| 1 | //===- XCore.cpp ----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | #include "TargetInfo.h" |
| 11 | |
| 12 | using namespace clang; |
| 13 | using namespace clang::CodeGen; |
| 14 | |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | // XCore ABI Implementation |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | namespace { |
| 20 | |
| 21 | /// A SmallStringEnc instance is used to build up the TypeString by passing |
| 22 | /// it by reference between functions that append to it. |
| 23 | typedef llvm::SmallString<128> SmallStringEnc; |
| 24 | |
| 25 | /// TypeStringCache caches the meta encodings of Types. |
| 26 | /// |
| 27 | /// The reason for caching TypeStrings is two fold: |
| 28 | /// 1. To cache a type's encoding for later uses; |
| 29 | /// 2. As a means to break recursive member type inclusion. |
| 30 | /// |
| 31 | /// A cache Entry can have a Status of: |
| 32 | /// NonRecursive: The type encoding is not recursive; |
| 33 | /// Recursive: The type encoding is recursive; |
| 34 | /// Incomplete: An incomplete TypeString; |
| 35 | /// IncompleteUsed: An incomplete TypeString that has been used in a |
| 36 | /// Recursive type encoding. |
| 37 | /// |
| 38 | /// A NonRecursive entry will have all of its sub-members expanded as fully |
| 39 | /// as possible. Whilst it may contain types which are recursive, the type |
| 40 | /// itself is not recursive and thus its encoding may be safely used whenever |
| 41 | /// the type is encountered. |
| 42 | /// |
| 43 | /// A Recursive entry will have all of its sub-members expanded as fully as |
| 44 | /// possible. The type itself is recursive and it may contain other types which |
| 45 | /// are recursive. The Recursive encoding must not be used during the expansion |
| 46 | /// of a recursive type's recursive branch. For simplicity the code uses |
| 47 | /// IncompleteCount to reject all usage of Recursive encodings for member types. |
| 48 | /// |
| 49 | /// An Incomplete entry is always a RecordType and only encodes its |
| 50 | /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and |
| 51 | /// are placed into the cache during type expansion as a means to identify and |
| 52 | /// handle recursive inclusion of types as sub-members. If there is recursion |
| 53 | /// the entry becomes IncompleteUsed. |
| 54 | /// |
| 55 | /// During the expansion of a RecordType's members: |
| 56 | /// |
| 57 | /// If the cache contains a NonRecursive encoding for the member type, the |
| 58 | /// cached encoding is used; |
| 59 | /// |
| 60 | /// If the cache contains a Recursive encoding for the member type, the |
| 61 | /// cached encoding is 'Swapped' out, as it may be incorrect, and... |
| 62 | /// |
| 63 | /// If the member is a RecordType, an Incomplete encoding is placed into the |
| 64 | /// cache to break potential recursive inclusion of itself as a sub-member; |
| 65 | /// |
| 66 | /// Once a member RecordType has been expanded, its temporary incomplete |
| 67 | /// entry is removed from the cache. If a Recursive encoding was swapped out |
| 68 | /// it is swapped back in; |
| 69 | /// |
| 70 | /// If an incomplete entry is used to expand a sub-member, the incomplete |
| 71 | /// entry is marked as IncompleteUsed. The cache keeps count of how many |
| 72 | /// IncompleteUsed entries it currently contains in IncompleteUsedCount; |
| 73 | /// |
| 74 | /// If a member's encoding is found to be a NonRecursive or Recursive viz: |
| 75 | /// IncompleteUsedCount==0, the member's encoding is added to the cache. |
| 76 | /// Else the member is part of a recursive type and thus the recursion has |
| 77 | /// been exited too soon for the encoding to be correct for the member. |
| 78 | /// |
| 79 | class TypeStringCache { |
| 80 | enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; |
| 81 | struct Entry { |
| 82 | std::string Str; // The encoded TypeString for the type. |
| 83 | enum Status State; // Information about the encoding in 'Str'. |
| 84 | std::string Swapped; // A temporary place holder for a Recursive encoding |
| 85 | // during the expansion of RecordType's members. |
| 86 | }; |
| 87 | std::map<const IdentifierInfo *, struct Entry> Map; |
| 88 | unsigned IncompleteCount; // Number of Incomplete entries in the Map. |
| 89 | unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. |
| 90 | public: |
| 91 | TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} |
| 92 | void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); |
| 93 | bool removeIncomplete(const IdentifierInfo *ID); |
| 94 | void addIfComplete(const IdentifierInfo *ID, StringRef Str, |
| 95 | bool IsRecursive); |
| 96 | StringRef lookupStr(const IdentifierInfo *ID); |
| 97 | }; |
| 98 | |
| 99 | /// TypeString encodings for enum & union fields must be order. |
| 100 | /// FieldEncoding is a helper for this ordering process. |
| 101 | class FieldEncoding { |
| 102 | bool HasName; |
| 103 | std::string Enc; |
| 104 | public: |
| 105 | FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} |
| 106 | StringRef str() { return Enc; } |
| 107 | bool operator<(const FieldEncoding &rhs) const { |
| 108 | if (HasName != rhs.HasName) return HasName; |
| 109 | return Enc < rhs.Enc; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | class XCoreABIInfo : public DefaultABIInfo { |
| 114 | public: |
| 115 | XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| 116 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| 117 | AggValueSlot Slot) const override; |
| 118 | }; |
| 119 | |
| 120 | class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { |
| 121 | mutable TypeStringCache TSC; |
| 122 | void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, |
| 123 | const CodeGen::CodeGenModule &M) const; |
| 124 | |
| 125 | public: |
| 126 | XCoreTargetCodeGenInfo(CodeGenTypes &CGT) |
| 127 | : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(args&: CGT)) {} |
| 128 | void emitTargetMetadata(CodeGen::CodeGenModule &CGM, |
| 129 | const llvm::MapVector<GlobalDecl, StringRef> |
| 130 | &MangledDeclNames) const override; |
| 131 | }; |
| 132 | |
| 133 | } // End anonymous namespace. |
| 134 | |
| 135 | // TODO: this implementation is likely now redundant with the default |
| 136 | // EmitVAArg. |
| 137 | RValue XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 138 | QualType Ty, AggValueSlot Slot) const { |
| 139 | CGBuilderTy &Builder = CGF.Builder; |
| 140 | |
| 141 | // Get the VAList. |
| 142 | CharUnits SlotSize = CharUnits::fromQuantity(Quantity: 4); |
| 143 | Address AP = Address(Builder.CreateLoad(Addr: VAListAddr), |
| 144 | getVAListElementType(CGF), SlotSize); |
| 145 | |
| 146 | // Handle the argument. |
| 147 | ABIArgInfo AI = classifyArgumentType(RetTy: Ty); |
| 148 | CharUnits TypeAlign = getContext().getTypeAlignInChars(T: Ty); |
| 149 | llvm::Type *ArgTy = CGT.ConvertType(T: Ty); |
| 150 | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
| 151 | AI.setCoerceToType(ArgTy); |
| 152 | llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(C&: ArgTy->getContext()); |
| 153 | |
| 154 | Address Val = Address::invalid(); |
| 155 | CharUnits ArgSize = CharUnits::Zero(); |
| 156 | switch (AI.getKind()) { |
| 157 | case ABIArgInfo::Expand: |
| 158 | case ABIArgInfo::CoerceAndExpand: |
| 159 | case ABIArgInfo::InAlloca: |
| 160 | llvm_unreachable("Unsupported ABI kind for va_arg" ); |
| 161 | case ABIArgInfo::Ignore: |
| 162 | Val = Address(llvm::UndefValue::get(T: ArgPtrTy), ArgTy, TypeAlign); |
| 163 | ArgSize = CharUnits::Zero(); |
| 164 | break; |
| 165 | case ABIArgInfo::Extend: |
| 166 | case ABIArgInfo::Direct: |
| 167 | Val = AP.withElementType(ElemTy: ArgTy); |
| 168 | ArgSize = CharUnits::fromQuantity( |
| 169 | Quantity: getDataLayout().getTypeAllocSize(Ty: AI.getCoerceToType())); |
| 170 | ArgSize = ArgSize.alignTo(Align: SlotSize); |
| 171 | break; |
| 172 | case ABIArgInfo::Indirect: |
| 173 | case ABIArgInfo::IndirectAliased: |
| 174 | Val = AP.withElementType(ElemTy: ArgPtrTy); |
| 175 | Val = Address(Builder.CreateLoad(Addr: Val), ArgTy, TypeAlign); |
| 176 | ArgSize = SlotSize; |
| 177 | break; |
| 178 | } |
| 179 | |
| 180 | // Increment the VAList. |
| 181 | if (!ArgSize.isZero()) { |
| 182 | Address APN = Builder.CreateConstInBoundsByteGEP(Addr: AP, Offset: ArgSize); |
| 183 | Builder.CreateStore(Val: APN.emitRawPointer(CGF), Addr: VAListAddr); |
| 184 | } |
| 185 | |
| 186 | return CGF.EmitLoadOfAnyValue(V: CGF.MakeAddrLValue(Addr: Val, T: Ty), Slot); |
| 187 | } |
| 188 | |
| 189 | /// During the expansion of a RecordType, an incomplete TypeString is placed |
| 190 | /// into the cache as a means to identify and break recursion. |
| 191 | /// If there is a Recursive encoding in the cache, it is swapped out and will |
| 192 | /// be reinserted by removeIncomplete(). |
| 193 | /// All other types of encoding should have been used rather than arriving here. |
| 194 | void TypeStringCache::addIncomplete(const IdentifierInfo *ID, |
| 195 | std::string StubEnc) { |
| 196 | if (!ID) |
| 197 | return; |
| 198 | Entry &E = Map[ID]; |
| 199 | assert( (E.Str.empty() || E.State == Recursive) && |
| 200 | "Incorrectly use of addIncomplete" ); |
| 201 | assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()" ); |
| 202 | E.Swapped.swap(s&: E.Str); // swap out the Recursive |
| 203 | E.Str.swap(s&: StubEnc); |
| 204 | E.State = Incomplete; |
| 205 | ++IncompleteCount; |
| 206 | } |
| 207 | |
| 208 | /// Once the RecordType has been expanded, the temporary incomplete TypeString |
| 209 | /// must be removed from the cache. |
| 210 | /// If a Recursive was swapped out by addIncomplete(), it will be replaced. |
| 211 | /// Returns true if the RecordType was defined recursively. |
| 212 | bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { |
| 213 | if (!ID) |
| 214 | return false; |
| 215 | auto I = Map.find(x: ID); |
| 216 | assert(I != Map.end() && "Entry not present" ); |
| 217 | Entry &E = I->second; |
| 218 | assert( (E.State == Incomplete || |
| 219 | E.State == IncompleteUsed) && |
| 220 | "Entry must be an incomplete type" ); |
| 221 | bool IsRecursive = false; |
| 222 | if (E.State == IncompleteUsed) { |
| 223 | // We made use of our Incomplete encoding, thus we are recursive. |
| 224 | IsRecursive = true; |
| 225 | --IncompleteUsedCount; |
| 226 | } |
| 227 | if (E.Swapped.empty()) |
| 228 | Map.erase(position: I); |
| 229 | else { |
| 230 | // Swap the Recursive back. |
| 231 | E.Swapped.swap(s&: E.Str); |
| 232 | E.Swapped.clear(); |
| 233 | E.State = Recursive; |
| 234 | } |
| 235 | --IncompleteCount; |
| 236 | return IsRecursive; |
| 237 | } |
| 238 | |
| 239 | /// Add the encoded TypeString to the cache only if it is NonRecursive or |
| 240 | /// Recursive (viz: all sub-members were expanded as fully as possible). |
| 241 | void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, |
| 242 | bool IsRecursive) { |
| 243 | if (!ID || IncompleteUsedCount) |
| 244 | return; // No key or it is an incomplete sub-type so don't add. |
| 245 | Entry &E = Map[ID]; |
| 246 | if (IsRecursive && !E.Str.empty()) { |
| 247 | assert(E.State==Recursive && E.Str.size() == Str.size() && |
| 248 | "This is not the same Recursive entry" ); |
| 249 | // The parent container was not recursive after all, so we could have used |
| 250 | // this Recursive sub-member entry after all, but we assumed the worse when |
| 251 | // we started viz: IncompleteCount!=0. |
| 252 | return; |
| 253 | } |
| 254 | assert(E.Str.empty() && "Entry already present" ); |
| 255 | E.Str = Str.str(); |
| 256 | E.State = IsRecursive? Recursive : NonRecursive; |
| 257 | } |
| 258 | |
| 259 | /// Return a cached TypeString encoding for the ID. If there isn't one, or we |
| 260 | /// are recursively expanding a type (IncompleteCount != 0) and the cached |
| 261 | /// encoding is Recursive, return an empty StringRef. |
| 262 | StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { |
| 263 | if (!ID) |
| 264 | return StringRef(); // We have no key. |
| 265 | auto I = Map.find(x: ID); |
| 266 | if (I == Map.end()) |
| 267 | return StringRef(); // We have no encoding. |
| 268 | Entry &E = I->second; |
| 269 | if (E.State == Recursive && IncompleteCount) |
| 270 | return StringRef(); // We don't use Recursive encodings for member types. |
| 271 | |
| 272 | if (E.State == Incomplete) { |
| 273 | // The incomplete type is being used to break out of recursion. |
| 274 | E.State = IncompleteUsed; |
| 275 | ++IncompleteUsedCount; |
| 276 | } |
| 277 | return E.Str; |
| 278 | } |
| 279 | |
| 280 | /// The XCore ABI includes a type information section that communicates symbol |
| 281 | /// type information to the linker. The linker uses this information to verify |
| 282 | /// safety/correctness of things such as array bound and pointers et al. |
| 283 | /// The ABI only requires C (and XC) language modules to emit TypeStrings. |
| 284 | /// This type information (TypeString) is emitted into meta data for all global |
| 285 | /// symbols: definitions, declarations, functions & variables. |
| 286 | /// |
| 287 | /// The TypeString carries type, qualifier, name, size & value details. |
| 288 | /// Please see 'Tools Development Guide' section 2.16.2 for format details: |
| 289 | /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf |
| 290 | /// The output is tested by test/CodeGen/xcore-stringtype.c. |
| 291 | /// |
| 292 | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
| 293 | const CodeGen::CodeGenModule &CGM, |
| 294 | TypeStringCache &TSC); |
| 295 | |
| 296 | /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. |
| 297 | void XCoreTargetCodeGenInfo::emitTargetMD( |
| 298 | const Decl *D, llvm::GlobalValue *GV, |
| 299 | const CodeGen::CodeGenModule &CGM) const { |
| 300 | SmallStringEnc Enc; |
| 301 | if (getTypeString(Enc, D, CGM, TSC)) { |
| 302 | llvm::LLVMContext &Ctx = CGM.getModule().getContext(); |
| 303 | llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(C: GV), |
| 304 | llvm::MDString::get(Context&: Ctx, Str: Enc.str())}; |
| 305 | llvm::NamedMDNode *MD = |
| 306 | CGM.getModule().getOrInsertNamedMetadata(Name: "xcore.typestrings" ); |
| 307 | MD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: MDVals)); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | void XCoreTargetCodeGenInfo::emitTargetMetadata( |
| 312 | CodeGen::CodeGenModule &CGM, |
| 313 | const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { |
| 314 | // Warning, new MangledDeclNames may be appended within this loop. |
| 315 | // We rely on MapVector insertions adding new elements to the end |
| 316 | // of the container. |
| 317 | for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { |
| 318 | auto Val = *(MangledDeclNames.begin() + I); |
| 319 | llvm::GlobalValue *GV = CGM.GetGlobalValue(Ref: Val.second); |
| 320 | if (GV) { |
| 321 | const Decl *D = Val.first.getDecl()->getMostRecentDecl(); |
| 322 | emitTargetMD(D, GV, CGM); |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | static bool appendType(SmallStringEnc &Enc, QualType QType, |
| 328 | const CodeGen::CodeGenModule &CGM, |
| 329 | TypeStringCache &TSC); |
| 330 | |
| 331 | /// Helper function for appendRecordType(). |
| 332 | /// Builds a SmallVector containing the encoded field types in declaration |
| 333 | /// order. |
| 334 | static bool (SmallVectorImpl<FieldEncoding> &FE, |
| 335 | const RecordDecl *RD, |
| 336 | const CodeGen::CodeGenModule &CGM, |
| 337 | TypeStringCache &TSC) { |
| 338 | for (const auto *Field : RD->fields()) { |
| 339 | SmallStringEnc Enc; |
| 340 | Enc += "m(" ; |
| 341 | Enc += Field->getName(); |
| 342 | Enc += "){" ; |
| 343 | if (Field->isBitField()) { |
| 344 | Enc += "b(" ; |
| 345 | llvm::raw_svector_ostream OS(Enc); |
| 346 | OS << Field->getBitWidthValue(); |
| 347 | Enc += ':'; |
| 348 | } |
| 349 | if (!appendType(Enc, QType: Field->getType(), CGM, TSC)) |
| 350 | return false; |
| 351 | if (Field->isBitField()) |
| 352 | Enc += ')'; |
| 353 | Enc += '}'; |
| 354 | FE.emplace_back(Args: !Field->getName().empty(), Args&: Enc); |
| 355 | } |
| 356 | return true; |
| 357 | } |
| 358 | |
| 359 | /// Appends structure and union types to Enc and adds encoding to cache. |
| 360 | /// Recursively calls appendType (via extractFieldType) for each field. |
| 361 | /// Union types have their fields ordered according to the ABI. |
| 362 | static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, |
| 363 | const CodeGen::CodeGenModule &CGM, |
| 364 | TypeStringCache &TSC, const IdentifierInfo *ID) { |
| 365 | // Append the cached TypeString if we have one. |
| 366 | StringRef TypeString = TSC.lookupStr(ID); |
| 367 | if (!TypeString.empty()) { |
| 368 | Enc += TypeString; |
| 369 | return true; |
| 370 | } |
| 371 | |
| 372 | // Start to emit an incomplete TypeString. |
| 373 | size_t Start = Enc.size(); |
| 374 | Enc += (RT->isUnionType()? 'u' : 's'); |
| 375 | Enc += '('; |
| 376 | if (ID) |
| 377 | Enc += ID->getName(); |
| 378 | Enc += "){" ; |
| 379 | |
| 380 | // We collect all encoded fields and order as necessary. |
| 381 | bool IsRecursive = false; |
| 382 | const RecordDecl *RD = RT->getDecl()->getDefinition(); |
| 383 | if (RD && !RD->field_empty()) { |
| 384 | // An incomplete TypeString stub is placed in the cache for this RecordType |
| 385 | // so that recursive calls to this RecordType will use it whilst building a |
| 386 | // complete TypeString for this RecordType. |
| 387 | SmallVector<FieldEncoding, 16> FE; |
| 388 | std::string StubEnc(Enc.substr(Start).str()); |
| 389 | StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. |
| 390 | TSC.addIncomplete(ID, StubEnc: std::move(StubEnc)); |
| 391 | if (!extractFieldType(FE, RD, CGM, TSC)) { |
| 392 | (void) TSC.removeIncomplete(ID); |
| 393 | return false; |
| 394 | } |
| 395 | IsRecursive = TSC.removeIncomplete(ID); |
| 396 | // The ABI requires unions to be sorted but not structures. |
| 397 | // See FieldEncoding::operator< for sort algorithm. |
| 398 | if (RT->isUnionType()) |
| 399 | llvm::sort(C&: FE); |
| 400 | // We can now complete the TypeString. |
| 401 | unsigned E = FE.size(); |
| 402 | for (unsigned I = 0; I != E; ++I) { |
| 403 | if (I) |
| 404 | Enc += ','; |
| 405 | Enc += FE[I].str(); |
| 406 | } |
| 407 | } |
| 408 | Enc += '}'; |
| 409 | TSC.addIfComplete(ID, Str: Enc.substr(Start), IsRecursive); |
| 410 | return true; |
| 411 | } |
| 412 | |
| 413 | /// Appends enum types to Enc and adds the encoding to the cache. |
| 414 | static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, |
| 415 | TypeStringCache &TSC, |
| 416 | const IdentifierInfo *ID) { |
| 417 | // Append the cached TypeString if we have one. |
| 418 | StringRef TypeString = TSC.lookupStr(ID); |
| 419 | if (!TypeString.empty()) { |
| 420 | Enc += TypeString; |
| 421 | return true; |
| 422 | } |
| 423 | |
| 424 | size_t Start = Enc.size(); |
| 425 | Enc += "e(" ; |
| 426 | if (ID) |
| 427 | Enc += ID->getName(); |
| 428 | Enc += "){" ; |
| 429 | |
| 430 | // We collect all encoded enumerations and order them alphanumerically. |
| 431 | if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { |
| 432 | SmallVector<FieldEncoding, 16> FE; |
| 433 | for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; |
| 434 | ++I) { |
| 435 | SmallStringEnc EnumEnc; |
| 436 | EnumEnc += "m(" ; |
| 437 | EnumEnc += I->getName(); |
| 438 | EnumEnc += "){" ; |
| 439 | I->getInitVal().toString(Str&: EnumEnc); |
| 440 | EnumEnc += '}'; |
| 441 | FE.push_back(Elt: FieldEncoding(!I->getName().empty(), EnumEnc)); |
| 442 | } |
| 443 | llvm::sort(C&: FE); |
| 444 | unsigned E = FE.size(); |
| 445 | for (unsigned I = 0; I != E; ++I) { |
| 446 | if (I) |
| 447 | Enc += ','; |
| 448 | Enc += FE[I].str(); |
| 449 | } |
| 450 | } |
| 451 | Enc += '}'; |
| 452 | TSC.addIfComplete(ID, Str: Enc.substr(Start), IsRecursive: false); |
| 453 | return true; |
| 454 | } |
| 455 | |
| 456 | /// Appends type's qualifier to Enc. |
| 457 | /// This is done prior to appending the type's encoding. |
| 458 | static void appendQualifier(SmallStringEnc &Enc, QualType QT) { |
| 459 | // Qualifiers are emitted in alphabetical order. |
| 460 | static const char *const Table[]={"" ,"c:" ,"r:" ,"cr:" ,"v:" ,"cv:" ,"rv:" ,"crv:" }; |
| 461 | int Lookup = 0; |
| 462 | if (QT.isConstQualified()) |
| 463 | Lookup += 1<<0; |
| 464 | if (QT.isRestrictQualified()) |
| 465 | Lookup += 1<<1; |
| 466 | if (QT.isVolatileQualified()) |
| 467 | Lookup += 1<<2; |
| 468 | Enc += Table[Lookup]; |
| 469 | } |
| 470 | |
| 471 | /// Appends built-in types to Enc. |
| 472 | static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { |
| 473 | const char *EncType; |
| 474 | switch (BT->getKind()) { |
| 475 | case BuiltinType::Void: |
| 476 | EncType = "0" ; |
| 477 | break; |
| 478 | case BuiltinType::Bool: |
| 479 | EncType = "b" ; |
| 480 | break; |
| 481 | case BuiltinType::Char_U: |
| 482 | EncType = "uc" ; |
| 483 | break; |
| 484 | case BuiltinType::UChar: |
| 485 | EncType = "uc" ; |
| 486 | break; |
| 487 | case BuiltinType::SChar: |
| 488 | EncType = "sc" ; |
| 489 | break; |
| 490 | case BuiltinType::UShort: |
| 491 | EncType = "us" ; |
| 492 | break; |
| 493 | case BuiltinType::Short: |
| 494 | EncType = "ss" ; |
| 495 | break; |
| 496 | case BuiltinType::UInt: |
| 497 | EncType = "ui" ; |
| 498 | break; |
| 499 | case BuiltinType::Int: |
| 500 | EncType = "si" ; |
| 501 | break; |
| 502 | case BuiltinType::ULong: |
| 503 | EncType = "ul" ; |
| 504 | break; |
| 505 | case BuiltinType::Long: |
| 506 | EncType = "sl" ; |
| 507 | break; |
| 508 | case BuiltinType::ULongLong: |
| 509 | EncType = "ull" ; |
| 510 | break; |
| 511 | case BuiltinType::LongLong: |
| 512 | EncType = "sll" ; |
| 513 | break; |
| 514 | case BuiltinType::Float: |
| 515 | EncType = "ft" ; |
| 516 | break; |
| 517 | case BuiltinType::Double: |
| 518 | EncType = "d" ; |
| 519 | break; |
| 520 | case BuiltinType::LongDouble: |
| 521 | EncType = "ld" ; |
| 522 | break; |
| 523 | default: |
| 524 | return false; |
| 525 | } |
| 526 | Enc += EncType; |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | /// Appends a pointer encoding to Enc before calling appendType for the pointee. |
| 531 | static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, |
| 532 | const CodeGen::CodeGenModule &CGM, |
| 533 | TypeStringCache &TSC) { |
| 534 | Enc += "p(" ; |
| 535 | if (!appendType(Enc, QType: PT->getPointeeType(), CGM, TSC)) |
| 536 | return false; |
| 537 | Enc += ')'; |
| 538 | return true; |
| 539 | } |
| 540 | |
| 541 | /// Appends array encoding to Enc before calling appendType for the element. |
| 542 | static bool appendArrayType(SmallStringEnc &Enc, QualType QT, |
| 543 | const ArrayType *AT, |
| 544 | const CodeGen::CodeGenModule &CGM, |
| 545 | TypeStringCache &TSC, StringRef NoSizeEnc) { |
| 546 | if (AT->getSizeModifier() != ArraySizeModifier::Normal) |
| 547 | return false; |
| 548 | Enc += "a(" ; |
| 549 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 550 | CAT->getSize().toStringUnsigned(Str&: Enc); |
| 551 | else |
| 552 | Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". |
| 553 | Enc += ':'; |
| 554 | // The Qualifiers should be attached to the type rather than the array. |
| 555 | appendQualifier(Enc, QT); |
| 556 | if (!appendType(Enc, QType: AT->getElementType(), CGM, TSC)) |
| 557 | return false; |
| 558 | Enc += ')'; |
| 559 | return true; |
| 560 | } |
| 561 | |
| 562 | /// Appends a function encoding to Enc, calling appendType for the return type |
| 563 | /// and the arguments. |
| 564 | static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, |
| 565 | const CodeGen::CodeGenModule &CGM, |
| 566 | TypeStringCache &TSC) { |
| 567 | Enc += "f{" ; |
| 568 | if (!appendType(Enc, QType: FT->getReturnType(), CGM, TSC)) |
| 569 | return false; |
| 570 | Enc += "}(" ; |
| 571 | if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { |
| 572 | // N.B. we are only interested in the adjusted param types. |
| 573 | auto I = FPT->param_type_begin(); |
| 574 | auto E = FPT->param_type_end(); |
| 575 | if (I != E) { |
| 576 | do { |
| 577 | if (!appendType(Enc, QType: *I, CGM, TSC)) |
| 578 | return false; |
| 579 | ++I; |
| 580 | if (I != E) |
| 581 | Enc += ','; |
| 582 | } while (I != E); |
| 583 | if (FPT->isVariadic()) |
| 584 | Enc += ",va" ; |
| 585 | } else { |
| 586 | if (FPT->isVariadic()) |
| 587 | Enc += "va" ; |
| 588 | else |
| 589 | Enc += '0'; |
| 590 | } |
| 591 | } |
| 592 | Enc += ')'; |
| 593 | return true; |
| 594 | } |
| 595 | |
| 596 | /// Handles the type's qualifier before dispatching a call to handle specific |
| 597 | /// type encodings. |
| 598 | static bool appendType(SmallStringEnc &Enc, QualType QType, |
| 599 | const CodeGen::CodeGenModule &CGM, |
| 600 | TypeStringCache &TSC) { |
| 601 | |
| 602 | QualType QT = QType.getCanonicalType(); |
| 603 | |
| 604 | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) |
| 605 | // The Qualifiers should be attached to the type rather than the array. |
| 606 | // Thus we don't call appendQualifier() here. |
| 607 | return appendArrayType(Enc, QT, AT, CGM, TSC, NoSizeEnc: "" ); |
| 608 | |
| 609 | appendQualifier(Enc, QT); |
| 610 | |
| 611 | if (const BuiltinType *BT = QT->getAs<BuiltinType>()) |
| 612 | return appendBuiltinType(Enc, BT); |
| 613 | |
| 614 | if (const PointerType *PT = QT->getAs<PointerType>()) |
| 615 | return appendPointerType(Enc, PT, CGM, TSC); |
| 616 | |
| 617 | if (const EnumType *ET = QT->getAs<EnumType>()) |
| 618 | return appendEnumType(Enc, ET, TSC, ID: QT.getBaseTypeIdentifier()); |
| 619 | |
| 620 | if (const RecordType *RT = QT->getAsStructureType()) |
| 621 | return appendRecordType(Enc, RT, CGM, TSC, ID: QT.getBaseTypeIdentifier()); |
| 622 | |
| 623 | if (const RecordType *RT = QT->getAsUnionType()) |
| 624 | return appendRecordType(Enc, RT, CGM, TSC, ID: QT.getBaseTypeIdentifier()); |
| 625 | |
| 626 | if (const FunctionType *FT = QT->getAs<FunctionType>()) |
| 627 | return appendFunctionType(Enc, FT, CGM, TSC); |
| 628 | |
| 629 | return false; |
| 630 | } |
| 631 | |
| 632 | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
| 633 | const CodeGen::CodeGenModule &CGM, |
| 634 | TypeStringCache &TSC) { |
| 635 | if (!D) |
| 636 | return false; |
| 637 | |
| 638 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 639 | if (FD->getLanguageLinkage() != CLanguageLinkage) |
| 640 | return false; |
| 641 | return appendType(Enc, QType: FD->getType(), CGM, TSC); |
| 642 | } |
| 643 | |
| 644 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 645 | if (VD->getLanguageLinkage() != CLanguageLinkage) |
| 646 | return false; |
| 647 | QualType QT = VD->getType().getCanonicalType(); |
| 648 | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { |
| 649 | // Global ArrayTypes are given a size of '*' if the size is unknown. |
| 650 | // The Qualifiers should be attached to the type rather than the array. |
| 651 | // Thus we don't call appendQualifier() here. |
| 652 | return appendArrayType(Enc, QT, AT, CGM, TSC, NoSizeEnc: "*" ); |
| 653 | } |
| 654 | return appendType(Enc, QType: QT, CGM, TSC); |
| 655 | } |
| 656 | return false; |
| 657 | } |
| 658 | |
| 659 | std::unique_ptr<TargetCodeGenInfo> |
| 660 | CodeGen::createXCoreTargetCodeGenInfo(CodeGenModule &CGM) { |
| 661 | return std::make_unique<XCoreTargetCodeGenInfo>(args&: CGM.getTypes()); |
| 662 | } |
| 663 | |