| 1 | //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This provides C++ code generation targeting the Itanium C++ ABI. The class |
| 10 | // in this file generates structures that follow the Itanium C++ ABI, which is |
| 11 | // documented at: |
| 12 | // https://itanium-cxx-abi.github.io/cxx-abi/abi.html |
| 13 | // https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html |
| 14 | // |
| 15 | // It also supports the closely-related ARM ABI, documented at: |
| 16 | // https://developer.arm.com/documentation/ihi0041/g/ |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "CGCXXABI.h" |
| 21 | #include "CGCleanup.h" |
| 22 | #include "CGDebugInfo.h" |
| 23 | #include "CGRecordLayout.h" |
| 24 | #include "CGVTables.h" |
| 25 | #include "CodeGenFunction.h" |
| 26 | #include "CodeGenModule.h" |
| 27 | #include "TargetInfo.h" |
| 28 | #include "clang/AST/Attr.h" |
| 29 | #include "clang/AST/Mangle.h" |
| 30 | #include "clang/AST/StmtCXX.h" |
| 31 | #include "clang/AST/Type.h" |
| 32 | #include "clang/CodeGen/ConstantInitBuilder.h" |
| 33 | #include "llvm/IR/DataLayout.h" |
| 34 | #include "llvm/IR/GlobalValue.h" |
| 35 | #include "llvm/IR/Instructions.h" |
| 36 | #include "llvm/IR/Intrinsics.h" |
| 37 | #include "llvm/IR/Value.h" |
| 38 | #include "llvm/Support/ScopedPrinter.h" |
| 39 | |
| 40 | #include <optional> |
| 41 | |
| 42 | using namespace clang; |
| 43 | using namespace CodeGen; |
| 44 | |
| 45 | namespace { |
| 46 | class ItaniumCXXABI : public CodeGen::CGCXXABI { |
| 47 | /// VTables - All the vtables which have been defined. |
| 48 | llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables; |
| 49 | |
| 50 | /// All the thread wrapper functions that have been used. |
| 51 | llvm::SmallVector<std::pair<const VarDecl *, llvm::Function *>, 8> |
| 52 | ThreadWrappers; |
| 53 | |
| 54 | protected: |
| 55 | bool UseARMMethodPtrABI; |
| 56 | bool UseARMGuardVarABI; |
| 57 | bool Use32BitVTableOffsetABI; |
| 58 | |
| 59 | ItaniumMangleContext &getMangleContext() { |
| 60 | return cast<ItaniumMangleContext>(Val&: CodeGen::CGCXXABI::getMangleContext()); |
| 61 | } |
| 62 | |
| 63 | public: |
| 64 | ItaniumCXXABI(CodeGen::CodeGenModule &CGM, |
| 65 | bool UseARMMethodPtrABI = false, |
| 66 | bool UseARMGuardVarABI = false) : |
| 67 | CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), |
| 68 | UseARMGuardVarABI(UseARMGuardVarABI), |
| 69 | Use32BitVTableOffsetABI(false) { } |
| 70 | |
| 71 | bool classifyReturnType(CGFunctionInfo &FI) const override; |
| 72 | |
| 73 | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { |
| 74 | // If C++ prohibits us from making a copy, pass by address. |
| 75 | if (!RD->canPassInRegisters()) |
| 76 | return RAA_Indirect; |
| 77 | return RAA_Default; |
| 78 | } |
| 79 | |
| 80 | bool isThisCompleteObject(GlobalDecl GD) const override { |
| 81 | // The Itanium ABI has separate complete-object vs. base-object |
| 82 | // variants of both constructors and destructors. |
| 83 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) { |
| 84 | switch (GD.getDtorType()) { |
| 85 | case Dtor_Complete: |
| 86 | case Dtor_Deleting: |
| 87 | return true; |
| 88 | |
| 89 | case Dtor_Base: |
| 90 | return false; |
| 91 | |
| 92 | case Dtor_Comdat: |
| 93 | llvm_unreachable("emitting dtor comdat as function?" ); |
| 94 | } |
| 95 | llvm_unreachable("bad dtor kind" ); |
| 96 | } |
| 97 | if (isa<CXXConstructorDecl>(Val: GD.getDecl())) { |
| 98 | switch (GD.getCtorType()) { |
| 99 | case Ctor_Complete: |
| 100 | return true; |
| 101 | |
| 102 | case Ctor_Base: |
| 103 | return false; |
| 104 | |
| 105 | case Ctor_CopyingClosure: |
| 106 | case Ctor_DefaultClosure: |
| 107 | llvm_unreachable("closure ctors in Itanium ABI?" ); |
| 108 | |
| 109 | case Ctor_Comdat: |
| 110 | llvm_unreachable("emitting ctor comdat as function?" ); |
| 111 | } |
| 112 | llvm_unreachable("bad dtor kind" ); |
| 113 | } |
| 114 | |
| 115 | // No other kinds. |
| 116 | return false; |
| 117 | } |
| 118 | |
| 119 | bool isZeroInitializable(const MemberPointerType *MPT) override; |
| 120 | |
| 121 | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
| 122 | |
| 123 | CGCallee |
| 124 | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, |
| 125 | const Expr *E, |
| 126 | Address This, |
| 127 | llvm::Value *&ThisPtrForCall, |
| 128 | llvm::Value *MemFnPtr, |
| 129 | const MemberPointerType *MPT) override; |
| 130 | |
| 131 | llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
| 132 | Address Base, llvm::Value *MemPtr, |
| 133 | const MemberPointerType *MPT, |
| 134 | bool IsInBounds) override; |
| 135 | |
| 136 | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
| 137 | const CastExpr *E, |
| 138 | llvm::Value *Src) override; |
| 139 | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
| 140 | llvm::Constant *Src) override; |
| 141 | |
| 142 | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
| 143 | |
| 144 | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
| 145 | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
| 146 | CharUnits offset) override; |
| 147 | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
| 148 | llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, |
| 149 | CharUnits ThisAdjustment); |
| 150 | |
| 151 | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
| 152 | llvm::Value *L, llvm::Value *R, |
| 153 | const MemberPointerType *MPT, |
| 154 | bool Inequality) override; |
| 155 | |
| 156 | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| 157 | llvm::Value *Addr, |
| 158 | const MemberPointerType *MPT) override; |
| 159 | |
| 160 | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
| 161 | Address Ptr, QualType ElementType, |
| 162 | const CXXDestructorDecl *Dtor) override; |
| 163 | |
| 164 | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
| 165 | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
| 166 | |
| 167 | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
| 168 | |
| 169 | llvm::CallInst * |
| 170 | emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| 171 | llvm::Value *Exn) override; |
| 172 | |
| 173 | void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD); |
| 174 | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
| 175 | CatchTypeInfo |
| 176 | getAddrOfCXXCatchHandlerType(QualType Ty, |
| 177 | QualType CatchHandlerType) override { |
| 178 | return CatchTypeInfo{.RTTI: getAddrOfRTTIDescriptor(Ty), .Flags: 0}; |
| 179 | } |
| 180 | |
| 181 | bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override; |
| 182 | void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
| 183 | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
| 184 | Address ThisPtr, |
| 185 | llvm::Type *StdTypeInfoPtrTy) override; |
| 186 | |
| 187 | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| 188 | QualType SrcRecordTy) override; |
| 189 | |
| 190 | /// Determine whether we know that all instances of type RecordTy will have |
| 191 | /// the same vtable pointer values, that is distinct from all other vtable |
| 192 | /// pointers. While this is required by the Itanium ABI, it doesn't happen in |
| 193 | /// practice in some cases due to language extensions. |
| 194 | bool hasUniqueVTablePointer(QualType RecordTy) { |
| 195 | const CXXRecordDecl *RD = RecordTy->getAsCXXRecordDecl(); |
| 196 | |
| 197 | // Under -fapple-kext, multiple definitions of the same vtable may be |
| 198 | // emitted. |
| 199 | if (!CGM.getCodeGenOpts().AssumeUniqueVTables || |
| 200 | getContext().getLangOpts().AppleKext) |
| 201 | return false; |
| 202 | |
| 203 | // If the type_info* would be null, the vtable might be merged with that of |
| 204 | // another type. |
| 205 | if (!CGM.shouldEmitRTTI()) |
| 206 | return false; |
| 207 | |
| 208 | // If there's only one definition of the vtable in the program, it has a |
| 209 | // unique address. |
| 210 | if (!llvm::GlobalValue::isWeakForLinker(Linkage: CGM.getVTableLinkage(RD))) |
| 211 | return true; |
| 212 | |
| 213 | // Even if there are multiple definitions of the vtable, they are required |
| 214 | // by the ABI to use the same symbol name, so should be merged at load |
| 215 | // time. However, if the class has hidden visibility, there can be |
| 216 | // different versions of the class in different modules, and the ABI |
| 217 | // library might treat them as being the same. |
| 218 | if (CGM.GetLLVMVisibility(V: RD->getVisibility()) != |
| 219 | llvm::GlobalValue::DefaultVisibility) |
| 220 | return false; |
| 221 | |
| 222 | return true; |
| 223 | } |
| 224 | |
| 225 | bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
| 226 | return hasUniqueVTablePointer(RecordTy: DestRecordTy); |
| 227 | } |
| 228 | |
| 229 | llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
| 230 | QualType SrcRecordTy, QualType DestTy, |
| 231 | QualType DestRecordTy, |
| 232 | llvm::BasicBlock *CastEnd) override; |
| 233 | |
| 234 | llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address ThisAddr, |
| 235 | QualType SrcRecordTy, QualType DestTy, |
| 236 | QualType DestRecordTy, |
| 237 | llvm::BasicBlock *CastSuccess, |
| 238 | llvm::BasicBlock *CastFail) override; |
| 239 | |
| 240 | llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
| 241 | QualType SrcRecordTy) override; |
| 242 | |
| 243 | bool EmitBadCastCall(CodeGenFunction &CGF) override; |
| 244 | |
| 245 | llvm::Value * |
| 246 | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
| 247 | const CXXRecordDecl *ClassDecl, |
| 248 | const CXXRecordDecl *BaseClassDecl) override; |
| 249 | |
| 250 | void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
| 251 | |
| 252 | AddedStructorArgCounts |
| 253 | buildStructorSignature(GlobalDecl GD, |
| 254 | SmallVectorImpl<CanQualType> &ArgTys) override; |
| 255 | |
| 256 | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
| 257 | CXXDtorType DT) const override { |
| 258 | // Itanium does not emit any destructor variant as an inline thunk. |
| 259 | // Delegating may occur as an optimization, but all variants are either |
| 260 | // emitted with external linkage or as linkonce if they are inline and used. |
| 261 | return false; |
| 262 | } |
| 263 | |
| 264 | void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
| 265 | |
| 266 | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
| 267 | FunctionArgList &Params) override; |
| 268 | |
| 269 | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
| 270 | |
| 271 | AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
| 272 | const CXXConstructorDecl *D, |
| 273 | CXXCtorType Type, |
| 274 | bool ForVirtualBase, |
| 275 | bool Delegating) override; |
| 276 | |
| 277 | llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
| 278 | const CXXDestructorDecl *DD, |
| 279 | CXXDtorType Type, |
| 280 | bool ForVirtualBase, |
| 281 | bool Delegating) override; |
| 282 | |
| 283 | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
| 284 | CXXDtorType Type, bool ForVirtualBase, |
| 285 | bool Delegating, Address This, |
| 286 | QualType ThisTy) override; |
| 287 | |
| 288 | void emitVTableDefinitions(CodeGenVTables &CGVT, |
| 289 | const CXXRecordDecl *RD) override; |
| 290 | |
| 291 | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
| 292 | CodeGenFunction::VPtr Vptr) override; |
| 293 | |
| 294 | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | llvm::Constant * |
| 299 | getVTableAddressPoint(BaseSubobject Base, |
| 300 | const CXXRecordDecl *VTableClass) override; |
| 301 | |
| 302 | llvm::Value *getVTableAddressPointInStructor( |
| 303 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
| 304 | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
| 305 | |
| 306 | llvm::Value *getVTableAddressPointInStructorWithVTT( |
| 307 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
| 308 | BaseSubobject Base, const CXXRecordDecl *NearestVBase); |
| 309 | |
| 310 | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
| 311 | CharUnits VPtrOffset) override; |
| 312 | |
| 313 | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
| 314 | Address This, llvm::Type *Ty, |
| 315 | SourceLocation Loc) override; |
| 316 | |
| 317 | llvm::Value * |
| 318 | EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, |
| 319 | CXXDtorType DtorType, Address This, |
| 320 | DeleteOrMemberCallExpr E, |
| 321 | llvm::CallBase **CallOrInvoke) override; |
| 322 | |
| 323 | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
| 324 | |
| 325 | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; |
| 326 | bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl *RD) const; |
| 327 | |
| 328 | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, |
| 329 | bool ReturnAdjustment) override { |
| 330 | // Allow inlining of thunks by emitting them with available_externally |
| 331 | // linkage together with vtables when needed. |
| 332 | if (ForVTable && !Thunk->hasLocalLinkage()) |
| 333 | Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); |
| 334 | CGM.setGVProperties(GV: Thunk, GD); |
| 335 | } |
| 336 | |
| 337 | bool exportThunk() override { return true; } |
| 338 | |
| 339 | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
| 340 | const CXXRecordDecl *UnadjustedThisClass, |
| 341 | const ThunkInfo &TI) override; |
| 342 | |
| 343 | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
| 344 | const CXXRecordDecl *UnadjustedRetClass, |
| 345 | const ReturnAdjustment &RA) override; |
| 346 | |
| 347 | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, |
| 348 | FunctionArgList &Args) const override { |
| 349 | assert(!Args.empty() && "expected the arglist to not be empty!" ); |
| 350 | return Args.size() - 1; |
| 351 | } |
| 352 | |
| 353 | StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual" ; } |
| 354 | StringRef GetDeletedVirtualCallName() override |
| 355 | { return "__cxa_deleted_virtual" ; } |
| 356 | |
| 357 | CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
| 358 | Address InitializeArrayCookie(CodeGenFunction &CGF, |
| 359 | Address NewPtr, |
| 360 | llvm::Value *NumElements, |
| 361 | const CXXNewExpr *expr, |
| 362 | QualType ElementType) override; |
| 363 | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
| 364 | Address allocPtr, |
| 365 | CharUnits cookieSize) override; |
| 366 | |
| 367 | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
| 368 | llvm::GlobalVariable *DeclPtr, |
| 369 | bool PerformInit) override; |
| 370 | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 371 | llvm::FunctionCallee dtor, |
| 372 | llvm::Constant *addr) override; |
| 373 | |
| 374 | llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| 375 | llvm::Value *Val); |
| 376 | void EmitThreadLocalInitFuncs( |
| 377 | CodeGenModule &CGM, |
| 378 | ArrayRef<const VarDecl *> CXXThreadLocals, |
| 379 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| 380 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
| 381 | |
| 382 | bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
| 383 | return !isEmittedWithConstantInitializer(VD) || |
| 384 | mayNeedDestruction(VD); |
| 385 | } |
| 386 | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
| 387 | QualType LValType) override; |
| 388 | |
| 389 | bool NeedsVTTParameter(GlobalDecl GD) override; |
| 390 | |
| 391 | llvm::Constant * |
| 392 | getOrCreateVirtualFunctionPointerThunk(const CXXMethodDecl *MD); |
| 393 | |
| 394 | /**************************** RTTI Uniqueness ******************************/ |
| 395 | |
| 396 | protected: |
| 397 | /// Returns true if the ABI requires RTTI type_info objects to be unique |
| 398 | /// across a program. |
| 399 | virtual bool shouldRTTIBeUnique() const { return true; } |
| 400 | |
| 401 | public: |
| 402 | /// What sort of unique-RTTI behavior should we use? |
| 403 | enum RTTIUniquenessKind { |
| 404 | /// We are guaranteeing, or need to guarantee, that the RTTI string |
| 405 | /// is unique. |
| 406 | RUK_Unique, |
| 407 | |
| 408 | /// We are not guaranteeing uniqueness for the RTTI string, so we |
| 409 | /// can demote to hidden visibility but must use string comparisons. |
| 410 | RUK_NonUniqueHidden, |
| 411 | |
| 412 | /// We are not guaranteeing uniqueness for the RTTI string, so we |
| 413 | /// have to use string comparisons, but we also have to emit it with |
| 414 | /// non-hidden visibility. |
| 415 | RUK_NonUniqueVisible |
| 416 | }; |
| 417 | |
| 418 | /// Return the required visibility status for the given type and linkage in |
| 419 | /// the current ABI. |
| 420 | RTTIUniquenessKind |
| 421 | classifyRTTIUniqueness(QualType CanTy, |
| 422 | llvm::GlobalValue::LinkageTypes Linkage) const; |
| 423 | friend class ItaniumRTTIBuilder; |
| 424 | |
| 425 | void emitCXXStructor(GlobalDecl GD) override; |
| 426 | |
| 427 | std::pair<llvm::Value *, const CXXRecordDecl *> |
| 428 | LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| 429 | const CXXRecordDecl *RD) override; |
| 430 | |
| 431 | private: |
| 432 | llvm::Constant * |
| 433 | getSignedVirtualMemberFunctionPointer(const CXXMethodDecl *MD); |
| 434 | |
| 435 | bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { |
| 436 | const auto &VtableLayout = |
| 437 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
| 438 | |
| 439 | for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
| 440 | // Skip empty slot. |
| 441 | if (!VtableComponent.isUsedFunctionPointerKind()) |
| 442 | continue; |
| 443 | |
| 444 | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
| 445 | const FunctionDecl *FD = Method->getDefinition(); |
| 446 | const bool IsInlined = |
| 447 | Method->getCanonicalDecl()->isInlined() || (FD && FD->isInlined()); |
| 448 | if (!IsInlined) |
| 449 | continue; |
| 450 | |
| 451 | StringRef Name = CGM.getMangledName(GD: VtableComponent.getGlobalDecl()); |
| 452 | auto *Entry = CGM.GetGlobalValue(Ref: Name); |
| 453 | // This checks if virtual inline function has already been emitted. |
| 454 | // Note that it is possible that this inline function would be emitted |
| 455 | // after trying to emit vtable speculatively. Because of this we do |
| 456 | // an extra pass after emitting all deferred vtables to find and emit |
| 457 | // these vtables opportunistically. |
| 458 | if (!Entry || Entry->isDeclaration()) |
| 459 | return true; |
| 460 | } |
| 461 | return false; |
| 462 | } |
| 463 | |
| 464 | bool isVTableHidden(const CXXRecordDecl *RD) const { |
| 465 | const auto &VtableLayout = |
| 466 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
| 467 | |
| 468 | for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
| 469 | if (VtableComponent.isRTTIKind()) { |
| 470 | const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); |
| 471 | if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) |
| 472 | return true; |
| 473 | } else if (VtableComponent.isUsedFunctionPointerKind()) { |
| 474 | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
| 475 | if (Method->getVisibility() == Visibility::HiddenVisibility && |
| 476 | !Method->isDefined()) |
| 477 | return true; |
| 478 | } |
| 479 | } |
| 480 | return false; |
| 481 | } |
| 482 | }; |
| 483 | |
| 484 | class ARMCXXABI : public ItaniumCXXABI { |
| 485 | public: |
| 486 | ARMCXXABI(CodeGen::CodeGenModule &CGM) : |
| 487 | ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| 488 | /*UseARMGuardVarABI=*/true) {} |
| 489 | |
| 490 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
| 491 | |
| 492 | void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, |
| 493 | QualType ResTy) override; |
| 494 | |
| 495 | CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
| 496 | Address InitializeArrayCookie(CodeGenFunction &CGF, |
| 497 | Address NewPtr, |
| 498 | llvm::Value *NumElements, |
| 499 | const CXXNewExpr *expr, |
| 500 | QualType ElementType) override; |
| 501 | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, |
| 502 | CharUnits cookieSize) override; |
| 503 | }; |
| 504 | |
| 505 | class AppleARM64CXXABI : public ARMCXXABI { |
| 506 | public: |
| 507 | AppleARM64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { |
| 508 | Use32BitVTableOffsetABI = true; |
| 509 | } |
| 510 | |
| 511 | // ARM64 libraries are prepared for non-unique RTTI. |
| 512 | bool shouldRTTIBeUnique() const override { return false; } |
| 513 | }; |
| 514 | |
| 515 | class FuchsiaCXXABI final : public ItaniumCXXABI { |
| 516 | public: |
| 517 | explicit FuchsiaCXXABI(CodeGen::CodeGenModule &CGM) |
| 518 | : ItaniumCXXABI(CGM) {} |
| 519 | |
| 520 | private: |
| 521 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
| 522 | }; |
| 523 | |
| 524 | class WebAssemblyCXXABI final : public ItaniumCXXABI { |
| 525 | public: |
| 526 | explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) |
| 527 | : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| 528 | /*UseARMGuardVarABI=*/true) {} |
| 529 | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
| 530 | llvm::CallInst * |
| 531 | emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| 532 | llvm::Value *Exn) override; |
| 533 | |
| 534 | private: |
| 535 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
| 536 | bool canCallMismatchedFunctionType() const override { return false; } |
| 537 | }; |
| 538 | |
| 539 | class XLCXXABI final : public ItaniumCXXABI { |
| 540 | public: |
| 541 | explicit XLCXXABI(CodeGen::CodeGenModule &CGM) |
| 542 | : ItaniumCXXABI(CGM) {} |
| 543 | |
| 544 | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 545 | llvm::FunctionCallee dtor, |
| 546 | llvm::Constant *addr) override; |
| 547 | |
| 548 | bool useSinitAndSterm() const override { return true; } |
| 549 | |
| 550 | private: |
| 551 | void emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
| 552 | llvm::Constant *addr); |
| 553 | }; |
| 554 | } |
| 555 | |
| 556 | CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { |
| 557 | switch (CGM.getContext().getCXXABIKind()) { |
| 558 | // For IR-generation purposes, there's no significant difference |
| 559 | // between the ARM and iOS ABIs. |
| 560 | case TargetCXXABI::GenericARM: |
| 561 | case TargetCXXABI::iOS: |
| 562 | case TargetCXXABI::WatchOS: |
| 563 | return new ARMCXXABI(CGM); |
| 564 | |
| 565 | case TargetCXXABI::AppleARM64: |
| 566 | return new AppleARM64CXXABI(CGM); |
| 567 | |
| 568 | case TargetCXXABI::Fuchsia: |
| 569 | return new FuchsiaCXXABI(CGM); |
| 570 | |
| 571 | // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't |
| 572 | // include the other 32-bit ARM oddities: constructor/destructor return values |
| 573 | // and array cookies. |
| 574 | case TargetCXXABI::GenericAArch64: |
| 575 | return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| 576 | /*UseARMGuardVarABI=*/true); |
| 577 | |
| 578 | case TargetCXXABI::GenericMIPS: |
| 579 | return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); |
| 580 | |
| 581 | case TargetCXXABI::WebAssembly: |
| 582 | return new WebAssemblyCXXABI(CGM); |
| 583 | |
| 584 | case TargetCXXABI::XL: |
| 585 | return new XLCXXABI(CGM); |
| 586 | |
| 587 | case TargetCXXABI::GenericItanium: |
| 588 | return new ItaniumCXXABI(CGM); |
| 589 | |
| 590 | case TargetCXXABI::Microsoft: |
| 591 | llvm_unreachable("Microsoft ABI is not Itanium-based" ); |
| 592 | } |
| 593 | llvm_unreachable("bad ABI kind" ); |
| 594 | } |
| 595 | |
| 596 | llvm::Type * |
| 597 | ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
| 598 | if (MPT->isMemberDataPointer()) |
| 599 | return CGM.PtrDiffTy; |
| 600 | return llvm::StructType::get(elt1: CGM.PtrDiffTy, elts: CGM.PtrDiffTy); |
| 601 | } |
| 602 | |
| 603 | /// In the Itanium and ARM ABIs, method pointers have the form: |
| 604 | /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; |
| 605 | /// |
| 606 | /// In the Itanium ABI: |
| 607 | /// - method pointers are virtual if (memptr.ptr & 1) is nonzero |
| 608 | /// - the this-adjustment is (memptr.adj) |
| 609 | /// - the virtual offset is (memptr.ptr - 1) |
| 610 | /// |
| 611 | /// In the ARM ABI: |
| 612 | /// - method pointers are virtual if (memptr.adj & 1) is nonzero |
| 613 | /// - the this-adjustment is (memptr.adj >> 1) |
| 614 | /// - the virtual offset is (memptr.ptr) |
| 615 | /// ARM uses 'adj' for the virtual flag because Thumb functions |
| 616 | /// may be only single-byte aligned. |
| 617 | /// |
| 618 | /// If the member is virtual, the adjusted 'this' pointer points |
| 619 | /// to a vtable pointer from which the virtual offset is applied. |
| 620 | /// |
| 621 | /// If the member is non-virtual, memptr.ptr is the address of |
| 622 | /// the function to call. |
| 623 | CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( |
| 624 | CodeGenFunction &CGF, const Expr *E, Address ThisAddr, |
| 625 | llvm::Value *&ThisPtrForCall, |
| 626 | llvm::Value *MemFnPtr, const MemberPointerType *MPT) { |
| 627 | CGBuilderTy &Builder = CGF.Builder; |
| 628 | |
| 629 | const FunctionProtoType *FPT = |
| 630 | MPT->getPointeeType()->castAs<FunctionProtoType>(); |
| 631 | auto *RD = MPT->getMostRecentCXXRecordDecl(); |
| 632 | |
| 633 | llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: 1); |
| 634 | |
| 635 | llvm::BasicBlock *FnVirtual = CGF.createBasicBlock(name: "memptr.virtual" ); |
| 636 | llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock(name: "memptr.nonvirtual" ); |
| 637 | llvm::BasicBlock *FnEnd = CGF.createBasicBlock(name: "memptr.end" ); |
| 638 | |
| 639 | // Extract memptr.adj, which is in the second field. |
| 640 | llvm::Value *RawAdj = Builder.CreateExtractValue(Agg: MemFnPtr, Idxs: 1, Name: "memptr.adj" ); |
| 641 | |
| 642 | // Compute the true adjustment. |
| 643 | llvm::Value *Adj = RawAdj; |
| 644 | if (UseARMMethodPtrABI) |
| 645 | Adj = Builder.CreateAShr(LHS: Adj, RHS: ptrdiff_1, Name: "memptr.adj.shifted" ); |
| 646 | |
| 647 | // Apply the adjustment and cast back to the original struct type |
| 648 | // for consistency. |
| 649 | llvm::Value *This = ThisAddr.emitRawPointer(CGF); |
| 650 | This = Builder.CreateInBoundsGEP(Ty: Builder.getInt8Ty(), Ptr: This, IdxList: Adj); |
| 651 | ThisPtrForCall = This; |
| 652 | |
| 653 | // Load the function pointer. |
| 654 | llvm::Value *FnAsInt = Builder.CreateExtractValue(Agg: MemFnPtr, Idxs: 0, Name: "memptr.ptr" ); |
| 655 | |
| 656 | // If the LSB in the function pointer is 1, the function pointer points to |
| 657 | // a virtual function. |
| 658 | llvm::Value *IsVirtual; |
| 659 | if (UseARMMethodPtrABI) |
| 660 | IsVirtual = Builder.CreateAnd(LHS: RawAdj, RHS: ptrdiff_1); |
| 661 | else |
| 662 | IsVirtual = Builder.CreateAnd(LHS: FnAsInt, RHS: ptrdiff_1); |
| 663 | IsVirtual = Builder.CreateIsNotNull(Arg: IsVirtual, Name: "memptr.isvirtual" ); |
| 664 | Builder.CreateCondBr(Cond: IsVirtual, True: FnVirtual, False: FnNonVirtual); |
| 665 | |
| 666 | // In the virtual path, the adjustment left 'This' pointing to the |
| 667 | // vtable of the correct base subobject. The "function pointer" is an |
| 668 | // offset within the vtable (+1 for the virtual flag on non-ARM). |
| 669 | CGF.EmitBlock(BB: FnVirtual); |
| 670 | |
| 671 | // Cast the adjusted this to a pointer to vtable pointer and load. |
| 672 | llvm::Type *VTableTy = CGF.CGM.GlobalsInt8PtrTy; |
| 673 | CharUnits VTablePtrAlign = |
| 674 | CGF.CGM.getDynamicOffsetAlignment(ActualAlign: ThisAddr.getAlignment(), Class: RD, |
| 675 | ExpectedTargetAlign: CGF.getPointerAlign()); |
| 676 | llvm::Value *VTable = CGF.GetVTablePtr( |
| 677 | This: Address(This, ThisAddr.getElementType(), VTablePtrAlign), VTableTy, VTableClass: RD); |
| 678 | |
| 679 | // Apply the offset. |
| 680 | // On ARM64, to reserve extra space in virtual member function pointers, |
| 681 | // we only pay attention to the low 32 bits of the offset. |
| 682 | llvm::Value *VTableOffset = FnAsInt; |
| 683 | if (!UseARMMethodPtrABI) |
| 684 | VTableOffset = Builder.CreateSub(LHS: VTableOffset, RHS: ptrdiff_1); |
| 685 | if (Use32BitVTableOffsetABI) { |
| 686 | VTableOffset = Builder.CreateTrunc(V: VTableOffset, DestTy: CGF.Int32Ty); |
| 687 | VTableOffset = Builder.CreateZExt(V: VTableOffset, DestTy: CGM.PtrDiffTy); |
| 688 | } |
| 689 | |
| 690 | // Check the address of the function pointer if CFI on member function |
| 691 | // pointers is enabled. |
| 692 | llvm::Constant *CheckSourceLocation; |
| 693 | llvm::Constant *CheckTypeDesc; |
| 694 | bool ShouldEmitCFICheck = CGF.SanOpts.has(K: SanitizerKind::CFIMFCall) && |
| 695 | CGM.HasHiddenLTOVisibility(RD); |
| 696 | |
| 697 | if (ShouldEmitCFICheck) { |
| 698 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: E)) { |
| 699 | if (BinOp->isPtrMemOp() && |
| 700 | BinOp->getRHS() |
| 701 | ->getType() |
| 702 | ->hasPointeeToToCFIUncheckedCalleeFunctionType()) |
| 703 | ShouldEmitCFICheck = false; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | bool ShouldEmitVFEInfo = CGM.getCodeGenOpts().VirtualFunctionElimination && |
| 708 | CGM.HasHiddenLTOVisibility(RD); |
| 709 | bool ShouldEmitWPDInfo = |
| 710 | CGM.getCodeGenOpts().WholeProgramVTables && |
| 711 | // Don't insert type tests if we are forcing public visibility. |
| 712 | !CGM.AlwaysHasLTOVisibilityPublic(RD); |
| 713 | llvm::Value *VirtualFn = nullptr; |
| 714 | |
| 715 | { |
| 716 | auto CheckOrdinal = SanitizerKind::SO_CFIMFCall; |
| 717 | auto CheckHandler = SanitizerHandler::CFICheckFail; |
| 718 | SanitizerDebugLocation SanScope(&CGF, {CheckOrdinal}, CheckHandler); |
| 719 | |
| 720 | llvm::Value *TypeId = nullptr; |
| 721 | llvm::Value *CheckResult = nullptr; |
| 722 | |
| 723 | if (ShouldEmitCFICheck || ShouldEmitVFEInfo || ShouldEmitWPDInfo) { |
| 724 | // If doing CFI, VFE or WPD, we will need the metadata node to check |
| 725 | // against. |
| 726 | llvm::Metadata *MD = |
| 727 | CGM.CreateMetadataIdentifierForVirtualMemPtrType(T: QualType(MPT, 0)); |
| 728 | TypeId = llvm::MetadataAsValue::get(Context&: CGF.getLLVMContext(), MD); |
| 729 | } |
| 730 | |
| 731 | if (ShouldEmitVFEInfo) { |
| 732 | llvm::Value *VFPAddr = |
| 733 | Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: VTable, IdxList: VTableOffset); |
| 734 | |
| 735 | // If doing VFE, load from the vtable with a type.checked.load intrinsic |
| 736 | // call. Note that we use the GEP to calculate the address to load from |
| 737 | // and pass 0 as the offset to the intrinsic. This is because every |
| 738 | // vtable slot of the correct type is marked with matching metadata, and |
| 739 | // we know that the load must be from one of these slots. |
| 740 | llvm::Value *CheckedLoad = Builder.CreateCall( |
| 741 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_checked_load), |
| 742 | Args: {VFPAddr, llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), TypeId}); |
| 743 | CheckResult = Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 1); |
| 744 | VirtualFn = Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 0); |
| 745 | } else { |
| 746 | // When not doing VFE, emit a normal load, as it allows more |
| 747 | // optimisations than type.checked.load. |
| 748 | if (ShouldEmitCFICheck || ShouldEmitWPDInfo) { |
| 749 | llvm::Value *VFPAddr = |
| 750 | Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: VTable, IdxList: VTableOffset); |
| 751 | llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) |
| 752 | ? llvm::Intrinsic::type_test |
| 753 | : llvm::Intrinsic::public_type_test; |
| 754 | |
| 755 | CheckResult = |
| 756 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {VFPAddr, TypeId}); |
| 757 | } |
| 758 | |
| 759 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 760 | VirtualFn = CGF.Builder.CreateCall( |
| 761 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::load_relative, |
| 762 | Tys: {VTableOffset->getType()}), |
| 763 | Args: {VTable, VTableOffset}); |
| 764 | } else { |
| 765 | llvm::Value *VFPAddr = |
| 766 | CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: VTable, IdxList: VTableOffset); |
| 767 | VirtualFn = CGF.Builder.CreateAlignedLoad(Ty: CGF.UnqualPtrTy, Addr: VFPAddr, |
| 768 | Align: CGF.getPointerAlign(), |
| 769 | Name: "memptr.virtualfn" ); |
| 770 | } |
| 771 | } |
| 772 | assert(VirtualFn && "Virtual fuction pointer not created!" ); |
| 773 | assert((!ShouldEmitCFICheck || !ShouldEmitVFEInfo || !ShouldEmitWPDInfo || |
| 774 | CheckResult) && |
| 775 | "Check result required but not created!" ); |
| 776 | |
| 777 | if (ShouldEmitCFICheck) { |
| 778 | // If doing CFI, emit the check. |
| 779 | CheckSourceLocation = CGF.EmitCheckSourceLocation(Loc: E->getBeginLoc()); |
| 780 | CheckTypeDesc = CGF.EmitCheckTypeDescriptor(T: QualType(MPT, 0)); |
| 781 | llvm::Constant *StaticData[] = { |
| 782 | llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: CodeGenFunction::CFITCK_VMFCall), |
| 783 | CheckSourceLocation, |
| 784 | CheckTypeDesc, |
| 785 | }; |
| 786 | |
| 787 | if (CGM.getCodeGenOpts().SanitizeTrap.has(K: SanitizerKind::CFIMFCall)) { |
| 788 | CGF.EmitTrapCheck(Checked: CheckResult, CheckHandlerID: CheckHandler); |
| 789 | } else { |
| 790 | llvm::Value *AllVtables = llvm::MetadataAsValue::get( |
| 791 | Context&: CGM.getLLVMContext(), |
| 792 | MD: llvm::MDString::get(Context&: CGM.getLLVMContext(), Str: "all-vtables" )); |
| 793 | llvm::Value *ValidVtable = Builder.CreateCall( |
| 794 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_test), Args: {VTable, AllVtables}); |
| 795 | CGF.EmitCheck(Checked: std::make_pair(x&: CheckResult, y&: CheckOrdinal), Check: CheckHandler, |
| 796 | StaticArgs: StaticData, DynamicArgs: {VTable, ValidVtable}); |
| 797 | } |
| 798 | |
| 799 | FnVirtual = Builder.GetInsertBlock(); |
| 800 | } |
| 801 | } // End of sanitizer scope |
| 802 | |
| 803 | CGF.EmitBranch(Block: FnEnd); |
| 804 | |
| 805 | // In the non-virtual path, the function pointer is actually a |
| 806 | // function pointer. |
| 807 | CGF.EmitBlock(BB: FnNonVirtual); |
| 808 | llvm::Value *NonVirtualFn = |
| 809 | Builder.CreateIntToPtr(V: FnAsInt, DestTy: CGF.UnqualPtrTy, Name: "memptr.nonvirtualfn" ); |
| 810 | |
| 811 | // Check the function pointer if CFI on member function pointers is enabled. |
| 812 | if (ShouldEmitCFICheck) { |
| 813 | CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 814 | if (RD->hasDefinition()) { |
| 815 | auto CheckOrdinal = SanitizerKind::SO_CFIMFCall; |
| 816 | auto CheckHandler = SanitizerHandler::CFICheckFail; |
| 817 | SanitizerDebugLocation SanScope(&CGF, {CheckOrdinal}, CheckHandler); |
| 818 | |
| 819 | llvm::Constant *StaticData[] = { |
| 820 | llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: CodeGenFunction::CFITCK_NVMFCall), |
| 821 | CheckSourceLocation, |
| 822 | CheckTypeDesc, |
| 823 | }; |
| 824 | |
| 825 | llvm::Value *Bit = Builder.getFalse(); |
| 826 | for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) { |
| 827 | llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType( |
| 828 | T: getContext().getMemberPointerType(T: MPT->getPointeeType(), |
| 829 | /*Qualifier=*/nullptr, |
| 830 | Cls: Base->getCanonicalDecl())); |
| 831 | llvm::Value *TypeId = |
| 832 | llvm::MetadataAsValue::get(Context&: CGF.getLLVMContext(), MD); |
| 833 | |
| 834 | llvm::Value *TypeTest = |
| 835 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::type_test), |
| 836 | Args: {NonVirtualFn, TypeId}); |
| 837 | Bit = Builder.CreateOr(LHS: Bit, RHS: TypeTest); |
| 838 | } |
| 839 | |
| 840 | CGF.EmitCheck(Checked: std::make_pair(x&: Bit, y&: CheckOrdinal), Check: CheckHandler, StaticArgs: StaticData, |
| 841 | DynamicArgs: {NonVirtualFn, llvm::UndefValue::get(T: CGF.IntPtrTy)}); |
| 842 | |
| 843 | FnNonVirtual = Builder.GetInsertBlock(); |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | // We're done. |
| 848 | CGF.EmitBlock(BB: FnEnd); |
| 849 | llvm::PHINode *CalleePtr = Builder.CreatePHI(Ty: CGF.UnqualPtrTy, NumReservedValues: 2); |
| 850 | CalleePtr->addIncoming(V: VirtualFn, BB: FnVirtual); |
| 851 | CalleePtr->addIncoming(V: NonVirtualFn, BB: FnNonVirtual); |
| 852 | |
| 853 | CGPointerAuthInfo PointerAuth; |
| 854 | |
| 855 | if (const auto &Schema = |
| 856 | CGM.getCodeGenOpts().PointerAuth.CXXMemberFunctionPointers) { |
| 857 | llvm::PHINode *DiscriminatorPHI = Builder.CreatePHI(Ty: CGF.IntPtrTy, NumReservedValues: 2); |
| 858 | DiscriminatorPHI->addIncoming(V: llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: 0), |
| 859 | BB: FnVirtual); |
| 860 | const auto &AuthInfo = |
| 861 | CGM.getMemberFunctionPointerAuthInfo(FT: QualType(MPT, 0)); |
| 862 | assert(Schema.getKey() == AuthInfo.getKey() && |
| 863 | "Keys for virtual and non-virtual member functions must match" ); |
| 864 | auto *NonVirtualDiscriminator = AuthInfo.getDiscriminator(); |
| 865 | DiscriminatorPHI->addIncoming(V: NonVirtualDiscriminator, BB: FnNonVirtual); |
| 866 | PointerAuth = CGPointerAuthInfo( |
| 867 | Schema.getKey(), Schema.getAuthenticationMode(), Schema.isIsaPointer(), |
| 868 | Schema.authenticatesNullValues(), DiscriminatorPHI); |
| 869 | } |
| 870 | |
| 871 | CGCallee Callee(FPT, CalleePtr, PointerAuth); |
| 872 | return Callee; |
| 873 | } |
| 874 | |
| 875 | /// Compute an l-value by applying the given pointer-to-member to a |
| 876 | /// base object. |
| 877 | llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( |
| 878 | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
| 879 | const MemberPointerType *MPT, bool IsInBounds) { |
| 880 | assert(MemPtr->getType() == CGM.PtrDiffTy); |
| 881 | |
| 882 | CGBuilderTy &Builder = CGF.Builder; |
| 883 | |
| 884 | // Apply the offset. |
| 885 | llvm::Value *BaseAddr = Base.emitRawPointer(CGF); |
| 886 | return Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: BaseAddr, IdxList: MemPtr, Name: "memptr.offset" , |
| 887 | NW: IsInBounds ? llvm::GEPNoWrapFlags::inBounds() |
| 888 | : llvm::GEPNoWrapFlags::none()); |
| 889 | } |
| 890 | |
| 891 | // See if it's possible to return a constant signed pointer. |
| 892 | static llvm::Constant *pointerAuthResignConstant( |
| 893 | llvm::Value *Ptr, const CGPointerAuthInfo &CurAuthInfo, |
| 894 | const CGPointerAuthInfo &NewAuthInfo, CodeGenModule &CGM) { |
| 895 | const auto *CPA = dyn_cast<llvm::ConstantPtrAuth>(Val: Ptr); |
| 896 | |
| 897 | if (!CPA) |
| 898 | return nullptr; |
| 899 | |
| 900 | assert(CPA->getKey()->getZExtValue() == CurAuthInfo.getKey() && |
| 901 | CPA->getAddrDiscriminator()->isZeroValue() && |
| 902 | CPA->getDiscriminator() == CurAuthInfo.getDiscriminator() && |
| 903 | "unexpected key or discriminators" ); |
| 904 | |
| 905 | return CGM.getConstantSignedPointer( |
| 906 | Pointer: CPA->getPointer(), Key: NewAuthInfo.getKey(), StorageAddress: nullptr, |
| 907 | OtherDiscriminator: cast<llvm::ConstantInt>(Val: NewAuthInfo.getDiscriminator())); |
| 908 | } |
| 909 | |
| 910 | /// Perform a bitcast, derived-to-base, or base-to-derived member pointer |
| 911 | /// conversion. |
| 912 | /// |
| 913 | /// Bitcast conversions are always a no-op under Itanium. |
| 914 | /// |
| 915 | /// Obligatory offset/adjustment diagram: |
| 916 | /// <-- offset --> <-- adjustment --> |
| 917 | /// |--------------------------|----------------------|--------------------| |
| 918 | /// ^Derived address point ^Base address point ^Member address point |
| 919 | /// |
| 920 | /// So when converting a base member pointer to a derived member pointer, |
| 921 | /// we add the offset to the adjustment because the address point has |
| 922 | /// decreased; and conversely, when converting a derived MP to a base MP |
| 923 | /// we subtract the offset from the adjustment because the address point |
| 924 | /// has increased. |
| 925 | /// |
| 926 | /// The standard forbids (at compile time) conversion to and from |
| 927 | /// virtual bases, which is why we don't have to consider them here. |
| 928 | /// |
| 929 | /// The standard forbids (at run time) casting a derived MP to a base |
| 930 | /// MP when the derived MP does not point to a member of the base. |
| 931 | /// This is why -1 is a reasonable choice for null data member |
| 932 | /// pointers. |
| 933 | llvm::Value * |
| 934 | ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
| 935 | const CastExpr *E, |
| 936 | llvm::Value *src) { |
| 937 | // Use constant emission if we can. |
| 938 | if (isa<llvm::Constant>(Val: src)) |
| 939 | return EmitMemberPointerConversion(E, Src: cast<llvm::Constant>(Val: src)); |
| 940 | |
| 941 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| 942 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| 943 | E->getCastKind() == CK_ReinterpretMemberPointer); |
| 944 | |
| 945 | CGBuilderTy &Builder = CGF.Builder; |
| 946 | QualType DstType = E->getType(); |
| 947 | |
| 948 | if (DstType->isMemberFunctionPointerType()) { |
| 949 | if (const auto &NewAuthInfo = |
| 950 | CGM.getMemberFunctionPointerAuthInfo(FT: DstType)) { |
| 951 | QualType SrcType = E->getSubExpr()->getType(); |
| 952 | assert(SrcType->isMemberFunctionPointerType()); |
| 953 | const auto &CurAuthInfo = CGM.getMemberFunctionPointerAuthInfo(FT: SrcType); |
| 954 | llvm::Value *MemFnPtr = Builder.CreateExtractValue(Agg: src, Idxs: 0, Name: "memptr.ptr" ); |
| 955 | llvm::Type *OrigTy = MemFnPtr->getType(); |
| 956 | |
| 957 | llvm::BasicBlock *StartBB = Builder.GetInsertBlock(); |
| 958 | llvm::BasicBlock *ResignBB = CGF.createBasicBlock(name: "resign" ); |
| 959 | llvm::BasicBlock *MergeBB = CGF.createBasicBlock(name: "merge" ); |
| 960 | |
| 961 | // Check whether we have a virtual offset or a pointer to a function. |
| 962 | assert(UseARMMethodPtrABI && "ARM ABI expected" ); |
| 963 | llvm::Value *Adj = Builder.CreateExtractValue(Agg: src, Idxs: 1, Name: "memptr.adj" ); |
| 964 | llvm::Constant *Ptrdiff_1 = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: 1); |
| 965 | llvm::Value *AndVal = Builder.CreateAnd(LHS: Adj, RHS: Ptrdiff_1); |
| 966 | llvm::Value *IsVirtualOffset = |
| 967 | Builder.CreateIsNotNull(Arg: AndVal, Name: "is.virtual.offset" ); |
| 968 | Builder.CreateCondBr(Cond: IsVirtualOffset, True: MergeBB, False: ResignBB); |
| 969 | |
| 970 | CGF.EmitBlock(BB: ResignBB); |
| 971 | llvm::Type *PtrTy = llvm::PointerType::getUnqual(C&: CGM.getLLVMContext()); |
| 972 | MemFnPtr = Builder.CreateIntToPtr(V: MemFnPtr, DestTy: PtrTy); |
| 973 | MemFnPtr = |
| 974 | CGF.emitPointerAuthResign(Pointer: MemFnPtr, PointerType: SrcType, CurAuthInfo, NewAuthInfo, |
| 975 | IsKnownNonNull: isa<llvm::Constant>(Val: src)); |
| 976 | MemFnPtr = Builder.CreatePtrToInt(V: MemFnPtr, DestTy: OrigTy); |
| 977 | llvm::Value *ResignedVal = Builder.CreateInsertValue(Agg: src, Val: MemFnPtr, Idxs: 0); |
| 978 | ResignBB = Builder.GetInsertBlock(); |
| 979 | |
| 980 | CGF.EmitBlock(BB: MergeBB); |
| 981 | llvm::PHINode *NewSrc = Builder.CreatePHI(Ty: src->getType(), NumReservedValues: 2); |
| 982 | NewSrc->addIncoming(V: src, BB: StartBB); |
| 983 | NewSrc->addIncoming(V: ResignedVal, BB: ResignBB); |
| 984 | src = NewSrc; |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | // Under Itanium, reinterprets don't require any additional processing. |
| 989 | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| 990 | |
| 991 | llvm::Constant *adj = getMemberPointerAdjustment(E); |
| 992 | if (!adj) return src; |
| 993 | |
| 994 | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| 995 | |
| 996 | const MemberPointerType *destTy = |
| 997 | E->getType()->castAs<MemberPointerType>(); |
| 998 | |
| 999 | // For member data pointers, this is just a matter of adding the |
| 1000 | // offset if the source is non-null. |
| 1001 | if (destTy->isMemberDataPointer()) { |
| 1002 | llvm::Value *dst; |
| 1003 | if (isDerivedToBase) |
| 1004 | dst = Builder.CreateNSWSub(LHS: src, RHS: adj, Name: "adj" ); |
| 1005 | else |
| 1006 | dst = Builder.CreateNSWAdd(LHS: src, RHS: adj, Name: "adj" ); |
| 1007 | |
| 1008 | // Null check. |
| 1009 | llvm::Value *null = llvm::Constant::getAllOnesValue(Ty: src->getType()); |
| 1010 | llvm::Value *isNull = Builder.CreateICmpEQ(LHS: src, RHS: null, Name: "memptr.isnull" ); |
| 1011 | return Builder.CreateSelect(C: isNull, True: src, False: dst); |
| 1012 | } |
| 1013 | |
| 1014 | // The this-adjustment is left-shifted by 1 on ARM. |
| 1015 | if (UseARMMethodPtrABI) { |
| 1016 | uint64_t offset = cast<llvm::ConstantInt>(Val: adj)->getZExtValue(); |
| 1017 | offset <<= 1; |
| 1018 | adj = llvm::ConstantInt::get(Ty: adj->getType(), V: offset); |
| 1019 | } |
| 1020 | |
| 1021 | llvm::Value *srcAdj = Builder.CreateExtractValue(Agg: src, Idxs: 1, Name: "src.adj" ); |
| 1022 | llvm::Value *dstAdj; |
| 1023 | if (isDerivedToBase) |
| 1024 | dstAdj = Builder.CreateNSWSub(LHS: srcAdj, RHS: adj, Name: "adj" ); |
| 1025 | else |
| 1026 | dstAdj = Builder.CreateNSWAdd(LHS: srcAdj, RHS: adj, Name: "adj" ); |
| 1027 | |
| 1028 | return Builder.CreateInsertValue(Agg: src, Val: dstAdj, Idxs: 1); |
| 1029 | } |
| 1030 | |
| 1031 | static llvm::Constant * |
| 1032 | pointerAuthResignMemberFunctionPointer(llvm::Constant *Src, QualType DestType, |
| 1033 | QualType SrcType, CodeGenModule &CGM) { |
| 1034 | assert(DestType->isMemberFunctionPointerType() && |
| 1035 | SrcType->isMemberFunctionPointerType() && |
| 1036 | "member function pointers expected" ); |
| 1037 | if (DestType == SrcType) |
| 1038 | return Src; |
| 1039 | |
| 1040 | const auto &NewAuthInfo = CGM.getMemberFunctionPointerAuthInfo(FT: DestType); |
| 1041 | const auto &CurAuthInfo = CGM.getMemberFunctionPointerAuthInfo(FT: SrcType); |
| 1042 | |
| 1043 | if (!NewAuthInfo && !CurAuthInfo) |
| 1044 | return Src; |
| 1045 | |
| 1046 | llvm::Constant *MemFnPtr = Src->getAggregateElement(Elt: 0u); |
| 1047 | if (MemFnPtr->getNumOperands() == 0) { |
| 1048 | // src must be a pair of null pointers. |
| 1049 | assert(isa<llvm::ConstantInt>(MemFnPtr) && "constant int expected" ); |
| 1050 | return Src; |
| 1051 | } |
| 1052 | |
| 1053 | llvm::Constant *ConstPtr = pointerAuthResignConstant( |
| 1054 | Ptr: cast<llvm::User>(Val: MemFnPtr)->getOperand(i: 0), CurAuthInfo, NewAuthInfo, CGM); |
| 1055 | ConstPtr = llvm::ConstantExpr::getPtrToInt(C: ConstPtr, Ty: MemFnPtr->getType()); |
| 1056 | return ConstantFoldInsertValueInstruction(Agg: Src, Val: ConstPtr, Idxs: 0); |
| 1057 | } |
| 1058 | |
| 1059 | llvm::Constant * |
| 1060 | ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
| 1061 | llvm::Constant *src) { |
| 1062 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| 1063 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| 1064 | E->getCastKind() == CK_ReinterpretMemberPointer); |
| 1065 | |
| 1066 | QualType DstType = E->getType(); |
| 1067 | |
| 1068 | if (DstType->isMemberFunctionPointerType()) |
| 1069 | src = pointerAuthResignMemberFunctionPointer( |
| 1070 | Src: src, DestType: DstType, SrcType: E->getSubExpr()->getType(), CGM); |
| 1071 | |
| 1072 | // Under Itanium, reinterprets don't require any additional processing. |
| 1073 | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| 1074 | |
| 1075 | // If the adjustment is trivial, we don't need to do anything. |
| 1076 | llvm::Constant *adj = getMemberPointerAdjustment(E); |
| 1077 | if (!adj) return src; |
| 1078 | |
| 1079 | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| 1080 | |
| 1081 | const MemberPointerType *destTy = |
| 1082 | E->getType()->castAs<MemberPointerType>(); |
| 1083 | |
| 1084 | // For member data pointers, this is just a matter of adding the |
| 1085 | // offset if the source is non-null. |
| 1086 | if (destTy->isMemberDataPointer()) { |
| 1087 | // null maps to null. |
| 1088 | if (src->isAllOnesValue()) return src; |
| 1089 | |
| 1090 | if (isDerivedToBase) |
| 1091 | return llvm::ConstantExpr::getNSWSub(C1: src, C2: adj); |
| 1092 | else |
| 1093 | return llvm::ConstantExpr::getNSWAdd(C1: src, C2: adj); |
| 1094 | } |
| 1095 | |
| 1096 | // The this-adjustment is left-shifted by 1 on ARM. |
| 1097 | if (UseARMMethodPtrABI) { |
| 1098 | uint64_t offset = cast<llvm::ConstantInt>(Val: adj)->getZExtValue(); |
| 1099 | offset <<= 1; |
| 1100 | adj = llvm::ConstantInt::get(Ty: adj->getType(), V: offset); |
| 1101 | } |
| 1102 | |
| 1103 | llvm::Constant *srcAdj = src->getAggregateElement(Elt: 1); |
| 1104 | llvm::Constant *dstAdj; |
| 1105 | if (isDerivedToBase) |
| 1106 | dstAdj = llvm::ConstantExpr::getNSWSub(C1: srcAdj, C2: adj); |
| 1107 | else |
| 1108 | dstAdj = llvm::ConstantExpr::getNSWAdd(C1: srcAdj, C2: adj); |
| 1109 | |
| 1110 | llvm::Constant *res = ConstantFoldInsertValueInstruction(Agg: src, Val: dstAdj, Idxs: 1); |
| 1111 | assert(res != nullptr && "Folding must succeed" ); |
| 1112 | return res; |
| 1113 | } |
| 1114 | |
| 1115 | llvm::Constant * |
| 1116 | ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
| 1117 | // Itanium C++ ABI 2.3: |
| 1118 | // A NULL pointer is represented as -1. |
| 1119 | if (MPT->isMemberDataPointer()) |
| 1120 | return llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: -1ULL, /*isSigned=*/IsSigned: true); |
| 1121 | |
| 1122 | llvm::Constant *Zero = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: 0); |
| 1123 | llvm::Constant *Values[2] = { Zero, Zero }; |
| 1124 | return llvm::ConstantStruct::getAnon(V: Values); |
| 1125 | } |
| 1126 | |
| 1127 | llvm::Constant * |
| 1128 | ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
| 1129 | CharUnits offset) { |
| 1130 | // Itanium C++ ABI 2.3: |
| 1131 | // A pointer to data member is an offset from the base address of |
| 1132 | // the class object containing it, represented as a ptrdiff_t |
| 1133 | return llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: offset.getQuantity()); |
| 1134 | } |
| 1135 | |
| 1136 | llvm::Constant * |
| 1137 | ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
| 1138 | return BuildMemberPointer(MD, ThisAdjustment: CharUnits::Zero()); |
| 1139 | } |
| 1140 | |
| 1141 | llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, |
| 1142 | CharUnits ThisAdjustment) { |
| 1143 | assert(MD->isInstance() && "Member function must not be static!" ); |
| 1144 | |
| 1145 | CodeGenTypes &Types = CGM.getTypes(); |
| 1146 | |
| 1147 | // Get the function pointer (or index if this is a virtual function). |
| 1148 | llvm::Constant *MemPtr[2]; |
| 1149 | if (MD->isVirtual()) { |
| 1150 | uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(GD: MD); |
| 1151 | uint64_t VTableOffset; |
| 1152 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 1153 | // Multiply by 4-byte relative offsets. |
| 1154 | VTableOffset = Index * 4; |
| 1155 | } else { |
| 1156 | const ASTContext &Context = getContext(); |
| 1157 | CharUnits PointerWidth = Context.toCharUnitsFromBits( |
| 1158 | BitSize: Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
| 1159 | VTableOffset = Index * PointerWidth.getQuantity(); |
| 1160 | } |
| 1161 | |
| 1162 | if (UseARMMethodPtrABI) { |
| 1163 | // ARM C++ ABI 3.2.1: |
| 1164 | // This ABI specifies that adj contains twice the this |
| 1165 | // adjustment, plus 1 if the member function is virtual. The |
| 1166 | // least significant bit of adj then makes exactly the same |
| 1167 | // discrimination as the least significant bit of ptr does for |
| 1168 | // Itanium. |
| 1169 | |
| 1170 | // We cannot use the Itanium ABI's representation for virtual member |
| 1171 | // function pointers under pointer authentication because it would |
| 1172 | // require us to store both the virtual offset and the constant |
| 1173 | // discriminator in the pointer, which would be immediately vulnerable |
| 1174 | // to attack. Instead we introduce a thunk that does the virtual dispatch |
| 1175 | // and store it as if it were a non-virtual member function. This means |
| 1176 | // that virtual function pointers may not compare equal anymore, but |
| 1177 | // fortunately they aren't required to by the standard, and we do make |
| 1178 | // a best-effort attempt to re-use the thunk. |
| 1179 | // |
| 1180 | // To support interoperation with code in which pointer authentication |
| 1181 | // is disabled, derefencing a member function pointer must still handle |
| 1182 | // the virtual case, but it can use a discriminator which should never |
| 1183 | // be valid. |
| 1184 | const auto &Schema = |
| 1185 | CGM.getCodeGenOpts().PointerAuth.CXXMemberFunctionPointers; |
| 1186 | if (Schema) |
| 1187 | MemPtr[0] = llvm::ConstantExpr::getPtrToInt( |
| 1188 | C: getSignedVirtualMemberFunctionPointer(MD), Ty: CGM.PtrDiffTy); |
| 1189 | else |
| 1190 | MemPtr[0] = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: VTableOffset); |
| 1191 | // Don't set the LSB of adj to 1 if pointer authentication for member |
| 1192 | // function pointers is enabled. |
| 1193 | MemPtr[1] = llvm::ConstantInt::get( |
| 1194 | Ty: CGM.PtrDiffTy, V: 2 * ThisAdjustment.getQuantity() + !Schema); |
| 1195 | } else { |
| 1196 | // Itanium C++ ABI 2.3: |
| 1197 | // For a virtual function, [the pointer field] is 1 plus the |
| 1198 | // virtual table offset (in bytes) of the function, |
| 1199 | // represented as a ptrdiff_t. |
| 1200 | MemPtr[0] = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: VTableOffset + 1); |
| 1201 | MemPtr[1] = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, |
| 1202 | V: ThisAdjustment.getQuantity()); |
| 1203 | } |
| 1204 | } else { |
| 1205 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 1206 | llvm::Type *Ty; |
| 1207 | // Check whether the function has a computable LLVM signature. |
| 1208 | if (Types.isFuncTypeConvertible(FT: FPT)) { |
| 1209 | // The function has a computable LLVM signature; use the correct type. |
| 1210 | Ty = Types.GetFunctionType(Info: Types.arrangeCXXMethodDeclaration(MD)); |
| 1211 | } else { |
| 1212 | // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
| 1213 | // function type is incomplete. |
| 1214 | Ty = CGM.PtrDiffTy; |
| 1215 | } |
| 1216 | llvm::Constant *addr = CGM.getMemberFunctionPointer(FD: MD, Ty); |
| 1217 | |
| 1218 | MemPtr[0] = llvm::ConstantExpr::getPtrToInt(C: addr, Ty: CGM.PtrDiffTy); |
| 1219 | MemPtr[1] = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, |
| 1220 | V: (UseARMMethodPtrABI ? 2 : 1) * |
| 1221 | ThisAdjustment.getQuantity()); |
| 1222 | } |
| 1223 | |
| 1224 | return llvm::ConstantStruct::getAnon(V: MemPtr); |
| 1225 | } |
| 1226 | |
| 1227 | llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, |
| 1228 | QualType MPType) { |
| 1229 | const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); |
| 1230 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| 1231 | if (!MPD) |
| 1232 | return EmitNullMemberPointer(MPT); |
| 1233 | |
| 1234 | CharUnits ThisAdjustment = getContext().getMemberPointerPathAdjustment(MP); |
| 1235 | |
| 1236 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: MPD)) { |
| 1237 | llvm::Constant *Src = BuildMemberPointer(MD, ThisAdjustment); |
| 1238 | QualType SrcType = getContext().getMemberPointerType( |
| 1239 | T: MD->getType(), /*Qualifier=*/nullptr, Cls: MD->getParent()); |
| 1240 | return pointerAuthResignMemberFunctionPointer(Src, DestType: MPType, SrcType, CGM); |
| 1241 | } |
| 1242 | |
| 1243 | CharUnits FieldOffset = |
| 1244 | getContext().toCharUnitsFromBits(BitSize: getContext().getFieldOffset(FD: MPD)); |
| 1245 | return EmitMemberDataPointer(MPT, offset: ThisAdjustment + FieldOffset); |
| 1246 | } |
| 1247 | |
| 1248 | /// The comparison algorithm is pretty easy: the member pointers are |
| 1249 | /// the same if they're either bitwise identical *or* both null. |
| 1250 | /// |
| 1251 | /// ARM is different here only because null-ness is more complicated. |
| 1252 | llvm::Value * |
| 1253 | ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
| 1254 | llvm::Value *L, |
| 1255 | llvm::Value *R, |
| 1256 | const MemberPointerType *MPT, |
| 1257 | bool Inequality) { |
| 1258 | CGBuilderTy &Builder = CGF.Builder; |
| 1259 | |
| 1260 | llvm::ICmpInst::Predicate Eq; |
| 1261 | llvm::Instruction::BinaryOps And, Or; |
| 1262 | if (Inequality) { |
| 1263 | Eq = llvm::ICmpInst::ICMP_NE; |
| 1264 | And = llvm::Instruction::Or; |
| 1265 | Or = llvm::Instruction::And; |
| 1266 | } else { |
| 1267 | Eq = llvm::ICmpInst::ICMP_EQ; |
| 1268 | And = llvm::Instruction::And; |
| 1269 | Or = llvm::Instruction::Or; |
| 1270 | } |
| 1271 | |
| 1272 | // Member data pointers are easy because there's a unique null |
| 1273 | // value, so it just comes down to bitwise equality. |
| 1274 | if (MPT->isMemberDataPointer()) |
| 1275 | return Builder.CreateICmp(P: Eq, LHS: L, RHS: R); |
| 1276 | |
| 1277 | // For member function pointers, the tautologies are more complex. |
| 1278 | // The Itanium tautology is: |
| 1279 | // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) |
| 1280 | // The ARM tautology is: |
| 1281 | // (L == R) <==> (L.ptr == R.ptr && |
| 1282 | // (L.adj == R.adj || |
| 1283 | // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) |
| 1284 | // The inequality tautologies have exactly the same structure, except |
| 1285 | // applying De Morgan's laws. |
| 1286 | |
| 1287 | llvm::Value *LPtr = Builder.CreateExtractValue(Agg: L, Idxs: 0, Name: "lhs.memptr.ptr" ); |
| 1288 | llvm::Value *RPtr = Builder.CreateExtractValue(Agg: R, Idxs: 0, Name: "rhs.memptr.ptr" ); |
| 1289 | |
| 1290 | // This condition tests whether L.ptr == R.ptr. This must always be |
| 1291 | // true for equality to hold. |
| 1292 | llvm::Value *PtrEq = Builder.CreateICmp(P: Eq, LHS: LPtr, RHS: RPtr, Name: "cmp.ptr" ); |
| 1293 | |
| 1294 | // This condition, together with the assumption that L.ptr == R.ptr, |
| 1295 | // tests whether the pointers are both null. ARM imposes an extra |
| 1296 | // condition. |
| 1297 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: LPtr->getType()); |
| 1298 | llvm::Value *EqZero = Builder.CreateICmp(P: Eq, LHS: LPtr, RHS: Zero, Name: "cmp.ptr.null" ); |
| 1299 | |
| 1300 | // This condition tests whether L.adj == R.adj. If this isn't |
| 1301 | // true, the pointers are unequal unless they're both null. |
| 1302 | llvm::Value *LAdj = Builder.CreateExtractValue(Agg: L, Idxs: 1, Name: "lhs.memptr.adj" ); |
| 1303 | llvm::Value *RAdj = Builder.CreateExtractValue(Agg: R, Idxs: 1, Name: "rhs.memptr.adj" ); |
| 1304 | llvm::Value *AdjEq = Builder.CreateICmp(P: Eq, LHS: LAdj, RHS: RAdj, Name: "cmp.adj" ); |
| 1305 | |
| 1306 | // Null member function pointers on ARM clear the low bit of Adj, |
| 1307 | // so the zero condition has to check that neither low bit is set. |
| 1308 | if (UseARMMethodPtrABI) { |
| 1309 | llvm::Value *One = llvm::ConstantInt::get(Ty: LPtr->getType(), V: 1); |
| 1310 | |
| 1311 | // Compute (l.adj | r.adj) & 1 and test it against zero. |
| 1312 | llvm::Value *OrAdj = Builder.CreateOr(LHS: LAdj, RHS: RAdj, Name: "or.adj" ); |
| 1313 | llvm::Value *OrAdjAnd1 = Builder.CreateAnd(LHS: OrAdj, RHS: One); |
| 1314 | llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(P: Eq, LHS: OrAdjAnd1, RHS: Zero, |
| 1315 | Name: "cmp.or.adj" ); |
| 1316 | EqZero = Builder.CreateBinOp(Opc: And, LHS: EqZero, RHS: OrAdjAnd1EqZero); |
| 1317 | } |
| 1318 | |
| 1319 | // Tie together all our conditions. |
| 1320 | llvm::Value *Result = Builder.CreateBinOp(Opc: Or, LHS: EqZero, RHS: AdjEq); |
| 1321 | Result = Builder.CreateBinOp(Opc: And, LHS: PtrEq, RHS: Result, |
| 1322 | Name: Inequality ? "memptr.ne" : "memptr.eq" ); |
| 1323 | return Result; |
| 1324 | } |
| 1325 | |
| 1326 | llvm::Value * |
| 1327 | ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| 1328 | llvm::Value *MemPtr, |
| 1329 | const MemberPointerType *MPT) { |
| 1330 | CGBuilderTy &Builder = CGF.Builder; |
| 1331 | |
| 1332 | /// For member data pointers, this is just a check against -1. |
| 1333 | if (MPT->isMemberDataPointer()) { |
| 1334 | assert(MemPtr->getType() == CGM.PtrDiffTy); |
| 1335 | llvm::Value *NegativeOne = |
| 1336 | llvm::Constant::getAllOnesValue(Ty: MemPtr->getType()); |
| 1337 | return Builder.CreateICmpNE(LHS: MemPtr, RHS: NegativeOne, Name: "memptr.tobool" ); |
| 1338 | } |
| 1339 | |
| 1340 | // In Itanium, a member function pointer is not null if 'ptr' is not null. |
| 1341 | llvm::Value *Ptr = Builder.CreateExtractValue(Agg: MemPtr, Idxs: 0, Name: "memptr.ptr" ); |
| 1342 | |
| 1343 | llvm::Constant *Zero = llvm::ConstantInt::get(Ty: Ptr->getType(), V: 0); |
| 1344 | llvm::Value *Result = Builder.CreateICmpNE(LHS: Ptr, RHS: Zero, Name: "memptr.tobool" ); |
| 1345 | |
| 1346 | // On ARM, a member function pointer is also non-null if the low bit of 'adj' |
| 1347 | // (the virtual bit) is set. |
| 1348 | if (UseARMMethodPtrABI) { |
| 1349 | llvm::Constant *One = llvm::ConstantInt::get(Ty: Ptr->getType(), V: 1); |
| 1350 | llvm::Value *Adj = Builder.CreateExtractValue(Agg: MemPtr, Idxs: 1, Name: "memptr.adj" ); |
| 1351 | llvm::Value *VirtualBit = Builder.CreateAnd(LHS: Adj, RHS: One, Name: "memptr.virtualbit" ); |
| 1352 | llvm::Value *IsVirtual = Builder.CreateICmpNE(LHS: VirtualBit, RHS: Zero, |
| 1353 | Name: "memptr.isvirtual" ); |
| 1354 | Result = Builder.CreateOr(LHS: Result, RHS: IsVirtual); |
| 1355 | } |
| 1356 | |
| 1357 | return Result; |
| 1358 | } |
| 1359 | |
| 1360 | bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
| 1361 | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
| 1362 | if (!RD) |
| 1363 | return false; |
| 1364 | |
| 1365 | // If C++ prohibits us from making a copy, return by address. |
| 1366 | if (!RD->canPassInRegisters()) { |
| 1367 | auto Align = CGM.getContext().getTypeAlignInChars(T: FI.getReturnType()); |
| 1368 | FI.getReturnInfo() = ABIArgInfo::getIndirect( |
| 1369 | Alignment: Align, /*AddrSpace=*/CGM.getDataLayout().getAllocaAddrSpace(), |
| 1370 | /*ByVal=*/false); |
| 1371 | return true; |
| 1372 | } |
| 1373 | return false; |
| 1374 | } |
| 1375 | |
| 1376 | /// The Itanium ABI requires non-zero initialization only for data |
| 1377 | /// member pointers, for which '0' is a valid offset. |
| 1378 | bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
| 1379 | return MPT->isMemberFunctionPointer(); |
| 1380 | } |
| 1381 | |
| 1382 | /// The Itanium ABI always places an offset to the complete object |
| 1383 | /// at entry -2 in the vtable. |
| 1384 | void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
| 1385 | const CXXDeleteExpr *DE, |
| 1386 | Address Ptr, |
| 1387 | QualType ElementType, |
| 1388 | const CXXDestructorDecl *Dtor) { |
| 1389 | bool UseGlobalDelete = DE->isGlobalDelete(); |
| 1390 | if (UseGlobalDelete) { |
| 1391 | // Derive the complete-object pointer, which is what we need |
| 1392 | // to pass to the deallocation function. |
| 1393 | |
| 1394 | // Grab the vtable pointer as an intptr_t*. |
| 1395 | auto *ClassDecl = |
| 1396 | cast<CXXRecordDecl>(Val: ElementType->castAs<RecordType>()->getDecl()); |
| 1397 | llvm::Value *VTable = CGF.GetVTablePtr(This: Ptr, VTableTy: CGF.UnqualPtrTy, VTableClass: ClassDecl); |
| 1398 | |
| 1399 | // Track back to entry -2 and pull out the offset there. |
| 1400 | llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| 1401 | Ty: CGF.IntPtrTy, Ptr: VTable, Idx0: -2, Name: "complete-offset.ptr" ); |
| 1402 | llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(Ty: CGF.IntPtrTy, Addr: OffsetPtr, |
| 1403 | Align: CGF.getPointerAlign()); |
| 1404 | |
| 1405 | // Apply the offset. |
| 1406 | llvm::Value *CompletePtr = Ptr.emitRawPointer(CGF); |
| 1407 | CompletePtr = |
| 1408 | CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: CompletePtr, IdxList: Offset); |
| 1409 | |
| 1410 | // If we're supposed to call the global delete, make sure we do so |
| 1411 | // even if the destructor throws. |
| 1412 | CGF.pushCallObjectDeleteCleanup(OperatorDelete: DE->getOperatorDelete(), CompletePtr, |
| 1413 | ElementType); |
| 1414 | } |
| 1415 | |
| 1416 | // FIXME: Provide a source location here even though there's no |
| 1417 | // CXXMemberCallExpr for dtor call. |
| 1418 | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
| 1419 | EmitVirtualDestructorCall(CGF, Dtor, DtorType, This: Ptr, E: DE, |
| 1420 | /*CallOrInvoke=*/nullptr); |
| 1421 | |
| 1422 | if (UseGlobalDelete) |
| 1423 | CGF.PopCleanupBlock(); |
| 1424 | } |
| 1425 | |
| 1426 | void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
| 1427 | // void __cxa_rethrow(); |
| 1428 | |
| 1429 | llvm::FunctionType *FTy = |
| 1430 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 1431 | |
| 1432 | llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_rethrow" ); |
| 1433 | |
| 1434 | if (isNoReturn) |
| 1435 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: Fn, args: {}); |
| 1436 | else |
| 1437 | CGF.EmitRuntimeCallOrInvoke(callee: Fn); |
| 1438 | } |
| 1439 | |
| 1440 | static llvm::FunctionCallee getAllocateExceptionFn(CodeGenModule &CGM) { |
| 1441 | // void *__cxa_allocate_exception(size_t thrown_size); |
| 1442 | |
| 1443 | llvm::FunctionType *FTy = |
| 1444 | llvm::FunctionType::get(Result: CGM.Int8PtrTy, Params: CGM.SizeTy, /*isVarArg=*/false); |
| 1445 | |
| 1446 | return CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_allocate_exception" ); |
| 1447 | } |
| 1448 | |
| 1449 | static llvm::FunctionCallee getThrowFn(CodeGenModule &CGM) { |
| 1450 | // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, |
| 1451 | // void (*dest) (void *)); |
| 1452 | |
| 1453 | llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.GlobalsInt8PtrTy, CGM.Int8PtrTy }; |
| 1454 | llvm::FunctionType *FTy = |
| 1455 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, /*isVarArg=*/false); |
| 1456 | |
| 1457 | return CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_throw" ); |
| 1458 | } |
| 1459 | |
| 1460 | void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
| 1461 | QualType ThrowType = E->getSubExpr()->getType(); |
| 1462 | // Now allocate the exception object. |
| 1463 | llvm::Type *SizeTy = CGF.ConvertType(T: getContext().getSizeType()); |
| 1464 | uint64_t TypeSize = getContext().getTypeSizeInChars(T: ThrowType).getQuantity(); |
| 1465 | |
| 1466 | llvm::FunctionCallee AllocExceptionFn = getAllocateExceptionFn(CGM); |
| 1467 | llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( |
| 1468 | callee: AllocExceptionFn, args: llvm::ConstantInt::get(Ty: SizeTy, V: TypeSize), name: "exception" ); |
| 1469 | |
| 1470 | CharUnits ExnAlign = CGF.getContext().getExnObjectAlignment(); |
| 1471 | CGF.EmitAnyExprToExn( |
| 1472 | E: E->getSubExpr(), Addr: Address(ExceptionPtr, CGM.Int8Ty, ExnAlign)); |
| 1473 | |
| 1474 | // Now throw the exception. |
| 1475 | llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(Ty: ThrowType, |
| 1476 | /*ForEH=*/true); |
| 1477 | |
| 1478 | // The address of the destructor. If the exception type has a |
| 1479 | // trivial destructor (or isn't a record), we just pass null. |
| 1480 | llvm::Constant *Dtor = nullptr; |
| 1481 | if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { |
| 1482 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 1483 | if (!Record->hasTrivialDestructor()) { |
| 1484 | // __cxa_throw is declared to take its destructor as void (*)(void *). We |
| 1485 | // must match that if function pointers can be authenticated with a |
| 1486 | // discriminator based on their type. |
| 1487 | const ASTContext &Ctx = getContext(); |
| 1488 | QualType DtorTy = Ctx.getFunctionType(ResultTy: Ctx.VoidTy, Args: {Ctx.VoidPtrTy}, |
| 1489 | EPI: FunctionProtoType::ExtProtoInfo()); |
| 1490 | |
| 1491 | CXXDestructorDecl *DtorD = Record->getDestructor(); |
| 1492 | Dtor = CGM.getAddrOfCXXStructor(GD: GlobalDecl(DtorD, Dtor_Complete)); |
| 1493 | Dtor = CGM.getFunctionPointer(Pointer: Dtor, FunctionType: DtorTy); |
| 1494 | } |
| 1495 | } |
| 1496 | if (!Dtor) Dtor = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
| 1497 | |
| 1498 | llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; |
| 1499 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: getThrowFn(CGM), args); |
| 1500 | } |
| 1501 | |
| 1502 | static llvm::FunctionCallee getItaniumDynamicCastFn(CodeGenFunction &CGF) { |
| 1503 | // void *__dynamic_cast(const void *sub, |
| 1504 | // global_as const abi::__class_type_info *src, |
| 1505 | // global_as const abi::__class_type_info *dst, |
| 1506 | // std::ptrdiff_t src2dst_offset); |
| 1507 | |
| 1508 | llvm::Type *Int8PtrTy = CGF.Int8PtrTy; |
| 1509 | llvm::Type *GlobInt8PtrTy = CGF.GlobalsInt8PtrTy; |
| 1510 | llvm::Type *PtrDiffTy = |
| 1511 | CGF.ConvertType(T: CGF.getContext().getPointerDiffType()); |
| 1512 | |
| 1513 | llvm::Type *Args[4] = { Int8PtrTy, GlobInt8PtrTy, GlobInt8PtrTy, PtrDiffTy }; |
| 1514 | |
| 1515 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int8PtrTy, Params: Args, isVarArg: false); |
| 1516 | |
| 1517 | // Mark the function as nounwind willreturn readonly. |
| 1518 | llvm::AttrBuilder FuncAttrs(CGF.getLLVMContext()); |
| 1519 | FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 1520 | FuncAttrs.addAttribute(Val: llvm::Attribute::WillReturn); |
| 1521 | FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::readOnly()); |
| 1522 | llvm::AttributeList Attrs = llvm::AttributeList::get( |
| 1523 | C&: CGF.getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, B: FuncAttrs); |
| 1524 | |
| 1525 | return CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__dynamic_cast" , ExtraAttrs: Attrs); |
| 1526 | } |
| 1527 | |
| 1528 | static llvm::FunctionCallee getBadCastFn(CodeGenFunction &CGF) { |
| 1529 | // void __cxa_bad_cast(); |
| 1530 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: CGF.VoidTy, isVarArg: false); |
| 1531 | return CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_bad_cast" ); |
| 1532 | } |
| 1533 | |
| 1534 | /// Compute the src2dst_offset hint as described in the |
| 1535 | /// Itanium C++ ABI [2.9.7] |
| 1536 | static CharUnits computeOffsetHint(ASTContext &Context, |
| 1537 | const CXXRecordDecl *Src, |
| 1538 | const CXXRecordDecl *Dst) { |
| 1539 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 1540 | /*DetectVirtual=*/false); |
| 1541 | |
| 1542 | // If Dst is not derived from Src we can skip the whole computation below and |
| 1543 | // return that Src is not a public base of Dst. Record all inheritance paths. |
| 1544 | if (!Dst->isDerivedFrom(Base: Src, Paths)) |
| 1545 | return CharUnits::fromQuantity(Quantity: -2ULL); |
| 1546 | |
| 1547 | unsigned NumPublicPaths = 0; |
| 1548 | CharUnits Offset; |
| 1549 | |
| 1550 | // Now walk all possible inheritance paths. |
| 1551 | for (const CXXBasePath &Path : Paths) { |
| 1552 | if (Path.Access != AS_public) // Ignore non-public inheritance. |
| 1553 | continue; |
| 1554 | |
| 1555 | ++NumPublicPaths; |
| 1556 | |
| 1557 | for (const CXXBasePathElement &PathElement : Path) { |
| 1558 | // If the path contains a virtual base class we can't give any hint. |
| 1559 | // -1: no hint. |
| 1560 | if (PathElement.Base->isVirtual()) |
| 1561 | return CharUnits::fromQuantity(Quantity: -1ULL); |
| 1562 | |
| 1563 | if (NumPublicPaths > 1) // Won't use offsets, skip computation. |
| 1564 | continue; |
| 1565 | |
| 1566 | // Accumulate the base class offsets. |
| 1567 | const ASTRecordLayout &L = Context.getASTRecordLayout(D: PathElement.Class); |
| 1568 | Offset += L.getBaseClassOffset( |
| 1569 | Base: PathElement.Base->getType()->getAsCXXRecordDecl()); |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | // -2: Src is not a public base of Dst. |
| 1574 | if (NumPublicPaths == 0) |
| 1575 | return CharUnits::fromQuantity(Quantity: -2ULL); |
| 1576 | |
| 1577 | // -3: Src is a multiple public base type but never a virtual base type. |
| 1578 | if (NumPublicPaths > 1) |
| 1579 | return CharUnits::fromQuantity(Quantity: -3ULL); |
| 1580 | |
| 1581 | // Otherwise, the Src type is a unique public nonvirtual base type of Dst. |
| 1582 | // Return the offset of Src from the origin of Dst. |
| 1583 | return Offset; |
| 1584 | } |
| 1585 | |
| 1586 | static llvm::FunctionCallee getBadTypeidFn(CodeGenFunction &CGF) { |
| 1587 | // void __cxa_bad_typeid(); |
| 1588 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: CGF.VoidTy, isVarArg: false); |
| 1589 | |
| 1590 | return CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_bad_typeid" ); |
| 1591 | } |
| 1592 | |
| 1593 | bool ItaniumCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) { |
| 1594 | return true; |
| 1595 | } |
| 1596 | |
| 1597 | void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
| 1598 | llvm::FunctionCallee Fn = getBadTypeidFn(CGF); |
| 1599 | llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(callee: Fn); |
| 1600 | Call->setDoesNotReturn(); |
| 1601 | CGF.Builder.CreateUnreachable(); |
| 1602 | } |
| 1603 | |
| 1604 | llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, |
| 1605 | QualType SrcRecordTy, |
| 1606 | Address ThisPtr, |
| 1607 | llvm::Type *StdTypeInfoPtrTy) { |
| 1608 | auto *ClassDecl = |
| 1609 | cast<CXXRecordDecl>(Val: SrcRecordTy->castAs<RecordType>()->getDecl()); |
| 1610 | llvm::Value *Value = CGF.GetVTablePtr(This: ThisPtr, VTableTy: CGM.GlobalsInt8PtrTy, |
| 1611 | VTableClass: ClassDecl); |
| 1612 | |
| 1613 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 1614 | // Load the type info. |
| 1615 | Value = CGF.Builder.CreateCall( |
| 1616 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::load_relative, Tys: {CGM.Int32Ty}), |
| 1617 | Args: {Value, llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: -4)}); |
| 1618 | } else { |
| 1619 | // Load the type info. |
| 1620 | Value = |
| 1621 | CGF.Builder.CreateConstInBoundsGEP1_64(Ty: StdTypeInfoPtrTy, Ptr: Value, Idx0: -1ULL); |
| 1622 | } |
| 1623 | return CGF.Builder.CreateAlignedLoad(Ty: StdTypeInfoPtrTy, Addr: Value, |
| 1624 | Align: CGF.getPointerAlign()); |
| 1625 | } |
| 1626 | |
| 1627 | bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| 1628 | QualType SrcRecordTy) { |
| 1629 | return SrcIsPtr; |
| 1630 | } |
| 1631 | |
| 1632 | llvm::Value *ItaniumCXXABI::emitDynamicCastCall( |
| 1633 | CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
| 1634 | QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
| 1635 | llvm::Type *PtrDiffLTy = |
| 1636 | CGF.ConvertType(T: CGF.getContext().getPointerDiffType()); |
| 1637 | |
| 1638 | llvm::Value *SrcRTTI = |
| 1639 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: SrcRecordTy.getUnqualifiedType()); |
| 1640 | llvm::Value *DestRTTI = |
| 1641 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: DestRecordTy.getUnqualifiedType()); |
| 1642 | |
| 1643 | // Compute the offset hint. |
| 1644 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| 1645 | const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
| 1646 | llvm::Value *OffsetHint = llvm::ConstantInt::get( |
| 1647 | Ty: PtrDiffLTy, |
| 1648 | V: computeOffsetHint(Context&: CGF.getContext(), Src: SrcDecl, Dst: DestDecl).getQuantity()); |
| 1649 | |
| 1650 | // Emit the call to __dynamic_cast. |
| 1651 | llvm::Value *Value = ThisAddr.emitRawPointer(CGF); |
| 1652 | if (CGM.getCodeGenOpts().PointerAuth.CXXVTablePointers) { |
| 1653 | // We perform a no-op load of the vtable pointer here to force an |
| 1654 | // authentication. In environments that do not support pointer |
| 1655 | // authentication this is a an actual no-op that will be elided. When |
| 1656 | // pointer authentication is supported and enforced on vtable pointers this |
| 1657 | // load can trap. |
| 1658 | llvm::Value *Vtable = |
| 1659 | CGF.GetVTablePtr(This: ThisAddr, VTableTy: CGM.Int8PtrTy, VTableClass: SrcDecl, |
| 1660 | AuthMode: CodeGenFunction::VTableAuthMode::MustTrap); |
| 1661 | assert(Vtable); |
| 1662 | (void)Vtable; |
| 1663 | } |
| 1664 | |
| 1665 | llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint}; |
| 1666 | Value = CGF.EmitNounwindRuntimeCall(callee: getItaniumDynamicCastFn(CGF), args); |
| 1667 | |
| 1668 | /// C++ [expr.dynamic.cast]p9: |
| 1669 | /// A failed cast to reference type throws std::bad_cast |
| 1670 | if (DestTy->isReferenceType()) { |
| 1671 | llvm::BasicBlock *BadCastBlock = |
| 1672 | CGF.createBasicBlock(name: "dynamic_cast.bad_cast" ); |
| 1673 | |
| 1674 | llvm::Value *IsNull = CGF.Builder.CreateIsNull(Arg: Value); |
| 1675 | CGF.Builder.CreateCondBr(Cond: IsNull, True: BadCastBlock, False: CastEnd); |
| 1676 | |
| 1677 | CGF.EmitBlock(BB: BadCastBlock); |
| 1678 | EmitBadCastCall(CGF); |
| 1679 | } |
| 1680 | |
| 1681 | return Value; |
| 1682 | } |
| 1683 | |
| 1684 | llvm::Value *ItaniumCXXABI::emitExactDynamicCast( |
| 1685 | CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
| 1686 | QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastSuccess, |
| 1687 | llvm::BasicBlock *CastFail) { |
| 1688 | ASTContext &Context = getContext(); |
| 1689 | |
| 1690 | // Find all the inheritance paths. |
| 1691 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| 1692 | const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
| 1693 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 1694 | /*DetectVirtual=*/false); |
| 1695 | (void)DestDecl->isDerivedFrom(Base: SrcDecl, Paths); |
| 1696 | |
| 1697 | // Find an offset within `DestDecl` where a `SrcDecl` instance and its vptr |
| 1698 | // might appear. |
| 1699 | std::optional<CharUnits> Offset; |
| 1700 | for (const CXXBasePath &Path : Paths) { |
| 1701 | // dynamic_cast only finds public inheritance paths. |
| 1702 | if (Path.Access != AS_public) |
| 1703 | continue; |
| 1704 | |
| 1705 | CharUnits PathOffset; |
| 1706 | for (const CXXBasePathElement &PathElement : Path) { |
| 1707 | // Find the offset along this inheritance step. |
| 1708 | const CXXRecordDecl *Base = |
| 1709 | PathElement.Base->getType()->getAsCXXRecordDecl(); |
| 1710 | if (PathElement.Base->isVirtual()) { |
| 1711 | // For a virtual base class, we know that the derived class is exactly |
| 1712 | // DestDecl, so we can use the vbase offset from its layout. |
| 1713 | const ASTRecordLayout &L = Context.getASTRecordLayout(D: DestDecl); |
| 1714 | PathOffset = L.getVBaseClassOffset(VBase: Base); |
| 1715 | } else { |
| 1716 | const ASTRecordLayout &L = |
| 1717 | Context.getASTRecordLayout(D: PathElement.Class); |
| 1718 | PathOffset += L.getBaseClassOffset(Base); |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | if (!Offset) |
| 1723 | Offset = PathOffset; |
| 1724 | else if (Offset != PathOffset) { |
| 1725 | // Base appears in at least two different places. Find the most-derived |
| 1726 | // object and see if it's a DestDecl. Note that the most-derived object |
| 1727 | // must be at least as aligned as this base class subobject, and must |
| 1728 | // have a vptr at offset 0. |
| 1729 | ThisAddr = Address(emitDynamicCastToVoid(CGF, Value: ThisAddr, SrcRecordTy), |
| 1730 | CGF.VoidPtrTy, ThisAddr.getAlignment()); |
| 1731 | SrcDecl = DestDecl; |
| 1732 | Offset = CharUnits::Zero(); |
| 1733 | break; |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | if (!Offset) { |
| 1738 | // If there are no public inheritance paths, the cast always fails. |
| 1739 | CGF.EmitBranch(Block: CastFail); |
| 1740 | return llvm::PoisonValue::get(T: CGF.VoidPtrTy); |
| 1741 | } |
| 1742 | |
| 1743 | // Compare the vptr against the expected vptr for the destination type at |
| 1744 | // this offset. Note that we do not know what type ThisAddr points to in |
| 1745 | // the case where the derived class multiply inherits from the base class |
| 1746 | // so we can't use GetVTablePtr, so we load the vptr directly instead. |
| 1747 | llvm::Instruction *VPtr = CGF.Builder.CreateLoad( |
| 1748 | Addr: ThisAddr.withElementType(ElemTy: CGF.VoidPtrPtrTy), Name: "vtable" ); |
| 1749 | CGM.DecorateInstructionWithTBAA( |
| 1750 | Inst: VPtr, TBAAInfo: CGM.getTBAAVTablePtrAccessInfo(VTablePtrType: CGF.VoidPtrPtrTy)); |
| 1751 | llvm::Value *Success = CGF.Builder.CreateICmpEQ( |
| 1752 | LHS: VPtr, RHS: getVTableAddressPoint(Base: BaseSubobject(SrcDecl, *Offset), VTableClass: DestDecl)); |
| 1753 | llvm::Value *Result = ThisAddr.emitRawPointer(CGF); |
| 1754 | if (!Offset->isZero()) |
| 1755 | Result = CGF.Builder.CreateInBoundsGEP( |
| 1756 | Ty: CGF.CharTy, Ptr: Result, |
| 1757 | IdxList: {llvm::ConstantInt::get(Ty: CGF.PtrDiffTy, V: -Offset->getQuantity())}); |
| 1758 | CGF.Builder.CreateCondBr(Cond: Success, True: CastSuccess, False: CastFail); |
| 1759 | return Result; |
| 1760 | } |
| 1761 | |
| 1762 | llvm::Value *ItaniumCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
| 1763 | Address ThisAddr, |
| 1764 | QualType SrcRecordTy) { |
| 1765 | auto *ClassDecl = |
| 1766 | cast<CXXRecordDecl>(Val: SrcRecordTy->castAs<RecordType>()->getDecl()); |
| 1767 | llvm::Value *OffsetToTop; |
| 1768 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 1769 | // Get the vtable pointer. |
| 1770 | llvm::Value *VTable = |
| 1771 | CGF.GetVTablePtr(This: ThisAddr, VTableTy: CGF.UnqualPtrTy, VTableClass: ClassDecl); |
| 1772 | |
| 1773 | // Get the offset-to-top from the vtable. |
| 1774 | OffsetToTop = |
| 1775 | CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGM.Int32Ty, Ptr: VTable, Idx0: -2U); |
| 1776 | OffsetToTop = CGF.Builder.CreateAlignedLoad( |
| 1777 | Ty: CGM.Int32Ty, Addr: OffsetToTop, Align: CharUnits::fromQuantity(Quantity: 4), Name: "offset.to.top" ); |
| 1778 | } else { |
| 1779 | llvm::Type *PtrDiffLTy = |
| 1780 | CGF.ConvertType(T: CGF.getContext().getPointerDiffType()); |
| 1781 | |
| 1782 | // Get the vtable pointer. |
| 1783 | llvm::Value *VTable = |
| 1784 | CGF.GetVTablePtr(This: ThisAddr, VTableTy: CGF.UnqualPtrTy, VTableClass: ClassDecl); |
| 1785 | |
| 1786 | // Get the offset-to-top from the vtable. |
| 1787 | OffsetToTop = |
| 1788 | CGF.Builder.CreateConstInBoundsGEP1_64(Ty: PtrDiffLTy, Ptr: VTable, Idx0: -2ULL); |
| 1789 | OffsetToTop = CGF.Builder.CreateAlignedLoad( |
| 1790 | Ty: PtrDiffLTy, Addr: OffsetToTop, Align: CGF.getPointerAlign(), Name: "offset.to.top" ); |
| 1791 | } |
| 1792 | // Finally, add the offset to the pointer. |
| 1793 | return CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ThisAddr.emitRawPointer(CGF), |
| 1794 | IdxList: OffsetToTop); |
| 1795 | } |
| 1796 | |
| 1797 | bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
| 1798 | llvm::FunctionCallee Fn = getBadCastFn(CGF); |
| 1799 | llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(callee: Fn); |
| 1800 | Call->setDoesNotReturn(); |
| 1801 | CGF.Builder.CreateUnreachable(); |
| 1802 | return true; |
| 1803 | } |
| 1804 | |
| 1805 | llvm::Value * |
| 1806 | ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, |
| 1807 | Address This, |
| 1808 | const CXXRecordDecl *ClassDecl, |
| 1809 | const CXXRecordDecl *BaseClassDecl) { |
| 1810 | llvm::Value *VTablePtr = CGF.GetVTablePtr(This, VTableTy: CGM.Int8PtrTy, VTableClass: ClassDecl); |
| 1811 | CharUnits VBaseOffsetOffset = |
| 1812 | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD: ClassDecl, |
| 1813 | VBase: BaseClassDecl); |
| 1814 | llvm::Value *VBaseOffsetPtr = |
| 1815 | CGF.Builder.CreateConstGEP1_64( |
| 1816 | Ty: CGF.Int8Ty, Ptr: VTablePtr, Idx0: VBaseOffsetOffset.getQuantity(), |
| 1817 | Name: "vbase.offset.ptr" ); |
| 1818 | |
| 1819 | llvm::Value *VBaseOffset; |
| 1820 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 1821 | VBaseOffset = CGF.Builder.CreateAlignedLoad( |
| 1822 | Ty: CGF.Int32Ty, Addr: VBaseOffsetPtr, Align: CharUnits::fromQuantity(Quantity: 4), |
| 1823 | Name: "vbase.offset" ); |
| 1824 | } else { |
| 1825 | VBaseOffset = CGF.Builder.CreateAlignedLoad( |
| 1826 | Ty: CGM.PtrDiffTy, Addr: VBaseOffsetPtr, Align: CGF.getPointerAlign(), Name: "vbase.offset" ); |
| 1827 | } |
| 1828 | return VBaseOffset; |
| 1829 | } |
| 1830 | |
| 1831 | void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
| 1832 | // Just make sure we're in sync with TargetCXXABI. |
| 1833 | assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); |
| 1834 | |
| 1835 | // The constructor used for constructing this as a base class; |
| 1836 | // ignores virtual bases. |
| 1837 | CGM.EmitGlobal(D: GlobalDecl(D, Ctor_Base)); |
| 1838 | |
| 1839 | // The constructor used for constructing this as a complete class; |
| 1840 | // constructs the virtual bases, then calls the base constructor. |
| 1841 | if (!D->getParent()->isAbstract()) { |
| 1842 | // We don't need to emit the complete ctor if the class is abstract. |
| 1843 | CGM.EmitGlobal(D: GlobalDecl(D, Ctor_Complete)); |
| 1844 | } |
| 1845 | } |
| 1846 | |
| 1847 | CGCXXABI::AddedStructorArgCounts |
| 1848 | ItaniumCXXABI::buildStructorSignature(GlobalDecl GD, |
| 1849 | SmallVectorImpl<CanQualType> &ArgTys) { |
| 1850 | ASTContext &Context = getContext(); |
| 1851 | |
| 1852 | // All parameters are already in place except VTT, which goes after 'this'. |
| 1853 | // These are Clang types, so we don't need to worry about sret yet. |
| 1854 | |
| 1855 | // Check if we need to add a VTT parameter (which has type global void **). |
| 1856 | if ((isa<CXXConstructorDecl>(Val: GD.getDecl()) ? GD.getCtorType() == Ctor_Base |
| 1857 | : GD.getDtorType() == Dtor_Base) && |
| 1858 | cast<CXXMethodDecl>(Val: GD.getDecl())->getParent()->getNumVBases() != 0) { |
| 1859 | LangAS AS = CGM.GetGlobalVarAddressSpace(D: nullptr); |
| 1860 | QualType Q = Context.getAddrSpaceQualType(T: Context.VoidPtrTy, AddressSpace: AS); |
| 1861 | ArgTys.insert(I: ArgTys.begin() + 1, |
| 1862 | Elt: Context.getPointerType(T: CanQualType::CreateUnsafe(Other: Q))); |
| 1863 | return AddedStructorArgCounts::prefix(N: 1); |
| 1864 | } |
| 1865 | return AddedStructorArgCounts{}; |
| 1866 | } |
| 1867 | |
| 1868 | void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
| 1869 | // The destructor used for destructing this as a base class; ignores |
| 1870 | // virtual bases. |
| 1871 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Base)); |
| 1872 | |
| 1873 | // The destructor used for destructing this as a most-derived class; |
| 1874 | // call the base destructor and then destructs any virtual bases. |
| 1875 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Complete)); |
| 1876 | |
| 1877 | // The destructor in a virtual table is always a 'deleting' |
| 1878 | // destructor, which calls the complete destructor and then uses the |
| 1879 | // appropriate operator delete. |
| 1880 | if (D->isVirtual()) |
| 1881 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Deleting)); |
| 1882 | } |
| 1883 | |
| 1884 | void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
| 1885 | QualType &ResTy, |
| 1886 | FunctionArgList &Params) { |
| 1887 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
| 1888 | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
| 1889 | |
| 1890 | // Check if we need a VTT parameter as well. |
| 1891 | if (NeedsVTTParameter(GD: CGF.CurGD)) { |
| 1892 | ASTContext &Context = getContext(); |
| 1893 | |
| 1894 | // FIXME: avoid the fake decl |
| 1895 | LangAS AS = CGM.GetGlobalVarAddressSpace(D: nullptr); |
| 1896 | QualType Q = Context.getAddrSpaceQualType(T: Context.VoidPtrTy, AddressSpace: AS); |
| 1897 | QualType T = Context.getPointerType(T: Q); |
| 1898 | auto *VTTDecl = ImplicitParamDecl::Create( |
| 1899 | C&: Context, /*DC=*/nullptr, IdLoc: MD->getLocation(), Id: &Context.Idents.get(Name: "vtt" ), |
| 1900 | T, ParamKind: ImplicitParamKind::CXXVTT); |
| 1901 | Params.insert(I: Params.begin() + 1, Elt: VTTDecl); |
| 1902 | getStructorImplicitParamDecl(CGF) = VTTDecl; |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
| 1907 | // Naked functions have no prolog. |
| 1908 | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
| 1909 | return; |
| 1910 | |
| 1911 | /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue |
| 1912 | /// adjustments are required, because they are all handled by thunks. |
| 1913 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
| 1914 | |
| 1915 | /// Initialize the 'vtt' slot if needed. |
| 1916 | if (getStructorImplicitParamDecl(CGF)) { |
| 1917 | getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( |
| 1918 | Addr: CGF.GetAddrOfLocalVar(VD: getStructorImplicitParamDecl(CGF)), Name: "vtt" ); |
| 1919 | } |
| 1920 | |
| 1921 | /// If this is a function that the ABI specifies returns 'this', initialize |
| 1922 | /// the return slot to 'this' at the start of the function. |
| 1923 | /// |
| 1924 | /// Unlike the setting of return types, this is done within the ABI |
| 1925 | /// implementation instead of by clients of CGCXXABI because: |
| 1926 | /// 1) getThisValue is currently protected |
| 1927 | /// 2) in theory, an ABI could implement 'this' returns some other way; |
| 1928 | /// HasThisReturn only specifies a contract, not the implementation |
| 1929 | if (HasThisReturn(GD: CGF.CurGD)) |
| 1930 | CGF.Builder.CreateStore(Val: getThisValue(CGF), Addr: CGF.ReturnValue); |
| 1931 | } |
| 1932 | |
| 1933 | CGCXXABI::AddedStructorArgs ItaniumCXXABI::getImplicitConstructorArgs( |
| 1934 | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
| 1935 | bool ForVirtualBase, bool Delegating) { |
| 1936 | if (!NeedsVTTParameter(GD: GlobalDecl(D, Type))) |
| 1937 | return AddedStructorArgs{}; |
| 1938 | |
| 1939 | // Insert the implicit 'vtt' argument as the second argument. Make sure to |
| 1940 | // correctly reflect its address space, which can differ from generic on |
| 1941 | // some targets. |
| 1942 | llvm::Value *VTT = |
| 1943 | CGF.GetVTTParameter(GD: GlobalDecl(D, Type), ForVirtualBase, Delegating); |
| 1944 | LangAS AS = CGM.GetGlobalVarAddressSpace(D: nullptr); |
| 1945 | QualType Q = getContext().getAddrSpaceQualType(T: getContext().VoidPtrTy, AddressSpace: AS); |
| 1946 | QualType VTTTy = getContext().getPointerType(T: Q); |
| 1947 | return AddedStructorArgs::prefix(Args: {{.Value: VTT, .Type: VTTTy}}); |
| 1948 | } |
| 1949 | |
| 1950 | llvm::Value *ItaniumCXXABI::getCXXDestructorImplicitParam( |
| 1951 | CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
| 1952 | bool ForVirtualBase, bool Delegating) { |
| 1953 | GlobalDecl GD(DD, Type); |
| 1954 | return CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); |
| 1955 | } |
| 1956 | |
| 1957 | void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
| 1958 | const CXXDestructorDecl *DD, |
| 1959 | CXXDtorType Type, bool ForVirtualBase, |
| 1960 | bool Delegating, Address This, |
| 1961 | QualType ThisTy) { |
| 1962 | GlobalDecl GD(DD, Type); |
| 1963 | llvm::Value *VTT = |
| 1964 | getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, Delegating); |
| 1965 | QualType VTTTy = getContext().getPointerType(T: getContext().VoidPtrTy); |
| 1966 | |
| 1967 | CGCallee Callee; |
| 1968 | if (getContext().getLangOpts().AppleKext && |
| 1969 | Type != Dtor_Base && DD->isVirtual()) |
| 1970 | Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, RD: DD->getParent()); |
| 1971 | else |
| 1972 | Callee = CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD), abstractInfo: GD); |
| 1973 | |
| 1974 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: CGF.getAsNaturalPointerTo(Addr: This, PointeeType: ThisTy), |
| 1975 | ThisTy, ImplicitParam: VTT, ImplicitParamTy: VTTTy, E: nullptr); |
| 1976 | } |
| 1977 | |
| 1978 | // Check if any non-inline method has the specified attribute. |
| 1979 | template <typename T> |
| 1980 | static bool CXXRecordNonInlineHasAttr(const CXXRecordDecl *RD) { |
| 1981 | for (const auto *D : RD->noload_decls()) { |
| 1982 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 1983 | if (FD->isInlined() || FD->doesThisDeclarationHaveABody() || |
| 1984 | FD->isPureVirtual()) |
| 1985 | continue; |
| 1986 | if (D->hasAttr<T>()) |
| 1987 | return true; |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | return false; |
| 1992 | } |
| 1993 | |
| 1994 | static void setVTableSelectiveDLLImportExport(CodeGenModule &CGM, |
| 1995 | llvm::GlobalVariable *VTable, |
| 1996 | const CXXRecordDecl *RD) { |
| 1997 | if (VTable->getDLLStorageClass() != |
| 1998 | llvm::GlobalVariable::DefaultStorageClass || |
| 1999 | RD->hasAttr<DLLImportAttr>() || RD->hasAttr<DLLExportAttr>()) |
| 2000 | return; |
| 2001 | |
| 2002 | if (CGM.getVTables().isVTableExternal(RD)) { |
| 2003 | if (CXXRecordNonInlineHasAttr<DLLImportAttr>(RD)) |
| 2004 | VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
| 2005 | } else if (CXXRecordNonInlineHasAttr<DLLExportAttr>(RD)) |
| 2006 | VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| 2007 | } |
| 2008 | |
| 2009 | void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
| 2010 | const CXXRecordDecl *RD) { |
| 2011 | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, VPtrOffset: CharUnits()); |
| 2012 | if (VTable->hasInitializer()) |
| 2013 | return; |
| 2014 | |
| 2015 | ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); |
| 2016 | const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); |
| 2017 | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
| 2018 | llvm::Constant *RTTI = |
| 2019 | CGM.GetAddrOfRTTIDescriptor(Ty: CGM.getContext().getTagDeclType(Decl: RD)); |
| 2020 | |
| 2021 | // Create and set the initializer. |
| 2022 | ConstantInitBuilder builder(CGM); |
| 2023 | auto components = builder.beginStruct(); |
| 2024 | CGVT.createVTableInitializer(builder&: components, layout: VTLayout, rtti: RTTI, |
| 2025 | vtableHasLocalLinkage: llvm::GlobalValue::isLocalLinkage(Linkage)); |
| 2026 | components.finishAndSetAsInitializer(global: VTable); |
| 2027 | |
| 2028 | // Set the correct linkage. |
| 2029 | VTable->setLinkage(Linkage); |
| 2030 | |
| 2031 | if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) |
| 2032 | VTable->setComdat(CGM.getModule().getOrInsertComdat(Name: VTable->getName())); |
| 2033 | |
| 2034 | if (CGM.getTarget().hasPS4DLLImportExport()) |
| 2035 | setVTableSelectiveDLLImportExport(CGM, VTable, RD); |
| 2036 | |
| 2037 | // Set the right visibility. |
| 2038 | CGM.setGVProperties(GV: VTable, D: RD); |
| 2039 | |
| 2040 | // If this is the magic class __cxxabiv1::__fundamental_type_info, |
| 2041 | // we will emit the typeinfo for the fundamental types. This is the |
| 2042 | // same behaviour as GCC. |
| 2043 | const DeclContext *DC = RD->getDeclContext(); |
| 2044 | if (RD->getIdentifier() && |
| 2045 | RD->getIdentifier()->isStr(Str: "__fundamental_type_info" ) && |
| 2046 | isa<NamespaceDecl>(Val: DC) && cast<NamespaceDecl>(Val: DC)->getIdentifier() && |
| 2047 | cast<NamespaceDecl>(Val: DC)->getIdentifier()->isStr(Str: "__cxxabiv1" ) && |
| 2048 | DC->getParent()->isTranslationUnit()) |
| 2049 | EmitFundamentalRTTIDescriptors(RD); |
| 2050 | |
| 2051 | // Always emit type metadata on non-available_externally definitions, and on |
| 2052 | // available_externally definitions if we are performing whole program |
| 2053 | // devirtualization. For WPD we need the type metadata on all vtable |
| 2054 | // definitions to ensure we associate derived classes with base classes |
| 2055 | // defined in headers but with a strong definition only in a shared library. |
| 2056 | if (!VTable->isDeclarationForLinker() || |
| 2057 | CGM.getCodeGenOpts().WholeProgramVTables) { |
| 2058 | CGM.EmitVTableTypeMetadata(RD, VTable, VTLayout); |
| 2059 | // For available_externally definitions, add the vtable to |
| 2060 | // @llvm.compiler.used so that it isn't deleted before whole program |
| 2061 | // analysis. |
| 2062 | if (VTable->isDeclarationForLinker()) { |
| 2063 | assert(CGM.getCodeGenOpts().WholeProgramVTables); |
| 2064 | CGM.addCompilerUsedGlobal(GV: VTable); |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | if (VTContext.isRelativeLayout()) { |
| 2069 | CGVT.RemoveHwasanMetadata(GV: VTable); |
| 2070 | if (!VTable->isDSOLocal()) |
| 2071 | CGVT.GenerateRelativeVTableAlias(VTable, AliasNameRef: VTable->getName()); |
| 2072 | } |
| 2073 | |
| 2074 | // Emit symbol for debugger only if requested debug info. |
| 2075 | if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
| 2076 | DI->emitVTableSymbol(VTable, RD); |
| 2077 | } |
| 2078 | |
| 2079 | bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( |
| 2080 | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
| 2081 | if (Vptr.NearestVBase == nullptr) |
| 2082 | return false; |
| 2083 | return NeedsVTTParameter(GD: CGF.CurGD); |
| 2084 | } |
| 2085 | |
| 2086 | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( |
| 2087 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
| 2088 | const CXXRecordDecl *NearestVBase) { |
| 2089 | |
| 2090 | if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
| 2091 | NeedsVTTParameter(GD: CGF.CurGD)) { |
| 2092 | return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, |
| 2093 | NearestVBase); |
| 2094 | } |
| 2095 | return getVTableAddressPoint(Base, VTableClass); |
| 2096 | } |
| 2097 | |
| 2098 | llvm::Constant * |
| 2099 | ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, |
| 2100 | const CXXRecordDecl *VTableClass) { |
| 2101 | llvm::GlobalValue *VTable = getAddrOfVTable(RD: VTableClass, VPtrOffset: CharUnits()); |
| 2102 | |
| 2103 | // Find the appropriate vtable within the vtable group, and the address point |
| 2104 | // within that vtable. |
| 2105 | const VTableLayout &Layout = |
| 2106 | CGM.getItaniumVTableContext().getVTableLayout(RD: VTableClass); |
| 2107 | VTableLayout::AddressPointLocation AddressPoint = |
| 2108 | Layout.getAddressPoint(Base); |
| 2109 | llvm::Value *Indices[] = { |
| 2110 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
| 2111 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: AddressPoint.VTableIndex), |
| 2112 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: AddressPoint.AddressPointIndex), |
| 2113 | }; |
| 2114 | |
| 2115 | // Add inrange attribute to indicate that only the VTableIndex can be |
| 2116 | // accessed. |
| 2117 | unsigned ComponentSize = |
| 2118 | CGM.getDataLayout().getTypeAllocSize(Ty: CGM.getVTableComponentType()); |
| 2119 | unsigned VTableSize = |
| 2120 | ComponentSize * Layout.getVTableSize(i: AddressPoint.VTableIndex); |
| 2121 | unsigned Offset = ComponentSize * AddressPoint.AddressPointIndex; |
| 2122 | llvm::ConstantRange InRange( |
| 2123 | llvm::APInt(32, (int)-Offset, true), |
| 2124 | llvm::APInt(32, (int)(VTableSize - Offset), true)); |
| 2125 | return llvm::ConstantExpr::getGetElementPtr( |
| 2126 | Ty: VTable->getValueType(), C: VTable, IdxList: Indices, /*InBounds=*/NW: true, InRange); |
| 2127 | } |
| 2128 | |
| 2129 | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( |
| 2130 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
| 2131 | const CXXRecordDecl *NearestVBase) { |
| 2132 | assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
| 2133 | NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT" ); |
| 2134 | |
| 2135 | // Get the secondary vpointer index. |
| 2136 | uint64_t VirtualPointerIndex = |
| 2137 | CGM.getVTables().getSecondaryVirtualPointerIndex(RD: VTableClass, Base); |
| 2138 | |
| 2139 | /// Load the VTT. |
| 2140 | llvm::Value *VTT = CGF.LoadCXXVTT(); |
| 2141 | if (VirtualPointerIndex) |
| 2142 | VTT = CGF.Builder.CreateConstInBoundsGEP1_64(Ty: CGF.GlobalsVoidPtrTy, Ptr: VTT, |
| 2143 | Idx0: VirtualPointerIndex); |
| 2144 | |
| 2145 | // And load the address point from the VTT. |
| 2146 | llvm::Value *AP = |
| 2147 | CGF.Builder.CreateAlignedLoad(Ty: CGF.GlobalsVoidPtrTy, Addr: VTT, |
| 2148 | Align: CGF.getPointerAlign()); |
| 2149 | |
| 2150 | if (auto &Schema = CGF.CGM.getCodeGenOpts().PointerAuth.CXXVTTVTablePointers) { |
| 2151 | CGPointerAuthInfo PointerAuth = CGF.EmitPointerAuthInfo(Schema, StorageAddress: VTT, |
| 2152 | SchemaDecl: GlobalDecl(), |
| 2153 | SchemaType: QualType()); |
| 2154 | AP = CGF.EmitPointerAuthAuth(Info: PointerAuth, Pointer: AP); |
| 2155 | } |
| 2156 | |
| 2157 | return AP; |
| 2158 | } |
| 2159 | |
| 2160 | llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
| 2161 | CharUnits VPtrOffset) { |
| 2162 | assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets" ); |
| 2163 | |
| 2164 | llvm::GlobalVariable *&VTable = VTables[RD]; |
| 2165 | if (VTable) |
| 2166 | return VTable; |
| 2167 | |
| 2168 | // Queue up this vtable for possible deferred emission. |
| 2169 | CGM.addDeferredVTable(RD); |
| 2170 | |
| 2171 | SmallString<256> Name; |
| 2172 | llvm::raw_svector_ostream Out(Name); |
| 2173 | getMangleContext().mangleCXXVTable(RD, Out); |
| 2174 | |
| 2175 | const VTableLayout &VTLayout = |
| 2176 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
| 2177 | llvm::Type *VTableType = CGM.getVTables().getVTableType(layout: VTLayout); |
| 2178 | |
| 2179 | // Use pointer to global alignment for the vtable. Otherwise we would align |
| 2180 | // them based on the size of the initializer which doesn't make sense as only |
| 2181 | // single values are read. |
| 2182 | unsigned PAlign = CGM.getVtableGlobalVarAlignment(); |
| 2183 | |
| 2184 | VTable = CGM.CreateOrReplaceCXXRuntimeVariable( |
| 2185 | Name, Ty: VTableType, Linkage: llvm::GlobalValue::ExternalLinkage, |
| 2186 | Alignment: getContext().toCharUnitsFromBits(BitSize: PAlign).getAsAlign()); |
| 2187 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 2188 | |
| 2189 | if (CGM.getTarget().hasPS4DLLImportExport()) |
| 2190 | setVTableSelectiveDLLImportExport(CGM, VTable, RD); |
| 2191 | |
| 2192 | CGM.setGVProperties(GV: VTable, D: RD); |
| 2193 | return VTable; |
| 2194 | } |
| 2195 | |
| 2196 | CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
| 2197 | GlobalDecl GD, |
| 2198 | Address This, |
| 2199 | llvm::Type *Ty, |
| 2200 | SourceLocation Loc) { |
| 2201 | llvm::Type *PtrTy = CGM.GlobalsInt8PtrTy; |
| 2202 | auto *MethodDecl = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 2203 | llvm::Value *VTable = CGF.GetVTablePtr(This, VTableTy: PtrTy, VTableClass: MethodDecl->getParent()); |
| 2204 | |
| 2205 | uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); |
| 2206 | llvm::Value *VFunc, *VTableSlotPtr = nullptr; |
| 2207 | auto &Schema = CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers; |
| 2208 | |
| 2209 | llvm::Type *ComponentTy = CGM.getVTables().getVTableComponentType(); |
| 2210 | uint64_t ByteOffset = |
| 2211 | VTableIndex * CGM.getDataLayout().getTypeSizeInBits(Ty: ComponentTy) / 8; |
| 2212 | |
| 2213 | if (!Schema && CGF.ShouldEmitVTableTypeCheckedLoad(RD: MethodDecl->getParent())) { |
| 2214 | VFunc = CGF.EmitVTableTypeCheckedLoad(RD: MethodDecl->getParent(), VTable, |
| 2215 | VTableTy: PtrTy, VTableByteOffset: ByteOffset); |
| 2216 | } else { |
| 2217 | CGF.EmitTypeMetadataCodeForVCall(RD: MethodDecl->getParent(), VTable, Loc); |
| 2218 | |
| 2219 | llvm::Value *VFuncLoad; |
| 2220 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 2221 | VFuncLoad = CGF.Builder.CreateCall( |
| 2222 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::load_relative, Tys: {CGM.Int32Ty}), |
| 2223 | Args: {VTable, llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: ByteOffset)}); |
| 2224 | } else { |
| 2225 | VTableSlotPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| 2226 | Ty: PtrTy, Ptr: VTable, Idx0: VTableIndex, Name: "vfn" ); |
| 2227 | VFuncLoad = CGF.Builder.CreateAlignedLoad(Ty: PtrTy, Addr: VTableSlotPtr, |
| 2228 | Align: CGF.getPointerAlign()); |
| 2229 | } |
| 2230 | |
| 2231 | // Add !invariant.load md to virtual function load to indicate that |
| 2232 | // function didn't change inside vtable. |
| 2233 | // It's safe to add it without -fstrict-vtable-pointers, but it would not |
| 2234 | // help in devirtualization because it will only matter if we will have 2 |
| 2235 | // the same virtual function loads from the same vtable load, which won't |
| 2236 | // happen without enabled devirtualization with -fstrict-vtable-pointers. |
| 2237 | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
| 2238 | CGM.getCodeGenOpts().StrictVTablePointers) { |
| 2239 | if (auto *VFuncLoadInstr = dyn_cast<llvm::Instruction>(Val: VFuncLoad)) { |
| 2240 | VFuncLoadInstr->setMetadata( |
| 2241 | KindID: llvm::LLVMContext::MD_invariant_load, |
| 2242 | Node: llvm::MDNode::get(Context&: CGM.getLLVMContext(), |
| 2243 | MDs: llvm::ArrayRef<llvm::Metadata *>())); |
| 2244 | } |
| 2245 | } |
| 2246 | VFunc = VFuncLoad; |
| 2247 | } |
| 2248 | |
| 2249 | CGPointerAuthInfo PointerAuth; |
| 2250 | if (Schema) { |
| 2251 | assert(VTableSlotPtr && "virtual function pointer not set" ); |
| 2252 | GD = CGM.getItaniumVTableContext().findOriginalMethod(GD: GD.getCanonicalDecl()); |
| 2253 | PointerAuth = CGF.EmitPointerAuthInfo(Schema, StorageAddress: VTableSlotPtr, SchemaDecl: GD, SchemaType: QualType()); |
| 2254 | } |
| 2255 | CGCallee Callee(GD, VFunc, PointerAuth); |
| 2256 | return Callee; |
| 2257 | } |
| 2258 | |
| 2259 | llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( |
| 2260 | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
| 2261 | Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) { |
| 2262 | auto *CE = dyn_cast<const CXXMemberCallExpr *>(Val&: E); |
| 2263 | auto *D = dyn_cast<const CXXDeleteExpr *>(Val&: E); |
| 2264 | assert((CE != nullptr) ^ (D != nullptr)); |
| 2265 | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
| 2266 | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
| 2267 | |
| 2268 | GlobalDecl GD(Dtor, DtorType); |
| 2269 | const CGFunctionInfo *FInfo = |
| 2270 | &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
| 2271 | llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(Info: *FInfo); |
| 2272 | CGCallee Callee = CGCallee::forVirtual(CE, MD: GD, Addr: This, FTy: Ty); |
| 2273 | |
| 2274 | QualType ThisTy; |
| 2275 | if (CE) { |
| 2276 | ThisTy = CE->getObjectType(); |
| 2277 | } else { |
| 2278 | ThisTy = D->getDestroyedType(); |
| 2279 | } |
| 2280 | |
| 2281 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: This.emitRawPointer(CGF), ThisTy, |
| 2282 | ImplicitParam: nullptr, ImplicitParamTy: QualType(), E: nullptr, CallOrInvoke); |
| 2283 | return nullptr; |
| 2284 | } |
| 2285 | |
| 2286 | void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
| 2287 | CodeGenVTables &VTables = CGM.getVTables(); |
| 2288 | llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); |
| 2289 | VTables.EmitVTTDefinition(VTT, Linkage: CGM.getVTableLinkage(RD), RD); |
| 2290 | } |
| 2291 | |
| 2292 | bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass( |
| 2293 | const CXXRecordDecl *RD) const { |
| 2294 | // We don't emit available_externally vtables if we are in -fapple-kext mode |
| 2295 | // because kext mode does not permit devirtualization. |
| 2296 | if (CGM.getLangOpts().AppleKext) |
| 2297 | return false; |
| 2298 | |
| 2299 | // If the vtable is hidden then it is not safe to emit an available_externally |
| 2300 | // copy of vtable. |
| 2301 | if (isVTableHidden(RD)) |
| 2302 | return false; |
| 2303 | |
| 2304 | if (CGM.getCodeGenOpts().ForceEmitVTables) |
| 2305 | return true; |
| 2306 | |
| 2307 | // A speculative vtable can only be generated if all virtual inline functions |
| 2308 | // defined by this class are emitted. The vtable in the final program contains |
| 2309 | // for each virtual inline function not used in the current TU a function that |
| 2310 | // is equivalent to the unused function. The function in the actual vtable |
| 2311 | // does not have to be declared under the same symbol (e.g., a virtual |
| 2312 | // destructor that can be substituted with its base class's destructor). Since |
| 2313 | // inline functions are emitted lazily and this emissions does not account for |
| 2314 | // speculative emission of a vtable, we might generate a speculative vtable |
| 2315 | // with references to inline functions that are not emitted under that name. |
| 2316 | // This can lead to problems when devirtualizing a call to such a function, |
| 2317 | // that result in linking errors. Hence, if there are any unused virtual |
| 2318 | // inline function, we cannot emit the speculative vtable. |
| 2319 | // FIXME we can still emit a copy of the vtable if we |
| 2320 | // can emit definition of the inline functions. |
| 2321 | if (hasAnyUnusedVirtualInlineFunction(RD)) |
| 2322 | return false; |
| 2323 | |
| 2324 | // For a class with virtual bases, we must also be able to speculatively |
| 2325 | // emit the VTT, because CodeGen doesn't have separate notions of "can emit |
| 2326 | // the vtable" and "can emit the VTT". For a base subobject, this means we |
| 2327 | // need to be able to emit non-virtual base vtables. |
| 2328 | if (RD->getNumVBases()) { |
| 2329 | for (const auto &B : RD->bases()) { |
| 2330 | auto *BRD = B.getType()->getAsCXXRecordDecl(); |
| 2331 | assert(BRD && "no class for base specifier" ); |
| 2332 | if (B.isVirtual() || !BRD->isDynamicClass()) |
| 2333 | continue; |
| 2334 | if (!canSpeculativelyEmitVTableAsBaseClass(RD: BRD)) |
| 2335 | return false; |
| 2336 | } |
| 2337 | } |
| 2338 | |
| 2339 | return true; |
| 2340 | } |
| 2341 | |
| 2342 | bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { |
| 2343 | if (!canSpeculativelyEmitVTableAsBaseClass(RD)) |
| 2344 | return false; |
| 2345 | |
| 2346 | if (RD->shouldEmitInExternalSource()) |
| 2347 | return false; |
| 2348 | |
| 2349 | // For a complete-object vtable (or more specifically, for the VTT), we need |
| 2350 | // to be able to speculatively emit the vtables of all dynamic virtual bases. |
| 2351 | for (const auto &B : RD->vbases()) { |
| 2352 | auto *BRD = B.getType()->getAsCXXRecordDecl(); |
| 2353 | assert(BRD && "no class for base specifier" ); |
| 2354 | if (!BRD->isDynamicClass()) |
| 2355 | continue; |
| 2356 | if (!canSpeculativelyEmitVTableAsBaseClass(RD: BRD)) |
| 2357 | return false; |
| 2358 | } |
| 2359 | |
| 2360 | return true; |
| 2361 | } |
| 2362 | static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, |
| 2363 | Address InitialPtr, |
| 2364 | const CXXRecordDecl *UnadjustedClass, |
| 2365 | int64_t NonVirtualAdjustment, |
| 2366 | int64_t VirtualAdjustment, |
| 2367 | bool IsReturnAdjustment) { |
| 2368 | if (!NonVirtualAdjustment && !VirtualAdjustment) |
| 2369 | return InitialPtr.emitRawPointer(CGF); |
| 2370 | |
| 2371 | Address V = InitialPtr.withElementType(ElemTy: CGF.Int8Ty); |
| 2372 | |
| 2373 | // In a base-to-derived cast, the non-virtual adjustment is applied first. |
| 2374 | if (NonVirtualAdjustment && !IsReturnAdjustment) { |
| 2375 | V = CGF.Builder.CreateConstInBoundsByteGEP(Addr: V, |
| 2376 | Offset: CharUnits::fromQuantity(Quantity: NonVirtualAdjustment)); |
| 2377 | } |
| 2378 | |
| 2379 | // Perform the virtual adjustment if we have one. |
| 2380 | llvm::Value *ResultPtr; |
| 2381 | if (VirtualAdjustment) { |
| 2382 | llvm::Value *VTablePtr = |
| 2383 | CGF.GetVTablePtr(This: V, VTableTy: CGF.Int8PtrTy, VTableClass: UnadjustedClass); |
| 2384 | |
| 2385 | llvm::Value *Offset; |
| 2386 | llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| 2387 | Ty: CGF.Int8Ty, Ptr: VTablePtr, Idx0: VirtualAdjustment); |
| 2388 | if (CGF.CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 2389 | // Load the adjustment offset from the vtable as a 32-bit int. |
| 2390 | Offset = |
| 2391 | CGF.Builder.CreateAlignedLoad(Ty: CGF.Int32Ty, Addr: OffsetPtr, |
| 2392 | Align: CharUnits::fromQuantity(Quantity: 4)); |
| 2393 | } else { |
| 2394 | llvm::Type *PtrDiffTy = |
| 2395 | CGF.ConvertType(T: CGF.getContext().getPointerDiffType()); |
| 2396 | |
| 2397 | // Load the adjustment offset from the vtable. |
| 2398 | Offset = CGF.Builder.CreateAlignedLoad(Ty: PtrDiffTy, Addr: OffsetPtr, |
| 2399 | Align: CGF.getPointerAlign()); |
| 2400 | } |
| 2401 | // Adjust our pointer. |
| 2402 | ResultPtr = CGF.Builder.CreateInBoundsGEP(Ty: V.getElementType(), |
| 2403 | Ptr: V.emitRawPointer(CGF), IdxList: Offset); |
| 2404 | } else { |
| 2405 | ResultPtr = V.emitRawPointer(CGF); |
| 2406 | } |
| 2407 | |
| 2408 | // In a derived-to-base conversion, the non-virtual adjustment is |
| 2409 | // applied second. |
| 2410 | if (NonVirtualAdjustment && IsReturnAdjustment) { |
| 2411 | ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(Ty: CGF.Int8Ty, Ptr: ResultPtr, |
| 2412 | Idx0: NonVirtualAdjustment); |
| 2413 | } |
| 2414 | |
| 2415 | return ResultPtr; |
| 2416 | } |
| 2417 | |
| 2418 | llvm::Value * |
| 2419 | ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, Address This, |
| 2420 | const CXXRecordDecl *UnadjustedClass, |
| 2421 | const ThunkInfo &TI) { |
| 2422 | return performTypeAdjustment(CGF, InitialPtr: This, UnadjustedClass, NonVirtualAdjustment: TI.This.NonVirtual, |
| 2423 | VirtualAdjustment: TI.This.Virtual.Itanium.VCallOffsetOffset, |
| 2424 | /*IsReturnAdjustment=*/false); |
| 2425 | } |
| 2426 | |
| 2427 | llvm::Value * |
| 2428 | ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
| 2429 | const CXXRecordDecl *UnadjustedClass, |
| 2430 | const ReturnAdjustment &RA) { |
| 2431 | return performTypeAdjustment(CGF, InitialPtr: Ret, UnadjustedClass, NonVirtualAdjustment: RA.NonVirtual, |
| 2432 | VirtualAdjustment: RA.Virtual.Itanium.VBaseOffsetOffset, |
| 2433 | /*IsReturnAdjustment=*/true); |
| 2434 | } |
| 2435 | |
| 2436 | void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, |
| 2437 | RValue RV, QualType ResultType) { |
| 2438 | if (!isa<CXXDestructorDecl>(Val: CGF.CurGD.getDecl())) |
| 2439 | return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); |
| 2440 | |
| 2441 | // Destructor thunks in the ARM ABI have indeterminate results. |
| 2442 | llvm::Type *T = CGF.ReturnValue.getElementType(); |
| 2443 | RValue Undef = RValue::get(V: llvm::UndefValue::get(T)); |
| 2444 | return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV: Undef, ResultType); |
| 2445 | } |
| 2446 | |
| 2447 | /************************** Array allocation cookies **************************/ |
| 2448 | |
| 2449 | CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| 2450 | // The array cookie is a size_t; pad that up to the element alignment. |
| 2451 | // The cookie is actually right-justified in that space. |
| 2452 | return std::max(a: CharUnits::fromQuantity(Quantity: CGM.SizeSizeInBytes), |
| 2453 | b: CGM.getContext().getPreferredTypeAlignInChars(T: elementType)); |
| 2454 | } |
| 2455 | |
| 2456 | Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| 2457 | Address NewPtr, |
| 2458 | llvm::Value *NumElements, |
| 2459 | const CXXNewExpr *expr, |
| 2460 | QualType ElementType) { |
| 2461 | assert(requiresArrayCookie(expr)); |
| 2462 | |
| 2463 | unsigned AS = NewPtr.getAddressSpace(); |
| 2464 | |
| 2465 | ASTContext &Ctx = getContext(); |
| 2466 | CharUnits SizeSize = CGF.getSizeSize(); |
| 2467 | |
| 2468 | // The size of the cookie. |
| 2469 | CharUnits CookieSize = |
| 2470 | std::max(a: SizeSize, b: Ctx.getPreferredTypeAlignInChars(T: ElementType)); |
| 2471 | assert(CookieSize == getArrayCookieSizeImpl(ElementType)); |
| 2472 | |
| 2473 | // Compute an offset to the cookie. |
| 2474 | Address CookiePtr = NewPtr; |
| 2475 | CharUnits CookieOffset = CookieSize - SizeSize; |
| 2476 | if (!CookieOffset.isZero()) |
| 2477 | CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(Addr: CookiePtr, Offset: CookieOffset); |
| 2478 | |
| 2479 | // Write the number of elements into the appropriate slot. |
| 2480 | Address NumElementsPtr = CookiePtr.withElementType(ElemTy: CGF.SizeTy); |
| 2481 | llvm::Instruction *SI = CGF.Builder.CreateStore(Val: NumElements, Addr: NumElementsPtr); |
| 2482 | |
| 2483 | // Handle the array cookie specially in ASan. |
| 2484 | if (CGM.getLangOpts().Sanitize.has(K: SanitizerKind::Address) && AS == 0 && |
| 2485 | (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() || |
| 2486 | CGM.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie)) { |
| 2487 | // The store to the CookiePtr does not need to be instrumented. |
| 2488 | SI->setNoSanitizeMetadata(); |
| 2489 | llvm::FunctionType *FTy = |
| 2490 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: NumElementsPtr.getType(), isVarArg: false); |
| 2491 | llvm::FunctionCallee F = |
| 2492 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "__asan_poison_cxx_array_cookie" ); |
| 2493 | CGF.Builder.CreateCall(Callee: F, Args: NumElementsPtr.emitRawPointer(CGF)); |
| 2494 | } |
| 2495 | |
| 2496 | // Finally, compute a pointer to the actual data buffer by skipping |
| 2497 | // over the cookie completely. |
| 2498 | return CGF.Builder.CreateConstInBoundsByteGEP(Addr: NewPtr, Offset: CookieSize); |
| 2499 | } |
| 2500 | |
| 2501 | llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| 2502 | Address allocPtr, |
| 2503 | CharUnits cookieSize) { |
| 2504 | // The element size is right-justified in the cookie. |
| 2505 | Address numElementsPtr = allocPtr; |
| 2506 | CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); |
| 2507 | if (!numElementsOffset.isZero()) |
| 2508 | numElementsPtr = |
| 2509 | CGF.Builder.CreateConstInBoundsByteGEP(Addr: numElementsPtr, Offset: numElementsOffset); |
| 2510 | |
| 2511 | unsigned AS = allocPtr.getAddressSpace(); |
| 2512 | numElementsPtr = numElementsPtr.withElementType(ElemTy: CGF.SizeTy); |
| 2513 | if (!CGM.getLangOpts().Sanitize.has(K: SanitizerKind::Address) || AS != 0) |
| 2514 | return CGF.Builder.CreateLoad(Addr: numElementsPtr); |
| 2515 | // In asan mode emit a function call instead of a regular load and let the |
| 2516 | // run-time deal with it: if the shadow is properly poisoned return the |
| 2517 | // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. |
| 2518 | // We can't simply ignore this load using nosanitize metadata because |
| 2519 | // the metadata may be lost. |
| 2520 | llvm::FunctionType *FTy = |
| 2521 | llvm::FunctionType::get(Result: CGF.SizeTy, Params: CGF.UnqualPtrTy, isVarArg: false); |
| 2522 | llvm::FunctionCallee F = |
| 2523 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "__asan_load_cxx_array_cookie" ); |
| 2524 | return CGF.Builder.CreateCall(Callee: F, Args: numElementsPtr.emitRawPointer(CGF)); |
| 2525 | } |
| 2526 | |
| 2527 | CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| 2528 | // ARM says that the cookie is always: |
| 2529 | // struct array_cookie { |
| 2530 | // std::size_t element_size; // element_size != 0 |
| 2531 | // std::size_t element_count; |
| 2532 | // }; |
| 2533 | // But the base ABI doesn't give anything an alignment greater than |
| 2534 | // 8, so we can dismiss this as typical ABI-author blindness to |
| 2535 | // actual language complexity and round up to the element alignment. |
| 2536 | return std::max(a: CharUnits::fromQuantity(Quantity: 2 * CGM.SizeSizeInBytes), |
| 2537 | b: CGM.getContext().getTypeAlignInChars(T: elementType)); |
| 2538 | } |
| 2539 | |
| 2540 | Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| 2541 | Address newPtr, |
| 2542 | llvm::Value *numElements, |
| 2543 | const CXXNewExpr *expr, |
| 2544 | QualType elementType) { |
| 2545 | assert(requiresArrayCookie(expr)); |
| 2546 | |
| 2547 | // The cookie is always at the start of the buffer. |
| 2548 | Address cookie = newPtr; |
| 2549 | |
| 2550 | // The first element is the element size. |
| 2551 | cookie = cookie.withElementType(ElemTy: CGF.SizeTy); |
| 2552 | llvm::Value *elementSize = llvm::ConstantInt::get(Ty: CGF.SizeTy, |
| 2553 | V: getContext().getTypeSizeInChars(T: elementType).getQuantity()); |
| 2554 | CGF.Builder.CreateStore(Val: elementSize, Addr: cookie); |
| 2555 | |
| 2556 | // The second element is the element count. |
| 2557 | cookie = CGF.Builder.CreateConstInBoundsGEP(Addr: cookie, Index: 1); |
| 2558 | CGF.Builder.CreateStore(Val: numElements, Addr: cookie); |
| 2559 | |
| 2560 | // Finally, compute a pointer to the actual data buffer by skipping |
| 2561 | // over the cookie completely. |
| 2562 | CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); |
| 2563 | return CGF.Builder.CreateConstInBoundsByteGEP(Addr: newPtr, Offset: cookieSize); |
| 2564 | } |
| 2565 | |
| 2566 | llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| 2567 | Address allocPtr, |
| 2568 | CharUnits cookieSize) { |
| 2569 | // The number of elements is at offset sizeof(size_t) relative to |
| 2570 | // the allocated pointer. |
| 2571 | Address numElementsPtr |
| 2572 | = CGF.Builder.CreateConstInBoundsByteGEP(Addr: allocPtr, Offset: CGF.getSizeSize()); |
| 2573 | |
| 2574 | numElementsPtr = numElementsPtr.withElementType(ElemTy: CGF.SizeTy); |
| 2575 | return CGF.Builder.CreateLoad(Addr: numElementsPtr); |
| 2576 | } |
| 2577 | |
| 2578 | /*********************** Static local initialization **************************/ |
| 2579 | |
| 2580 | static llvm::FunctionCallee getGuardAcquireFn(CodeGenModule &CGM, |
| 2581 | llvm::PointerType *GuardPtrTy) { |
| 2582 | // int __cxa_guard_acquire(__guard *guard_object); |
| 2583 | llvm::FunctionType *FTy = |
| 2584 | llvm::FunctionType::get(Result: CGM.getTypes().ConvertType(T: CGM.getContext().IntTy), |
| 2585 | Params: GuardPtrTy, /*isVarArg=*/false); |
| 2586 | return CGM.CreateRuntimeFunction( |
| 2587 | Ty: FTy, Name: "__cxa_guard_acquire" , |
| 2588 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2589 | Index: llvm::AttributeList::FunctionIndex, |
| 2590 | Kinds: llvm::Attribute::NoUnwind)); |
| 2591 | } |
| 2592 | |
| 2593 | static llvm::FunctionCallee getGuardReleaseFn(CodeGenModule &CGM, |
| 2594 | llvm::PointerType *GuardPtrTy) { |
| 2595 | // void __cxa_guard_release(__guard *guard_object); |
| 2596 | llvm::FunctionType *FTy = |
| 2597 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: GuardPtrTy, /*isVarArg=*/false); |
| 2598 | return CGM.CreateRuntimeFunction( |
| 2599 | Ty: FTy, Name: "__cxa_guard_release" , |
| 2600 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2601 | Index: llvm::AttributeList::FunctionIndex, |
| 2602 | Kinds: llvm::Attribute::NoUnwind)); |
| 2603 | } |
| 2604 | |
| 2605 | static llvm::FunctionCallee getGuardAbortFn(CodeGenModule &CGM, |
| 2606 | llvm::PointerType *GuardPtrTy) { |
| 2607 | // void __cxa_guard_abort(__guard *guard_object); |
| 2608 | llvm::FunctionType *FTy = |
| 2609 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: GuardPtrTy, /*isVarArg=*/false); |
| 2610 | return CGM.CreateRuntimeFunction( |
| 2611 | Ty: FTy, Name: "__cxa_guard_abort" , |
| 2612 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2613 | Index: llvm::AttributeList::FunctionIndex, |
| 2614 | Kinds: llvm::Attribute::NoUnwind)); |
| 2615 | } |
| 2616 | |
| 2617 | namespace { |
| 2618 | struct CallGuardAbort final : EHScopeStack::Cleanup { |
| 2619 | llvm::GlobalVariable *Guard; |
| 2620 | CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} |
| 2621 | |
| 2622 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2623 | CGF.EmitNounwindRuntimeCall(callee: getGuardAbortFn(CGM&: CGF.CGM, GuardPtrTy: Guard->getType()), |
| 2624 | args: Guard); |
| 2625 | } |
| 2626 | }; |
| 2627 | } |
| 2628 | |
| 2629 | /// The ARM code here follows the Itanium code closely enough that we |
| 2630 | /// just special-case it at particular places. |
| 2631 | void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, |
| 2632 | const VarDecl &D, |
| 2633 | llvm::GlobalVariable *var, |
| 2634 | bool shouldPerformInit) { |
| 2635 | CGBuilderTy &Builder = CGF.Builder; |
| 2636 | |
| 2637 | // Inline variables that weren't instantiated from variable templates have |
| 2638 | // partially-ordered initialization within their translation unit. |
| 2639 | bool NonTemplateInline = |
| 2640 | D.isInline() && |
| 2641 | !isTemplateInstantiation(Kind: D.getTemplateSpecializationKind()); |
| 2642 | |
| 2643 | // We only need to use thread-safe statics for local non-TLS variables and |
| 2644 | // inline variables; other global initialization is always single-threaded |
| 2645 | // or (through lazy dynamic loading in multiple threads) unsequenced. |
| 2646 | bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && |
| 2647 | (D.isLocalVarDecl() || NonTemplateInline) && |
| 2648 | !D.getTLSKind(); |
| 2649 | |
| 2650 | // If we have a global variable with internal linkage and thread-safe statics |
| 2651 | // are disabled, we can just let the guard variable be of type i8. |
| 2652 | bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); |
| 2653 | |
| 2654 | llvm::IntegerType *guardTy; |
| 2655 | CharUnits guardAlignment; |
| 2656 | if (useInt8GuardVariable) { |
| 2657 | guardTy = CGF.Int8Ty; |
| 2658 | guardAlignment = CharUnits::One(); |
| 2659 | } else { |
| 2660 | // Guard variables are 64 bits in the generic ABI and size width on ARM |
| 2661 | // (i.e. 32-bit on AArch32, 64-bit on AArch64). |
| 2662 | if (UseARMGuardVarABI) { |
| 2663 | guardTy = CGF.SizeTy; |
| 2664 | guardAlignment = CGF.getSizeAlign(); |
| 2665 | } else { |
| 2666 | guardTy = CGF.Int64Ty; |
| 2667 | guardAlignment = |
| 2668 | CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getABITypeAlign(Ty: guardTy)); |
| 2669 | } |
| 2670 | } |
| 2671 | llvm::PointerType *guardPtrTy = llvm::PointerType::get( |
| 2672 | C&: CGF.CGM.getLLVMContext(), |
| 2673 | AddressSpace: CGF.CGM.getDataLayout().getDefaultGlobalsAddressSpace()); |
| 2674 | |
| 2675 | // Create the guard variable if we don't already have it (as we |
| 2676 | // might if we're double-emitting this function body). |
| 2677 | llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(D: &D); |
| 2678 | if (!guard) { |
| 2679 | // Mangle the name for the guard. |
| 2680 | SmallString<256> guardName; |
| 2681 | { |
| 2682 | llvm::raw_svector_ostream out(guardName); |
| 2683 | getMangleContext().mangleStaticGuardVariable(D: &D, out); |
| 2684 | } |
| 2685 | |
| 2686 | // Create the guard variable with a zero-initializer. |
| 2687 | // Just absorb linkage, visibility and dll storage class from the guarded |
| 2688 | // variable. |
| 2689 | guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, |
| 2690 | false, var->getLinkage(), |
| 2691 | llvm::ConstantInt::get(Ty: guardTy, V: 0), |
| 2692 | guardName.str()); |
| 2693 | guard->setDSOLocal(var->isDSOLocal()); |
| 2694 | guard->setVisibility(var->getVisibility()); |
| 2695 | guard->setDLLStorageClass(var->getDLLStorageClass()); |
| 2696 | // If the variable is thread-local, so is its guard variable. |
| 2697 | guard->setThreadLocalMode(var->getThreadLocalMode()); |
| 2698 | guard->setAlignment(guardAlignment.getAsAlign()); |
| 2699 | |
| 2700 | // The ABI says: "It is suggested that it be emitted in the same COMDAT |
| 2701 | // group as the associated data object." In practice, this doesn't work for |
| 2702 | // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. |
| 2703 | llvm::Comdat *C = var->getComdat(); |
| 2704 | if (!D.isLocalVarDecl() && C && |
| 2705 | (CGM.getTarget().getTriple().isOSBinFormatELF() || |
| 2706 | CGM.getTarget().getTriple().isOSBinFormatWasm())) { |
| 2707 | guard->setComdat(C); |
| 2708 | } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { |
| 2709 | guard->setComdat(CGM.getModule().getOrInsertComdat(Name: guard->getName())); |
| 2710 | } |
| 2711 | |
| 2712 | CGM.setStaticLocalDeclGuardAddress(D: &D, C: guard); |
| 2713 | } |
| 2714 | |
| 2715 | Address guardAddr = Address(guard, guard->getValueType(), guardAlignment); |
| 2716 | |
| 2717 | // Test whether the variable has completed initialization. |
| 2718 | // |
| 2719 | // Itanium C++ ABI 3.3.2: |
| 2720 | // The following is pseudo-code showing how these functions can be used: |
| 2721 | // if (obj_guard.first_byte == 0) { |
| 2722 | // if ( __cxa_guard_acquire (&obj_guard) ) { |
| 2723 | // try { |
| 2724 | // ... initialize the object ...; |
| 2725 | // } catch (...) { |
| 2726 | // __cxa_guard_abort (&obj_guard); |
| 2727 | // throw; |
| 2728 | // } |
| 2729 | // ... queue object destructor with __cxa_atexit() ...; |
| 2730 | // __cxa_guard_release (&obj_guard); |
| 2731 | // } |
| 2732 | // } |
| 2733 | // |
| 2734 | // If threadsafe statics are enabled, but we don't have inline atomics, just |
| 2735 | // call __cxa_guard_acquire unconditionally. The "inline" check isn't |
| 2736 | // actually inline, and the user might not expect calls to __atomic libcalls. |
| 2737 | |
| 2738 | unsigned MaxInlineWidthInBits = CGF.getTarget().getMaxAtomicInlineWidth(); |
| 2739 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
| 2740 | if (!threadsafe || MaxInlineWidthInBits) { |
| 2741 | // Load the first byte of the guard variable. |
| 2742 | llvm::LoadInst *LI = |
| 2743 | Builder.CreateLoad(Addr: guardAddr.withElementType(ElemTy: CGM.Int8Ty)); |
| 2744 | |
| 2745 | // Itanium ABI: |
| 2746 | // An implementation supporting thread-safety on multiprocessor |
| 2747 | // systems must also guarantee that references to the initialized |
| 2748 | // object do not occur before the load of the initialization flag. |
| 2749 | // |
| 2750 | // In LLVM, we do this by marking the load Acquire. |
| 2751 | if (threadsafe) |
| 2752 | LI->setAtomic(Ordering: llvm::AtomicOrdering::Acquire); |
| 2753 | |
| 2754 | // For ARM, we should only check the first bit, rather than the entire byte: |
| 2755 | // |
| 2756 | // ARM C++ ABI 3.2.3.1: |
| 2757 | // To support the potential use of initialization guard variables |
| 2758 | // as semaphores that are the target of ARM SWP and LDREX/STREX |
| 2759 | // synchronizing instructions we define a static initialization |
| 2760 | // guard variable to be a 4-byte aligned, 4-byte word with the |
| 2761 | // following inline access protocol. |
| 2762 | // #define INITIALIZED 1 |
| 2763 | // if ((obj_guard & INITIALIZED) != INITIALIZED) { |
| 2764 | // if (__cxa_guard_acquire(&obj_guard)) |
| 2765 | // ... |
| 2766 | // } |
| 2767 | // |
| 2768 | // and similarly for ARM64: |
| 2769 | // |
| 2770 | // ARM64 C++ ABI 3.2.2: |
| 2771 | // This ABI instead only specifies the value bit 0 of the static guard |
| 2772 | // variable; all other bits are platform defined. Bit 0 shall be 0 when the |
| 2773 | // variable is not initialized and 1 when it is. |
| 2774 | llvm::Value *V = |
| 2775 | (UseARMGuardVarABI && !useInt8GuardVariable) |
| 2776 | ? Builder.CreateAnd(LHS: LI, RHS: llvm::ConstantInt::get(Ty: CGM.Int8Ty, V: 1)) |
| 2777 | : LI; |
| 2778 | llvm::Value *NeedsInit = Builder.CreateIsNull(Arg: V, Name: "guard.uninitialized" ); |
| 2779 | |
| 2780 | llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock(name: "init.check" ); |
| 2781 | |
| 2782 | // Check if the first byte of the guard variable is zero. |
| 2783 | CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock: InitCheckBlock, NoInitBlock: EndBlock, |
| 2784 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
| 2785 | |
| 2786 | CGF.EmitBlock(BB: InitCheckBlock); |
| 2787 | } |
| 2788 | |
| 2789 | // The semantics of dynamic initialization of variables with static or thread |
| 2790 | // storage duration depends on whether they are declared at block-scope. The |
| 2791 | // initialization of such variables at block-scope can be aborted with an |
| 2792 | // exception and later retried (per C++20 [stmt.dcl]p4), and recursive entry |
| 2793 | // to their initialization has undefined behavior (also per C++20 |
| 2794 | // [stmt.dcl]p4). For such variables declared at non-block scope, exceptions |
| 2795 | // lead to termination (per C++20 [except.terminate]p1), and recursive |
| 2796 | // references to the variables are governed only by the lifetime rules (per |
| 2797 | // C++20 [class.cdtor]p2), which means such references are perfectly fine as |
| 2798 | // long as they avoid touching memory. As a result, block-scope variables must |
| 2799 | // not be marked as initialized until after initialization completes (unless |
| 2800 | // the mark is reverted following an exception), but non-block-scope variables |
| 2801 | // must be marked prior to initialization so that recursive accesses during |
| 2802 | // initialization do not restart initialization. |
| 2803 | |
| 2804 | // Variables used when coping with thread-safe statics and exceptions. |
| 2805 | if (threadsafe) { |
| 2806 | // Call __cxa_guard_acquire. |
| 2807 | llvm::Value *V |
| 2808 | = CGF.EmitNounwindRuntimeCall(callee: getGuardAcquireFn(CGM, GuardPtrTy: guardPtrTy), args: guard); |
| 2809 | |
| 2810 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
| 2811 | |
| 2812 | Builder.CreateCondBr(Cond: Builder.CreateIsNotNull(Arg: V, Name: "tobool" ), |
| 2813 | True: InitBlock, False: EndBlock); |
| 2814 | |
| 2815 | // Call __cxa_guard_abort along the exceptional edge. |
| 2816 | CGF.EHStack.pushCleanup<CallGuardAbort>(Kind: EHCleanup, A: guard); |
| 2817 | |
| 2818 | CGF.EmitBlock(BB: InitBlock); |
| 2819 | } else if (!D.isLocalVarDecl()) { |
| 2820 | // For non-local variables, store 1 into the first byte of the guard |
| 2821 | // variable before the object initialization begins so that references |
| 2822 | // to the variable during initialization don't restart initialization. |
| 2823 | Builder.CreateStore(Val: llvm::ConstantInt::get(Ty: CGM.Int8Ty, V: 1), |
| 2824 | Addr: guardAddr.withElementType(ElemTy: CGM.Int8Ty)); |
| 2825 | } |
| 2826 | |
| 2827 | // Emit the initializer and add a global destructor if appropriate. |
| 2828 | CGF.EmitCXXGlobalVarDeclInit(D, GV: var, PerformInit: shouldPerformInit); |
| 2829 | |
| 2830 | if (threadsafe) { |
| 2831 | // Pop the guard-abort cleanup if we pushed one. |
| 2832 | CGF.PopCleanupBlock(); |
| 2833 | |
| 2834 | // Call __cxa_guard_release. This cannot throw. |
| 2835 | CGF.EmitNounwindRuntimeCall(callee: getGuardReleaseFn(CGM, GuardPtrTy: guardPtrTy), |
| 2836 | args: guardAddr.emitRawPointer(CGF)); |
| 2837 | } else if (D.isLocalVarDecl()) { |
| 2838 | // For local variables, store 1 into the first byte of the guard variable |
| 2839 | // after the object initialization completes so that initialization is |
| 2840 | // retried if initialization is interrupted by an exception. |
| 2841 | Builder.CreateStore(Val: llvm::ConstantInt::get(Ty: CGM.Int8Ty, V: 1), |
| 2842 | Addr: guardAddr.withElementType(ElemTy: CGM.Int8Ty)); |
| 2843 | } |
| 2844 | |
| 2845 | CGF.EmitBlock(BB: EndBlock); |
| 2846 | } |
| 2847 | |
| 2848 | /// Register a global destructor using __cxa_atexit. |
| 2849 | static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, |
| 2850 | llvm::FunctionCallee dtor, |
| 2851 | llvm::Constant *addr, bool TLS) { |
| 2852 | assert(!CGF.getTarget().getTriple().isOSAIX() && |
| 2853 | "unexpected call to emitGlobalDtorWithCXAAtExit" ); |
| 2854 | assert((TLS || CGF.getTypes().getCodeGenOpts().CXAAtExit) && |
| 2855 | "__cxa_atexit is disabled" ); |
| 2856 | const char *Name = "__cxa_atexit" ; |
| 2857 | if (TLS) { |
| 2858 | const llvm::Triple &T = CGF.getTarget().getTriple(); |
| 2859 | Name = T.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit" ; |
| 2860 | } |
| 2861 | |
| 2862 | // We're assuming that the destructor function is something we can |
| 2863 | // reasonably call with the default CC. |
| 2864 | llvm::Type *dtorTy = CGF.UnqualPtrTy; |
| 2865 | |
| 2866 | // Preserve address space of addr. |
| 2867 | auto AddrAS = addr ? addr->getType()->getPointerAddressSpace() : 0; |
| 2868 | auto AddrPtrTy = AddrAS ? llvm::PointerType::get(C&: CGF.getLLVMContext(), AddressSpace: AddrAS) |
| 2869 | : CGF.Int8PtrTy; |
| 2870 | |
| 2871 | // Create a variable that binds the atexit to this shared object. |
| 2872 | llvm::Constant *handle = |
| 2873 | CGF.CGM.CreateRuntimeVariable(Ty: CGF.Int8Ty, Name: "__dso_handle" ); |
| 2874 | auto *GV = cast<llvm::GlobalValue>(Val: handle->stripPointerCasts()); |
| 2875 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 2876 | |
| 2877 | // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); |
| 2878 | llvm::Type *paramTys[] = {dtorTy, AddrPtrTy, handle->getType()}; |
| 2879 | llvm::FunctionType *atexitTy = |
| 2880 | llvm::FunctionType::get(Result: CGF.IntTy, Params: paramTys, isVarArg: false); |
| 2881 | |
| 2882 | // Fetch the actual function. |
| 2883 | llvm::FunctionCallee atexit = CGF.CGM.CreateRuntimeFunction(Ty: atexitTy, Name); |
| 2884 | if (llvm::Function *fn = dyn_cast<llvm::Function>(Val: atexit.getCallee())) |
| 2885 | fn->setDoesNotThrow(); |
| 2886 | |
| 2887 | const auto &Context = CGF.CGM.getContext(); |
| 2888 | FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( |
| 2889 | /*IsVariadic=*/false, /*IsCXXMethod=*/false)); |
| 2890 | QualType fnType = |
| 2891 | Context.getFunctionType(ResultTy: Context.VoidTy, Args: {Context.VoidPtrTy}, EPI); |
| 2892 | llvm::Constant *dtorCallee = cast<llvm::Constant>(Val: dtor.getCallee()); |
| 2893 | dtorCallee = CGF.CGM.getFunctionPointer(Pointer: dtorCallee, FunctionType: fnType); |
| 2894 | |
| 2895 | if (!addr) |
| 2896 | // addr is null when we are trying to register a dtor annotated with |
| 2897 | // __attribute__((destructor)) in a constructor function. Using null here is |
| 2898 | // okay because this argument is just passed back to the destructor |
| 2899 | // function. |
| 2900 | addr = llvm::Constant::getNullValue(Ty: CGF.Int8PtrTy); |
| 2901 | |
| 2902 | llvm::Value *args[] = {dtorCallee, addr, handle}; |
| 2903 | CGF.EmitNounwindRuntimeCall(callee: atexit, args); |
| 2904 | } |
| 2905 | |
| 2906 | static llvm::Function *createGlobalInitOrCleanupFn(CodeGen::CodeGenModule &CGM, |
| 2907 | StringRef FnName) { |
| 2908 | // Create a function that registers/unregisters destructors that have the same |
| 2909 | // priority. |
| 2910 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false); |
| 2911 | llvm::Function *GlobalInitOrCleanupFn = CGM.CreateGlobalInitOrCleanUpFunction( |
| 2912 | ty: FTy, name: FnName, FI: CGM.getTypes().arrangeNullaryFunction(), Loc: SourceLocation()); |
| 2913 | |
| 2914 | return GlobalInitOrCleanupFn; |
| 2915 | } |
| 2916 | |
| 2917 | void CodeGenModule::unregisterGlobalDtorsWithUnAtExit() { |
| 2918 | for (const auto &I : DtorsUsingAtExit) { |
| 2919 | int Priority = I.first; |
| 2920 | std::string GlobalCleanupFnName = |
| 2921 | std::string("__GLOBAL_cleanup_" ) + llvm::to_string(Value: Priority); |
| 2922 | |
| 2923 | llvm::Function *GlobalCleanupFn = |
| 2924 | createGlobalInitOrCleanupFn(CGM&: *this, FnName: GlobalCleanupFnName); |
| 2925 | |
| 2926 | CodeGenFunction CGF(*this); |
| 2927 | CGF.StartFunction(GD: GlobalDecl(), RetTy: getContext().VoidTy, Fn: GlobalCleanupFn, |
| 2928 | FnInfo: getTypes().arrangeNullaryFunction(), Args: FunctionArgList(), |
| 2929 | Loc: SourceLocation(), StartLoc: SourceLocation()); |
| 2930 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
| 2931 | |
| 2932 | // Get the destructor function type, void(*)(void). |
| 2933 | llvm::FunctionType *dtorFuncTy = llvm::FunctionType::get(Result: CGF.VoidTy, isVarArg: false); |
| 2934 | |
| 2935 | // Destructor functions are run/unregistered in non-ascending |
| 2936 | // order of their priorities. |
| 2937 | const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
| 2938 | auto itv = Dtors.rbegin(); |
| 2939 | while (itv != Dtors.rend()) { |
| 2940 | llvm::Function *Dtor = *itv; |
| 2941 | |
| 2942 | // We're assuming that the destructor function is something we can |
| 2943 | // reasonably call with the correct CC. |
| 2944 | llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(dtorStub: Dtor); |
| 2945 | llvm::Value *NeedsDestruct = |
| 2946 | CGF.Builder.CreateIsNull(Arg: V, Name: "needs_destruct" ); |
| 2947 | |
| 2948 | llvm::BasicBlock *DestructCallBlock = |
| 2949 | CGF.createBasicBlock(name: "destruct.call" ); |
| 2950 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock( |
| 2951 | name: (itv + 1) != Dtors.rend() ? "unatexit.call" : "destruct.end" ); |
| 2952 | // Check if unatexit returns a value of 0. If it does, jump to |
| 2953 | // DestructCallBlock, otherwise jump to EndBlock directly. |
| 2954 | CGF.Builder.CreateCondBr(Cond: NeedsDestruct, True: DestructCallBlock, False: EndBlock); |
| 2955 | |
| 2956 | CGF.EmitBlock(BB: DestructCallBlock); |
| 2957 | |
| 2958 | // Emit the call to casted Dtor. |
| 2959 | llvm::CallInst *CI = CGF.Builder.CreateCall(FTy: dtorFuncTy, Callee: Dtor); |
| 2960 | // Make sure the call and the callee agree on calling convention. |
| 2961 | CI->setCallingConv(Dtor->getCallingConv()); |
| 2962 | |
| 2963 | CGF.EmitBlock(BB: EndBlock); |
| 2964 | |
| 2965 | itv++; |
| 2966 | } |
| 2967 | |
| 2968 | CGF.FinishFunction(); |
| 2969 | AddGlobalDtor(Dtor: GlobalCleanupFn, Priority); |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | void CodeGenModule::registerGlobalDtorsWithAtExit() { |
| 2974 | for (const auto &I : DtorsUsingAtExit) { |
| 2975 | int Priority = I.first; |
| 2976 | std::string GlobalInitFnName = |
| 2977 | std::string("__GLOBAL_init_" ) + llvm::to_string(Value: Priority); |
| 2978 | llvm::Function *GlobalInitFn = |
| 2979 | createGlobalInitOrCleanupFn(CGM&: *this, FnName: GlobalInitFnName); |
| 2980 | |
| 2981 | CodeGenFunction CGF(*this); |
| 2982 | CGF.StartFunction(GD: GlobalDecl(), RetTy: getContext().VoidTy, Fn: GlobalInitFn, |
| 2983 | FnInfo: getTypes().arrangeNullaryFunction(), Args: FunctionArgList(), |
| 2984 | Loc: SourceLocation(), StartLoc: SourceLocation()); |
| 2985 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
| 2986 | |
| 2987 | // Since constructor functions are run in non-descending order of their |
| 2988 | // priorities, destructors are registered in non-descending order of their |
| 2989 | // priorities, and since destructor functions are run in the reverse order |
| 2990 | // of their registration, destructor functions are run in non-ascending |
| 2991 | // order of their priorities. |
| 2992 | const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
| 2993 | for (auto *Dtor : Dtors) { |
| 2994 | // Register the destructor function calling __cxa_atexit if it is |
| 2995 | // available. Otherwise fall back on calling atexit. |
| 2996 | if (getCodeGenOpts().CXAAtExit) { |
| 2997 | emitGlobalDtorWithCXAAtExit(CGF, dtor: Dtor, addr: nullptr, TLS: false); |
| 2998 | } else { |
| 2999 | // We're assuming that the destructor function is something we can |
| 3000 | // reasonably call with the correct CC. |
| 3001 | CGF.registerGlobalDtorWithAtExit(dtorStub: Dtor); |
| 3002 | } |
| 3003 | } |
| 3004 | |
| 3005 | CGF.FinishFunction(); |
| 3006 | AddGlobalCtor(Ctor: GlobalInitFn, Priority); |
| 3007 | } |
| 3008 | |
| 3009 | if (getCXXABI().useSinitAndSterm()) |
| 3010 | unregisterGlobalDtorsWithUnAtExit(); |
| 3011 | } |
| 3012 | |
| 3013 | /// Register a global destructor as best as we know how. |
| 3014 | void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 3015 | llvm::FunctionCallee dtor, |
| 3016 | llvm::Constant *addr) { |
| 3017 | if (D.isNoDestroy(CGM.getContext())) |
| 3018 | return; |
| 3019 | |
| 3020 | // HLSL doesn't support atexit. |
| 3021 | if (CGM.getLangOpts().HLSL) |
| 3022 | return CGM.AddCXXDtorEntry(DtorFn: dtor, Object: addr); |
| 3023 | |
| 3024 | // OpenMP offloading supports C++ constructors and destructors but we do not |
| 3025 | // always have 'atexit' available. Instead lower these to use the LLVM global |
| 3026 | // destructors which we can handle directly in the runtime. Note that this is |
| 3027 | // not strictly 1-to-1 with using `atexit` because we no longer tear down |
| 3028 | // globals in reverse order of when they were constructed. |
| 3029 | if (!CGM.getLangOpts().hasAtExit() && !D.isStaticLocal()) |
| 3030 | return CGF.registerGlobalDtorWithLLVM(D, fn: dtor, addr); |
| 3031 | |
| 3032 | // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit |
| 3033 | // or __cxa_atexit depending on whether this VarDecl is a thread-local storage |
| 3034 | // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled. |
| 3035 | // We can always use __cxa_thread_atexit. |
| 3036 | if (CGM.getCodeGenOpts().CXAAtExit || D.getTLSKind()) |
| 3037 | return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, TLS: D.getTLSKind()); |
| 3038 | |
| 3039 | // In Apple kexts, we want to add a global destructor entry. |
| 3040 | // FIXME: shouldn't this be guarded by some variable? |
| 3041 | if (CGM.getLangOpts().AppleKext) { |
| 3042 | // Generate a global destructor entry. |
| 3043 | return CGM.AddCXXDtorEntry(DtorFn: dtor, Object: addr); |
| 3044 | } |
| 3045 | |
| 3046 | CGF.registerGlobalDtorWithAtExit(D, fn: dtor, addr); |
| 3047 | } |
| 3048 | |
| 3049 | static bool isThreadWrapperReplaceable(const VarDecl *VD, |
| 3050 | CodeGen::CodeGenModule &CGM) { |
| 3051 | assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!" ); |
| 3052 | // Darwin prefers to have references to thread local variables to go through |
| 3053 | // the thread wrapper instead of directly referencing the backing variable. |
| 3054 | return VD->getTLSKind() == VarDecl::TLS_Dynamic && |
| 3055 | CGM.getTarget().getTriple().isOSDarwin(); |
| 3056 | } |
| 3057 | |
| 3058 | /// Get the appropriate linkage for the wrapper function. This is essentially |
| 3059 | /// the weak form of the variable's linkage; every translation unit which needs |
| 3060 | /// the wrapper emits a copy, and we want the linker to merge them. |
| 3061 | static llvm::GlobalValue::LinkageTypes |
| 3062 | getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { |
| 3063 | llvm::GlobalValue::LinkageTypes VarLinkage = |
| 3064 | CGM.getLLVMLinkageVarDefinition(VD); |
| 3065 | |
| 3066 | // For internal linkage variables, we don't need an external or weak wrapper. |
| 3067 | if (llvm::GlobalValue::isLocalLinkage(Linkage: VarLinkage)) |
| 3068 | return VarLinkage; |
| 3069 | |
| 3070 | // If the thread wrapper is replaceable, give it appropriate linkage. |
| 3071 | if (isThreadWrapperReplaceable(VD, CGM)) |
| 3072 | if (!llvm::GlobalVariable::isLinkOnceLinkage(Linkage: VarLinkage) && |
| 3073 | !llvm::GlobalVariable::isWeakODRLinkage(Linkage: VarLinkage)) |
| 3074 | return VarLinkage; |
| 3075 | return llvm::GlobalValue::WeakODRLinkage; |
| 3076 | } |
| 3077 | |
| 3078 | llvm::Function * |
| 3079 | ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| 3080 | llvm::Value *Val) { |
| 3081 | // Mangle the name for the thread_local wrapper function. |
| 3082 | SmallString<256> WrapperName; |
| 3083 | { |
| 3084 | llvm::raw_svector_ostream Out(WrapperName); |
| 3085 | getMangleContext().mangleItaniumThreadLocalWrapper(D: VD, Out); |
| 3086 | } |
| 3087 | |
| 3088 | // FIXME: If VD is a definition, we should regenerate the function attributes |
| 3089 | // before returning. |
| 3090 | if (llvm::Value *V = CGM.getModule().getNamedValue(Name: WrapperName)) |
| 3091 | return cast<llvm::Function>(Val: V); |
| 3092 | |
| 3093 | QualType RetQT = VD->getType(); |
| 3094 | if (RetQT->isReferenceType()) |
| 3095 | RetQT = RetQT.getNonReferenceType(); |
| 3096 | |
| 3097 | const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| 3098 | resultType: getContext().getPointerType(T: RetQT), args: FunctionArgList()); |
| 3099 | |
| 3100 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(Info: FI); |
| 3101 | llvm::Function *Wrapper = |
| 3102 | llvm::Function::Create(Ty: FnTy, Linkage: getThreadLocalWrapperLinkage(VD, CGM), |
| 3103 | N: WrapperName.str(), M: &CGM.getModule()); |
| 3104 | |
| 3105 | if (CGM.supportsCOMDAT() && Wrapper->isWeakForLinker()) |
| 3106 | Wrapper->setComdat(CGM.getModule().getOrInsertComdat(Name: Wrapper->getName())); |
| 3107 | |
| 3108 | CGM.SetLLVMFunctionAttributes(GD: GlobalDecl(), Info: FI, F: Wrapper, /*IsThunk=*/false); |
| 3109 | |
| 3110 | // Always resolve references to the wrapper at link time. |
| 3111 | if (!Wrapper->hasLocalLinkage()) |
| 3112 | if (!isThreadWrapperReplaceable(VD, CGM) || |
| 3113 | llvm::GlobalVariable::isLinkOnceLinkage(Linkage: Wrapper->getLinkage()) || |
| 3114 | llvm::GlobalVariable::isWeakODRLinkage(Linkage: Wrapper->getLinkage()) || |
| 3115 | VD->getVisibility() == HiddenVisibility) |
| 3116 | Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 3117 | |
| 3118 | if (isThreadWrapperReplaceable(VD, CGM)) { |
| 3119 | Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| 3120 | Wrapper->addFnAttr(Kind: llvm::Attribute::NoUnwind); |
| 3121 | } |
| 3122 | |
| 3123 | ThreadWrappers.push_back(Elt: {VD, Wrapper}); |
| 3124 | return Wrapper; |
| 3125 | } |
| 3126 | |
| 3127 | void ItaniumCXXABI::EmitThreadLocalInitFuncs( |
| 3128 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
| 3129 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| 3130 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
| 3131 | llvm::Function *InitFunc = nullptr; |
| 3132 | |
| 3133 | // Separate initializers into those with ordered (or partially-ordered) |
| 3134 | // initialization and those with unordered initialization. |
| 3135 | llvm::SmallVector<llvm::Function *, 8> OrderedInits; |
| 3136 | llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits; |
| 3137 | for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { |
| 3138 | if (isTemplateInstantiation( |
| 3139 | Kind: CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) |
| 3140 | UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = |
| 3141 | CXXThreadLocalInits[I]; |
| 3142 | else |
| 3143 | OrderedInits.push_back(Elt: CXXThreadLocalInits[I]); |
| 3144 | } |
| 3145 | |
| 3146 | if (!OrderedInits.empty()) { |
| 3147 | // Generate a guarded initialization function. |
| 3148 | llvm::FunctionType *FTy = |
| 3149 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 3150 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| 3151 | InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(ty: FTy, name: "__tls_init" , FI, |
| 3152 | Loc: SourceLocation(), |
| 3153 | /*TLS=*/true); |
| 3154 | llvm::GlobalVariable *Guard = new llvm::GlobalVariable( |
| 3155 | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, |
| 3156 | llvm::GlobalVariable::InternalLinkage, |
| 3157 | llvm::ConstantInt::get(Ty: CGM.Int8Ty, V: 0), "__tls_guard" ); |
| 3158 | Guard->setThreadLocal(true); |
| 3159 | Guard->setThreadLocalMode(CGM.GetDefaultLLVMTLSModel()); |
| 3160 | |
| 3161 | CharUnits GuardAlign = CharUnits::One(); |
| 3162 | Guard->setAlignment(GuardAlign.getAsAlign()); |
| 3163 | |
| 3164 | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc( |
| 3165 | Fn: InitFunc, CXXThreadLocals: OrderedInits, Guard: ConstantAddress(Guard, CGM.Int8Ty, GuardAlign)); |
| 3166 | // On Darwin platforms, use CXX_FAST_TLS calling convention. |
| 3167 | if (CGM.getTarget().getTriple().isOSDarwin()) { |
| 3168 | InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| 3169 | InitFunc->addFnAttr(Kind: llvm::Attribute::NoUnwind); |
| 3170 | } |
| 3171 | } |
| 3172 | |
| 3173 | // Create declarations for thread wrappers for all thread-local variables |
| 3174 | // with non-discardable definitions in this translation unit. |
| 3175 | for (const VarDecl *VD : CXXThreadLocals) { |
| 3176 | if (VD->hasDefinition() && |
| 3177 | !isDiscardableGVALinkage(L: getContext().GetGVALinkageForVariable(VD))) { |
| 3178 | llvm::GlobalValue *GV = CGM.GetGlobalValue(Ref: CGM.getMangledName(GD: VD)); |
| 3179 | getOrCreateThreadLocalWrapper(VD, Val: GV); |
| 3180 | } |
| 3181 | } |
| 3182 | |
| 3183 | // Emit all referenced thread wrappers. |
| 3184 | for (auto VDAndWrapper : ThreadWrappers) { |
| 3185 | const VarDecl *VD = VDAndWrapper.first; |
| 3186 | llvm::GlobalVariable *Var = |
| 3187 | cast<llvm::GlobalVariable>(Val: CGM.GetGlobalValue(Ref: CGM.getMangledName(GD: VD))); |
| 3188 | llvm::Function *Wrapper = VDAndWrapper.second; |
| 3189 | |
| 3190 | // Some targets require that all access to thread local variables go through |
| 3191 | // the thread wrapper. This means that we cannot attempt to create a thread |
| 3192 | // wrapper or a thread helper. |
| 3193 | if (!VD->hasDefinition()) { |
| 3194 | if (isThreadWrapperReplaceable(VD, CGM)) { |
| 3195 | Wrapper->setLinkage(llvm::Function::ExternalLinkage); |
| 3196 | continue; |
| 3197 | } |
| 3198 | |
| 3199 | // If this isn't a TU in which this variable is defined, the thread |
| 3200 | // wrapper is discardable. |
| 3201 | if (Wrapper->getLinkage() == llvm::Function::WeakODRLinkage) |
| 3202 | Wrapper->setLinkage(llvm::Function::LinkOnceODRLinkage); |
| 3203 | } |
| 3204 | |
| 3205 | CGM.SetLLVMFunctionAttributesForDefinition(D: nullptr, F: Wrapper); |
| 3206 | |
| 3207 | // Mangle the name for the thread_local initialization function. |
| 3208 | SmallString<256> InitFnName; |
| 3209 | { |
| 3210 | llvm::raw_svector_ostream Out(InitFnName); |
| 3211 | getMangleContext().mangleItaniumThreadLocalInit(D: VD, Out); |
| 3212 | } |
| 3213 | |
| 3214 | llvm::FunctionType *InitFnTy = llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false); |
| 3215 | |
| 3216 | // If we have a definition for the variable, emit the initialization |
| 3217 | // function as an alias to the global Init function (if any). Otherwise, |
| 3218 | // produce a declaration of the initialization function. |
| 3219 | llvm::GlobalValue *Init = nullptr; |
| 3220 | bool InitIsInitFunc = false; |
| 3221 | bool HasConstantInitialization = false; |
| 3222 | if (!usesThreadWrapperFunction(VD)) { |
| 3223 | HasConstantInitialization = true; |
| 3224 | } else if (VD->hasDefinition()) { |
| 3225 | InitIsInitFunc = true; |
| 3226 | llvm::Function *InitFuncToUse = InitFunc; |
| 3227 | if (isTemplateInstantiation(Kind: VD->getTemplateSpecializationKind())) |
| 3228 | InitFuncToUse = UnorderedInits.lookup(Val: VD->getCanonicalDecl()); |
| 3229 | if (InitFuncToUse) |
| 3230 | Init = llvm::GlobalAlias::create(Linkage: Var->getLinkage(), Name: InitFnName.str(), |
| 3231 | Aliasee: InitFuncToUse); |
| 3232 | } else { |
| 3233 | // Emit a weak global function referring to the initialization function. |
| 3234 | // This function will not exist if the TU defining the thread_local |
| 3235 | // variable in question does not need any dynamic initialization for |
| 3236 | // its thread_local variables. |
| 3237 | Init = llvm::Function::Create(Ty: InitFnTy, |
| 3238 | Linkage: llvm::GlobalVariable::ExternalWeakLinkage, |
| 3239 | N: InitFnName.str(), M: &CGM.getModule()); |
| 3240 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| 3241 | CGM.SetLLVMFunctionAttributes( |
| 3242 | GD: GlobalDecl(), Info: FI, F: cast<llvm::Function>(Val: Init), /*IsThunk=*/false); |
| 3243 | } |
| 3244 | |
| 3245 | if (Init) { |
| 3246 | Init->setVisibility(Var->getVisibility()); |
| 3247 | // Don't mark an extern_weak function DSO local on windows. |
| 3248 | if (!CGM.getTriple().isOSWindows() || !Init->hasExternalWeakLinkage()) |
| 3249 | Init->setDSOLocal(Var->isDSOLocal()); |
| 3250 | } |
| 3251 | |
| 3252 | llvm::LLVMContext &Context = CGM.getModule().getContext(); |
| 3253 | |
| 3254 | // The linker on AIX is not happy with missing weak symbols. However, |
| 3255 | // other TUs will not know whether the initialization routine exists |
| 3256 | // so create an empty, init function to satisfy the linker. |
| 3257 | // This is needed whenever a thread wrapper function is not used, and |
| 3258 | // also when the symbol is weak. |
| 3259 | if (CGM.getTriple().isOSAIX() && VD->hasDefinition() && |
| 3260 | isEmittedWithConstantInitializer(VD, InspectInitForWeakDef: true) && |
| 3261 | !mayNeedDestruction(VD)) { |
| 3262 | // Init should be null. If it were non-null, then the logic above would |
| 3263 | // either be defining the function to be an alias or declaring the |
| 3264 | // function with the expectation that the definition of the variable |
| 3265 | // is elsewhere. |
| 3266 | assert(Init == nullptr && "Expected Init to be null." ); |
| 3267 | |
| 3268 | llvm::Function *Func = llvm::Function::Create( |
| 3269 | Ty: InitFnTy, Linkage: Var->getLinkage(), N: InitFnName.str(), M: &CGM.getModule()); |
| 3270 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| 3271 | CGM.SetLLVMFunctionAttributes(GD: GlobalDecl(), Info: FI, |
| 3272 | F: cast<llvm::Function>(Val: Func), |
| 3273 | /*IsThunk=*/false); |
| 3274 | // Create a function body that just returns |
| 3275 | llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, Name: "" , Parent: Func); |
| 3276 | CGBuilderTy Builder(CGM, Entry); |
| 3277 | Builder.CreateRetVoid(); |
| 3278 | } |
| 3279 | |
| 3280 | llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, Name: "" , Parent: Wrapper); |
| 3281 | CGBuilderTy Builder(CGM, Entry); |
| 3282 | if (HasConstantInitialization) { |
| 3283 | // No dynamic initialization to invoke. |
| 3284 | } else if (InitIsInitFunc) { |
| 3285 | if (Init) { |
| 3286 | llvm::CallInst *CallVal = Builder.CreateCall(FTy: InitFnTy, Callee: Init); |
| 3287 | if (isThreadWrapperReplaceable(VD, CGM)) { |
| 3288 | CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| 3289 | llvm::Function *Fn = |
| 3290 | cast<llvm::Function>(Val: cast<llvm::GlobalAlias>(Val: Init)->getAliasee()); |
| 3291 | Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| 3292 | } |
| 3293 | } |
| 3294 | } else if (CGM.getTriple().isOSAIX()) { |
| 3295 | // On AIX, except if constinit and also neither of class type or of |
| 3296 | // (possibly multi-dimensional) array of class type, thread_local vars |
| 3297 | // will have init routines regardless of whether they are |
| 3298 | // const-initialized. Since the routine is guaranteed to exist, we can |
| 3299 | // unconditionally call it without testing for its existance. This |
| 3300 | // avoids potentially unresolved weak symbols which the AIX linker |
| 3301 | // isn't happy with. |
| 3302 | Builder.CreateCall(FTy: InitFnTy, Callee: Init); |
| 3303 | } else { |
| 3304 | // Don't know whether we have an init function. Call it if it exists. |
| 3305 | llvm::Value *Have = Builder.CreateIsNotNull(Arg: Init); |
| 3306 | llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, Name: "" , Parent: Wrapper); |
| 3307 | llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, Name: "" , Parent: Wrapper); |
| 3308 | Builder.CreateCondBr(Cond: Have, True: InitBB, False: ExitBB); |
| 3309 | |
| 3310 | Builder.SetInsertPoint(InitBB); |
| 3311 | Builder.CreateCall(FTy: InitFnTy, Callee: Init); |
| 3312 | Builder.CreateBr(Dest: ExitBB); |
| 3313 | |
| 3314 | Builder.SetInsertPoint(ExitBB); |
| 3315 | } |
| 3316 | |
| 3317 | // For a reference, the result of the wrapper function is a pointer to |
| 3318 | // the referenced object. |
| 3319 | llvm::Value *Val = Builder.CreateThreadLocalAddress(Ptr: Var); |
| 3320 | |
| 3321 | if (VD->getType()->isReferenceType()) { |
| 3322 | CharUnits Align = CGM.getContext().getDeclAlign(D: VD); |
| 3323 | Val = Builder.CreateAlignedLoad(Ty: Var->getValueType(), Addr: Val, Align); |
| 3324 | } |
| 3325 | Val = Builder.CreateAddrSpaceCast(V: Val, DestTy: Wrapper->getReturnType()); |
| 3326 | |
| 3327 | Builder.CreateRet(V: Val); |
| 3328 | } |
| 3329 | } |
| 3330 | |
| 3331 | LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
| 3332 | const VarDecl *VD, |
| 3333 | QualType LValType) { |
| 3334 | llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(D: VD); |
| 3335 | llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); |
| 3336 | |
| 3337 | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Callee: Wrapper); |
| 3338 | CallVal->setCallingConv(Wrapper->getCallingConv()); |
| 3339 | |
| 3340 | LValue LV; |
| 3341 | if (VD->getType()->isReferenceType()) |
| 3342 | LV = CGF.MakeNaturalAlignRawAddrLValue(V: CallVal, T: LValType); |
| 3343 | else |
| 3344 | LV = CGF.MakeRawAddrLValue(V: CallVal, T: LValType, |
| 3345 | Alignment: CGF.getContext().getDeclAlign(D: VD)); |
| 3346 | // FIXME: need setObjCGCLValueClass? |
| 3347 | return LV; |
| 3348 | } |
| 3349 | |
| 3350 | /// Return whether the given global decl needs a VTT parameter, which it does |
| 3351 | /// if it's a base constructor or destructor with virtual bases. |
| 3352 | bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { |
| 3353 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 3354 | |
| 3355 | // We don't have any virtual bases, just return early. |
| 3356 | if (!MD->getParent()->getNumVBases()) |
| 3357 | return false; |
| 3358 | |
| 3359 | // Check if we have a base constructor. |
| 3360 | if (isa<CXXConstructorDecl>(Val: MD) && GD.getCtorType() == Ctor_Base) |
| 3361 | return true; |
| 3362 | |
| 3363 | // Check if we have a base destructor. |
| 3364 | if (isa<CXXDestructorDecl>(Val: MD) && GD.getDtorType() == Dtor_Base) |
| 3365 | return true; |
| 3366 | |
| 3367 | return false; |
| 3368 | } |
| 3369 | |
| 3370 | llvm::Constant * |
| 3371 | ItaniumCXXABI::getOrCreateVirtualFunctionPointerThunk(const CXXMethodDecl *MD) { |
| 3372 | SmallString<256> MethodName; |
| 3373 | llvm::raw_svector_ostream Out(MethodName); |
| 3374 | getMangleContext().mangleCXXName(GD: MD, Out); |
| 3375 | MethodName += "_vfpthunk_" ; |
| 3376 | StringRef ThunkName = MethodName.str(); |
| 3377 | llvm::Function *ThunkFn; |
| 3378 | if ((ThunkFn = cast_or_null<llvm::Function>( |
| 3379 | Val: CGM.getModule().getNamedValue(Name: ThunkName)))) |
| 3380 | return ThunkFn; |
| 3381 | |
| 3382 | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeCXXMethodDeclaration(MD); |
| 3383 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 3384 | llvm::GlobalValue::LinkageTypes Linkage = |
| 3385 | MD->isExternallyVisible() ? llvm::GlobalValue::LinkOnceODRLinkage |
| 3386 | : llvm::GlobalValue::InternalLinkage; |
| 3387 | ThunkFn = |
| 3388 | llvm::Function::Create(Ty: ThunkTy, Linkage, N: ThunkName, M: &CGM.getModule()); |
| 3389 | if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) |
| 3390 | ThunkFn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 3391 | assert(ThunkFn->getName() == ThunkName && "name was uniqued!" ); |
| 3392 | |
| 3393 | CGM.SetLLVMFunctionAttributes(GD: MD, Info: FnInfo, F: ThunkFn, /*IsThunk=*/true); |
| 3394 | CGM.SetLLVMFunctionAttributesForDefinition(D: MD, F: ThunkFn); |
| 3395 | |
| 3396 | // Stack protection sometimes gets inserted after the musttail call. |
| 3397 | ThunkFn->removeFnAttr(Kind: llvm::Attribute::StackProtect); |
| 3398 | ThunkFn->removeFnAttr(Kind: llvm::Attribute::StackProtectStrong); |
| 3399 | ThunkFn->removeFnAttr(Kind: llvm::Attribute::StackProtectReq); |
| 3400 | |
| 3401 | // Start codegen. |
| 3402 | CodeGenFunction CGF(CGM); |
| 3403 | CGF.CurGD = GlobalDecl(MD); |
| 3404 | CGF.CurFuncIsThunk = true; |
| 3405 | |
| 3406 | // Build FunctionArgs. |
| 3407 | FunctionArgList FunctionArgs; |
| 3408 | CGF.BuildFunctionArgList(GD: CGF.CurGD, Args&: FunctionArgs); |
| 3409 | |
| 3410 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
| 3411 | Args: FunctionArgs, Loc: MD->getLocation(), StartLoc: SourceLocation()); |
| 3412 | llvm::Value *ThisVal = loadIncomingCXXThis(CGF); |
| 3413 | setCXXABIThisValue(CGF, ThisPtr: ThisVal); |
| 3414 | |
| 3415 | CallArgList CallArgs; |
| 3416 | for (const VarDecl *VD : FunctionArgs) |
| 3417 | CGF.EmitDelegateCallArg(args&: CallArgs, param: VD, loc: SourceLocation()); |
| 3418 | |
| 3419 | const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); |
| 3420 | RequiredArgs Required = RequiredArgs::forPrototypePlus(prototype: FPT, /*this*/ additional: 1); |
| 3421 | const CGFunctionInfo &CallInfo = |
| 3422 | CGM.getTypes().arrangeCXXMethodCall(args: CallArgs, type: FPT, required: Required, numPrefixArgs: 0); |
| 3423 | CGCallee Callee = CGCallee::forVirtual(CE: nullptr, MD: GlobalDecl(MD), |
| 3424 | Addr: getThisAddress(CGF), FTy: ThunkTy); |
| 3425 | llvm::CallBase *CallOrInvoke; |
| 3426 | CGF.EmitCall(CallInfo, Callee, ReturnValue: ReturnValueSlot(), Args: CallArgs, CallOrInvoke: &CallOrInvoke, |
| 3427 | /*IsMustTail=*/true, Loc: SourceLocation(), IsVirtualFunctionPointerThunk: true); |
| 3428 | auto *Call = cast<llvm::CallInst>(Val: CallOrInvoke); |
| 3429 | Call->setTailCallKind(llvm::CallInst::TCK_MustTail); |
| 3430 | if (Call->getType()->isVoidTy()) |
| 3431 | CGF.Builder.CreateRetVoid(); |
| 3432 | else |
| 3433 | CGF.Builder.CreateRet(V: Call); |
| 3434 | |
| 3435 | // Finish the function to maintain CodeGenFunction invariants. |
| 3436 | // FIXME: Don't emit unreachable code. |
| 3437 | CGF.EmitBlock(BB: CGF.createBasicBlock()); |
| 3438 | CGF.FinishFunction(); |
| 3439 | return ThunkFn; |
| 3440 | } |
| 3441 | |
| 3442 | namespace { |
| 3443 | class ItaniumRTTIBuilder { |
| 3444 | CodeGenModule &CGM; // Per-module state. |
| 3445 | llvm::LLVMContext &VMContext; |
| 3446 | const ItaniumCXXABI &CXXABI; // Per-module state. |
| 3447 | |
| 3448 | /// Fields - The fields of the RTTI descriptor currently being built. |
| 3449 | SmallVector<llvm::Constant *, 16> Fields; |
| 3450 | |
| 3451 | /// GetAddrOfTypeName - Returns the mangled type name of the given type. |
| 3452 | llvm::GlobalVariable * |
| 3453 | GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); |
| 3454 | |
| 3455 | /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI |
| 3456 | /// descriptor of the given type. |
| 3457 | llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); |
| 3458 | |
| 3459 | /// BuildVTablePointer - Build the vtable pointer for the given type. |
| 3460 | void BuildVTablePointer(const Type *Ty, llvm::Constant *StorageAddress); |
| 3461 | |
| 3462 | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
| 3463 | /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. |
| 3464 | void BuildSIClassTypeInfo(const CXXRecordDecl *RD); |
| 3465 | |
| 3466 | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
| 3467 | /// classes with bases that do not satisfy the abi::__si_class_type_info |
| 3468 | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
| 3469 | void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); |
| 3470 | |
| 3471 | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used |
| 3472 | /// for pointer types. |
| 3473 | void BuildPointerTypeInfo(QualType PointeeTy); |
| 3474 | |
| 3475 | /// BuildObjCObjectTypeInfo - Build the appropriate kind of |
| 3476 | /// type_info for an object type. |
| 3477 | void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); |
| 3478 | |
| 3479 | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
| 3480 | /// struct, used for member pointer types. |
| 3481 | void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); |
| 3482 | |
| 3483 | public: |
| 3484 | ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) |
| 3485 | : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} |
| 3486 | |
| 3487 | // Pointer type info flags. |
| 3488 | enum { |
| 3489 | /// PTI_Const - Type has const qualifier. |
| 3490 | PTI_Const = 0x1, |
| 3491 | |
| 3492 | /// PTI_Volatile - Type has volatile qualifier. |
| 3493 | PTI_Volatile = 0x2, |
| 3494 | |
| 3495 | /// PTI_Restrict - Type has restrict qualifier. |
| 3496 | PTI_Restrict = 0x4, |
| 3497 | |
| 3498 | /// PTI_Incomplete - Type is incomplete. |
| 3499 | PTI_Incomplete = 0x8, |
| 3500 | |
| 3501 | /// PTI_ContainingClassIncomplete - Containing class is incomplete. |
| 3502 | /// (in pointer to member). |
| 3503 | PTI_ContainingClassIncomplete = 0x10, |
| 3504 | |
| 3505 | /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). |
| 3506 | //PTI_TransactionSafe = 0x20, |
| 3507 | |
| 3508 | /// PTI_Noexcept - Pointee is noexcept function (C++1z). |
| 3509 | PTI_Noexcept = 0x40, |
| 3510 | }; |
| 3511 | |
| 3512 | // VMI type info flags. |
| 3513 | enum { |
| 3514 | /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. |
| 3515 | VMI_NonDiamondRepeat = 0x1, |
| 3516 | |
| 3517 | /// VMI_DiamondShaped - Class is diamond shaped. |
| 3518 | VMI_DiamondShaped = 0x2 |
| 3519 | }; |
| 3520 | |
| 3521 | // Base class type info flags. |
| 3522 | enum { |
| 3523 | /// BCTI_Virtual - Base class is virtual. |
| 3524 | BCTI_Virtual = 0x1, |
| 3525 | |
| 3526 | /// BCTI_Public - Base class is public. |
| 3527 | BCTI_Public = 0x2 |
| 3528 | }; |
| 3529 | |
| 3530 | /// BuildTypeInfo - Build the RTTI type info struct for the given type, or |
| 3531 | /// link to an existing RTTI descriptor if one already exists. |
| 3532 | llvm::Constant *BuildTypeInfo(QualType Ty); |
| 3533 | |
| 3534 | /// BuildTypeInfo - Build the RTTI type info struct for the given type. |
| 3535 | llvm::Constant *BuildTypeInfo( |
| 3536 | QualType Ty, |
| 3537 | llvm::GlobalVariable::LinkageTypes Linkage, |
| 3538 | llvm::GlobalValue::VisibilityTypes Visibility, |
| 3539 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass); |
| 3540 | }; |
| 3541 | } |
| 3542 | |
| 3543 | llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( |
| 3544 | QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { |
| 3545 | SmallString<256> Name; |
| 3546 | llvm::raw_svector_ostream Out(Name); |
| 3547 | CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(T: Ty, Out); |
| 3548 | |
| 3549 | // We know that the mangled name of the type starts at index 4 of the |
| 3550 | // mangled name of the typename, so we can just index into it in order to |
| 3551 | // get the mangled name of the type. |
| 3552 | llvm::Constant *Init = llvm::ConstantDataArray::getString(Context&: VMContext, |
| 3553 | Initializer: Name.substr(Start: 4)); |
| 3554 | auto Align = CGM.getContext().getTypeAlignInChars(T: CGM.getContext().CharTy); |
| 3555 | |
| 3556 | llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
| 3557 | Name, Ty: Init->getType(), Linkage, Alignment: Align.getAsAlign()); |
| 3558 | |
| 3559 | GV->setInitializer(Init); |
| 3560 | |
| 3561 | return GV; |
| 3562 | } |
| 3563 | |
| 3564 | llvm::Constant * |
| 3565 | ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { |
| 3566 | // Mangle the RTTI name. |
| 3567 | SmallString<256> Name; |
| 3568 | llvm::raw_svector_ostream Out(Name); |
| 3569 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T: Ty, Out); |
| 3570 | |
| 3571 | // Look for an existing global. |
| 3572 | llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); |
| 3573 | |
| 3574 | if (!GV) { |
| 3575 | // Create a new global variable. |
| 3576 | // Note for the future: If we would ever like to do deferred emission of |
| 3577 | // RTTI, check if emitting vtables opportunistically need any adjustment. |
| 3578 | |
| 3579 | GV = new llvm::GlobalVariable( |
| 3580 | CGM.getModule(), CGM.GlobalsInt8PtrTy, |
| 3581 | /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, Name); |
| 3582 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| 3583 | CGM.setGVProperties(GV, D: RD); |
| 3584 | // Import the typeinfo symbol when all non-inline virtual methods are |
| 3585 | // imported. |
| 3586 | if (CGM.getTarget().hasPS4DLLImportExport()) { |
| 3587 | if (RD && CXXRecordNonInlineHasAttr<DLLImportAttr>(RD)) { |
| 3588 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
| 3589 | CGM.setDSOLocal(GV); |
| 3590 | } |
| 3591 | } |
| 3592 | } |
| 3593 | |
| 3594 | return GV; |
| 3595 | } |
| 3596 | |
| 3597 | /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type |
| 3598 | /// info for that type is defined in the standard library. |
| 3599 | static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { |
| 3600 | // Itanium C++ ABI 2.9.2: |
| 3601 | // Basic type information (e.g. for "int", "bool", etc.) will be kept in |
| 3602 | // the run-time support library. Specifically, the run-time support |
| 3603 | // library should contain type_info objects for the types X, X* and |
| 3604 | // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, |
| 3605 | // unsigned char, signed char, short, unsigned short, int, unsigned int, |
| 3606 | // long, unsigned long, long long, unsigned long long, float, double, |
| 3607 | // long double, char16_t, char32_t, and the IEEE 754r decimal and |
| 3608 | // half-precision floating point types. |
| 3609 | // |
| 3610 | // GCC also emits RTTI for __int128. |
| 3611 | // FIXME: We do not emit RTTI information for decimal types here. |
| 3612 | |
| 3613 | // Types added here must also be added to EmitFundamentalRTTIDescriptors. |
| 3614 | switch (Ty->getKind()) { |
| 3615 | case BuiltinType::Void: |
| 3616 | case BuiltinType::NullPtr: |
| 3617 | case BuiltinType::Bool: |
| 3618 | case BuiltinType::WChar_S: |
| 3619 | case BuiltinType::WChar_U: |
| 3620 | case BuiltinType::Char_U: |
| 3621 | case BuiltinType::Char_S: |
| 3622 | case BuiltinType::UChar: |
| 3623 | case BuiltinType::SChar: |
| 3624 | case BuiltinType::Short: |
| 3625 | case BuiltinType::UShort: |
| 3626 | case BuiltinType::Int: |
| 3627 | case BuiltinType::UInt: |
| 3628 | case BuiltinType::Long: |
| 3629 | case BuiltinType::ULong: |
| 3630 | case BuiltinType::LongLong: |
| 3631 | case BuiltinType::ULongLong: |
| 3632 | case BuiltinType::Half: |
| 3633 | case BuiltinType::Float: |
| 3634 | case BuiltinType::Double: |
| 3635 | case BuiltinType::LongDouble: |
| 3636 | case BuiltinType::Float16: |
| 3637 | case BuiltinType::Float128: |
| 3638 | case BuiltinType::Ibm128: |
| 3639 | case BuiltinType::Char8: |
| 3640 | case BuiltinType::Char16: |
| 3641 | case BuiltinType::Char32: |
| 3642 | case BuiltinType::Int128: |
| 3643 | case BuiltinType::UInt128: |
| 3644 | return true; |
| 3645 | |
| 3646 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 3647 | case BuiltinType::Id: |
| 3648 | #include "clang/Basic/OpenCLImageTypes.def" |
| 3649 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 3650 | case BuiltinType::Id: |
| 3651 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 3652 | case BuiltinType::OCLSampler: |
| 3653 | case BuiltinType::OCLEvent: |
| 3654 | case BuiltinType::OCLClkEvent: |
| 3655 | case BuiltinType::OCLQueue: |
| 3656 | case BuiltinType::OCLReserveID: |
| 3657 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 3658 | case BuiltinType::Id: |
| 3659 | #include "clang/Basic/AArch64ACLETypes.def" |
| 3660 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 3661 | case BuiltinType::Id: |
| 3662 | #include "clang/Basic/PPCTypes.def" |
| 3663 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 3664 | #include "clang/Basic/RISCVVTypes.def" |
| 3665 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 3666 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 3667 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
| 3668 | #include "clang/Basic/AMDGPUTypes.def" |
| 3669 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 3670 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 3671 | case BuiltinType::ShortAccum: |
| 3672 | case BuiltinType::Accum: |
| 3673 | case BuiltinType::LongAccum: |
| 3674 | case BuiltinType::UShortAccum: |
| 3675 | case BuiltinType::UAccum: |
| 3676 | case BuiltinType::ULongAccum: |
| 3677 | case BuiltinType::ShortFract: |
| 3678 | case BuiltinType::Fract: |
| 3679 | case BuiltinType::LongFract: |
| 3680 | case BuiltinType::UShortFract: |
| 3681 | case BuiltinType::UFract: |
| 3682 | case BuiltinType::ULongFract: |
| 3683 | case BuiltinType::SatShortAccum: |
| 3684 | case BuiltinType::SatAccum: |
| 3685 | case BuiltinType::SatLongAccum: |
| 3686 | case BuiltinType::SatUShortAccum: |
| 3687 | case BuiltinType::SatUAccum: |
| 3688 | case BuiltinType::SatULongAccum: |
| 3689 | case BuiltinType::SatShortFract: |
| 3690 | case BuiltinType::SatFract: |
| 3691 | case BuiltinType::SatLongFract: |
| 3692 | case BuiltinType::SatUShortFract: |
| 3693 | case BuiltinType::SatUFract: |
| 3694 | case BuiltinType::SatULongFract: |
| 3695 | case BuiltinType::BFloat16: |
| 3696 | return false; |
| 3697 | |
| 3698 | case BuiltinType::Dependent: |
| 3699 | #define BUILTIN_TYPE(Id, SingletonId) |
| 3700 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| 3701 | case BuiltinType::Id: |
| 3702 | #include "clang/AST/BuiltinTypes.def" |
| 3703 | llvm_unreachable("asking for RRTI for a placeholder type!" ); |
| 3704 | |
| 3705 | case BuiltinType::ObjCId: |
| 3706 | case BuiltinType::ObjCClass: |
| 3707 | case BuiltinType::ObjCSel: |
| 3708 | llvm_unreachable("FIXME: Objective-C types are unsupported!" ); |
| 3709 | } |
| 3710 | |
| 3711 | llvm_unreachable("Invalid BuiltinType Kind!" ); |
| 3712 | } |
| 3713 | |
| 3714 | static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { |
| 3715 | QualType PointeeTy = PointerTy->getPointeeType(); |
| 3716 | const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Val&: PointeeTy); |
| 3717 | if (!BuiltinTy) |
| 3718 | return false; |
| 3719 | |
| 3720 | // Check the qualifiers. |
| 3721 | Qualifiers Quals = PointeeTy.getQualifiers(); |
| 3722 | Quals.removeConst(); |
| 3723 | |
| 3724 | if (!Quals.empty()) |
| 3725 | return false; |
| 3726 | |
| 3727 | return TypeInfoIsInStandardLibrary(Ty: BuiltinTy); |
| 3728 | } |
| 3729 | |
| 3730 | /// IsStandardLibraryRTTIDescriptor - Returns whether the type |
| 3731 | /// information for the given type exists in the standard library. |
| 3732 | static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { |
| 3733 | // Type info for builtin types is defined in the standard library. |
| 3734 | if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Val&: Ty)) |
| 3735 | return TypeInfoIsInStandardLibrary(Ty: BuiltinTy); |
| 3736 | |
| 3737 | // Type info for some pointer types to builtin types is defined in the |
| 3738 | // standard library. |
| 3739 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Val&: Ty)) |
| 3740 | return TypeInfoIsInStandardLibrary(PointerTy); |
| 3741 | |
| 3742 | return false; |
| 3743 | } |
| 3744 | |
| 3745 | /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for |
| 3746 | /// the given type exists somewhere else, and that we should not emit the type |
| 3747 | /// information in this translation unit. Assumes that it is not a |
| 3748 | /// standard-library type. |
| 3749 | static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, |
| 3750 | QualType Ty) { |
| 3751 | ASTContext &Context = CGM.getContext(); |
| 3752 | |
| 3753 | // If RTTI is disabled, assume it might be disabled in the |
| 3754 | // translation unit that defines any potential key function, too. |
| 3755 | if (!Context.getLangOpts().RTTI) return false; |
| 3756 | |
| 3757 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Val&: Ty)) { |
| 3758 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 3759 | if (!RD->hasDefinition()) |
| 3760 | return false; |
| 3761 | |
| 3762 | if (!RD->isDynamicClass()) |
| 3763 | return false; |
| 3764 | |
| 3765 | // FIXME: this may need to be reconsidered if the key function |
| 3766 | // changes. |
| 3767 | // N.B. We must always emit the RTTI data ourselves if there exists a key |
| 3768 | // function. |
| 3769 | bool IsDLLImport = RD->hasAttr<DLLImportAttr>(); |
| 3770 | |
| 3771 | // Don't import the RTTI but emit it locally. |
| 3772 | if (CGM.getTriple().isOSCygMing()) |
| 3773 | return false; |
| 3774 | |
| 3775 | if (CGM.getVTables().isVTableExternal(RD)) { |
| 3776 | if (CGM.getTarget().hasPS4DLLImportExport()) |
| 3777 | return true; |
| 3778 | |
| 3779 | return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() |
| 3780 | ? false |
| 3781 | : true; |
| 3782 | } |
| 3783 | if (IsDLLImport) |
| 3784 | return true; |
| 3785 | } |
| 3786 | |
| 3787 | return false; |
| 3788 | } |
| 3789 | |
| 3790 | /// IsIncompleteClassType - Returns whether the given record type is incomplete. |
| 3791 | static bool IsIncompleteClassType(const RecordType *RecordTy) { |
| 3792 | return !RecordTy->getDecl()->isCompleteDefinition(); |
| 3793 | } |
| 3794 | |
| 3795 | /// ContainsIncompleteClassType - Returns whether the given type contains an |
| 3796 | /// incomplete class type. This is true if |
| 3797 | /// |
| 3798 | /// * The given type is an incomplete class type. |
| 3799 | /// * The given type is a pointer type whose pointee type contains an |
| 3800 | /// incomplete class type. |
| 3801 | /// * The given type is a member pointer type whose class is an incomplete |
| 3802 | /// class type. |
| 3803 | /// * The given type is a member pointer type whoise pointee type contains an |
| 3804 | /// incomplete class type. |
| 3805 | /// is an indirect or direct pointer to an incomplete class type. |
| 3806 | static bool ContainsIncompleteClassType(QualType Ty) { |
| 3807 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Val&: Ty)) { |
| 3808 | if (IsIncompleteClassType(RecordTy)) |
| 3809 | return true; |
| 3810 | } |
| 3811 | |
| 3812 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Val&: Ty)) |
| 3813 | return ContainsIncompleteClassType(Ty: PointerTy->getPointeeType()); |
| 3814 | |
| 3815 | if (const MemberPointerType *MemberPointerTy = |
| 3816 | dyn_cast<MemberPointerType>(Val&: Ty)) { |
| 3817 | // Check if the class type is incomplete. |
| 3818 | const auto *ClassType = cast<RecordType>( |
| 3819 | Val: MemberPointerTy->getMostRecentCXXRecordDecl()->getTypeForDecl()); |
| 3820 | if (IsIncompleteClassType(RecordTy: ClassType)) |
| 3821 | return true; |
| 3822 | |
| 3823 | return ContainsIncompleteClassType(Ty: MemberPointerTy->getPointeeType()); |
| 3824 | } |
| 3825 | |
| 3826 | return false; |
| 3827 | } |
| 3828 | |
| 3829 | // CanUseSingleInheritance - Return whether the given record decl has a "single, |
| 3830 | // public, non-virtual base at offset zero (i.e. the derived class is dynamic |
| 3831 | // iff the base is)", according to Itanium C++ ABI, 2.95p6b. |
| 3832 | static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { |
| 3833 | // Check the number of bases. |
| 3834 | if (RD->getNumBases() != 1) |
| 3835 | return false; |
| 3836 | |
| 3837 | // Get the base. |
| 3838 | CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); |
| 3839 | |
| 3840 | // Check that the base is not virtual. |
| 3841 | if (Base->isVirtual()) |
| 3842 | return false; |
| 3843 | |
| 3844 | // Check that the base is public. |
| 3845 | if (Base->getAccessSpecifier() != AS_public) |
| 3846 | return false; |
| 3847 | |
| 3848 | // Check that the class is dynamic iff the base is. |
| 3849 | auto *BaseDecl = |
| 3850 | cast<CXXRecordDecl>(Val: Base->getType()->castAs<RecordType>()->getDecl()); |
| 3851 | if (!BaseDecl->isEmpty() && |
| 3852 | BaseDecl->isDynamicClass() != RD->isDynamicClass()) |
| 3853 | return false; |
| 3854 | |
| 3855 | return true; |
| 3856 | } |
| 3857 | |
| 3858 | void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty, |
| 3859 | llvm::Constant *StorageAddress) { |
| 3860 | // abi::__class_type_info. |
| 3861 | static const char * const ClassTypeInfo = |
| 3862 | "_ZTVN10__cxxabiv117__class_type_infoE" ; |
| 3863 | // abi::__si_class_type_info. |
| 3864 | static const char * const SIClassTypeInfo = |
| 3865 | "_ZTVN10__cxxabiv120__si_class_type_infoE" ; |
| 3866 | // abi::__vmi_class_type_info. |
| 3867 | static const char * const VMIClassTypeInfo = |
| 3868 | "_ZTVN10__cxxabiv121__vmi_class_type_infoE" ; |
| 3869 | |
| 3870 | const char *VTableName = nullptr; |
| 3871 | |
| 3872 | switch (Ty->getTypeClass()) { |
| 3873 | #define TYPE(Class, Base) |
| 3874 | #define ABSTRACT_TYPE(Class, Base) |
| 3875 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3876 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 3877 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3878 | #include "clang/AST/TypeNodes.inc" |
| 3879 | llvm_unreachable("Non-canonical and dependent types shouldn't get here" ); |
| 3880 | |
| 3881 | case Type::LValueReference: |
| 3882 | case Type::RValueReference: |
| 3883 | llvm_unreachable("References shouldn't get here" ); |
| 3884 | |
| 3885 | case Type::Auto: |
| 3886 | case Type::DeducedTemplateSpecialization: |
| 3887 | llvm_unreachable("Undeduced type shouldn't get here" ); |
| 3888 | |
| 3889 | case Type::Pipe: |
| 3890 | llvm_unreachable("Pipe types shouldn't get here" ); |
| 3891 | |
| 3892 | case Type::ArrayParameter: |
| 3893 | llvm_unreachable("Array Parameter types should not get here." ); |
| 3894 | |
| 3895 | case Type::Builtin: |
| 3896 | case Type::BitInt: |
| 3897 | // GCC treats vector and complex types as fundamental types. |
| 3898 | case Type::Vector: |
| 3899 | case Type::ExtVector: |
| 3900 | case Type::ConstantMatrix: |
| 3901 | case Type::Complex: |
| 3902 | case Type::Atomic: |
| 3903 | // FIXME: GCC treats block pointers as fundamental types?! |
| 3904 | case Type::BlockPointer: |
| 3905 | // abi::__fundamental_type_info. |
| 3906 | VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE" ; |
| 3907 | break; |
| 3908 | |
| 3909 | case Type::ConstantArray: |
| 3910 | case Type::IncompleteArray: |
| 3911 | case Type::VariableArray: |
| 3912 | // abi::__array_type_info. |
| 3913 | VTableName = "_ZTVN10__cxxabiv117__array_type_infoE" ; |
| 3914 | break; |
| 3915 | |
| 3916 | case Type::FunctionNoProto: |
| 3917 | case Type::FunctionProto: |
| 3918 | // abi::__function_type_info. |
| 3919 | VTableName = "_ZTVN10__cxxabiv120__function_type_infoE" ; |
| 3920 | break; |
| 3921 | |
| 3922 | case Type::Enum: |
| 3923 | // abi::__enum_type_info. |
| 3924 | VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE" ; |
| 3925 | break; |
| 3926 | |
| 3927 | case Type::Record: { |
| 3928 | const CXXRecordDecl *RD = |
| 3929 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val: Ty)->getDecl()); |
| 3930 | |
| 3931 | if (!RD->hasDefinition() || !RD->getNumBases()) { |
| 3932 | VTableName = ClassTypeInfo; |
| 3933 | } else if (CanUseSingleInheritance(RD)) { |
| 3934 | VTableName = SIClassTypeInfo; |
| 3935 | } else { |
| 3936 | VTableName = VMIClassTypeInfo; |
| 3937 | } |
| 3938 | |
| 3939 | break; |
| 3940 | } |
| 3941 | |
| 3942 | case Type::ObjCObject: |
| 3943 | // Ignore protocol qualifiers. |
| 3944 | Ty = cast<ObjCObjectType>(Val: Ty)->getBaseType().getTypePtr(); |
| 3945 | |
| 3946 | // Handle id and Class. |
| 3947 | if (isa<BuiltinType>(Val: Ty)) { |
| 3948 | VTableName = ClassTypeInfo; |
| 3949 | break; |
| 3950 | } |
| 3951 | |
| 3952 | assert(isa<ObjCInterfaceType>(Ty)); |
| 3953 | [[fallthrough]]; |
| 3954 | |
| 3955 | case Type::ObjCInterface: |
| 3956 | if (cast<ObjCInterfaceType>(Val: Ty)->getDecl()->getSuperClass()) { |
| 3957 | VTableName = SIClassTypeInfo; |
| 3958 | } else { |
| 3959 | VTableName = ClassTypeInfo; |
| 3960 | } |
| 3961 | break; |
| 3962 | |
| 3963 | case Type::ObjCObjectPointer: |
| 3964 | case Type::Pointer: |
| 3965 | // abi::__pointer_type_info. |
| 3966 | VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE" ; |
| 3967 | break; |
| 3968 | |
| 3969 | case Type::MemberPointer: |
| 3970 | // abi::__pointer_to_member_type_info. |
| 3971 | VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE" ; |
| 3972 | break; |
| 3973 | |
| 3974 | case Type::HLSLAttributedResource: |
| 3975 | case Type::HLSLInlineSpirv: |
| 3976 | llvm_unreachable("HLSL doesn't support virtual functions" ); |
| 3977 | } |
| 3978 | |
| 3979 | llvm::Constant *VTable = nullptr; |
| 3980 | |
| 3981 | // Check if the alias exists. If it doesn't, then get or create the global. |
| 3982 | if (CGM.getItaniumVTableContext().isRelativeLayout()) |
| 3983 | VTable = CGM.getModule().getNamedAlias(Name: VTableName); |
| 3984 | if (!VTable) { |
| 3985 | llvm::Type *Ty = llvm::ArrayType::get(ElementType: CGM.GlobalsInt8PtrTy, NumElements: 0); |
| 3986 | VTable = CGM.getModule().getOrInsertGlobal(Name: VTableName, Ty); |
| 3987 | } |
| 3988 | |
| 3989 | CGM.setDSOLocal(cast<llvm::GlobalValue>(Val: VTable->stripPointerCasts())); |
| 3990 | |
| 3991 | llvm::Type *PtrDiffTy = |
| 3992 | CGM.getTypes().ConvertType(T: CGM.getContext().getPointerDiffType()); |
| 3993 | |
| 3994 | // The vtable address point is 2. |
| 3995 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| 3996 | // The vtable address point is 8 bytes after its start: |
| 3997 | // 4 for the offset to top + 4 for the relative offset to rtti. |
| 3998 | llvm::Constant *Eight = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 8); |
| 3999 | VTable = |
| 4000 | llvm::ConstantExpr::getInBoundsGetElementPtr(Ty: CGM.Int8Ty, C: VTable, Idx: Eight); |
| 4001 | } else { |
| 4002 | llvm::Constant *Two = llvm::ConstantInt::get(Ty: PtrDiffTy, V: 2); |
| 4003 | VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(Ty: CGM.GlobalsInt8PtrTy, |
| 4004 | C: VTable, Idx: Two); |
| 4005 | } |
| 4006 | |
| 4007 | if (const auto &Schema = |
| 4008 | CGM.getCodeGenOpts().PointerAuth.CXXTypeInfoVTablePointer) |
| 4009 | VTable = CGM.getConstantSignedPointer( |
| 4010 | Pointer: VTable, Schema, |
| 4011 | StorageAddress: Schema.isAddressDiscriminated() ? StorageAddress : nullptr, |
| 4012 | SchemaDecl: GlobalDecl(), SchemaType: QualType(Ty, 0)); |
| 4013 | |
| 4014 | Fields.push_back(Elt: VTable); |
| 4015 | } |
| 4016 | |
| 4017 | /// Return the linkage that the type info and type info name constants |
| 4018 | /// should have for the given type. |
| 4019 | static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, |
| 4020 | QualType Ty) { |
| 4021 | // Itanium C++ ABI 2.9.5p7: |
| 4022 | // In addition, it and all of the intermediate abi::__pointer_type_info |
| 4023 | // structs in the chain down to the abi::__class_type_info for the |
| 4024 | // incomplete class type must be prevented from resolving to the |
| 4025 | // corresponding type_info structs for the complete class type, possibly |
| 4026 | // by making them local static objects. Finally, a dummy class RTTI is |
| 4027 | // generated for the incomplete type that will not resolve to the final |
| 4028 | // complete class RTTI (because the latter need not exist), possibly by |
| 4029 | // making it a local static object. |
| 4030 | if (ContainsIncompleteClassType(Ty)) |
| 4031 | return llvm::GlobalValue::InternalLinkage; |
| 4032 | |
| 4033 | switch (Ty->getLinkage()) { |
| 4034 | case Linkage::Invalid: |
| 4035 | llvm_unreachable("Linkage hasn't been computed!" ); |
| 4036 | |
| 4037 | case Linkage::None: |
| 4038 | case Linkage::Internal: |
| 4039 | case Linkage::UniqueExternal: |
| 4040 | return llvm::GlobalValue::InternalLinkage; |
| 4041 | |
| 4042 | case Linkage::VisibleNone: |
| 4043 | case Linkage::Module: |
| 4044 | case Linkage::External: |
| 4045 | // RTTI is not enabled, which means that this type info struct is going |
| 4046 | // to be used for exception handling. Give it linkonce_odr linkage. |
| 4047 | if (!CGM.getLangOpts().RTTI) |
| 4048 | return llvm::GlobalValue::LinkOnceODRLinkage; |
| 4049 | |
| 4050 | if (const RecordType *Record = dyn_cast<RecordType>(Val&: Ty)) { |
| 4051 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: Record->getDecl()); |
| 4052 | if (RD->hasAttr<WeakAttr>()) |
| 4053 | return llvm::GlobalValue::WeakODRLinkage; |
| 4054 | if (CGM.getTriple().isWindowsItaniumEnvironment()) |
| 4055 | if (RD->hasAttr<DLLImportAttr>() && |
| 4056 | ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
| 4057 | return llvm::GlobalValue::ExternalLinkage; |
| 4058 | // MinGW always uses LinkOnceODRLinkage for type info. |
| 4059 | if (RD->isDynamicClass() && |
| 4060 | !CGM.getContext().getTargetInfo().getTriple().isOSCygMing()) |
| 4061 | return CGM.getVTableLinkage(RD); |
| 4062 | } |
| 4063 | |
| 4064 | return llvm::GlobalValue::LinkOnceODRLinkage; |
| 4065 | } |
| 4066 | |
| 4067 | llvm_unreachable("Invalid linkage!" ); |
| 4068 | } |
| 4069 | |
| 4070 | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) { |
| 4071 | // We want to operate on the canonical type. |
| 4072 | Ty = Ty.getCanonicalType(); |
| 4073 | |
| 4074 | // Check if we've already emitted an RTTI descriptor for this type. |
| 4075 | SmallString<256> Name; |
| 4076 | llvm::raw_svector_ostream Out(Name); |
| 4077 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T: Ty, Out); |
| 4078 | |
| 4079 | llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); |
| 4080 | if (OldGV && !OldGV->isDeclaration()) { |
| 4081 | assert(!OldGV->hasAvailableExternallyLinkage() && |
| 4082 | "available_externally typeinfos not yet implemented" ); |
| 4083 | |
| 4084 | return OldGV; |
| 4085 | } |
| 4086 | |
| 4087 | // Check if there is already an external RTTI descriptor for this type. |
| 4088 | if (IsStandardLibraryRTTIDescriptor(Ty) || |
| 4089 | ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
| 4090 | return GetAddrOfExternalRTTIDescriptor(Ty); |
| 4091 | |
| 4092 | // Emit the standard library with external linkage. |
| 4093 | llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); |
| 4094 | |
| 4095 | // Give the type_info object and name the formal visibility of the |
| 4096 | // type itself. |
| 4097 | llvm::GlobalValue::VisibilityTypes llvmVisibility; |
| 4098 | if (llvm::GlobalValue::isLocalLinkage(Linkage)) |
| 4099 | // If the linkage is local, only default visibility makes sense. |
| 4100 | llvmVisibility = llvm::GlobalValue::DefaultVisibility; |
| 4101 | else if (CXXABI.classifyRTTIUniqueness(CanTy: Ty, Linkage) == |
| 4102 | ItaniumCXXABI::RUK_NonUniqueHidden) |
| 4103 | llvmVisibility = llvm::GlobalValue::HiddenVisibility; |
| 4104 | else |
| 4105 | llvmVisibility = CodeGenModule::GetLLVMVisibility(V: Ty->getVisibility()); |
| 4106 | |
| 4107 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
| 4108 | llvm::GlobalValue::DefaultStorageClass; |
| 4109 | if (auto RD = Ty->getAsCXXRecordDecl()) { |
| 4110 | if ((CGM.getTriple().isWindowsItaniumEnvironment() && |
| 4111 | RD->hasAttr<DLLExportAttr>()) || |
| 4112 | (CGM.shouldMapVisibilityToDLLExport(D: RD) && |
| 4113 | !llvm::GlobalValue::isLocalLinkage(Linkage) && |
| 4114 | llvmVisibility == llvm::GlobalValue::DefaultVisibility)) |
| 4115 | DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass; |
| 4116 | } |
| 4117 | return BuildTypeInfo(Ty, Linkage, Visibility: llvmVisibility, DLLStorageClass); |
| 4118 | } |
| 4119 | |
| 4120 | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo( |
| 4121 | QualType Ty, |
| 4122 | llvm::GlobalVariable::LinkageTypes Linkage, |
| 4123 | llvm::GlobalValue::VisibilityTypes Visibility, |
| 4124 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) { |
| 4125 | SmallString<256> Name; |
| 4126 | llvm::raw_svector_ostream Out(Name); |
| 4127 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T: Ty, Out); |
| 4128 | llvm::Module &M = CGM.getModule(); |
| 4129 | llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name); |
| 4130 | // int8 is an arbitrary type to be replaced later with replaceInitializer. |
| 4131 | llvm::GlobalVariable *GV = |
| 4132 | new llvm::GlobalVariable(M, CGM.Int8Ty, /*isConstant=*/true, Linkage, |
| 4133 | /*Initializer=*/nullptr, Name); |
| 4134 | |
| 4135 | // Add the vtable pointer. |
| 4136 | BuildVTablePointer(Ty: cast<Type>(Val&: Ty), StorageAddress: GV); |
| 4137 | |
| 4138 | // And the name. |
| 4139 | llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); |
| 4140 | llvm::Constant *TypeNameField; |
| 4141 | |
| 4142 | // If we're supposed to demote the visibility, be sure to set a flag |
| 4143 | // to use a string comparison for type_info comparisons. |
| 4144 | ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = |
| 4145 | CXXABI.classifyRTTIUniqueness(CanTy: Ty, Linkage); |
| 4146 | if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { |
| 4147 | // The flag is the sign bit, which on ARM64 is defined to be clear |
| 4148 | // for global pointers. This is very ARM64-specific. |
| 4149 | TypeNameField = llvm::ConstantExpr::getPtrToInt(C: TypeName, Ty: CGM.Int64Ty); |
| 4150 | llvm::Constant *flag = |
| 4151 | llvm::ConstantInt::get(Ty: CGM.Int64Ty, V: ((uint64_t)1) << 63); |
| 4152 | TypeNameField = llvm::ConstantExpr::getAdd(C1: TypeNameField, C2: flag); |
| 4153 | TypeNameField = |
| 4154 | llvm::ConstantExpr::getIntToPtr(C: TypeNameField, Ty: CGM.GlobalsInt8PtrTy); |
| 4155 | } else { |
| 4156 | TypeNameField = TypeName; |
| 4157 | } |
| 4158 | Fields.push_back(Elt: TypeNameField); |
| 4159 | |
| 4160 | switch (Ty->getTypeClass()) { |
| 4161 | #define TYPE(Class, Base) |
| 4162 | #define ABSTRACT_TYPE(Class, Base) |
| 4163 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 4164 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 4165 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 4166 | #include "clang/AST/TypeNodes.inc" |
| 4167 | llvm_unreachable("Non-canonical and dependent types shouldn't get here" ); |
| 4168 | |
| 4169 | // GCC treats vector types as fundamental types. |
| 4170 | case Type::Builtin: |
| 4171 | case Type::Vector: |
| 4172 | case Type::ExtVector: |
| 4173 | case Type::ConstantMatrix: |
| 4174 | case Type::Complex: |
| 4175 | case Type::BlockPointer: |
| 4176 | // Itanium C++ ABI 2.9.5p4: |
| 4177 | // abi::__fundamental_type_info adds no data members to std::type_info. |
| 4178 | break; |
| 4179 | |
| 4180 | case Type::LValueReference: |
| 4181 | case Type::RValueReference: |
| 4182 | llvm_unreachable("References shouldn't get here" ); |
| 4183 | |
| 4184 | case Type::Auto: |
| 4185 | case Type::DeducedTemplateSpecialization: |
| 4186 | llvm_unreachable("Undeduced type shouldn't get here" ); |
| 4187 | |
| 4188 | case Type::Pipe: |
| 4189 | break; |
| 4190 | |
| 4191 | case Type::BitInt: |
| 4192 | break; |
| 4193 | |
| 4194 | case Type::ConstantArray: |
| 4195 | case Type::IncompleteArray: |
| 4196 | case Type::VariableArray: |
| 4197 | case Type::ArrayParameter: |
| 4198 | // Itanium C++ ABI 2.9.5p5: |
| 4199 | // abi::__array_type_info adds no data members to std::type_info. |
| 4200 | break; |
| 4201 | |
| 4202 | case Type::FunctionNoProto: |
| 4203 | case Type::FunctionProto: |
| 4204 | // Itanium C++ ABI 2.9.5p5: |
| 4205 | // abi::__function_type_info adds no data members to std::type_info. |
| 4206 | break; |
| 4207 | |
| 4208 | case Type::Enum: |
| 4209 | // Itanium C++ ABI 2.9.5p5: |
| 4210 | // abi::__enum_type_info adds no data members to std::type_info. |
| 4211 | break; |
| 4212 | |
| 4213 | case Type::Record: { |
| 4214 | const CXXRecordDecl *RD = |
| 4215 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: Ty)->getDecl()); |
| 4216 | if (!RD->hasDefinition() || !RD->getNumBases()) { |
| 4217 | // We don't need to emit any fields. |
| 4218 | break; |
| 4219 | } |
| 4220 | |
| 4221 | if (CanUseSingleInheritance(RD)) |
| 4222 | BuildSIClassTypeInfo(RD); |
| 4223 | else |
| 4224 | BuildVMIClassTypeInfo(RD); |
| 4225 | |
| 4226 | break; |
| 4227 | } |
| 4228 | |
| 4229 | case Type::ObjCObject: |
| 4230 | case Type::ObjCInterface: |
| 4231 | BuildObjCObjectTypeInfo(Ty: cast<ObjCObjectType>(Val&: Ty)); |
| 4232 | break; |
| 4233 | |
| 4234 | case Type::ObjCObjectPointer: |
| 4235 | BuildPointerTypeInfo(PointeeTy: cast<ObjCObjectPointerType>(Val&: Ty)->getPointeeType()); |
| 4236 | break; |
| 4237 | |
| 4238 | case Type::Pointer: |
| 4239 | BuildPointerTypeInfo(PointeeTy: cast<PointerType>(Val&: Ty)->getPointeeType()); |
| 4240 | break; |
| 4241 | |
| 4242 | case Type::MemberPointer: |
| 4243 | BuildPointerToMemberTypeInfo(Ty: cast<MemberPointerType>(Val&: Ty)); |
| 4244 | break; |
| 4245 | |
| 4246 | case Type::Atomic: |
| 4247 | // No fields, at least for the moment. |
| 4248 | break; |
| 4249 | |
| 4250 | case Type::HLSLAttributedResource: |
| 4251 | case Type::HLSLInlineSpirv: |
| 4252 | llvm_unreachable("HLSL doesn't support RTTI" ); |
| 4253 | } |
| 4254 | |
| 4255 | GV->replaceInitializer(InitVal: llvm::ConstantStruct::getAnon(V: Fields)); |
| 4256 | |
| 4257 | // Export the typeinfo in the same circumstances as the vtable is exported. |
| 4258 | auto GVDLLStorageClass = DLLStorageClass; |
| 4259 | if (CGM.getTarget().hasPS4DLLImportExport() && |
| 4260 | GVDLLStorageClass != llvm::GlobalVariable::DLLExportStorageClass) { |
| 4261 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Val&: Ty)) { |
| 4262 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 4263 | if (RD->hasAttr<DLLExportAttr>() || |
| 4264 | CXXRecordNonInlineHasAttr<DLLExportAttr>(RD)) |
| 4265 | GVDLLStorageClass = llvm::GlobalVariable::DLLExportStorageClass; |
| 4266 | } |
| 4267 | } |
| 4268 | |
| 4269 | // If there's already an old global variable, replace it with the new one. |
| 4270 | if (OldGV) { |
| 4271 | GV->takeName(V: OldGV); |
| 4272 | OldGV->replaceAllUsesWith(V: GV); |
| 4273 | OldGV->eraseFromParent(); |
| 4274 | } |
| 4275 | |
| 4276 | if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) |
| 4277 | GV->setComdat(M.getOrInsertComdat(Name: GV->getName())); |
| 4278 | |
| 4279 | CharUnits Align = CGM.getContext().toCharUnitsFromBits( |
| 4280 | BitSize: CGM.getTarget().getPointerAlign(AddrSpace: CGM.GetGlobalVarAddressSpace(D: nullptr))); |
| 4281 | GV->setAlignment(Align.getAsAlign()); |
| 4282 | |
| 4283 | // The Itanium ABI specifies that type_info objects must be globally |
| 4284 | // unique, with one exception: if the type is an incomplete class |
| 4285 | // type or a (possibly indirect) pointer to one. That exception |
| 4286 | // affects the general case of comparing type_info objects produced |
| 4287 | // by the typeid operator, which is why the comparison operators on |
| 4288 | // std::type_info generally use the type_info name pointers instead |
| 4289 | // of the object addresses. However, the language's built-in uses |
| 4290 | // of RTTI generally require class types to be complete, even when |
| 4291 | // manipulating pointers to those class types. This allows the |
| 4292 | // implementation of dynamic_cast to rely on address equality tests, |
| 4293 | // which is much faster. |
| 4294 | |
| 4295 | // All of this is to say that it's important that both the type_info |
| 4296 | // object and the type_info name be uniqued when weakly emitted. |
| 4297 | |
| 4298 | TypeName->setVisibility(Visibility); |
| 4299 | CGM.setDSOLocal(TypeName); |
| 4300 | |
| 4301 | GV->setVisibility(Visibility); |
| 4302 | CGM.setDSOLocal(GV); |
| 4303 | |
| 4304 | TypeName->setDLLStorageClass(DLLStorageClass); |
| 4305 | GV->setDLLStorageClass(GVDLLStorageClass); |
| 4306 | |
| 4307 | TypeName->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
| 4308 | GV->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
| 4309 | |
| 4310 | return GV; |
| 4311 | } |
| 4312 | |
| 4313 | /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info |
| 4314 | /// for the given Objective-C object type. |
| 4315 | void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { |
| 4316 | // Drop qualifiers. |
| 4317 | const Type *T = OT->getBaseType().getTypePtr(); |
| 4318 | assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); |
| 4319 | |
| 4320 | // The builtin types are abi::__class_type_infos and don't require |
| 4321 | // extra fields. |
| 4322 | if (isa<BuiltinType>(Val: T)) return; |
| 4323 | |
| 4324 | ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(Val: T)->getDecl(); |
| 4325 | ObjCInterfaceDecl *Super = Class->getSuperClass(); |
| 4326 | |
| 4327 | // Root classes are also __class_type_info. |
| 4328 | if (!Super) return; |
| 4329 | |
| 4330 | QualType SuperTy = CGM.getContext().getObjCInterfaceType(Decl: Super); |
| 4331 | |
| 4332 | // Everything else is single inheritance. |
| 4333 | llvm::Constant *BaseTypeInfo = |
| 4334 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: SuperTy); |
| 4335 | Fields.push_back(Elt: BaseTypeInfo); |
| 4336 | } |
| 4337 | |
| 4338 | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
| 4339 | /// inheritance, according to the Itanium C++ ABI, 2.95p6b. |
| 4340 | void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { |
| 4341 | // Itanium C++ ABI 2.9.5p6b: |
| 4342 | // It adds to abi::__class_type_info a single member pointing to the |
| 4343 | // type_info structure for the base type, |
| 4344 | llvm::Constant *BaseTypeInfo = |
| 4345 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: RD->bases_begin()->getType()); |
| 4346 | Fields.push_back(Elt: BaseTypeInfo); |
| 4347 | } |
| 4348 | |
| 4349 | namespace { |
| 4350 | /// SeenBases - Contains virtual and non-virtual bases seen when traversing |
| 4351 | /// a class hierarchy. |
| 4352 | struct SeenBases { |
| 4353 | llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; |
| 4354 | llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; |
| 4355 | }; |
| 4356 | } |
| 4357 | |
| 4358 | /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in |
| 4359 | /// abi::__vmi_class_type_info. |
| 4360 | /// |
| 4361 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, |
| 4362 | SeenBases &Bases) { |
| 4363 | |
| 4364 | unsigned Flags = 0; |
| 4365 | |
| 4366 | auto *BaseDecl = |
| 4367 | cast<CXXRecordDecl>(Val: Base->getType()->castAs<RecordType>()->getDecl()); |
| 4368 | |
| 4369 | if (Base->isVirtual()) { |
| 4370 | // Mark the virtual base as seen. |
| 4371 | if (!Bases.VirtualBases.insert(Ptr: BaseDecl).second) { |
| 4372 | // If this virtual base has been seen before, then the class is diamond |
| 4373 | // shaped. |
| 4374 | Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; |
| 4375 | } else { |
| 4376 | if (Bases.NonVirtualBases.count(Ptr: BaseDecl)) |
| 4377 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| 4378 | } |
| 4379 | } else { |
| 4380 | // Mark the non-virtual base as seen. |
| 4381 | if (!Bases.NonVirtualBases.insert(Ptr: BaseDecl).second) { |
| 4382 | // If this non-virtual base has been seen before, then the class has non- |
| 4383 | // diamond shaped repeated inheritance. |
| 4384 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| 4385 | } else { |
| 4386 | if (Bases.VirtualBases.count(Ptr: BaseDecl)) |
| 4387 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| 4388 | } |
| 4389 | } |
| 4390 | |
| 4391 | // Walk all bases. |
| 4392 | for (const auto &I : BaseDecl->bases()) |
| 4393 | Flags |= ComputeVMIClassTypeInfoFlags(Base: &I, Bases); |
| 4394 | |
| 4395 | return Flags; |
| 4396 | } |
| 4397 | |
| 4398 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { |
| 4399 | unsigned Flags = 0; |
| 4400 | SeenBases Bases; |
| 4401 | |
| 4402 | // Walk all bases. |
| 4403 | for (const auto &I : RD->bases()) |
| 4404 | Flags |= ComputeVMIClassTypeInfoFlags(Base: &I, Bases); |
| 4405 | |
| 4406 | return Flags; |
| 4407 | } |
| 4408 | |
| 4409 | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
| 4410 | /// classes with bases that do not satisfy the abi::__si_class_type_info |
| 4411 | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
| 4412 | void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { |
| 4413 | llvm::Type *UnsignedIntLTy = |
| 4414 | CGM.getTypes().ConvertType(T: CGM.getContext().UnsignedIntTy); |
| 4415 | |
| 4416 | // Itanium C++ ABI 2.9.5p6c: |
| 4417 | // __flags is a word with flags describing details about the class |
| 4418 | // structure, which may be referenced by using the __flags_masks |
| 4419 | // enumeration. These flags refer to both direct and indirect bases. |
| 4420 | unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); |
| 4421 | Fields.push_back(Elt: llvm::ConstantInt::get(Ty: UnsignedIntLTy, V: Flags)); |
| 4422 | |
| 4423 | // Itanium C++ ABI 2.9.5p6c: |
| 4424 | // __base_count is a word with the number of direct proper base class |
| 4425 | // descriptions that follow. |
| 4426 | Fields.push_back(Elt: llvm::ConstantInt::get(Ty: UnsignedIntLTy, V: RD->getNumBases())); |
| 4427 | |
| 4428 | if (!RD->getNumBases()) |
| 4429 | return; |
| 4430 | |
| 4431 | // Now add the base class descriptions. |
| 4432 | |
| 4433 | // Itanium C++ ABI 2.9.5p6c: |
| 4434 | // __base_info[] is an array of base class descriptions -- one for every |
| 4435 | // direct proper base. Each description is of the type: |
| 4436 | // |
| 4437 | // struct abi::__base_class_type_info { |
| 4438 | // public: |
| 4439 | // const __class_type_info *__base_type; |
| 4440 | // long __offset_flags; |
| 4441 | // |
| 4442 | // enum __offset_flags_masks { |
| 4443 | // __virtual_mask = 0x1, |
| 4444 | // __public_mask = 0x2, |
| 4445 | // __offset_shift = 8 |
| 4446 | // }; |
| 4447 | // }; |
| 4448 | |
| 4449 | // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long |
| 4450 | // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on |
| 4451 | // LLP64 platforms. |
| 4452 | // FIXME: Consider updating libc++abi to match, and extend this logic to all |
| 4453 | // LLP64 platforms. |
| 4454 | QualType OffsetFlagsTy = CGM.getContext().LongTy; |
| 4455 | const TargetInfo &TI = CGM.getContext().getTargetInfo(); |
| 4456 | if (TI.getTriple().isOSCygMing() && |
| 4457 | TI.getPointerWidth(AddrSpace: LangAS::Default) > TI.getLongWidth()) |
| 4458 | OffsetFlagsTy = CGM.getContext().LongLongTy; |
| 4459 | llvm::Type *OffsetFlagsLTy = |
| 4460 | CGM.getTypes().ConvertType(T: OffsetFlagsTy); |
| 4461 | |
| 4462 | for (const auto &Base : RD->bases()) { |
| 4463 | // The __base_type member points to the RTTI for the base type. |
| 4464 | Fields.push_back(Elt: ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: Base.getType())); |
| 4465 | |
| 4466 | auto *BaseDecl = |
| 4467 | cast<CXXRecordDecl>(Val: Base.getType()->castAs<RecordType>()->getDecl()); |
| 4468 | |
| 4469 | int64_t OffsetFlags = 0; |
| 4470 | |
| 4471 | // All but the lower 8 bits of __offset_flags are a signed offset. |
| 4472 | // For a non-virtual base, this is the offset in the object of the base |
| 4473 | // subobject. For a virtual base, this is the offset in the virtual table of |
| 4474 | // the virtual base offset for the virtual base referenced (negative). |
| 4475 | CharUnits Offset; |
| 4476 | if (Base.isVirtual()) |
| 4477 | Offset = |
| 4478 | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, VBase: BaseDecl); |
| 4479 | else { |
| 4480 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD); |
| 4481 | Offset = Layout.getBaseClassOffset(Base: BaseDecl); |
| 4482 | }; |
| 4483 | |
| 4484 | OffsetFlags = uint64_t(Offset.getQuantity()) << 8; |
| 4485 | |
| 4486 | // The low-order byte of __offset_flags contains flags, as given by the |
| 4487 | // masks from the enumeration __offset_flags_masks. |
| 4488 | if (Base.isVirtual()) |
| 4489 | OffsetFlags |= BCTI_Virtual; |
| 4490 | if (Base.getAccessSpecifier() == AS_public) |
| 4491 | OffsetFlags |= BCTI_Public; |
| 4492 | |
| 4493 | Fields.push_back(Elt: llvm::ConstantInt::get(Ty: OffsetFlagsLTy, V: OffsetFlags)); |
| 4494 | } |
| 4495 | } |
| 4496 | |
| 4497 | /// Compute the flags for a __pbase_type_info, and remove the corresponding |
| 4498 | /// pieces from \p Type. |
| 4499 | static unsigned (ASTContext &Ctx, QualType &Type) { |
| 4500 | unsigned Flags = 0; |
| 4501 | |
| 4502 | if (Type.isConstQualified()) |
| 4503 | Flags |= ItaniumRTTIBuilder::PTI_Const; |
| 4504 | if (Type.isVolatileQualified()) |
| 4505 | Flags |= ItaniumRTTIBuilder::PTI_Volatile; |
| 4506 | if (Type.isRestrictQualified()) |
| 4507 | Flags |= ItaniumRTTIBuilder::PTI_Restrict; |
| 4508 | Type = Type.getUnqualifiedType(); |
| 4509 | |
| 4510 | // Itanium C++ ABI 2.9.5p7: |
| 4511 | // When the abi::__pbase_type_info is for a direct or indirect pointer to an |
| 4512 | // incomplete class type, the incomplete target type flag is set. |
| 4513 | if (ContainsIncompleteClassType(Ty: Type)) |
| 4514 | Flags |= ItaniumRTTIBuilder::PTI_Incomplete; |
| 4515 | |
| 4516 | if (auto *Proto = Type->getAs<FunctionProtoType>()) { |
| 4517 | if (Proto->isNothrow()) { |
| 4518 | Flags |= ItaniumRTTIBuilder::PTI_Noexcept; |
| 4519 | Type = Ctx.getFunctionTypeWithExceptionSpec(Orig: Type, ESI: EST_None); |
| 4520 | } |
| 4521 | } |
| 4522 | |
| 4523 | return Flags; |
| 4524 | } |
| 4525 | |
| 4526 | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, |
| 4527 | /// used for pointer types. |
| 4528 | void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { |
| 4529 | // Itanium C++ ABI 2.9.5p7: |
| 4530 | // __flags is a flag word describing the cv-qualification and other |
| 4531 | // attributes of the type pointed to |
| 4532 | unsigned Flags = extractPBaseFlags(Ctx&: CGM.getContext(), Type&: PointeeTy); |
| 4533 | |
| 4534 | llvm::Type *UnsignedIntLTy = |
| 4535 | CGM.getTypes().ConvertType(T: CGM.getContext().UnsignedIntTy); |
| 4536 | Fields.push_back(Elt: llvm::ConstantInt::get(Ty: UnsignedIntLTy, V: Flags)); |
| 4537 | |
| 4538 | // Itanium C++ ABI 2.9.5p7: |
| 4539 | // __pointee is a pointer to the std::type_info derivation for the |
| 4540 | // unqualified type being pointed to. |
| 4541 | llvm::Constant *PointeeTypeInfo = |
| 4542 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: PointeeTy); |
| 4543 | Fields.push_back(Elt: PointeeTypeInfo); |
| 4544 | } |
| 4545 | |
| 4546 | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
| 4547 | /// struct, used for member pointer types. |
| 4548 | void |
| 4549 | ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { |
| 4550 | QualType PointeeTy = Ty->getPointeeType(); |
| 4551 | |
| 4552 | // Itanium C++ ABI 2.9.5p7: |
| 4553 | // __flags is a flag word describing the cv-qualification and other |
| 4554 | // attributes of the type pointed to. |
| 4555 | unsigned Flags = extractPBaseFlags(Ctx&: CGM.getContext(), Type&: PointeeTy); |
| 4556 | |
| 4557 | const auto *ClassType = |
| 4558 | cast<RecordType>(Val: Ty->getMostRecentCXXRecordDecl()->getTypeForDecl()); |
| 4559 | if (IsIncompleteClassType(RecordTy: ClassType)) |
| 4560 | Flags |= PTI_ContainingClassIncomplete; |
| 4561 | |
| 4562 | llvm::Type *UnsignedIntLTy = |
| 4563 | CGM.getTypes().ConvertType(T: CGM.getContext().UnsignedIntTy); |
| 4564 | Fields.push_back(Elt: llvm::ConstantInt::get(Ty: UnsignedIntLTy, V: Flags)); |
| 4565 | |
| 4566 | // Itanium C++ ABI 2.9.5p7: |
| 4567 | // __pointee is a pointer to the std::type_info derivation for the |
| 4568 | // unqualified type being pointed to. |
| 4569 | llvm::Constant *PointeeTypeInfo = |
| 4570 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: PointeeTy); |
| 4571 | Fields.push_back(Elt: PointeeTypeInfo); |
| 4572 | |
| 4573 | // Itanium C++ ABI 2.9.5p9: |
| 4574 | // __context is a pointer to an abi::__class_type_info corresponding to the |
| 4575 | // class type containing the member pointed to |
| 4576 | // (e.g., the "A" in "int A::*"). |
| 4577 | Fields.push_back( |
| 4578 | Elt: ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Ty: QualType(ClassType, 0))); |
| 4579 | } |
| 4580 | |
| 4581 | llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { |
| 4582 | return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); |
| 4583 | } |
| 4584 | |
| 4585 | void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) { |
| 4586 | // Types added here must also be added to TypeInfoIsInStandardLibrary. |
| 4587 | QualType FundamentalTypes[] = { |
| 4588 | getContext().VoidTy, getContext().NullPtrTy, |
| 4589 | getContext().BoolTy, getContext().WCharTy, |
| 4590 | getContext().CharTy, getContext().UnsignedCharTy, |
| 4591 | getContext().SignedCharTy, getContext().ShortTy, |
| 4592 | getContext().UnsignedShortTy, getContext().IntTy, |
| 4593 | getContext().UnsignedIntTy, getContext().LongTy, |
| 4594 | getContext().UnsignedLongTy, getContext().LongLongTy, |
| 4595 | getContext().UnsignedLongLongTy, getContext().Int128Ty, |
| 4596 | getContext().UnsignedInt128Ty, getContext().HalfTy, |
| 4597 | getContext().FloatTy, getContext().DoubleTy, |
| 4598 | getContext().LongDoubleTy, getContext().Float128Ty, |
| 4599 | getContext().Char8Ty, getContext().Char16Ty, |
| 4600 | getContext().Char32Ty |
| 4601 | }; |
| 4602 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
| 4603 | RD->hasAttr<DLLExportAttr>() || CGM.shouldMapVisibilityToDLLExport(D: RD) |
| 4604 | ? llvm::GlobalValue::DLLExportStorageClass |
| 4605 | : llvm::GlobalValue::DefaultStorageClass; |
| 4606 | llvm::GlobalValue::VisibilityTypes Visibility = |
| 4607 | CodeGenModule::GetLLVMVisibility(V: RD->getVisibility()); |
| 4608 | for (const QualType &FundamentalType : FundamentalTypes) { |
| 4609 | QualType PointerType = getContext().getPointerType(T: FundamentalType); |
| 4610 | QualType PointerTypeConst = getContext().getPointerType( |
| 4611 | T: FundamentalType.withConst()); |
| 4612 | for (QualType Type : {FundamentalType, PointerType, PointerTypeConst}) |
| 4613 | ItaniumRTTIBuilder(*this).BuildTypeInfo( |
| 4614 | Ty: Type, Linkage: llvm::GlobalValue::ExternalLinkage, |
| 4615 | Visibility, DLLStorageClass); |
| 4616 | } |
| 4617 | } |
| 4618 | |
| 4619 | /// What sort of uniqueness rules should we use for the RTTI for the |
| 4620 | /// given type? |
| 4621 | ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( |
| 4622 | QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { |
| 4623 | if (shouldRTTIBeUnique()) |
| 4624 | return RUK_Unique; |
| 4625 | |
| 4626 | // It's only necessary for linkonce_odr or weak_odr linkage. |
| 4627 | if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && |
| 4628 | Linkage != llvm::GlobalValue::WeakODRLinkage) |
| 4629 | return RUK_Unique; |
| 4630 | |
| 4631 | // It's only necessary with default visibility. |
| 4632 | if (CanTy->getVisibility() != DefaultVisibility) |
| 4633 | return RUK_Unique; |
| 4634 | |
| 4635 | // If we're not required to publish this symbol, hide it. |
| 4636 | if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) |
| 4637 | return RUK_NonUniqueHidden; |
| 4638 | |
| 4639 | // If we're required to publish this symbol, as we might be under an |
| 4640 | // explicit instantiation, leave it with default visibility but |
| 4641 | // enable string-comparisons. |
| 4642 | assert(Linkage == llvm::GlobalValue::WeakODRLinkage); |
| 4643 | return RUK_NonUniqueVisible; |
| 4644 | } |
| 4645 | |
| 4646 | // Find out how to codegen the complete destructor and constructor |
| 4647 | namespace { |
| 4648 | enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; |
| 4649 | } |
| 4650 | static StructorCodegen getCodegenToUse(CodeGenModule &CGM, |
| 4651 | const CXXMethodDecl *MD) { |
| 4652 | if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) |
| 4653 | return StructorCodegen::Emit; |
| 4654 | |
| 4655 | // The complete and base structors are not equivalent if there are any virtual |
| 4656 | // bases, so emit separate functions. |
| 4657 | if (MD->getParent()->getNumVBases()) |
| 4658 | return StructorCodegen::Emit; |
| 4659 | |
| 4660 | GlobalDecl AliasDecl; |
| 4661 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 4662 | AliasDecl = GlobalDecl(DD, Dtor_Complete); |
| 4663 | } else { |
| 4664 | const auto *CD = cast<CXXConstructorDecl>(Val: MD); |
| 4665 | AliasDecl = GlobalDecl(CD, Ctor_Complete); |
| 4666 | } |
| 4667 | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(GD: AliasDecl); |
| 4668 | |
| 4669 | if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) |
| 4670 | return StructorCodegen::RAUW; |
| 4671 | |
| 4672 | // FIXME: Should we allow available_externally aliases? |
| 4673 | if (!llvm::GlobalAlias::isValidLinkage(L: Linkage)) |
| 4674 | return StructorCodegen::RAUW; |
| 4675 | |
| 4676 | if (llvm::GlobalValue::isWeakForLinker(Linkage)) { |
| 4677 | // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). |
| 4678 | if (CGM.getTarget().getTriple().isOSBinFormatELF() || |
| 4679 | CGM.getTarget().getTriple().isOSBinFormatWasm()) |
| 4680 | return StructorCodegen::COMDAT; |
| 4681 | return StructorCodegen::Emit; |
| 4682 | } |
| 4683 | |
| 4684 | return StructorCodegen::Alias; |
| 4685 | } |
| 4686 | |
| 4687 | static void emitConstructorDestructorAlias(CodeGenModule &CGM, |
| 4688 | GlobalDecl AliasDecl, |
| 4689 | GlobalDecl TargetDecl) { |
| 4690 | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(GD: AliasDecl); |
| 4691 | |
| 4692 | StringRef MangledName = CGM.getMangledName(GD: AliasDecl); |
| 4693 | llvm::GlobalValue *Entry = CGM.GetGlobalValue(Ref: MangledName); |
| 4694 | if (Entry && !Entry->isDeclaration()) |
| 4695 | return; |
| 4696 | |
| 4697 | auto *Aliasee = cast<llvm::GlobalValue>(Val: CGM.GetAddrOfGlobal(GD: TargetDecl)); |
| 4698 | |
| 4699 | // Create the alias with no name. |
| 4700 | auto *Alias = llvm::GlobalAlias::create(Linkage, Name: "" , Aliasee); |
| 4701 | |
| 4702 | // Constructors and destructors are always unnamed_addr. |
| 4703 | Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 4704 | |
| 4705 | // Switch any previous uses to the alias. |
| 4706 | if (Entry) { |
| 4707 | assert(Entry->getType() == Aliasee->getType() && |
| 4708 | "declaration exists with different type" ); |
| 4709 | Alias->takeName(V: Entry); |
| 4710 | Entry->replaceAllUsesWith(V: Alias); |
| 4711 | Entry->eraseFromParent(); |
| 4712 | } else { |
| 4713 | Alias->setName(MangledName); |
| 4714 | } |
| 4715 | |
| 4716 | // Finally, set up the alias with its proper name and attributes. |
| 4717 | CGM.SetCommonAttributes(GD: AliasDecl, GV: Alias); |
| 4718 | } |
| 4719 | |
| 4720 | void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD) { |
| 4721 | auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 4722 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD); |
| 4723 | const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(Val: MD); |
| 4724 | |
| 4725 | StructorCodegen CGType = getCodegenToUse(CGM, MD); |
| 4726 | |
| 4727 | if (CD ? GD.getCtorType() == Ctor_Complete |
| 4728 | : GD.getDtorType() == Dtor_Complete) { |
| 4729 | GlobalDecl BaseDecl; |
| 4730 | if (CD) |
| 4731 | BaseDecl = GD.getWithCtorType(Type: Ctor_Base); |
| 4732 | else |
| 4733 | BaseDecl = GD.getWithDtorType(Type: Dtor_Base); |
| 4734 | |
| 4735 | if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { |
| 4736 | emitConstructorDestructorAlias(CGM, AliasDecl: GD, TargetDecl: BaseDecl); |
| 4737 | return; |
| 4738 | } |
| 4739 | |
| 4740 | if (CGType == StructorCodegen::RAUW) { |
| 4741 | StringRef MangledName = CGM.getMangledName(GD); |
| 4742 | auto *Aliasee = CGM.GetAddrOfGlobal(GD: BaseDecl); |
| 4743 | CGM.addReplacement(Name: MangledName, C: Aliasee); |
| 4744 | return; |
| 4745 | } |
| 4746 | } |
| 4747 | |
| 4748 | // The base destructor is equivalent to the base destructor of its |
| 4749 | // base class if there is exactly one non-virtual base class with a |
| 4750 | // non-trivial destructor, there are no fields with a non-trivial |
| 4751 | // destructor, and the body of the destructor is trivial. |
| 4752 | if (DD && GD.getDtorType() == Dtor_Base && |
| 4753 | CGType != StructorCodegen::COMDAT && |
| 4754 | !CGM.TryEmitBaseDestructorAsAlias(D: DD)) |
| 4755 | return; |
| 4756 | |
| 4757 | // FIXME: The deleting destructor is equivalent to the selected operator |
| 4758 | // delete if: |
| 4759 | // * either the delete is a destroying operator delete or the destructor |
| 4760 | // would be trivial if it weren't virtual, |
| 4761 | // * the conversion from the 'this' parameter to the first parameter of the |
| 4762 | // destructor is equivalent to a bitcast, |
| 4763 | // * the destructor does not have an implicit "this" return, and |
| 4764 | // * the operator delete has the same calling convention and IR function type |
| 4765 | // as the destructor. |
| 4766 | // In such cases we should try to emit the deleting dtor as an alias to the |
| 4767 | // selected 'operator delete'. |
| 4768 | |
| 4769 | llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
| 4770 | |
| 4771 | if (CGType == StructorCodegen::COMDAT) { |
| 4772 | SmallString<256> Buffer; |
| 4773 | llvm::raw_svector_ostream Out(Buffer); |
| 4774 | if (DD) |
| 4775 | getMangleContext().mangleCXXDtorComdat(D: DD, Out); |
| 4776 | else |
| 4777 | getMangleContext().mangleCXXCtorComdat(D: CD, Out); |
| 4778 | llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Name: Out.str()); |
| 4779 | Fn->setComdat(C); |
| 4780 | } else { |
| 4781 | CGM.maybeSetTrivialComdat(D: *MD, GO&: *Fn); |
| 4782 | } |
| 4783 | } |
| 4784 | |
| 4785 | static llvm::FunctionCallee getBeginCatchFn(CodeGenModule &CGM) { |
| 4786 | // void *__cxa_begin_catch(void*); |
| 4787 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
| 4788 | Result: CGM.Int8PtrTy, Params: CGM.Int8PtrTy, /*isVarArg=*/false); |
| 4789 | |
| 4790 | return CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_begin_catch" ); |
| 4791 | } |
| 4792 | |
| 4793 | static llvm::FunctionCallee getEndCatchFn(CodeGenModule &CGM) { |
| 4794 | // void __cxa_end_catch(); |
| 4795 | llvm::FunctionType *FTy = |
| 4796 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 4797 | |
| 4798 | return CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_end_catch" ); |
| 4799 | } |
| 4800 | |
| 4801 | static llvm::FunctionCallee getGetExceptionPtrFn(CodeGenModule &CGM) { |
| 4802 | // void *__cxa_get_exception_ptr(void*); |
| 4803 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
| 4804 | Result: CGM.Int8PtrTy, Params: CGM.Int8PtrTy, /*isVarArg=*/false); |
| 4805 | |
| 4806 | return CGM.CreateRuntimeFunction(Ty: FTy, Name: "__cxa_get_exception_ptr" ); |
| 4807 | } |
| 4808 | |
| 4809 | namespace { |
| 4810 | /// A cleanup to call __cxa_end_catch. In many cases, the caught |
| 4811 | /// exception type lets us state definitively that the thrown exception |
| 4812 | /// type does not have a destructor. In particular: |
| 4813 | /// - Catch-alls tell us nothing, so we have to conservatively |
| 4814 | /// assume that the thrown exception might have a destructor. |
| 4815 | /// - Catches by reference behave according to their base types. |
| 4816 | /// - Catches of non-record types will only trigger for exceptions |
| 4817 | /// of non-record types, which never have destructors. |
| 4818 | /// - Catches of record types can trigger for arbitrary subclasses |
| 4819 | /// of the caught type, so we have to assume the actual thrown |
| 4820 | /// exception type might have a throwing destructor, even if the |
| 4821 | /// caught type's destructor is trivial or nothrow. |
| 4822 | struct CallEndCatch final : EHScopeStack::Cleanup { |
| 4823 | CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} |
| 4824 | bool MightThrow; |
| 4825 | |
| 4826 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 4827 | if (!MightThrow) { |
| 4828 | CGF.EmitNounwindRuntimeCall(callee: getEndCatchFn(CGM&: CGF.CGM)); |
| 4829 | return; |
| 4830 | } |
| 4831 | |
| 4832 | CGF.EmitRuntimeCallOrInvoke(callee: getEndCatchFn(CGM&: CGF.CGM)); |
| 4833 | } |
| 4834 | }; |
| 4835 | } |
| 4836 | |
| 4837 | /// Emits a call to __cxa_begin_catch and enters a cleanup to call |
| 4838 | /// __cxa_end_catch. If -fassume-nothrow-exception-dtor is specified, we assume |
| 4839 | /// that the exception object's dtor is nothrow, therefore the __cxa_end_catch |
| 4840 | /// call can be marked as nounwind even if EndMightThrow is true. |
| 4841 | /// |
| 4842 | /// \param EndMightThrow - true if __cxa_end_catch might throw |
| 4843 | static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, |
| 4844 | llvm::Value *Exn, |
| 4845 | bool EndMightThrow) { |
| 4846 | llvm::CallInst *call = |
| 4847 | CGF.EmitNounwindRuntimeCall(callee: getBeginCatchFn(CGM&: CGF.CGM), args: Exn); |
| 4848 | |
| 4849 | CGF.EHStack.pushCleanup<CallEndCatch>( |
| 4850 | Kind: NormalAndEHCleanup, |
| 4851 | A: EndMightThrow && !CGF.CGM.getLangOpts().AssumeNothrowExceptionDtor); |
| 4852 | |
| 4853 | return call; |
| 4854 | } |
| 4855 | |
| 4856 | /// A "special initializer" callback for initializing a catch |
| 4857 | /// parameter during catch initialization. |
| 4858 | static void InitCatchParam(CodeGenFunction &CGF, |
| 4859 | const VarDecl &CatchParam, |
| 4860 | Address ParamAddr, |
| 4861 | SourceLocation Loc) { |
| 4862 | // Load the exception from where the landing pad saved it. |
| 4863 | llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| 4864 | |
| 4865 | CanQualType CatchType = |
| 4866 | CGF.CGM.getContext().getCanonicalType(T: CatchParam.getType()); |
| 4867 | llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(T: CatchType); |
| 4868 | |
| 4869 | // If we're catching by reference, we can just cast the object |
| 4870 | // pointer to the appropriate pointer. |
| 4871 | if (isa<ReferenceType>(Val: CatchType)) { |
| 4872 | QualType CaughtType = cast<ReferenceType>(Val&: CatchType)->getPointeeType(); |
| 4873 | bool EndCatchMightThrow = CaughtType->isRecordType(); |
| 4874 | |
| 4875 | // __cxa_begin_catch returns the adjusted object pointer. |
| 4876 | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndMightThrow: EndCatchMightThrow); |
| 4877 | |
| 4878 | // We have no way to tell the personality function that we're |
| 4879 | // catching by reference, so if we're catching a pointer, |
| 4880 | // __cxa_begin_catch will actually return that pointer by value. |
| 4881 | if (const PointerType *PT = dyn_cast<PointerType>(Val&: CaughtType)) { |
| 4882 | QualType PointeeType = PT->getPointeeType(); |
| 4883 | |
| 4884 | // When catching by reference, generally we should just ignore |
| 4885 | // this by-value pointer and use the exception object instead. |
| 4886 | if (!PointeeType->isRecordType()) { |
| 4887 | |
| 4888 | // Exn points to the struct _Unwind_Exception header, which |
| 4889 | // we have to skip past in order to reach the exception data. |
| 4890 | unsigned = |
| 4891 | CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); |
| 4892 | AdjustedExn = |
| 4893 | CGF.Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: Exn, Idx0: HeaderSize); |
| 4894 | |
| 4895 | // However, if we're catching a pointer-to-record type that won't |
| 4896 | // work, because the personality function might have adjusted |
| 4897 | // the pointer. There's actually no way for us to fully satisfy |
| 4898 | // the language/ABI contract here: we can't use Exn because it |
| 4899 | // might have the wrong adjustment, but we can't use the by-value |
| 4900 | // pointer because it's off by a level of abstraction. |
| 4901 | // |
| 4902 | // The current solution is to dump the adjusted pointer into an |
| 4903 | // alloca, which breaks language semantics (because changing the |
| 4904 | // pointer doesn't change the exception) but at least works. |
| 4905 | // The better solution would be to filter out non-exact matches |
| 4906 | // and rethrow them, but this is tricky because the rethrow |
| 4907 | // really needs to be catchable by other sites at this landing |
| 4908 | // pad. The best solution is to fix the personality function. |
| 4909 | } else { |
| 4910 | // Pull the pointer for the reference type off. |
| 4911 | llvm::Type *PtrTy = CGF.ConvertTypeForMem(T: CaughtType); |
| 4912 | |
| 4913 | // Create the temporary and write the adjusted pointer into it. |
| 4914 | Address ExnPtrTmp = |
| 4915 | CGF.CreateTempAlloca(Ty: PtrTy, align: CGF.getPointerAlign(), Name: "exn.byref.tmp" ); |
| 4916 | llvm::Value *Casted = CGF.Builder.CreateBitCast(V: AdjustedExn, DestTy: PtrTy); |
| 4917 | CGF.Builder.CreateStore(Val: Casted, Addr: ExnPtrTmp); |
| 4918 | |
| 4919 | // Bind the reference to the temporary. |
| 4920 | AdjustedExn = ExnPtrTmp.emitRawPointer(CGF); |
| 4921 | } |
| 4922 | } |
| 4923 | |
| 4924 | llvm::Value *ExnCast = |
| 4925 | CGF.Builder.CreateBitCast(V: AdjustedExn, DestTy: LLVMCatchTy, Name: "exn.byref" ); |
| 4926 | CGF.Builder.CreateStore(Val: ExnCast, Addr: ParamAddr); |
| 4927 | return; |
| 4928 | } |
| 4929 | |
| 4930 | // Scalars and complexes. |
| 4931 | TypeEvaluationKind TEK = CGF.getEvaluationKind(T: CatchType); |
| 4932 | if (TEK != TEK_Aggregate) { |
| 4933 | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndMightThrow: false); |
| 4934 | |
| 4935 | // If the catch type is a pointer type, __cxa_begin_catch returns |
| 4936 | // the pointer by value. |
| 4937 | if (CatchType->hasPointerRepresentation()) { |
| 4938 | llvm::Value *CastExn = |
| 4939 | CGF.Builder.CreateBitCast(V: AdjustedExn, DestTy: LLVMCatchTy, Name: "exn.casted" ); |
| 4940 | |
| 4941 | switch (CatchType.getQualifiers().getObjCLifetime()) { |
| 4942 | case Qualifiers::OCL_Strong: |
| 4943 | CastExn = CGF.EmitARCRetainNonBlock(value: CastExn); |
| 4944 | [[fallthrough]]; |
| 4945 | |
| 4946 | case Qualifiers::OCL_None: |
| 4947 | case Qualifiers::OCL_ExplicitNone: |
| 4948 | case Qualifiers::OCL_Autoreleasing: |
| 4949 | CGF.Builder.CreateStore(Val: CastExn, Addr: ParamAddr); |
| 4950 | return; |
| 4951 | |
| 4952 | case Qualifiers::OCL_Weak: |
| 4953 | CGF.EmitARCInitWeak(addr: ParamAddr, value: CastExn); |
| 4954 | return; |
| 4955 | } |
| 4956 | llvm_unreachable("bad ownership qualifier!" ); |
| 4957 | } |
| 4958 | |
| 4959 | // Otherwise, it returns a pointer into the exception object. |
| 4960 | |
| 4961 | LValue srcLV = CGF.MakeNaturalAlignAddrLValue(V: AdjustedExn, T: CatchType); |
| 4962 | LValue destLV = CGF.MakeAddrLValue(Addr: ParamAddr, T: CatchType); |
| 4963 | switch (TEK) { |
| 4964 | case TEK_Complex: |
| 4965 | CGF.EmitStoreOfComplex(V: CGF.EmitLoadOfComplex(src: srcLV, loc: Loc), dest: destLV, |
| 4966 | /*init*/ isInit: true); |
| 4967 | return; |
| 4968 | case TEK_Scalar: { |
| 4969 | llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(lvalue: srcLV, Loc); |
| 4970 | CGF.EmitStoreOfScalar(value: ExnLoad, lvalue: destLV, /*init*/ isInit: true); |
| 4971 | return; |
| 4972 | } |
| 4973 | case TEK_Aggregate: |
| 4974 | llvm_unreachable("evaluation kind filtered out!" ); |
| 4975 | } |
| 4976 | llvm_unreachable("bad evaluation kind" ); |
| 4977 | } |
| 4978 | |
| 4979 | assert(isa<RecordType>(CatchType) && "unexpected catch type!" ); |
| 4980 | auto catchRD = CatchType->getAsCXXRecordDecl(); |
| 4981 | CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(CD: catchRD); |
| 4982 | |
| 4983 | llvm::Type *PtrTy = CGF.UnqualPtrTy; // addrspace 0 ok |
| 4984 | |
| 4985 | // Check for a copy expression. If we don't have a copy expression, |
| 4986 | // that means a trivial copy is okay. |
| 4987 | const Expr *copyExpr = CatchParam.getInit(); |
| 4988 | if (!copyExpr) { |
| 4989 | llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, EndMightThrow: true); |
| 4990 | Address adjustedExn(CGF.Builder.CreateBitCast(V: rawAdjustedExn, DestTy: PtrTy), |
| 4991 | LLVMCatchTy, caughtExnAlignment); |
| 4992 | LValue Dest = CGF.MakeAddrLValue(Addr: ParamAddr, T: CatchType); |
| 4993 | LValue Src = CGF.MakeAddrLValue(Addr: adjustedExn, T: CatchType); |
| 4994 | CGF.EmitAggregateCopy(Dest, Src, EltTy: CatchType, MayOverlap: AggValueSlot::DoesNotOverlap); |
| 4995 | return; |
| 4996 | } |
| 4997 | |
| 4998 | // We have to call __cxa_get_exception_ptr to get the adjusted |
| 4999 | // pointer before copying. |
| 5000 | llvm::CallInst *rawAdjustedExn = |
| 5001 | CGF.EmitNounwindRuntimeCall(callee: getGetExceptionPtrFn(CGM&: CGF.CGM), args: Exn); |
| 5002 | |
| 5003 | // Cast that to the appropriate type. |
| 5004 | Address adjustedExn(CGF.Builder.CreateBitCast(V: rawAdjustedExn, DestTy: PtrTy), |
| 5005 | LLVMCatchTy, caughtExnAlignment); |
| 5006 | |
| 5007 | // The copy expression is defined in terms of an OpaqueValueExpr. |
| 5008 | // Find it and map it to the adjusted expression. |
| 5009 | CodeGenFunction::OpaqueValueMapping |
| 5010 | opaque(CGF, OpaqueValueExpr::findInCopyConstruct(expr: copyExpr), |
| 5011 | CGF.MakeAddrLValue(Addr: adjustedExn, T: CatchParam.getType())); |
| 5012 | |
| 5013 | // Call the copy ctor in a terminate scope. |
| 5014 | CGF.EHStack.pushTerminate(); |
| 5015 | |
| 5016 | // Perform the copy construction. |
| 5017 | CGF.EmitAggExpr(E: copyExpr, |
| 5018 | AS: AggValueSlot::forAddr(addr: ParamAddr, quals: Qualifiers(), |
| 5019 | isDestructed: AggValueSlot::IsNotDestructed, |
| 5020 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
| 5021 | isAliased: AggValueSlot::IsNotAliased, |
| 5022 | mayOverlap: AggValueSlot::DoesNotOverlap)); |
| 5023 | |
| 5024 | // Leave the terminate scope. |
| 5025 | CGF.EHStack.popTerminate(); |
| 5026 | |
| 5027 | // Undo the opaque value mapping. |
| 5028 | opaque.pop(); |
| 5029 | |
| 5030 | // Finally we can call __cxa_begin_catch. |
| 5031 | CallBeginCatch(CGF, Exn, EndMightThrow: true); |
| 5032 | } |
| 5033 | |
| 5034 | /// Begins a catch statement by initializing the catch variable and |
| 5035 | /// calling __cxa_begin_catch. |
| 5036 | void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
| 5037 | const CXXCatchStmt *S) { |
| 5038 | // We have to be very careful with the ordering of cleanups here: |
| 5039 | // C++ [except.throw]p4: |
| 5040 | // The destruction [of the exception temporary] occurs |
| 5041 | // immediately after the destruction of the object declared in |
| 5042 | // the exception-declaration in the handler. |
| 5043 | // |
| 5044 | // So the precise ordering is: |
| 5045 | // 1. Construct catch variable. |
| 5046 | // 2. __cxa_begin_catch |
| 5047 | // 3. Enter __cxa_end_catch cleanup |
| 5048 | // 4. Enter dtor cleanup |
| 5049 | // |
| 5050 | // We do this by using a slightly abnormal initialization process. |
| 5051 | // Delegation sequence: |
| 5052 | // - ExitCXXTryStmt opens a RunCleanupsScope |
| 5053 | // - EmitAutoVarAlloca creates the variable and debug info |
| 5054 | // - InitCatchParam initializes the variable from the exception |
| 5055 | // - CallBeginCatch calls __cxa_begin_catch |
| 5056 | // - CallBeginCatch enters the __cxa_end_catch cleanup |
| 5057 | // - EmitAutoVarCleanups enters the variable destructor cleanup |
| 5058 | // - EmitCXXTryStmt emits the code for the catch body |
| 5059 | // - EmitCXXTryStmt close the RunCleanupsScope |
| 5060 | |
| 5061 | VarDecl *CatchParam = S->getExceptionDecl(); |
| 5062 | if (!CatchParam) { |
| 5063 | llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| 5064 | CallBeginCatch(CGF, Exn, EndMightThrow: true); |
| 5065 | return; |
| 5066 | } |
| 5067 | |
| 5068 | // Emit the local. |
| 5069 | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(var: *CatchParam); |
| 5070 | { |
| 5071 | ApplyAtomGroup Grp(CGF.getDebugInfo()); |
| 5072 | InitCatchParam(CGF, CatchParam: *CatchParam, ParamAddr: var.getObjectAddress(CGF), |
| 5073 | Loc: S->getBeginLoc()); |
| 5074 | } |
| 5075 | CGF.EmitAutoVarCleanups(emission: var); |
| 5076 | } |
| 5077 | |
| 5078 | /// Get or define the following function: |
| 5079 | /// void @__clang_call_terminate(i8* %exn) nounwind noreturn |
| 5080 | /// This code is used only in C++. |
| 5081 | static llvm::FunctionCallee getClangCallTerminateFn(CodeGenModule &CGM) { |
| 5082 | ASTContext &C = CGM.getContext(); |
| 5083 | const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| 5084 | resultType: C.VoidTy, argTypes: {C.getPointerType(T: C.CharTy)}); |
| 5085 | llvm::FunctionType *fnTy = CGM.getTypes().GetFunctionType(Info: FI); |
| 5086 | llvm::FunctionCallee fnRef = CGM.CreateRuntimeFunction( |
| 5087 | Ty: fnTy, Name: "__clang_call_terminate" , ExtraAttrs: llvm::AttributeList(), /*Local=*/true); |
| 5088 | llvm::Function *fn = |
| 5089 | cast<llvm::Function>(Val: fnRef.getCallee()->stripPointerCasts()); |
| 5090 | if (fn->empty()) { |
| 5091 | CGM.SetLLVMFunctionAttributes(GD: GlobalDecl(), Info: FI, F: fn, /*IsThunk=*/false); |
| 5092 | CGM.SetLLVMFunctionAttributesForDefinition(D: nullptr, F: fn); |
| 5093 | fn->setDoesNotThrow(); |
| 5094 | fn->setDoesNotReturn(); |
| 5095 | |
| 5096 | // What we really want is to massively penalize inlining without |
| 5097 | // forbidding it completely. The difference between that and |
| 5098 | // 'noinline' is negligible. |
| 5099 | fn->addFnAttr(Kind: llvm::Attribute::NoInline); |
| 5100 | |
| 5101 | // Allow this function to be shared across translation units, but |
| 5102 | // we don't want it to turn into an exported symbol. |
| 5103 | fn->setLinkage(llvm::Function::LinkOnceODRLinkage); |
| 5104 | fn->setVisibility(llvm::Function::HiddenVisibility); |
| 5105 | if (CGM.supportsCOMDAT()) |
| 5106 | fn->setComdat(CGM.getModule().getOrInsertComdat(Name: fn->getName())); |
| 5107 | |
| 5108 | // Set up the function. |
| 5109 | llvm::BasicBlock *entry = |
| 5110 | llvm::BasicBlock::Create(Context&: CGM.getLLVMContext(), Name: "" , Parent: fn); |
| 5111 | CGBuilderTy builder(CGM, entry); |
| 5112 | |
| 5113 | // Pull the exception pointer out of the parameter list. |
| 5114 | llvm::Value *exn = &*fn->arg_begin(); |
| 5115 | |
| 5116 | // Call __cxa_begin_catch(exn). |
| 5117 | llvm::CallInst *catchCall = builder.CreateCall(Callee: getBeginCatchFn(CGM), Args: exn); |
| 5118 | catchCall->setDoesNotThrow(); |
| 5119 | catchCall->setCallingConv(CGM.getRuntimeCC()); |
| 5120 | |
| 5121 | // Call std::terminate(). |
| 5122 | llvm::CallInst *termCall = builder.CreateCall(Callee: CGM.getTerminateFn()); |
| 5123 | termCall->setDoesNotThrow(); |
| 5124 | termCall->setDoesNotReturn(); |
| 5125 | termCall->setCallingConv(CGM.getRuntimeCC()); |
| 5126 | |
| 5127 | // std::terminate cannot return. |
| 5128 | builder.CreateUnreachable(); |
| 5129 | } |
| 5130 | return fnRef; |
| 5131 | } |
| 5132 | |
| 5133 | llvm::CallInst * |
| 5134 | ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| 5135 | llvm::Value *Exn) { |
| 5136 | // In C++, we want to call __cxa_begin_catch() before terminating. |
| 5137 | if (Exn) { |
| 5138 | assert(CGF.CGM.getLangOpts().CPlusPlus); |
| 5139 | return CGF.EmitNounwindRuntimeCall(callee: getClangCallTerminateFn(CGM&: CGF.CGM), args: Exn); |
| 5140 | } |
| 5141 | return CGF.EmitNounwindRuntimeCall(callee: CGF.CGM.getTerminateFn()); |
| 5142 | } |
| 5143 | |
| 5144 | std::pair<llvm::Value *, const CXXRecordDecl *> |
| 5145 | ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| 5146 | const CXXRecordDecl *RD) { |
| 5147 | return {CGF.GetVTablePtr(This, VTableTy: CGM.Int8PtrTy, VTableClass: RD), RD}; |
| 5148 | } |
| 5149 | |
| 5150 | llvm::Constant * |
| 5151 | ItaniumCXXABI::getSignedVirtualMemberFunctionPointer(const CXXMethodDecl *MD) { |
| 5152 | const CXXMethodDecl *origMD = |
| 5153 | cast<CXXMethodDecl>(Val: CGM.getItaniumVTableContext() |
| 5154 | .findOriginalMethod(GD: MD->getCanonicalDecl()) |
| 5155 | .getDecl()); |
| 5156 | llvm::Constant *thunk = getOrCreateVirtualFunctionPointerThunk(MD: origMD); |
| 5157 | QualType funcType = CGM.getContext().getMemberPointerType( |
| 5158 | T: MD->getType(), /*Qualifier=*/nullptr, Cls: MD->getParent()); |
| 5159 | return CGM.getMemberFunctionPointer(Pointer: thunk, FT: funcType); |
| 5160 | } |
| 5161 | |
| 5162 | void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
| 5163 | const CXXCatchStmt *C) { |
| 5164 | if (CGF.getTarget().hasFeature(Feature: "exception-handling" )) |
| 5165 | CGF.EHStack.pushCleanup<CatchRetScope>( |
| 5166 | Kind: NormalCleanup, A: cast<llvm::CatchPadInst>(Val: CGF.CurrentFuncletPad)); |
| 5167 | ItaniumCXXABI::emitBeginCatch(CGF, S: C); |
| 5168 | } |
| 5169 | |
| 5170 | llvm::CallInst * |
| 5171 | WebAssemblyCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| 5172 | llvm::Value *Exn) { |
| 5173 | // Itanium ABI calls __clang_call_terminate(), which __cxa_begin_catch() on |
| 5174 | // the violating exception to mark it handled, but it is currently hard to do |
| 5175 | // with wasm EH instruction structure with catch/catch_all, we just call |
| 5176 | // std::terminate and ignore the violating exception as in CGCXXABI in Wasm EH |
| 5177 | // and call __clang_call_terminate only in Emscripten EH. |
| 5178 | // TODO Consider code transformation that makes calling __clang_call_terminate |
| 5179 | // in Wasm EH possible. |
| 5180 | if (Exn && !EHPersonality::get(CGF).isWasmPersonality()) { |
| 5181 | assert(CGF.CGM.getLangOpts().CPlusPlus); |
| 5182 | return CGF.EmitNounwindRuntimeCall(callee: getClangCallTerminateFn(CGM&: CGF.CGM), args: Exn); |
| 5183 | } |
| 5184 | return CGCXXABI::emitTerminateForUnexpectedException(CGF, Exn); |
| 5185 | } |
| 5186 | |
| 5187 | /// Register a global destructor as best as we know how. |
| 5188 | void XLCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 5189 | llvm::FunctionCallee Dtor, |
| 5190 | llvm::Constant *Addr) { |
| 5191 | if (D.getTLSKind() != VarDecl::TLS_None) { |
| 5192 | llvm::PointerType *PtrTy = CGF.UnqualPtrTy; |
| 5193 | |
| 5194 | // extern "C" int __pt_atexit_np(int flags, int(*)(int,...), ...); |
| 5195 | llvm::FunctionType *AtExitTy = |
| 5196 | llvm::FunctionType::get(Result: CGM.IntTy, Params: {CGM.IntTy, PtrTy}, isVarArg: true); |
| 5197 | |
| 5198 | // Fetch the actual function. |
| 5199 | llvm::FunctionCallee AtExit = |
| 5200 | CGM.CreateRuntimeFunction(Ty: AtExitTy, Name: "__pt_atexit_np" ); |
| 5201 | |
| 5202 | // Create __dtor function for the var decl. |
| 5203 | llvm::Function *DtorStub = CGF.createTLSAtExitStub(VD: D, Dtor, Addr, AtExit); |
| 5204 | |
| 5205 | // Register above __dtor with atexit(). |
| 5206 | // First param is flags and must be 0, second param is function ptr |
| 5207 | llvm::Value *NV = llvm::Constant::getNullValue(Ty: CGM.IntTy); |
| 5208 | CGF.EmitNounwindRuntimeCall(callee: AtExit, args: {NV, DtorStub}); |
| 5209 | |
| 5210 | // Cannot unregister TLS __dtor so done |
| 5211 | return; |
| 5212 | } |
| 5213 | |
| 5214 | // Create __dtor function for the var decl. |
| 5215 | llvm::Function *DtorStub = |
| 5216 | cast<llvm::Function>(Val: CGF.createAtExitStub(VD: D, Dtor, Addr)); |
| 5217 | |
| 5218 | // Register above __dtor with atexit(). |
| 5219 | CGF.registerGlobalDtorWithAtExit(dtorStub: DtorStub); |
| 5220 | |
| 5221 | // Emit __finalize function to unregister __dtor and (as appropriate) call |
| 5222 | // __dtor. |
| 5223 | emitCXXStermFinalizer(D, dtorStub: DtorStub, addr: Addr); |
| 5224 | } |
| 5225 | |
| 5226 | void XLCXXABI::emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
| 5227 | llvm::Constant *addr) { |
| 5228 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false); |
| 5229 | SmallString<256> FnName; |
| 5230 | { |
| 5231 | llvm::raw_svector_ostream Out(FnName); |
| 5232 | getMangleContext().mangleDynamicStermFinalizer(D: &D, Out); |
| 5233 | } |
| 5234 | |
| 5235 | // Create the finalization action associated with a variable. |
| 5236 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| 5237 | llvm::Function *StermFinalizer = CGM.CreateGlobalInitOrCleanUpFunction( |
| 5238 | ty: FTy, name: FnName.str(), FI, Loc: D.getLocation()); |
| 5239 | |
| 5240 | CodeGenFunction CGF(CGM); |
| 5241 | |
| 5242 | CGF.StartFunction(GD: GlobalDecl(), RetTy: CGM.getContext().VoidTy, Fn: StermFinalizer, FnInfo: FI, |
| 5243 | Args: FunctionArgList(), Loc: D.getLocation(), |
| 5244 | StartLoc: D.getInit()->getExprLoc()); |
| 5245 | |
| 5246 | // The unatexit subroutine unregisters __dtor functions that were previously |
| 5247 | // registered by the atexit subroutine. If the referenced function is found, |
| 5248 | // the unatexit returns a value of 0, meaning that the cleanup is still |
| 5249 | // pending (and we should call the __dtor function). |
| 5250 | llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(dtorStub); |
| 5251 | |
| 5252 | llvm::Value *NeedsDestruct = CGF.Builder.CreateIsNull(Arg: V, Name: "needs_destruct" ); |
| 5253 | |
| 5254 | llvm::BasicBlock *DestructCallBlock = CGF.createBasicBlock(name: "destruct.call" ); |
| 5255 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "destruct.end" ); |
| 5256 | |
| 5257 | // Check if unatexit returns a value of 0. If it does, jump to |
| 5258 | // DestructCallBlock, otherwise jump to EndBlock directly. |
| 5259 | CGF.Builder.CreateCondBr(Cond: NeedsDestruct, True: DestructCallBlock, False: EndBlock); |
| 5260 | |
| 5261 | CGF.EmitBlock(BB: DestructCallBlock); |
| 5262 | |
| 5263 | // Emit the call to dtorStub. |
| 5264 | llvm::CallInst *CI = CGF.Builder.CreateCall(Callee: dtorStub); |
| 5265 | |
| 5266 | // Make sure the call and the callee agree on calling convention. |
| 5267 | CI->setCallingConv(dtorStub->getCallingConv()); |
| 5268 | |
| 5269 | CGF.EmitBlock(BB: EndBlock); |
| 5270 | |
| 5271 | CGF.FinishFunction(); |
| 5272 | |
| 5273 | if (auto *IPA = D.getAttr<InitPriorityAttr>()) { |
| 5274 | CGM.AddCXXPrioritizedStermFinalizerEntry(StermFinalizer, |
| 5275 | Priority: IPA->getPriority()); |
| 5276 | } else if (isTemplateInstantiation(Kind: D.getTemplateSpecializationKind()) || |
| 5277 | getContext().GetGVALinkageForVariable(VD: &D) == GVA_DiscardableODR) { |
| 5278 | // According to C++ [basic.start.init]p2, class template static data |
| 5279 | // members (i.e., implicitly or explicitly instantiated specializations) |
| 5280 | // have unordered initialization. As a consequence, we can put them into |
| 5281 | // their own llvm.global_dtors entry. |
| 5282 | CGM.AddCXXStermFinalizerToGlobalDtor(StermFinalizer, Priority: 65535); |
| 5283 | } else { |
| 5284 | CGM.AddCXXStermFinalizerEntry(DtorFn: StermFinalizer); |
| 5285 | } |
| 5286 | } |
| 5287 | |