LHSTy, Loc, |
| 3906 | Opts: ScalarConversionOpts(CGF.SanOpts)); |
| 3907 | |
| 3908 | if (atomicPHI) { |
| 3909 | llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); |
| 3910 | llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "atomic_cont" , parent: CGF.CurFn); |
| 3911 | auto Pair = CGF.EmitAtomicCompareExchange( |
| 3912 | Obj: LHSLV, Expected: RValue::get(V: atomicPHI), Desired: RValue::get(V: Result), Loc: E->getExprLoc()); |
| 3913 | llvm::Value *old = CGF.EmitToMemory(Value: Pair.first.getScalarVal(), Ty: LHSTy); |
| 3914 | llvm::Value *success = Pair.second; |
| 3915 | atomicPHI->addIncoming(V: old, BB: curBlock); |
| 3916 | Builder.CreateCondBr(Cond: success, True: contBB, False: atomicPHI->getParent()); |
| 3917 | Builder.SetInsertPoint(contBB); |
| 3918 | return LHSLV; |
| 3919 | } |
| 3920 | |
| 3921 | // Store the result value into the LHS lvalue. Bit-fields are handled |
| 3922 | // specially because the result is altered by the store, i.e., [C99 6.5.16p1] |
| 3923 | // 'An assignment expression has the value of the left operand after the |
| 3924 | // assignment...'. |
| 3925 | if (LHSLV.isBitField()) { |
| 3926 | Value *Src = Previous ? Previous : Result; |
| 3927 | QualType SrcType = E->getRHS()->getType(); |
| 3928 | QualType DstType = E->getLHS()->getType(); |
| 3929 | CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: Result), Dst: LHSLV, Result: &Result); |
| 3930 | CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: Result, DstType, |
| 3931 | Info: LHSLV.getBitFieldInfo(), Loc: E->getExprLoc()); |
| 3932 | } else |
| 3933 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: Result), Dst: LHSLV); |
| 3934 | |
| 3935 | if (CGF.getLangOpts().OpenMP) |
| 3936 | CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, |
| 3937 | LHS: E->getLHS()); |
| 3938 | return LHSLV; |
| 3939 | } |
| 3940 | |
| 3941 | Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, |
| 3942 | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
| 3943 | bool Ignore = TestAndClearIgnoreResultAssign(); |
| 3944 | Value *RHS = nullptr; |
| 3945 | LValue LHS = EmitCompoundAssignLValue(E, Func, Result&: RHS); |
| 3946 | |
| 3947 | // If the result is clearly ignored, return now. |
| 3948 | if (Ignore) |
| 3949 | return nullptr; |
| 3950 | |
| 3951 | // The result of an assignment in C is the assigned r-value. |
| 3952 | if (!CGF.getLangOpts().CPlusPlus) |
| 3953 | return RHS; |
| 3954 | |
| 3955 | // If the lvalue is non-volatile, return the computed value of the assignment. |
| 3956 | if (!LHS.isVolatileQualified()) |
| 3957 | return RHS; |
| 3958 | |
| 3959 | // Otherwise, reload the value. |
| 3960 | return EmitLoadOfLValue(LV: LHS, Loc: E->getExprLoc()); |
| 3961 | } |
| 3962 | |
| 3963 | void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( |
| 3964 | const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { |
| 3965 | SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, 2> |
| 3966 | Checks; |
| 3967 | |
| 3968 | if (CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero)) { |
| 3969 | Checks.push_back(Elt: std::make_pair(x: Builder.CreateICmpNE(LHS: Ops.RHS, RHS: Zero), |
| 3970 | y: SanitizerKind::SO_IntegerDivideByZero)); |
| 3971 | } |
| 3972 | |
| 3973 | const auto *BO = cast<BinaryOperator>(Val: Ops.E); |
| 3974 | if (CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow) && |
| 3975 | Ops.Ty->hasSignedIntegerRepresentation() && |
| 3976 | !IsWidenedIntegerOp(Ctx: CGF.getContext(), E: BO->getLHS()) && |
| 3977 | Ops.mayHaveIntegerOverflow()) { |
| 3978 | llvm::IntegerType *Ty = cast<llvm::IntegerType>(Val: Zero->getType()); |
| 3979 | |
| 3980 | llvm::Value *IntMin = |
| 3981 | Builder.getInt(AI: llvm::APInt::getSignedMinValue(numBits: Ty->getBitWidth())); |
| 3982 | llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); |
| 3983 | |
| 3984 | llvm::Value *LHSCmp = Builder.CreateICmpNE(LHS: Ops.LHS, RHS: IntMin); |
| 3985 | llvm::Value *RHSCmp = Builder.CreateICmpNE(LHS: Ops.RHS, RHS: NegOne); |
| 3986 | llvm::Value *NotOverflow = Builder.CreateOr(LHS: LHSCmp, RHS: RHSCmp, Name: "or" ); |
| 3987 | Checks.push_back( |
| 3988 | Elt: std::make_pair(x&: NotOverflow, y: SanitizerKind::SO_SignedIntegerOverflow)); |
| 3989 | } |
| 3990 | |
| 3991 | if (Checks.size() > 0) |
| 3992 | EmitBinOpCheck(Checks, Info: Ops); |
| 3993 | } |
| 3994 | |
| 3995 | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
| 3996 | { |
| 3997 | SanitizerDebugLocation SanScope(&CGF, |
| 3998 | {SanitizerKind::SO_IntegerDivideByZero, |
| 3999 | SanitizerKind::SO_SignedIntegerOverflow, |
| 4000 | SanitizerKind::SO_FloatDivideByZero}, |
| 4001 | SanitizerHandler::DivremOverflow); |
| 4002 | if ((CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero) || |
| 4003 | CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) && |
| 4004 | Ops.Ty->isIntegerType() && |
| 4005 | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
| 4006 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty)); |
| 4007 | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, isDiv: true); |
| 4008 | } else if (CGF.SanOpts.has(K: SanitizerKind::FloatDivideByZero) && |
| 4009 | Ops.Ty->isRealFloatingType() && |
| 4010 | Ops.mayHaveFloatDivisionByZero()) { |
| 4011 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty)); |
| 4012 | llvm::Value *NonZero = Builder.CreateFCmpUNE(LHS: Ops.RHS, RHS: Zero); |
| 4013 | EmitBinOpCheck( |
| 4014 | Checks: std::make_pair(x&: NonZero, y: SanitizerKind::SO_FloatDivideByZero), Info: Ops); |
| 4015 | } |
| 4016 | } |
| 4017 | |
| 4018 | if (Ops.Ty->isConstantMatrixType()) { |
| 4019 | llvm::MatrixBuilder MB(Builder); |
| 4020 | // We need to check the types of the operands of the operator to get the |
| 4021 | // correct matrix dimensions. |
| 4022 | auto *BO = cast<BinaryOperator>(Val: Ops.E); |
| 4023 | (void)BO; |
| 4024 | assert( |
| 4025 | isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && |
| 4026 | "first operand must be a matrix" ); |
| 4027 | assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && |
| 4028 | "second operand must be an arithmetic type" ); |
| 4029 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
| 4030 | return MB.CreateScalarDiv(LHS: Ops.LHS, RHS: Ops.RHS, |
| 4031 | IsUnsigned: Ops.Ty->hasUnsignedIntegerRepresentation()); |
| 4032 | } |
| 4033 | |
| 4034 | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
| 4035 | llvm::Value *Val; |
| 4036 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
| 4037 | Val = Builder.CreateFDiv(L: Ops.LHS, R: Ops.RHS, Name: "div" ); |
| 4038 | CGF.SetDivFPAccuracy(Val); |
| 4039 | return Val; |
| 4040 | } |
| 4041 | else if (Ops.isFixedPointOp()) |
| 4042 | return EmitFixedPointBinOp(Ops); |
| 4043 | else if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| 4044 | return Builder.CreateUDiv(LHS: Ops.LHS, RHS: Ops.RHS, Name: "div" ); |
| 4045 | else |
| 4046 | return Builder.CreateSDiv(LHS: Ops.LHS, RHS: Ops.RHS, Name: "div" ); |
| 4047 | } |
| 4048 | |
| 4049 | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
| 4050 | // Rem in C can't be a floating point type: C99 6.5.5p2. |
| 4051 | if ((CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero) || |
| 4052 | CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) && |
| 4053 | Ops.Ty->isIntegerType() && |
| 4054 | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
| 4055 | SanitizerDebugLocation SanScope(&CGF, |
| 4056 | {SanitizerKind::SO_IntegerDivideByZero, |
| 4057 | SanitizerKind::SO_SignedIntegerOverflow}, |
| 4058 | SanitizerHandler::DivremOverflow); |
| 4059 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty)); |
| 4060 | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, isDiv: false); |
| 4061 | } |
| 4062 | |
| 4063 | if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| 4064 | return Builder.CreateURem(LHS: Ops.LHS, RHS: Ops.RHS, Name: "rem" ); |
| 4065 | |
| 4066 | if (CGF.getLangOpts().HLSL && Ops.Ty->hasFloatingRepresentation()) |
| 4067 | return Builder.CreateFRem(L: Ops.LHS, R: Ops.RHS, Name: "rem" ); |
| 4068 | |
| 4069 | return Builder.CreateSRem(LHS: Ops.LHS, RHS: Ops.RHS, Name: "rem" ); |
| 4070 | } |
| 4071 | |
| 4072 | Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { |
| 4073 | unsigned IID; |
| 4074 | unsigned OpID = 0; |
| 4075 | SanitizerHandler OverflowKind; |
| 4076 | |
| 4077 | bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); |
| 4078 | switch (Ops.Opcode) { |
| 4079 | case BO_Add: |
| 4080 | case BO_AddAssign: |
| 4081 | OpID = 1; |
| 4082 | IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : |
| 4083 | llvm::Intrinsic::uadd_with_overflow; |
| 4084 | OverflowKind = SanitizerHandler::AddOverflow; |
| 4085 | break; |
| 4086 | case BO_Sub: |
| 4087 | case BO_SubAssign: |
| 4088 | OpID = 2; |
| 4089 | IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : |
| 4090 | llvm::Intrinsic::usub_with_overflow; |
| 4091 | OverflowKind = SanitizerHandler::SubOverflow; |
| 4092 | break; |
| 4093 | case BO_Mul: |
| 4094 | case BO_MulAssign: |
| 4095 | OpID = 3; |
| 4096 | IID = isSigned ? llvm::Intrinsic::smul_with_overflow : |
| 4097 | llvm::Intrinsic::umul_with_overflow; |
| 4098 | OverflowKind = SanitizerHandler::MulOverflow; |
| 4099 | break; |
| 4100 | default: |
| 4101 | llvm_unreachable("Unsupported operation for overflow detection" ); |
| 4102 | } |
| 4103 | OpID <<= 1; |
| 4104 | if (isSigned) |
| 4105 | OpID |= 1; |
| 4106 | |
| 4107 | SanitizerDebugLocation SanScope(&CGF, |
| 4108 | {SanitizerKind::SO_SignedIntegerOverflow, |
| 4109 | SanitizerKind::SO_UnsignedIntegerOverflow}, |
| 4110 | OverflowKind); |
| 4111 | llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(T: Ops.Ty); |
| 4112 | |
| 4113 | llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, Tys: opTy); |
| 4114 | |
| 4115 | Value *resultAndOverflow = Builder.CreateCall(Callee: intrinsic, Args: {Ops.LHS, Ops.RHS}); |
| 4116 | Value *result = Builder.CreateExtractValue(Agg: resultAndOverflow, Idxs: 0); |
| 4117 | Value *overflow = Builder.CreateExtractValue(Agg: resultAndOverflow, Idxs: 1); |
| 4118 | |
| 4119 | // Handle overflow with llvm.trap if no custom handler has been specified. |
| 4120 | const std::string *handlerName = |
| 4121 | &CGF.getLangOpts().OverflowHandler; |
| 4122 | if (handlerName->empty()) { |
| 4123 | // If the signed-integer-overflow sanitizer is enabled, emit a call to its |
| 4124 | // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. |
| 4125 | if (!isSigned || CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) { |
| 4126 | llvm::Value *NotOverflow = Builder.CreateNot(V: overflow); |
| 4127 | SanitizerKind::SanitizerOrdinal Ordinal = |
| 4128 | isSigned ? SanitizerKind::SO_SignedIntegerOverflow |
| 4129 | : SanitizerKind::SO_UnsignedIntegerOverflow; |
| 4130 | EmitBinOpCheck(Checks: std::make_pair(x&: NotOverflow, y&: Ordinal), Info: Ops); |
| 4131 | } else |
| 4132 | CGF.EmitTrapCheck(Checked: Builder.CreateNot(V: overflow), CheckHandlerID: OverflowKind); |
| 4133 | return result; |
| 4134 | } |
| 4135 | |
| 4136 | // Branch in case of overflow. |
| 4137 | llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); |
| 4138 | llvm::BasicBlock *continueBB = |
| 4139 | CGF.createBasicBlock(name: "nooverflow" , parent: CGF.CurFn, before: initialBB->getNextNode()); |
| 4140 | llvm::BasicBlock *overflowBB = CGF.createBasicBlock(name: "overflow" , parent: CGF.CurFn); |
| 4141 | |
| 4142 | Builder.CreateCondBr(Cond: overflow, True: overflowBB, False: continueBB); |
| 4143 | |
| 4144 | // If an overflow handler is set, then we want to call it and then use its |
| 4145 | // result, if it returns. |
| 4146 | Builder.SetInsertPoint(overflowBB); |
| 4147 | |
| 4148 | // Get the overflow handler. |
| 4149 | llvm::Type *Int8Ty = CGF.Int8Ty; |
| 4150 | llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; |
| 4151 | llvm::FunctionType *handlerTy = |
| 4152 | llvm::FunctionType::get(Result: CGF.Int64Ty, Params: argTypes, isVarArg: true); |
| 4153 | llvm::FunctionCallee handler = |
| 4154 | CGF.CGM.CreateRuntimeFunction(Ty: handlerTy, Name: *handlerName); |
| 4155 | |
| 4156 | // Sign extend the args to 64-bit, so that we can use the same handler for |
| 4157 | // all types of overflow. |
| 4158 | llvm::Value *lhs = Builder.CreateSExt(V: Ops.LHS, DestTy: CGF.Int64Ty); |
| 4159 | llvm::Value *rhs = Builder.CreateSExt(V: Ops.RHS, DestTy: CGF.Int64Ty); |
| 4160 | |
| 4161 | // Call the handler with the two arguments, the operation, and the size of |
| 4162 | // the result. |
| 4163 | llvm::Value *handlerArgs[] = { |
| 4164 | lhs, |
| 4165 | rhs, |
| 4166 | Builder.getInt8(C: OpID), |
| 4167 | Builder.getInt8(C: cast<llvm::IntegerType>(Val: opTy)->getBitWidth()) |
| 4168 | }; |
| 4169 | llvm::Value *handlerResult = |
| 4170 | CGF.EmitNounwindRuntimeCall(callee: handler, args: handlerArgs); |
| 4171 | |
| 4172 | // Truncate the result back to the desired size. |
| 4173 | handlerResult = Builder.CreateTrunc(V: handlerResult, DestTy: opTy); |
| 4174 | Builder.CreateBr(Dest: continueBB); |
| 4175 | |
| 4176 | Builder.SetInsertPoint(continueBB); |
| 4177 | llvm::PHINode *phi = Builder.CreatePHI(Ty: opTy, NumReservedValues: 2); |
| 4178 | phi->addIncoming(V: result, BB: initialBB); |
| 4179 | phi->addIncoming(V: handlerResult, BB: overflowBB); |
| 4180 | |
| 4181 | return phi; |
| 4182 | } |
| 4183 | |
| 4184 | /// Emit pointer + index arithmetic. |
| 4185 | static Value *emitPointerArithmetic(CodeGenFunction &CGF, |
| 4186 | const BinOpInfo &op, |
| 4187 | bool isSubtraction) { |
| 4188 | // Must have binary (not unary) expr here. Unary pointer |
| 4189 | // increment/decrement doesn't use this path. |
| 4190 | const BinaryOperator *expr = cast<BinaryOperator>(Val: op.E); |
| 4191 | |
| 4192 | Value *pointer = op.LHS; |
| 4193 | Expr *pointerOperand = expr->getLHS(); |
| 4194 | Value *index = op.RHS; |
| 4195 | Expr *indexOperand = expr->getRHS(); |
| 4196 | |
| 4197 | // In a subtraction, the LHS is always the pointer. |
| 4198 | if (!isSubtraction && !pointer->getType()->isPointerTy()) { |
| 4199 | std::swap(a&: pointer, b&: index); |
| 4200 | std::swap(a&: pointerOperand, b&: indexOperand); |
| 4201 | } |
| 4202 | |
| 4203 | bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); |
| 4204 | |
| 4205 | unsigned width = cast<llvm::IntegerType>(Val: index->getType())->getBitWidth(); |
| 4206 | auto &DL = CGF.CGM.getDataLayout(); |
| 4207 | auto PtrTy = cast<llvm::PointerType>(Val: pointer->getType()); |
| 4208 | |
| 4209 | // Some versions of glibc and gcc use idioms (particularly in their malloc |
| 4210 | // routines) that add a pointer-sized integer (known to be a pointer value) |
| 4211 | // to a null pointer in order to cast the value back to an integer or as |
| 4212 | // part of a pointer alignment algorithm. This is undefined behavior, but |
| 4213 | // we'd like to be able to compile programs that use it. |
| 4214 | // |
| 4215 | // Normally, we'd generate a GEP with a null-pointer base here in response |
| 4216 | // to that code, but it's also UB to dereference a pointer created that |
| 4217 | // way. Instead (as an acknowledged hack to tolerate the idiom) we will |
| 4218 | // generate a direct cast of the integer value to a pointer. |
| 4219 | // |
| 4220 | // The idiom (p = nullptr + N) is not met if any of the following are true: |
| 4221 | // |
| 4222 | // The operation is subtraction. |
| 4223 | // The index is not pointer-sized. |
| 4224 | // The pointer type is not byte-sized. |
| 4225 | // |
| 4226 | // Note that we do not suppress the pointer overflow check in this case. |
| 4227 | if (BinaryOperator::isNullPointerArithmeticExtension( |
| 4228 | Ctx&: CGF.getContext(), Opc: op.Opcode, LHS: expr->getLHS(), RHS: expr->getRHS())) { |
| 4229 | Value *Ptr = CGF.Builder.CreateIntToPtr(V: index, DestTy: pointer->getType()); |
| 4230 | if (CGF.getLangOpts().PointerOverflowDefined || |
| 4231 | !CGF.SanOpts.has(K: SanitizerKind::PointerOverflow) || |
| 4232 | NullPointerIsDefined(F: CGF.Builder.GetInsertBlock()->getParent(), |
| 4233 | AS: PtrTy->getPointerAddressSpace())) |
| 4234 | return Ptr; |
| 4235 | // The inbounds GEP of null is valid iff the index is zero. |
| 4236 | auto CheckOrdinal = SanitizerKind::SO_PointerOverflow; |
| 4237 | auto CheckHandler = SanitizerHandler::PointerOverflow; |
| 4238 | SanitizerDebugLocation SanScope(&CGF, {CheckOrdinal}, CheckHandler); |
| 4239 | Value *IsZeroIndex = CGF.Builder.CreateIsNull(Arg: index); |
| 4240 | llvm::Constant *StaticArgs[] = { |
| 4241 | CGF.EmitCheckSourceLocation(Loc: op.E->getExprLoc())}; |
| 4242 | llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); |
| 4243 | Value *IntPtr = llvm::Constant::getNullValue(Ty: IntPtrTy); |
| 4244 | Value *ComputedGEP = CGF.Builder.CreateZExtOrTrunc(V: index, DestTy: IntPtrTy); |
| 4245 | Value *DynamicArgs[] = {IntPtr, ComputedGEP}; |
| 4246 | CGF.EmitCheck(Checked: {{IsZeroIndex, CheckOrdinal}}, Check: CheckHandler, StaticArgs, |
| 4247 | DynamicArgs); |
| 4248 | return Ptr; |
| 4249 | } |
| 4250 | |
| 4251 | if (width != DL.getIndexTypeSizeInBits(Ty: PtrTy)) { |
| 4252 | // Zero-extend or sign-extend the pointer value according to |
| 4253 | // whether the index is signed or not. |
| 4254 | index = CGF.Builder.CreateIntCast(V: index, DestTy: DL.getIndexType(PtrTy), isSigned, |
| 4255 | Name: "idx.ext" ); |
| 4256 | } |
| 4257 | |
| 4258 | // If this is subtraction, negate the index. |
| 4259 | if (isSubtraction) |
| 4260 | index = CGF.Builder.CreateNeg(V: index, Name: "idx.neg" ); |
| 4261 | |
| 4262 | if (CGF.SanOpts.has(K: SanitizerKind::ArrayBounds)) |
| 4263 | CGF.EmitBoundsCheck(E: op.E, Base: pointerOperand, Index: index, IndexType: indexOperand->getType(), |
| 4264 | /*Accessed*/ false); |
| 4265 | |
| 4266 | const PointerType *pointerType |
| 4267 | = pointerOperand->getType()->getAs<PointerType>(); |
| 4268 | if (!pointerType) { |
| 4269 | QualType objectType = pointerOperand->getType() |
| 4270 | ->castAs<ObjCObjectPointerType>() |
| 4271 | ->getPointeeType(); |
| 4272 | llvm::Value *objectSize |
| 4273 | = CGF.CGM.getSize(numChars: CGF.getContext().getTypeSizeInChars(T: objectType)); |
| 4274 | |
| 4275 | index = CGF.Builder.CreateMul(LHS: index, RHS: objectSize); |
| 4276 | |
| 4277 | Value *result = |
| 4278 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: pointer, IdxList: index, Name: "add.ptr" ); |
| 4279 | return CGF.Builder.CreateBitCast(V: result, DestTy: pointer->getType()); |
| 4280 | } |
| 4281 | |
| 4282 | QualType elementType = pointerType->getPointeeType(); |
| 4283 | if (const VariableArrayType *vla |
| 4284 | = CGF.getContext().getAsVariableArrayType(T: elementType)) { |
| 4285 | // The element count here is the total number of non-VLA elements. |
| 4286 | llvm::Value *numElements = CGF.getVLASize(vla).NumElts; |
| 4287 | |
| 4288 | // Effectively, the multiply by the VLA size is part of the GEP. |
| 4289 | // GEP indexes are signed, and scaling an index isn't permitted to |
| 4290 | // signed-overflow, so we use the same semantics for our explicit |
| 4291 | // multiply. We suppress this if overflow is not undefined behavior. |
| 4292 | llvm::Type *elemTy = CGF.ConvertTypeForMem(T: vla->getElementType()); |
| 4293 | if (CGF.getLangOpts().PointerOverflowDefined) { |
| 4294 | index = CGF.Builder.CreateMul(LHS: index, RHS: numElements, Name: "vla.index" ); |
| 4295 | pointer = CGF.Builder.CreateGEP(Ty: elemTy, Ptr: pointer, IdxList: index, Name: "add.ptr" ); |
| 4296 | } else { |
| 4297 | index = CGF.Builder.CreateNSWMul(LHS: index, RHS: numElements, Name: "vla.index" ); |
| 4298 | pointer = CGF.EmitCheckedInBoundsGEP( |
| 4299 | ElemTy: elemTy, Ptr: pointer, IdxList: index, SignedIndices: isSigned, IsSubtraction: isSubtraction, Loc: op.E->getExprLoc(), |
| 4300 | Name: "add.ptr" ); |
| 4301 | } |
| 4302 | return pointer; |
| 4303 | } |
| 4304 | |
| 4305 | // Explicitly handle GNU void* and function pointer arithmetic extensions. The |
| 4306 | // GNU void* casts amount to no-ops since our void* type is i8*, but this is |
| 4307 | // future proof. |
| 4308 | llvm::Type *elemTy; |
| 4309 | if (elementType->isVoidType() || elementType->isFunctionType()) |
| 4310 | elemTy = CGF.Int8Ty; |
| 4311 | else |
| 4312 | elemTy = CGF.ConvertTypeForMem(T: elementType); |
| 4313 | |
| 4314 | if (CGF.getLangOpts().PointerOverflowDefined) |
| 4315 | return CGF.Builder.CreateGEP(Ty: elemTy, Ptr: pointer, IdxList: index, Name: "add.ptr" ); |
| 4316 | |
| 4317 | return CGF.EmitCheckedInBoundsGEP( |
| 4318 | ElemTy: elemTy, Ptr: pointer, IdxList: index, SignedIndices: isSigned, IsSubtraction: isSubtraction, Loc: op.E->getExprLoc(), |
| 4319 | Name: "add.ptr" ); |
| 4320 | } |
| 4321 | |
| 4322 | // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and |
| 4323 | // Addend. Use negMul and negAdd to negate the first operand of the Mul or |
| 4324 | // the add operand respectively. This allows fmuladd to represent a*b-c, or |
| 4325 | // c-a*b. Patterns in LLVM should catch the negated forms and translate them to |
| 4326 | // efficient operations. |
| 4327 | static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, |
| 4328 | const CodeGenFunction &CGF, CGBuilderTy &Builder, |
| 4329 | bool negMul, bool negAdd) { |
| 4330 | Value *MulOp0 = MulOp->getOperand(i: 0); |
| 4331 | Value *MulOp1 = MulOp->getOperand(i: 1); |
| 4332 | if (negMul) |
| 4333 | MulOp0 = Builder.CreateFNeg(V: MulOp0, Name: "neg" ); |
| 4334 | if (negAdd) |
| 4335 | Addend = Builder.CreateFNeg(V: Addend, Name: "neg" ); |
| 4336 | |
| 4337 | Value *FMulAdd = nullptr; |
| 4338 | if (Builder.getIsFPConstrained()) { |
| 4339 | assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && |
| 4340 | "Only constrained operation should be created when Builder is in FP " |
| 4341 | "constrained mode" ); |
| 4342 | FMulAdd = Builder.CreateConstrainedFPCall( |
| 4343 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::experimental_constrained_fmuladd, |
| 4344 | Tys: Addend->getType()), |
| 4345 | Args: {MulOp0, MulOp1, Addend}); |
| 4346 | } else { |
| 4347 | FMulAdd = Builder.CreateCall( |
| 4348 | Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::fmuladd, Tys: Addend->getType()), |
| 4349 | Args: {MulOp0, MulOp1, Addend}); |
| 4350 | } |
| 4351 | MulOp->eraseFromParent(); |
| 4352 | |
| 4353 | return FMulAdd; |
| 4354 | } |
| 4355 | |
| 4356 | // Check whether it would be legal to emit an fmuladd intrinsic call to |
| 4357 | // represent op and if so, build the fmuladd. |
| 4358 | // |
| 4359 | // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. |
| 4360 | // Does NOT check the type of the operation - it's assumed that this function |
| 4361 | // will be called from contexts where it's known that the type is contractable. |
| 4362 | static Value* tryEmitFMulAdd(const BinOpInfo &op, |
| 4363 | const CodeGenFunction &CGF, CGBuilderTy &Builder, |
| 4364 | bool isSub=false) { |
| 4365 | |
| 4366 | assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || |
| 4367 | op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && |
| 4368 | "Only fadd/fsub can be the root of an fmuladd." ); |
| 4369 | |
| 4370 | // Check whether this op is marked as fusable. |
| 4371 | if (!op.FPFeatures.allowFPContractWithinStatement()) |
| 4372 | return nullptr; |
| 4373 | |
| 4374 | Value *LHS = op.LHS; |
| 4375 | Value *RHS = op.RHS; |
| 4376 | |
| 4377 | // Peek through fneg to look for fmul. Make sure fneg has no users, and that |
| 4378 | // it is the only use of its operand. |
| 4379 | bool NegLHS = false; |
| 4380 | if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(Val: LHS)) { |
| 4381 | if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg && |
| 4382 | LHSUnOp->use_empty() && LHSUnOp->getOperand(i_nocapture: 0)->hasOneUse()) { |
| 4383 | LHS = LHSUnOp->getOperand(i_nocapture: 0); |
| 4384 | NegLHS = true; |
| 4385 | } |
| 4386 | } |
| 4387 | |
| 4388 | bool NegRHS = false; |
| 4389 | if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(Val: RHS)) { |
| 4390 | if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg && |
| 4391 | RHSUnOp->use_empty() && RHSUnOp->getOperand(i_nocapture: 0)->hasOneUse()) { |
| 4392 | RHS = RHSUnOp->getOperand(i_nocapture: 0); |
| 4393 | NegRHS = true; |
| 4394 | } |
| 4395 | } |
| 4396 | |
| 4397 | // We have a potentially fusable op. Look for a mul on one of the operands. |
| 4398 | // Also, make sure that the mul result isn't used directly. In that case, |
| 4399 | // there's no point creating a muladd operation. |
| 4400 | if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(Val: LHS)) { |
| 4401 | if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && |
| 4402 | (LHSBinOp->use_empty() || NegLHS)) { |
| 4403 | // If we looked through fneg, erase it. |
| 4404 | if (NegLHS) |
| 4405 | cast<llvm::Instruction>(Val: op.LHS)->eraseFromParent(); |
| 4406 | return buildFMulAdd(MulOp: LHSBinOp, Addend: op.RHS, CGF, Builder, negMul: NegLHS, negAdd: isSub); |
| 4407 | } |
| 4408 | } |
| 4409 | if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(Val: RHS)) { |
| 4410 | if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && |
| 4411 | (RHSBinOp->use_empty() || NegRHS)) { |
| 4412 | // If we looked through fneg, erase it. |
| 4413 | if (NegRHS) |
| 4414 | cast<llvm::Instruction>(Val: op.RHS)->eraseFromParent(); |
| 4415 | return buildFMulAdd(MulOp: RHSBinOp, Addend: op.LHS, CGF, Builder, negMul: isSub ^ NegRHS, negAdd: false); |
| 4416 | } |
| 4417 | } |
| 4418 | |
| 4419 | if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(Val: LHS)) { |
| 4420 | if (LHSBinOp->getIntrinsicID() == |
| 4421 | llvm::Intrinsic::experimental_constrained_fmul && |
| 4422 | (LHSBinOp->use_empty() || NegLHS)) { |
| 4423 | // If we looked through fneg, erase it. |
| 4424 | if (NegLHS) |
| 4425 | cast<llvm::Instruction>(Val: op.LHS)->eraseFromParent(); |
| 4426 | return buildFMulAdd(MulOp: LHSBinOp, Addend: op.RHS, CGF, Builder, negMul: NegLHS, negAdd: isSub); |
| 4427 | } |
| 4428 | } |
| 4429 | if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(Val: RHS)) { |
| 4430 | if (RHSBinOp->getIntrinsicID() == |
| 4431 | llvm::Intrinsic::experimental_constrained_fmul && |
| 4432 | (RHSBinOp->use_empty() || NegRHS)) { |
| 4433 | // If we looked through fneg, erase it. |
| 4434 | if (NegRHS) |
| 4435 | cast<llvm::Instruction>(Val: op.RHS)->eraseFromParent(); |
| 4436 | return buildFMulAdd(MulOp: RHSBinOp, Addend: op.LHS, CGF, Builder, negMul: isSub ^ NegRHS, negAdd: false); |
| 4437 | } |
| 4438 | } |
| 4439 | |
| 4440 | return nullptr; |
| 4441 | } |
| 4442 | |
| 4443 | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { |
| 4444 | if (op.LHS->getType()->isPointerTy() || |
| 4445 | op.RHS->getType()->isPointerTy()) |
| 4446 | return emitPointerArithmetic(CGF, op, isSubtraction: CodeGenFunction::NotSubtraction); |
| 4447 | |
| 4448 | if (op.Ty->isSignedIntegerOrEnumerationType()) { |
| 4449 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| 4450 | case LangOptions::SOB_Defined: |
| 4451 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 4452 | return Builder.CreateAdd(LHS: op.LHS, RHS: op.RHS, Name: "add" ); |
| 4453 | [[fallthrough]]; |
| 4454 | case LangOptions::SOB_Undefined: |
| 4455 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 4456 | return Builder.CreateNSWAdd(LHS: op.LHS, RHS: op.RHS, Name: "add" ); |
| 4457 | [[fallthrough]]; |
| 4458 | case LangOptions::SOB_Trapping: |
| 4459 | if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op)) |
| 4460 | return Builder.CreateNSWAdd(LHS: op.LHS, RHS: op.RHS, Name: "add" ); |
| 4461 | return EmitOverflowCheckedBinOp(Ops: op); |
| 4462 | } |
| 4463 | } |
| 4464 | |
| 4465 | // For vector and matrix adds, try to fold into a fmuladd. |
| 4466 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| 4467 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4468 | // Try to form an fmuladd. |
| 4469 | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) |
| 4470 | return FMulAdd; |
| 4471 | } |
| 4472 | |
| 4473 | if (op.Ty->isConstantMatrixType()) { |
| 4474 | llvm::MatrixBuilder MB(Builder); |
| 4475 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4476 | return MB.CreateAdd(LHS: op.LHS, RHS: op.RHS); |
| 4477 | } |
| 4478 | |
| 4479 | if (op.Ty->isUnsignedIntegerType() && |
| 4480 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) && |
| 4481 | !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op)) |
| 4482 | return EmitOverflowCheckedBinOp(Ops: op); |
| 4483 | |
| 4484 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| 4485 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4486 | return Builder.CreateFAdd(L: op.LHS, R: op.RHS, Name: "add" ); |
| 4487 | } |
| 4488 | |
| 4489 | if (op.isFixedPointOp()) |
| 4490 | return EmitFixedPointBinOp(Ops: op); |
| 4491 | |
| 4492 | return Builder.CreateAdd(LHS: op.LHS, RHS: op.RHS, Name: "add" ); |
| 4493 | } |
| 4494 | |
| 4495 | /// The resulting value must be calculated with exact precision, so the operands |
| 4496 | /// may not be the same type. |
| 4497 | Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { |
| 4498 | using llvm::APSInt; |
| 4499 | using llvm::ConstantInt; |
| 4500 | |
| 4501 | // This is either a binary operation where at least one of the operands is |
| 4502 | // a fixed-point type, or a unary operation where the operand is a fixed-point |
| 4503 | // type. The result type of a binary operation is determined by |
| 4504 | // Sema::handleFixedPointConversions(). |
| 4505 | QualType ResultTy = op.Ty; |
| 4506 | QualType LHSTy, RHSTy; |
| 4507 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: op.E)) { |
| 4508 | RHSTy = BinOp->getRHS()->getType(); |
| 4509 | if (const auto *CAO = dyn_cast<CompoundAssignOperator>(Val: BinOp)) { |
| 4510 | // For compound assignment, the effective type of the LHS at this point |
| 4511 | // is the computation LHS type, not the actual LHS type, and the final |
| 4512 | // result type is not the type of the expression but rather the |
| 4513 | // computation result type. |
| 4514 | LHSTy = CAO->getComputationLHSType(); |
| 4515 | ResultTy = CAO->getComputationResultType(); |
| 4516 | } else |
| 4517 | LHSTy = BinOp->getLHS()->getType(); |
| 4518 | } else if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: op.E)) { |
| 4519 | LHSTy = UnOp->getSubExpr()->getType(); |
| 4520 | RHSTy = UnOp->getSubExpr()->getType(); |
| 4521 | } |
| 4522 | ASTContext &Ctx = CGF.getContext(); |
| 4523 | Value *LHS = op.LHS; |
| 4524 | Value *RHS = op.RHS; |
| 4525 | |
| 4526 | auto LHSFixedSema = Ctx.getFixedPointSemantics(Ty: LHSTy); |
| 4527 | auto RHSFixedSema = Ctx.getFixedPointSemantics(Ty: RHSTy); |
| 4528 | auto ResultFixedSema = Ctx.getFixedPointSemantics(Ty: ResultTy); |
| 4529 | auto CommonFixedSema = LHSFixedSema.getCommonSemantics(Other: RHSFixedSema); |
| 4530 | |
| 4531 | // Perform the actual operation. |
| 4532 | Value *Result; |
| 4533 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
| 4534 | switch (op.Opcode) { |
| 4535 | case BO_AddAssign: |
| 4536 | case BO_Add: |
| 4537 | Result = FPBuilder.CreateAdd(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4538 | break; |
| 4539 | case BO_SubAssign: |
| 4540 | case BO_Sub: |
| 4541 | Result = FPBuilder.CreateSub(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4542 | break; |
| 4543 | case BO_MulAssign: |
| 4544 | case BO_Mul: |
| 4545 | Result = FPBuilder.CreateMul(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4546 | break; |
| 4547 | case BO_DivAssign: |
| 4548 | case BO_Div: |
| 4549 | Result = FPBuilder.CreateDiv(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4550 | break; |
| 4551 | case BO_ShlAssign: |
| 4552 | case BO_Shl: |
| 4553 | Result = FPBuilder.CreateShl(LHS, LHSSema: LHSFixedSema, RHS); |
| 4554 | break; |
| 4555 | case BO_ShrAssign: |
| 4556 | case BO_Shr: |
| 4557 | Result = FPBuilder.CreateShr(LHS, LHSSema: LHSFixedSema, RHS); |
| 4558 | break; |
| 4559 | case BO_LT: |
| 4560 | return FPBuilder.CreateLT(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4561 | case BO_GT: |
| 4562 | return FPBuilder.CreateGT(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4563 | case BO_LE: |
| 4564 | return FPBuilder.CreateLE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4565 | case BO_GE: |
| 4566 | return FPBuilder.CreateGE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4567 | case BO_EQ: |
| 4568 | // For equality operations, we assume any padding bits on unsigned types are |
| 4569 | // zero'd out. They could be overwritten through non-saturating operations |
| 4570 | // that cause overflow, but this leads to undefined behavior. |
| 4571 | return FPBuilder.CreateEQ(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4572 | case BO_NE: |
| 4573 | return FPBuilder.CreateNE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema); |
| 4574 | case BO_Cmp: |
| 4575 | case BO_LAnd: |
| 4576 | case BO_LOr: |
| 4577 | llvm_unreachable("Found unimplemented fixed point binary operation" ); |
| 4578 | case BO_PtrMemD: |
| 4579 | case BO_PtrMemI: |
| 4580 | case BO_Rem: |
| 4581 | case BO_Xor: |
| 4582 | case BO_And: |
| 4583 | case BO_Or: |
| 4584 | case BO_Assign: |
| 4585 | case BO_RemAssign: |
| 4586 | case BO_AndAssign: |
| 4587 | case BO_XorAssign: |
| 4588 | case BO_OrAssign: |
| 4589 | case BO_Comma: |
| 4590 | llvm_unreachable("Found unsupported binary operation for fixed point types." ); |
| 4591 | } |
| 4592 | |
| 4593 | bool IsShift = BinaryOperator::isShiftOp(Opc: op.Opcode) || |
| 4594 | BinaryOperator::isShiftAssignOp(Opc: op.Opcode); |
| 4595 | // Convert to the result type. |
| 4596 | return FPBuilder.CreateFixedToFixed(Src: Result, SrcSema: IsShift ? LHSFixedSema |
| 4597 | : CommonFixedSema, |
| 4598 | DstSema: ResultFixedSema); |
| 4599 | } |
| 4600 | |
| 4601 | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { |
| 4602 | // The LHS is always a pointer if either side is. |
| 4603 | if (!op.LHS->getType()->isPointerTy()) { |
| 4604 | if (op.Ty->isSignedIntegerOrEnumerationType()) { |
| 4605 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
| 4606 | case LangOptions::SOB_Defined: |
| 4607 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 4608 | return Builder.CreateSub(LHS: op.LHS, RHS: op.RHS, Name: "sub" ); |
| 4609 | [[fallthrough]]; |
| 4610 | case LangOptions::SOB_Undefined: |
| 4611 | if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) |
| 4612 | return Builder.CreateNSWSub(LHS: op.LHS, RHS: op.RHS, Name: "sub" ); |
| 4613 | [[fallthrough]]; |
| 4614 | case LangOptions::SOB_Trapping: |
| 4615 | if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op)) |
| 4616 | return Builder.CreateNSWSub(LHS: op.LHS, RHS: op.RHS, Name: "sub" ); |
| 4617 | return EmitOverflowCheckedBinOp(Ops: op); |
| 4618 | } |
| 4619 | } |
| 4620 | |
| 4621 | // For vector and matrix subs, try to fold into a fmuladd. |
| 4622 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| 4623 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4624 | // Try to form an fmuladd. |
| 4625 | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, isSub: true)) |
| 4626 | return FMulAdd; |
| 4627 | } |
| 4628 | |
| 4629 | if (op.Ty->isConstantMatrixType()) { |
| 4630 | llvm::MatrixBuilder MB(Builder); |
| 4631 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4632 | return MB.CreateSub(LHS: op.LHS, RHS: op.RHS); |
| 4633 | } |
| 4634 | |
| 4635 | if (op.Ty->isUnsignedIntegerType() && |
| 4636 | CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) && |
| 4637 | !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op)) |
| 4638 | return EmitOverflowCheckedBinOp(Ops: op); |
| 4639 | |
| 4640 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
| 4641 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
| 4642 | return Builder.CreateFSub(L: op.LHS, R: op.RHS, Name: "sub" ); |
| 4643 | } |
| 4644 | |
| 4645 | if (op.isFixedPointOp()) |
| 4646 | return EmitFixedPointBinOp(op); |
| 4647 | |
| 4648 | return Builder.CreateSub(LHS: op.LHS, RHS: op.RHS, Name: "sub" ); |
| 4649 | } |
| 4650 | |
| 4651 | // If the RHS is not a pointer, then we have normal pointer |
| 4652 | // arithmetic. |
| 4653 | if (!op.RHS->getType()->isPointerTy()) |
| 4654 | return emitPointerArithmetic(CGF, op, isSubtraction: CodeGenFunction::IsSubtraction); |
| 4655 | |
| 4656 | // Otherwise, this is a pointer subtraction. |
| 4657 | |
| 4658 | // Do the raw subtraction part. |
| 4659 | llvm::Value *LHS |
| 4660 | = Builder.CreatePtrToInt(V: op.LHS, DestTy: CGF.PtrDiffTy, Name: "sub.ptr.lhs.cast" ); |
| 4661 | llvm::Value *RHS |
| 4662 | = Builder.CreatePtrToInt(V: op.RHS, DestTy: CGF.PtrDiffTy, Name: "sub.ptr.rhs.cast" ); |
| 4663 | Value *diffInChars = Builder.CreateSub(LHS, RHS, Name: "sub.ptr.sub" ); |
| 4664 | |
| 4665 | // Okay, figure out the element size. |
| 4666 | const BinaryOperator *expr = cast<BinaryOperator>(Val: op.E); |
| 4667 | QualType elementType = expr->getLHS()->getType()->getPointeeType(); |
| 4668 | |
| 4669 | llvm::Value *divisor = nullptr; |
| 4670 | |
| 4671 | // For a variable-length array, this is going to be non-constant. |
| 4672 | if (const VariableArrayType *vla |
| 4673 | = CGF.getContext().getAsVariableArrayType(T: elementType)) { |
| 4674 | auto VlaSize = CGF.getVLASize(vla); |
| 4675 | elementType = VlaSize.Type; |
| 4676 | divisor = VlaSize.NumElts; |
| 4677 | |
| 4678 | // Scale the number of non-VLA elements by the non-VLA element size. |
| 4679 | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(T: elementType); |
| 4680 | if (!eltSize.isOne()) |
| 4681 | divisor = CGF.Builder.CreateNUWMul(LHS: CGF.CGM.getSize(numChars: eltSize), RHS: divisor); |
| 4682 | |
| 4683 | // For everything elese, we can just compute it, safe in the |
| 4684 | // assumption that Sema won't let anything through that we can't |
| 4685 | // safely compute the size of. |
| 4686 | } else { |
| 4687 | CharUnits elementSize; |
| 4688 | // Handle GCC extension for pointer arithmetic on void* and |
| 4689 | // function pointer types. |
| 4690 | if (elementType->isVoidType() || elementType->isFunctionType()) |
| 4691 | elementSize = CharUnits::One(); |
| 4692 | else |
| 4693 | elementSize = CGF.getContext().getTypeSizeInChars(T: elementType); |
| 4694 | |
| 4695 | // Don't even emit the divide for element size of 1. |
| 4696 | if (elementSize.isOne()) |
| 4697 | return diffInChars; |
| 4698 | |
| 4699 | divisor = CGF.CGM.getSize(numChars: elementSize); |
| 4700 | } |
| 4701 | |
| 4702 | // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since |
| 4703 | // pointer difference in C is only defined in the case where both operands |
| 4704 | // are pointing to elements of an array. |
| 4705 | return Builder.CreateExactSDiv(LHS: diffInChars, RHS: divisor, Name: "sub.ptr.div" ); |
| 4706 | } |
| 4707 | |
| 4708 | Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS, |
| 4709 | bool RHSIsSigned) { |
| 4710 | llvm::IntegerType *Ty; |
| 4711 | if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(Val: LHS->getType())) |
| 4712 | Ty = cast<llvm::IntegerType>(Val: VT->getElementType()); |
| 4713 | else |
| 4714 | Ty = cast<llvm::IntegerType>(Val: LHS->getType()); |
| 4715 | // For a given type of LHS the maximum shift amount is width(LHS)-1, however |
| 4716 | // it can occur that width(LHS)-1 > range(RHS). Since there is no check for |
| 4717 | // this in ConstantInt::get, this results in the value getting truncated. |
| 4718 | // Constrain the return value to be max(RHS) in this case. |
| 4719 | llvm::Type *RHSTy = RHS->getType(); |
| 4720 | llvm::APInt RHSMax = |
| 4721 | RHSIsSigned ? llvm::APInt::getSignedMaxValue(numBits: RHSTy->getScalarSizeInBits()) |
| 4722 | : llvm::APInt::getMaxValue(numBits: RHSTy->getScalarSizeInBits()); |
| 4723 | if (RHSMax.ult(RHS: Ty->getBitWidth())) |
| 4724 | return llvm::ConstantInt::get(Ty: RHSTy, V: RHSMax); |
| 4725 | return llvm::ConstantInt::get(Ty: RHSTy, V: Ty->getBitWidth() - 1); |
| 4726 | } |
| 4727 | |
| 4728 | Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, |
| 4729 | const Twine &Name) { |
| 4730 | llvm::IntegerType *Ty; |
| 4731 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: LHS->getType())) |
| 4732 | Ty = cast<llvm::IntegerType>(Val: VT->getElementType()); |
| 4733 | else |
| 4734 | Ty = cast<llvm::IntegerType>(Val: LHS->getType()); |
| 4735 | |
| 4736 | if (llvm::isPowerOf2_64(Value: Ty->getBitWidth())) |
| 4737 | return Builder.CreateAnd(LHS: RHS, RHS: GetMaximumShiftAmount(LHS, RHS, RHSIsSigned: false), Name); |
| 4738 | |
| 4739 | return Builder.CreateURem( |
| 4740 | LHS: RHS, RHS: llvm::ConstantInt::get(Ty: RHS->getType(), V: Ty->getBitWidth()), Name); |
| 4741 | } |
| 4742 | |
| 4743 | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
| 4744 | // TODO: This misses out on the sanitizer check below. |
| 4745 | if (Ops.isFixedPointOp()) |
| 4746 | return EmitFixedPointBinOp(op: Ops); |
| 4747 | |
| 4748 | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| 4749 | // RHS to the same size as the LHS. |
| 4750 | Value *RHS = Ops.RHS; |
| 4751 | if (Ops.LHS->getType() != RHS->getType()) |
| 4752 | RHS = Builder.CreateIntCast(V: RHS, DestTy: Ops.LHS->getType(), isSigned: false, Name: "sh_prom" ); |
| 4753 | |
| 4754 | bool SanitizeSignedBase = CGF.SanOpts.has(K: SanitizerKind::ShiftBase) && |
| 4755 | Ops.Ty->hasSignedIntegerRepresentation() && |
| 4756 | !CGF.getLangOpts().isSignedOverflowDefined() && |
| 4757 | !CGF.getLangOpts().CPlusPlus20; |
| 4758 | bool SanitizeUnsignedBase = |
| 4759 | CGF.SanOpts.has(K: SanitizerKind::UnsignedShiftBase) && |
| 4760 | Ops.Ty->hasUnsignedIntegerRepresentation(); |
| 4761 | bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; |
| 4762 | bool SanitizeExponent = CGF.SanOpts.has(K: SanitizerKind::ShiftExponent); |
| 4763 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| 4764 | if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL) |
| 4765 | RHS = ConstrainShiftValue(LHS: Ops.LHS, RHS, Name: "shl.mask" ); |
| 4766 | else if ((SanitizeBase || SanitizeExponent) && |
| 4767 | isa<llvm::IntegerType>(Val: Ops.LHS->getType())) { |
| 4768 | SmallVector<SanitizerKind::SanitizerOrdinal, 3> Ordinals; |
| 4769 | if (SanitizeSignedBase) |
| 4770 | Ordinals.push_back(Elt: SanitizerKind::SO_ShiftBase); |
| 4771 | if (SanitizeUnsignedBase) |
| 4772 | Ordinals.push_back(Elt: SanitizerKind::SO_UnsignedShiftBase); |
| 4773 | if (SanitizeExponent) |
| 4774 | Ordinals.push_back(Elt: SanitizerKind::SO_ShiftExponent); |
| 4775 | |
| 4776 | SanitizerDebugLocation SanScope(&CGF, Ordinals, |
| 4777 | SanitizerHandler::ShiftOutOfBounds); |
| 4778 | SmallVector<std::pair<Value *, SanitizerKind::SanitizerOrdinal>, 2> Checks; |
| 4779 | bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation(); |
| 4780 | llvm::Value *WidthMinusOne = |
| 4781 | GetMaximumShiftAmount(LHS: Ops.LHS, RHS: Ops.RHS, RHSIsSigned); |
| 4782 | llvm::Value *ValidExponent = Builder.CreateICmpULE(LHS: Ops.RHS, RHS: WidthMinusOne); |
| 4783 | |
| 4784 | if (SanitizeExponent) { |
| 4785 | Checks.push_back( |
| 4786 | Elt: std::make_pair(x&: ValidExponent, y: SanitizerKind::SO_ShiftExponent)); |
| 4787 | } |
| 4788 | |
| 4789 | if (SanitizeBase) { |
| 4790 | // Check whether we are shifting any non-zero bits off the top of the |
| 4791 | // integer. We only emit this check if exponent is valid - otherwise |
| 4792 | // instructions below will have undefined behavior themselves. |
| 4793 | llvm::BasicBlock *Orig = Builder.GetInsertBlock(); |
| 4794 | llvm::BasicBlock *Cont = CGF.createBasicBlock(name: "cont" ); |
| 4795 | llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock(name: "check" ); |
| 4796 | Builder.CreateCondBr(Cond: ValidExponent, True: CheckShiftBase, False: Cont); |
| 4797 | llvm::Value *PromotedWidthMinusOne = |
| 4798 | (RHS == Ops.RHS) ? WidthMinusOne |
| 4799 | : GetMaximumShiftAmount(LHS: Ops.LHS, RHS, RHSIsSigned); |
| 4800 | CGF.EmitBlock(BB: CheckShiftBase); |
| 4801 | llvm::Value *BitsShiftedOff = Builder.CreateLShr( |
| 4802 | LHS: Ops.LHS, RHS: Builder.CreateSub(LHS: PromotedWidthMinusOne, RHS, Name: "shl.zeros" , |
| 4803 | /*NUW*/ HasNUW: true, /*NSW*/ HasNSW: true), |
| 4804 | Name: "shl.check" ); |
| 4805 | if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { |
| 4806 | // In C99, we are not permitted to shift a 1 bit into the sign bit. |
| 4807 | // Under C++11's rules, shifting a 1 bit into the sign bit is |
| 4808 | // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't |
| 4809 | // define signed left shifts, so we use the C99 and C++11 rules there). |
| 4810 | // Unsigned shifts can always shift into the top bit. |
| 4811 | llvm::Value *One = llvm::ConstantInt::get(Ty: BitsShiftedOff->getType(), V: 1); |
| 4812 | BitsShiftedOff = Builder.CreateLShr(LHS: BitsShiftedOff, RHS: One); |
| 4813 | } |
| 4814 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: BitsShiftedOff->getType(), V: 0); |
| 4815 | llvm::Value *ValidBase = Builder.CreateICmpEQ(LHS: BitsShiftedOff, RHS: Zero); |
| 4816 | CGF.EmitBlock(BB: Cont); |
| 4817 | llvm::PHINode *BaseCheck = Builder.CreatePHI(Ty: ValidBase->getType(), NumReservedValues: 2); |
| 4818 | BaseCheck->addIncoming(V: Builder.getTrue(), BB: Orig); |
| 4819 | BaseCheck->addIncoming(V: ValidBase, BB: CheckShiftBase); |
| 4820 | Checks.push_back(Elt: std::make_pair( |
| 4821 | x&: BaseCheck, y: SanitizeSignedBase ? SanitizerKind::SO_ShiftBase |
| 4822 | : SanitizerKind::SO_UnsignedShiftBase)); |
| 4823 | } |
| 4824 | |
| 4825 | assert(!Checks.empty()); |
| 4826 | EmitBinOpCheck(Checks, Info: Ops); |
| 4827 | } |
| 4828 | |
| 4829 | return Builder.CreateShl(LHS: Ops.LHS, RHS, Name: "shl" ); |
| 4830 | } |
| 4831 | |
| 4832 | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
| 4833 | // TODO: This misses out on the sanitizer check below. |
| 4834 | if (Ops.isFixedPointOp()) |
| 4835 | return EmitFixedPointBinOp(op: Ops); |
| 4836 | |
| 4837 | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| 4838 | // RHS to the same size as the LHS. |
| 4839 | Value *RHS = Ops.RHS; |
| 4840 | if (Ops.LHS->getType() != RHS->getType()) |
| 4841 | RHS = Builder.CreateIntCast(V: RHS, DestTy: Ops.LHS->getType(), isSigned: false, Name: "sh_prom" ); |
| 4842 | |
| 4843 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| 4844 | if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL) |
| 4845 | RHS = ConstrainShiftValue(LHS: Ops.LHS, RHS, Name: "shr.mask" ); |
| 4846 | else if (CGF.SanOpts.has(K: SanitizerKind::ShiftExponent) && |
| 4847 | isa<llvm::IntegerType>(Val: Ops.LHS->getType())) { |
| 4848 | SanitizerDebugLocation SanScope(&CGF, {SanitizerKind::SO_ShiftExponent}, |
| 4849 | SanitizerHandler::ShiftOutOfBounds); |
| 4850 | bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation(); |
| 4851 | llvm::Value *Valid = Builder.CreateICmpULE( |
| 4852 | LHS: Ops.RHS, RHS: GetMaximumShiftAmount(LHS: Ops.LHS, RHS: Ops.RHS, RHSIsSigned)); |
| 4853 | EmitBinOpCheck(Checks: std::make_pair(x&: Valid, y: SanitizerKind::SO_ShiftExponent), Info: Ops); |
| 4854 | } |
| 4855 | |
| 4856 | if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
| 4857 | return Builder.CreateLShr(LHS: Ops.LHS, RHS, Name: "shr" ); |
| 4858 | return Builder.CreateAShr(LHS: Ops.LHS, RHS, Name: "shr" ); |
| 4859 | } |
| 4860 | |
| 4861 | enum IntrinsicType { VCMPEQ, VCMPGT }; |
| 4862 | // return corresponding comparison intrinsic for given vector type |
| 4863 | static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, |
| 4864 | BuiltinType::Kind ElemKind) { |
| 4865 | switch (ElemKind) { |
| 4866 | default: llvm_unreachable("unexpected element type" ); |
| 4867 | case BuiltinType::Char_U: |
| 4868 | case BuiltinType::UChar: |
| 4869 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
| 4870 | llvm::Intrinsic::ppc_altivec_vcmpgtub_p; |
| 4871 | case BuiltinType::Char_S: |
| 4872 | case BuiltinType::SChar: |
| 4873 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
| 4874 | llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; |
| 4875 | case BuiltinType::UShort: |
| 4876 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
| 4877 | llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; |
| 4878 | case BuiltinType::Short: |
| 4879 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
| 4880 | llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; |
| 4881 | case BuiltinType::UInt: |
| 4882 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
| 4883 | llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; |
| 4884 | case BuiltinType::Int: |
| 4885 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
| 4886 | llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; |
| 4887 | case BuiltinType::ULong: |
| 4888 | case BuiltinType::ULongLong: |
| 4889 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
| 4890 | llvm::Intrinsic::ppc_altivec_vcmpgtud_p; |
| 4891 | case BuiltinType::Long: |
| 4892 | case BuiltinType::LongLong: |
| 4893 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
| 4894 | llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; |
| 4895 | case BuiltinType::Float: |
| 4896 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : |
| 4897 | llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; |
| 4898 | case BuiltinType::Double: |
| 4899 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : |
| 4900 | llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; |
| 4901 | case BuiltinType::UInt128: |
| 4902 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p |
| 4903 | : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; |
| 4904 | case BuiltinType::Int128: |
| 4905 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p |
| 4906 | : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; |
| 4907 | } |
| 4908 | } |
| 4909 | |
| 4910 | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, |
| 4911 | llvm::CmpInst::Predicate UICmpOpc, |
| 4912 | llvm::CmpInst::Predicate SICmpOpc, |
| 4913 | llvm::CmpInst::Predicate FCmpOpc, |
| 4914 | bool IsSignaling) { |
| 4915 | TestAndClearIgnoreResultAssign(); |
| 4916 | Value *Result; |
| 4917 | QualType LHSTy = E->getLHS()->getType(); |
| 4918 | QualType RHSTy = E->getRHS()->getType(); |
| 4919 | if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { |
| 4920 | assert(E->getOpcode() == BO_EQ || |
| 4921 | E->getOpcode() == BO_NE); |
| 4922 | Value *LHS = CGF.EmitScalarExpr(E: E->getLHS()); |
| 4923 | Value *RHS = CGF.EmitScalarExpr(E: E->getRHS()); |
| 4924 | Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( |
| 4925 | CGF, L: LHS, R: RHS, MPT, Inequality: E->getOpcode() == BO_NE); |
| 4926 | } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { |
| 4927 | BinOpInfo BOInfo = EmitBinOps(E); |
| 4928 | Value *LHS = BOInfo.LHS; |
| 4929 | Value *RHS = BOInfo.RHS; |
| 4930 | |
| 4931 | // If AltiVec, the comparison results in a numeric type, so we use |
| 4932 | // intrinsics comparing vectors and giving 0 or 1 as a result |
| 4933 | if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { |
| 4934 | // constants for mapping CR6 register bits to predicate result |
| 4935 | enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; |
| 4936 | |
| 4937 | llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; |
| 4938 | |
| 4939 | // in several cases vector arguments order will be reversed |
| 4940 | Value *FirstVecArg = LHS, |
| 4941 | *SecondVecArg = RHS; |
| 4942 | |
| 4943 | QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); |
| 4944 | BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); |
| 4945 | |
| 4946 | switch(E->getOpcode()) { |
| 4947 | default: llvm_unreachable("is not a comparison operation" ); |
| 4948 | case BO_EQ: |
| 4949 | CR6 = CR6_LT; |
| 4950 | ID = GetIntrinsic(IT: VCMPEQ, ElemKind: ElementKind); |
| 4951 | break; |
| 4952 | case BO_NE: |
| 4953 | CR6 = CR6_EQ; |
| 4954 | ID = GetIntrinsic(IT: VCMPEQ, ElemKind: ElementKind); |
| 4955 | break; |
| 4956 | case BO_LT: |
| 4957 | CR6 = CR6_LT; |
| 4958 | ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind); |
| 4959 | std::swap(a&: FirstVecArg, b&: SecondVecArg); |
| 4960 | break; |
| 4961 | case BO_GT: |
| 4962 | CR6 = CR6_LT; |
| 4963 | ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind); |
| 4964 | break; |
| 4965 | case BO_LE: |
| 4966 | if (ElementKind == BuiltinType::Float) { |
| 4967 | CR6 = CR6_LT; |
| 4968 | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
| 4969 | std::swap(a&: FirstVecArg, b&: SecondVecArg); |
| 4970 | } |
| 4971 | else { |
| 4972 | CR6 = CR6_EQ; |
| 4973 | ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind); |
| 4974 | } |
| 4975 | break; |
| 4976 | case BO_GE: |
| 4977 | if (ElementKind == BuiltinType::Float) { |
| 4978 | CR6 = CR6_LT; |
| 4979 | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
| 4980 | } |
| 4981 | else { |
| 4982 | CR6 = CR6_EQ; |
| 4983 | ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind); |
| 4984 | std::swap(a&: FirstVecArg, b&: SecondVecArg); |
| 4985 | } |
| 4986 | break; |
| 4987 | } |
| 4988 | |
| 4989 | Value *CR6Param = Builder.getInt32(C: CR6); |
| 4990 | llvm::Function *F = CGF.CGM.getIntrinsic(IID: ID); |
| 4991 | Result = Builder.CreateCall(Callee: F, Args: {CR6Param, FirstVecArg, SecondVecArg}); |
| 4992 | |
| 4993 | // The result type of intrinsic may not be same as E->getType(). |
| 4994 | // If E->getType() is not BoolTy, EmitScalarConversion will do the |
| 4995 | // conversion work. If E->getType() is BoolTy, EmitScalarConversion will |
| 4996 | // do nothing, if ResultTy is not i1 at the same time, it will cause |
| 4997 | // crash later. |
| 4998 | llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Val: Result->getType()); |
| 4999 | if (ResultTy->getBitWidth() > 1 && |
| 5000 | E->getType() == CGF.getContext().BoolTy) |
| 5001 | Result = Builder.CreateTrunc(V: Result, DestTy: Builder.getInt1Ty()); |
| 5002 | return EmitScalarConversion(Src: Result, SrcType: CGF.getContext().BoolTy, DstType: E->getType(), |
| 5003 | Loc: E->getExprLoc()); |
| 5004 | } |
| 5005 | |
| 5006 | if (BOInfo.isFixedPointOp()) { |
| 5007 | Result = EmitFixedPointBinOp(op: BOInfo); |
| 5008 | } else if (LHS->getType()->isFPOrFPVectorTy()) { |
| 5009 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); |
| 5010 | if (!IsSignaling) |
| 5011 | Result = Builder.CreateFCmp(P: FCmpOpc, LHS, RHS, Name: "cmp" ); |
| 5012 | else |
| 5013 | Result = Builder.CreateFCmpS(P: FCmpOpc, LHS, RHS, Name: "cmp" ); |
| 5014 | } else if (LHSTy->hasSignedIntegerRepresentation()) { |
| 5015 | Result = Builder.CreateICmp(P: SICmpOpc, LHS, RHS, Name: "cmp" ); |
| 5016 | } else { |
| 5017 | // Unsigned integers and pointers. |
| 5018 | |
| 5019 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && |
| 5020 | !isa<llvm::ConstantPointerNull>(Val: LHS) && |
| 5021 | !isa<llvm::ConstantPointerNull>(Val: RHS)) { |
| 5022 | |
| 5023 | // Dynamic information is required to be stripped for comparisons, |
| 5024 | // because it could leak the dynamic information. Based on comparisons |
| 5025 | // of pointers to dynamic objects, the optimizer can replace one pointer |
| 5026 | // with another, which might be incorrect in presence of invariant |
| 5027 | // groups. Comparison with null is safe because null does not carry any |
| 5028 | // dynamic information. |
| 5029 | if (LHSTy.mayBeDynamicClass()) |
| 5030 | LHS = Builder.CreateStripInvariantGroup(Ptr: LHS); |
| 5031 | if (RHSTy.mayBeDynamicClass()) |
| 5032 | RHS = Builder.CreateStripInvariantGroup(Ptr: RHS); |
| 5033 | } |
| 5034 | |
| 5035 | Result = Builder.CreateICmp(P: UICmpOpc, LHS, RHS, Name: "cmp" ); |
| 5036 | } |
| 5037 | |
| 5038 | // If this is a vector comparison, sign extend the result to the appropriate |
| 5039 | // vector integer type and return it (don't convert to bool). |
| 5040 | if (LHSTy->isVectorType()) |
| 5041 | return Builder.CreateSExt(V: Result, DestTy: ConvertType(T: E->getType()), Name: "sext" ); |
| 5042 | |
| 5043 | } else { |
| 5044 | // Complex Comparison: can only be an equality comparison. |
| 5045 | CodeGenFunction::ComplexPairTy LHS, RHS; |
| 5046 | QualType CETy; |
| 5047 | if (auto *CTy = LHSTy->getAs<ComplexType>()) { |
| 5048 | LHS = CGF.EmitComplexExpr(E: E->getLHS()); |
| 5049 | CETy = CTy->getElementType(); |
| 5050 | } else { |
| 5051 | LHS.first = Visit(E: E->getLHS()); |
| 5052 | LHS.second = llvm::Constant::getNullValue(Ty: LHS.first->getType()); |
| 5053 | CETy = LHSTy; |
| 5054 | } |
| 5055 | if (auto *CTy = RHSTy->getAs<ComplexType>()) { |
| 5056 | RHS = CGF.EmitComplexExpr(E: E->getRHS()); |
| 5057 | assert(CGF.getContext().hasSameUnqualifiedType(CETy, |
| 5058 | CTy->getElementType()) && |
| 5059 | "The element types must always match." ); |
| 5060 | (void)CTy; |
| 5061 | } else { |
| 5062 | RHS.first = Visit(E: E->getRHS()); |
| 5063 | RHS.second = llvm::Constant::getNullValue(Ty: RHS.first->getType()); |
| 5064 | assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && |
| 5065 | "The element types must always match." ); |
| 5066 | } |
| 5067 | |
| 5068 | Value *ResultR, *ResultI; |
| 5069 | if (CETy->isRealFloatingType()) { |
| 5070 | // As complex comparisons can only be equality comparisons, they |
| 5071 | // are never signaling comparisons. |
| 5072 | ResultR = Builder.CreateFCmp(P: FCmpOpc, LHS: LHS.first, RHS: RHS.first, Name: "cmp.r" ); |
| 5073 | ResultI = Builder.CreateFCmp(P: FCmpOpc, LHS: LHS.second, RHS: RHS.second, Name: "cmp.i" ); |
| 5074 | } else { |
| 5075 | // Complex comparisons can only be equality comparisons. As such, signed |
| 5076 | // and unsigned opcodes are the same. |
| 5077 | ResultR = Builder.CreateICmp(P: UICmpOpc, LHS: LHS.first, RHS: RHS.first, Name: "cmp.r" ); |
| 5078 | ResultI = Builder.CreateICmp(P: UICmpOpc, LHS: LHS.second, RHS: RHS.second, Name: "cmp.i" ); |
| 5079 | } |
| 5080 | |
| 5081 | if (E->getOpcode() == BO_EQ) { |
| 5082 | Result = Builder.CreateAnd(LHS: ResultR, RHS: ResultI, Name: "and.ri" ); |
| 5083 | } else { |
| 5084 | assert(E->getOpcode() == BO_NE && |
| 5085 | "Complex comparison other than == or != ?" ); |
| 5086 | Result = Builder.CreateOr(LHS: ResultR, RHS: ResultI, Name: "or.ri" ); |
| 5087 | } |
| 5088 | } |
| 5089 | |
| 5090 | return EmitScalarConversion(Src: Result, SrcType: CGF.getContext().BoolTy, DstType: E->getType(), |
| 5091 | Loc: E->getExprLoc()); |
| 5092 | } |
| 5093 | |
| 5094 | llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment( |
| 5095 | const BinaryOperator *E, Value **Previous, QualType *SrcType) { |
| 5096 | // In case we have the integer or bitfield sanitizer checks enabled |
| 5097 | // we want to get the expression before scalar conversion. |
| 5098 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E->getRHS())) { |
| 5099 | CastKind Kind = ICE->getCastKind(); |
| 5100 | if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) { |
| 5101 | *SrcType = ICE->getSubExpr()->getType(); |
| 5102 | *Previous = EmitScalarExpr(E: ICE->getSubExpr()); |
| 5103 | // Pass default ScalarConversionOpts to avoid emitting |
| 5104 | // integer sanitizer checks as E refers to bitfield. |
| 5105 | return EmitScalarConversion(Src: *Previous, SrcTy: *SrcType, DstTy: ICE->getType(), |
| 5106 | Loc: ICE->getExprLoc()); |
| 5107 | } |
| 5108 | } |
| 5109 | return EmitScalarExpr(E: E->getRHS()); |
| 5110 | } |
| 5111 | |
| 5112 | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| 5113 | ApplyAtomGroup Grp(CGF.getDebugInfo()); |
| 5114 | bool Ignore = TestAndClearIgnoreResultAssign(); |
| 5115 | |
| 5116 | Value *RHS; |
| 5117 | LValue LHS; |
| 5118 | |
| 5119 | if (PointerAuthQualifier PtrAuth = E->getLHS()->getType().getPointerAuth()) { |
| 5120 | LValue LV = CGF.EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store); |
| 5121 | LV.getQuals().removePointerAuth(); |
| 5122 | llvm::Value *RV = |
| 5123 | CGF.EmitPointerAuthQualify(Qualifier: PtrAuth, PointerExpr: E->getRHS(), StorageAddress: LV.getAddress()); |
| 5124 | CGF.EmitNullabilityCheck(LHS: LV, RHS: RV, Loc: E->getExprLoc()); |
| 5125 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: RV), Dst: LV); |
| 5126 | |
| 5127 | if (Ignore) |
| 5128 | return nullptr; |
| 5129 | RV = CGF.EmitPointerAuthUnqualify(Qualifier: PtrAuth, Pointer: RV, PointerType: LV.getType(), |
| 5130 | StorageAddress: LV.getAddress(), /*nonnull*/ IsKnownNonNull: false); |
| 5131 | return RV; |
| 5132 | } |
| 5133 | |
| 5134 | switch (E->getLHS()->getType().getObjCLifetime()) { |
| 5135 | case Qualifiers::OCL_Strong: |
| 5136 | std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreStrong(e: E, ignored: Ignore); |
| 5137 | break; |
| 5138 | |
| 5139 | case Qualifiers::OCL_Autoreleasing: |
| 5140 | std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreAutoreleasing(e: E); |
| 5141 | break; |
| 5142 | |
| 5143 | case Qualifiers::OCL_ExplicitNone: |
| 5144 | std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreUnsafeUnretained(e: E, ignored: Ignore); |
| 5145 | break; |
| 5146 | |
| 5147 | case Qualifiers::OCL_Weak: |
| 5148 | RHS = Visit(E: E->getRHS()); |
| 5149 | LHS = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store); |
| 5150 | RHS = CGF.EmitARCStoreWeak(addr: LHS.getAddress(), value: RHS, ignored: Ignore); |
| 5151 | break; |
| 5152 | |
| 5153 | case Qualifiers::OCL_None: |
| 5154 | // __block variables need to have the rhs evaluated first, plus |
| 5155 | // this should improve codegen just a little. |
| 5156 | Value *Previous = nullptr; |
| 5157 | QualType SrcType = E->getRHS()->getType(); |
| 5158 | // Check if LHS is a bitfield, if RHS contains an implicit cast expression |
| 5159 | // we want to extract that value and potentially (if the bitfield sanitizer |
| 5160 | // is enabled) use it to check for an implicit conversion. |
| 5161 | if (E->getLHS()->refersToBitField()) |
| 5162 | RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, Previous: &Previous, SrcType: &SrcType); |
| 5163 | else |
| 5164 | RHS = Visit(E: E->getRHS()); |
| 5165 | |
| 5166 | LHS = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store); |
| 5167 | |
| 5168 | // Store the value into the LHS. Bit-fields are handled specially |
| 5169 | // because the result is altered by the store, i.e., [C99 6.5.16p1] |
| 5170 | // 'An assignment expression has the value of the left operand after |
| 5171 | // the assignment...'. |
| 5172 | if (LHS.isBitField()) { |
| 5173 | CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: RHS), Dst: LHS, Result: &RHS); |
| 5174 | // If the expression contained an implicit conversion, make sure |
| 5175 | // to use the value before the scalar conversion. |
| 5176 | Value *Src = Previous ? Previous : RHS; |
| 5177 | QualType DstType = E->getLHS()->getType(); |
| 5178 | CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: RHS, DstType, |
| 5179 | Info: LHS.getBitFieldInfo(), Loc: E->getExprLoc()); |
| 5180 | } else { |
| 5181 | CGF.EmitNullabilityCheck(LHS, RHS, Loc: E->getExprLoc()); |
| 5182 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: RHS), Dst: LHS); |
| 5183 | } |
| 5184 | } |
| 5185 | |
| 5186 | // If the result is clearly ignored, return now. |
| 5187 | if (Ignore) |
| 5188 | return nullptr; |
| 5189 | |
| 5190 | // The result of an assignment in C is the assigned r-value. |
| 5191 | if (!CGF.getLangOpts().CPlusPlus) |
| 5192 | return RHS; |
| 5193 | |
| 5194 | // If the lvalue is non-volatile, return the computed value of the assignment. |
| 5195 | if (!LHS.isVolatileQualified()) |
| 5196 | return RHS; |
| 5197 | |
| 5198 | // Otherwise, reload the value. |
| 5199 | return EmitLoadOfLValue(LV: LHS, Loc: E->getExprLoc()); |
| 5200 | } |
| 5201 | |
| 5202 | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
| 5203 | // Perform vector logical and on comparisons with zero vectors. |
| 5204 | if (E->getType()->isVectorType()) { |
| 5205 | CGF.incrementProfileCounter(S: E); |
| 5206 | |
| 5207 | Value *LHS = Visit(E: E->getLHS()); |
| 5208 | Value *RHS = Visit(E: E->getRHS()); |
| 5209 | Value *Zero = llvm::ConstantAggregateZero::get(Ty: LHS->getType()); |
| 5210 | if (LHS->getType()->isFPOrFPVectorTy()) { |
| 5211 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
| 5212 | CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
| 5213 | LHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS, RHS: Zero, Name: "cmp" ); |
| 5214 | RHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS: RHS, RHS: Zero, Name: "cmp" ); |
| 5215 | } else { |
| 5216 | LHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS, RHS: Zero, Name: "cmp" ); |
| 5217 | RHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS: RHS, RHS: Zero, Name: "cmp" ); |
| 5218 | } |
| 5219 | Value *And = Builder.CreateAnd(LHS, RHS); |
| 5220 | return Builder.CreateSExt(V: And, DestTy: ConvertType(T: E->getType()), Name: "sext" ); |
| 5221 | } |
| 5222 | |
| 5223 | bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); |
| 5224 | llvm::Type *ResTy = ConvertType(T: E->getType()); |
| 5225 | |
| 5226 | // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. |
| 5227 | // If we have 1 && X, just emit X without inserting the control flow. |
| 5228 | bool LHSCondVal; |
| 5229 | if (CGF.ConstantFoldsToSimpleInteger(Cond: E->getLHS(), Result&: LHSCondVal)) { |
| 5230 | if (LHSCondVal) { // If we have 1 && X, just emit X. |
| 5231 | CGF.incrementProfileCounter(S: E); |
| 5232 | |
| 5233 | // If the top of the logical operator nest, reset the MCDC temp to 0. |
| 5234 | if (CGF.MCDCLogOpStack.empty()) |
| 5235 | CGF.maybeResetMCDCCondBitmap(E); |
| 5236 | |
| 5237 | CGF.MCDCLogOpStack.push_back(Elt: E); |
| 5238 | |
| 5239 | Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS()); |
| 5240 | |
| 5241 | // If we're generating for profiling or coverage, generate a branch to a |
| 5242 | // block that increments the RHS counter needed to track branch condition |
| 5243 | // coverage. In this case, use "FBlock" as both the final "TrueBlock" and |
| 5244 | // "FalseBlock" after the increment is done. |
| 5245 | if (InstrumentRegions && |
| 5246 | CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) { |
| 5247 | CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond); |
| 5248 | llvm::BasicBlock *FBlock = CGF.createBasicBlock(name: "land.end" ); |
| 5249 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "land.rhscnt" ); |
| 5250 | Builder.CreateCondBr(Cond: RHSCond, True: RHSBlockCnt, False: FBlock); |
| 5251 | CGF.EmitBlock(BB: RHSBlockCnt); |
| 5252 | CGF.incrementProfileCounter(S: E->getRHS()); |
| 5253 | CGF.EmitBranch(Block: FBlock); |
| 5254 | CGF.EmitBlock(BB: FBlock); |
| 5255 | } else |
| 5256 | CGF.markStmtMaybeUsed(S: E->getRHS()); |
| 5257 | |
| 5258 | CGF.MCDCLogOpStack.pop_back(); |
| 5259 | // If the top of the logical operator nest, update the MCDC bitmap. |
| 5260 | if (CGF.MCDCLogOpStack.empty()) |
| 5261 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
| 5262 | |
| 5263 | // ZExt result to int or bool. |
| 5264 | return Builder.CreateZExtOrBitCast(V: RHSCond, DestTy: ResTy, Name: "land.ext" ); |
| 5265 | } |
| 5266 | |
| 5267 | // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. |
| 5268 | if (!CGF.ContainsLabel(S: E->getRHS())) { |
| 5269 | CGF.markStmtMaybeUsed(S: E->getRHS()); |
| 5270 | return llvm::Constant::getNullValue(Ty: ResTy); |
| 5271 | } |
| 5272 | } |
| 5273 | |
| 5274 | // If the top of the logical operator nest, reset the MCDC temp to 0. |
| 5275 | if (CGF.MCDCLogOpStack.empty()) |
| 5276 | CGF.maybeResetMCDCCondBitmap(E); |
| 5277 | |
| 5278 | CGF.MCDCLogOpStack.push_back(Elt: E); |
| 5279 | |
| 5280 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "land.end" ); |
| 5281 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "land.rhs" ); |
| 5282 | |
| 5283 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
| 5284 | |
| 5285 | // Branch on the LHS first. If it is false, go to the failure (cont) block. |
| 5286 | CGF.EmitBranchOnBoolExpr(Cond: E->getLHS(), TrueBlock: RHSBlock, FalseBlock: ContBlock, |
| 5287 | TrueCount: CGF.getProfileCount(S: E->getRHS())); |
| 5288 | |
| 5289 | // Any edges into the ContBlock are now from an (indeterminate number of) |
| 5290 | // edges from this first condition. All of these values will be false. Start |
| 5291 | // setting up the PHI node in the Cont Block for this. |
| 5292 | llvm::PHINode *PN = llvm::PHINode::Create(Ty: llvm::Type::getInt1Ty(C&: VMContext), NumReservedValues: 2, |
| 5293 | NameStr: "" , InsertBefore: ContBlock); |
| 5294 | for (llvm::pred_iterator PI = pred_begin(BB: ContBlock), PE = pred_end(BB: ContBlock); |
| 5295 | PI != PE; ++PI) |
| 5296 | PN->addIncoming(V: llvm::ConstantInt::getFalse(Context&: VMContext), BB: *PI); |
| 5297 | |
| 5298 | eval.begin(CGF); |
| 5299 | CGF.EmitBlock(BB: RHSBlock); |
| 5300 | CGF.incrementProfileCounter(S: E); |
| 5301 | Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS()); |
| 5302 | eval.end(CGF); |
| 5303 | |
| 5304 | // Reaquire the RHS block, as there may be subblocks inserted. |
| 5305 | RHSBlock = Builder.GetInsertBlock(); |
| 5306 | |
| 5307 | // If we're generating for profiling or coverage, generate a branch on the |
| 5308 | // RHS to a block that increments the RHS true counter needed to track branch |
| 5309 | // condition coverage. |
| 5310 | if (InstrumentRegions && |
| 5311 | CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) { |
| 5312 | CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond); |
| 5313 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "land.rhscnt" ); |
| 5314 | Builder.CreateCondBr(Cond: RHSCond, True: RHSBlockCnt, False: ContBlock); |
| 5315 | CGF.EmitBlock(BB: RHSBlockCnt); |
| 5316 | CGF.incrementProfileCounter(S: E->getRHS()); |
| 5317 | CGF.EmitBranch(Block: ContBlock); |
| 5318 | PN->addIncoming(V: RHSCond, BB: RHSBlockCnt); |
| 5319 | } |
| 5320 | |
| 5321 | // Emit an unconditional branch from this block to ContBlock. |
| 5322 | { |
| 5323 | // There is no need to emit line number for unconditional branch. |
| 5324 | auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
| 5325 | CGF.EmitBlock(BB: ContBlock); |
| 5326 | } |
| 5327 | // Insert an entry into the phi node for the edge with the value of RHSCond. |
| 5328 | PN->addIncoming(V: RHSCond, BB: RHSBlock); |
| 5329 | |
| 5330 | CGF.MCDCLogOpStack.pop_back(); |
| 5331 | // If the top of the logical operator nest, update the MCDC bitmap. |
| 5332 | if (CGF.MCDCLogOpStack.empty()) |
| 5333 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
| 5334 | |
| 5335 | // Artificial location to preserve the scope information |
| 5336 | { |
| 5337 | auto NL = ApplyDebugLocation::CreateArtificial(CGF); |
| 5338 | PN->setDebugLoc(Builder.getCurrentDebugLocation()); |
| 5339 | } |
| 5340 | |
| 5341 | // ZExt result to int. |
| 5342 | return Builder.CreateZExtOrBitCast(V: PN, DestTy: ResTy, Name: "land.ext" ); |
| 5343 | } |
| 5344 | |
| 5345 | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
| 5346 | // Perform vector logical or on comparisons with zero vectors. |
| 5347 | if (E->getType()->isVectorType()) { |
| 5348 | CGF.incrementProfileCounter(S: E); |
| 5349 | |
| 5350 | Value *LHS = Visit(E: E->getLHS()); |
| 5351 | Value *RHS = Visit(E: E->getRHS()); |
| 5352 | Value *Zero = llvm::ConstantAggregateZero::get(Ty: LHS->getType()); |
| 5353 | if (LHS->getType()->isFPOrFPVectorTy()) { |
| 5354 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
| 5355 | CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
| 5356 | LHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS, RHS: Zero, Name: "cmp" ); |
| 5357 | RHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS: RHS, RHS: Zero, Name: "cmp" ); |
| 5358 | } else { |
| 5359 | LHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS, RHS: Zero, Name: "cmp" ); |
| 5360 | RHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS: RHS, RHS: Zero, Name: "cmp" ); |
| 5361 | } |
| 5362 | Value *Or = Builder.CreateOr(LHS, RHS); |
| 5363 | return Builder.CreateSExt(V: Or, DestTy: ConvertType(T: E->getType()), Name: "sext" ); |
| 5364 | } |
| 5365 | |
| 5366 | bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); |
| 5367 | llvm::Type *ResTy = ConvertType(T: E->getType()); |
| 5368 | |
| 5369 | // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. |
| 5370 | // If we have 0 || X, just emit X without inserting the control flow. |
| 5371 | bool LHSCondVal; |
| 5372 | if (CGF.ConstantFoldsToSimpleInteger(Cond: E->getLHS(), Result&: LHSCondVal)) { |
| 5373 | if (!LHSCondVal) { // If we have 0 || X, just emit X. |
| 5374 | CGF.incrementProfileCounter(S: E); |
| 5375 | |
| 5376 | // If the top of the logical operator nest, reset the MCDC temp to 0. |
| 5377 | if (CGF.MCDCLogOpStack.empty()) |
| 5378 | CGF.maybeResetMCDCCondBitmap(E); |
| 5379 | |
| 5380 | CGF.MCDCLogOpStack.push_back(Elt: E); |
| 5381 | |
| 5382 | Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS()); |
| 5383 | |
| 5384 | // If we're generating for profiling or coverage, generate a branch to a |
| 5385 | // block that increments the RHS counter need to track branch condition |
| 5386 | // coverage. In this case, use "FBlock" as both the final "TrueBlock" and |
| 5387 | // "FalseBlock" after the increment is done. |
| 5388 | if (InstrumentRegions && |
| 5389 | CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) { |
| 5390 | CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond); |
| 5391 | llvm::BasicBlock *FBlock = CGF.createBasicBlock(name: "lor.end" ); |
| 5392 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "lor.rhscnt" ); |
| 5393 | Builder.CreateCondBr(Cond: RHSCond, True: FBlock, False: RHSBlockCnt); |
| 5394 | CGF.EmitBlock(BB: RHSBlockCnt); |
| 5395 | CGF.incrementProfileCounter(S: E->getRHS()); |
| 5396 | CGF.EmitBranch(Block: FBlock); |
| 5397 | CGF.EmitBlock(BB: FBlock); |
| 5398 | } else |
| 5399 | CGF.markStmtMaybeUsed(S: E->getRHS()); |
| 5400 | |
| 5401 | CGF.MCDCLogOpStack.pop_back(); |
| 5402 | // If the top of the logical operator nest, update the MCDC bitmap. |
| 5403 | if (CGF.MCDCLogOpStack.empty()) |
| 5404 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
| 5405 | |
| 5406 | // ZExt result to int or bool. |
| 5407 | return Builder.CreateZExtOrBitCast(V: RHSCond, DestTy: ResTy, Name: "lor.ext" ); |
| 5408 | } |
| 5409 | |
| 5410 | // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. |
| 5411 | if (!CGF.ContainsLabel(S: E->getRHS())) { |
| 5412 | CGF.markStmtMaybeUsed(S: E->getRHS()); |
| 5413 | return llvm::ConstantInt::get(Ty: ResTy, V: 1); |
| 5414 | } |
| 5415 | } |
| 5416 | |
| 5417 | // If the top of the logical operator nest, reset the MCDC temp to 0. |
| 5418 | if (CGF.MCDCLogOpStack.empty()) |
| 5419 | CGF.maybeResetMCDCCondBitmap(E); |
| 5420 | |
| 5421 | CGF.MCDCLogOpStack.push_back(Elt: E); |
| 5422 | |
| 5423 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "lor.end" ); |
| 5424 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "lor.rhs" ); |
| 5425 | |
| 5426 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
| 5427 | |
| 5428 | // Branch on the LHS first. If it is true, go to the success (cont) block. |
| 5429 | CGF.EmitBranchOnBoolExpr(Cond: E->getLHS(), TrueBlock: ContBlock, FalseBlock: RHSBlock, |
| 5430 | TrueCount: CGF.getCurrentProfileCount() - |
| 5431 | CGF.getProfileCount(S: E->getRHS())); |
| 5432 | |
| 5433 | // Any edges into the ContBlock are now from an (indeterminate number of) |
| 5434 | // edges from this first condition. All of these values will be true. Start |
| 5435 | // setting up the PHI node in the Cont Block for this. |
| 5436 | llvm::PHINode *PN = llvm::PHINode::Create(Ty: llvm::Type::getInt1Ty(C&: VMContext), NumReservedValues: 2, |
| 5437 | NameStr: "" , InsertBefore: ContBlock); |
| 5438 | for (llvm::pred_iterator PI = pred_begin(BB: ContBlock), PE = pred_end(BB: ContBlock); |
| 5439 | PI != PE; ++PI) |
| 5440 | PN->addIncoming(V: llvm::ConstantInt::getTrue(Context&: VMContext), BB: *PI); |
| 5441 | |
| 5442 | eval.begin(CGF); |
| 5443 | |
| 5444 | // Emit the RHS condition as a bool value. |
| 5445 | CGF.EmitBlock(BB: RHSBlock); |
| 5446 | CGF.incrementProfileCounter(S: E); |
| 5447 | Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS()); |
| 5448 | |
| 5449 | eval.end(CGF); |
| 5450 | |
| 5451 | // Reaquire the RHS block, as there may be subblocks inserted. |
| 5452 | RHSBlock = Builder.GetInsertBlock(); |
| 5453 | |
| 5454 | // If we're generating for profiling or coverage, generate a branch on the |
| 5455 | // RHS to a block that increments the RHS true counter needed to track branch |
| 5456 | // condition coverage. |
| 5457 | if (InstrumentRegions && |
| 5458 | CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) { |
| 5459 | CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond); |
| 5460 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "lor.rhscnt" ); |
| 5461 | Builder.CreateCondBr(Cond: RHSCond, True: ContBlock, False: RHSBlockCnt); |
| 5462 | CGF.EmitBlock(BB: RHSBlockCnt); |
| 5463 | CGF.incrementProfileCounter(S: E->getRHS()); |
| 5464 | CGF.EmitBranch(Block: ContBlock); |
| 5465 | PN->addIncoming(V: RHSCond, BB: RHSBlockCnt); |
| 5466 | } |
| 5467 | |
| 5468 | // Emit an unconditional branch from this block to ContBlock. Insert an entry |
| 5469 | // into the phi node for the edge with the value of RHSCond. |
| 5470 | CGF.EmitBlock(BB: ContBlock); |
| 5471 | PN->addIncoming(V: RHSCond, BB: RHSBlock); |
| 5472 | |
| 5473 | CGF.MCDCLogOpStack.pop_back(); |
| 5474 | // If the top of the logical operator nest, update the MCDC bitmap. |
| 5475 | if (CGF.MCDCLogOpStack.empty()) |
| 5476 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
| 5477 | |
| 5478 | // ZExt result to int. |
| 5479 | return Builder.CreateZExtOrBitCast(V: PN, DestTy: ResTy, Name: "lor.ext" ); |
| 5480 | } |
| 5481 | |
| 5482 | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| 5483 | CGF.EmitIgnoredExpr(E: E->getLHS()); |
| 5484 | CGF.EnsureInsertPoint(); |
| 5485 | return Visit(E: E->getRHS()); |
| 5486 | } |
| 5487 | |
| 5488 | //===----------------------------------------------------------------------===// |
| 5489 | // Other Operators |
| 5490 | //===----------------------------------------------------------------------===// |
| 5491 | |
| 5492 | /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified |
| 5493 | /// expression is cheap enough and side-effect-free enough to evaluate |
| 5494 | /// unconditionally instead of conditionally. This is used to convert control |
| 5495 | /// flow into selects in some cases. |
| 5496 | static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, |
| 5497 | CodeGenFunction &CGF) { |
| 5498 | // Anything that is an integer or floating point constant is fine. |
| 5499 | return E->IgnoreParens()->isEvaluatable(Ctx: CGF.getContext()); |
| 5500 | |
| 5501 | // Even non-volatile automatic variables can't be evaluated unconditionally. |
| 5502 | // Referencing a thread_local may cause non-trivial initialization work to |
| 5503 | // occur. If we're inside a lambda and one of the variables is from the scope |
| 5504 | // outside the lambda, that function may have returned already. Reading its |
| 5505 | // locals is a bad idea. Also, these reads may introduce races there didn't |
| 5506 | // exist in the source-level program. |
| 5507 | } |
| 5508 | |
| 5509 | |
| 5510 | Value *ScalarExprEmitter:: |
| 5511 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
| 5512 | TestAndClearIgnoreResultAssign(); |
| 5513 | |
| 5514 | // Bind the common expression if necessary. |
| 5515 | CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
| 5516 | |
| 5517 | Expr *condExpr = E->getCond(); |
| 5518 | Expr *lhsExpr = E->getTrueExpr(); |
| 5519 | Expr *rhsExpr = E->getFalseExpr(); |
| 5520 | |
| 5521 | // If the condition constant folds and can be elided, try to avoid emitting |
| 5522 | // the condition and the dead arm. |
| 5523 | bool CondExprBool; |
| 5524 | if (CGF.ConstantFoldsToSimpleInteger(Cond: condExpr, Result&: CondExprBool)) { |
| 5525 | Expr *live = lhsExpr, *dead = rhsExpr; |
| 5526 | if (!CondExprBool) std::swap(a&: live, b&: dead); |
| 5527 | |
| 5528 | // If the dead side doesn't have labels we need, just emit the Live part. |
| 5529 | if (!CGF.ContainsLabel(S: dead)) { |
| 5530 | if (CondExprBool) { |
| 5531 | if (llvm::EnableSingleByteCoverage) { |
| 5532 | CGF.incrementProfileCounter(S: lhsExpr); |
| 5533 | CGF.incrementProfileCounter(S: rhsExpr); |
| 5534 | } |
| 5535 | CGF.incrementProfileCounter(S: E); |
| 5536 | } |
| 5537 | Value *Result = Visit(E: live); |
| 5538 | CGF.markStmtMaybeUsed(S: dead); |
| 5539 | |
| 5540 | // If the live part is a throw expression, it acts like it has a void |
| 5541 | // type, so evaluating it returns a null Value*. However, a conditional |
| 5542 | // with non-void type must return a non-null Value*. |
| 5543 | if (!Result && !E->getType()->isVoidType()) |
| 5544 | Result = llvm::UndefValue::get(T: CGF.ConvertType(T: E->getType())); |
| 5545 | |
| 5546 | return Result; |
| 5547 | } |
| 5548 | } |
| 5549 | |
| 5550 | // OpenCL: If the condition is a vector, we can treat this condition like |
| 5551 | // the select function. |
| 5552 | if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || |
| 5553 | condExpr->getType()->isExtVectorType()) { |
| 5554 | CGF.incrementProfileCounter(S: E); |
| 5555 | |
| 5556 | llvm::Value *CondV = CGF.EmitScalarExpr(E: condExpr); |
| 5557 | llvm::Value *LHS = Visit(E: lhsExpr); |
| 5558 | llvm::Value *RHS = Visit(E: rhsExpr); |
| 5559 | |
| 5560 | llvm::Type *condType = ConvertType(T: condExpr->getType()); |
| 5561 | auto *vecTy = cast<llvm::FixedVectorType>(Val: condType); |
| 5562 | |
| 5563 | unsigned numElem = vecTy->getNumElements(); |
| 5564 | llvm::Type *elemType = vecTy->getElementType(); |
| 5565 | |
| 5566 | llvm::Value *zeroVec = llvm::Constant::getNullValue(Ty: vecTy); |
| 5567 | llvm::Value *TestMSB = Builder.CreateICmpSLT(LHS: CondV, RHS: zeroVec); |
| 5568 | llvm::Value *tmp = Builder.CreateSExt( |
| 5569 | V: TestMSB, DestTy: llvm::FixedVectorType::get(ElementType: elemType, NumElts: numElem), Name: "sext" ); |
| 5570 | llvm::Value *tmp2 = Builder.CreateNot(V: tmp); |
| 5571 | |
| 5572 | // Cast float to int to perform ANDs if necessary. |
| 5573 | llvm::Value *RHSTmp = RHS; |
| 5574 | llvm::Value *LHSTmp = LHS; |
| 5575 | bool wasCast = false; |
| 5576 | llvm::VectorType *rhsVTy = cast<llvm::VectorType>(Val: RHS->getType()); |
| 5577 | if (rhsVTy->getElementType()->isFloatingPointTy()) { |
| 5578 | RHSTmp = Builder.CreateBitCast(V: RHS, DestTy: tmp2->getType()); |
| 5579 | LHSTmp = Builder.CreateBitCast(V: LHS, DestTy: tmp->getType()); |
| 5580 | wasCast = true; |
| 5581 | } |
| 5582 | |
| 5583 | llvm::Value *tmp3 = Builder.CreateAnd(LHS: RHSTmp, RHS: tmp2); |
| 5584 | llvm::Value *tmp4 = Builder.CreateAnd(LHS: LHSTmp, RHS: tmp); |
| 5585 | llvm::Value *tmp5 = Builder.CreateOr(LHS: tmp3, RHS: tmp4, Name: "cond" ); |
| 5586 | if (wasCast) |
| 5587 | tmp5 = Builder.CreateBitCast(V: tmp5, DestTy: RHS->getType()); |
| 5588 | |
| 5589 | return tmp5; |
| 5590 | } |
| 5591 | |
| 5592 | if (condExpr->getType()->isVectorType() || |
| 5593 | condExpr->getType()->isSveVLSBuiltinType()) { |
| 5594 | CGF.incrementProfileCounter(S: E); |
| 5595 | |
| 5596 | llvm::Value *CondV = CGF.EmitScalarExpr(E: condExpr); |
| 5597 | llvm::Value *LHS = Visit(E: lhsExpr); |
| 5598 | llvm::Value *RHS = Visit(E: rhsExpr); |
| 5599 | |
| 5600 | llvm::Type *CondType = ConvertType(T: condExpr->getType()); |
| 5601 | auto *VecTy = cast<llvm::VectorType>(Val: CondType); |
| 5602 | llvm::Value *ZeroVec = llvm::Constant::getNullValue(Ty: VecTy); |
| 5603 | |
| 5604 | CondV = Builder.CreateICmpNE(LHS: CondV, RHS: ZeroVec, Name: "vector_cond" ); |
| 5605 | return Builder.CreateSelect(C: CondV, True: LHS, False: RHS, Name: "vector_select" ); |
| 5606 | } |
| 5607 | |
| 5608 | // If this is a really simple expression (like x ? 4 : 5), emit this as a |
| 5609 | // select instead of as control flow. We can only do this if it is cheap and |
| 5610 | // safe to evaluate the LHS and RHS unconditionally. |
| 5611 | if (isCheapEnoughToEvaluateUnconditionally(E: lhsExpr, CGF) && |
| 5612 | isCheapEnoughToEvaluateUnconditionally(E: rhsExpr, CGF)) { |
| 5613 | llvm::Value *CondV = CGF.EvaluateExprAsBool(E: condExpr); |
| 5614 | llvm::Value *StepV = Builder.CreateZExtOrBitCast(V: CondV, DestTy: CGF.Int64Ty); |
| 5615 | |
| 5616 | if (llvm::EnableSingleByteCoverage) { |
| 5617 | CGF.incrementProfileCounter(S: lhsExpr); |
| 5618 | CGF.incrementProfileCounter(S: rhsExpr); |
| 5619 | CGF.incrementProfileCounter(S: E); |
| 5620 | } else |
| 5621 | CGF.incrementProfileCounter(S: E, StepV); |
| 5622 | |
| 5623 | llvm::Value *LHS = Visit(E: lhsExpr); |
| 5624 | llvm::Value *RHS = Visit(E: rhsExpr); |
| 5625 | if (!LHS) { |
| 5626 | // If the conditional has void type, make sure we return a null Value*. |
| 5627 | assert(!RHS && "LHS and RHS types must match" ); |
| 5628 | return nullptr; |
| 5629 | } |
| 5630 | return Builder.CreateSelect(C: CondV, True: LHS, False: RHS, Name: "cond" ); |
| 5631 | } |
| 5632 | |
| 5633 | // If the top of the logical operator nest, reset the MCDC temp to 0. |
| 5634 | if (CGF.MCDCLogOpStack.empty()) |
| 5635 | CGF.maybeResetMCDCCondBitmap(E: condExpr); |
| 5636 | |
| 5637 | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock(name: "cond.true" ); |
| 5638 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "cond.false" ); |
| 5639 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "cond.end" ); |
| 5640 | |
| 5641 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
| 5642 | CGF.EmitBranchOnBoolExpr(Cond: condExpr, TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
| 5643 | TrueCount: CGF.getProfileCount(S: lhsExpr)); |
| 5644 | |
| 5645 | CGF.EmitBlock(BB: LHSBlock); |
| 5646 | |
| 5647 | // If the top of the logical operator nest, update the MCDC bitmap for the |
| 5648 | // ConditionalOperator prior to visiting its LHS and RHS blocks, since they |
| 5649 | // may also contain a boolean expression. |
| 5650 | if (CGF.MCDCLogOpStack.empty()) |
| 5651 | CGF.maybeUpdateMCDCTestVectorBitmap(E: condExpr); |
| 5652 | |
| 5653 | if (llvm::EnableSingleByteCoverage) |
| 5654 | CGF.incrementProfileCounter(S: lhsExpr); |
| 5655 | else |
| 5656 | CGF.incrementProfileCounter(S: E); |
| 5657 | |
| 5658 | eval.begin(CGF); |
| 5659 | Value *LHS = Visit(E: lhsExpr); |
| 5660 | eval.end(CGF); |
| 5661 | |
| 5662 | LHSBlock = Builder.GetInsertBlock(); |
| 5663 | Builder.CreateBr(Dest: ContBlock); |
| 5664 | |
| 5665 | CGF.EmitBlock(BB: RHSBlock); |
| 5666 | |
| 5667 | // If the top of the logical operator nest, update the MCDC bitmap for the |
| 5668 | // ConditionalOperator prior to visiting its LHS and RHS blocks, since they |
| 5669 | // may also contain a boolean expression. |
| 5670 | if (CGF.MCDCLogOpStack.empty()) |
| 5671 | CGF.maybeUpdateMCDCTestVectorBitmap(E: condExpr); |
| 5672 | |
| 5673 | if (llvm::EnableSingleByteCoverage) |
| 5674 | CGF.incrementProfileCounter(S: rhsExpr); |
| 5675 | |
| 5676 | eval.begin(CGF); |
| 5677 | Value *RHS = Visit(E: rhsExpr); |
| 5678 | eval.end(CGF); |
| 5679 | |
| 5680 | RHSBlock = Builder.GetInsertBlock(); |
| 5681 | CGF.EmitBlock(BB: ContBlock); |
| 5682 | |
| 5683 | // If the LHS or RHS is a throw expression, it will be legitimately null. |
| 5684 | if (!LHS) |
| 5685 | return RHS; |
| 5686 | if (!RHS) |
| 5687 | return LHS; |
| 5688 | |
| 5689 | // Create a PHI node for the real part. |
| 5690 | llvm::PHINode *PN = Builder.CreatePHI(Ty: LHS->getType(), NumReservedValues: 2, Name: "cond" ); |
| 5691 | PN->addIncoming(V: LHS, BB: LHSBlock); |
| 5692 | PN->addIncoming(V: RHS, BB: RHSBlock); |
| 5693 | |
| 5694 | // When single byte coverage mode is enabled, add a counter to continuation |
| 5695 | // block. |
| 5696 | if (llvm::EnableSingleByteCoverage) |
| 5697 | CGF.incrementProfileCounter(S: E); |
| 5698 | |
| 5699 | return PN; |
| 5700 | } |
| 5701 | |
| 5702 | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| 5703 | return Visit(E: E->getChosenSubExpr()); |
| 5704 | } |
| 5705 | |
| 5706 | Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
| 5707 | Address ArgValue = Address::invalid(); |
| 5708 | RValue ArgPtr = CGF.EmitVAArg(VE, VAListAddr&: ArgValue); |
| 5709 | |
| 5710 | return ArgPtr.getScalarVal(); |
| 5711 | } |
| 5712 | |
| 5713 | Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { |
| 5714 | return CGF.EmitBlockLiteral(block); |
| 5715 | } |
| 5716 | |
| 5717 | // Convert a vec3 to vec4, or vice versa. |
| 5718 | static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, |
| 5719 | Value *Src, unsigned NumElementsDst) { |
| 5720 | static constexpr int Mask[] = {0, 1, 2, -1}; |
| 5721 | return Builder.CreateShuffleVector(V: Src, Mask: llvm::ArrayRef(Mask, NumElementsDst)); |
| 5722 | } |
| 5723 | |
| 5724 | // Create cast instructions for converting LLVM value \p Src to LLVM type \p |
| 5725 | // DstTy. \p Src has the same size as \p DstTy. Both are single value types |
| 5726 | // but could be scalar or vectors of different lengths, and either can be |
| 5727 | // pointer. |
| 5728 | // There are 4 cases: |
| 5729 | // 1. non-pointer -> non-pointer : needs 1 bitcast |
| 5730 | // 2. pointer -> pointer : needs 1 bitcast or addrspacecast |
| 5731 | // 3. pointer -> non-pointer |
| 5732 | // a) pointer -> intptr_t : needs 1 ptrtoint |
| 5733 | // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast |
| 5734 | // 4. non-pointer -> pointer |
| 5735 | // a) intptr_t -> pointer : needs 1 inttoptr |
| 5736 | // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr |
| 5737 | // Note: for cases 3b and 4b two casts are required since LLVM casts do not |
| 5738 | // allow casting directly between pointer types and non-integer non-pointer |
| 5739 | // types. |
| 5740 | static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, |
| 5741 | const llvm::DataLayout &DL, |
| 5742 | Value *Src, llvm::Type *DstTy, |
| 5743 | StringRef Name = "" ) { |
| 5744 | auto SrcTy = Src->getType(); |
| 5745 | |
| 5746 | // Case 1. |
| 5747 | if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) |
| 5748 | return Builder.CreateBitCast(V: Src, DestTy: DstTy, Name); |
| 5749 | |
| 5750 | // Case 2. |
| 5751 | if (SrcTy->isPointerTy() && DstTy->isPointerTy()) |
| 5752 | return Builder.CreatePointerBitCastOrAddrSpaceCast(V: Src, DestTy: DstTy, Name); |
| 5753 | |
| 5754 | // Case 3. |
| 5755 | if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { |
| 5756 | // Case 3b. |
| 5757 | if (!DstTy->isIntegerTy()) |
| 5758 | Src = Builder.CreatePtrToInt(V: Src, DestTy: DL.getIntPtrType(SrcTy)); |
| 5759 | // Cases 3a and 3b. |
| 5760 | return Builder.CreateBitOrPointerCast(V: Src, DestTy: DstTy, Name); |
| 5761 | } |
| 5762 | |
| 5763 | // Case 4b. |
| 5764 | if (!SrcTy->isIntegerTy()) |
| 5765 | Src = Builder.CreateBitCast(V: Src, DestTy: DL.getIntPtrType(DstTy)); |
| 5766 | // Cases 4a and 4b. |
| 5767 | return Builder.CreateIntToPtr(V: Src, DestTy: DstTy, Name); |
| 5768 | } |
| 5769 | |
| 5770 | Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { |
| 5771 | Value *Src = CGF.EmitScalarExpr(E: E->getSrcExpr()); |
| 5772 | llvm::Type *DstTy = ConvertType(T: E->getType()); |
| 5773 | |
| 5774 | llvm::Type *SrcTy = Src->getType(); |
| 5775 | unsigned NumElementsSrc = |
| 5776 | isa<llvm::VectorType>(Val: SrcTy) |
| 5777 | ? cast<llvm::FixedVectorType>(Val: SrcTy)->getNumElements() |
| 5778 | : 0; |
| 5779 | unsigned NumElementsDst = |
| 5780 | isa<llvm::VectorType>(Val: DstTy) |
| 5781 | ? cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements() |
| 5782 | : 0; |
| 5783 | |
| 5784 | // Use bit vector expansion for ext_vector_type boolean vectors. |
| 5785 | if (E->getType()->isExtVectorBoolType()) |
| 5786 | return CGF.emitBoolVecConversion(SrcVec: Src, NumElementsDst, Name: "astype" ); |
| 5787 | |
| 5788 | // Going from vec3 to non-vec3 is a special case and requires a shuffle |
| 5789 | // vector to get a vec4, then a bitcast if the target type is different. |
| 5790 | if (NumElementsSrc == 3 && NumElementsDst != 3) { |
| 5791 | Src = ConvertVec3AndVec4(Builder, CGF, Src, NumElementsDst: 4); |
| 5792 | Src = createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(), Src, |
| 5793 | DstTy); |
| 5794 | |
| 5795 | Src->setName("astype" ); |
| 5796 | return Src; |
| 5797 | } |
| 5798 | |
| 5799 | // Going from non-vec3 to vec3 is a special case and requires a bitcast |
| 5800 | // to vec4 if the original type is not vec4, then a shuffle vector to |
| 5801 | // get a vec3. |
| 5802 | if (NumElementsSrc != 3 && NumElementsDst == 3) { |
| 5803 | auto *Vec4Ty = llvm::FixedVectorType::get( |
| 5804 | ElementType: cast<llvm::VectorType>(Val: DstTy)->getElementType(), NumElts: 4); |
| 5805 | Src = createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(), Src, |
| 5806 | DstTy: Vec4Ty); |
| 5807 | |
| 5808 | Src = ConvertVec3AndVec4(Builder, CGF, Src, NumElementsDst: 3); |
| 5809 | Src->setName("astype" ); |
| 5810 | return Src; |
| 5811 | } |
| 5812 | |
| 5813 | return createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(), |
| 5814 | Src, DstTy, Name: "astype" ); |
| 5815 | } |
| 5816 | |
| 5817 | Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { |
| 5818 | return CGF.EmitAtomicExpr(E).getScalarVal(); |
| 5819 | } |
| 5820 | |
| 5821 | //===----------------------------------------------------------------------===// |
| 5822 | // Entry Point into this File |
| 5823 | //===----------------------------------------------------------------------===// |
| 5824 | |
| 5825 | /// Emit the computation of the specified expression of scalar type, ignoring |
| 5826 | /// the result. |
| 5827 | Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { |
| 5828 | assert(E && hasScalarEvaluationKind(E->getType()) && |
| 5829 | "Invalid scalar expression to emit" ); |
| 5830 | |
| 5831 | return ScalarExprEmitter(*this, IgnoreResultAssign) |
| 5832 | .Visit(E: const_cast<Expr *>(E)); |
| 5833 | } |
| 5834 | |
| 5835 | /// Emit a conversion from the specified type to the specified destination type, |
| 5836 | /// both of which are LLVM scalar types. |
| 5837 | Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, |
| 5838 | QualType DstTy, |
| 5839 | SourceLocation Loc) { |
| 5840 | assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && |
| 5841 | "Invalid scalar expression to emit" ); |
| 5842 | return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcType: SrcTy, DstType: DstTy, Loc); |
| 5843 | } |
| 5844 | |
| 5845 | /// Emit a conversion from the specified complex type to the specified |
| 5846 | /// destination type, where the destination type is an LLVM scalar type. |
| 5847 | Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, |
| 5848 | QualType SrcTy, |
| 5849 | QualType DstTy, |
| 5850 | SourceLocation Loc) { |
| 5851 | assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && |
| 5852 | "Invalid complex -> scalar conversion" ); |
| 5853 | return ScalarExprEmitter(*this) |
| 5854 | .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); |
| 5855 | } |
| 5856 | |
| 5857 | |
| 5858 | Value * |
| 5859 | CodeGenFunction::EmitPromotedScalarExpr(const Expr *E, |
| 5860 | QualType PromotionType) { |
| 5861 | if (!PromotionType.isNull()) |
| 5862 | return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType); |
| 5863 | else |
| 5864 | return ScalarExprEmitter(*this).Visit(E: const_cast<Expr *>(E)); |
| 5865 | } |
| 5866 | |
| 5867 | |
| 5868 | llvm::Value *CodeGenFunction:: |
| 5869 | EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
| 5870 | bool isInc, bool isPre) { |
| 5871 | return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); |
| 5872 | } |
| 5873 | |
| 5874 | LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { |
| 5875 | // object->isa or (*object).isa |
| 5876 | // Generate code as for: *(Class*)object |
| 5877 | |
| 5878 | Expr *BaseExpr = E->getBase(); |
| 5879 | Address Addr = Address::invalid(); |
| 5880 | if (BaseExpr->isPRValue()) { |
| 5881 | llvm::Type *BaseTy = |
| 5882 | ConvertTypeForMem(T: BaseExpr->getType()->getPointeeType()); |
| 5883 | Addr = Address(EmitScalarExpr(E: BaseExpr), BaseTy, getPointerAlign()); |
| 5884 | } else { |
| 5885 | Addr = EmitLValue(E: BaseExpr).getAddress(); |
| 5886 | } |
| 5887 | |
| 5888 | // Cast the address to Class*. |
| 5889 | Addr = Addr.withElementType(ElemTy: ConvertType(T: E->getType())); |
| 5890 | return MakeAddrLValue(Addr, T: E->getType()); |
| 5891 | } |
| 5892 | |
| 5893 | |
| 5894 | LValue CodeGenFunction::EmitCompoundAssignmentLValue( |
| 5895 | const CompoundAssignOperator *E) { |
| 5896 | ApplyAtomGroup Grp(getDebugInfo()); |
| 5897 | ScalarExprEmitter Scalar(*this); |
| 5898 | Value *Result = nullptr; |
| 5899 | switch (E->getOpcode()) { |
| 5900 | #define COMPOUND_OP(Op) \ |
| 5901 | case BO_##Op##Assign: \ |
| 5902 | return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ |
| 5903 | Result) |
| 5904 | COMPOUND_OP(Mul); |
| 5905 | COMPOUND_OP(Div); |
| 5906 | COMPOUND_OP(Rem); |
| 5907 | COMPOUND_OP(Add); |
| 5908 | COMPOUND_OP(Sub); |
| 5909 | COMPOUND_OP(Shl); |
| 5910 | COMPOUND_OP(Shr); |
| 5911 | COMPOUND_OP(And); |
| 5912 | COMPOUND_OP(Xor); |
| 5913 | COMPOUND_OP(Or); |
| 5914 | #undef COMPOUND_OP |
| 5915 | |
| 5916 | case BO_PtrMemD: |
| 5917 | case BO_PtrMemI: |
| 5918 | case BO_Mul: |
| 5919 | case BO_Div: |
| 5920 | case BO_Rem: |
| 5921 | case BO_Add: |
| 5922 | case BO_Sub: |
| 5923 | case BO_Shl: |
| 5924 | case BO_Shr: |
| 5925 | case BO_LT: |
| 5926 | case BO_GT: |
| 5927 | case BO_LE: |
| 5928 | case BO_GE: |
| 5929 | case BO_EQ: |
| 5930 | case BO_NE: |
| 5931 | case BO_Cmp: |
| 5932 | case BO_And: |
| 5933 | case BO_Xor: |
| 5934 | case BO_Or: |
| 5935 | case BO_LAnd: |
| 5936 | case BO_LOr: |
| 5937 | case BO_Assign: |
| 5938 | case BO_Comma: |
| 5939 | llvm_unreachable("Not valid compound assignment operators" ); |
| 5940 | } |
| 5941 | |
| 5942 | llvm_unreachable("Unhandled compound assignment operator" ); |
| 5943 | } |
| 5944 | |
| 5945 | struct GEPOffsetAndOverflow { |
| 5946 | // The total (signed) byte offset for the GEP. |
| 5947 | llvm::Value *TotalOffset; |
| 5948 | // The offset overflow flag - true if the total offset overflows. |
| 5949 | llvm::Value *OffsetOverflows; |
| 5950 | }; |
| 5951 | |
| 5952 | /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, |
| 5953 | /// and compute the total offset it applies from it's base pointer BasePtr. |
| 5954 | /// Returns offset in bytes and a boolean flag whether an overflow happened |
| 5955 | /// during evaluation. |
| 5956 | static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, |
| 5957 | llvm::LLVMContext &VMContext, |
| 5958 | CodeGenModule &CGM, |
| 5959 | CGBuilderTy &Builder) { |
| 5960 | const auto &DL = CGM.getDataLayout(); |
| 5961 | |
| 5962 | // The total (signed) byte offset for the GEP. |
| 5963 | llvm::Value *TotalOffset = nullptr; |
| 5964 | |
| 5965 | // Was the GEP already reduced to a constant? |
| 5966 | if (isa<llvm::Constant>(Val: GEPVal)) { |
| 5967 | // Compute the offset by casting both pointers to integers and subtracting: |
| 5968 | // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) |
| 5969 | Value *BasePtr_int = |
| 5970 | Builder.CreatePtrToInt(V: BasePtr, DestTy: DL.getIntPtrType(BasePtr->getType())); |
| 5971 | Value *GEPVal_int = |
| 5972 | Builder.CreatePtrToInt(V: GEPVal, DestTy: DL.getIntPtrType(GEPVal->getType())); |
| 5973 | TotalOffset = Builder.CreateSub(LHS: GEPVal_int, RHS: BasePtr_int); |
| 5974 | return {.TotalOffset: TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; |
| 5975 | } |
| 5976 | |
| 5977 | auto *GEP = cast<llvm::GEPOperator>(Val: GEPVal); |
| 5978 | assert(GEP->getPointerOperand() == BasePtr && |
| 5979 | "BasePtr must be the base of the GEP." ); |
| 5980 | assert(GEP->isInBounds() && "Expected inbounds GEP" ); |
| 5981 | |
| 5982 | auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); |
| 5983 | |
| 5984 | // Grab references to the signed add/mul overflow intrinsics for intptr_t. |
| 5985 | auto *Zero = llvm::ConstantInt::getNullValue(Ty: IntPtrTy); |
| 5986 | auto *SAddIntrinsic = |
| 5987 | CGM.getIntrinsic(IID: llvm::Intrinsic::sadd_with_overflow, Tys: IntPtrTy); |
| 5988 | auto *SMulIntrinsic = |
| 5989 | CGM.getIntrinsic(IID: llvm::Intrinsic::smul_with_overflow, Tys: IntPtrTy); |
| 5990 | |
| 5991 | // The offset overflow flag - true if the total offset overflows. |
| 5992 | llvm::Value *OffsetOverflows = Builder.getFalse(); |
| 5993 | |
| 5994 | /// Return the result of the given binary operation. |
| 5995 | auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, |
| 5996 | llvm::Value *RHS) -> llvm::Value * { |
| 5997 | assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop" ); |
| 5998 | |
| 5999 | // If the operands are constants, return a constant result. |
| 6000 | if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(Val: LHS)) { |
| 6001 | if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(Val: RHS)) { |
| 6002 | llvm::APInt N; |
| 6003 | bool HasOverflow = mayHaveIntegerOverflow(LHS: LHSCI, RHS: RHSCI, Opcode, |
| 6004 | /*Signed=*/true, Result&: N); |
| 6005 | if (HasOverflow) |
| 6006 | OffsetOverflows = Builder.getTrue(); |
| 6007 | return llvm::ConstantInt::get(Context&: VMContext, V: N); |
| 6008 | } |
| 6009 | } |
| 6010 | |
| 6011 | // Otherwise, compute the result with checked arithmetic. |
| 6012 | auto *ResultAndOverflow = Builder.CreateCall( |
| 6013 | Callee: (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, Args: {LHS, RHS}); |
| 6014 | OffsetOverflows = Builder.CreateOr( |
| 6015 | LHS: Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 1), RHS: OffsetOverflows); |
| 6016 | return Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 0); |
| 6017 | }; |
| 6018 | |
| 6019 | // Determine the total byte offset by looking at each GEP operand. |
| 6020 | for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); |
| 6021 | GTI != GTE; ++GTI) { |
| 6022 | llvm::Value *LocalOffset; |
| 6023 | auto *Index = GTI.getOperand(); |
| 6024 | // Compute the local offset contributed by this indexing step: |
| 6025 | if (auto *STy = GTI.getStructTypeOrNull()) { |
| 6026 | // For struct indexing, the local offset is the byte position of the |
| 6027 | // specified field. |
| 6028 | unsigned FieldNo = cast<llvm::ConstantInt>(Val: Index)->getZExtValue(); |
| 6029 | LocalOffset = llvm::ConstantInt::get( |
| 6030 | Ty: IntPtrTy, V: DL.getStructLayout(Ty: STy)->getElementOffset(Idx: FieldNo)); |
| 6031 | } else { |
| 6032 | // Otherwise this is array-like indexing. The local offset is the index |
| 6033 | // multiplied by the element size. |
| 6034 | auto *ElementSize = |
| 6035 | llvm::ConstantInt::get(Ty: IntPtrTy, V: GTI.getSequentialElementStride(DL)); |
| 6036 | auto *IndexS = Builder.CreateIntCast(V: Index, DestTy: IntPtrTy, /*isSigned=*/true); |
| 6037 | LocalOffset = eval(BO_Mul, ElementSize, IndexS); |
| 6038 | } |
| 6039 | |
| 6040 | // If this is the first offset, set it as the total offset. Otherwise, add |
| 6041 | // the local offset into the running total. |
| 6042 | if (!TotalOffset || TotalOffset == Zero) |
| 6043 | TotalOffset = LocalOffset; |
| 6044 | else |
| 6045 | TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); |
| 6046 | } |
| 6047 | |
| 6048 | return {.TotalOffset: TotalOffset, .OffsetOverflows: OffsetOverflows}; |
| 6049 | } |
| 6050 | |
| 6051 | Value * |
| 6052 | CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, |
| 6053 | ArrayRef<Value *> IdxList, |
| 6054 | bool SignedIndices, bool IsSubtraction, |
| 6055 | SourceLocation Loc, const Twine &Name) { |
| 6056 | llvm::Type *PtrTy = Ptr->getType(); |
| 6057 | |
| 6058 | llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds(); |
| 6059 | if (!SignedIndices && !IsSubtraction) |
| 6060 | NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap(); |
| 6061 | |
| 6062 | Value *GEPVal = Builder.CreateGEP(Ty: ElemTy, Ptr, IdxList, Name, NW: NWFlags); |
| 6063 | |
| 6064 | // If the pointer overflow sanitizer isn't enabled, do nothing. |
| 6065 | if (!SanOpts.has(K: SanitizerKind::PointerOverflow)) |
| 6066 | return GEPVal; |
| 6067 | |
| 6068 | // Perform nullptr-and-offset check unless the nullptr is defined. |
| 6069 | bool PerformNullCheck = !NullPointerIsDefined( |
| 6070 | F: Builder.GetInsertBlock()->getParent(), AS: PtrTy->getPointerAddressSpace()); |
| 6071 | // Check for overflows unless the GEP got constant-folded, |
| 6072 | // and only in the default address space |
| 6073 | bool PerformOverflowCheck = |
| 6074 | !isa<llvm::Constant>(Val: GEPVal) && PtrTy->getPointerAddressSpace() == 0; |
| 6075 | |
| 6076 | if (!(PerformNullCheck || PerformOverflowCheck)) |
| 6077 | return GEPVal; |
| 6078 | |
| 6079 | const auto &DL = CGM.getDataLayout(); |
| 6080 | |
| 6081 | auto CheckOrdinal = SanitizerKind::SO_PointerOverflow; |
| 6082 | auto CheckHandler = SanitizerHandler::PointerOverflow; |
| 6083 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
| 6084 | llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); |
| 6085 | |
| 6086 | GEPOffsetAndOverflow EvaluatedGEP = |
| 6087 | EmitGEPOffsetInBytes(BasePtr: Ptr, GEPVal, VMContext&: getLLVMContext(), CGM, Builder); |
| 6088 | |
| 6089 | assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || |
| 6090 | EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && |
| 6091 | "If the offset got constant-folded, we don't expect that there was an " |
| 6092 | "overflow." ); |
| 6093 | |
| 6094 | auto *Zero = llvm::ConstantInt::getNullValue(Ty: IntPtrTy); |
| 6095 | |
| 6096 | // Common case: if the total offset is zero, don't emit a check. |
| 6097 | if (EvaluatedGEP.TotalOffset == Zero) |
| 6098 | return GEPVal; |
| 6099 | |
| 6100 | // Now that we've computed the total offset, add it to the base pointer (with |
| 6101 | // wrapping semantics). |
| 6102 | auto *IntPtr = Builder.CreatePtrToInt(V: Ptr, DestTy: IntPtrTy); |
| 6103 | auto *ComputedGEP = Builder.CreateAdd(LHS: IntPtr, RHS: EvaluatedGEP.TotalOffset); |
| 6104 | |
| 6105 | llvm::SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, |
| 6106 | 2> |
| 6107 | Checks; |
| 6108 | |
| 6109 | if (PerformNullCheck) { |
| 6110 | // If the base pointer evaluates to a null pointer value, |
| 6111 | // the only valid pointer this inbounds GEP can produce is also |
| 6112 | // a null pointer, so the offset must also evaluate to zero. |
| 6113 | // Likewise, if we have non-zero base pointer, we can not get null pointer |
| 6114 | // as a result, so the offset can not be -intptr_t(BasePtr). |
| 6115 | // In other words, both pointers are either null, or both are non-null, |
| 6116 | // or the behaviour is undefined. |
| 6117 | auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Arg: Ptr); |
| 6118 | auto *ResultIsNotNullptr = Builder.CreateIsNotNull(Arg: ComputedGEP); |
| 6119 | auto *Valid = Builder.CreateICmpEQ(LHS: BaseIsNotNullptr, RHS: ResultIsNotNullptr); |
| 6120 | Checks.emplace_back(Args&: Valid, Args&: CheckOrdinal); |
| 6121 | } |
| 6122 | |
| 6123 | if (PerformOverflowCheck) { |
| 6124 | // The GEP is valid if: |
| 6125 | // 1) The total offset doesn't overflow, and |
| 6126 | // 2) The sign of the difference between the computed address and the base |
| 6127 | // pointer matches the sign of the total offset. |
| 6128 | llvm::Value *ValidGEP; |
| 6129 | auto *NoOffsetOverflow = Builder.CreateNot(V: EvaluatedGEP.OffsetOverflows); |
| 6130 | if (SignedIndices) { |
| 6131 | // GEP is computed as `unsigned base + signed offset`, therefore: |
| 6132 | // * If offset was positive, then the computed pointer can not be |
| 6133 | // [unsigned] less than the base pointer, unless it overflowed. |
| 6134 | // * If offset was negative, then the computed pointer can not be |
| 6135 | // [unsigned] greater than the bas pointere, unless it overflowed. |
| 6136 | auto *PosOrZeroValid = Builder.CreateICmpUGE(LHS: ComputedGEP, RHS: IntPtr); |
| 6137 | auto *PosOrZeroOffset = |
| 6138 | Builder.CreateICmpSGE(LHS: EvaluatedGEP.TotalOffset, RHS: Zero); |
| 6139 | llvm::Value *NegValid = Builder.CreateICmpULT(LHS: ComputedGEP, RHS: IntPtr); |
| 6140 | ValidGEP = |
| 6141 | Builder.CreateSelect(C: PosOrZeroOffset, True: PosOrZeroValid, False: NegValid); |
| 6142 | } else if (!IsSubtraction) { |
| 6143 | // GEP is computed as `unsigned base + unsigned offset`, therefore the |
| 6144 | // computed pointer can not be [unsigned] less than base pointer, |
| 6145 | // unless there was an overflow. |
| 6146 | // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. |
| 6147 | ValidGEP = Builder.CreateICmpUGE(LHS: ComputedGEP, RHS: IntPtr); |
| 6148 | } else { |
| 6149 | // GEP is computed as `unsigned base - unsigned offset`, therefore the |
| 6150 | // computed pointer can not be [unsigned] greater than base pointer, |
| 6151 | // unless there was an overflow. |
| 6152 | // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. |
| 6153 | ValidGEP = Builder.CreateICmpULE(LHS: ComputedGEP, RHS: IntPtr); |
| 6154 | } |
| 6155 | ValidGEP = Builder.CreateAnd(LHS: ValidGEP, RHS: NoOffsetOverflow); |
| 6156 | Checks.emplace_back(Args&: ValidGEP, Args&: CheckOrdinal); |
| 6157 | } |
| 6158 | |
| 6159 | assert(!Checks.empty() && "Should have produced some checks." ); |
| 6160 | |
| 6161 | llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; |
| 6162 | // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. |
| 6163 | llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; |
| 6164 | EmitCheck(Checked: Checks, Check: CheckHandler, StaticArgs, DynamicArgs); |
| 6165 | |
| 6166 | return GEPVal; |
| 6167 | } |
| 6168 | |
| 6169 | Address CodeGenFunction::EmitCheckedInBoundsGEP( |
| 6170 | Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType, |
| 6171 | bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align, |
| 6172 | const Twine &Name) { |
| 6173 | if (!SanOpts.has(K: SanitizerKind::PointerOverflow)) { |
| 6174 | llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds(); |
| 6175 | if (!SignedIndices && !IsSubtraction) |
| 6176 | NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap(); |
| 6177 | |
| 6178 | return Builder.CreateGEP(Addr, IdxList, ElementType: elementType, Align, Name, NW: NWFlags); |
| 6179 | } |
| 6180 | |
| 6181 | return RawAddress( |
| 6182 | EmitCheckedInBoundsGEP(ElemTy: Addr.getElementType(), Ptr: Addr.emitRawPointer(CGF&: *this), |
| 6183 | IdxList, SignedIndices, IsSubtraction, Loc, Name), |
| 6184 | elementType, Align); |
| 6185 | } |
| 6186 | |