1 | //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements the SelectionDAGISel class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/SelectionDAGISel.h" |
14 | #include "ScheduleDAGSDNodes.h" |
15 | #include "SelectionDAGBuilder.h" |
16 | #include "llvm/ADT/APInt.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/PostOrderIterator.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | #include "llvm/ADT/SmallPtrSet.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/Statistic.h" |
23 | #include "llvm/ADT/StringRef.h" |
24 | #include "llvm/Analysis/AliasAnalysis.h" |
25 | #include "llvm/Analysis/AssumptionCache.h" |
26 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
27 | #include "llvm/Analysis/CFG.h" |
28 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
29 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
30 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
32 | #include "llvm/Analysis/TargetTransformInfo.h" |
33 | #include "llvm/Analysis/UniformityAnalysis.h" |
34 | #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" |
35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
36 | #include "llvm/CodeGen/FastISel.h" |
37 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
38 | #include "llvm/CodeGen/GCMetadata.h" |
39 | #include "llvm/CodeGen/ISDOpcodes.h" |
40 | #include "llvm/CodeGen/MachineBasicBlock.h" |
41 | #include "llvm/CodeGen/MachineFrameInfo.h" |
42 | #include "llvm/CodeGen/MachineFunction.h" |
43 | #include "llvm/CodeGen/MachineFunctionPass.h" |
44 | #include "llvm/CodeGen/MachineInstr.h" |
45 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
46 | #include "llvm/CodeGen/MachineMemOperand.h" |
47 | #include "llvm/CodeGen/MachineModuleInfo.h" |
48 | #include "llvm/CodeGen/MachineOperand.h" |
49 | #include "llvm/CodeGen/MachinePassRegistry.h" |
50 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
51 | #include "llvm/CodeGen/SchedulerRegistry.h" |
52 | #include "llvm/CodeGen/SelectionDAG.h" |
53 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
54 | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
55 | #include "llvm/CodeGen/StackMaps.h" |
56 | #include "llvm/CodeGen/StackProtector.h" |
57 | #include "llvm/CodeGen/SwiftErrorValueTracking.h" |
58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
59 | #include "llvm/CodeGen/TargetLowering.h" |
60 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
61 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
62 | #include "llvm/CodeGen/ValueTypes.h" |
63 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
64 | #include "llvm/CodeGenTypes/MachineValueType.h" |
65 | #include "llvm/IR/BasicBlock.h" |
66 | #include "llvm/IR/Constants.h" |
67 | #include "llvm/IR/DataLayout.h" |
68 | #include "llvm/IR/DebugInfo.h" |
69 | #include "llvm/IR/DebugInfoMetadata.h" |
70 | #include "llvm/IR/DebugLoc.h" |
71 | #include "llvm/IR/DiagnosticInfo.h" |
72 | #include "llvm/IR/EHPersonalities.h" |
73 | #include "llvm/IR/Function.h" |
74 | #include "llvm/IR/InlineAsm.h" |
75 | #include "llvm/IR/InstIterator.h" |
76 | #include "llvm/IR/Instruction.h" |
77 | #include "llvm/IR/Instructions.h" |
78 | #include "llvm/IR/IntrinsicInst.h" |
79 | #include "llvm/IR/Intrinsics.h" |
80 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
81 | #include "llvm/IR/Metadata.h" |
82 | #include "llvm/IR/Module.h" |
83 | #include "llvm/IR/PrintPasses.h" |
84 | #include "llvm/IR/Statepoint.h" |
85 | #include "llvm/IR/Type.h" |
86 | #include "llvm/IR/User.h" |
87 | #include "llvm/IR/Value.h" |
88 | #include "llvm/InitializePasses.h" |
89 | #include "llvm/MC/MCInstrDesc.h" |
90 | #include "llvm/Pass.h" |
91 | #include "llvm/Support/BranchProbability.h" |
92 | #include "llvm/Support/Casting.h" |
93 | #include "llvm/Support/CodeGen.h" |
94 | #include "llvm/Support/CommandLine.h" |
95 | #include "llvm/Support/Compiler.h" |
96 | #include "llvm/Support/Debug.h" |
97 | #include "llvm/Support/ErrorHandling.h" |
98 | #include "llvm/Support/KnownBits.h" |
99 | #include "llvm/Support/Timer.h" |
100 | #include "llvm/Support/raw_ostream.h" |
101 | #include "llvm/Target/TargetMachine.h" |
102 | #include "llvm/Target/TargetOptions.h" |
103 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
104 | #include <cassert> |
105 | #include <cstdint> |
106 | #include <iterator> |
107 | #include <limits> |
108 | #include <memory> |
109 | #include <optional> |
110 | #include <string> |
111 | #include <utility> |
112 | #include <vector> |
113 | |
114 | using namespace llvm; |
115 | |
116 | #define DEBUG_TYPE "isel" |
117 | #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump" |
118 | |
119 | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on" ); |
120 | STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected" ); |
121 | STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel" ); |
122 | STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG" ); |
123 | STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path" ); |
124 | STATISTIC(NumEntryBlocks, "Number of entry blocks encountered" ); |
125 | STATISTIC(NumFastIselFailLowerArguments, |
126 | "Number of entry blocks where fast isel failed to lower arguments" ); |
127 | |
128 | static cl::opt<int> EnableFastISelAbort( |
129 | "fast-isel-abort" , cl::Hidden, |
130 | cl::desc("Enable abort calls when \"fast\" instruction selection " |
131 | "fails to lower an instruction: 0 disable the abort, 1 will " |
132 | "abort but for args, calls and terminators, 2 will also " |
133 | "abort for argument lowering, and 3 will never fallback " |
134 | "to SelectionDAG." )); |
135 | |
136 | static cl::opt<bool> EnableFastISelFallbackReport( |
137 | "fast-isel-report-on-fallback" , cl::Hidden, |
138 | cl::desc("Emit a diagnostic when \"fast\" instruction selection " |
139 | "falls back to SelectionDAG." )); |
140 | |
141 | static cl::opt<bool> |
142 | UseMBPI("use-mbpi" , |
143 | cl::desc("use Machine Branch Probability Info" ), |
144 | cl::init(Val: true), cl::Hidden); |
145 | |
146 | #ifndef NDEBUG |
147 | static cl::opt<std::string> |
148 | FilterDAGBasicBlockName("filter-view-dags" , cl::Hidden, |
149 | cl::desc("Only display the basic block whose name " |
150 | "matches this for all view-*-dags options" )); |
151 | static cl::opt<bool> |
152 | ViewDAGCombine1("view-dag-combine1-dags" , cl::Hidden, |
153 | cl::desc("Pop up a window to show dags before the first " |
154 | "dag combine pass" )); |
155 | static cl::opt<bool> |
156 | ViewLegalizeTypesDAGs("view-legalize-types-dags" , cl::Hidden, |
157 | cl::desc("Pop up a window to show dags before legalize types" )); |
158 | static cl::opt<bool> |
159 | ViewDAGCombineLT("view-dag-combine-lt-dags" , cl::Hidden, |
160 | cl::desc("Pop up a window to show dags before the post " |
161 | "legalize types dag combine pass" )); |
162 | static cl::opt<bool> |
163 | ViewLegalizeDAGs("view-legalize-dags" , cl::Hidden, |
164 | cl::desc("Pop up a window to show dags before legalize" )); |
165 | static cl::opt<bool> |
166 | ViewDAGCombine2("view-dag-combine2-dags" , cl::Hidden, |
167 | cl::desc("Pop up a window to show dags before the second " |
168 | "dag combine pass" )); |
169 | static cl::opt<bool> |
170 | ViewISelDAGs("view-isel-dags" , cl::Hidden, |
171 | cl::desc("Pop up a window to show isel dags as they are selected" )); |
172 | static cl::opt<bool> |
173 | ViewSchedDAGs("view-sched-dags" , cl::Hidden, |
174 | cl::desc("Pop up a window to show sched dags as they are processed" )); |
175 | static cl::opt<bool> |
176 | ViewSUnitDAGs("view-sunit-dags" , cl::Hidden, |
177 | cl::desc("Pop up a window to show SUnit dags after they are processed" )); |
178 | #else |
179 | static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, |
180 | ViewDAGCombineLT = false, ViewLegalizeDAGs = false, |
181 | ViewDAGCombine2 = false, ViewISelDAGs = false, |
182 | ViewSchedDAGs = false, ViewSUnitDAGs = false; |
183 | #endif |
184 | |
185 | #ifndef NDEBUG |
186 | #define ISEL_DUMP(X) \ |
187 | do { \ |
188 | if (llvm::DebugFlag && \ |
189 | (isCurrentDebugType(DEBUG_TYPE) || \ |
190 | (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \ |
191 | X; \ |
192 | } \ |
193 | } while (false) |
194 | #else |
195 | #define ISEL_DUMP(X) do { } while (false) |
196 | #endif |
197 | |
198 | //===---------------------------------------------------------------------===// |
199 | /// |
200 | /// RegisterScheduler class - Track the registration of instruction schedulers. |
201 | /// |
202 | //===---------------------------------------------------------------------===// |
203 | MachinePassRegistry<RegisterScheduler::FunctionPassCtor> |
204 | RegisterScheduler::Registry; |
205 | |
206 | //===---------------------------------------------------------------------===// |
207 | /// |
208 | /// ISHeuristic command line option for instruction schedulers. |
209 | /// |
210 | //===---------------------------------------------------------------------===// |
211 | static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
212 | RegisterPassParser<RegisterScheduler>> |
213 | ISHeuristic("pre-RA-sched" , |
214 | cl::init(Val: &createDefaultScheduler), cl::Hidden, |
215 | cl::desc("Instruction schedulers available (before register" |
216 | " allocation):" )); |
217 | |
218 | static RegisterScheduler |
219 | defaultListDAGScheduler("default" , "Best scheduler for the target" , |
220 | createDefaultScheduler); |
221 | |
222 | static bool dontUseFastISelFor(const Function &Fn) { |
223 | // Don't enable FastISel for functions with swiftasync Arguments. |
224 | // Debug info on those is reliant on good Argument lowering, and FastISel is |
225 | // not capable of lowering the entire function. Mixing the two selectors tend |
226 | // to result in poor lowering of Arguments. |
227 | return any_of(Range: Fn.args(), P: [](const Argument &Arg) { |
228 | return Arg.hasAttribute(Kind: Attribute::AttrKind::SwiftAsync); |
229 | }); |
230 | } |
231 | |
232 | namespace llvm { |
233 | |
234 | //===--------------------------------------------------------------------===// |
235 | /// This class is used by SelectionDAGISel to temporarily override |
236 | /// the optimization level on a per-function basis. |
237 | class OptLevelChanger { |
238 | SelectionDAGISel &IS; |
239 | CodeGenOptLevel SavedOptLevel; |
240 | bool SavedFastISel; |
241 | |
242 | public: |
243 | OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel) |
244 | : IS(ISel) { |
245 | SavedOptLevel = IS.OptLevel; |
246 | SavedFastISel = IS.TM.Options.EnableFastISel; |
247 | if (NewOptLevel != SavedOptLevel) { |
248 | IS.OptLevel = NewOptLevel; |
249 | IS.TM.setOptLevel(NewOptLevel); |
250 | LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " |
251 | << IS.MF->getFunction().getName() << "\n" ); |
252 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel) |
253 | << " ; After: -O" << static_cast<int>(NewOptLevel) |
254 | << "\n" ); |
255 | if (NewOptLevel == CodeGenOptLevel::None) |
256 | IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); |
257 | } |
258 | if (dontUseFastISelFor(Fn: IS.MF->getFunction())) |
259 | IS.TM.setFastISel(false); |
260 | LLVM_DEBUG( |
261 | dbgs() << "\tFastISel is " |
262 | << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled" ) |
263 | << "\n" ); |
264 | } |
265 | |
266 | ~OptLevelChanger() { |
267 | if (IS.OptLevel == SavedOptLevel) |
268 | return; |
269 | LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " |
270 | << IS.MF->getFunction().getName() << "\n" ); |
271 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel) |
272 | << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n" ); |
273 | IS.OptLevel = SavedOptLevel; |
274 | IS.TM.setOptLevel(SavedOptLevel); |
275 | IS.TM.setFastISel(SavedFastISel); |
276 | } |
277 | }; |
278 | |
279 | //===--------------------------------------------------------------------===// |
280 | /// createDefaultScheduler - This creates an instruction scheduler appropriate |
281 | /// for the target. |
282 | ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS, |
283 | CodeGenOptLevel OptLevel) { |
284 | const TargetLowering *TLI = IS->TLI; |
285 | const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); |
286 | |
287 | // Try first to see if the Target has its own way of selecting a scheduler |
288 | if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { |
289 | return SchedulerCtor(IS, OptLevel); |
290 | } |
291 | |
292 | if (OptLevel == CodeGenOptLevel::None || |
293 | (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || |
294 | TLI->getSchedulingPreference() == Sched::Source) |
295 | return createSourceListDAGScheduler(IS, OptLevel); |
296 | if (TLI->getSchedulingPreference() == Sched::RegPressure) |
297 | return createBURRListDAGScheduler(IS, OptLevel); |
298 | if (TLI->getSchedulingPreference() == Sched::Hybrid) |
299 | return createHybridListDAGScheduler(IS, OptLevel); |
300 | if (TLI->getSchedulingPreference() == Sched::VLIW) |
301 | return createVLIWDAGScheduler(IS, OptLevel); |
302 | if (TLI->getSchedulingPreference() == Sched::Fast) |
303 | return createFastDAGScheduler(IS, OptLevel); |
304 | if (TLI->getSchedulingPreference() == Sched::Linearize) |
305 | return createDAGLinearizer(IS, OptLevel); |
306 | assert(TLI->getSchedulingPreference() == Sched::ILP && |
307 | "Unknown sched type!" ); |
308 | return createILPListDAGScheduler(IS, OptLevel); |
309 | } |
310 | |
311 | } // end namespace llvm |
312 | |
313 | MachineBasicBlock * |
314 | TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
315 | MachineBasicBlock *MBB) const { |
316 | #ifndef NDEBUG |
317 | dbgs() << "If a target marks an instruction with " |
318 | "'usesCustomInserter', it must implement " |
319 | "TargetLowering::EmitInstrWithCustomInserter!\n" ; |
320 | #endif |
321 | llvm_unreachable(nullptr); |
322 | } |
323 | |
324 | void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
325 | SDNode *Node) const { |
326 | assert(!MI.hasPostISelHook() && |
327 | "If a target marks an instruction with 'hasPostISelHook', " |
328 | "it must implement TargetLowering::AdjustInstrPostInstrSelection!" ); |
329 | } |
330 | |
331 | //===----------------------------------------------------------------------===// |
332 | // SelectionDAGISel code |
333 | //===----------------------------------------------------------------------===// |
334 | |
335 | SelectionDAGISelLegacy::SelectionDAGISelLegacy( |
336 | char &ID, std::unique_ptr<SelectionDAGISel> S) |
337 | : MachineFunctionPass(ID), Selector(std::move(S)) { |
338 | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
339 | initializeBranchProbabilityInfoWrapperPassPass( |
340 | *PassRegistry::getPassRegistry()); |
341 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
342 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
343 | } |
344 | |
345 | bool SelectionDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { |
346 | // If we already selected that function, we do not need to run SDISel. |
347 | if (MF.getProperties().hasSelected()) |
348 | return false; |
349 | |
350 | // Do some sanity-checking on the command-line options. |
351 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
352 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
353 | |
354 | // Decide what flavour of variable location debug-info will be used, before |
355 | // we change the optimisation level. |
356 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
357 | |
358 | // Reset the target options before resetting the optimization |
359 | // level below. |
360 | // FIXME: This is a horrible hack and should be processed via |
361 | // codegen looking at the optimization level explicitly when |
362 | // it wants to look at it. |
363 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
364 | // Reset OptLevel to None for optnone functions. |
365 | CodeGenOptLevel NewOptLevel = skipFunction(F: MF.getFunction()) |
366 | ? CodeGenOptLevel::None |
367 | : Selector->OptLevel; |
368 | |
369 | Selector->MF = &MF; |
370 | OptLevelChanger OLC(*Selector, NewOptLevel); |
371 | Selector->initializeAnalysisResults(MFP&: *this); |
372 | return Selector->runOnMachineFunction(mf&: MF); |
373 | } |
374 | |
375 | SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOptLevel OL) |
376 | : TM(tm), FuncInfo(new FunctionLoweringInfo()), |
377 | SwiftError(new SwiftErrorValueTracking()), |
378 | CurDAG(new SelectionDAG(tm, OL)), |
379 | SDB(std::make_unique<SelectionDAGBuilder>(args&: *CurDAG, args&: *FuncInfo, args&: *SwiftError, |
380 | args&: OL)), |
381 | OptLevel(OL) { |
382 | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
383 | initializeBranchProbabilityInfoWrapperPassPass( |
384 | *PassRegistry::getPassRegistry()); |
385 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
386 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
387 | } |
388 | |
389 | SelectionDAGISel::~SelectionDAGISel() { delete CurDAG; } |
390 | |
391 | void SelectionDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
392 | CodeGenOptLevel OptLevel = Selector->OptLevel; |
393 | if (OptLevel != CodeGenOptLevel::None) |
394 | AU.addRequired<AAResultsWrapperPass>(); |
395 | AU.addRequired<GCModuleInfo>(); |
396 | AU.addRequired<StackProtector>(); |
397 | AU.addPreserved<GCModuleInfo>(); |
398 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
399 | #ifndef NDEBUG |
400 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
401 | #endif |
402 | AU.addRequired<AssumptionCacheTracker>(); |
403 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
404 | AU.addRequired<BranchProbabilityInfoWrapperPass>(); |
405 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
406 | // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for |
407 | // the module. |
408 | AU.addRequired<AssignmentTrackingAnalysis>(); |
409 | AU.addPreserved<AssignmentTrackingAnalysis>(); |
410 | if (OptLevel != CodeGenOptLevel::None) |
411 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
412 | MachineFunctionPass::getAnalysisUsage(AU); |
413 | } |
414 | |
415 | PreservedAnalyses |
416 | SelectionDAGISelPass::run(MachineFunction &MF, |
417 | MachineFunctionAnalysisManager &MFAM) { |
418 | // If we already selected that function, we do not need to run SDISel. |
419 | if (MF.getProperties().hasSelected()) |
420 | return PreservedAnalyses::all(); |
421 | |
422 | // Do some sanity-checking on the command-line options. |
423 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
424 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
425 | |
426 | // Decide what flavour of variable location debug-info will be used, before |
427 | // we change the optimisation level. |
428 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
429 | |
430 | // Reset the target options before resetting the optimization |
431 | // level below. |
432 | // FIXME: This is a horrible hack and should be processed via |
433 | // codegen looking at the optimization level explicitly when |
434 | // it wants to look at it. |
435 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
436 | // Reset OptLevel to None for optnone functions. |
437 | // TODO: Add a function analysis to handle this. |
438 | Selector->MF = &MF; |
439 | // Reset OptLevel to None for optnone functions. |
440 | CodeGenOptLevel NewOptLevel = MF.getFunction().hasOptNone() |
441 | ? CodeGenOptLevel::None |
442 | : Selector->OptLevel; |
443 | |
444 | OptLevelChanger OLC(*Selector, NewOptLevel); |
445 | Selector->initializeAnalysisResults(MFAM); |
446 | Selector->runOnMachineFunction(mf&: MF); |
447 | |
448 | return getMachineFunctionPassPreservedAnalyses(); |
449 | } |
450 | |
451 | void SelectionDAGISel::initializeAnalysisResults( |
452 | MachineFunctionAnalysisManager &MFAM) { |
453 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: *MF) |
454 | .getManager(); |
455 | auto &MAMP = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: *MF); |
456 | Function &Fn = MF->getFunction(); |
457 | #ifndef NDEBUG |
458 | FuncName = Fn.getName(); |
459 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
460 | #else |
461 | (void)MatchFilterFuncName; |
462 | #endif |
463 | |
464 | TII = MF->getSubtarget().getInstrInfo(); |
465 | TLI = MF->getSubtarget().getTargetLowering(); |
466 | RegInfo = &MF->getRegInfo(); |
467 | LibInfo = &FAM.getResult<TargetLibraryAnalysis>(IR&: Fn); |
468 | GFI = Fn.hasGC() ? &FAM.getResult<GCFunctionAnalysis>(IR&: Fn) : nullptr; |
469 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
470 | AC = &FAM.getResult<AssumptionAnalysis>(IR&: Fn); |
471 | auto *PSI = MAMP.getCachedResult<ProfileSummaryAnalysis>(IR&: *Fn.getParent()); |
472 | BlockFrequencyInfo *BFI = nullptr; |
473 | FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
474 | if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None) |
475 | BFI = &FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
476 | |
477 | FunctionVarLocs const *FnVarLocs = nullptr; |
478 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
479 | FnVarLocs = &FAM.getResult<DebugAssignmentTrackingAnalysis>(IR&: Fn); |
480 | |
481 | auto *UA = FAM.getCachedResult<UniformityInfoAnalysis>(IR&: Fn); |
482 | MachineModuleInfo &MMI = |
483 | MAMP.getCachedResult<MachineModuleAnalysis>(IR&: *Fn.getParent())->getMMI(); |
484 | |
485 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, AM&: MFAM, LibraryInfo: LibInfo, UA, PSIin: PSI, BFIin: BFI, MMI, FnVarLocs); |
486 | |
487 | // Now get the optional analyzes if we want to. |
488 | // This is based on the possibly changed OptLevel (after optnone is taken |
489 | // into account). That's unfortunate but OK because it just means we won't |
490 | // ask for passes that have been required anyway. |
491 | |
492 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
493 | FuncInfo->BPI = &FAM.getResult<BranchProbabilityAnalysis>(IR&: Fn); |
494 | else |
495 | FuncInfo->BPI = nullptr; |
496 | |
497 | if (OptLevel != CodeGenOptLevel::None) |
498 | BatchAA.emplace(args&: FAM.getResult<AAManager>(IR&: Fn)); |
499 | else |
500 | BatchAA = std::nullopt; |
501 | |
502 | SP = &FAM.getResult<SSPLayoutAnalysis>(IR&: Fn); |
503 | |
504 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
505 | TTI = &FAM.getResult<TargetIRAnalysis>(Fn); |
506 | #endif |
507 | } |
508 | |
509 | void SelectionDAGISel::initializeAnalysisResults(MachineFunctionPass &MFP) { |
510 | Function &Fn = MF->getFunction(); |
511 | #ifndef NDEBUG |
512 | FuncName = Fn.getName(); |
513 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
514 | #else |
515 | (void)MatchFilterFuncName; |
516 | #endif |
517 | |
518 | TII = MF->getSubtarget().getInstrInfo(); |
519 | TLI = MF->getSubtarget().getTargetLowering(); |
520 | RegInfo = &MF->getRegInfo(); |
521 | LibInfo = &MFP.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F: Fn); |
522 | GFI = Fn.hasGC() ? &MFP.getAnalysis<GCModuleInfo>().getFunctionInfo(F: Fn) |
523 | : nullptr; |
524 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
525 | AC = &MFP.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: Fn); |
526 | auto *PSI = &MFP.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
527 | BlockFrequencyInfo *BFI = nullptr; |
528 | if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None) |
529 | BFI = &MFP.getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); |
530 | |
531 | FunctionVarLocs const *FnVarLocs = nullptr; |
532 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
533 | FnVarLocs = MFP.getAnalysis<AssignmentTrackingAnalysis>().getResults(); |
534 | |
535 | UniformityInfo *UA = nullptr; |
536 | if (auto *UAPass = MFP.getAnalysisIfAvailable<UniformityInfoWrapperPass>()) |
537 | UA = &UAPass->getUniformityInfo(); |
538 | |
539 | MachineModuleInfo &MMI = |
540 | MFP.getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); |
541 | |
542 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, PassPtr: &MFP, LibraryInfo: LibInfo, UA, PSIin: PSI, BFIin: BFI, MMI, FnVarLocs); |
543 | |
544 | // Now get the optional analyzes if we want to. |
545 | // This is based on the possibly changed OptLevel (after optnone is taken |
546 | // into account). That's unfortunate but OK because it just means we won't |
547 | // ask for passes that have been required anyway. |
548 | |
549 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
550 | FuncInfo->BPI = |
551 | &MFP.getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); |
552 | else |
553 | FuncInfo->BPI = nullptr; |
554 | |
555 | if (OptLevel != CodeGenOptLevel::None) |
556 | BatchAA.emplace(args&: MFP.getAnalysis<AAResultsWrapperPass>().getAAResults()); |
557 | else |
558 | BatchAA = std::nullopt; |
559 | |
560 | SP = &MFP.getAnalysis<StackProtector>().getLayoutInfo(); |
561 | |
562 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
563 | TTI = &MFP.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn); |
564 | #endif |
565 | } |
566 | |
567 | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
568 | SwiftError->setFunction(mf); |
569 | const Function &Fn = mf.getFunction(); |
570 | |
571 | bool InstrRef = mf.shouldUseDebugInstrRef(); |
572 | |
573 | FuncInfo->set(Fn: MF->getFunction(), MF&: *MF, DAG: CurDAG); |
574 | |
575 | ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << '\n'); |
576 | |
577 | SDB->init(gfi: GFI, BatchAA: getBatchAA(), AC, li: LibInfo); |
578 | |
579 | MF->setHasInlineAsm(false); |
580 | |
581 | FuncInfo->SplitCSR = false; |
582 | |
583 | // We split CSR if the target supports it for the given function |
584 | // and the function has only return exits. |
585 | if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) { |
586 | FuncInfo->SplitCSR = true; |
587 | |
588 | // Collect all the return blocks. |
589 | for (const BasicBlock &BB : Fn) { |
590 | if (!succ_empty(BB: &BB)) |
591 | continue; |
592 | |
593 | const Instruction *Term = BB.getTerminator(); |
594 | if (isa<UnreachableInst>(Val: Term) || isa<ReturnInst>(Val: Term)) |
595 | continue; |
596 | |
597 | // Bail out if the exit block is not Return nor Unreachable. |
598 | FuncInfo->SplitCSR = false; |
599 | break; |
600 | } |
601 | } |
602 | |
603 | MachineBasicBlock *EntryMBB = &MF->front(); |
604 | if (FuncInfo->SplitCSR) |
605 | // This performs initialization so lowering for SplitCSR will be correct. |
606 | TLI->initializeSplitCSR(Entry: EntryMBB); |
607 | |
608 | SelectAllBasicBlocks(Fn); |
609 | if (FastISelFailed && EnableFastISelFallbackReport) { |
610 | DiagnosticInfoISelFallback DiagFallback(Fn); |
611 | Fn.getContext().diagnose(DI: DiagFallback); |
612 | } |
613 | |
614 | // Replace forward-declared registers with the registers containing |
615 | // the desired value. |
616 | // Note: it is important that this happens **before** the call to |
617 | // EmitLiveInCopies, since implementations can skip copies of unused |
618 | // registers. If we don't apply the reg fixups before, some registers may |
619 | // appear as unused and will be skipped, resulting in bad MI. |
620 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
621 | for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), |
622 | E = FuncInfo->RegFixups.end(); |
623 | I != E; ++I) { |
624 | Register From = I->first; |
625 | Register To = I->second; |
626 | // If To is also scheduled to be replaced, find what its ultimate |
627 | // replacement is. |
628 | while (true) { |
629 | DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(Val: To); |
630 | if (J == E) |
631 | break; |
632 | To = J->second; |
633 | } |
634 | // Make sure the new register has a sufficiently constrained register class. |
635 | if (From.isVirtual() && To.isVirtual()) |
636 | MRI.constrainRegClass(Reg: To, RC: MRI.getRegClass(Reg: From)); |
637 | // Replace it. |
638 | |
639 | // Replacing one register with another won't touch the kill flags. |
640 | // We need to conservatively clear the kill flags as a kill on the old |
641 | // register might dominate existing uses of the new register. |
642 | if (!MRI.use_empty(RegNo: To)) |
643 | MRI.clearKillFlags(Reg: From); |
644 | MRI.replaceRegWith(FromReg: From, ToReg: To); |
645 | } |
646 | |
647 | // If the first basic block in the function has live ins that need to be |
648 | // copied into vregs, emit the copies into the top of the block before |
649 | // emitting the code for the block. |
650 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
651 | RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII: *TII); |
652 | |
653 | // Insert copies in the entry block and the return blocks. |
654 | if (FuncInfo->SplitCSR) { |
655 | SmallVector<MachineBasicBlock*, 4> Returns; |
656 | // Collect all the return blocks. |
657 | for (MachineBasicBlock &MBB : mf) { |
658 | if (!MBB.succ_empty()) |
659 | continue; |
660 | |
661 | MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); |
662 | if (Term != MBB.end() && Term->isReturn()) { |
663 | Returns.push_back(Elt: &MBB); |
664 | continue; |
665 | } |
666 | } |
667 | TLI->insertCopiesSplitCSR(Entry: EntryMBB, Exits: Returns); |
668 | } |
669 | |
670 | DenseMap<MCRegister, Register> LiveInMap; |
671 | if (!FuncInfo->ArgDbgValues.empty()) |
672 | for (std::pair<MCRegister, Register> LI : RegInfo->liveins()) |
673 | if (LI.second) |
674 | LiveInMap.insert(KV: LI); |
675 | |
676 | // Insert DBG_VALUE instructions for function arguments to the entry block. |
677 | for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { |
678 | MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; |
679 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
680 | "Function parameters should not be described by DBG_VALUE_LIST." ); |
681 | bool hasFI = MI->getDebugOperand(Index: 0).isFI(); |
682 | Register Reg = |
683 | hasFI ? TRI.getFrameRegister(MF: *MF) : MI->getDebugOperand(Index: 0).getReg(); |
684 | if (Reg.isPhysical()) |
685 | EntryMBB->insert(I: EntryMBB->begin(), MI); |
686 | else { |
687 | MachineInstr *Def = RegInfo->getVRegDef(Reg); |
688 | if (Def) { |
689 | MachineBasicBlock::iterator InsertPos = Def; |
690 | // FIXME: VR def may not be in entry block. |
691 | Def->getParent()->insert(I: std::next(x: InsertPos), MI); |
692 | } else |
693 | LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" |
694 | << printReg(Reg) << '\n'); |
695 | } |
696 | |
697 | // Don't try and extend through copies in instruction referencing mode. |
698 | if (InstrRef) |
699 | continue; |
700 | |
701 | // If Reg is live-in then update debug info to track its copy in a vreg. |
702 | if (!Reg.isPhysical()) |
703 | continue; |
704 | DenseMap<MCRegister, Register>::iterator LDI = LiveInMap.find(Val: Reg); |
705 | if (LDI != LiveInMap.end()) { |
706 | assert(!hasFI && "There's no handling of frame pointer updating here yet " |
707 | "- add if needed" ); |
708 | MachineInstr *Def = RegInfo->getVRegDef(Reg: LDI->second); |
709 | MachineBasicBlock::iterator InsertPos = Def; |
710 | const MDNode *Variable = MI->getDebugVariable(); |
711 | const MDNode *Expr = MI->getDebugExpression(); |
712 | DebugLoc DL = MI->getDebugLoc(); |
713 | bool IsIndirect = MI->isIndirectDebugValue(); |
714 | if (IsIndirect) |
715 | assert(MI->getDebugOffset().getImm() == 0 && |
716 | "DBG_VALUE with nonzero offset" ); |
717 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
718 | "Expected inlined-at fields to agree" ); |
719 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
720 | "Didn't expect to see a DBG_VALUE_LIST here" ); |
721 | // Def is never a terminator here, so it is ok to increment InsertPos. |
722 | BuildMI(BB&: *EntryMBB, I: ++InsertPos, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), |
723 | IsIndirect, Reg: LDI->second, Variable, Expr); |
724 | |
725 | // If this vreg is directly copied into an exported register then |
726 | // that COPY instructions also need DBG_VALUE, if it is the only |
727 | // user of LDI->second. |
728 | MachineInstr *CopyUseMI = nullptr; |
729 | for (MachineInstr &UseMI : RegInfo->use_instructions(Reg: LDI->second)) { |
730 | if (UseMI.isDebugValue()) |
731 | continue; |
732 | if (UseMI.isCopy() && !CopyUseMI && UseMI.getParent() == EntryMBB) { |
733 | CopyUseMI = &UseMI; |
734 | continue; |
735 | } |
736 | // Otherwise this is another use or second copy use. |
737 | CopyUseMI = nullptr; |
738 | break; |
739 | } |
740 | if (CopyUseMI && |
741 | TRI.getRegSizeInBits(Reg: LDI->second, MRI) == |
742 | TRI.getRegSizeInBits(Reg: CopyUseMI->getOperand(i: 0).getReg(), MRI)) { |
743 | // Use MI's debug location, which describes where Variable was |
744 | // declared, rather than whatever is attached to CopyUseMI. |
745 | MachineInstr *NewMI = |
746 | BuildMI(MF&: *MF, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), IsIndirect, |
747 | Reg: CopyUseMI->getOperand(i: 0).getReg(), Variable, Expr); |
748 | MachineBasicBlock::iterator Pos = CopyUseMI; |
749 | EntryMBB->insertAfter(I: Pos, MI: NewMI); |
750 | } |
751 | } |
752 | } |
753 | |
754 | // For debug-info, in instruction referencing mode, we need to perform some |
755 | // post-isel maintenence. |
756 | if (MF->useDebugInstrRef()) |
757 | MF->finalizeDebugInstrRefs(); |
758 | |
759 | // Determine if there are any calls in this machine function. |
760 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
761 | for (const auto &MBB : *MF) { |
762 | if (MFI.hasCalls() && MF->hasInlineAsm()) |
763 | break; |
764 | |
765 | for (const auto &MI : MBB) { |
766 | const MCInstrDesc &MCID = TII->get(Opcode: MI.getOpcode()); |
767 | if ((MCID.isCall() && !MCID.isReturn()) || |
768 | MI.isStackAligningInlineAsm()) { |
769 | MFI.setHasCalls(true); |
770 | } |
771 | if (MI.isInlineAsm()) { |
772 | MF->setHasInlineAsm(true); |
773 | } |
774 | } |
775 | } |
776 | |
777 | // Release function-specific state. SDB and CurDAG are already cleared |
778 | // at this point. |
779 | FuncInfo->clear(); |
780 | |
781 | ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n" ); |
782 | ISEL_DUMP(MF->print(dbgs())); |
783 | |
784 | return true; |
785 | } |
786 | |
787 | static void (MachineFunction &MF, |
788 | OptimizationRemarkEmitter &ORE, |
789 | OptimizationRemarkMissed &R, |
790 | bool ShouldAbort) { |
791 | // Print the function name explicitly if we don't have a debug location (which |
792 | // makes the diagnostic less useful) or if we're going to emit a raw error. |
793 | if (!R.getLocation().isValid() || ShouldAbort) |
794 | R << (" (in function: " + MF.getName() + ")" ).str(); |
795 | |
796 | if (ShouldAbort) |
797 | reportFatalUsageError(reason: Twine(R.getMsg())); |
798 | |
799 | ORE.emit(OptDiag&: R); |
800 | LLVM_DEBUG(dbgs() << R.getMsg() << "\n" ); |
801 | } |
802 | |
803 | // Detect any fake uses that follow a tail call and move them before the tail |
804 | // call. Ignore fake uses that use values that are def'd by or after the tail |
805 | // call. |
806 | static void preserveFakeUses(BasicBlock::iterator Begin, |
807 | BasicBlock::iterator End) { |
808 | BasicBlock::iterator I = End; |
809 | if (--I == Begin || !isa<ReturnInst>(Val: *I)) |
810 | return; |
811 | // Detect whether there are any fake uses trailing a (potential) tail call. |
812 | bool HaveFakeUse = false; |
813 | bool HaveTailCall = false; |
814 | do { |
815 | if (const CallInst *CI = dyn_cast<CallInst>(Val&: --I)) |
816 | if (CI->isTailCall()) { |
817 | HaveTailCall = true; |
818 | break; |
819 | } |
820 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val&: I)) |
821 | if (II->getIntrinsicID() == Intrinsic::fake_use) |
822 | HaveFakeUse = true; |
823 | } while (I != Begin); |
824 | |
825 | // If we didn't find any tail calls followed by fake uses, we are done. |
826 | if (!HaveTailCall || !HaveFakeUse) |
827 | return; |
828 | |
829 | SmallVector<IntrinsicInst *> FakeUses; |
830 | // Record the fake uses we found so we can move them to the front of the |
831 | // tail call. Ignore them if they use a value that is def'd by or after |
832 | // the tail call. |
833 | for (BasicBlock::iterator Inst = I; Inst != End; Inst++) { |
834 | if (IntrinsicInst *FakeUse = dyn_cast<IntrinsicInst>(Val&: Inst); |
835 | FakeUse && FakeUse->getIntrinsicID() == Intrinsic::fake_use) { |
836 | if (auto UsedDef = dyn_cast<Instruction>(Val: FakeUse->getOperand(i_nocapture: 0)); |
837 | !UsedDef || UsedDef->getParent() != I->getParent() || |
838 | UsedDef->comesBefore(Other: &*I)) |
839 | FakeUses.push_back(Elt: FakeUse); |
840 | } |
841 | } |
842 | |
843 | for (auto *Inst : FakeUses) |
844 | Inst->moveBefore(BB&: *Inst->getParent(), I); |
845 | } |
846 | |
847 | void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, |
848 | BasicBlock::const_iterator End, |
849 | bool &HadTailCall) { |
850 | // Allow creating illegal types during DAG building for the basic block. |
851 | CurDAG->NewNodesMustHaveLegalTypes = false; |
852 | |
853 | // Lower the instructions. If a call is emitted as a tail call, cease emitting |
854 | // nodes for this block. If an instruction is elided, don't emit it, but do |
855 | // handle any debug-info attached to it. |
856 | for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
857 | if (!ElidedArgCopyInstrs.count(Ptr: &*I)) |
858 | SDB->visit(I: *I); |
859 | else |
860 | SDB->visitDbgInfo(I: *I); |
861 | } |
862 | |
863 | // Make sure the root of the DAG is up-to-date. |
864 | CurDAG->setRoot(SDB->getControlRoot()); |
865 | HadTailCall = SDB->HasTailCall; |
866 | SDB->resolveOrClearDbgInfo(); |
867 | SDB->clear(); |
868 | |
869 | // Final step, emit the lowered DAG as machine code. |
870 | CodeGenAndEmitDAG(); |
871 | } |
872 | |
873 | void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
874 | SmallPtrSet<SDNode *, 16> Added; |
875 | SmallVector<SDNode*, 128> Worklist; |
876 | |
877 | Worklist.push_back(Elt: CurDAG->getRoot().getNode()); |
878 | Added.insert(Ptr: CurDAG->getRoot().getNode()); |
879 | |
880 | KnownBits Known; |
881 | |
882 | do { |
883 | SDNode *N = Worklist.pop_back_val(); |
884 | |
885 | // Otherwise, add all chain operands to the worklist. |
886 | for (const SDValue &Op : N->op_values()) |
887 | if (Op.getValueType() == MVT::Other && Added.insert(Ptr: Op.getNode()).second) |
888 | Worklist.push_back(Elt: Op.getNode()); |
889 | |
890 | // If this is a CopyToReg with a vreg dest, process it. |
891 | if (N->getOpcode() != ISD::CopyToReg) |
892 | continue; |
893 | |
894 | Register DestReg = cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg(); |
895 | if (!DestReg.isVirtual()) |
896 | continue; |
897 | |
898 | // Ignore non-integer values. |
899 | SDValue Src = N->getOperand(Num: 2); |
900 | EVT SrcVT = Src.getValueType(); |
901 | if (!SrcVT.isInteger()) |
902 | continue; |
903 | |
904 | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Op: Src); |
905 | Known = CurDAG->computeKnownBits(Op: Src); |
906 | FuncInfo->AddLiveOutRegInfo(Reg: DestReg, NumSignBits, Known); |
907 | } while (!Worklist.empty()); |
908 | } |
909 | |
910 | void SelectionDAGISel::CodeGenAndEmitDAG() { |
911 | StringRef GroupName = "sdag" ; |
912 | StringRef GroupDescription = "Instruction Selection and Scheduling" ; |
913 | std::string BlockName; |
914 | bool MatchFilterBB = false; |
915 | (void)MatchFilterBB; |
916 | |
917 | // Pre-type legalization allow creation of any node types. |
918 | CurDAG->NewNodesMustHaveLegalTypes = false; |
919 | |
920 | #ifndef NDEBUG |
921 | MatchFilterBB = (FilterDAGBasicBlockName.empty() || |
922 | FilterDAGBasicBlockName == |
923 | FuncInfo->MBB->getBasicBlock()->getName()); |
924 | #endif |
925 | #ifdef NDEBUG |
926 | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || |
927 | ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || |
928 | ViewSUnitDAGs) |
929 | #endif |
930 | { |
931 | BlockName = |
932 | (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); |
933 | } |
934 | ISEL_DUMP(dbgs() << "\nInitial selection DAG: " |
935 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
936 | << "'\n" ; |
937 | CurDAG->dump()); |
938 | |
939 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
940 | if (TTI->hasBranchDivergence()) |
941 | CurDAG->VerifyDAGDivergence(); |
942 | #endif |
943 | |
944 | if (ViewDAGCombine1 && MatchFilterBB) |
945 | CurDAG->viewGraph(Title: "dag-combine1 input for " + BlockName); |
946 | |
947 | // Run the DAG combiner in pre-legalize mode. |
948 | { |
949 | NamedRegionTimer T("combine1" , "DAG Combining 1" , GroupName, |
950 | GroupDescription, TimePassesIsEnabled); |
951 | CurDAG->Combine(Level: BeforeLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
952 | } |
953 | |
954 | ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: " |
955 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
956 | << "'\n" ; |
957 | CurDAG->dump()); |
958 | |
959 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
960 | if (TTI->hasBranchDivergence()) |
961 | CurDAG->VerifyDAGDivergence(); |
962 | #endif |
963 | |
964 | // Second step, hack on the DAG until it only uses operations and types that |
965 | // the target supports. |
966 | if (ViewLegalizeTypesDAGs && MatchFilterBB) |
967 | CurDAG->viewGraph(Title: "legalize-types input for " + BlockName); |
968 | |
969 | bool Changed; |
970 | { |
971 | NamedRegionTimer T("legalize_types" , "Type Legalization" , GroupName, |
972 | GroupDescription, TimePassesIsEnabled); |
973 | Changed = CurDAG->LegalizeTypes(); |
974 | } |
975 | |
976 | ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: " |
977 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
978 | << "'\n" ; |
979 | CurDAG->dump()); |
980 | |
981 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
982 | if (TTI->hasBranchDivergence()) |
983 | CurDAG->VerifyDAGDivergence(); |
984 | #endif |
985 | |
986 | // Only allow creation of legal node types. |
987 | CurDAG->NewNodesMustHaveLegalTypes = true; |
988 | |
989 | if (Changed) { |
990 | if (ViewDAGCombineLT && MatchFilterBB) |
991 | CurDAG->viewGraph(Title: "dag-combine-lt input for " + BlockName); |
992 | |
993 | // Run the DAG combiner in post-type-legalize mode. |
994 | { |
995 | NamedRegionTimer T("combine_lt" , "DAG Combining after legalize types" , |
996 | GroupName, GroupDescription, TimePassesIsEnabled); |
997 | CurDAG->Combine(Level: AfterLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
998 | } |
999 | |
1000 | ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: " |
1001 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1002 | << "'\n" ; |
1003 | CurDAG->dump()); |
1004 | |
1005 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1006 | if (TTI->hasBranchDivergence()) |
1007 | CurDAG->VerifyDAGDivergence(); |
1008 | #endif |
1009 | } |
1010 | |
1011 | { |
1012 | NamedRegionTimer T("legalize_vec" , "Vector Legalization" , GroupName, |
1013 | GroupDescription, TimePassesIsEnabled); |
1014 | Changed = CurDAG->LegalizeVectors(); |
1015 | } |
1016 | |
1017 | if (Changed) { |
1018 | ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: " |
1019 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1020 | << "'\n" ; |
1021 | CurDAG->dump()); |
1022 | |
1023 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1024 | if (TTI->hasBranchDivergence()) |
1025 | CurDAG->VerifyDAGDivergence(); |
1026 | #endif |
1027 | |
1028 | { |
1029 | NamedRegionTimer T("legalize_types2" , "Type Legalization 2" , GroupName, |
1030 | GroupDescription, TimePassesIsEnabled); |
1031 | CurDAG->LegalizeTypes(); |
1032 | } |
1033 | |
1034 | ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: " |
1035 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1036 | << "'\n" ; |
1037 | CurDAG->dump()); |
1038 | |
1039 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1040 | if (TTI->hasBranchDivergence()) |
1041 | CurDAG->VerifyDAGDivergence(); |
1042 | #endif |
1043 | |
1044 | if (ViewDAGCombineLT && MatchFilterBB) |
1045 | CurDAG->viewGraph(Title: "dag-combine-lv input for " + BlockName); |
1046 | |
1047 | // Run the DAG combiner in post-type-legalize mode. |
1048 | { |
1049 | NamedRegionTimer T("combine_lv" , "DAG Combining after legalize vectors" , |
1050 | GroupName, GroupDescription, TimePassesIsEnabled); |
1051 | CurDAG->Combine(Level: AfterLegalizeVectorOps, BatchAA: getBatchAA(), OptLevel); |
1052 | } |
1053 | |
1054 | ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: " |
1055 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1056 | << "'\n" ; |
1057 | CurDAG->dump()); |
1058 | |
1059 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1060 | if (TTI->hasBranchDivergence()) |
1061 | CurDAG->VerifyDAGDivergence(); |
1062 | #endif |
1063 | } |
1064 | |
1065 | if (ViewLegalizeDAGs && MatchFilterBB) |
1066 | CurDAG->viewGraph(Title: "legalize input for " + BlockName); |
1067 | |
1068 | { |
1069 | NamedRegionTimer T("legalize" , "DAG Legalization" , GroupName, |
1070 | GroupDescription, TimePassesIsEnabled); |
1071 | CurDAG->Legalize(); |
1072 | } |
1073 | |
1074 | ISEL_DUMP(dbgs() << "\nLegalized selection DAG: " |
1075 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1076 | << "'\n" ; |
1077 | CurDAG->dump()); |
1078 | |
1079 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1080 | if (TTI->hasBranchDivergence()) |
1081 | CurDAG->VerifyDAGDivergence(); |
1082 | #endif |
1083 | |
1084 | if (ViewDAGCombine2 && MatchFilterBB) |
1085 | CurDAG->viewGraph(Title: "dag-combine2 input for " + BlockName); |
1086 | |
1087 | // Run the DAG combiner in post-legalize mode. |
1088 | { |
1089 | NamedRegionTimer T("combine2" , "DAG Combining 2" , GroupName, |
1090 | GroupDescription, TimePassesIsEnabled); |
1091 | CurDAG->Combine(Level: AfterLegalizeDAG, BatchAA: getBatchAA(), OptLevel); |
1092 | } |
1093 | |
1094 | ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: " |
1095 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1096 | << "'\n" ; |
1097 | CurDAG->dump()); |
1098 | |
1099 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
1100 | if (TTI->hasBranchDivergence()) |
1101 | CurDAG->VerifyDAGDivergence(); |
1102 | #endif |
1103 | |
1104 | if (OptLevel != CodeGenOptLevel::None) |
1105 | ComputeLiveOutVRegInfo(); |
1106 | |
1107 | if (ViewISelDAGs && MatchFilterBB) |
1108 | CurDAG->viewGraph(Title: "isel input for " + BlockName); |
1109 | |
1110 | // Third, instruction select all of the operations to machine code, adding the |
1111 | // code to the MachineBasicBlock. |
1112 | { |
1113 | NamedRegionTimer T("isel" , "Instruction Selection" , GroupName, |
1114 | GroupDescription, TimePassesIsEnabled); |
1115 | DoInstructionSelection(); |
1116 | } |
1117 | |
1118 | ISEL_DUMP(dbgs() << "\nSelected selection DAG: " |
1119 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
1120 | << "'\n" ; |
1121 | CurDAG->dump()); |
1122 | |
1123 | if (ViewSchedDAGs && MatchFilterBB) |
1124 | CurDAG->viewGraph(Title: "scheduler input for " + BlockName); |
1125 | |
1126 | // Schedule machine code. |
1127 | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
1128 | { |
1129 | NamedRegionTimer T("sched" , "Instruction Scheduling" , GroupName, |
1130 | GroupDescription, TimePassesIsEnabled); |
1131 | Scheduler->Run(dag: CurDAG, bb: FuncInfo->MBB); |
1132 | } |
1133 | |
1134 | if (ViewSUnitDAGs && MatchFilterBB) |
1135 | Scheduler->viewGraph(); |
1136 | |
1137 | // Emit machine code to BB. This can change 'BB' to the last block being |
1138 | // inserted into. |
1139 | MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; |
1140 | { |
1141 | NamedRegionTimer T("emit" , "Instruction Creation" , GroupName, |
1142 | GroupDescription, TimePassesIsEnabled); |
1143 | |
1144 | // FuncInfo->InsertPt is passed by reference and set to the end of the |
1145 | // scheduled instructions. |
1146 | LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(InsertPos&: FuncInfo->InsertPt); |
1147 | } |
1148 | |
1149 | // If the block was split, make sure we update any references that are used to |
1150 | // update PHI nodes later on. |
1151 | if (FirstMBB != LastMBB) |
1152 | SDB->UpdateSplitBlock(First: FirstMBB, Last: LastMBB); |
1153 | |
1154 | // Free the scheduler state. |
1155 | { |
1156 | NamedRegionTimer T("cleanup" , "Instruction Scheduling Cleanup" , GroupName, |
1157 | GroupDescription, TimePassesIsEnabled); |
1158 | delete Scheduler; |
1159 | } |
1160 | |
1161 | // Free the SelectionDAG state, now that we're finished with it. |
1162 | CurDAG->clear(); |
1163 | } |
1164 | |
1165 | namespace { |
1166 | |
1167 | /// ISelUpdater - helper class to handle updates of the instruction selection |
1168 | /// graph. |
1169 | class ISelUpdater : public SelectionDAG::DAGUpdateListener { |
1170 | SelectionDAG::allnodes_iterator &ISelPosition; |
1171 | |
1172 | public: |
1173 | ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) |
1174 | : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} |
1175 | |
1176 | /// NodeDeleted - Handle nodes deleted from the graph. If the node being |
1177 | /// deleted is the current ISelPosition node, update ISelPosition. |
1178 | /// |
1179 | void NodeDeleted(SDNode *N, SDNode *E) override { |
1180 | if (ISelPosition == SelectionDAG::allnodes_iterator(N)) |
1181 | ++ISelPosition; |
1182 | } |
1183 | |
1184 | /// NodeInserted - Handle new nodes inserted into the graph: propagate |
1185 | /// metadata from root nodes that also applies to new nodes, in case the root |
1186 | /// is later deleted. |
1187 | void NodeInserted(SDNode *N) override { |
1188 | SDNode *CurNode = &*ISelPosition; |
1189 | if (MDNode *MD = DAG.getPCSections(Node: CurNode)) |
1190 | DAG.addPCSections(Node: N, MD); |
1191 | if (MDNode *MMRA = DAG.getMMRAMetadata(Node: CurNode)) |
1192 | DAG.addMMRAMetadata(Node: N, MMRA); |
1193 | } |
1194 | }; |
1195 | |
1196 | } // end anonymous namespace |
1197 | |
1198 | // This function is used to enforce the topological node id property |
1199 | // leveraged during instruction selection. Before the selection process all |
1200 | // nodes are given a non-negative id such that all nodes have a greater id than |
1201 | // their operands. As this holds transitively we can prune checks that a node N |
1202 | // is a predecessor of M another by not recursively checking through M's |
1203 | // operands if N's ID is larger than M's ID. This significantly improves |
1204 | // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). |
1205 | |
1206 | // However, when we fuse multiple nodes into a single node during the |
1207 | // selection we may induce a predecessor relationship between inputs and |
1208 | // outputs of distinct nodes being merged, violating the topological property. |
1209 | // Should a fused node have a successor which has yet to be selected, |
1210 | // our legality checks would be incorrect. To avoid this we mark all unselected |
1211 | // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => |
1212 | // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. |
1213 | // We use bit-negation to more clearly enforce that node id -1 can only be |
1214 | // achieved by selected nodes. As the conversion is reversable to the original |
1215 | // Id, topological pruning can still be leveraged when looking for unselected |
1216 | // nodes. This method is called internally in all ISel replacement related |
1217 | // functions. |
1218 | void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { |
1219 | SmallVector<SDNode *, 4> Nodes; |
1220 | Nodes.push_back(Elt: Node); |
1221 | |
1222 | while (!Nodes.empty()) { |
1223 | SDNode *N = Nodes.pop_back_val(); |
1224 | for (auto *U : N->users()) { |
1225 | auto UId = U->getNodeId(); |
1226 | if (UId > 0) { |
1227 | InvalidateNodeId(N: U); |
1228 | Nodes.push_back(Elt: U); |
1229 | } |
1230 | } |
1231 | } |
1232 | } |
1233 | |
1234 | // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a |
1235 | // NodeId with the equivalent node id which is invalid for topological |
1236 | // pruning. |
1237 | void SelectionDAGISel::InvalidateNodeId(SDNode *N) { |
1238 | int InvalidId = -(N->getNodeId() + 1); |
1239 | N->setNodeId(InvalidId); |
1240 | } |
1241 | |
1242 | // getUninvalidatedNodeId - get original uninvalidated node id. |
1243 | int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { |
1244 | int Id = N->getNodeId(); |
1245 | if (Id < -1) |
1246 | return -(Id + 1); |
1247 | return Id; |
1248 | } |
1249 | |
1250 | void SelectionDAGISel::DoInstructionSelection() { |
1251 | LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " |
1252 | << printMBBReference(*FuncInfo->MBB) << " '" |
1253 | << FuncInfo->MBB->getName() << "'\n" ); |
1254 | |
1255 | PreprocessISelDAG(); |
1256 | |
1257 | // Select target instructions for the DAG. |
1258 | { |
1259 | // Number all nodes with a topological order and set DAGSize. |
1260 | DAGSize = CurDAG->AssignTopologicalOrder(); |
1261 | |
1262 | // Create a dummy node (which is not added to allnodes), that adds |
1263 | // a reference to the root node, preventing it from being deleted, |
1264 | // and tracking any changes of the root. |
1265 | HandleSDNode Dummy(CurDAG->getRoot()); |
1266 | SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); |
1267 | ++ISelPosition; |
1268 | |
1269 | // Make sure that ISelPosition gets properly updated when nodes are deleted |
1270 | // in calls made from this function. New nodes inherit relevant metadata. |
1271 | ISelUpdater ISU(*CurDAG, ISelPosition); |
1272 | |
1273 | // The AllNodes list is now topological-sorted. Visit the |
1274 | // nodes by starting at the end of the list (the root of the |
1275 | // graph) and preceding back toward the beginning (the entry |
1276 | // node). |
1277 | while (ISelPosition != CurDAG->allnodes_begin()) { |
1278 | SDNode *Node = &*--ISelPosition; |
1279 | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
1280 | // but there are currently some corner cases that it misses. Also, this |
1281 | // makes it theoretically possible to disable the DAGCombiner. |
1282 | if (Node->use_empty()) |
1283 | continue; |
1284 | |
1285 | #ifndef NDEBUG |
1286 | SmallVector<SDNode *, 4> Nodes; |
1287 | Nodes.push_back(Node); |
1288 | |
1289 | while (!Nodes.empty()) { |
1290 | auto N = Nodes.pop_back_val(); |
1291 | if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) |
1292 | continue; |
1293 | for (const SDValue &Op : N->op_values()) { |
1294 | if (Op->getOpcode() == ISD::TokenFactor) |
1295 | Nodes.push_back(Op.getNode()); |
1296 | else { |
1297 | // We rely on topological ordering of node ids for checking for |
1298 | // cycles when fusing nodes during selection. All unselected nodes |
1299 | // successors of an already selected node should have a negative id. |
1300 | // This assertion will catch such cases. If this assertion triggers |
1301 | // it is likely you using DAG-level Value/Node replacement functions |
1302 | // (versus equivalent ISEL replacement) in backend-specific |
1303 | // selections. See comment in EnforceNodeIdInvariant for more |
1304 | // details. |
1305 | assert(Op->getNodeId() != -1 && |
1306 | "Node has already selected predecessor node" ); |
1307 | } |
1308 | } |
1309 | } |
1310 | #endif |
1311 | |
1312 | // When we are using non-default rounding modes or FP exception behavior |
1313 | // FP operations are represented by StrictFP pseudo-operations. For |
1314 | // targets that do not (yet) understand strict FP operations directly, |
1315 | // we convert them to normal FP opcodes instead at this point. This |
1316 | // will allow them to be handled by existing target-specific instruction |
1317 | // selectors. |
1318 | if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { |
1319 | // For some opcodes, we need to call TLI->getOperationAction using |
1320 | // the first operand type instead of the result type. Note that this |
1321 | // must match what SelectionDAGLegalize::LegalizeOp is doing. |
1322 | EVT ActionVT; |
1323 | switch (Node->getOpcode()) { |
1324 | case ISD::STRICT_SINT_TO_FP: |
1325 | case ISD::STRICT_UINT_TO_FP: |
1326 | case ISD::STRICT_LRINT: |
1327 | case ISD::STRICT_LLRINT: |
1328 | case ISD::STRICT_LROUND: |
1329 | case ISD::STRICT_LLROUND: |
1330 | case ISD::STRICT_FSETCC: |
1331 | case ISD::STRICT_FSETCCS: |
1332 | ActionVT = Node->getOperand(Num: 1).getValueType(); |
1333 | break; |
1334 | default: |
1335 | ActionVT = Node->getValueType(ResNo: 0); |
1336 | break; |
1337 | } |
1338 | if (TLI->getOperationAction(Op: Node->getOpcode(), VT: ActionVT) |
1339 | == TargetLowering::Expand) |
1340 | Node = CurDAG->mutateStrictFPToFP(Node); |
1341 | } |
1342 | |
1343 | LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: " ; |
1344 | Node->dump(CurDAG)); |
1345 | |
1346 | Select(N: Node); |
1347 | } |
1348 | |
1349 | CurDAG->setRoot(Dummy.getValue()); |
1350 | } |
1351 | |
1352 | LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n" ); |
1353 | |
1354 | PostprocessISelDAG(); |
1355 | } |
1356 | |
1357 | static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { |
1358 | for (const User *U : CPI->users()) { |
1359 | if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(Val: U)) { |
1360 | Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); |
1361 | if (IID == Intrinsic::eh_exceptionpointer || |
1362 | IID == Intrinsic::eh_exceptioncode) |
1363 | return true; |
1364 | } |
1365 | } |
1366 | return false; |
1367 | } |
1368 | |
1369 | // wasm.landingpad.index intrinsic is for associating a landing pad index number |
1370 | // with a catchpad instruction. Retrieve the landing pad index in the intrinsic |
1371 | // and store the mapping in the function. |
1372 | static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, |
1373 | const CatchPadInst *CPI) { |
1374 | MachineFunction *MF = MBB->getParent(); |
1375 | // In case of single catch (...), we don't emit LSDA, so we don't need |
1376 | // this information. |
1377 | bool IsSingleCatchAllClause = |
1378 | CPI->arg_size() == 1 && |
1379 | cast<Constant>(Val: CPI->getArgOperand(i: 0))->isNullValue(); |
1380 | // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] |
1381 | // and they don't need LSDA info |
1382 | bool IsCatchLongjmp = CPI->arg_size() == 0; |
1383 | if (!IsSingleCatchAllClause && !IsCatchLongjmp) { |
1384 | // Create a mapping from landing pad label to landing pad index. |
1385 | bool IntrFound = false; |
1386 | for (const User *U : CPI->users()) { |
1387 | if (const auto *Call = dyn_cast<IntrinsicInst>(Val: U)) { |
1388 | Intrinsic::ID IID = Call->getIntrinsicID(); |
1389 | if (IID == Intrinsic::wasm_landingpad_index) { |
1390 | Value *IndexArg = Call->getArgOperand(i: 1); |
1391 | int Index = cast<ConstantInt>(Val: IndexArg)->getZExtValue(); |
1392 | MF->setWasmLandingPadIndex(LPad: MBB, Index); |
1393 | IntrFound = true; |
1394 | break; |
1395 | } |
1396 | } |
1397 | } |
1398 | assert(IntrFound && "wasm.landingpad.index intrinsic not found!" ); |
1399 | (void)IntrFound; |
1400 | } |
1401 | } |
1402 | |
1403 | /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and |
1404 | /// do other setup for EH landing-pad blocks. |
1405 | bool SelectionDAGISel::PrepareEHLandingPad() { |
1406 | MachineBasicBlock *MBB = FuncInfo->MBB; |
1407 | const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); |
1408 | const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
1409 | const TargetRegisterClass *PtrRC = |
1410 | TLI->getRegClassFor(VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
1411 | |
1412 | auto Pers = classifyEHPersonality(Pers: PersonalityFn); |
1413 | |
1414 | // Catchpads have one live-in register, which typically holds the exception |
1415 | // pointer or code. |
1416 | if (isFuncletEHPersonality(Pers)) { |
1417 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) { |
1418 | if (hasExceptionPointerOrCodeUser(CPI)) { |
1419 | // Get or create the virtual register to hold the pointer or code. Mark |
1420 | // the live in physreg and copy into the vreg. |
1421 | MCRegister EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); |
1422 | assert(EHPhysReg && "target lacks exception pointer register" ); |
1423 | MBB->addLiveIn(PhysReg: EHPhysReg); |
1424 | Register VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, RC: PtrRC); |
1425 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), |
1426 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: VReg) |
1427 | .addReg(RegNo: EHPhysReg, flags: RegState::Kill); |
1428 | } |
1429 | } |
1430 | return true; |
1431 | } |
1432 | |
1433 | // Add a label to mark the beginning of the landing pad. Deletion of the |
1434 | // landing pad can thus be detected via the MachineModuleInfo. |
1435 | MCSymbol *Label = MF->addLandingPad(LandingPad: MBB); |
1436 | |
1437 | const MCInstrDesc &II = TII->get(Opcode: TargetOpcode::EH_LABEL); |
1438 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), MCID: II) |
1439 | .addSym(Sym: Label); |
1440 | |
1441 | // If the unwinder does not preserve all registers, ensure that the |
1442 | // function marks the clobbered registers as used. |
1443 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
1444 | if (auto *RegMask = TRI.getCustomEHPadPreservedMask(MF: *MF)) |
1445 | MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); |
1446 | |
1447 | if (Pers == EHPersonality::Wasm_CXX) { |
1448 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) |
1449 | mapWasmLandingPadIndex(MBB, CPI); |
1450 | } else { |
1451 | // Assign the call site to the landing pad's begin label. |
1452 | MF->setCallSiteLandingPad(Sym: Label, Sites: SDB->LPadToCallSiteMap[MBB]); |
1453 | // Mark exception register as live in. |
1454 | if (MCRegister Reg = TLI->getExceptionPointerRegister(PersonalityFn)) |
1455 | FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
1456 | // Mark exception selector register as live in. |
1457 | if (MCRegister Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) |
1458 | FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
1459 | } |
1460 | |
1461 | return true; |
1462 | } |
1463 | |
1464 | // Mark and Report IPToState for each Block under IsEHa |
1465 | void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) { |
1466 | llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo(); |
1467 | if (!EHInfo) |
1468 | return; |
1469 | for (MachineBasicBlock &MBB : *MF) { |
1470 | const BasicBlock *BB = MBB.getBasicBlock(); |
1471 | int State = EHInfo->BlockToStateMap[BB]; |
1472 | if (BB->getFirstMayFaultInst()) { |
1473 | // Report IP range only for blocks with Faulty inst |
1474 | auto MBBb = MBB.getFirstNonPHI(); |
1475 | |
1476 | if (MBBb == MBB.end()) |
1477 | continue; |
1478 | |
1479 | MachineInstr *MIb = &*MBBb; |
1480 | if (MIb->isTerminator()) |
1481 | continue; |
1482 | |
1483 | // Insert EH Labels |
1484 | MCSymbol *BeginLabel = MF->getContext().createTempSymbol(); |
1485 | MCSymbol *EndLabel = MF->getContext().createTempSymbol(); |
1486 | EHInfo->addIPToStateRange(State, InvokeBegin: BeginLabel, InvokeEnd: EndLabel); |
1487 | BuildMI(BB&: MBB, I: MBBb, MIMD: SDB->getCurDebugLoc(), |
1488 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
1489 | .addSym(Sym: BeginLabel); |
1490 | auto MBBe = MBB.instr_end(); |
1491 | MachineInstr *MIe = &*(--MBBe); |
1492 | // insert before (possible multiple) terminators |
1493 | while (MIe->isTerminator()) |
1494 | MIe = &*(--MBBe); |
1495 | ++MBBe; |
1496 | BuildMI(BB&: MBB, I: MBBe, MIMD: SDB->getCurDebugLoc(), |
1497 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
1498 | .addSym(Sym: EndLabel); |
1499 | } |
1500 | } |
1501 | } |
1502 | |
1503 | /// isFoldedOrDeadInstruction - Return true if the specified instruction is |
1504 | /// side-effect free and is either dead or folded into a generated instruction. |
1505 | /// Return false if it needs to be emitted. |
1506 | static bool isFoldedOrDeadInstruction(const Instruction *I, |
1507 | const FunctionLoweringInfo &FuncInfo) { |
1508 | return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. |
1509 | !I->isTerminator() && // Terminators aren't folded. |
1510 | !I->isEHPad() && // EH pad instructions aren't folded. |
1511 | !FuncInfo.isExportedInst(V: I); // Exported instrs must be computed. |
1512 | } |
1513 | |
1514 | static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo, |
1515 | const Value *Arg, DIExpression *Expr, |
1516 | DILocalVariable *Var, |
1517 | DebugLoc DbgLoc) { |
1518 | if (!Expr->isEntryValue() || !isa<Argument>(Val: Arg)) |
1519 | return false; |
1520 | |
1521 | auto ArgIt = FuncInfo.ValueMap.find(Val: Arg); |
1522 | if (ArgIt == FuncInfo.ValueMap.end()) |
1523 | return false; |
1524 | Register ArgVReg = ArgIt->getSecond(); |
1525 | |
1526 | // Find the corresponding livein physical register to this argument. |
1527 | for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) |
1528 | if (VirtReg == ArgVReg) { |
1529 | // Append an op deref to account for the fact that this is a dbg_declare. |
1530 | Expr = DIExpression::append(Expr, Ops: dwarf::DW_OP_deref); |
1531 | FuncInfo.MF->setVariableDbgInfo(Var, Expr, Reg: PhysReg, Loc: DbgLoc); |
1532 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
1533 | << ", Expr=" << *Expr << ", MCRegister=" << PhysReg |
1534 | << ", DbgLoc=" << DbgLoc << "\n" ); |
1535 | return true; |
1536 | } |
1537 | return false; |
1538 | } |
1539 | |
1540 | static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo, |
1541 | const Value *Address, DIExpression *Expr, |
1542 | DILocalVariable *Var, DebugLoc DbgLoc) { |
1543 | if (!Address) { |
1544 | LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var |
1545 | << " (bad address)\n" ); |
1546 | return false; |
1547 | } |
1548 | |
1549 | if (processIfEntryValueDbgDeclare(FuncInfo, Arg: Address, Expr, Var, DbgLoc)) |
1550 | return true; |
1551 | |
1552 | if (!Address->getType()->isPointerTy()) |
1553 | return false; |
1554 | |
1555 | MachineFunction *MF = FuncInfo.MF; |
1556 | const DataLayout &DL = MF->getDataLayout(); |
1557 | |
1558 | assert(Var && "Missing variable" ); |
1559 | assert(DbgLoc && "Missing location" ); |
1560 | |
1561 | // Look through casts and constant offset GEPs. These mostly come from |
1562 | // inalloca. |
1563 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Address->getType()), 0); |
1564 | Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
1565 | |
1566 | // Check if the variable is a static alloca or a byval or inalloca |
1567 | // argument passed in memory. If it is not, then we will ignore this |
1568 | // intrinsic and handle this during isel like dbg.value. |
1569 | int FI = std::numeric_limits<int>::max(); |
1570 | if (const auto *AI = dyn_cast<AllocaInst>(Val: Address)) { |
1571 | auto SI = FuncInfo.StaticAllocaMap.find(Val: AI); |
1572 | if (SI != FuncInfo.StaticAllocaMap.end()) |
1573 | FI = SI->second; |
1574 | } else if (const auto *Arg = dyn_cast<Argument>(Val: Address)) |
1575 | FI = FuncInfo.getArgumentFrameIndex(A: Arg); |
1576 | |
1577 | if (FI == std::numeric_limits<int>::max()) |
1578 | return false; |
1579 | |
1580 | if (Offset.getBoolValue()) |
1581 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::ApplyOffset, |
1582 | Offset: Offset.getZExtValue()); |
1583 | |
1584 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
1585 | << ", Expr=" << *Expr << ", FI=" << FI |
1586 | << ", DbgLoc=" << DbgLoc << "\n" ); |
1587 | MF->setVariableDbgInfo(Var, Expr, Slot: FI, Loc: DbgLoc); |
1588 | return true; |
1589 | } |
1590 | |
1591 | /// Collect llvm.dbg.declare information. This is done after argument lowering |
1592 | /// in case the declarations refer to arguments. |
1593 | static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { |
1594 | for (const auto &I : instructions(F: *FuncInfo.Fn)) { |
1595 | for (const DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
1596 | if (DVR.Type == DbgVariableRecord::LocationType::Declare && |
1597 | processDbgDeclare(FuncInfo, Address: DVR.getVariableLocationOp(OpIdx: 0), |
1598 | Expr: DVR.getExpression(), Var: DVR.getVariable(), |
1599 | DbgLoc: DVR.getDebugLoc())) |
1600 | FuncInfo.PreprocessedDVRDeclares.insert(Ptr: &DVR); |
1601 | } |
1602 | } |
1603 | } |
1604 | |
1605 | /// Collect single location variable information generated with assignment |
1606 | /// tracking. This is done after argument lowering in case the declarations |
1607 | /// refer to arguments. |
1608 | static void processSingleLocVars(FunctionLoweringInfo &FuncInfo, |
1609 | FunctionVarLocs const *FnVarLocs) { |
1610 | for (auto It = FnVarLocs->single_locs_begin(), |
1611 | End = FnVarLocs->single_locs_end(); |
1612 | It != End; ++It) { |
1613 | assert(!It->Values.hasArgList() && "Single loc variadic ops not supported" ); |
1614 | processDbgDeclare(FuncInfo, Address: It->Values.getVariableLocationOp(OpIdx: 0), Expr: It->Expr, |
1615 | Var: FnVarLocs->getDILocalVariable(ID: It->VariableID), DbgLoc: It->DL); |
1616 | } |
1617 | } |
1618 | |
1619 | void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { |
1620 | FastISelFailed = false; |
1621 | // Initialize the Fast-ISel state, if needed. |
1622 | FastISel *FastIS = nullptr; |
1623 | if (TM.Options.EnableFastISel) { |
1624 | LLVM_DEBUG(dbgs() << "Enabling fast-isel\n" ); |
1625 | FastIS = TLI->createFastISel(*FuncInfo, LibInfo); |
1626 | } |
1627 | |
1628 | ReversePostOrderTraversal<const Function*> RPOT(&Fn); |
1629 | |
1630 | // Lower arguments up front. An RPO iteration always visits the entry block |
1631 | // first. |
1632 | assert(*RPOT.begin() == &Fn.getEntryBlock()); |
1633 | ++NumEntryBlocks; |
1634 | |
1635 | // Set up FuncInfo for ISel. Entry blocks never have PHIs. |
1636 | FuncInfo->MBB = FuncInfo->getMBB(BB: &Fn.getEntryBlock()); |
1637 | FuncInfo->InsertPt = FuncInfo->MBB->begin(); |
1638 | |
1639 | CurDAG->setFunctionLoweringInfo(FuncInfo.get()); |
1640 | |
1641 | if (!FastIS) { |
1642 | LowerArguments(F: Fn); |
1643 | } else { |
1644 | // See if fast isel can lower the arguments. |
1645 | FastIS->startNewBlock(); |
1646 | if (!FastIS->lowerArguments()) { |
1647 | FastISelFailed = true; |
1648 | // Fast isel failed to lower these arguments |
1649 | ++NumFastIselFailLowerArguments; |
1650 | |
1651 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
1652 | Fn.getSubprogram(), |
1653 | &Fn.getEntryBlock()); |
1654 | R << "FastISel didn't lower all arguments: " |
1655 | << ore::NV("Prototype" , Fn.getFunctionType()); |
1656 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 1); |
1657 | |
1658 | // Use SelectionDAG argument lowering |
1659 | LowerArguments(F: Fn); |
1660 | CurDAG->setRoot(SDB->getControlRoot()); |
1661 | SDB->clear(); |
1662 | CodeGenAndEmitDAG(); |
1663 | } |
1664 | |
1665 | // If we inserted any instructions at the beginning, make a note of |
1666 | // where they are, so we can be sure to emit subsequent instructions |
1667 | // after them. |
1668 | if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) |
1669 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
1670 | else |
1671 | FastIS->setLastLocalValue(nullptr); |
1672 | } |
1673 | |
1674 | bool Inserted = SwiftError->createEntriesInEntryBlock(DbgLoc: SDB->getCurDebugLoc()); |
1675 | |
1676 | if (FastIS && Inserted) |
1677 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
1678 | |
1679 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) { |
1680 | assert(CurDAG->getFunctionVarLocs() && |
1681 | "expected AssignmentTrackingAnalysis pass results" ); |
1682 | processSingleLocVars(FuncInfo&: *FuncInfo, FnVarLocs: CurDAG->getFunctionVarLocs()); |
1683 | } else { |
1684 | processDbgDeclares(FuncInfo&: *FuncInfo); |
1685 | } |
1686 | |
1687 | // Iterate over all basic blocks in the function. |
1688 | FuncInfo->VisitedBBs.assign(NumElts: Fn.getMaxBlockNumber(), Elt: false); |
1689 | for (const BasicBlock *LLVMBB : RPOT) { |
1690 | if (OptLevel != CodeGenOptLevel::None) { |
1691 | bool AllPredsVisited = true; |
1692 | for (const BasicBlock *Pred : predecessors(BB: LLVMBB)) { |
1693 | if (!FuncInfo->VisitedBBs[Pred->getNumber()]) { |
1694 | AllPredsVisited = false; |
1695 | break; |
1696 | } |
1697 | } |
1698 | |
1699 | if (AllPredsVisited) { |
1700 | for (const PHINode &PN : LLVMBB->phis()) |
1701 | FuncInfo->ComputePHILiveOutRegInfo(&PN); |
1702 | } else { |
1703 | for (const PHINode &PN : LLVMBB->phis()) |
1704 | FuncInfo->InvalidatePHILiveOutRegInfo(PN: &PN); |
1705 | } |
1706 | |
1707 | FuncInfo->VisitedBBs[LLVMBB->getNumber()] = true; |
1708 | } |
1709 | |
1710 | // Fake uses that follow tail calls are dropped. To avoid this, move |
1711 | // such fake uses in front of the tail call, provided they don't |
1712 | // use anything def'd by or after the tail call. |
1713 | { |
1714 | BasicBlock::iterator BBStart = |
1715 | const_cast<BasicBlock *>(LLVMBB)->getFirstNonPHIIt(); |
1716 | BasicBlock::iterator BBEnd = const_cast<BasicBlock *>(LLVMBB)->end(); |
1717 | preserveFakeUses(Begin: BBStart, End: BBEnd); |
1718 | } |
1719 | |
1720 | BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHIIt(); |
1721 | BasicBlock::const_iterator const End = LLVMBB->end(); |
1722 | BasicBlock::const_iterator BI = End; |
1723 | |
1724 | FuncInfo->MBB = FuncInfo->getMBB(BB: LLVMBB); |
1725 | if (!FuncInfo->MBB) |
1726 | continue; // Some blocks like catchpads have no code or MBB. |
1727 | |
1728 | // Insert new instructions after any phi or argument setup code. |
1729 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
1730 | |
1731 | // Setup an EH landing-pad block. |
1732 | FuncInfo->ExceptionPointerVirtReg = Register(); |
1733 | FuncInfo->ExceptionSelectorVirtReg = Register(); |
1734 | if (LLVMBB->isEHPad()) |
1735 | if (!PrepareEHLandingPad()) |
1736 | continue; |
1737 | |
1738 | // Before doing SelectionDAG ISel, see if FastISel has been requested. |
1739 | if (FastIS) { |
1740 | if (LLVMBB != &Fn.getEntryBlock()) |
1741 | FastIS->startNewBlock(); |
1742 | |
1743 | unsigned NumFastIselRemaining = std::distance(first: Begin, last: End); |
1744 | |
1745 | // Pre-assign swifterror vregs. |
1746 | SwiftError->preassignVRegs(MBB: FuncInfo->MBB, Begin, End); |
1747 | |
1748 | // Do FastISel on as many instructions as possible. |
1749 | for (; BI != Begin; --BI) { |
1750 | const Instruction *Inst = &*std::prev(x: BI); |
1751 | |
1752 | // If we no longer require this instruction, skip it. |
1753 | if (isFoldedOrDeadInstruction(I: Inst, FuncInfo: *FuncInfo) || |
1754 | ElidedArgCopyInstrs.count(Ptr: Inst)) { |
1755 | --NumFastIselRemaining; |
1756 | FastIS->handleDbgInfo(II: Inst); |
1757 | continue; |
1758 | } |
1759 | |
1760 | // Bottom-up: reset the insert pos at the top, after any local-value |
1761 | // instructions. |
1762 | FastIS->recomputeInsertPt(); |
1763 | |
1764 | // Try to select the instruction with FastISel. |
1765 | if (FastIS->selectInstruction(I: Inst)) { |
1766 | --NumFastIselRemaining; |
1767 | ++NumFastIselSuccess; |
1768 | |
1769 | FastIS->handleDbgInfo(II: Inst); |
1770 | // If fast isel succeeded, skip over all the folded instructions, and |
1771 | // then see if there is a load right before the selected instructions. |
1772 | // Try to fold the load if so. |
1773 | const Instruction *BeforeInst = Inst; |
1774 | while (BeforeInst != &*Begin) { |
1775 | BeforeInst = &*std::prev(x: BasicBlock::const_iterator(BeforeInst)); |
1776 | if (!isFoldedOrDeadInstruction(I: BeforeInst, FuncInfo: *FuncInfo)) |
1777 | break; |
1778 | } |
1779 | if (BeforeInst != Inst && isa<LoadInst>(Val: BeforeInst) && |
1780 | BeforeInst->hasOneUse() && |
1781 | FastIS->tryToFoldLoad(LI: cast<LoadInst>(Val: BeforeInst), FoldInst: Inst)) { |
1782 | // If we succeeded, don't re-select the load. |
1783 | LLVM_DEBUG(dbgs() |
1784 | << "FastISel folded load: " << *BeforeInst << "\n" ); |
1785 | FastIS->handleDbgInfo(II: BeforeInst); |
1786 | BI = std::next(x: BasicBlock::const_iterator(BeforeInst)); |
1787 | --NumFastIselRemaining; |
1788 | ++NumFastIselSuccess; |
1789 | } |
1790 | continue; |
1791 | } |
1792 | |
1793 | FastISelFailed = true; |
1794 | |
1795 | // Then handle certain instructions as single-LLVM-Instruction blocks. |
1796 | // We cannot separate out GCrelocates to their own blocks since we need |
1797 | // to keep track of gc-relocates for a particular gc-statepoint. This is |
1798 | // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before |
1799 | // visitGCRelocate. |
1800 | if (isa<CallInst>(Val: Inst) && !isa<GCStatepointInst>(Val: Inst) && |
1801 | !isa<GCRelocateInst>(Val: Inst) && !isa<GCResultInst>(Val: Inst)) { |
1802 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
1803 | Inst->getDebugLoc(), LLVMBB); |
1804 | |
1805 | R << "FastISel missed call" ; |
1806 | |
1807 | if (R.isEnabled() || EnableFastISelAbort) { |
1808 | std::string InstStrStorage; |
1809 | raw_string_ostream InstStr(InstStrStorage); |
1810 | InstStr << *Inst; |
1811 | |
1812 | R << ": " << InstStrStorage; |
1813 | } |
1814 | |
1815 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 2); |
1816 | |
1817 | if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && |
1818 | !Inst->use_empty()) { |
1819 | Register &R = FuncInfo->ValueMap[Inst]; |
1820 | if (!R) |
1821 | R = FuncInfo->CreateRegs(V: Inst); |
1822 | } |
1823 | |
1824 | bool HadTailCall = false; |
1825 | MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; |
1826 | SelectBasicBlock(Begin: Inst->getIterator(), End: BI, HadTailCall); |
1827 | |
1828 | // If the call was emitted as a tail call, we're done with the block. |
1829 | // We also need to delete any previously emitted instructions. |
1830 | if (HadTailCall) { |
1831 | FastIS->removeDeadCode(I: SavedInsertPt, E: FuncInfo->MBB->end()); |
1832 | --BI; |
1833 | break; |
1834 | } |
1835 | |
1836 | // Recompute NumFastIselRemaining as Selection DAG instruction |
1837 | // selection may have handled the call, input args, etc. |
1838 | unsigned RemainingNow = std::distance(first: Begin, last: BI); |
1839 | NumFastIselFailures += NumFastIselRemaining - RemainingNow; |
1840 | NumFastIselRemaining = RemainingNow; |
1841 | continue; |
1842 | } |
1843 | |
1844 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
1845 | Inst->getDebugLoc(), LLVMBB); |
1846 | |
1847 | bool ShouldAbort = EnableFastISelAbort; |
1848 | if (Inst->isTerminator()) { |
1849 | // Use a different message for terminator misses. |
1850 | R << "FastISel missed terminator" ; |
1851 | // Don't abort for terminator unless the level is really high |
1852 | ShouldAbort = (EnableFastISelAbort > 2); |
1853 | } else { |
1854 | R << "FastISel missed" ; |
1855 | } |
1856 | |
1857 | if (R.isEnabled() || EnableFastISelAbort) { |
1858 | std::string InstStrStorage; |
1859 | raw_string_ostream InstStr(InstStrStorage); |
1860 | InstStr << *Inst; |
1861 | R << ": " << InstStrStorage; |
1862 | } |
1863 | |
1864 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort); |
1865 | |
1866 | NumFastIselFailures += NumFastIselRemaining; |
1867 | break; |
1868 | } |
1869 | |
1870 | FastIS->recomputeInsertPt(); |
1871 | } |
1872 | |
1873 | if (SP->shouldEmitSDCheck(BB: *LLVMBB)) { |
1874 | bool FunctionBasedInstrumentation = |
1875 | TLI->getSSPStackGuardCheck(M: *Fn.getParent()) && Fn.hasMinSize(); |
1876 | SDB->SPDescriptor.initialize(BB: LLVMBB, MBB: FuncInfo->getMBB(BB: LLVMBB), |
1877 | FunctionBasedInstrumentation); |
1878 | } |
1879 | |
1880 | if (Begin != BI) |
1881 | ++NumDAGBlocks; |
1882 | else |
1883 | ++NumFastIselBlocks; |
1884 | |
1885 | if (Begin != BI) { |
1886 | // Run SelectionDAG instruction selection on the remainder of the block |
1887 | // not handled by FastISel. If FastISel is not run, this is the entire |
1888 | // block. |
1889 | bool HadTailCall; |
1890 | SelectBasicBlock(Begin, End: BI, HadTailCall); |
1891 | |
1892 | // But if FastISel was run, we already selected some of the block. |
1893 | // If we emitted a tail-call, we need to delete any previously emitted |
1894 | // instruction that follows it. |
1895 | if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) |
1896 | FastIS->removeDeadCode(I: FuncInfo->InsertPt, E: FuncInfo->MBB->end()); |
1897 | } |
1898 | |
1899 | if (FastIS) |
1900 | FastIS->finishBasicBlock(); |
1901 | FinishBasicBlock(); |
1902 | FuncInfo->PHINodesToUpdate.clear(); |
1903 | ElidedArgCopyInstrs.clear(); |
1904 | } |
1905 | |
1906 | // AsynchEH: Report Block State under -AsynchEH |
1907 | if (Fn.getParent()->getModuleFlag(Key: "eh-asynch" )) |
1908 | reportIPToStateForBlocks(MF); |
1909 | |
1910 | SP->copyToMachineFrameInfo(MFI&: MF->getFrameInfo()); |
1911 | |
1912 | SwiftError->propagateVRegs(); |
1913 | |
1914 | delete FastIS; |
1915 | SDB->clearDanglingDebugInfo(); |
1916 | SDB->SPDescriptor.resetPerFunctionState(); |
1917 | } |
1918 | |
1919 | void |
1920 | SelectionDAGISel::FinishBasicBlock() { |
1921 | LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " |
1922 | << FuncInfo->PHINodesToUpdate.size() << "\n" ; |
1923 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; |
1924 | ++i) dbgs() |
1925 | << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first |
1926 | << ", " << printReg(FuncInfo->PHINodesToUpdate[i].second) |
1927 | << ")\n" ); |
1928 | |
1929 | // Next, now that we know what the last MBB the LLVM BB expanded is, update |
1930 | // PHI nodes in successors. |
1931 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
1932 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); |
1933 | assert(PHI->isPHI() && |
1934 | "This is not a machine PHI node that we are updating!" ); |
1935 | if (!FuncInfo->MBB->isSuccessor(MBB: PHI->getParent())) |
1936 | continue; |
1937 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[i].second).addMBB(MBB: FuncInfo->MBB); |
1938 | } |
1939 | |
1940 | // Handle stack protector. |
1941 | if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { |
1942 | // The target provides a guard check function. There is no need to |
1943 | // generate error handling code or to split current basic block. |
1944 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
1945 | |
1946 | // Add load and check to the basicblock. |
1947 | FuncInfo->MBB = ParentMBB; |
1948 | FuncInfo->InsertPt = findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
1949 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
1950 | CurDAG->setRoot(SDB->getRoot()); |
1951 | SDB->clear(); |
1952 | CodeGenAndEmitDAG(); |
1953 | |
1954 | // Clear the Per-BB State. |
1955 | SDB->SPDescriptor.resetPerBBState(); |
1956 | } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { |
1957 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
1958 | MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); |
1959 | |
1960 | // Find the split point to split the parent mbb. At the same time copy all |
1961 | // physical registers used in the tail of parent mbb into virtual registers |
1962 | // before the split point and back into physical registers after the split |
1963 | // point. This prevents us needing to deal with Live-ins and many other |
1964 | // register allocation issues caused by us splitting the parent mbb. The |
1965 | // register allocator will clean up said virtual copies later on. |
1966 | MachineBasicBlock::iterator SplitPoint = |
1967 | findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
1968 | |
1969 | // Splice the terminator of ParentMBB into SuccessMBB. |
1970 | SuccessMBB->splice(Where: SuccessMBB->end(), Other: ParentMBB, From: SplitPoint, |
1971 | To: ParentMBB->end()); |
1972 | |
1973 | // Add compare/jump on neq/jump to the parent BB. |
1974 | FuncInfo->MBB = ParentMBB; |
1975 | FuncInfo->InsertPt = ParentMBB->end(); |
1976 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
1977 | CurDAG->setRoot(SDB->getRoot()); |
1978 | SDB->clear(); |
1979 | CodeGenAndEmitDAG(); |
1980 | |
1981 | // CodeGen Failure MBB if we have not codegened it yet. |
1982 | MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); |
1983 | if (FailureMBB->empty()) { |
1984 | FuncInfo->MBB = FailureMBB; |
1985 | FuncInfo->InsertPt = FailureMBB->end(); |
1986 | SDB->visitSPDescriptorFailure(SPD&: SDB->SPDescriptor); |
1987 | CurDAG->setRoot(SDB->getRoot()); |
1988 | SDB->clear(); |
1989 | CodeGenAndEmitDAG(); |
1990 | } |
1991 | |
1992 | // Clear the Per-BB State. |
1993 | SDB->SPDescriptor.resetPerBBState(); |
1994 | } |
1995 | |
1996 | // Lower each BitTestBlock. |
1997 | for (auto &BTB : SDB->SL->BitTestCases) { |
1998 | // Lower header first, if it wasn't already lowered |
1999 | if (!BTB.Emitted) { |
2000 | // Set the current basic block to the mbb we wish to insert the code into |
2001 | FuncInfo->MBB = BTB.Parent; |
2002 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2003 | // Emit the code |
2004 | SDB->visitBitTestHeader(B&: BTB, SwitchBB: FuncInfo->MBB); |
2005 | CurDAG->setRoot(SDB->getRoot()); |
2006 | SDB->clear(); |
2007 | CodeGenAndEmitDAG(); |
2008 | } |
2009 | |
2010 | BranchProbability UnhandledProb = BTB.Prob; |
2011 | for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { |
2012 | UnhandledProb -= BTB.Cases[j].ExtraProb; |
2013 | // Set the current basic block to the mbb we wish to insert the code into |
2014 | FuncInfo->MBB = BTB.Cases[j].ThisBB; |
2015 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2016 | // Emit the code |
2017 | |
2018 | // If all cases cover a contiguous range, it is not necessary to jump to |
2019 | // the default block after the last bit test fails. This is because the |
2020 | // range check during bit test header creation has guaranteed that every |
2021 | // case here doesn't go outside the range. In this case, there is no need |
2022 | // to perform the last bit test, as it will always be true. Instead, make |
2023 | // the second-to-last bit-test fall through to the target of the last bit |
2024 | // test, and delete the last bit test. |
2025 | |
2026 | MachineBasicBlock *NextMBB; |
2027 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
2028 | // Second-to-last bit-test with contiguous range or omitted range |
2029 | // check: fall through to the target of the final bit test. |
2030 | NextMBB = BTB.Cases[j + 1].TargetBB; |
2031 | } else if (j + 1 == ej) { |
2032 | // For the last bit test, fall through to Default. |
2033 | NextMBB = BTB.Default; |
2034 | } else { |
2035 | // Otherwise, fall through to the next bit test. |
2036 | NextMBB = BTB.Cases[j + 1].ThisBB; |
2037 | } |
2038 | |
2039 | SDB->visitBitTestCase(BB&: BTB, NextMBB, BranchProbToNext: UnhandledProb, Reg: BTB.Reg, B&: BTB.Cases[j], |
2040 | SwitchBB: FuncInfo->MBB); |
2041 | |
2042 | CurDAG->setRoot(SDB->getRoot()); |
2043 | SDB->clear(); |
2044 | CodeGenAndEmitDAG(); |
2045 | |
2046 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
2047 | // Since we're not going to use the final bit test, remove it. |
2048 | BTB.Cases.pop_back(); |
2049 | break; |
2050 | } |
2051 | } |
2052 | |
2053 | // Update PHI Nodes |
2054 | for (const std::pair<MachineInstr *, Register> &P : |
2055 | FuncInfo->PHINodesToUpdate) { |
2056 | MachineInstrBuilder PHI(*MF, P.first); |
2057 | MachineBasicBlock *PHIBB = PHI->getParent(); |
2058 | assert(PHI->isPHI() && |
2059 | "This is not a machine PHI node that we are updating!" ); |
2060 | // This is "default" BB. We have two jumps to it. From "header" BB and |
2061 | // from last "case" BB, unless the latter was skipped. |
2062 | if (PHIBB == BTB.Default) { |
2063 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Parent); |
2064 | if (!BTB.ContiguousRange) { |
2065 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Cases.back().ThisBB); |
2066 | } |
2067 | } |
2068 | // One of "cases" BB. |
2069 | for (const SwitchCG::BitTestCase &BT : BTB.Cases) { |
2070 | MachineBasicBlock* cBB = BT.ThisBB; |
2071 | if (cBB->isSuccessor(MBB: PHIBB)) |
2072 | PHI.addReg(RegNo: P.second).addMBB(MBB: cBB); |
2073 | } |
2074 | } |
2075 | } |
2076 | SDB->SL->BitTestCases.clear(); |
2077 | |
2078 | // If the JumpTable record is filled in, then we need to emit a jump table. |
2079 | // Updating the PHI nodes is tricky in this case, since we need to determine |
2080 | // whether the PHI is a successor of the range check MBB or the jump table MBB |
2081 | for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { |
2082 | // Lower header first, if it wasn't already lowered |
2083 | if (!SDB->SL->JTCases[i].first.Emitted) { |
2084 | // Set the current basic block to the mbb we wish to insert the code into |
2085 | FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; |
2086 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2087 | // Emit the code |
2088 | SDB->visitJumpTableHeader(JT&: SDB->SL->JTCases[i].second, |
2089 | JTH&: SDB->SL->JTCases[i].first, SwitchBB: FuncInfo->MBB); |
2090 | CurDAG->setRoot(SDB->getRoot()); |
2091 | SDB->clear(); |
2092 | CodeGenAndEmitDAG(); |
2093 | } |
2094 | |
2095 | // Set the current basic block to the mbb we wish to insert the code into |
2096 | FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; |
2097 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2098 | // Emit the code |
2099 | SDB->visitJumpTable(JT&: SDB->SL->JTCases[i].second); |
2100 | CurDAG->setRoot(SDB->getRoot()); |
2101 | SDB->clear(); |
2102 | CodeGenAndEmitDAG(); |
2103 | |
2104 | // Update PHI Nodes |
2105 | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
2106 | pi != pe; ++pi) { |
2107 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); |
2108 | MachineBasicBlock *PHIBB = PHI->getParent(); |
2109 | assert(PHI->isPHI() && |
2110 | "This is not a machine PHI node that we are updating!" ); |
2111 | // "default" BB. We can go there only from header BB. |
2112 | if (PHIBB == SDB->SL->JTCases[i].second.Default) |
2113 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second) |
2114 | .addMBB(MBB: SDB->SL->JTCases[i].first.HeaderBB); |
2115 | // JT BB. Just iterate over successors here |
2116 | if (FuncInfo->MBB->isSuccessor(MBB: PHIBB)) |
2117 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second).addMBB(MBB: FuncInfo->MBB); |
2118 | } |
2119 | } |
2120 | SDB->SL->JTCases.clear(); |
2121 | |
2122 | // If we generated any switch lowering information, build and codegen any |
2123 | // additional DAGs necessary. |
2124 | for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { |
2125 | // Set the current basic block to the mbb we wish to insert the code into |
2126 | FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; |
2127 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2128 | |
2129 | // Determine the unique successors. |
2130 | SmallVector<MachineBasicBlock *, 2> Succs; |
2131 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].TrueBB); |
2132 | if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) |
2133 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].FalseBB); |
2134 | |
2135 | // Emit the code. Note that this could result in FuncInfo->MBB being split. |
2136 | SDB->visitSwitchCase(CB&: SDB->SL->SwitchCases[i], SwitchBB: FuncInfo->MBB); |
2137 | CurDAG->setRoot(SDB->getRoot()); |
2138 | SDB->clear(); |
2139 | CodeGenAndEmitDAG(); |
2140 | |
2141 | // Remember the last block, now that any splitting is done, for use in |
2142 | // populating PHI nodes in successors. |
2143 | MachineBasicBlock *ThisBB = FuncInfo->MBB; |
2144 | |
2145 | // Handle any PHI nodes in successors of this chunk, as if we were coming |
2146 | // from the original BB before switch expansion. Note that PHI nodes can |
2147 | // occur multiple times in PHINodesToUpdate. We have to be very careful to |
2148 | // handle them the right number of times. |
2149 | for (MachineBasicBlock *Succ : Succs) { |
2150 | FuncInfo->MBB = Succ; |
2151 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
2152 | // FuncInfo->MBB may have been removed from the CFG if a branch was |
2153 | // constant folded. |
2154 | if (ThisBB->isSuccessor(MBB: FuncInfo->MBB)) { |
2155 | for (MachineBasicBlock::iterator |
2156 | MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); |
2157 | MBBI != MBBE && MBBI->isPHI(); ++MBBI) { |
2158 | MachineInstrBuilder PHI(*MF, MBBI); |
2159 | // This value for this PHI node is recorded in PHINodesToUpdate. |
2160 | for (unsigned pn = 0; ; ++pn) { |
2161 | assert(pn != FuncInfo->PHINodesToUpdate.size() && |
2162 | "Didn't find PHI entry!" ); |
2163 | if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { |
2164 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pn].second).addMBB(MBB: ThisBB); |
2165 | break; |
2166 | } |
2167 | } |
2168 | } |
2169 | } |
2170 | } |
2171 | } |
2172 | SDB->SL->SwitchCases.clear(); |
2173 | } |
2174 | |
2175 | /// Create the scheduler. If a specific scheduler was specified |
2176 | /// via the SchedulerRegistry, use it, otherwise select the |
2177 | /// one preferred by the target. |
2178 | /// |
2179 | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
2180 | return ISHeuristic(this, OptLevel); |
2181 | } |
2182 | |
2183 | //===----------------------------------------------------------------------===// |
2184 | // Helper functions used by the generated instruction selector. |
2185 | //===----------------------------------------------------------------------===// |
2186 | // Calls to these methods are generated by tblgen. |
2187 | |
2188 | /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
2189 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
2190 | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
2191 | /// specified in the .td file (e.g. 255). |
2192 | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
2193 | int64_t DesiredMaskS) const { |
2194 | const APInt &ActualMask = RHS->getAPIntValue(); |
2195 | // TODO: Avoid implicit trunc? |
2196 | // See https://github.com/llvm/llvm-project/issues/112510. |
2197 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
2198 | /*isSigned=*/false, /*implicitTrunc=*/true); |
2199 | |
2200 | // If the actual mask exactly matches, success! |
2201 | if (ActualMask == DesiredMask) |
2202 | return true; |
2203 | |
2204 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
2205 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
2206 | return false; |
2207 | |
2208 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
2209 | // either already zero or is not demanded. Check for known zero input bits. |
2210 | APInt NeededMask = DesiredMask & ~ActualMask; |
2211 | if (CurDAG->MaskedValueIsZero(Op: LHS, Mask: NeededMask)) |
2212 | return true; |
2213 | |
2214 | // TODO: check to see if missing bits are just not demanded. |
2215 | |
2216 | // Otherwise, this pattern doesn't match. |
2217 | return false; |
2218 | } |
2219 | |
2220 | /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
2221 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
2222 | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
2223 | /// specified in the .td file (e.g. 255). |
2224 | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
2225 | int64_t DesiredMaskS) const { |
2226 | const APInt &ActualMask = RHS->getAPIntValue(); |
2227 | // TODO: Avoid implicit trunc? |
2228 | // See https://github.com/llvm/llvm-project/issues/112510. |
2229 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
2230 | /*isSigned=*/false, /*implicitTrunc=*/true); |
2231 | |
2232 | // If the actual mask exactly matches, success! |
2233 | if (ActualMask == DesiredMask) |
2234 | return true; |
2235 | |
2236 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
2237 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
2238 | return false; |
2239 | |
2240 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
2241 | // either already zero or is not demanded. Check for known zero input bits. |
2242 | APInt NeededMask = DesiredMask & ~ActualMask; |
2243 | KnownBits Known = CurDAG->computeKnownBits(Op: LHS); |
2244 | |
2245 | // If all the missing bits in the or are already known to be set, match! |
2246 | if (NeededMask.isSubsetOf(RHS: Known.One)) |
2247 | return true; |
2248 | |
2249 | // TODO: check to see if missing bits are just not demanded. |
2250 | |
2251 | // Otherwise, this pattern doesn't match. |
2252 | return false; |
2253 | } |
2254 | |
2255 | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
2256 | /// by tblgen. Others should not call it. |
2257 | void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, |
2258 | const SDLoc &DL) { |
2259 | // Change the vector of SDValue into a list of SDNodeHandle for x86 might call |
2260 | // replaceAllUses when matching address. |
2261 | |
2262 | std::list<HandleSDNode> Handles; |
2263 | |
2264 | Handles.emplace_back(args&: Ops[InlineAsm::Op_InputChain]); // 0 |
2265 | Handles.emplace_back(args&: Ops[InlineAsm::Op_AsmString]); // 1 |
2266 | Handles.emplace_back(args&: Ops[InlineAsm::Op_MDNode]); // 2, !srcloc |
2267 | Handles.emplace_back( |
2268 | args&: Ops[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) |
2269 | |
2270 | unsigned i = InlineAsm::Op_FirstOperand, e = Ops.size(); |
2271 | if (Ops[e - 1].getValueType() == MVT::Glue) |
2272 | --e; // Don't process a glue operand if it is here. |
2273 | |
2274 | while (i != e) { |
2275 | InlineAsm::Flag Flags(Ops[i]->getAsZExtVal()); |
2276 | if (!Flags.isMemKind() && !Flags.isFuncKind()) { |
2277 | // Just skip over this operand, copying the operands verbatim. |
2278 | Handles.insert(position: Handles.end(), first: Ops.begin() + i, |
2279 | last: Ops.begin() + i + Flags.getNumOperandRegisters() + 1); |
2280 | i += Flags.getNumOperandRegisters() + 1; |
2281 | } else { |
2282 | assert(Flags.getNumOperandRegisters() == 1 && |
2283 | "Memory operand with multiple values?" ); |
2284 | |
2285 | unsigned TiedToOperand; |
2286 | if (Flags.isUseOperandTiedToDef(Idx&: TiedToOperand)) { |
2287 | // We need the constraint ID from the operand this is tied to. |
2288 | unsigned CurOp = InlineAsm::Op_FirstOperand; |
2289 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
2290 | for (; TiedToOperand; --TiedToOperand) { |
2291 | CurOp += Flags.getNumOperandRegisters() + 1; |
2292 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
2293 | } |
2294 | } |
2295 | |
2296 | // Otherwise, this is a memory operand. Ask the target to select it. |
2297 | std::vector<SDValue> SelOps; |
2298 | const InlineAsm::ConstraintCode ConstraintID = |
2299 | Flags.getMemoryConstraintID(); |
2300 | if (SelectInlineAsmMemoryOperand(Op: Ops[i + 1], ConstraintID, OutOps&: SelOps)) |
2301 | report_fatal_error(reason: "Could not match memory address. Inline asm" |
2302 | " failure!" ); |
2303 | |
2304 | // Add this to the output node. |
2305 | Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem |
2306 | : InlineAsm::Kind::Func, |
2307 | SelOps.size()); |
2308 | Flags.setMemConstraint(ConstraintID); |
2309 | Handles.emplace_back(args: CurDAG->getTargetConstant(Val: Flags, DL, VT: MVT::i32)); |
2310 | llvm::append_range(C&: Handles, R&: SelOps); |
2311 | i += 2; |
2312 | } |
2313 | } |
2314 | |
2315 | // Add the glue input back if present. |
2316 | if (e != Ops.size()) |
2317 | Handles.emplace_back(args&: Ops.back()); |
2318 | |
2319 | Ops.clear(); |
2320 | for (auto &handle : Handles) |
2321 | Ops.push_back(x: handle.getValue()); |
2322 | } |
2323 | |
2324 | /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path |
2325 | /// beyond "ImmedUse". We may ignore chains as they are checked separately. |
2326 | static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, |
2327 | bool IgnoreChains) { |
2328 | SmallPtrSet<const SDNode *, 16> Visited; |
2329 | SmallVector<const SDNode *, 16> WorkList; |
2330 | // Only check if we have non-immediate uses of Def. |
2331 | if (ImmedUse->isOnlyUserOf(N: Def)) |
2332 | return false; |
2333 | |
2334 | // We don't care about paths to Def that go through ImmedUse so mark it |
2335 | // visited and mark non-def operands as used. |
2336 | Visited.insert(Ptr: ImmedUse); |
2337 | for (const SDValue &Op : ImmedUse->op_values()) { |
2338 | SDNode *N = Op.getNode(); |
2339 | // Ignore chain deps (they are validated by |
2340 | // HandleMergeInputChains) and immediate uses |
2341 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
2342 | continue; |
2343 | if (!Visited.insert(Ptr: N).second) |
2344 | continue; |
2345 | WorkList.push_back(Elt: N); |
2346 | } |
2347 | |
2348 | // Initialize worklist to operands of Root. |
2349 | if (Root != ImmedUse) { |
2350 | for (const SDValue &Op : Root->op_values()) { |
2351 | SDNode *N = Op.getNode(); |
2352 | // Ignore chains (they are validated by HandleMergeInputChains) |
2353 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
2354 | continue; |
2355 | if (!Visited.insert(Ptr: N).second) |
2356 | continue; |
2357 | WorkList.push_back(Elt: N); |
2358 | } |
2359 | } |
2360 | |
2361 | return SDNode::hasPredecessorHelper(N: Def, Visited, Worklist&: WorkList, MaxSteps: 0, TopologicalPrune: true); |
2362 | } |
2363 | |
2364 | /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
2365 | /// operand node N of U during instruction selection that starts at Root. |
2366 | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
2367 | SDNode *Root) const { |
2368 | if (OptLevel == CodeGenOptLevel::None) |
2369 | return false; |
2370 | return N.hasOneUse(); |
2371 | } |
2372 | |
2373 | /// IsLegalToFold - Returns true if the specific operand node N of |
2374 | /// U can be folded during instruction selection that starts at Root. |
2375 | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
2376 | CodeGenOptLevel OptLevel, |
2377 | bool IgnoreChains) { |
2378 | if (OptLevel == CodeGenOptLevel::None) |
2379 | return false; |
2380 | |
2381 | // If Root use can somehow reach N through a path that doesn't contain |
2382 | // U then folding N would create a cycle. e.g. In the following |
2383 | // diagram, Root can reach N through X. If N is folded into Root, then |
2384 | // X is both a predecessor and a successor of U. |
2385 | // |
2386 | // [N*] // |
2387 | // ^ ^ // |
2388 | // / \ // |
2389 | // [U*] [X]? // |
2390 | // ^ ^ // |
2391 | // \ / // |
2392 | // \ / // |
2393 | // [Root*] // |
2394 | // |
2395 | // * indicates nodes to be folded together. |
2396 | // |
2397 | // If Root produces glue, then it gets (even more) interesting. Since it |
2398 | // will be "glued" together with its glue use in the scheduler, we need to |
2399 | // check if it might reach N. |
2400 | // |
2401 | // [N*] // |
2402 | // ^ ^ // |
2403 | // / \ // |
2404 | // [U*] [X]? // |
2405 | // ^ ^ // |
2406 | // \ \ // |
2407 | // \ | // |
2408 | // [Root*] | // |
2409 | // ^ | // |
2410 | // f | // |
2411 | // | / // |
2412 | // [Y] / // |
2413 | // ^ / // |
2414 | // f / // |
2415 | // | / // |
2416 | // [GU] // |
2417 | // |
2418 | // If GU (glue use) indirectly reaches N (the load), and Root folds N |
2419 | // (call it Fold), then X is a predecessor of GU and a successor of |
2420 | // Fold. But since Fold and GU are glued together, this will create |
2421 | // a cycle in the scheduling graph. |
2422 | |
2423 | // If the node has glue, walk down the graph to the "lowest" node in the |
2424 | // glueged set. |
2425 | EVT VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
2426 | while (VT == MVT::Glue) { |
2427 | SDNode *GU = Root->getGluedUser(); |
2428 | if (!GU) |
2429 | break; |
2430 | Root = GU; |
2431 | VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
2432 | |
2433 | // If our query node has a glue result with a use, we've walked up it. If |
2434 | // the user (which has already been selected) has a chain or indirectly uses |
2435 | // the chain, HandleMergeInputChains will not consider it. Because of |
2436 | // this, we cannot ignore chains in this predicate. |
2437 | IgnoreChains = false; |
2438 | } |
2439 | |
2440 | return !findNonImmUse(Root, Def: N.getNode(), ImmedUse: U, IgnoreChains); |
2441 | } |
2442 | |
2443 | void SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
2444 | SDLoc DL(N); |
2445 | |
2446 | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
2447 | SelectInlineAsmMemoryOperands(Ops, DL); |
2448 | |
2449 | const EVT VTs[] = {MVT::Other, MVT::Glue}; |
2450 | SDValue New = CurDAG->getNode(Opcode: N->getOpcode(), DL, ResultTys: VTs, Ops); |
2451 | New->setNodeId(-1); |
2452 | ReplaceUses(F: N, T: New.getNode()); |
2453 | CurDAG->RemoveDeadNode(N); |
2454 | } |
2455 | |
2456 | void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { |
2457 | SDLoc dl(Op); |
2458 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
2459 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
2460 | |
2461 | EVT VT = Op->getValueType(ResNo: 0); |
2462 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
2463 | |
2464 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
2465 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
2466 | |
2467 | SDValue New; |
2468 | if (!Reg) { |
2469 | const Function &Fn = MF.getFunction(); |
2470 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
2471 | "invalid register \"" + Twine(RegStr->getString().data()) + |
2472 | "\" for llvm.read_register" , |
2473 | Fn, Op->getDebugLoc())); |
2474 | New = |
2475 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT), 0); |
2476 | ReplaceUses(F: SDValue(Op, 1), T: Op->getOperand(Num: 0)); |
2477 | } else { |
2478 | New = |
2479 | CurDAG->getCopyFromReg(Chain: Op->getOperand(Num: 0), dl, Reg, VT: Op->getValueType(ResNo: 0)); |
2480 | } |
2481 | |
2482 | New->setNodeId(-1); |
2483 | ReplaceUses(F: Op, T: New.getNode()); |
2484 | CurDAG->RemoveDeadNode(N: Op); |
2485 | } |
2486 | |
2487 | void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { |
2488 | SDLoc dl(Op); |
2489 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
2490 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
2491 | |
2492 | EVT VT = Op->getOperand(Num: 2).getValueType(); |
2493 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
2494 | |
2495 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
2496 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
2497 | |
2498 | if (!Reg) { |
2499 | const Function &Fn = MF.getFunction(); |
2500 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
2501 | "invalid register \"" + Twine(RegStr->getString().data()) + |
2502 | "\" for llvm.write_register" , |
2503 | Fn, Op->getDebugLoc())); |
2504 | ReplaceUses(F: SDValue(Op, 0), T: Op->getOperand(Num: 0)); |
2505 | } else { |
2506 | SDValue New = |
2507 | CurDAG->getCopyToReg(Chain: Op->getOperand(Num: 0), dl, Reg, N: Op->getOperand(Num: 2)); |
2508 | New->setNodeId(-1); |
2509 | ReplaceUses(F: Op, T: New.getNode()); |
2510 | } |
2511 | |
2512 | CurDAG->RemoveDeadNode(N: Op); |
2513 | } |
2514 | |
2515 | void SelectionDAGISel::Select_UNDEF(SDNode *N) { |
2516 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::IMPLICIT_DEF, VT: N->getValueType(ResNo: 0)); |
2517 | } |
2518 | |
2519 | // Use the generic target FAKE_USE target opcode. The chain operand |
2520 | // must come last, because InstrEmitter::AddOperand() requires it. |
2521 | void SelectionDAGISel::Select_FAKE_USE(SDNode *N) { |
2522 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::FAKE_USE, VT: N->getValueType(ResNo: 0), |
2523 | Op1: N->getOperand(Num: 1), Op2: N->getOperand(Num: 0)); |
2524 | } |
2525 | |
2526 | void SelectionDAGISel::Select_FREEZE(SDNode *N) { |
2527 | // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. |
2528 | // If FREEZE instruction is added later, the code below must be changed as |
2529 | // well. |
2530 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::COPY, VT: N->getValueType(ResNo: 0), |
2531 | Op1: N->getOperand(Num: 0)); |
2532 | } |
2533 | |
2534 | void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { |
2535 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::ARITH_FENCE, VT: N->getValueType(ResNo: 0), |
2536 | Op1: N->getOperand(Num: 0)); |
2537 | } |
2538 | |
2539 | void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) { |
2540 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::MEMBARRIER, VT: N->getValueType(ResNo: 0), |
2541 | Op1: N->getOperand(Num: 0)); |
2542 | } |
2543 | |
2544 | void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode *N) { |
2545 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ANCHOR, |
2546 | VT: N->getValueType(ResNo: 0)); |
2547 | } |
2548 | |
2549 | void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode *N) { |
2550 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ENTRY, |
2551 | VT: N->getValueType(ResNo: 0)); |
2552 | } |
2553 | |
2554 | void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode *N) { |
2555 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_LOOP, |
2556 | VT: N->getValueType(ResNo: 0), Op1: N->getOperand(Num: 0)); |
2557 | } |
2558 | |
2559 | void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops, |
2560 | SDValue OpVal, SDLoc DL) { |
2561 | SDNode *OpNode = OpVal.getNode(); |
2562 | |
2563 | // FrameIndex nodes should have been directly emitted to TargetFrameIndex |
2564 | // nodes at DAG-construction time. |
2565 | assert(OpNode->getOpcode() != ISD::FrameIndex); |
2566 | |
2567 | if (OpNode->getOpcode() == ISD::Constant) { |
2568 | Ops.push_back( |
2569 | Elt: CurDAG->getTargetConstant(Val: StackMaps::ConstantOp, DL, VT: MVT::i64)); |
2570 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: OpNode->getAsZExtVal(), DL, |
2571 | VT: OpVal.getValueType())); |
2572 | } else { |
2573 | Ops.push_back(Elt: OpVal); |
2574 | } |
2575 | } |
2576 | |
2577 | void SelectionDAGISel::Select_STACKMAP(SDNode *N) { |
2578 | SmallVector<SDValue, 32> Ops; |
2579 | auto *It = N->op_begin(); |
2580 | SDLoc DL(N); |
2581 | |
2582 | // Stash the chain and glue operands so we can move them to the end. |
2583 | SDValue Chain = *It++; |
2584 | SDValue InGlue = *It++; |
2585 | |
2586 | // <id> operand. |
2587 | SDValue ID = *It++; |
2588 | assert(ID.getValueType() == MVT::i64); |
2589 | Ops.push_back(Elt: ID); |
2590 | |
2591 | // <numShadowBytes> operand. |
2592 | SDValue Shad = *It++; |
2593 | assert(Shad.getValueType() == MVT::i32); |
2594 | Ops.push_back(Elt: Shad); |
2595 | |
2596 | // Live variable operands. |
2597 | for (; It != N->op_end(); It++) |
2598 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
2599 | |
2600 | Ops.push_back(Elt: Chain); |
2601 | Ops.push_back(Elt: InGlue); |
2602 | |
2603 | SDVTList NodeTys = CurDAG->getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
2604 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::STACKMAP, VTs: NodeTys, Ops); |
2605 | } |
2606 | |
2607 | void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) { |
2608 | SmallVector<SDValue, 32> Ops; |
2609 | auto *It = N->op_begin(); |
2610 | SDLoc DL(N); |
2611 | |
2612 | // Cache arguments that will be moved to the end in the target node. |
2613 | SDValue Chain = *It++; |
2614 | std::optional<SDValue> Glue; |
2615 | if (It->getValueType() == MVT::Glue) |
2616 | Glue = *It++; |
2617 | SDValue RegMask = *It++; |
2618 | |
2619 | // <id> operand. |
2620 | SDValue ID = *It++; |
2621 | assert(ID.getValueType() == MVT::i64); |
2622 | Ops.push_back(Elt: ID); |
2623 | |
2624 | // <numShadowBytes> operand. |
2625 | SDValue Shad = *It++; |
2626 | assert(Shad.getValueType() == MVT::i32); |
2627 | Ops.push_back(Elt: Shad); |
2628 | |
2629 | // Add the callee. |
2630 | Ops.push_back(Elt: *It++); |
2631 | |
2632 | // Add <numArgs>. |
2633 | SDValue NumArgs = *It++; |
2634 | assert(NumArgs.getValueType() == MVT::i32); |
2635 | Ops.push_back(Elt: NumArgs); |
2636 | |
2637 | // Calling convention. |
2638 | Ops.push_back(Elt: *It++); |
2639 | |
2640 | // Push the args for the call. |
2641 | for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--) |
2642 | Ops.push_back(Elt: *It++); |
2643 | |
2644 | // Now push the live variables. |
2645 | for (; It != N->op_end(); It++) |
2646 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
2647 | |
2648 | // Finally, the regmask, chain and (if present) glue are moved to the end. |
2649 | Ops.push_back(Elt: RegMask); |
2650 | Ops.push_back(Elt: Chain); |
2651 | if (Glue.has_value()) |
2652 | Ops.push_back(Elt: *Glue); |
2653 | |
2654 | SDVTList NodeTys = N->getVTList(); |
2655 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::PATCHPOINT, VTs: NodeTys, Ops); |
2656 | } |
2657 | |
2658 | /// GetVBR - decode a vbr encoding whose top bit is set. |
2659 | LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t |
2660 | GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
2661 | assert(Val >= 128 && "Not a VBR" ); |
2662 | Val &= 127; // Remove first vbr bit. |
2663 | |
2664 | unsigned Shift = 7; |
2665 | uint64_t NextBits; |
2666 | do { |
2667 | NextBits = MatcherTable[Idx++]; |
2668 | Val |= (NextBits&127) << Shift; |
2669 | Shift += 7; |
2670 | } while (NextBits & 128); |
2671 | |
2672 | return Val; |
2673 | } |
2674 | |
2675 | /// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, |
2676 | /// use GetVBR to decode it. |
2677 | LLVM_ATTRIBUTE_ALWAYS_INLINE static MVT::SimpleValueType |
2678 | getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex) { |
2679 | unsigned SimpleVT = MatcherTable[MatcherIndex++]; |
2680 | if (SimpleVT & 128) |
2681 | SimpleVT = GetVBR(Val: SimpleVT, MatcherTable, Idx&: MatcherIndex); |
2682 | |
2683 | return static_cast<MVT::SimpleValueType>(SimpleVT); |
2684 | } |
2685 | |
2686 | void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) { |
2687 | SDLoc dl(N); |
2688 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::JUMP_TABLE_DEBUG_INFO, VT: MVT::Glue, |
2689 | Op1: CurDAG->getTargetConstant(Val: N->getConstantOperandVal(Num: 1), |
2690 | DL: dl, VT: MVT::i64, isOpaque: true)); |
2691 | } |
2692 | |
2693 | /// When a match is complete, this method updates uses of interior chain results |
2694 | /// to use the new results. |
2695 | void SelectionDAGISel::UpdateChains( |
2696 | SDNode *NodeToMatch, SDValue InputChain, |
2697 | SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { |
2698 | SmallVector<SDNode*, 4> NowDeadNodes; |
2699 | |
2700 | // Now that all the normal results are replaced, we replace the chain and |
2701 | // glue results if present. |
2702 | if (!ChainNodesMatched.empty()) { |
2703 | assert(InputChain.getNode() && |
2704 | "Matched input chains but didn't produce a chain" ); |
2705 | // Loop over all of the nodes we matched that produced a chain result. |
2706 | // Replace all the chain results with the final chain we ended up with. |
2707 | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
2708 | SDNode *ChainNode = ChainNodesMatched[i]; |
2709 | // If ChainNode is null, it's because we replaced it on a previous |
2710 | // iteration and we cleared it out of the map. Just skip it. |
2711 | if (!ChainNode) |
2712 | continue; |
2713 | |
2714 | assert(ChainNode->getOpcode() != ISD::DELETED_NODE && |
2715 | "Deleted node left in chain" ); |
2716 | |
2717 | // Don't replace the results of the root node if we're doing a |
2718 | // MorphNodeTo. |
2719 | if (ChainNode == NodeToMatch && isMorphNodeTo) |
2720 | continue; |
2721 | |
2722 | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
2723 | if (ChainVal.getValueType() == MVT::Glue) |
2724 | ChainVal = ChainVal.getValue(R: ChainVal->getNumValues()-2); |
2725 | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?" ); |
2726 | SelectionDAG::DAGNodeDeletedListener NDL( |
2727 | *CurDAG, [&](SDNode *N, SDNode *E) { |
2728 | llvm::replace(Range&: ChainNodesMatched, OldValue: N, NewValue: static_cast<SDNode *>(nullptr)); |
2729 | }); |
2730 | if (ChainNode->getOpcode() != ISD::TokenFactor) |
2731 | ReplaceUses(F: ChainVal, T: InputChain); |
2732 | |
2733 | // If the node became dead and we haven't already seen it, delete it. |
2734 | if (ChainNode != NodeToMatch && ChainNode->use_empty() && |
2735 | !llvm::is_contained(Range&: NowDeadNodes, Element: ChainNode)) |
2736 | NowDeadNodes.push_back(Elt: ChainNode); |
2737 | } |
2738 | } |
2739 | |
2740 | if (!NowDeadNodes.empty()) |
2741 | CurDAG->RemoveDeadNodes(DeadNodes&: NowDeadNodes); |
2742 | |
2743 | LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n" ); |
2744 | } |
2745 | |
2746 | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
2747 | /// operation for when the pattern matched at least one node with a chains. The |
2748 | /// input vector contains a list of all of the chained nodes that we match. We |
2749 | /// must determine if this is a valid thing to cover (i.e. matching it won't |
2750 | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
2751 | /// be used as the input node chain for the generated nodes. |
2752 | static SDValue |
2753 | HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, |
2754 | SelectionDAG *CurDAG) { |
2755 | |
2756 | SmallPtrSet<const SDNode *, 16> Visited; |
2757 | SmallVector<const SDNode *, 8> Worklist; |
2758 | SmallVector<SDValue, 3> InputChains; |
2759 | unsigned int Max = 8192; |
2760 | |
2761 | // Quick exit on trivial merge. |
2762 | if (ChainNodesMatched.size() == 1) |
2763 | return ChainNodesMatched[0]->getOperand(Num: 0); |
2764 | |
2765 | // Add chains that aren't already added (internal). Peek through |
2766 | // token factors. |
2767 | std::function<void(const SDValue)> AddChains = [&](const SDValue V) { |
2768 | if (V.getValueType() != MVT::Other) |
2769 | return; |
2770 | if (V->getOpcode() == ISD::EntryToken) |
2771 | return; |
2772 | if (!Visited.insert(Ptr: V.getNode()).second) |
2773 | return; |
2774 | if (V->getOpcode() == ISD::TokenFactor) { |
2775 | for (const SDValue &Op : V->op_values()) |
2776 | AddChains(Op); |
2777 | } else |
2778 | InputChains.push_back(Elt: V); |
2779 | }; |
2780 | |
2781 | for (auto *N : ChainNodesMatched) { |
2782 | Worklist.push_back(Elt: N); |
2783 | Visited.insert(Ptr: N); |
2784 | } |
2785 | |
2786 | while (!Worklist.empty()) |
2787 | AddChains(Worklist.pop_back_val()->getOperand(Num: 0)); |
2788 | |
2789 | // Skip the search if there are no chain dependencies. |
2790 | if (InputChains.size() == 0) |
2791 | return CurDAG->getEntryNode(); |
2792 | |
2793 | // If one of these chains is a successor of input, we must have a |
2794 | // node that is both the predecessor and successor of the |
2795 | // to-be-merged nodes. Fail. |
2796 | Visited.clear(); |
2797 | for (SDValue V : InputChains) |
2798 | Worklist.push_back(Elt: V.getNode()); |
2799 | |
2800 | for (auto *N : ChainNodesMatched) |
2801 | if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps: Max, TopologicalPrune: true)) |
2802 | return SDValue(); |
2803 | |
2804 | // Return merged chain. |
2805 | if (InputChains.size() == 1) |
2806 | return InputChains[0]; |
2807 | return CurDAG->getNode(Opcode: ISD::TokenFactor, DL: SDLoc(ChainNodesMatched[0]), |
2808 | VT: MVT::Other, Ops: InputChains); |
2809 | } |
2810 | |
2811 | /// MorphNode - Handle morphing a node in place for the selector. |
2812 | SDNode *SelectionDAGISel:: |
2813 | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
2814 | ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { |
2815 | // It is possible we're using MorphNodeTo to replace a node with no |
2816 | // normal results with one that has a normal result (or we could be |
2817 | // adding a chain) and the input could have glue and chains as well. |
2818 | // In this case we need to shift the operands down. |
2819 | // FIXME: This is a horrible hack and broken in obscure cases, no worse |
2820 | // than the old isel though. |
2821 | int OldGlueResultNo = -1, OldChainResultNo = -1; |
2822 | |
2823 | unsigned NTMNumResults = Node->getNumValues(); |
2824 | if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Glue) { |
2825 | OldGlueResultNo = NTMNumResults-1; |
2826 | if (NTMNumResults != 1 && |
2827 | Node->getValueType(ResNo: NTMNumResults-2) == MVT::Other) |
2828 | OldChainResultNo = NTMNumResults-2; |
2829 | } else if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Other) |
2830 | OldChainResultNo = NTMNumResults-1; |
2831 | |
2832 | // Call the underlying SelectionDAG routine to do the transmogrification. Note |
2833 | // that this deletes operands of the old node that become dead. |
2834 | SDNode *Res = CurDAG->MorphNodeTo(N: Node, Opc: ~TargetOpc, VTs: VTList, Ops); |
2835 | |
2836 | // MorphNodeTo can operate in two ways: if an existing node with the |
2837 | // specified operands exists, it can just return it. Otherwise, it |
2838 | // updates the node in place to have the requested operands. |
2839 | if (Res == Node) { |
2840 | // If we updated the node in place, reset the node ID. To the isel, |
2841 | // this should be just like a newly allocated machine node. |
2842 | Res->setNodeId(-1); |
2843 | } |
2844 | |
2845 | unsigned ResNumResults = Res->getNumValues(); |
2846 | // Move the glue if needed. |
2847 | if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && |
2848 | static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1) |
2849 | ReplaceUses(F: SDValue(Node, OldGlueResultNo), |
2850 | T: SDValue(Res, ResNumResults - 1)); |
2851 | |
2852 | if ((EmitNodeInfo & OPFL_GlueOutput) != 0) |
2853 | --ResNumResults; |
2854 | |
2855 | // Move the chain reference if needed. |
2856 | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
2857 | static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1) |
2858 | ReplaceUses(F: SDValue(Node, OldChainResultNo), |
2859 | T: SDValue(Res, ResNumResults - 1)); |
2860 | |
2861 | // Otherwise, no replacement happened because the node already exists. Replace |
2862 | // Uses of the old node with the new one. |
2863 | if (Res != Node) { |
2864 | ReplaceNode(F: Node, T: Res); |
2865 | } else { |
2866 | EnforceNodeIdInvariant(Node: Res); |
2867 | } |
2868 | |
2869 | return Res; |
2870 | } |
2871 | |
2872 | /// CheckSame - Implements OP_CheckSame. |
2873 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2874 | CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
2875 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { |
2876 | // Accept if it is exactly the same as a previously recorded node. |
2877 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
2878 | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame" ); |
2879 | return N == RecordedNodes[RecNo].first; |
2880 | } |
2881 | |
2882 | /// CheckChildSame - Implements OP_CheckChildXSame. |
2883 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( |
2884 | const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
2885 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, |
2886 | unsigned ChildNo) { |
2887 | if (ChildNo >= N.getNumOperands()) |
2888 | return false; // Match fails if out of range child #. |
2889 | return ::CheckSame(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo), |
2890 | RecordedNodes); |
2891 | } |
2892 | |
2893 | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
2894 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2895 | CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable, |
2896 | unsigned &MatcherIndex, const SelectionDAGISel &SDISel) { |
2897 | bool TwoBytePredNo = |
2898 | Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte; |
2899 | unsigned PredNo = |
2900 | TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate |
2901 | ? MatcherTable[MatcherIndex++] |
2902 | : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0; |
2903 | if (TwoBytePredNo) |
2904 | PredNo |= MatcherTable[MatcherIndex++] << 8; |
2905 | return SDISel.CheckPatternPredicate(PredNo); |
2906 | } |
2907 | |
2908 | /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
2909 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2910 | CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable, |
2911 | unsigned &MatcherIndex, const SelectionDAGISel &SDISel, |
2912 | SDValue Op) { |
2913 | unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate |
2914 | ? MatcherTable[MatcherIndex++] |
2915 | : Opcode - SelectionDAGISel::OPC_CheckPredicate0; |
2916 | return SDISel.CheckNodePredicate(Op, PredNo); |
2917 | } |
2918 | |
2919 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2920 | CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2921 | SDNode *N) { |
2922 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
2923 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
2924 | return N->getOpcode() == Opc; |
2925 | } |
2926 | |
2927 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT, |
2928 | SDValue N, |
2929 | const TargetLowering *TLI, |
2930 | const DataLayout &DL) { |
2931 | if (N.getValueType() == VT) |
2932 | return true; |
2933 | |
2934 | // Handle the case when VT is iPTR. |
2935 | return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); |
2936 | } |
2937 | |
2938 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2939 | CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, |
2940 | const DataLayout &DL, unsigned ChildNo) { |
2941 | if (ChildNo >= N.getNumOperands()) |
2942 | return false; // Match fails if out of range child #. |
2943 | return ::CheckType(VT, N: N.getOperand(i: ChildNo), TLI, DL); |
2944 | } |
2945 | |
2946 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2947 | CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2948 | SDValue N) { |
2949 | return cast<CondCodeSDNode>(Val&: N)->get() == |
2950 | static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]); |
2951 | } |
2952 | |
2953 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2954 | CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2955 | SDValue N) { |
2956 | if (2 >= N.getNumOperands()) |
2957 | return false; |
2958 | return ::CheckCondCode(MatcherTable, MatcherIndex, N: N.getOperand(i: 2)); |
2959 | } |
2960 | |
2961 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2962 | CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2963 | SDValue N, const TargetLowering *TLI, const DataLayout &DL) { |
2964 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
2965 | if (cast<VTSDNode>(Val&: N)->getVT() == VT) |
2966 | return true; |
2967 | |
2968 | // Handle the case when VT is iPTR. |
2969 | return VT == MVT::iPTR && cast<VTSDNode>(Val&: N)->getVT() == TLI->getPointerTy(DL); |
2970 | } |
2971 | |
2972 | // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude |
2973 | // shifted left by 1. |
2974 | static uint64_t decodeSignRotatedValue(uint64_t V) { |
2975 | if ((V & 1) == 0) |
2976 | return V >> 1; |
2977 | if (V != 1) |
2978 | return -(V >> 1); |
2979 | // There is no such thing as -0 with integers. "-0" really means MININT. |
2980 | return 1ULL << 63; |
2981 | } |
2982 | |
2983 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2984 | CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2985 | SDValue N) { |
2986 | int64_t Val = MatcherTable[MatcherIndex++]; |
2987 | if (Val & 128) |
2988 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
2989 | |
2990 | Val = decodeSignRotatedValue(V: Val); |
2991 | |
2992 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: N); |
2993 | return C && C->getAPIntValue().trySExtValue() == Val; |
2994 | } |
2995 | |
2996 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
2997 | CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
2998 | SDValue N, unsigned ChildNo) { |
2999 | if (ChildNo >= N.getNumOperands()) |
3000 | return false; // Match fails if out of range child #. |
3001 | return ::CheckInteger(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo)); |
3002 | } |
3003 | |
3004 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
3005 | CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
3006 | SDValue N, const SelectionDAGISel &SDISel) { |
3007 | int64_t Val = MatcherTable[MatcherIndex++]; |
3008 | if (Val & 128) |
3009 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
3010 | |
3011 | if (N->getOpcode() != ISD::AND) return false; |
3012 | |
3013 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
3014 | return C && SDISel.CheckAndMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
3015 | } |
3016 | |
3017 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
3018 | CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
3019 | const SelectionDAGISel &SDISel) { |
3020 | int64_t Val = MatcherTable[MatcherIndex++]; |
3021 | if (Val & 128) |
3022 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
3023 | |
3024 | if (N->getOpcode() != ISD::OR) return false; |
3025 | |
3026 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
3027 | return C && SDISel.CheckOrMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
3028 | } |
3029 | |
3030 | /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
3031 | /// scope, evaluate the current node. If the current predicate is known to |
3032 | /// fail, set Result=true and return anything. If the current predicate is |
3033 | /// known to pass, set Result=false and return the MatcherIndex to continue |
3034 | /// with. If the current predicate is unknown, set Result=false and return the |
3035 | /// MatcherIndex to continue with. |
3036 | static unsigned IsPredicateKnownToFail(const unsigned char *Table, |
3037 | unsigned Index, SDValue N, |
3038 | bool &Result, |
3039 | const SelectionDAGISel &SDISel, |
3040 | SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { |
3041 | unsigned Opcode = Table[Index++]; |
3042 | switch (Opcode) { |
3043 | default: |
3044 | Result = false; |
3045 | return Index-1; // Could not evaluate this predicate. |
3046 | case SelectionDAGISel::OPC_CheckSame: |
3047 | Result = !::CheckSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes); |
3048 | return Index; |
3049 | case SelectionDAGISel::OPC_CheckChild0Same: |
3050 | case SelectionDAGISel::OPC_CheckChild1Same: |
3051 | case SelectionDAGISel::OPC_CheckChild2Same: |
3052 | case SelectionDAGISel::OPC_CheckChild3Same: |
3053 | Result = !::CheckChildSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes, |
3054 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); |
3055 | return Index; |
3056 | case SelectionDAGISel::OPC_CheckPatternPredicate: |
3057 | case SelectionDAGISel::OPC_CheckPatternPredicate0: |
3058 | case SelectionDAGISel::OPC_CheckPatternPredicate1: |
3059 | case SelectionDAGISel::OPC_CheckPatternPredicate2: |
3060 | case SelectionDAGISel::OPC_CheckPatternPredicate3: |
3061 | case SelectionDAGISel::OPC_CheckPatternPredicate4: |
3062 | case SelectionDAGISel::OPC_CheckPatternPredicate5: |
3063 | case SelectionDAGISel::OPC_CheckPatternPredicate6: |
3064 | case SelectionDAGISel::OPC_CheckPatternPredicate7: |
3065 | case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte: |
3066 | Result = !::CheckPatternPredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel); |
3067 | return Index; |
3068 | case SelectionDAGISel::OPC_CheckPredicate: |
3069 | case SelectionDAGISel::OPC_CheckPredicate0: |
3070 | case SelectionDAGISel::OPC_CheckPredicate1: |
3071 | case SelectionDAGISel::OPC_CheckPredicate2: |
3072 | case SelectionDAGISel::OPC_CheckPredicate3: |
3073 | case SelectionDAGISel::OPC_CheckPredicate4: |
3074 | case SelectionDAGISel::OPC_CheckPredicate5: |
3075 | case SelectionDAGISel::OPC_CheckPredicate6: |
3076 | case SelectionDAGISel::OPC_CheckPredicate7: |
3077 | Result = !::CheckNodePredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel, Op: N); |
3078 | return Index; |
3079 | case SelectionDAGISel::OPC_CheckOpcode: |
3080 | Result = !::CheckOpcode(MatcherTable: Table, MatcherIndex&: Index, N: N.getNode()); |
3081 | return Index; |
3082 | case SelectionDAGISel::OPC_CheckType: |
3083 | case SelectionDAGISel::OPC_CheckTypeI32: |
3084 | case SelectionDAGISel::OPC_CheckTypeI64: { |
3085 | MVT::SimpleValueType VT; |
3086 | switch (Opcode) { |
3087 | case SelectionDAGISel::OPC_CheckTypeI32: |
3088 | VT = MVT::i32; |
3089 | break; |
3090 | case SelectionDAGISel::OPC_CheckTypeI64: |
3091 | VT = MVT::i64; |
3092 | break; |
3093 | default: |
3094 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
3095 | break; |
3096 | } |
3097 | Result = !::CheckType(VT, N, TLI: SDISel.TLI, DL: SDISel.CurDAG->getDataLayout()); |
3098 | return Index; |
3099 | } |
3100 | case SelectionDAGISel::OPC_CheckTypeRes: { |
3101 | unsigned Res = Table[Index++]; |
3102 | Result = !::CheckType(VT: getSimpleVT(MatcherTable: Table, MatcherIndex&: Index), N: N.getValue(R: Res), |
3103 | TLI: SDISel.TLI, DL: SDISel.CurDAG->getDataLayout()); |
3104 | return Index; |
3105 | } |
3106 | case SelectionDAGISel::OPC_CheckChild0Type: |
3107 | case SelectionDAGISel::OPC_CheckChild1Type: |
3108 | case SelectionDAGISel::OPC_CheckChild2Type: |
3109 | case SelectionDAGISel::OPC_CheckChild3Type: |
3110 | case SelectionDAGISel::OPC_CheckChild4Type: |
3111 | case SelectionDAGISel::OPC_CheckChild5Type: |
3112 | case SelectionDAGISel::OPC_CheckChild6Type: |
3113 | case SelectionDAGISel::OPC_CheckChild7Type: |
3114 | case SelectionDAGISel::OPC_CheckChild0TypeI32: |
3115 | case SelectionDAGISel::OPC_CheckChild1TypeI32: |
3116 | case SelectionDAGISel::OPC_CheckChild2TypeI32: |
3117 | case SelectionDAGISel::OPC_CheckChild3TypeI32: |
3118 | case SelectionDAGISel::OPC_CheckChild4TypeI32: |
3119 | case SelectionDAGISel::OPC_CheckChild5TypeI32: |
3120 | case SelectionDAGISel::OPC_CheckChild6TypeI32: |
3121 | case SelectionDAGISel::OPC_CheckChild7TypeI32: |
3122 | case SelectionDAGISel::OPC_CheckChild0TypeI64: |
3123 | case SelectionDAGISel::OPC_CheckChild1TypeI64: |
3124 | case SelectionDAGISel::OPC_CheckChild2TypeI64: |
3125 | case SelectionDAGISel::OPC_CheckChild3TypeI64: |
3126 | case SelectionDAGISel::OPC_CheckChild4TypeI64: |
3127 | case SelectionDAGISel::OPC_CheckChild5TypeI64: |
3128 | case SelectionDAGISel::OPC_CheckChild6TypeI64: |
3129 | case SelectionDAGISel::OPC_CheckChild7TypeI64: { |
3130 | MVT::SimpleValueType VT; |
3131 | unsigned ChildNo; |
3132 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
3133 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
3134 | VT = MVT::i32; |
3135 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
3136 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
3137 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
3138 | VT = MVT::i64; |
3139 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
3140 | } else { |
3141 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
3142 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
3143 | } |
3144 | Result = !::CheckChildType(VT, N, TLI: SDISel.TLI, |
3145 | DL: SDISel.CurDAG->getDataLayout(), ChildNo); |
3146 | return Index; |
3147 | } |
3148 | case SelectionDAGISel::OPC_CheckCondCode: |
3149 | Result = !::CheckCondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
3150 | return Index; |
3151 | case SelectionDAGISel::OPC_CheckChild2CondCode: |
3152 | Result = !::CheckChild2CondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
3153 | return Index; |
3154 | case SelectionDAGISel::OPC_CheckValueType: |
3155 | Result = !::CheckValueType(MatcherTable: Table, MatcherIndex&: Index, N, TLI: SDISel.TLI, |
3156 | DL: SDISel.CurDAG->getDataLayout()); |
3157 | return Index; |
3158 | case SelectionDAGISel::OPC_CheckInteger: |
3159 | Result = !::CheckInteger(MatcherTable: Table, MatcherIndex&: Index, N); |
3160 | return Index; |
3161 | case SelectionDAGISel::OPC_CheckChild0Integer: |
3162 | case SelectionDAGISel::OPC_CheckChild1Integer: |
3163 | case SelectionDAGISel::OPC_CheckChild2Integer: |
3164 | case SelectionDAGISel::OPC_CheckChild3Integer: |
3165 | case SelectionDAGISel::OPC_CheckChild4Integer: |
3166 | Result = !::CheckChildInteger(MatcherTable: Table, MatcherIndex&: Index, N, |
3167 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); |
3168 | return Index; |
3169 | case SelectionDAGISel::OPC_CheckAndImm: |
3170 | Result = !::CheckAndImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
3171 | return Index; |
3172 | case SelectionDAGISel::OPC_CheckOrImm: |
3173 | Result = !::CheckOrImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
3174 | return Index; |
3175 | } |
3176 | } |
3177 | |
3178 | namespace { |
3179 | |
3180 | struct MatchScope { |
3181 | /// FailIndex - If this match fails, this is the index to continue with. |
3182 | unsigned FailIndex; |
3183 | |
3184 | /// NodeStack - The node stack when the scope was formed. |
3185 | SmallVector<SDValue, 4> NodeStack; |
3186 | |
3187 | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
3188 | unsigned NumRecordedNodes; |
3189 | |
3190 | /// NumMatchedMemRefs - The number of matched memref entries. |
3191 | unsigned NumMatchedMemRefs; |
3192 | |
3193 | /// InputChain/InputGlue - The current chain/glue |
3194 | SDValue InputChain, InputGlue; |
3195 | |
3196 | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
3197 | bool HasChainNodesMatched; |
3198 | }; |
3199 | |
3200 | /// \A DAG update listener to keep the matching state |
3201 | /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to |
3202 | /// change the DAG while matching. X86 addressing mode matcher is an example |
3203 | /// for this. |
3204 | class MatchStateUpdater : public SelectionDAG::DAGUpdateListener |
3205 | { |
3206 | SDNode **NodeToMatch; |
3207 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; |
3208 | SmallVectorImpl<MatchScope> &MatchScopes; |
3209 | |
3210 | public: |
3211 | MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, |
3212 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, |
3213 | SmallVectorImpl<MatchScope> &MS) |
3214 | : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), |
3215 | RecordedNodes(RN), MatchScopes(MS) {} |
3216 | |
3217 | void NodeDeleted(SDNode *N, SDNode *E) override { |
3218 | // Some early-returns here to avoid the search if we deleted the node or |
3219 | // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we |
3220 | // do, so it's unnecessary to update matching state at that point). |
3221 | // Neither of these can occur currently because we only install this |
3222 | // update listener during matching a complex patterns. |
3223 | if (!E || E->isMachineOpcode()) |
3224 | return; |
3225 | // Check if NodeToMatch was updated. |
3226 | if (N == *NodeToMatch) |
3227 | *NodeToMatch = E; |
3228 | // Performing linear search here does not matter because we almost never |
3229 | // run this code. You'd have to have a CSE during complex pattern |
3230 | // matching. |
3231 | for (auto &I : RecordedNodes) |
3232 | if (I.first.getNode() == N) |
3233 | I.first.setNode(E); |
3234 | |
3235 | for (auto &I : MatchScopes) |
3236 | for (auto &J : I.NodeStack) |
3237 | if (J.getNode() == N) |
3238 | J.setNode(E); |
3239 | } |
3240 | }; |
3241 | |
3242 | } // end anonymous namespace |
3243 | |
3244 | void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, |
3245 | const unsigned char *MatcherTable, |
3246 | unsigned TableSize) { |
3247 | // FIXME: Should these even be selected? Handle these cases in the caller? |
3248 | switch (NodeToMatch->getOpcode()) { |
3249 | default: |
3250 | break; |
3251 | case ISD::EntryToken: // These nodes remain the same. |
3252 | case ISD::BasicBlock: |
3253 | case ISD::Register: |
3254 | case ISD::RegisterMask: |
3255 | case ISD::HANDLENODE: |
3256 | case ISD::MDNODE_SDNODE: |
3257 | case ISD::TargetConstant: |
3258 | case ISD::TargetConstantFP: |
3259 | case ISD::TargetConstantPool: |
3260 | case ISD::TargetFrameIndex: |
3261 | case ISD::TargetExternalSymbol: |
3262 | case ISD::MCSymbol: |
3263 | case ISD::TargetBlockAddress: |
3264 | case ISD::TargetJumpTable: |
3265 | case ISD::TargetGlobalTLSAddress: |
3266 | case ISD::TargetGlobalAddress: |
3267 | case ISD::TokenFactor: |
3268 | case ISD::CopyFromReg: |
3269 | case ISD::CopyToReg: |
3270 | case ISD::EH_LABEL: |
3271 | case ISD::ANNOTATION_LABEL: |
3272 | case ISD::LIFETIME_START: |
3273 | case ISD::LIFETIME_END: |
3274 | case ISD::PSEUDO_PROBE: |
3275 | NodeToMatch->setNodeId(-1); // Mark selected. |
3276 | return; |
3277 | case ISD::AssertSext: |
3278 | case ISD::AssertZext: |
3279 | case ISD::AssertNoFPClass: |
3280 | case ISD::AssertAlign: |
3281 | ReplaceUses(F: SDValue(NodeToMatch, 0), T: NodeToMatch->getOperand(Num: 0)); |
3282 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
3283 | return; |
3284 | case ISD::INLINEASM: |
3285 | case ISD::INLINEASM_BR: |
3286 | Select_INLINEASM(N: NodeToMatch); |
3287 | return; |
3288 | case ISD::READ_REGISTER: |
3289 | Select_READ_REGISTER(Op: NodeToMatch); |
3290 | return; |
3291 | case ISD::WRITE_REGISTER: |
3292 | Select_WRITE_REGISTER(Op: NodeToMatch); |
3293 | return; |
3294 | case ISD::POISON: |
3295 | case ISD::UNDEF: |
3296 | Select_UNDEF(N: NodeToMatch); |
3297 | return; |
3298 | case ISD::FAKE_USE: |
3299 | Select_FAKE_USE(N: NodeToMatch); |
3300 | return; |
3301 | case ISD::FREEZE: |
3302 | Select_FREEZE(N: NodeToMatch); |
3303 | return; |
3304 | case ISD::ARITH_FENCE: |
3305 | Select_ARITH_FENCE(N: NodeToMatch); |
3306 | return; |
3307 | case ISD::MEMBARRIER: |
3308 | Select_MEMBARRIER(N: NodeToMatch); |
3309 | return; |
3310 | case ISD::STACKMAP: |
3311 | Select_STACKMAP(N: NodeToMatch); |
3312 | return; |
3313 | case ISD::PATCHPOINT: |
3314 | Select_PATCHPOINT(N: NodeToMatch); |
3315 | return; |
3316 | case ISD::JUMP_TABLE_DEBUG_INFO: |
3317 | Select_JUMP_TABLE_DEBUG_INFO(N: NodeToMatch); |
3318 | return; |
3319 | case ISD::CONVERGENCECTRL_ANCHOR: |
3320 | Select_CONVERGENCECTRL_ANCHOR(N: NodeToMatch); |
3321 | return; |
3322 | case ISD::CONVERGENCECTRL_ENTRY: |
3323 | Select_CONVERGENCECTRL_ENTRY(N: NodeToMatch); |
3324 | return; |
3325 | case ISD::CONVERGENCECTRL_LOOP: |
3326 | Select_CONVERGENCECTRL_LOOP(N: NodeToMatch); |
3327 | return; |
3328 | } |
3329 | |
3330 | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!" ); |
3331 | |
3332 | // Set up the node stack with NodeToMatch as the only node on the stack. |
3333 | SmallVector<SDValue, 8> NodeStack; |
3334 | SDValue N = SDValue(NodeToMatch, 0); |
3335 | NodeStack.push_back(Elt: N); |
3336 | |
3337 | // MatchScopes - Scopes used when matching, if a match failure happens, this |
3338 | // indicates where to continue checking. |
3339 | SmallVector<MatchScope, 8> MatchScopes; |
3340 | |
3341 | // RecordedNodes - This is the set of nodes that have been recorded by the |
3342 | // state machine. The second value is the parent of the node, or null if the |
3343 | // root is recorded. |
3344 | SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; |
3345 | |
3346 | // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
3347 | // pattern. |
3348 | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
3349 | |
3350 | // These are the current input chain and glue for use when generating nodes. |
3351 | // Various Emit operations change these. For example, emitting a copytoreg |
3352 | // uses and updates these. |
3353 | SDValue InputChain, InputGlue; |
3354 | |
3355 | // ChainNodesMatched - If a pattern matches nodes that have input/output |
3356 | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
3357 | // which ones they are. The result is captured into this list so that we can |
3358 | // update the chain results when the pattern is complete. |
3359 | SmallVector<SDNode*, 3> ChainNodesMatched; |
3360 | |
3361 | LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n" ); |
3362 | |
3363 | // Determine where to start the interpreter. Normally we start at opcode #0, |
3364 | // but if the state machine starts with an OPC_SwitchOpcode, then we |
3365 | // accelerate the first lookup (which is guaranteed to be hot) with the |
3366 | // OpcodeOffset table. |
3367 | unsigned MatcherIndex = 0; |
3368 | |
3369 | if (!OpcodeOffset.empty()) { |
3370 | // Already computed the OpcodeOffset table, just index into it. |
3371 | if (N.getOpcode() < OpcodeOffset.size()) |
3372 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
3373 | LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n" ); |
3374 | |
3375 | } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
3376 | // Otherwise, the table isn't computed, but the state machine does start |
3377 | // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
3378 | // is the first time we're selecting an instruction. |
3379 | unsigned Idx = 1; |
3380 | while (true) { |
3381 | // Get the size of this case. |
3382 | unsigned CaseSize = MatcherTable[Idx++]; |
3383 | if (CaseSize & 128) |
3384 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx); |
3385 | if (CaseSize == 0) break; |
3386 | |
3387 | // Get the opcode, add the index to the table. |
3388 | uint16_t Opc = MatcherTable[Idx++]; |
3389 | Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8; |
3390 | if (Opc >= OpcodeOffset.size()) |
3391 | OpcodeOffset.resize(new_size: (Opc+1)*2); |
3392 | OpcodeOffset[Opc] = Idx; |
3393 | Idx += CaseSize; |
3394 | } |
3395 | |
3396 | // Okay, do the lookup for the first opcode. |
3397 | if (N.getOpcode() < OpcodeOffset.size()) |
3398 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
3399 | } |
3400 | |
3401 | while (true) { |
3402 | assert(MatcherIndex < TableSize && "Invalid index" ); |
3403 | #ifndef NDEBUG |
3404 | unsigned CurrentOpcodeIndex = MatcherIndex; |
3405 | #endif |
3406 | BuiltinOpcodes Opcode = |
3407 | static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]); |
3408 | switch (Opcode) { |
3409 | case OPC_Scope: { |
3410 | // Okay, the semantics of this operation are that we should push a scope |
3411 | // then evaluate the first child. However, pushing a scope only to have |
3412 | // the first check fail (which then pops it) is inefficient. If we can |
3413 | // determine immediately that the first check (or first several) will |
3414 | // immediately fail, don't even bother pushing a scope for them. |
3415 | unsigned FailIndex; |
3416 | |
3417 | while (true) { |
3418 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
3419 | if (NumToSkip & 128) |
3420 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
3421 | // Found the end of the scope with no match. |
3422 | if (NumToSkip == 0) { |
3423 | FailIndex = 0; |
3424 | break; |
3425 | } |
3426 | |
3427 | FailIndex = MatcherIndex+NumToSkip; |
3428 | |
3429 | unsigned MatcherIndexOfPredicate = MatcherIndex; |
3430 | (void)MatcherIndexOfPredicate; // silence warning. |
3431 | |
3432 | // If we can't evaluate this predicate without pushing a scope (e.g. if |
3433 | // it is a 'MoveParent') or if the predicate succeeds on this node, we |
3434 | // push the scope and evaluate the full predicate chain. |
3435 | bool Result; |
3436 | MatcherIndex = IsPredicateKnownToFail(Table: MatcherTable, Index: MatcherIndex, N, |
3437 | Result, SDISel: *this, RecordedNodes); |
3438 | if (!Result) |
3439 | break; |
3440 | |
3441 | LLVM_DEBUG( |
3442 | dbgs() << " Skipped scope entry (due to false predicate) at " |
3443 | << "index " << MatcherIndexOfPredicate << ", continuing at " |
3444 | << FailIndex << "\n" ); |
3445 | ++NumDAGIselRetries; |
3446 | |
3447 | // Otherwise, we know that this case of the Scope is guaranteed to fail, |
3448 | // move to the next case. |
3449 | MatcherIndex = FailIndex; |
3450 | } |
3451 | |
3452 | // If the whole scope failed to match, bail. |
3453 | if (FailIndex == 0) break; |
3454 | |
3455 | // Push a MatchScope which indicates where to go if the first child fails |
3456 | // to match. |
3457 | MatchScope NewEntry; |
3458 | NewEntry.FailIndex = FailIndex; |
3459 | NewEntry.NodeStack.append(in_start: NodeStack.begin(), in_end: NodeStack.end()); |
3460 | NewEntry.NumRecordedNodes = RecordedNodes.size(); |
3461 | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
3462 | NewEntry.InputChain = InputChain; |
3463 | NewEntry.InputGlue = InputGlue; |
3464 | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
3465 | MatchScopes.push_back(Elt: NewEntry); |
3466 | continue; |
3467 | } |
3468 | case OPC_RecordNode: { |
3469 | // Remember this node, it may end up being an operand in the pattern. |
3470 | SDNode *Parent = nullptr; |
3471 | if (NodeStack.size() > 1) |
3472 | Parent = NodeStack[NodeStack.size()-2].getNode(); |
3473 | RecordedNodes.push_back(Elt: std::make_pair(x&: N, y&: Parent)); |
3474 | continue; |
3475 | } |
3476 | |
3477 | case OPC_RecordChild0: case OPC_RecordChild1: |
3478 | case OPC_RecordChild2: case OPC_RecordChild3: |
3479 | case OPC_RecordChild4: case OPC_RecordChild5: |
3480 | case OPC_RecordChild6: case OPC_RecordChild7: { |
3481 | unsigned ChildNo = Opcode-OPC_RecordChild0; |
3482 | if (ChildNo >= N.getNumOperands()) |
3483 | break; // Match fails if out of range child #. |
3484 | |
3485 | RecordedNodes.push_back(Elt: std::make_pair(x: N->getOperand(Num: ChildNo), |
3486 | y: N.getNode())); |
3487 | continue; |
3488 | } |
3489 | case OPC_RecordMemRef: |
3490 | if (auto *MN = dyn_cast<MemSDNode>(Val&: N)) |
3491 | MatchedMemRefs.push_back(Elt: MN->getMemOperand()); |
3492 | else { |
3493 | LLVM_DEBUG(dbgs() << "Expected MemSDNode " ; N->dump(CurDAG); |
3494 | dbgs() << '\n'); |
3495 | } |
3496 | |
3497 | continue; |
3498 | |
3499 | case OPC_CaptureGlueInput: |
3500 | // If the current node has an input glue, capture it in InputGlue. |
3501 | if (N->getNumOperands() != 0 && |
3502 | N->getOperand(Num: N->getNumOperands()-1).getValueType() == MVT::Glue) |
3503 | InputGlue = N->getOperand(Num: N->getNumOperands()-1); |
3504 | continue; |
3505 | |
3506 | case OPC_MoveChild: { |
3507 | unsigned ChildNo = MatcherTable[MatcherIndex++]; |
3508 | if (ChildNo >= N.getNumOperands()) |
3509 | break; // Match fails if out of range child #. |
3510 | N = N.getOperand(i: ChildNo); |
3511 | NodeStack.push_back(Elt: N); |
3512 | continue; |
3513 | } |
3514 | |
3515 | case OPC_MoveChild0: case OPC_MoveChild1: |
3516 | case OPC_MoveChild2: case OPC_MoveChild3: |
3517 | case OPC_MoveChild4: case OPC_MoveChild5: |
3518 | case OPC_MoveChild6: case OPC_MoveChild7: { |
3519 | unsigned ChildNo = Opcode-OPC_MoveChild0; |
3520 | if (ChildNo >= N.getNumOperands()) |
3521 | break; // Match fails if out of range child #. |
3522 | N = N.getOperand(i: ChildNo); |
3523 | NodeStack.push_back(Elt: N); |
3524 | continue; |
3525 | } |
3526 | |
3527 | case OPC_MoveSibling: |
3528 | case OPC_MoveSibling0: |
3529 | case OPC_MoveSibling1: |
3530 | case OPC_MoveSibling2: |
3531 | case OPC_MoveSibling3: |
3532 | case OPC_MoveSibling4: |
3533 | case OPC_MoveSibling5: |
3534 | case OPC_MoveSibling6: |
3535 | case OPC_MoveSibling7: { |
3536 | // Pop the current node off the NodeStack. |
3537 | NodeStack.pop_back(); |
3538 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
3539 | N = NodeStack.back(); |
3540 | |
3541 | unsigned SiblingNo = Opcode == OPC_MoveSibling |
3542 | ? MatcherTable[MatcherIndex++] |
3543 | : Opcode - OPC_MoveSibling0; |
3544 | if (SiblingNo >= N.getNumOperands()) |
3545 | break; // Match fails if out of range sibling #. |
3546 | N = N.getOperand(i: SiblingNo); |
3547 | NodeStack.push_back(Elt: N); |
3548 | continue; |
3549 | } |
3550 | case OPC_MoveParent: |
3551 | // Pop the current node off the NodeStack. |
3552 | NodeStack.pop_back(); |
3553 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
3554 | N = NodeStack.back(); |
3555 | continue; |
3556 | |
3557 | case OPC_CheckSame: |
3558 | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
3559 | continue; |
3560 | |
3561 | case OPC_CheckChild0Same: case OPC_CheckChild1Same: |
3562 | case OPC_CheckChild2Same: case OPC_CheckChild3Same: |
3563 | if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, |
3564 | ChildNo: Opcode-OPC_CheckChild0Same)) |
3565 | break; |
3566 | continue; |
3567 | |
3568 | case OPC_CheckPatternPredicate: |
3569 | case OPC_CheckPatternPredicate0: |
3570 | case OPC_CheckPatternPredicate1: |
3571 | case OPC_CheckPatternPredicate2: |
3572 | case OPC_CheckPatternPredicate3: |
3573 | case OPC_CheckPatternPredicate4: |
3574 | case OPC_CheckPatternPredicate5: |
3575 | case OPC_CheckPatternPredicate6: |
3576 | case OPC_CheckPatternPredicate7: |
3577 | case OPC_CheckPatternPredicateTwoByte: |
3578 | if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this)) |
3579 | break; |
3580 | continue; |
3581 | case SelectionDAGISel::OPC_CheckPredicate0: |
3582 | case SelectionDAGISel::OPC_CheckPredicate1: |
3583 | case SelectionDAGISel::OPC_CheckPredicate2: |
3584 | case SelectionDAGISel::OPC_CheckPredicate3: |
3585 | case SelectionDAGISel::OPC_CheckPredicate4: |
3586 | case SelectionDAGISel::OPC_CheckPredicate5: |
3587 | case SelectionDAGISel::OPC_CheckPredicate6: |
3588 | case SelectionDAGISel::OPC_CheckPredicate7: |
3589 | case OPC_CheckPredicate: |
3590 | if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this, Op: N)) |
3591 | break; |
3592 | continue; |
3593 | case OPC_CheckPredicateWithOperands: { |
3594 | unsigned OpNum = MatcherTable[MatcherIndex++]; |
3595 | SmallVector<SDValue, 8> Operands; |
3596 | |
3597 | for (unsigned i = 0; i < OpNum; ++i) |
3598 | Operands.push_back(Elt: RecordedNodes[MatcherTable[MatcherIndex++]].first); |
3599 | |
3600 | unsigned PredNo = MatcherTable[MatcherIndex++]; |
3601 | if (!CheckNodePredicateWithOperands(Op: N, PredNo, Operands)) |
3602 | break; |
3603 | continue; |
3604 | } |
3605 | case OPC_CheckComplexPat: |
3606 | case OPC_CheckComplexPat0: |
3607 | case OPC_CheckComplexPat1: |
3608 | case OPC_CheckComplexPat2: |
3609 | case OPC_CheckComplexPat3: |
3610 | case OPC_CheckComplexPat4: |
3611 | case OPC_CheckComplexPat5: |
3612 | case OPC_CheckComplexPat6: |
3613 | case OPC_CheckComplexPat7: { |
3614 | unsigned CPNum = Opcode == OPC_CheckComplexPat |
3615 | ? MatcherTable[MatcherIndex++] |
3616 | : Opcode - OPC_CheckComplexPat0; |
3617 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
3618 | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat" ); |
3619 | |
3620 | // If target can modify DAG during matching, keep the matching state |
3621 | // consistent. |
3622 | std::unique_ptr<MatchStateUpdater> MSU; |
3623 | if (ComplexPatternFuncMutatesDAG()) |
3624 | MSU.reset(p: new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, |
3625 | MatchScopes)); |
3626 | |
3627 | if (!CheckComplexPattern(Root: NodeToMatch, Parent: RecordedNodes[RecNo].second, |
3628 | N: RecordedNodes[RecNo].first, PatternNo: CPNum, |
3629 | Result&: RecordedNodes)) |
3630 | break; |
3631 | continue; |
3632 | } |
3633 | case OPC_CheckOpcode: |
3634 | if (!::CheckOpcode(MatcherTable, MatcherIndex, N: N.getNode())) break; |
3635 | continue; |
3636 | |
3637 | case OPC_CheckType: |
3638 | case OPC_CheckTypeI32: |
3639 | case OPC_CheckTypeI64: |
3640 | MVT::SimpleValueType VT; |
3641 | switch (Opcode) { |
3642 | case OPC_CheckTypeI32: |
3643 | VT = MVT::i32; |
3644 | break; |
3645 | case OPC_CheckTypeI64: |
3646 | VT = MVT::i64; |
3647 | break; |
3648 | default: |
3649 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
3650 | break; |
3651 | } |
3652 | if (!::CheckType(VT, N, TLI, DL: CurDAG->getDataLayout())) |
3653 | break; |
3654 | continue; |
3655 | |
3656 | case OPC_CheckTypeRes: { |
3657 | unsigned Res = MatcherTable[MatcherIndex++]; |
3658 | if (!::CheckType(VT: getSimpleVT(MatcherTable, MatcherIndex), N: N.getValue(R: Res), |
3659 | TLI, DL: CurDAG->getDataLayout())) |
3660 | break; |
3661 | continue; |
3662 | } |
3663 | |
3664 | case OPC_SwitchOpcode: { |
3665 | unsigned CurNodeOpcode = N.getOpcode(); |
3666 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
3667 | unsigned CaseSize; |
3668 | while (true) { |
3669 | // Get the size of this case. |
3670 | CaseSize = MatcherTable[MatcherIndex++]; |
3671 | if (CaseSize & 128) |
3672 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
3673 | if (CaseSize == 0) break; |
3674 | |
3675 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
3676 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
3677 | |
3678 | // If the opcode matches, then we will execute this case. |
3679 | if (CurNodeOpcode == Opc) |
3680 | break; |
3681 | |
3682 | // Otherwise, skip over this case. |
3683 | MatcherIndex += CaseSize; |
3684 | } |
3685 | |
3686 | // If no cases matched, bail out. |
3687 | if (CaseSize == 0) break; |
3688 | |
3689 | // Otherwise, execute the case we found. |
3690 | LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " |
3691 | << MatcherIndex << "\n" ); |
3692 | continue; |
3693 | } |
3694 | |
3695 | case OPC_SwitchType: { |
3696 | MVT CurNodeVT = N.getSimpleValueType(); |
3697 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
3698 | unsigned CaseSize; |
3699 | while (true) { |
3700 | // Get the size of this case. |
3701 | CaseSize = MatcherTable[MatcherIndex++]; |
3702 | if (CaseSize & 128) |
3703 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
3704 | if (CaseSize == 0) break; |
3705 | |
3706 | MVT CaseVT = getSimpleVT(MatcherTable, MatcherIndex); |
3707 | if (CaseVT == MVT::iPTR) |
3708 | CaseVT = TLI->getPointerTy(DL: CurDAG->getDataLayout()); |
3709 | |
3710 | // If the VT matches, then we will execute this case. |
3711 | if (CurNodeVT == CaseVT) |
3712 | break; |
3713 | |
3714 | // Otherwise, skip over this case. |
3715 | MatcherIndex += CaseSize; |
3716 | } |
3717 | |
3718 | // If no cases matched, bail out. |
3719 | if (CaseSize == 0) break; |
3720 | |
3721 | // Otherwise, execute the case we found. |
3722 | LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT |
3723 | << "] from " << SwitchStart << " to " << MatcherIndex |
3724 | << '\n'); |
3725 | continue; |
3726 | } |
3727 | case OPC_CheckChild0Type: |
3728 | case OPC_CheckChild1Type: |
3729 | case OPC_CheckChild2Type: |
3730 | case OPC_CheckChild3Type: |
3731 | case OPC_CheckChild4Type: |
3732 | case OPC_CheckChild5Type: |
3733 | case OPC_CheckChild6Type: |
3734 | case OPC_CheckChild7Type: |
3735 | case OPC_CheckChild0TypeI32: |
3736 | case OPC_CheckChild1TypeI32: |
3737 | case OPC_CheckChild2TypeI32: |
3738 | case OPC_CheckChild3TypeI32: |
3739 | case OPC_CheckChild4TypeI32: |
3740 | case OPC_CheckChild5TypeI32: |
3741 | case OPC_CheckChild6TypeI32: |
3742 | case OPC_CheckChild7TypeI32: |
3743 | case OPC_CheckChild0TypeI64: |
3744 | case OPC_CheckChild1TypeI64: |
3745 | case OPC_CheckChild2TypeI64: |
3746 | case OPC_CheckChild3TypeI64: |
3747 | case OPC_CheckChild4TypeI64: |
3748 | case OPC_CheckChild5TypeI64: |
3749 | case OPC_CheckChild6TypeI64: |
3750 | case OPC_CheckChild7TypeI64: { |
3751 | MVT::SimpleValueType VT; |
3752 | unsigned ChildNo; |
3753 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
3754 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
3755 | VT = MVT::i32; |
3756 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
3757 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
3758 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
3759 | VT = MVT::i64; |
3760 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
3761 | } else { |
3762 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
3763 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
3764 | } |
3765 | if (!::CheckChildType(VT, N, TLI, DL: CurDAG->getDataLayout(), ChildNo)) |
3766 | break; |
3767 | continue; |
3768 | } |
3769 | case OPC_CheckCondCode: |
3770 | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
3771 | continue; |
3772 | case OPC_CheckChild2CondCode: |
3773 | if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; |
3774 | continue; |
3775 | case OPC_CheckValueType: |
3776 | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, |
3777 | DL: CurDAG->getDataLayout())) |
3778 | break; |
3779 | continue; |
3780 | case OPC_CheckInteger: |
3781 | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
3782 | continue; |
3783 | case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: |
3784 | case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: |
3785 | case OPC_CheckChild4Integer: |
3786 | if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, |
3787 | ChildNo: Opcode-OPC_CheckChild0Integer)) break; |
3788 | continue; |
3789 | case OPC_CheckAndImm: |
3790 | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
3791 | continue; |
3792 | case OPC_CheckOrImm: |
3793 | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
3794 | continue; |
3795 | case OPC_CheckImmAllOnesV: |
3796 | if (!ISD::isConstantSplatVectorAllOnes(N: N.getNode())) |
3797 | break; |
3798 | continue; |
3799 | case OPC_CheckImmAllZerosV: |
3800 | if (!ISD::isConstantSplatVectorAllZeros(N: N.getNode())) |
3801 | break; |
3802 | continue; |
3803 | |
3804 | case OPC_CheckFoldableChainNode: { |
3805 | assert(NodeStack.size() != 1 && "No parent node" ); |
3806 | // Verify that all intermediate nodes between the root and this one have |
3807 | // a single use (ignoring chains, which are handled in UpdateChains). |
3808 | bool HasMultipleUses = false; |
3809 | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { |
3810 | unsigned NNonChainUses = 0; |
3811 | SDNode *NS = NodeStack[i].getNode(); |
3812 | for (const SDUse &U : NS->uses()) |
3813 | if (U.getValueType() != MVT::Other) |
3814 | if (++NNonChainUses > 1) { |
3815 | HasMultipleUses = true; |
3816 | break; |
3817 | } |
3818 | if (HasMultipleUses) break; |
3819 | } |
3820 | if (HasMultipleUses) break; |
3821 | |
3822 | // Check to see that the target thinks this is profitable to fold and that |
3823 | // we can fold it without inducing cycles in the graph. |
3824 | if (!IsProfitableToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
3825 | Root: NodeToMatch) || |
3826 | !IsLegalToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
3827 | Root: NodeToMatch, OptLevel, |
3828 | IgnoreChains: true/*We validate our own chains*/)) |
3829 | break; |
3830 | |
3831 | continue; |
3832 | } |
3833 | case OPC_EmitInteger: |
3834 | case OPC_EmitInteger8: |
3835 | case OPC_EmitInteger16: |
3836 | case OPC_EmitInteger32: |
3837 | case OPC_EmitInteger64: |
3838 | case OPC_EmitStringInteger: |
3839 | case OPC_EmitStringInteger32: { |
3840 | MVT::SimpleValueType VT; |
3841 | switch (Opcode) { |
3842 | case OPC_EmitInteger8: |
3843 | VT = MVT::i8; |
3844 | break; |
3845 | case OPC_EmitInteger16: |
3846 | VT = MVT::i16; |
3847 | break; |
3848 | case OPC_EmitInteger32: |
3849 | case OPC_EmitStringInteger32: |
3850 | VT = MVT::i32; |
3851 | break; |
3852 | case OPC_EmitInteger64: |
3853 | VT = MVT::i64; |
3854 | break; |
3855 | default: |
3856 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
3857 | break; |
3858 | } |
3859 | int64_t Val = MatcherTable[MatcherIndex++]; |
3860 | if (Val & 128) |
3861 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
3862 | if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64) |
3863 | Val = decodeSignRotatedValue(V: Val); |
3864 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode *>( |
3865 | CurDAG->getSignedConstant(Val, DL: SDLoc(NodeToMatch), VT, |
3866 | /*isTarget=*/true), |
3867 | nullptr)); |
3868 | continue; |
3869 | } |
3870 | case OPC_EmitRegister: |
3871 | case OPC_EmitRegisterI32: |
3872 | case OPC_EmitRegisterI64: { |
3873 | MVT::SimpleValueType VT; |
3874 | switch (Opcode) { |
3875 | case OPC_EmitRegisterI32: |
3876 | VT = MVT::i32; |
3877 | break; |
3878 | case OPC_EmitRegisterI64: |
3879 | VT = MVT::i64; |
3880 | break; |
3881 | default: |
3882 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
3883 | break; |
3884 | } |
3885 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
3886 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode *>( |
3887 | CurDAG->getRegister(Reg: RegNo, VT), nullptr)); |
3888 | continue; |
3889 | } |
3890 | case OPC_EmitRegister2: { |
3891 | // For targets w/ more than 256 register names, the register enum |
3892 | // values are stored in two bytes in the matcher table (just like |
3893 | // opcodes). |
3894 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
3895 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
3896 | RegNo |= MatcherTable[MatcherIndex++] << 8; |
3897 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode*>( |
3898 | CurDAG->getRegister(Reg: RegNo, VT), nullptr)); |
3899 | continue; |
3900 | } |
3901 | |
3902 | case OPC_EmitConvertToTarget: |
3903 | case OPC_EmitConvertToTarget0: |
3904 | case OPC_EmitConvertToTarget1: |
3905 | case OPC_EmitConvertToTarget2: |
3906 | case OPC_EmitConvertToTarget3: |
3907 | case OPC_EmitConvertToTarget4: |
3908 | case OPC_EmitConvertToTarget5: |
3909 | case OPC_EmitConvertToTarget6: |
3910 | case OPC_EmitConvertToTarget7: { |
3911 | // Convert from IMM/FPIMM to target version. |
3912 | unsigned RecNo = Opcode == OPC_EmitConvertToTarget |
3913 | ? MatcherTable[MatcherIndex++] |
3914 | : Opcode - OPC_EmitConvertToTarget0; |
3915 | assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget" ); |
3916 | SDValue Imm = RecordedNodes[RecNo].first; |
3917 | |
3918 | if (Imm->getOpcode() == ISD::Constant) { |
3919 | const ConstantInt *Val=cast<ConstantSDNode>(Val&: Imm)->getConstantIntValue(); |
3920 | Imm = CurDAG->getTargetConstant(Val: *Val, DL: SDLoc(NodeToMatch), |
3921 | VT: Imm.getValueType()); |
3922 | } else if (Imm->getOpcode() == ISD::ConstantFP) { |
3923 | const ConstantFP *Val=cast<ConstantFPSDNode>(Val&: Imm)->getConstantFPValue(); |
3924 | Imm = CurDAG->getTargetConstantFP(Val: *Val, DL: SDLoc(NodeToMatch), |
3925 | VT: Imm.getValueType()); |
3926 | } |
3927 | |
3928 | RecordedNodes.push_back(Elt: std::make_pair(x&: Imm, y&: RecordedNodes[RecNo].second)); |
3929 | continue; |
3930 | } |
3931 | |
3932 | case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
3933 | case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 |
3934 | case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 |
3935 | // These are space-optimized forms of OPC_EmitMergeInputChains. |
3936 | assert(!InputChain.getNode() && |
3937 | "EmitMergeInputChains should be the first chain producing node" ); |
3938 | assert(ChainNodesMatched.empty() && |
3939 | "Should only have one EmitMergeInputChains per match" ); |
3940 | |
3941 | // Read all of the chained nodes. |
3942 | unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; |
3943 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
3944 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
3945 | |
3946 | // If the chained node is not the root, we can't fold it if it has |
3947 | // multiple uses. |
3948 | // FIXME: What if other value results of the node have uses not matched |
3949 | // by this pattern? |
3950 | if (ChainNodesMatched.back() != NodeToMatch && |
3951 | !RecordedNodes[RecNo].first.hasOneUse()) { |
3952 | ChainNodesMatched.clear(); |
3953 | break; |
3954 | } |
3955 | |
3956 | // Merge the input chains if they are not intra-pattern references. |
3957 | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
3958 | |
3959 | if (!InputChain.getNode()) |
3960 | break; // Failed to merge. |
3961 | continue; |
3962 | } |
3963 | |
3964 | case OPC_EmitMergeInputChains: { |
3965 | assert(!InputChain.getNode() && |
3966 | "EmitMergeInputChains should be the first chain producing node" ); |
3967 | // This node gets a list of nodes we matched in the input that have |
3968 | // chains. We want to token factor all of the input chains to these nodes |
3969 | // together. However, if any of the input chains is actually one of the |
3970 | // nodes matched in this pattern, then we have an intra-match reference. |
3971 | // Ignore these because the newly token factored chain should not refer to |
3972 | // the old nodes. |
3973 | unsigned NumChains = MatcherTable[MatcherIndex++]; |
3974 | assert(NumChains != 0 && "Can't TF zero chains" ); |
3975 | |
3976 | assert(ChainNodesMatched.empty() && |
3977 | "Should only have one EmitMergeInputChains per match" ); |
3978 | |
3979 | // Read all of the chained nodes. |
3980 | for (unsigned i = 0; i != NumChains; ++i) { |
3981 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
3982 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
3983 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
3984 | |
3985 | // If the chained node is not the root, we can't fold it if it has |
3986 | // multiple uses. |
3987 | // FIXME: What if other value results of the node have uses not matched |
3988 | // by this pattern? |
3989 | if (ChainNodesMatched.back() != NodeToMatch && |
3990 | !RecordedNodes[RecNo].first.hasOneUse()) { |
3991 | ChainNodesMatched.clear(); |
3992 | break; |
3993 | } |
3994 | } |
3995 | |
3996 | // If the inner loop broke out, the match fails. |
3997 | if (ChainNodesMatched.empty()) |
3998 | break; |
3999 | |
4000 | // Merge the input chains if they are not intra-pattern references. |
4001 | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
4002 | |
4003 | if (!InputChain.getNode()) |
4004 | break; // Failed to merge. |
4005 | |
4006 | continue; |
4007 | } |
4008 | |
4009 | case OPC_EmitCopyToReg: |
4010 | case OPC_EmitCopyToReg0: |
4011 | case OPC_EmitCopyToReg1: |
4012 | case OPC_EmitCopyToReg2: |
4013 | case OPC_EmitCopyToReg3: |
4014 | case OPC_EmitCopyToReg4: |
4015 | case OPC_EmitCopyToReg5: |
4016 | case OPC_EmitCopyToReg6: |
4017 | case OPC_EmitCopyToReg7: |
4018 | case OPC_EmitCopyToRegTwoByte: { |
4019 | unsigned RecNo = |
4020 | Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7 |
4021 | ? Opcode - OPC_EmitCopyToReg0 |
4022 | : MatcherTable[MatcherIndex++]; |
4023 | assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg" ); |
4024 | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
4025 | if (Opcode == OPC_EmitCopyToRegTwoByte) |
4026 | DestPhysReg |= MatcherTable[MatcherIndex++] << 8; |
4027 | |
4028 | if (!InputChain.getNode()) |
4029 | InputChain = CurDAG->getEntryNode(); |
4030 | |
4031 | InputChain = CurDAG->getCopyToReg(Chain: InputChain, dl: SDLoc(NodeToMatch), |
4032 | Reg: DestPhysReg, N: RecordedNodes[RecNo].first, |
4033 | Glue: InputGlue); |
4034 | |
4035 | InputGlue = InputChain.getValue(R: 1); |
4036 | continue; |
4037 | } |
4038 | |
4039 | case OPC_EmitNodeXForm: { |
4040 | unsigned XFormNo = MatcherTable[MatcherIndex++]; |
4041 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
4042 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm" ); |
4043 | SDValue Res = RunSDNodeXForm(V: RecordedNodes[RecNo].first, XFormNo); |
4044 | RecordedNodes.push_back(Elt: std::pair<SDValue,SDNode*>(Res, nullptr)); |
4045 | continue; |
4046 | } |
4047 | case OPC_Coverage: { |
4048 | // This is emitted right before MorphNode/EmitNode. |
4049 | // So it should be safe to assume that this node has been selected |
4050 | unsigned index = MatcherTable[MatcherIndex++]; |
4051 | index |= (MatcherTable[MatcherIndex++] << 8); |
4052 | index |= (MatcherTable[MatcherIndex++] << 16); |
4053 | index |= (MatcherTable[MatcherIndex++] << 24); |
4054 | dbgs() << "COVERED: " << getPatternForIndex(index) << "\n" ; |
4055 | dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n" ; |
4056 | continue; |
4057 | } |
4058 | |
4059 | case OPC_EmitNode: |
4060 | case OPC_EmitNode0: |
4061 | case OPC_EmitNode1: |
4062 | case OPC_EmitNode2: |
4063 | case OPC_EmitNode0None: |
4064 | case OPC_EmitNode1None: |
4065 | case OPC_EmitNode2None: |
4066 | case OPC_EmitNode0Chain: |
4067 | case OPC_EmitNode1Chain: |
4068 | case OPC_EmitNode2Chain: |
4069 | case OPC_MorphNodeTo: |
4070 | case OPC_MorphNodeTo0: |
4071 | case OPC_MorphNodeTo1: |
4072 | case OPC_MorphNodeTo2: |
4073 | case OPC_MorphNodeTo0None: |
4074 | case OPC_MorphNodeTo1None: |
4075 | case OPC_MorphNodeTo2None: |
4076 | case OPC_MorphNodeTo0Chain: |
4077 | case OPC_MorphNodeTo1Chain: |
4078 | case OPC_MorphNodeTo2Chain: |
4079 | case OPC_MorphNodeTo0GlueInput: |
4080 | case OPC_MorphNodeTo1GlueInput: |
4081 | case OPC_MorphNodeTo2GlueInput: |
4082 | case OPC_MorphNodeTo0GlueOutput: |
4083 | case OPC_MorphNodeTo1GlueOutput: |
4084 | case OPC_MorphNodeTo2GlueOutput: { |
4085 | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
4086 | TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
4087 | unsigned EmitNodeInfo; |
4088 | if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) { |
4089 | if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
4090 | EmitNodeInfo = OPFL_Chain; |
4091 | else |
4092 | EmitNodeInfo = OPFL_None; |
4093 | } else if (Opcode >= OPC_MorphNodeTo0None && |
4094 | Opcode <= OPC_MorphNodeTo2GlueOutput) { |
4095 | if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain) |
4096 | EmitNodeInfo = OPFL_Chain; |
4097 | else if (Opcode >= OPC_MorphNodeTo0GlueInput && |
4098 | Opcode <= OPC_MorphNodeTo2GlueInput) |
4099 | EmitNodeInfo = OPFL_GlueInput; |
4100 | else if (Opcode >= OPC_MorphNodeTo0GlueOutput && |
4101 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
4102 | EmitNodeInfo = OPFL_GlueOutput; |
4103 | else |
4104 | EmitNodeInfo = OPFL_None; |
4105 | } else |
4106 | EmitNodeInfo = MatcherTable[MatcherIndex++]; |
4107 | // Get the result VT list. |
4108 | unsigned NumVTs; |
4109 | // If this is one of the compressed forms, get the number of VTs based |
4110 | // on the Opcode. Otherwise read the next byte from the table. |
4111 | if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) |
4112 | NumVTs = Opcode - OPC_MorphNodeTo0; |
4113 | else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None) |
4114 | NumVTs = Opcode - OPC_MorphNodeTo0None; |
4115 | else if (Opcode >= OPC_MorphNodeTo0Chain && |
4116 | Opcode <= OPC_MorphNodeTo2Chain) |
4117 | NumVTs = Opcode - OPC_MorphNodeTo0Chain; |
4118 | else if (Opcode >= OPC_MorphNodeTo0GlueInput && |
4119 | Opcode <= OPC_MorphNodeTo2GlueInput) |
4120 | NumVTs = Opcode - OPC_MorphNodeTo0GlueInput; |
4121 | else if (Opcode >= OPC_MorphNodeTo0GlueOutput && |
4122 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
4123 | NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput; |
4124 | else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) |
4125 | NumVTs = Opcode - OPC_EmitNode0; |
4126 | else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None) |
4127 | NumVTs = Opcode - OPC_EmitNode0None; |
4128 | else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
4129 | NumVTs = Opcode - OPC_EmitNode0Chain; |
4130 | else |
4131 | NumVTs = MatcherTable[MatcherIndex++]; |
4132 | SmallVector<EVT, 4> VTs; |
4133 | for (unsigned i = 0; i != NumVTs; ++i) { |
4134 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
4135 | if (VT == MVT::iPTR) |
4136 | VT = TLI->getPointerTy(DL: CurDAG->getDataLayout()).SimpleTy; |
4137 | VTs.push_back(Elt: VT); |
4138 | } |
4139 | |
4140 | if (EmitNodeInfo & OPFL_Chain) |
4141 | VTs.push_back(Elt: MVT::Other); |
4142 | if (EmitNodeInfo & OPFL_GlueOutput) |
4143 | VTs.push_back(Elt: MVT::Glue); |
4144 | |
4145 | // This is hot code, so optimize the two most common cases of 1 and 2 |
4146 | // results. |
4147 | SDVTList VTList; |
4148 | if (VTs.size() == 1) |
4149 | VTList = CurDAG->getVTList(VT: VTs[0]); |
4150 | else if (VTs.size() == 2) |
4151 | VTList = CurDAG->getVTList(VT1: VTs[0], VT2: VTs[1]); |
4152 | else |
4153 | VTList = CurDAG->getVTList(VTs); |
4154 | |
4155 | // Get the operand list. |
4156 | unsigned NumOps = MatcherTable[MatcherIndex++]; |
4157 | SmallVector<SDValue, 8> Ops; |
4158 | for (unsigned i = 0; i != NumOps; ++i) { |
4159 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
4160 | if (RecNo & 128) |
4161 | RecNo = GetVBR(Val: RecNo, MatcherTable, Idx&: MatcherIndex); |
4162 | |
4163 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode" ); |
4164 | Ops.push_back(Elt: RecordedNodes[RecNo].first); |
4165 | } |
4166 | |
4167 | // If there are variadic operands to add, handle them now. |
4168 | if (EmitNodeInfo & OPFL_VariadicInfo) { |
4169 | // Determine the start index to copy from. |
4170 | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(Flags: EmitNodeInfo); |
4171 | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
4172 | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
4173 | "Invalid variadic node" ); |
4174 | // Copy all of the variadic operands, not including a potential glue |
4175 | // input. |
4176 | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
4177 | i != e; ++i) { |
4178 | SDValue V = NodeToMatch->getOperand(Num: i); |
4179 | if (V.getValueType() == MVT::Glue) break; |
4180 | Ops.push_back(Elt: V); |
4181 | } |
4182 | } |
4183 | |
4184 | // If this has chain/glue inputs, add them. |
4185 | if (EmitNodeInfo & OPFL_Chain) |
4186 | Ops.push_back(Elt: InputChain); |
4187 | if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) |
4188 | Ops.push_back(Elt: InputGlue); |
4189 | |
4190 | // Check whether any matched node could raise an FP exception. Since all |
4191 | // such nodes must have a chain, it suffices to check ChainNodesMatched. |
4192 | // We need to perform this check before potentially modifying one of the |
4193 | // nodes via MorphNode. |
4194 | bool MayRaiseFPException = |
4195 | llvm::any_of(Range&: ChainNodesMatched, P: [this](SDNode *N) { |
4196 | return mayRaiseFPException(Node: N) && !N->getFlags().hasNoFPExcept(); |
4197 | }); |
4198 | |
4199 | // Create the node. |
4200 | MachineSDNode *Res = nullptr; |
4201 | bool IsMorphNodeTo = |
4202 | Opcode == OPC_MorphNodeTo || |
4203 | (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput); |
4204 | if (!IsMorphNodeTo) { |
4205 | // If this is a normal EmitNode command, just create the new node and |
4206 | // add the results to the RecordedNodes list. |
4207 | Res = CurDAG->getMachineNode(Opcode: TargetOpc, dl: SDLoc(NodeToMatch), |
4208 | VTs: VTList, Ops); |
4209 | |
4210 | // Add all the non-glue/non-chain results to the RecordedNodes list. |
4211 | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
4212 | if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; |
4213 | RecordedNodes.push_back(Elt: std::pair<SDValue,SDNode*>(SDValue(Res, i), |
4214 | nullptr)); |
4215 | } |
4216 | } else { |
4217 | assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && |
4218 | "NodeToMatch was removed partway through selection" ); |
4219 | SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, |
4220 | SDNode *E) { |
4221 | CurDAG->salvageDebugInfo(N&: *N); |
4222 | auto &Chain = ChainNodesMatched; |
4223 | assert((!E || !is_contained(Chain, N)) && |
4224 | "Chain node replaced during MorphNode" ); |
4225 | llvm::erase(C&: Chain, V: N); |
4226 | }); |
4227 | Res = cast<MachineSDNode>(Val: MorphNode(Node: NodeToMatch, TargetOpc, VTList, |
4228 | Ops, EmitNodeInfo)); |
4229 | } |
4230 | |
4231 | // Set the NoFPExcept flag when no original matched node could |
4232 | // raise an FP exception, but the new node potentially might. |
4233 | if (!MayRaiseFPException && mayRaiseFPException(Node: Res)) |
4234 | Res->setFlags(Res->getFlags() | SDNodeFlags::NoFPExcept); |
4235 | |
4236 | // If the node had chain/glue results, update our notion of the current |
4237 | // chain and glue. |
4238 | if (EmitNodeInfo & OPFL_GlueOutput) { |
4239 | InputGlue = SDValue(Res, VTs.size()-1); |
4240 | if (EmitNodeInfo & OPFL_Chain) |
4241 | InputChain = SDValue(Res, VTs.size()-2); |
4242 | } else if (EmitNodeInfo & OPFL_Chain) |
4243 | InputChain = SDValue(Res, VTs.size()-1); |
4244 | |
4245 | // If the OPFL_MemRefs glue is set on this node, slap all of the |
4246 | // accumulated memrefs onto it. |
4247 | // |
4248 | // FIXME: This is vastly incorrect for patterns with multiple outputs |
4249 | // instructions that access memory and for ComplexPatterns that match |
4250 | // loads. |
4251 | if (EmitNodeInfo & OPFL_MemRefs) { |
4252 | // Only attach load or store memory operands if the generated |
4253 | // instruction may load or store. |
4254 | const MCInstrDesc &MCID = TII->get(Opcode: TargetOpc); |
4255 | bool mayLoad = MCID.mayLoad(); |
4256 | bool mayStore = MCID.mayStore(); |
4257 | |
4258 | // We expect to have relatively few of these so just filter them into a |
4259 | // temporary buffer so that we can easily add them to the instruction. |
4260 | SmallVector<MachineMemOperand *, 4> FilteredMemRefs; |
4261 | for (MachineMemOperand *MMO : MatchedMemRefs) { |
4262 | if (MMO->isLoad()) { |
4263 | if (mayLoad) |
4264 | FilteredMemRefs.push_back(Elt: MMO); |
4265 | } else if (MMO->isStore()) { |
4266 | if (mayStore) |
4267 | FilteredMemRefs.push_back(Elt: MMO); |
4268 | } else { |
4269 | FilteredMemRefs.push_back(Elt: MMO); |
4270 | } |
4271 | } |
4272 | |
4273 | CurDAG->setNodeMemRefs(N: Res, NewMemRefs: FilteredMemRefs); |
4274 | } |
4275 | |
4276 | LLVM_DEBUG({ |
4277 | if (!MatchedMemRefs.empty() && Res->memoperands_empty()) |
4278 | dbgs() << " Dropping mem operands\n" ; |
4279 | dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created" ) << " node: " ; |
4280 | Res->dump(CurDAG); |
4281 | }); |
4282 | |
4283 | // If this was a MorphNodeTo then we're completely done! |
4284 | if (IsMorphNodeTo) { |
4285 | // Update chain uses. |
4286 | UpdateChains(NodeToMatch: Res, InputChain, ChainNodesMatched, isMorphNodeTo: true); |
4287 | return; |
4288 | } |
4289 | continue; |
4290 | } |
4291 | |
4292 | case OPC_CompleteMatch: { |
4293 | // The match has been completed, and any new nodes (if any) have been |
4294 | // created. Patch up references to the matched dag to use the newly |
4295 | // created nodes. |
4296 | unsigned NumResults = MatcherTable[MatcherIndex++]; |
4297 | |
4298 | for (unsigned i = 0; i != NumResults; ++i) { |
4299 | unsigned ResSlot = MatcherTable[MatcherIndex++]; |
4300 | if (ResSlot & 128) |
4301 | ResSlot = GetVBR(Val: ResSlot, MatcherTable, Idx&: MatcherIndex); |
4302 | |
4303 | assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch" ); |
4304 | SDValue Res = RecordedNodes[ResSlot].first; |
4305 | |
4306 | assert(i < NodeToMatch->getNumValues() && |
4307 | NodeToMatch->getValueType(i) != MVT::Other && |
4308 | NodeToMatch->getValueType(i) != MVT::Glue && |
4309 | "Invalid number of results to complete!" ); |
4310 | assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
4311 | NodeToMatch->getValueType(i) == MVT::iPTR || |
4312 | Res.getValueType() == MVT::iPTR || |
4313 | NodeToMatch->getValueType(i).getSizeInBits() == |
4314 | Res.getValueSizeInBits()) && |
4315 | "invalid replacement" ); |
4316 | ReplaceUses(F: SDValue(NodeToMatch, i), T: Res); |
4317 | } |
4318 | |
4319 | // Update chain uses. |
4320 | UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, isMorphNodeTo: false); |
4321 | |
4322 | // If the root node defines glue, we need to update it to the glue result. |
4323 | // TODO: This never happens in our tests and I think it can be removed / |
4324 | // replaced with an assert, but if we do it this the way the change is |
4325 | // NFC. |
4326 | if (NodeToMatch->getValueType(ResNo: NodeToMatch->getNumValues() - 1) == |
4327 | MVT::Glue && |
4328 | InputGlue.getNode()) |
4329 | ReplaceUses(F: SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), |
4330 | T: InputGlue); |
4331 | |
4332 | assert(NodeToMatch->use_empty() && |
4333 | "Didn't replace all uses of the node?" ); |
4334 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
4335 | |
4336 | return; |
4337 | } |
4338 | } |
4339 | |
4340 | // If the code reached this point, then the match failed. See if there is |
4341 | // another child to try in the current 'Scope', otherwise pop it until we |
4342 | // find a case to check. |
4343 | LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex |
4344 | << "\n" ); |
4345 | ++NumDAGIselRetries; |
4346 | while (true) { |
4347 | if (MatchScopes.empty()) { |
4348 | CannotYetSelect(N: NodeToMatch); |
4349 | return; |
4350 | } |
4351 | |
4352 | // Restore the interpreter state back to the point where the scope was |
4353 | // formed. |
4354 | MatchScope &LastScope = MatchScopes.back(); |
4355 | RecordedNodes.resize(N: LastScope.NumRecordedNodes); |
4356 | NodeStack.clear(); |
4357 | NodeStack.append(in_start: LastScope.NodeStack.begin(), in_end: LastScope.NodeStack.end()); |
4358 | N = NodeStack.back(); |
4359 | |
4360 | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
4361 | MatchedMemRefs.resize(N: LastScope.NumMatchedMemRefs); |
4362 | MatcherIndex = LastScope.FailIndex; |
4363 | |
4364 | LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n" ); |
4365 | |
4366 | InputChain = LastScope.InputChain; |
4367 | InputGlue = LastScope.InputGlue; |
4368 | if (!LastScope.HasChainNodesMatched) |
4369 | ChainNodesMatched.clear(); |
4370 | |
4371 | // Check to see what the offset is at the new MatcherIndex. If it is zero |
4372 | // we have reached the end of this scope, otherwise we have another child |
4373 | // in the current scope to try. |
4374 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
4375 | if (NumToSkip & 128) |
4376 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
4377 | |
4378 | // If we have another child in this scope to match, update FailIndex and |
4379 | // try it. |
4380 | if (NumToSkip != 0) { |
4381 | LastScope.FailIndex = MatcherIndex+NumToSkip; |
4382 | break; |
4383 | } |
4384 | |
4385 | // End of this scope, pop it and try the next child in the containing |
4386 | // scope. |
4387 | MatchScopes.pop_back(); |
4388 | } |
4389 | } |
4390 | } |
4391 | |
4392 | /// Return whether the node may raise an FP exception. |
4393 | bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { |
4394 | // For machine opcodes, consult the MCID flag. |
4395 | if (N->isMachineOpcode()) { |
4396 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
4397 | return MCID.mayRaiseFPException(); |
4398 | } |
4399 | |
4400 | // For ISD opcodes, only StrictFP opcodes may raise an FP |
4401 | // exception. |
4402 | if (N->isTargetOpcode()) { |
4403 | const SelectionDAGTargetInfo &TSI = CurDAG->getSelectionDAGInfo(); |
4404 | return TSI.mayRaiseFPException(Opcode: N->getOpcode()); |
4405 | } |
4406 | return N->isStrictFPOpcode(); |
4407 | } |
4408 | |
4409 | bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { |
4410 | assert(N->getOpcode() == ISD::OR && "Unexpected opcode" ); |
4411 | auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
4412 | if (!C) |
4413 | return false; |
4414 | |
4415 | // Detect when "or" is used to add an offset to a stack object. |
4416 | if (auto *FN = dyn_cast<FrameIndexSDNode>(Val: N->getOperand(Num: 0))) { |
4417 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
4418 | Align A = MFI.getObjectAlign(ObjectIdx: FN->getIndex()); |
4419 | int32_t Off = C->getSExtValue(); |
4420 | // If the alleged offset fits in the zero bits guaranteed by |
4421 | // the alignment, then this or is really an add. |
4422 | return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); |
4423 | } |
4424 | return false; |
4425 | } |
4426 | |
4427 | void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
4428 | std::string msg; |
4429 | raw_string_ostream Msg(msg); |
4430 | Msg << "Cannot select: " ; |
4431 | |
4432 | Msg.enable_colors(enable: errs().has_colors()); |
4433 | |
4434 | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
4435 | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
4436 | N->getOpcode() != ISD::INTRINSIC_VOID) { |
4437 | N->printrFull(O&: Msg, G: CurDAG); |
4438 | Msg << "\nIn function: " << MF->getName(); |
4439 | } else { |
4440 | bool HasInputChain = N->getOperand(Num: 0).getValueType() == MVT::Other; |
4441 | unsigned iid = N->getConstantOperandVal(Num: HasInputChain); |
4442 | if (iid < Intrinsic::num_intrinsics) |
4443 | Msg << "intrinsic %" << Intrinsic::getBaseName(id: (Intrinsic::ID)iid); |
4444 | else |
4445 | Msg << "unknown intrinsic #" << iid; |
4446 | } |
4447 | report_fatal_error(reason: Twine(msg)); |
4448 | } |
4449 | |