| 1 | //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines routines for folding instructions into constants. |
| 10 | // |
| 11 | // Also, to supplement the basic IR ConstantExpr simplifications, |
| 12 | // this file defines some additional folding routines that can make use of |
| 13 | // DataLayout information. These functions cannot go in IR due to library |
| 14 | // dependency issues. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/Analysis/ConstantFolding.h" |
| 19 | #include "llvm/ADT/APFloat.h" |
| 20 | #include "llvm/ADT/APInt.h" |
| 21 | #include "llvm/ADT/APSInt.h" |
| 22 | #include "llvm/ADT/ArrayRef.h" |
| 23 | #include "llvm/ADT/DenseMap.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/StringRef.h" |
| 27 | #include "llvm/Analysis/TargetFolder.h" |
| 28 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 29 | #include "llvm/Analysis/ValueTracking.h" |
| 30 | #include "llvm/Analysis/VectorUtils.h" |
| 31 | #include "llvm/Config/config.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/ConstantFold.h" |
| 34 | #include "llvm/IR/Constants.h" |
| 35 | #include "llvm/IR/DataLayout.h" |
| 36 | #include "llvm/IR/DerivedTypes.h" |
| 37 | #include "llvm/IR/Function.h" |
| 38 | #include "llvm/IR/GlobalValue.h" |
| 39 | #include "llvm/IR/GlobalVariable.h" |
| 40 | #include "llvm/IR/InstrTypes.h" |
| 41 | #include "llvm/IR/Instruction.h" |
| 42 | #include "llvm/IR/Instructions.h" |
| 43 | #include "llvm/IR/IntrinsicInst.h" |
| 44 | #include "llvm/IR/Intrinsics.h" |
| 45 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 46 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 47 | #include "llvm/IR/IntrinsicsARM.h" |
| 48 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 49 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
| 50 | #include "llvm/IR/IntrinsicsX86.h" |
| 51 | #include "llvm/IR/NVVMIntrinsicUtils.h" |
| 52 | #include "llvm/IR/Operator.h" |
| 53 | #include "llvm/IR/Type.h" |
| 54 | #include "llvm/IR/Value.h" |
| 55 | #include "llvm/Support/Casting.h" |
| 56 | #include "llvm/Support/ErrorHandling.h" |
| 57 | #include "llvm/Support/KnownBits.h" |
| 58 | #include "llvm/Support/MathExtras.h" |
| 59 | #include <cassert> |
| 60 | #include <cerrno> |
| 61 | #include <cfenv> |
| 62 | #include <cmath> |
| 63 | #include <cstdint> |
| 64 | |
| 65 | using namespace llvm; |
| 66 | |
| 67 | static cl::opt<bool> DisableFPCallFolding( |
| 68 | "disable-fp-call-folding" , |
| 69 | cl::desc("Disable constant-folding of FP intrinsics and libcalls." ), |
| 70 | cl::init(Val: false), cl::Hidden); |
| 71 | |
| 72 | namespace { |
| 73 | |
| 74 | //===----------------------------------------------------------------------===// |
| 75 | // Constant Folding internal helper functions |
| 76 | //===----------------------------------------------------------------------===// |
| 77 | |
| 78 | static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, |
| 79 | Constant *C, Type *SrcEltTy, |
| 80 | unsigned NumSrcElts, |
| 81 | const DataLayout &DL) { |
| 82 | // Now that we know that the input value is a vector of integers, just shift |
| 83 | // and insert them into our result. |
| 84 | unsigned BitShift = DL.getTypeSizeInBits(Ty: SrcEltTy); |
| 85 | for (unsigned i = 0; i != NumSrcElts; ++i) { |
| 86 | Constant *Element; |
| 87 | if (DL.isLittleEndian()) |
| 88 | Element = C->getAggregateElement(Elt: NumSrcElts - i - 1); |
| 89 | else |
| 90 | Element = C->getAggregateElement(Elt: i); |
| 91 | |
| 92 | if (isa_and_nonnull<UndefValue>(Val: Element)) { |
| 93 | Result <<= BitShift; |
| 94 | continue; |
| 95 | } |
| 96 | |
| 97 | auto *ElementCI = dyn_cast_or_null<ConstantInt>(Val: Element); |
| 98 | if (!ElementCI) |
| 99 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 100 | |
| 101 | Result <<= BitShift; |
| 102 | Result |= ElementCI->getValue().zext(width: Result.getBitWidth()); |
| 103 | } |
| 104 | |
| 105 | return nullptr; |
| 106 | } |
| 107 | |
| 108 | /// Constant fold bitcast, symbolically evaluating it with DataLayout. |
| 109 | /// This always returns a non-null constant, but it may be a |
| 110 | /// ConstantExpr if unfoldable. |
| 111 | Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { |
| 112 | assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && |
| 113 | "Invalid constantexpr bitcast!" ); |
| 114 | |
| 115 | // Catch the obvious splat cases. |
| 116 | if (Constant *Res = ConstantFoldLoadFromUniformValue(C, Ty: DestTy, DL)) |
| 117 | return Res; |
| 118 | |
| 119 | if (auto *VTy = dyn_cast<VectorType>(Val: C->getType())) { |
| 120 | // Handle a vector->scalar integer/fp cast. |
| 121 | if (isa<IntegerType>(Val: DestTy) || DestTy->isFloatingPointTy()) { |
| 122 | unsigned NumSrcElts = cast<FixedVectorType>(Val: VTy)->getNumElements(); |
| 123 | Type *SrcEltTy = VTy->getElementType(); |
| 124 | |
| 125 | // If the vector is a vector of floating point, convert it to vector of int |
| 126 | // to simplify things. |
| 127 | if (SrcEltTy->isFloatingPointTy()) { |
| 128 | unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
| 129 | auto *SrcIVTy = FixedVectorType::get( |
| 130 | ElementType: IntegerType::get(C&: C->getContext(), NumBits: FPWidth), NumElts: NumSrcElts); |
| 131 | // Ask IR to do the conversion now that #elts line up. |
| 132 | C = ConstantExpr::getBitCast(C, Ty: SrcIVTy); |
| 133 | } |
| 134 | |
| 135 | APInt Result(DL.getTypeSizeInBits(Ty: DestTy), 0); |
| 136 | if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, |
| 137 | SrcEltTy, NumSrcElts, DL)) |
| 138 | return CE; |
| 139 | |
| 140 | if (isa<IntegerType>(Val: DestTy)) |
| 141 | return ConstantInt::get(Ty: DestTy, V: Result); |
| 142 | |
| 143 | APFloat FP(DestTy->getFltSemantics(), Result); |
| 144 | return ConstantFP::get(Context&: DestTy->getContext(), V: FP); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | // The code below only handles casts to vectors currently. |
| 149 | auto *DestVTy = dyn_cast<VectorType>(Val: DestTy); |
| 150 | if (!DestVTy) |
| 151 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 152 | |
| 153 | // If this is a scalar -> vector cast, convert the input into a <1 x scalar> |
| 154 | // vector so the code below can handle it uniformly. |
| 155 | if (!isa<VectorType>(Val: C->getType()) && |
| 156 | (isa<ConstantFP>(Val: C) || isa<ConstantInt>(Val: C))) { |
| 157 | Constant *Ops = C; // don't take the address of C! |
| 158 | return FoldBitCast(C: ConstantVector::get(V: Ops), DestTy, DL); |
| 159 | } |
| 160 | |
| 161 | // Some of what follows may extend to cover scalable vectors but the current |
| 162 | // implementation is fixed length specific. |
| 163 | if (!isa<FixedVectorType>(Val: C->getType())) |
| 164 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 165 | |
| 166 | // If this is a bitcast from constant vector -> vector, fold it. |
| 167 | if (!isa<ConstantDataVector>(Val: C) && !isa<ConstantVector>(Val: C) && |
| 168 | !isa<ConstantInt>(Val: C) && !isa<ConstantFP>(Val: C)) |
| 169 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 170 | |
| 171 | // If the element types match, IR can fold it. |
| 172 | unsigned NumDstElt = cast<FixedVectorType>(Val: DestVTy)->getNumElements(); |
| 173 | unsigned NumSrcElt = cast<FixedVectorType>(Val: C->getType())->getNumElements(); |
| 174 | if (NumDstElt == NumSrcElt) |
| 175 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 176 | |
| 177 | Type *SrcEltTy = cast<VectorType>(Val: C->getType())->getElementType(); |
| 178 | Type *DstEltTy = DestVTy->getElementType(); |
| 179 | |
| 180 | // Otherwise, we're changing the number of elements in a vector, which |
| 181 | // requires endianness information to do the right thing. For example, |
| 182 | // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
| 183 | // folds to (little endian): |
| 184 | // <4 x i32> <i32 0, i32 0, i32 1, i32 0> |
| 185 | // and to (big endian): |
| 186 | // <4 x i32> <i32 0, i32 0, i32 0, i32 1> |
| 187 | |
| 188 | // First thing is first. We only want to think about integer here, so if |
| 189 | // we have something in FP form, recast it as integer. |
| 190 | if (DstEltTy->isFloatingPointTy()) { |
| 191 | // Fold to an vector of integers with same size as our FP type. |
| 192 | unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); |
| 193 | auto *DestIVTy = FixedVectorType::get( |
| 194 | ElementType: IntegerType::get(C&: C->getContext(), NumBits: FPWidth), NumElts: NumDstElt); |
| 195 | // Recursively handle this integer conversion, if possible. |
| 196 | C = FoldBitCast(C, DestTy: DestIVTy, DL); |
| 197 | |
| 198 | // Finally, IR can handle this now that #elts line up. |
| 199 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 200 | } |
| 201 | |
| 202 | // Okay, we know the destination is integer, if the input is FP, convert |
| 203 | // it to integer first. |
| 204 | if (SrcEltTy->isFloatingPointTy()) { |
| 205 | unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
| 206 | auto *SrcIVTy = FixedVectorType::get( |
| 207 | ElementType: IntegerType::get(C&: C->getContext(), NumBits: FPWidth), NumElts: NumSrcElt); |
| 208 | // Ask IR to do the conversion now that #elts line up. |
| 209 | C = ConstantExpr::getBitCast(C, Ty: SrcIVTy); |
| 210 | assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector. |
| 211 | isa<ConstantDataVector>(C) || isa<ConstantInt>(C)) && |
| 212 | "Constant folding cannot fail for plain fp->int bitcast!" ); |
| 213 | } |
| 214 | |
| 215 | // Now we know that the input and output vectors are both integer vectors |
| 216 | // of the same size, and that their #elements is not the same. Do the |
| 217 | // conversion here, which depends on whether the input or output has |
| 218 | // more elements. |
| 219 | bool isLittleEndian = DL.isLittleEndian(); |
| 220 | |
| 221 | SmallVector<Constant*, 32> Result; |
| 222 | if (NumDstElt < NumSrcElt) { |
| 223 | // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) |
| 224 | Constant *Zero = Constant::getNullValue(Ty: DstEltTy); |
| 225 | unsigned Ratio = NumSrcElt/NumDstElt; |
| 226 | unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); |
| 227 | unsigned SrcElt = 0; |
| 228 | for (unsigned i = 0; i != NumDstElt; ++i) { |
| 229 | // Build each element of the result. |
| 230 | Constant *Elt = Zero; |
| 231 | unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); |
| 232 | for (unsigned j = 0; j != Ratio; ++j) { |
| 233 | Constant *Src = C->getAggregateElement(Elt: SrcElt++); |
| 234 | if (isa_and_nonnull<UndefValue>(Val: Src)) |
| 235 | Src = Constant::getNullValue( |
| 236 | Ty: cast<VectorType>(Val: C->getType())->getElementType()); |
| 237 | else |
| 238 | Src = dyn_cast_or_null<ConstantInt>(Val: Src); |
| 239 | if (!Src) // Reject constantexpr elements. |
| 240 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 241 | |
| 242 | // Zero extend the element to the right size. |
| 243 | Src = ConstantFoldCastOperand(Opcode: Instruction::ZExt, C: Src, DestTy: Elt->getType(), |
| 244 | DL); |
| 245 | assert(Src && "Constant folding cannot fail on plain integers" ); |
| 246 | |
| 247 | // Shift it to the right place, depending on endianness. |
| 248 | Src = ConstantFoldBinaryOpOperands( |
| 249 | Opcode: Instruction::Shl, LHS: Src, RHS: ConstantInt::get(Ty: Src->getType(), V: ShiftAmt), |
| 250 | DL); |
| 251 | assert(Src && "Constant folding cannot fail on plain integers" ); |
| 252 | |
| 253 | ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; |
| 254 | |
| 255 | // Mix it in. |
| 256 | Elt = ConstantFoldBinaryOpOperands(Opcode: Instruction::Or, LHS: Elt, RHS: Src, DL); |
| 257 | assert(Elt && "Constant folding cannot fail on plain integers" ); |
| 258 | } |
| 259 | Result.push_back(Elt); |
| 260 | } |
| 261 | return ConstantVector::get(V: Result); |
| 262 | } |
| 263 | |
| 264 | // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
| 265 | unsigned Ratio = NumDstElt/NumSrcElt; |
| 266 | unsigned DstBitSize = DL.getTypeSizeInBits(Ty: DstEltTy); |
| 267 | |
| 268 | // Loop over each source value, expanding into multiple results. |
| 269 | for (unsigned i = 0; i != NumSrcElt; ++i) { |
| 270 | auto *Element = C->getAggregateElement(Elt: i); |
| 271 | |
| 272 | if (!Element) // Reject constantexpr elements. |
| 273 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 274 | |
| 275 | if (isa<UndefValue>(Val: Element)) { |
| 276 | // Correctly Propagate undef values. |
| 277 | Result.append(NumInputs: Ratio, Elt: UndefValue::get(T: DstEltTy)); |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | auto *Src = dyn_cast<ConstantInt>(Val: Element); |
| 282 | if (!Src) |
| 283 | return ConstantExpr::getBitCast(C, Ty: DestTy); |
| 284 | |
| 285 | unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); |
| 286 | for (unsigned j = 0; j != Ratio; ++j) { |
| 287 | // Shift the piece of the value into the right place, depending on |
| 288 | // endianness. |
| 289 | APInt Elt = Src->getValue().lshr(shiftAmt: ShiftAmt); |
| 290 | ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; |
| 291 | |
| 292 | // Truncate and remember this piece. |
| 293 | Result.push_back(Elt: ConstantInt::get(Ty: DstEltTy, V: Elt.trunc(width: DstBitSize))); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | return ConstantVector::get(V: Result); |
| 298 | } |
| 299 | |
| 300 | } // end anonymous namespace |
| 301 | |
| 302 | /// If this constant is a constant offset from a global, return the global and |
| 303 | /// the constant. Because of constantexprs, this function is recursive. |
| 304 | bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, |
| 305 | APInt &Offset, const DataLayout &DL, |
| 306 | DSOLocalEquivalent **DSOEquiv) { |
| 307 | if (DSOEquiv) |
| 308 | *DSOEquiv = nullptr; |
| 309 | |
| 310 | // Trivial case, constant is the global. |
| 311 | if ((GV = dyn_cast<GlobalValue>(Val: C))) { |
| 312 | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ty: GV->getType()); |
| 313 | Offset = APInt(BitWidth, 0); |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(Val: C)) { |
| 318 | if (DSOEquiv) |
| 319 | *DSOEquiv = FoundDSOEquiv; |
| 320 | GV = FoundDSOEquiv->getGlobalValue(); |
| 321 | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ty: GV->getType()); |
| 322 | Offset = APInt(BitWidth, 0); |
| 323 | return true; |
| 324 | } |
| 325 | |
| 326 | // Otherwise, if this isn't a constant expr, bail out. |
| 327 | auto *CE = dyn_cast<ConstantExpr>(Val: C); |
| 328 | if (!CE) return false; |
| 329 | |
| 330 | // Look through ptr->int and ptr->ptr casts. |
| 331 | if (CE->getOpcode() == Instruction::PtrToInt || |
| 332 | CE->getOpcode() == Instruction::BitCast) |
| 333 | return IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 0), GV, Offset, DL, |
| 334 | DSOEquiv); |
| 335 | |
| 336 | // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) |
| 337 | auto *GEP = dyn_cast<GEPOperator>(Val: CE); |
| 338 | if (!GEP) |
| 339 | return false; |
| 340 | |
| 341 | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ty: GEP->getType()); |
| 342 | APInt TmpOffset(BitWidth, 0); |
| 343 | |
| 344 | // If the base isn't a global+constant, we aren't either. |
| 345 | if (!IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 0), GV, Offset&: TmpOffset, DL, |
| 346 | DSOEquiv)) |
| 347 | return false; |
| 348 | |
| 349 | // Otherwise, add any offset that our operands provide. |
| 350 | if (!GEP->accumulateConstantOffset(DL, Offset&: TmpOffset)) |
| 351 | return false; |
| 352 | |
| 353 | Offset = TmpOffset; |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, |
| 358 | const DataLayout &DL) { |
| 359 | do { |
| 360 | Type *SrcTy = C->getType(); |
| 361 | if (SrcTy == DestTy) |
| 362 | return C; |
| 363 | |
| 364 | TypeSize DestSize = DL.getTypeSizeInBits(Ty: DestTy); |
| 365 | TypeSize SrcSize = DL.getTypeSizeInBits(Ty: SrcTy); |
| 366 | if (!TypeSize::isKnownGE(LHS: SrcSize, RHS: DestSize)) |
| 367 | return nullptr; |
| 368 | |
| 369 | // Catch the obvious splat cases (since all-zeros can coerce non-integral |
| 370 | // pointers legally). |
| 371 | if (Constant *Res = ConstantFoldLoadFromUniformValue(C, Ty: DestTy, DL)) |
| 372 | return Res; |
| 373 | |
| 374 | // If the type sizes are the same and a cast is legal, just directly |
| 375 | // cast the constant. |
| 376 | // But be careful not to coerce non-integral pointers illegally. |
| 377 | if (SrcSize == DestSize && |
| 378 | DL.isNonIntegralPointerType(Ty: SrcTy->getScalarType()) == |
| 379 | DL.isNonIntegralPointerType(Ty: DestTy->getScalarType())) { |
| 380 | Instruction::CastOps Cast = Instruction::BitCast; |
| 381 | // If we are going from a pointer to int or vice versa, we spell the cast |
| 382 | // differently. |
| 383 | if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) |
| 384 | Cast = Instruction::IntToPtr; |
| 385 | else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) |
| 386 | Cast = Instruction::PtrToInt; |
| 387 | |
| 388 | if (CastInst::castIsValid(op: Cast, S: C, DstTy: DestTy)) |
| 389 | return ConstantFoldCastOperand(Opcode: Cast, C, DestTy, DL); |
| 390 | } |
| 391 | |
| 392 | // If this isn't an aggregate type, there is nothing we can do to drill down |
| 393 | // and find a bitcastable constant. |
| 394 | if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) |
| 395 | return nullptr; |
| 396 | |
| 397 | // We're simulating a load through a pointer that was bitcast to point to |
| 398 | // a different type, so we can try to walk down through the initial |
| 399 | // elements of an aggregate to see if some part of the aggregate is |
| 400 | // castable to implement the "load" semantic model. |
| 401 | if (SrcTy->isStructTy()) { |
| 402 | // Struct types might have leading zero-length elements like [0 x i32], |
| 403 | // which are certainly not what we are looking for, so skip them. |
| 404 | unsigned Elem = 0; |
| 405 | Constant *ElemC; |
| 406 | do { |
| 407 | ElemC = C->getAggregateElement(Elt: Elem++); |
| 408 | } while (ElemC && DL.getTypeSizeInBits(Ty: ElemC->getType()).isZero()); |
| 409 | C = ElemC; |
| 410 | } else { |
| 411 | // For non-byte-sized vector elements, the first element is not |
| 412 | // necessarily located at the vector base address. |
| 413 | if (auto *VT = dyn_cast<VectorType>(Val: SrcTy)) |
| 414 | if (!DL.typeSizeEqualsStoreSize(Ty: VT->getElementType())) |
| 415 | return nullptr; |
| 416 | |
| 417 | C = C->getAggregateElement(Elt: 0u); |
| 418 | } |
| 419 | } while (C); |
| 420 | |
| 421 | return nullptr; |
| 422 | } |
| 423 | |
| 424 | namespace { |
| 425 | |
| 426 | /// Recursive helper to read bits out of global. C is the constant being copied |
| 427 | /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy |
| 428 | /// results into and BytesLeft is the number of bytes left in |
| 429 | /// the CurPtr buffer. DL is the DataLayout. |
| 430 | bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, |
| 431 | unsigned BytesLeft, const DataLayout &DL) { |
| 432 | assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && |
| 433 | "Out of range access" ); |
| 434 | |
| 435 | // Reading type padding, return zero. |
| 436 | if (ByteOffset >= DL.getTypeStoreSize(Ty: C->getType())) |
| 437 | return true; |
| 438 | |
| 439 | // If this element is zero or undefined, we can just return since *CurPtr is |
| 440 | // zero initialized. |
| 441 | if (isa<ConstantAggregateZero>(Val: C) || isa<UndefValue>(Val: C)) |
| 442 | return true; |
| 443 | |
| 444 | if (auto *CI = dyn_cast<ConstantInt>(Val: C)) { |
| 445 | if ((CI->getBitWidth() & 7) != 0) |
| 446 | return false; |
| 447 | const APInt &Val = CI->getValue(); |
| 448 | unsigned IntBytes = unsigned(CI->getBitWidth()/8); |
| 449 | |
| 450 | for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { |
| 451 | unsigned n = ByteOffset; |
| 452 | if (!DL.isLittleEndian()) |
| 453 | n = IntBytes - n - 1; |
| 454 | CurPtr[i] = Val.extractBits(numBits: 8, bitPosition: n * 8).getZExtValue(); |
| 455 | ++ByteOffset; |
| 456 | } |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | if (auto *CFP = dyn_cast<ConstantFP>(Val: C)) { |
| 461 | if (CFP->getType()->isDoubleTy()) { |
| 462 | C = FoldBitCast(C, DestTy: Type::getInt64Ty(C&: C->getContext()), DL); |
| 463 | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| 464 | } |
| 465 | if (CFP->getType()->isFloatTy()){ |
| 466 | C = FoldBitCast(C, DestTy: Type::getInt32Ty(C&: C->getContext()), DL); |
| 467 | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| 468 | } |
| 469 | if (CFP->getType()->isHalfTy()){ |
| 470 | C = FoldBitCast(C, DestTy: Type::getInt16Ty(C&: C->getContext()), DL); |
| 471 | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
| 472 | } |
| 473 | return false; |
| 474 | } |
| 475 | |
| 476 | if (auto *CS = dyn_cast<ConstantStruct>(Val: C)) { |
| 477 | const StructLayout *SL = DL.getStructLayout(Ty: CS->getType()); |
| 478 | unsigned Index = SL->getElementContainingOffset(FixedOffset: ByteOffset); |
| 479 | uint64_t CurEltOffset = SL->getElementOffset(Idx: Index); |
| 480 | ByteOffset -= CurEltOffset; |
| 481 | |
| 482 | while (true) { |
| 483 | // If the element access is to the element itself and not to tail padding, |
| 484 | // read the bytes from the element. |
| 485 | uint64_t EltSize = DL.getTypeAllocSize(Ty: CS->getOperand(i_nocapture: Index)->getType()); |
| 486 | |
| 487 | if (ByteOffset < EltSize && |
| 488 | !ReadDataFromGlobal(C: CS->getOperand(i_nocapture: Index), ByteOffset, CurPtr, |
| 489 | BytesLeft, DL)) |
| 490 | return false; |
| 491 | |
| 492 | ++Index; |
| 493 | |
| 494 | // Check to see if we read from the last struct element, if so we're done. |
| 495 | if (Index == CS->getType()->getNumElements()) |
| 496 | return true; |
| 497 | |
| 498 | // If we read all of the bytes we needed from this element we're done. |
| 499 | uint64_t NextEltOffset = SL->getElementOffset(Idx: Index); |
| 500 | |
| 501 | if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) |
| 502 | return true; |
| 503 | |
| 504 | // Move to the next element of the struct. |
| 505 | CurPtr += NextEltOffset - CurEltOffset - ByteOffset; |
| 506 | BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; |
| 507 | ByteOffset = 0; |
| 508 | CurEltOffset = NextEltOffset; |
| 509 | } |
| 510 | // not reached. |
| 511 | } |
| 512 | |
| 513 | if (isa<ConstantArray>(Val: C) || isa<ConstantVector>(Val: C) || |
| 514 | isa<ConstantDataSequential>(Val: C)) { |
| 515 | uint64_t NumElts, EltSize; |
| 516 | Type *EltTy; |
| 517 | if (auto *AT = dyn_cast<ArrayType>(Val: C->getType())) { |
| 518 | NumElts = AT->getNumElements(); |
| 519 | EltTy = AT->getElementType(); |
| 520 | EltSize = DL.getTypeAllocSize(Ty: EltTy); |
| 521 | } else { |
| 522 | NumElts = cast<FixedVectorType>(Val: C->getType())->getNumElements(); |
| 523 | EltTy = cast<FixedVectorType>(Val: C->getType())->getElementType(); |
| 524 | // TODO: For non-byte-sized vectors, current implementation assumes there is |
| 525 | // padding to the next byte boundary between elements. |
| 526 | if (!DL.typeSizeEqualsStoreSize(Ty: EltTy)) |
| 527 | return false; |
| 528 | |
| 529 | EltSize = DL.getTypeStoreSize(Ty: EltTy); |
| 530 | } |
| 531 | uint64_t Index = ByteOffset / EltSize; |
| 532 | uint64_t Offset = ByteOffset - Index * EltSize; |
| 533 | |
| 534 | for (; Index != NumElts; ++Index) { |
| 535 | if (!ReadDataFromGlobal(C: C->getAggregateElement(Elt: Index), ByteOffset: Offset, CurPtr, |
| 536 | BytesLeft, DL)) |
| 537 | return false; |
| 538 | |
| 539 | uint64_t BytesWritten = EltSize - Offset; |
| 540 | assert(BytesWritten <= EltSize && "Not indexing into this element?" ); |
| 541 | if (BytesWritten >= BytesLeft) |
| 542 | return true; |
| 543 | |
| 544 | Offset = 0; |
| 545 | BytesLeft -= BytesWritten; |
| 546 | CurPtr += BytesWritten; |
| 547 | } |
| 548 | return true; |
| 549 | } |
| 550 | |
| 551 | if (auto *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 552 | if (CE->getOpcode() == Instruction::IntToPtr && |
| 553 | CE->getOperand(i_nocapture: 0)->getType() == DL.getIntPtrType(CE->getType())) { |
| 554 | return ReadDataFromGlobal(C: CE->getOperand(i_nocapture: 0), ByteOffset, CurPtr, |
| 555 | BytesLeft, DL); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | // Otherwise, unknown initializer type. |
| 560 | return false; |
| 561 | } |
| 562 | |
| 563 | Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, |
| 564 | int64_t Offset, const DataLayout &DL) { |
| 565 | // Bail out early. Not expect to load from scalable global variable. |
| 566 | if (isa<ScalableVectorType>(Val: LoadTy)) |
| 567 | return nullptr; |
| 568 | |
| 569 | auto *IntType = dyn_cast<IntegerType>(Val: LoadTy); |
| 570 | |
| 571 | // If this isn't an integer load we can't fold it directly. |
| 572 | if (!IntType) { |
| 573 | // If this is a non-integer load, we can try folding it as an int load and |
| 574 | // then bitcast the result. This can be useful for union cases. Note |
| 575 | // that address spaces don't matter here since we're not going to result in |
| 576 | // an actual new load. |
| 577 | if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && |
| 578 | !LoadTy->isVectorTy()) |
| 579 | return nullptr; |
| 580 | |
| 581 | Type *MapTy = Type::getIntNTy(C&: C->getContext(), |
| 582 | N: DL.getTypeSizeInBits(Ty: LoadTy).getFixedValue()); |
| 583 | if (Constant *Res = FoldReinterpretLoadFromConst(C, LoadTy: MapTy, Offset, DL)) { |
| 584 | if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) |
| 585 | // Materializing a zero can be done trivially without a bitcast |
| 586 | return Constant::getNullValue(Ty: LoadTy); |
| 587 | Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; |
| 588 | Res = FoldBitCast(C: Res, DestTy: CastTy, DL); |
| 589 | if (LoadTy->isPtrOrPtrVectorTy()) { |
| 590 | // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr |
| 591 | if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) |
| 592 | return Constant::getNullValue(Ty: LoadTy); |
| 593 | if (DL.isNonIntegralPointerType(Ty: LoadTy->getScalarType())) |
| 594 | // Be careful not to replace a load of an addrspace value with an inttoptr here |
| 595 | return nullptr; |
| 596 | Res = ConstantExpr::getIntToPtr(C: Res, Ty: LoadTy); |
| 597 | } |
| 598 | return Res; |
| 599 | } |
| 600 | return nullptr; |
| 601 | } |
| 602 | |
| 603 | unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; |
| 604 | if (BytesLoaded > 32 || BytesLoaded == 0) |
| 605 | return nullptr; |
| 606 | |
| 607 | // If we're not accessing anything in this constant, the result is undefined. |
| 608 | if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) |
| 609 | return PoisonValue::get(T: IntType); |
| 610 | |
| 611 | // TODO: We should be able to support scalable types. |
| 612 | TypeSize InitializerSize = DL.getTypeAllocSize(Ty: C->getType()); |
| 613 | if (InitializerSize.isScalable()) |
| 614 | return nullptr; |
| 615 | |
| 616 | // If we're not accessing anything in this constant, the result is undefined. |
| 617 | if (Offset >= (int64_t)InitializerSize.getFixedValue()) |
| 618 | return PoisonValue::get(T: IntType); |
| 619 | |
| 620 | unsigned char RawBytes[32] = {0}; |
| 621 | unsigned char *CurPtr = RawBytes; |
| 622 | unsigned BytesLeft = BytesLoaded; |
| 623 | |
| 624 | // If we're loading off the beginning of the global, some bytes may be valid. |
| 625 | if (Offset < 0) { |
| 626 | CurPtr += -Offset; |
| 627 | BytesLeft += Offset; |
| 628 | Offset = 0; |
| 629 | } |
| 630 | |
| 631 | if (!ReadDataFromGlobal(C, ByteOffset: Offset, CurPtr, BytesLeft, DL)) |
| 632 | return nullptr; |
| 633 | |
| 634 | APInt ResultVal = APInt(IntType->getBitWidth(), 0); |
| 635 | if (DL.isLittleEndian()) { |
| 636 | ResultVal = RawBytes[BytesLoaded - 1]; |
| 637 | for (unsigned i = 1; i != BytesLoaded; ++i) { |
| 638 | ResultVal <<= 8; |
| 639 | ResultVal |= RawBytes[BytesLoaded - 1 - i]; |
| 640 | } |
| 641 | } else { |
| 642 | ResultVal = RawBytes[0]; |
| 643 | for (unsigned i = 1; i != BytesLoaded; ++i) { |
| 644 | ResultVal <<= 8; |
| 645 | ResultVal |= RawBytes[i]; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | return ConstantInt::get(Context&: IntType->getContext(), V: ResultVal); |
| 650 | } |
| 651 | |
| 652 | } // anonymous namespace |
| 653 | |
| 654 | // If GV is a constant with an initializer read its representation starting |
| 655 | // at Offset and return it as a constant array of unsigned char. Otherwise |
| 656 | // return null. |
| 657 | Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, |
| 658 | uint64_t Offset) { |
| 659 | if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) |
| 660 | return nullptr; |
| 661 | |
| 662 | const DataLayout &DL = GV->getDataLayout(); |
| 663 | Constant *Init = const_cast<Constant *>(GV->getInitializer()); |
| 664 | TypeSize InitSize = DL.getTypeAllocSize(Ty: Init->getType()); |
| 665 | if (InitSize < Offset) |
| 666 | return nullptr; |
| 667 | |
| 668 | uint64_t NBytes = InitSize - Offset; |
| 669 | if (NBytes > UINT16_MAX) |
| 670 | // Bail for large initializers in excess of 64K to avoid allocating |
| 671 | // too much memory. |
| 672 | // Offset is assumed to be less than or equal than InitSize (this |
| 673 | // is enforced in ReadDataFromGlobal). |
| 674 | return nullptr; |
| 675 | |
| 676 | SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); |
| 677 | unsigned char *CurPtr = RawBytes.data(); |
| 678 | |
| 679 | if (!ReadDataFromGlobal(C: Init, ByteOffset: Offset, CurPtr, BytesLeft: NBytes, DL)) |
| 680 | return nullptr; |
| 681 | |
| 682 | return ConstantDataArray::get(Context&: GV->getContext(), Elts&: RawBytes); |
| 683 | } |
| 684 | |
| 685 | /// If this Offset points exactly to the start of an aggregate element, return |
| 686 | /// that element, otherwise return nullptr. |
| 687 | Constant *getConstantAtOffset(Constant *Base, APInt Offset, |
| 688 | const DataLayout &DL) { |
| 689 | if (Offset.isZero()) |
| 690 | return Base; |
| 691 | |
| 692 | if (!isa<ConstantAggregate>(Val: Base) && !isa<ConstantDataSequential>(Val: Base)) |
| 693 | return nullptr; |
| 694 | |
| 695 | Type *ElemTy = Base->getType(); |
| 696 | SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); |
| 697 | if (!Offset.isZero() || !Indices[0].isZero()) |
| 698 | return nullptr; |
| 699 | |
| 700 | Constant *C = Base; |
| 701 | for (const APInt &Index : drop_begin(RangeOrContainer&: Indices)) { |
| 702 | if (Index.isNegative() || Index.getActiveBits() >= 32) |
| 703 | return nullptr; |
| 704 | |
| 705 | C = C->getAggregateElement(Elt: Index.getZExtValue()); |
| 706 | if (!C) |
| 707 | return nullptr; |
| 708 | } |
| 709 | |
| 710 | return C; |
| 711 | } |
| 712 | |
| 713 | Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, |
| 714 | const APInt &Offset, |
| 715 | const DataLayout &DL) { |
| 716 | if (Constant *AtOffset = getConstantAtOffset(Base: C, Offset, DL)) |
| 717 | if (Constant *Result = ConstantFoldLoadThroughBitcast(C: AtOffset, DestTy: Ty, DL)) |
| 718 | return Result; |
| 719 | |
| 720 | // Explicitly check for out-of-bounds access, so we return poison even if the |
| 721 | // constant is a uniform value. |
| 722 | TypeSize Size = DL.getTypeAllocSize(Ty: C->getType()); |
| 723 | if (!Size.isScalable() && Offset.sge(RHS: Size.getFixedValue())) |
| 724 | return PoisonValue::get(T: Ty); |
| 725 | |
| 726 | // Try an offset-independent fold of a uniform value. |
| 727 | if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL)) |
| 728 | return Result; |
| 729 | |
| 730 | // Try hard to fold loads from bitcasted strange and non-type-safe things. |
| 731 | if (Offset.getSignificantBits() <= 64) |
| 732 | if (Constant *Result = |
| 733 | FoldReinterpretLoadFromConst(C, LoadTy: Ty, Offset: Offset.getSExtValue(), DL)) |
| 734 | return Result; |
| 735 | |
| 736 | return nullptr; |
| 737 | } |
| 738 | |
| 739 | Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, |
| 740 | const DataLayout &DL) { |
| 741 | return ConstantFoldLoadFromConst(C, Ty, Offset: APInt(64, 0), DL); |
| 742 | } |
| 743 | |
| 744 | Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, |
| 745 | APInt Offset, |
| 746 | const DataLayout &DL) { |
| 747 | // We can only fold loads from constant globals with a definitive initializer. |
| 748 | // Check this upfront, to skip expensive offset calculations. |
| 749 | auto *GV = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: C)); |
| 750 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
| 751 | return nullptr; |
| 752 | |
| 753 | C = cast<Constant>(Val: C->stripAndAccumulateConstantOffsets( |
| 754 | DL, Offset, /* AllowNonInbounds */ true)); |
| 755 | |
| 756 | if (C == GV) |
| 757 | if (Constant *Result = ConstantFoldLoadFromConst(C: GV->getInitializer(), Ty, |
| 758 | Offset, DL)) |
| 759 | return Result; |
| 760 | |
| 761 | // If this load comes from anywhere in a uniform constant global, the value |
| 762 | // is always the same, regardless of the loaded offset. |
| 763 | return ConstantFoldLoadFromUniformValue(C: GV->getInitializer(), Ty, DL); |
| 764 | } |
| 765 | |
| 766 | Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, |
| 767 | const DataLayout &DL) { |
| 768 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: C->getType()), 0); |
| 769 | return ConstantFoldLoadFromConstPtr(C, Ty, Offset: std::move(Offset), DL); |
| 770 | } |
| 771 | |
| 772 | Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, |
| 773 | const DataLayout &DL) { |
| 774 | if (isa<PoisonValue>(Val: C)) |
| 775 | return PoisonValue::get(T: Ty); |
| 776 | if (isa<UndefValue>(Val: C)) |
| 777 | return UndefValue::get(T: Ty); |
| 778 | // If padding is needed when storing C to memory, then it isn't considered as |
| 779 | // uniform. |
| 780 | if (!DL.typeSizeEqualsStoreSize(Ty: C->getType())) |
| 781 | return nullptr; |
| 782 | if (C->isNullValue() && !Ty->isX86_AMXTy()) |
| 783 | return Constant::getNullValue(Ty); |
| 784 | if (C->isAllOnesValue() && |
| 785 | (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) |
| 786 | return Constant::getAllOnesValue(Ty); |
| 787 | return nullptr; |
| 788 | } |
| 789 | |
| 790 | namespace { |
| 791 | |
| 792 | /// One of Op0/Op1 is a constant expression. |
| 793 | /// Attempt to symbolically evaluate the result of a binary operator merging |
| 794 | /// these together. If target data info is available, it is provided as DL, |
| 795 | /// otherwise DL is null. |
| 796 | Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, |
| 797 | const DataLayout &DL) { |
| 798 | // SROA |
| 799 | |
| 800 | // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. |
| 801 | // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute |
| 802 | // bits. |
| 803 | |
| 804 | if (Opc == Instruction::And) { |
| 805 | KnownBits Known0 = computeKnownBits(V: Op0, DL); |
| 806 | KnownBits Known1 = computeKnownBits(V: Op1, DL); |
| 807 | if ((Known1.One | Known0.Zero).isAllOnes()) { |
| 808 | // All the bits of Op0 that the 'and' could be masking are already zero. |
| 809 | return Op0; |
| 810 | } |
| 811 | if ((Known0.One | Known1.Zero).isAllOnes()) { |
| 812 | // All the bits of Op1 that the 'and' could be masking are already zero. |
| 813 | return Op1; |
| 814 | } |
| 815 | |
| 816 | Known0 &= Known1; |
| 817 | if (Known0.isConstant()) |
| 818 | return ConstantInt::get(Ty: Op0->getType(), V: Known0.getConstant()); |
| 819 | } |
| 820 | |
| 821 | // If the constant expr is something like &A[123] - &A[4].f, fold this into a |
| 822 | // constant. This happens frequently when iterating over a global array. |
| 823 | if (Opc == Instruction::Sub) { |
| 824 | GlobalValue *GV1, *GV2; |
| 825 | APInt Offs1, Offs2; |
| 826 | |
| 827 | if (IsConstantOffsetFromGlobal(C: Op0, GV&: GV1, Offset&: Offs1, DL)) |
| 828 | if (IsConstantOffsetFromGlobal(C: Op1, GV&: GV2, Offset&: Offs2, DL) && GV1 == GV2) { |
| 829 | unsigned OpSize = DL.getTypeSizeInBits(Ty: Op0->getType()); |
| 830 | |
| 831 | // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. |
| 832 | // PtrToInt may change the bitwidth so we have convert to the right size |
| 833 | // first. |
| 834 | return ConstantInt::get(Ty: Op0->getType(), V: Offs1.zextOrTrunc(width: OpSize) - |
| 835 | Offs2.zextOrTrunc(width: OpSize)); |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | return nullptr; |
| 840 | } |
| 841 | |
| 842 | /// If array indices are not pointer-sized integers, explicitly cast them so |
| 843 | /// that they aren't implicitly casted by the getelementptr. |
| 844 | Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, |
| 845 | Type *ResultTy, GEPNoWrapFlags NW, |
| 846 | std::optional<ConstantRange> InRange, |
| 847 | const DataLayout &DL, const TargetLibraryInfo *TLI) { |
| 848 | Type *IntIdxTy = DL.getIndexType(PtrTy: ResultTy); |
| 849 | Type *IntIdxScalarTy = IntIdxTy->getScalarType(); |
| 850 | |
| 851 | bool Any = false; |
| 852 | SmallVector<Constant*, 32> NewIdxs; |
| 853 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
| 854 | if ((i == 1 || |
| 855 | !isa<StructType>(Val: GetElementPtrInst::getIndexedType( |
| 856 | Ty: SrcElemTy, IdxList: Ops.slice(N: 1, M: i - 1)))) && |
| 857 | Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { |
| 858 | Any = true; |
| 859 | Type *NewType = |
| 860 | Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; |
| 861 | Constant *NewIdx = ConstantFoldCastOperand( |
| 862 | Opcode: CastInst::getCastOpcode(Val: Ops[i], SrcIsSigned: true, Ty: NewType, DstIsSigned: true), C: Ops[i], DestTy: NewType, |
| 863 | DL); |
| 864 | if (!NewIdx) |
| 865 | return nullptr; |
| 866 | NewIdxs.push_back(Elt: NewIdx); |
| 867 | } else |
| 868 | NewIdxs.push_back(Elt: Ops[i]); |
| 869 | } |
| 870 | |
| 871 | if (!Any) |
| 872 | return nullptr; |
| 873 | |
| 874 | Constant *C = |
| 875 | ConstantExpr::getGetElementPtr(Ty: SrcElemTy, C: Ops[0], IdxList: NewIdxs, NW, InRange); |
| 876 | return ConstantFoldConstant(C, DL, TLI); |
| 877 | } |
| 878 | |
| 879 | /// If we can symbolically evaluate the GEP constant expression, do so. |
| 880 | Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, |
| 881 | ArrayRef<Constant *> Ops, |
| 882 | const DataLayout &DL, |
| 883 | const TargetLibraryInfo *TLI) { |
| 884 | Type *SrcElemTy = GEP->getSourceElementType(); |
| 885 | Type *ResTy = GEP->getType(); |
| 886 | if (!SrcElemTy->isSized() || isa<ScalableVectorType>(Val: SrcElemTy)) |
| 887 | return nullptr; |
| 888 | |
| 889 | if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResultTy: ResTy, NW: GEP->getNoWrapFlags(), |
| 890 | InRange: GEP->getInRange(), DL, TLI)) |
| 891 | return C; |
| 892 | |
| 893 | Constant *Ptr = Ops[0]; |
| 894 | if (!Ptr->getType()->isPointerTy()) |
| 895 | return nullptr; |
| 896 | |
| 897 | Type *IntIdxTy = DL.getIndexType(PtrTy: Ptr->getType()); |
| 898 | |
| 899 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| 900 | if (!isa<ConstantInt>(Val: Ops[i]) || !Ops[i]->getType()->isIntegerTy()) |
| 901 | return nullptr; |
| 902 | |
| 903 | unsigned BitWidth = DL.getTypeSizeInBits(Ty: IntIdxTy); |
| 904 | APInt Offset = APInt( |
| 905 | BitWidth, |
| 906 | DL.getIndexedOffsetInType( |
| 907 | ElemTy: SrcElemTy, Indices: ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)), |
| 908 | /*isSigned=*/true, /*implicitTrunc=*/true); |
| 909 | |
| 910 | std::optional<ConstantRange> InRange = GEP->getInRange(); |
| 911 | if (InRange) |
| 912 | InRange = InRange->sextOrTrunc(BitWidth); |
| 913 | |
| 914 | // If this is a GEP of a GEP, fold it all into a single GEP. |
| 915 | GEPNoWrapFlags NW = GEP->getNoWrapFlags(); |
| 916 | bool Overflow = false; |
| 917 | while (auto *GEP = dyn_cast<GEPOperator>(Val: Ptr)) { |
| 918 | NW &= GEP->getNoWrapFlags(); |
| 919 | |
| 920 | SmallVector<Value *, 4> NestedOps(llvm::drop_begin(RangeOrContainer: GEP->operands())); |
| 921 | |
| 922 | // Do not try the incorporate the sub-GEP if some index is not a number. |
| 923 | bool AllConstantInt = true; |
| 924 | for (Value *NestedOp : NestedOps) |
| 925 | if (!isa<ConstantInt>(Val: NestedOp)) { |
| 926 | AllConstantInt = false; |
| 927 | break; |
| 928 | } |
| 929 | if (!AllConstantInt) |
| 930 | break; |
| 931 | |
| 932 | // TODO: Try to intersect two inrange attributes? |
| 933 | if (!InRange) { |
| 934 | InRange = GEP->getInRange(); |
| 935 | if (InRange) |
| 936 | // Adjust inrange by offset until now. |
| 937 | InRange = InRange->sextOrTrunc(BitWidth).subtract(CI: Offset); |
| 938 | } |
| 939 | |
| 940 | Ptr = cast<Constant>(Val: GEP->getOperand(i_nocapture: 0)); |
| 941 | SrcElemTy = GEP->getSourceElementType(); |
| 942 | Offset = Offset.sadd_ov( |
| 943 | RHS: APInt(BitWidth, DL.getIndexedOffsetInType(ElemTy: SrcElemTy, Indices: NestedOps), |
| 944 | /*isSigned=*/true, /*implicitTrunc=*/true), |
| 945 | Overflow); |
| 946 | } |
| 947 | |
| 948 | // Preserving nusw (without inbounds) also requires that the offset |
| 949 | // additions did not overflow. |
| 950 | if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow) |
| 951 | NW = NW.withoutNoUnsignedSignedWrap(); |
| 952 | |
| 953 | // If the base value for this address is a literal integer value, fold the |
| 954 | // getelementptr to the resulting integer value casted to the pointer type. |
| 955 | APInt BasePtr(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); |
| 956 | if (auto *CE = dyn_cast<ConstantExpr>(Val: Ptr)) { |
| 957 | if (CE->getOpcode() == Instruction::IntToPtr) { |
| 958 | if (auto *Base = dyn_cast<ConstantInt>(Val: CE->getOperand(i_nocapture: 0))) |
| 959 | BasePtr = Base->getValue().zextOrTrunc(width: BasePtr.getBitWidth()); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | auto *PTy = cast<PointerType>(Val: Ptr->getType()); |
| 964 | if ((Ptr->isNullValue() || BasePtr != 0) && |
| 965 | !DL.isNonIntegralPointerType(PT: PTy)) { |
| 966 | // If the index size is smaller than the pointer size, add to the low |
| 967 | // bits only. |
| 968 | BasePtr.insertBits(SubBits: BasePtr.trunc(width: BitWidth) + Offset, bitPosition: 0); |
| 969 | Constant *C = ConstantInt::get(Context&: Ptr->getContext(), V: BasePtr); |
| 970 | return ConstantExpr::getIntToPtr(C, Ty: ResTy); |
| 971 | } |
| 972 | |
| 973 | // Try to infer inbounds for GEPs of globals. |
| 974 | if (!NW.isInBounds() && Offset.isNonNegative()) { |
| 975 | bool CanBeNull, CanBeFreed; |
| 976 | uint64_t DerefBytes = |
| 977 | Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
| 978 | if (DerefBytes != 0 && !CanBeNull && Offset.sle(RHS: DerefBytes)) |
| 979 | NW |= GEPNoWrapFlags::inBounds(); |
| 980 | } |
| 981 | |
| 982 | // nusw + nneg -> nuw |
| 983 | if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative()) |
| 984 | NW |= GEPNoWrapFlags::noUnsignedWrap(); |
| 985 | |
| 986 | // Otherwise canonicalize this to a single ptradd. |
| 987 | LLVMContext &Ctx = Ptr->getContext(); |
| 988 | return ConstantExpr::getGetElementPtr(Ty: Type::getInt8Ty(C&: Ctx), C: Ptr, |
| 989 | Idx: ConstantInt::get(Context&: Ctx, V: Offset), NW, |
| 990 | InRange); |
| 991 | } |
| 992 | |
| 993 | /// Attempt to constant fold an instruction with the |
| 994 | /// specified opcode and operands. If successful, the constant result is |
| 995 | /// returned, if not, null is returned. Note that this function can fail when |
| 996 | /// attempting to fold instructions like loads and stores, which have no |
| 997 | /// constant expression form. |
| 998 | Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, |
| 999 | ArrayRef<Constant *> Ops, |
| 1000 | const DataLayout &DL, |
| 1001 | const TargetLibraryInfo *TLI, |
| 1002 | bool AllowNonDeterministic) { |
| 1003 | Type *DestTy = InstOrCE->getType(); |
| 1004 | |
| 1005 | if (Instruction::isUnaryOp(Opcode)) |
| 1006 | return ConstantFoldUnaryOpOperand(Opcode, Op: Ops[0], DL); |
| 1007 | |
| 1008 | if (Instruction::isBinaryOp(Opcode)) { |
| 1009 | switch (Opcode) { |
| 1010 | default: |
| 1011 | break; |
| 1012 | case Instruction::FAdd: |
| 1013 | case Instruction::FSub: |
| 1014 | case Instruction::FMul: |
| 1015 | case Instruction::FDiv: |
| 1016 | case Instruction::FRem: |
| 1017 | // Handle floating point instructions separately to account for denormals |
| 1018 | // TODO: If a constant expression is being folded rather than an |
| 1019 | // instruction, denormals will not be flushed/treated as zero |
| 1020 | if (const auto *I = dyn_cast<Instruction>(Val: InstOrCE)) { |
| 1021 | return ConstantFoldFPInstOperands(Opcode, LHS: Ops[0], RHS: Ops[1], DL, I, |
| 1022 | AllowNonDeterministic); |
| 1023 | } |
| 1024 | } |
| 1025 | return ConstantFoldBinaryOpOperands(Opcode, LHS: Ops[0], RHS: Ops[1], DL); |
| 1026 | } |
| 1027 | |
| 1028 | if (Instruction::isCast(Opcode)) |
| 1029 | return ConstantFoldCastOperand(Opcode, C: Ops[0], DestTy, DL); |
| 1030 | |
| 1031 | if (auto *GEP = dyn_cast<GEPOperator>(Val: InstOrCE)) { |
| 1032 | Type *SrcElemTy = GEP->getSourceElementType(); |
| 1033 | if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) |
| 1034 | return nullptr; |
| 1035 | |
| 1036 | if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) |
| 1037 | return C; |
| 1038 | |
| 1039 | return ConstantExpr::getGetElementPtr(Ty: SrcElemTy, C: Ops[0], IdxList: Ops.slice(N: 1), |
| 1040 | NW: GEP->getNoWrapFlags(), |
| 1041 | InRange: GEP->getInRange()); |
| 1042 | } |
| 1043 | |
| 1044 | if (auto *CE = dyn_cast<ConstantExpr>(Val: InstOrCE)) |
| 1045 | return CE->getWithOperands(Ops); |
| 1046 | |
| 1047 | switch (Opcode) { |
| 1048 | default: return nullptr; |
| 1049 | case Instruction::ICmp: |
| 1050 | case Instruction::FCmp: { |
| 1051 | auto *C = cast<CmpInst>(Val: InstOrCE); |
| 1052 | return ConstantFoldCompareInstOperands(Predicate: C->getPredicate(), LHS: Ops[0], RHS: Ops[1], |
| 1053 | DL, TLI, I: C); |
| 1054 | } |
| 1055 | case Instruction::Freeze: |
| 1056 | return isGuaranteedNotToBeUndefOrPoison(V: Ops[0]) ? Ops[0] : nullptr; |
| 1057 | case Instruction::Call: |
| 1058 | if (auto *F = dyn_cast<Function>(Val: Ops.back())) { |
| 1059 | const auto *Call = cast<CallBase>(Val: InstOrCE); |
| 1060 | if (canConstantFoldCallTo(Call, F)) |
| 1061 | return ConstantFoldCall(Call, F, Operands: Ops.slice(N: 0, M: Ops.size() - 1), TLI, |
| 1062 | AllowNonDeterministic); |
| 1063 | } |
| 1064 | return nullptr; |
| 1065 | case Instruction::Select: |
| 1066 | return ConstantFoldSelectInstruction(Cond: Ops[0], V1: Ops[1], V2: Ops[2]); |
| 1067 | case Instruction::ExtractElement: |
| 1068 | return ConstantExpr::getExtractElement(Vec: Ops[0], Idx: Ops[1]); |
| 1069 | case Instruction::ExtractValue: |
| 1070 | return ConstantFoldExtractValueInstruction( |
| 1071 | Agg: Ops[0], Idxs: cast<ExtractValueInst>(Val: InstOrCE)->getIndices()); |
| 1072 | case Instruction::InsertElement: |
| 1073 | return ConstantExpr::getInsertElement(Vec: Ops[0], Elt: Ops[1], Idx: Ops[2]); |
| 1074 | case Instruction::InsertValue: |
| 1075 | return ConstantFoldInsertValueInstruction( |
| 1076 | Agg: Ops[0], Val: Ops[1], Idxs: cast<InsertValueInst>(Val: InstOrCE)->getIndices()); |
| 1077 | case Instruction::ShuffleVector: |
| 1078 | return ConstantExpr::getShuffleVector( |
| 1079 | V1: Ops[0], V2: Ops[1], Mask: cast<ShuffleVectorInst>(Val: InstOrCE)->getShuffleMask()); |
| 1080 | case Instruction::Load: { |
| 1081 | const auto *LI = dyn_cast<LoadInst>(Val: InstOrCE); |
| 1082 | if (LI->isVolatile()) |
| 1083 | return nullptr; |
| 1084 | return ConstantFoldLoadFromConstPtr(C: Ops[0], Ty: LI->getType(), DL); |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | } // end anonymous namespace |
| 1090 | |
| 1091 | //===----------------------------------------------------------------------===// |
| 1092 | // Constant Folding public APIs |
| 1093 | //===----------------------------------------------------------------------===// |
| 1094 | |
| 1095 | namespace { |
| 1096 | |
| 1097 | Constant * |
| 1098 | ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, |
| 1099 | const TargetLibraryInfo *TLI, |
| 1100 | SmallDenseMap<Constant *, Constant *> &FoldedOps) { |
| 1101 | if (!isa<ConstantVector>(Val: C) && !isa<ConstantExpr>(Val: C)) |
| 1102 | return const_cast<Constant *>(C); |
| 1103 | |
| 1104 | SmallVector<Constant *, 8> Ops; |
| 1105 | for (const Use &OldU : C->operands()) { |
| 1106 | Constant *OldC = cast<Constant>(Val: &OldU); |
| 1107 | Constant *NewC = OldC; |
| 1108 | // Recursively fold the ConstantExpr's operands. If we have already folded |
| 1109 | // a ConstantExpr, we don't have to process it again. |
| 1110 | if (isa<ConstantVector>(Val: OldC) || isa<ConstantExpr>(Val: OldC)) { |
| 1111 | auto It = FoldedOps.find(Val: OldC); |
| 1112 | if (It == FoldedOps.end()) { |
| 1113 | NewC = ConstantFoldConstantImpl(C: OldC, DL, TLI, FoldedOps); |
| 1114 | FoldedOps.insert(KV: {OldC, NewC}); |
| 1115 | } else { |
| 1116 | NewC = It->second; |
| 1117 | } |
| 1118 | } |
| 1119 | Ops.push_back(Elt: NewC); |
| 1120 | } |
| 1121 | |
| 1122 | if (auto *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 1123 | if (Constant *Res = ConstantFoldInstOperandsImpl( |
| 1124 | InstOrCE: CE, Opcode: CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true)) |
| 1125 | return Res; |
| 1126 | return const_cast<Constant *>(C); |
| 1127 | } |
| 1128 | |
| 1129 | assert(isa<ConstantVector>(C)); |
| 1130 | return ConstantVector::get(V: Ops); |
| 1131 | } |
| 1132 | |
| 1133 | } // end anonymous namespace |
| 1134 | |
| 1135 | Constant *llvm::ConstantFoldInstruction(const Instruction *I, |
| 1136 | const DataLayout &DL, |
| 1137 | const TargetLibraryInfo *TLI) { |
| 1138 | // Handle PHI nodes quickly here... |
| 1139 | if (auto *PN = dyn_cast<PHINode>(Val: I)) { |
| 1140 | Constant *CommonValue = nullptr; |
| 1141 | |
| 1142 | SmallDenseMap<Constant *, Constant *> FoldedOps; |
| 1143 | for (Value *Incoming : PN->incoming_values()) { |
| 1144 | // If the incoming value is undef then skip it. Note that while we could |
| 1145 | // skip the value if it is equal to the phi node itself we choose not to |
| 1146 | // because that would break the rule that constant folding only applies if |
| 1147 | // all operands are constants. |
| 1148 | if (isa<UndefValue>(Val: Incoming)) |
| 1149 | continue; |
| 1150 | // If the incoming value is not a constant, then give up. |
| 1151 | auto *C = dyn_cast<Constant>(Val: Incoming); |
| 1152 | if (!C) |
| 1153 | return nullptr; |
| 1154 | // Fold the PHI's operands. |
| 1155 | C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); |
| 1156 | // If the incoming value is a different constant to |
| 1157 | // the one we saw previously, then give up. |
| 1158 | if (CommonValue && C != CommonValue) |
| 1159 | return nullptr; |
| 1160 | CommonValue = C; |
| 1161 | } |
| 1162 | |
| 1163 | // If we reach here, all incoming values are the same constant or undef. |
| 1164 | return CommonValue ? CommonValue : UndefValue::get(T: PN->getType()); |
| 1165 | } |
| 1166 | |
| 1167 | // Scan the operand list, checking to see if they are all constants, if so, |
| 1168 | // hand off to ConstantFoldInstOperandsImpl. |
| 1169 | if (!all_of(Range: I->operands(), P: [](const Use &U) { return isa<Constant>(Val: U); })) |
| 1170 | return nullptr; |
| 1171 | |
| 1172 | SmallDenseMap<Constant *, Constant *> FoldedOps; |
| 1173 | SmallVector<Constant *, 8> Ops; |
| 1174 | for (const Use &OpU : I->operands()) { |
| 1175 | auto *Op = cast<Constant>(Val: &OpU); |
| 1176 | // Fold the Instruction's operands. |
| 1177 | Op = ConstantFoldConstantImpl(C: Op, DL, TLI, FoldedOps); |
| 1178 | Ops.push_back(Elt: Op); |
| 1179 | } |
| 1180 | |
| 1181 | return ConstantFoldInstOperands(I, Ops, DL, TLI); |
| 1182 | } |
| 1183 | |
| 1184 | Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, |
| 1185 | const TargetLibraryInfo *TLI) { |
| 1186 | SmallDenseMap<Constant *, Constant *> FoldedOps; |
| 1187 | return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); |
| 1188 | } |
| 1189 | |
| 1190 | Constant *llvm::ConstantFoldInstOperands(const Instruction *I, |
| 1191 | ArrayRef<Constant *> Ops, |
| 1192 | const DataLayout &DL, |
| 1193 | const TargetLibraryInfo *TLI, |
| 1194 | bool AllowNonDeterministic) { |
| 1195 | return ConstantFoldInstOperandsImpl(InstOrCE: I, Opcode: I->getOpcode(), Ops, DL, TLI, |
| 1196 | AllowNonDeterministic); |
| 1197 | } |
| 1198 | |
| 1199 | Constant *llvm::ConstantFoldCompareInstOperands( |
| 1200 | unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, |
| 1201 | const TargetLibraryInfo *TLI, const Instruction *I) { |
| 1202 | CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; |
| 1203 | // fold: icmp (inttoptr x), null -> icmp x, 0 |
| 1204 | // fold: icmp null, (inttoptr x) -> icmp 0, x |
| 1205 | // fold: icmp (ptrtoint x), 0 -> icmp x, null |
| 1206 | // fold: icmp 0, (ptrtoint x) -> icmp null, x |
| 1207 | // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y |
| 1208 | // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y |
| 1209 | // |
| 1210 | // FIXME: The following comment is out of data and the DataLayout is here now. |
| 1211 | // ConstantExpr::getCompare cannot do this, because it doesn't have DL |
| 1212 | // around to know if bit truncation is happening. |
| 1213 | if (auto *CE0 = dyn_cast<ConstantExpr>(Val: Ops0)) { |
| 1214 | if (Ops1->isNullValue()) { |
| 1215 | if (CE0->getOpcode() == Instruction::IntToPtr) { |
| 1216 | Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
| 1217 | // Convert the integer value to the right size to ensure we get the |
| 1218 | // proper extension or truncation. |
| 1219 | if (Constant *C = ConstantFoldIntegerCast(C: CE0->getOperand(i_nocapture: 0), DestTy: IntPtrTy, |
| 1220 | /*IsSigned*/ false, DL)) { |
| 1221 | Constant *Null = Constant::getNullValue(Ty: C->getType()); |
| 1222 | return ConstantFoldCompareInstOperands(IntPredicate: Predicate, Ops0: C, Ops1: Null, DL, TLI); |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | // Only do this transformation if the int is intptrty in size, otherwise |
| 1227 | // there is a truncation or extension that we aren't modeling. |
| 1228 | if (CE0->getOpcode() == Instruction::PtrToInt) { |
| 1229 | Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(i_nocapture: 0)->getType()); |
| 1230 | if (CE0->getType() == IntPtrTy) { |
| 1231 | Constant *C = CE0->getOperand(i_nocapture: 0); |
| 1232 | Constant *Null = Constant::getNullValue(Ty: C->getType()); |
| 1233 | return ConstantFoldCompareInstOperands(IntPredicate: Predicate, Ops0: C, Ops1: Null, DL, TLI); |
| 1234 | } |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | if (auto *CE1 = dyn_cast<ConstantExpr>(Val: Ops1)) { |
| 1239 | if (CE0->getOpcode() == CE1->getOpcode()) { |
| 1240 | if (CE0->getOpcode() == Instruction::IntToPtr) { |
| 1241 | Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
| 1242 | |
| 1243 | // Convert the integer value to the right size to ensure we get the |
| 1244 | // proper extension or truncation. |
| 1245 | Constant *C0 = ConstantFoldIntegerCast(C: CE0->getOperand(i_nocapture: 0), DestTy: IntPtrTy, |
| 1246 | /*IsSigned*/ false, DL); |
| 1247 | Constant *C1 = ConstantFoldIntegerCast(C: CE1->getOperand(i_nocapture: 0), DestTy: IntPtrTy, |
| 1248 | /*IsSigned*/ false, DL); |
| 1249 | if (C0 && C1) |
| 1250 | return ConstantFoldCompareInstOperands(IntPredicate: Predicate, Ops0: C0, Ops1: C1, DL, TLI); |
| 1251 | } |
| 1252 | |
| 1253 | // Only do this transformation if the int is intptrty in size, otherwise |
| 1254 | // there is a truncation or extension that we aren't modeling. |
| 1255 | if (CE0->getOpcode() == Instruction::PtrToInt) { |
| 1256 | Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(i_nocapture: 0)->getType()); |
| 1257 | if (CE0->getType() == IntPtrTy && |
| 1258 | CE0->getOperand(i_nocapture: 0)->getType() == CE1->getOperand(i_nocapture: 0)->getType()) { |
| 1259 | return ConstantFoldCompareInstOperands( |
| 1260 | IntPredicate: Predicate, Ops0: CE0->getOperand(i_nocapture: 0), Ops1: CE1->getOperand(i_nocapture: 0), DL, TLI); |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | // Convert pointer comparison (base+offset1) pred (base+offset2) into |
| 1267 | // offset1 pred offset2, for the case where the offset is inbounds. This |
| 1268 | // only works for equality and unsigned comparison, as inbounds permits |
| 1269 | // crossing the sign boundary. However, the offset comparison itself is |
| 1270 | // signed. |
| 1271 | if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(predicate: Predicate)) { |
| 1272 | unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ty: Ops0->getType()); |
| 1273 | APInt Offset0(IndexWidth, 0); |
| 1274 | bool IsEqPred = ICmpInst::isEquality(P: Predicate); |
| 1275 | Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets( |
| 1276 | DL, Offset&: Offset0, /*AllowNonInbounds=*/IsEqPred, |
| 1277 | /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr, |
| 1278 | /*LookThroughIntToPtr=*/IsEqPred); |
| 1279 | APInt Offset1(IndexWidth, 0); |
| 1280 | Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets( |
| 1281 | DL, Offset&: Offset1, /*AllowNonInbounds=*/IsEqPred, |
| 1282 | /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr, |
| 1283 | /*LookThroughIntToPtr=*/IsEqPred); |
| 1284 | if (Stripped0 == Stripped1) |
| 1285 | return ConstantInt::getBool( |
| 1286 | Context&: Ops0->getContext(), |
| 1287 | V: ICmpInst::compare(LHS: Offset0, RHS: Offset1, |
| 1288 | Pred: ICmpInst::getSignedPredicate(Pred: Predicate))); |
| 1289 | } |
| 1290 | } else if (isa<ConstantExpr>(Val: Ops1)) { |
| 1291 | // If RHS is a constant expression, but the left side isn't, swap the |
| 1292 | // operands and try again. |
| 1293 | Predicate = ICmpInst::getSwappedPredicate(pred: Predicate); |
| 1294 | return ConstantFoldCompareInstOperands(IntPredicate: Predicate, Ops0: Ops1, Ops1: Ops0, DL, TLI); |
| 1295 | } |
| 1296 | |
| 1297 | if (CmpInst::isFPPredicate(P: Predicate)) { |
| 1298 | // Flush any denormal constant float input according to denormal handling |
| 1299 | // mode. |
| 1300 | Ops0 = FlushFPConstant(Operand: Ops0, I, /*IsOutput=*/false); |
| 1301 | if (!Ops0) |
| 1302 | return nullptr; |
| 1303 | Ops1 = FlushFPConstant(Operand: Ops1, I, /*IsOutput=*/false); |
| 1304 | if (!Ops1) |
| 1305 | return nullptr; |
| 1306 | } |
| 1307 | |
| 1308 | return ConstantFoldCompareInstruction(Predicate, C1: Ops0, C2: Ops1); |
| 1309 | } |
| 1310 | |
| 1311 | Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, |
| 1312 | const DataLayout &DL) { |
| 1313 | assert(Instruction::isUnaryOp(Opcode)); |
| 1314 | |
| 1315 | return ConstantFoldUnaryInstruction(Opcode, V: Op); |
| 1316 | } |
| 1317 | |
| 1318 | Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, |
| 1319 | Constant *RHS, |
| 1320 | const DataLayout &DL) { |
| 1321 | assert(Instruction::isBinaryOp(Opcode)); |
| 1322 | if (isa<ConstantExpr>(Val: LHS) || isa<ConstantExpr>(Val: RHS)) |
| 1323 | if (Constant *C = SymbolicallyEvaluateBinop(Opc: Opcode, Op0: LHS, Op1: RHS, DL)) |
| 1324 | return C; |
| 1325 | |
| 1326 | if (ConstantExpr::isDesirableBinOp(Opcode)) |
| 1327 | return ConstantExpr::get(Opcode, C1: LHS, C2: RHS); |
| 1328 | return ConstantFoldBinaryInstruction(Opcode, V1: LHS, V2: RHS); |
| 1329 | } |
| 1330 | |
| 1331 | static ConstantFP *flushDenormalConstant(Type *Ty, const APFloat &APF, |
| 1332 | DenormalMode::DenormalModeKind Mode) { |
| 1333 | switch (Mode) { |
| 1334 | case DenormalMode::Dynamic: |
| 1335 | return nullptr; |
| 1336 | case DenormalMode::IEEE: |
| 1337 | return ConstantFP::get(Context&: Ty->getContext(), V: APF); |
| 1338 | case DenormalMode::PreserveSign: |
| 1339 | return ConstantFP::get( |
| 1340 | Context&: Ty->getContext(), |
| 1341 | V: APFloat::getZero(Sem: APF.getSemantics(), Negative: APF.isNegative())); |
| 1342 | case DenormalMode::PositiveZero: |
| 1343 | return ConstantFP::get(Context&: Ty->getContext(), |
| 1344 | V: APFloat::getZero(Sem: APF.getSemantics(), Negative: false)); |
| 1345 | default: |
| 1346 | break; |
| 1347 | } |
| 1348 | |
| 1349 | llvm_unreachable("unknown denormal mode" ); |
| 1350 | } |
| 1351 | |
| 1352 | /// Return the denormal mode that can be assumed when executing a floating point |
| 1353 | /// operation at \p CtxI. |
| 1354 | static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty) { |
| 1355 | if (!CtxI || !CtxI->getParent() || !CtxI->getFunction()) |
| 1356 | return DenormalMode::getDynamic(); |
| 1357 | return CtxI->getFunction()->getDenormalMode(FPType: Ty->getFltSemantics()); |
| 1358 | } |
| 1359 | |
| 1360 | static ConstantFP *flushDenormalConstantFP(ConstantFP *CFP, |
| 1361 | const Instruction *Inst, |
| 1362 | bool IsOutput) { |
| 1363 | const APFloat &APF = CFP->getValueAPF(); |
| 1364 | if (!APF.isDenormal()) |
| 1365 | return CFP; |
| 1366 | |
| 1367 | DenormalMode Mode = getInstrDenormalMode(CtxI: Inst, Ty: CFP->getType()); |
| 1368 | return flushDenormalConstant(Ty: CFP->getType(), APF, |
| 1369 | Mode: IsOutput ? Mode.Output : Mode.Input); |
| 1370 | } |
| 1371 | |
| 1372 | Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *Inst, |
| 1373 | bool IsOutput) { |
| 1374 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val: Operand)) |
| 1375 | return flushDenormalConstantFP(CFP, Inst, IsOutput); |
| 1376 | |
| 1377 | if (isa<ConstantAggregateZero, UndefValue, ConstantExpr>(Val: Operand)) |
| 1378 | return Operand; |
| 1379 | |
| 1380 | Type *Ty = Operand->getType(); |
| 1381 | VectorType *VecTy = dyn_cast<VectorType>(Val: Ty); |
| 1382 | if (VecTy) { |
| 1383 | if (auto *Splat = dyn_cast_or_null<ConstantFP>(Val: Operand->getSplatValue())) { |
| 1384 | ConstantFP *Folded = flushDenormalConstantFP(CFP: Splat, Inst, IsOutput); |
| 1385 | if (!Folded) |
| 1386 | return nullptr; |
| 1387 | return ConstantVector::getSplat(EC: VecTy->getElementCount(), Elt: Folded); |
| 1388 | } |
| 1389 | |
| 1390 | Ty = VecTy->getElementType(); |
| 1391 | } |
| 1392 | |
| 1393 | if (const auto *CV = dyn_cast<ConstantVector>(Val: Operand)) { |
| 1394 | SmallVector<Constant *, 16> NewElts; |
| 1395 | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| 1396 | Constant *Element = CV->getAggregateElement(Elt: i); |
| 1397 | if (isa<UndefValue>(Val: Element)) { |
| 1398 | NewElts.push_back(Elt: Element); |
| 1399 | continue; |
| 1400 | } |
| 1401 | |
| 1402 | ConstantFP *CFP = dyn_cast<ConstantFP>(Val: Element); |
| 1403 | if (!CFP) |
| 1404 | return nullptr; |
| 1405 | |
| 1406 | ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput); |
| 1407 | if (!Folded) |
| 1408 | return nullptr; |
| 1409 | NewElts.push_back(Elt: Folded); |
| 1410 | } |
| 1411 | |
| 1412 | return ConstantVector::get(V: NewElts); |
| 1413 | } |
| 1414 | |
| 1415 | if (const auto *CDV = dyn_cast<ConstantDataVector>(Val: Operand)) { |
| 1416 | SmallVector<Constant *, 16> NewElts; |
| 1417 | for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) { |
| 1418 | const APFloat &Elt = CDV->getElementAsAPFloat(i: I); |
| 1419 | if (!Elt.isDenormal()) { |
| 1420 | NewElts.push_back(Elt: ConstantFP::get(Ty, V: Elt)); |
| 1421 | } else { |
| 1422 | DenormalMode Mode = getInstrDenormalMode(CtxI: Inst, Ty); |
| 1423 | ConstantFP *Folded = |
| 1424 | flushDenormalConstant(Ty, APF: Elt, Mode: IsOutput ? Mode.Output : Mode.Input); |
| 1425 | if (!Folded) |
| 1426 | return nullptr; |
| 1427 | NewElts.push_back(Elt: Folded); |
| 1428 | } |
| 1429 | } |
| 1430 | |
| 1431 | return ConstantVector::get(V: NewElts); |
| 1432 | } |
| 1433 | |
| 1434 | return nullptr; |
| 1435 | } |
| 1436 | |
| 1437 | Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, |
| 1438 | Constant *RHS, const DataLayout &DL, |
| 1439 | const Instruction *I, |
| 1440 | bool AllowNonDeterministic) { |
| 1441 | if (Instruction::isBinaryOp(Opcode)) { |
| 1442 | // Flush denormal inputs if needed. |
| 1443 | Constant *Op0 = FlushFPConstant(Operand: LHS, Inst: I, /* IsOutput */ false); |
| 1444 | if (!Op0) |
| 1445 | return nullptr; |
| 1446 | Constant *Op1 = FlushFPConstant(Operand: RHS, Inst: I, /* IsOutput */ false); |
| 1447 | if (!Op1) |
| 1448 | return nullptr; |
| 1449 | |
| 1450 | // If nsz or an algebraic FMF flag is set, the result of the FP operation |
| 1451 | // may change due to future optimization. Don't constant fold them if |
| 1452 | // non-deterministic results are not allowed. |
| 1453 | if (!AllowNonDeterministic) |
| 1454 | if (auto *FP = dyn_cast_or_null<FPMathOperator>(Val: I)) |
| 1455 | if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() || |
| 1456 | FP->hasAllowContract() || FP->hasAllowReciprocal()) |
| 1457 | return nullptr; |
| 1458 | |
| 1459 | // Calculate constant result. |
| 1460 | Constant *C = ConstantFoldBinaryOpOperands(Opcode, LHS: Op0, RHS: Op1, DL); |
| 1461 | if (!C) |
| 1462 | return nullptr; |
| 1463 | |
| 1464 | // Flush denormal output if needed. |
| 1465 | C = FlushFPConstant(Operand: C, Inst: I, /* IsOutput */ true); |
| 1466 | if (!C) |
| 1467 | return nullptr; |
| 1468 | |
| 1469 | // The precise NaN value is non-deterministic. |
| 1470 | if (!AllowNonDeterministic && C->isNaN()) |
| 1471 | return nullptr; |
| 1472 | |
| 1473 | return C; |
| 1474 | } |
| 1475 | // If instruction lacks a parent/function and the denormal mode cannot be |
| 1476 | // determined, use the default (IEEE). |
| 1477 | return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); |
| 1478 | } |
| 1479 | |
| 1480 | Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, |
| 1481 | Type *DestTy, const DataLayout &DL) { |
| 1482 | assert(Instruction::isCast(Opcode)); |
| 1483 | switch (Opcode) { |
| 1484 | default: |
| 1485 | llvm_unreachable("Missing case" ); |
| 1486 | case Instruction::PtrToInt: |
| 1487 | if (auto *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 1488 | Constant *FoldedValue = nullptr; |
| 1489 | // If the input is a inttoptr, eliminate the pair. This requires knowing |
| 1490 | // the width of a pointer, so it can't be done in ConstantExpr::getCast. |
| 1491 | if (CE->getOpcode() == Instruction::IntToPtr) { |
| 1492 | // zext/trunc the inttoptr to pointer size. |
| 1493 | FoldedValue = ConstantFoldIntegerCast(C: CE->getOperand(i_nocapture: 0), |
| 1494 | DestTy: DL.getIntPtrType(CE->getType()), |
| 1495 | /*IsSigned=*/false, DL); |
| 1496 | } else if (auto *GEP = dyn_cast<GEPOperator>(Val: CE)) { |
| 1497 | // If we have GEP, we can perform the following folds: |
| 1498 | // (ptrtoint (gep null, x)) -> x |
| 1499 | // (ptrtoint (gep (gep null, x), y) -> x + y, etc. |
| 1500 | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ty: GEP->getType()); |
| 1501 | APInt BaseOffset(BitWidth, 0); |
| 1502 | auto *Base = cast<Constant>(Val: GEP->stripAndAccumulateConstantOffsets( |
| 1503 | DL, Offset&: BaseOffset, /*AllowNonInbounds=*/true)); |
| 1504 | if (Base->isNullValue()) { |
| 1505 | FoldedValue = ConstantInt::get(Context&: CE->getContext(), V: BaseOffset); |
| 1506 | } else { |
| 1507 | // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V |
| 1508 | if (GEP->getNumIndices() == 1 && |
| 1509 | GEP->getSourceElementType()->isIntegerTy(Bitwidth: 8)) { |
| 1510 | auto *Ptr = cast<Constant>(Val: GEP->getPointerOperand()); |
| 1511 | auto *Sub = dyn_cast<ConstantExpr>(Val: GEP->getOperand(i_nocapture: 1)); |
| 1512 | Type *IntIdxTy = DL.getIndexType(PtrTy: Ptr->getType()); |
| 1513 | if (Sub && Sub->getType() == IntIdxTy && |
| 1514 | Sub->getOpcode() == Instruction::Sub && |
| 1515 | Sub->getOperand(i_nocapture: 0)->isNullValue()) |
| 1516 | FoldedValue = ConstantExpr::getSub( |
| 1517 | C1: ConstantExpr::getPtrToInt(C: Ptr, Ty: IntIdxTy), C2: Sub->getOperand(i_nocapture: 1)); |
| 1518 | } |
| 1519 | } |
| 1520 | } |
| 1521 | if (FoldedValue) { |
| 1522 | // Do a zext or trunc to get to the ptrtoint dest size. |
| 1523 | return ConstantFoldIntegerCast(C: FoldedValue, DestTy, /*IsSigned=*/false, |
| 1524 | DL); |
| 1525 | } |
| 1526 | } |
| 1527 | break; |
| 1528 | case Instruction::IntToPtr: |
| 1529 | // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if |
| 1530 | // the int size is >= the ptr size and the address spaces are the same. |
| 1531 | // This requires knowing the width of a pointer, so it can't be done in |
| 1532 | // ConstantExpr::getCast. |
| 1533 | if (auto *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 1534 | if (CE->getOpcode() == Instruction::PtrToInt) { |
| 1535 | Constant *SrcPtr = CE->getOperand(i_nocapture: 0); |
| 1536 | unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); |
| 1537 | unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); |
| 1538 | |
| 1539 | if (MidIntSize >= SrcPtrSize) { |
| 1540 | unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); |
| 1541 | if (SrcAS == DestTy->getPointerAddressSpace()) |
| 1542 | return FoldBitCast(C: CE->getOperand(i_nocapture: 0), DestTy, DL); |
| 1543 | } |
| 1544 | } |
| 1545 | } |
| 1546 | break; |
| 1547 | case Instruction::Trunc: |
| 1548 | case Instruction::ZExt: |
| 1549 | case Instruction::SExt: |
| 1550 | case Instruction::FPTrunc: |
| 1551 | case Instruction::FPExt: |
| 1552 | case Instruction::UIToFP: |
| 1553 | case Instruction::SIToFP: |
| 1554 | case Instruction::FPToUI: |
| 1555 | case Instruction::FPToSI: |
| 1556 | case Instruction::AddrSpaceCast: |
| 1557 | break; |
| 1558 | case Instruction::BitCast: |
| 1559 | return FoldBitCast(C, DestTy, DL); |
| 1560 | } |
| 1561 | |
| 1562 | if (ConstantExpr::isDesirableCastOp(Opcode)) |
| 1563 | return ConstantExpr::getCast(ops: Opcode, C, Ty: DestTy); |
| 1564 | return ConstantFoldCastInstruction(opcode: Opcode, V: C, DestTy); |
| 1565 | } |
| 1566 | |
| 1567 | Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, |
| 1568 | bool IsSigned, const DataLayout &DL) { |
| 1569 | Type *SrcTy = C->getType(); |
| 1570 | if (SrcTy == DestTy) |
| 1571 | return C; |
| 1572 | if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) |
| 1573 | return ConstantFoldCastOperand(Opcode: Instruction::Trunc, C, DestTy, DL); |
| 1574 | if (IsSigned) |
| 1575 | return ConstantFoldCastOperand(Opcode: Instruction::SExt, C, DestTy, DL); |
| 1576 | return ConstantFoldCastOperand(Opcode: Instruction::ZExt, C, DestTy, DL); |
| 1577 | } |
| 1578 | |
| 1579 | //===----------------------------------------------------------------------===// |
| 1580 | // Constant Folding for Calls |
| 1581 | // |
| 1582 | |
| 1583 | bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { |
| 1584 | if (Call->isNoBuiltin()) |
| 1585 | return false; |
| 1586 | if (Call->getFunctionType() != F->getFunctionType()) |
| 1587 | return false; |
| 1588 | |
| 1589 | // Allow FP calls (both libcalls and intrinsics) to avoid being folded. |
| 1590 | // This can be useful for GPU targets or in cross-compilation scenarios |
| 1591 | // when the exact target FP behaviour is required, and the host compiler's |
| 1592 | // behaviour may be slightly different from the device's run-time behaviour. |
| 1593 | if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() || |
| 1594 | any_of(Range: F->args(), P: [](const Argument &Arg) { |
| 1595 | return Arg.getType()->isFloatingPointTy(); |
| 1596 | }))) |
| 1597 | return false; |
| 1598 | |
| 1599 | switch (F->getIntrinsicID()) { |
| 1600 | // Operations that do not operate floating-point numbers and do not depend on |
| 1601 | // FP environment can be folded even in strictfp functions. |
| 1602 | case Intrinsic::bswap: |
| 1603 | case Intrinsic::ctpop: |
| 1604 | case Intrinsic::ctlz: |
| 1605 | case Intrinsic::cttz: |
| 1606 | case Intrinsic::fshl: |
| 1607 | case Intrinsic::fshr: |
| 1608 | case Intrinsic::launder_invariant_group: |
| 1609 | case Intrinsic::strip_invariant_group: |
| 1610 | case Intrinsic::masked_load: |
| 1611 | case Intrinsic::get_active_lane_mask: |
| 1612 | case Intrinsic::abs: |
| 1613 | case Intrinsic::smax: |
| 1614 | case Intrinsic::smin: |
| 1615 | case Intrinsic::umax: |
| 1616 | case Intrinsic::umin: |
| 1617 | case Intrinsic::scmp: |
| 1618 | case Intrinsic::ucmp: |
| 1619 | case Intrinsic::sadd_with_overflow: |
| 1620 | case Intrinsic::uadd_with_overflow: |
| 1621 | case Intrinsic::ssub_with_overflow: |
| 1622 | case Intrinsic::usub_with_overflow: |
| 1623 | case Intrinsic::smul_with_overflow: |
| 1624 | case Intrinsic::umul_with_overflow: |
| 1625 | case Intrinsic::sadd_sat: |
| 1626 | case Intrinsic::uadd_sat: |
| 1627 | case Intrinsic::ssub_sat: |
| 1628 | case Intrinsic::usub_sat: |
| 1629 | case Intrinsic::smul_fix: |
| 1630 | case Intrinsic::smul_fix_sat: |
| 1631 | case Intrinsic::bitreverse: |
| 1632 | case Intrinsic::is_constant: |
| 1633 | case Intrinsic::vector_reduce_add: |
| 1634 | case Intrinsic::vector_reduce_mul: |
| 1635 | case Intrinsic::vector_reduce_and: |
| 1636 | case Intrinsic::vector_reduce_or: |
| 1637 | case Intrinsic::vector_reduce_xor: |
| 1638 | case Intrinsic::vector_reduce_smin: |
| 1639 | case Intrinsic::vector_reduce_smax: |
| 1640 | case Intrinsic::vector_reduce_umin: |
| 1641 | case Intrinsic::vector_reduce_umax: |
| 1642 | case Intrinsic::vector_extract: |
| 1643 | case Intrinsic::vector_insert: |
| 1644 | case Intrinsic::vector_interleave2: |
| 1645 | case Intrinsic::vector_deinterleave2: |
| 1646 | // Target intrinsics |
| 1647 | case Intrinsic::amdgcn_perm: |
| 1648 | case Intrinsic::amdgcn_wave_reduce_umin: |
| 1649 | case Intrinsic::amdgcn_wave_reduce_umax: |
| 1650 | case Intrinsic::amdgcn_s_wqm: |
| 1651 | case Intrinsic::amdgcn_s_quadmask: |
| 1652 | case Intrinsic::amdgcn_s_bitreplicate: |
| 1653 | case Intrinsic::arm_mve_vctp8: |
| 1654 | case Intrinsic::arm_mve_vctp16: |
| 1655 | case Intrinsic::arm_mve_vctp32: |
| 1656 | case Intrinsic::arm_mve_vctp64: |
| 1657 | case Intrinsic::aarch64_sve_convert_from_svbool: |
| 1658 | // WebAssembly float semantics are always known |
| 1659 | case Intrinsic::wasm_trunc_signed: |
| 1660 | case Intrinsic::wasm_trunc_unsigned: |
| 1661 | return true; |
| 1662 | |
| 1663 | // Floating point operations cannot be folded in strictfp functions in |
| 1664 | // general case. They can be folded if FP environment is known to compiler. |
| 1665 | case Intrinsic::minnum: |
| 1666 | case Intrinsic::maxnum: |
| 1667 | case Intrinsic::minimum: |
| 1668 | case Intrinsic::maximum: |
| 1669 | case Intrinsic::minimumnum: |
| 1670 | case Intrinsic::maximumnum: |
| 1671 | case Intrinsic::log: |
| 1672 | case Intrinsic::log2: |
| 1673 | case Intrinsic::log10: |
| 1674 | case Intrinsic::exp: |
| 1675 | case Intrinsic::exp2: |
| 1676 | case Intrinsic::exp10: |
| 1677 | case Intrinsic::sqrt: |
| 1678 | case Intrinsic::sin: |
| 1679 | case Intrinsic::cos: |
| 1680 | case Intrinsic::sincos: |
| 1681 | case Intrinsic::sinh: |
| 1682 | case Intrinsic::cosh: |
| 1683 | case Intrinsic::atan: |
| 1684 | case Intrinsic::pow: |
| 1685 | case Intrinsic::powi: |
| 1686 | case Intrinsic::ldexp: |
| 1687 | case Intrinsic::fma: |
| 1688 | case Intrinsic::fmuladd: |
| 1689 | case Intrinsic::frexp: |
| 1690 | case Intrinsic::fptoui_sat: |
| 1691 | case Intrinsic::fptosi_sat: |
| 1692 | case Intrinsic::convert_from_fp16: |
| 1693 | case Intrinsic::convert_to_fp16: |
| 1694 | case Intrinsic::amdgcn_cos: |
| 1695 | case Intrinsic::amdgcn_cubeid: |
| 1696 | case Intrinsic::amdgcn_cubema: |
| 1697 | case Intrinsic::amdgcn_cubesc: |
| 1698 | case Intrinsic::amdgcn_cubetc: |
| 1699 | case Intrinsic::amdgcn_fmul_legacy: |
| 1700 | case Intrinsic::amdgcn_fma_legacy: |
| 1701 | case Intrinsic::amdgcn_fract: |
| 1702 | case Intrinsic::amdgcn_sin: |
| 1703 | // The intrinsics below depend on rounding mode in MXCSR. |
| 1704 | case Intrinsic::x86_sse_cvtss2si: |
| 1705 | case Intrinsic::x86_sse_cvtss2si64: |
| 1706 | case Intrinsic::x86_sse_cvttss2si: |
| 1707 | case Intrinsic::x86_sse_cvttss2si64: |
| 1708 | case Intrinsic::x86_sse2_cvtsd2si: |
| 1709 | case Intrinsic::x86_sse2_cvtsd2si64: |
| 1710 | case Intrinsic::x86_sse2_cvttsd2si: |
| 1711 | case Intrinsic::x86_sse2_cvttsd2si64: |
| 1712 | case Intrinsic::x86_avx512_vcvtss2si32: |
| 1713 | case Intrinsic::x86_avx512_vcvtss2si64: |
| 1714 | case Intrinsic::x86_avx512_cvttss2si: |
| 1715 | case Intrinsic::x86_avx512_cvttss2si64: |
| 1716 | case Intrinsic::x86_avx512_vcvtsd2si32: |
| 1717 | case Intrinsic::x86_avx512_vcvtsd2si64: |
| 1718 | case Intrinsic::x86_avx512_cvttsd2si: |
| 1719 | case Intrinsic::x86_avx512_cvttsd2si64: |
| 1720 | case Intrinsic::x86_avx512_vcvtss2usi32: |
| 1721 | case Intrinsic::x86_avx512_vcvtss2usi64: |
| 1722 | case Intrinsic::x86_avx512_cvttss2usi: |
| 1723 | case Intrinsic::x86_avx512_cvttss2usi64: |
| 1724 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
| 1725 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
| 1726 | case Intrinsic::x86_avx512_cvttsd2usi: |
| 1727 | case Intrinsic::x86_avx512_cvttsd2usi64: |
| 1728 | |
| 1729 | // NVVM FMax intrinsics |
| 1730 | case Intrinsic::nvvm_fmax_d: |
| 1731 | case Intrinsic::nvvm_fmax_f: |
| 1732 | case Intrinsic::nvvm_fmax_ftz_f: |
| 1733 | case Intrinsic::nvvm_fmax_ftz_nan_f: |
| 1734 | case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f: |
| 1735 | case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f: |
| 1736 | case Intrinsic::nvvm_fmax_nan_f: |
| 1737 | case Intrinsic::nvvm_fmax_nan_xorsign_abs_f: |
| 1738 | case Intrinsic::nvvm_fmax_xorsign_abs_f: |
| 1739 | |
| 1740 | // NVVM FMin intrinsics |
| 1741 | case Intrinsic::nvvm_fmin_d: |
| 1742 | case Intrinsic::nvvm_fmin_f: |
| 1743 | case Intrinsic::nvvm_fmin_ftz_f: |
| 1744 | case Intrinsic::nvvm_fmin_ftz_nan_f: |
| 1745 | case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f: |
| 1746 | case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f: |
| 1747 | case Intrinsic::nvvm_fmin_nan_f: |
| 1748 | case Intrinsic::nvvm_fmin_nan_xorsign_abs_f: |
| 1749 | case Intrinsic::nvvm_fmin_xorsign_abs_f: |
| 1750 | |
| 1751 | // NVVM float/double to int32/uint32 conversion intrinsics |
| 1752 | case Intrinsic::nvvm_f2i_rm: |
| 1753 | case Intrinsic::nvvm_f2i_rn: |
| 1754 | case Intrinsic::nvvm_f2i_rp: |
| 1755 | case Intrinsic::nvvm_f2i_rz: |
| 1756 | case Intrinsic::nvvm_f2i_rm_ftz: |
| 1757 | case Intrinsic::nvvm_f2i_rn_ftz: |
| 1758 | case Intrinsic::nvvm_f2i_rp_ftz: |
| 1759 | case Intrinsic::nvvm_f2i_rz_ftz: |
| 1760 | case Intrinsic::nvvm_f2ui_rm: |
| 1761 | case Intrinsic::nvvm_f2ui_rn: |
| 1762 | case Intrinsic::nvvm_f2ui_rp: |
| 1763 | case Intrinsic::nvvm_f2ui_rz: |
| 1764 | case Intrinsic::nvvm_f2ui_rm_ftz: |
| 1765 | case Intrinsic::nvvm_f2ui_rn_ftz: |
| 1766 | case Intrinsic::nvvm_f2ui_rp_ftz: |
| 1767 | case Intrinsic::nvvm_f2ui_rz_ftz: |
| 1768 | case Intrinsic::nvvm_d2i_rm: |
| 1769 | case Intrinsic::nvvm_d2i_rn: |
| 1770 | case Intrinsic::nvvm_d2i_rp: |
| 1771 | case Intrinsic::nvvm_d2i_rz: |
| 1772 | case Intrinsic::nvvm_d2ui_rm: |
| 1773 | case Intrinsic::nvvm_d2ui_rn: |
| 1774 | case Intrinsic::nvvm_d2ui_rp: |
| 1775 | case Intrinsic::nvvm_d2ui_rz: |
| 1776 | |
| 1777 | // NVVM float/double to int64/uint64 conversion intrinsics |
| 1778 | case Intrinsic::nvvm_f2ll_rm: |
| 1779 | case Intrinsic::nvvm_f2ll_rn: |
| 1780 | case Intrinsic::nvvm_f2ll_rp: |
| 1781 | case Intrinsic::nvvm_f2ll_rz: |
| 1782 | case Intrinsic::nvvm_f2ll_rm_ftz: |
| 1783 | case Intrinsic::nvvm_f2ll_rn_ftz: |
| 1784 | case Intrinsic::nvvm_f2ll_rp_ftz: |
| 1785 | case Intrinsic::nvvm_f2ll_rz_ftz: |
| 1786 | case Intrinsic::nvvm_f2ull_rm: |
| 1787 | case Intrinsic::nvvm_f2ull_rn: |
| 1788 | case Intrinsic::nvvm_f2ull_rp: |
| 1789 | case Intrinsic::nvvm_f2ull_rz: |
| 1790 | case Intrinsic::nvvm_f2ull_rm_ftz: |
| 1791 | case Intrinsic::nvvm_f2ull_rn_ftz: |
| 1792 | case Intrinsic::nvvm_f2ull_rp_ftz: |
| 1793 | case Intrinsic::nvvm_f2ull_rz_ftz: |
| 1794 | case Intrinsic::nvvm_d2ll_rm: |
| 1795 | case Intrinsic::nvvm_d2ll_rn: |
| 1796 | case Intrinsic::nvvm_d2ll_rp: |
| 1797 | case Intrinsic::nvvm_d2ll_rz: |
| 1798 | case Intrinsic::nvvm_d2ull_rm: |
| 1799 | case Intrinsic::nvvm_d2ull_rn: |
| 1800 | case Intrinsic::nvvm_d2ull_rp: |
| 1801 | case Intrinsic::nvvm_d2ull_rz: |
| 1802 | return !Call->isStrictFP(); |
| 1803 | |
| 1804 | // Sign operations are actually bitwise operations, they do not raise |
| 1805 | // exceptions even for SNANs. |
| 1806 | case Intrinsic::fabs: |
| 1807 | case Intrinsic::copysign: |
| 1808 | case Intrinsic::is_fpclass: |
| 1809 | // Non-constrained variants of rounding operations means default FP |
| 1810 | // environment, they can be folded in any case. |
| 1811 | case Intrinsic::ceil: |
| 1812 | case Intrinsic::floor: |
| 1813 | case Intrinsic::round: |
| 1814 | case Intrinsic::roundeven: |
| 1815 | case Intrinsic::trunc: |
| 1816 | case Intrinsic::nearbyint: |
| 1817 | case Intrinsic::rint: |
| 1818 | case Intrinsic::canonicalize: |
| 1819 | // Constrained intrinsics can be folded if FP environment is known |
| 1820 | // to compiler. |
| 1821 | case Intrinsic::experimental_constrained_fma: |
| 1822 | case Intrinsic::experimental_constrained_fmuladd: |
| 1823 | case Intrinsic::experimental_constrained_fadd: |
| 1824 | case Intrinsic::experimental_constrained_fsub: |
| 1825 | case Intrinsic::experimental_constrained_fmul: |
| 1826 | case Intrinsic::experimental_constrained_fdiv: |
| 1827 | case Intrinsic::experimental_constrained_frem: |
| 1828 | case Intrinsic::experimental_constrained_ceil: |
| 1829 | case Intrinsic::experimental_constrained_floor: |
| 1830 | case Intrinsic::experimental_constrained_round: |
| 1831 | case Intrinsic::experimental_constrained_roundeven: |
| 1832 | case Intrinsic::experimental_constrained_trunc: |
| 1833 | case Intrinsic::experimental_constrained_nearbyint: |
| 1834 | case Intrinsic::experimental_constrained_rint: |
| 1835 | case Intrinsic::experimental_constrained_fcmp: |
| 1836 | case Intrinsic::experimental_constrained_fcmps: |
| 1837 | return true; |
| 1838 | default: |
| 1839 | return false; |
| 1840 | case Intrinsic::not_intrinsic: break; |
| 1841 | } |
| 1842 | |
| 1843 | if (!F->hasName() || Call->isStrictFP()) |
| 1844 | return false; |
| 1845 | |
| 1846 | // In these cases, the check of the length is required. We don't want to |
| 1847 | // return true for a name like "cos\0blah" which strcmp would return equal to |
| 1848 | // "cos", but has length 8. |
| 1849 | StringRef Name = F->getName(); |
| 1850 | switch (Name[0]) { |
| 1851 | default: |
| 1852 | return false; |
| 1853 | case 'a': |
| 1854 | return Name == "acos" || Name == "acosf" || |
| 1855 | Name == "asin" || Name == "asinf" || |
| 1856 | Name == "atan" || Name == "atanf" || |
| 1857 | Name == "atan2" || Name == "atan2f" ; |
| 1858 | case 'c': |
| 1859 | return Name == "ceil" || Name == "ceilf" || |
| 1860 | Name == "cos" || Name == "cosf" || |
| 1861 | Name == "cosh" || Name == "coshf" ; |
| 1862 | case 'e': |
| 1863 | return Name == "exp" || Name == "expf" || Name == "exp2" || |
| 1864 | Name == "exp2f" || Name == "erf" || Name == "erff" ; |
| 1865 | case 'f': |
| 1866 | return Name == "fabs" || Name == "fabsf" || |
| 1867 | Name == "floor" || Name == "floorf" || |
| 1868 | Name == "fmod" || Name == "fmodf" ; |
| 1869 | case 'i': |
| 1870 | return Name == "ilogb" || Name == "ilogbf" ; |
| 1871 | case 'l': |
| 1872 | return Name == "log" || Name == "logf" || Name == "logl" || |
| 1873 | Name == "log2" || Name == "log2f" || Name == "log10" || |
| 1874 | Name == "log10f" || Name == "logb" || Name == "logbf" || |
| 1875 | Name == "log1p" || Name == "log1pf" ; |
| 1876 | case 'n': |
| 1877 | return Name == "nearbyint" || Name == "nearbyintf" ; |
| 1878 | case 'p': |
| 1879 | return Name == "pow" || Name == "powf" ; |
| 1880 | case 'r': |
| 1881 | return Name == "remainder" || Name == "remainderf" || |
| 1882 | Name == "rint" || Name == "rintf" || |
| 1883 | Name == "round" || Name == "roundf" ; |
| 1884 | case 's': |
| 1885 | return Name == "sin" || Name == "sinf" || |
| 1886 | Name == "sinh" || Name == "sinhf" || |
| 1887 | Name == "sqrt" || Name == "sqrtf" ; |
| 1888 | case 't': |
| 1889 | return Name == "tan" || Name == "tanf" || |
| 1890 | Name == "tanh" || Name == "tanhf" || |
| 1891 | Name == "trunc" || Name == "truncf" ; |
| 1892 | case '_': |
| 1893 | // Check for various function names that get used for the math functions |
| 1894 | // when the header files are preprocessed with the macro |
| 1895 | // __FINITE_MATH_ONLY__ enabled. |
| 1896 | // The '12' here is the length of the shortest name that can match. |
| 1897 | // We need to check the size before looking at Name[1] and Name[2] |
| 1898 | // so we may as well check a limit that will eliminate mismatches. |
| 1899 | if (Name.size() < 12 || Name[1] != '_') |
| 1900 | return false; |
| 1901 | switch (Name[2]) { |
| 1902 | default: |
| 1903 | return false; |
| 1904 | case 'a': |
| 1905 | return Name == "__acos_finite" || Name == "__acosf_finite" || |
| 1906 | Name == "__asin_finite" || Name == "__asinf_finite" || |
| 1907 | Name == "__atan2_finite" || Name == "__atan2f_finite" ; |
| 1908 | case 'c': |
| 1909 | return Name == "__cosh_finite" || Name == "__coshf_finite" ; |
| 1910 | case 'e': |
| 1911 | return Name == "__exp_finite" || Name == "__expf_finite" || |
| 1912 | Name == "__exp2_finite" || Name == "__exp2f_finite" ; |
| 1913 | case 'l': |
| 1914 | return Name == "__log_finite" || Name == "__logf_finite" || |
| 1915 | Name == "__log10_finite" || Name == "__log10f_finite" ; |
| 1916 | case 'p': |
| 1917 | return Name == "__pow_finite" || Name == "__powf_finite" ; |
| 1918 | case 's': |
| 1919 | return Name == "__sinh_finite" || Name == "__sinhf_finite" ; |
| 1920 | } |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | namespace { |
| 1925 | |
| 1926 | Constant *GetConstantFoldFPValue(double V, Type *Ty) { |
| 1927 | if (Ty->isHalfTy() || Ty->isFloatTy()) { |
| 1928 | APFloat APF(V); |
| 1929 | bool unused; |
| 1930 | APF.convert(ToSemantics: Ty->getFltSemantics(), RM: APFloat::rmNearestTiesToEven, losesInfo: &unused); |
| 1931 | return ConstantFP::get(Context&: Ty->getContext(), V: APF); |
| 1932 | } |
| 1933 | if (Ty->isDoubleTy()) |
| 1934 | return ConstantFP::get(Context&: Ty->getContext(), V: APFloat(V)); |
| 1935 | llvm_unreachable("Can only constant fold half/float/double" ); |
| 1936 | } |
| 1937 | |
| 1938 | #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) |
| 1939 | Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) { |
| 1940 | if (Ty->isFP128Ty()) |
| 1941 | return ConstantFP::get(Ty, V); |
| 1942 | llvm_unreachable("Can only constant fold fp128" ); |
| 1943 | } |
| 1944 | #endif |
| 1945 | |
| 1946 | /// Clear the floating-point exception state. |
| 1947 | inline void llvm_fenv_clearexcept() { |
| 1948 | #if HAVE_DECL_FE_ALL_EXCEPT |
| 1949 | feclearexcept(FE_ALL_EXCEPT); |
| 1950 | #endif |
| 1951 | errno = 0; |
| 1952 | } |
| 1953 | |
| 1954 | /// Test if a floating-point exception was raised. |
| 1955 | inline bool llvm_fenv_testexcept() { |
| 1956 | int errno_val = errno; |
| 1957 | if (errno_val == ERANGE || errno_val == EDOM) |
| 1958 | return true; |
| 1959 | #if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT |
| 1960 | if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) |
| 1961 | return true; |
| 1962 | #endif |
| 1963 | return false; |
| 1964 | } |
| 1965 | |
| 1966 | static const APFloat FTZPreserveSign(const APFloat &V) { |
| 1967 | if (V.isDenormal()) |
| 1968 | return APFloat::getZero(Sem: V.getSemantics(), Negative: V.isNegative()); |
| 1969 | return V; |
| 1970 | } |
| 1971 | |
| 1972 | Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, |
| 1973 | Type *Ty) { |
| 1974 | llvm_fenv_clearexcept(); |
| 1975 | double Result = NativeFP(V.convertToDouble()); |
| 1976 | if (llvm_fenv_testexcept()) { |
| 1977 | llvm_fenv_clearexcept(); |
| 1978 | return nullptr; |
| 1979 | } |
| 1980 | |
| 1981 | return GetConstantFoldFPValue(V: Result, Ty); |
| 1982 | } |
| 1983 | |
| 1984 | #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) |
| 1985 | Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V, |
| 1986 | Type *Ty) { |
| 1987 | llvm_fenv_clearexcept(); |
| 1988 | float128 Result = NativeFP(V.convertToQuad()); |
| 1989 | if (llvm_fenv_testexcept()) { |
| 1990 | llvm_fenv_clearexcept(); |
| 1991 | return nullptr; |
| 1992 | } |
| 1993 | |
| 1994 | return GetConstantFoldFPValue128(V: Result, Ty); |
| 1995 | } |
| 1996 | #endif |
| 1997 | |
| 1998 | Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), |
| 1999 | const APFloat &V, const APFloat &W, Type *Ty) { |
| 2000 | llvm_fenv_clearexcept(); |
| 2001 | double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); |
| 2002 | if (llvm_fenv_testexcept()) { |
| 2003 | llvm_fenv_clearexcept(); |
| 2004 | return nullptr; |
| 2005 | } |
| 2006 | |
| 2007 | return GetConstantFoldFPValue(V: Result, Ty); |
| 2008 | } |
| 2009 | |
| 2010 | Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { |
| 2011 | FixedVectorType *VT = dyn_cast<FixedVectorType>(Val: Op->getType()); |
| 2012 | if (!VT) |
| 2013 | return nullptr; |
| 2014 | |
| 2015 | // This isn't strictly necessary, but handle the special/common case of zero: |
| 2016 | // all integer reductions of a zero input produce zero. |
| 2017 | if (isa<ConstantAggregateZero>(Val: Op)) |
| 2018 | return ConstantInt::get(Ty: VT->getElementType(), V: 0); |
| 2019 | |
| 2020 | // This is the same as the underlying binops - poison propagates. |
| 2021 | if (isa<PoisonValue>(Val: Op) || Op->containsPoisonElement()) |
| 2022 | return PoisonValue::get(T: VT->getElementType()); |
| 2023 | |
| 2024 | // TODO: Handle undef. |
| 2025 | if (!isa<ConstantVector>(Val: Op) && !isa<ConstantDataVector>(Val: Op)) |
| 2026 | return nullptr; |
| 2027 | |
| 2028 | auto *EltC = dyn_cast<ConstantInt>(Val: Op->getAggregateElement(Elt: 0U)); |
| 2029 | if (!EltC) |
| 2030 | return nullptr; |
| 2031 | |
| 2032 | APInt Acc = EltC->getValue(); |
| 2033 | for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { |
| 2034 | if (!(EltC = dyn_cast<ConstantInt>(Val: Op->getAggregateElement(Elt: I)))) |
| 2035 | return nullptr; |
| 2036 | const APInt &X = EltC->getValue(); |
| 2037 | switch (IID) { |
| 2038 | case Intrinsic::vector_reduce_add: |
| 2039 | Acc = Acc + X; |
| 2040 | break; |
| 2041 | case Intrinsic::vector_reduce_mul: |
| 2042 | Acc = Acc * X; |
| 2043 | break; |
| 2044 | case Intrinsic::vector_reduce_and: |
| 2045 | Acc = Acc & X; |
| 2046 | break; |
| 2047 | case Intrinsic::vector_reduce_or: |
| 2048 | Acc = Acc | X; |
| 2049 | break; |
| 2050 | case Intrinsic::vector_reduce_xor: |
| 2051 | Acc = Acc ^ X; |
| 2052 | break; |
| 2053 | case Intrinsic::vector_reduce_smin: |
| 2054 | Acc = APIntOps::smin(A: Acc, B: X); |
| 2055 | break; |
| 2056 | case Intrinsic::vector_reduce_smax: |
| 2057 | Acc = APIntOps::smax(A: Acc, B: X); |
| 2058 | break; |
| 2059 | case Intrinsic::vector_reduce_umin: |
| 2060 | Acc = APIntOps::umin(A: Acc, B: X); |
| 2061 | break; |
| 2062 | case Intrinsic::vector_reduce_umax: |
| 2063 | Acc = APIntOps::umax(A: Acc, B: X); |
| 2064 | break; |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | return ConstantInt::get(Context&: Op->getContext(), V: Acc); |
| 2069 | } |
| 2070 | |
| 2071 | /// Attempt to fold an SSE floating point to integer conversion of a constant |
| 2072 | /// floating point. If roundTowardZero is false, the default IEEE rounding is |
| 2073 | /// used (toward nearest, ties to even). This matches the behavior of the |
| 2074 | /// non-truncating SSE instructions in the default rounding mode. The desired |
| 2075 | /// integer type Ty is used to select how many bits are available for the |
| 2076 | /// result. Returns null if the conversion cannot be performed, otherwise |
| 2077 | /// returns the Constant value resulting from the conversion. |
| 2078 | Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, |
| 2079 | Type *Ty, bool IsSigned) { |
| 2080 | // All of these conversion intrinsics form an integer of at most 64bits. |
| 2081 | unsigned ResultWidth = Ty->getIntegerBitWidth(); |
| 2082 | assert(ResultWidth <= 64 && |
| 2083 | "Can only constant fold conversions to 64 and 32 bit ints" ); |
| 2084 | |
| 2085 | uint64_t UIntVal; |
| 2086 | bool isExact = false; |
| 2087 | APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero |
| 2088 | : APFloat::rmNearestTiesToEven; |
| 2089 | APFloat::opStatus status = |
| 2090 | Val.convertToInteger(Input: MutableArrayRef(UIntVal), Width: ResultWidth, |
| 2091 | IsSigned, RM: mode, IsExact: &isExact); |
| 2092 | if (status != APFloat::opOK && |
| 2093 | (!roundTowardZero || status != APFloat::opInexact)) |
| 2094 | return nullptr; |
| 2095 | return ConstantInt::get(Ty, V: UIntVal, IsSigned); |
| 2096 | } |
| 2097 | |
| 2098 | double getValueAsDouble(ConstantFP *Op) { |
| 2099 | Type *Ty = Op->getType(); |
| 2100 | |
| 2101 | if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) |
| 2102 | return Op->getValueAPF().convertToDouble(); |
| 2103 | |
| 2104 | bool unused; |
| 2105 | APFloat APF = Op->getValueAPF(); |
| 2106 | APF.convert(ToSemantics: APFloat::IEEEdouble(), RM: APFloat::rmNearestTiesToEven, losesInfo: &unused); |
| 2107 | return APF.convertToDouble(); |
| 2108 | } |
| 2109 | |
| 2110 | static bool getConstIntOrUndef(Value *Op, const APInt *&C) { |
| 2111 | if (auto *CI = dyn_cast<ConstantInt>(Val: Op)) { |
| 2112 | C = &CI->getValue(); |
| 2113 | return true; |
| 2114 | } |
| 2115 | if (isa<UndefValue>(Val: Op)) { |
| 2116 | C = nullptr; |
| 2117 | return true; |
| 2118 | } |
| 2119 | return false; |
| 2120 | } |
| 2121 | |
| 2122 | /// Checks if the given intrinsic call, which evaluates to constant, is allowed |
| 2123 | /// to be folded. |
| 2124 | /// |
| 2125 | /// \param CI Constrained intrinsic call. |
| 2126 | /// \param St Exception flags raised during constant evaluation. |
| 2127 | static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, |
| 2128 | APFloat::opStatus St) { |
| 2129 | std::optional<RoundingMode> ORM = CI->getRoundingMode(); |
| 2130 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
| 2131 | |
| 2132 | // If the operation does not change exception status flags, it is safe |
| 2133 | // to fold. |
| 2134 | if (St == APFloat::opStatus::opOK) |
| 2135 | return true; |
| 2136 | |
| 2137 | // If evaluation raised FP exception, the result can depend on rounding |
| 2138 | // mode. If the latter is unknown, folding is not possible. |
| 2139 | if (ORM == RoundingMode::Dynamic) |
| 2140 | return false; |
| 2141 | |
| 2142 | // If FP exceptions are ignored, fold the call, even if such exception is |
| 2143 | // raised. |
| 2144 | if (EB && *EB != fp::ExceptionBehavior::ebStrict) |
| 2145 | return true; |
| 2146 | |
| 2147 | // Leave the calculation for runtime so that exception flags be correctly set |
| 2148 | // in hardware. |
| 2149 | return false; |
| 2150 | } |
| 2151 | |
| 2152 | /// Returns the rounding mode that should be used for constant evaluation. |
| 2153 | static RoundingMode |
| 2154 | getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { |
| 2155 | std::optional<RoundingMode> ORM = CI->getRoundingMode(); |
| 2156 | if (!ORM || *ORM == RoundingMode::Dynamic) |
| 2157 | // Even if the rounding mode is unknown, try evaluating the operation. |
| 2158 | // If it does not raise inexact exception, rounding was not applied, |
| 2159 | // so the result is exact and does not depend on rounding mode. Whether |
| 2160 | // other FP exceptions are raised, it does not depend on rounding mode. |
| 2161 | return RoundingMode::NearestTiesToEven; |
| 2162 | return *ORM; |
| 2163 | } |
| 2164 | |
| 2165 | /// Try to constant fold llvm.canonicalize for the given caller and value. |
| 2166 | static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, |
| 2167 | const APFloat &Src) { |
| 2168 | // Zero, positive and negative, is always OK to fold. |
| 2169 | if (Src.isZero()) { |
| 2170 | // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. |
| 2171 | return ConstantFP::get( |
| 2172 | Context&: CI->getContext(), |
| 2173 | V: APFloat::getZero(Sem: Src.getSemantics(), Negative: Src.isNegative())); |
| 2174 | } |
| 2175 | |
| 2176 | if (!Ty->isIEEELikeFPTy()) |
| 2177 | return nullptr; |
| 2178 | |
| 2179 | // Zero is always canonical and the sign must be preserved. |
| 2180 | // |
| 2181 | // Denorms and nans may have special encodings, but it should be OK to fold a |
| 2182 | // totally average number. |
| 2183 | if (Src.isNormal() || Src.isInfinity()) |
| 2184 | return ConstantFP::get(Context&: CI->getContext(), V: Src); |
| 2185 | |
| 2186 | if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { |
| 2187 | DenormalMode DenormMode = |
| 2188 | CI->getFunction()->getDenormalMode(FPType: Src.getSemantics()); |
| 2189 | |
| 2190 | if (DenormMode == DenormalMode::getIEEE()) |
| 2191 | return ConstantFP::get(Context&: CI->getContext(), V: Src); |
| 2192 | |
| 2193 | if (DenormMode.Input == DenormalMode::Dynamic) |
| 2194 | return nullptr; |
| 2195 | |
| 2196 | // If we know if either input or output is flushed, we can fold. |
| 2197 | if ((DenormMode.Input == DenormalMode::Dynamic && |
| 2198 | DenormMode.Output == DenormalMode::IEEE) || |
| 2199 | (DenormMode.Input == DenormalMode::IEEE && |
| 2200 | DenormMode.Output == DenormalMode::Dynamic)) |
| 2201 | return nullptr; |
| 2202 | |
| 2203 | bool IsPositive = |
| 2204 | (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || |
| 2205 | (DenormMode.Output == DenormalMode::PositiveZero && |
| 2206 | DenormMode.Input == DenormalMode::IEEE)); |
| 2207 | |
| 2208 | return ConstantFP::get(Context&: CI->getContext(), |
| 2209 | V: APFloat::getZero(Sem: Src.getSemantics(), Negative: !IsPositive)); |
| 2210 | } |
| 2211 | |
| 2212 | return nullptr; |
| 2213 | } |
| 2214 | |
| 2215 | static Constant *ConstantFoldScalarCall1(StringRef Name, |
| 2216 | Intrinsic::ID IntrinsicID, |
| 2217 | Type *Ty, |
| 2218 | ArrayRef<Constant *> Operands, |
| 2219 | const TargetLibraryInfo *TLI, |
| 2220 | const CallBase *Call) { |
| 2221 | assert(Operands.size() == 1 && "Wrong number of operands." ); |
| 2222 | |
| 2223 | if (IntrinsicID == Intrinsic::is_constant) { |
| 2224 | // We know we have a "Constant" argument. But we want to only |
| 2225 | // return true for manifest constants, not those that depend on |
| 2226 | // constants with unknowable values, e.g. GlobalValue or BlockAddress. |
| 2227 | if (Operands[0]->isManifestConstant()) |
| 2228 | return ConstantInt::getTrue(Context&: Ty->getContext()); |
| 2229 | return nullptr; |
| 2230 | } |
| 2231 | |
| 2232 | if (isa<UndefValue>(Val: Operands[0])) { |
| 2233 | // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. |
| 2234 | // ctpop() is between 0 and bitwidth, pick 0 for undef. |
| 2235 | // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). |
| 2236 | if (IntrinsicID == Intrinsic::cos || |
| 2237 | IntrinsicID == Intrinsic::ctpop || |
| 2238 | IntrinsicID == Intrinsic::fptoui_sat || |
| 2239 | IntrinsicID == Intrinsic::fptosi_sat || |
| 2240 | IntrinsicID == Intrinsic::canonicalize) |
| 2241 | return Constant::getNullValue(Ty); |
| 2242 | if (IntrinsicID == Intrinsic::bswap || |
| 2243 | IntrinsicID == Intrinsic::bitreverse || |
| 2244 | IntrinsicID == Intrinsic::launder_invariant_group || |
| 2245 | IntrinsicID == Intrinsic::strip_invariant_group) |
| 2246 | return Operands[0]; |
| 2247 | } |
| 2248 | |
| 2249 | if (isa<ConstantPointerNull>(Val: Operands[0])) { |
| 2250 | // launder(null) == null == strip(null) iff in addrspace 0 |
| 2251 | if (IntrinsicID == Intrinsic::launder_invariant_group || |
| 2252 | IntrinsicID == Intrinsic::strip_invariant_group) { |
| 2253 | // If instruction is not yet put in a basic block (e.g. when cloning |
| 2254 | // a function during inlining), Call's caller may not be available. |
| 2255 | // So check Call's BB first before querying Call->getCaller. |
| 2256 | const Function *Caller = |
| 2257 | Call->getParent() ? Call->getCaller() : nullptr; |
| 2258 | if (Caller && |
| 2259 | !NullPointerIsDefined( |
| 2260 | F: Caller, AS: Operands[0]->getType()->getPointerAddressSpace())) { |
| 2261 | return Operands[0]; |
| 2262 | } |
| 2263 | return nullptr; |
| 2264 | } |
| 2265 | } |
| 2266 | |
| 2267 | if (auto *Op = dyn_cast<ConstantFP>(Val: Operands[0])) { |
| 2268 | if (IntrinsicID == Intrinsic::convert_to_fp16) { |
| 2269 | APFloat Val(Op->getValueAPF()); |
| 2270 | |
| 2271 | bool lost = false; |
| 2272 | Val.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &lost); |
| 2273 | |
| 2274 | return ConstantInt::get(Context&: Ty->getContext(), V: Val.bitcastToAPInt()); |
| 2275 | } |
| 2276 | |
| 2277 | APFloat U = Op->getValueAPF(); |
| 2278 | |
| 2279 | if (IntrinsicID == Intrinsic::wasm_trunc_signed || |
| 2280 | IntrinsicID == Intrinsic::wasm_trunc_unsigned) { |
| 2281 | bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; |
| 2282 | |
| 2283 | if (U.isNaN()) |
| 2284 | return nullptr; |
| 2285 | |
| 2286 | unsigned Width = Ty->getIntegerBitWidth(); |
| 2287 | APSInt Int(Width, !Signed); |
| 2288 | bool IsExact = false; |
| 2289 | APFloat::opStatus Status = |
| 2290 | U.convertToInteger(Result&: Int, RM: APFloat::rmTowardZero, IsExact: &IsExact); |
| 2291 | |
| 2292 | if (Status == APFloat::opOK || Status == APFloat::opInexact) |
| 2293 | return ConstantInt::get(Ty, V: Int); |
| 2294 | |
| 2295 | return nullptr; |
| 2296 | } |
| 2297 | |
| 2298 | if (IntrinsicID == Intrinsic::fptoui_sat || |
| 2299 | IntrinsicID == Intrinsic::fptosi_sat) { |
| 2300 | // convertToInteger() already has the desired saturation semantics. |
| 2301 | APSInt Int(Ty->getIntegerBitWidth(), |
| 2302 | IntrinsicID == Intrinsic::fptoui_sat); |
| 2303 | bool IsExact; |
| 2304 | U.convertToInteger(Result&: Int, RM: APFloat::rmTowardZero, IsExact: &IsExact); |
| 2305 | return ConstantInt::get(Ty, V: Int); |
| 2306 | } |
| 2307 | |
| 2308 | if (IntrinsicID == Intrinsic::canonicalize) |
| 2309 | return constantFoldCanonicalize(Ty, CI: Call, Src: U); |
| 2310 | |
| 2311 | #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) |
| 2312 | if (Ty->isFP128Ty()) { |
| 2313 | if (IntrinsicID == Intrinsic::log) { |
| 2314 | float128 Result = logf128(Op->getValueAPF().convertToQuad()); |
| 2315 | return GetConstantFoldFPValue128(V: Result, Ty); |
| 2316 | } |
| 2317 | |
| 2318 | LibFunc Fp128Func = NotLibFunc; |
| 2319 | if (TLI && TLI->getLibFunc(funcName: Name, F&: Fp128Func) && TLI->has(F: Fp128Func) && |
| 2320 | Fp128Func == LibFunc_logl) |
| 2321 | return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty); |
| 2322 | } |
| 2323 | #endif |
| 2324 | |
| 2325 | if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() && |
| 2326 | !Ty->isIntegerTy()) |
| 2327 | return nullptr; |
| 2328 | |
| 2329 | // Use internal versions of these intrinsics. |
| 2330 | |
| 2331 | if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { |
| 2332 | U.roundToIntegral(RM: APFloat::rmNearestTiesToEven); |
| 2333 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2334 | } |
| 2335 | |
| 2336 | if (IntrinsicID == Intrinsic::round) { |
| 2337 | U.roundToIntegral(RM: APFloat::rmNearestTiesToAway); |
| 2338 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2339 | } |
| 2340 | |
| 2341 | if (IntrinsicID == Intrinsic::roundeven) { |
| 2342 | U.roundToIntegral(RM: APFloat::rmNearestTiesToEven); |
| 2343 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2344 | } |
| 2345 | |
| 2346 | if (IntrinsicID == Intrinsic::ceil) { |
| 2347 | U.roundToIntegral(RM: APFloat::rmTowardPositive); |
| 2348 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2349 | } |
| 2350 | |
| 2351 | if (IntrinsicID == Intrinsic::floor) { |
| 2352 | U.roundToIntegral(RM: APFloat::rmTowardNegative); |
| 2353 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2354 | } |
| 2355 | |
| 2356 | if (IntrinsicID == Intrinsic::trunc) { |
| 2357 | U.roundToIntegral(RM: APFloat::rmTowardZero); |
| 2358 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2359 | } |
| 2360 | |
| 2361 | if (IntrinsicID == Intrinsic::fabs) { |
| 2362 | U.clearSign(); |
| 2363 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2364 | } |
| 2365 | |
| 2366 | if (IntrinsicID == Intrinsic::amdgcn_fract) { |
| 2367 | // The v_fract instruction behaves like the OpenCL spec, which defines |
| 2368 | // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is |
| 2369 | // there to prevent fract(-small) from returning 1.0. It returns the |
| 2370 | // largest positive floating-point number less than 1.0." |
| 2371 | APFloat FloorU(U); |
| 2372 | FloorU.roundToIntegral(RM: APFloat::rmTowardNegative); |
| 2373 | APFloat FractU(U - FloorU); |
| 2374 | APFloat AlmostOne(U.getSemantics(), 1); |
| 2375 | AlmostOne.next(/*nextDown*/ true); |
| 2376 | return ConstantFP::get(Context&: Ty->getContext(), V: minimum(A: FractU, B: AlmostOne)); |
| 2377 | } |
| 2378 | |
| 2379 | // Rounding operations (floor, trunc, ceil, round and nearbyint) do not |
| 2380 | // raise FP exceptions, unless the argument is signaling NaN. |
| 2381 | |
| 2382 | std::optional<APFloat::roundingMode> RM; |
| 2383 | switch (IntrinsicID) { |
| 2384 | default: |
| 2385 | break; |
| 2386 | case Intrinsic::experimental_constrained_nearbyint: |
| 2387 | case Intrinsic::experimental_constrained_rint: { |
| 2388 | auto CI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 2389 | RM = CI->getRoundingMode(); |
| 2390 | if (!RM || *RM == RoundingMode::Dynamic) |
| 2391 | return nullptr; |
| 2392 | break; |
| 2393 | } |
| 2394 | case Intrinsic::experimental_constrained_round: |
| 2395 | RM = APFloat::rmNearestTiesToAway; |
| 2396 | break; |
| 2397 | case Intrinsic::experimental_constrained_ceil: |
| 2398 | RM = APFloat::rmTowardPositive; |
| 2399 | break; |
| 2400 | case Intrinsic::experimental_constrained_floor: |
| 2401 | RM = APFloat::rmTowardNegative; |
| 2402 | break; |
| 2403 | case Intrinsic::experimental_constrained_trunc: |
| 2404 | RM = APFloat::rmTowardZero; |
| 2405 | break; |
| 2406 | } |
| 2407 | if (RM) { |
| 2408 | auto CI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 2409 | if (U.isFinite()) { |
| 2410 | APFloat::opStatus St = U.roundToIntegral(RM: *RM); |
| 2411 | if (IntrinsicID == Intrinsic::experimental_constrained_rint && |
| 2412 | St == APFloat::opInexact) { |
| 2413 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
| 2414 | if (EB == fp::ebStrict) |
| 2415 | return nullptr; |
| 2416 | } |
| 2417 | } else if (U.isSignaling()) { |
| 2418 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
| 2419 | if (EB && *EB != fp::ebIgnore) |
| 2420 | return nullptr; |
| 2421 | U = APFloat::getQNaN(Sem: U.getSemantics()); |
| 2422 | } |
| 2423 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2424 | } |
| 2425 | |
| 2426 | // NVVM float/double to signed/unsigned int32/int64 conversions: |
| 2427 | switch (IntrinsicID) { |
| 2428 | // f2i |
| 2429 | case Intrinsic::nvvm_f2i_rm: |
| 2430 | case Intrinsic::nvvm_f2i_rn: |
| 2431 | case Intrinsic::nvvm_f2i_rp: |
| 2432 | case Intrinsic::nvvm_f2i_rz: |
| 2433 | case Intrinsic::nvvm_f2i_rm_ftz: |
| 2434 | case Intrinsic::nvvm_f2i_rn_ftz: |
| 2435 | case Intrinsic::nvvm_f2i_rp_ftz: |
| 2436 | case Intrinsic::nvvm_f2i_rz_ftz: |
| 2437 | // f2ui |
| 2438 | case Intrinsic::nvvm_f2ui_rm: |
| 2439 | case Intrinsic::nvvm_f2ui_rn: |
| 2440 | case Intrinsic::nvvm_f2ui_rp: |
| 2441 | case Intrinsic::nvvm_f2ui_rz: |
| 2442 | case Intrinsic::nvvm_f2ui_rm_ftz: |
| 2443 | case Intrinsic::nvvm_f2ui_rn_ftz: |
| 2444 | case Intrinsic::nvvm_f2ui_rp_ftz: |
| 2445 | case Intrinsic::nvvm_f2ui_rz_ftz: |
| 2446 | // d2i |
| 2447 | case Intrinsic::nvvm_d2i_rm: |
| 2448 | case Intrinsic::nvvm_d2i_rn: |
| 2449 | case Intrinsic::nvvm_d2i_rp: |
| 2450 | case Intrinsic::nvvm_d2i_rz: |
| 2451 | // d2ui |
| 2452 | case Intrinsic::nvvm_d2ui_rm: |
| 2453 | case Intrinsic::nvvm_d2ui_rn: |
| 2454 | case Intrinsic::nvvm_d2ui_rp: |
| 2455 | case Intrinsic::nvvm_d2ui_rz: |
| 2456 | // f2ll |
| 2457 | case Intrinsic::nvvm_f2ll_rm: |
| 2458 | case Intrinsic::nvvm_f2ll_rn: |
| 2459 | case Intrinsic::nvvm_f2ll_rp: |
| 2460 | case Intrinsic::nvvm_f2ll_rz: |
| 2461 | case Intrinsic::nvvm_f2ll_rm_ftz: |
| 2462 | case Intrinsic::nvvm_f2ll_rn_ftz: |
| 2463 | case Intrinsic::nvvm_f2ll_rp_ftz: |
| 2464 | case Intrinsic::nvvm_f2ll_rz_ftz: |
| 2465 | // f2ull |
| 2466 | case Intrinsic::nvvm_f2ull_rm: |
| 2467 | case Intrinsic::nvvm_f2ull_rn: |
| 2468 | case Intrinsic::nvvm_f2ull_rp: |
| 2469 | case Intrinsic::nvvm_f2ull_rz: |
| 2470 | case Intrinsic::nvvm_f2ull_rm_ftz: |
| 2471 | case Intrinsic::nvvm_f2ull_rn_ftz: |
| 2472 | case Intrinsic::nvvm_f2ull_rp_ftz: |
| 2473 | case Intrinsic::nvvm_f2ull_rz_ftz: |
| 2474 | // d2ll |
| 2475 | case Intrinsic::nvvm_d2ll_rm: |
| 2476 | case Intrinsic::nvvm_d2ll_rn: |
| 2477 | case Intrinsic::nvvm_d2ll_rp: |
| 2478 | case Intrinsic::nvvm_d2ll_rz: |
| 2479 | // d2ull |
| 2480 | case Intrinsic::nvvm_d2ull_rm: |
| 2481 | case Intrinsic::nvvm_d2ull_rn: |
| 2482 | case Intrinsic::nvvm_d2ull_rp: |
| 2483 | case Intrinsic::nvvm_d2ull_rz: { |
| 2484 | // In float-to-integer conversion, NaN inputs are converted to 0. |
| 2485 | if (U.isNaN()) |
| 2486 | return ConstantInt::get(Ty, V: 0); |
| 2487 | |
| 2488 | APFloat::roundingMode RMode = |
| 2489 | nvvm::GetFPToIntegerRoundingMode(IntrinsicID); |
| 2490 | bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID); |
| 2491 | bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID); |
| 2492 | |
| 2493 | APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned); |
| 2494 | auto FloatToRound = IsFTZ ? FTZPreserveSign(V: U) : U; |
| 2495 | |
| 2496 | bool IsExact = false; |
| 2497 | APFloat::opStatus Status = |
| 2498 | FloatToRound.convertToInteger(Result&: ResInt, RM: RMode, IsExact: &IsExact); |
| 2499 | |
| 2500 | if (Status != APFloat::opInvalidOp) |
| 2501 | return ConstantInt::get(Ty, V: ResInt); |
| 2502 | return nullptr; |
| 2503 | } |
| 2504 | } |
| 2505 | |
| 2506 | /// We only fold functions with finite arguments. Folding NaN and inf is |
| 2507 | /// likely to be aborted with an exception anyway, and some host libms |
| 2508 | /// have known errors raising exceptions. |
| 2509 | if (!U.isFinite()) |
| 2510 | return nullptr; |
| 2511 | |
| 2512 | /// Currently APFloat versions of these functions do not exist, so we use |
| 2513 | /// the host native double versions. Float versions are not called |
| 2514 | /// directly but for all these it is true (float)(f((double)arg)) == |
| 2515 | /// f(arg). Long double not supported yet. |
| 2516 | const APFloat &APF = Op->getValueAPF(); |
| 2517 | |
| 2518 | switch (IntrinsicID) { |
| 2519 | default: break; |
| 2520 | case Intrinsic::log: |
| 2521 | return ConstantFoldFP(NativeFP: log, V: APF, Ty); |
| 2522 | case Intrinsic::log2: |
| 2523 | // TODO: What about hosts that lack a C99 library? |
| 2524 | return ConstantFoldFP(NativeFP: log2, V: APF, Ty); |
| 2525 | case Intrinsic::log10: |
| 2526 | // TODO: What about hosts that lack a C99 library? |
| 2527 | return ConstantFoldFP(NativeFP: log10, V: APF, Ty); |
| 2528 | case Intrinsic::exp: |
| 2529 | return ConstantFoldFP(NativeFP: exp, V: APF, Ty); |
| 2530 | case Intrinsic::exp2: |
| 2531 | // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. |
| 2532 | return ConstantFoldBinaryFP(NativeFP: pow, V: APFloat(2.0), W: APF, Ty); |
| 2533 | case Intrinsic::exp10: |
| 2534 | // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. |
| 2535 | return ConstantFoldBinaryFP(NativeFP: pow, V: APFloat(10.0), W: APF, Ty); |
| 2536 | case Intrinsic::sin: |
| 2537 | return ConstantFoldFP(NativeFP: sin, V: APF, Ty); |
| 2538 | case Intrinsic::cos: |
| 2539 | return ConstantFoldFP(NativeFP: cos, V: APF, Ty); |
| 2540 | case Intrinsic::sinh: |
| 2541 | return ConstantFoldFP(NativeFP: sinh, V: APF, Ty); |
| 2542 | case Intrinsic::cosh: |
| 2543 | return ConstantFoldFP(NativeFP: cosh, V: APF, Ty); |
| 2544 | case Intrinsic::atan: |
| 2545 | // Implement optional behavior from C's Annex F for +/-0.0. |
| 2546 | if (U.isZero()) |
| 2547 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2548 | return ConstantFoldFP(NativeFP: atan, V: APF, Ty); |
| 2549 | case Intrinsic::sqrt: |
| 2550 | return ConstantFoldFP(NativeFP: sqrt, V: APF, Ty); |
| 2551 | case Intrinsic::amdgcn_cos: |
| 2552 | case Intrinsic::amdgcn_sin: { |
| 2553 | double V = getValueAsDouble(Op); |
| 2554 | if (V < -256.0 || V > 256.0) |
| 2555 | // The gfx8 and gfx9 architectures handle arguments outside the range |
| 2556 | // [-256, 256] differently. This should be a rare case so bail out |
| 2557 | // rather than trying to handle the difference. |
| 2558 | return nullptr; |
| 2559 | bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; |
| 2560 | double V4 = V * 4.0; |
| 2561 | if (V4 == floor(x: V4)) { |
| 2562 | // Force exact results for quarter-integer inputs. |
| 2563 | const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; |
| 2564 | V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; |
| 2565 | } else { |
| 2566 | if (IsCos) |
| 2567 | V = cos(x: V * 2.0 * numbers::pi); |
| 2568 | else |
| 2569 | V = sin(x: V * 2.0 * numbers::pi); |
| 2570 | } |
| 2571 | return GetConstantFoldFPValue(V, Ty); |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | if (!TLI) |
| 2576 | return nullptr; |
| 2577 | |
| 2578 | LibFunc Func = NotLibFunc; |
| 2579 | if (!TLI->getLibFunc(funcName: Name, F&: Func)) |
| 2580 | return nullptr; |
| 2581 | |
| 2582 | switch (Func) { |
| 2583 | default: |
| 2584 | break; |
| 2585 | case LibFunc_acos: |
| 2586 | case LibFunc_acosf: |
| 2587 | case LibFunc_acos_finite: |
| 2588 | case LibFunc_acosf_finite: |
| 2589 | if (TLI->has(F: Func)) |
| 2590 | return ConstantFoldFP(NativeFP: acos, V: APF, Ty); |
| 2591 | break; |
| 2592 | case LibFunc_asin: |
| 2593 | case LibFunc_asinf: |
| 2594 | case LibFunc_asin_finite: |
| 2595 | case LibFunc_asinf_finite: |
| 2596 | if (TLI->has(F: Func)) |
| 2597 | return ConstantFoldFP(NativeFP: asin, V: APF, Ty); |
| 2598 | break; |
| 2599 | case LibFunc_atan: |
| 2600 | case LibFunc_atanf: |
| 2601 | // Implement optional behavior from C's Annex F for +/-0.0. |
| 2602 | if (U.isZero()) |
| 2603 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2604 | if (TLI->has(F: Func)) |
| 2605 | return ConstantFoldFP(NativeFP: atan, V: APF, Ty); |
| 2606 | break; |
| 2607 | case LibFunc_ceil: |
| 2608 | case LibFunc_ceilf: |
| 2609 | if (TLI->has(F: Func)) { |
| 2610 | U.roundToIntegral(RM: APFloat::rmTowardPositive); |
| 2611 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2612 | } |
| 2613 | break; |
| 2614 | case LibFunc_cos: |
| 2615 | case LibFunc_cosf: |
| 2616 | if (TLI->has(F: Func)) |
| 2617 | return ConstantFoldFP(NativeFP: cos, V: APF, Ty); |
| 2618 | break; |
| 2619 | case LibFunc_cosh: |
| 2620 | case LibFunc_coshf: |
| 2621 | case LibFunc_cosh_finite: |
| 2622 | case LibFunc_coshf_finite: |
| 2623 | if (TLI->has(F: Func)) |
| 2624 | return ConstantFoldFP(NativeFP: cosh, V: APF, Ty); |
| 2625 | break; |
| 2626 | case LibFunc_exp: |
| 2627 | case LibFunc_expf: |
| 2628 | case LibFunc_exp_finite: |
| 2629 | case LibFunc_expf_finite: |
| 2630 | if (TLI->has(F: Func)) |
| 2631 | return ConstantFoldFP(NativeFP: exp, V: APF, Ty); |
| 2632 | break; |
| 2633 | case LibFunc_exp2: |
| 2634 | case LibFunc_exp2f: |
| 2635 | case LibFunc_exp2_finite: |
| 2636 | case LibFunc_exp2f_finite: |
| 2637 | if (TLI->has(F: Func)) |
| 2638 | // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. |
| 2639 | return ConstantFoldBinaryFP(NativeFP: pow, V: APFloat(2.0), W: APF, Ty); |
| 2640 | break; |
| 2641 | case LibFunc_fabs: |
| 2642 | case LibFunc_fabsf: |
| 2643 | if (TLI->has(F: Func)) { |
| 2644 | U.clearSign(); |
| 2645 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2646 | } |
| 2647 | break; |
| 2648 | case LibFunc_floor: |
| 2649 | case LibFunc_floorf: |
| 2650 | if (TLI->has(F: Func)) { |
| 2651 | U.roundToIntegral(RM: APFloat::rmTowardNegative); |
| 2652 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2653 | } |
| 2654 | break; |
| 2655 | case LibFunc_log: |
| 2656 | case LibFunc_logf: |
| 2657 | case LibFunc_log_finite: |
| 2658 | case LibFunc_logf_finite: |
| 2659 | if (!APF.isNegative() && !APF.isZero() && TLI->has(F: Func)) |
| 2660 | return ConstantFoldFP(NativeFP: log, V: APF, Ty); |
| 2661 | break; |
| 2662 | case LibFunc_log2: |
| 2663 | case LibFunc_log2f: |
| 2664 | case LibFunc_log2_finite: |
| 2665 | case LibFunc_log2f_finite: |
| 2666 | if (!APF.isNegative() && !APF.isZero() && TLI->has(F: Func)) |
| 2667 | // TODO: What about hosts that lack a C99 library? |
| 2668 | return ConstantFoldFP(NativeFP: log2, V: APF, Ty); |
| 2669 | break; |
| 2670 | case LibFunc_log10: |
| 2671 | case LibFunc_log10f: |
| 2672 | case LibFunc_log10_finite: |
| 2673 | case LibFunc_log10f_finite: |
| 2674 | if (!APF.isNegative() && !APF.isZero() && TLI->has(F: Func)) |
| 2675 | // TODO: What about hosts that lack a C99 library? |
| 2676 | return ConstantFoldFP(NativeFP: log10, V: APF, Ty); |
| 2677 | break; |
| 2678 | case LibFunc_ilogb: |
| 2679 | case LibFunc_ilogbf: |
| 2680 | if (!APF.isZero() && TLI->has(F: Func)) |
| 2681 | return ConstantInt::get(Ty, V: ilogb(Arg: APF), IsSigned: true); |
| 2682 | break; |
| 2683 | case LibFunc_logb: |
| 2684 | case LibFunc_logbf: |
| 2685 | if (!APF.isZero() && TLI->has(F: Func)) |
| 2686 | return ConstantFoldFP(NativeFP: logb, V: APF, Ty); |
| 2687 | break; |
| 2688 | case LibFunc_log1p: |
| 2689 | case LibFunc_log1pf: |
| 2690 | // Implement optional behavior from C's Annex F for +/-0.0. |
| 2691 | if (U.isZero()) |
| 2692 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2693 | if (APF > APFloat::getOne(Sem: APF.getSemantics(), Negative: true) && TLI->has(F: Func)) |
| 2694 | return ConstantFoldFP(NativeFP: log1p, V: APF, Ty); |
| 2695 | break; |
| 2696 | case LibFunc_logl: |
| 2697 | return nullptr; |
| 2698 | case LibFunc_erf: |
| 2699 | case LibFunc_erff: |
| 2700 | if (TLI->has(F: Func)) |
| 2701 | return ConstantFoldFP(NativeFP: erf, V: APF, Ty); |
| 2702 | break; |
| 2703 | case LibFunc_nearbyint: |
| 2704 | case LibFunc_nearbyintf: |
| 2705 | case LibFunc_rint: |
| 2706 | case LibFunc_rintf: |
| 2707 | if (TLI->has(F: Func)) { |
| 2708 | U.roundToIntegral(RM: APFloat::rmNearestTiesToEven); |
| 2709 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2710 | } |
| 2711 | break; |
| 2712 | case LibFunc_round: |
| 2713 | case LibFunc_roundf: |
| 2714 | if (TLI->has(F: Func)) { |
| 2715 | U.roundToIntegral(RM: APFloat::rmNearestTiesToAway); |
| 2716 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2717 | } |
| 2718 | break; |
| 2719 | case LibFunc_sin: |
| 2720 | case LibFunc_sinf: |
| 2721 | if (TLI->has(F: Func)) |
| 2722 | return ConstantFoldFP(NativeFP: sin, V: APF, Ty); |
| 2723 | break; |
| 2724 | case LibFunc_sinh: |
| 2725 | case LibFunc_sinhf: |
| 2726 | case LibFunc_sinh_finite: |
| 2727 | case LibFunc_sinhf_finite: |
| 2728 | if (TLI->has(F: Func)) |
| 2729 | return ConstantFoldFP(NativeFP: sinh, V: APF, Ty); |
| 2730 | break; |
| 2731 | case LibFunc_sqrt: |
| 2732 | case LibFunc_sqrtf: |
| 2733 | if (!APF.isNegative() && TLI->has(F: Func)) |
| 2734 | return ConstantFoldFP(NativeFP: sqrt, V: APF, Ty); |
| 2735 | break; |
| 2736 | case LibFunc_tan: |
| 2737 | case LibFunc_tanf: |
| 2738 | if (TLI->has(F: Func)) |
| 2739 | return ConstantFoldFP(NativeFP: tan, V: APF, Ty); |
| 2740 | break; |
| 2741 | case LibFunc_tanh: |
| 2742 | case LibFunc_tanhf: |
| 2743 | if (TLI->has(F: Func)) |
| 2744 | return ConstantFoldFP(NativeFP: tanh, V: APF, Ty); |
| 2745 | break; |
| 2746 | case LibFunc_trunc: |
| 2747 | case LibFunc_truncf: |
| 2748 | if (TLI->has(F: Func)) { |
| 2749 | U.roundToIntegral(RM: APFloat::rmTowardZero); |
| 2750 | return ConstantFP::get(Context&: Ty->getContext(), V: U); |
| 2751 | } |
| 2752 | break; |
| 2753 | } |
| 2754 | return nullptr; |
| 2755 | } |
| 2756 | |
| 2757 | if (auto *Op = dyn_cast<ConstantInt>(Val: Operands[0])) { |
| 2758 | switch (IntrinsicID) { |
| 2759 | case Intrinsic::bswap: |
| 2760 | return ConstantInt::get(Context&: Ty->getContext(), V: Op->getValue().byteSwap()); |
| 2761 | case Intrinsic::ctpop: |
| 2762 | return ConstantInt::get(Ty, V: Op->getValue().popcount()); |
| 2763 | case Intrinsic::bitreverse: |
| 2764 | return ConstantInt::get(Context&: Ty->getContext(), V: Op->getValue().reverseBits()); |
| 2765 | case Intrinsic::convert_from_fp16: { |
| 2766 | APFloat Val(APFloat::IEEEhalf(), Op->getValue()); |
| 2767 | |
| 2768 | bool lost = false; |
| 2769 | APFloat::opStatus status = Val.convert( |
| 2770 | ToSemantics: Ty->getFltSemantics(), RM: APFloat::rmNearestTiesToEven, losesInfo: &lost); |
| 2771 | |
| 2772 | // Conversion is always precise. |
| 2773 | (void)status; |
| 2774 | assert(status != APFloat::opInexact && !lost && |
| 2775 | "Precision lost during fp16 constfolding" ); |
| 2776 | |
| 2777 | return ConstantFP::get(Context&: Ty->getContext(), V: Val); |
| 2778 | } |
| 2779 | |
| 2780 | case Intrinsic::amdgcn_s_wqm: { |
| 2781 | uint64_t Val = Op->getZExtValue(); |
| 2782 | Val |= (Val & 0x5555555555555555ULL) << 1 | |
| 2783 | ((Val >> 1) & 0x5555555555555555ULL); |
| 2784 | Val |= (Val & 0x3333333333333333ULL) << 2 | |
| 2785 | ((Val >> 2) & 0x3333333333333333ULL); |
| 2786 | return ConstantInt::get(Ty, V: Val); |
| 2787 | } |
| 2788 | |
| 2789 | case Intrinsic::amdgcn_s_quadmask: { |
| 2790 | uint64_t Val = Op->getZExtValue(); |
| 2791 | uint64_t QuadMask = 0; |
| 2792 | for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { |
| 2793 | if (!(Val & 0xF)) |
| 2794 | continue; |
| 2795 | |
| 2796 | QuadMask |= (1ULL << I); |
| 2797 | } |
| 2798 | return ConstantInt::get(Ty, V: QuadMask); |
| 2799 | } |
| 2800 | |
| 2801 | case Intrinsic::amdgcn_s_bitreplicate: { |
| 2802 | uint64_t Val = Op->getZExtValue(); |
| 2803 | Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; |
| 2804 | Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; |
| 2805 | Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; |
| 2806 | Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; |
| 2807 | Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; |
| 2808 | Val = Val | Val << 1; |
| 2809 | return ConstantInt::get(Ty, V: Val); |
| 2810 | } |
| 2811 | |
| 2812 | default: |
| 2813 | return nullptr; |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | switch (IntrinsicID) { |
| 2818 | default: break; |
| 2819 | case Intrinsic::vector_reduce_add: |
| 2820 | case Intrinsic::vector_reduce_mul: |
| 2821 | case Intrinsic::vector_reduce_and: |
| 2822 | case Intrinsic::vector_reduce_or: |
| 2823 | case Intrinsic::vector_reduce_xor: |
| 2824 | case Intrinsic::vector_reduce_smin: |
| 2825 | case Intrinsic::vector_reduce_smax: |
| 2826 | case Intrinsic::vector_reduce_umin: |
| 2827 | case Intrinsic::vector_reduce_umax: |
| 2828 | if (Constant *C = constantFoldVectorReduce(IID: IntrinsicID, Op: Operands[0])) |
| 2829 | return C; |
| 2830 | break; |
| 2831 | } |
| 2832 | |
| 2833 | // Support ConstantVector in case we have an Undef in the top. |
| 2834 | if (isa<ConstantVector>(Val: Operands[0]) || |
| 2835 | isa<ConstantDataVector>(Val: Operands[0])) { |
| 2836 | auto *Op = cast<Constant>(Val: Operands[0]); |
| 2837 | switch (IntrinsicID) { |
| 2838 | default: break; |
| 2839 | case Intrinsic::x86_sse_cvtss2si: |
| 2840 | case Intrinsic::x86_sse_cvtss2si64: |
| 2841 | case Intrinsic::x86_sse2_cvtsd2si: |
| 2842 | case Intrinsic::x86_sse2_cvtsd2si64: |
| 2843 | if (ConstantFP *FPOp = |
| 2844 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 2845 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 2846 | /*roundTowardZero=*/false, Ty, |
| 2847 | /*IsSigned*/true); |
| 2848 | break; |
| 2849 | case Intrinsic::x86_sse_cvttss2si: |
| 2850 | case Intrinsic::x86_sse_cvttss2si64: |
| 2851 | case Intrinsic::x86_sse2_cvttsd2si: |
| 2852 | case Intrinsic::x86_sse2_cvttsd2si64: |
| 2853 | if (ConstantFP *FPOp = |
| 2854 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 2855 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 2856 | /*roundTowardZero=*/true, Ty, |
| 2857 | /*IsSigned*/true); |
| 2858 | break; |
| 2859 | } |
| 2860 | } |
| 2861 | |
| 2862 | return nullptr; |
| 2863 | } |
| 2864 | |
| 2865 | static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, |
| 2866 | const ConstrainedFPIntrinsic *Call) { |
| 2867 | APFloat::opStatus St = APFloat::opOK; |
| 2868 | auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Val: Call); |
| 2869 | FCmpInst::Predicate Cond = FCmp->getPredicate(); |
| 2870 | if (FCmp->isSignaling()) { |
| 2871 | if (Op1.isNaN() || Op2.isNaN()) |
| 2872 | St = APFloat::opInvalidOp; |
| 2873 | } else { |
| 2874 | if (Op1.isSignaling() || Op2.isSignaling()) |
| 2875 | St = APFloat::opInvalidOp; |
| 2876 | } |
| 2877 | bool Result = FCmpInst::compare(LHS: Op1, RHS: Op2, Pred: Cond); |
| 2878 | if (mayFoldConstrained(CI: const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) |
| 2879 | return ConstantInt::get(Ty: Call->getType()->getScalarType(), V: Result); |
| 2880 | return nullptr; |
| 2881 | } |
| 2882 | |
| 2883 | static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty, |
| 2884 | ArrayRef<Constant *> Operands, |
| 2885 | const TargetLibraryInfo *TLI) { |
| 2886 | if (!TLI) |
| 2887 | return nullptr; |
| 2888 | |
| 2889 | LibFunc Func = NotLibFunc; |
| 2890 | if (!TLI->getLibFunc(funcName: Name, F&: Func)) |
| 2891 | return nullptr; |
| 2892 | |
| 2893 | const auto *Op1 = dyn_cast<ConstantFP>(Val: Operands[0]); |
| 2894 | if (!Op1) |
| 2895 | return nullptr; |
| 2896 | |
| 2897 | const auto *Op2 = dyn_cast<ConstantFP>(Val: Operands[1]); |
| 2898 | if (!Op2) |
| 2899 | return nullptr; |
| 2900 | |
| 2901 | const APFloat &Op1V = Op1->getValueAPF(); |
| 2902 | const APFloat &Op2V = Op2->getValueAPF(); |
| 2903 | |
| 2904 | switch (Func) { |
| 2905 | default: |
| 2906 | break; |
| 2907 | case LibFunc_pow: |
| 2908 | case LibFunc_powf: |
| 2909 | case LibFunc_pow_finite: |
| 2910 | case LibFunc_powf_finite: |
| 2911 | if (TLI->has(F: Func)) |
| 2912 | return ConstantFoldBinaryFP(NativeFP: pow, V: Op1V, W: Op2V, Ty); |
| 2913 | break; |
| 2914 | case LibFunc_fmod: |
| 2915 | case LibFunc_fmodf: |
| 2916 | if (TLI->has(F: Func)) { |
| 2917 | APFloat V = Op1->getValueAPF(); |
| 2918 | if (APFloat::opStatus::opOK == V.mod(RHS: Op2->getValueAPF())) |
| 2919 | return ConstantFP::get(Context&: Ty->getContext(), V); |
| 2920 | } |
| 2921 | break; |
| 2922 | case LibFunc_remainder: |
| 2923 | case LibFunc_remainderf: |
| 2924 | if (TLI->has(F: Func)) { |
| 2925 | APFloat V = Op1->getValueAPF(); |
| 2926 | if (APFloat::opStatus::opOK == V.remainder(RHS: Op2->getValueAPF())) |
| 2927 | return ConstantFP::get(Context&: Ty->getContext(), V); |
| 2928 | } |
| 2929 | break; |
| 2930 | case LibFunc_atan2: |
| 2931 | case LibFunc_atan2f: |
| 2932 | // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm |
| 2933 | // (Solaris), so we do not assume a known result for that. |
| 2934 | if (Op1V.isZero() && Op2V.isZero()) |
| 2935 | return nullptr; |
| 2936 | [[fallthrough]]; |
| 2937 | case LibFunc_atan2_finite: |
| 2938 | case LibFunc_atan2f_finite: |
| 2939 | if (TLI->has(F: Func)) |
| 2940 | return ConstantFoldBinaryFP(NativeFP: atan2, V: Op1V, W: Op2V, Ty); |
| 2941 | break; |
| 2942 | } |
| 2943 | |
| 2944 | return nullptr; |
| 2945 | } |
| 2946 | |
| 2947 | static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty, |
| 2948 | ArrayRef<Constant *> Operands, |
| 2949 | const CallBase *Call) { |
| 2950 | assert(Operands.size() == 2 && "Wrong number of operands." ); |
| 2951 | |
| 2952 | if (Ty->isFloatingPointTy()) { |
| 2953 | // TODO: We should have undef handling for all of the FP intrinsics that |
| 2954 | // are attempted to be folded in this function. |
| 2955 | bool IsOp0Undef = isa<UndefValue>(Val: Operands[0]); |
| 2956 | bool IsOp1Undef = isa<UndefValue>(Val: Operands[1]); |
| 2957 | switch (IntrinsicID) { |
| 2958 | case Intrinsic::maxnum: |
| 2959 | case Intrinsic::minnum: |
| 2960 | case Intrinsic::maximum: |
| 2961 | case Intrinsic::minimum: |
| 2962 | case Intrinsic::maximumnum: |
| 2963 | case Intrinsic::minimumnum: |
| 2964 | case Intrinsic::nvvm_fmax_d: |
| 2965 | case Intrinsic::nvvm_fmin_d: |
| 2966 | // If one argument is undef, return the other argument. |
| 2967 | if (IsOp0Undef) |
| 2968 | return Operands[1]; |
| 2969 | if (IsOp1Undef) |
| 2970 | return Operands[0]; |
| 2971 | break; |
| 2972 | |
| 2973 | case Intrinsic::nvvm_fmax_f: |
| 2974 | case Intrinsic::nvvm_fmax_ftz_f: |
| 2975 | case Intrinsic::nvvm_fmax_ftz_nan_f: |
| 2976 | case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f: |
| 2977 | case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f: |
| 2978 | case Intrinsic::nvvm_fmax_nan_f: |
| 2979 | case Intrinsic::nvvm_fmax_nan_xorsign_abs_f: |
| 2980 | case Intrinsic::nvvm_fmax_xorsign_abs_f: |
| 2981 | |
| 2982 | case Intrinsic::nvvm_fmin_f: |
| 2983 | case Intrinsic::nvvm_fmin_ftz_f: |
| 2984 | case Intrinsic::nvvm_fmin_ftz_nan_f: |
| 2985 | case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f: |
| 2986 | case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f: |
| 2987 | case Intrinsic::nvvm_fmin_nan_f: |
| 2988 | case Intrinsic::nvvm_fmin_nan_xorsign_abs_f: |
| 2989 | case Intrinsic::nvvm_fmin_xorsign_abs_f: |
| 2990 | // If one arg is undef, the other arg can be returned only if it is |
| 2991 | // constant, as we may need to flush it to sign-preserving zero or |
| 2992 | // canonicalize the NaN. |
| 2993 | if (!IsOp0Undef && !IsOp1Undef) |
| 2994 | break; |
| 2995 | if (auto *Op = dyn_cast<ConstantFP>(Val: Operands[IsOp0Undef ? 1 : 0])) { |
| 2996 | if (Op->isNaN()) { |
| 2997 | APInt NVCanonicalNaN(32, 0x7fffffff); |
| 2998 | return ConstantFP::get( |
| 2999 | Ty, V: APFloat(Ty->getFltSemantics(), NVCanonicalNaN)); |
| 3000 | } |
| 3001 | if (nvvm::FMinFMaxShouldFTZ(IntrinsicID)) |
| 3002 | return ConstantFP::get(Ty, V: FTZPreserveSign(V: Op->getValueAPF())); |
| 3003 | else |
| 3004 | return Op; |
| 3005 | } |
| 3006 | break; |
| 3007 | } |
| 3008 | } |
| 3009 | |
| 3010 | if (const auto *Op1 = dyn_cast<ConstantFP>(Val: Operands[0])) { |
| 3011 | const APFloat &Op1V = Op1->getValueAPF(); |
| 3012 | |
| 3013 | if (const auto *Op2 = dyn_cast<ConstantFP>(Val: Operands[1])) { |
| 3014 | if (Op2->getType() != Op1->getType()) |
| 3015 | return nullptr; |
| 3016 | const APFloat &Op2V = Op2->getValueAPF(); |
| 3017 | |
| 3018 | if (const auto *ConstrIntr = |
| 3019 | dyn_cast_if_present<ConstrainedFPIntrinsic>(Val: Call)) { |
| 3020 | RoundingMode RM = getEvaluationRoundingMode(CI: ConstrIntr); |
| 3021 | APFloat Res = Op1V; |
| 3022 | APFloat::opStatus St; |
| 3023 | switch (IntrinsicID) { |
| 3024 | default: |
| 3025 | return nullptr; |
| 3026 | case Intrinsic::experimental_constrained_fadd: |
| 3027 | St = Res.add(RHS: Op2V, RM); |
| 3028 | break; |
| 3029 | case Intrinsic::experimental_constrained_fsub: |
| 3030 | St = Res.subtract(RHS: Op2V, RM); |
| 3031 | break; |
| 3032 | case Intrinsic::experimental_constrained_fmul: |
| 3033 | St = Res.multiply(RHS: Op2V, RM); |
| 3034 | break; |
| 3035 | case Intrinsic::experimental_constrained_fdiv: |
| 3036 | St = Res.divide(RHS: Op2V, RM); |
| 3037 | break; |
| 3038 | case Intrinsic::experimental_constrained_frem: |
| 3039 | St = Res.mod(RHS: Op2V); |
| 3040 | break; |
| 3041 | case Intrinsic::experimental_constrained_fcmp: |
| 3042 | case Intrinsic::experimental_constrained_fcmps: |
| 3043 | return evaluateCompare(Op1: Op1V, Op2: Op2V, Call: ConstrIntr); |
| 3044 | } |
| 3045 | if (mayFoldConstrained(CI: const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), |
| 3046 | St)) |
| 3047 | return ConstantFP::get(Context&: Ty->getContext(), V: Res); |
| 3048 | return nullptr; |
| 3049 | } |
| 3050 | |
| 3051 | switch (IntrinsicID) { |
| 3052 | default: |
| 3053 | break; |
| 3054 | case Intrinsic::copysign: |
| 3055 | return ConstantFP::get(Context&: Ty->getContext(), V: APFloat::copySign(Value: Op1V, Sign: Op2V)); |
| 3056 | case Intrinsic::minnum: |
| 3057 | return ConstantFP::get(Context&: Ty->getContext(), V: minnum(A: Op1V, B: Op2V)); |
| 3058 | case Intrinsic::maxnum: |
| 3059 | return ConstantFP::get(Context&: Ty->getContext(), V: maxnum(A: Op1V, B: Op2V)); |
| 3060 | case Intrinsic::minimum: |
| 3061 | return ConstantFP::get(Context&: Ty->getContext(), V: minimum(A: Op1V, B: Op2V)); |
| 3062 | case Intrinsic::maximum: |
| 3063 | return ConstantFP::get(Context&: Ty->getContext(), V: maximum(A: Op1V, B: Op2V)); |
| 3064 | case Intrinsic::minimumnum: |
| 3065 | return ConstantFP::get(Context&: Ty->getContext(), V: minimumnum(A: Op1V, B: Op2V)); |
| 3066 | case Intrinsic::maximumnum: |
| 3067 | return ConstantFP::get(Context&: Ty->getContext(), V: maximumnum(A: Op1V, B: Op2V)); |
| 3068 | |
| 3069 | case Intrinsic::nvvm_fmax_d: |
| 3070 | case Intrinsic::nvvm_fmax_f: |
| 3071 | case Intrinsic::nvvm_fmax_ftz_f: |
| 3072 | case Intrinsic::nvvm_fmax_ftz_nan_f: |
| 3073 | case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f: |
| 3074 | case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f: |
| 3075 | case Intrinsic::nvvm_fmax_nan_f: |
| 3076 | case Intrinsic::nvvm_fmax_nan_xorsign_abs_f: |
| 3077 | case Intrinsic::nvvm_fmax_xorsign_abs_f: |
| 3078 | |
| 3079 | case Intrinsic::nvvm_fmin_d: |
| 3080 | case Intrinsic::nvvm_fmin_f: |
| 3081 | case Intrinsic::nvvm_fmin_ftz_f: |
| 3082 | case Intrinsic::nvvm_fmin_ftz_nan_f: |
| 3083 | case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f: |
| 3084 | case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f: |
| 3085 | case Intrinsic::nvvm_fmin_nan_f: |
| 3086 | case Intrinsic::nvvm_fmin_nan_xorsign_abs_f: |
| 3087 | case Intrinsic::nvvm_fmin_xorsign_abs_f: { |
| 3088 | |
| 3089 | bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d || |
| 3090 | IntrinsicID == Intrinsic::nvvm_fmin_d); |
| 3091 | bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID); |
| 3092 | bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID); |
| 3093 | bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID); |
| 3094 | |
| 3095 | APFloat A = IsFTZ ? FTZPreserveSign(V: Op1V) : Op1V; |
| 3096 | APFloat B = IsFTZ ? FTZPreserveSign(V: Op2V) : Op2V; |
| 3097 | |
| 3098 | bool XorSign = false; |
| 3099 | if (IsXorSignAbs) { |
| 3100 | XorSign = A.isNegative() ^ B.isNegative(); |
| 3101 | A = abs(X: A); |
| 3102 | B = abs(X: B); |
| 3103 | } |
| 3104 | |
| 3105 | bool IsFMax = false; |
| 3106 | switch (IntrinsicID) { |
| 3107 | case Intrinsic::nvvm_fmax_d: |
| 3108 | case Intrinsic::nvvm_fmax_f: |
| 3109 | case Intrinsic::nvvm_fmax_ftz_f: |
| 3110 | case Intrinsic::nvvm_fmax_ftz_nan_f: |
| 3111 | case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f: |
| 3112 | case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f: |
| 3113 | case Intrinsic::nvvm_fmax_nan_f: |
| 3114 | case Intrinsic::nvvm_fmax_nan_xorsign_abs_f: |
| 3115 | case Intrinsic::nvvm_fmax_xorsign_abs_f: |
| 3116 | IsFMax = true; |
| 3117 | break; |
| 3118 | } |
| 3119 | APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B); |
| 3120 | |
| 3121 | if (ShouldCanonicalizeNaNs) { |
| 3122 | APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff)); |
| 3123 | if (A.isNaN() && B.isNaN()) |
| 3124 | return ConstantFP::get(Ty, V: NVCanonicalNaN); |
| 3125 | else if (IsNaNPropagating && (A.isNaN() || B.isNaN())) |
| 3126 | return ConstantFP::get(Ty, V: NVCanonicalNaN); |
| 3127 | } |
| 3128 | |
| 3129 | if (A.isNaN() && B.isNaN()) |
| 3130 | return Operands[1]; |
| 3131 | else if (A.isNaN()) |
| 3132 | Res = B; |
| 3133 | else if (B.isNaN()) |
| 3134 | Res = A; |
| 3135 | |
| 3136 | if (IsXorSignAbs && XorSign != Res.isNegative()) |
| 3137 | Res.changeSign(); |
| 3138 | |
| 3139 | return ConstantFP::get(Context&: Ty->getContext(), V: Res); |
| 3140 | } |
| 3141 | } |
| 3142 | |
| 3143 | if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
| 3144 | return nullptr; |
| 3145 | |
| 3146 | switch (IntrinsicID) { |
| 3147 | default: |
| 3148 | break; |
| 3149 | case Intrinsic::pow: |
| 3150 | return ConstantFoldBinaryFP(NativeFP: pow, V: Op1V, W: Op2V, Ty); |
| 3151 | case Intrinsic::amdgcn_fmul_legacy: |
| 3152 | // The legacy behaviour is that multiplying +/- 0.0 by anything, even |
| 3153 | // NaN or infinity, gives +0.0. |
| 3154 | if (Op1V.isZero() || Op2V.isZero()) |
| 3155 | return ConstantFP::getZero(Ty); |
| 3156 | return ConstantFP::get(Context&: Ty->getContext(), V: Op1V * Op2V); |
| 3157 | } |
| 3158 | |
| 3159 | } else if (auto *Op2C = dyn_cast<ConstantInt>(Val: Operands[1])) { |
| 3160 | switch (IntrinsicID) { |
| 3161 | case Intrinsic::ldexp: { |
| 3162 | return ConstantFP::get( |
| 3163 | Context&: Ty->getContext(), |
| 3164 | V: scalbn(X: Op1V, Exp: Op2C->getSExtValue(), RM: APFloat::rmNearestTiesToEven)); |
| 3165 | } |
| 3166 | case Intrinsic::is_fpclass: { |
| 3167 | FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); |
| 3168 | bool Result = |
| 3169 | ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || |
| 3170 | ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || |
| 3171 | ((Mask & fcNegInf) && Op1V.isNegInfinity()) || |
| 3172 | ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || |
| 3173 | ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || |
| 3174 | ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || |
| 3175 | ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || |
| 3176 | ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || |
| 3177 | ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || |
| 3178 | ((Mask & fcPosInf) && Op1V.isPosInfinity()); |
| 3179 | return ConstantInt::get(Ty, V: Result); |
| 3180 | } |
| 3181 | case Intrinsic::powi: { |
| 3182 | int Exp = static_cast<int>(Op2C->getSExtValue()); |
| 3183 | switch (Ty->getTypeID()) { |
| 3184 | case Type::HalfTyID: |
| 3185 | case Type::FloatTyID: { |
| 3186 | APFloat Res(static_cast<float>(std::pow(x: Op1V.convertToFloat(), y: Exp))); |
| 3187 | if (Ty->isHalfTy()) { |
| 3188 | bool Unused; |
| 3189 | Res.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, |
| 3190 | losesInfo: &Unused); |
| 3191 | } |
| 3192 | return ConstantFP::get(Context&: Ty->getContext(), V: Res); |
| 3193 | } |
| 3194 | case Type::DoubleTyID: |
| 3195 | return ConstantFP::get(Ty, V: std::pow(x: Op1V.convertToDouble(), y: Exp)); |
| 3196 | default: |
| 3197 | return nullptr; |
| 3198 | } |
| 3199 | } |
| 3200 | default: |
| 3201 | break; |
| 3202 | } |
| 3203 | } |
| 3204 | return nullptr; |
| 3205 | } |
| 3206 | |
| 3207 | if (Operands[0]->getType()->isIntegerTy() && |
| 3208 | Operands[1]->getType()->isIntegerTy()) { |
| 3209 | const APInt *C0, *C1; |
| 3210 | if (!getConstIntOrUndef(Op: Operands[0], C&: C0) || |
| 3211 | !getConstIntOrUndef(Op: Operands[1], C&: C1)) |
| 3212 | return nullptr; |
| 3213 | |
| 3214 | switch (IntrinsicID) { |
| 3215 | default: break; |
| 3216 | case Intrinsic::smax: |
| 3217 | case Intrinsic::smin: |
| 3218 | case Intrinsic::umax: |
| 3219 | case Intrinsic::umin: |
| 3220 | if (!C0 && !C1) |
| 3221 | return UndefValue::get(T: Ty); |
| 3222 | if (!C0 || !C1) |
| 3223 | return MinMaxIntrinsic::getSaturationPoint(ID: IntrinsicID, Ty); |
| 3224 | return ConstantInt::get( |
| 3225 | Ty, V: ICmpInst::compare(LHS: *C0, RHS: *C1, |
| 3226 | Pred: MinMaxIntrinsic::getPredicate(ID: IntrinsicID)) |
| 3227 | ? *C0 |
| 3228 | : *C1); |
| 3229 | |
| 3230 | case Intrinsic::scmp: |
| 3231 | case Intrinsic::ucmp: |
| 3232 | if (!C0 || !C1) |
| 3233 | return ConstantInt::get(Ty, V: 0); |
| 3234 | |
| 3235 | int Res; |
| 3236 | if (IntrinsicID == Intrinsic::scmp) |
| 3237 | Res = C0->sgt(RHS: *C1) ? 1 : C0->slt(RHS: *C1) ? -1 : 0; |
| 3238 | else |
| 3239 | Res = C0->ugt(RHS: *C1) ? 1 : C0->ult(RHS: *C1) ? -1 : 0; |
| 3240 | return ConstantInt::get(Ty, V: Res, /*IsSigned=*/true); |
| 3241 | |
| 3242 | case Intrinsic::usub_with_overflow: |
| 3243 | case Intrinsic::ssub_with_overflow: |
| 3244 | // X - undef -> { 0, false } |
| 3245 | // undef - X -> { 0, false } |
| 3246 | if (!C0 || !C1) |
| 3247 | return Constant::getNullValue(Ty); |
| 3248 | [[fallthrough]]; |
| 3249 | case Intrinsic::uadd_with_overflow: |
| 3250 | case Intrinsic::sadd_with_overflow: |
| 3251 | // X + undef -> { -1, false } |
| 3252 | // undef + x -> { -1, false } |
| 3253 | if (!C0 || !C1) { |
| 3254 | return ConstantStruct::get( |
| 3255 | T: cast<StructType>(Val: Ty), |
| 3256 | V: {Constant::getAllOnesValue(Ty: Ty->getStructElementType(N: 0)), |
| 3257 | Constant::getNullValue(Ty: Ty->getStructElementType(N: 1))}); |
| 3258 | } |
| 3259 | [[fallthrough]]; |
| 3260 | case Intrinsic::smul_with_overflow: |
| 3261 | case Intrinsic::umul_with_overflow: { |
| 3262 | // undef * X -> { 0, false } |
| 3263 | // X * undef -> { 0, false } |
| 3264 | if (!C0 || !C1) |
| 3265 | return Constant::getNullValue(Ty); |
| 3266 | |
| 3267 | APInt Res; |
| 3268 | bool Overflow; |
| 3269 | switch (IntrinsicID) { |
| 3270 | default: llvm_unreachable("Invalid case" ); |
| 3271 | case Intrinsic::sadd_with_overflow: |
| 3272 | Res = C0->sadd_ov(RHS: *C1, Overflow); |
| 3273 | break; |
| 3274 | case Intrinsic::uadd_with_overflow: |
| 3275 | Res = C0->uadd_ov(RHS: *C1, Overflow); |
| 3276 | break; |
| 3277 | case Intrinsic::ssub_with_overflow: |
| 3278 | Res = C0->ssub_ov(RHS: *C1, Overflow); |
| 3279 | break; |
| 3280 | case Intrinsic::usub_with_overflow: |
| 3281 | Res = C0->usub_ov(RHS: *C1, Overflow); |
| 3282 | break; |
| 3283 | case Intrinsic::smul_with_overflow: |
| 3284 | Res = C0->smul_ov(RHS: *C1, Overflow); |
| 3285 | break; |
| 3286 | case Intrinsic::umul_with_overflow: |
| 3287 | Res = C0->umul_ov(RHS: *C1, Overflow); |
| 3288 | break; |
| 3289 | } |
| 3290 | Constant *Ops[] = { |
| 3291 | ConstantInt::get(Context&: Ty->getContext(), V: Res), |
| 3292 | ConstantInt::get(Ty: Type::getInt1Ty(C&: Ty->getContext()), V: Overflow) |
| 3293 | }; |
| 3294 | return ConstantStruct::get(T: cast<StructType>(Val: Ty), V: Ops); |
| 3295 | } |
| 3296 | case Intrinsic::uadd_sat: |
| 3297 | case Intrinsic::sadd_sat: |
| 3298 | if (!C0 && !C1) |
| 3299 | return UndefValue::get(T: Ty); |
| 3300 | if (!C0 || !C1) |
| 3301 | return Constant::getAllOnesValue(Ty); |
| 3302 | if (IntrinsicID == Intrinsic::uadd_sat) |
| 3303 | return ConstantInt::get(Ty, V: C0->uadd_sat(RHS: *C1)); |
| 3304 | else |
| 3305 | return ConstantInt::get(Ty, V: C0->sadd_sat(RHS: *C1)); |
| 3306 | case Intrinsic::usub_sat: |
| 3307 | case Intrinsic::ssub_sat: |
| 3308 | if (!C0 && !C1) |
| 3309 | return UndefValue::get(T: Ty); |
| 3310 | if (!C0 || !C1) |
| 3311 | return Constant::getNullValue(Ty); |
| 3312 | if (IntrinsicID == Intrinsic::usub_sat) |
| 3313 | return ConstantInt::get(Ty, V: C0->usub_sat(RHS: *C1)); |
| 3314 | else |
| 3315 | return ConstantInt::get(Ty, V: C0->ssub_sat(RHS: *C1)); |
| 3316 | case Intrinsic::cttz: |
| 3317 | case Intrinsic::ctlz: |
| 3318 | assert(C1 && "Must be constant int" ); |
| 3319 | |
| 3320 | // cttz(0, 1) and ctlz(0, 1) are poison. |
| 3321 | if (C1->isOne() && (!C0 || C0->isZero())) |
| 3322 | return PoisonValue::get(T: Ty); |
| 3323 | if (!C0) |
| 3324 | return Constant::getNullValue(Ty); |
| 3325 | if (IntrinsicID == Intrinsic::cttz) |
| 3326 | return ConstantInt::get(Ty, V: C0->countr_zero()); |
| 3327 | else |
| 3328 | return ConstantInt::get(Ty, V: C0->countl_zero()); |
| 3329 | |
| 3330 | case Intrinsic::abs: |
| 3331 | assert(C1 && "Must be constant int" ); |
| 3332 | assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1" ); |
| 3333 | |
| 3334 | // Undef or minimum val operand with poison min --> poison |
| 3335 | if (C1->isOne() && (!C0 || C0->isMinSignedValue())) |
| 3336 | return PoisonValue::get(T: Ty); |
| 3337 | |
| 3338 | // Undef operand with no poison min --> 0 (sign bit must be clear) |
| 3339 | if (!C0) |
| 3340 | return Constant::getNullValue(Ty); |
| 3341 | |
| 3342 | return ConstantInt::get(Ty, V: C0->abs()); |
| 3343 | case Intrinsic::amdgcn_wave_reduce_umin: |
| 3344 | case Intrinsic::amdgcn_wave_reduce_umax: |
| 3345 | return dyn_cast<Constant>(Val: Operands[0]); |
| 3346 | } |
| 3347 | |
| 3348 | return nullptr; |
| 3349 | } |
| 3350 | |
| 3351 | // Support ConstantVector in case we have an Undef in the top. |
| 3352 | if ((isa<ConstantVector>(Val: Operands[0]) || |
| 3353 | isa<ConstantDataVector>(Val: Operands[0])) && |
| 3354 | // Check for default rounding mode. |
| 3355 | // FIXME: Support other rounding modes? |
| 3356 | isa<ConstantInt>(Val: Operands[1]) && |
| 3357 | cast<ConstantInt>(Val: Operands[1])->getValue() == 4) { |
| 3358 | auto *Op = cast<Constant>(Val: Operands[0]); |
| 3359 | switch (IntrinsicID) { |
| 3360 | default: break; |
| 3361 | case Intrinsic::x86_avx512_vcvtss2si32: |
| 3362 | case Intrinsic::x86_avx512_vcvtss2si64: |
| 3363 | case Intrinsic::x86_avx512_vcvtsd2si32: |
| 3364 | case Intrinsic::x86_avx512_vcvtsd2si64: |
| 3365 | if (ConstantFP *FPOp = |
| 3366 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 3367 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 3368 | /*roundTowardZero=*/false, Ty, |
| 3369 | /*IsSigned*/true); |
| 3370 | break; |
| 3371 | case Intrinsic::x86_avx512_vcvtss2usi32: |
| 3372 | case Intrinsic::x86_avx512_vcvtss2usi64: |
| 3373 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
| 3374 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
| 3375 | if (ConstantFP *FPOp = |
| 3376 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 3377 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 3378 | /*roundTowardZero=*/false, Ty, |
| 3379 | /*IsSigned*/false); |
| 3380 | break; |
| 3381 | case Intrinsic::x86_avx512_cvttss2si: |
| 3382 | case Intrinsic::x86_avx512_cvttss2si64: |
| 3383 | case Intrinsic::x86_avx512_cvttsd2si: |
| 3384 | case Intrinsic::x86_avx512_cvttsd2si64: |
| 3385 | if (ConstantFP *FPOp = |
| 3386 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 3387 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 3388 | /*roundTowardZero=*/true, Ty, |
| 3389 | /*IsSigned*/true); |
| 3390 | break; |
| 3391 | case Intrinsic::x86_avx512_cvttss2usi: |
| 3392 | case Intrinsic::x86_avx512_cvttss2usi64: |
| 3393 | case Intrinsic::x86_avx512_cvttsd2usi: |
| 3394 | case Intrinsic::x86_avx512_cvttsd2usi64: |
| 3395 | if (ConstantFP *FPOp = |
| 3396 | dyn_cast_or_null<ConstantFP>(Val: Op->getAggregateElement(Elt: 0U))) |
| 3397 | return ConstantFoldSSEConvertToInt(Val: FPOp->getValueAPF(), |
| 3398 | /*roundTowardZero=*/true, Ty, |
| 3399 | /*IsSigned*/false); |
| 3400 | break; |
| 3401 | } |
| 3402 | } |
| 3403 | return nullptr; |
| 3404 | } |
| 3405 | |
| 3406 | static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, |
| 3407 | const APFloat &S0, |
| 3408 | const APFloat &S1, |
| 3409 | const APFloat &S2) { |
| 3410 | unsigned ID; |
| 3411 | const fltSemantics &Sem = S0.getSemantics(); |
| 3412 | APFloat MA(Sem), SC(Sem), TC(Sem); |
| 3413 | if (abs(X: S2) >= abs(X: S0) && abs(X: S2) >= abs(X: S1)) { |
| 3414 | if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { |
| 3415 | // S2 < 0 |
| 3416 | ID = 5; |
| 3417 | SC = -S0; |
| 3418 | } else { |
| 3419 | ID = 4; |
| 3420 | SC = S0; |
| 3421 | } |
| 3422 | MA = S2; |
| 3423 | TC = -S1; |
| 3424 | } else if (abs(X: S1) >= abs(X: S0)) { |
| 3425 | if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { |
| 3426 | // S1 < 0 |
| 3427 | ID = 3; |
| 3428 | TC = -S2; |
| 3429 | } else { |
| 3430 | ID = 2; |
| 3431 | TC = S2; |
| 3432 | } |
| 3433 | MA = S1; |
| 3434 | SC = S0; |
| 3435 | } else { |
| 3436 | if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { |
| 3437 | // S0 < 0 |
| 3438 | ID = 1; |
| 3439 | SC = S2; |
| 3440 | } else { |
| 3441 | ID = 0; |
| 3442 | SC = -S2; |
| 3443 | } |
| 3444 | MA = S0; |
| 3445 | TC = -S1; |
| 3446 | } |
| 3447 | switch (IntrinsicID) { |
| 3448 | default: |
| 3449 | llvm_unreachable("unhandled amdgcn cube intrinsic" ); |
| 3450 | case Intrinsic::amdgcn_cubeid: |
| 3451 | return APFloat(Sem, ID); |
| 3452 | case Intrinsic::amdgcn_cubema: |
| 3453 | return MA + MA; |
| 3454 | case Intrinsic::amdgcn_cubesc: |
| 3455 | return SC; |
| 3456 | case Intrinsic::amdgcn_cubetc: |
| 3457 | return TC; |
| 3458 | } |
| 3459 | } |
| 3460 | |
| 3461 | static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, |
| 3462 | Type *Ty) { |
| 3463 | const APInt *C0, *C1, *C2; |
| 3464 | if (!getConstIntOrUndef(Op: Operands[0], C&: C0) || |
| 3465 | !getConstIntOrUndef(Op: Operands[1], C&: C1) || |
| 3466 | !getConstIntOrUndef(Op: Operands[2], C&: C2)) |
| 3467 | return nullptr; |
| 3468 | |
| 3469 | if (!C2) |
| 3470 | return UndefValue::get(T: Ty); |
| 3471 | |
| 3472 | APInt Val(32, 0); |
| 3473 | unsigned NumUndefBytes = 0; |
| 3474 | for (unsigned I = 0; I < 32; I += 8) { |
| 3475 | unsigned Sel = C2->extractBitsAsZExtValue(numBits: 8, bitPosition: I); |
| 3476 | unsigned B = 0; |
| 3477 | |
| 3478 | if (Sel >= 13) |
| 3479 | B = 0xff; |
| 3480 | else if (Sel == 12) |
| 3481 | B = 0x00; |
| 3482 | else { |
| 3483 | const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; |
| 3484 | if (!Src) |
| 3485 | ++NumUndefBytes; |
| 3486 | else if (Sel < 8) |
| 3487 | B = Src->extractBitsAsZExtValue(numBits: 8, bitPosition: (Sel & 3) * 8); |
| 3488 | else |
| 3489 | B = Src->extractBitsAsZExtValue(numBits: 1, bitPosition: (Sel & 1) ? 31 : 15) * 0xff; |
| 3490 | } |
| 3491 | |
| 3492 | Val.insertBits(SubBits: B, bitPosition: I, numBits: 8); |
| 3493 | } |
| 3494 | |
| 3495 | if (NumUndefBytes == 4) |
| 3496 | return UndefValue::get(T: Ty); |
| 3497 | |
| 3498 | return ConstantInt::get(Ty, V: Val); |
| 3499 | } |
| 3500 | |
| 3501 | static Constant *ConstantFoldScalarCall3(StringRef Name, |
| 3502 | Intrinsic::ID IntrinsicID, |
| 3503 | Type *Ty, |
| 3504 | ArrayRef<Constant *> Operands, |
| 3505 | const TargetLibraryInfo *TLI, |
| 3506 | const CallBase *Call) { |
| 3507 | assert(Operands.size() == 3 && "Wrong number of operands." ); |
| 3508 | |
| 3509 | if (const auto *Op1 = dyn_cast<ConstantFP>(Val: Operands[0])) { |
| 3510 | if (const auto *Op2 = dyn_cast<ConstantFP>(Val: Operands[1])) { |
| 3511 | if (const auto *Op3 = dyn_cast<ConstantFP>(Val: Operands[2])) { |
| 3512 | const APFloat &C1 = Op1->getValueAPF(); |
| 3513 | const APFloat &C2 = Op2->getValueAPF(); |
| 3514 | const APFloat &C3 = Op3->getValueAPF(); |
| 3515 | |
| 3516 | if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Val: Call)) { |
| 3517 | RoundingMode RM = getEvaluationRoundingMode(CI: ConstrIntr); |
| 3518 | APFloat Res = C1; |
| 3519 | APFloat::opStatus St; |
| 3520 | switch (IntrinsicID) { |
| 3521 | default: |
| 3522 | return nullptr; |
| 3523 | case Intrinsic::experimental_constrained_fma: |
| 3524 | case Intrinsic::experimental_constrained_fmuladd: |
| 3525 | St = Res.fusedMultiplyAdd(Multiplicand: C2, Addend: C3, RM); |
| 3526 | break; |
| 3527 | } |
| 3528 | if (mayFoldConstrained( |
| 3529 | CI: const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) |
| 3530 | return ConstantFP::get(Context&: Ty->getContext(), V: Res); |
| 3531 | return nullptr; |
| 3532 | } |
| 3533 | |
| 3534 | switch (IntrinsicID) { |
| 3535 | default: break; |
| 3536 | case Intrinsic::amdgcn_fma_legacy: { |
| 3537 | // The legacy behaviour is that multiplying +/- 0.0 by anything, even |
| 3538 | // NaN or infinity, gives +0.0. |
| 3539 | if (C1.isZero() || C2.isZero()) { |
| 3540 | // It's tempting to just return C3 here, but that would give the |
| 3541 | // wrong result if C3 was -0.0. |
| 3542 | return ConstantFP::get(Context&: Ty->getContext(), V: APFloat(0.0f) + C3); |
| 3543 | } |
| 3544 | [[fallthrough]]; |
| 3545 | } |
| 3546 | case Intrinsic::fma: |
| 3547 | case Intrinsic::fmuladd: { |
| 3548 | APFloat V = C1; |
| 3549 | V.fusedMultiplyAdd(Multiplicand: C2, Addend: C3, RM: APFloat::rmNearestTiesToEven); |
| 3550 | return ConstantFP::get(Context&: Ty->getContext(), V); |
| 3551 | } |
| 3552 | case Intrinsic::amdgcn_cubeid: |
| 3553 | case Intrinsic::amdgcn_cubema: |
| 3554 | case Intrinsic::amdgcn_cubesc: |
| 3555 | case Intrinsic::amdgcn_cubetc: { |
| 3556 | APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, S0: C1, S1: C2, S2: C3); |
| 3557 | return ConstantFP::get(Context&: Ty->getContext(), V); |
| 3558 | } |
| 3559 | } |
| 3560 | } |
| 3561 | } |
| 3562 | } |
| 3563 | |
| 3564 | if (IntrinsicID == Intrinsic::smul_fix || |
| 3565 | IntrinsicID == Intrinsic::smul_fix_sat) { |
| 3566 | const APInt *C0, *C1; |
| 3567 | if (!getConstIntOrUndef(Op: Operands[0], C&: C0) || |
| 3568 | !getConstIntOrUndef(Op: Operands[1], C&: C1)) |
| 3569 | return nullptr; |
| 3570 | |
| 3571 | // undef * C -> 0 |
| 3572 | // C * undef -> 0 |
| 3573 | if (!C0 || !C1) |
| 3574 | return Constant::getNullValue(Ty); |
| 3575 | |
| 3576 | // This code performs rounding towards negative infinity in case the result |
| 3577 | // cannot be represented exactly for the given scale. Targets that do care |
| 3578 | // about rounding should use a target hook for specifying how rounding |
| 3579 | // should be done, and provide their own folding to be consistent with |
| 3580 | // rounding. This is the same approach as used by |
| 3581 | // DAGTypeLegalizer::ExpandIntRes_MULFIX. |
| 3582 | unsigned Scale = cast<ConstantInt>(Val: Operands[2])->getZExtValue(); |
| 3583 | unsigned Width = C0->getBitWidth(); |
| 3584 | assert(Scale < Width && "Illegal scale." ); |
| 3585 | unsigned ExtendedWidth = Width * 2; |
| 3586 | APInt Product = |
| 3587 | (C0->sext(width: ExtendedWidth) * C1->sext(width: ExtendedWidth)).ashr(ShiftAmt: Scale); |
| 3588 | if (IntrinsicID == Intrinsic::smul_fix_sat) { |
| 3589 | APInt Max = APInt::getSignedMaxValue(numBits: Width).sext(width: ExtendedWidth); |
| 3590 | APInt Min = APInt::getSignedMinValue(numBits: Width).sext(width: ExtendedWidth); |
| 3591 | Product = APIntOps::smin(A: Product, B: Max); |
| 3592 | Product = APIntOps::smax(A: Product, B: Min); |
| 3593 | } |
| 3594 | return ConstantInt::get(Context&: Ty->getContext(), V: Product.sextOrTrunc(width: Width)); |
| 3595 | } |
| 3596 | |
| 3597 | if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { |
| 3598 | const APInt *C0, *C1, *C2; |
| 3599 | if (!getConstIntOrUndef(Op: Operands[0], C&: C0) || |
| 3600 | !getConstIntOrUndef(Op: Operands[1], C&: C1) || |
| 3601 | !getConstIntOrUndef(Op: Operands[2], C&: C2)) |
| 3602 | return nullptr; |
| 3603 | |
| 3604 | bool IsRight = IntrinsicID == Intrinsic::fshr; |
| 3605 | if (!C2) |
| 3606 | return Operands[IsRight ? 1 : 0]; |
| 3607 | if (!C0 && !C1) |
| 3608 | return UndefValue::get(T: Ty); |
| 3609 | |
| 3610 | // The shift amount is interpreted as modulo the bitwidth. If the shift |
| 3611 | // amount is effectively 0, avoid UB due to oversized inverse shift below. |
| 3612 | unsigned BitWidth = C2->getBitWidth(); |
| 3613 | unsigned ShAmt = C2->urem(RHS: BitWidth); |
| 3614 | if (!ShAmt) |
| 3615 | return Operands[IsRight ? 1 : 0]; |
| 3616 | |
| 3617 | // (C0 << ShlAmt) | (C1 >> LshrAmt) |
| 3618 | unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; |
| 3619 | unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; |
| 3620 | if (!C0) |
| 3621 | return ConstantInt::get(Ty, V: C1->lshr(shiftAmt: LshrAmt)); |
| 3622 | if (!C1) |
| 3623 | return ConstantInt::get(Ty, V: C0->shl(shiftAmt: ShlAmt)); |
| 3624 | return ConstantInt::get(Ty, V: C0->shl(shiftAmt: ShlAmt) | C1->lshr(shiftAmt: LshrAmt)); |
| 3625 | } |
| 3626 | |
| 3627 | if (IntrinsicID == Intrinsic::amdgcn_perm) |
| 3628 | return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); |
| 3629 | |
| 3630 | return nullptr; |
| 3631 | } |
| 3632 | |
| 3633 | static Constant *ConstantFoldScalarCall(StringRef Name, |
| 3634 | Intrinsic::ID IntrinsicID, |
| 3635 | Type *Ty, |
| 3636 | ArrayRef<Constant *> Operands, |
| 3637 | const TargetLibraryInfo *TLI, |
| 3638 | const CallBase *Call) { |
| 3639 | if (IntrinsicID != Intrinsic::not_intrinsic && |
| 3640 | any_of(Range&: Operands, P: IsaPred<PoisonValue>) && |
| 3641 | intrinsicPropagatesPoison(IID: IntrinsicID)) |
| 3642 | return PoisonValue::get(T: Ty); |
| 3643 | |
| 3644 | if (Operands.size() == 1) |
| 3645 | return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); |
| 3646 | |
| 3647 | if (Operands.size() == 2) { |
| 3648 | if (Constant *FoldedLibCall = |
| 3649 | ConstantFoldLibCall2(Name, Ty, Operands, TLI)) { |
| 3650 | return FoldedLibCall; |
| 3651 | } |
| 3652 | return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call); |
| 3653 | } |
| 3654 | |
| 3655 | if (Operands.size() == 3) |
| 3656 | return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); |
| 3657 | |
| 3658 | return nullptr; |
| 3659 | } |
| 3660 | |
| 3661 | static Constant *ConstantFoldFixedVectorCall( |
| 3662 | StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, |
| 3663 | ArrayRef<Constant *> Operands, const DataLayout &DL, |
| 3664 | const TargetLibraryInfo *TLI, const CallBase *Call) { |
| 3665 | SmallVector<Constant *, 4> Result(FVTy->getNumElements()); |
| 3666 | SmallVector<Constant *, 4> Lane(Operands.size()); |
| 3667 | Type *Ty = FVTy->getElementType(); |
| 3668 | |
| 3669 | switch (IntrinsicID) { |
| 3670 | case Intrinsic::masked_load: { |
| 3671 | auto *SrcPtr = Operands[0]; |
| 3672 | auto *Mask = Operands[2]; |
| 3673 | auto *Passthru = Operands[3]; |
| 3674 | |
| 3675 | Constant *VecData = ConstantFoldLoadFromConstPtr(C: SrcPtr, Ty: FVTy, DL); |
| 3676 | |
| 3677 | SmallVector<Constant *, 32> NewElements; |
| 3678 | for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { |
| 3679 | auto *MaskElt = Mask->getAggregateElement(Elt: I); |
| 3680 | if (!MaskElt) |
| 3681 | break; |
| 3682 | auto *PassthruElt = Passthru->getAggregateElement(Elt: I); |
| 3683 | auto *VecElt = VecData ? VecData->getAggregateElement(Elt: I) : nullptr; |
| 3684 | if (isa<UndefValue>(Val: MaskElt)) { |
| 3685 | if (PassthruElt) |
| 3686 | NewElements.push_back(Elt: PassthruElt); |
| 3687 | else if (VecElt) |
| 3688 | NewElements.push_back(Elt: VecElt); |
| 3689 | else |
| 3690 | return nullptr; |
| 3691 | } |
| 3692 | if (MaskElt->isNullValue()) { |
| 3693 | if (!PassthruElt) |
| 3694 | return nullptr; |
| 3695 | NewElements.push_back(Elt: PassthruElt); |
| 3696 | } else if (MaskElt->isOneValue()) { |
| 3697 | if (!VecElt) |
| 3698 | return nullptr; |
| 3699 | NewElements.push_back(Elt: VecElt); |
| 3700 | } else { |
| 3701 | return nullptr; |
| 3702 | } |
| 3703 | } |
| 3704 | if (NewElements.size() != FVTy->getNumElements()) |
| 3705 | return nullptr; |
| 3706 | return ConstantVector::get(V: NewElements); |
| 3707 | } |
| 3708 | case Intrinsic::arm_mve_vctp8: |
| 3709 | case Intrinsic::arm_mve_vctp16: |
| 3710 | case Intrinsic::arm_mve_vctp32: |
| 3711 | case Intrinsic::arm_mve_vctp64: { |
| 3712 | if (auto *Op = dyn_cast<ConstantInt>(Val: Operands[0])) { |
| 3713 | unsigned Lanes = FVTy->getNumElements(); |
| 3714 | uint64_t Limit = Op->getZExtValue(); |
| 3715 | |
| 3716 | SmallVector<Constant *, 16> NCs; |
| 3717 | for (unsigned i = 0; i < Lanes; i++) { |
| 3718 | if (i < Limit) |
| 3719 | NCs.push_back(Elt: ConstantInt::getTrue(Ty)); |
| 3720 | else |
| 3721 | NCs.push_back(Elt: ConstantInt::getFalse(Ty)); |
| 3722 | } |
| 3723 | return ConstantVector::get(V: NCs); |
| 3724 | } |
| 3725 | return nullptr; |
| 3726 | } |
| 3727 | case Intrinsic::get_active_lane_mask: { |
| 3728 | auto *Op0 = dyn_cast<ConstantInt>(Val: Operands[0]); |
| 3729 | auto *Op1 = dyn_cast<ConstantInt>(Val: Operands[1]); |
| 3730 | if (Op0 && Op1) { |
| 3731 | unsigned Lanes = FVTy->getNumElements(); |
| 3732 | uint64_t Base = Op0->getZExtValue(); |
| 3733 | uint64_t Limit = Op1->getZExtValue(); |
| 3734 | |
| 3735 | SmallVector<Constant *, 16> NCs; |
| 3736 | for (unsigned i = 0; i < Lanes; i++) { |
| 3737 | if (Base + i < Limit) |
| 3738 | NCs.push_back(Elt: ConstantInt::getTrue(Ty)); |
| 3739 | else |
| 3740 | NCs.push_back(Elt: ConstantInt::getFalse(Ty)); |
| 3741 | } |
| 3742 | return ConstantVector::get(V: NCs); |
| 3743 | } |
| 3744 | return nullptr; |
| 3745 | } |
| 3746 | case Intrinsic::vector_extract: { |
| 3747 | auto *Idx = dyn_cast<ConstantInt>(Val: Operands[1]); |
| 3748 | Constant *Vec = Operands[0]; |
| 3749 | if (!Idx || !isa<FixedVectorType>(Val: Vec->getType())) |
| 3750 | return nullptr; |
| 3751 | |
| 3752 | unsigned NumElements = FVTy->getNumElements(); |
| 3753 | unsigned VecNumElements = |
| 3754 | cast<FixedVectorType>(Val: Vec->getType())->getNumElements(); |
| 3755 | unsigned StartingIndex = Idx->getZExtValue(); |
| 3756 | |
| 3757 | // Extracting entire vector is nop |
| 3758 | if (NumElements == VecNumElements && StartingIndex == 0) |
| 3759 | return Vec; |
| 3760 | |
| 3761 | for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E; |
| 3762 | ++I) { |
| 3763 | Constant *Elt = Vec->getAggregateElement(Elt: I); |
| 3764 | if (!Elt) |
| 3765 | return nullptr; |
| 3766 | Result[I - StartingIndex] = Elt; |
| 3767 | } |
| 3768 | |
| 3769 | return ConstantVector::get(V: Result); |
| 3770 | } |
| 3771 | case Intrinsic::vector_insert: { |
| 3772 | Constant *Vec = Operands[0]; |
| 3773 | Constant *SubVec = Operands[1]; |
| 3774 | auto *Idx = dyn_cast<ConstantInt>(Val: Operands[2]); |
| 3775 | if (!Idx || !isa<FixedVectorType>(Val: Vec->getType())) |
| 3776 | return nullptr; |
| 3777 | |
| 3778 | unsigned SubVecNumElements = |
| 3779 | cast<FixedVectorType>(Val: SubVec->getType())->getNumElements(); |
| 3780 | unsigned VecNumElements = |
| 3781 | cast<FixedVectorType>(Val: Vec->getType())->getNumElements(); |
| 3782 | unsigned IdxN = Idx->getZExtValue(); |
| 3783 | // Replacing entire vector with a subvec is nop |
| 3784 | if (SubVecNumElements == VecNumElements && IdxN == 0) |
| 3785 | return SubVec; |
| 3786 | |
| 3787 | for (unsigned I = 0; I < VecNumElements; ++I) { |
| 3788 | Constant *Elt; |
| 3789 | if (I < IdxN + SubVecNumElements) |
| 3790 | Elt = SubVec->getAggregateElement(Elt: I - IdxN); |
| 3791 | else |
| 3792 | Elt = Vec->getAggregateElement(Elt: I); |
| 3793 | if (!Elt) |
| 3794 | return nullptr; |
| 3795 | Result[I] = Elt; |
| 3796 | } |
| 3797 | return ConstantVector::get(V: Result); |
| 3798 | } |
| 3799 | case Intrinsic::vector_interleave2: { |
| 3800 | unsigned NumElements = |
| 3801 | cast<FixedVectorType>(Val: Operands[0]->getType())->getNumElements(); |
| 3802 | for (unsigned I = 0; I < NumElements; ++I) { |
| 3803 | Constant *Elt0 = Operands[0]->getAggregateElement(Elt: I); |
| 3804 | Constant *Elt1 = Operands[1]->getAggregateElement(Elt: I); |
| 3805 | if (!Elt0 || !Elt1) |
| 3806 | return nullptr; |
| 3807 | Result[2 * I] = Elt0; |
| 3808 | Result[2 * I + 1] = Elt1; |
| 3809 | } |
| 3810 | return ConstantVector::get(V: Result); |
| 3811 | } |
| 3812 | default: |
| 3813 | break; |
| 3814 | } |
| 3815 | |
| 3816 | for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { |
| 3817 | // Gather a column of constants. |
| 3818 | for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { |
| 3819 | // Some intrinsics use a scalar type for certain arguments. |
| 3820 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IntrinsicID, ScalarOpdIdx: J, /*TTI=*/nullptr)) { |
| 3821 | Lane[J] = Operands[J]; |
| 3822 | continue; |
| 3823 | } |
| 3824 | |
| 3825 | Constant *Agg = Operands[J]->getAggregateElement(Elt: I); |
| 3826 | if (!Agg) |
| 3827 | return nullptr; |
| 3828 | |
| 3829 | Lane[J] = Agg; |
| 3830 | } |
| 3831 | |
| 3832 | // Use the regular scalar folding to simplify this column. |
| 3833 | Constant *Folded = |
| 3834 | ConstantFoldScalarCall(Name, IntrinsicID, Ty, Operands: Lane, TLI, Call); |
| 3835 | if (!Folded) |
| 3836 | return nullptr; |
| 3837 | Result[I] = Folded; |
| 3838 | } |
| 3839 | |
| 3840 | return ConstantVector::get(V: Result); |
| 3841 | } |
| 3842 | |
| 3843 | static Constant *ConstantFoldScalableVectorCall( |
| 3844 | StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, |
| 3845 | ArrayRef<Constant *> Operands, const DataLayout &DL, |
| 3846 | const TargetLibraryInfo *TLI, const CallBase *Call) { |
| 3847 | switch (IntrinsicID) { |
| 3848 | case Intrinsic::aarch64_sve_convert_from_svbool: { |
| 3849 | auto *Src = dyn_cast<Constant>(Val: Operands[0]); |
| 3850 | if (!Src || !Src->isNullValue()) |
| 3851 | break; |
| 3852 | |
| 3853 | return ConstantInt::getFalse(Ty: SVTy); |
| 3854 | } |
| 3855 | default: |
| 3856 | break; |
| 3857 | } |
| 3858 | |
| 3859 | // If trivially vectorizable, try folding it via the scalar call if all |
| 3860 | // operands are splats. |
| 3861 | |
| 3862 | // TODO: ConstantFoldFixedVectorCall should probably check this too? |
| 3863 | if (!isTriviallyVectorizable(ID: IntrinsicID)) |
| 3864 | return nullptr; |
| 3865 | |
| 3866 | SmallVector<Constant *, 4> SplatOps; |
| 3867 | for (auto [I, Op] : enumerate(First&: Operands)) { |
| 3868 | if (isVectorIntrinsicWithScalarOpAtArg(ID: IntrinsicID, ScalarOpdIdx: I, /*TTI=*/nullptr)) { |
| 3869 | SplatOps.push_back(Elt: Op); |
| 3870 | continue; |
| 3871 | } |
| 3872 | Constant *Splat = Op->getSplatValue(); |
| 3873 | if (!Splat) |
| 3874 | return nullptr; |
| 3875 | SplatOps.push_back(Elt: Splat); |
| 3876 | } |
| 3877 | Constant *Folded = ConstantFoldScalarCall( |
| 3878 | Name, IntrinsicID, Ty: SVTy->getElementType(), Operands: SplatOps, TLI, Call); |
| 3879 | if (!Folded) |
| 3880 | return nullptr; |
| 3881 | return ConstantVector::getSplat(EC: SVTy->getElementCount(), Elt: Folded); |
| 3882 | } |
| 3883 | |
| 3884 | static std::pair<Constant *, Constant *> |
| 3885 | ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { |
| 3886 | if (isa<PoisonValue>(Val: Op)) |
| 3887 | return {Op, PoisonValue::get(T: IntTy)}; |
| 3888 | |
| 3889 | auto *ConstFP = dyn_cast<ConstantFP>(Val: Op); |
| 3890 | if (!ConstFP) |
| 3891 | return {}; |
| 3892 | |
| 3893 | const APFloat &U = ConstFP->getValueAPF(); |
| 3894 | int FrexpExp; |
| 3895 | APFloat FrexpMant = frexp(X: U, Exp&: FrexpExp, RM: APFloat::rmNearestTiesToEven); |
| 3896 | Constant *Result0 = ConstantFP::get(Ty: ConstFP->getType(), V: FrexpMant); |
| 3897 | |
| 3898 | // The exponent is an "unspecified value" for inf/nan. We use zero to avoid |
| 3899 | // using undef. |
| 3900 | Constant *Result1 = FrexpMant.isFinite() |
| 3901 | ? ConstantInt::getSigned(Ty: IntTy, V: FrexpExp) |
| 3902 | : ConstantInt::getNullValue(Ty: IntTy); |
| 3903 | return {Result0, Result1}; |
| 3904 | } |
| 3905 | |
| 3906 | /// Handle intrinsics that return tuples, which may be tuples of vectors. |
| 3907 | static Constant * |
| 3908 | ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, |
| 3909 | StructType *StTy, ArrayRef<Constant *> Operands, |
| 3910 | const DataLayout &DL, const TargetLibraryInfo *TLI, |
| 3911 | const CallBase *Call) { |
| 3912 | |
| 3913 | switch (IntrinsicID) { |
| 3914 | case Intrinsic::frexp: { |
| 3915 | Type *Ty0 = StTy->getContainedType(i: 0); |
| 3916 | Type *Ty1 = StTy->getContainedType(i: 1)->getScalarType(); |
| 3917 | |
| 3918 | if (auto *FVTy0 = dyn_cast<FixedVectorType>(Val: Ty0)) { |
| 3919 | SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); |
| 3920 | SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); |
| 3921 | |
| 3922 | for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { |
| 3923 | Constant *Lane = Operands[0]->getAggregateElement(Elt: I); |
| 3924 | std::tie(args&: Results0[I], args&: Results1[I]) = |
| 3925 | ConstantFoldScalarFrexpCall(Op: Lane, IntTy: Ty1); |
| 3926 | if (!Results0[I]) |
| 3927 | return nullptr; |
| 3928 | } |
| 3929 | |
| 3930 | return ConstantStruct::get(T: StTy, Vs: ConstantVector::get(V: Results0), |
| 3931 | Vs: ConstantVector::get(V: Results1)); |
| 3932 | } |
| 3933 | |
| 3934 | auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Op: Operands[0], IntTy: Ty1); |
| 3935 | if (!Result0) |
| 3936 | return nullptr; |
| 3937 | return ConstantStruct::get(T: StTy, Vs: Result0, Vs: Result1); |
| 3938 | } |
| 3939 | case Intrinsic::sincos: { |
| 3940 | Type *Ty = StTy->getContainedType(i: 0); |
| 3941 | Type *TyScalar = Ty->getScalarType(); |
| 3942 | |
| 3943 | auto ConstantFoldScalarSincosCall = |
| 3944 | [&](Constant *Op) -> std::pair<Constant *, Constant *> { |
| 3945 | Constant *SinResult = |
| 3946 | ConstantFoldScalarCall(Name, IntrinsicID: Intrinsic::sin, Ty: TyScalar, Operands: Op, TLI, Call); |
| 3947 | Constant *CosResult = |
| 3948 | ConstantFoldScalarCall(Name, IntrinsicID: Intrinsic::cos, Ty: TyScalar, Operands: Op, TLI, Call); |
| 3949 | return std::make_pair(x&: SinResult, y&: CosResult); |
| 3950 | }; |
| 3951 | |
| 3952 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 3953 | SmallVector<Constant *> SinResults(FVTy->getNumElements()); |
| 3954 | SmallVector<Constant *> CosResults(FVTy->getNumElements()); |
| 3955 | |
| 3956 | for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { |
| 3957 | Constant *Lane = Operands[0]->getAggregateElement(Elt: I); |
| 3958 | std::tie(args&: SinResults[I], args&: CosResults[I]) = |
| 3959 | ConstantFoldScalarSincosCall(Lane); |
| 3960 | if (!SinResults[I] || !CosResults[I]) |
| 3961 | return nullptr; |
| 3962 | } |
| 3963 | |
| 3964 | return ConstantStruct::get(T: StTy, Vs: ConstantVector::get(V: SinResults), |
| 3965 | Vs: ConstantVector::get(V: CosResults)); |
| 3966 | } |
| 3967 | |
| 3968 | auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]); |
| 3969 | if (!SinResult || !CosResult) |
| 3970 | return nullptr; |
| 3971 | return ConstantStruct::get(T: StTy, Vs: SinResult, Vs: CosResult); |
| 3972 | } |
| 3973 | case Intrinsic::vector_deinterleave2: { |
| 3974 | auto *Vec = Operands[0]; |
| 3975 | auto *VecTy = cast<VectorType>(Val: Vec->getType()); |
| 3976 | |
| 3977 | if (auto *EltC = Vec->getSplatValue()) { |
| 3978 | ElementCount HalfEC = VecTy->getElementCount().divideCoefficientBy(RHS: 2); |
| 3979 | auto *HalfVec = ConstantVector::getSplat(EC: HalfEC, Elt: EltC); |
| 3980 | return ConstantStruct::get(T: StTy, Vs: HalfVec, Vs: HalfVec); |
| 3981 | } |
| 3982 | |
| 3983 | if (!isa<FixedVectorType>(Val: Vec->getType())) |
| 3984 | return nullptr; |
| 3985 | |
| 3986 | unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2; |
| 3987 | SmallVector<Constant *, 4> Res0(NumElements), Res1(NumElements); |
| 3988 | for (unsigned I = 0; I < NumElements; ++I) { |
| 3989 | Constant *Elt0 = Vec->getAggregateElement(Elt: 2 * I); |
| 3990 | Constant *Elt1 = Vec->getAggregateElement(Elt: 2 * I + 1); |
| 3991 | if (!Elt0 || !Elt1) |
| 3992 | return nullptr; |
| 3993 | Res0[I] = Elt0; |
| 3994 | Res1[I] = Elt1; |
| 3995 | } |
| 3996 | return ConstantStruct::get(T: StTy, Vs: ConstantVector::get(V: Res0), |
| 3997 | Vs: ConstantVector::get(V: Res1)); |
| 3998 | } |
| 3999 | default: |
| 4000 | // TODO: Constant folding of vector intrinsics that fall through here does |
| 4001 | // not work (e.g. overflow intrinsics) |
| 4002 | return ConstantFoldScalarCall(Name, IntrinsicID, Ty: StTy, Operands, TLI, Call); |
| 4003 | } |
| 4004 | |
| 4005 | return nullptr; |
| 4006 | } |
| 4007 | |
| 4008 | } // end anonymous namespace |
| 4009 | |
| 4010 | Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, |
| 4011 | Constant *RHS, Type *Ty, |
| 4012 | Instruction *FMFSource) { |
| 4013 | auto *Call = dyn_cast_if_present<CallBase>(Val: FMFSource); |
| 4014 | // Ensure we check flags like StrictFP that might prevent this from getting |
| 4015 | // folded before generating a result. |
| 4016 | if (Call && !canConstantFoldCallTo(Call, F: Call->getCalledFunction())) |
| 4017 | return nullptr; |
| 4018 | return ConstantFoldIntrinsicCall2(IntrinsicID: ID, Ty, Operands: {LHS, RHS}, Call); |
| 4019 | } |
| 4020 | |
| 4021 | Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, |
| 4022 | ArrayRef<Constant *> Operands, |
| 4023 | const TargetLibraryInfo *TLI, |
| 4024 | bool AllowNonDeterministic) { |
| 4025 | if (Call->isNoBuiltin()) |
| 4026 | return nullptr; |
| 4027 | if (!F->hasName()) |
| 4028 | return nullptr; |
| 4029 | |
| 4030 | // If this is not an intrinsic and not recognized as a library call, bail out. |
| 4031 | Intrinsic::ID IID = F->getIntrinsicID(); |
| 4032 | if (IID == Intrinsic::not_intrinsic) { |
| 4033 | if (!TLI) |
| 4034 | return nullptr; |
| 4035 | LibFunc LibF; |
| 4036 | if (!TLI->getLibFunc(FDecl: *F, F&: LibF)) |
| 4037 | return nullptr; |
| 4038 | } |
| 4039 | |
| 4040 | // Conservatively assume that floating-point libcalls may be |
| 4041 | // non-deterministic. |
| 4042 | Type *Ty = F->getReturnType(); |
| 4043 | if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy()) |
| 4044 | return nullptr; |
| 4045 | |
| 4046 | StringRef Name = F->getName(); |
| 4047 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: Ty)) |
| 4048 | return ConstantFoldFixedVectorCall( |
| 4049 | Name, IntrinsicID: IID, FVTy, Operands, DL: F->getDataLayout(), TLI, Call); |
| 4050 | |
| 4051 | if (auto *SVTy = dyn_cast<ScalableVectorType>(Val: Ty)) |
| 4052 | return ConstantFoldScalableVectorCall( |
| 4053 | Name, IntrinsicID: IID, SVTy, Operands, DL: F->getDataLayout(), TLI, Call); |
| 4054 | |
| 4055 | if (auto *StTy = dyn_cast<StructType>(Val: Ty)) |
| 4056 | return ConstantFoldStructCall(Name, IntrinsicID: IID, StTy, Operands, |
| 4057 | DL: F->getDataLayout(), TLI, Call); |
| 4058 | |
| 4059 | // TODO: If this is a library function, we already discovered that above, |
| 4060 | // so we should pass the LibFunc, not the name (and it might be better |
| 4061 | // still to separate intrinsic handling from libcalls). |
| 4062 | return ConstantFoldScalarCall(Name, IntrinsicID: IID, Ty, Operands, TLI, Call); |
| 4063 | } |
| 4064 | |
| 4065 | bool llvm::isMathLibCallNoop(const CallBase *Call, |
| 4066 | const TargetLibraryInfo *TLI) { |
| 4067 | // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap |
| 4068 | // (and to some extent ConstantFoldScalarCall). |
| 4069 | if (Call->isNoBuiltin() || Call->isStrictFP()) |
| 4070 | return false; |
| 4071 | Function *F = Call->getCalledFunction(); |
| 4072 | if (!F) |
| 4073 | return false; |
| 4074 | |
| 4075 | LibFunc Func; |
| 4076 | if (!TLI || !TLI->getLibFunc(FDecl: *F, F&: Func)) |
| 4077 | return false; |
| 4078 | |
| 4079 | if (Call->arg_size() == 1) { |
| 4080 | if (ConstantFP *OpC = dyn_cast<ConstantFP>(Val: Call->getArgOperand(i: 0))) { |
| 4081 | const APFloat &Op = OpC->getValueAPF(); |
| 4082 | switch (Func) { |
| 4083 | case LibFunc_logl: |
| 4084 | case LibFunc_log: |
| 4085 | case LibFunc_logf: |
| 4086 | case LibFunc_log2l: |
| 4087 | case LibFunc_log2: |
| 4088 | case LibFunc_log2f: |
| 4089 | case LibFunc_log10l: |
| 4090 | case LibFunc_log10: |
| 4091 | case LibFunc_log10f: |
| 4092 | return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); |
| 4093 | |
| 4094 | case LibFunc_ilogb: |
| 4095 | return !Op.isNaN() && !Op.isZero() && !Op.isInfinity(); |
| 4096 | |
| 4097 | case LibFunc_expl: |
| 4098 | case LibFunc_exp: |
| 4099 | case LibFunc_expf: |
| 4100 | // FIXME: These boundaries are slightly conservative. |
| 4101 | if (OpC->getType()->isDoubleTy()) |
| 4102 | return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); |
| 4103 | if (OpC->getType()->isFloatTy()) |
| 4104 | return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); |
| 4105 | break; |
| 4106 | |
| 4107 | case LibFunc_exp2l: |
| 4108 | case LibFunc_exp2: |
| 4109 | case LibFunc_exp2f: |
| 4110 | // FIXME: These boundaries are slightly conservative. |
| 4111 | if (OpC->getType()->isDoubleTy()) |
| 4112 | return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); |
| 4113 | if (OpC->getType()->isFloatTy()) |
| 4114 | return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); |
| 4115 | break; |
| 4116 | |
| 4117 | case LibFunc_sinl: |
| 4118 | case LibFunc_sin: |
| 4119 | case LibFunc_sinf: |
| 4120 | case LibFunc_cosl: |
| 4121 | case LibFunc_cos: |
| 4122 | case LibFunc_cosf: |
| 4123 | return !Op.isInfinity(); |
| 4124 | |
| 4125 | case LibFunc_tanl: |
| 4126 | case LibFunc_tan: |
| 4127 | case LibFunc_tanf: { |
| 4128 | // FIXME: Stop using the host math library. |
| 4129 | // FIXME: The computation isn't done in the right precision. |
| 4130 | Type *Ty = OpC->getType(); |
| 4131 | if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) |
| 4132 | return ConstantFoldFP(NativeFP: tan, V: OpC->getValueAPF(), Ty) != nullptr; |
| 4133 | break; |
| 4134 | } |
| 4135 | |
| 4136 | case LibFunc_atan: |
| 4137 | case LibFunc_atanf: |
| 4138 | case LibFunc_atanl: |
| 4139 | // Per POSIX, this MAY fail if Op is denormal. We choose not failing. |
| 4140 | return true; |
| 4141 | |
| 4142 | case LibFunc_asinl: |
| 4143 | case LibFunc_asin: |
| 4144 | case LibFunc_asinf: |
| 4145 | case LibFunc_acosl: |
| 4146 | case LibFunc_acos: |
| 4147 | case LibFunc_acosf: |
| 4148 | return !(Op < APFloat::getOne(Sem: Op.getSemantics(), Negative: true) || |
| 4149 | Op > APFloat::getOne(Sem: Op.getSemantics())); |
| 4150 | |
| 4151 | case LibFunc_sinh: |
| 4152 | case LibFunc_cosh: |
| 4153 | case LibFunc_sinhf: |
| 4154 | case LibFunc_coshf: |
| 4155 | case LibFunc_sinhl: |
| 4156 | case LibFunc_coshl: |
| 4157 | // FIXME: These boundaries are slightly conservative. |
| 4158 | if (OpC->getType()->isDoubleTy()) |
| 4159 | return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); |
| 4160 | if (OpC->getType()->isFloatTy()) |
| 4161 | return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); |
| 4162 | break; |
| 4163 | |
| 4164 | case LibFunc_sqrtl: |
| 4165 | case LibFunc_sqrt: |
| 4166 | case LibFunc_sqrtf: |
| 4167 | return Op.isNaN() || Op.isZero() || !Op.isNegative(); |
| 4168 | |
| 4169 | // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, |
| 4170 | // maybe others? |
| 4171 | default: |
| 4172 | break; |
| 4173 | } |
| 4174 | } |
| 4175 | } |
| 4176 | |
| 4177 | if (Call->arg_size() == 2) { |
| 4178 | ConstantFP *Op0C = dyn_cast<ConstantFP>(Val: Call->getArgOperand(i: 0)); |
| 4179 | ConstantFP *Op1C = dyn_cast<ConstantFP>(Val: Call->getArgOperand(i: 1)); |
| 4180 | if (Op0C && Op1C) { |
| 4181 | const APFloat &Op0 = Op0C->getValueAPF(); |
| 4182 | const APFloat &Op1 = Op1C->getValueAPF(); |
| 4183 | |
| 4184 | switch (Func) { |
| 4185 | case LibFunc_powl: |
| 4186 | case LibFunc_pow: |
| 4187 | case LibFunc_powf: { |
| 4188 | // FIXME: Stop using the host math library. |
| 4189 | // FIXME: The computation isn't done in the right precision. |
| 4190 | Type *Ty = Op0C->getType(); |
| 4191 | if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { |
| 4192 | if (Ty == Op1C->getType()) |
| 4193 | return ConstantFoldBinaryFP(NativeFP: pow, V: Op0, W: Op1, Ty) != nullptr; |
| 4194 | } |
| 4195 | break; |
| 4196 | } |
| 4197 | |
| 4198 | case LibFunc_fmodl: |
| 4199 | case LibFunc_fmod: |
| 4200 | case LibFunc_fmodf: |
| 4201 | case LibFunc_remainderl: |
| 4202 | case LibFunc_remainder: |
| 4203 | case LibFunc_remainderf: |
| 4204 | return Op0.isNaN() || Op1.isNaN() || |
| 4205 | (!Op0.isInfinity() && !Op1.isZero()); |
| 4206 | |
| 4207 | case LibFunc_atan2: |
| 4208 | case LibFunc_atan2f: |
| 4209 | case LibFunc_atan2l: |
| 4210 | // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and |
| 4211 | // GLIBC and MSVC do not appear to raise an error on those, we |
| 4212 | // cannot rely on that behavior. POSIX and C11 say that a domain error |
| 4213 | // may occur, so allow for that possibility. |
| 4214 | return !Op0.isZero() || !Op1.isZero(); |
| 4215 | |
| 4216 | default: |
| 4217 | break; |
| 4218 | } |
| 4219 | } |
| 4220 | } |
| 4221 | |
| 4222 | return false; |
| 4223 | } |
| 4224 | |
| 4225 | void TargetFolder::anchor() {} |
| 4226 | |