| 1 | //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements the SelectionDAGISel class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 14 | #include "ScheduleDAGSDNodes.h" |
| 15 | #include "SelectionDAGBuilder.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/PostOrderIterator.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/ADT/StringRef.h" |
| 24 | #include "llvm/Analysis/AliasAnalysis.h" |
| 25 | #include "llvm/Analysis/AssumptionCache.h" |
| 26 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 27 | #include "llvm/Analysis/CFG.h" |
| 28 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| 29 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 30 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 32 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 33 | #include "llvm/Analysis/UniformityAnalysis.h" |
| 34 | #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" |
| 35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
| 36 | #include "llvm/CodeGen/FastISel.h" |
| 37 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 38 | #include "llvm/CodeGen/GCMetadata.h" |
| 39 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 40 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 41 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 42 | #include "llvm/CodeGen/MachineFunction.h" |
| 43 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 44 | #include "llvm/CodeGen/MachineInstr.h" |
| 45 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 46 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 47 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 48 | #include "llvm/CodeGen/MachineOperand.h" |
| 49 | #include "llvm/CodeGen/MachinePassRegistry.h" |
| 50 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 51 | #include "llvm/CodeGen/SchedulerRegistry.h" |
| 52 | #include "llvm/CodeGen/SelectionDAG.h" |
| 53 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 54 | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
| 55 | #include "llvm/CodeGen/StackMaps.h" |
| 56 | #include "llvm/CodeGen/StackProtector.h" |
| 57 | #include "llvm/CodeGen/SwiftErrorValueTracking.h" |
| 58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 59 | #include "llvm/CodeGen/TargetLowering.h" |
| 60 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 61 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 62 | #include "llvm/CodeGen/ValueTypes.h" |
| 63 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 64 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 65 | #include "llvm/IR/BasicBlock.h" |
| 66 | #include "llvm/IR/Constants.h" |
| 67 | #include "llvm/IR/DataLayout.h" |
| 68 | #include "llvm/IR/DebugInfo.h" |
| 69 | #include "llvm/IR/DebugInfoMetadata.h" |
| 70 | #include "llvm/IR/DebugLoc.h" |
| 71 | #include "llvm/IR/DiagnosticInfo.h" |
| 72 | #include "llvm/IR/EHPersonalities.h" |
| 73 | #include "llvm/IR/Function.h" |
| 74 | #include "llvm/IR/InlineAsm.h" |
| 75 | #include "llvm/IR/InstIterator.h" |
| 76 | #include "llvm/IR/Instruction.h" |
| 77 | #include "llvm/IR/Instructions.h" |
| 78 | #include "llvm/IR/IntrinsicInst.h" |
| 79 | #include "llvm/IR/Intrinsics.h" |
| 80 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
| 81 | #include "llvm/IR/Metadata.h" |
| 82 | #include "llvm/IR/Module.h" |
| 83 | #include "llvm/IR/PrintPasses.h" |
| 84 | #include "llvm/IR/Statepoint.h" |
| 85 | #include "llvm/IR/Type.h" |
| 86 | #include "llvm/IR/User.h" |
| 87 | #include "llvm/IR/Value.h" |
| 88 | #include "llvm/InitializePasses.h" |
| 89 | #include "llvm/MC/MCInstrDesc.h" |
| 90 | #include "llvm/Pass.h" |
| 91 | #include "llvm/Support/BranchProbability.h" |
| 92 | #include "llvm/Support/Casting.h" |
| 93 | #include "llvm/Support/CodeGen.h" |
| 94 | #include "llvm/Support/CommandLine.h" |
| 95 | #include "llvm/Support/Compiler.h" |
| 96 | #include "llvm/Support/Debug.h" |
| 97 | #include "llvm/Support/ErrorHandling.h" |
| 98 | #include "llvm/Support/KnownBits.h" |
| 99 | #include "llvm/Support/Timer.h" |
| 100 | #include "llvm/Support/raw_ostream.h" |
| 101 | #include "llvm/Target/TargetMachine.h" |
| 102 | #include "llvm/Target/TargetOptions.h" |
| 103 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 104 | #include <cassert> |
| 105 | #include <cstdint> |
| 106 | #include <iterator> |
| 107 | #include <limits> |
| 108 | #include <memory> |
| 109 | #include <optional> |
| 110 | #include <string> |
| 111 | #include <utility> |
| 112 | #include <vector> |
| 113 | |
| 114 | using namespace llvm; |
| 115 | |
| 116 | #define DEBUG_TYPE "isel" |
| 117 | #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump" |
| 118 | |
| 119 | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on" ); |
| 120 | STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected" ); |
| 121 | STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel" ); |
| 122 | STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG" ); |
| 123 | STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path" ); |
| 124 | STATISTIC(NumEntryBlocks, "Number of entry blocks encountered" ); |
| 125 | STATISTIC(NumFastIselFailLowerArguments, |
| 126 | "Number of entry blocks where fast isel failed to lower arguments" ); |
| 127 | |
| 128 | static cl::opt<int> EnableFastISelAbort( |
| 129 | "fast-isel-abort" , cl::Hidden, |
| 130 | cl::desc("Enable abort calls when \"fast\" instruction selection " |
| 131 | "fails to lower an instruction: 0 disable the abort, 1 will " |
| 132 | "abort but for args, calls and terminators, 2 will also " |
| 133 | "abort for argument lowering, and 3 will never fallback " |
| 134 | "to SelectionDAG." )); |
| 135 | |
| 136 | static cl::opt<bool> EnableFastISelFallbackReport( |
| 137 | "fast-isel-report-on-fallback" , cl::Hidden, |
| 138 | cl::desc("Emit a diagnostic when \"fast\" instruction selection " |
| 139 | "falls back to SelectionDAG." )); |
| 140 | |
| 141 | static cl::opt<bool> |
| 142 | UseMBPI("use-mbpi" , |
| 143 | cl::desc("use Machine Branch Probability Info" ), |
| 144 | cl::init(Val: true), cl::Hidden); |
| 145 | |
| 146 | #ifndef NDEBUG |
| 147 | static cl::opt<std::string> |
| 148 | FilterDAGBasicBlockName("filter-view-dags" , cl::Hidden, |
| 149 | cl::desc("Only display the basic block whose name " |
| 150 | "matches this for all view-*-dags options" )); |
| 151 | static cl::opt<bool> |
| 152 | ViewDAGCombine1("view-dag-combine1-dags" , cl::Hidden, |
| 153 | cl::desc("Pop up a window to show dags before the first " |
| 154 | "dag combine pass" )); |
| 155 | static cl::opt<bool> |
| 156 | ViewLegalizeTypesDAGs("view-legalize-types-dags" , cl::Hidden, |
| 157 | cl::desc("Pop up a window to show dags before legalize types" )); |
| 158 | static cl::opt<bool> |
| 159 | ViewDAGCombineLT("view-dag-combine-lt-dags" , cl::Hidden, |
| 160 | cl::desc("Pop up a window to show dags before the post " |
| 161 | "legalize types dag combine pass" )); |
| 162 | static cl::opt<bool> |
| 163 | ViewLegalizeDAGs("view-legalize-dags" , cl::Hidden, |
| 164 | cl::desc("Pop up a window to show dags before legalize" )); |
| 165 | static cl::opt<bool> |
| 166 | ViewDAGCombine2("view-dag-combine2-dags" , cl::Hidden, |
| 167 | cl::desc("Pop up a window to show dags before the second " |
| 168 | "dag combine pass" )); |
| 169 | static cl::opt<bool> |
| 170 | ViewISelDAGs("view-isel-dags" , cl::Hidden, |
| 171 | cl::desc("Pop up a window to show isel dags as they are selected" )); |
| 172 | static cl::opt<bool> |
| 173 | ViewSchedDAGs("view-sched-dags" , cl::Hidden, |
| 174 | cl::desc("Pop up a window to show sched dags as they are processed" )); |
| 175 | static cl::opt<bool> |
| 176 | ViewSUnitDAGs("view-sunit-dags" , cl::Hidden, |
| 177 | cl::desc("Pop up a window to show SUnit dags after they are processed" )); |
| 178 | #else |
| 179 | static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, |
| 180 | ViewDAGCombineLT = false, ViewLegalizeDAGs = false, |
| 181 | ViewDAGCombine2 = false, ViewISelDAGs = false, |
| 182 | ViewSchedDAGs = false, ViewSUnitDAGs = false; |
| 183 | #endif |
| 184 | |
| 185 | #ifndef NDEBUG |
| 186 | #define ISEL_DUMP(X) \ |
| 187 | do { \ |
| 188 | if (llvm::DebugFlag && \ |
| 189 | (isCurrentDebugType(DEBUG_TYPE) || \ |
| 190 | (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \ |
| 191 | X; \ |
| 192 | } \ |
| 193 | } while (false) |
| 194 | #else |
| 195 | #define ISEL_DUMP(X) do { } while (false) |
| 196 | #endif |
| 197 | |
| 198 | //===---------------------------------------------------------------------===// |
| 199 | /// |
| 200 | /// RegisterScheduler class - Track the registration of instruction schedulers. |
| 201 | /// |
| 202 | //===---------------------------------------------------------------------===// |
| 203 | MachinePassRegistry<RegisterScheduler::FunctionPassCtor> |
| 204 | RegisterScheduler::Registry; |
| 205 | |
| 206 | //===---------------------------------------------------------------------===// |
| 207 | /// |
| 208 | /// ISHeuristic command line option for instruction schedulers. |
| 209 | /// |
| 210 | //===---------------------------------------------------------------------===// |
| 211 | static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| 212 | RegisterPassParser<RegisterScheduler>> |
| 213 | ISHeuristic("pre-RA-sched" , |
| 214 | cl::init(Val: &createDefaultScheduler), cl::Hidden, |
| 215 | cl::desc("Instruction schedulers available (before register" |
| 216 | " allocation):" )); |
| 217 | |
| 218 | static RegisterScheduler |
| 219 | defaultListDAGScheduler("default" , "Best scheduler for the target" , |
| 220 | createDefaultScheduler); |
| 221 | |
| 222 | static bool dontUseFastISelFor(const Function &Fn) { |
| 223 | // Don't enable FastISel for functions with swiftasync Arguments. |
| 224 | // Debug info on those is reliant on good Argument lowering, and FastISel is |
| 225 | // not capable of lowering the entire function. Mixing the two selectors tend |
| 226 | // to result in poor lowering of Arguments. |
| 227 | return any_of(Range: Fn.args(), P: [](const Argument &Arg) { |
| 228 | return Arg.hasAttribute(Kind: Attribute::AttrKind::SwiftAsync); |
| 229 | }); |
| 230 | } |
| 231 | |
| 232 | namespace llvm { |
| 233 | |
| 234 | //===--------------------------------------------------------------------===// |
| 235 | /// This class is used by SelectionDAGISel to temporarily override |
| 236 | /// the optimization level on a per-function basis. |
| 237 | class OptLevelChanger { |
| 238 | SelectionDAGISel &IS; |
| 239 | CodeGenOptLevel SavedOptLevel; |
| 240 | bool SavedFastISel; |
| 241 | |
| 242 | public: |
| 243 | OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel) |
| 244 | : IS(ISel) { |
| 245 | SavedOptLevel = IS.OptLevel; |
| 246 | SavedFastISel = IS.TM.Options.EnableFastISel; |
| 247 | if (NewOptLevel != SavedOptLevel) { |
| 248 | IS.OptLevel = NewOptLevel; |
| 249 | IS.TM.setOptLevel(NewOptLevel); |
| 250 | LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " |
| 251 | << IS.MF->getFunction().getName() << "\n" ); |
| 252 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel) |
| 253 | << " ; After: -O" << static_cast<int>(NewOptLevel) |
| 254 | << "\n" ); |
| 255 | if (NewOptLevel == CodeGenOptLevel::None) |
| 256 | IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); |
| 257 | } |
| 258 | if (dontUseFastISelFor(Fn: IS.MF->getFunction())) |
| 259 | IS.TM.setFastISel(false); |
| 260 | LLVM_DEBUG( |
| 261 | dbgs() << "\tFastISel is " |
| 262 | << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled" ) |
| 263 | << "\n" ); |
| 264 | } |
| 265 | |
| 266 | ~OptLevelChanger() { |
| 267 | if (IS.OptLevel == SavedOptLevel) |
| 268 | return; |
| 269 | LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " |
| 270 | << IS.MF->getFunction().getName() << "\n" ); |
| 271 | LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel) |
| 272 | << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n" ); |
| 273 | IS.OptLevel = SavedOptLevel; |
| 274 | IS.TM.setOptLevel(SavedOptLevel); |
| 275 | IS.TM.setFastISel(SavedFastISel); |
| 276 | } |
| 277 | }; |
| 278 | |
| 279 | //===--------------------------------------------------------------------===// |
| 280 | /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| 281 | /// for the target. |
| 282 | ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS, |
| 283 | CodeGenOptLevel OptLevel) { |
| 284 | const TargetLowering *TLI = IS->TLI; |
| 285 | const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); |
| 286 | |
| 287 | // Try first to see if the Target has its own way of selecting a scheduler |
| 288 | if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { |
| 289 | return SchedulerCtor(IS, OptLevel); |
| 290 | } |
| 291 | |
| 292 | if (OptLevel == CodeGenOptLevel::None || |
| 293 | (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || |
| 294 | TLI->getSchedulingPreference() == Sched::Source) |
| 295 | return createSourceListDAGScheduler(IS, OptLevel); |
| 296 | if (TLI->getSchedulingPreference() == Sched::RegPressure) |
| 297 | return createBURRListDAGScheduler(IS, OptLevel); |
| 298 | if (TLI->getSchedulingPreference() == Sched::Hybrid) |
| 299 | return createHybridListDAGScheduler(IS, OptLevel); |
| 300 | if (TLI->getSchedulingPreference() == Sched::VLIW) |
| 301 | return createVLIWDAGScheduler(IS, OptLevel); |
| 302 | if (TLI->getSchedulingPreference() == Sched::Fast) |
| 303 | return createFastDAGScheduler(IS, OptLevel); |
| 304 | if (TLI->getSchedulingPreference() == Sched::Linearize) |
| 305 | return createDAGLinearizer(IS, OptLevel); |
| 306 | assert(TLI->getSchedulingPreference() == Sched::ILP && |
| 307 | "Unknown sched type!" ); |
| 308 | return createILPListDAGScheduler(IS, OptLevel); |
| 309 | } |
| 310 | |
| 311 | } // end namespace llvm |
| 312 | |
| 313 | MachineBasicBlock * |
| 314 | TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 315 | MachineBasicBlock *MBB) const { |
| 316 | #ifndef NDEBUG |
| 317 | dbgs() << "If a target marks an instruction with " |
| 318 | "'usesCustomInserter', it must implement " |
| 319 | "TargetLowering::EmitInstrWithCustomInserter!\n" ; |
| 320 | #endif |
| 321 | llvm_unreachable(nullptr); |
| 322 | } |
| 323 | |
| 324 | void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| 325 | SDNode *Node) const { |
| 326 | assert(!MI.hasPostISelHook() && |
| 327 | "If a target marks an instruction with 'hasPostISelHook', " |
| 328 | "it must implement TargetLowering::AdjustInstrPostInstrSelection!" ); |
| 329 | } |
| 330 | |
| 331 | //===----------------------------------------------------------------------===// |
| 332 | // SelectionDAGISel code |
| 333 | //===----------------------------------------------------------------------===// |
| 334 | |
| 335 | SelectionDAGISelLegacy::SelectionDAGISelLegacy( |
| 336 | char &ID, std::unique_ptr<SelectionDAGISel> S) |
| 337 | : MachineFunctionPass(ID), Selector(std::move(S)) { |
| 338 | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
| 339 | initializeBranchProbabilityInfoWrapperPassPass( |
| 340 | *PassRegistry::getPassRegistry()); |
| 341 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 342 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 343 | } |
| 344 | |
| 345 | bool SelectionDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 346 | // If we already selected that function, we do not need to run SDISel. |
| 347 | if (MF.getProperties().hasSelected()) |
| 348 | return false; |
| 349 | |
| 350 | // Do some sanity-checking on the command-line options. |
| 351 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
| 352 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
| 353 | |
| 354 | // Decide what flavour of variable location debug-info will be used, before |
| 355 | // we change the optimisation level. |
| 356 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
| 357 | |
| 358 | // Reset the target options before resetting the optimization |
| 359 | // level below. |
| 360 | // FIXME: This is a horrible hack and should be processed via |
| 361 | // codegen looking at the optimization level explicitly when |
| 362 | // it wants to look at it. |
| 363 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
| 364 | // Reset OptLevel to None for optnone functions. |
| 365 | CodeGenOptLevel NewOptLevel = skipFunction(F: MF.getFunction()) |
| 366 | ? CodeGenOptLevel::None |
| 367 | : Selector->OptLevel; |
| 368 | |
| 369 | Selector->MF = &MF; |
| 370 | OptLevelChanger OLC(*Selector, NewOptLevel); |
| 371 | Selector->initializeAnalysisResults(MFP&: *this); |
| 372 | return Selector->runOnMachineFunction(mf&: MF); |
| 373 | } |
| 374 | |
| 375 | SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOptLevel OL) |
| 376 | : TM(tm), FuncInfo(new FunctionLoweringInfo()), |
| 377 | SwiftError(new SwiftErrorValueTracking()), |
| 378 | CurDAG(new SelectionDAG(tm, OL)), |
| 379 | SDB(std::make_unique<SelectionDAGBuilder>(args&: *CurDAG, args&: *FuncInfo, args&: *SwiftError, |
| 380 | args&: OL)), |
| 381 | OptLevel(OL) { |
| 382 | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
| 383 | initializeBranchProbabilityInfoWrapperPassPass( |
| 384 | *PassRegistry::getPassRegistry()); |
| 385 | initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 386 | initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 387 | } |
| 388 | |
| 389 | SelectionDAGISel::~SelectionDAGISel() { delete CurDAG; } |
| 390 | |
| 391 | void SelectionDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
| 392 | CodeGenOptLevel OptLevel = Selector->OptLevel; |
| 393 | if (OptLevel != CodeGenOptLevel::None) |
| 394 | AU.addRequired<AAResultsWrapperPass>(); |
| 395 | AU.addRequired<GCModuleInfo>(); |
| 396 | AU.addRequired<StackProtector>(); |
| 397 | AU.addPreserved<GCModuleInfo>(); |
| 398 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 399 | #ifndef NDEBUG |
| 400 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 401 | #endif |
| 402 | AU.addRequired<AssumptionCacheTracker>(); |
| 403 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
| 404 | AU.addRequired<BranchProbabilityInfoWrapperPass>(); |
| 405 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 406 | // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for |
| 407 | // the module. |
| 408 | AU.addRequired<AssignmentTrackingAnalysis>(); |
| 409 | AU.addPreserved<AssignmentTrackingAnalysis>(); |
| 410 | if (OptLevel != CodeGenOptLevel::None) |
| 411 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
| 412 | MachineFunctionPass::getAnalysisUsage(AU); |
| 413 | } |
| 414 | |
| 415 | PreservedAnalyses |
| 416 | SelectionDAGISelPass::run(MachineFunction &MF, |
| 417 | MachineFunctionAnalysisManager &MFAM) { |
| 418 | // If we already selected that function, we do not need to run SDISel. |
| 419 | if (MF.getProperties().hasSelected()) |
| 420 | return PreservedAnalyses::all(); |
| 421 | |
| 422 | // Do some sanity-checking on the command-line options. |
| 423 | if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel) |
| 424 | reportFatalUsageError(reason: "-fast-isel-abort > 0 requires -fast-isel" ); |
| 425 | |
| 426 | // Decide what flavour of variable location debug-info will be used, before |
| 427 | // we change the optimisation level. |
| 428 | MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef()); |
| 429 | |
| 430 | // Reset the target options before resetting the optimization |
| 431 | // level below. |
| 432 | // FIXME: This is a horrible hack and should be processed via |
| 433 | // codegen looking at the optimization level explicitly when |
| 434 | // it wants to look at it. |
| 435 | Selector->TM.resetTargetOptions(F: MF.getFunction()); |
| 436 | // Reset OptLevel to None for optnone functions. |
| 437 | // TODO: Add a function analysis to handle this. |
| 438 | Selector->MF = &MF; |
| 439 | // Reset OptLevel to None for optnone functions. |
| 440 | CodeGenOptLevel NewOptLevel = MF.getFunction().hasOptNone() |
| 441 | ? CodeGenOptLevel::None |
| 442 | : Selector->OptLevel; |
| 443 | |
| 444 | OptLevelChanger OLC(*Selector, NewOptLevel); |
| 445 | Selector->initializeAnalysisResults(MFAM); |
| 446 | Selector->runOnMachineFunction(mf&: MF); |
| 447 | |
| 448 | return getMachineFunctionPassPreservedAnalyses(); |
| 449 | } |
| 450 | |
| 451 | void SelectionDAGISel::initializeAnalysisResults( |
| 452 | MachineFunctionAnalysisManager &MFAM) { |
| 453 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: *MF) |
| 454 | .getManager(); |
| 455 | auto &MAMP = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: *MF); |
| 456 | Function &Fn = MF->getFunction(); |
| 457 | #ifndef NDEBUG |
| 458 | FuncName = Fn.getName(); |
| 459 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
| 460 | #else |
| 461 | (void)MatchFilterFuncName; |
| 462 | #endif |
| 463 | |
| 464 | TII = MF->getSubtarget().getInstrInfo(); |
| 465 | TLI = MF->getSubtarget().getTargetLowering(); |
| 466 | RegInfo = &MF->getRegInfo(); |
| 467 | LibInfo = &FAM.getResult<TargetLibraryAnalysis>(IR&: Fn); |
| 468 | GFI = Fn.hasGC() ? &FAM.getResult<GCFunctionAnalysis>(IR&: Fn) : nullptr; |
| 469 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
| 470 | AC = &FAM.getResult<AssumptionAnalysis>(IR&: Fn); |
| 471 | auto *PSI = MAMP.getCachedResult<ProfileSummaryAnalysis>(IR&: *Fn.getParent()); |
| 472 | BlockFrequencyInfo *BFI = nullptr; |
| 473 | FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
| 474 | if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None) |
| 475 | BFI = &FAM.getResult<BlockFrequencyAnalysis>(IR&: Fn); |
| 476 | |
| 477 | FunctionVarLocs const *FnVarLocs = nullptr; |
| 478 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
| 479 | FnVarLocs = &FAM.getResult<DebugAssignmentTrackingAnalysis>(IR&: Fn); |
| 480 | |
| 481 | auto *UA = FAM.getCachedResult<UniformityInfoAnalysis>(IR&: Fn); |
| 482 | MachineModuleInfo &MMI = |
| 483 | MAMP.getCachedResult<MachineModuleAnalysis>(IR&: *Fn.getParent())->getMMI(); |
| 484 | |
| 485 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, AM&: MFAM, LibraryInfo: LibInfo, UA, PSIin: PSI, BFIin: BFI, MMI, FnVarLocs); |
| 486 | |
| 487 | // Now get the optional analyzes if we want to. |
| 488 | // This is based on the possibly changed OptLevel (after optnone is taken |
| 489 | // into account). That's unfortunate but OK because it just means we won't |
| 490 | // ask for passes that have been required anyway. |
| 491 | |
| 492 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
| 493 | FuncInfo->BPI = &FAM.getResult<BranchProbabilityAnalysis>(IR&: Fn); |
| 494 | else |
| 495 | FuncInfo->BPI = nullptr; |
| 496 | |
| 497 | if (OptLevel != CodeGenOptLevel::None) |
| 498 | BatchAA.emplace(args&: FAM.getResult<AAManager>(IR&: Fn)); |
| 499 | else |
| 500 | BatchAA = std::nullopt; |
| 501 | |
| 502 | SP = &FAM.getResult<SSPLayoutAnalysis>(IR&: Fn); |
| 503 | |
| 504 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 505 | TTI = &FAM.getResult<TargetIRAnalysis>(Fn); |
| 506 | #endif |
| 507 | } |
| 508 | |
| 509 | void SelectionDAGISel::initializeAnalysisResults(MachineFunctionPass &MFP) { |
| 510 | Function &Fn = MF->getFunction(); |
| 511 | #ifndef NDEBUG |
| 512 | FuncName = Fn.getName(); |
| 513 | MatchFilterFuncName = isFunctionInPrintList(FuncName); |
| 514 | #else |
| 515 | (void)MatchFilterFuncName; |
| 516 | #endif |
| 517 | |
| 518 | TII = MF->getSubtarget().getInstrInfo(); |
| 519 | TLI = MF->getSubtarget().getTargetLowering(); |
| 520 | RegInfo = &MF->getRegInfo(); |
| 521 | LibInfo = &MFP.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F: Fn); |
| 522 | GFI = Fn.hasGC() ? &MFP.getAnalysis<GCModuleInfo>().getFunctionInfo(F: Fn) |
| 523 | : nullptr; |
| 524 | ORE = std::make_unique<OptimizationRemarkEmitter>(args: &Fn); |
| 525 | AC = &MFP.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: Fn); |
| 526 | auto *PSI = &MFP.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 527 | BlockFrequencyInfo *BFI = nullptr; |
| 528 | if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None) |
| 529 | BFI = &MFP.getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); |
| 530 | |
| 531 | FunctionVarLocs const *FnVarLocs = nullptr; |
| 532 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) |
| 533 | FnVarLocs = MFP.getAnalysis<AssignmentTrackingAnalysis>().getResults(); |
| 534 | |
| 535 | UniformityInfo *UA = nullptr; |
| 536 | if (auto *UAPass = MFP.getAnalysisIfAvailable<UniformityInfoWrapperPass>()) |
| 537 | UA = &UAPass->getUniformityInfo(); |
| 538 | |
| 539 | MachineModuleInfo &MMI = |
| 540 | MFP.getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); |
| 541 | |
| 542 | CurDAG->init(NewMF&: *MF, NewORE&: *ORE, PassPtr: &MFP, LibraryInfo: LibInfo, UA, PSIin: PSI, BFIin: BFI, MMI, FnVarLocs); |
| 543 | |
| 544 | // Now get the optional analyzes if we want to. |
| 545 | // This is based on the possibly changed OptLevel (after optnone is taken |
| 546 | // into account). That's unfortunate but OK because it just means we won't |
| 547 | // ask for passes that have been required anyway. |
| 548 | |
| 549 | if (UseMBPI && OptLevel != CodeGenOptLevel::None) |
| 550 | FuncInfo->BPI = |
| 551 | &MFP.getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); |
| 552 | else |
| 553 | FuncInfo->BPI = nullptr; |
| 554 | |
| 555 | if (OptLevel != CodeGenOptLevel::None) |
| 556 | BatchAA.emplace(args&: MFP.getAnalysis<AAResultsWrapperPass>().getAAResults()); |
| 557 | else |
| 558 | BatchAA = std::nullopt; |
| 559 | |
| 560 | SP = &MFP.getAnalysis<StackProtector>().getLayoutInfo(); |
| 561 | |
| 562 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 563 | TTI = &MFP.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn); |
| 564 | #endif |
| 565 | } |
| 566 | |
| 567 | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| 568 | SwiftError->setFunction(mf); |
| 569 | const Function &Fn = mf.getFunction(); |
| 570 | |
| 571 | bool InstrRef = mf.shouldUseDebugInstrRef(); |
| 572 | |
| 573 | FuncInfo->set(Fn: MF->getFunction(), MF&: *MF, DAG: CurDAG); |
| 574 | |
| 575 | ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << '\n'); |
| 576 | |
| 577 | SDB->init(gfi: GFI, BatchAA: getBatchAA(), AC, li: LibInfo); |
| 578 | |
| 579 | MF->setHasInlineAsm(false); |
| 580 | |
| 581 | FuncInfo->SplitCSR = false; |
| 582 | |
| 583 | // We split CSR if the target supports it for the given function |
| 584 | // and the function has only return exits. |
| 585 | if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) { |
| 586 | FuncInfo->SplitCSR = true; |
| 587 | |
| 588 | // Collect all the return blocks. |
| 589 | for (const BasicBlock &BB : Fn) { |
| 590 | if (!succ_empty(BB: &BB)) |
| 591 | continue; |
| 592 | |
| 593 | const Instruction *Term = BB.getTerminator(); |
| 594 | if (isa<UnreachableInst>(Val: Term) || isa<ReturnInst>(Val: Term)) |
| 595 | continue; |
| 596 | |
| 597 | // Bail out if the exit block is not Return nor Unreachable. |
| 598 | FuncInfo->SplitCSR = false; |
| 599 | break; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | MachineBasicBlock *EntryMBB = &MF->front(); |
| 604 | if (FuncInfo->SplitCSR) |
| 605 | // This performs initialization so lowering for SplitCSR will be correct. |
| 606 | TLI->initializeSplitCSR(Entry: EntryMBB); |
| 607 | |
| 608 | SelectAllBasicBlocks(Fn); |
| 609 | if (FastISelFailed && EnableFastISelFallbackReport) { |
| 610 | DiagnosticInfoISelFallback DiagFallback(Fn); |
| 611 | Fn.getContext().diagnose(DI: DiagFallback); |
| 612 | } |
| 613 | |
| 614 | // Replace forward-declared registers with the registers containing |
| 615 | // the desired value. |
| 616 | // Note: it is important that this happens **before** the call to |
| 617 | // EmitLiveInCopies, since implementations can skip copies of unused |
| 618 | // registers. If we don't apply the reg fixups before, some registers may |
| 619 | // appear as unused and will be skipped, resulting in bad MI. |
| 620 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 621 | for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), |
| 622 | E = FuncInfo->RegFixups.end(); |
| 623 | I != E; ++I) { |
| 624 | Register From = I->first; |
| 625 | Register To = I->second; |
| 626 | // If To is also scheduled to be replaced, find what its ultimate |
| 627 | // replacement is. |
| 628 | while (true) { |
| 629 | DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(Val: To); |
| 630 | if (J == E) |
| 631 | break; |
| 632 | To = J->second; |
| 633 | } |
| 634 | // Make sure the new register has a sufficiently constrained register class. |
| 635 | if (From.isVirtual() && To.isVirtual()) |
| 636 | MRI.constrainRegClass(Reg: To, RC: MRI.getRegClass(Reg: From)); |
| 637 | // Replace it. |
| 638 | |
| 639 | // Replacing one register with another won't touch the kill flags. |
| 640 | // We need to conservatively clear the kill flags as a kill on the old |
| 641 | // register might dominate existing uses of the new register. |
| 642 | if (!MRI.use_empty(RegNo: To)) |
| 643 | MRI.clearKillFlags(Reg: From); |
| 644 | MRI.replaceRegWith(FromReg: From, ToReg: To); |
| 645 | } |
| 646 | |
| 647 | // If the first basic block in the function has live ins that need to be |
| 648 | // copied into vregs, emit the copies into the top of the block before |
| 649 | // emitting the code for the block. |
| 650 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| 651 | RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII: *TII); |
| 652 | |
| 653 | // Insert copies in the entry block and the return blocks. |
| 654 | if (FuncInfo->SplitCSR) { |
| 655 | SmallVector<MachineBasicBlock*, 4> Returns; |
| 656 | // Collect all the return blocks. |
| 657 | for (MachineBasicBlock &MBB : mf) { |
| 658 | if (!MBB.succ_empty()) |
| 659 | continue; |
| 660 | |
| 661 | MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); |
| 662 | if (Term != MBB.end() && Term->isReturn()) { |
| 663 | Returns.push_back(Elt: &MBB); |
| 664 | continue; |
| 665 | } |
| 666 | } |
| 667 | TLI->insertCopiesSplitCSR(Entry: EntryMBB, Exits: Returns); |
| 668 | } |
| 669 | |
| 670 | DenseMap<MCRegister, Register> LiveInMap; |
| 671 | if (!FuncInfo->ArgDbgValues.empty()) |
| 672 | for (std::pair<MCRegister, Register> LI : RegInfo->liveins()) |
| 673 | if (LI.second) |
| 674 | LiveInMap.insert(KV: LI); |
| 675 | |
| 676 | // Insert DBG_VALUE instructions for function arguments to the entry block. |
| 677 | for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { |
| 678 | MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; |
| 679 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
| 680 | "Function parameters should not be described by DBG_VALUE_LIST." ); |
| 681 | bool hasFI = MI->getDebugOperand(Index: 0).isFI(); |
| 682 | Register Reg = |
| 683 | hasFI ? TRI.getFrameRegister(MF: *MF) : MI->getDebugOperand(Index: 0).getReg(); |
| 684 | if (Reg.isPhysical()) |
| 685 | EntryMBB->insert(I: EntryMBB->begin(), MI); |
| 686 | else { |
| 687 | MachineInstr *Def = RegInfo->getVRegDef(Reg); |
| 688 | if (Def) { |
| 689 | MachineBasicBlock::iterator InsertPos = Def; |
| 690 | // FIXME: VR def may not be in entry block. |
| 691 | Def->getParent()->insert(I: std::next(x: InsertPos), MI); |
| 692 | } else |
| 693 | LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" |
| 694 | << printReg(Reg) << '\n'); |
| 695 | } |
| 696 | |
| 697 | // Don't try and extend through copies in instruction referencing mode. |
| 698 | if (InstrRef) |
| 699 | continue; |
| 700 | |
| 701 | // If Reg is live-in then update debug info to track its copy in a vreg. |
| 702 | if (!Reg.isPhysical()) |
| 703 | continue; |
| 704 | DenseMap<MCRegister, Register>::iterator LDI = LiveInMap.find(Val: Reg); |
| 705 | if (LDI != LiveInMap.end()) { |
| 706 | assert(!hasFI && "There's no handling of frame pointer updating here yet " |
| 707 | "- add if needed" ); |
| 708 | MachineInstr *Def = RegInfo->getVRegDef(Reg: LDI->second); |
| 709 | MachineBasicBlock::iterator InsertPos = Def; |
| 710 | const MDNode *Variable = MI->getDebugVariable(); |
| 711 | const MDNode *Expr = MI->getDebugExpression(); |
| 712 | DebugLoc DL = MI->getDebugLoc(); |
| 713 | bool IsIndirect = MI->isIndirectDebugValue(); |
| 714 | if (IsIndirect) |
| 715 | assert(MI->getDebugOffset().getImm() == 0 && |
| 716 | "DBG_VALUE with nonzero offset" ); |
| 717 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| 718 | "Expected inlined-at fields to agree" ); |
| 719 | assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && |
| 720 | "Didn't expect to see a DBG_VALUE_LIST here" ); |
| 721 | // Def is never a terminator here, so it is ok to increment InsertPos. |
| 722 | BuildMI(BB&: *EntryMBB, I: ++InsertPos, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), |
| 723 | IsIndirect, Reg: LDI->second, Variable, Expr); |
| 724 | |
| 725 | // If this vreg is directly copied into an exported register then |
| 726 | // that COPY instructions also need DBG_VALUE, if it is the only |
| 727 | // user of LDI->second. |
| 728 | MachineInstr *CopyUseMI = nullptr; |
| 729 | for (MachineInstr &UseMI : RegInfo->use_instructions(Reg: LDI->second)) { |
| 730 | if (UseMI.isDebugValue()) |
| 731 | continue; |
| 732 | if (UseMI.isCopy() && !CopyUseMI && UseMI.getParent() == EntryMBB) { |
| 733 | CopyUseMI = &UseMI; |
| 734 | continue; |
| 735 | } |
| 736 | // Otherwise this is another use or second copy use. |
| 737 | CopyUseMI = nullptr; |
| 738 | break; |
| 739 | } |
| 740 | if (CopyUseMI && |
| 741 | TRI.getRegSizeInBits(Reg: LDI->second, MRI) == |
| 742 | TRI.getRegSizeInBits(Reg: CopyUseMI->getOperand(i: 0).getReg(), MRI)) { |
| 743 | // Use MI's debug location, which describes where Variable was |
| 744 | // declared, rather than whatever is attached to CopyUseMI. |
| 745 | MachineInstr *NewMI = |
| 746 | BuildMI(MF&: *MF, DL, MCID: TII->get(Opcode: TargetOpcode::DBG_VALUE), IsIndirect, |
| 747 | Reg: CopyUseMI->getOperand(i: 0).getReg(), Variable, Expr); |
| 748 | MachineBasicBlock::iterator Pos = CopyUseMI; |
| 749 | EntryMBB->insertAfter(I: Pos, MI: NewMI); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | // For debug-info, in instruction referencing mode, we need to perform some |
| 755 | // post-isel maintenence. |
| 756 | if (MF->useDebugInstrRef()) |
| 757 | MF->finalizeDebugInstrRefs(); |
| 758 | |
| 759 | // Determine if there are any calls in this machine function. |
| 760 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 761 | for (const auto &MBB : *MF) { |
| 762 | if (MFI.hasCalls() && MF->hasInlineAsm()) |
| 763 | break; |
| 764 | |
| 765 | for (const auto &MI : MBB) { |
| 766 | const MCInstrDesc &MCID = TII->get(Opcode: MI.getOpcode()); |
| 767 | if ((MCID.isCall() && !MCID.isReturn()) || |
| 768 | MI.isStackAligningInlineAsm()) { |
| 769 | MFI.setHasCalls(true); |
| 770 | } |
| 771 | if (MI.isInlineAsm()) { |
| 772 | MF->setHasInlineAsm(true); |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | // Release function-specific state. SDB and CurDAG are already cleared |
| 778 | // at this point. |
| 779 | FuncInfo->clear(); |
| 780 | |
| 781 | ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n" ); |
| 782 | ISEL_DUMP(MF->print(dbgs())); |
| 783 | |
| 784 | return true; |
| 785 | } |
| 786 | |
| 787 | static void (MachineFunction &MF, |
| 788 | OptimizationRemarkEmitter &ORE, |
| 789 | OptimizationRemarkMissed &R, |
| 790 | bool ShouldAbort) { |
| 791 | // Print the function name explicitly if we don't have a debug location (which |
| 792 | // makes the diagnostic less useful) or if we're going to emit a raw error. |
| 793 | if (!R.getLocation().isValid() || ShouldAbort) |
| 794 | R << (" (in function: " + MF.getName() + ")" ).str(); |
| 795 | |
| 796 | if (ShouldAbort) |
| 797 | reportFatalUsageError(reason: Twine(R.getMsg())); |
| 798 | |
| 799 | ORE.emit(OptDiag&: R); |
| 800 | LLVM_DEBUG(dbgs() << R.getMsg() << "\n" ); |
| 801 | } |
| 802 | |
| 803 | // Detect any fake uses that follow a tail call and move them before the tail |
| 804 | // call. Ignore fake uses that use values that are def'd by or after the tail |
| 805 | // call. |
| 806 | static void preserveFakeUses(BasicBlock::iterator Begin, |
| 807 | BasicBlock::iterator End) { |
| 808 | BasicBlock::iterator I = End; |
| 809 | if (--I == Begin || !isa<ReturnInst>(Val: *I)) |
| 810 | return; |
| 811 | // Detect whether there are any fake uses trailing a (potential) tail call. |
| 812 | bool HaveFakeUse = false; |
| 813 | bool HaveTailCall = false; |
| 814 | do { |
| 815 | if (const CallInst *CI = dyn_cast<CallInst>(Val&: --I)) |
| 816 | if (CI->isTailCall()) { |
| 817 | HaveTailCall = true; |
| 818 | break; |
| 819 | } |
| 820 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val&: I)) |
| 821 | if (II->getIntrinsicID() == Intrinsic::fake_use) |
| 822 | HaveFakeUse = true; |
| 823 | } while (I != Begin); |
| 824 | |
| 825 | // If we didn't find any tail calls followed by fake uses, we are done. |
| 826 | if (!HaveTailCall || !HaveFakeUse) |
| 827 | return; |
| 828 | |
| 829 | SmallVector<IntrinsicInst *> FakeUses; |
| 830 | // Record the fake uses we found so we can move them to the front of the |
| 831 | // tail call. Ignore them if they use a value that is def'd by or after |
| 832 | // the tail call. |
| 833 | for (BasicBlock::iterator Inst = I; Inst != End; Inst++) { |
| 834 | if (IntrinsicInst *FakeUse = dyn_cast<IntrinsicInst>(Val&: Inst); |
| 835 | FakeUse && FakeUse->getIntrinsicID() == Intrinsic::fake_use) { |
| 836 | if (auto UsedDef = dyn_cast<Instruction>(Val: FakeUse->getOperand(i_nocapture: 0)); |
| 837 | !UsedDef || UsedDef->getParent() != I->getParent() || |
| 838 | UsedDef->comesBefore(Other: &*I)) |
| 839 | FakeUses.push_back(Elt: FakeUse); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | for (auto *Inst : FakeUses) |
| 844 | Inst->moveBefore(BB&: *Inst->getParent(), I); |
| 845 | } |
| 846 | |
| 847 | void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, |
| 848 | BasicBlock::const_iterator End, |
| 849 | bool &HadTailCall) { |
| 850 | // Allow creating illegal types during DAG building for the basic block. |
| 851 | CurDAG->NewNodesMustHaveLegalTypes = false; |
| 852 | |
| 853 | // Lower the instructions. If a call is emitted as a tail call, cease emitting |
| 854 | // nodes for this block. If an instruction is elided, don't emit it, but do |
| 855 | // handle any debug-info attached to it. |
| 856 | for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
| 857 | if (!ElidedArgCopyInstrs.count(Ptr: &*I)) |
| 858 | SDB->visit(I: *I); |
| 859 | else |
| 860 | SDB->visitDbgInfo(I: *I); |
| 861 | } |
| 862 | |
| 863 | // Make sure the root of the DAG is up-to-date. |
| 864 | CurDAG->setRoot(SDB->getControlRoot()); |
| 865 | HadTailCall = SDB->HasTailCall; |
| 866 | SDB->resolveOrClearDbgInfo(); |
| 867 | SDB->clear(); |
| 868 | |
| 869 | // Final step, emit the lowered DAG as machine code. |
| 870 | CodeGenAndEmitDAG(); |
| 871 | } |
| 872 | |
| 873 | void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| 874 | SmallPtrSet<SDNode *, 16> Added; |
| 875 | SmallVector<SDNode*, 128> Worklist; |
| 876 | |
| 877 | Worklist.push_back(Elt: CurDAG->getRoot().getNode()); |
| 878 | Added.insert(Ptr: CurDAG->getRoot().getNode()); |
| 879 | |
| 880 | KnownBits Known; |
| 881 | |
| 882 | do { |
| 883 | SDNode *N = Worklist.pop_back_val(); |
| 884 | |
| 885 | // Otherwise, add all chain operands to the worklist. |
| 886 | for (const SDValue &Op : N->op_values()) |
| 887 | if (Op.getValueType() == MVT::Other && Added.insert(Ptr: Op.getNode()).second) |
| 888 | Worklist.push_back(Elt: Op.getNode()); |
| 889 | |
| 890 | // If this is a CopyToReg with a vreg dest, process it. |
| 891 | if (N->getOpcode() != ISD::CopyToReg) |
| 892 | continue; |
| 893 | |
| 894 | Register DestReg = cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg(); |
| 895 | if (!DestReg.isVirtual()) |
| 896 | continue; |
| 897 | |
| 898 | // Ignore non-integer values. |
| 899 | SDValue Src = N->getOperand(Num: 2); |
| 900 | EVT SrcVT = Src.getValueType(); |
| 901 | if (!SrcVT.isInteger()) |
| 902 | continue; |
| 903 | |
| 904 | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Op: Src); |
| 905 | Known = CurDAG->computeKnownBits(Op: Src); |
| 906 | FuncInfo->AddLiveOutRegInfo(Reg: DestReg, NumSignBits, Known); |
| 907 | } while (!Worklist.empty()); |
| 908 | } |
| 909 | |
| 910 | void SelectionDAGISel::CodeGenAndEmitDAG() { |
| 911 | StringRef GroupName = "sdag" ; |
| 912 | StringRef GroupDescription = "Instruction Selection and Scheduling" ; |
| 913 | std::string BlockName; |
| 914 | bool MatchFilterBB = false; |
| 915 | (void)MatchFilterBB; |
| 916 | |
| 917 | // Pre-type legalization allow creation of any node types. |
| 918 | CurDAG->NewNodesMustHaveLegalTypes = false; |
| 919 | |
| 920 | #ifndef NDEBUG |
| 921 | MatchFilterBB = (FilterDAGBasicBlockName.empty() || |
| 922 | FilterDAGBasicBlockName == |
| 923 | FuncInfo->MBB->getBasicBlock()->getName()); |
| 924 | #endif |
| 925 | #ifdef NDEBUG |
| 926 | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || |
| 927 | ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || |
| 928 | ViewSUnitDAGs) |
| 929 | #endif |
| 930 | { |
| 931 | BlockName = |
| 932 | (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); |
| 933 | } |
| 934 | ISEL_DUMP(dbgs() << "\nInitial selection DAG: " |
| 935 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 936 | << "'\n" ; |
| 937 | CurDAG->dump()); |
| 938 | |
| 939 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 940 | if (TTI->hasBranchDivergence()) |
| 941 | CurDAG->VerifyDAGDivergence(); |
| 942 | #endif |
| 943 | |
| 944 | if (ViewDAGCombine1 && MatchFilterBB) |
| 945 | CurDAG->viewGraph(Title: "dag-combine1 input for " + BlockName); |
| 946 | |
| 947 | // Run the DAG combiner in pre-legalize mode. |
| 948 | { |
| 949 | NamedRegionTimer T("combine1" , "DAG Combining 1" , GroupName, |
| 950 | GroupDescription, TimePassesIsEnabled); |
| 951 | CurDAG->Combine(Level: BeforeLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
| 952 | } |
| 953 | |
| 954 | ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: " |
| 955 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 956 | << "'\n" ; |
| 957 | CurDAG->dump()); |
| 958 | |
| 959 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 960 | if (TTI->hasBranchDivergence()) |
| 961 | CurDAG->VerifyDAGDivergence(); |
| 962 | #endif |
| 963 | |
| 964 | // Second step, hack on the DAG until it only uses operations and types that |
| 965 | // the target supports. |
| 966 | if (ViewLegalizeTypesDAGs && MatchFilterBB) |
| 967 | CurDAG->viewGraph(Title: "legalize-types input for " + BlockName); |
| 968 | |
| 969 | bool Changed; |
| 970 | { |
| 971 | NamedRegionTimer T("legalize_types" , "Type Legalization" , GroupName, |
| 972 | GroupDescription, TimePassesIsEnabled); |
| 973 | Changed = CurDAG->LegalizeTypes(); |
| 974 | } |
| 975 | |
| 976 | ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: " |
| 977 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 978 | << "'\n" ; |
| 979 | CurDAG->dump()); |
| 980 | |
| 981 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 982 | if (TTI->hasBranchDivergence()) |
| 983 | CurDAG->VerifyDAGDivergence(); |
| 984 | #endif |
| 985 | |
| 986 | // Only allow creation of legal node types. |
| 987 | CurDAG->NewNodesMustHaveLegalTypes = true; |
| 988 | |
| 989 | if (Changed) { |
| 990 | if (ViewDAGCombineLT && MatchFilterBB) |
| 991 | CurDAG->viewGraph(Title: "dag-combine-lt input for " + BlockName); |
| 992 | |
| 993 | // Run the DAG combiner in post-type-legalize mode. |
| 994 | { |
| 995 | NamedRegionTimer T("combine_lt" , "DAG Combining after legalize types" , |
| 996 | GroupName, GroupDescription, TimePassesIsEnabled); |
| 997 | CurDAG->Combine(Level: AfterLegalizeTypes, BatchAA: getBatchAA(), OptLevel); |
| 998 | } |
| 999 | |
| 1000 | ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: " |
| 1001 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1002 | << "'\n" ; |
| 1003 | CurDAG->dump()); |
| 1004 | |
| 1005 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1006 | if (TTI->hasBranchDivergence()) |
| 1007 | CurDAG->VerifyDAGDivergence(); |
| 1008 | #endif |
| 1009 | } |
| 1010 | |
| 1011 | { |
| 1012 | NamedRegionTimer T("legalize_vec" , "Vector Legalization" , GroupName, |
| 1013 | GroupDescription, TimePassesIsEnabled); |
| 1014 | Changed = CurDAG->LegalizeVectors(); |
| 1015 | } |
| 1016 | |
| 1017 | if (Changed) { |
| 1018 | ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: " |
| 1019 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1020 | << "'\n" ; |
| 1021 | CurDAG->dump()); |
| 1022 | |
| 1023 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1024 | if (TTI->hasBranchDivergence()) |
| 1025 | CurDAG->VerifyDAGDivergence(); |
| 1026 | #endif |
| 1027 | |
| 1028 | { |
| 1029 | NamedRegionTimer T("legalize_types2" , "Type Legalization 2" , GroupName, |
| 1030 | GroupDescription, TimePassesIsEnabled); |
| 1031 | CurDAG->LegalizeTypes(); |
| 1032 | } |
| 1033 | |
| 1034 | ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: " |
| 1035 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1036 | << "'\n" ; |
| 1037 | CurDAG->dump()); |
| 1038 | |
| 1039 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1040 | if (TTI->hasBranchDivergence()) |
| 1041 | CurDAG->VerifyDAGDivergence(); |
| 1042 | #endif |
| 1043 | |
| 1044 | if (ViewDAGCombineLT && MatchFilterBB) |
| 1045 | CurDAG->viewGraph(Title: "dag-combine-lv input for " + BlockName); |
| 1046 | |
| 1047 | // Run the DAG combiner in post-type-legalize mode. |
| 1048 | { |
| 1049 | NamedRegionTimer T("combine_lv" , "DAG Combining after legalize vectors" , |
| 1050 | GroupName, GroupDescription, TimePassesIsEnabled); |
| 1051 | CurDAG->Combine(Level: AfterLegalizeVectorOps, BatchAA: getBatchAA(), OptLevel); |
| 1052 | } |
| 1053 | |
| 1054 | ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: " |
| 1055 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1056 | << "'\n" ; |
| 1057 | CurDAG->dump()); |
| 1058 | |
| 1059 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1060 | if (TTI->hasBranchDivergence()) |
| 1061 | CurDAG->VerifyDAGDivergence(); |
| 1062 | #endif |
| 1063 | } |
| 1064 | |
| 1065 | if (ViewLegalizeDAGs && MatchFilterBB) |
| 1066 | CurDAG->viewGraph(Title: "legalize input for " + BlockName); |
| 1067 | |
| 1068 | { |
| 1069 | NamedRegionTimer T("legalize" , "DAG Legalization" , GroupName, |
| 1070 | GroupDescription, TimePassesIsEnabled); |
| 1071 | CurDAG->Legalize(); |
| 1072 | } |
| 1073 | |
| 1074 | ISEL_DUMP(dbgs() << "\nLegalized selection DAG: " |
| 1075 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1076 | << "'\n" ; |
| 1077 | CurDAG->dump()); |
| 1078 | |
| 1079 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1080 | if (TTI->hasBranchDivergence()) |
| 1081 | CurDAG->VerifyDAGDivergence(); |
| 1082 | #endif |
| 1083 | |
| 1084 | if (ViewDAGCombine2 && MatchFilterBB) |
| 1085 | CurDAG->viewGraph(Title: "dag-combine2 input for " + BlockName); |
| 1086 | |
| 1087 | // Run the DAG combiner in post-legalize mode. |
| 1088 | { |
| 1089 | NamedRegionTimer T("combine2" , "DAG Combining 2" , GroupName, |
| 1090 | GroupDescription, TimePassesIsEnabled); |
| 1091 | CurDAG->Combine(Level: AfterLegalizeDAG, BatchAA: getBatchAA(), OptLevel); |
| 1092 | } |
| 1093 | |
| 1094 | ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: " |
| 1095 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1096 | << "'\n" ; |
| 1097 | CurDAG->dump()); |
| 1098 | |
| 1099 | #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 1100 | if (TTI->hasBranchDivergence()) |
| 1101 | CurDAG->VerifyDAGDivergence(); |
| 1102 | #endif |
| 1103 | |
| 1104 | if (OptLevel != CodeGenOptLevel::None) |
| 1105 | ComputeLiveOutVRegInfo(); |
| 1106 | |
| 1107 | if (ViewISelDAGs && MatchFilterBB) |
| 1108 | CurDAG->viewGraph(Title: "isel input for " + BlockName); |
| 1109 | |
| 1110 | // Third, instruction select all of the operations to machine code, adding the |
| 1111 | // code to the MachineBasicBlock. |
| 1112 | { |
| 1113 | NamedRegionTimer T("isel" , "Instruction Selection" , GroupName, |
| 1114 | GroupDescription, TimePassesIsEnabled); |
| 1115 | DoInstructionSelection(); |
| 1116 | } |
| 1117 | |
| 1118 | ISEL_DUMP(dbgs() << "\nSelected selection DAG: " |
| 1119 | << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| 1120 | << "'\n" ; |
| 1121 | CurDAG->dump()); |
| 1122 | |
| 1123 | if (ViewSchedDAGs && MatchFilterBB) |
| 1124 | CurDAG->viewGraph(Title: "scheduler input for " + BlockName); |
| 1125 | |
| 1126 | // Schedule machine code. |
| 1127 | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| 1128 | { |
| 1129 | NamedRegionTimer T("sched" , "Instruction Scheduling" , GroupName, |
| 1130 | GroupDescription, TimePassesIsEnabled); |
| 1131 | Scheduler->Run(dag: CurDAG, bb: FuncInfo->MBB); |
| 1132 | } |
| 1133 | |
| 1134 | if (ViewSUnitDAGs && MatchFilterBB) |
| 1135 | Scheduler->viewGraph(); |
| 1136 | |
| 1137 | // Emit machine code to BB. This can change 'BB' to the last block being |
| 1138 | // inserted into. |
| 1139 | MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; |
| 1140 | { |
| 1141 | NamedRegionTimer T("emit" , "Instruction Creation" , GroupName, |
| 1142 | GroupDescription, TimePassesIsEnabled); |
| 1143 | |
| 1144 | // FuncInfo->InsertPt is passed by reference and set to the end of the |
| 1145 | // scheduled instructions. |
| 1146 | LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(InsertPos&: FuncInfo->InsertPt); |
| 1147 | } |
| 1148 | |
| 1149 | // If the block was split, make sure we update any references that are used to |
| 1150 | // update PHI nodes later on. |
| 1151 | if (FirstMBB != LastMBB) |
| 1152 | SDB->UpdateSplitBlock(First: FirstMBB, Last: LastMBB); |
| 1153 | |
| 1154 | // Free the scheduler state. |
| 1155 | { |
| 1156 | NamedRegionTimer T("cleanup" , "Instruction Scheduling Cleanup" , GroupName, |
| 1157 | GroupDescription, TimePassesIsEnabled); |
| 1158 | delete Scheduler; |
| 1159 | } |
| 1160 | |
| 1161 | // Free the SelectionDAG state, now that we're finished with it. |
| 1162 | CurDAG->clear(); |
| 1163 | } |
| 1164 | |
| 1165 | namespace { |
| 1166 | |
| 1167 | /// ISelUpdater - helper class to handle updates of the instruction selection |
| 1168 | /// graph. |
| 1169 | class ISelUpdater : public SelectionDAG::DAGUpdateListener { |
| 1170 | SelectionDAG::allnodes_iterator &ISelPosition; |
| 1171 | |
| 1172 | public: |
| 1173 | ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) |
| 1174 | : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} |
| 1175 | |
| 1176 | /// NodeDeleted - Handle nodes deleted from the graph. If the node being |
| 1177 | /// deleted is the current ISelPosition node, update ISelPosition. |
| 1178 | /// |
| 1179 | void NodeDeleted(SDNode *N, SDNode *E) override { |
| 1180 | if (ISelPosition == SelectionDAG::allnodes_iterator(N)) |
| 1181 | ++ISelPosition; |
| 1182 | } |
| 1183 | |
| 1184 | /// NodeInserted - Handle new nodes inserted into the graph: propagate |
| 1185 | /// metadata from root nodes that also applies to new nodes, in case the root |
| 1186 | /// is later deleted. |
| 1187 | void NodeInserted(SDNode *N) override { |
| 1188 | SDNode *CurNode = &*ISelPosition; |
| 1189 | if (MDNode *MD = DAG.getPCSections(Node: CurNode)) |
| 1190 | DAG.addPCSections(Node: N, MD); |
| 1191 | if (MDNode *MMRA = DAG.getMMRAMetadata(Node: CurNode)) |
| 1192 | DAG.addMMRAMetadata(Node: N, MMRA); |
| 1193 | } |
| 1194 | }; |
| 1195 | |
| 1196 | } // end anonymous namespace |
| 1197 | |
| 1198 | // This function is used to enforce the topological node id property |
| 1199 | // leveraged during instruction selection. Before the selection process all |
| 1200 | // nodes are given a non-negative id such that all nodes have a greater id than |
| 1201 | // their operands. As this holds transitively we can prune checks that a node N |
| 1202 | // is a predecessor of M another by not recursively checking through M's |
| 1203 | // operands if N's ID is larger than M's ID. This significantly improves |
| 1204 | // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). |
| 1205 | |
| 1206 | // However, when we fuse multiple nodes into a single node during the |
| 1207 | // selection we may induce a predecessor relationship between inputs and |
| 1208 | // outputs of distinct nodes being merged, violating the topological property. |
| 1209 | // Should a fused node have a successor which has yet to be selected, |
| 1210 | // our legality checks would be incorrect. To avoid this we mark all unselected |
| 1211 | // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => |
| 1212 | // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. |
| 1213 | // We use bit-negation to more clearly enforce that node id -1 can only be |
| 1214 | // achieved by selected nodes. As the conversion is reversable to the original |
| 1215 | // Id, topological pruning can still be leveraged when looking for unselected |
| 1216 | // nodes. This method is called internally in all ISel replacement related |
| 1217 | // functions. |
| 1218 | void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { |
| 1219 | SmallVector<SDNode *, 4> Nodes; |
| 1220 | Nodes.push_back(Elt: Node); |
| 1221 | |
| 1222 | while (!Nodes.empty()) { |
| 1223 | SDNode *N = Nodes.pop_back_val(); |
| 1224 | for (auto *U : N->users()) { |
| 1225 | auto UId = U->getNodeId(); |
| 1226 | if (UId > 0) { |
| 1227 | InvalidateNodeId(N: U); |
| 1228 | Nodes.push_back(Elt: U); |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a |
| 1235 | // NodeId with the equivalent node id which is invalid for topological |
| 1236 | // pruning. |
| 1237 | void SelectionDAGISel::InvalidateNodeId(SDNode *N) { |
| 1238 | int InvalidId = -(N->getNodeId() + 1); |
| 1239 | N->setNodeId(InvalidId); |
| 1240 | } |
| 1241 | |
| 1242 | // getUninvalidatedNodeId - get original uninvalidated node id. |
| 1243 | int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { |
| 1244 | int Id = N->getNodeId(); |
| 1245 | if (Id < -1) |
| 1246 | return -(Id + 1); |
| 1247 | return Id; |
| 1248 | } |
| 1249 | |
| 1250 | void SelectionDAGISel::DoInstructionSelection() { |
| 1251 | LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " |
| 1252 | << printMBBReference(*FuncInfo->MBB) << " '" |
| 1253 | << FuncInfo->MBB->getName() << "'\n" ); |
| 1254 | |
| 1255 | PreprocessISelDAG(); |
| 1256 | |
| 1257 | // Select target instructions for the DAG. |
| 1258 | { |
| 1259 | // Number all nodes with a topological order and set DAGSize. |
| 1260 | DAGSize = CurDAG->AssignTopologicalOrder(); |
| 1261 | |
| 1262 | // Create a dummy node (which is not added to allnodes), that adds |
| 1263 | // a reference to the root node, preventing it from being deleted, |
| 1264 | // and tracking any changes of the root. |
| 1265 | HandleSDNode Dummy(CurDAG->getRoot()); |
| 1266 | SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); |
| 1267 | ++ISelPosition; |
| 1268 | |
| 1269 | // Make sure that ISelPosition gets properly updated when nodes are deleted |
| 1270 | // in calls made from this function. New nodes inherit relevant metadata. |
| 1271 | ISelUpdater ISU(*CurDAG, ISelPosition); |
| 1272 | |
| 1273 | // The AllNodes list is now topological-sorted. Visit the |
| 1274 | // nodes by starting at the end of the list (the root of the |
| 1275 | // graph) and preceding back toward the beginning (the entry |
| 1276 | // node). |
| 1277 | while (ISelPosition != CurDAG->allnodes_begin()) { |
| 1278 | SDNode *Node = &*--ISelPosition; |
| 1279 | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
| 1280 | // but there are currently some corner cases that it misses. Also, this |
| 1281 | // makes it theoretically possible to disable the DAGCombiner. |
| 1282 | if (Node->use_empty()) |
| 1283 | continue; |
| 1284 | |
| 1285 | #ifndef NDEBUG |
| 1286 | SmallVector<SDNode *, 4> Nodes; |
| 1287 | Nodes.push_back(Node); |
| 1288 | |
| 1289 | while (!Nodes.empty()) { |
| 1290 | auto N = Nodes.pop_back_val(); |
| 1291 | if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) |
| 1292 | continue; |
| 1293 | for (const SDValue &Op : N->op_values()) { |
| 1294 | if (Op->getOpcode() == ISD::TokenFactor) |
| 1295 | Nodes.push_back(Op.getNode()); |
| 1296 | else { |
| 1297 | // We rely on topological ordering of node ids for checking for |
| 1298 | // cycles when fusing nodes during selection. All unselected nodes |
| 1299 | // successors of an already selected node should have a negative id. |
| 1300 | // This assertion will catch such cases. If this assertion triggers |
| 1301 | // it is likely you using DAG-level Value/Node replacement functions |
| 1302 | // (versus equivalent ISEL replacement) in backend-specific |
| 1303 | // selections. See comment in EnforceNodeIdInvariant for more |
| 1304 | // details. |
| 1305 | assert(Op->getNodeId() != -1 && |
| 1306 | "Node has already selected predecessor node" ); |
| 1307 | } |
| 1308 | } |
| 1309 | } |
| 1310 | #endif |
| 1311 | |
| 1312 | // When we are using non-default rounding modes or FP exception behavior |
| 1313 | // FP operations are represented by StrictFP pseudo-operations. For |
| 1314 | // targets that do not (yet) understand strict FP operations directly, |
| 1315 | // we convert them to normal FP opcodes instead at this point. This |
| 1316 | // will allow them to be handled by existing target-specific instruction |
| 1317 | // selectors. |
| 1318 | if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { |
| 1319 | // For some opcodes, we need to call TLI->getOperationAction using |
| 1320 | // the first operand type instead of the result type. Note that this |
| 1321 | // must match what SelectionDAGLegalize::LegalizeOp is doing. |
| 1322 | EVT ActionVT; |
| 1323 | switch (Node->getOpcode()) { |
| 1324 | case ISD::STRICT_SINT_TO_FP: |
| 1325 | case ISD::STRICT_UINT_TO_FP: |
| 1326 | case ISD::STRICT_LRINT: |
| 1327 | case ISD::STRICT_LLRINT: |
| 1328 | case ISD::STRICT_LROUND: |
| 1329 | case ISD::STRICT_LLROUND: |
| 1330 | case ISD::STRICT_FSETCC: |
| 1331 | case ISD::STRICT_FSETCCS: |
| 1332 | ActionVT = Node->getOperand(Num: 1).getValueType(); |
| 1333 | break; |
| 1334 | default: |
| 1335 | ActionVT = Node->getValueType(ResNo: 0); |
| 1336 | break; |
| 1337 | } |
| 1338 | if (TLI->getOperationAction(Op: Node->getOpcode(), VT: ActionVT) |
| 1339 | == TargetLowering::Expand) |
| 1340 | Node = CurDAG->mutateStrictFPToFP(Node); |
| 1341 | } |
| 1342 | |
| 1343 | LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: " ; |
| 1344 | Node->dump(CurDAG)); |
| 1345 | |
| 1346 | Select(N: Node); |
| 1347 | } |
| 1348 | |
| 1349 | CurDAG->setRoot(Dummy.getValue()); |
| 1350 | } |
| 1351 | |
| 1352 | LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n" ); |
| 1353 | |
| 1354 | PostprocessISelDAG(); |
| 1355 | } |
| 1356 | |
| 1357 | static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { |
| 1358 | for (const User *U : CPI->users()) { |
| 1359 | if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(Val: U)) { |
| 1360 | Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); |
| 1361 | if (IID == Intrinsic::eh_exceptionpointer || |
| 1362 | IID == Intrinsic::eh_exceptioncode) |
| 1363 | return true; |
| 1364 | } |
| 1365 | } |
| 1366 | return false; |
| 1367 | } |
| 1368 | |
| 1369 | // wasm.landingpad.index intrinsic is for associating a landing pad index number |
| 1370 | // with a catchpad instruction. Retrieve the landing pad index in the intrinsic |
| 1371 | // and store the mapping in the function. |
| 1372 | static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, |
| 1373 | const CatchPadInst *CPI) { |
| 1374 | MachineFunction *MF = MBB->getParent(); |
| 1375 | // In case of single catch (...), we don't emit LSDA, so we don't need |
| 1376 | // this information. |
| 1377 | bool IsSingleCatchAllClause = |
| 1378 | CPI->arg_size() == 1 && |
| 1379 | cast<Constant>(Val: CPI->getArgOperand(i: 0))->isNullValue(); |
| 1380 | // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] |
| 1381 | // and they don't need LSDA info |
| 1382 | bool IsCatchLongjmp = CPI->arg_size() == 0; |
| 1383 | if (!IsSingleCatchAllClause && !IsCatchLongjmp) { |
| 1384 | // Create a mapping from landing pad label to landing pad index. |
| 1385 | bool IntrFound = false; |
| 1386 | for (const User *U : CPI->users()) { |
| 1387 | if (const auto *Call = dyn_cast<IntrinsicInst>(Val: U)) { |
| 1388 | Intrinsic::ID IID = Call->getIntrinsicID(); |
| 1389 | if (IID == Intrinsic::wasm_landingpad_index) { |
| 1390 | Value *IndexArg = Call->getArgOperand(i: 1); |
| 1391 | int Index = cast<ConstantInt>(Val: IndexArg)->getZExtValue(); |
| 1392 | MF->setWasmLandingPadIndex(LPad: MBB, Index); |
| 1393 | IntrFound = true; |
| 1394 | break; |
| 1395 | } |
| 1396 | } |
| 1397 | } |
| 1398 | assert(IntrFound && "wasm.landingpad.index intrinsic not found!" ); |
| 1399 | (void)IntrFound; |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and |
| 1404 | /// do other setup for EH landing-pad blocks. |
| 1405 | bool SelectionDAGISel::PrepareEHLandingPad() { |
| 1406 | MachineBasicBlock *MBB = FuncInfo->MBB; |
| 1407 | const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); |
| 1408 | const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
| 1409 | const TargetRegisterClass *PtrRC = |
| 1410 | TLI->getRegClassFor(VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1411 | |
| 1412 | auto Pers = classifyEHPersonality(Pers: PersonalityFn); |
| 1413 | |
| 1414 | // Catchpads have one live-in register, which typically holds the exception |
| 1415 | // pointer or code. |
| 1416 | if (isFuncletEHPersonality(Pers)) { |
| 1417 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) { |
| 1418 | if (hasExceptionPointerOrCodeUser(CPI)) { |
| 1419 | // Get or create the virtual register to hold the pointer or code. Mark |
| 1420 | // the live in physreg and copy into the vreg. |
| 1421 | MCRegister EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); |
| 1422 | assert(EHPhysReg && "target lacks exception pointer register" ); |
| 1423 | MBB->addLiveIn(PhysReg: EHPhysReg); |
| 1424 | Register VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, RC: PtrRC); |
| 1425 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), |
| 1426 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: VReg) |
| 1427 | .addReg(RegNo: EHPhysReg, flags: RegState::Kill); |
| 1428 | } |
| 1429 | } |
| 1430 | return true; |
| 1431 | } |
| 1432 | |
| 1433 | // Add a label to mark the beginning of the landing pad. Deletion of the |
| 1434 | // landing pad can thus be detected via the MachineModuleInfo. |
| 1435 | MCSymbol *Label = MF->addLandingPad(LandingPad: MBB); |
| 1436 | |
| 1437 | const MCInstrDesc &II = TII->get(Opcode: TargetOpcode::EH_LABEL); |
| 1438 | BuildMI(BB&: *MBB, I: FuncInfo->InsertPt, MIMD: SDB->getCurDebugLoc(), MCID: II) |
| 1439 | .addSym(Sym: Label); |
| 1440 | |
| 1441 | // If the unwinder does not preserve all registers, ensure that the |
| 1442 | // function marks the clobbered registers as used. |
| 1443 | const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| 1444 | if (auto *RegMask = TRI.getCustomEHPadPreservedMask(MF: *MF)) |
| 1445 | MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); |
| 1446 | |
| 1447 | if (Pers == EHPersonality::Wasm_CXX) { |
| 1448 | if (const auto *CPI = dyn_cast<CatchPadInst>(Val: LLVMBB->getFirstNonPHIIt())) |
| 1449 | mapWasmLandingPadIndex(MBB, CPI); |
| 1450 | } else { |
| 1451 | // Assign the call site to the landing pad's begin label. |
| 1452 | MF->setCallSiteLandingPad(Sym: Label, Sites: SDB->LPadToCallSiteMap[MBB]); |
| 1453 | // Mark exception register as live in. |
| 1454 | if (MCRegister Reg = TLI->getExceptionPointerRegister(PersonalityFn)) |
| 1455 | FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
| 1456 | // Mark exception selector register as live in. |
| 1457 | if (MCRegister Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) |
| 1458 | FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(PhysReg: Reg, RC: PtrRC); |
| 1459 | } |
| 1460 | |
| 1461 | return true; |
| 1462 | } |
| 1463 | |
| 1464 | // Mark and Report IPToState for each Block under IsEHa |
| 1465 | void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) { |
| 1466 | llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo(); |
| 1467 | if (!EHInfo) |
| 1468 | return; |
| 1469 | for (MachineBasicBlock &MBB : *MF) { |
| 1470 | const BasicBlock *BB = MBB.getBasicBlock(); |
| 1471 | int State = EHInfo->BlockToStateMap[BB]; |
| 1472 | if (BB->getFirstMayFaultInst()) { |
| 1473 | // Report IP range only for blocks with Faulty inst |
| 1474 | auto MBBb = MBB.getFirstNonPHI(); |
| 1475 | |
| 1476 | if (MBBb == MBB.end()) |
| 1477 | continue; |
| 1478 | |
| 1479 | MachineInstr *MIb = &*MBBb; |
| 1480 | if (MIb->isTerminator()) |
| 1481 | continue; |
| 1482 | |
| 1483 | // Insert EH Labels |
| 1484 | MCSymbol *BeginLabel = MF->getContext().createTempSymbol(); |
| 1485 | MCSymbol *EndLabel = MF->getContext().createTempSymbol(); |
| 1486 | EHInfo->addIPToStateRange(State, InvokeBegin: BeginLabel, InvokeEnd: EndLabel); |
| 1487 | BuildMI(BB&: MBB, I: MBBb, MIMD: SDB->getCurDebugLoc(), |
| 1488 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
| 1489 | .addSym(Sym: BeginLabel); |
| 1490 | auto MBBe = MBB.instr_end(); |
| 1491 | MachineInstr *MIe = &*(--MBBe); |
| 1492 | // insert before (possible multiple) terminators |
| 1493 | while (MIe->isTerminator()) |
| 1494 | MIe = &*(--MBBe); |
| 1495 | ++MBBe; |
| 1496 | BuildMI(BB&: MBB, I: MBBe, MIMD: SDB->getCurDebugLoc(), |
| 1497 | MCID: TII->get(Opcode: TargetOpcode::EH_LABEL)) |
| 1498 | .addSym(Sym: EndLabel); |
| 1499 | } |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | /// isFoldedOrDeadInstruction - Return true if the specified instruction is |
| 1504 | /// side-effect free and is either dead or folded into a generated instruction. |
| 1505 | /// Return false if it needs to be emitted. |
| 1506 | static bool isFoldedOrDeadInstruction(const Instruction *I, |
| 1507 | const FunctionLoweringInfo &FuncInfo) { |
| 1508 | return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. |
| 1509 | !I->isTerminator() && // Terminators aren't folded. |
| 1510 | !I->isEHPad() && // EH pad instructions aren't folded. |
| 1511 | !FuncInfo.isExportedInst(V: I); // Exported instrs must be computed. |
| 1512 | } |
| 1513 | |
| 1514 | static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo, |
| 1515 | const Value *Arg, DIExpression *Expr, |
| 1516 | DILocalVariable *Var, |
| 1517 | DebugLoc DbgLoc) { |
| 1518 | if (!Expr->isEntryValue() || !isa<Argument>(Val: Arg)) |
| 1519 | return false; |
| 1520 | |
| 1521 | auto ArgIt = FuncInfo.ValueMap.find(Val: Arg); |
| 1522 | if (ArgIt == FuncInfo.ValueMap.end()) |
| 1523 | return false; |
| 1524 | Register ArgVReg = ArgIt->getSecond(); |
| 1525 | |
| 1526 | // Find the corresponding livein physical register to this argument. |
| 1527 | for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) |
| 1528 | if (VirtReg == ArgVReg) { |
| 1529 | // Append an op deref to account for the fact that this is a dbg_declare. |
| 1530 | Expr = DIExpression::append(Expr, Ops: dwarf::DW_OP_deref); |
| 1531 | FuncInfo.MF->setVariableDbgInfo(Var, Expr, Reg: PhysReg, Loc: DbgLoc); |
| 1532 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
| 1533 | << ", Expr=" << *Expr << ", MCRegister=" << PhysReg |
| 1534 | << ", DbgLoc=" << DbgLoc << "\n" ); |
| 1535 | return true; |
| 1536 | } |
| 1537 | return false; |
| 1538 | } |
| 1539 | |
| 1540 | static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo, |
| 1541 | const Value *Address, DIExpression *Expr, |
| 1542 | DILocalVariable *Var, DebugLoc DbgLoc) { |
| 1543 | if (!Address) { |
| 1544 | LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var |
| 1545 | << " (bad address)\n" ); |
| 1546 | return false; |
| 1547 | } |
| 1548 | |
| 1549 | if (processIfEntryValueDbgDeclare(FuncInfo, Arg: Address, Expr, Var, DbgLoc)) |
| 1550 | return true; |
| 1551 | |
| 1552 | if (!Address->getType()->isPointerTy()) |
| 1553 | return false; |
| 1554 | |
| 1555 | MachineFunction *MF = FuncInfo.MF; |
| 1556 | const DataLayout &DL = MF->getDataLayout(); |
| 1557 | |
| 1558 | assert(Var && "Missing variable" ); |
| 1559 | assert(DbgLoc && "Missing location" ); |
| 1560 | |
| 1561 | // Look through casts and constant offset GEPs. These mostly come from |
| 1562 | // inalloca. |
| 1563 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Address->getType()), 0); |
| 1564 | Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
| 1565 | |
| 1566 | // Check if the variable is a static alloca or a byval or inalloca |
| 1567 | // argument passed in memory. If it is not, then we will ignore this |
| 1568 | // intrinsic and handle this during isel like dbg.value. |
| 1569 | int FI = std::numeric_limits<int>::max(); |
| 1570 | if (const auto *AI = dyn_cast<AllocaInst>(Val: Address)) { |
| 1571 | auto SI = FuncInfo.StaticAllocaMap.find(Val: AI); |
| 1572 | if (SI != FuncInfo.StaticAllocaMap.end()) |
| 1573 | FI = SI->second; |
| 1574 | } else if (const auto *Arg = dyn_cast<Argument>(Val: Address)) |
| 1575 | FI = FuncInfo.getArgumentFrameIndex(A: Arg); |
| 1576 | |
| 1577 | if (FI == std::numeric_limits<int>::max()) |
| 1578 | return false; |
| 1579 | |
| 1580 | if (Offset.getBoolValue()) |
| 1581 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::ApplyOffset, |
| 1582 | Offset: Offset.getZExtValue()); |
| 1583 | |
| 1584 | LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var |
| 1585 | << ", Expr=" << *Expr << ", FI=" << FI |
| 1586 | << ", DbgLoc=" << DbgLoc << "\n" ); |
| 1587 | MF->setVariableDbgInfo(Var, Expr, Slot: FI, Loc: DbgLoc); |
| 1588 | return true; |
| 1589 | } |
| 1590 | |
| 1591 | /// Collect llvm.dbg.declare information. This is done after argument lowering |
| 1592 | /// in case the declarations refer to arguments. |
| 1593 | static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { |
| 1594 | for (const auto &I : instructions(F: *FuncInfo.Fn)) { |
| 1595 | for (const DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 1596 | if (DVR.Type == DbgVariableRecord::LocationType::Declare && |
| 1597 | processDbgDeclare(FuncInfo, Address: DVR.getVariableLocationOp(OpIdx: 0), |
| 1598 | Expr: DVR.getExpression(), Var: DVR.getVariable(), |
| 1599 | DbgLoc: DVR.getDebugLoc())) |
| 1600 | FuncInfo.PreprocessedDVRDeclares.insert(Ptr: &DVR); |
| 1601 | } |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | /// Collect single location variable information generated with assignment |
| 1606 | /// tracking. This is done after argument lowering in case the declarations |
| 1607 | /// refer to arguments. |
| 1608 | static void processSingleLocVars(FunctionLoweringInfo &FuncInfo, |
| 1609 | FunctionVarLocs const *FnVarLocs) { |
| 1610 | for (auto It = FnVarLocs->single_locs_begin(), |
| 1611 | End = FnVarLocs->single_locs_end(); |
| 1612 | It != End; ++It) { |
| 1613 | assert(!It->Values.hasArgList() && "Single loc variadic ops not supported" ); |
| 1614 | processDbgDeclare(FuncInfo, Address: It->Values.getVariableLocationOp(OpIdx: 0), Expr: It->Expr, |
| 1615 | Var: FnVarLocs->getDILocalVariable(ID: It->VariableID), DbgLoc: It->DL); |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { |
| 1620 | FastISelFailed = false; |
| 1621 | // Initialize the Fast-ISel state, if needed. |
| 1622 | FastISel *FastIS = nullptr; |
| 1623 | if (TM.Options.EnableFastISel) { |
| 1624 | LLVM_DEBUG(dbgs() << "Enabling fast-isel\n" ); |
| 1625 | FastIS = TLI->createFastISel(*FuncInfo, LibInfo); |
| 1626 | } |
| 1627 | |
| 1628 | ReversePostOrderTraversal<const Function*> RPOT(&Fn); |
| 1629 | |
| 1630 | // Lower arguments up front. An RPO iteration always visits the entry block |
| 1631 | // first. |
| 1632 | assert(*RPOT.begin() == &Fn.getEntryBlock()); |
| 1633 | ++NumEntryBlocks; |
| 1634 | |
| 1635 | // Set up FuncInfo for ISel. Entry blocks never have PHIs. |
| 1636 | FuncInfo->MBB = FuncInfo->getMBB(BB: &Fn.getEntryBlock()); |
| 1637 | FuncInfo->InsertPt = FuncInfo->MBB->begin(); |
| 1638 | |
| 1639 | CurDAG->setFunctionLoweringInfo(FuncInfo.get()); |
| 1640 | |
| 1641 | if (!FastIS) { |
| 1642 | LowerArguments(F: Fn); |
| 1643 | } else { |
| 1644 | // See if fast isel can lower the arguments. |
| 1645 | FastIS->startNewBlock(); |
| 1646 | if (!FastIS->lowerArguments()) { |
| 1647 | FastISelFailed = true; |
| 1648 | // Fast isel failed to lower these arguments |
| 1649 | ++NumFastIselFailLowerArguments; |
| 1650 | |
| 1651 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1652 | Fn.getSubprogram(), |
| 1653 | &Fn.getEntryBlock()); |
| 1654 | R << "FastISel didn't lower all arguments: " |
| 1655 | << ore::NV("Prototype" , Fn.getFunctionType()); |
| 1656 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 1); |
| 1657 | |
| 1658 | // Use SelectionDAG argument lowering |
| 1659 | LowerArguments(F: Fn); |
| 1660 | CurDAG->setRoot(SDB->getControlRoot()); |
| 1661 | SDB->clear(); |
| 1662 | CodeGenAndEmitDAG(); |
| 1663 | } |
| 1664 | |
| 1665 | // If we inserted any instructions at the beginning, make a note of |
| 1666 | // where they are, so we can be sure to emit subsequent instructions |
| 1667 | // after them. |
| 1668 | if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) |
| 1669 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
| 1670 | else |
| 1671 | FastIS->setLastLocalValue(nullptr); |
| 1672 | } |
| 1673 | |
| 1674 | bool Inserted = SwiftError->createEntriesInEntryBlock(DbgLoc: SDB->getCurDebugLoc()); |
| 1675 | |
| 1676 | if (FastIS && Inserted) |
| 1677 | FastIS->setLastLocalValue(&*std::prev(x: FuncInfo->InsertPt)); |
| 1678 | |
| 1679 | if (isAssignmentTrackingEnabled(M: *Fn.getParent())) { |
| 1680 | assert(CurDAG->getFunctionVarLocs() && |
| 1681 | "expected AssignmentTrackingAnalysis pass results" ); |
| 1682 | processSingleLocVars(FuncInfo&: *FuncInfo, FnVarLocs: CurDAG->getFunctionVarLocs()); |
| 1683 | } else { |
| 1684 | processDbgDeclares(FuncInfo&: *FuncInfo); |
| 1685 | } |
| 1686 | |
| 1687 | // Iterate over all basic blocks in the function. |
| 1688 | FuncInfo->VisitedBBs.assign(NumElts: Fn.getMaxBlockNumber(), Elt: false); |
| 1689 | for (const BasicBlock *LLVMBB : RPOT) { |
| 1690 | if (OptLevel != CodeGenOptLevel::None) { |
| 1691 | bool AllPredsVisited = true; |
| 1692 | for (const BasicBlock *Pred : predecessors(BB: LLVMBB)) { |
| 1693 | if (!FuncInfo->VisitedBBs[Pred->getNumber()]) { |
| 1694 | AllPredsVisited = false; |
| 1695 | break; |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | if (AllPredsVisited) { |
| 1700 | for (const PHINode &PN : LLVMBB->phis()) |
| 1701 | FuncInfo->ComputePHILiveOutRegInfo(&PN); |
| 1702 | } else { |
| 1703 | for (const PHINode &PN : LLVMBB->phis()) |
| 1704 | FuncInfo->InvalidatePHILiveOutRegInfo(PN: &PN); |
| 1705 | } |
| 1706 | |
| 1707 | FuncInfo->VisitedBBs[LLVMBB->getNumber()] = true; |
| 1708 | } |
| 1709 | |
| 1710 | // Fake uses that follow tail calls are dropped. To avoid this, move |
| 1711 | // such fake uses in front of the tail call, provided they don't |
| 1712 | // use anything def'd by or after the tail call. |
| 1713 | { |
| 1714 | BasicBlock::iterator BBStart = |
| 1715 | const_cast<BasicBlock *>(LLVMBB)->getFirstNonPHIIt(); |
| 1716 | BasicBlock::iterator BBEnd = const_cast<BasicBlock *>(LLVMBB)->end(); |
| 1717 | preserveFakeUses(Begin: BBStart, End: BBEnd); |
| 1718 | } |
| 1719 | |
| 1720 | BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHIIt(); |
| 1721 | BasicBlock::const_iterator const End = LLVMBB->end(); |
| 1722 | BasicBlock::const_iterator BI = End; |
| 1723 | |
| 1724 | FuncInfo->MBB = FuncInfo->getMBB(BB: LLVMBB); |
| 1725 | if (!FuncInfo->MBB) |
| 1726 | continue; // Some blocks like catchpads have no code or MBB. |
| 1727 | |
| 1728 | // Insert new instructions after any phi or argument setup code. |
| 1729 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 1730 | |
| 1731 | // Setup an EH landing-pad block. |
| 1732 | FuncInfo->ExceptionPointerVirtReg = Register(); |
| 1733 | FuncInfo->ExceptionSelectorVirtReg = Register(); |
| 1734 | if (LLVMBB->isEHPad()) |
| 1735 | if (!PrepareEHLandingPad()) |
| 1736 | continue; |
| 1737 | |
| 1738 | // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| 1739 | if (FastIS) { |
| 1740 | if (LLVMBB != &Fn.getEntryBlock()) |
| 1741 | FastIS->startNewBlock(); |
| 1742 | |
| 1743 | unsigned NumFastIselRemaining = std::distance(first: Begin, last: End); |
| 1744 | |
| 1745 | // Pre-assign swifterror vregs. |
| 1746 | SwiftError->preassignVRegs(MBB: FuncInfo->MBB, Begin, End); |
| 1747 | |
| 1748 | // Do FastISel on as many instructions as possible. |
| 1749 | for (; BI != Begin; --BI) { |
| 1750 | const Instruction *Inst = &*std::prev(x: BI); |
| 1751 | |
| 1752 | // If we no longer require this instruction, skip it. |
| 1753 | if (isFoldedOrDeadInstruction(I: Inst, FuncInfo: *FuncInfo) || |
| 1754 | ElidedArgCopyInstrs.count(Ptr: Inst)) { |
| 1755 | --NumFastIselRemaining; |
| 1756 | FastIS->handleDbgInfo(II: Inst); |
| 1757 | continue; |
| 1758 | } |
| 1759 | |
| 1760 | // Bottom-up: reset the insert pos at the top, after any local-value |
| 1761 | // instructions. |
| 1762 | FastIS->recomputeInsertPt(); |
| 1763 | |
| 1764 | // Try to select the instruction with FastISel. |
| 1765 | if (FastIS->selectInstruction(I: Inst)) { |
| 1766 | --NumFastIselRemaining; |
| 1767 | ++NumFastIselSuccess; |
| 1768 | |
| 1769 | FastIS->handleDbgInfo(II: Inst); |
| 1770 | // If fast isel succeeded, skip over all the folded instructions, and |
| 1771 | // then see if there is a load right before the selected instructions. |
| 1772 | // Try to fold the load if so. |
| 1773 | const Instruction *BeforeInst = Inst; |
| 1774 | while (BeforeInst != &*Begin) { |
| 1775 | BeforeInst = &*std::prev(x: BasicBlock::const_iterator(BeforeInst)); |
| 1776 | if (!isFoldedOrDeadInstruction(I: BeforeInst, FuncInfo: *FuncInfo)) |
| 1777 | break; |
| 1778 | } |
| 1779 | if (BeforeInst != Inst && isa<LoadInst>(Val: BeforeInst) && |
| 1780 | BeforeInst->hasOneUse() && |
| 1781 | FastIS->tryToFoldLoad(LI: cast<LoadInst>(Val: BeforeInst), FoldInst: Inst)) { |
| 1782 | // If we succeeded, don't re-select the load. |
| 1783 | LLVM_DEBUG(dbgs() |
| 1784 | << "FastISel folded load: " << *BeforeInst << "\n" ); |
| 1785 | FastIS->handleDbgInfo(II: BeforeInst); |
| 1786 | BI = std::next(x: BasicBlock::const_iterator(BeforeInst)); |
| 1787 | --NumFastIselRemaining; |
| 1788 | ++NumFastIselSuccess; |
| 1789 | } |
| 1790 | continue; |
| 1791 | } |
| 1792 | |
| 1793 | FastISelFailed = true; |
| 1794 | |
| 1795 | // Then handle certain instructions as single-LLVM-Instruction blocks. |
| 1796 | // We cannot separate out GCrelocates to their own blocks since we need |
| 1797 | // to keep track of gc-relocates for a particular gc-statepoint. This is |
| 1798 | // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before |
| 1799 | // visitGCRelocate. |
| 1800 | if (isa<CallInst>(Val: Inst) && !isa<GCStatepointInst>(Val: Inst) && |
| 1801 | !isa<GCRelocateInst>(Val: Inst) && !isa<GCResultInst>(Val: Inst)) { |
| 1802 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1803 | Inst->getDebugLoc(), LLVMBB); |
| 1804 | |
| 1805 | R << "FastISel missed call" ; |
| 1806 | |
| 1807 | if (R.isEnabled() || EnableFastISelAbort) { |
| 1808 | std::string InstStrStorage; |
| 1809 | raw_string_ostream InstStr(InstStrStorage); |
| 1810 | InstStr << *Inst; |
| 1811 | |
| 1812 | R << ": " << InstStrStorage; |
| 1813 | } |
| 1814 | |
| 1815 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort: EnableFastISelAbort > 2); |
| 1816 | |
| 1817 | if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && |
| 1818 | !Inst->use_empty()) { |
| 1819 | Register &R = FuncInfo->ValueMap[Inst]; |
| 1820 | if (!R) |
| 1821 | R = FuncInfo->CreateRegs(V: Inst); |
| 1822 | } |
| 1823 | |
| 1824 | bool HadTailCall = false; |
| 1825 | MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; |
| 1826 | SelectBasicBlock(Begin: Inst->getIterator(), End: BI, HadTailCall); |
| 1827 | |
| 1828 | // If the call was emitted as a tail call, we're done with the block. |
| 1829 | // We also need to delete any previously emitted instructions. |
| 1830 | if (HadTailCall) { |
| 1831 | FastIS->removeDeadCode(I: SavedInsertPt, E: FuncInfo->MBB->end()); |
| 1832 | --BI; |
| 1833 | break; |
| 1834 | } |
| 1835 | |
| 1836 | // Recompute NumFastIselRemaining as Selection DAG instruction |
| 1837 | // selection may have handled the call, input args, etc. |
| 1838 | unsigned RemainingNow = std::distance(first: Begin, last: BI); |
| 1839 | NumFastIselFailures += NumFastIselRemaining - RemainingNow; |
| 1840 | NumFastIselRemaining = RemainingNow; |
| 1841 | continue; |
| 1842 | } |
| 1843 | |
| 1844 | OptimizationRemarkMissed R("sdagisel" , "FastISelFailure" , |
| 1845 | Inst->getDebugLoc(), LLVMBB); |
| 1846 | |
| 1847 | bool ShouldAbort = EnableFastISelAbort; |
| 1848 | if (Inst->isTerminator()) { |
| 1849 | // Use a different message for terminator misses. |
| 1850 | R << "FastISel missed terminator" ; |
| 1851 | // Don't abort for terminator unless the level is really high |
| 1852 | ShouldAbort = (EnableFastISelAbort > 2); |
| 1853 | } else { |
| 1854 | R << "FastISel missed" ; |
| 1855 | } |
| 1856 | |
| 1857 | if (R.isEnabled() || EnableFastISelAbort) { |
| 1858 | std::string InstStrStorage; |
| 1859 | raw_string_ostream InstStr(InstStrStorage); |
| 1860 | InstStr << *Inst; |
| 1861 | R << ": " << InstStrStorage; |
| 1862 | } |
| 1863 | |
| 1864 | reportFastISelFailure(MF&: *MF, ORE&: *ORE, R, ShouldAbort); |
| 1865 | |
| 1866 | NumFastIselFailures += NumFastIselRemaining; |
| 1867 | break; |
| 1868 | } |
| 1869 | |
| 1870 | FastIS->recomputeInsertPt(); |
| 1871 | } |
| 1872 | |
| 1873 | if (SP->shouldEmitSDCheck(BB: *LLVMBB)) { |
| 1874 | bool FunctionBasedInstrumentation = |
| 1875 | TLI->getSSPStackGuardCheck(M: *Fn.getParent()) && Fn.hasMinSize(); |
| 1876 | SDB->SPDescriptor.initialize(BB: LLVMBB, MBB: FuncInfo->getMBB(BB: LLVMBB), |
| 1877 | FunctionBasedInstrumentation); |
| 1878 | } |
| 1879 | |
| 1880 | if (Begin != BI) |
| 1881 | ++NumDAGBlocks; |
| 1882 | else |
| 1883 | ++NumFastIselBlocks; |
| 1884 | |
| 1885 | if (Begin != BI) { |
| 1886 | // Run SelectionDAG instruction selection on the remainder of the block |
| 1887 | // not handled by FastISel. If FastISel is not run, this is the entire |
| 1888 | // block. |
| 1889 | bool HadTailCall; |
| 1890 | SelectBasicBlock(Begin, End: BI, HadTailCall); |
| 1891 | |
| 1892 | // But if FastISel was run, we already selected some of the block. |
| 1893 | // If we emitted a tail-call, we need to delete any previously emitted |
| 1894 | // instruction that follows it. |
| 1895 | if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) |
| 1896 | FastIS->removeDeadCode(I: FuncInfo->InsertPt, E: FuncInfo->MBB->end()); |
| 1897 | } |
| 1898 | |
| 1899 | if (FastIS) |
| 1900 | FastIS->finishBasicBlock(); |
| 1901 | FinishBasicBlock(); |
| 1902 | FuncInfo->PHINodesToUpdate.clear(); |
| 1903 | ElidedArgCopyInstrs.clear(); |
| 1904 | } |
| 1905 | |
| 1906 | // AsynchEH: Report Block State under -AsynchEH |
| 1907 | if (Fn.getParent()->getModuleFlag(Key: "eh-asynch" )) |
| 1908 | reportIPToStateForBlocks(MF); |
| 1909 | |
| 1910 | SP->copyToMachineFrameInfo(MFI&: MF->getFrameInfo()); |
| 1911 | |
| 1912 | SwiftError->propagateVRegs(); |
| 1913 | |
| 1914 | delete FastIS; |
| 1915 | SDB->clearDanglingDebugInfo(); |
| 1916 | SDB->SPDescriptor.resetPerFunctionState(); |
| 1917 | } |
| 1918 | |
| 1919 | void |
| 1920 | SelectionDAGISel::FinishBasicBlock() { |
| 1921 | LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| 1922 | << FuncInfo->PHINodesToUpdate.size() << "\n" ; |
| 1923 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; |
| 1924 | ++i) dbgs() |
| 1925 | << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first |
| 1926 | << ", " << printReg(FuncInfo->PHINodesToUpdate[i].second) |
| 1927 | << ")\n" ); |
| 1928 | |
| 1929 | // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| 1930 | // PHI nodes in successors. |
| 1931 | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
| 1932 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); |
| 1933 | assert(PHI->isPHI() && |
| 1934 | "This is not a machine PHI node that we are updating!" ); |
| 1935 | if (!FuncInfo->MBB->isSuccessor(MBB: PHI->getParent())) |
| 1936 | continue; |
| 1937 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[i].second).addMBB(MBB: FuncInfo->MBB); |
| 1938 | } |
| 1939 | |
| 1940 | // Handle stack protector. |
| 1941 | if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { |
| 1942 | // The target provides a guard check function. There is no need to |
| 1943 | // generate error handling code or to split current basic block. |
| 1944 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| 1945 | |
| 1946 | // Add load and check to the basicblock. |
| 1947 | FuncInfo->MBB = ParentMBB; |
| 1948 | FuncInfo->InsertPt = findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
| 1949 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
| 1950 | CurDAG->setRoot(SDB->getRoot()); |
| 1951 | SDB->clear(); |
| 1952 | CodeGenAndEmitDAG(); |
| 1953 | |
| 1954 | // Clear the Per-BB State. |
| 1955 | SDB->SPDescriptor.resetPerBBState(); |
| 1956 | } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { |
| 1957 | MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| 1958 | MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); |
| 1959 | |
| 1960 | // Find the split point to split the parent mbb. At the same time copy all |
| 1961 | // physical registers used in the tail of parent mbb into virtual registers |
| 1962 | // before the split point and back into physical registers after the split |
| 1963 | // point. This prevents us needing to deal with Live-ins and many other |
| 1964 | // register allocation issues caused by us splitting the parent mbb. The |
| 1965 | // register allocator will clean up said virtual copies later on. |
| 1966 | MachineBasicBlock::iterator SplitPoint = |
| 1967 | findSplitPointForStackProtector(BB: ParentMBB, TII: *TII); |
| 1968 | |
| 1969 | // Splice the terminator of ParentMBB into SuccessMBB. |
| 1970 | SuccessMBB->splice(Where: SuccessMBB->end(), Other: ParentMBB, From: SplitPoint, |
| 1971 | To: ParentMBB->end()); |
| 1972 | |
| 1973 | // Add compare/jump on neq/jump to the parent BB. |
| 1974 | FuncInfo->MBB = ParentMBB; |
| 1975 | FuncInfo->InsertPt = ParentMBB->end(); |
| 1976 | SDB->visitSPDescriptorParent(SPD&: SDB->SPDescriptor, ParentBB: ParentMBB); |
| 1977 | CurDAG->setRoot(SDB->getRoot()); |
| 1978 | SDB->clear(); |
| 1979 | CodeGenAndEmitDAG(); |
| 1980 | |
| 1981 | // CodeGen Failure MBB if we have not codegened it yet. |
| 1982 | MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); |
| 1983 | if (FailureMBB->empty()) { |
| 1984 | FuncInfo->MBB = FailureMBB; |
| 1985 | FuncInfo->InsertPt = FailureMBB->end(); |
| 1986 | SDB->visitSPDescriptorFailure(SPD&: SDB->SPDescriptor); |
| 1987 | CurDAG->setRoot(SDB->getRoot()); |
| 1988 | SDB->clear(); |
| 1989 | CodeGenAndEmitDAG(); |
| 1990 | } |
| 1991 | |
| 1992 | // Clear the Per-BB State. |
| 1993 | SDB->SPDescriptor.resetPerBBState(); |
| 1994 | } |
| 1995 | |
| 1996 | // Lower each BitTestBlock. |
| 1997 | for (auto &BTB : SDB->SL->BitTestCases) { |
| 1998 | // Lower header first, if it wasn't already lowered |
| 1999 | if (!BTB.Emitted) { |
| 2000 | // Set the current basic block to the mbb we wish to insert the code into |
| 2001 | FuncInfo->MBB = BTB.Parent; |
| 2002 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2003 | // Emit the code |
| 2004 | SDB->visitBitTestHeader(B&: BTB, SwitchBB: FuncInfo->MBB); |
| 2005 | CurDAG->setRoot(SDB->getRoot()); |
| 2006 | SDB->clear(); |
| 2007 | CodeGenAndEmitDAG(); |
| 2008 | } |
| 2009 | |
| 2010 | BranchProbability UnhandledProb = BTB.Prob; |
| 2011 | for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { |
| 2012 | UnhandledProb -= BTB.Cases[j].ExtraProb; |
| 2013 | // Set the current basic block to the mbb we wish to insert the code into |
| 2014 | FuncInfo->MBB = BTB.Cases[j].ThisBB; |
| 2015 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2016 | // Emit the code |
| 2017 | |
| 2018 | // If all cases cover a contiguous range, it is not necessary to jump to |
| 2019 | // the default block after the last bit test fails. This is because the |
| 2020 | // range check during bit test header creation has guaranteed that every |
| 2021 | // case here doesn't go outside the range. In this case, there is no need |
| 2022 | // to perform the last bit test, as it will always be true. Instead, make |
| 2023 | // the second-to-last bit-test fall through to the target of the last bit |
| 2024 | // test, and delete the last bit test. |
| 2025 | |
| 2026 | MachineBasicBlock *NextMBB; |
| 2027 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
| 2028 | // Second-to-last bit-test with contiguous range or omitted range |
| 2029 | // check: fall through to the target of the final bit test. |
| 2030 | NextMBB = BTB.Cases[j + 1].TargetBB; |
| 2031 | } else if (j + 1 == ej) { |
| 2032 | // For the last bit test, fall through to Default. |
| 2033 | NextMBB = BTB.Default; |
| 2034 | } else { |
| 2035 | // Otherwise, fall through to the next bit test. |
| 2036 | NextMBB = BTB.Cases[j + 1].ThisBB; |
| 2037 | } |
| 2038 | |
| 2039 | SDB->visitBitTestCase(BB&: BTB, NextMBB, BranchProbToNext: UnhandledProb, Reg: BTB.Reg, B&: BTB.Cases[j], |
| 2040 | SwitchBB: FuncInfo->MBB); |
| 2041 | |
| 2042 | CurDAG->setRoot(SDB->getRoot()); |
| 2043 | SDB->clear(); |
| 2044 | CodeGenAndEmitDAG(); |
| 2045 | |
| 2046 | if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { |
| 2047 | // Since we're not going to use the final bit test, remove it. |
| 2048 | BTB.Cases.pop_back(); |
| 2049 | break; |
| 2050 | } |
| 2051 | } |
| 2052 | |
| 2053 | // Update PHI Nodes |
| 2054 | for (const std::pair<MachineInstr *, Register> &P : |
| 2055 | FuncInfo->PHINodesToUpdate) { |
| 2056 | MachineInstrBuilder PHI(*MF, P.first); |
| 2057 | MachineBasicBlock *PHIBB = PHI->getParent(); |
| 2058 | assert(PHI->isPHI() && |
| 2059 | "This is not a machine PHI node that we are updating!" ); |
| 2060 | // This is "default" BB. We have two jumps to it. From "header" BB and |
| 2061 | // from last "case" BB, unless the latter was skipped. |
| 2062 | if (PHIBB == BTB.Default) { |
| 2063 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Parent); |
| 2064 | if (!BTB.ContiguousRange) { |
| 2065 | PHI.addReg(RegNo: P.second).addMBB(MBB: BTB.Cases.back().ThisBB); |
| 2066 | } |
| 2067 | } |
| 2068 | // One of "cases" BB. |
| 2069 | for (const SwitchCG::BitTestCase &BT : BTB.Cases) { |
| 2070 | MachineBasicBlock* cBB = BT.ThisBB; |
| 2071 | if (cBB->isSuccessor(MBB: PHIBB)) |
| 2072 | PHI.addReg(RegNo: P.second).addMBB(MBB: cBB); |
| 2073 | } |
| 2074 | } |
| 2075 | } |
| 2076 | SDB->SL->BitTestCases.clear(); |
| 2077 | |
| 2078 | // If the JumpTable record is filled in, then we need to emit a jump table. |
| 2079 | // Updating the PHI nodes is tricky in this case, since we need to determine |
| 2080 | // whether the PHI is a successor of the range check MBB or the jump table MBB |
| 2081 | for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { |
| 2082 | // Lower header first, if it wasn't already lowered |
| 2083 | if (!SDB->SL->JTCases[i].first.Emitted) { |
| 2084 | // Set the current basic block to the mbb we wish to insert the code into |
| 2085 | FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; |
| 2086 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2087 | // Emit the code |
| 2088 | SDB->visitJumpTableHeader(JT&: SDB->SL->JTCases[i].second, |
| 2089 | JTH&: SDB->SL->JTCases[i].first, SwitchBB: FuncInfo->MBB); |
| 2090 | CurDAG->setRoot(SDB->getRoot()); |
| 2091 | SDB->clear(); |
| 2092 | CodeGenAndEmitDAG(); |
| 2093 | } |
| 2094 | |
| 2095 | // Set the current basic block to the mbb we wish to insert the code into |
| 2096 | FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; |
| 2097 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2098 | // Emit the code |
| 2099 | SDB->visitJumpTable(JT&: SDB->SL->JTCases[i].second); |
| 2100 | CurDAG->setRoot(SDB->getRoot()); |
| 2101 | SDB->clear(); |
| 2102 | CodeGenAndEmitDAG(); |
| 2103 | |
| 2104 | // Update PHI Nodes |
| 2105 | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| 2106 | pi != pe; ++pi) { |
| 2107 | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); |
| 2108 | MachineBasicBlock *PHIBB = PHI->getParent(); |
| 2109 | assert(PHI->isPHI() && |
| 2110 | "This is not a machine PHI node that we are updating!" ); |
| 2111 | // "default" BB. We can go there only from header BB. |
| 2112 | if (PHIBB == SDB->SL->JTCases[i].second.Default) |
| 2113 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second) |
| 2114 | .addMBB(MBB: SDB->SL->JTCases[i].first.HeaderBB); |
| 2115 | // JT BB. Just iterate over successors here |
| 2116 | if (FuncInfo->MBB->isSuccessor(MBB: PHIBB)) |
| 2117 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pi].second).addMBB(MBB: FuncInfo->MBB); |
| 2118 | } |
| 2119 | } |
| 2120 | SDB->SL->JTCases.clear(); |
| 2121 | |
| 2122 | // If we generated any switch lowering information, build and codegen any |
| 2123 | // additional DAGs necessary. |
| 2124 | for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { |
| 2125 | // Set the current basic block to the mbb we wish to insert the code into |
| 2126 | FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; |
| 2127 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2128 | |
| 2129 | // Determine the unique successors. |
| 2130 | SmallVector<MachineBasicBlock *, 2> Succs; |
| 2131 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].TrueBB); |
| 2132 | if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) |
| 2133 | Succs.push_back(Elt: SDB->SL->SwitchCases[i].FalseBB); |
| 2134 | |
| 2135 | // Emit the code. Note that this could result in FuncInfo->MBB being split. |
| 2136 | SDB->visitSwitchCase(CB&: SDB->SL->SwitchCases[i], SwitchBB: FuncInfo->MBB); |
| 2137 | CurDAG->setRoot(SDB->getRoot()); |
| 2138 | SDB->clear(); |
| 2139 | CodeGenAndEmitDAG(); |
| 2140 | |
| 2141 | // Remember the last block, now that any splitting is done, for use in |
| 2142 | // populating PHI nodes in successors. |
| 2143 | MachineBasicBlock *ThisBB = FuncInfo->MBB; |
| 2144 | |
| 2145 | // Handle any PHI nodes in successors of this chunk, as if we were coming |
| 2146 | // from the original BB before switch expansion. Note that PHI nodes can |
| 2147 | // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| 2148 | // handle them the right number of times. |
| 2149 | for (MachineBasicBlock *Succ : Succs) { |
| 2150 | FuncInfo->MBB = Succ; |
| 2151 | FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| 2152 | // FuncInfo->MBB may have been removed from the CFG if a branch was |
| 2153 | // constant folded. |
| 2154 | if (ThisBB->isSuccessor(MBB: FuncInfo->MBB)) { |
| 2155 | for (MachineBasicBlock::iterator |
| 2156 | MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); |
| 2157 | MBBI != MBBE && MBBI->isPHI(); ++MBBI) { |
| 2158 | MachineInstrBuilder PHI(*MF, MBBI); |
| 2159 | // This value for this PHI node is recorded in PHINodesToUpdate. |
| 2160 | for (unsigned pn = 0; ; ++pn) { |
| 2161 | assert(pn != FuncInfo->PHINodesToUpdate.size() && |
| 2162 | "Didn't find PHI entry!" ); |
| 2163 | if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { |
| 2164 | PHI.addReg(RegNo: FuncInfo->PHINodesToUpdate[pn].second).addMBB(MBB: ThisBB); |
| 2165 | break; |
| 2166 | } |
| 2167 | } |
| 2168 | } |
| 2169 | } |
| 2170 | } |
| 2171 | } |
| 2172 | SDB->SL->SwitchCases.clear(); |
| 2173 | } |
| 2174 | |
| 2175 | /// Create the scheduler. If a specific scheduler was specified |
| 2176 | /// via the SchedulerRegistry, use it, otherwise select the |
| 2177 | /// one preferred by the target. |
| 2178 | /// |
| 2179 | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| 2180 | return ISHeuristic(this, OptLevel); |
| 2181 | } |
| 2182 | |
| 2183 | //===----------------------------------------------------------------------===// |
| 2184 | // Helper functions used by the generated instruction selector. |
| 2185 | //===----------------------------------------------------------------------===// |
| 2186 | // Calls to these methods are generated by tblgen. |
| 2187 | |
| 2188 | /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| 2189 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
| 2190 | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| 2191 | /// specified in the .td file (e.g. 255). |
| 2192 | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| 2193 | int64_t DesiredMaskS) const { |
| 2194 | const APInt &ActualMask = RHS->getAPIntValue(); |
| 2195 | // TODO: Avoid implicit trunc? |
| 2196 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 2197 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
| 2198 | /*isSigned=*/false, /*implicitTrunc=*/true); |
| 2199 | |
| 2200 | // If the actual mask exactly matches, success! |
| 2201 | if (ActualMask == DesiredMask) |
| 2202 | return true; |
| 2203 | |
| 2204 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| 2205 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
| 2206 | return false; |
| 2207 | |
| 2208 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
| 2209 | // either already zero or is not demanded. Check for known zero input bits. |
| 2210 | APInt NeededMask = DesiredMask & ~ActualMask; |
| 2211 | if (CurDAG->MaskedValueIsZero(Op: LHS, Mask: NeededMask)) |
| 2212 | return true; |
| 2213 | |
| 2214 | // TODO: check to see if missing bits are just not demanded. |
| 2215 | |
| 2216 | // Otherwise, this pattern doesn't match. |
| 2217 | return false; |
| 2218 | } |
| 2219 | |
| 2220 | /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| 2221 | /// the dag combiner simplified the 255, we still want to match. RHS is the |
| 2222 | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| 2223 | /// specified in the .td file (e.g. 255). |
| 2224 | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| 2225 | int64_t DesiredMaskS) const { |
| 2226 | const APInt &ActualMask = RHS->getAPIntValue(); |
| 2227 | // TODO: Avoid implicit trunc? |
| 2228 | // See https://github.com/llvm/llvm-project/issues/112510. |
| 2229 | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS, |
| 2230 | /*isSigned=*/false, /*implicitTrunc=*/true); |
| 2231 | |
| 2232 | // If the actual mask exactly matches, success! |
| 2233 | if (ActualMask == DesiredMask) |
| 2234 | return true; |
| 2235 | |
| 2236 | // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| 2237 | if (!ActualMask.isSubsetOf(RHS: DesiredMask)) |
| 2238 | return false; |
| 2239 | |
| 2240 | // Otherwise, the DAG Combiner may have proven that the value coming in is |
| 2241 | // either already zero or is not demanded. Check for known zero input bits. |
| 2242 | APInt NeededMask = DesiredMask & ~ActualMask; |
| 2243 | KnownBits Known = CurDAG->computeKnownBits(Op: LHS); |
| 2244 | |
| 2245 | // If all the missing bits in the or are already known to be set, match! |
| 2246 | if (NeededMask.isSubsetOf(RHS: Known.One)) |
| 2247 | return true; |
| 2248 | |
| 2249 | // TODO: check to see if missing bits are just not demanded. |
| 2250 | |
| 2251 | // Otherwise, this pattern doesn't match. |
| 2252 | return false; |
| 2253 | } |
| 2254 | |
| 2255 | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| 2256 | /// by tblgen. Others should not call it. |
| 2257 | void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, |
| 2258 | const SDLoc &DL) { |
| 2259 | // Change the vector of SDValue into a list of SDNodeHandle for x86 might call |
| 2260 | // replaceAllUses when matching address. |
| 2261 | |
| 2262 | std::list<HandleSDNode> Handles; |
| 2263 | |
| 2264 | Handles.emplace_back(args&: Ops[InlineAsm::Op_InputChain]); // 0 |
| 2265 | Handles.emplace_back(args&: Ops[InlineAsm::Op_AsmString]); // 1 |
| 2266 | Handles.emplace_back(args&: Ops[InlineAsm::Op_MDNode]); // 2, !srcloc |
| 2267 | Handles.emplace_back( |
| 2268 | args&: Ops[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) |
| 2269 | |
| 2270 | unsigned i = InlineAsm::Op_FirstOperand, e = Ops.size(); |
| 2271 | if (Ops[e - 1].getValueType() == MVT::Glue) |
| 2272 | --e; // Don't process a glue operand if it is here. |
| 2273 | |
| 2274 | while (i != e) { |
| 2275 | InlineAsm::Flag Flags(Ops[i]->getAsZExtVal()); |
| 2276 | if (!Flags.isMemKind() && !Flags.isFuncKind()) { |
| 2277 | // Just skip over this operand, copying the operands verbatim. |
| 2278 | Handles.insert(position: Handles.end(), first: Ops.begin() + i, |
| 2279 | last: Ops.begin() + i + Flags.getNumOperandRegisters() + 1); |
| 2280 | i += Flags.getNumOperandRegisters() + 1; |
| 2281 | } else { |
| 2282 | assert(Flags.getNumOperandRegisters() == 1 && |
| 2283 | "Memory operand with multiple values?" ); |
| 2284 | |
| 2285 | unsigned TiedToOperand; |
| 2286 | if (Flags.isUseOperandTiedToDef(Idx&: TiedToOperand)) { |
| 2287 | // We need the constraint ID from the operand this is tied to. |
| 2288 | unsigned CurOp = InlineAsm::Op_FirstOperand; |
| 2289 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
| 2290 | for (; TiedToOperand; --TiedToOperand) { |
| 2291 | CurOp += Flags.getNumOperandRegisters() + 1; |
| 2292 | Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal()); |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | // Otherwise, this is a memory operand. Ask the target to select it. |
| 2297 | std::vector<SDValue> SelOps; |
| 2298 | const InlineAsm::ConstraintCode ConstraintID = |
| 2299 | Flags.getMemoryConstraintID(); |
| 2300 | if (SelectInlineAsmMemoryOperand(Op: Ops[i + 1], ConstraintID, OutOps&: SelOps)) |
| 2301 | report_fatal_error(reason: "Could not match memory address. Inline asm" |
| 2302 | " failure!" ); |
| 2303 | |
| 2304 | // Add this to the output node. |
| 2305 | Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem |
| 2306 | : InlineAsm::Kind::Func, |
| 2307 | SelOps.size()); |
| 2308 | Flags.setMemConstraint(ConstraintID); |
| 2309 | Handles.emplace_back(args: CurDAG->getTargetConstant(Val: Flags, DL, VT: MVT::i32)); |
| 2310 | llvm::append_range(C&: Handles, R&: SelOps); |
| 2311 | i += 2; |
| 2312 | } |
| 2313 | } |
| 2314 | |
| 2315 | // Add the glue input back if present. |
| 2316 | if (e != Ops.size()) |
| 2317 | Handles.emplace_back(args&: Ops.back()); |
| 2318 | |
| 2319 | Ops.clear(); |
| 2320 | for (auto &handle : Handles) |
| 2321 | Ops.push_back(x: handle.getValue()); |
| 2322 | } |
| 2323 | |
| 2324 | /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path |
| 2325 | /// beyond "ImmedUse". We may ignore chains as they are checked separately. |
| 2326 | static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, |
| 2327 | bool IgnoreChains) { |
| 2328 | SmallPtrSet<const SDNode *, 16> Visited; |
| 2329 | SmallVector<const SDNode *, 16> WorkList; |
| 2330 | // Only check if we have non-immediate uses of Def. |
| 2331 | if (ImmedUse->isOnlyUserOf(N: Def)) |
| 2332 | return false; |
| 2333 | |
| 2334 | // We don't care about paths to Def that go through ImmedUse so mark it |
| 2335 | // visited and mark non-def operands as used. |
| 2336 | Visited.insert(Ptr: ImmedUse); |
| 2337 | for (const SDValue &Op : ImmedUse->op_values()) { |
| 2338 | SDNode *N = Op.getNode(); |
| 2339 | // Ignore chain deps (they are validated by |
| 2340 | // HandleMergeInputChains) and immediate uses |
| 2341 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| 2342 | continue; |
| 2343 | if (!Visited.insert(Ptr: N).second) |
| 2344 | continue; |
| 2345 | WorkList.push_back(Elt: N); |
| 2346 | } |
| 2347 | |
| 2348 | // Initialize worklist to operands of Root. |
| 2349 | if (Root != ImmedUse) { |
| 2350 | for (const SDValue &Op : Root->op_values()) { |
| 2351 | SDNode *N = Op.getNode(); |
| 2352 | // Ignore chains (they are validated by HandleMergeInputChains) |
| 2353 | if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| 2354 | continue; |
| 2355 | if (!Visited.insert(Ptr: N).second) |
| 2356 | continue; |
| 2357 | WorkList.push_back(Elt: N); |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | return SDNode::hasPredecessorHelper(N: Def, Visited, Worklist&: WorkList, MaxSteps: 0, TopologicalPrune: true); |
| 2362 | } |
| 2363 | |
| 2364 | /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| 2365 | /// operand node N of U during instruction selection that starts at Root. |
| 2366 | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| 2367 | SDNode *Root) const { |
| 2368 | if (OptLevel == CodeGenOptLevel::None) |
| 2369 | return false; |
| 2370 | return N.hasOneUse(); |
| 2371 | } |
| 2372 | |
| 2373 | /// IsLegalToFold - Returns true if the specific operand node N of |
| 2374 | /// U can be folded during instruction selection that starts at Root. |
| 2375 | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
| 2376 | CodeGenOptLevel OptLevel, |
| 2377 | bool IgnoreChains) { |
| 2378 | if (OptLevel == CodeGenOptLevel::None) |
| 2379 | return false; |
| 2380 | |
| 2381 | // If Root use can somehow reach N through a path that doesn't contain |
| 2382 | // U then folding N would create a cycle. e.g. In the following |
| 2383 | // diagram, Root can reach N through X. If N is folded into Root, then |
| 2384 | // X is both a predecessor and a successor of U. |
| 2385 | // |
| 2386 | // [N*] // |
| 2387 | // ^ ^ // |
| 2388 | // / \ // |
| 2389 | // [U*] [X]? // |
| 2390 | // ^ ^ // |
| 2391 | // \ / // |
| 2392 | // \ / // |
| 2393 | // [Root*] // |
| 2394 | // |
| 2395 | // * indicates nodes to be folded together. |
| 2396 | // |
| 2397 | // If Root produces glue, then it gets (even more) interesting. Since it |
| 2398 | // will be "glued" together with its glue use in the scheduler, we need to |
| 2399 | // check if it might reach N. |
| 2400 | // |
| 2401 | // [N*] // |
| 2402 | // ^ ^ // |
| 2403 | // / \ // |
| 2404 | // [U*] [X]? // |
| 2405 | // ^ ^ // |
| 2406 | // \ \ // |
| 2407 | // \ | // |
| 2408 | // [Root*] | // |
| 2409 | // ^ | // |
| 2410 | // f | // |
| 2411 | // | / // |
| 2412 | // [Y] / // |
| 2413 | // ^ / // |
| 2414 | // f / // |
| 2415 | // | / // |
| 2416 | // [GU] // |
| 2417 | // |
| 2418 | // If GU (glue use) indirectly reaches N (the load), and Root folds N |
| 2419 | // (call it Fold), then X is a predecessor of GU and a successor of |
| 2420 | // Fold. But since Fold and GU are glued together, this will create |
| 2421 | // a cycle in the scheduling graph. |
| 2422 | |
| 2423 | // If the node has glue, walk down the graph to the "lowest" node in the |
| 2424 | // glueged set. |
| 2425 | EVT VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
| 2426 | while (VT == MVT::Glue) { |
| 2427 | SDNode *GU = Root->getGluedUser(); |
| 2428 | if (!GU) |
| 2429 | break; |
| 2430 | Root = GU; |
| 2431 | VT = Root->getValueType(ResNo: Root->getNumValues()-1); |
| 2432 | |
| 2433 | // If our query node has a glue result with a use, we've walked up it. If |
| 2434 | // the user (which has already been selected) has a chain or indirectly uses |
| 2435 | // the chain, HandleMergeInputChains will not consider it. Because of |
| 2436 | // this, we cannot ignore chains in this predicate. |
| 2437 | IgnoreChains = false; |
| 2438 | } |
| 2439 | |
| 2440 | return !findNonImmUse(Root, Def: N.getNode(), ImmedUse: U, IgnoreChains); |
| 2441 | } |
| 2442 | |
| 2443 | void SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| 2444 | SDLoc DL(N); |
| 2445 | |
| 2446 | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| 2447 | SelectInlineAsmMemoryOperands(Ops, DL); |
| 2448 | |
| 2449 | const EVT VTs[] = {MVT::Other, MVT::Glue}; |
| 2450 | SDValue New = CurDAG->getNode(Opcode: N->getOpcode(), DL, ResultTys: VTs, Ops); |
| 2451 | New->setNodeId(-1); |
| 2452 | ReplaceUses(F: N, T: New.getNode()); |
| 2453 | CurDAG->RemoveDeadNode(N); |
| 2454 | } |
| 2455 | |
| 2456 | void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { |
| 2457 | SDLoc dl(Op); |
| 2458 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
| 2459 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 2460 | |
| 2461 | EVT VT = Op->getValueType(ResNo: 0); |
| 2462 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
| 2463 | |
| 2464 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
| 2465 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
| 2466 | |
| 2467 | SDValue New; |
| 2468 | if (!Reg) { |
| 2469 | const Function &Fn = MF.getFunction(); |
| 2470 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
| 2471 | "invalid register \"" + Twine(RegStr->getString().data()) + |
| 2472 | "\" for llvm.read_register" , |
| 2473 | Fn, Op->getDebugLoc())); |
| 2474 | New = |
| 2475 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT), 0); |
| 2476 | ReplaceUses(F: SDValue(Op, 1), T: Op->getOperand(Num: 0)); |
| 2477 | } else { |
| 2478 | New = |
| 2479 | CurDAG->getCopyFromReg(Chain: Op->getOperand(Num: 0), dl, Reg, VT: Op->getValueType(ResNo: 0)); |
| 2480 | } |
| 2481 | |
| 2482 | New->setNodeId(-1); |
| 2483 | ReplaceUses(F: Op, T: New.getNode()); |
| 2484 | CurDAG->RemoveDeadNode(N: Op); |
| 2485 | } |
| 2486 | |
| 2487 | void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { |
| 2488 | SDLoc dl(Op); |
| 2489 | MDNodeSDNode *MD = cast<MDNodeSDNode>(Val: Op->getOperand(Num: 1)); |
| 2490 | const MDString *RegStr = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 2491 | |
| 2492 | EVT VT = Op->getOperand(Num: 2).getValueType(); |
| 2493 | LLT Ty = VT.isSimple() ? getLLTForMVT(Ty: VT.getSimpleVT()) : LLT(); |
| 2494 | |
| 2495 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
| 2496 | Register Reg = TLI->getRegisterByName(RegName: RegStr->getString().data(), Ty, MF); |
| 2497 | |
| 2498 | if (!Reg) { |
| 2499 | const Function &Fn = MF.getFunction(); |
| 2500 | Fn.getContext().diagnose(DI: DiagnosticInfoGenericWithLoc( |
| 2501 | "invalid register \"" + Twine(RegStr->getString().data()) + |
| 2502 | "\" for llvm.write_register" , |
| 2503 | Fn, Op->getDebugLoc())); |
| 2504 | ReplaceUses(F: SDValue(Op, 0), T: Op->getOperand(Num: 0)); |
| 2505 | } else { |
| 2506 | SDValue New = |
| 2507 | CurDAG->getCopyToReg(Chain: Op->getOperand(Num: 0), dl, Reg, N: Op->getOperand(Num: 2)); |
| 2508 | New->setNodeId(-1); |
| 2509 | ReplaceUses(F: Op, T: New.getNode()); |
| 2510 | } |
| 2511 | |
| 2512 | CurDAG->RemoveDeadNode(N: Op); |
| 2513 | } |
| 2514 | |
| 2515 | void SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| 2516 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::IMPLICIT_DEF, VT: N->getValueType(ResNo: 0)); |
| 2517 | } |
| 2518 | |
| 2519 | // Use the generic target FAKE_USE target opcode. The chain operand |
| 2520 | // must come last, because InstrEmitter::AddOperand() requires it. |
| 2521 | void SelectionDAGISel::Select_FAKE_USE(SDNode *N) { |
| 2522 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::FAKE_USE, VT: N->getValueType(ResNo: 0), |
| 2523 | Op1: N->getOperand(Num: 1), Op2: N->getOperand(Num: 0)); |
| 2524 | } |
| 2525 | |
| 2526 | void SelectionDAGISel::Select_FREEZE(SDNode *N) { |
| 2527 | // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. |
| 2528 | // If FREEZE instruction is added later, the code below must be changed as |
| 2529 | // well. |
| 2530 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::COPY, VT: N->getValueType(ResNo: 0), |
| 2531 | Op1: N->getOperand(Num: 0)); |
| 2532 | } |
| 2533 | |
| 2534 | void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { |
| 2535 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::ARITH_FENCE, VT: N->getValueType(ResNo: 0), |
| 2536 | Op1: N->getOperand(Num: 0)); |
| 2537 | } |
| 2538 | |
| 2539 | void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) { |
| 2540 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::MEMBARRIER, VT: N->getValueType(ResNo: 0), |
| 2541 | Op1: N->getOperand(Num: 0)); |
| 2542 | } |
| 2543 | |
| 2544 | void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode *N) { |
| 2545 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ANCHOR, |
| 2546 | VT: N->getValueType(ResNo: 0)); |
| 2547 | } |
| 2548 | |
| 2549 | void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode *N) { |
| 2550 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_ENTRY, |
| 2551 | VT: N->getValueType(ResNo: 0)); |
| 2552 | } |
| 2553 | |
| 2554 | void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode *N) { |
| 2555 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::CONVERGENCECTRL_LOOP, |
| 2556 | VT: N->getValueType(ResNo: 0), Op1: N->getOperand(Num: 0)); |
| 2557 | } |
| 2558 | |
| 2559 | void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops, |
| 2560 | SDValue OpVal, SDLoc DL) { |
| 2561 | SDNode *OpNode = OpVal.getNode(); |
| 2562 | |
| 2563 | // FrameIndex nodes should have been directly emitted to TargetFrameIndex |
| 2564 | // nodes at DAG-construction time. |
| 2565 | assert(OpNode->getOpcode() != ISD::FrameIndex); |
| 2566 | |
| 2567 | if (OpNode->getOpcode() == ISD::Constant) { |
| 2568 | Ops.push_back( |
| 2569 | Elt: CurDAG->getTargetConstant(Val: StackMaps::ConstantOp, DL, VT: MVT::i64)); |
| 2570 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: OpNode->getAsZExtVal(), DL, |
| 2571 | VT: OpVal.getValueType())); |
| 2572 | } else { |
| 2573 | Ops.push_back(Elt: OpVal); |
| 2574 | } |
| 2575 | } |
| 2576 | |
| 2577 | void SelectionDAGISel::Select_STACKMAP(SDNode *N) { |
| 2578 | SmallVector<SDValue, 32> Ops; |
| 2579 | auto *It = N->op_begin(); |
| 2580 | SDLoc DL(N); |
| 2581 | |
| 2582 | // Stash the chain and glue operands so we can move them to the end. |
| 2583 | SDValue Chain = *It++; |
| 2584 | SDValue InGlue = *It++; |
| 2585 | |
| 2586 | // <id> operand. |
| 2587 | SDValue ID = *It++; |
| 2588 | assert(ID.getValueType() == MVT::i64); |
| 2589 | Ops.push_back(Elt: ID); |
| 2590 | |
| 2591 | // <numShadowBytes> operand. |
| 2592 | SDValue Shad = *It++; |
| 2593 | assert(Shad.getValueType() == MVT::i32); |
| 2594 | Ops.push_back(Elt: Shad); |
| 2595 | |
| 2596 | // Live variable operands. |
| 2597 | for (; It != N->op_end(); It++) |
| 2598 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
| 2599 | |
| 2600 | Ops.push_back(Elt: Chain); |
| 2601 | Ops.push_back(Elt: InGlue); |
| 2602 | |
| 2603 | SDVTList NodeTys = CurDAG->getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 2604 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::STACKMAP, VTs: NodeTys, Ops); |
| 2605 | } |
| 2606 | |
| 2607 | void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) { |
| 2608 | SmallVector<SDValue, 32> Ops; |
| 2609 | auto *It = N->op_begin(); |
| 2610 | SDLoc DL(N); |
| 2611 | |
| 2612 | // Cache arguments that will be moved to the end in the target node. |
| 2613 | SDValue Chain = *It++; |
| 2614 | std::optional<SDValue> Glue; |
| 2615 | if (It->getValueType() == MVT::Glue) |
| 2616 | Glue = *It++; |
| 2617 | SDValue RegMask = *It++; |
| 2618 | |
| 2619 | // <id> operand. |
| 2620 | SDValue ID = *It++; |
| 2621 | assert(ID.getValueType() == MVT::i64); |
| 2622 | Ops.push_back(Elt: ID); |
| 2623 | |
| 2624 | // <numShadowBytes> operand. |
| 2625 | SDValue Shad = *It++; |
| 2626 | assert(Shad.getValueType() == MVT::i32); |
| 2627 | Ops.push_back(Elt: Shad); |
| 2628 | |
| 2629 | // Add the callee. |
| 2630 | Ops.push_back(Elt: *It++); |
| 2631 | |
| 2632 | // Add <numArgs>. |
| 2633 | SDValue NumArgs = *It++; |
| 2634 | assert(NumArgs.getValueType() == MVT::i32); |
| 2635 | Ops.push_back(Elt: NumArgs); |
| 2636 | |
| 2637 | // Calling convention. |
| 2638 | Ops.push_back(Elt: *It++); |
| 2639 | |
| 2640 | // Push the args for the call. |
| 2641 | for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--) |
| 2642 | Ops.push_back(Elt: *It++); |
| 2643 | |
| 2644 | // Now push the live variables. |
| 2645 | for (; It != N->op_end(); It++) |
| 2646 | pushStackMapLiveVariable(Ops, OpVal: *It, DL); |
| 2647 | |
| 2648 | // Finally, the regmask, chain and (if present) glue are moved to the end. |
| 2649 | Ops.push_back(Elt: RegMask); |
| 2650 | Ops.push_back(Elt: Chain); |
| 2651 | if (Glue.has_value()) |
| 2652 | Ops.push_back(Elt: *Glue); |
| 2653 | |
| 2654 | SDVTList NodeTys = N->getVTList(); |
| 2655 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::PATCHPOINT, VTs: NodeTys, Ops); |
| 2656 | } |
| 2657 | |
| 2658 | /// GetVBR - decode a vbr encoding whose top bit is set. |
| 2659 | LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t |
| 2660 | GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
| 2661 | assert(Val >= 128 && "Not a VBR" ); |
| 2662 | Val &= 127; // Remove first vbr bit. |
| 2663 | |
| 2664 | unsigned Shift = 7; |
| 2665 | uint64_t NextBits; |
| 2666 | do { |
| 2667 | NextBits = MatcherTable[Idx++]; |
| 2668 | Val |= (NextBits&127) << Shift; |
| 2669 | Shift += 7; |
| 2670 | } while (NextBits & 128); |
| 2671 | |
| 2672 | return Val; |
| 2673 | } |
| 2674 | |
| 2675 | /// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, |
| 2676 | /// use GetVBR to decode it. |
| 2677 | LLVM_ATTRIBUTE_ALWAYS_INLINE static MVT::SimpleValueType |
| 2678 | getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex) { |
| 2679 | unsigned SimpleVT = MatcherTable[MatcherIndex++]; |
| 2680 | if (SimpleVT & 128) |
| 2681 | SimpleVT = GetVBR(Val: SimpleVT, MatcherTable, Idx&: MatcherIndex); |
| 2682 | |
| 2683 | return static_cast<MVT::SimpleValueType>(SimpleVT); |
| 2684 | } |
| 2685 | |
| 2686 | void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) { |
| 2687 | SDLoc dl(N); |
| 2688 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::JUMP_TABLE_DEBUG_INFO, VT: MVT::Glue, |
| 2689 | Op1: CurDAG->getTargetConstant(Val: N->getConstantOperandVal(Num: 1), |
| 2690 | DL: dl, VT: MVT::i64, isOpaque: true)); |
| 2691 | } |
| 2692 | |
| 2693 | /// When a match is complete, this method updates uses of interior chain results |
| 2694 | /// to use the new results. |
| 2695 | void SelectionDAGISel::UpdateChains( |
| 2696 | SDNode *NodeToMatch, SDValue InputChain, |
| 2697 | SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { |
| 2698 | SmallVector<SDNode*, 4> NowDeadNodes; |
| 2699 | |
| 2700 | // Now that all the normal results are replaced, we replace the chain and |
| 2701 | // glue results if present. |
| 2702 | if (!ChainNodesMatched.empty()) { |
| 2703 | assert(InputChain.getNode() && |
| 2704 | "Matched input chains but didn't produce a chain" ); |
| 2705 | // Loop over all of the nodes we matched that produced a chain result. |
| 2706 | // Replace all the chain results with the final chain we ended up with. |
| 2707 | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| 2708 | SDNode *ChainNode = ChainNodesMatched[i]; |
| 2709 | // If ChainNode is null, it's because we replaced it on a previous |
| 2710 | // iteration and we cleared it out of the map. Just skip it. |
| 2711 | if (!ChainNode) |
| 2712 | continue; |
| 2713 | |
| 2714 | assert(ChainNode->getOpcode() != ISD::DELETED_NODE && |
| 2715 | "Deleted node left in chain" ); |
| 2716 | |
| 2717 | // Don't replace the results of the root node if we're doing a |
| 2718 | // MorphNodeTo. |
| 2719 | if (ChainNode == NodeToMatch && isMorphNodeTo) |
| 2720 | continue; |
| 2721 | |
| 2722 | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| 2723 | if (ChainVal.getValueType() == MVT::Glue) |
| 2724 | ChainVal = ChainVal.getValue(R: ChainVal->getNumValues()-2); |
| 2725 | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?" ); |
| 2726 | SelectionDAG::DAGNodeDeletedListener NDL( |
| 2727 | *CurDAG, [&](SDNode *N, SDNode *E) { |
| 2728 | llvm::replace(Range&: ChainNodesMatched, OldValue: N, NewValue: static_cast<SDNode *>(nullptr)); |
| 2729 | }); |
| 2730 | if (ChainNode->getOpcode() != ISD::TokenFactor) |
| 2731 | ReplaceUses(F: ChainVal, T: InputChain); |
| 2732 | |
| 2733 | // If the node became dead and we haven't already seen it, delete it. |
| 2734 | if (ChainNode != NodeToMatch && ChainNode->use_empty() && |
| 2735 | !llvm::is_contained(Range&: NowDeadNodes, Element: ChainNode)) |
| 2736 | NowDeadNodes.push_back(Elt: ChainNode); |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | if (!NowDeadNodes.empty()) |
| 2741 | CurDAG->RemoveDeadNodes(DeadNodes&: NowDeadNodes); |
| 2742 | |
| 2743 | LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n" ); |
| 2744 | } |
| 2745 | |
| 2746 | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
| 2747 | /// operation for when the pattern matched at least one node with a chains. The |
| 2748 | /// input vector contains a list of all of the chained nodes that we match. We |
| 2749 | /// must determine if this is a valid thing to cover (i.e. matching it won't |
| 2750 | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
| 2751 | /// be used as the input node chain for the generated nodes. |
| 2752 | static SDValue |
| 2753 | HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| 2754 | SelectionDAG *CurDAG) { |
| 2755 | |
| 2756 | SmallPtrSet<const SDNode *, 16> Visited; |
| 2757 | SmallVector<const SDNode *, 8> Worklist; |
| 2758 | SmallVector<SDValue, 3> InputChains; |
| 2759 | unsigned int Max = 8192; |
| 2760 | |
| 2761 | // Quick exit on trivial merge. |
| 2762 | if (ChainNodesMatched.size() == 1) |
| 2763 | return ChainNodesMatched[0]->getOperand(Num: 0); |
| 2764 | |
| 2765 | // Add chains that aren't already added (internal). Peek through |
| 2766 | // token factors. |
| 2767 | std::function<void(const SDValue)> AddChains = [&](const SDValue V) { |
| 2768 | if (V.getValueType() != MVT::Other) |
| 2769 | return; |
| 2770 | if (V->getOpcode() == ISD::EntryToken) |
| 2771 | return; |
| 2772 | if (!Visited.insert(Ptr: V.getNode()).second) |
| 2773 | return; |
| 2774 | if (V->getOpcode() == ISD::TokenFactor) { |
| 2775 | for (const SDValue &Op : V->op_values()) |
| 2776 | AddChains(Op); |
| 2777 | } else |
| 2778 | InputChains.push_back(Elt: V); |
| 2779 | }; |
| 2780 | |
| 2781 | for (auto *N : ChainNodesMatched) { |
| 2782 | Worklist.push_back(Elt: N); |
| 2783 | Visited.insert(Ptr: N); |
| 2784 | } |
| 2785 | |
| 2786 | while (!Worklist.empty()) |
| 2787 | AddChains(Worklist.pop_back_val()->getOperand(Num: 0)); |
| 2788 | |
| 2789 | // Skip the search if there are no chain dependencies. |
| 2790 | if (InputChains.size() == 0) |
| 2791 | return CurDAG->getEntryNode(); |
| 2792 | |
| 2793 | // If one of these chains is a successor of input, we must have a |
| 2794 | // node that is both the predecessor and successor of the |
| 2795 | // to-be-merged nodes. Fail. |
| 2796 | Visited.clear(); |
| 2797 | for (SDValue V : InputChains) |
| 2798 | Worklist.push_back(Elt: V.getNode()); |
| 2799 | |
| 2800 | for (auto *N : ChainNodesMatched) |
| 2801 | if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps: Max, TopologicalPrune: true)) |
| 2802 | return SDValue(); |
| 2803 | |
| 2804 | // Return merged chain. |
| 2805 | if (InputChains.size() == 1) |
| 2806 | return InputChains[0]; |
| 2807 | return CurDAG->getNode(Opcode: ISD::TokenFactor, DL: SDLoc(ChainNodesMatched[0]), |
| 2808 | VT: MVT::Other, Ops: InputChains); |
| 2809 | } |
| 2810 | |
| 2811 | /// MorphNode - Handle morphing a node in place for the selector. |
| 2812 | SDNode *SelectionDAGISel:: |
| 2813 | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
| 2814 | ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { |
| 2815 | // It is possible we're using MorphNodeTo to replace a node with no |
| 2816 | // normal results with one that has a normal result (or we could be |
| 2817 | // adding a chain) and the input could have glue and chains as well. |
| 2818 | // In this case we need to shift the operands down. |
| 2819 | // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| 2820 | // than the old isel though. |
| 2821 | int OldGlueResultNo = -1, OldChainResultNo = -1; |
| 2822 | |
| 2823 | unsigned NTMNumResults = Node->getNumValues(); |
| 2824 | if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Glue) { |
| 2825 | OldGlueResultNo = NTMNumResults-1; |
| 2826 | if (NTMNumResults != 1 && |
| 2827 | Node->getValueType(ResNo: NTMNumResults-2) == MVT::Other) |
| 2828 | OldChainResultNo = NTMNumResults-2; |
| 2829 | } else if (Node->getValueType(ResNo: NTMNumResults-1) == MVT::Other) |
| 2830 | OldChainResultNo = NTMNumResults-1; |
| 2831 | |
| 2832 | // Call the underlying SelectionDAG routine to do the transmogrification. Note |
| 2833 | // that this deletes operands of the old node that become dead. |
| 2834 | SDNode *Res = CurDAG->MorphNodeTo(N: Node, Opc: ~TargetOpc, VTs: VTList, Ops); |
| 2835 | |
| 2836 | // MorphNodeTo can operate in two ways: if an existing node with the |
| 2837 | // specified operands exists, it can just return it. Otherwise, it |
| 2838 | // updates the node in place to have the requested operands. |
| 2839 | if (Res == Node) { |
| 2840 | // If we updated the node in place, reset the node ID. To the isel, |
| 2841 | // this should be just like a newly allocated machine node. |
| 2842 | Res->setNodeId(-1); |
| 2843 | } |
| 2844 | |
| 2845 | unsigned ResNumResults = Res->getNumValues(); |
| 2846 | // Move the glue if needed. |
| 2847 | if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && |
| 2848 | static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1) |
| 2849 | ReplaceUses(F: SDValue(Node, OldGlueResultNo), |
| 2850 | T: SDValue(Res, ResNumResults - 1)); |
| 2851 | |
| 2852 | if ((EmitNodeInfo & OPFL_GlueOutput) != 0) |
| 2853 | --ResNumResults; |
| 2854 | |
| 2855 | // Move the chain reference if needed. |
| 2856 | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| 2857 | static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1) |
| 2858 | ReplaceUses(F: SDValue(Node, OldChainResultNo), |
| 2859 | T: SDValue(Res, ResNumResults - 1)); |
| 2860 | |
| 2861 | // Otherwise, no replacement happened because the node already exists. Replace |
| 2862 | // Uses of the old node with the new one. |
| 2863 | if (Res != Node) { |
| 2864 | ReplaceNode(F: Node, T: Res); |
| 2865 | } else { |
| 2866 | EnforceNodeIdInvariant(Node: Res); |
| 2867 | } |
| 2868 | |
| 2869 | return Res; |
| 2870 | } |
| 2871 | |
| 2872 | /// CheckSame - Implements OP_CheckSame. |
| 2873 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2874 | CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
| 2875 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { |
| 2876 | // Accept if it is exactly the same as a previously recorded node. |
| 2877 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 2878 | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame" ); |
| 2879 | return N == RecordedNodes[RecNo].first; |
| 2880 | } |
| 2881 | |
| 2882 | /// CheckChildSame - Implements OP_CheckChildXSame. |
| 2883 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( |
| 2884 | const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
| 2885 | const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, |
| 2886 | unsigned ChildNo) { |
| 2887 | if (ChildNo >= N.getNumOperands()) |
| 2888 | return false; // Match fails if out of range child #. |
| 2889 | return ::CheckSame(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo), |
| 2890 | RecordedNodes); |
| 2891 | } |
| 2892 | |
| 2893 | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| 2894 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2895 | CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable, |
| 2896 | unsigned &MatcherIndex, const SelectionDAGISel &SDISel) { |
| 2897 | bool TwoBytePredNo = |
| 2898 | Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte; |
| 2899 | unsigned PredNo = |
| 2900 | TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate |
| 2901 | ? MatcherTable[MatcherIndex++] |
| 2902 | : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0; |
| 2903 | if (TwoBytePredNo) |
| 2904 | PredNo |= MatcherTable[MatcherIndex++] << 8; |
| 2905 | return SDISel.CheckPatternPredicate(PredNo); |
| 2906 | } |
| 2907 | |
| 2908 | /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
| 2909 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2910 | CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable, |
| 2911 | unsigned &MatcherIndex, const SelectionDAGISel &SDISel, |
| 2912 | SDValue Op) { |
| 2913 | unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate |
| 2914 | ? MatcherTable[MatcherIndex++] |
| 2915 | : Opcode - SelectionDAGISel::OPC_CheckPredicate0; |
| 2916 | return SDISel.CheckNodePredicate(Op, PredNo); |
| 2917 | } |
| 2918 | |
| 2919 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2920 | CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2921 | SDNode *N) { |
| 2922 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
| 2923 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 2924 | return N->getOpcode() == Opc; |
| 2925 | } |
| 2926 | |
| 2927 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT, |
| 2928 | SDValue N, |
| 2929 | const TargetLowering *TLI, |
| 2930 | const DataLayout &DL) { |
| 2931 | if (N.getValueType() == VT) |
| 2932 | return true; |
| 2933 | |
| 2934 | // Handle the case when VT is iPTR. |
| 2935 | return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); |
| 2936 | } |
| 2937 | |
| 2938 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2939 | CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, |
| 2940 | const DataLayout &DL, unsigned ChildNo) { |
| 2941 | if (ChildNo >= N.getNumOperands()) |
| 2942 | return false; // Match fails if out of range child #. |
| 2943 | return ::CheckType(VT, N: N.getOperand(i: ChildNo), TLI, DL); |
| 2944 | } |
| 2945 | |
| 2946 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2947 | CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2948 | SDValue N) { |
| 2949 | return cast<CondCodeSDNode>(Val&: N)->get() == |
| 2950 | static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]); |
| 2951 | } |
| 2952 | |
| 2953 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2954 | CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2955 | SDValue N) { |
| 2956 | if (2 >= N.getNumOperands()) |
| 2957 | return false; |
| 2958 | return ::CheckCondCode(MatcherTable, MatcherIndex, N: N.getOperand(i: 2)); |
| 2959 | } |
| 2960 | |
| 2961 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2962 | CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2963 | SDValue N, const TargetLowering *TLI, const DataLayout &DL) { |
| 2964 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 2965 | if (cast<VTSDNode>(Val&: N)->getVT() == VT) |
| 2966 | return true; |
| 2967 | |
| 2968 | // Handle the case when VT is iPTR. |
| 2969 | return VT == MVT::iPTR && cast<VTSDNode>(Val&: N)->getVT() == TLI->getPointerTy(DL); |
| 2970 | } |
| 2971 | |
| 2972 | // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude |
| 2973 | // shifted left by 1. |
| 2974 | static uint64_t decodeSignRotatedValue(uint64_t V) { |
| 2975 | if ((V & 1) == 0) |
| 2976 | return V >> 1; |
| 2977 | if (V != 1) |
| 2978 | return -(V >> 1); |
| 2979 | // There is no such thing as -0 with integers. "-0" really means MININT. |
| 2980 | return 1ULL << 63; |
| 2981 | } |
| 2982 | |
| 2983 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2984 | CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2985 | SDValue N) { |
| 2986 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 2987 | if (Val & 128) |
| 2988 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 2989 | |
| 2990 | Val = decodeSignRotatedValue(V: Val); |
| 2991 | |
| 2992 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: N); |
| 2993 | return C && C->getAPIntValue().trySExtValue() == Val; |
| 2994 | } |
| 2995 | |
| 2996 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 2997 | CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 2998 | SDValue N, unsigned ChildNo) { |
| 2999 | if (ChildNo >= N.getNumOperands()) |
| 3000 | return false; // Match fails if out of range child #. |
| 3001 | return ::CheckInteger(MatcherTable, MatcherIndex, N: N.getOperand(i: ChildNo)); |
| 3002 | } |
| 3003 | |
| 3004 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3005 | CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| 3006 | SDValue N, const SelectionDAGISel &SDISel) { |
| 3007 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 3008 | if (Val & 128) |
| 3009 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 3010 | |
| 3011 | if (N->getOpcode() != ISD::AND) return false; |
| 3012 | |
| 3013 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 3014 | return C && SDISel.CheckAndMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
| 3015 | } |
| 3016 | |
| 3017 | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| 3018 | CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
| 3019 | const SelectionDAGISel &SDISel) { |
| 3020 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 3021 | if (Val & 128) |
| 3022 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 3023 | |
| 3024 | if (N->getOpcode() != ISD::OR) return false; |
| 3025 | |
| 3026 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 3027 | return C && SDISel.CheckOrMask(LHS: N.getOperand(i: 0), RHS: C, DesiredMaskS: Val); |
| 3028 | } |
| 3029 | |
| 3030 | /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
| 3031 | /// scope, evaluate the current node. If the current predicate is known to |
| 3032 | /// fail, set Result=true and return anything. If the current predicate is |
| 3033 | /// known to pass, set Result=false and return the MatcherIndex to continue |
| 3034 | /// with. If the current predicate is unknown, set Result=false and return the |
| 3035 | /// MatcherIndex to continue with. |
| 3036 | static unsigned IsPredicateKnownToFail(const unsigned char *Table, |
| 3037 | unsigned Index, SDValue N, |
| 3038 | bool &Result, |
| 3039 | const SelectionDAGISel &SDISel, |
| 3040 | SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { |
| 3041 | unsigned Opcode = Table[Index++]; |
| 3042 | switch (Opcode) { |
| 3043 | default: |
| 3044 | Result = false; |
| 3045 | return Index-1; // Could not evaluate this predicate. |
| 3046 | case SelectionDAGISel::OPC_CheckSame: |
| 3047 | Result = !::CheckSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes); |
| 3048 | return Index; |
| 3049 | case SelectionDAGISel::OPC_CheckChild0Same: |
| 3050 | case SelectionDAGISel::OPC_CheckChild1Same: |
| 3051 | case SelectionDAGISel::OPC_CheckChild2Same: |
| 3052 | case SelectionDAGISel::OPC_CheckChild3Same: |
| 3053 | Result = !::CheckChildSame(MatcherTable: Table, MatcherIndex&: Index, N, RecordedNodes, |
| 3054 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); |
| 3055 | return Index; |
| 3056 | case SelectionDAGISel::OPC_CheckPatternPredicate: |
| 3057 | case SelectionDAGISel::OPC_CheckPatternPredicate0: |
| 3058 | case SelectionDAGISel::OPC_CheckPatternPredicate1: |
| 3059 | case SelectionDAGISel::OPC_CheckPatternPredicate2: |
| 3060 | case SelectionDAGISel::OPC_CheckPatternPredicate3: |
| 3061 | case SelectionDAGISel::OPC_CheckPatternPredicate4: |
| 3062 | case SelectionDAGISel::OPC_CheckPatternPredicate5: |
| 3063 | case SelectionDAGISel::OPC_CheckPatternPredicate6: |
| 3064 | case SelectionDAGISel::OPC_CheckPatternPredicate7: |
| 3065 | case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte: |
| 3066 | Result = !::CheckPatternPredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel); |
| 3067 | return Index; |
| 3068 | case SelectionDAGISel::OPC_CheckPredicate: |
| 3069 | case SelectionDAGISel::OPC_CheckPredicate0: |
| 3070 | case SelectionDAGISel::OPC_CheckPredicate1: |
| 3071 | case SelectionDAGISel::OPC_CheckPredicate2: |
| 3072 | case SelectionDAGISel::OPC_CheckPredicate3: |
| 3073 | case SelectionDAGISel::OPC_CheckPredicate4: |
| 3074 | case SelectionDAGISel::OPC_CheckPredicate5: |
| 3075 | case SelectionDAGISel::OPC_CheckPredicate6: |
| 3076 | case SelectionDAGISel::OPC_CheckPredicate7: |
| 3077 | Result = !::CheckNodePredicate(Opcode, MatcherTable: Table, MatcherIndex&: Index, SDISel, Op: N); |
| 3078 | return Index; |
| 3079 | case SelectionDAGISel::OPC_CheckOpcode: |
| 3080 | Result = !::CheckOpcode(MatcherTable: Table, MatcherIndex&: Index, N: N.getNode()); |
| 3081 | return Index; |
| 3082 | case SelectionDAGISel::OPC_CheckType: |
| 3083 | case SelectionDAGISel::OPC_CheckTypeI32: |
| 3084 | case SelectionDAGISel::OPC_CheckTypeI64: { |
| 3085 | MVT::SimpleValueType VT; |
| 3086 | switch (Opcode) { |
| 3087 | case SelectionDAGISel::OPC_CheckTypeI32: |
| 3088 | VT = MVT::i32; |
| 3089 | break; |
| 3090 | case SelectionDAGISel::OPC_CheckTypeI64: |
| 3091 | VT = MVT::i64; |
| 3092 | break; |
| 3093 | default: |
| 3094 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
| 3095 | break; |
| 3096 | } |
| 3097 | Result = !::CheckType(VT, N, TLI: SDISel.TLI, DL: SDISel.CurDAG->getDataLayout()); |
| 3098 | return Index; |
| 3099 | } |
| 3100 | case SelectionDAGISel::OPC_CheckTypeRes: { |
| 3101 | unsigned Res = Table[Index++]; |
| 3102 | Result = !::CheckType(VT: getSimpleVT(MatcherTable: Table, MatcherIndex&: Index), N: N.getValue(R: Res), |
| 3103 | TLI: SDISel.TLI, DL: SDISel.CurDAG->getDataLayout()); |
| 3104 | return Index; |
| 3105 | } |
| 3106 | case SelectionDAGISel::OPC_CheckChild0Type: |
| 3107 | case SelectionDAGISel::OPC_CheckChild1Type: |
| 3108 | case SelectionDAGISel::OPC_CheckChild2Type: |
| 3109 | case SelectionDAGISel::OPC_CheckChild3Type: |
| 3110 | case SelectionDAGISel::OPC_CheckChild4Type: |
| 3111 | case SelectionDAGISel::OPC_CheckChild5Type: |
| 3112 | case SelectionDAGISel::OPC_CheckChild6Type: |
| 3113 | case SelectionDAGISel::OPC_CheckChild7Type: |
| 3114 | case SelectionDAGISel::OPC_CheckChild0TypeI32: |
| 3115 | case SelectionDAGISel::OPC_CheckChild1TypeI32: |
| 3116 | case SelectionDAGISel::OPC_CheckChild2TypeI32: |
| 3117 | case SelectionDAGISel::OPC_CheckChild3TypeI32: |
| 3118 | case SelectionDAGISel::OPC_CheckChild4TypeI32: |
| 3119 | case SelectionDAGISel::OPC_CheckChild5TypeI32: |
| 3120 | case SelectionDAGISel::OPC_CheckChild6TypeI32: |
| 3121 | case SelectionDAGISel::OPC_CheckChild7TypeI32: |
| 3122 | case SelectionDAGISel::OPC_CheckChild0TypeI64: |
| 3123 | case SelectionDAGISel::OPC_CheckChild1TypeI64: |
| 3124 | case SelectionDAGISel::OPC_CheckChild2TypeI64: |
| 3125 | case SelectionDAGISel::OPC_CheckChild3TypeI64: |
| 3126 | case SelectionDAGISel::OPC_CheckChild4TypeI64: |
| 3127 | case SelectionDAGISel::OPC_CheckChild5TypeI64: |
| 3128 | case SelectionDAGISel::OPC_CheckChild6TypeI64: |
| 3129 | case SelectionDAGISel::OPC_CheckChild7TypeI64: { |
| 3130 | MVT::SimpleValueType VT; |
| 3131 | unsigned ChildNo; |
| 3132 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
| 3133 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
| 3134 | VT = MVT::i32; |
| 3135 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
| 3136 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
| 3137 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
| 3138 | VT = MVT::i64; |
| 3139 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
| 3140 | } else { |
| 3141 | VT = getSimpleVT(MatcherTable: Table, MatcherIndex&: Index); |
| 3142 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
| 3143 | } |
| 3144 | Result = !::CheckChildType(VT, N, TLI: SDISel.TLI, |
| 3145 | DL: SDISel.CurDAG->getDataLayout(), ChildNo); |
| 3146 | return Index; |
| 3147 | } |
| 3148 | case SelectionDAGISel::OPC_CheckCondCode: |
| 3149 | Result = !::CheckCondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3150 | return Index; |
| 3151 | case SelectionDAGISel::OPC_CheckChild2CondCode: |
| 3152 | Result = !::CheckChild2CondCode(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3153 | return Index; |
| 3154 | case SelectionDAGISel::OPC_CheckValueType: |
| 3155 | Result = !::CheckValueType(MatcherTable: Table, MatcherIndex&: Index, N, TLI: SDISel.TLI, |
| 3156 | DL: SDISel.CurDAG->getDataLayout()); |
| 3157 | return Index; |
| 3158 | case SelectionDAGISel::OPC_CheckInteger: |
| 3159 | Result = !::CheckInteger(MatcherTable: Table, MatcherIndex&: Index, N); |
| 3160 | return Index; |
| 3161 | case SelectionDAGISel::OPC_CheckChild0Integer: |
| 3162 | case SelectionDAGISel::OPC_CheckChild1Integer: |
| 3163 | case SelectionDAGISel::OPC_CheckChild2Integer: |
| 3164 | case SelectionDAGISel::OPC_CheckChild3Integer: |
| 3165 | case SelectionDAGISel::OPC_CheckChild4Integer: |
| 3166 | Result = !::CheckChildInteger(MatcherTable: Table, MatcherIndex&: Index, N, |
| 3167 | ChildNo: Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); |
| 3168 | return Index; |
| 3169 | case SelectionDAGISel::OPC_CheckAndImm: |
| 3170 | Result = !::CheckAndImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
| 3171 | return Index; |
| 3172 | case SelectionDAGISel::OPC_CheckOrImm: |
| 3173 | Result = !::CheckOrImm(MatcherTable: Table, MatcherIndex&: Index, N, SDISel); |
| 3174 | return Index; |
| 3175 | } |
| 3176 | } |
| 3177 | |
| 3178 | namespace { |
| 3179 | |
| 3180 | struct MatchScope { |
| 3181 | /// FailIndex - If this match fails, this is the index to continue with. |
| 3182 | unsigned FailIndex; |
| 3183 | |
| 3184 | /// NodeStack - The node stack when the scope was formed. |
| 3185 | SmallVector<SDValue, 4> NodeStack; |
| 3186 | |
| 3187 | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| 3188 | unsigned NumRecordedNodes; |
| 3189 | |
| 3190 | /// NumMatchedMemRefs - The number of matched memref entries. |
| 3191 | unsigned NumMatchedMemRefs; |
| 3192 | |
| 3193 | /// InputChain/InputGlue - The current chain/glue |
| 3194 | SDValue InputChain, InputGlue; |
| 3195 | |
| 3196 | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| 3197 | bool HasChainNodesMatched; |
| 3198 | }; |
| 3199 | |
| 3200 | /// \A DAG update listener to keep the matching state |
| 3201 | /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to |
| 3202 | /// change the DAG while matching. X86 addressing mode matcher is an example |
| 3203 | /// for this. |
| 3204 | class MatchStateUpdater : public SelectionDAG::DAGUpdateListener |
| 3205 | { |
| 3206 | SDNode **NodeToMatch; |
| 3207 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; |
| 3208 | SmallVectorImpl<MatchScope> &MatchScopes; |
| 3209 | |
| 3210 | public: |
| 3211 | MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, |
| 3212 | SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, |
| 3213 | SmallVectorImpl<MatchScope> &MS) |
| 3214 | : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), |
| 3215 | RecordedNodes(RN), MatchScopes(MS) {} |
| 3216 | |
| 3217 | void NodeDeleted(SDNode *N, SDNode *E) override { |
| 3218 | // Some early-returns here to avoid the search if we deleted the node or |
| 3219 | // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we |
| 3220 | // do, so it's unnecessary to update matching state at that point). |
| 3221 | // Neither of these can occur currently because we only install this |
| 3222 | // update listener during matching a complex patterns. |
| 3223 | if (!E || E->isMachineOpcode()) |
| 3224 | return; |
| 3225 | // Check if NodeToMatch was updated. |
| 3226 | if (N == *NodeToMatch) |
| 3227 | *NodeToMatch = E; |
| 3228 | // Performing linear search here does not matter because we almost never |
| 3229 | // run this code. You'd have to have a CSE during complex pattern |
| 3230 | // matching. |
| 3231 | for (auto &I : RecordedNodes) |
| 3232 | if (I.first.getNode() == N) |
| 3233 | I.first.setNode(E); |
| 3234 | |
| 3235 | for (auto &I : MatchScopes) |
| 3236 | for (auto &J : I.NodeStack) |
| 3237 | if (J.getNode() == N) |
| 3238 | J.setNode(E); |
| 3239 | } |
| 3240 | }; |
| 3241 | |
| 3242 | } // end anonymous namespace |
| 3243 | |
| 3244 | void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, |
| 3245 | const unsigned char *MatcherTable, |
| 3246 | unsigned TableSize) { |
| 3247 | // FIXME: Should these even be selected? Handle these cases in the caller? |
| 3248 | switch (NodeToMatch->getOpcode()) { |
| 3249 | default: |
| 3250 | break; |
| 3251 | case ISD::EntryToken: // These nodes remain the same. |
| 3252 | case ISD::BasicBlock: |
| 3253 | case ISD::Register: |
| 3254 | case ISD::RegisterMask: |
| 3255 | case ISD::HANDLENODE: |
| 3256 | case ISD::MDNODE_SDNODE: |
| 3257 | case ISD::TargetConstant: |
| 3258 | case ISD::TargetConstantFP: |
| 3259 | case ISD::TargetConstantPool: |
| 3260 | case ISD::TargetFrameIndex: |
| 3261 | case ISD::TargetExternalSymbol: |
| 3262 | case ISD::MCSymbol: |
| 3263 | case ISD::TargetBlockAddress: |
| 3264 | case ISD::TargetJumpTable: |
| 3265 | case ISD::TargetGlobalTLSAddress: |
| 3266 | case ISD::TargetGlobalAddress: |
| 3267 | case ISD::TokenFactor: |
| 3268 | case ISD::CopyFromReg: |
| 3269 | case ISD::CopyToReg: |
| 3270 | case ISD::EH_LABEL: |
| 3271 | case ISD::ANNOTATION_LABEL: |
| 3272 | case ISD::LIFETIME_START: |
| 3273 | case ISD::LIFETIME_END: |
| 3274 | case ISD::PSEUDO_PROBE: |
| 3275 | NodeToMatch->setNodeId(-1); // Mark selected. |
| 3276 | return; |
| 3277 | case ISD::AssertSext: |
| 3278 | case ISD::AssertZext: |
| 3279 | case ISD::AssertNoFPClass: |
| 3280 | case ISD::AssertAlign: |
| 3281 | ReplaceUses(F: SDValue(NodeToMatch, 0), T: NodeToMatch->getOperand(Num: 0)); |
| 3282 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
| 3283 | return; |
| 3284 | case ISD::INLINEASM: |
| 3285 | case ISD::INLINEASM_BR: |
| 3286 | Select_INLINEASM(N: NodeToMatch); |
| 3287 | return; |
| 3288 | case ISD::READ_REGISTER: |
| 3289 | Select_READ_REGISTER(Op: NodeToMatch); |
| 3290 | return; |
| 3291 | case ISD::WRITE_REGISTER: |
| 3292 | Select_WRITE_REGISTER(Op: NodeToMatch); |
| 3293 | return; |
| 3294 | case ISD::POISON: |
| 3295 | case ISD::UNDEF: |
| 3296 | Select_UNDEF(N: NodeToMatch); |
| 3297 | return; |
| 3298 | case ISD::FAKE_USE: |
| 3299 | Select_FAKE_USE(N: NodeToMatch); |
| 3300 | return; |
| 3301 | case ISD::FREEZE: |
| 3302 | Select_FREEZE(N: NodeToMatch); |
| 3303 | return; |
| 3304 | case ISD::ARITH_FENCE: |
| 3305 | Select_ARITH_FENCE(N: NodeToMatch); |
| 3306 | return; |
| 3307 | case ISD::MEMBARRIER: |
| 3308 | Select_MEMBARRIER(N: NodeToMatch); |
| 3309 | return; |
| 3310 | case ISD::STACKMAP: |
| 3311 | Select_STACKMAP(N: NodeToMatch); |
| 3312 | return; |
| 3313 | case ISD::PATCHPOINT: |
| 3314 | Select_PATCHPOINT(N: NodeToMatch); |
| 3315 | return; |
| 3316 | case ISD::JUMP_TABLE_DEBUG_INFO: |
| 3317 | Select_JUMP_TABLE_DEBUG_INFO(N: NodeToMatch); |
| 3318 | return; |
| 3319 | case ISD::CONVERGENCECTRL_ANCHOR: |
| 3320 | Select_CONVERGENCECTRL_ANCHOR(N: NodeToMatch); |
| 3321 | return; |
| 3322 | case ISD::CONVERGENCECTRL_ENTRY: |
| 3323 | Select_CONVERGENCECTRL_ENTRY(N: NodeToMatch); |
| 3324 | return; |
| 3325 | case ISD::CONVERGENCECTRL_LOOP: |
| 3326 | Select_CONVERGENCECTRL_LOOP(N: NodeToMatch); |
| 3327 | return; |
| 3328 | } |
| 3329 | |
| 3330 | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!" ); |
| 3331 | |
| 3332 | // Set up the node stack with NodeToMatch as the only node on the stack. |
| 3333 | SmallVector<SDValue, 8> NodeStack; |
| 3334 | SDValue N = SDValue(NodeToMatch, 0); |
| 3335 | NodeStack.push_back(Elt: N); |
| 3336 | |
| 3337 | // MatchScopes - Scopes used when matching, if a match failure happens, this |
| 3338 | // indicates where to continue checking. |
| 3339 | SmallVector<MatchScope, 8> MatchScopes; |
| 3340 | |
| 3341 | // RecordedNodes - This is the set of nodes that have been recorded by the |
| 3342 | // state machine. The second value is the parent of the node, or null if the |
| 3343 | // root is recorded. |
| 3344 | SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; |
| 3345 | |
| 3346 | // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| 3347 | // pattern. |
| 3348 | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| 3349 | |
| 3350 | // These are the current input chain and glue for use when generating nodes. |
| 3351 | // Various Emit operations change these. For example, emitting a copytoreg |
| 3352 | // uses and updates these. |
| 3353 | SDValue InputChain, InputGlue; |
| 3354 | |
| 3355 | // ChainNodesMatched - If a pattern matches nodes that have input/output |
| 3356 | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| 3357 | // which ones they are. The result is captured into this list so that we can |
| 3358 | // update the chain results when the pattern is complete. |
| 3359 | SmallVector<SDNode*, 3> ChainNodesMatched; |
| 3360 | |
| 3361 | LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n" ); |
| 3362 | |
| 3363 | // Determine where to start the interpreter. Normally we start at opcode #0, |
| 3364 | // but if the state machine starts with an OPC_SwitchOpcode, then we |
| 3365 | // accelerate the first lookup (which is guaranteed to be hot) with the |
| 3366 | // OpcodeOffset table. |
| 3367 | unsigned MatcherIndex = 0; |
| 3368 | |
| 3369 | if (!OpcodeOffset.empty()) { |
| 3370 | // Already computed the OpcodeOffset table, just index into it. |
| 3371 | if (N.getOpcode() < OpcodeOffset.size()) |
| 3372 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| 3373 | LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n" ); |
| 3374 | |
| 3375 | } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
| 3376 | // Otherwise, the table isn't computed, but the state machine does start |
| 3377 | // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
| 3378 | // is the first time we're selecting an instruction. |
| 3379 | unsigned Idx = 1; |
| 3380 | while (true) { |
| 3381 | // Get the size of this case. |
| 3382 | unsigned CaseSize = MatcherTable[Idx++]; |
| 3383 | if (CaseSize & 128) |
| 3384 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx); |
| 3385 | if (CaseSize == 0) break; |
| 3386 | |
| 3387 | // Get the opcode, add the index to the table. |
| 3388 | uint16_t Opc = MatcherTable[Idx++]; |
| 3389 | Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8; |
| 3390 | if (Opc >= OpcodeOffset.size()) |
| 3391 | OpcodeOffset.resize(new_size: (Opc+1)*2); |
| 3392 | OpcodeOffset[Opc] = Idx; |
| 3393 | Idx += CaseSize; |
| 3394 | } |
| 3395 | |
| 3396 | // Okay, do the lookup for the first opcode. |
| 3397 | if (N.getOpcode() < OpcodeOffset.size()) |
| 3398 | MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| 3399 | } |
| 3400 | |
| 3401 | while (true) { |
| 3402 | assert(MatcherIndex < TableSize && "Invalid index" ); |
| 3403 | #ifndef NDEBUG |
| 3404 | unsigned CurrentOpcodeIndex = MatcherIndex; |
| 3405 | #endif |
| 3406 | BuiltinOpcodes Opcode = |
| 3407 | static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]); |
| 3408 | switch (Opcode) { |
| 3409 | case OPC_Scope: { |
| 3410 | // Okay, the semantics of this operation are that we should push a scope |
| 3411 | // then evaluate the first child. However, pushing a scope only to have |
| 3412 | // the first check fail (which then pops it) is inefficient. If we can |
| 3413 | // determine immediately that the first check (or first several) will |
| 3414 | // immediately fail, don't even bother pushing a scope for them. |
| 3415 | unsigned FailIndex; |
| 3416 | |
| 3417 | while (true) { |
| 3418 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| 3419 | if (NumToSkip & 128) |
| 3420 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
| 3421 | // Found the end of the scope with no match. |
| 3422 | if (NumToSkip == 0) { |
| 3423 | FailIndex = 0; |
| 3424 | break; |
| 3425 | } |
| 3426 | |
| 3427 | FailIndex = MatcherIndex+NumToSkip; |
| 3428 | |
| 3429 | unsigned MatcherIndexOfPredicate = MatcherIndex; |
| 3430 | (void)MatcherIndexOfPredicate; // silence warning. |
| 3431 | |
| 3432 | // If we can't evaluate this predicate without pushing a scope (e.g. if |
| 3433 | // it is a 'MoveParent') or if the predicate succeeds on this node, we |
| 3434 | // push the scope and evaluate the full predicate chain. |
| 3435 | bool Result; |
| 3436 | MatcherIndex = IsPredicateKnownToFail(Table: MatcherTable, Index: MatcherIndex, N, |
| 3437 | Result, SDISel: *this, RecordedNodes); |
| 3438 | if (!Result) |
| 3439 | break; |
| 3440 | |
| 3441 | LLVM_DEBUG( |
| 3442 | dbgs() << " Skipped scope entry (due to false predicate) at " |
| 3443 | << "index " << MatcherIndexOfPredicate << ", continuing at " |
| 3444 | << FailIndex << "\n" ); |
| 3445 | ++NumDAGIselRetries; |
| 3446 | |
| 3447 | // Otherwise, we know that this case of the Scope is guaranteed to fail, |
| 3448 | // move to the next case. |
| 3449 | MatcherIndex = FailIndex; |
| 3450 | } |
| 3451 | |
| 3452 | // If the whole scope failed to match, bail. |
| 3453 | if (FailIndex == 0) break; |
| 3454 | |
| 3455 | // Push a MatchScope which indicates where to go if the first child fails |
| 3456 | // to match. |
| 3457 | MatchScope NewEntry; |
| 3458 | NewEntry.FailIndex = FailIndex; |
| 3459 | NewEntry.NodeStack.append(in_start: NodeStack.begin(), in_end: NodeStack.end()); |
| 3460 | NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| 3461 | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| 3462 | NewEntry.InputChain = InputChain; |
| 3463 | NewEntry.InputGlue = InputGlue; |
| 3464 | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| 3465 | MatchScopes.push_back(Elt: NewEntry); |
| 3466 | continue; |
| 3467 | } |
| 3468 | case OPC_RecordNode: { |
| 3469 | // Remember this node, it may end up being an operand in the pattern. |
| 3470 | SDNode *Parent = nullptr; |
| 3471 | if (NodeStack.size() > 1) |
| 3472 | Parent = NodeStack[NodeStack.size()-2].getNode(); |
| 3473 | RecordedNodes.push_back(Elt: std::make_pair(x&: N, y&: Parent)); |
| 3474 | continue; |
| 3475 | } |
| 3476 | |
| 3477 | case OPC_RecordChild0: case OPC_RecordChild1: |
| 3478 | case OPC_RecordChild2: case OPC_RecordChild3: |
| 3479 | case OPC_RecordChild4: case OPC_RecordChild5: |
| 3480 | case OPC_RecordChild6: case OPC_RecordChild7: { |
| 3481 | unsigned ChildNo = Opcode-OPC_RecordChild0; |
| 3482 | if (ChildNo >= N.getNumOperands()) |
| 3483 | break; // Match fails if out of range child #. |
| 3484 | |
| 3485 | RecordedNodes.push_back(Elt: std::make_pair(x: N->getOperand(Num: ChildNo), |
| 3486 | y: N.getNode())); |
| 3487 | continue; |
| 3488 | } |
| 3489 | case OPC_RecordMemRef: |
| 3490 | if (auto *MN = dyn_cast<MemSDNode>(Val&: N)) |
| 3491 | MatchedMemRefs.push_back(Elt: MN->getMemOperand()); |
| 3492 | else { |
| 3493 | LLVM_DEBUG(dbgs() << "Expected MemSDNode " ; N->dump(CurDAG); |
| 3494 | dbgs() << '\n'); |
| 3495 | } |
| 3496 | |
| 3497 | continue; |
| 3498 | |
| 3499 | case OPC_CaptureGlueInput: |
| 3500 | // If the current node has an input glue, capture it in InputGlue. |
| 3501 | if (N->getNumOperands() != 0 && |
| 3502 | N->getOperand(Num: N->getNumOperands()-1).getValueType() == MVT::Glue) |
| 3503 | InputGlue = N->getOperand(Num: N->getNumOperands()-1); |
| 3504 | continue; |
| 3505 | |
| 3506 | case OPC_MoveChild: { |
| 3507 | unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| 3508 | if (ChildNo >= N.getNumOperands()) |
| 3509 | break; // Match fails if out of range child #. |
| 3510 | N = N.getOperand(i: ChildNo); |
| 3511 | NodeStack.push_back(Elt: N); |
| 3512 | continue; |
| 3513 | } |
| 3514 | |
| 3515 | case OPC_MoveChild0: case OPC_MoveChild1: |
| 3516 | case OPC_MoveChild2: case OPC_MoveChild3: |
| 3517 | case OPC_MoveChild4: case OPC_MoveChild5: |
| 3518 | case OPC_MoveChild6: case OPC_MoveChild7: { |
| 3519 | unsigned ChildNo = Opcode-OPC_MoveChild0; |
| 3520 | if (ChildNo >= N.getNumOperands()) |
| 3521 | break; // Match fails if out of range child #. |
| 3522 | N = N.getOperand(i: ChildNo); |
| 3523 | NodeStack.push_back(Elt: N); |
| 3524 | continue; |
| 3525 | } |
| 3526 | |
| 3527 | case OPC_MoveSibling: |
| 3528 | case OPC_MoveSibling0: |
| 3529 | case OPC_MoveSibling1: |
| 3530 | case OPC_MoveSibling2: |
| 3531 | case OPC_MoveSibling3: |
| 3532 | case OPC_MoveSibling4: |
| 3533 | case OPC_MoveSibling5: |
| 3534 | case OPC_MoveSibling6: |
| 3535 | case OPC_MoveSibling7: { |
| 3536 | // Pop the current node off the NodeStack. |
| 3537 | NodeStack.pop_back(); |
| 3538 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
| 3539 | N = NodeStack.back(); |
| 3540 | |
| 3541 | unsigned SiblingNo = Opcode == OPC_MoveSibling |
| 3542 | ? MatcherTable[MatcherIndex++] |
| 3543 | : Opcode - OPC_MoveSibling0; |
| 3544 | if (SiblingNo >= N.getNumOperands()) |
| 3545 | break; // Match fails if out of range sibling #. |
| 3546 | N = N.getOperand(i: SiblingNo); |
| 3547 | NodeStack.push_back(Elt: N); |
| 3548 | continue; |
| 3549 | } |
| 3550 | case OPC_MoveParent: |
| 3551 | // Pop the current node off the NodeStack. |
| 3552 | NodeStack.pop_back(); |
| 3553 | assert(!NodeStack.empty() && "Node stack imbalance!" ); |
| 3554 | N = NodeStack.back(); |
| 3555 | continue; |
| 3556 | |
| 3557 | case OPC_CheckSame: |
| 3558 | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
| 3559 | continue; |
| 3560 | |
| 3561 | case OPC_CheckChild0Same: case OPC_CheckChild1Same: |
| 3562 | case OPC_CheckChild2Same: case OPC_CheckChild3Same: |
| 3563 | if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, |
| 3564 | ChildNo: Opcode-OPC_CheckChild0Same)) |
| 3565 | break; |
| 3566 | continue; |
| 3567 | |
| 3568 | case OPC_CheckPatternPredicate: |
| 3569 | case OPC_CheckPatternPredicate0: |
| 3570 | case OPC_CheckPatternPredicate1: |
| 3571 | case OPC_CheckPatternPredicate2: |
| 3572 | case OPC_CheckPatternPredicate3: |
| 3573 | case OPC_CheckPatternPredicate4: |
| 3574 | case OPC_CheckPatternPredicate5: |
| 3575 | case OPC_CheckPatternPredicate6: |
| 3576 | case OPC_CheckPatternPredicate7: |
| 3577 | case OPC_CheckPatternPredicateTwoByte: |
| 3578 | if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this)) |
| 3579 | break; |
| 3580 | continue; |
| 3581 | case SelectionDAGISel::OPC_CheckPredicate0: |
| 3582 | case SelectionDAGISel::OPC_CheckPredicate1: |
| 3583 | case SelectionDAGISel::OPC_CheckPredicate2: |
| 3584 | case SelectionDAGISel::OPC_CheckPredicate3: |
| 3585 | case SelectionDAGISel::OPC_CheckPredicate4: |
| 3586 | case SelectionDAGISel::OPC_CheckPredicate5: |
| 3587 | case SelectionDAGISel::OPC_CheckPredicate6: |
| 3588 | case SelectionDAGISel::OPC_CheckPredicate7: |
| 3589 | case OPC_CheckPredicate: |
| 3590 | if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, SDISel: *this, Op: N)) |
| 3591 | break; |
| 3592 | continue; |
| 3593 | case OPC_CheckPredicateWithOperands: { |
| 3594 | unsigned OpNum = MatcherTable[MatcherIndex++]; |
| 3595 | SmallVector<SDValue, 8> Operands; |
| 3596 | |
| 3597 | for (unsigned i = 0; i < OpNum; ++i) |
| 3598 | Operands.push_back(Elt: RecordedNodes[MatcherTable[MatcherIndex++]].first); |
| 3599 | |
| 3600 | unsigned PredNo = MatcherTable[MatcherIndex++]; |
| 3601 | if (!CheckNodePredicateWithOperands(Op: N, PredNo, Operands)) |
| 3602 | break; |
| 3603 | continue; |
| 3604 | } |
| 3605 | case OPC_CheckComplexPat: |
| 3606 | case OPC_CheckComplexPat0: |
| 3607 | case OPC_CheckComplexPat1: |
| 3608 | case OPC_CheckComplexPat2: |
| 3609 | case OPC_CheckComplexPat3: |
| 3610 | case OPC_CheckComplexPat4: |
| 3611 | case OPC_CheckComplexPat5: |
| 3612 | case OPC_CheckComplexPat6: |
| 3613 | case OPC_CheckComplexPat7: { |
| 3614 | unsigned CPNum = Opcode == OPC_CheckComplexPat |
| 3615 | ? MatcherTable[MatcherIndex++] |
| 3616 | : Opcode - OPC_CheckComplexPat0; |
| 3617 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 3618 | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat" ); |
| 3619 | |
| 3620 | // If target can modify DAG during matching, keep the matching state |
| 3621 | // consistent. |
| 3622 | std::unique_ptr<MatchStateUpdater> MSU; |
| 3623 | if (ComplexPatternFuncMutatesDAG()) |
| 3624 | MSU.reset(p: new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, |
| 3625 | MatchScopes)); |
| 3626 | |
| 3627 | if (!CheckComplexPattern(Root: NodeToMatch, Parent: RecordedNodes[RecNo].second, |
| 3628 | N: RecordedNodes[RecNo].first, PatternNo: CPNum, |
| 3629 | Result&: RecordedNodes)) |
| 3630 | break; |
| 3631 | continue; |
| 3632 | } |
| 3633 | case OPC_CheckOpcode: |
| 3634 | if (!::CheckOpcode(MatcherTable, MatcherIndex, N: N.getNode())) break; |
| 3635 | continue; |
| 3636 | |
| 3637 | case OPC_CheckType: |
| 3638 | case OPC_CheckTypeI32: |
| 3639 | case OPC_CheckTypeI64: |
| 3640 | MVT::SimpleValueType VT; |
| 3641 | switch (Opcode) { |
| 3642 | case OPC_CheckTypeI32: |
| 3643 | VT = MVT::i32; |
| 3644 | break; |
| 3645 | case OPC_CheckTypeI64: |
| 3646 | VT = MVT::i64; |
| 3647 | break; |
| 3648 | default: |
| 3649 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3650 | break; |
| 3651 | } |
| 3652 | if (!::CheckType(VT, N, TLI, DL: CurDAG->getDataLayout())) |
| 3653 | break; |
| 3654 | continue; |
| 3655 | |
| 3656 | case OPC_CheckTypeRes: { |
| 3657 | unsigned Res = MatcherTable[MatcherIndex++]; |
| 3658 | if (!::CheckType(VT: getSimpleVT(MatcherTable, MatcherIndex), N: N.getValue(R: Res), |
| 3659 | TLI, DL: CurDAG->getDataLayout())) |
| 3660 | break; |
| 3661 | continue; |
| 3662 | } |
| 3663 | |
| 3664 | case OPC_SwitchOpcode: { |
| 3665 | unsigned CurNodeOpcode = N.getOpcode(); |
| 3666 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| 3667 | unsigned CaseSize; |
| 3668 | while (true) { |
| 3669 | // Get the size of this case. |
| 3670 | CaseSize = MatcherTable[MatcherIndex++]; |
| 3671 | if (CaseSize & 128) |
| 3672 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
| 3673 | if (CaseSize == 0) break; |
| 3674 | |
| 3675 | uint16_t Opc = MatcherTable[MatcherIndex++]; |
| 3676 | Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 3677 | |
| 3678 | // If the opcode matches, then we will execute this case. |
| 3679 | if (CurNodeOpcode == Opc) |
| 3680 | break; |
| 3681 | |
| 3682 | // Otherwise, skip over this case. |
| 3683 | MatcherIndex += CaseSize; |
| 3684 | } |
| 3685 | |
| 3686 | // If no cases matched, bail out. |
| 3687 | if (CaseSize == 0) break; |
| 3688 | |
| 3689 | // Otherwise, execute the case we found. |
| 3690 | LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " |
| 3691 | << MatcherIndex << "\n" ); |
| 3692 | continue; |
| 3693 | } |
| 3694 | |
| 3695 | case OPC_SwitchType: { |
| 3696 | MVT CurNodeVT = N.getSimpleValueType(); |
| 3697 | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| 3698 | unsigned CaseSize; |
| 3699 | while (true) { |
| 3700 | // Get the size of this case. |
| 3701 | CaseSize = MatcherTable[MatcherIndex++]; |
| 3702 | if (CaseSize & 128) |
| 3703 | CaseSize = GetVBR(Val: CaseSize, MatcherTable, Idx&: MatcherIndex); |
| 3704 | if (CaseSize == 0) break; |
| 3705 | |
| 3706 | MVT CaseVT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3707 | if (CaseVT == MVT::iPTR) |
| 3708 | CaseVT = TLI->getPointerTy(DL: CurDAG->getDataLayout()); |
| 3709 | |
| 3710 | // If the VT matches, then we will execute this case. |
| 3711 | if (CurNodeVT == CaseVT) |
| 3712 | break; |
| 3713 | |
| 3714 | // Otherwise, skip over this case. |
| 3715 | MatcherIndex += CaseSize; |
| 3716 | } |
| 3717 | |
| 3718 | // If no cases matched, bail out. |
| 3719 | if (CaseSize == 0) break; |
| 3720 | |
| 3721 | // Otherwise, execute the case we found. |
| 3722 | LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT |
| 3723 | << "] from " << SwitchStart << " to " << MatcherIndex |
| 3724 | << '\n'); |
| 3725 | continue; |
| 3726 | } |
| 3727 | case OPC_CheckChild0Type: |
| 3728 | case OPC_CheckChild1Type: |
| 3729 | case OPC_CheckChild2Type: |
| 3730 | case OPC_CheckChild3Type: |
| 3731 | case OPC_CheckChild4Type: |
| 3732 | case OPC_CheckChild5Type: |
| 3733 | case OPC_CheckChild6Type: |
| 3734 | case OPC_CheckChild7Type: |
| 3735 | case OPC_CheckChild0TypeI32: |
| 3736 | case OPC_CheckChild1TypeI32: |
| 3737 | case OPC_CheckChild2TypeI32: |
| 3738 | case OPC_CheckChild3TypeI32: |
| 3739 | case OPC_CheckChild4TypeI32: |
| 3740 | case OPC_CheckChild5TypeI32: |
| 3741 | case OPC_CheckChild6TypeI32: |
| 3742 | case OPC_CheckChild7TypeI32: |
| 3743 | case OPC_CheckChild0TypeI64: |
| 3744 | case OPC_CheckChild1TypeI64: |
| 3745 | case OPC_CheckChild2TypeI64: |
| 3746 | case OPC_CheckChild3TypeI64: |
| 3747 | case OPC_CheckChild4TypeI64: |
| 3748 | case OPC_CheckChild5TypeI64: |
| 3749 | case OPC_CheckChild6TypeI64: |
| 3750 | case OPC_CheckChild7TypeI64: { |
| 3751 | MVT::SimpleValueType VT; |
| 3752 | unsigned ChildNo; |
| 3753 | if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 && |
| 3754 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) { |
| 3755 | VT = MVT::i32; |
| 3756 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32; |
| 3757 | } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 && |
| 3758 | Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) { |
| 3759 | VT = MVT::i64; |
| 3760 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64; |
| 3761 | } else { |
| 3762 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3763 | ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type; |
| 3764 | } |
| 3765 | if (!::CheckChildType(VT, N, TLI, DL: CurDAG->getDataLayout(), ChildNo)) |
| 3766 | break; |
| 3767 | continue; |
| 3768 | } |
| 3769 | case OPC_CheckCondCode: |
| 3770 | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
| 3771 | continue; |
| 3772 | case OPC_CheckChild2CondCode: |
| 3773 | if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; |
| 3774 | continue; |
| 3775 | case OPC_CheckValueType: |
| 3776 | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, |
| 3777 | DL: CurDAG->getDataLayout())) |
| 3778 | break; |
| 3779 | continue; |
| 3780 | case OPC_CheckInteger: |
| 3781 | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
| 3782 | continue; |
| 3783 | case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: |
| 3784 | case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: |
| 3785 | case OPC_CheckChild4Integer: |
| 3786 | if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, |
| 3787 | ChildNo: Opcode-OPC_CheckChild0Integer)) break; |
| 3788 | continue; |
| 3789 | case OPC_CheckAndImm: |
| 3790 | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
| 3791 | continue; |
| 3792 | case OPC_CheckOrImm: |
| 3793 | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, SDISel: *this)) break; |
| 3794 | continue; |
| 3795 | case OPC_CheckImmAllOnesV: |
| 3796 | if (!ISD::isConstantSplatVectorAllOnes(N: N.getNode())) |
| 3797 | break; |
| 3798 | continue; |
| 3799 | case OPC_CheckImmAllZerosV: |
| 3800 | if (!ISD::isConstantSplatVectorAllZeros(N: N.getNode())) |
| 3801 | break; |
| 3802 | continue; |
| 3803 | |
| 3804 | case OPC_CheckFoldableChainNode: { |
| 3805 | assert(NodeStack.size() != 1 && "No parent node" ); |
| 3806 | // Verify that all intermediate nodes between the root and this one have |
| 3807 | // a single use (ignoring chains, which are handled in UpdateChains). |
| 3808 | bool HasMultipleUses = false; |
| 3809 | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { |
| 3810 | unsigned NNonChainUses = 0; |
| 3811 | SDNode *NS = NodeStack[i].getNode(); |
| 3812 | for (const SDUse &U : NS->uses()) |
| 3813 | if (U.getValueType() != MVT::Other) |
| 3814 | if (++NNonChainUses > 1) { |
| 3815 | HasMultipleUses = true; |
| 3816 | break; |
| 3817 | } |
| 3818 | if (HasMultipleUses) break; |
| 3819 | } |
| 3820 | if (HasMultipleUses) break; |
| 3821 | |
| 3822 | // Check to see that the target thinks this is profitable to fold and that |
| 3823 | // we can fold it without inducing cycles in the graph. |
| 3824 | if (!IsProfitableToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
| 3825 | Root: NodeToMatch) || |
| 3826 | !IsLegalToFold(N, U: NodeStack[NodeStack.size()-2].getNode(), |
| 3827 | Root: NodeToMatch, OptLevel, |
| 3828 | IgnoreChains: true/*We validate our own chains*/)) |
| 3829 | break; |
| 3830 | |
| 3831 | continue; |
| 3832 | } |
| 3833 | case OPC_EmitInteger: |
| 3834 | case OPC_EmitInteger8: |
| 3835 | case OPC_EmitInteger16: |
| 3836 | case OPC_EmitInteger32: |
| 3837 | case OPC_EmitInteger64: |
| 3838 | case OPC_EmitStringInteger: |
| 3839 | case OPC_EmitStringInteger32: { |
| 3840 | MVT::SimpleValueType VT; |
| 3841 | switch (Opcode) { |
| 3842 | case OPC_EmitInteger8: |
| 3843 | VT = MVT::i8; |
| 3844 | break; |
| 3845 | case OPC_EmitInteger16: |
| 3846 | VT = MVT::i16; |
| 3847 | break; |
| 3848 | case OPC_EmitInteger32: |
| 3849 | case OPC_EmitStringInteger32: |
| 3850 | VT = MVT::i32; |
| 3851 | break; |
| 3852 | case OPC_EmitInteger64: |
| 3853 | VT = MVT::i64; |
| 3854 | break; |
| 3855 | default: |
| 3856 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3857 | break; |
| 3858 | } |
| 3859 | int64_t Val = MatcherTable[MatcherIndex++]; |
| 3860 | if (Val & 128) |
| 3861 | Val = GetVBR(Val, MatcherTable, Idx&: MatcherIndex); |
| 3862 | if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64) |
| 3863 | Val = decodeSignRotatedValue(V: Val); |
| 3864 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode *>( |
| 3865 | CurDAG->getSignedConstant(Val, DL: SDLoc(NodeToMatch), VT, |
| 3866 | /*isTarget=*/true), |
| 3867 | nullptr)); |
| 3868 | continue; |
| 3869 | } |
| 3870 | case OPC_EmitRegister: |
| 3871 | case OPC_EmitRegisterI32: |
| 3872 | case OPC_EmitRegisterI64: { |
| 3873 | MVT::SimpleValueType VT; |
| 3874 | switch (Opcode) { |
| 3875 | case OPC_EmitRegisterI32: |
| 3876 | VT = MVT::i32; |
| 3877 | break; |
| 3878 | case OPC_EmitRegisterI64: |
| 3879 | VT = MVT::i64; |
| 3880 | break; |
| 3881 | default: |
| 3882 | VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3883 | break; |
| 3884 | } |
| 3885 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
| 3886 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode *>( |
| 3887 | CurDAG->getRegister(Reg: RegNo, VT), nullptr)); |
| 3888 | continue; |
| 3889 | } |
| 3890 | case OPC_EmitRegister2: { |
| 3891 | // For targets w/ more than 256 register names, the register enum |
| 3892 | // values are stored in two bytes in the matcher table (just like |
| 3893 | // opcodes). |
| 3894 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 3895 | unsigned RegNo = MatcherTable[MatcherIndex++]; |
| 3896 | RegNo |= MatcherTable[MatcherIndex++] << 8; |
| 3897 | RecordedNodes.push_back(Elt: std::pair<SDValue, SDNode*>( |
| 3898 | CurDAG->getRegister(Reg: RegNo, VT), nullptr)); |
| 3899 | continue; |
| 3900 | } |
| 3901 | |
| 3902 | case OPC_EmitConvertToTarget: |
| 3903 | case OPC_EmitConvertToTarget0: |
| 3904 | case OPC_EmitConvertToTarget1: |
| 3905 | case OPC_EmitConvertToTarget2: |
| 3906 | case OPC_EmitConvertToTarget3: |
| 3907 | case OPC_EmitConvertToTarget4: |
| 3908 | case OPC_EmitConvertToTarget5: |
| 3909 | case OPC_EmitConvertToTarget6: |
| 3910 | case OPC_EmitConvertToTarget7: { |
| 3911 | // Convert from IMM/FPIMM to target version. |
| 3912 | unsigned RecNo = Opcode == OPC_EmitConvertToTarget |
| 3913 | ? MatcherTable[MatcherIndex++] |
| 3914 | : Opcode - OPC_EmitConvertToTarget0; |
| 3915 | assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget" ); |
| 3916 | SDValue Imm = RecordedNodes[RecNo].first; |
| 3917 | |
| 3918 | if (Imm->getOpcode() == ISD::Constant) { |
| 3919 | const ConstantInt *Val=cast<ConstantSDNode>(Val&: Imm)->getConstantIntValue(); |
| 3920 | Imm = CurDAG->getTargetConstant(Val: *Val, DL: SDLoc(NodeToMatch), |
| 3921 | VT: Imm.getValueType()); |
| 3922 | } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| 3923 | const ConstantFP *Val=cast<ConstantFPSDNode>(Val&: Imm)->getConstantFPValue(); |
| 3924 | Imm = CurDAG->getTargetConstantFP(Val: *Val, DL: SDLoc(NodeToMatch), |
| 3925 | VT: Imm.getValueType()); |
| 3926 | } |
| 3927 | |
| 3928 | RecordedNodes.push_back(Elt: std::make_pair(x&: Imm, y&: RecordedNodes[RecNo].second)); |
| 3929 | continue; |
| 3930 | } |
| 3931 | |
| 3932 | case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
| 3933 | case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 |
| 3934 | case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 |
| 3935 | // These are space-optimized forms of OPC_EmitMergeInputChains. |
| 3936 | assert(!InputChain.getNode() && |
| 3937 | "EmitMergeInputChains should be the first chain producing node" ); |
| 3938 | assert(ChainNodesMatched.empty() && |
| 3939 | "Should only have one EmitMergeInputChains per match" ); |
| 3940 | |
| 3941 | // Read all of the chained nodes. |
| 3942 | unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; |
| 3943 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
| 3944 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
| 3945 | |
| 3946 | // If the chained node is not the root, we can't fold it if it has |
| 3947 | // multiple uses. |
| 3948 | // FIXME: What if other value results of the node have uses not matched |
| 3949 | // by this pattern? |
| 3950 | if (ChainNodesMatched.back() != NodeToMatch && |
| 3951 | !RecordedNodes[RecNo].first.hasOneUse()) { |
| 3952 | ChainNodesMatched.clear(); |
| 3953 | break; |
| 3954 | } |
| 3955 | |
| 3956 | // Merge the input chains if they are not intra-pattern references. |
| 3957 | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| 3958 | |
| 3959 | if (!InputChain.getNode()) |
| 3960 | break; // Failed to merge. |
| 3961 | continue; |
| 3962 | } |
| 3963 | |
| 3964 | case OPC_EmitMergeInputChains: { |
| 3965 | assert(!InputChain.getNode() && |
| 3966 | "EmitMergeInputChains should be the first chain producing node" ); |
| 3967 | // This node gets a list of nodes we matched in the input that have |
| 3968 | // chains. We want to token factor all of the input chains to these nodes |
| 3969 | // together. However, if any of the input chains is actually one of the |
| 3970 | // nodes matched in this pattern, then we have an intra-match reference. |
| 3971 | // Ignore these because the newly token factored chain should not refer to |
| 3972 | // the old nodes. |
| 3973 | unsigned NumChains = MatcherTable[MatcherIndex++]; |
| 3974 | assert(NumChains != 0 && "Can't TF zero chains" ); |
| 3975 | |
| 3976 | assert(ChainNodesMatched.empty() && |
| 3977 | "Should only have one EmitMergeInputChains per match" ); |
| 3978 | |
| 3979 | // Read all of the chained nodes. |
| 3980 | for (unsigned i = 0; i != NumChains; ++i) { |
| 3981 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 3982 | assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains" ); |
| 3983 | ChainNodesMatched.push_back(Elt: RecordedNodes[RecNo].first.getNode()); |
| 3984 | |
| 3985 | // If the chained node is not the root, we can't fold it if it has |
| 3986 | // multiple uses. |
| 3987 | // FIXME: What if other value results of the node have uses not matched |
| 3988 | // by this pattern? |
| 3989 | if (ChainNodesMatched.back() != NodeToMatch && |
| 3990 | !RecordedNodes[RecNo].first.hasOneUse()) { |
| 3991 | ChainNodesMatched.clear(); |
| 3992 | break; |
| 3993 | } |
| 3994 | } |
| 3995 | |
| 3996 | // If the inner loop broke out, the match fails. |
| 3997 | if (ChainNodesMatched.empty()) |
| 3998 | break; |
| 3999 | |
| 4000 | // Merge the input chains if they are not intra-pattern references. |
| 4001 | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| 4002 | |
| 4003 | if (!InputChain.getNode()) |
| 4004 | break; // Failed to merge. |
| 4005 | |
| 4006 | continue; |
| 4007 | } |
| 4008 | |
| 4009 | case OPC_EmitCopyToReg: |
| 4010 | case OPC_EmitCopyToReg0: |
| 4011 | case OPC_EmitCopyToReg1: |
| 4012 | case OPC_EmitCopyToReg2: |
| 4013 | case OPC_EmitCopyToReg3: |
| 4014 | case OPC_EmitCopyToReg4: |
| 4015 | case OPC_EmitCopyToReg5: |
| 4016 | case OPC_EmitCopyToReg6: |
| 4017 | case OPC_EmitCopyToReg7: |
| 4018 | case OPC_EmitCopyToRegTwoByte: { |
| 4019 | unsigned RecNo = |
| 4020 | Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7 |
| 4021 | ? Opcode - OPC_EmitCopyToReg0 |
| 4022 | : MatcherTable[MatcherIndex++]; |
| 4023 | assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg" ); |
| 4024 | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| 4025 | if (Opcode == OPC_EmitCopyToRegTwoByte) |
| 4026 | DestPhysReg |= MatcherTable[MatcherIndex++] << 8; |
| 4027 | |
| 4028 | if (!InputChain.getNode()) |
| 4029 | InputChain = CurDAG->getEntryNode(); |
| 4030 | |
| 4031 | InputChain = CurDAG->getCopyToReg(Chain: InputChain, dl: SDLoc(NodeToMatch), |
| 4032 | Reg: DestPhysReg, N: RecordedNodes[RecNo].first, |
| 4033 | Glue: InputGlue); |
| 4034 | |
| 4035 | InputGlue = InputChain.getValue(R: 1); |
| 4036 | continue; |
| 4037 | } |
| 4038 | |
| 4039 | case OPC_EmitNodeXForm: { |
| 4040 | unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| 4041 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 4042 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm" ); |
| 4043 | SDValue Res = RunSDNodeXForm(V: RecordedNodes[RecNo].first, XFormNo); |
| 4044 | RecordedNodes.push_back(Elt: std::pair<SDValue,SDNode*>(Res, nullptr)); |
| 4045 | continue; |
| 4046 | } |
| 4047 | case OPC_Coverage: { |
| 4048 | // This is emitted right before MorphNode/EmitNode. |
| 4049 | // So it should be safe to assume that this node has been selected |
| 4050 | unsigned index = MatcherTable[MatcherIndex++]; |
| 4051 | index |= (MatcherTable[MatcherIndex++] << 8); |
| 4052 | index |= (MatcherTable[MatcherIndex++] << 16); |
| 4053 | index |= (MatcherTable[MatcherIndex++] << 24); |
| 4054 | dbgs() << "COVERED: " << getPatternForIndex(index) << "\n" ; |
| 4055 | dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n" ; |
| 4056 | continue; |
| 4057 | } |
| 4058 | |
| 4059 | case OPC_EmitNode: |
| 4060 | case OPC_EmitNode0: |
| 4061 | case OPC_EmitNode1: |
| 4062 | case OPC_EmitNode2: |
| 4063 | case OPC_EmitNode0None: |
| 4064 | case OPC_EmitNode1None: |
| 4065 | case OPC_EmitNode2None: |
| 4066 | case OPC_EmitNode0Chain: |
| 4067 | case OPC_EmitNode1Chain: |
| 4068 | case OPC_EmitNode2Chain: |
| 4069 | case OPC_MorphNodeTo: |
| 4070 | case OPC_MorphNodeTo0: |
| 4071 | case OPC_MorphNodeTo1: |
| 4072 | case OPC_MorphNodeTo2: |
| 4073 | case OPC_MorphNodeTo0None: |
| 4074 | case OPC_MorphNodeTo1None: |
| 4075 | case OPC_MorphNodeTo2None: |
| 4076 | case OPC_MorphNodeTo0Chain: |
| 4077 | case OPC_MorphNodeTo1Chain: |
| 4078 | case OPC_MorphNodeTo2Chain: |
| 4079 | case OPC_MorphNodeTo0GlueInput: |
| 4080 | case OPC_MorphNodeTo1GlueInput: |
| 4081 | case OPC_MorphNodeTo2GlueInput: |
| 4082 | case OPC_MorphNodeTo0GlueOutput: |
| 4083 | case OPC_MorphNodeTo1GlueOutput: |
| 4084 | case OPC_MorphNodeTo2GlueOutput: { |
| 4085 | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| 4086 | TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8; |
| 4087 | unsigned EmitNodeInfo; |
| 4088 | if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) { |
| 4089 | if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
| 4090 | EmitNodeInfo = OPFL_Chain; |
| 4091 | else |
| 4092 | EmitNodeInfo = OPFL_None; |
| 4093 | } else if (Opcode >= OPC_MorphNodeTo0None && |
| 4094 | Opcode <= OPC_MorphNodeTo2GlueOutput) { |
| 4095 | if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain) |
| 4096 | EmitNodeInfo = OPFL_Chain; |
| 4097 | else if (Opcode >= OPC_MorphNodeTo0GlueInput && |
| 4098 | Opcode <= OPC_MorphNodeTo2GlueInput) |
| 4099 | EmitNodeInfo = OPFL_GlueInput; |
| 4100 | else if (Opcode >= OPC_MorphNodeTo0GlueOutput && |
| 4101 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
| 4102 | EmitNodeInfo = OPFL_GlueOutput; |
| 4103 | else |
| 4104 | EmitNodeInfo = OPFL_None; |
| 4105 | } else |
| 4106 | EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| 4107 | // Get the result VT list. |
| 4108 | unsigned NumVTs; |
| 4109 | // If this is one of the compressed forms, get the number of VTs based |
| 4110 | // on the Opcode. Otherwise read the next byte from the table. |
| 4111 | if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) |
| 4112 | NumVTs = Opcode - OPC_MorphNodeTo0; |
| 4113 | else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None) |
| 4114 | NumVTs = Opcode - OPC_MorphNodeTo0None; |
| 4115 | else if (Opcode >= OPC_MorphNodeTo0Chain && |
| 4116 | Opcode <= OPC_MorphNodeTo2Chain) |
| 4117 | NumVTs = Opcode - OPC_MorphNodeTo0Chain; |
| 4118 | else if (Opcode >= OPC_MorphNodeTo0GlueInput && |
| 4119 | Opcode <= OPC_MorphNodeTo2GlueInput) |
| 4120 | NumVTs = Opcode - OPC_MorphNodeTo0GlueInput; |
| 4121 | else if (Opcode >= OPC_MorphNodeTo0GlueOutput && |
| 4122 | Opcode <= OPC_MorphNodeTo2GlueOutput) |
| 4123 | NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput; |
| 4124 | else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) |
| 4125 | NumVTs = Opcode - OPC_EmitNode0; |
| 4126 | else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None) |
| 4127 | NumVTs = Opcode - OPC_EmitNode0None; |
| 4128 | else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain) |
| 4129 | NumVTs = Opcode - OPC_EmitNode0Chain; |
| 4130 | else |
| 4131 | NumVTs = MatcherTable[MatcherIndex++]; |
| 4132 | SmallVector<EVT, 4> VTs; |
| 4133 | for (unsigned i = 0; i != NumVTs; ++i) { |
| 4134 | MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex); |
| 4135 | if (VT == MVT::iPTR) |
| 4136 | VT = TLI->getPointerTy(DL: CurDAG->getDataLayout()).SimpleTy; |
| 4137 | VTs.push_back(Elt: VT); |
| 4138 | } |
| 4139 | |
| 4140 | if (EmitNodeInfo & OPFL_Chain) |
| 4141 | VTs.push_back(Elt: MVT::Other); |
| 4142 | if (EmitNodeInfo & OPFL_GlueOutput) |
| 4143 | VTs.push_back(Elt: MVT::Glue); |
| 4144 | |
| 4145 | // This is hot code, so optimize the two most common cases of 1 and 2 |
| 4146 | // results. |
| 4147 | SDVTList VTList; |
| 4148 | if (VTs.size() == 1) |
| 4149 | VTList = CurDAG->getVTList(VT: VTs[0]); |
| 4150 | else if (VTs.size() == 2) |
| 4151 | VTList = CurDAG->getVTList(VT1: VTs[0], VT2: VTs[1]); |
| 4152 | else |
| 4153 | VTList = CurDAG->getVTList(VTs); |
| 4154 | |
| 4155 | // Get the operand list. |
| 4156 | unsigned NumOps = MatcherTable[MatcherIndex++]; |
| 4157 | SmallVector<SDValue, 8> Ops; |
| 4158 | for (unsigned i = 0; i != NumOps; ++i) { |
| 4159 | unsigned RecNo = MatcherTable[MatcherIndex++]; |
| 4160 | if (RecNo & 128) |
| 4161 | RecNo = GetVBR(Val: RecNo, MatcherTable, Idx&: MatcherIndex); |
| 4162 | |
| 4163 | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode" ); |
| 4164 | Ops.push_back(Elt: RecordedNodes[RecNo].first); |
| 4165 | } |
| 4166 | |
| 4167 | // If there are variadic operands to add, handle them now. |
| 4168 | if (EmitNodeInfo & OPFL_VariadicInfo) { |
| 4169 | // Determine the start index to copy from. |
| 4170 | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(Flags: EmitNodeInfo); |
| 4171 | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| 4172 | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| 4173 | "Invalid variadic node" ); |
| 4174 | // Copy all of the variadic operands, not including a potential glue |
| 4175 | // input. |
| 4176 | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| 4177 | i != e; ++i) { |
| 4178 | SDValue V = NodeToMatch->getOperand(Num: i); |
| 4179 | if (V.getValueType() == MVT::Glue) break; |
| 4180 | Ops.push_back(Elt: V); |
| 4181 | } |
| 4182 | } |
| 4183 | |
| 4184 | // If this has chain/glue inputs, add them. |
| 4185 | if (EmitNodeInfo & OPFL_Chain) |
| 4186 | Ops.push_back(Elt: InputChain); |
| 4187 | if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) |
| 4188 | Ops.push_back(Elt: InputGlue); |
| 4189 | |
| 4190 | // Check whether any matched node could raise an FP exception. Since all |
| 4191 | // such nodes must have a chain, it suffices to check ChainNodesMatched. |
| 4192 | // We need to perform this check before potentially modifying one of the |
| 4193 | // nodes via MorphNode. |
| 4194 | bool MayRaiseFPException = |
| 4195 | llvm::any_of(Range&: ChainNodesMatched, P: [this](SDNode *N) { |
| 4196 | return mayRaiseFPException(Node: N) && !N->getFlags().hasNoFPExcept(); |
| 4197 | }); |
| 4198 | |
| 4199 | // Create the node. |
| 4200 | MachineSDNode *Res = nullptr; |
| 4201 | bool IsMorphNodeTo = |
| 4202 | Opcode == OPC_MorphNodeTo || |
| 4203 | (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput); |
| 4204 | if (!IsMorphNodeTo) { |
| 4205 | // If this is a normal EmitNode command, just create the new node and |
| 4206 | // add the results to the RecordedNodes list. |
| 4207 | Res = CurDAG->getMachineNode(Opcode: TargetOpc, dl: SDLoc(NodeToMatch), |
| 4208 | VTs: VTList, Ops); |
| 4209 | |
| 4210 | // Add all the non-glue/non-chain results to the RecordedNodes list. |
| 4211 | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| 4212 | if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; |
| 4213 | RecordedNodes.push_back(Elt: std::pair<SDValue,SDNode*>(SDValue(Res, i), |
| 4214 | nullptr)); |
| 4215 | } |
| 4216 | } else { |
| 4217 | assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && |
| 4218 | "NodeToMatch was removed partway through selection" ); |
| 4219 | SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, |
| 4220 | SDNode *E) { |
| 4221 | CurDAG->salvageDebugInfo(N&: *N); |
| 4222 | auto &Chain = ChainNodesMatched; |
| 4223 | assert((!E || !is_contained(Chain, N)) && |
| 4224 | "Chain node replaced during MorphNode" ); |
| 4225 | llvm::erase(C&: Chain, V: N); |
| 4226 | }); |
| 4227 | Res = cast<MachineSDNode>(Val: MorphNode(Node: NodeToMatch, TargetOpc, VTList, |
| 4228 | Ops, EmitNodeInfo)); |
| 4229 | } |
| 4230 | |
| 4231 | // Set the NoFPExcept flag when no original matched node could |
| 4232 | // raise an FP exception, but the new node potentially might. |
| 4233 | if (!MayRaiseFPException && mayRaiseFPException(Node: Res)) |
| 4234 | Res->setFlags(Res->getFlags() | SDNodeFlags::NoFPExcept); |
| 4235 | |
| 4236 | // If the node had chain/glue results, update our notion of the current |
| 4237 | // chain and glue. |
| 4238 | if (EmitNodeInfo & OPFL_GlueOutput) { |
| 4239 | InputGlue = SDValue(Res, VTs.size()-1); |
| 4240 | if (EmitNodeInfo & OPFL_Chain) |
| 4241 | InputChain = SDValue(Res, VTs.size()-2); |
| 4242 | } else if (EmitNodeInfo & OPFL_Chain) |
| 4243 | InputChain = SDValue(Res, VTs.size()-1); |
| 4244 | |
| 4245 | // If the OPFL_MemRefs glue is set on this node, slap all of the |
| 4246 | // accumulated memrefs onto it. |
| 4247 | // |
| 4248 | // FIXME: This is vastly incorrect for patterns with multiple outputs |
| 4249 | // instructions that access memory and for ComplexPatterns that match |
| 4250 | // loads. |
| 4251 | if (EmitNodeInfo & OPFL_MemRefs) { |
| 4252 | // Only attach load or store memory operands if the generated |
| 4253 | // instruction may load or store. |
| 4254 | const MCInstrDesc &MCID = TII->get(Opcode: TargetOpc); |
| 4255 | bool mayLoad = MCID.mayLoad(); |
| 4256 | bool mayStore = MCID.mayStore(); |
| 4257 | |
| 4258 | // We expect to have relatively few of these so just filter them into a |
| 4259 | // temporary buffer so that we can easily add them to the instruction. |
| 4260 | SmallVector<MachineMemOperand *, 4> FilteredMemRefs; |
| 4261 | for (MachineMemOperand *MMO : MatchedMemRefs) { |
| 4262 | if (MMO->isLoad()) { |
| 4263 | if (mayLoad) |
| 4264 | FilteredMemRefs.push_back(Elt: MMO); |
| 4265 | } else if (MMO->isStore()) { |
| 4266 | if (mayStore) |
| 4267 | FilteredMemRefs.push_back(Elt: MMO); |
| 4268 | } else { |
| 4269 | FilteredMemRefs.push_back(Elt: MMO); |
| 4270 | } |
| 4271 | } |
| 4272 | |
| 4273 | CurDAG->setNodeMemRefs(N: Res, NewMemRefs: FilteredMemRefs); |
| 4274 | } |
| 4275 | |
| 4276 | LLVM_DEBUG({ |
| 4277 | if (!MatchedMemRefs.empty() && Res->memoperands_empty()) |
| 4278 | dbgs() << " Dropping mem operands\n" ; |
| 4279 | dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created" ) << " node: " ; |
| 4280 | Res->dump(CurDAG); |
| 4281 | }); |
| 4282 | |
| 4283 | // If this was a MorphNodeTo then we're completely done! |
| 4284 | if (IsMorphNodeTo) { |
| 4285 | // Update chain uses. |
| 4286 | UpdateChains(NodeToMatch: Res, InputChain, ChainNodesMatched, isMorphNodeTo: true); |
| 4287 | return; |
| 4288 | } |
| 4289 | continue; |
| 4290 | } |
| 4291 | |
| 4292 | case OPC_CompleteMatch: { |
| 4293 | // The match has been completed, and any new nodes (if any) have been |
| 4294 | // created. Patch up references to the matched dag to use the newly |
| 4295 | // created nodes. |
| 4296 | unsigned NumResults = MatcherTable[MatcherIndex++]; |
| 4297 | |
| 4298 | for (unsigned i = 0; i != NumResults; ++i) { |
| 4299 | unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| 4300 | if (ResSlot & 128) |
| 4301 | ResSlot = GetVBR(Val: ResSlot, MatcherTable, Idx&: MatcherIndex); |
| 4302 | |
| 4303 | assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch" ); |
| 4304 | SDValue Res = RecordedNodes[ResSlot].first; |
| 4305 | |
| 4306 | assert(i < NodeToMatch->getNumValues() && |
| 4307 | NodeToMatch->getValueType(i) != MVT::Other && |
| 4308 | NodeToMatch->getValueType(i) != MVT::Glue && |
| 4309 | "Invalid number of results to complete!" ); |
| 4310 | assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| 4311 | NodeToMatch->getValueType(i) == MVT::iPTR || |
| 4312 | Res.getValueType() == MVT::iPTR || |
| 4313 | NodeToMatch->getValueType(i).getSizeInBits() == |
| 4314 | Res.getValueSizeInBits()) && |
| 4315 | "invalid replacement" ); |
| 4316 | ReplaceUses(F: SDValue(NodeToMatch, i), T: Res); |
| 4317 | } |
| 4318 | |
| 4319 | // Update chain uses. |
| 4320 | UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, isMorphNodeTo: false); |
| 4321 | |
| 4322 | // If the root node defines glue, we need to update it to the glue result. |
| 4323 | // TODO: This never happens in our tests and I think it can be removed / |
| 4324 | // replaced with an assert, but if we do it this the way the change is |
| 4325 | // NFC. |
| 4326 | if (NodeToMatch->getValueType(ResNo: NodeToMatch->getNumValues() - 1) == |
| 4327 | MVT::Glue && |
| 4328 | InputGlue.getNode()) |
| 4329 | ReplaceUses(F: SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), |
| 4330 | T: InputGlue); |
| 4331 | |
| 4332 | assert(NodeToMatch->use_empty() && |
| 4333 | "Didn't replace all uses of the node?" ); |
| 4334 | CurDAG->RemoveDeadNode(N: NodeToMatch); |
| 4335 | |
| 4336 | return; |
| 4337 | } |
| 4338 | } |
| 4339 | |
| 4340 | // If the code reached this point, then the match failed. See if there is |
| 4341 | // another child to try in the current 'Scope', otherwise pop it until we |
| 4342 | // find a case to check. |
| 4343 | LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex |
| 4344 | << "\n" ); |
| 4345 | ++NumDAGIselRetries; |
| 4346 | while (true) { |
| 4347 | if (MatchScopes.empty()) { |
| 4348 | CannotYetSelect(N: NodeToMatch); |
| 4349 | return; |
| 4350 | } |
| 4351 | |
| 4352 | // Restore the interpreter state back to the point where the scope was |
| 4353 | // formed. |
| 4354 | MatchScope &LastScope = MatchScopes.back(); |
| 4355 | RecordedNodes.resize(N: LastScope.NumRecordedNodes); |
| 4356 | NodeStack.clear(); |
| 4357 | NodeStack.append(in_start: LastScope.NodeStack.begin(), in_end: LastScope.NodeStack.end()); |
| 4358 | N = NodeStack.back(); |
| 4359 | |
| 4360 | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| 4361 | MatchedMemRefs.resize(N: LastScope.NumMatchedMemRefs); |
| 4362 | MatcherIndex = LastScope.FailIndex; |
| 4363 | |
| 4364 | LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n" ); |
| 4365 | |
| 4366 | InputChain = LastScope.InputChain; |
| 4367 | InputGlue = LastScope.InputGlue; |
| 4368 | if (!LastScope.HasChainNodesMatched) |
| 4369 | ChainNodesMatched.clear(); |
| 4370 | |
| 4371 | // Check to see what the offset is at the new MatcherIndex. If it is zero |
| 4372 | // we have reached the end of this scope, otherwise we have another child |
| 4373 | // in the current scope to try. |
| 4374 | unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| 4375 | if (NumToSkip & 128) |
| 4376 | NumToSkip = GetVBR(Val: NumToSkip, MatcherTable, Idx&: MatcherIndex); |
| 4377 | |
| 4378 | // If we have another child in this scope to match, update FailIndex and |
| 4379 | // try it. |
| 4380 | if (NumToSkip != 0) { |
| 4381 | LastScope.FailIndex = MatcherIndex+NumToSkip; |
| 4382 | break; |
| 4383 | } |
| 4384 | |
| 4385 | // End of this scope, pop it and try the next child in the containing |
| 4386 | // scope. |
| 4387 | MatchScopes.pop_back(); |
| 4388 | } |
| 4389 | } |
| 4390 | } |
| 4391 | |
| 4392 | /// Return whether the node may raise an FP exception. |
| 4393 | bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { |
| 4394 | // For machine opcodes, consult the MCID flag. |
| 4395 | if (N->isMachineOpcode()) { |
| 4396 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 4397 | return MCID.mayRaiseFPException(); |
| 4398 | } |
| 4399 | |
| 4400 | // For ISD opcodes, only StrictFP opcodes may raise an FP |
| 4401 | // exception. |
| 4402 | if (N->isTargetOpcode()) { |
| 4403 | const SelectionDAGTargetInfo &TSI = CurDAG->getSelectionDAGInfo(); |
| 4404 | return TSI.mayRaiseFPException(Opcode: N->getOpcode()); |
| 4405 | } |
| 4406 | return N->isStrictFPOpcode(); |
| 4407 | } |
| 4408 | |
| 4409 | bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { |
| 4410 | assert(N->getOpcode() == ISD::OR && "Unexpected opcode" ); |
| 4411 | auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 4412 | if (!C) |
| 4413 | return false; |
| 4414 | |
| 4415 | // Detect when "or" is used to add an offset to a stack object. |
| 4416 | if (auto *FN = dyn_cast<FrameIndexSDNode>(Val: N->getOperand(Num: 0))) { |
| 4417 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 4418 | Align A = MFI.getObjectAlign(ObjectIdx: FN->getIndex()); |
| 4419 | int32_t Off = C->getSExtValue(); |
| 4420 | // If the alleged offset fits in the zero bits guaranteed by |
| 4421 | // the alignment, then this or is really an add. |
| 4422 | return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); |
| 4423 | } |
| 4424 | return false; |
| 4425 | } |
| 4426 | |
| 4427 | void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| 4428 | std::string msg; |
| 4429 | raw_string_ostream Msg(msg); |
| 4430 | Msg << "Cannot select: " ; |
| 4431 | |
| 4432 | Msg.enable_colors(enable: errs().has_colors()); |
| 4433 | |
| 4434 | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
| 4435 | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
| 4436 | N->getOpcode() != ISD::INTRINSIC_VOID) { |
| 4437 | N->printrFull(O&: Msg, G: CurDAG); |
| 4438 | Msg << "\nIn function: " << MF->getName(); |
| 4439 | } else { |
| 4440 | bool HasInputChain = N->getOperand(Num: 0).getValueType() == MVT::Other; |
| 4441 | unsigned iid = N->getConstantOperandVal(Num: HasInputChain); |
| 4442 | if (iid < Intrinsic::num_intrinsics) |
| 4443 | Msg << "intrinsic %" << Intrinsic::getBaseName(id: (Intrinsic::ID)iid); |
| 4444 | else |
| 4445 | Msg << "unknown intrinsic #" << iid; |
| 4446 | } |
| 4447 | report_fatal_error(reason: Twine(msg)); |
| 4448 | } |
| 4449 | |