| 1 | //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Objective-C code as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGDebugInfo.h" |
| 14 | #include "CGObjCRuntime.h" |
| 15 | #include "CodeGenFunction.h" |
| 16 | #include "CodeGenModule.h" |
| 17 | #include "CodeGenPGO.h" |
| 18 | #include "ConstantEmitter.h" |
| 19 | #include "TargetInfo.h" |
| 20 | #include "clang/AST/ASTContext.h" |
| 21 | #include "clang/AST/Attr.h" |
| 22 | #include "clang/AST/DeclObjC.h" |
| 23 | #include "clang/AST/StmtObjC.h" |
| 24 | #include "clang/Basic/Diagnostic.h" |
| 25 | #include "clang/CodeGen/CGFunctionInfo.h" |
| 26 | #include "clang/CodeGen/CodeGenABITypes.h" |
| 27 | #include "llvm/Analysis/ObjCARCUtil.h" |
| 28 | #include "llvm/BinaryFormat/MachO.h" |
| 29 | #include "llvm/IR/Constants.h" |
| 30 | #include "llvm/IR/DataLayout.h" |
| 31 | #include "llvm/IR/InlineAsm.h" |
| 32 | #include <optional> |
| 33 | using namespace clang; |
| 34 | using namespace CodeGen; |
| 35 | |
| 36 | typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; |
| 37 | static TryEmitResult |
| 38 | tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); |
| 39 | static RValue AdjustObjCObjectType(CodeGenFunction &CGF, |
| 40 | QualType ET, |
| 41 | RValue Result); |
| 42 | |
| 43 | /// Given the address of a variable of pointer type, find the correct |
| 44 | /// null to store into it. |
| 45 | static llvm::Constant *getNullForVariable(Address addr) { |
| 46 | llvm::Type *type = addr.getElementType(); |
| 47 | return llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: type)); |
| 48 | } |
| 49 | |
| 50 | /// Emits an instance of NSConstantString representing the object. |
| 51 | llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) |
| 52 | { |
| 53 | llvm::Constant *C = |
| 54 | CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); |
| 55 | return C; |
| 56 | } |
| 57 | |
| 58 | /// EmitObjCBoxedExpr - This routine generates code to call |
| 59 | /// the appropriate expression boxing method. This will either be |
| 60 | /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], |
| 61 | /// or [NSValue valueWithBytes:objCType:]. |
| 62 | /// |
| 63 | llvm::Value * |
| 64 | CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| 65 | // Generate the correct selector for this literal's concrete type. |
| 66 | // Get the method. |
| 67 | const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); |
| 68 | const Expr *SubExpr = E->getSubExpr(); |
| 69 | |
| 70 | if (E->isExpressibleAsConstantInitializer()) { |
| 71 | ConstantEmitter ConstEmitter(CGM); |
| 72 | return ConstEmitter.tryEmitAbstract(E, T: E->getType()); |
| 73 | } |
| 74 | |
| 75 | assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method" ); |
| 76 | Selector Sel = BoxingMethod->getSelector(); |
| 77 | |
| 78 | // Generate a reference to the class pointer, which will be the receiver. |
| 79 | // Assumes that the method was introduced in the class that should be |
| 80 | // messaged (avoids pulling it out of the result type). |
| 81 | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| 82 | const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); |
| 83 | llvm::Value *Receiver = Runtime.GetClass(CGF&: *this, OID: ClassDecl); |
| 84 | |
| 85 | CallArgList Args; |
| 86 | const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); |
| 87 | QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); |
| 88 | |
| 89 | // ObjCBoxedExpr supports boxing of structs and unions |
| 90 | // via [NSValue valueWithBytes:objCType:] |
| 91 | const QualType ValueType(SubExpr->getType().getCanonicalType()); |
| 92 | if (ValueType->isObjCBoxableRecordType()) { |
| 93 | // Emit CodeGen for first parameter |
| 94 | // and cast value to correct type |
| 95 | Address Temporary = CreateMemTemp(T: SubExpr->getType()); |
| 96 | EmitAnyExprToMem(E: SubExpr, Location: Temporary, Quals: Qualifiers(), /*isInit*/ IsInitializer: true); |
| 97 | llvm::Value *BitCast = Builder.CreateBitCast( |
| 98 | V: Temporary.emitRawPointer(CGF&: *this), DestTy: ConvertType(T: ArgQT)); |
| 99 | Args.add(rvalue: RValue::get(V: BitCast), type: ArgQT); |
| 100 | |
| 101 | // Create char array to store type encoding |
| 102 | std::string Str; |
| 103 | getContext().getObjCEncodingForType(T: ValueType, S&: Str); |
| 104 | llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); |
| 105 | |
| 106 | // Cast type encoding to correct type |
| 107 | const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; |
| 108 | QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); |
| 109 | llvm::Value *Cast = Builder.CreateBitCast(V: GV, DestTy: ConvertType(T: EncodingQT)); |
| 110 | |
| 111 | Args.add(rvalue: RValue::get(V: Cast), type: EncodingQT); |
| 112 | } else { |
| 113 | Args.add(rvalue: EmitAnyExpr(E: SubExpr), type: ArgQT); |
| 114 | } |
| 115 | |
| 116 | RValue result = Runtime.GenerateMessageSend( |
| 117 | CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: BoxingMethod->getReturnType(), Sel, Receiver, |
| 118 | CallArgs: Args, Class: ClassDecl, Method: BoxingMethod); |
| 119 | return Builder.CreateBitCast(V: result.getScalarVal(), |
| 120 | DestTy: ConvertType(T: E->getType())); |
| 121 | } |
| 122 | |
| 123 | llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, |
| 124 | const ObjCMethodDecl *MethodWithObjects) { |
| 125 | ASTContext &Context = CGM.getContext(); |
| 126 | const ObjCDictionaryLiteral *DLE = nullptr; |
| 127 | const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(Val: E); |
| 128 | if (!ALE) |
| 129 | DLE = cast<ObjCDictionaryLiteral>(Val: E); |
| 130 | |
| 131 | // Optimize empty collections by referencing constants, when available. |
| 132 | uint64_t NumElements = |
| 133 | ALE ? ALE->getNumElements() : DLE->getNumElements(); |
| 134 | if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { |
| 135 | StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__" ; |
| 136 | QualType IdTy(CGM.getContext().getObjCIdType()); |
| 137 | llvm::Constant *Constant = |
| 138 | CGM.CreateRuntimeVariable(Ty: ConvertType(T: IdTy), Name: ConstantName); |
| 139 | LValue LV = MakeNaturalAlignAddrLValue(V: Constant, T: IdTy); |
| 140 | llvm::Value *Ptr = EmitLoadOfScalar(lvalue: LV, Loc: E->getBeginLoc()); |
| 141 | cast<llvm::LoadInst>(Val: Ptr)->setMetadata( |
| 142 | KindID: llvm::LLVMContext::MD_invariant_load, |
| 143 | Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: {})); |
| 144 | return Builder.CreateBitCast(V: Ptr, DestTy: ConvertType(T: E->getType())); |
| 145 | } |
| 146 | |
| 147 | // Compute the type of the array we're initializing. |
| 148 | llvm::APInt APNumElements(Context.getTypeSize(T: Context.getSizeType()), |
| 149 | NumElements); |
| 150 | QualType ElementType = Context.getObjCIdType().withConst(); |
| 151 | QualType ElementArrayType = Context.getConstantArrayType( |
| 152 | EltTy: ElementType, ArySize: APNumElements, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, |
| 153 | /*IndexTypeQuals=*/0); |
| 154 | |
| 155 | // Allocate the temporary array(s). |
| 156 | Address Objects = CreateMemTemp(T: ElementArrayType, Name: "objects" ); |
| 157 | Address Keys = Address::invalid(); |
| 158 | if (DLE) |
| 159 | Keys = CreateMemTemp(T: ElementArrayType, Name: "keys" ); |
| 160 | |
| 161 | // In ARC, we may need to do extra work to keep all the keys and |
| 162 | // values alive until after the call. |
| 163 | SmallVector<llvm::Value *, 16> NeededObjects; |
| 164 | bool TrackNeededObjects = |
| 165 | (getLangOpts().ObjCAutoRefCount && |
| 166 | CGM.getCodeGenOpts().OptimizationLevel != 0); |
| 167 | |
| 168 | // Perform the actual initialialization of the array(s). |
| 169 | for (uint64_t i = 0; i < NumElements; i++) { |
| 170 | if (ALE) { |
| 171 | // Emit the element and store it to the appropriate array slot. |
| 172 | const Expr *Rhs = ALE->getElement(Index: i); |
| 173 | LValue LV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Objects, Index: i), |
| 174 | T: ElementType, Source: AlignmentSource::Decl); |
| 175 | |
| 176 | llvm::Value *value = EmitScalarExpr(E: Rhs); |
| 177 | EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: LV, isInit: true); |
| 178 | if (TrackNeededObjects) { |
| 179 | NeededObjects.push_back(Elt: value); |
| 180 | } |
| 181 | } else { |
| 182 | // Emit the key and store it to the appropriate array slot. |
| 183 | const Expr *Key = DLE->getKeyValueElement(Index: i).Key; |
| 184 | LValue KeyLV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Keys, Index: i), |
| 185 | T: ElementType, Source: AlignmentSource::Decl); |
| 186 | llvm::Value *keyValue = EmitScalarExpr(E: Key); |
| 187 | EmitStoreThroughLValue(Src: RValue::get(V: keyValue), Dst: KeyLV, /*isInit=*/true); |
| 188 | |
| 189 | // Emit the value and store it to the appropriate array slot. |
| 190 | const Expr *Value = DLE->getKeyValueElement(Index: i).Value; |
| 191 | LValue ValueLV = MakeAddrLValue(Addr: Builder.CreateConstArrayGEP(Addr: Objects, Index: i), |
| 192 | T: ElementType, Source: AlignmentSource::Decl); |
| 193 | llvm::Value *valueValue = EmitScalarExpr(E: Value); |
| 194 | EmitStoreThroughLValue(Src: RValue::get(V: valueValue), Dst: ValueLV, /*isInit=*/true); |
| 195 | if (TrackNeededObjects) { |
| 196 | NeededObjects.push_back(Elt: keyValue); |
| 197 | NeededObjects.push_back(Elt: valueValue); |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | // Generate the argument list. |
| 203 | CallArgList Args; |
| 204 | ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); |
| 205 | const ParmVarDecl *argDecl = *PI++; |
| 206 | QualType ArgQT = argDecl->getType().getUnqualifiedType(); |
| 207 | Args.add(rvalue: RValue::get(Addr: Objects, CGF&: *this), type: ArgQT); |
| 208 | if (DLE) { |
| 209 | argDecl = *PI++; |
| 210 | ArgQT = argDecl->getType().getUnqualifiedType(); |
| 211 | Args.add(rvalue: RValue::get(Addr: Keys, CGF&: *this), type: ArgQT); |
| 212 | } |
| 213 | argDecl = *PI; |
| 214 | ArgQT = argDecl->getType().getUnqualifiedType(); |
| 215 | llvm::Value *Count = |
| 216 | llvm::ConstantInt::get(Ty: CGM.getTypes().ConvertType(T: ArgQT), V: NumElements); |
| 217 | Args.add(rvalue: RValue::get(V: Count), type: ArgQT); |
| 218 | |
| 219 | // Generate a reference to the class pointer, which will be the receiver. |
| 220 | Selector Sel = MethodWithObjects->getSelector(); |
| 221 | QualType ResultType = E->getType(); |
| 222 | const ObjCObjectPointerType *InterfacePointerType |
| 223 | = ResultType->getAsObjCInterfacePointerType(); |
| 224 | assert(InterfacePointerType && "Unexpected InterfacePointerType - null" ); |
| 225 | ObjCInterfaceDecl *Class |
| 226 | = InterfacePointerType->getObjectType()->getInterface(); |
| 227 | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| 228 | llvm::Value *Receiver = Runtime.GetClass(CGF&: *this, OID: Class); |
| 229 | |
| 230 | // Generate the message send. |
| 231 | RValue result = Runtime.GenerateMessageSend( |
| 232 | CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: MethodWithObjects->getReturnType(), Sel, |
| 233 | Receiver, CallArgs: Args, Class, Method: MethodWithObjects); |
| 234 | |
| 235 | // The above message send needs these objects, but in ARC they are |
| 236 | // passed in a buffer that is essentially __unsafe_unretained. |
| 237 | // Therefore we must prevent the optimizer from releasing them until |
| 238 | // after the call. |
| 239 | if (TrackNeededObjects) { |
| 240 | EmitARCIntrinsicUse(values: NeededObjects); |
| 241 | } |
| 242 | |
| 243 | return Builder.CreateBitCast(V: result.getScalarVal(), |
| 244 | DestTy: ConvertType(T: E->getType())); |
| 245 | } |
| 246 | |
| 247 | llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { |
| 248 | return EmitObjCCollectionLiteral(E, MethodWithObjects: E->getArrayWithObjectsMethod()); |
| 249 | } |
| 250 | |
| 251 | llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( |
| 252 | const ObjCDictionaryLiteral *E) { |
| 253 | return EmitObjCCollectionLiteral(E, MethodWithObjects: E->getDictWithObjectsMethod()); |
| 254 | } |
| 255 | |
| 256 | /// Emit a selector. |
| 257 | llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { |
| 258 | // Untyped selector. |
| 259 | // Note that this implementation allows for non-constant strings to be passed |
| 260 | // as arguments to @selector(). Currently, the only thing preventing this |
| 261 | // behaviour is the type checking in the front end. |
| 262 | return CGM.getObjCRuntime().GetSelector(CGF&: *this, Sel: E->getSelector()); |
| 263 | } |
| 264 | |
| 265 | llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { |
| 266 | // FIXME: This should pass the Decl not the name. |
| 267 | return CGM.getObjCRuntime().GenerateProtocolRef(CGF&: *this, OPD: E->getProtocol()); |
| 268 | } |
| 269 | |
| 270 | /// Adjust the type of an Objective-C object that doesn't match up due |
| 271 | /// to type erasure at various points, e.g., related result types or the use |
| 272 | /// of parameterized classes. |
| 273 | static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, |
| 274 | RValue Result) { |
| 275 | if (!ExpT->isObjCRetainableType()) |
| 276 | return Result; |
| 277 | |
| 278 | // If the converted types are the same, we're done. |
| 279 | llvm::Type *ExpLLVMTy = CGF.ConvertType(T: ExpT); |
| 280 | if (ExpLLVMTy == Result.getScalarVal()->getType()) |
| 281 | return Result; |
| 282 | |
| 283 | // We have applied a substitution. Cast the rvalue appropriately. |
| 284 | return RValue::get(V: CGF.Builder.CreateBitCast(V: Result.getScalarVal(), |
| 285 | DestTy: ExpLLVMTy)); |
| 286 | } |
| 287 | |
| 288 | /// Decide whether to extend the lifetime of the receiver of a |
| 289 | /// returns-inner-pointer message. |
| 290 | static bool |
| 291 | shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { |
| 292 | switch (message->getReceiverKind()) { |
| 293 | |
| 294 | // For a normal instance message, we should extend unless the |
| 295 | // receiver is loaded from a variable with precise lifetime. |
| 296 | case ObjCMessageExpr::Instance: { |
| 297 | const Expr *receiver = message->getInstanceReceiver(); |
| 298 | |
| 299 | // Look through OVEs. |
| 300 | if (auto opaque = dyn_cast<OpaqueValueExpr>(Val: receiver)) { |
| 301 | if (opaque->getSourceExpr()) |
| 302 | receiver = opaque->getSourceExpr()->IgnoreParens(); |
| 303 | } |
| 304 | |
| 305 | const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: receiver); |
| 306 | if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; |
| 307 | receiver = ice->getSubExpr()->IgnoreParens(); |
| 308 | |
| 309 | // Look through OVEs. |
| 310 | if (auto opaque = dyn_cast<OpaqueValueExpr>(Val: receiver)) { |
| 311 | if (opaque->getSourceExpr()) |
| 312 | receiver = opaque->getSourceExpr()->IgnoreParens(); |
| 313 | } |
| 314 | |
| 315 | // Only __strong variables. |
| 316 | if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) |
| 317 | return true; |
| 318 | |
| 319 | // All ivars and fields have precise lifetime. |
| 320 | if (isa<MemberExpr>(Val: receiver) || isa<ObjCIvarRefExpr>(Val: receiver)) |
| 321 | return false; |
| 322 | |
| 323 | // Otherwise, check for variables. |
| 324 | const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(Val: ice->getSubExpr()); |
| 325 | if (!declRef) return true; |
| 326 | const VarDecl *var = dyn_cast<VarDecl>(Val: declRef->getDecl()); |
| 327 | if (!var) return true; |
| 328 | |
| 329 | // All variables have precise lifetime except local variables with |
| 330 | // automatic storage duration that aren't specially marked. |
| 331 | return (var->hasLocalStorage() && |
| 332 | !var->hasAttr<ObjCPreciseLifetimeAttr>()); |
| 333 | } |
| 334 | |
| 335 | case ObjCMessageExpr::Class: |
| 336 | case ObjCMessageExpr::SuperClass: |
| 337 | // It's never necessary for class objects. |
| 338 | return false; |
| 339 | |
| 340 | case ObjCMessageExpr::SuperInstance: |
| 341 | // We generally assume that 'self' lives throughout a method call. |
| 342 | return false; |
| 343 | } |
| 344 | |
| 345 | llvm_unreachable("invalid receiver kind" ); |
| 346 | } |
| 347 | |
| 348 | /// Given an expression of ObjC pointer type, check whether it was |
| 349 | /// immediately loaded from an ARC __weak l-value. |
| 350 | static const Expr *findWeakLValue(const Expr *E) { |
| 351 | assert(E->getType()->isObjCRetainableType()); |
| 352 | E = E->IgnoreParens(); |
| 353 | if (auto CE = dyn_cast<CastExpr>(Val: E)) { |
| 354 | if (CE->getCastKind() == CK_LValueToRValue) { |
| 355 | if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| 356 | return CE->getSubExpr(); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | return nullptr; |
| 361 | } |
| 362 | |
| 363 | /// The ObjC runtime may provide entrypoints that are likely to be faster |
| 364 | /// than an ordinary message send of the appropriate selector. |
| 365 | /// |
| 366 | /// The entrypoints are guaranteed to be equivalent to just sending the |
| 367 | /// corresponding message. If the entrypoint is implemented naively as just a |
| 368 | /// message send, using it is a trade-off: it sacrifices a few cycles of |
| 369 | /// overhead to save a small amount of code. However, it's possible for |
| 370 | /// runtimes to detect and special-case classes that use "standard" |
| 371 | /// behavior; if that's dynamically a large proportion of all objects, using |
| 372 | /// the entrypoint will also be faster than using a message send. |
| 373 | /// |
| 374 | /// If the runtime does support a required entrypoint, then this method will |
| 375 | /// generate a call and return the resulting value. Otherwise it will return |
| 376 | /// std::nullopt and the caller can generate a msgSend instead. |
| 377 | static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend( |
| 378 | CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, |
| 379 | const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, |
| 380 | bool isClassMessage) { |
| 381 | auto &CGM = CGF.CGM; |
| 382 | if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) |
| 383 | return std::nullopt; |
| 384 | |
| 385 | auto &Runtime = CGM.getLangOpts().ObjCRuntime; |
| 386 | switch (Sel.getMethodFamily()) { |
| 387 | case OMF_alloc: |
| 388 | if (isClassMessage && |
| 389 | Runtime.shouldUseRuntimeFunctionsForAlloc() && |
| 390 | ResultType->isObjCObjectPointerType()) { |
| 391 | // [Foo alloc] -> objc_alloc(Foo) or |
| 392 | // [self alloc] -> objc_alloc(self) |
| 393 | if (Sel.isUnarySelector() && Sel.getNameForSlot(argIndex: 0) == "alloc" ) |
| 394 | return CGF.EmitObjCAlloc(value: Receiver, returnType: CGF.ConvertType(T: ResultType)); |
| 395 | // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or |
| 396 | // [self allocWithZone:nil] -> objc_allocWithZone(self) |
| 397 | if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && |
| 398 | Args.size() == 1 && Args.front().getType()->isPointerType() && |
| 399 | Sel.getNameForSlot(argIndex: 0) == "allocWithZone" ) { |
| 400 | const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); |
| 401 | if (isa<llvm::ConstantPointerNull>(Val: arg)) |
| 402 | return CGF.EmitObjCAllocWithZone(value: Receiver, |
| 403 | returnType: CGF.ConvertType(T: ResultType)); |
| 404 | return std::nullopt; |
| 405 | } |
| 406 | } |
| 407 | break; |
| 408 | |
| 409 | case OMF_autorelease: |
| 410 | if (ResultType->isObjCObjectPointerType() && |
| 411 | CGM.getLangOpts().getGC() == LangOptions::NonGC && |
| 412 | Runtime.shouldUseARCFunctionsForRetainRelease()) |
| 413 | return CGF.EmitObjCAutorelease(value: Receiver, returnType: CGF.ConvertType(T: ResultType)); |
| 414 | break; |
| 415 | |
| 416 | case OMF_retain: |
| 417 | if (ResultType->isObjCObjectPointerType() && |
| 418 | CGM.getLangOpts().getGC() == LangOptions::NonGC && |
| 419 | Runtime.shouldUseARCFunctionsForRetainRelease()) |
| 420 | return CGF.EmitObjCRetainNonBlock(value: Receiver, returnType: CGF.ConvertType(T: ResultType)); |
| 421 | break; |
| 422 | |
| 423 | case OMF_release: |
| 424 | if (ResultType->isVoidType() && |
| 425 | CGM.getLangOpts().getGC() == LangOptions::NonGC && |
| 426 | Runtime.shouldUseARCFunctionsForRetainRelease()) { |
| 427 | CGF.EmitObjCRelease(value: Receiver, precise: ARCPreciseLifetime); |
| 428 | return nullptr; |
| 429 | } |
| 430 | break; |
| 431 | |
| 432 | default: |
| 433 | break; |
| 434 | } |
| 435 | return std::nullopt; |
| 436 | } |
| 437 | |
| 438 | CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( |
| 439 | CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, |
| 440 | Selector Sel, llvm::Value *Receiver, const CallArgList &Args, |
| 441 | const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, |
| 442 | bool isClassMessage) { |
| 443 | if (std::optional<llvm::Value *> SpecializedResult = |
| 444 | tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, |
| 445 | Sel, method: Method, isClassMessage)) { |
| 446 | return RValue::get(V: *SpecializedResult); |
| 447 | } |
| 448 | return GenerateMessageSend(CGF, ReturnSlot: Return, ResultType, Sel, Receiver, CallArgs: Args, Class: OID, |
| 449 | Method); |
| 450 | } |
| 451 | |
| 452 | static void AppendFirstImpliedRuntimeProtocols( |
| 453 | const ObjCProtocolDecl *PD, |
| 454 | llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { |
| 455 | if (!PD->isNonRuntimeProtocol()) { |
| 456 | const auto *Can = PD->getCanonicalDecl(); |
| 457 | PDs.insert(Entry: Can); |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | for (const auto *ParentPD : PD->protocols()) |
| 462 | AppendFirstImpliedRuntimeProtocols(PD: ParentPD, PDs); |
| 463 | } |
| 464 | |
| 465 | std::vector<const ObjCProtocolDecl *> |
| 466 | CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, |
| 467 | ObjCProtocolDecl::protocol_iterator end) { |
| 468 | std::vector<const ObjCProtocolDecl *> RuntimePds; |
| 469 | llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; |
| 470 | |
| 471 | for (; begin != end; ++begin) { |
| 472 | const auto *It = *begin; |
| 473 | const auto *Can = It->getCanonicalDecl(); |
| 474 | if (Can->isNonRuntimeProtocol()) |
| 475 | NonRuntimePDs.insert(V: Can); |
| 476 | else |
| 477 | RuntimePds.push_back(x: Can); |
| 478 | } |
| 479 | |
| 480 | // If there are no non-runtime protocols then we can just stop now. |
| 481 | if (NonRuntimePDs.empty()) |
| 482 | return RuntimePds; |
| 483 | |
| 484 | // Else we have to search through the non-runtime protocol's inheritancy |
| 485 | // hierarchy DAG stopping whenever a branch either finds a runtime protocol or |
| 486 | // a non-runtime protocol without any parents. These are the "first-implied" |
| 487 | // protocols from a non-runtime protocol. |
| 488 | llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; |
| 489 | for (const auto *PD : NonRuntimePDs) |
| 490 | AppendFirstImpliedRuntimeProtocols(PD, PDs&: FirstImpliedProtos); |
| 491 | |
| 492 | // Walk the Runtime list to get all protocols implied via the inclusion of |
| 493 | // this protocol, e.g. all protocols it inherits from including itself. |
| 494 | llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; |
| 495 | for (const auto *PD : RuntimePds) { |
| 496 | const auto *Can = PD->getCanonicalDecl(); |
| 497 | AllImpliedProtocols.insert(V: Can); |
| 498 | Can->getImpliedProtocols(IPs&: AllImpliedProtocols); |
| 499 | } |
| 500 | |
| 501 | // Similar to above, walk the list of first-implied protocols to find the set |
| 502 | // all the protocols implied excluding the listed protocols themselves since |
| 503 | // they are not yet a part of the `RuntimePds` list. |
| 504 | for (const auto *PD : FirstImpliedProtos) { |
| 505 | PD->getImpliedProtocols(IPs&: AllImpliedProtocols); |
| 506 | } |
| 507 | |
| 508 | // From the first-implied list we have to finish building the final protocol |
| 509 | // list. If a protocol in the first-implied list was already implied via some |
| 510 | // inheritance path through some other protocols then it would be redundant to |
| 511 | // add it here and so we skip over it. |
| 512 | for (const auto *PD : FirstImpliedProtos) { |
| 513 | if (!AllImpliedProtocols.contains(V: PD)) { |
| 514 | RuntimePds.push_back(x: PD); |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | return RuntimePds; |
| 519 | } |
| 520 | |
| 521 | /// Instead of '[[MyClass alloc] init]', try to generate |
| 522 | /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the |
| 523 | /// caller side, as well as the optimized objc_alloc. |
| 524 | static std::optional<llvm::Value *> |
| 525 | tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { |
| 526 | auto &Runtime = CGF.getLangOpts().ObjCRuntime; |
| 527 | if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) |
| 528 | return std::nullopt; |
| 529 | |
| 530 | // Match the exact pattern '[[MyClass alloc] init]'. |
| 531 | Selector Sel = OME->getSelector(); |
| 532 | if (OME->getReceiverKind() != ObjCMessageExpr::Instance || |
| 533 | !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || |
| 534 | Sel.getNameForSlot(argIndex: 0) != "init" ) |
| 535 | return std::nullopt; |
| 536 | |
| 537 | // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' |
| 538 | // with 'cls' a Class. |
| 539 | auto *SubOME = |
| 540 | dyn_cast<ObjCMessageExpr>(Val: OME->getInstanceReceiver()->IgnoreParenCasts()); |
| 541 | if (!SubOME) |
| 542 | return std::nullopt; |
| 543 | Selector SubSel = SubOME->getSelector(); |
| 544 | |
| 545 | if (!SubOME->getType()->isObjCObjectPointerType() || |
| 546 | !SubSel.isUnarySelector() || SubSel.getNameForSlot(argIndex: 0) != "alloc" ) |
| 547 | return std::nullopt; |
| 548 | |
| 549 | llvm::Value *Receiver = nullptr; |
| 550 | switch (SubOME->getReceiverKind()) { |
| 551 | case ObjCMessageExpr::Instance: |
| 552 | if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) |
| 553 | return std::nullopt; |
| 554 | Receiver = CGF.EmitScalarExpr(E: SubOME->getInstanceReceiver()); |
| 555 | break; |
| 556 | |
| 557 | case ObjCMessageExpr::Class: { |
| 558 | QualType ReceiverType = SubOME->getClassReceiver(); |
| 559 | const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); |
| 560 | const ObjCInterfaceDecl *ID = ObjTy->getInterface(); |
| 561 | assert(ID && "null interface should be impossible here" ); |
| 562 | Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, OID: ID); |
| 563 | break; |
| 564 | } |
| 565 | case ObjCMessageExpr::SuperInstance: |
| 566 | case ObjCMessageExpr::SuperClass: |
| 567 | return std::nullopt; |
| 568 | } |
| 569 | |
| 570 | return CGF.EmitObjCAllocInit(value: Receiver, resultType: CGF.ConvertType(T: OME->getType())); |
| 571 | } |
| 572 | |
| 573 | RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, |
| 574 | ReturnValueSlot Return) { |
| 575 | // Only the lookup mechanism and first two arguments of the method |
| 576 | // implementation vary between runtimes. We can get the receiver and |
| 577 | // arguments in generic code. |
| 578 | |
| 579 | bool isDelegateInit = E->isDelegateInitCall(); |
| 580 | |
| 581 | const ObjCMethodDecl *method = E->getMethodDecl(); |
| 582 | |
| 583 | // If the method is -retain, and the receiver's being loaded from |
| 584 | // a __weak variable, peephole the entire operation to objc_loadWeakRetained. |
| 585 | if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && |
| 586 | method->getMethodFamily() == OMF_retain) { |
| 587 | if (auto lvalueExpr = findWeakLValue(E: E->getInstanceReceiver())) { |
| 588 | LValue lvalue = EmitLValue(E: lvalueExpr); |
| 589 | llvm::Value *result = EmitARCLoadWeakRetained(addr: lvalue.getAddress()); |
| 590 | return AdjustObjCObjectType(CGF&: *this, ExpT: E->getType(), Result: RValue::get(V: result)); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(CGF&: *this, OME: E)) |
| 595 | return AdjustObjCObjectType(CGF&: *this, ExpT: E->getType(), Result: RValue::get(V: *Val)); |
| 596 | |
| 597 | // We don't retain the receiver in delegate init calls, and this is |
| 598 | // safe because the receiver value is always loaded from 'self', |
| 599 | // which we zero out. We don't want to Block_copy block receivers, |
| 600 | // though. |
| 601 | bool retainSelf = |
| 602 | (!isDelegateInit && |
| 603 | CGM.getLangOpts().ObjCAutoRefCount && |
| 604 | method && |
| 605 | method->hasAttr<NSConsumesSelfAttr>()); |
| 606 | |
| 607 | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| 608 | bool isSuperMessage = false; |
| 609 | bool isClassMessage = false; |
| 610 | ObjCInterfaceDecl *OID = nullptr; |
| 611 | // Find the receiver |
| 612 | QualType ReceiverType; |
| 613 | llvm::Value *Receiver = nullptr; |
| 614 | switch (E->getReceiverKind()) { |
| 615 | case ObjCMessageExpr::Instance: |
| 616 | ReceiverType = E->getInstanceReceiver()->getType(); |
| 617 | isClassMessage = ReceiverType->isObjCClassType(); |
| 618 | if (retainSelf) { |
| 619 | TryEmitResult ter = tryEmitARCRetainScalarExpr(CGF&: *this, |
| 620 | e: E->getInstanceReceiver()); |
| 621 | Receiver = ter.getPointer(); |
| 622 | if (ter.getInt()) retainSelf = false; |
| 623 | } else |
| 624 | Receiver = EmitScalarExpr(E: E->getInstanceReceiver()); |
| 625 | break; |
| 626 | |
| 627 | case ObjCMessageExpr::Class: { |
| 628 | ReceiverType = E->getClassReceiver(); |
| 629 | OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); |
| 630 | assert(OID && "Invalid Objective-C class message send" ); |
| 631 | Receiver = Runtime.GetClass(CGF&: *this, OID); |
| 632 | isClassMessage = true; |
| 633 | break; |
| 634 | } |
| 635 | |
| 636 | case ObjCMessageExpr::SuperInstance: |
| 637 | ReceiverType = E->getSuperType(); |
| 638 | Receiver = LoadObjCSelf(); |
| 639 | isSuperMessage = true; |
| 640 | break; |
| 641 | |
| 642 | case ObjCMessageExpr::SuperClass: |
| 643 | ReceiverType = E->getSuperType(); |
| 644 | Receiver = LoadObjCSelf(); |
| 645 | isSuperMessage = true; |
| 646 | isClassMessage = true; |
| 647 | break; |
| 648 | } |
| 649 | |
| 650 | if (retainSelf) |
| 651 | Receiver = EmitARCRetainNonBlock(value: Receiver); |
| 652 | |
| 653 | // In ARC, we sometimes want to "extend the lifetime" |
| 654 | // (i.e. retain+autorelease) of receivers of returns-inner-pointer |
| 655 | // messages. |
| 656 | if (getLangOpts().ObjCAutoRefCount && method && |
| 657 | method->hasAttr<ObjCReturnsInnerPointerAttr>() && |
| 658 | shouldExtendReceiverForInnerPointerMessage(message: E)) |
| 659 | Receiver = EmitARCRetainAutorelease(type: ReceiverType, value: Receiver); |
| 660 | |
| 661 | QualType ResultType = method ? method->getReturnType() : E->getType(); |
| 662 | |
| 663 | CallArgList Args; |
| 664 | EmitCallArgs(Args, Prototype: method, ArgRange: E->arguments(), /*AC*/AbstractCallee(method)); |
| 665 | |
| 666 | // For delegate init calls in ARC, do an unsafe store of null into |
| 667 | // self. This represents the call taking direct ownership of that |
| 668 | // value. We have to do this after emitting the other call |
| 669 | // arguments because they might also reference self, but we don't |
| 670 | // have to worry about any of them modifying self because that would |
| 671 | // be an undefined read and write of an object in unordered |
| 672 | // expressions. |
| 673 | if (isDelegateInit) { |
| 674 | assert(getLangOpts().ObjCAutoRefCount && |
| 675 | "delegate init calls should only be marked in ARC" ); |
| 676 | |
| 677 | // Do an unsafe store of null into self. |
| 678 | Address selfAddr = |
| 679 | GetAddrOfLocalVar(VD: cast<ObjCMethodDecl>(Val: CurCodeDecl)->getSelfDecl()); |
| 680 | Builder.CreateStore(Val: getNullForVariable(addr: selfAddr), Addr: selfAddr); |
| 681 | } |
| 682 | |
| 683 | RValue result; |
| 684 | if (isSuperMessage) { |
| 685 | // super is only valid in an Objective-C method |
| 686 | const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(Val: CurFuncDecl); |
| 687 | bool isCategoryImpl = isa<ObjCCategoryImplDecl>(Val: OMD->getDeclContext()); |
| 688 | result = Runtime.GenerateMessageSendSuper(CGF&: *this, ReturnSlot: Return, ResultType, |
| 689 | Sel: E->getSelector(), |
| 690 | Class: OMD->getClassInterface(), |
| 691 | isCategoryImpl, |
| 692 | Self: Receiver, |
| 693 | IsClassMessage: isClassMessage, |
| 694 | CallArgs: Args, |
| 695 | Method: method); |
| 696 | } else { |
| 697 | // Call runtime methods directly if we can. |
| 698 | result = Runtime.GeneratePossiblySpecializedMessageSend( |
| 699 | CGF&: *this, Return, ResultType, Sel: E->getSelector(), Receiver, Args, OID, |
| 700 | Method: method, isClassMessage); |
| 701 | } |
| 702 | |
| 703 | // For delegate init calls in ARC, implicitly store the result of |
| 704 | // the call back into self. This takes ownership of the value. |
| 705 | if (isDelegateInit) { |
| 706 | Address selfAddr = |
| 707 | GetAddrOfLocalVar(VD: cast<ObjCMethodDecl>(Val: CurCodeDecl)->getSelfDecl()); |
| 708 | llvm::Value *newSelf = result.getScalarVal(); |
| 709 | |
| 710 | // The delegate return type isn't necessarily a matching type; in |
| 711 | // fact, it's quite likely to be 'id'. |
| 712 | llvm::Type *selfTy = selfAddr.getElementType(); |
| 713 | newSelf = Builder.CreateBitCast(V: newSelf, DestTy: selfTy); |
| 714 | |
| 715 | Builder.CreateStore(Val: newSelf, Addr: selfAddr); |
| 716 | } |
| 717 | |
| 718 | return AdjustObjCObjectType(CGF&: *this, ExpT: E->getType(), Result: result); |
| 719 | } |
| 720 | |
| 721 | namespace { |
| 722 | struct FinishARCDealloc final : EHScopeStack::Cleanup { |
| 723 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 724 | const ObjCMethodDecl *method = cast<ObjCMethodDecl>(Val: CGF.CurCodeDecl); |
| 725 | |
| 726 | const ObjCImplDecl *impl = cast<ObjCImplDecl>(Val: method->getDeclContext()); |
| 727 | const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| 728 | if (!iface->getSuperClass()) return; |
| 729 | |
| 730 | bool isCategory = isa<ObjCCategoryImplDecl>(Val: impl); |
| 731 | |
| 732 | // Call [super dealloc] if we have a superclass. |
| 733 | llvm::Value *self = CGF.LoadObjCSelf(); |
| 734 | |
| 735 | CallArgList args; |
| 736 | CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnSlot: ReturnValueSlot(), |
| 737 | ResultType: CGF.getContext().VoidTy, |
| 738 | Sel: method->getSelector(), |
| 739 | Class: iface, |
| 740 | isCategoryImpl: isCategory, |
| 741 | Self: self, |
| 742 | /*is class msg*/ IsClassMessage: false, |
| 743 | CallArgs: args, |
| 744 | Method: method); |
| 745 | } |
| 746 | }; |
| 747 | } |
| 748 | |
| 749 | /// StartObjCMethod - Begin emission of an ObjCMethod. This generates |
| 750 | /// the LLVM function and sets the other context used by |
| 751 | /// CodeGenFunction. |
| 752 | void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, |
| 753 | const ObjCContainerDecl *CD) { |
| 754 | SourceLocation StartLoc = OMD->getBeginLoc(); |
| 755 | FunctionArgList args; |
| 756 | // Check if we should generate debug info for this method. |
| 757 | if (OMD->hasAttr<NoDebugAttr>()) |
| 758 | DebugInfo = nullptr; // disable debug info indefinitely for this function |
| 759 | |
| 760 | llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); |
| 761 | |
| 762 | const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(MD: OMD); |
| 763 | if (OMD->isDirectMethod()) { |
| 764 | Fn->setVisibility(llvm::Function::HiddenVisibility); |
| 765 | CGM.SetLLVMFunctionAttributes(GD: OMD, Info: FI, F: Fn, /*IsThunk=*/false); |
| 766 | CGM.SetLLVMFunctionAttributesForDefinition(D: OMD, F: Fn); |
| 767 | } else { |
| 768 | CGM.SetInternalFunctionAttributes(GD: OMD, F: Fn, FI); |
| 769 | } |
| 770 | |
| 771 | args.push_back(Elt: OMD->getSelfDecl()); |
| 772 | if (!OMD->isDirectMethod()) |
| 773 | args.push_back(Elt: OMD->getCmdDecl()); |
| 774 | |
| 775 | args.append(in_start: OMD->param_begin(), in_end: OMD->param_end()); |
| 776 | |
| 777 | CurGD = OMD; |
| 778 | CurEHLocation = OMD->getEndLoc(); |
| 779 | |
| 780 | StartFunction(GD: OMD, RetTy: OMD->getReturnType(), Fn, FnInfo: FI, Args: args, |
| 781 | Loc: OMD->getLocation(), StartLoc); |
| 782 | |
| 783 | if (OMD->isDirectMethod()) { |
| 784 | // This function is a direct call, it has to implement a nil check |
| 785 | // on entry. |
| 786 | // |
| 787 | // TODO: possibly have several entry points to elide the check |
| 788 | CGM.getObjCRuntime().GenerateDirectMethodPrologue(CGF&: *this, Fn, OMD, CD); |
| 789 | } |
| 790 | |
| 791 | // In ARC, certain methods get an extra cleanup. |
| 792 | if (CGM.getLangOpts().ObjCAutoRefCount && |
| 793 | OMD->isInstanceMethod() && |
| 794 | OMD->getSelector().isUnarySelector()) { |
| 795 | const IdentifierInfo *ident = |
| 796 | OMD->getSelector().getIdentifierInfoForSlot(argIndex: 0); |
| 797 | if (ident->isStr(Str: "dealloc" )) |
| 798 | EHStack.pushCleanup<FinishARCDealloc>(Kind: getARCCleanupKind()); |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| 803 | LValue lvalue, QualType type); |
| 804 | |
| 805 | /// Generate an Objective-C method. An Objective-C method is a C function with |
| 806 | /// its pointer, name, and types registered in the class structure. |
| 807 | void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { |
| 808 | StartObjCMethod(OMD, CD: OMD->getClassInterface()); |
| 809 | PGO->assignRegionCounters(GD: GlobalDecl(OMD), Fn: CurFn); |
| 810 | assert(isa<CompoundStmt>(OMD->getBody())); |
| 811 | incrementProfileCounter(S: OMD->getBody()); |
| 812 | EmitCompoundStmtWithoutScope(S: *cast<CompoundStmt>(Val: OMD->getBody())); |
| 813 | FinishFunction(EndLoc: OMD->getBodyRBrace()); |
| 814 | } |
| 815 | |
| 816 | /// emitStructGetterCall - Call the runtime function to load a property |
| 817 | /// into the return value slot. |
| 818 | static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, |
| 819 | bool isAtomic, bool hasStrong) { |
| 820 | ASTContext &Context = CGF.getContext(); |
| 821 | |
| 822 | llvm::Value *src = |
| 823 | CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0) |
| 824 | .getPointer(CGF); |
| 825 | |
| 826 | // objc_copyStruct (ReturnValue, &structIvar, |
| 827 | // sizeof (Type of Ivar), isAtomic, false); |
| 828 | CallArgList args; |
| 829 | |
| 830 | llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF); |
| 831 | args.add(rvalue: RValue::get(V: dest), type: Context.VoidPtrTy); |
| 832 | args.add(rvalue: RValue::get(V: src), type: Context.VoidPtrTy); |
| 833 | |
| 834 | CharUnits size = CGF.getContext().getTypeSizeInChars(T: ivar->getType()); |
| 835 | args.add(rvalue: RValue::get(V: CGF.CGM.getSize(numChars: size)), type: Context.getSizeType()); |
| 836 | args.add(rvalue: RValue::get(V: CGF.Builder.getInt1(V: isAtomic)), type: Context.BoolTy); |
| 837 | args.add(rvalue: RValue::get(V: CGF.Builder.getInt1(V: hasStrong)), type: Context.BoolTy); |
| 838 | |
| 839 | llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); |
| 840 | CGCallee callee = CGCallee::forDirect(functionPtr: fn); |
| 841 | CGF.EmitCall(CallInfo: CGF.getTypes().arrangeBuiltinFunctionCall(resultType: Context.VoidTy, args), |
| 842 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 843 | } |
| 844 | |
| 845 | /// Determine whether the given architecture supports unaligned atomic |
| 846 | /// accesses. They don't have to be fast, just faster than a function |
| 847 | /// call and a mutex. |
| 848 | static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { |
| 849 | // FIXME: Allow unaligned atomic load/store on x86. (It is not |
| 850 | // currently supported by the backend.) |
| 851 | return false; |
| 852 | } |
| 853 | |
| 854 | /// Return the maximum size that permits atomic accesses for the given |
| 855 | /// architecture. |
| 856 | static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, |
| 857 | llvm::Triple::ArchType arch) { |
| 858 | // ARM has 8-byte atomic accesses, but it's not clear whether we |
| 859 | // want to rely on them here. |
| 860 | |
| 861 | // In the default case, just assume that any size up to a pointer is |
| 862 | // fine given adequate alignment. |
| 863 | return CharUnits::fromQuantity(Quantity: CGM.PointerSizeInBytes); |
| 864 | } |
| 865 | |
| 866 | namespace { |
| 867 | class PropertyImplStrategy { |
| 868 | public: |
| 869 | enum StrategyKind { |
| 870 | /// The 'native' strategy is to use the architecture's provided |
| 871 | /// reads and writes. |
| 872 | Native, |
| 873 | |
| 874 | /// Use objc_setProperty and objc_getProperty. |
| 875 | GetSetProperty, |
| 876 | |
| 877 | /// Use objc_setProperty for the setter, but use expression |
| 878 | /// evaluation for the getter. |
| 879 | SetPropertyAndExpressionGet, |
| 880 | |
| 881 | /// Use objc_copyStruct. |
| 882 | CopyStruct, |
| 883 | |
| 884 | /// The 'expression' strategy is to emit normal assignment or |
| 885 | /// lvalue-to-rvalue expressions. |
| 886 | Expression |
| 887 | }; |
| 888 | |
| 889 | StrategyKind getKind() const { return StrategyKind(Kind); } |
| 890 | |
| 891 | bool hasStrongMember() const { return HasStrong; } |
| 892 | bool isAtomic() const { return IsAtomic; } |
| 893 | bool isCopy() const { return IsCopy; } |
| 894 | |
| 895 | CharUnits getIvarSize() const { return IvarSize; } |
| 896 | CharUnits getIvarAlignment() const { return IvarAlignment; } |
| 897 | |
| 898 | PropertyImplStrategy(CodeGenModule &CGM, |
| 899 | const ObjCPropertyImplDecl *propImpl); |
| 900 | |
| 901 | private: |
| 902 | LLVM_PREFERRED_TYPE(StrategyKind) |
| 903 | unsigned Kind : 8; |
| 904 | LLVM_PREFERRED_TYPE(bool) |
| 905 | unsigned IsAtomic : 1; |
| 906 | LLVM_PREFERRED_TYPE(bool) |
| 907 | unsigned IsCopy : 1; |
| 908 | LLVM_PREFERRED_TYPE(bool) |
| 909 | unsigned HasStrong : 1; |
| 910 | |
| 911 | CharUnits IvarSize; |
| 912 | CharUnits IvarAlignment; |
| 913 | }; |
| 914 | } |
| 915 | |
| 916 | /// Pick an implementation strategy for the given property synthesis. |
| 917 | PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, |
| 918 | const ObjCPropertyImplDecl *propImpl) { |
| 919 | const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| 920 | ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); |
| 921 | |
| 922 | IsCopy = (setterKind == ObjCPropertyDecl::Copy); |
| 923 | IsAtomic = prop->isAtomic(); |
| 924 | HasStrong = false; // doesn't matter here. |
| 925 | |
| 926 | // Evaluate the ivar's size and alignment. |
| 927 | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| 928 | QualType ivarType = ivar->getType(); |
| 929 | auto TInfo = CGM.getContext().getTypeInfoInChars(T: ivarType); |
| 930 | IvarSize = TInfo.Width; |
| 931 | IvarAlignment = TInfo.Align; |
| 932 | |
| 933 | // If we have a copy property, we always have to use setProperty. |
| 934 | // If the property is atomic we need to use getProperty, but in |
| 935 | // the nonatomic case we can just use expression. |
| 936 | if (IsCopy) { |
| 937 | Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; |
| 938 | return; |
| 939 | } |
| 940 | |
| 941 | // Handle retain. |
| 942 | if (setterKind == ObjCPropertyDecl::Retain) { |
| 943 | // In GC-only, there's nothing special that needs to be done. |
| 944 | if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { |
| 945 | // fallthrough |
| 946 | |
| 947 | // In ARC, if the property is non-atomic, use expression emission, |
| 948 | // which translates to objc_storeStrong. This isn't required, but |
| 949 | // it's slightly nicer. |
| 950 | } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { |
| 951 | // Using standard expression emission for the setter is only |
| 952 | // acceptable if the ivar is __strong, which won't be true if |
| 953 | // the property is annotated with __attribute__((NSObject)). |
| 954 | // TODO: falling all the way back to objc_setProperty here is |
| 955 | // just laziness, though; we could still use objc_storeStrong |
| 956 | // if we hacked it right. |
| 957 | if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) |
| 958 | Kind = Expression; |
| 959 | else |
| 960 | Kind = SetPropertyAndExpressionGet; |
| 961 | return; |
| 962 | |
| 963 | // Otherwise, we need to at least use setProperty. However, if |
| 964 | // the property isn't atomic, we can use normal expression |
| 965 | // emission for the getter. |
| 966 | } else if (!IsAtomic) { |
| 967 | Kind = SetPropertyAndExpressionGet; |
| 968 | return; |
| 969 | |
| 970 | // Otherwise, we have to use both setProperty and getProperty. |
| 971 | } else { |
| 972 | Kind = GetSetProperty; |
| 973 | return; |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | // If we're not atomic, just use expression accesses. |
| 978 | if (!IsAtomic) { |
| 979 | Kind = Expression; |
| 980 | return; |
| 981 | } |
| 982 | |
| 983 | // Properties on bitfield ivars need to be emitted using expression |
| 984 | // accesses even if they're nominally atomic. |
| 985 | if (ivar->isBitField()) { |
| 986 | Kind = Expression; |
| 987 | return; |
| 988 | } |
| 989 | |
| 990 | // GC-qualified or ARC-qualified ivars need to be emitted as |
| 991 | // expressions. This actually works out to being atomic anyway, |
| 992 | // except for ARC __strong, but that should trigger the above code. |
| 993 | if (ivarType.hasNonTrivialObjCLifetime() || |
| 994 | (CGM.getLangOpts().getGC() && |
| 995 | CGM.getContext().getObjCGCAttrKind(Ty: ivarType))) { |
| 996 | Kind = Expression; |
| 997 | return; |
| 998 | } |
| 999 | |
| 1000 | // Compute whether the ivar has strong members. |
| 1001 | if (CGM.getLangOpts().getGC()) |
| 1002 | if (const RecordType *recordType = ivarType->getAs<RecordType>()) |
| 1003 | HasStrong = recordType->getDecl()->hasObjectMember(); |
| 1004 | |
| 1005 | // We can never access structs with object members with a native |
| 1006 | // access, because we need to use write barriers. This is what |
| 1007 | // objc_copyStruct is for. |
| 1008 | if (HasStrong) { |
| 1009 | Kind = CopyStruct; |
| 1010 | return; |
| 1011 | } |
| 1012 | |
| 1013 | // Otherwise, this is target-dependent and based on the size and |
| 1014 | // alignment of the ivar. |
| 1015 | |
| 1016 | // If the size of the ivar is not a power of two, give up. We don't |
| 1017 | // want to get into the business of doing compare-and-swaps. |
| 1018 | if (!IvarSize.isPowerOfTwo()) { |
| 1019 | Kind = CopyStruct; |
| 1020 | return; |
| 1021 | } |
| 1022 | |
| 1023 | llvm::Triple::ArchType arch = |
| 1024 | CGM.getTarget().getTriple().getArch(); |
| 1025 | |
| 1026 | // Most architectures require memory to fit within a single cache |
| 1027 | // line, so the alignment has to be at least the size of the access. |
| 1028 | // Otherwise we have to grab a lock. |
| 1029 | if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { |
| 1030 | Kind = CopyStruct; |
| 1031 | return; |
| 1032 | } |
| 1033 | |
| 1034 | // If the ivar's size exceeds the architecture's maximum atomic |
| 1035 | // access size, we have to use CopyStruct. |
| 1036 | if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { |
| 1037 | Kind = CopyStruct; |
| 1038 | return; |
| 1039 | } |
| 1040 | |
| 1041 | // Otherwise, we can use native loads and stores. |
| 1042 | Kind = Native; |
| 1043 | } |
| 1044 | |
| 1045 | /// Generate an Objective-C property getter function. |
| 1046 | /// |
| 1047 | /// The given Decl must be an ObjCImplementationDecl. \@synthesize |
| 1048 | /// is illegal within a category. |
| 1049 | void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, |
| 1050 | const ObjCPropertyImplDecl *PID) { |
| 1051 | llvm::Constant *AtomicHelperFn = |
| 1052 | CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); |
| 1053 | ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); |
| 1054 | assert(OMD && "Invalid call to generate getter (empty method)" ); |
| 1055 | StartObjCMethod(OMD, CD: IMP->getClassInterface()); |
| 1056 | |
| 1057 | generateObjCGetterBody(classImpl: IMP, propImpl: PID, GetterMothodDecl: OMD, AtomicHelperFn); |
| 1058 | |
| 1059 | FinishFunction(EndLoc: OMD->getEndLoc()); |
| 1060 | } |
| 1061 | |
| 1062 | static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { |
| 1063 | const Expr *getter = propImpl->getGetterCXXConstructor(); |
| 1064 | if (!getter) return true; |
| 1065 | |
| 1066 | // Sema only makes only of these when the ivar has a C++ class type, |
| 1067 | // so the form is pretty constrained. |
| 1068 | |
| 1069 | // If the property has a reference type, we might just be binding a |
| 1070 | // reference, in which case the result will be a gl-value. We should |
| 1071 | // treat this as a non-trivial operation. |
| 1072 | if (getter->isGLValue()) |
| 1073 | return false; |
| 1074 | |
| 1075 | // If we selected a trivial copy-constructor, we're okay. |
| 1076 | if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(Val: getter)) |
| 1077 | return (construct->getConstructor()->isTrivial()); |
| 1078 | |
| 1079 | // The constructor might require cleanups (in which case it's never |
| 1080 | // trivial). |
| 1081 | assert(isa<ExprWithCleanups>(getter)); |
| 1082 | return false; |
| 1083 | } |
| 1084 | |
| 1085 | /// emitCPPObjectAtomicGetterCall - Call the runtime function to |
| 1086 | /// copy the ivar into the resturn slot. |
| 1087 | static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, |
| 1088 | llvm::Value *returnAddr, |
| 1089 | ObjCIvarDecl *ivar, |
| 1090 | llvm::Constant *AtomicHelperFn) { |
| 1091 | // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, |
| 1092 | // AtomicHelperFn); |
| 1093 | CallArgList args; |
| 1094 | |
| 1095 | // The 1st argument is the return Slot. |
| 1096 | args.add(rvalue: RValue::get(V: returnAddr), type: CGF.getContext().VoidPtrTy); |
| 1097 | |
| 1098 | // The 2nd argument is the address of the ivar. |
| 1099 | llvm::Value *ivarAddr = |
| 1100 | CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0) |
| 1101 | .getPointer(CGF); |
| 1102 | args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy); |
| 1103 | |
| 1104 | // Third argument is the helper function. |
| 1105 | args.add(rvalue: RValue::get(V: AtomicHelperFn), type: CGF.getContext().VoidPtrTy); |
| 1106 | |
| 1107 | llvm::FunctionCallee copyCppAtomicObjectFn = |
| 1108 | CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); |
| 1109 | CGCallee callee = CGCallee::forDirect(functionPtr: copyCppAtomicObjectFn); |
| 1110 | CGF.EmitCall( |
| 1111 | CallInfo: CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args), |
| 1112 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 1113 | } |
| 1114 | |
| 1115 | // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for |
| 1116 | // the `_cmd` selector argument for getter/setter bodies. For direct methods, |
| 1117 | // this returns an undefined/poison value; this matches behavior prior to `_cmd` |
| 1118 | // being removed from the direct method ABI as the getter/setter caller would |
| 1119 | // never load one. For non-direct methods, this emits a load of the implicit |
| 1120 | // `_cmd` storage. |
| 1121 | static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF, |
| 1122 | ObjCMethodDecl *MD) { |
| 1123 | if (MD->isDirectMethod()) { |
| 1124 | // Direct methods do not have a `_cmd` argument. Emit an undefined/poison |
| 1125 | // value. This will be passed to objc_getProperty/objc_setProperty, which |
| 1126 | // has not appeared bothered by the `_cmd` argument being undefined before. |
| 1127 | llvm::Type *selType = CGF.ConvertType(T: CGF.getContext().getObjCSelType()); |
| 1128 | return llvm::PoisonValue::get(T: selType); |
| 1129 | } |
| 1130 | |
| 1131 | return CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: MD->getCmdDecl()), Name: "cmd" ); |
| 1132 | } |
| 1133 | |
| 1134 | void |
| 1135 | CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
| 1136 | const ObjCPropertyImplDecl *propImpl, |
| 1137 | const ObjCMethodDecl *GetterMethodDecl, |
| 1138 | llvm::Constant *AtomicHelperFn) { |
| 1139 | |
| 1140 | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| 1141 | |
| 1142 | if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { |
| 1143 | if (!AtomicHelperFn) { |
| 1144 | LValue Src = |
| 1145 | EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0); |
| 1146 | LValue Dst = MakeAddrLValue(Addr: ReturnValue, T: ivar->getType()); |
| 1147 | callCStructCopyConstructor(Dst, Src); |
| 1148 | } else { |
| 1149 | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| 1150 | emitCPPObjectAtomicGetterCall(CGF&: *this, returnAddr: ReturnValue.emitRawPointer(CGF&: *this), |
| 1151 | ivar, AtomicHelperFn); |
| 1152 | } |
| 1153 | return; |
| 1154 | } |
| 1155 | |
| 1156 | // If there's a non-trivial 'get' expression, we just have to emit that. |
| 1157 | if (!hasTrivialGetExpr(propImpl)) { |
| 1158 | if (!AtomicHelperFn) { |
| 1159 | auto *ret = ReturnStmt::Create(Ctx: getContext(), RL: SourceLocation(), |
| 1160 | E: propImpl->getGetterCXXConstructor(), |
| 1161 | /* NRVOCandidate=*/nullptr); |
| 1162 | EmitReturnStmt(S: *ret); |
| 1163 | } |
| 1164 | else { |
| 1165 | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| 1166 | emitCPPObjectAtomicGetterCall(CGF&: *this, returnAddr: ReturnValue.emitRawPointer(CGF&: *this), |
| 1167 | ivar, AtomicHelperFn); |
| 1168 | } |
| 1169 | return; |
| 1170 | } |
| 1171 | |
| 1172 | const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| 1173 | QualType propType = prop->getType(); |
| 1174 | ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); |
| 1175 | |
| 1176 | // Pick an implementation strategy. |
| 1177 | PropertyImplStrategy strategy(CGM, propImpl); |
| 1178 | switch (strategy.getKind()) { |
| 1179 | case PropertyImplStrategy::Native: { |
| 1180 | // We don't need to do anything for a zero-size struct. |
| 1181 | if (strategy.getIvarSize().isZero()) |
| 1182 | return; |
| 1183 | |
| 1184 | LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0); |
| 1185 | |
| 1186 | // Currently, all atomic accesses have to be through integer |
| 1187 | // types, so there's no point in trying to pick a prettier type. |
| 1188 | uint64_t ivarSize = getContext().toBits(CharSize: strategy.getIvarSize()); |
| 1189 | llvm::Type *bitcastType = llvm::Type::getIntNTy(C&: getLLVMContext(), N: ivarSize); |
| 1190 | |
| 1191 | // Perform an atomic load. This does not impose ordering constraints. |
| 1192 | Address ivarAddr = LV.getAddress(); |
| 1193 | ivarAddr = ivarAddr.withElementType(ElemTy: bitcastType); |
| 1194 | llvm::LoadInst *load = Builder.CreateLoad(Addr: ivarAddr, Name: "load" ); |
| 1195 | load->setAtomic(Ordering: llvm::AtomicOrdering::Unordered); |
| 1196 | |
| 1197 | // Store that value into the return address. Doing this with a |
| 1198 | // bitcast is likely to produce some pretty ugly IR, but it's not |
| 1199 | // the *most* terrible thing in the world. |
| 1200 | llvm::Type *retTy = ConvertType(T: getterMethod->getReturnType()); |
| 1201 | uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(Ty: retTy); |
| 1202 | llvm::Value *ivarVal = load; |
| 1203 | if (ivarSize > retTySize) { |
| 1204 | bitcastType = llvm::Type::getIntNTy(C&: getLLVMContext(), N: retTySize); |
| 1205 | ivarVal = Builder.CreateTrunc(V: load, DestTy: bitcastType); |
| 1206 | } |
| 1207 | Builder.CreateStore(Val: ivarVal, Addr: ReturnValue.withElementType(ElemTy: bitcastType)); |
| 1208 | |
| 1209 | // Make sure we don't do an autorelease. |
| 1210 | AutoreleaseResult = false; |
| 1211 | return; |
| 1212 | } |
| 1213 | |
| 1214 | case PropertyImplStrategy::GetSetProperty: { |
| 1215 | llvm::FunctionCallee getPropertyFn = |
| 1216 | CGM.getObjCRuntime().GetPropertyGetFunction(); |
| 1217 | if (!getPropertyFn) { |
| 1218 | CGM.ErrorUnsupported(D: propImpl, Type: "Obj-C getter requiring atomic copy" ); |
| 1219 | return; |
| 1220 | } |
| 1221 | CGCallee callee = CGCallee::forDirect(functionPtr: getPropertyFn); |
| 1222 | |
| 1223 | // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). |
| 1224 | // FIXME: Can't this be simpler? This might even be worse than the |
| 1225 | // corresponding gcc code. |
| 1226 | llvm::Value *cmd = emitCmdValueForGetterSetterBody(CGF&: *this, MD: getterMethod); |
| 1227 | llvm::Value *self = Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: VoidPtrTy); |
| 1228 | llvm::Value *ivarOffset = |
| 1229 | EmitIvarOffsetAsPointerDiff(Interface: classImpl->getClassInterface(), Ivar: ivar); |
| 1230 | |
| 1231 | CallArgList args; |
| 1232 | args.add(rvalue: RValue::get(V: self), type: getContext().getObjCIdType()); |
| 1233 | args.add(rvalue: RValue::get(V: cmd), type: getContext().getObjCSelType()); |
| 1234 | args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType()); |
| 1235 | args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isAtomic())), |
| 1236 | type: getContext().BoolTy); |
| 1237 | |
| 1238 | // FIXME: We shouldn't need to get the function info here, the |
| 1239 | // runtime already should have computed it to build the function. |
| 1240 | llvm::CallBase *CallInstruction; |
| 1241 | RValue RV = EmitCall(CallInfo: getTypes().arrangeBuiltinFunctionCall( |
| 1242 | resultType: getContext().getObjCIdType(), args), |
| 1243 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args, CallOrInvoke: &CallInstruction); |
| 1244 | if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: CallInstruction)) |
| 1245 | call->setTailCall(); |
| 1246 | |
| 1247 | // We need to fix the type here. Ivars with copy & retain are |
| 1248 | // always objects so we don't need to worry about complex or |
| 1249 | // aggregates. |
| 1250 | RV = RValue::get(V: Builder.CreateBitCast( |
| 1251 | V: RV.getScalarVal(), |
| 1252 | DestTy: getTypes().ConvertType(T: getterMethod->getReturnType()))); |
| 1253 | |
| 1254 | EmitReturnOfRValue(RV, Ty: propType); |
| 1255 | |
| 1256 | // objc_getProperty does an autorelease, so we should suppress ours. |
| 1257 | AutoreleaseResult = false; |
| 1258 | |
| 1259 | return; |
| 1260 | } |
| 1261 | |
| 1262 | case PropertyImplStrategy::CopyStruct: |
| 1263 | emitStructGetterCall(CGF&: *this, ivar, isAtomic: strategy.isAtomic(), |
| 1264 | hasStrong: strategy.hasStrongMember()); |
| 1265 | return; |
| 1266 | |
| 1267 | case PropertyImplStrategy::Expression: |
| 1268 | case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| 1269 | LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0); |
| 1270 | |
| 1271 | QualType ivarType = ivar->getType(); |
| 1272 | switch (getEvaluationKind(T: ivarType)) { |
| 1273 | case TEK_Complex: { |
| 1274 | ComplexPairTy pair = EmitLoadOfComplex(src: LV, loc: SourceLocation()); |
| 1275 | EmitStoreOfComplex(V: pair, dest: MakeAddrLValue(Addr: ReturnValue, T: ivarType), |
| 1276 | /*init*/ isInit: true); |
| 1277 | return; |
| 1278 | } |
| 1279 | case TEK_Aggregate: { |
| 1280 | // The return value slot is guaranteed to not be aliased, but |
| 1281 | // that's not necessarily the same as "on the stack", so |
| 1282 | // we still potentially need objc_memmove_collectable. |
| 1283 | EmitAggregateCopy(/* Dest= */ MakeAddrLValue(Addr: ReturnValue, T: ivarType), |
| 1284 | /* Src= */ LV, EltTy: ivarType, MayOverlap: getOverlapForReturnValue()); |
| 1285 | return; |
| 1286 | } |
| 1287 | case TEK_Scalar: { |
| 1288 | llvm::Value *value; |
| 1289 | if (propType->isReferenceType()) { |
| 1290 | value = LV.getAddress().emitRawPointer(CGF&: *this); |
| 1291 | } else { |
| 1292 | // We want to load and autoreleaseReturnValue ARC __weak ivars. |
| 1293 | if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| 1294 | if (getLangOpts().ObjCAutoRefCount) { |
| 1295 | value = emitARCRetainLoadOfScalar(CGF&: *this, lvalue: LV, type: ivarType); |
| 1296 | } else { |
| 1297 | value = EmitARCLoadWeak(addr: LV.getAddress()); |
| 1298 | } |
| 1299 | |
| 1300 | // Otherwise we want to do a simple load, suppressing the |
| 1301 | // final autorelease. |
| 1302 | } else { |
| 1303 | value = EmitLoadOfLValue(V: LV, Loc: SourceLocation()).getScalarVal(); |
| 1304 | AutoreleaseResult = false; |
| 1305 | } |
| 1306 | |
| 1307 | value = Builder.CreateBitCast( |
| 1308 | V: value, DestTy: ConvertType(T: GetterMethodDecl->getReturnType())); |
| 1309 | } |
| 1310 | |
| 1311 | EmitReturnOfRValue(RV: RValue::get(V: value), Ty: propType); |
| 1312 | return; |
| 1313 | } |
| 1314 | } |
| 1315 | llvm_unreachable("bad evaluation kind" ); |
| 1316 | } |
| 1317 | |
| 1318 | } |
| 1319 | llvm_unreachable("bad @property implementation strategy!" ); |
| 1320 | } |
| 1321 | |
| 1322 | /// emitStructSetterCall - Call the runtime function to store the value |
| 1323 | /// from the first formal parameter into the given ivar. |
| 1324 | static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, |
| 1325 | ObjCIvarDecl *ivar) { |
| 1326 | // objc_copyStruct (&structIvar, &Arg, |
| 1327 | // sizeof (struct something), true, false); |
| 1328 | CallArgList args; |
| 1329 | |
| 1330 | // The first argument is the address of the ivar. |
| 1331 | llvm::Value *ivarAddr = |
| 1332 | CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0) |
| 1333 | .getPointer(CGF); |
| 1334 | ivarAddr = CGF.Builder.CreateBitCast(V: ivarAddr, DestTy: CGF.Int8PtrTy); |
| 1335 | args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy); |
| 1336 | |
| 1337 | // The second argument is the address of the parameter variable. |
| 1338 | ParmVarDecl *argVar = *OMD->param_begin(); |
| 1339 | DeclRefExpr argRef(CGF.getContext(), argVar, false, |
| 1340 | argVar->getType().getNonReferenceType(), VK_LValue, |
| 1341 | SourceLocation()); |
| 1342 | llvm::Value *argAddr = CGF.EmitLValue(E: &argRef).getPointer(CGF); |
| 1343 | args.add(rvalue: RValue::get(V: argAddr), type: CGF.getContext().VoidPtrTy); |
| 1344 | |
| 1345 | // The third argument is the sizeof the type. |
| 1346 | llvm::Value *size = |
| 1347 | CGF.CGM.getSize(numChars: CGF.getContext().getTypeSizeInChars(T: ivar->getType())); |
| 1348 | args.add(rvalue: RValue::get(V: size), type: CGF.getContext().getSizeType()); |
| 1349 | |
| 1350 | // The fourth argument is the 'isAtomic' flag. |
| 1351 | args.add(rvalue: RValue::get(V: CGF.Builder.getTrue()), type: CGF.getContext().BoolTy); |
| 1352 | |
| 1353 | // The fifth argument is the 'hasStrong' flag. |
| 1354 | // FIXME: should this really always be false? |
| 1355 | args.add(rvalue: RValue::get(V: CGF.Builder.getFalse()), type: CGF.getContext().BoolTy); |
| 1356 | |
| 1357 | llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); |
| 1358 | CGCallee callee = CGCallee::forDirect(functionPtr: fn); |
| 1359 | CGF.EmitCall( |
| 1360 | CallInfo: CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args), |
| 1361 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 1362 | } |
| 1363 | |
| 1364 | /// emitCPPObjectAtomicSetterCall - Call the runtime function to store |
| 1365 | /// the value from the first formal parameter into the given ivar, using |
| 1366 | /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. |
| 1367 | static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, |
| 1368 | ObjCMethodDecl *OMD, |
| 1369 | ObjCIvarDecl *ivar, |
| 1370 | llvm::Constant *AtomicHelperFn) { |
| 1371 | // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, |
| 1372 | // AtomicHelperFn); |
| 1373 | CallArgList args; |
| 1374 | |
| 1375 | // The first argument is the address of the ivar. |
| 1376 | llvm::Value *ivarAddr = |
| 1377 | CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: CGF.LoadObjCSelf(), Ivar: ivar, CVRQualifiers: 0) |
| 1378 | .getPointer(CGF); |
| 1379 | args.add(rvalue: RValue::get(V: ivarAddr), type: CGF.getContext().VoidPtrTy); |
| 1380 | |
| 1381 | // The second argument is the address of the parameter variable. |
| 1382 | ParmVarDecl *argVar = *OMD->param_begin(); |
| 1383 | DeclRefExpr argRef(CGF.getContext(), argVar, false, |
| 1384 | argVar->getType().getNonReferenceType(), VK_LValue, |
| 1385 | SourceLocation()); |
| 1386 | llvm::Value *argAddr = CGF.EmitLValue(E: &argRef).getPointer(CGF); |
| 1387 | args.add(rvalue: RValue::get(V: argAddr), type: CGF.getContext().VoidPtrTy); |
| 1388 | |
| 1389 | // Third argument is the helper function. |
| 1390 | args.add(rvalue: RValue::get(V: AtomicHelperFn), type: CGF.getContext().VoidPtrTy); |
| 1391 | |
| 1392 | llvm::FunctionCallee fn = |
| 1393 | CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); |
| 1394 | CGCallee callee = CGCallee::forDirect(functionPtr: fn); |
| 1395 | CGF.EmitCall( |
| 1396 | CallInfo: CGF.getTypes().arrangeBuiltinFunctionCall(resultType: CGF.getContext().VoidTy, args), |
| 1397 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 1398 | } |
| 1399 | |
| 1400 | |
| 1401 | static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { |
| 1402 | Expr *setter = PID->getSetterCXXAssignment(); |
| 1403 | if (!setter) return true; |
| 1404 | |
| 1405 | // Sema only makes only of these when the ivar has a C++ class type, |
| 1406 | // so the form is pretty constrained. |
| 1407 | |
| 1408 | // An operator call is trivial if the function it calls is trivial. |
| 1409 | // This also implies that there's nothing non-trivial going on with |
| 1410 | // the arguments, because operator= can only be trivial if it's a |
| 1411 | // synthesized assignment operator and therefore both parameters are |
| 1412 | // references. |
| 1413 | if (CallExpr *call = dyn_cast<CallExpr>(Val: setter)) { |
| 1414 | if (const FunctionDecl *callee |
| 1415 | = dyn_cast_or_null<FunctionDecl>(Val: call->getCalleeDecl())) |
| 1416 | if (callee->isTrivial()) |
| 1417 | return true; |
| 1418 | return false; |
| 1419 | } |
| 1420 | |
| 1421 | assert(isa<ExprWithCleanups>(setter)); |
| 1422 | return false; |
| 1423 | } |
| 1424 | |
| 1425 | static bool UseOptimizedSetter(CodeGenModule &CGM) { |
| 1426 | if (CGM.getLangOpts().getGC() != LangOptions::NonGC) |
| 1427 | return false; |
| 1428 | return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); |
| 1429 | } |
| 1430 | |
| 1431 | void |
| 1432 | CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
| 1433 | const ObjCPropertyImplDecl *propImpl, |
| 1434 | llvm::Constant *AtomicHelperFn) { |
| 1435 | ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| 1436 | ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); |
| 1437 | |
| 1438 | if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { |
| 1439 | ParmVarDecl *PVD = *setterMethod->param_begin(); |
| 1440 | if (!AtomicHelperFn) { |
| 1441 | // Call the move assignment operator instead of calling the copy |
| 1442 | // assignment operator and destructor. |
| 1443 | LValue Dst = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, |
| 1444 | /*quals*/ CVRQualifiers: 0); |
| 1445 | LValue Src = MakeAddrLValue(Addr: GetAddrOfLocalVar(VD: PVD), T: ivar->getType()); |
| 1446 | callCStructMoveAssignmentOperator(Dst, Src); |
| 1447 | } else { |
| 1448 | // If atomic, assignment is called via a locking api. |
| 1449 | emitCPPObjectAtomicSetterCall(CGF&: *this, OMD: setterMethod, ivar, AtomicHelperFn); |
| 1450 | } |
| 1451 | // Decativate the destructor for the setter parameter. |
| 1452 | DeactivateCleanupBlock(Cleanup: CalleeDestructedParamCleanups[PVD], DominatingIP: AllocaInsertPt); |
| 1453 | return; |
| 1454 | } |
| 1455 | |
| 1456 | // Just use the setter expression if Sema gave us one and it's |
| 1457 | // non-trivial. |
| 1458 | if (!hasTrivialSetExpr(PID: propImpl)) { |
| 1459 | if (!AtomicHelperFn) |
| 1460 | // If non-atomic, assignment is called directly. |
| 1461 | EmitStmt(S: propImpl->getSetterCXXAssignment()); |
| 1462 | else |
| 1463 | // If atomic, assignment is called via a locking api. |
| 1464 | emitCPPObjectAtomicSetterCall(CGF&: *this, OMD: setterMethod, ivar, |
| 1465 | AtomicHelperFn); |
| 1466 | return; |
| 1467 | } |
| 1468 | |
| 1469 | PropertyImplStrategy strategy(CGM, propImpl); |
| 1470 | switch (strategy.getKind()) { |
| 1471 | case PropertyImplStrategy::Native: { |
| 1472 | // We don't need to do anything for a zero-size struct. |
| 1473 | if (strategy.getIvarSize().isZero()) |
| 1474 | return; |
| 1475 | |
| 1476 | Address argAddr = GetAddrOfLocalVar(VD: *setterMethod->param_begin()); |
| 1477 | |
| 1478 | LValue ivarLValue = |
| 1479 | EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), Base: LoadObjCSelf(), Ivar: ivar, /*quals*/ CVRQualifiers: 0); |
| 1480 | Address ivarAddr = ivarLValue.getAddress(); |
| 1481 | |
| 1482 | // Currently, all atomic accesses have to be through integer |
| 1483 | // types, so there's no point in trying to pick a prettier type. |
| 1484 | llvm::Type *castType = llvm::Type::getIntNTy( |
| 1485 | C&: getLLVMContext(), N: getContext().toBits(CharSize: strategy.getIvarSize())); |
| 1486 | |
| 1487 | // Cast both arguments to the chosen operation type. |
| 1488 | argAddr = argAddr.withElementType(ElemTy: castType); |
| 1489 | ivarAddr = ivarAddr.withElementType(ElemTy: castType); |
| 1490 | |
| 1491 | llvm::Value *load = Builder.CreateLoad(Addr: argAddr); |
| 1492 | |
| 1493 | // Perform an atomic store. There are no memory ordering requirements. |
| 1494 | llvm::StoreInst *store = Builder.CreateStore(Val: load, Addr: ivarAddr); |
| 1495 | store->setAtomic(Ordering: llvm::AtomicOrdering::Unordered); |
| 1496 | return; |
| 1497 | } |
| 1498 | |
| 1499 | case PropertyImplStrategy::GetSetProperty: |
| 1500 | case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| 1501 | |
| 1502 | llvm::FunctionCallee setOptimizedPropertyFn = nullptr; |
| 1503 | llvm::FunctionCallee setPropertyFn = nullptr; |
| 1504 | if (UseOptimizedSetter(CGM)) { |
| 1505 | // 10.8 and iOS 6.0 code and GC is off |
| 1506 | setOptimizedPropertyFn = |
| 1507 | CGM.getObjCRuntime().GetOptimizedPropertySetFunction( |
| 1508 | atomic: strategy.isAtomic(), copy: strategy.isCopy()); |
| 1509 | if (!setOptimizedPropertyFn) { |
| 1510 | CGM.ErrorUnsupported(D: propImpl, Type: "Obj-C optimized setter - NYI" ); |
| 1511 | return; |
| 1512 | } |
| 1513 | } |
| 1514 | else { |
| 1515 | setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); |
| 1516 | if (!setPropertyFn) { |
| 1517 | CGM.ErrorUnsupported(D: propImpl, Type: "Obj-C setter requiring atomic copy" ); |
| 1518 | return; |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | // Emit objc_setProperty((id) self, _cmd, offset, arg, |
| 1523 | // <is-atomic>, <is-copy>). |
| 1524 | llvm::Value *cmd = emitCmdValueForGetterSetterBody(CGF&: *this, MD: setterMethod); |
| 1525 | llvm::Value *self = |
| 1526 | Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: VoidPtrTy); |
| 1527 | llvm::Value *ivarOffset = |
| 1528 | EmitIvarOffsetAsPointerDiff(Interface: classImpl->getClassInterface(), Ivar: ivar); |
| 1529 | Address argAddr = GetAddrOfLocalVar(VD: *setterMethod->param_begin()); |
| 1530 | llvm::Value *arg = Builder.CreateLoad(Addr: argAddr, Name: "arg" ); |
| 1531 | arg = Builder.CreateBitCast(V: arg, DestTy: VoidPtrTy); |
| 1532 | |
| 1533 | CallArgList args; |
| 1534 | args.add(rvalue: RValue::get(V: self), type: getContext().getObjCIdType()); |
| 1535 | args.add(rvalue: RValue::get(V: cmd), type: getContext().getObjCSelType()); |
| 1536 | if (setOptimizedPropertyFn) { |
| 1537 | args.add(rvalue: RValue::get(V: arg), type: getContext().getObjCIdType()); |
| 1538 | args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType()); |
| 1539 | CGCallee callee = CGCallee::forDirect(functionPtr: setOptimizedPropertyFn); |
| 1540 | EmitCall(CallInfo: getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args), |
| 1541 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 1542 | } else { |
| 1543 | args.add(rvalue: RValue::get(V: ivarOffset), type: getContext().getPointerDiffType()); |
| 1544 | args.add(rvalue: RValue::get(V: arg), type: getContext().getObjCIdType()); |
| 1545 | args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isAtomic())), |
| 1546 | type: getContext().BoolTy); |
| 1547 | args.add(rvalue: RValue::get(V: Builder.getInt1(V: strategy.isCopy())), |
| 1548 | type: getContext().BoolTy); |
| 1549 | // FIXME: We shouldn't need to get the function info here, the runtime |
| 1550 | // already should have computed it to build the function. |
| 1551 | CGCallee callee = CGCallee::forDirect(functionPtr: setPropertyFn); |
| 1552 | EmitCall(CallInfo: getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args), |
| 1553 | Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 1554 | } |
| 1555 | |
| 1556 | return; |
| 1557 | } |
| 1558 | |
| 1559 | case PropertyImplStrategy::CopyStruct: |
| 1560 | emitStructSetterCall(CGF&: *this, OMD: setterMethod, ivar); |
| 1561 | return; |
| 1562 | |
| 1563 | case PropertyImplStrategy::Expression: |
| 1564 | break; |
| 1565 | } |
| 1566 | |
| 1567 | // Otherwise, fake up some ASTs and emit a normal assignment. |
| 1568 | ValueDecl *selfDecl = setterMethod->getSelfDecl(); |
| 1569 | DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), |
| 1570 | VK_LValue, SourceLocation()); |
| 1571 | ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), |
| 1572 | CK_LValueToRValue, &self, VK_PRValue, |
| 1573 | FPOptionsOverride()); |
| 1574 | ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), |
| 1575 | SourceLocation(), SourceLocation(), |
| 1576 | &selfLoad, true, true); |
| 1577 | |
| 1578 | ParmVarDecl *argDecl = *setterMethod->param_begin(); |
| 1579 | QualType argType = argDecl->getType().getNonReferenceType(); |
| 1580 | DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, |
| 1581 | SourceLocation()); |
| 1582 | ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, |
| 1583 | argType.getUnqualifiedType(), CK_LValueToRValue, |
| 1584 | &arg, VK_PRValue, FPOptionsOverride()); |
| 1585 | |
| 1586 | // The property type can differ from the ivar type in some situations with |
| 1587 | // Objective-C pointer types, we can always bit cast the RHS in these cases. |
| 1588 | // The following absurdity is just to ensure well-formed IR. |
| 1589 | CastKind argCK = CK_NoOp; |
| 1590 | if (ivarRef.getType()->isObjCObjectPointerType()) { |
| 1591 | if (argLoad.getType()->isObjCObjectPointerType()) |
| 1592 | argCK = CK_BitCast; |
| 1593 | else if (argLoad.getType()->isBlockPointerType()) |
| 1594 | argCK = CK_BlockPointerToObjCPointerCast; |
| 1595 | else |
| 1596 | argCK = CK_CPointerToObjCPointerCast; |
| 1597 | } else if (ivarRef.getType()->isBlockPointerType()) { |
| 1598 | if (argLoad.getType()->isBlockPointerType()) |
| 1599 | argCK = CK_BitCast; |
| 1600 | else |
| 1601 | argCK = CK_AnyPointerToBlockPointerCast; |
| 1602 | } else if (ivarRef.getType()->isPointerType()) { |
| 1603 | argCK = CK_BitCast; |
| 1604 | } else if (argLoad.getType()->isAtomicType() && |
| 1605 | !ivarRef.getType()->isAtomicType()) { |
| 1606 | argCK = CK_AtomicToNonAtomic; |
| 1607 | } else if (!argLoad.getType()->isAtomicType() && |
| 1608 | ivarRef.getType()->isAtomicType()) { |
| 1609 | argCK = CK_NonAtomicToAtomic; |
| 1610 | } |
| 1611 | ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, |
| 1612 | &argLoad, VK_PRValue, FPOptionsOverride()); |
| 1613 | Expr *finalArg = &argLoad; |
| 1614 | if (!getContext().hasSameUnqualifiedType(T1: ivarRef.getType(), |
| 1615 | T2: argLoad.getType())) |
| 1616 | finalArg = &argCast; |
| 1617 | |
| 1618 | BinaryOperator *assign = BinaryOperator::Create( |
| 1619 | C: getContext(), lhs: &ivarRef, rhs: finalArg, opc: BO_Assign, ResTy: ivarRef.getType(), |
| 1620 | VK: VK_PRValue, OK: OK_Ordinary, opLoc: SourceLocation(), FPFeatures: FPOptionsOverride()); |
| 1621 | EmitStmt(S: assign); |
| 1622 | } |
| 1623 | |
| 1624 | /// Generate an Objective-C property setter function. |
| 1625 | /// |
| 1626 | /// The given Decl must be an ObjCImplementationDecl. \@synthesize |
| 1627 | /// is illegal within a category. |
| 1628 | void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, |
| 1629 | const ObjCPropertyImplDecl *PID) { |
| 1630 | llvm::Constant *AtomicHelperFn = |
| 1631 | CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); |
| 1632 | ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); |
| 1633 | assert(OMD && "Invalid call to generate setter (empty method)" ); |
| 1634 | StartObjCMethod(OMD, CD: IMP->getClassInterface()); |
| 1635 | |
| 1636 | generateObjCSetterBody(classImpl: IMP, propImpl: PID, AtomicHelperFn); |
| 1637 | |
| 1638 | FinishFunction(EndLoc: OMD->getEndLoc()); |
| 1639 | } |
| 1640 | |
| 1641 | namespace { |
| 1642 | struct DestroyIvar final : EHScopeStack::Cleanup { |
| 1643 | private: |
| 1644 | llvm::Value *addr; |
| 1645 | const ObjCIvarDecl *ivar; |
| 1646 | CodeGenFunction::Destroyer *destroyer; |
| 1647 | bool useEHCleanupForArray; |
| 1648 | public: |
| 1649 | DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, |
| 1650 | CodeGenFunction::Destroyer *destroyer, |
| 1651 | bool useEHCleanupForArray) |
| 1652 | : addr(addr), ivar(ivar), destroyer(destroyer), |
| 1653 | useEHCleanupForArray(useEHCleanupForArray) {} |
| 1654 | |
| 1655 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 1656 | LValue lvalue |
| 1657 | = CGF.EmitLValueForIvar(ObjectTy: CGF.TypeOfSelfObject(), Base: addr, Ivar: ivar, /*CVR*/ CVRQualifiers: 0); |
| 1658 | CGF.emitDestroy(addr: lvalue.getAddress(), type: ivar->getType(), destroyer, |
| 1659 | useEHCleanupForArray: flags.isForNormalCleanup() && useEHCleanupForArray); |
| 1660 | } |
| 1661 | }; |
| 1662 | } |
| 1663 | |
| 1664 | /// Like CodeGenFunction::destroyARCStrong, but do it with a call. |
| 1665 | static void destroyARCStrongWithStore(CodeGenFunction &CGF, |
| 1666 | Address addr, |
| 1667 | QualType type) { |
| 1668 | llvm::Value *null = getNullForVariable(addr); |
| 1669 | CGF.EmitARCStoreStrongCall(addr, value: null, /*ignored*/ resultIgnored: true); |
| 1670 | } |
| 1671 | |
| 1672 | static void emitCXXDestructMethod(CodeGenFunction &CGF, |
| 1673 | ObjCImplementationDecl *impl) { |
| 1674 | CodeGenFunction::RunCleanupsScope scope(CGF); |
| 1675 | |
| 1676 | llvm::Value *self = CGF.LoadObjCSelf(); |
| 1677 | |
| 1678 | const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| 1679 | for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); |
| 1680 | ivar; ivar = ivar->getNextIvar()) { |
| 1681 | QualType type = ivar->getType(); |
| 1682 | |
| 1683 | // Check whether the ivar is a destructible type. |
| 1684 | QualType::DestructionKind dtorKind = type.isDestructedType(); |
| 1685 | if (!dtorKind) continue; |
| 1686 | |
| 1687 | CodeGenFunction::Destroyer *destroyer = nullptr; |
| 1688 | |
| 1689 | // Use a call to objc_storeStrong to destroy strong ivars, for the |
| 1690 | // general benefit of the tools. |
| 1691 | if (dtorKind == QualType::DK_objc_strong_lifetime) { |
| 1692 | destroyer = destroyARCStrongWithStore; |
| 1693 | |
| 1694 | // Otherwise use the default for the destruction kind. |
| 1695 | } else { |
| 1696 | destroyer = CGF.getDestroyer(destructionKind: dtorKind); |
| 1697 | } |
| 1698 | |
| 1699 | CleanupKind cleanupKind = CGF.getCleanupKind(kind: dtorKind); |
| 1700 | |
| 1701 | CGF.EHStack.pushCleanup<DestroyIvar>(Kind: cleanupKind, A: self, A: ivar, A: destroyer, |
| 1702 | A: cleanupKind & EHCleanup); |
| 1703 | } |
| 1704 | |
| 1705 | assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?" ); |
| 1706 | } |
| 1707 | |
| 1708 | void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
| 1709 | ObjCMethodDecl *MD, |
| 1710 | bool ctor) { |
| 1711 | MD->createImplicitParams(Context&: CGM.getContext(), ID: IMP->getClassInterface()); |
| 1712 | StartObjCMethod(OMD: MD, CD: IMP->getClassInterface()); |
| 1713 | |
| 1714 | // Emit .cxx_construct. |
| 1715 | if (ctor) { |
| 1716 | // Suppress the final autorelease in ARC. |
| 1717 | AutoreleaseResult = false; |
| 1718 | |
| 1719 | for (const auto *IvarInit : IMP->inits()) { |
| 1720 | FieldDecl *Field = IvarInit->getAnyMember(); |
| 1721 | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Val: Field); |
| 1722 | LValue LV = EmitLValueForIvar(ObjectTy: TypeOfSelfObject(), |
| 1723 | Base: LoadObjCSelf(), Ivar, CVRQualifiers: 0); |
| 1724 | EmitAggExpr(E: IvarInit->getInit(), |
| 1725 | AS: AggValueSlot::forLValue(LV, isDestructed: AggValueSlot::IsDestructed, |
| 1726 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
| 1727 | isAliased: AggValueSlot::IsNotAliased, |
| 1728 | mayOverlap: AggValueSlot::DoesNotOverlap)); |
| 1729 | } |
| 1730 | // constructor returns 'self'. |
| 1731 | CodeGenTypes &Types = CGM.getTypes(); |
| 1732 | QualType IdTy(CGM.getContext().getObjCIdType()); |
| 1733 | llvm::Value *SelfAsId = |
| 1734 | Builder.CreateBitCast(V: LoadObjCSelf(), DestTy: Types.ConvertType(T: IdTy)); |
| 1735 | EmitReturnOfRValue(RV: RValue::get(V: SelfAsId), Ty: IdTy); |
| 1736 | |
| 1737 | // Emit .cxx_destruct. |
| 1738 | } else { |
| 1739 | emitCXXDestructMethod(CGF&: *this, impl: IMP); |
| 1740 | } |
| 1741 | FinishFunction(); |
| 1742 | } |
| 1743 | |
| 1744 | llvm::Value *CodeGenFunction::LoadObjCSelf() { |
| 1745 | VarDecl *Self = cast<ObjCMethodDecl>(Val: CurFuncDecl)->getSelfDecl(); |
| 1746 | DeclRefExpr DRE(getContext(), Self, |
| 1747 | /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), |
| 1748 | Self->getType(), VK_LValue, SourceLocation()); |
| 1749 | return EmitLoadOfScalar(lvalue: EmitDeclRefLValue(E: &DRE), Loc: SourceLocation()); |
| 1750 | } |
| 1751 | |
| 1752 | QualType CodeGenFunction::TypeOfSelfObject() { |
| 1753 | const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(Val: CurFuncDecl); |
| 1754 | ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); |
| 1755 | const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( |
| 1756 | Val: getContext().getCanonicalType(T: selfDecl->getType())); |
| 1757 | return PTy->getPointeeType(); |
| 1758 | } |
| 1759 | |
| 1760 | void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ |
| 1761 | llvm::FunctionCallee EnumerationMutationFnPtr = |
| 1762 | CGM.getObjCRuntime().EnumerationMutationFunction(); |
| 1763 | if (!EnumerationMutationFnPtr) { |
| 1764 | CGM.ErrorUnsupported(S: &S, Type: "Obj-C fast enumeration for this runtime" ); |
| 1765 | return; |
| 1766 | } |
| 1767 | CGCallee EnumerationMutationFn = |
| 1768 | CGCallee::forDirect(functionPtr: EnumerationMutationFnPtr); |
| 1769 | |
| 1770 | CGDebugInfo *DI = getDebugInfo(); |
| 1771 | if (DI) |
| 1772 | DI->EmitLexicalBlockStart(Builder, Loc: S.getSourceRange().getBegin()); |
| 1773 | |
| 1774 | RunCleanupsScope ForScope(*this); |
| 1775 | |
| 1776 | // The local variable comes into scope immediately. |
| 1777 | AutoVarEmission variable = AutoVarEmission::invalid(); |
| 1778 | if (const DeclStmt *SD = dyn_cast<DeclStmt>(Val: S.getElement())) |
| 1779 | variable = EmitAutoVarAlloca(var: *cast<VarDecl>(Val: SD->getSingleDecl())); |
| 1780 | |
| 1781 | JumpDest LoopEnd = getJumpDestInCurrentScope(Name: "forcoll.end" ); |
| 1782 | |
| 1783 | // Fast enumeration state. |
| 1784 | QualType StateTy = CGM.getObjCFastEnumerationStateType(); |
| 1785 | Address StatePtr = CreateMemTemp(T: StateTy, Name: "state.ptr" ); |
| 1786 | EmitNullInitialization(DestPtr: StatePtr, Ty: StateTy); |
| 1787 | |
| 1788 | // Number of elements in the items array. |
| 1789 | static const unsigned NumItems = 16; |
| 1790 | |
| 1791 | // Fetch the countByEnumeratingWithState:objects:count: selector. |
| 1792 | const IdentifierInfo *II[] = { |
| 1793 | &CGM.getContext().Idents.get(Name: "countByEnumeratingWithState" ), |
| 1794 | &CGM.getContext().Idents.get(Name: "objects" ), |
| 1795 | &CGM.getContext().Idents.get(Name: "count" )}; |
| 1796 | Selector FastEnumSel = |
| 1797 | CGM.getContext().Selectors.getSelector(NumArgs: std::size(II), IIV: &II[0]); |
| 1798 | |
| 1799 | QualType ItemsTy = getContext().getConstantArrayType( |
| 1800 | EltTy: getContext().getObjCIdType(), ArySize: llvm::APInt(32, NumItems), SizeExpr: nullptr, |
| 1801 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 1802 | Address ItemsPtr = CreateMemTemp(T: ItemsTy, Name: "items.ptr" ); |
| 1803 | |
| 1804 | // Emit the collection pointer. In ARC, we do a retain. |
| 1805 | llvm::Value *Collection; |
| 1806 | if (getLangOpts().ObjCAutoRefCount) { |
| 1807 | Collection = EmitARCRetainScalarExpr(expr: S.getCollection()); |
| 1808 | |
| 1809 | // Enter a cleanup to do the release. |
| 1810 | EmitObjCConsumeObject(T: S.getCollection()->getType(), Ptr: Collection); |
| 1811 | } else { |
| 1812 | Collection = EmitScalarExpr(E: S.getCollection()); |
| 1813 | } |
| 1814 | |
| 1815 | // The 'continue' label needs to appear within the cleanup for the |
| 1816 | // collection object. |
| 1817 | JumpDest AfterBody = getJumpDestInCurrentScope(Name: "forcoll.next" ); |
| 1818 | |
| 1819 | // Send it our message: |
| 1820 | CallArgList Args; |
| 1821 | |
| 1822 | // The first argument is a temporary of the enumeration-state type. |
| 1823 | Args.add(rvalue: RValue::get(Addr: StatePtr, CGF&: *this), type: getContext().getPointerType(T: StateTy)); |
| 1824 | |
| 1825 | // The second argument is a temporary array with space for NumItems |
| 1826 | // pointers. We'll actually be loading elements from the array |
| 1827 | // pointer written into the control state; this buffer is so that |
| 1828 | // collections that *aren't* backed by arrays can still queue up |
| 1829 | // batches of elements. |
| 1830 | Args.add(rvalue: RValue::get(Addr: ItemsPtr, CGF&: *this), type: getContext().getPointerType(T: ItemsTy)); |
| 1831 | |
| 1832 | // The third argument is the capacity of that temporary array. |
| 1833 | llvm::Type *NSUIntegerTy = ConvertType(T: getContext().getNSUIntegerType()); |
| 1834 | llvm::Constant *Count = llvm::ConstantInt::get(Ty: NSUIntegerTy, V: NumItems); |
| 1835 | Args.add(rvalue: RValue::get(V: Count), type: getContext().getNSUIntegerType()); |
| 1836 | |
| 1837 | // Start the enumeration. |
| 1838 | RValue CountRV = |
| 1839 | CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 1840 | ResultType: getContext().getNSUIntegerType(), |
| 1841 | Sel: FastEnumSel, Receiver: Collection, CallArgs: Args); |
| 1842 | |
| 1843 | // The initial number of objects that were returned in the buffer. |
| 1844 | llvm::Value *initialBufferLimit = CountRV.getScalarVal(); |
| 1845 | |
| 1846 | llvm::BasicBlock *EmptyBB = createBasicBlock(name: "forcoll.empty" ); |
| 1847 | llvm::BasicBlock *LoopInitBB = createBasicBlock(name: "forcoll.loopinit" ); |
| 1848 | |
| 1849 | llvm::Value *zero = llvm::Constant::getNullValue(Ty: NSUIntegerTy); |
| 1850 | |
| 1851 | // If the limit pointer was zero to begin with, the collection is |
| 1852 | // empty; skip all this. Set the branch weight assuming this has the same |
| 1853 | // probability of exiting the loop as any other loop exit. |
| 1854 | uint64_t EntryCount = getCurrentProfileCount(); |
| 1855 | Builder.CreateCondBr( |
| 1856 | Cond: Builder.CreateICmpEQ(LHS: initialBufferLimit, RHS: zero, Name: "iszero" ), True: EmptyBB, |
| 1857 | False: LoopInitBB, |
| 1858 | BranchWeights: createProfileWeights(TrueCount: EntryCount, FalseCount: getProfileCount(S: S.getBody()))); |
| 1859 | |
| 1860 | // Otherwise, initialize the loop. |
| 1861 | EmitBlock(BB: LoopInitBB); |
| 1862 | |
| 1863 | // Save the initial mutations value. This is the value at an |
| 1864 | // address that was written into the state object by |
| 1865 | // countByEnumeratingWithState:objects:count:. |
| 1866 | Address StateMutationsPtrPtr = |
| 1867 | Builder.CreateStructGEP(Addr: StatePtr, Index: 2, Name: "mutationsptr.ptr" ); |
| 1868 | llvm::Value *StateMutationsPtr |
| 1869 | = Builder.CreateLoad(Addr: StateMutationsPtrPtr, Name: "mutationsptr" ); |
| 1870 | |
| 1871 | llvm::Type *UnsignedLongTy = ConvertType(T: getContext().UnsignedLongTy); |
| 1872 | llvm::Value *initialMutations = |
| 1873 | Builder.CreateAlignedLoad(Ty: UnsignedLongTy, Addr: StateMutationsPtr, |
| 1874 | Align: getPointerAlign(), Name: "forcoll.initial-mutations" ); |
| 1875 | |
| 1876 | // Start looping. This is the point we return to whenever we have a |
| 1877 | // fresh, non-empty batch of objects. |
| 1878 | llvm::BasicBlock *LoopBodyBB = createBasicBlock(name: "forcoll.loopbody" ); |
| 1879 | EmitBlock(BB: LoopBodyBB); |
| 1880 | |
| 1881 | // The current index into the buffer. |
| 1882 | llvm::PHINode *index = Builder.CreatePHI(Ty: NSUIntegerTy, NumReservedValues: 3, Name: "forcoll.index" ); |
| 1883 | index->addIncoming(V: zero, BB: LoopInitBB); |
| 1884 | |
| 1885 | // The current buffer size. |
| 1886 | llvm::PHINode *count = Builder.CreatePHI(Ty: NSUIntegerTy, NumReservedValues: 3, Name: "forcoll.count" ); |
| 1887 | count->addIncoming(V: initialBufferLimit, BB: LoopInitBB); |
| 1888 | |
| 1889 | incrementProfileCounter(S: &S); |
| 1890 | |
| 1891 | // Check whether the mutations value has changed from where it was |
| 1892 | // at start. StateMutationsPtr should actually be invariant between |
| 1893 | // refreshes. |
| 1894 | StateMutationsPtr = Builder.CreateLoad(Addr: StateMutationsPtrPtr, Name: "mutationsptr" ); |
| 1895 | llvm::Value *currentMutations |
| 1896 | = Builder.CreateAlignedLoad(Ty: UnsignedLongTy, Addr: StateMutationsPtr, |
| 1897 | Align: getPointerAlign(), Name: "statemutations" ); |
| 1898 | |
| 1899 | llvm::BasicBlock *WasMutatedBB = createBasicBlock(name: "forcoll.mutated" ); |
| 1900 | llvm::BasicBlock *WasNotMutatedBB = createBasicBlock(name: "forcoll.notmutated" ); |
| 1901 | |
| 1902 | Builder.CreateCondBr(Cond: Builder.CreateICmpEQ(LHS: currentMutations, RHS: initialMutations), |
| 1903 | True: WasNotMutatedBB, False: WasMutatedBB); |
| 1904 | |
| 1905 | // If so, call the enumeration-mutation function. |
| 1906 | EmitBlock(BB: WasMutatedBB); |
| 1907 | llvm::Type *ObjCIdType = ConvertType(T: getContext().getObjCIdType()); |
| 1908 | llvm::Value *V = |
| 1909 | Builder.CreateBitCast(V: Collection, DestTy: ObjCIdType); |
| 1910 | CallArgList Args2; |
| 1911 | Args2.add(rvalue: RValue::get(V), type: getContext().getObjCIdType()); |
| 1912 | // FIXME: We shouldn't need to get the function info here, the runtime already |
| 1913 | // should have computed it to build the function. |
| 1914 | EmitCall( |
| 1915 | CallInfo: CGM.getTypes().arrangeBuiltinFunctionCall(resultType: getContext().VoidTy, args: Args2), |
| 1916 | Callee: EnumerationMutationFn, ReturnValue: ReturnValueSlot(), Args: Args2); |
| 1917 | |
| 1918 | // Otherwise, or if the mutation function returns, just continue. |
| 1919 | EmitBlock(BB: WasNotMutatedBB); |
| 1920 | |
| 1921 | // Initialize the element variable. |
| 1922 | RunCleanupsScope elementVariableScope(*this); |
| 1923 | bool elementIsVariable; |
| 1924 | LValue elementLValue; |
| 1925 | QualType elementType; |
| 1926 | if (const DeclStmt *SD = dyn_cast<DeclStmt>(Val: S.getElement())) { |
| 1927 | // Initialize the variable, in case it's a __block variable or something. |
| 1928 | EmitAutoVarInit(emission: variable); |
| 1929 | |
| 1930 | const VarDecl *D = cast<VarDecl>(Val: SD->getSingleDecl()); |
| 1931 | DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, |
| 1932 | D->getType(), VK_LValue, SourceLocation()); |
| 1933 | elementLValue = EmitLValue(E: &tempDRE); |
| 1934 | elementType = D->getType(); |
| 1935 | elementIsVariable = true; |
| 1936 | |
| 1937 | if (D->isARCPseudoStrong()) |
| 1938 | elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); |
| 1939 | } else { |
| 1940 | elementLValue = LValue(); // suppress warning |
| 1941 | elementType = cast<Expr>(Val: S.getElement())->getType(); |
| 1942 | elementIsVariable = false; |
| 1943 | } |
| 1944 | llvm::Type *convertedElementType = ConvertType(T: elementType); |
| 1945 | |
| 1946 | // Fetch the buffer out of the enumeration state. |
| 1947 | // TODO: this pointer should actually be invariant between |
| 1948 | // refreshes, which would help us do certain loop optimizations. |
| 1949 | Address StateItemsPtr = |
| 1950 | Builder.CreateStructGEP(Addr: StatePtr, Index: 1, Name: "stateitems.ptr" ); |
| 1951 | llvm::Value *EnumStateItems = |
| 1952 | Builder.CreateLoad(Addr: StateItemsPtr, Name: "stateitems" ); |
| 1953 | |
| 1954 | // Fetch the value at the current index from the buffer. |
| 1955 | llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP( |
| 1956 | Ty: ObjCIdType, Ptr: EnumStateItems, IdxList: index, Name: "currentitem.ptr" ); |
| 1957 | llvm::Value *CurrentItem = |
| 1958 | Builder.CreateAlignedLoad(Ty: ObjCIdType, Addr: CurrentItemPtr, Align: getPointerAlign()); |
| 1959 | |
| 1960 | if (SanOpts.has(K: SanitizerKind::ObjCCast)) { |
| 1961 | // Before using an item from the collection, check that the implicit cast |
| 1962 | // from id to the element type is valid. This is done with instrumentation |
| 1963 | // roughly corresponding to: |
| 1964 | // |
| 1965 | // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } |
| 1966 | const ObjCObjectPointerType *ObjPtrTy = |
| 1967 | elementType->getAsObjCInterfacePointerType(); |
| 1968 | const ObjCInterfaceType *InterfaceTy = |
| 1969 | ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; |
| 1970 | if (InterfaceTy) { |
| 1971 | auto CheckOrdinal = SanitizerKind::SO_ObjCCast; |
| 1972 | auto CheckHandler = SanitizerHandler::InvalidObjCCast; |
| 1973 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
| 1974 | auto &C = CGM.getContext(); |
| 1975 | assert(InterfaceTy->getDecl() && "No decl for ObjC interface type" ); |
| 1976 | Selector IsKindOfClassSel = GetUnarySelector(name: "isKindOfClass" , Ctx&: C); |
| 1977 | CallArgList IsKindOfClassArgs; |
| 1978 | llvm::Value *Cls = |
| 1979 | CGM.getObjCRuntime().GetClass(CGF&: *this, OID: InterfaceTy->getDecl()); |
| 1980 | IsKindOfClassArgs.add(rvalue: RValue::get(V: Cls), type: C.getObjCClassType()); |
| 1981 | llvm::Value *IsClass = |
| 1982 | CGM.getObjCRuntime() |
| 1983 | .GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), ResultType: C.BoolTy, |
| 1984 | Sel: IsKindOfClassSel, Receiver: CurrentItem, |
| 1985 | CallArgs: IsKindOfClassArgs) |
| 1986 | .getScalarVal(); |
| 1987 | llvm::Constant *StaticData[] = { |
| 1988 | EmitCheckSourceLocation(Loc: S.getBeginLoc()), |
| 1989 | EmitCheckTypeDescriptor(T: QualType(InterfaceTy, 0))}; |
| 1990 | EmitCheck(Checked: {{IsClass, CheckOrdinal}}, Check: CheckHandler, |
| 1991 | StaticArgs: ArrayRef<llvm::Constant *>(StaticData), DynamicArgs: CurrentItem); |
| 1992 | } |
| 1993 | } |
| 1994 | |
| 1995 | // Cast that value to the right type. |
| 1996 | CurrentItem = Builder.CreateBitCast(V: CurrentItem, DestTy: convertedElementType, |
| 1997 | Name: "currentitem" ); |
| 1998 | |
| 1999 | // Make sure we have an l-value. Yes, this gets evaluated every |
| 2000 | // time through the loop. |
| 2001 | if (!elementIsVariable) { |
| 2002 | elementLValue = EmitLValue(E: cast<Expr>(Val: S.getElement())); |
| 2003 | EmitStoreThroughLValue(Src: RValue::get(V: CurrentItem), Dst: elementLValue); |
| 2004 | } else { |
| 2005 | EmitStoreThroughLValue(Src: RValue::get(V: CurrentItem), Dst: elementLValue, |
| 2006 | /*isInit*/ true); |
| 2007 | } |
| 2008 | |
| 2009 | // If we do have an element variable, this assignment is the end of |
| 2010 | // its initialization. |
| 2011 | if (elementIsVariable) |
| 2012 | EmitAutoVarCleanups(emission: variable); |
| 2013 | |
| 2014 | // Perform the loop body, setting up break and continue labels. |
| 2015 | BreakContinueStack.push_back(Elt: BreakContinue(LoopEnd, AfterBody)); |
| 2016 | { |
| 2017 | RunCleanupsScope Scope(*this); |
| 2018 | EmitStmt(S: S.getBody()); |
| 2019 | } |
| 2020 | BreakContinueStack.pop_back(); |
| 2021 | |
| 2022 | // Destroy the element variable now. |
| 2023 | elementVariableScope.ForceCleanup(); |
| 2024 | |
| 2025 | // Check whether there are more elements. |
| 2026 | EmitBlock(BB: AfterBody.getBlock()); |
| 2027 | |
| 2028 | llvm::BasicBlock *FetchMoreBB = createBasicBlock(name: "forcoll.refetch" ); |
| 2029 | |
| 2030 | // First we check in the local buffer. |
| 2031 | llvm::Value *indexPlusOne = |
| 2032 | Builder.CreateNUWAdd(LHS: index, RHS: llvm::ConstantInt::get(Ty: NSUIntegerTy, V: 1)); |
| 2033 | |
| 2034 | // If we haven't overrun the buffer yet, we can continue. |
| 2035 | // Set the branch weights based on the simplifying assumption that this is |
| 2036 | // like a while-loop, i.e., ignoring that the false branch fetches more |
| 2037 | // elements and then returns to the loop. |
| 2038 | Builder.CreateCondBr( |
| 2039 | Cond: Builder.CreateICmpULT(LHS: indexPlusOne, RHS: count), True: LoopBodyBB, False: FetchMoreBB, |
| 2040 | BranchWeights: createProfileWeights(TrueCount: getProfileCount(S: S.getBody()), FalseCount: EntryCount)); |
| 2041 | |
| 2042 | index->addIncoming(V: indexPlusOne, BB: AfterBody.getBlock()); |
| 2043 | count->addIncoming(V: count, BB: AfterBody.getBlock()); |
| 2044 | |
| 2045 | // Otherwise, we have to fetch more elements. |
| 2046 | EmitBlock(BB: FetchMoreBB); |
| 2047 | |
| 2048 | CountRV = |
| 2049 | CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 2050 | ResultType: getContext().getNSUIntegerType(), |
| 2051 | Sel: FastEnumSel, Receiver: Collection, CallArgs: Args); |
| 2052 | |
| 2053 | // If we got a zero count, we're done. |
| 2054 | llvm::Value *refetchCount = CountRV.getScalarVal(); |
| 2055 | |
| 2056 | // (note that the message send might split FetchMoreBB) |
| 2057 | index->addIncoming(V: zero, BB: Builder.GetInsertBlock()); |
| 2058 | count->addIncoming(V: refetchCount, BB: Builder.GetInsertBlock()); |
| 2059 | |
| 2060 | Builder.CreateCondBr(Cond: Builder.CreateICmpEQ(LHS: refetchCount, RHS: zero), |
| 2061 | True: EmptyBB, False: LoopBodyBB); |
| 2062 | |
| 2063 | // No more elements. |
| 2064 | EmitBlock(BB: EmptyBB); |
| 2065 | |
| 2066 | if (!elementIsVariable) { |
| 2067 | // If the element was not a declaration, set it to be null. |
| 2068 | |
| 2069 | llvm::Value *null = llvm::Constant::getNullValue(Ty: convertedElementType); |
| 2070 | elementLValue = EmitLValue(E: cast<Expr>(Val: S.getElement())); |
| 2071 | EmitStoreThroughLValue(Src: RValue::get(V: null), Dst: elementLValue); |
| 2072 | } |
| 2073 | |
| 2074 | if (DI) |
| 2075 | DI->EmitLexicalBlockEnd(Builder, Loc: S.getSourceRange().getEnd()); |
| 2076 | |
| 2077 | ForScope.ForceCleanup(); |
| 2078 | EmitBlock(BB: LoopEnd.getBlock()); |
| 2079 | } |
| 2080 | |
| 2081 | void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { |
| 2082 | CGM.getObjCRuntime().EmitTryStmt(CGF&: *this, S); |
| 2083 | } |
| 2084 | |
| 2085 | void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { |
| 2086 | CGM.getObjCRuntime().EmitThrowStmt(CGF&: *this, S); |
| 2087 | } |
| 2088 | |
| 2089 | void CodeGenFunction::EmitObjCAtSynchronizedStmt( |
| 2090 | const ObjCAtSynchronizedStmt &S) { |
| 2091 | CGM.getObjCRuntime().EmitSynchronizedStmt(CGF&: *this, S); |
| 2092 | } |
| 2093 | |
| 2094 | namespace { |
| 2095 | struct CallObjCRelease final : EHScopeStack::Cleanup { |
| 2096 | CallObjCRelease(llvm::Value *object) : object(object) {} |
| 2097 | llvm::Value *object; |
| 2098 | |
| 2099 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2100 | // Releases at the end of the full-expression are imprecise. |
| 2101 | CGF.EmitARCRelease(value: object, precise: ARCImpreciseLifetime); |
| 2102 | } |
| 2103 | }; |
| 2104 | } |
| 2105 | |
| 2106 | /// Produce the code for a CK_ARCConsumeObject. Does a primitive |
| 2107 | /// release at the end of the full-expression. |
| 2108 | llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, |
| 2109 | llvm::Value *object) { |
| 2110 | // If we're in a conditional branch, we need to make the cleanup |
| 2111 | // conditional. |
| 2112 | pushFullExprCleanup<CallObjCRelease>(kind: getARCCleanupKind(), A: object); |
| 2113 | return object; |
| 2114 | } |
| 2115 | |
| 2116 | llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, |
| 2117 | llvm::Value *value) { |
| 2118 | return EmitARCRetainAutorelease(type, value); |
| 2119 | } |
| 2120 | |
| 2121 | /// Given a number of pointers, inform the optimizer that they're |
| 2122 | /// being intrinsically used up until this point in the program. |
| 2123 | void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { |
| 2124 | llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; |
| 2125 | if (!fn) |
| 2126 | fn = CGM.getIntrinsic(IID: llvm::Intrinsic::objc_clang_arc_use); |
| 2127 | |
| 2128 | // This isn't really a "runtime" function, but as an intrinsic it |
| 2129 | // doesn't really matter as long as we align things up. |
| 2130 | EmitNounwindRuntimeCall(callee: fn, args: values); |
| 2131 | } |
| 2132 | |
| 2133 | /// Emit a call to "clang.arc.noop.use", which consumes the result of a call |
| 2134 | /// that has operand bundle "clang.arc.attachedcall". |
| 2135 | void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { |
| 2136 | llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; |
| 2137 | if (!fn) |
| 2138 | fn = CGM.getIntrinsic(IID: llvm::Intrinsic::objc_clang_arc_noop_use); |
| 2139 | EmitNounwindRuntimeCall(callee: fn, args: values); |
| 2140 | } |
| 2141 | |
| 2142 | static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { |
| 2143 | if (auto *F = dyn_cast<llvm::Function>(Val: RTF)) { |
| 2144 | // If the target runtime doesn't naturally support ARC, emit weak |
| 2145 | // references to the runtime support library. We don't really |
| 2146 | // permit this to fail, but we need a particular relocation style. |
| 2147 | if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && |
| 2148 | !CGM.getTriple().isOSBinFormatCOFF()) { |
| 2149 | F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, |
| 2155 | llvm::FunctionCallee RTF) { |
| 2156 | setARCRuntimeFunctionLinkage(CGM, RTF: RTF.getCallee()); |
| 2157 | } |
| 2158 | |
| 2159 | static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, |
| 2160 | CodeGenModule &CGM) { |
| 2161 | llvm::Function *fn = CGM.getIntrinsic(IID: IntID); |
| 2162 | setARCRuntimeFunctionLinkage(CGM, RTF: fn); |
| 2163 | return fn; |
| 2164 | } |
| 2165 | |
| 2166 | /// Perform an operation having the signature |
| 2167 | /// i8* (i8*) |
| 2168 | /// where a null input causes a no-op and returns null. |
| 2169 | static llvm::Value *emitARCValueOperation( |
| 2170 | CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, |
| 2171 | llvm::Function *&fn, llvm::Intrinsic::ID IntID, |
| 2172 | llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { |
| 2173 | if (isa<llvm::ConstantPointerNull>(Val: value)) |
| 2174 | return value; |
| 2175 | |
| 2176 | if (!fn) |
| 2177 | fn = getARCIntrinsic(IntID, CGM&: CGF.CGM); |
| 2178 | |
| 2179 | // Cast the argument to 'id'. |
| 2180 | llvm::Type *origType = returnType ? returnType : value->getType(); |
| 2181 | value = CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy); |
| 2182 | |
| 2183 | // Call the function. |
| 2184 | llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(callee: fn, args: value); |
| 2185 | call->setTailCallKind(tailKind); |
| 2186 | |
| 2187 | // Cast the result back to the original type. |
| 2188 | return CGF.Builder.CreateBitCast(V: call, DestTy: origType); |
| 2189 | } |
| 2190 | |
| 2191 | /// Perform an operation having the following signature: |
| 2192 | /// i8* (i8**) |
| 2193 | static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, |
| 2194 | llvm::Function *&fn, |
| 2195 | llvm::Intrinsic::ID IntID) { |
| 2196 | if (!fn) |
| 2197 | fn = getARCIntrinsic(IntID, CGM&: CGF.CGM); |
| 2198 | |
| 2199 | return CGF.EmitNounwindRuntimeCall(callee: fn, args: addr.emitRawPointer(CGF)); |
| 2200 | } |
| 2201 | |
| 2202 | /// Perform an operation having the following signature: |
| 2203 | /// i8* (i8**, i8*) |
| 2204 | static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, |
| 2205 | llvm::Value *value, |
| 2206 | llvm::Function *&fn, |
| 2207 | llvm::Intrinsic::ID IntID, |
| 2208 | bool ignored) { |
| 2209 | assert(addr.getElementType() == value->getType()); |
| 2210 | |
| 2211 | if (!fn) |
| 2212 | fn = getARCIntrinsic(IntID, CGM&: CGF.CGM); |
| 2213 | |
| 2214 | llvm::Type *origType = value->getType(); |
| 2215 | |
| 2216 | llvm::Value *args[] = { |
| 2217 | CGF.Builder.CreateBitCast(V: addr.emitRawPointer(CGF), DestTy: CGF.Int8PtrPtrTy), |
| 2218 | CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy)}; |
| 2219 | llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(callee: fn, args); |
| 2220 | |
| 2221 | if (ignored) return nullptr; |
| 2222 | |
| 2223 | return CGF.Builder.CreateBitCast(V: result, DestTy: origType); |
| 2224 | } |
| 2225 | |
| 2226 | /// Perform an operation having the following signature: |
| 2227 | /// void (i8**, i8**) |
| 2228 | static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, |
| 2229 | llvm::Function *&fn, |
| 2230 | llvm::Intrinsic::ID IntID) { |
| 2231 | assert(dst.getType() == src.getType()); |
| 2232 | |
| 2233 | if (!fn) |
| 2234 | fn = getARCIntrinsic(IntID, CGM&: CGF.CGM); |
| 2235 | |
| 2236 | llvm::Value *args[] = { |
| 2237 | CGF.Builder.CreateBitCast(V: dst.emitRawPointer(CGF), DestTy: CGF.Int8PtrPtrTy), |
| 2238 | CGF.Builder.CreateBitCast(V: src.emitRawPointer(CGF), DestTy: CGF.Int8PtrPtrTy)}; |
| 2239 | CGF.EmitNounwindRuntimeCall(callee: fn, args); |
| 2240 | } |
| 2241 | |
| 2242 | /// Perform an operation having the signature |
| 2243 | /// i8* (i8*) |
| 2244 | /// where a null input causes a no-op and returns null. |
| 2245 | static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, |
| 2246 | llvm::Value *value, |
| 2247 | llvm::Type *returnType, |
| 2248 | llvm::FunctionCallee &fn, |
| 2249 | StringRef fnName) { |
| 2250 | if (isa<llvm::ConstantPointerNull>(Val: value)) |
| 2251 | return value; |
| 2252 | |
| 2253 | if (!fn) { |
| 2254 | llvm::FunctionType *fnType = |
| 2255 | llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: CGF.Int8PtrTy, isVarArg: false); |
| 2256 | fn = CGF.CGM.CreateRuntimeFunction(Ty: fnType, Name: fnName); |
| 2257 | |
| 2258 | // We have Native ARC, so set nonlazybind attribute for performance |
| 2259 | if (llvm::Function *f = dyn_cast<llvm::Function>(Val: fn.getCallee())) |
| 2260 | if (fnName == "objc_retain" ) |
| 2261 | f->addFnAttr(Kind: llvm::Attribute::NonLazyBind); |
| 2262 | } |
| 2263 | |
| 2264 | // Cast the argument to 'id'. |
| 2265 | llvm::Type *origType = returnType ? returnType : value->getType(); |
| 2266 | value = CGF.Builder.CreateBitCast(V: value, DestTy: CGF.Int8PtrTy); |
| 2267 | |
| 2268 | // Call the function. |
| 2269 | llvm::CallBase *Inst = CGF.EmitCallOrInvoke(Callee: fn, Args: value); |
| 2270 | |
| 2271 | // Mark calls to objc_autorelease as tail on the assumption that methods |
| 2272 | // overriding autorelease do not touch anything on the stack. |
| 2273 | if (fnName == "objc_autorelease" ) |
| 2274 | if (auto *Call = dyn_cast<llvm::CallInst>(Val: Inst)) |
| 2275 | Call->setTailCall(); |
| 2276 | |
| 2277 | // Cast the result back to the original type. |
| 2278 | return CGF.Builder.CreateBitCast(V: Inst, DestTy: origType); |
| 2279 | } |
| 2280 | |
| 2281 | /// Produce the code to do a retain. Based on the type, calls one of: |
| 2282 | /// call i8* \@objc_retain(i8* %value) |
| 2283 | /// call i8* \@objc_retainBlock(i8* %value) |
| 2284 | llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { |
| 2285 | if (type->isBlockPointerType()) |
| 2286 | return EmitARCRetainBlock(value, /*mandatory*/ false); |
| 2287 | else |
| 2288 | return EmitARCRetainNonBlock(value); |
| 2289 | } |
| 2290 | |
| 2291 | /// Retain the given object, with normal retain semantics. |
| 2292 | /// call i8* \@objc_retain(i8* %value) |
| 2293 | llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { |
| 2294 | return emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2295 | fn&: CGM.getObjCEntrypoints().objc_retain, |
| 2296 | IntID: llvm::Intrinsic::objc_retain); |
| 2297 | } |
| 2298 | |
| 2299 | /// Retain the given block, with _Block_copy semantics. |
| 2300 | /// call i8* \@objc_retainBlock(i8* %value) |
| 2301 | /// |
| 2302 | /// \param mandatory - If false, emit the call with metadata |
| 2303 | /// indicating that it's okay for the optimizer to eliminate this call |
| 2304 | /// if it can prove that the block never escapes except down the stack. |
| 2305 | llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, |
| 2306 | bool mandatory) { |
| 2307 | llvm::Value *result |
| 2308 | = emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2309 | fn&: CGM.getObjCEntrypoints().objc_retainBlock, |
| 2310 | IntID: llvm::Intrinsic::objc_retainBlock); |
| 2311 | |
| 2312 | // If the copy isn't mandatory, add !clang.arc.copy_on_escape to |
| 2313 | // tell the optimizer that it doesn't need to do this copy if the |
| 2314 | // block doesn't escape, where being passed as an argument doesn't |
| 2315 | // count as escaping. |
| 2316 | if (!mandatory && isa<llvm::Instruction>(Val: result)) { |
| 2317 | llvm::CallInst *call |
| 2318 | = cast<llvm::CallInst>(Val: result->stripPointerCasts()); |
| 2319 | assert(call->getCalledOperand() == |
| 2320 | CGM.getObjCEntrypoints().objc_retainBlock); |
| 2321 | |
| 2322 | call->setMetadata(Kind: "clang.arc.copy_on_escape" , |
| 2323 | Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: {})); |
| 2324 | } |
| 2325 | |
| 2326 | return result; |
| 2327 | } |
| 2328 | |
| 2329 | static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { |
| 2330 | // Fetch the void(void) inline asm which marks that we're going to |
| 2331 | // do something with the autoreleased return value. |
| 2332 | llvm::InlineAsm *&marker |
| 2333 | = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; |
| 2334 | if (!marker) { |
| 2335 | StringRef assembly |
| 2336 | = CGF.CGM.getTargetCodeGenInfo() |
| 2337 | .getARCRetainAutoreleasedReturnValueMarker(); |
| 2338 | |
| 2339 | // If we have an empty assembly string, there's nothing to do. |
| 2340 | if (assembly.empty()) { |
| 2341 | |
| 2342 | // Otherwise, at -O0, build an inline asm that we're going to call |
| 2343 | // in a moment. |
| 2344 | } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| 2345 | llvm::FunctionType *type = |
| 2346 | llvm::FunctionType::get(Result: CGF.VoidTy, /*variadic*/isVarArg: false); |
| 2347 | |
| 2348 | marker = llvm::InlineAsm::get(Ty: type, AsmString: assembly, Constraints: "" , /*sideeffects*/ hasSideEffects: true); |
| 2349 | |
| 2350 | // If we're at -O1 and above, we don't want to litter the code |
| 2351 | // with this marker yet, so leave a breadcrumb for the ARC |
| 2352 | // optimizer to pick up. |
| 2353 | } else { |
| 2354 | const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); |
| 2355 | if (!CGF.CGM.getModule().getModuleFlag(Key: retainRVMarkerKey)) { |
| 2356 | auto *str = llvm::MDString::get(Context&: CGF.getLLVMContext(), Str: assembly); |
| 2357 | CGF.CGM.getModule().addModuleFlag(Behavior: llvm::Module::Error, |
| 2358 | Key: retainRVMarkerKey, Val: str); |
| 2359 | } |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | // Call the marker asm if we made one, which we do only at -O0. |
| 2364 | if (marker) |
| 2365 | CGF.Builder.CreateCall(Callee: marker, Args: {}, OpBundles: CGF.getBundlesForFunclet(Callee: marker)); |
| 2366 | } |
| 2367 | |
| 2368 | static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, |
| 2369 | bool IsRetainRV, |
| 2370 | CodeGenFunction &CGF) { |
| 2371 | emitAutoreleasedReturnValueMarker(CGF); |
| 2372 | |
| 2373 | // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting |
| 2374 | // retainRV or claimRV calls in the IR. We currently do this only when the |
| 2375 | // optimization level isn't -O0 since global-isel, which is currently run at |
| 2376 | // -O0, doesn't know about the operand bundle. |
| 2377 | ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); |
| 2378 | llvm::Function *&EP = IsRetainRV |
| 2379 | ? EPs.objc_retainAutoreleasedReturnValue |
| 2380 | : EPs.objc_unsafeClaimAutoreleasedReturnValue; |
| 2381 | llvm::Intrinsic::ID IID = |
| 2382 | IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue |
| 2383 | : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; |
| 2384 | EP = getARCIntrinsic(IntID: IID, CGM&: CGF.CGM); |
| 2385 | |
| 2386 | llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch(); |
| 2387 | |
| 2388 | // FIXME: Do this on all targets and at -O0 too. This can be enabled only if |
| 2389 | // the target backend knows how to handle the operand bundle. |
| 2390 | if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && |
| 2391 | (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || |
| 2392 | Arch == llvm::Triple::x86_64)) { |
| 2393 | llvm::Value *bundleArgs[] = {EP}; |
| 2394 | llvm::OperandBundleDef OB("clang.arc.attachedcall" , bundleArgs); |
| 2395 | auto *oldCall = cast<llvm::CallBase>(Val: value); |
| 2396 | llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( |
| 2397 | CB: oldCall, ID: llvm::LLVMContext::OB_clang_arc_attachedcall, OB, |
| 2398 | InsertPt: oldCall->getIterator()); |
| 2399 | newCall->copyMetadata(SrcInst: *oldCall); |
| 2400 | oldCall->replaceAllUsesWith(V: newCall); |
| 2401 | oldCall->eraseFromParent(); |
| 2402 | CGF.EmitARCNoopIntrinsicUse(values: newCall); |
| 2403 | return newCall; |
| 2404 | } |
| 2405 | |
| 2406 | bool isNoTail = |
| 2407 | CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); |
| 2408 | llvm::CallInst::TailCallKind tailKind = |
| 2409 | isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; |
| 2410 | return emitARCValueOperation(CGF, value, returnType: nullptr, fn&: EP, IntID: IID, tailKind); |
| 2411 | } |
| 2412 | |
| 2413 | /// Retain the given object which is the result of a function call. |
| 2414 | /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) |
| 2415 | /// |
| 2416 | /// Yes, this function name is one character away from a different |
| 2417 | /// call with completely different semantics. |
| 2418 | llvm::Value * |
| 2419 | CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { |
| 2420 | return emitOptimizedARCReturnCall(value, IsRetainRV: true, CGF&: *this); |
| 2421 | } |
| 2422 | |
| 2423 | /// Claim a possibly-autoreleased return value at +0. This is only |
| 2424 | /// valid to do in contexts which do not rely on the retain to keep |
| 2425 | /// the object valid for all of its uses; for example, when |
| 2426 | /// the value is ignored, or when it is being assigned to an |
| 2427 | /// __unsafe_unretained variable. |
| 2428 | /// |
| 2429 | /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) |
| 2430 | llvm::Value * |
| 2431 | CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { |
| 2432 | return emitOptimizedARCReturnCall(value, IsRetainRV: false, CGF&: *this); |
| 2433 | } |
| 2434 | |
| 2435 | /// Release the given object. |
| 2436 | /// call void \@objc_release(i8* %value) |
| 2437 | void CodeGenFunction::EmitARCRelease(llvm::Value *value, |
| 2438 | ARCPreciseLifetime_t precise) { |
| 2439 | if (isa<llvm::ConstantPointerNull>(Val: value)) return; |
| 2440 | |
| 2441 | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; |
| 2442 | if (!fn) |
| 2443 | fn = getARCIntrinsic(IntID: llvm::Intrinsic::objc_release, CGM); |
| 2444 | |
| 2445 | // Cast the argument to 'id'. |
| 2446 | value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy); |
| 2447 | |
| 2448 | // Call objc_release. |
| 2449 | llvm::CallInst *call = EmitNounwindRuntimeCall(callee: fn, args: value); |
| 2450 | |
| 2451 | if (precise == ARCImpreciseLifetime) { |
| 2452 | call->setMetadata(Kind: "clang.imprecise_release" , |
| 2453 | Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: {})); |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | /// Destroy a __strong variable. |
| 2458 | /// |
| 2459 | /// At -O0, emit a call to store 'null' into the address; |
| 2460 | /// instrumenting tools prefer this because the address is exposed, |
| 2461 | /// but it's relatively cumbersome to optimize. |
| 2462 | /// |
| 2463 | /// At -O1 and above, just load and call objc_release. |
| 2464 | /// |
| 2465 | /// call void \@objc_storeStrong(i8** %addr, i8* null) |
| 2466 | void CodeGenFunction::EmitARCDestroyStrong(Address addr, |
| 2467 | ARCPreciseLifetime_t precise) { |
| 2468 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| 2469 | llvm::Value *null = getNullForVariable(addr); |
| 2470 | EmitARCStoreStrongCall(addr, value: null, /*ignored*/ resultIgnored: true); |
| 2471 | return; |
| 2472 | } |
| 2473 | |
| 2474 | llvm::Value *value = Builder.CreateLoad(Addr: addr); |
| 2475 | EmitARCRelease(value, precise); |
| 2476 | } |
| 2477 | |
| 2478 | /// Store into a strong object. Always calls this: |
| 2479 | /// call void \@objc_storeStrong(i8** %addr, i8* %value) |
| 2480 | llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, |
| 2481 | llvm::Value *value, |
| 2482 | bool ignored) { |
| 2483 | assert(addr.getElementType() == value->getType()); |
| 2484 | |
| 2485 | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; |
| 2486 | if (!fn) |
| 2487 | fn = getARCIntrinsic(IntID: llvm::Intrinsic::objc_storeStrong, CGM); |
| 2488 | |
| 2489 | llvm::Value *args[] = { |
| 2490 | Builder.CreateBitCast(V: addr.emitRawPointer(CGF&: *this), DestTy: Int8PtrPtrTy), |
| 2491 | Builder.CreateBitCast(V: value, DestTy: Int8PtrTy)}; |
| 2492 | EmitNounwindRuntimeCall(callee: fn, args); |
| 2493 | |
| 2494 | if (ignored) return nullptr; |
| 2495 | return value; |
| 2496 | } |
| 2497 | |
| 2498 | /// Store into a strong object. Sometimes calls this: |
| 2499 | /// call void \@objc_storeStrong(i8** %addr, i8* %value) |
| 2500 | /// Other times, breaks it down into components. |
| 2501 | llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, |
| 2502 | llvm::Value *newValue, |
| 2503 | bool ignored) { |
| 2504 | QualType type = dst.getType(); |
| 2505 | bool isBlock = type->isBlockPointerType(); |
| 2506 | |
| 2507 | // Use a store barrier at -O0 unless this is a block type or the |
| 2508 | // lvalue is inadequately aligned. |
| 2509 | if (shouldUseFusedARCCalls() && |
| 2510 | !isBlock && |
| 2511 | (dst.getAlignment().isZero() || |
| 2512 | dst.getAlignment() >= CharUnits::fromQuantity(Quantity: PointerAlignInBytes))) { |
| 2513 | return EmitARCStoreStrongCall(addr: dst.getAddress(), value: newValue, ignored); |
| 2514 | } |
| 2515 | |
| 2516 | // Otherwise, split it out. |
| 2517 | |
| 2518 | // Retain the new value. |
| 2519 | newValue = EmitARCRetain(type, value: newValue); |
| 2520 | |
| 2521 | // Read the old value. |
| 2522 | llvm::Value *oldValue = EmitLoadOfScalar(lvalue: dst, Loc: SourceLocation()); |
| 2523 | |
| 2524 | // Store. We do this before the release so that any deallocs won't |
| 2525 | // see the old value. |
| 2526 | EmitStoreOfScalar(value: newValue, lvalue: dst); |
| 2527 | |
| 2528 | // Finally, release the old value. |
| 2529 | EmitARCRelease(value: oldValue, precise: dst.isARCPreciseLifetime()); |
| 2530 | |
| 2531 | return newValue; |
| 2532 | } |
| 2533 | |
| 2534 | /// Autorelease the given object. |
| 2535 | /// call i8* \@objc_autorelease(i8* %value) |
| 2536 | llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { |
| 2537 | return emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2538 | fn&: CGM.getObjCEntrypoints().objc_autorelease, |
| 2539 | IntID: llvm::Intrinsic::objc_autorelease); |
| 2540 | } |
| 2541 | |
| 2542 | /// Autorelease the given object. |
| 2543 | /// call i8* \@objc_autoreleaseReturnValue(i8* %value) |
| 2544 | llvm::Value * |
| 2545 | CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { |
| 2546 | return emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2547 | fn&: CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, |
| 2548 | IntID: llvm::Intrinsic::objc_autoreleaseReturnValue, |
| 2549 | tailKind: llvm::CallInst::TCK_Tail); |
| 2550 | } |
| 2551 | |
| 2552 | /// Do a fused retain/autorelease of the given object. |
| 2553 | /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) |
| 2554 | llvm::Value * |
| 2555 | CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { |
| 2556 | return emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2557 | fn&: CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, |
| 2558 | IntID: llvm::Intrinsic::objc_retainAutoreleaseReturnValue, |
| 2559 | tailKind: llvm::CallInst::TCK_Tail); |
| 2560 | } |
| 2561 | |
| 2562 | /// Do a fused retain/autorelease of the given object. |
| 2563 | /// call i8* \@objc_retainAutorelease(i8* %value) |
| 2564 | /// or |
| 2565 | /// %retain = call i8* \@objc_retainBlock(i8* %value) |
| 2566 | /// call i8* \@objc_autorelease(i8* %retain) |
| 2567 | llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, |
| 2568 | llvm::Value *value) { |
| 2569 | if (!type->isBlockPointerType()) |
| 2570 | return EmitARCRetainAutoreleaseNonBlock(value); |
| 2571 | |
| 2572 | if (isa<llvm::ConstantPointerNull>(Val: value)) return value; |
| 2573 | |
| 2574 | llvm::Type *origType = value->getType(); |
| 2575 | value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy); |
| 2576 | value = EmitARCRetainBlock(value, /*mandatory*/ true); |
| 2577 | value = EmitARCAutorelease(value); |
| 2578 | return Builder.CreateBitCast(V: value, DestTy: origType); |
| 2579 | } |
| 2580 | |
| 2581 | /// Do a fused retain/autorelease of the given object. |
| 2582 | /// call i8* \@objc_retainAutorelease(i8* %value) |
| 2583 | llvm::Value * |
| 2584 | CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { |
| 2585 | return emitARCValueOperation(CGF&: *this, value, returnType: nullptr, |
| 2586 | fn&: CGM.getObjCEntrypoints().objc_retainAutorelease, |
| 2587 | IntID: llvm::Intrinsic::objc_retainAutorelease); |
| 2588 | } |
| 2589 | |
| 2590 | /// i8* \@objc_loadWeak(i8** %addr) |
| 2591 | /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). |
| 2592 | llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { |
| 2593 | return emitARCLoadOperation(CGF&: *this, addr, |
| 2594 | fn&: CGM.getObjCEntrypoints().objc_loadWeak, |
| 2595 | IntID: llvm::Intrinsic::objc_loadWeak); |
| 2596 | } |
| 2597 | |
| 2598 | /// i8* \@objc_loadWeakRetained(i8** %addr) |
| 2599 | llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { |
| 2600 | return emitARCLoadOperation(CGF&: *this, addr, |
| 2601 | fn&: CGM.getObjCEntrypoints().objc_loadWeakRetained, |
| 2602 | IntID: llvm::Intrinsic::objc_loadWeakRetained); |
| 2603 | } |
| 2604 | |
| 2605 | /// i8* \@objc_storeWeak(i8** %addr, i8* %value) |
| 2606 | /// Returns %value. |
| 2607 | llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, |
| 2608 | llvm::Value *value, |
| 2609 | bool ignored) { |
| 2610 | return emitARCStoreOperation(CGF&: *this, addr, value, |
| 2611 | fn&: CGM.getObjCEntrypoints().objc_storeWeak, |
| 2612 | IntID: llvm::Intrinsic::objc_storeWeak, ignored); |
| 2613 | } |
| 2614 | |
| 2615 | /// i8* \@objc_initWeak(i8** %addr, i8* %value) |
| 2616 | /// Returns %value. %addr is known to not have a current weak entry. |
| 2617 | /// Essentially equivalent to: |
| 2618 | /// *addr = nil; objc_storeWeak(addr, value); |
| 2619 | void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { |
| 2620 | // If we're initializing to null, just write null to memory; no need |
| 2621 | // to get the runtime involved. But don't do this if optimization |
| 2622 | // is enabled, because accounting for this would make the optimizer |
| 2623 | // much more complicated. |
| 2624 | if (isa<llvm::ConstantPointerNull>(Val: value) && |
| 2625 | CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| 2626 | Builder.CreateStore(Val: value, Addr: addr); |
| 2627 | return; |
| 2628 | } |
| 2629 | |
| 2630 | emitARCStoreOperation(CGF&: *this, addr, value, |
| 2631 | fn&: CGM.getObjCEntrypoints().objc_initWeak, |
| 2632 | IntID: llvm::Intrinsic::objc_initWeak, /*ignored*/ true); |
| 2633 | } |
| 2634 | |
| 2635 | /// void \@objc_destroyWeak(i8** %addr) |
| 2636 | /// Essentially objc_storeWeak(addr, nil). |
| 2637 | void CodeGenFunction::EmitARCDestroyWeak(Address addr) { |
| 2638 | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; |
| 2639 | if (!fn) |
| 2640 | fn = getARCIntrinsic(IntID: llvm::Intrinsic::objc_destroyWeak, CGM); |
| 2641 | |
| 2642 | EmitNounwindRuntimeCall(callee: fn, args: addr.emitRawPointer(CGF&: *this)); |
| 2643 | } |
| 2644 | |
| 2645 | /// void \@objc_moveWeak(i8** %dest, i8** %src) |
| 2646 | /// Disregards the current value in %dest. Leaves %src pointing to nothing. |
| 2647 | /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). |
| 2648 | void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { |
| 2649 | emitARCCopyOperation(CGF&: *this, dst, src, |
| 2650 | fn&: CGM.getObjCEntrypoints().objc_moveWeak, |
| 2651 | IntID: llvm::Intrinsic::objc_moveWeak); |
| 2652 | } |
| 2653 | |
| 2654 | /// void \@objc_copyWeak(i8** %dest, i8** %src) |
| 2655 | /// Disregards the current value in %dest. Essentially |
| 2656 | /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) |
| 2657 | void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { |
| 2658 | emitARCCopyOperation(CGF&: *this, dst, src, |
| 2659 | fn&: CGM.getObjCEntrypoints().objc_copyWeak, |
| 2660 | IntID: llvm::Intrinsic::objc_copyWeak); |
| 2661 | } |
| 2662 | |
| 2663 | void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, |
| 2664 | Address SrcAddr) { |
| 2665 | llvm::Value *Object = EmitARCLoadWeakRetained(addr: SrcAddr); |
| 2666 | Object = EmitObjCConsumeObject(type: Ty, object: Object); |
| 2667 | EmitARCStoreWeak(addr: DstAddr, value: Object, ignored: false); |
| 2668 | } |
| 2669 | |
| 2670 | void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, |
| 2671 | Address SrcAddr) { |
| 2672 | llvm::Value *Object = EmitARCLoadWeakRetained(addr: SrcAddr); |
| 2673 | Object = EmitObjCConsumeObject(type: Ty, object: Object); |
| 2674 | EmitARCStoreWeak(addr: DstAddr, value: Object, ignored: false); |
| 2675 | EmitARCDestroyWeak(addr: SrcAddr); |
| 2676 | } |
| 2677 | |
| 2678 | /// Produce the code to do a objc_autoreleasepool_push. |
| 2679 | /// call i8* \@objc_autoreleasePoolPush(void) |
| 2680 | llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { |
| 2681 | llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; |
| 2682 | if (!fn) |
| 2683 | fn = getARCIntrinsic(IntID: llvm::Intrinsic::objc_autoreleasePoolPush, CGM); |
| 2684 | |
| 2685 | return EmitNounwindRuntimeCall(callee: fn); |
| 2686 | } |
| 2687 | |
| 2688 | /// Produce the code to do a primitive release. |
| 2689 | /// call void \@objc_autoreleasePoolPop(i8* %ptr) |
| 2690 | void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { |
| 2691 | assert(value->getType() == Int8PtrTy); |
| 2692 | |
| 2693 | if (getInvokeDest()) { |
| 2694 | // Call the runtime method not the intrinsic if we are handling exceptions |
| 2695 | llvm::FunctionCallee &fn = |
| 2696 | CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; |
| 2697 | if (!fn) { |
| 2698 | llvm::FunctionType *fnType = |
| 2699 | llvm::FunctionType::get(Result: Builder.getVoidTy(), Params: Int8PtrTy, isVarArg: false); |
| 2700 | fn = CGM.CreateRuntimeFunction(Ty: fnType, Name: "objc_autoreleasePoolPop" ); |
| 2701 | setARCRuntimeFunctionLinkage(CGM, RTF: fn); |
| 2702 | } |
| 2703 | |
| 2704 | // objc_autoreleasePoolPop can throw. |
| 2705 | EmitRuntimeCallOrInvoke(callee: fn, args: value); |
| 2706 | } else { |
| 2707 | llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; |
| 2708 | if (!fn) |
| 2709 | fn = getARCIntrinsic(IntID: llvm::Intrinsic::objc_autoreleasePoolPop, CGM); |
| 2710 | |
| 2711 | EmitRuntimeCall(callee: fn, args: value); |
| 2712 | } |
| 2713 | } |
| 2714 | |
| 2715 | /// Produce the code to do an MRR version objc_autoreleasepool_push. |
| 2716 | /// Which is: [[NSAutoreleasePool alloc] init]; |
| 2717 | /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. |
| 2718 | /// init is declared as: - (id) init; in its NSObject super class. |
| 2719 | /// |
| 2720 | llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { |
| 2721 | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| 2722 | llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(CGF&: *this); |
| 2723 | // [NSAutoreleasePool alloc] |
| 2724 | const IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "alloc" ); |
| 2725 | Selector AllocSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II); |
| 2726 | CallArgList Args; |
| 2727 | RValue AllocRV = |
| 2728 | Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 2729 | ResultType: getContext().getObjCIdType(), |
| 2730 | Sel: AllocSel, Receiver, CallArgs: Args); |
| 2731 | |
| 2732 | // [Receiver init] |
| 2733 | Receiver = AllocRV.getScalarVal(); |
| 2734 | II = &CGM.getContext().Idents.get(Name: "init" ); |
| 2735 | Selector InitSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II); |
| 2736 | RValue InitRV = |
| 2737 | Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 2738 | ResultType: getContext().getObjCIdType(), |
| 2739 | Sel: InitSel, Receiver, CallArgs: Args); |
| 2740 | return InitRV.getScalarVal(); |
| 2741 | } |
| 2742 | |
| 2743 | /// Allocate the given objc object. |
| 2744 | /// call i8* \@objc_alloc(i8* %value) |
| 2745 | llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, |
| 2746 | llvm::Type *resultType) { |
| 2747 | return emitObjCValueOperation(CGF&: *this, value, returnType: resultType, |
| 2748 | fn&: CGM.getObjCEntrypoints().objc_alloc, |
| 2749 | fnName: "objc_alloc" ); |
| 2750 | } |
| 2751 | |
| 2752 | /// Allocate the given objc object. |
| 2753 | /// call i8* \@objc_allocWithZone(i8* %value) |
| 2754 | llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, |
| 2755 | llvm::Type *resultType) { |
| 2756 | return emitObjCValueOperation(CGF&: *this, value, returnType: resultType, |
| 2757 | fn&: CGM.getObjCEntrypoints().objc_allocWithZone, |
| 2758 | fnName: "objc_allocWithZone" ); |
| 2759 | } |
| 2760 | |
| 2761 | llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, |
| 2762 | llvm::Type *resultType) { |
| 2763 | return emitObjCValueOperation(CGF&: *this, value, returnType: resultType, |
| 2764 | fn&: CGM.getObjCEntrypoints().objc_alloc_init, |
| 2765 | fnName: "objc_alloc_init" ); |
| 2766 | } |
| 2767 | |
| 2768 | /// Produce the code to do a primitive release. |
| 2769 | /// [tmp drain]; |
| 2770 | void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { |
| 2771 | const IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "drain" ); |
| 2772 | Selector DrainSel = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II); |
| 2773 | CallArgList Args; |
| 2774 | CGM.getObjCRuntime().GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 2775 | ResultType: getContext().VoidTy, Sel: DrainSel, Receiver: Arg, CallArgs: Args); |
| 2776 | } |
| 2777 | |
| 2778 | void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, |
| 2779 | Address addr, |
| 2780 | QualType type) { |
| 2781 | CGF.EmitARCDestroyStrong(addr, precise: ARCPreciseLifetime); |
| 2782 | } |
| 2783 | |
| 2784 | void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, |
| 2785 | Address addr, |
| 2786 | QualType type) { |
| 2787 | CGF.EmitARCDestroyStrong(addr, precise: ARCImpreciseLifetime); |
| 2788 | } |
| 2789 | |
| 2790 | void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, |
| 2791 | Address addr, |
| 2792 | QualType type) { |
| 2793 | CGF.EmitARCDestroyWeak(addr); |
| 2794 | } |
| 2795 | |
| 2796 | void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, |
| 2797 | QualType type) { |
| 2798 | llvm::Value *value = CGF.Builder.CreateLoad(Addr: addr); |
| 2799 | CGF.EmitARCIntrinsicUse(values: value); |
| 2800 | } |
| 2801 | |
| 2802 | /// Autorelease the given object. |
| 2803 | /// call i8* \@objc_autorelease(i8* %value) |
| 2804 | llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, |
| 2805 | llvm::Type *returnType) { |
| 2806 | return emitObjCValueOperation( |
| 2807 | CGF&: *this, value, returnType, |
| 2808 | fn&: CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, |
| 2809 | fnName: "objc_autorelease" ); |
| 2810 | } |
| 2811 | |
| 2812 | /// Retain the given object, with normal retain semantics. |
| 2813 | /// call i8* \@objc_retain(i8* %value) |
| 2814 | llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, |
| 2815 | llvm::Type *returnType) { |
| 2816 | return emitObjCValueOperation( |
| 2817 | CGF&: *this, value, returnType, |
| 2818 | fn&: CGM.getObjCEntrypoints().objc_retainRuntimeFunction, fnName: "objc_retain" ); |
| 2819 | } |
| 2820 | |
| 2821 | /// Release the given object. |
| 2822 | /// call void \@objc_release(i8* %value) |
| 2823 | void CodeGenFunction::EmitObjCRelease(llvm::Value *value, |
| 2824 | ARCPreciseLifetime_t precise) { |
| 2825 | if (isa<llvm::ConstantPointerNull>(Val: value)) return; |
| 2826 | |
| 2827 | llvm::FunctionCallee &fn = |
| 2828 | CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; |
| 2829 | if (!fn) { |
| 2830 | llvm::FunctionType *fnType = |
| 2831 | llvm::FunctionType::get(Result: Builder.getVoidTy(), Params: Int8PtrTy, isVarArg: false); |
| 2832 | fn = CGM.CreateRuntimeFunction(Ty: fnType, Name: "objc_release" ); |
| 2833 | setARCRuntimeFunctionLinkage(CGM, RTF: fn); |
| 2834 | // We have Native ARC, so set nonlazybind attribute for performance |
| 2835 | if (llvm::Function *f = dyn_cast<llvm::Function>(Val: fn.getCallee())) |
| 2836 | f->addFnAttr(Kind: llvm::Attribute::NonLazyBind); |
| 2837 | } |
| 2838 | |
| 2839 | // Cast the argument to 'id'. |
| 2840 | value = Builder.CreateBitCast(V: value, DestTy: Int8PtrTy); |
| 2841 | |
| 2842 | // Call objc_release. |
| 2843 | llvm::CallBase *call = EmitCallOrInvoke(Callee: fn, Args: value); |
| 2844 | |
| 2845 | if (precise == ARCImpreciseLifetime) { |
| 2846 | call->setMetadata(Kind: "clang.imprecise_release" , |
| 2847 | Node: llvm::MDNode::get(Context&: Builder.getContext(), MDs: {})); |
| 2848 | } |
| 2849 | } |
| 2850 | |
| 2851 | namespace { |
| 2852 | struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { |
| 2853 | llvm::Value *Token; |
| 2854 | |
| 2855 | CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| 2856 | |
| 2857 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2858 | CGF.EmitObjCAutoreleasePoolPop(value: Token); |
| 2859 | } |
| 2860 | }; |
| 2861 | struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { |
| 2862 | llvm::Value *Token; |
| 2863 | |
| 2864 | CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| 2865 | |
| 2866 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2867 | CGF.EmitObjCMRRAutoreleasePoolPop(Arg: Token); |
| 2868 | } |
| 2869 | }; |
| 2870 | } |
| 2871 | |
| 2872 | void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { |
| 2873 | if (CGM.getLangOpts().ObjCAutoRefCount) |
| 2874 | EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(Kind: NormalCleanup, A: Ptr); |
| 2875 | else |
| 2876 | EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(Kind: NormalCleanup, A: Ptr); |
| 2877 | } |
| 2878 | |
| 2879 | static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { |
| 2880 | switch (lifetime) { |
| 2881 | case Qualifiers::OCL_None: |
| 2882 | case Qualifiers::OCL_ExplicitNone: |
| 2883 | case Qualifiers::OCL_Strong: |
| 2884 | case Qualifiers::OCL_Autoreleasing: |
| 2885 | return true; |
| 2886 | |
| 2887 | case Qualifiers::OCL_Weak: |
| 2888 | return false; |
| 2889 | } |
| 2890 | |
| 2891 | llvm_unreachable("impossible lifetime!" ); |
| 2892 | } |
| 2893 | |
| 2894 | static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| 2895 | LValue lvalue, |
| 2896 | QualType type) { |
| 2897 | llvm::Value *result; |
| 2898 | bool shouldRetain = shouldRetainObjCLifetime(lifetime: type.getObjCLifetime()); |
| 2899 | if (shouldRetain) { |
| 2900 | result = CGF.EmitLoadOfLValue(V: lvalue, Loc: SourceLocation()).getScalarVal(); |
| 2901 | } else { |
| 2902 | assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); |
| 2903 | result = CGF.EmitARCLoadWeakRetained(addr: lvalue.getAddress()); |
| 2904 | } |
| 2905 | return TryEmitResult(result, !shouldRetain); |
| 2906 | } |
| 2907 | |
| 2908 | static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| 2909 | const Expr *e) { |
| 2910 | e = e->IgnoreParens(); |
| 2911 | QualType type = e->getType(); |
| 2912 | |
| 2913 | // If we're loading retained from a __strong xvalue, we can avoid |
| 2914 | // an extra retain/release pair by zeroing out the source of this |
| 2915 | // "move" operation. |
| 2916 | if (e->isXValue() && |
| 2917 | !type.isConstQualified() && |
| 2918 | type.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| 2919 | // Emit the lvalue. |
| 2920 | LValue lv = CGF.EmitLValue(E: e); |
| 2921 | |
| 2922 | // Load the object pointer. |
| 2923 | llvm::Value *result = CGF.EmitLoadOfLValue(V: lv, |
| 2924 | Loc: SourceLocation()).getScalarVal(); |
| 2925 | |
| 2926 | // Set the source pointer to NULL. |
| 2927 | CGF.EmitStoreOfScalar(value: getNullForVariable(addr: lv.getAddress()), lvalue: lv); |
| 2928 | |
| 2929 | return TryEmitResult(result, true); |
| 2930 | } |
| 2931 | |
| 2932 | // As a very special optimization, in ARC++, if the l-value is the |
| 2933 | // result of a non-volatile assignment, do a simple retain of the |
| 2934 | // result of the call to objc_storeWeak instead of reloading. |
| 2935 | if (CGF.getLangOpts().CPlusPlus && |
| 2936 | !type.isVolatileQualified() && |
| 2937 | type.getObjCLifetime() == Qualifiers::OCL_Weak && |
| 2938 | isa<BinaryOperator>(Val: e) && |
| 2939 | cast<BinaryOperator>(Val: e)->getOpcode() == BO_Assign) |
| 2940 | return TryEmitResult(CGF.EmitScalarExpr(E: e), false); |
| 2941 | |
| 2942 | // Try to emit code for scalar constant instead of emitting LValue and |
| 2943 | // loading it because we are not guaranteed to have an l-value. One of such |
| 2944 | // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. |
| 2945 | if (const auto *decl_expr = dyn_cast<DeclRefExpr>(Val: e)) { |
| 2946 | auto *DRE = const_cast<DeclRefExpr *>(decl_expr); |
| 2947 | if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(RefExpr: DRE)) |
| 2948 | return TryEmitResult(CGF.emitScalarConstant(Constant: constant, E: DRE), |
| 2949 | !shouldRetainObjCLifetime(lifetime: type.getObjCLifetime())); |
| 2950 | } |
| 2951 | |
| 2952 | return tryEmitARCRetainLoadOfScalar(CGF, lvalue: CGF.EmitLValue(E: e), type); |
| 2953 | } |
| 2954 | |
| 2955 | typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, |
| 2956 | llvm::Value *value)> |
| 2957 | ValueTransform; |
| 2958 | |
| 2959 | /// Insert code immediately after a call. |
| 2960 | |
| 2961 | // FIXME: We should find a way to emit the runtime call immediately |
| 2962 | // after the call is emitted to eliminate the need for this function. |
| 2963 | static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, |
| 2964 | llvm::Value *value, |
| 2965 | ValueTransform doAfterCall, |
| 2966 | ValueTransform doFallback) { |
| 2967 | CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); |
| 2968 | auto *callBase = dyn_cast<llvm::CallBase>(Val: value); |
| 2969 | |
| 2970 | if (callBase && llvm::objcarc::hasAttachedCallOpBundle(CB: callBase)) { |
| 2971 | // Fall back if the call base has operand bundle "clang.arc.attachedcall". |
| 2972 | value = doFallback(CGF, value); |
| 2973 | } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: value)) { |
| 2974 | // Place the retain immediately following the call. |
| 2975 | CGF.Builder.SetInsertPoint(TheBB: call->getParent(), |
| 2976 | IP: ++llvm::BasicBlock::iterator(call)); |
| 2977 | value = doAfterCall(CGF, value); |
| 2978 | } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(Val: value)) { |
| 2979 | // Place the retain at the beginning of the normal destination block. |
| 2980 | llvm::BasicBlock *BB = invoke->getNormalDest(); |
| 2981 | CGF.Builder.SetInsertPoint(TheBB: BB, IP: BB->begin()); |
| 2982 | value = doAfterCall(CGF, value); |
| 2983 | |
| 2984 | // Bitcasts can arise because of related-result returns. Rewrite |
| 2985 | // the operand. |
| 2986 | } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: value)) { |
| 2987 | // Change the insert point to avoid emitting the fall-back call after the |
| 2988 | // bitcast. |
| 2989 | CGF.Builder.SetInsertPoint(TheBB: bitcast->getParent(), IP: bitcast->getIterator()); |
| 2990 | llvm::Value *operand = bitcast->getOperand(i_nocapture: 0); |
| 2991 | operand = emitARCOperationAfterCall(CGF, value: operand, doAfterCall, doFallback); |
| 2992 | bitcast->setOperand(i_nocapture: 0, Val_nocapture: operand); |
| 2993 | value = bitcast; |
| 2994 | } else { |
| 2995 | auto *phi = dyn_cast<llvm::PHINode>(Val: value); |
| 2996 | if (phi && phi->getNumIncomingValues() == 2 && |
| 2997 | isa<llvm::ConstantPointerNull>(Val: phi->getIncomingValue(i: 1)) && |
| 2998 | isa<llvm::CallBase>(Val: phi->getIncomingValue(i: 0))) { |
| 2999 | // Handle phi instructions that are generated when it's necessary to check |
| 3000 | // whether the receiver of a message is null. |
| 3001 | llvm::Value *inVal = phi->getIncomingValue(i: 0); |
| 3002 | inVal = emitARCOperationAfterCall(CGF, value: inVal, doAfterCall, doFallback); |
| 3003 | phi->setIncomingValue(i: 0, V: inVal); |
| 3004 | value = phi; |
| 3005 | } else { |
| 3006 | // Generic fall-back case. |
| 3007 | // Retain using the non-block variant: we never need to do a copy |
| 3008 | // of a block that's been returned to us. |
| 3009 | value = doFallback(CGF, value); |
| 3010 | } |
| 3011 | } |
| 3012 | |
| 3013 | CGF.Builder.restoreIP(IP: ip); |
| 3014 | return value; |
| 3015 | } |
| 3016 | |
| 3017 | /// Given that the given expression is some sort of call (which does |
| 3018 | /// not return retained), emit a retain following it. |
| 3019 | static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, |
| 3020 | const Expr *e) { |
| 3021 | llvm::Value *value = CGF.EmitScalarExpr(E: e); |
| 3022 | return emitARCOperationAfterCall(CGF, value, |
| 3023 | doAfterCall: [](CodeGenFunction &CGF, llvm::Value *value) { |
| 3024 | return CGF.EmitARCRetainAutoreleasedReturnValue(value); |
| 3025 | }, |
| 3026 | doFallback: [](CodeGenFunction &CGF, llvm::Value *value) { |
| 3027 | return CGF.EmitARCRetainNonBlock(value); |
| 3028 | }); |
| 3029 | } |
| 3030 | |
| 3031 | /// Given that the given expression is some sort of call (which does |
| 3032 | /// not return retained), perform an unsafeClaim following it. |
| 3033 | static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, |
| 3034 | const Expr *e) { |
| 3035 | llvm::Value *value = CGF.EmitScalarExpr(E: e); |
| 3036 | return emitARCOperationAfterCall(CGF, value, |
| 3037 | doAfterCall: [](CodeGenFunction &CGF, llvm::Value *value) { |
| 3038 | return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); |
| 3039 | }, |
| 3040 | doFallback: [](CodeGenFunction &CGF, llvm::Value *value) { |
| 3041 | return value; |
| 3042 | }); |
| 3043 | } |
| 3044 | |
| 3045 | llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, |
| 3046 | bool allowUnsafeClaim) { |
| 3047 | if (allowUnsafeClaim && |
| 3048 | CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { |
| 3049 | return emitARCUnsafeClaimCallResult(CGF&: *this, e: E); |
| 3050 | } else { |
| 3051 | llvm::Value *value = emitARCRetainCallResult(CGF&: *this, e: E); |
| 3052 | return EmitObjCConsumeObject(type: E->getType(), object: value); |
| 3053 | } |
| 3054 | } |
| 3055 | |
| 3056 | /// Determine whether it might be important to emit a separate |
| 3057 | /// objc_retain_block on the result of the given expression, or |
| 3058 | /// whether it's okay to just emit it in a +1 context. |
| 3059 | static bool shouldEmitSeparateBlockRetain(const Expr *e) { |
| 3060 | assert(e->getType()->isBlockPointerType()); |
| 3061 | e = e->IgnoreParens(); |
| 3062 | |
| 3063 | // For future goodness, emit block expressions directly in +1 |
| 3064 | // contexts if we can. |
| 3065 | if (isa<BlockExpr>(Val: e)) |
| 3066 | return false; |
| 3067 | |
| 3068 | if (const CastExpr *cast = dyn_cast<CastExpr>(Val: e)) { |
| 3069 | switch (cast->getCastKind()) { |
| 3070 | // Emitting these operations in +1 contexts is goodness. |
| 3071 | case CK_LValueToRValue: |
| 3072 | case CK_ARCReclaimReturnedObject: |
| 3073 | case CK_ARCConsumeObject: |
| 3074 | case CK_ARCProduceObject: |
| 3075 | return false; |
| 3076 | |
| 3077 | // These operations preserve a block type. |
| 3078 | case CK_NoOp: |
| 3079 | case CK_BitCast: |
| 3080 | return shouldEmitSeparateBlockRetain(e: cast->getSubExpr()); |
| 3081 | |
| 3082 | // These operations are known to be bad (or haven't been considered). |
| 3083 | case CK_AnyPointerToBlockPointerCast: |
| 3084 | default: |
| 3085 | return true; |
| 3086 | } |
| 3087 | } |
| 3088 | |
| 3089 | return true; |
| 3090 | } |
| 3091 | |
| 3092 | namespace { |
| 3093 | /// A CRTP base class for emitting expressions of retainable object |
| 3094 | /// pointer type in ARC. |
| 3095 | template <typename Impl, typename Result> class ARCExprEmitter { |
| 3096 | protected: |
| 3097 | CodeGenFunction &CGF; |
| 3098 | Impl &asImpl() { return *static_cast<Impl*>(this); } |
| 3099 | |
| 3100 | ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} |
| 3101 | |
| 3102 | public: |
| 3103 | Result visit(const Expr *e); |
| 3104 | Result visitCastExpr(const CastExpr *e); |
| 3105 | Result visitPseudoObjectExpr(const PseudoObjectExpr *e); |
| 3106 | Result visitBlockExpr(const BlockExpr *e); |
| 3107 | Result visitBinaryOperator(const BinaryOperator *e); |
| 3108 | Result visitBinAssign(const BinaryOperator *e); |
| 3109 | Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); |
| 3110 | Result visitBinAssignAutoreleasing(const BinaryOperator *e); |
| 3111 | Result visitBinAssignWeak(const BinaryOperator *e); |
| 3112 | Result visitBinAssignStrong(const BinaryOperator *e); |
| 3113 | |
| 3114 | // Minimal implementation: |
| 3115 | // Result visitLValueToRValue(const Expr *e) |
| 3116 | // Result visitConsumeObject(const Expr *e) |
| 3117 | // Result visitExtendBlockObject(const Expr *e) |
| 3118 | // Result visitReclaimReturnedObject(const Expr *e) |
| 3119 | // Result visitCall(const Expr *e) |
| 3120 | // Result visitExpr(const Expr *e) |
| 3121 | // |
| 3122 | // Result emitBitCast(Result result, llvm::Type *resultType) |
| 3123 | // llvm::Value *getValueOfResult(Result result) |
| 3124 | }; |
| 3125 | } |
| 3126 | |
| 3127 | /// Try to emit a PseudoObjectExpr under special ARC rules. |
| 3128 | /// |
| 3129 | /// This massively duplicates emitPseudoObjectRValue. |
| 3130 | template <typename Impl, typename Result> |
| 3131 | Result |
| 3132 | ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { |
| 3133 | SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; |
| 3134 | |
| 3135 | // Find the result expression. |
| 3136 | const Expr *resultExpr = E->getResultExpr(); |
| 3137 | assert(resultExpr); |
| 3138 | Result result; |
| 3139 | |
| 3140 | for (PseudoObjectExpr::const_semantics_iterator |
| 3141 | i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { |
| 3142 | const Expr *semantic = *i; |
| 3143 | |
| 3144 | // If this semantic expression is an opaque value, bind it |
| 3145 | // to the result of its source expression. |
| 3146 | if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(Val: semantic)) { |
| 3147 | typedef CodeGenFunction::OpaqueValueMappingData OVMA; |
| 3148 | OVMA opaqueData; |
| 3149 | |
| 3150 | // If this semantic is the result of the pseudo-object |
| 3151 | // expression, try to evaluate the source as +1. |
| 3152 | if (ov == resultExpr) { |
| 3153 | assert(!OVMA::shouldBindAsLValue(ov)); |
| 3154 | result = asImpl().visit(ov->getSourceExpr()); |
| 3155 | opaqueData = OVMA::bind(CGF, ov, |
| 3156 | RValue::get(asImpl().getValueOfResult(result))); |
| 3157 | |
| 3158 | // Otherwise, just bind it. |
| 3159 | } else { |
| 3160 | opaqueData = OVMA::bind(CGF, ov, e: ov->getSourceExpr()); |
| 3161 | } |
| 3162 | opaques.push_back(Elt: opaqueData); |
| 3163 | |
| 3164 | // Otherwise, if the expression is the result, evaluate it |
| 3165 | // and remember the result. |
| 3166 | } else if (semantic == resultExpr) { |
| 3167 | result = asImpl().visit(semantic); |
| 3168 | |
| 3169 | // Otherwise, evaluate the expression in an ignored context. |
| 3170 | } else { |
| 3171 | CGF.EmitIgnoredExpr(E: semantic); |
| 3172 | } |
| 3173 | } |
| 3174 | |
| 3175 | // Unbind all the opaques now. |
| 3176 | for (CodeGenFunction::OpaqueValueMappingData &opaque : opaques) |
| 3177 | opaque.unbind(CGF); |
| 3178 | |
| 3179 | return result; |
| 3180 | } |
| 3181 | |
| 3182 | template <typename Impl, typename Result> |
| 3183 | Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { |
| 3184 | // The default implementation just forwards the expression to visitExpr. |
| 3185 | return asImpl().visitExpr(e); |
| 3186 | } |
| 3187 | |
| 3188 | template <typename Impl, typename Result> |
| 3189 | Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { |
| 3190 | switch (e->getCastKind()) { |
| 3191 | |
| 3192 | // No-op casts don't change the type, so we just ignore them. |
| 3193 | case CK_NoOp: |
| 3194 | return asImpl().visit(e->getSubExpr()); |
| 3195 | |
| 3196 | // These casts can change the type. |
| 3197 | case CK_CPointerToObjCPointerCast: |
| 3198 | case CK_BlockPointerToObjCPointerCast: |
| 3199 | case CK_AnyPointerToBlockPointerCast: |
| 3200 | case CK_BitCast: { |
| 3201 | llvm::Type *resultType = CGF.ConvertType(T: e->getType()); |
| 3202 | assert(e->getSubExpr()->getType()->hasPointerRepresentation()); |
| 3203 | Result result = asImpl().visit(e->getSubExpr()); |
| 3204 | return asImpl().emitBitCast(result, resultType); |
| 3205 | } |
| 3206 | |
| 3207 | // Handle some casts specially. |
| 3208 | case CK_LValueToRValue: |
| 3209 | return asImpl().visitLValueToRValue(e->getSubExpr()); |
| 3210 | case CK_ARCConsumeObject: |
| 3211 | return asImpl().visitConsumeObject(e->getSubExpr()); |
| 3212 | case CK_ARCExtendBlockObject: |
| 3213 | return asImpl().visitExtendBlockObject(e->getSubExpr()); |
| 3214 | case CK_ARCReclaimReturnedObject: |
| 3215 | return asImpl().visitReclaimReturnedObject(e->getSubExpr()); |
| 3216 | |
| 3217 | // Otherwise, use the default logic. |
| 3218 | default: |
| 3219 | return asImpl().visitExpr(e); |
| 3220 | } |
| 3221 | } |
| 3222 | |
| 3223 | template <typename Impl, typename Result> |
| 3224 | Result |
| 3225 | ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { |
| 3226 | switch (e->getOpcode()) { |
| 3227 | case BO_Comma: |
| 3228 | CGF.EmitIgnoredExpr(E: e->getLHS()); |
| 3229 | CGF.EnsureInsertPoint(); |
| 3230 | return asImpl().visit(e->getRHS()); |
| 3231 | |
| 3232 | case BO_Assign: |
| 3233 | return asImpl().visitBinAssign(e); |
| 3234 | |
| 3235 | default: |
| 3236 | return asImpl().visitExpr(e); |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | template <typename Impl, typename Result> |
| 3241 | Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { |
| 3242 | switch (e->getLHS()->getType().getObjCLifetime()) { |
| 3243 | case Qualifiers::OCL_ExplicitNone: |
| 3244 | return asImpl().visitBinAssignUnsafeUnretained(e); |
| 3245 | |
| 3246 | case Qualifiers::OCL_Weak: |
| 3247 | return asImpl().visitBinAssignWeak(e); |
| 3248 | |
| 3249 | case Qualifiers::OCL_Autoreleasing: |
| 3250 | return asImpl().visitBinAssignAutoreleasing(e); |
| 3251 | |
| 3252 | case Qualifiers::OCL_Strong: |
| 3253 | return asImpl().visitBinAssignStrong(e); |
| 3254 | |
| 3255 | case Qualifiers::OCL_None: |
| 3256 | return asImpl().visitExpr(e); |
| 3257 | } |
| 3258 | llvm_unreachable("bad ObjC ownership qualifier" ); |
| 3259 | } |
| 3260 | |
| 3261 | /// The default rule for __unsafe_unretained emits the RHS recursively, |
| 3262 | /// stores into the unsafe variable, and propagates the result outward. |
| 3263 | template <typename Impl, typename Result> |
| 3264 | Result ARCExprEmitter<Impl,Result>:: |
| 3265 | visitBinAssignUnsafeUnretained(const BinaryOperator *e) { |
| 3266 | // Recursively emit the RHS. |
| 3267 | // For __block safety, do this before emitting the LHS. |
| 3268 | Result result = asImpl().visit(e->getRHS()); |
| 3269 | |
| 3270 | // Perform the store. |
| 3271 | LValue lvalue = |
| 3272 | CGF.EmitCheckedLValue(E: e->getLHS(), TCK: CodeGenFunction::TCK_Store); |
| 3273 | CGF.EmitStoreThroughLValue(Src: RValue::get(asImpl().getValueOfResult(result)), |
| 3274 | Dst: lvalue); |
| 3275 | |
| 3276 | return result; |
| 3277 | } |
| 3278 | |
| 3279 | template <typename Impl, typename Result> |
| 3280 | Result |
| 3281 | ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { |
| 3282 | return asImpl().visitExpr(e); |
| 3283 | } |
| 3284 | |
| 3285 | template <typename Impl, typename Result> |
| 3286 | Result |
| 3287 | ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { |
| 3288 | return asImpl().visitExpr(e); |
| 3289 | } |
| 3290 | |
| 3291 | template <typename Impl, typename Result> |
| 3292 | Result |
| 3293 | ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { |
| 3294 | return asImpl().visitExpr(e); |
| 3295 | } |
| 3296 | |
| 3297 | /// The general expression-emission logic. |
| 3298 | template <typename Impl, typename Result> |
| 3299 | Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { |
| 3300 | // We should *never* see a nested full-expression here, because if |
| 3301 | // we fail to emit at +1, our caller must not retain after we close |
| 3302 | // out the full-expression. This isn't as important in the unsafe |
| 3303 | // emitter. |
| 3304 | assert(!isa<ExprWithCleanups>(e)); |
| 3305 | |
| 3306 | // Look through parens, __extension__, generic selection, etc. |
| 3307 | e = e->IgnoreParens(); |
| 3308 | |
| 3309 | // Handle certain kinds of casts. |
| 3310 | if (const CastExpr *ce = dyn_cast<CastExpr>(Val: e)) { |
| 3311 | return asImpl().visitCastExpr(ce); |
| 3312 | |
| 3313 | // Handle the comma operator. |
| 3314 | } else if (auto op = dyn_cast<BinaryOperator>(Val: e)) { |
| 3315 | return asImpl().visitBinaryOperator(op); |
| 3316 | |
| 3317 | // TODO: handle conditional operators here |
| 3318 | |
| 3319 | // For calls and message sends, use the retained-call logic. |
| 3320 | // Delegate inits are a special case in that they're the only |
| 3321 | // returns-retained expression that *isn't* surrounded by |
| 3322 | // a consume. |
| 3323 | } else if (isa<CallExpr>(Val: e) || |
| 3324 | (isa<ObjCMessageExpr>(Val: e) && |
| 3325 | !cast<ObjCMessageExpr>(Val: e)->isDelegateInitCall())) { |
| 3326 | return asImpl().visitCall(e); |
| 3327 | |
| 3328 | // Look through pseudo-object expressions. |
| 3329 | } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(Val: e)) { |
| 3330 | return asImpl().visitPseudoObjectExpr(pseudo); |
| 3331 | } else if (auto *be = dyn_cast<BlockExpr>(Val: e)) |
| 3332 | return asImpl().visitBlockExpr(be); |
| 3333 | |
| 3334 | return asImpl().visitExpr(e); |
| 3335 | } |
| 3336 | |
| 3337 | namespace { |
| 3338 | |
| 3339 | /// An emitter for +1 results. |
| 3340 | struct ARCRetainExprEmitter : |
| 3341 | public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { |
| 3342 | |
| 3343 | ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} |
| 3344 | |
| 3345 | llvm::Value *getValueOfResult(TryEmitResult result) { |
| 3346 | return result.getPointer(); |
| 3347 | } |
| 3348 | |
| 3349 | TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { |
| 3350 | llvm::Value *value = result.getPointer(); |
| 3351 | value = CGF.Builder.CreateBitCast(V: value, DestTy: resultType); |
| 3352 | result.setPointer(value); |
| 3353 | return result; |
| 3354 | } |
| 3355 | |
| 3356 | TryEmitResult visitLValueToRValue(const Expr *e) { |
| 3357 | return tryEmitARCRetainLoadOfScalar(CGF, e); |
| 3358 | } |
| 3359 | |
| 3360 | /// For consumptions, just emit the subexpression and thus elide |
| 3361 | /// the retain/release pair. |
| 3362 | TryEmitResult visitConsumeObject(const Expr *e) { |
| 3363 | llvm::Value *result = CGF.EmitScalarExpr(E: e); |
| 3364 | return TryEmitResult(result, true); |
| 3365 | } |
| 3366 | |
| 3367 | TryEmitResult visitBlockExpr(const BlockExpr *e) { |
| 3368 | TryEmitResult result = visitExpr(e); |
| 3369 | // Avoid the block-retain if this is a block literal that doesn't need to be |
| 3370 | // copied to the heap. |
| 3371 | if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && |
| 3372 | e->getBlockDecl()->canAvoidCopyToHeap()) |
| 3373 | result.setInt(true); |
| 3374 | return result; |
| 3375 | } |
| 3376 | |
| 3377 | /// Block extends are net +0. Naively, we could just recurse on |
| 3378 | /// the subexpression, but actually we need to ensure that the |
| 3379 | /// value is copied as a block, so there's a little filter here. |
| 3380 | TryEmitResult visitExtendBlockObject(const Expr *e) { |
| 3381 | llvm::Value *result; // will be a +0 value |
| 3382 | |
| 3383 | // If we can't safely assume the sub-expression will produce a |
| 3384 | // block-copied value, emit the sub-expression at +0. |
| 3385 | if (shouldEmitSeparateBlockRetain(e)) { |
| 3386 | result = CGF.EmitScalarExpr(E: e); |
| 3387 | |
| 3388 | // Otherwise, try to emit the sub-expression at +1 recursively. |
| 3389 | } else { |
| 3390 | TryEmitResult subresult = asImpl().visit(e); |
| 3391 | |
| 3392 | // If that produced a retained value, just use that. |
| 3393 | if (subresult.getInt()) { |
| 3394 | return subresult; |
| 3395 | } |
| 3396 | |
| 3397 | // Otherwise it's +0. |
| 3398 | result = subresult.getPointer(); |
| 3399 | } |
| 3400 | |
| 3401 | // Retain the object as a block. |
| 3402 | result = CGF.EmitARCRetainBlock(value: result, /*mandatory*/ true); |
| 3403 | return TryEmitResult(result, true); |
| 3404 | } |
| 3405 | |
| 3406 | /// For reclaims, emit the subexpression as a retained call and |
| 3407 | /// skip the consumption. |
| 3408 | TryEmitResult visitReclaimReturnedObject(const Expr *e) { |
| 3409 | llvm::Value *result = emitARCRetainCallResult(CGF, e); |
| 3410 | return TryEmitResult(result, true); |
| 3411 | } |
| 3412 | |
| 3413 | /// When we have an undecorated call, retroactively do a claim. |
| 3414 | TryEmitResult visitCall(const Expr *e) { |
| 3415 | llvm::Value *result = emitARCRetainCallResult(CGF, e); |
| 3416 | return TryEmitResult(result, true); |
| 3417 | } |
| 3418 | |
| 3419 | // TODO: maybe special-case visitBinAssignWeak? |
| 3420 | |
| 3421 | TryEmitResult visitExpr(const Expr *e) { |
| 3422 | // We didn't find an obvious production, so emit what we've got and |
| 3423 | // tell the caller that we didn't manage to retain. |
| 3424 | llvm::Value *result = CGF.EmitScalarExpr(E: e); |
| 3425 | return TryEmitResult(result, false); |
| 3426 | } |
| 3427 | }; |
| 3428 | } |
| 3429 | |
| 3430 | static TryEmitResult |
| 3431 | tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { |
| 3432 | return ARCRetainExprEmitter(CGF).visit(e); |
| 3433 | } |
| 3434 | |
| 3435 | static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| 3436 | LValue lvalue, |
| 3437 | QualType type) { |
| 3438 | TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); |
| 3439 | llvm::Value *value = result.getPointer(); |
| 3440 | if (!result.getInt()) |
| 3441 | value = CGF.EmitARCRetain(type, value); |
| 3442 | return value; |
| 3443 | } |
| 3444 | |
| 3445 | /// EmitARCRetainScalarExpr - Semantically equivalent to |
| 3446 | /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a |
| 3447 | /// best-effort attempt to peephole expressions that naturally produce |
| 3448 | /// retained objects. |
| 3449 | llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { |
| 3450 | // The retain needs to happen within the full-expression. |
| 3451 | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) { |
| 3452 | RunCleanupsScope scope(*this); |
| 3453 | return EmitARCRetainScalarExpr(e: cleanups->getSubExpr()); |
| 3454 | } |
| 3455 | |
| 3456 | TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e); |
| 3457 | llvm::Value *value = result.getPointer(); |
| 3458 | if (!result.getInt()) |
| 3459 | value = EmitARCRetain(type: e->getType(), value); |
| 3460 | return value; |
| 3461 | } |
| 3462 | |
| 3463 | llvm::Value * |
| 3464 | CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { |
| 3465 | // The retain needs to happen within the full-expression. |
| 3466 | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) { |
| 3467 | RunCleanupsScope scope(*this); |
| 3468 | return EmitARCRetainAutoreleaseScalarExpr(e: cleanups->getSubExpr()); |
| 3469 | } |
| 3470 | |
| 3471 | TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e); |
| 3472 | llvm::Value *value = result.getPointer(); |
| 3473 | if (result.getInt()) |
| 3474 | value = EmitARCAutorelease(value); |
| 3475 | else |
| 3476 | value = EmitARCRetainAutorelease(type: e->getType(), value); |
| 3477 | return value; |
| 3478 | } |
| 3479 | |
| 3480 | llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { |
| 3481 | llvm::Value *result; |
| 3482 | bool doRetain; |
| 3483 | |
| 3484 | if (shouldEmitSeparateBlockRetain(e)) { |
| 3485 | result = EmitScalarExpr(E: e); |
| 3486 | doRetain = true; |
| 3487 | } else { |
| 3488 | TryEmitResult subresult = tryEmitARCRetainScalarExpr(CGF&: *this, e); |
| 3489 | result = subresult.getPointer(); |
| 3490 | doRetain = !subresult.getInt(); |
| 3491 | } |
| 3492 | |
| 3493 | if (doRetain) |
| 3494 | result = EmitARCRetainBlock(value: result, /*mandatory*/ true); |
| 3495 | return EmitObjCConsumeObject(type: e->getType(), object: result); |
| 3496 | } |
| 3497 | |
| 3498 | llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { |
| 3499 | // In ARC, retain and autorelease the expression. |
| 3500 | if (getLangOpts().ObjCAutoRefCount) { |
| 3501 | // Do so before running any cleanups for the full-expression. |
| 3502 | // EmitARCRetainAutoreleaseScalarExpr does this for us. |
| 3503 | return EmitARCRetainAutoreleaseScalarExpr(e: expr); |
| 3504 | } |
| 3505 | |
| 3506 | // Otherwise, use the normal scalar-expression emission. The |
| 3507 | // exception machinery doesn't do anything special with the |
| 3508 | // exception like retaining it, so there's no safety associated with |
| 3509 | // only running cleanups after the throw has started, and when it |
| 3510 | // matters it tends to be substantially inferior code. |
| 3511 | return EmitScalarExpr(E: expr); |
| 3512 | } |
| 3513 | |
| 3514 | namespace { |
| 3515 | |
| 3516 | /// An emitter for assigning into an __unsafe_unretained context. |
| 3517 | struct ARCUnsafeUnretainedExprEmitter : |
| 3518 | public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { |
| 3519 | |
| 3520 | ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} |
| 3521 | |
| 3522 | llvm::Value *getValueOfResult(llvm::Value *value) { |
| 3523 | return value; |
| 3524 | } |
| 3525 | |
| 3526 | llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { |
| 3527 | return CGF.Builder.CreateBitCast(V: value, DestTy: resultType); |
| 3528 | } |
| 3529 | |
| 3530 | llvm::Value *visitLValueToRValue(const Expr *e) { |
| 3531 | return CGF.EmitScalarExpr(E: e); |
| 3532 | } |
| 3533 | |
| 3534 | /// For consumptions, just emit the subexpression and perform the |
| 3535 | /// consumption like normal. |
| 3536 | llvm::Value *visitConsumeObject(const Expr *e) { |
| 3537 | llvm::Value *value = CGF.EmitScalarExpr(E: e); |
| 3538 | return CGF.EmitObjCConsumeObject(type: e->getType(), object: value); |
| 3539 | } |
| 3540 | |
| 3541 | /// No special logic for block extensions. (This probably can't |
| 3542 | /// actually happen in this emitter, though.) |
| 3543 | llvm::Value *visitExtendBlockObject(const Expr *e) { |
| 3544 | return CGF.EmitARCExtendBlockObject(e); |
| 3545 | } |
| 3546 | |
| 3547 | /// For reclaims, perform an unsafeClaim if that's enabled. |
| 3548 | llvm::Value *visitReclaimReturnedObject(const Expr *e) { |
| 3549 | return CGF.EmitARCReclaimReturnedObject(E: e, /*unsafe*/ allowUnsafeClaim: true); |
| 3550 | } |
| 3551 | |
| 3552 | /// When we have an undecorated call, just emit it without adding |
| 3553 | /// the unsafeClaim. |
| 3554 | llvm::Value *visitCall(const Expr *e) { |
| 3555 | return CGF.EmitScalarExpr(E: e); |
| 3556 | } |
| 3557 | |
| 3558 | /// Just do normal scalar emission in the default case. |
| 3559 | llvm::Value *visitExpr(const Expr *e) { |
| 3560 | return CGF.EmitScalarExpr(E: e); |
| 3561 | } |
| 3562 | }; |
| 3563 | } |
| 3564 | |
| 3565 | static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, |
| 3566 | const Expr *e) { |
| 3567 | return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); |
| 3568 | } |
| 3569 | |
| 3570 | /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to |
| 3571 | /// immediately releasing the resut of EmitARCRetainScalarExpr, but |
| 3572 | /// avoiding any spurious retains, including by performing reclaims |
| 3573 | /// with objc_unsafeClaimAutoreleasedReturnValue. |
| 3574 | llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { |
| 3575 | // Look through full-expressions. |
| 3576 | if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Val: e)) { |
| 3577 | RunCleanupsScope scope(*this); |
| 3578 | return emitARCUnsafeUnretainedScalarExpr(CGF&: *this, e: cleanups->getSubExpr()); |
| 3579 | } |
| 3580 | |
| 3581 | return emitARCUnsafeUnretainedScalarExpr(CGF&: *this, e); |
| 3582 | } |
| 3583 | |
| 3584 | std::pair<LValue,llvm::Value*> |
| 3585 | CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, |
| 3586 | bool ignored) { |
| 3587 | // Evaluate the RHS first. If we're ignoring the result, assume |
| 3588 | // that we can emit at an unsafe +0. |
| 3589 | llvm::Value *value; |
| 3590 | if (ignored) { |
| 3591 | value = EmitARCUnsafeUnretainedScalarExpr(e: e->getRHS()); |
| 3592 | } else { |
| 3593 | value = EmitScalarExpr(E: e->getRHS()); |
| 3594 | } |
| 3595 | |
| 3596 | // Emit the LHS and perform the store. |
| 3597 | LValue lvalue = EmitLValue(E: e->getLHS()); |
| 3598 | EmitStoreOfScalar(value, lvalue); |
| 3599 | |
| 3600 | return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); |
| 3601 | } |
| 3602 | |
| 3603 | std::pair<LValue,llvm::Value*> |
| 3604 | CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, |
| 3605 | bool ignored) { |
| 3606 | // Evaluate the RHS first. |
| 3607 | TryEmitResult result = tryEmitARCRetainScalarExpr(CGF&: *this, e: e->getRHS()); |
| 3608 | llvm::Value *value = result.getPointer(); |
| 3609 | |
| 3610 | bool hasImmediateRetain = result.getInt(); |
| 3611 | |
| 3612 | // If we didn't emit a retained object, and the l-value is of block |
| 3613 | // type, then we need to emit the block-retain immediately in case |
| 3614 | // it invalidates the l-value. |
| 3615 | if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { |
| 3616 | value = EmitARCRetainBlock(value, /*mandatory*/ false); |
| 3617 | hasImmediateRetain = true; |
| 3618 | } |
| 3619 | |
| 3620 | LValue lvalue = EmitLValue(E: e->getLHS()); |
| 3621 | |
| 3622 | // If the RHS was emitted retained, expand this. |
| 3623 | if (hasImmediateRetain) { |
| 3624 | llvm::Value *oldValue = EmitLoadOfScalar(lvalue, Loc: SourceLocation()); |
| 3625 | EmitStoreOfScalar(value, lvalue); |
| 3626 | EmitARCRelease(value: oldValue, precise: lvalue.isARCPreciseLifetime()); |
| 3627 | } else { |
| 3628 | value = EmitARCStoreStrong(dst: lvalue, newValue: value, ignored); |
| 3629 | } |
| 3630 | |
| 3631 | return std::pair<LValue,llvm::Value*>(lvalue, value); |
| 3632 | } |
| 3633 | |
| 3634 | std::pair<LValue,llvm::Value*> |
| 3635 | CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { |
| 3636 | llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e: e->getRHS()); |
| 3637 | LValue lvalue = EmitLValue(E: e->getLHS()); |
| 3638 | |
| 3639 | EmitStoreOfScalar(value, lvalue); |
| 3640 | |
| 3641 | return std::pair<LValue,llvm::Value*>(lvalue, value); |
| 3642 | } |
| 3643 | |
| 3644 | void CodeGenFunction::EmitObjCAutoreleasePoolStmt( |
| 3645 | const ObjCAutoreleasePoolStmt &ARPS) { |
| 3646 | const Stmt *subStmt = ARPS.getSubStmt(); |
| 3647 | const CompoundStmt &S = cast<CompoundStmt>(Val: *subStmt); |
| 3648 | |
| 3649 | CGDebugInfo *DI = getDebugInfo(); |
| 3650 | if (DI) |
| 3651 | DI->EmitLexicalBlockStart(Builder, Loc: S.getLBracLoc()); |
| 3652 | |
| 3653 | // Keep track of the current cleanup stack depth. |
| 3654 | RunCleanupsScope Scope(*this); |
| 3655 | if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { |
| 3656 | llvm::Value *token = EmitObjCAutoreleasePoolPush(); |
| 3657 | EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(Kind: NormalCleanup, A: token); |
| 3658 | } else { |
| 3659 | llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); |
| 3660 | EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(Kind: NormalCleanup, A: token); |
| 3661 | } |
| 3662 | |
| 3663 | for (const auto *I : S.body()) |
| 3664 | EmitStmt(S: I); |
| 3665 | |
| 3666 | if (DI) |
| 3667 | DI->EmitLexicalBlockEnd(Builder, Loc: S.getRBracLoc()); |
| 3668 | } |
| 3669 | |
| 3670 | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
| 3671 | /// make sure it survives garbage collection until this point. |
| 3672 | void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { |
| 3673 | // We just use an inline assembly. |
| 3674 | llvm::FunctionType *extenderType |
| 3675 | = llvm::FunctionType::get(Result: VoidTy, Params: VoidPtrTy, isVarArg: RequiredArgs::All); |
| 3676 | llvm::InlineAsm *extender = llvm::InlineAsm::get(Ty: extenderType, |
| 3677 | /* assembly */ AsmString: "" , |
| 3678 | /* constraints */ Constraints: "r" , |
| 3679 | /* side effects */ hasSideEffects: true); |
| 3680 | |
| 3681 | EmitNounwindRuntimeCall(callee: extender, args: object); |
| 3682 | } |
| 3683 | |
| 3684 | /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with |
| 3685 | /// non-trivial copy assignment function, produce following helper function. |
| 3686 | /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } |
| 3687 | /// |
| 3688 | llvm::Constant * |
| 3689 | CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( |
| 3690 | const ObjCPropertyImplDecl *PID) { |
| 3691 | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| 3692 | if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) |
| 3693 | return nullptr; |
| 3694 | |
| 3695 | QualType Ty = PID->getPropertyIvarDecl()->getType(); |
| 3696 | ASTContext &C = getContext(); |
| 3697 | |
| 3698 | if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { |
| 3699 | // Call the move assignment operator instead of calling the copy assignment |
| 3700 | // operator and destructor. |
| 3701 | CharUnits Alignment = C.getTypeAlignInChars(T: Ty); |
| 3702 | llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator( |
| 3703 | CGM, DstAlignment: Alignment, SrcAlignment: Alignment, IsVolatile: Ty.isVolatileQualified(), QT: Ty); |
| 3704 | return Fn; |
| 3705 | } |
| 3706 | |
| 3707 | if (!getLangOpts().CPlusPlus || |
| 3708 | !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) |
| 3709 | return nullptr; |
| 3710 | if (!Ty->isRecordType()) |
| 3711 | return nullptr; |
| 3712 | llvm::Constant *HelperFn = nullptr; |
| 3713 | if (hasTrivialSetExpr(PID)) |
| 3714 | return nullptr; |
| 3715 | assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null" ); |
| 3716 | if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) |
| 3717 | return HelperFn; |
| 3718 | |
| 3719 | const IdentifierInfo *II = |
| 3720 | &CGM.getContext().Idents.get(Name: "__assign_helper_atomic_property_" ); |
| 3721 | |
| 3722 | QualType ReturnTy = C.VoidTy; |
| 3723 | QualType DestTy = C.getPointerType(T: Ty); |
| 3724 | QualType SrcTy = Ty; |
| 3725 | SrcTy.addConst(); |
| 3726 | SrcTy = C.getPointerType(T: SrcTy); |
| 3727 | |
| 3728 | SmallVector<QualType, 2> ArgTys; |
| 3729 | ArgTys.push_back(Elt: DestTy); |
| 3730 | ArgTys.push_back(Elt: SrcTy); |
| 3731 | QualType FunctionTy = C.getFunctionType(ResultTy: ReturnTy, Args: ArgTys, EPI: {}); |
| 3732 | |
| 3733 | FunctionDecl *FD = FunctionDecl::Create( |
| 3734 | C, DC: C.getTranslationUnitDecl(), StartLoc: SourceLocation(), NLoc: SourceLocation(), N: II, |
| 3735 | T: FunctionTy, TInfo: nullptr, SC: SC_Static, UsesFPIntrin: false, isInlineSpecified: false, hasWrittenPrototype: false); |
| 3736 | |
| 3737 | FunctionArgList args; |
| 3738 | ParmVarDecl *Params[2]; |
| 3739 | ParmVarDecl *DstDecl = ParmVarDecl::Create( |
| 3740 | C, DC: FD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: nullptr, T: DestTy, |
| 3741 | TInfo: C.getTrivialTypeSourceInfo(T: DestTy, Loc: SourceLocation()), S: SC_None, |
| 3742 | /*DefArg=*/nullptr); |
| 3743 | args.push_back(Elt: Params[0] = DstDecl); |
| 3744 | ParmVarDecl *SrcDecl = ParmVarDecl::Create( |
| 3745 | C, DC: FD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: nullptr, T: SrcTy, |
| 3746 | TInfo: C.getTrivialTypeSourceInfo(T: SrcTy, Loc: SourceLocation()), S: SC_None, |
| 3747 | /*DefArg=*/nullptr); |
| 3748 | args.push_back(Elt: Params[1] = SrcDecl); |
| 3749 | FD->setParams(Params); |
| 3750 | |
| 3751 | const CGFunctionInfo &FI = |
| 3752 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: ReturnTy, args); |
| 3753 | |
| 3754 | llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(Info: FI); |
| 3755 | |
| 3756 | llvm::Function *Fn = |
| 3757 | llvm::Function::Create(Ty: LTy, Linkage: llvm::GlobalValue::InternalLinkage, |
| 3758 | N: "__assign_helper_atomic_property_" , |
| 3759 | M: &CGM.getModule()); |
| 3760 | |
| 3761 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI); |
| 3762 | |
| 3763 | StartFunction(GD: FD, RetTy: ReturnTy, Fn, FnInfo: FI, Args: args); |
| 3764 | |
| 3765 | DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); |
| 3766 | UnaryOperator *DST = UnaryOperator::Create( |
| 3767 | C, input: &DstExpr, opc: UO_Deref, type: DestTy->getPointeeType(), VK: VK_LValue, OK: OK_Ordinary, |
| 3768 | l: SourceLocation(), CanOverflow: false, FPFeatures: FPOptionsOverride()); |
| 3769 | |
| 3770 | DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); |
| 3771 | UnaryOperator *SRC = UnaryOperator::Create( |
| 3772 | C, input: &SrcExpr, opc: UO_Deref, type: SrcTy->getPointeeType(), VK: VK_LValue, OK: OK_Ordinary, |
| 3773 | l: SourceLocation(), CanOverflow: false, FPFeatures: FPOptionsOverride()); |
| 3774 | |
| 3775 | Expr *Args[2] = {DST, SRC}; |
| 3776 | CallExpr *CalleeExp = cast<CallExpr>(Val: PID->getSetterCXXAssignment()); |
| 3777 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 3778 | Ctx: C, OpKind: OO_Equal, Fn: CalleeExp->getCallee(), Args, Ty: DestTy->getPointeeType(), |
| 3779 | VK: VK_LValue, OperatorLoc: SourceLocation(), FPFeatures: FPOptionsOverride()); |
| 3780 | |
| 3781 | EmitStmt(S: TheCall); |
| 3782 | |
| 3783 | FinishFunction(); |
| 3784 | HelperFn = Fn; |
| 3785 | CGM.setAtomicSetterHelperFnMap(Ty, Fn: HelperFn); |
| 3786 | return HelperFn; |
| 3787 | } |
| 3788 | |
| 3789 | llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( |
| 3790 | const ObjCPropertyImplDecl *PID) { |
| 3791 | const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| 3792 | if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) |
| 3793 | return nullptr; |
| 3794 | |
| 3795 | QualType Ty = PD->getType(); |
| 3796 | ASTContext &C = getContext(); |
| 3797 | |
| 3798 | if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { |
| 3799 | CharUnits Alignment = C.getTypeAlignInChars(T: Ty); |
| 3800 | llvm::Constant *Fn = getNonTrivialCStructCopyConstructor( |
| 3801 | CGM, DstAlignment: Alignment, SrcAlignment: Alignment, IsVolatile: Ty.isVolatileQualified(), QT: Ty); |
| 3802 | return Fn; |
| 3803 | } |
| 3804 | |
| 3805 | if (!getLangOpts().CPlusPlus || |
| 3806 | !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) |
| 3807 | return nullptr; |
| 3808 | if (!Ty->isRecordType()) |
| 3809 | return nullptr; |
| 3810 | llvm::Constant *HelperFn = nullptr; |
| 3811 | if (hasTrivialGetExpr(propImpl: PID)) |
| 3812 | return nullptr; |
| 3813 | assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null" ); |
| 3814 | if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) |
| 3815 | return HelperFn; |
| 3816 | |
| 3817 | const IdentifierInfo *II = |
| 3818 | &CGM.getContext().Idents.get(Name: "__copy_helper_atomic_property_" ); |
| 3819 | |
| 3820 | QualType ReturnTy = C.VoidTy; |
| 3821 | QualType DestTy = C.getPointerType(T: Ty); |
| 3822 | QualType SrcTy = Ty; |
| 3823 | SrcTy.addConst(); |
| 3824 | SrcTy = C.getPointerType(T: SrcTy); |
| 3825 | |
| 3826 | SmallVector<QualType, 2> ArgTys; |
| 3827 | ArgTys.push_back(Elt: DestTy); |
| 3828 | ArgTys.push_back(Elt: SrcTy); |
| 3829 | QualType FunctionTy = C.getFunctionType(ResultTy: ReturnTy, Args: ArgTys, EPI: {}); |
| 3830 | |
| 3831 | FunctionDecl *FD = FunctionDecl::Create( |
| 3832 | C, DC: C.getTranslationUnitDecl(), StartLoc: SourceLocation(), NLoc: SourceLocation(), N: II, |
| 3833 | T: FunctionTy, TInfo: nullptr, SC: SC_Static, UsesFPIntrin: false, isInlineSpecified: false, hasWrittenPrototype: false); |
| 3834 | |
| 3835 | FunctionArgList args; |
| 3836 | ParmVarDecl *Params[2]; |
| 3837 | ParmVarDecl *DstDecl = ParmVarDecl::Create( |
| 3838 | C, DC: FD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: nullptr, T: DestTy, |
| 3839 | TInfo: C.getTrivialTypeSourceInfo(T: DestTy, Loc: SourceLocation()), S: SC_None, |
| 3840 | /*DefArg=*/nullptr); |
| 3841 | args.push_back(Elt: Params[0] = DstDecl); |
| 3842 | ParmVarDecl *SrcDecl = ParmVarDecl::Create( |
| 3843 | C, DC: FD, StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: nullptr, T: SrcTy, |
| 3844 | TInfo: C.getTrivialTypeSourceInfo(T: SrcTy, Loc: SourceLocation()), S: SC_None, |
| 3845 | /*DefArg=*/nullptr); |
| 3846 | args.push_back(Elt: Params[1] = SrcDecl); |
| 3847 | FD->setParams(Params); |
| 3848 | |
| 3849 | const CGFunctionInfo &FI = |
| 3850 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: ReturnTy, args); |
| 3851 | |
| 3852 | llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(Info: FI); |
| 3853 | |
| 3854 | llvm::Function *Fn = llvm::Function::Create( |
| 3855 | Ty: LTy, Linkage: llvm::GlobalValue::InternalLinkage, N: "__copy_helper_atomic_property_" , |
| 3856 | M: &CGM.getModule()); |
| 3857 | |
| 3858 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI); |
| 3859 | |
| 3860 | StartFunction(GD: FD, RetTy: ReturnTy, Fn, FnInfo: FI, Args: args); |
| 3861 | |
| 3862 | DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, |
| 3863 | SourceLocation()); |
| 3864 | |
| 3865 | UnaryOperator *SRC = UnaryOperator::Create( |
| 3866 | C, input: &SrcExpr, opc: UO_Deref, type: SrcTy->getPointeeType(), VK: VK_LValue, OK: OK_Ordinary, |
| 3867 | l: SourceLocation(), CanOverflow: false, FPFeatures: FPOptionsOverride()); |
| 3868 | |
| 3869 | CXXConstructExpr *CXXConstExpr = |
| 3870 | cast<CXXConstructExpr>(Val: PID->getGetterCXXConstructor()); |
| 3871 | |
| 3872 | SmallVector<Expr*, 4> ConstructorArgs; |
| 3873 | ConstructorArgs.push_back(Elt: SRC); |
| 3874 | ConstructorArgs.append(in_start: std::next(x: CXXConstExpr->arg_begin()), |
| 3875 | in_end: CXXConstExpr->arg_end()); |
| 3876 | |
| 3877 | CXXConstructExpr *TheCXXConstructExpr = |
| 3878 | CXXConstructExpr::Create(Ctx: C, Ty, Loc: SourceLocation(), |
| 3879 | Ctor: CXXConstExpr->getConstructor(), |
| 3880 | Elidable: CXXConstExpr->isElidable(), |
| 3881 | Args: ConstructorArgs, |
| 3882 | HadMultipleCandidates: CXXConstExpr->hadMultipleCandidates(), |
| 3883 | ListInitialization: CXXConstExpr->isListInitialization(), |
| 3884 | StdInitListInitialization: CXXConstExpr->isStdInitListInitialization(), |
| 3885 | ZeroInitialization: CXXConstExpr->requiresZeroInitialization(), |
| 3886 | ConstructKind: CXXConstExpr->getConstructionKind(), |
| 3887 | ParenOrBraceRange: SourceRange()); |
| 3888 | |
| 3889 | DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, |
| 3890 | SourceLocation()); |
| 3891 | |
| 3892 | RValue DV = EmitAnyExpr(E: &DstExpr); |
| 3893 | CharUnits Alignment = |
| 3894 | getContext().getTypeAlignInChars(T: TheCXXConstructExpr->getType()); |
| 3895 | EmitAggExpr(E: TheCXXConstructExpr, |
| 3896 | AS: AggValueSlot::forAddr( |
| 3897 | addr: Address(DV.getScalarVal(), ConvertTypeForMem(T: Ty), Alignment), |
| 3898 | quals: Qualifiers(), isDestructed: AggValueSlot::IsDestructed, |
| 3899 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
| 3900 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap)); |
| 3901 | |
| 3902 | FinishFunction(); |
| 3903 | HelperFn = Fn; |
| 3904 | CGM.setAtomicGetterHelperFnMap(Ty, Fn: HelperFn); |
| 3905 | return HelperFn; |
| 3906 | } |
| 3907 | |
| 3908 | llvm::Value * |
| 3909 | CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { |
| 3910 | // Get selectors for retain/autorelease. |
| 3911 | const IdentifierInfo *CopyID = &getContext().Idents.get(Name: "copy" ); |
| 3912 | Selector CopySelector = |
| 3913 | getContext().Selectors.getNullarySelector(ID: CopyID); |
| 3914 | const IdentifierInfo *AutoreleaseID = &getContext().Idents.get(Name: "autorelease" ); |
| 3915 | Selector AutoreleaseSelector = |
| 3916 | getContext().Selectors.getNullarySelector(ID: AutoreleaseID); |
| 3917 | |
| 3918 | // Emit calls to retain/autorelease. |
| 3919 | CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| 3920 | llvm::Value *Val = Block; |
| 3921 | RValue Result; |
| 3922 | Result = Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 3923 | ResultType: Ty, Sel: CopySelector, |
| 3924 | Receiver: Val, CallArgs: CallArgList(), Class: nullptr, Method: nullptr); |
| 3925 | Val = Result.getScalarVal(); |
| 3926 | Result = Runtime.GenerateMessageSend(CGF&: *this, ReturnSlot: ReturnValueSlot(), |
| 3927 | ResultType: Ty, Sel: AutoreleaseSelector, |
| 3928 | Receiver: Val, CallArgs: CallArgList(), Class: nullptr, Method: nullptr); |
| 3929 | Val = Result.getScalarVal(); |
| 3930 | return Val; |
| 3931 | } |
| 3932 | |
| 3933 | static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { |
| 3934 | switch (TT.getOS()) { |
| 3935 | case llvm::Triple::Darwin: |
| 3936 | case llvm::Triple::MacOSX: |
| 3937 | return llvm::MachO::PLATFORM_MACOS; |
| 3938 | case llvm::Triple::IOS: |
| 3939 | return llvm::MachO::PLATFORM_IOS; |
| 3940 | case llvm::Triple::TvOS: |
| 3941 | return llvm::MachO::PLATFORM_TVOS; |
| 3942 | case llvm::Triple::WatchOS: |
| 3943 | return llvm::MachO::PLATFORM_WATCHOS; |
| 3944 | case llvm::Triple::XROS: |
| 3945 | return llvm::MachO::PLATFORM_XROS; |
| 3946 | case llvm::Triple::DriverKit: |
| 3947 | return llvm::MachO::PLATFORM_DRIVERKIT; |
| 3948 | default: |
| 3949 | return llvm::MachO::PLATFORM_UNKNOWN; |
| 3950 | } |
| 3951 | } |
| 3952 | |
| 3953 | static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, |
| 3954 | const VersionTuple &Version) { |
| 3955 | CodeGenModule &CGM = CGF.CGM; |
| 3956 | // Note: we intend to support multi-platform version checks, so reserve |
| 3957 | // the room for a dual platform checking invocation that will be |
| 3958 | // implemented in the future. |
| 3959 | llvm::SmallVector<llvm::Value *, 8> Args; |
| 3960 | |
| 3961 | auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { |
| 3962 | std::optional<unsigned> Min = Version.getMinor(), |
| 3963 | SMin = Version.getSubminor(); |
| 3964 | Args.push_back( |
| 3965 | Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: getBaseMachOPlatformID(TT))); |
| 3966 | Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Version.getMajor())); |
| 3967 | Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Min.value_or(u: 0))); |
| 3968 | Args.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: SMin.value_or(u: 0))); |
| 3969 | }; |
| 3970 | |
| 3971 | assert(!Version.empty() && "unexpected empty version" ); |
| 3972 | EmitArgs(Version, CGM.getTarget().getTriple()); |
| 3973 | |
| 3974 | if (!CGM.IsPlatformVersionAtLeastFn) { |
| 3975 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
| 3976 | Result: CGM.Int32Ty, Params: {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, |
| 3977 | isVarArg: false); |
| 3978 | CGM.IsPlatformVersionAtLeastFn = |
| 3979 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "__isPlatformVersionAtLeast" ); |
| 3980 | } |
| 3981 | |
| 3982 | llvm::Value *Check = |
| 3983 | CGF.EmitNounwindRuntimeCall(callee: CGM.IsPlatformVersionAtLeastFn, args: Args); |
| 3984 | return CGF.Builder.CreateICmpNE(LHS: Check, |
| 3985 | RHS: llvm::Constant::getNullValue(Ty: CGM.Int32Ty)); |
| 3986 | } |
| 3987 | |
| 3988 | llvm::Value * |
| 3989 | CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { |
| 3990 | // Darwin uses the new __isPlatformVersionAtLeast family of routines. |
| 3991 | if (CGM.getTarget().getTriple().isOSDarwin()) |
| 3992 | return emitIsPlatformVersionAtLeast(CGF&: *this, Version); |
| 3993 | |
| 3994 | if (!CGM.IsOSVersionAtLeastFn) { |
| 3995 | llvm::FunctionType *FTy = |
| 3996 | llvm::FunctionType::get(Result: Int32Ty, Params: {Int32Ty, Int32Ty, Int32Ty}, isVarArg: false); |
| 3997 | CGM.IsOSVersionAtLeastFn = |
| 3998 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "__isOSVersionAtLeast" ); |
| 3999 | } |
| 4000 | |
| 4001 | std::optional<unsigned> Min = Version.getMinor(), |
| 4002 | SMin = Version.getSubminor(); |
| 4003 | llvm::Value *Args[] = { |
| 4004 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Version.getMajor()), |
| 4005 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Min.value_or(u: 0)), |
| 4006 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: SMin.value_or(u: 0))}; |
| 4007 | |
| 4008 | llvm::Value *CallRes = |
| 4009 | EmitNounwindRuntimeCall(callee: CGM.IsOSVersionAtLeastFn, args: Args); |
| 4010 | |
| 4011 | return Builder.CreateICmpNE(LHS: CallRes, RHS: llvm::Constant::getNullValue(Ty: Int32Ty)); |
| 4012 | } |
| 4013 | |
| 4014 | static bool isFoundationNeededForDarwinAvailabilityCheck( |
| 4015 | const llvm::Triple &TT, const VersionTuple &TargetVersion) { |
| 4016 | VersionTuple FoundationDroppedInVersion; |
| 4017 | switch (TT.getOS()) { |
| 4018 | case llvm::Triple::IOS: |
| 4019 | case llvm::Triple::TvOS: |
| 4020 | FoundationDroppedInVersion = VersionTuple(/*Major=*/13); |
| 4021 | break; |
| 4022 | case llvm::Triple::WatchOS: |
| 4023 | FoundationDroppedInVersion = VersionTuple(/*Major=*/6); |
| 4024 | break; |
| 4025 | case llvm::Triple::Darwin: |
| 4026 | case llvm::Triple::MacOSX: |
| 4027 | FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); |
| 4028 | break; |
| 4029 | case llvm::Triple::XROS: |
| 4030 | // XROS doesn't need Foundation. |
| 4031 | return false; |
| 4032 | case llvm::Triple::DriverKit: |
| 4033 | // DriverKit doesn't need Foundation. |
| 4034 | return false; |
| 4035 | default: |
| 4036 | llvm_unreachable("Unexpected OS" ); |
| 4037 | } |
| 4038 | return TargetVersion < FoundationDroppedInVersion; |
| 4039 | } |
| 4040 | |
| 4041 | void CodeGenModule::emitAtAvailableLinkGuard() { |
| 4042 | if (!IsPlatformVersionAtLeastFn) |
| 4043 | return; |
| 4044 | // @available requires CoreFoundation only on Darwin. |
| 4045 | if (!Target.getTriple().isOSDarwin()) |
| 4046 | return; |
| 4047 | // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or |
| 4048 | // watchOS 6+. |
| 4049 | if (!isFoundationNeededForDarwinAvailabilityCheck( |
| 4050 | TT: Target.getTriple(), TargetVersion: Target.getPlatformMinVersion())) |
| 4051 | return; |
| 4052 | // Add -framework CoreFoundation to the linker commands. We still want to |
| 4053 | // emit the core foundation reference down below because otherwise if |
| 4054 | // CoreFoundation is not used in the code, the linker won't link the |
| 4055 | // framework. |
| 4056 | auto &Context = getLLVMContext(); |
| 4057 | llvm::Metadata *Args[2] = {llvm::MDString::get(Context, Str: "-framework" ), |
| 4058 | llvm::MDString::get(Context, Str: "CoreFoundation" )}; |
| 4059 | LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args)); |
| 4060 | // Emit a reference to a symbol from CoreFoundation to ensure that |
| 4061 | // CoreFoundation is linked into the final binary. |
| 4062 | llvm::FunctionType *FTy = |
| 4063 | llvm::FunctionType::get(Result: Int32Ty, Params: {VoidPtrTy}, isVarArg: false); |
| 4064 | llvm::FunctionCallee CFFunc = |
| 4065 | CreateRuntimeFunction(Ty: FTy, Name: "CFBundleGetVersionNumber" ); |
| 4066 | |
| 4067 | llvm::FunctionType *CheckFTy = llvm::FunctionType::get(Result: VoidTy, Params: {}, isVarArg: false); |
| 4068 | llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( |
| 4069 | Ty: CheckFTy, Name: "__clang_at_available_requires_core_foundation_framework" , |
| 4070 | ExtraAttrs: llvm::AttributeList(), /*Local=*/true); |
| 4071 | llvm::Function *CFLinkCheckFunc = |
| 4072 | cast<llvm::Function>(Val: CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); |
| 4073 | if (CFLinkCheckFunc->empty()) { |
| 4074 | CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); |
| 4075 | CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 4076 | CodeGenFunction CGF(*this); |
| 4077 | CGF.Builder.SetInsertPoint(CGF.createBasicBlock(name: "" , parent: CFLinkCheckFunc)); |
| 4078 | CGF.EmitNounwindRuntimeCall(callee: CFFunc, |
| 4079 | args: llvm::Constant::getNullValue(Ty: VoidPtrTy)); |
| 4080 | CGF.Builder.CreateUnreachable(); |
| 4081 | addCompilerUsedGlobal(GV: CFLinkCheckFunc); |
| 4082 | } |
| 4083 | } |
| 4084 | |
| 4085 | CGObjCRuntime::~CGObjCRuntime() {} |
| 4086 | |