| 1 | //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This pass does misc. AMDGPU optimizations on IR before instruction |
| 11 | /// selection. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AMDGPU.h" |
| 16 | #include "AMDGPUTargetMachine.h" |
| 17 | #include "SIModeRegisterDefaults.h" |
| 18 | #include "llvm/Analysis/AssumptionCache.h" |
| 19 | #include "llvm/Analysis/ConstantFolding.h" |
| 20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 21 | #include "llvm/Analysis/UniformityAnalysis.h" |
| 22 | #include "llvm/Analysis/ValueTracking.h" |
| 23 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 24 | #include "llvm/IR/Dominators.h" |
| 25 | #include "llvm/IR/IRBuilder.h" |
| 26 | #include "llvm/IR/InstVisitor.h" |
| 27 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 28 | #include "llvm/IR/PatternMatch.h" |
| 29 | #include "llvm/Pass.h" |
| 30 | #include "llvm/Support/KnownBits.h" |
| 31 | #include "llvm/Support/KnownFPClass.h" |
| 32 | #include "llvm/Transforms/Utils/IntegerDivision.h" |
| 33 | #include "llvm/Transforms/Utils/Local.h" |
| 34 | |
| 35 | #define DEBUG_TYPE "amdgpu-codegenprepare" |
| 36 | |
| 37 | using namespace llvm; |
| 38 | using namespace llvm::PatternMatch; |
| 39 | |
| 40 | namespace { |
| 41 | |
| 42 | static cl::opt<bool> WidenLoads( |
| 43 | "amdgpu-codegenprepare-widen-constant-loads" , |
| 44 | cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare" ), |
| 45 | cl::ReallyHidden, |
| 46 | cl::init(Val: false)); |
| 47 | |
| 48 | static cl::opt<bool> Widen16BitOps( |
| 49 | "amdgpu-codegenprepare-widen-16-bit-ops" , |
| 50 | cl::desc( |
| 51 | "Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare" ), |
| 52 | cl::ReallyHidden, cl::init(Val: false)); |
| 53 | |
| 54 | static cl::opt<bool> |
| 55 | BreakLargePHIs("amdgpu-codegenprepare-break-large-phis" , |
| 56 | cl::desc("Break large PHI nodes for DAGISel" ), |
| 57 | cl::ReallyHidden, cl::init(Val: true)); |
| 58 | |
| 59 | static cl::opt<bool> |
| 60 | ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis" , |
| 61 | cl::desc("For testing purposes, always break large " |
| 62 | "PHIs even if it isn't profitable." ), |
| 63 | cl::ReallyHidden, cl::init(Val: false)); |
| 64 | |
| 65 | static cl::opt<unsigned> BreakLargePHIsThreshold( |
| 66 | "amdgpu-codegenprepare-break-large-phis-threshold" , |
| 67 | cl::desc("Minimum type size in bits for breaking large PHI nodes" ), |
| 68 | cl::ReallyHidden, cl::init(Val: 32)); |
| 69 | |
| 70 | static cl::opt<bool> UseMul24Intrin( |
| 71 | "amdgpu-codegenprepare-mul24" , |
| 72 | cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare" ), |
| 73 | cl::ReallyHidden, |
| 74 | cl::init(Val: true)); |
| 75 | |
| 76 | // Legalize 64-bit division by using the generic IR expansion. |
| 77 | static cl::opt<bool> ExpandDiv64InIR( |
| 78 | "amdgpu-codegenprepare-expand-div64" , |
| 79 | cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare" ), |
| 80 | cl::ReallyHidden, |
| 81 | cl::init(Val: false)); |
| 82 | |
| 83 | // Leave all division operations as they are. This supersedes ExpandDiv64InIR |
| 84 | // and is used for testing the legalizer. |
| 85 | static cl::opt<bool> DisableIDivExpand( |
| 86 | "amdgpu-codegenprepare-disable-idiv-expansion" , |
| 87 | cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare" ), |
| 88 | cl::ReallyHidden, |
| 89 | cl::init(Val: false)); |
| 90 | |
| 91 | // Disable processing of fdiv so we can better test the backend implementations. |
| 92 | static cl::opt<bool> DisableFDivExpand( |
| 93 | "amdgpu-codegenprepare-disable-fdiv-expansion" , |
| 94 | cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare" ), |
| 95 | cl::ReallyHidden, |
| 96 | cl::init(Val: false)); |
| 97 | |
| 98 | static bool hasUnsafeFPMath(const Function &F) { |
| 99 | return F.getFnAttribute(Kind: "unsafe-fp-math" ).getValueAsBool(); |
| 100 | } |
| 101 | |
| 102 | class AMDGPUCodeGenPrepareImpl |
| 103 | : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { |
| 104 | public: |
| 105 | Function &F; |
| 106 | const GCNSubtarget &ST; |
| 107 | const AMDGPUTargetMachine &TM; |
| 108 | const TargetLibraryInfo *TLI; |
| 109 | AssumptionCache *AC; |
| 110 | const DominatorTree *DT; |
| 111 | const UniformityInfo &UA; |
| 112 | const DataLayout &DL; |
| 113 | const bool HasUnsafeFPMath; |
| 114 | const bool HasFP32DenormalFlush; |
| 115 | bool FlowChanged = false; |
| 116 | mutable Function *SqrtF32 = nullptr; |
| 117 | mutable Function *LdexpF32 = nullptr; |
| 118 | |
| 119 | DenseMap<const PHINode *, bool> BreakPhiNodesCache; |
| 120 | |
| 121 | AMDGPUCodeGenPrepareImpl(Function &F, const AMDGPUTargetMachine &TM, |
| 122 | const TargetLibraryInfo *TLI, AssumptionCache *AC, |
| 123 | const DominatorTree *DT, const UniformityInfo &UA) |
| 124 | : F(F), ST(TM.getSubtarget<GCNSubtarget>(F)), TM(TM), TLI(TLI), AC(AC), |
| 125 | DT(DT), UA(UA), DL(F.getDataLayout()), |
| 126 | HasUnsafeFPMath(hasUnsafeFPMath(F)), |
| 127 | HasFP32DenormalFlush(SIModeRegisterDefaults(F, ST).FP32Denormals == |
| 128 | DenormalMode::getPreserveSign()) {} |
| 129 | |
| 130 | Function *getSqrtF32() const { |
| 131 | if (SqrtF32) |
| 132 | return SqrtF32; |
| 133 | |
| 134 | LLVMContext &Ctx = F.getContext(); |
| 135 | SqrtF32 = Intrinsic::getOrInsertDeclaration( |
| 136 | M: F.getParent(), id: Intrinsic::amdgcn_sqrt, Tys: {Type::getFloatTy(C&: Ctx)}); |
| 137 | return SqrtF32; |
| 138 | } |
| 139 | |
| 140 | Function *getLdexpF32() const { |
| 141 | if (LdexpF32) |
| 142 | return LdexpF32; |
| 143 | |
| 144 | LLVMContext &Ctx = F.getContext(); |
| 145 | LdexpF32 = Intrinsic::getOrInsertDeclaration( |
| 146 | M: F.getParent(), id: Intrinsic::ldexp, |
| 147 | Tys: {Type::getFloatTy(C&: Ctx), Type::getInt32Ty(C&: Ctx)}); |
| 148 | return LdexpF32; |
| 149 | } |
| 150 | |
| 151 | bool canBreakPHINode(const PHINode &I); |
| 152 | |
| 153 | /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to |
| 154 | /// binary operation \p V. |
| 155 | /// |
| 156 | /// \returns Binary operation \p V. |
| 157 | /// \returns \p T's base element bit width. |
| 158 | unsigned getBaseElementBitWidth(const Type *T) const; |
| 159 | |
| 160 | /// \returns Equivalent 32 bit integer type for given type \p T. For example, |
| 161 | /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> |
| 162 | /// is returned. |
| 163 | Type *getI32Ty(IRBuilder<> &B, const Type *T) const; |
| 164 | |
| 165 | /// \returns True if binary operation \p I is a signed binary operation, false |
| 166 | /// otherwise. |
| 167 | bool isSigned(const BinaryOperator &I) const; |
| 168 | |
| 169 | /// \returns True if the condition of 'select' operation \p I comes from a |
| 170 | /// signed 'icmp' operation, false otherwise. |
| 171 | bool isSigned(const SelectInst &I) const; |
| 172 | |
| 173 | /// \returns True if type \p T needs to be promoted to 32 bit integer type, |
| 174 | /// false otherwise. |
| 175 | bool needsPromotionToI32(const Type *T) const; |
| 176 | |
| 177 | /// Return true if \p T is a legal scalar floating point type. |
| 178 | bool isLegalFloatingTy(const Type *T) const; |
| 179 | |
| 180 | /// Wrapper to pass all the arguments to computeKnownFPClass |
| 181 | KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, |
| 182 | const Instruction *CtxI) const { |
| 183 | return llvm::computeKnownFPClass(V, DL, InterestedClasses: Interested, TLI, AC, CxtI: CtxI, DT); |
| 184 | } |
| 185 | |
| 186 | bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { |
| 187 | return HasFP32DenormalFlush || |
| 188 | computeKnownFPClass(V, Interested: fcSubnormal, CtxI).isKnownNeverSubnormal(); |
| 189 | } |
| 190 | |
| 191 | /// Promotes uniform binary operation \p I to equivalent 32 bit binary |
| 192 | /// operation. |
| 193 | /// |
| 194 | /// \details \p I's base element bit width must be greater than 1 and less |
| 195 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
| 196 | /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and |
| 197 | /// truncating the result of 32 bit binary operation back to \p I's original |
| 198 | /// type. Division operation is not promoted. |
| 199 | /// |
| 200 | /// \returns True if \p I is promoted to equivalent 32 bit binary operation, |
| 201 | /// false otherwise. |
| 202 | bool promoteUniformOpToI32(BinaryOperator &I) const; |
| 203 | |
| 204 | /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. |
| 205 | /// |
| 206 | /// \details \p I's base element bit width must be greater than 1 and less |
| 207 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
| 208 | /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. |
| 209 | /// |
| 210 | /// \returns True. |
| 211 | bool promoteUniformOpToI32(ICmpInst &I) const; |
| 212 | |
| 213 | /// Promotes uniform 'select' operation \p I to 32 bit 'select' |
| 214 | /// operation. |
| 215 | /// |
| 216 | /// \details \p I's base element bit width must be greater than 1 and less |
| 217 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
| 218 | /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the |
| 219 | /// result of 32 bit 'select' operation back to \p I's original type. |
| 220 | /// |
| 221 | /// \returns True. |
| 222 | bool promoteUniformOpToI32(SelectInst &I) const; |
| 223 | |
| 224 | /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' |
| 225 | /// intrinsic. |
| 226 | /// |
| 227 | /// \details \p I's base element bit width must be greater than 1 and less |
| 228 | /// than or equal 16. Promotion is done by zero extending the operand to 32 |
| 229 | /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the |
| 230 | /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the |
| 231 | /// shift amount is 32 minus \p I's base element bit width), and truncating |
| 232 | /// the result of the shift operation back to \p I's original type. |
| 233 | /// |
| 234 | /// \returns True. |
| 235 | bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; |
| 236 | |
| 237 | /// \returns The minimum number of bits needed to store the value of \Op as an |
| 238 | /// unsigned integer. Truncating to this size and then zero-extending to |
| 239 | /// the original will not change the value. |
| 240 | unsigned numBitsUnsigned(Value *Op) const; |
| 241 | |
| 242 | /// \returns The minimum number of bits needed to store the value of \Op as a |
| 243 | /// signed integer. Truncating to this size and then sign-extending to |
| 244 | /// the original size will not change the value. |
| 245 | unsigned numBitsSigned(Value *Op) const; |
| 246 | |
| 247 | /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. |
| 248 | /// SelectionDAG has an issue where an and asserting the bits are known |
| 249 | bool replaceMulWithMul24(BinaryOperator &I) const; |
| 250 | |
| 251 | /// Perform same function as equivalently named function in DAGCombiner. Since |
| 252 | /// we expand some divisions here, we need to perform this before obscuring. |
| 253 | bool foldBinOpIntoSelect(BinaryOperator &I) const; |
| 254 | |
| 255 | bool divHasSpecialOptimization(BinaryOperator &I, |
| 256 | Value *Num, Value *Den) const; |
| 257 | unsigned getDivNumBits(BinaryOperator &I, Value *Num, Value *Den, |
| 258 | unsigned MaxDivBits, bool Signed) const; |
| 259 | |
| 260 | /// Expands 24 bit div or rem. |
| 261 | Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, |
| 262 | Value *Num, Value *Den, |
| 263 | bool IsDiv, bool IsSigned) const; |
| 264 | |
| 265 | Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, |
| 266 | Value *Num, Value *Den, unsigned NumBits, |
| 267 | bool IsDiv, bool IsSigned) const; |
| 268 | |
| 269 | /// Expands 32 bit div or rem. |
| 270 | Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, |
| 271 | Value *Num, Value *Den) const; |
| 272 | |
| 273 | Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, |
| 274 | Value *Num, Value *Den) const; |
| 275 | void expandDivRem64(BinaryOperator &I) const; |
| 276 | |
| 277 | /// Widen a scalar load. |
| 278 | /// |
| 279 | /// \details \p Widen scalar load for uniform, small type loads from constant |
| 280 | // memory / to a full 32-bits and then truncate the input to allow a scalar |
| 281 | // load instead of a vector load. |
| 282 | // |
| 283 | /// \returns True. |
| 284 | |
| 285 | bool canWidenScalarExtLoad(LoadInst &I) const; |
| 286 | |
| 287 | Value *matchFractPat(IntrinsicInst &I); |
| 288 | Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); |
| 289 | |
| 290 | bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, |
| 291 | FastMathFlags SqrtFMF) const; |
| 292 | |
| 293 | Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, |
| 294 | FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
| 295 | const Instruction *CtxI) const; |
| 296 | |
| 297 | Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, |
| 298 | FastMathFlags FMF, const Instruction *CtxI) const; |
| 299 | Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, |
| 300 | float ReqdAccuracy) const; |
| 301 | |
| 302 | Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, |
| 303 | FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
| 304 | Value *RsqOp, const Instruction *FDiv, |
| 305 | float ReqdAccuracy) const; |
| 306 | |
| 307 | std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, |
| 308 | Value *Src) const; |
| 309 | |
| 310 | Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
| 311 | bool IsNegative) const; |
| 312 | Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, |
| 313 | FastMathFlags FMF) const; |
| 314 | Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, |
| 315 | FastMathFlags FMF) const; |
| 316 | |
| 317 | public: |
| 318 | bool visitFDiv(BinaryOperator &I); |
| 319 | |
| 320 | bool visitInstruction(Instruction &I) { return false; } |
| 321 | bool visitBinaryOperator(BinaryOperator &I); |
| 322 | bool visitLoadInst(LoadInst &I); |
| 323 | bool visitICmpInst(ICmpInst &I); |
| 324 | bool visitSelectInst(SelectInst &I); |
| 325 | bool visitPHINode(PHINode &I); |
| 326 | bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
| 327 | |
| 328 | bool visitIntrinsicInst(IntrinsicInst &I); |
| 329 | bool visitBitreverseIntrinsicInst(IntrinsicInst &I); |
| 330 | bool visitFMinLike(IntrinsicInst &I); |
| 331 | bool visitSqrt(IntrinsicInst &I); |
| 332 | bool run(); |
| 333 | }; |
| 334 | |
| 335 | class AMDGPUCodeGenPrepare : public FunctionPass { |
| 336 | public: |
| 337 | static char ID; |
| 338 | AMDGPUCodeGenPrepare() : FunctionPass(ID) {} |
| 339 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 340 | AU.addRequired<AssumptionCacheTracker>(); |
| 341 | AU.addRequired<UniformityInfoWrapperPass>(); |
| 342 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 343 | |
| 344 | // FIXME: Division expansion needs to preserve the dominator tree. |
| 345 | if (!ExpandDiv64InIR) |
| 346 | AU.setPreservesAll(); |
| 347 | } |
| 348 | bool runOnFunction(Function &F) override; |
| 349 | StringRef getPassName() const override { return "AMDGPU IR optimizations" ; } |
| 350 | }; |
| 351 | |
| 352 | } // end anonymous namespace |
| 353 | |
| 354 | bool AMDGPUCodeGenPrepareImpl::run() { |
| 355 | BreakPhiNodesCache.clear(); |
| 356 | bool MadeChange = false; |
| 357 | |
| 358 | Function::iterator NextBB; |
| 359 | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { |
| 360 | BasicBlock *BB = &*FI; |
| 361 | NextBB = std::next(x: FI); |
| 362 | |
| 363 | BasicBlock::iterator Next; |
| 364 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; |
| 365 | I = Next) { |
| 366 | Next = std::next(x: I); |
| 367 | |
| 368 | MadeChange |= visit(I&: *I); |
| 369 | |
| 370 | if (Next != E) { // Control flow changed |
| 371 | BasicBlock *NextInstBB = Next->getParent(); |
| 372 | if (NextInstBB != BB) { |
| 373 | BB = NextInstBB; |
| 374 | E = BB->end(); |
| 375 | FE = F.end(); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | } |
| 380 | return MadeChange; |
| 381 | } |
| 382 | |
| 383 | unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { |
| 384 | assert(needsPromotionToI32(T) && "T does not need promotion to i32" ); |
| 385 | |
| 386 | if (T->isIntegerTy()) |
| 387 | return T->getIntegerBitWidth(); |
| 388 | return cast<VectorType>(Val: T)->getElementType()->getIntegerBitWidth(); |
| 389 | } |
| 390 | |
| 391 | Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { |
| 392 | assert(needsPromotionToI32(T) && "T does not need promotion to i32" ); |
| 393 | |
| 394 | if (T->isIntegerTy()) |
| 395 | return B.getInt32Ty(); |
| 396 | return FixedVectorType::get(ElementType: B.getInt32Ty(), FVTy: cast<FixedVectorType>(Val: T)); |
| 397 | } |
| 398 | |
| 399 | bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { |
| 400 | return I.getOpcode() == Instruction::AShr || |
| 401 | I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; |
| 402 | } |
| 403 | |
| 404 | bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { |
| 405 | return isa<ICmpInst>(Val: I.getOperand(i_nocapture: 0)) && |
| 406 | cast<ICmpInst>(Val: I.getOperand(i_nocapture: 0))->isSigned(); |
| 407 | } |
| 408 | |
| 409 | bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { |
| 410 | if (!Widen16BitOps) |
| 411 | return false; |
| 412 | |
| 413 | const IntegerType *IntTy = dyn_cast<IntegerType>(Val: T); |
| 414 | if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) |
| 415 | return true; |
| 416 | |
| 417 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) { |
| 418 | // TODO: The set of packed operations is more limited, so may want to |
| 419 | // promote some anyway. |
| 420 | if (ST.hasVOP3PInsts()) |
| 421 | return false; |
| 422 | |
| 423 | return needsPromotionToI32(T: VT->getElementType()); |
| 424 | } |
| 425 | |
| 426 | return false; |
| 427 | } |
| 428 | |
| 429 | bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { |
| 430 | return Ty->isFloatTy() || Ty->isDoubleTy() || |
| 431 | (Ty->isHalfTy() && ST.has16BitInsts()); |
| 432 | } |
| 433 | |
| 434 | // Return true if the op promoted to i32 should have nsw set. |
| 435 | static bool promotedOpIsNSW(const Instruction &I) { |
| 436 | switch (I.getOpcode()) { |
| 437 | case Instruction::Shl: |
| 438 | case Instruction::Add: |
| 439 | case Instruction::Sub: |
| 440 | return true; |
| 441 | case Instruction::Mul: |
| 442 | return I.hasNoUnsignedWrap(); |
| 443 | default: |
| 444 | return false; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | // Return true if the op promoted to i32 should have nuw set. |
| 449 | static bool promotedOpIsNUW(const Instruction &I) { |
| 450 | switch (I.getOpcode()) { |
| 451 | case Instruction::Shl: |
| 452 | case Instruction::Add: |
| 453 | case Instruction::Mul: |
| 454 | return true; |
| 455 | case Instruction::Sub: |
| 456 | return I.hasNoUnsignedWrap(); |
| 457 | default: |
| 458 | return false; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { |
| 463 | Type *Ty = I.getType(); |
| 464 | int TySize = DL.getTypeSizeInBits(Ty); |
| 465 | Align Alignment = DL.getValueOrABITypeAlignment(Alignment: I.getAlign(), Ty); |
| 466 | |
| 467 | return I.isSimple() && TySize < 32 && Alignment >= 4 && UA.isUniform(I: &I); |
| 468 | } |
| 469 | |
| 470 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { |
| 471 | assert(needsPromotionToI32(I.getType()) && |
| 472 | "I does not need promotion to i32" ); |
| 473 | |
| 474 | if (I.getOpcode() == Instruction::SDiv || |
| 475 | I.getOpcode() == Instruction::UDiv || |
| 476 | I.getOpcode() == Instruction::SRem || |
| 477 | I.getOpcode() == Instruction::URem) |
| 478 | return false; |
| 479 | |
| 480 | IRBuilder<> Builder(&I); |
| 481 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 482 | |
| 483 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
| 484 | Value *ExtOp0 = nullptr; |
| 485 | Value *ExtOp1 = nullptr; |
| 486 | Value *ExtRes = nullptr; |
| 487 | Value *TruncRes = nullptr; |
| 488 | |
| 489 | if (isSigned(I)) { |
| 490 | ExtOp0 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
| 491 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 492 | } else { |
| 493 | ExtOp0 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
| 494 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 495 | } |
| 496 | |
| 497 | ExtRes = Builder.CreateBinOp(Opc: I.getOpcode(), LHS: ExtOp0, RHS: ExtOp1); |
| 498 | if (Instruction *Inst = dyn_cast<Instruction>(Val: ExtRes)) { |
| 499 | if (promotedOpIsNSW(I: cast<Instruction>(Val&: I))) |
| 500 | Inst->setHasNoSignedWrap(); |
| 501 | |
| 502 | if (promotedOpIsNUW(I: cast<Instruction>(Val&: I))) |
| 503 | Inst->setHasNoUnsignedWrap(); |
| 504 | |
| 505 | if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Val: &I)) |
| 506 | Inst->setIsExact(ExactOp->isExact()); |
| 507 | } |
| 508 | |
| 509 | TruncRes = Builder.CreateTrunc(V: ExtRes, DestTy: I.getType()); |
| 510 | |
| 511 | I.replaceAllUsesWith(V: TruncRes); |
| 512 | I.eraseFromParent(); |
| 513 | |
| 514 | return true; |
| 515 | } |
| 516 | |
| 517 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { |
| 518 | assert(needsPromotionToI32(I.getOperand(0)->getType()) && |
| 519 | "I does not need promotion to i32" ); |
| 520 | |
| 521 | IRBuilder<> Builder(&I); |
| 522 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 523 | |
| 524 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getOperand(i_nocapture: 0)->getType()); |
| 525 | Value *ExtOp0 = nullptr; |
| 526 | Value *ExtOp1 = nullptr; |
| 527 | Value *NewICmp = nullptr; |
| 528 | |
| 529 | if (I.isSigned()) { |
| 530 | ExtOp0 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
| 531 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 532 | } else { |
| 533 | ExtOp0 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
| 534 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 535 | } |
| 536 | NewICmp = Builder.CreateICmp(P: I.getPredicate(), LHS: ExtOp0, RHS: ExtOp1); |
| 537 | |
| 538 | I.replaceAllUsesWith(V: NewICmp); |
| 539 | I.eraseFromParent(); |
| 540 | |
| 541 | return true; |
| 542 | } |
| 543 | |
| 544 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { |
| 545 | assert(needsPromotionToI32(I.getType()) && |
| 546 | "I does not need promotion to i32" ); |
| 547 | |
| 548 | IRBuilder<> Builder(&I); |
| 549 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 550 | |
| 551 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
| 552 | Value *ExtOp1 = nullptr; |
| 553 | Value *ExtOp2 = nullptr; |
| 554 | Value *ExtRes = nullptr; |
| 555 | Value *TruncRes = nullptr; |
| 556 | |
| 557 | if (isSigned(I)) { |
| 558 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 559 | ExtOp2 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 2), DestTy: I32Ty); |
| 560 | } else { |
| 561 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
| 562 | ExtOp2 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 2), DestTy: I32Ty); |
| 563 | } |
| 564 | ExtRes = Builder.CreateSelect(C: I.getOperand(i_nocapture: 0), True: ExtOp1, False: ExtOp2); |
| 565 | TruncRes = Builder.CreateTrunc(V: ExtRes, DestTy: I.getType()); |
| 566 | |
| 567 | I.replaceAllUsesWith(V: TruncRes); |
| 568 | I.eraseFromParent(); |
| 569 | |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( |
| 574 | IntrinsicInst &I) const { |
| 575 | assert(I.getIntrinsicID() == Intrinsic::bitreverse && |
| 576 | "I must be bitreverse intrinsic" ); |
| 577 | assert(needsPromotionToI32(I.getType()) && |
| 578 | "I does not need promotion to i32" ); |
| 579 | |
| 580 | IRBuilder<> Builder(&I); |
| 581 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 582 | |
| 583 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
| 584 | Value *ExtOp = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
| 585 | Value *ExtRes = |
| 586 | Builder.CreateIntrinsic(ID: Intrinsic::bitreverse, Types: {I32Ty}, Args: {ExtOp}); |
| 587 | Value *LShrOp = |
| 588 | Builder.CreateLShr(LHS: ExtRes, RHS: 32 - getBaseElementBitWidth(T: I.getType())); |
| 589 | Value *TruncRes = |
| 590 | Builder.CreateTrunc(V: LShrOp, DestTy: I.getType()); |
| 591 | |
| 592 | I.replaceAllUsesWith(V: TruncRes); |
| 593 | I.eraseFromParent(); |
| 594 | |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { |
| 599 | return computeKnownBits(V: Op, DL, AC).countMaxActiveBits(); |
| 600 | } |
| 601 | |
| 602 | unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { |
| 603 | return ComputeMaxSignificantBits(Op, DL, AC); |
| 604 | } |
| 605 | |
| 606 | static void (IRBuilder<> &Builder, |
| 607 | SmallVectorImpl<Value *> &Values, Value *V) { |
| 608 | auto *VT = dyn_cast<FixedVectorType>(Val: V->getType()); |
| 609 | if (!VT) { |
| 610 | Values.push_back(Elt: V); |
| 611 | return; |
| 612 | } |
| 613 | |
| 614 | for (int I = 0, E = VT->getNumElements(); I != E; ++I) |
| 615 | Values.push_back(Elt: Builder.CreateExtractElement(Vec: V, Idx: I)); |
| 616 | } |
| 617 | |
| 618 | static Value *insertValues(IRBuilder<> &Builder, |
| 619 | Type *Ty, |
| 620 | SmallVectorImpl<Value *> &Values) { |
| 621 | if (!Ty->isVectorTy()) { |
| 622 | assert(Values.size() == 1); |
| 623 | return Values[0]; |
| 624 | } |
| 625 | |
| 626 | Value *NewVal = PoisonValue::get(T: Ty); |
| 627 | for (int I = 0, E = Values.size(); I != E; ++I) |
| 628 | NewVal = Builder.CreateInsertElement(Vec: NewVal, NewElt: Values[I], Idx: I); |
| 629 | |
| 630 | return NewVal; |
| 631 | } |
| 632 | |
| 633 | bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { |
| 634 | if (I.getOpcode() != Instruction::Mul) |
| 635 | return false; |
| 636 | |
| 637 | Type *Ty = I.getType(); |
| 638 | unsigned Size = Ty->getScalarSizeInBits(); |
| 639 | if (Size <= 16 && ST.has16BitInsts()) |
| 640 | return false; |
| 641 | |
| 642 | // Prefer scalar if this could be s_mul_i32 |
| 643 | if (UA.isUniform(I: &I)) |
| 644 | return false; |
| 645 | |
| 646 | Value *LHS = I.getOperand(i_nocapture: 0); |
| 647 | Value *RHS = I.getOperand(i_nocapture: 1); |
| 648 | IRBuilder<> Builder(&I); |
| 649 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 650 | |
| 651 | unsigned LHSBits = 0, RHSBits = 0; |
| 652 | bool IsSigned = false; |
| 653 | |
| 654 | if (ST.hasMulU24() && (LHSBits = numBitsUnsigned(Op: LHS)) <= 24 && |
| 655 | (RHSBits = numBitsUnsigned(Op: RHS)) <= 24) { |
| 656 | IsSigned = false; |
| 657 | |
| 658 | } else if (ST.hasMulI24() && (LHSBits = numBitsSigned(Op: LHS)) <= 24 && |
| 659 | (RHSBits = numBitsSigned(Op: RHS)) <= 24) { |
| 660 | IsSigned = true; |
| 661 | |
| 662 | } else |
| 663 | return false; |
| 664 | |
| 665 | SmallVector<Value *, 4> LHSVals; |
| 666 | SmallVector<Value *, 4> RHSVals; |
| 667 | SmallVector<Value *, 4> ResultVals; |
| 668 | extractValues(Builder, Values&: LHSVals, V: LHS); |
| 669 | extractValues(Builder, Values&: RHSVals, V: RHS); |
| 670 | |
| 671 | IntegerType *I32Ty = Builder.getInt32Ty(); |
| 672 | IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; |
| 673 | Type *DstTy = LHSVals[0]->getType(); |
| 674 | |
| 675 | for (int I = 0, E = LHSVals.size(); I != E; ++I) { |
| 676 | Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(V: LHSVals[I], DestTy: I32Ty) |
| 677 | : Builder.CreateZExtOrTrunc(V: LHSVals[I], DestTy: I32Ty); |
| 678 | Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(V: RHSVals[I], DestTy: I32Ty) |
| 679 | : Builder.CreateZExtOrTrunc(V: RHSVals[I], DestTy: I32Ty); |
| 680 | Intrinsic::ID ID = |
| 681 | IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; |
| 682 | Value *Result = Builder.CreateIntrinsic(ID, Types: {IntrinTy}, Args: {LHS, RHS}); |
| 683 | Result = IsSigned ? Builder.CreateSExtOrTrunc(V: Result, DestTy: DstTy) |
| 684 | : Builder.CreateZExtOrTrunc(V: Result, DestTy: DstTy); |
| 685 | ResultVals.push_back(Elt: Result); |
| 686 | } |
| 687 | |
| 688 | Value *NewVal = insertValues(Builder, Ty, Values&: ResultVals); |
| 689 | NewVal->takeName(V: &I); |
| 690 | I.replaceAllUsesWith(V: NewVal); |
| 691 | I.eraseFromParent(); |
| 692 | |
| 693 | return true; |
| 694 | } |
| 695 | |
| 696 | // Find a select instruction, which may have been casted. This is mostly to deal |
| 697 | // with cases where i16 selects were promoted here to i32. |
| 698 | static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { |
| 699 | Cast = nullptr; |
| 700 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: V)) |
| 701 | return Sel; |
| 702 | |
| 703 | if ((Cast = dyn_cast<CastInst>(Val: V))) { |
| 704 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: Cast->getOperand(i_nocapture: 0))) |
| 705 | return Sel; |
| 706 | } |
| 707 | |
| 708 | return nullptr; |
| 709 | } |
| 710 | |
| 711 | bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { |
| 712 | // Don't do this unless the old select is going away. We want to eliminate the |
| 713 | // binary operator, not replace a binop with a select. |
| 714 | int SelOpNo = 0; |
| 715 | |
| 716 | CastInst *CastOp; |
| 717 | |
| 718 | // TODO: Should probably try to handle some cases with multiple |
| 719 | // users. Duplicating the select may be profitable for division. |
| 720 | SelectInst *Sel = findSelectThroughCast(V: BO.getOperand(i_nocapture: 0), Cast&: CastOp); |
| 721 | if (!Sel || !Sel->hasOneUse()) { |
| 722 | SelOpNo = 1; |
| 723 | Sel = findSelectThroughCast(V: BO.getOperand(i_nocapture: 1), Cast&: CastOp); |
| 724 | } |
| 725 | |
| 726 | if (!Sel || !Sel->hasOneUse()) |
| 727 | return false; |
| 728 | |
| 729 | Constant *CT = dyn_cast<Constant>(Val: Sel->getTrueValue()); |
| 730 | Constant *CF = dyn_cast<Constant>(Val: Sel->getFalseValue()); |
| 731 | Constant *CBO = dyn_cast<Constant>(Val: BO.getOperand(i_nocapture: SelOpNo ^ 1)); |
| 732 | if (!CBO || !CT || !CF) |
| 733 | return false; |
| 734 | |
| 735 | if (CastOp) { |
| 736 | if (!CastOp->hasOneUse()) |
| 737 | return false; |
| 738 | CT = ConstantFoldCastOperand(Opcode: CastOp->getOpcode(), C: CT, DestTy: BO.getType(), DL); |
| 739 | CF = ConstantFoldCastOperand(Opcode: CastOp->getOpcode(), C: CF, DestTy: BO.getType(), DL); |
| 740 | } |
| 741 | |
| 742 | // TODO: Handle special 0/-1 cases DAG combine does, although we only really |
| 743 | // need to handle divisions here. |
| 744 | Constant *FoldedT = |
| 745 | SelOpNo ? ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CBO, RHS: CT, DL) |
| 746 | : ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CT, RHS: CBO, DL); |
| 747 | if (!FoldedT || isa<ConstantExpr>(Val: FoldedT)) |
| 748 | return false; |
| 749 | |
| 750 | Constant *FoldedF = |
| 751 | SelOpNo ? ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CBO, RHS: CF, DL) |
| 752 | : ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CF, RHS: CBO, DL); |
| 753 | if (!FoldedF || isa<ConstantExpr>(Val: FoldedF)) |
| 754 | return false; |
| 755 | |
| 756 | IRBuilder<> Builder(&BO); |
| 757 | Builder.SetCurrentDebugLocation(BO.getDebugLoc()); |
| 758 | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Val: &BO)) |
| 759 | Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
| 760 | |
| 761 | Value *NewSelect = Builder.CreateSelect(C: Sel->getCondition(), |
| 762 | True: FoldedT, False: FoldedF); |
| 763 | NewSelect->takeName(V: &BO); |
| 764 | BO.replaceAllUsesWith(V: NewSelect); |
| 765 | BO.eraseFromParent(); |
| 766 | if (CastOp) |
| 767 | CastOp->eraseFromParent(); |
| 768 | Sel->eraseFromParent(); |
| 769 | return true; |
| 770 | } |
| 771 | |
| 772 | std::pair<Value *, Value *> |
| 773 | AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, |
| 774 | Value *Src) const { |
| 775 | Type *Ty = Src->getType(); |
| 776 | Value *Frexp = Builder.CreateIntrinsic(ID: Intrinsic::frexp, |
| 777 | Types: {Ty, Builder.getInt32Ty()}, Args: Src); |
| 778 | Value *FrexpMant = Builder.CreateExtractValue(Agg: Frexp, Idxs: {0}); |
| 779 | |
| 780 | // Bypass the bug workaround for the exponent result since it doesn't matter. |
| 781 | // TODO: Does the bug workaround even really need to consider the exponent |
| 782 | // result? It's unspecified by the spec. |
| 783 | |
| 784 | Value *FrexpExp = |
| 785 | ST.hasFractBug() |
| 786 | ? Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_frexp_exp, |
| 787 | Types: {Builder.getInt32Ty(), Ty}, Args: Src) |
| 788 | : Builder.CreateExtractValue(Agg: Frexp, Idxs: {1}); |
| 789 | return {FrexpMant, FrexpExp}; |
| 790 | } |
| 791 | |
| 792 | /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. |
| 793 | Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, |
| 794 | Value *Src, |
| 795 | bool IsNegative) const { |
| 796 | // Same as for 1.0, but expand the sign out of the constant. |
| 797 | // -1.0 / x -> rcp (fneg x) |
| 798 | if (IsNegative) |
| 799 | Src = Builder.CreateFNeg(V: Src); |
| 800 | |
| 801 | // The rcp instruction doesn't support denormals, so scale the input |
| 802 | // out of the denormal range and convert at the end. |
| 803 | // |
| 804 | // Expand as 2^-n * (1.0 / (x * 2^n)) |
| 805 | |
| 806 | // TODO: Skip scaling if input is known never denormal and the input |
| 807 | // range won't underflow to denormal. The hard part is knowing the |
| 808 | // result. We need a range check, the result could be denormal for |
| 809 | // 0x1p+126 < den <= 0x1p+127. |
| 810 | auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); |
| 811 | Value *ScaleFactor = Builder.CreateNeg(V: FrexpExp); |
| 812 | Value *Rcp = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: FrexpMant); |
| 813 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Rcp, ScaleFactor}); |
| 814 | } |
| 815 | |
| 816 | /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. |
| 817 | Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, |
| 818 | Value *RHS, |
| 819 | FastMathFlags FMF) const { |
| 820 | // If we have have to work around the fract/frexp bug, we're worse off than |
| 821 | // using the fdiv.fast expansion. The full safe expansion is faster if we have |
| 822 | // fast FMA. |
| 823 | if (HasFP32DenormalFlush && ST.hasFractBug() && !ST.hasFastFMAF32() && |
| 824 | (!FMF.noNaNs() || !FMF.noInfs())) |
| 825 | return nullptr; |
| 826 | |
| 827 | // We're scaling the LHS to avoid a denormal input, and scale the denominator |
| 828 | // to avoid large values underflowing the result. |
| 829 | auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, Src: RHS); |
| 830 | |
| 831 | Value *Rcp = |
| 832 | Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: FrexpMantRHS); |
| 833 | |
| 834 | auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, Src: LHS); |
| 835 | Value *Mul = Builder.CreateFMul(L: FrexpMantLHS, R: Rcp); |
| 836 | |
| 837 | // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the |
| 838 | // result. |
| 839 | Value *ExpDiff = Builder.CreateSub(LHS: FrexpExpLHS, RHS: FrexpExpRHS); |
| 840 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Mul, ExpDiff}); |
| 841 | } |
| 842 | |
| 843 | /// Emit a sqrt that handles denormals and is accurate to 2ulp. |
| 844 | Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, |
| 845 | Value *Src, |
| 846 | FastMathFlags FMF) const { |
| 847 | Type *Ty = Src->getType(); |
| 848 | APFloat SmallestNormal = |
| 849 | APFloat::getSmallestNormalized(Sem: Ty->getFltSemantics()); |
| 850 | Value *NeedScale = |
| 851 | Builder.CreateFCmpOLT(LHS: Src, RHS: ConstantFP::get(Ty, V: SmallestNormal)); |
| 852 | |
| 853 | ConstantInt *Zero = Builder.getInt32(C: 0); |
| 854 | Value *InputScaleFactor = |
| 855 | Builder.CreateSelect(C: NeedScale, True: Builder.getInt32(C: 32), False: Zero); |
| 856 | |
| 857 | Value *Scaled = Builder.CreateCall(Callee: getLdexpF32(), Args: {Src, InputScaleFactor}); |
| 858 | |
| 859 | Value *Sqrt = Builder.CreateCall(Callee: getSqrtF32(), Args: Scaled); |
| 860 | |
| 861 | Value *OutputScaleFactor = |
| 862 | Builder.CreateSelect(C: NeedScale, True: Builder.getInt32(C: -16), False: Zero); |
| 863 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Sqrt, OutputScaleFactor}); |
| 864 | } |
| 865 | |
| 866 | /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. |
| 867 | static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
| 868 | bool IsNegative) { |
| 869 | // bool need_scale = x < 0x1p-126f; |
| 870 | // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; |
| 871 | // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; |
| 872 | // rsq(x * input_scale) * output_scale; |
| 873 | |
| 874 | Type *Ty = Src->getType(); |
| 875 | APFloat SmallestNormal = |
| 876 | APFloat::getSmallestNormalized(Sem: Ty->getFltSemantics()); |
| 877 | Value *NeedScale = |
| 878 | Builder.CreateFCmpOLT(LHS: Src, RHS: ConstantFP::get(Ty, V: SmallestNormal)); |
| 879 | Constant *One = ConstantFP::get(Ty, V: 1.0); |
| 880 | Constant *InputScale = ConstantFP::get(Ty, V: 0x1.0p+24); |
| 881 | Constant *OutputScale = |
| 882 | ConstantFP::get(Ty, V: IsNegative ? -0x1.0p+12 : 0x1.0p+12); |
| 883 | |
| 884 | Value *InputScaleFactor = Builder.CreateSelect(C: NeedScale, True: InputScale, False: One); |
| 885 | |
| 886 | Value *ScaledInput = Builder.CreateFMul(L: Src, R: InputScaleFactor); |
| 887 | Value *Rsq = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rsq, V: ScaledInput); |
| 888 | Value *OutputScaleFactor = Builder.CreateSelect( |
| 889 | C: NeedScale, True: OutputScale, False: IsNegative ? ConstantFP::get(Ty, V: -1.0) : One); |
| 890 | |
| 891 | return Builder.CreateFMul(L: Rsq, R: OutputScaleFactor); |
| 892 | } |
| 893 | |
| 894 | bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, |
| 895 | FastMathFlags DivFMF, |
| 896 | FastMathFlags SqrtFMF) const { |
| 897 | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
| 898 | if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) |
| 899 | return false; |
| 900 | |
| 901 | // v_rsq_f32 gives 1ulp |
| 902 | return SqrtFMF.approxFunc() || HasUnsafeFPMath || |
| 903 | SqrtOp->getFPAccuracy() >= 1.0f; |
| 904 | } |
| 905 | |
| 906 | Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( |
| 907 | IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, |
| 908 | const FastMathFlags SqrtFMF, const Instruction *CtxI) const { |
| 909 | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
| 910 | assert(DivFMF.allowContract() && SqrtFMF.allowContract()); |
| 911 | |
| 912 | // rsq_f16 is accurate to 0.51 ulp. |
| 913 | // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
| 914 | // rsq_f64 is never accurate. |
| 915 | const ConstantFP *CLHS = dyn_cast<ConstantFP>(Val: Num); |
| 916 | if (!CLHS) |
| 917 | return nullptr; |
| 918 | |
| 919 | assert(Den->getType()->isFloatTy()); |
| 920 | |
| 921 | bool IsNegative = false; |
| 922 | |
| 923 | // TODO: Handle other numerator values with arcp. |
| 924 | if (CLHS->isExactlyValue(V: 1.0) || (IsNegative = CLHS->isExactlyValue(V: -1.0))) { |
| 925 | // Add in the sqrt flags. |
| 926 | IRBuilder<>::FastMathFlagGuard Guard(Builder); |
| 927 | Builder.setFastMathFlags(DivFMF | SqrtFMF); |
| 928 | |
| 929 | if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || |
| 930 | canIgnoreDenormalInput(V: Den, CtxI)) { |
| 931 | Value *Result = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rsq, V: Den); |
| 932 | // -1.0 / sqrt(x) -> fneg(rsq(x)) |
| 933 | return IsNegative ? Builder.CreateFNeg(V: Result) : Result; |
| 934 | } |
| 935 | |
| 936 | return emitRsqIEEE1ULP(Builder, Src: Den, IsNegative); |
| 937 | } |
| 938 | |
| 939 | return nullptr; |
| 940 | } |
| 941 | |
| 942 | // Optimize fdiv with rcp: |
| 943 | // |
| 944 | // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
| 945 | // allowed with unsafe-fp-math or afn. |
| 946 | // |
| 947 | // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 |
| 948 | Value * |
| 949 | AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, |
| 950 | Value *Den, FastMathFlags FMF, |
| 951 | const Instruction *CtxI) const { |
| 952 | // rcp_f16 is accurate to 0.51 ulp. |
| 953 | // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
| 954 | // rcp_f64 is never accurate. |
| 955 | assert(Den->getType()->isFloatTy()); |
| 956 | |
| 957 | if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Val: Num)) { |
| 958 | bool IsNegative = false; |
| 959 | if (CLHS->isExactlyValue(V: 1.0) || |
| 960 | (IsNegative = CLHS->isExactlyValue(V: -1.0))) { |
| 961 | Value *Src = Den; |
| 962 | |
| 963 | if (HasFP32DenormalFlush || FMF.approxFunc()) { |
| 964 | // -1.0 / x -> 1.0 / fneg(x) |
| 965 | if (IsNegative) |
| 966 | Src = Builder.CreateFNeg(V: Src); |
| 967 | |
| 968 | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to |
| 969 | // the CI documentation has a worst case error of 1 ulp. |
| 970 | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK |
| 971 | // to use it as long as we aren't trying to use denormals. |
| 972 | // |
| 973 | // v_rcp_f16 and v_rsq_f16 DO support denormals. |
| 974 | |
| 975 | // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't |
| 976 | // insert rsq intrinsic here. |
| 977 | |
| 978 | // 1.0 / x -> rcp(x) |
| 979 | return Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: Src); |
| 980 | } |
| 981 | |
| 982 | // TODO: If the input isn't denormal, and we know the input exponent isn't |
| 983 | // big enough to introduce a denormal we can avoid the scaling. |
| 984 | return emitRcpIEEE1ULP(Builder, Src, IsNegative); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | if (FMF.allowReciprocal()) { |
| 989 | // x / y -> x * (1.0 / y) |
| 990 | |
| 991 | // TODO: Could avoid denormal scaling and use raw rcp if we knew the output |
| 992 | // will never underflow. |
| 993 | if (HasFP32DenormalFlush || FMF.approxFunc()) { |
| 994 | Value *Recip = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: Den); |
| 995 | return Builder.CreateFMul(L: Num, R: Recip); |
| 996 | } |
| 997 | |
| 998 | Value *Recip = emitRcpIEEE1ULP(Builder, Src: Den, IsNegative: false); |
| 999 | return Builder.CreateFMul(L: Num, R: Recip); |
| 1000 | } |
| 1001 | |
| 1002 | return nullptr; |
| 1003 | } |
| 1004 | |
| 1005 | // optimize with fdiv.fast: |
| 1006 | // |
| 1007 | // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
| 1008 | // |
| 1009 | // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
| 1010 | // |
| 1011 | // NOTE: optimizeWithRcp should be tried first because rcp is the preference. |
| 1012 | Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( |
| 1013 | IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { |
| 1014 | // fdiv.fast can achieve 2.5 ULP accuracy. |
| 1015 | if (ReqdAccuracy < 2.5f) |
| 1016 | return nullptr; |
| 1017 | |
| 1018 | // Only have fdiv.fast for f32. |
| 1019 | assert(Den->getType()->isFloatTy()); |
| 1020 | |
| 1021 | bool NumIsOne = false; |
| 1022 | if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Val: Num)) { |
| 1023 | if (CNum->isExactlyValue(V: +1.0) || CNum->isExactlyValue(V: -1.0)) |
| 1024 | NumIsOne = true; |
| 1025 | } |
| 1026 | |
| 1027 | // fdiv does not support denormals. But 1.0/x is always fine to use it. |
| 1028 | // |
| 1029 | // TODO: This works for any value with a specific known exponent range, don't |
| 1030 | // just limit to constant 1. |
| 1031 | if (!HasFP32DenormalFlush && !NumIsOne) |
| 1032 | return nullptr; |
| 1033 | |
| 1034 | return Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_fdiv_fast, Args: {Num, Den}); |
| 1035 | } |
| 1036 | |
| 1037 | Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( |
| 1038 | IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, |
| 1039 | FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, |
| 1040 | float ReqdDivAccuracy) const { |
| 1041 | if (RsqOp) { |
| 1042 | Value *Rsq = |
| 1043 | optimizeWithRsq(Builder, Num, Den: RsqOp, DivFMF, SqrtFMF, CtxI: FDivInst); |
| 1044 | if (Rsq) |
| 1045 | return Rsq; |
| 1046 | } |
| 1047 | |
| 1048 | Value *Rcp = optimizeWithRcp(Builder, Num, Den, FMF: DivFMF, CtxI: FDivInst); |
| 1049 | if (Rcp) |
| 1050 | return Rcp; |
| 1051 | |
| 1052 | // In the basic case fdiv_fast has the same instruction count as the frexp div |
| 1053 | // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can |
| 1054 | // potentially be fused into a user. Also, materialization of the constants |
| 1055 | // can be reused for multiple instances. |
| 1056 | Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdAccuracy: ReqdDivAccuracy); |
| 1057 | if (FDivFast) |
| 1058 | return FDivFast; |
| 1059 | |
| 1060 | return emitFrexpDiv(Builder, LHS: Num, RHS: Den, FMF: DivFMF); |
| 1061 | } |
| 1062 | |
| 1063 | // Optimizations is performed based on fpmath, fast math flags as well as |
| 1064 | // denormals to optimize fdiv with either rcp or fdiv.fast. |
| 1065 | // |
| 1066 | // With rcp: |
| 1067 | // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
| 1068 | // allowed with unsafe-fp-math or afn. |
| 1069 | // |
| 1070 | // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. |
| 1071 | // |
| 1072 | // With fdiv.fast: |
| 1073 | // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
| 1074 | // |
| 1075 | // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
| 1076 | // |
| 1077 | // NOTE: rcp is the preference in cases that both are legal. |
| 1078 | bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { |
| 1079 | if (DisableFDivExpand) |
| 1080 | return false; |
| 1081 | |
| 1082 | Type *Ty = FDiv.getType()->getScalarType(); |
| 1083 | if (!Ty->isFloatTy()) |
| 1084 | return false; |
| 1085 | |
| 1086 | // The f64 rcp/rsq approximations are pretty inaccurate. We can do an |
| 1087 | // expansion around them in codegen. f16 is good enough to always use. |
| 1088 | |
| 1089 | const FPMathOperator *FPOp = cast<const FPMathOperator>(Val: &FDiv); |
| 1090 | const FastMathFlags DivFMF = FPOp->getFastMathFlags(); |
| 1091 | const float ReqdAccuracy = FPOp->getFPAccuracy(); |
| 1092 | |
| 1093 | FastMathFlags SqrtFMF; |
| 1094 | |
| 1095 | Value *Num = FDiv.getOperand(i_nocapture: 0); |
| 1096 | Value *Den = FDiv.getOperand(i_nocapture: 1); |
| 1097 | |
| 1098 | Value *RsqOp = nullptr; |
| 1099 | auto *DenII = dyn_cast<IntrinsicInst>(Val: Den); |
| 1100 | if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && |
| 1101 | DenII->hasOneUse()) { |
| 1102 | const auto *SqrtOp = cast<FPMathOperator>(Val: DenII); |
| 1103 | SqrtFMF = SqrtOp->getFastMathFlags(); |
| 1104 | if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) |
| 1105 | RsqOp = SqrtOp->getOperand(i: 0); |
| 1106 | } |
| 1107 | |
| 1108 | // Inaccurate rcp is allowed with unsafe-fp-math or afn. |
| 1109 | // |
| 1110 | // Defer to codegen to handle this. |
| 1111 | // |
| 1112 | // TODO: Decide on an interpretation for interactions between afn + arcp + |
| 1113 | // !fpmath, and make it consistent between here and codegen. For now, defer |
| 1114 | // expansion of afn to codegen. The current interpretation is so aggressive we |
| 1115 | // don't need any pre-consideration here when we have better information. A |
| 1116 | // more conservative interpretation could use handling here. |
| 1117 | const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); |
| 1118 | if (!RsqOp && AllowInaccurateRcp) |
| 1119 | return false; |
| 1120 | |
| 1121 | // Defer the correct implementations to codegen. |
| 1122 | if (ReqdAccuracy < 1.0f) |
| 1123 | return false; |
| 1124 | |
| 1125 | IRBuilder<> Builder(FDiv.getParent(), std::next(x: FDiv.getIterator())); |
| 1126 | Builder.setFastMathFlags(DivFMF); |
| 1127 | Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); |
| 1128 | |
| 1129 | SmallVector<Value *, 4> NumVals; |
| 1130 | SmallVector<Value *, 4> DenVals; |
| 1131 | SmallVector<Value *, 4> RsqDenVals; |
| 1132 | extractValues(Builder, Values&: NumVals, V: Num); |
| 1133 | extractValues(Builder, Values&: DenVals, V: Den); |
| 1134 | |
| 1135 | if (RsqOp) |
| 1136 | extractValues(Builder, Values&: RsqDenVals, V: RsqOp); |
| 1137 | |
| 1138 | SmallVector<Value *, 4> ResultVals(NumVals.size()); |
| 1139 | for (int I = 0, E = NumVals.size(); I != E; ++I) { |
| 1140 | Value *NumElt = NumVals[I]; |
| 1141 | Value *DenElt = DenVals[I]; |
| 1142 | Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; |
| 1143 | |
| 1144 | Value *NewElt = |
| 1145 | visitFDivElement(Builder, Num: NumElt, Den: DenElt, DivFMF, SqrtFMF, RsqOp: RsqDenElt, |
| 1146 | FDivInst: cast<Instruction>(Val: FPOp), ReqdDivAccuracy: ReqdAccuracy); |
| 1147 | if (!NewElt) { |
| 1148 | // Keep the original, but scalarized. |
| 1149 | |
| 1150 | // This has the unfortunate side effect of sometimes scalarizing when |
| 1151 | // we're not going to do anything. |
| 1152 | NewElt = Builder.CreateFDiv(L: NumElt, R: DenElt); |
| 1153 | if (auto *NewEltInst = dyn_cast<Instruction>(Val: NewElt)) |
| 1154 | NewEltInst->copyMetadata(SrcInst: FDiv); |
| 1155 | } |
| 1156 | |
| 1157 | ResultVals[I] = NewElt; |
| 1158 | } |
| 1159 | |
| 1160 | Value *NewVal = insertValues(Builder, Ty: FDiv.getType(), Values&: ResultVals); |
| 1161 | |
| 1162 | if (NewVal) { |
| 1163 | FDiv.replaceAllUsesWith(V: NewVal); |
| 1164 | NewVal->takeName(V: &FDiv); |
| 1165 | RecursivelyDeleteTriviallyDeadInstructions(V: &FDiv, TLI); |
| 1166 | } |
| 1167 | |
| 1168 | return true; |
| 1169 | } |
| 1170 | |
| 1171 | static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, |
| 1172 | Value *LHS, Value *RHS) { |
| 1173 | Type *I32Ty = Builder.getInt32Ty(); |
| 1174 | Type *I64Ty = Builder.getInt64Ty(); |
| 1175 | |
| 1176 | Value *LHS_EXT64 = Builder.CreateZExt(V: LHS, DestTy: I64Ty); |
| 1177 | Value *RHS_EXT64 = Builder.CreateZExt(V: RHS, DestTy: I64Ty); |
| 1178 | Value *MUL64 = Builder.CreateMul(LHS: LHS_EXT64, RHS: RHS_EXT64); |
| 1179 | Value *Lo = Builder.CreateTrunc(V: MUL64, DestTy: I32Ty); |
| 1180 | Value *Hi = Builder.CreateLShr(LHS: MUL64, RHS: Builder.getInt64(C: 32)); |
| 1181 | Hi = Builder.CreateTrunc(V: Hi, DestTy: I32Ty); |
| 1182 | return std::pair(Lo, Hi); |
| 1183 | } |
| 1184 | |
| 1185 | static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { |
| 1186 | return getMul64(Builder, LHS, RHS).second; |
| 1187 | } |
| 1188 | |
| 1189 | /// Figure out how many bits are really needed for this division. |
| 1190 | /// \p MaxDivBits is an optimization hint to bypass the second |
| 1191 | /// ComputeNumSignBits/computeKnownBits call if the first one is |
| 1192 | /// insufficient. |
| 1193 | unsigned AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, |
| 1194 | Value *Den, |
| 1195 | unsigned MaxDivBits, |
| 1196 | bool IsSigned) const { |
| 1197 | assert(Num->getType()->getScalarSizeInBits() == |
| 1198 | Den->getType()->getScalarSizeInBits()); |
| 1199 | unsigned SSBits = Num->getType()->getScalarSizeInBits(); |
| 1200 | if (IsSigned) { |
| 1201 | unsigned RHSSignBits = ComputeNumSignBits(Op: Den, DL, AC, CxtI: &I); |
| 1202 | // A sign bit needs to be reserved for shrinking. |
| 1203 | unsigned DivBits = SSBits - RHSSignBits + 1; |
| 1204 | if (DivBits > MaxDivBits) |
| 1205 | return SSBits; |
| 1206 | |
| 1207 | unsigned LHSSignBits = ComputeNumSignBits(Op: Num, DL, AC, CxtI: &I); |
| 1208 | |
| 1209 | unsigned SignBits = std::min(a: LHSSignBits, b: RHSSignBits); |
| 1210 | DivBits = SSBits - SignBits + 1; |
| 1211 | return DivBits; |
| 1212 | } |
| 1213 | |
| 1214 | // All bits are used for unsigned division for Num or Den in range |
| 1215 | // (SignedMax, UnsignedMax]. |
| 1216 | KnownBits Known = computeKnownBits(V: Den, DL, AC, CxtI: &I); |
| 1217 | if (Known.isNegative() || !Known.isNonNegative()) |
| 1218 | return SSBits; |
| 1219 | unsigned RHSSignBits = Known.countMinLeadingZeros(); |
| 1220 | unsigned DivBits = SSBits - RHSSignBits; |
| 1221 | if (DivBits > MaxDivBits) |
| 1222 | return SSBits; |
| 1223 | |
| 1224 | Known = computeKnownBits(V: Num, DL, AC, CxtI: &I); |
| 1225 | if (Known.isNegative() || !Known.isNonNegative()) |
| 1226 | return SSBits; |
| 1227 | unsigned LHSSignBits = Known.countMinLeadingZeros(); |
| 1228 | |
| 1229 | unsigned SignBits = std::min(a: LHSSignBits, b: RHSSignBits); |
| 1230 | DivBits = SSBits - SignBits; |
| 1231 | return DivBits; |
| 1232 | } |
| 1233 | |
| 1234 | // The fractional part of a float is enough to accurately represent up to |
| 1235 | // a 24-bit signed integer. |
| 1236 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, |
| 1237 | BinaryOperator &I, Value *Num, |
| 1238 | Value *Den, bool IsDiv, |
| 1239 | bool IsSigned) const { |
| 1240 | unsigned DivBits = getDivNumBits(I, Num, Den, MaxDivBits: 24, IsSigned); |
| 1241 | if (DivBits > 24) |
| 1242 | return nullptr; |
| 1243 | return expandDivRem24Impl(Builder, I, Num, Den, NumBits: DivBits, IsDiv, IsSigned); |
| 1244 | } |
| 1245 | |
| 1246 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( |
| 1247 | IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, |
| 1248 | unsigned DivBits, bool IsDiv, bool IsSigned) const { |
| 1249 | Type *I32Ty = Builder.getInt32Ty(); |
| 1250 | Num = Builder.CreateTrunc(V: Num, DestTy: I32Ty); |
| 1251 | Den = Builder.CreateTrunc(V: Den, DestTy: I32Ty); |
| 1252 | |
| 1253 | Type *F32Ty = Builder.getFloatTy(); |
| 1254 | ConstantInt *One = Builder.getInt32(C: 1); |
| 1255 | Value *JQ = One; |
| 1256 | |
| 1257 | if (IsSigned) { |
| 1258 | // char|short jq = ia ^ ib; |
| 1259 | JQ = Builder.CreateXor(LHS: Num, RHS: Den); |
| 1260 | |
| 1261 | // jq = jq >> (bitsize - 2) |
| 1262 | JQ = Builder.CreateAShr(LHS: JQ, RHS: Builder.getInt32(C: 30)); |
| 1263 | |
| 1264 | // jq = jq | 0x1 |
| 1265 | JQ = Builder.CreateOr(LHS: JQ, RHS: One); |
| 1266 | } |
| 1267 | |
| 1268 | // int ia = (int)LHS; |
| 1269 | Value *IA = Num; |
| 1270 | |
| 1271 | // int ib, (int)RHS; |
| 1272 | Value *IB = Den; |
| 1273 | |
| 1274 | // float fa = (float)ia; |
| 1275 | Value *FA = IsSigned ? Builder.CreateSIToFP(V: IA, DestTy: F32Ty) |
| 1276 | : Builder.CreateUIToFP(V: IA, DestTy: F32Ty); |
| 1277 | |
| 1278 | // float fb = (float)ib; |
| 1279 | Value *FB = IsSigned ? Builder.CreateSIToFP(V: IB,DestTy: F32Ty) |
| 1280 | : Builder.CreateUIToFP(V: IB,DestTy: F32Ty); |
| 1281 | |
| 1282 | Value *RCP = Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_rcp, |
| 1283 | Types: Builder.getFloatTy(), Args: {FB}); |
| 1284 | Value *FQM = Builder.CreateFMul(L: FA, R: RCP); |
| 1285 | |
| 1286 | // fq = trunc(fqm); |
| 1287 | CallInst *FQ = Builder.CreateUnaryIntrinsic(ID: Intrinsic::trunc, V: FQM); |
| 1288 | FQ->copyFastMathFlags(FMF: Builder.getFastMathFlags()); |
| 1289 | |
| 1290 | // float fqneg = -fq; |
| 1291 | Value *FQNeg = Builder.CreateFNeg(V: FQ); |
| 1292 | |
| 1293 | // float fr = mad(fqneg, fb, fa); |
| 1294 | auto FMAD = !ST.hasMadMacF32Insts() |
| 1295 | ? Intrinsic::fma |
| 1296 | : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; |
| 1297 | Value *FR = Builder.CreateIntrinsic(ID: FMAD, |
| 1298 | Types: {FQNeg->getType()}, Args: {FQNeg, FB, FA}, FMFSource: FQ); |
| 1299 | |
| 1300 | // int iq = (int)fq; |
| 1301 | Value *IQ = IsSigned ? Builder.CreateFPToSI(V: FQ, DestTy: I32Ty) |
| 1302 | : Builder.CreateFPToUI(V: FQ, DestTy: I32Ty); |
| 1303 | |
| 1304 | // fr = fabs(fr); |
| 1305 | FR = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: FR, FMFSource: FQ); |
| 1306 | |
| 1307 | // fb = fabs(fb); |
| 1308 | FB = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: FB, FMFSource: FQ); |
| 1309 | |
| 1310 | // int cv = fr >= fb; |
| 1311 | Value *CV = Builder.CreateFCmpOGE(LHS: FR, RHS: FB); |
| 1312 | |
| 1313 | // jq = (cv ? jq : 0); |
| 1314 | JQ = Builder.CreateSelect(C: CV, True: JQ, False: Builder.getInt32(C: 0)); |
| 1315 | |
| 1316 | // dst = iq + jq; |
| 1317 | Value *Div = Builder.CreateAdd(LHS: IQ, RHS: JQ); |
| 1318 | |
| 1319 | Value *Res = Div; |
| 1320 | if (!IsDiv) { |
| 1321 | // Rem needs compensation, it's easier to recompute it |
| 1322 | Value *Rem = Builder.CreateMul(LHS: Div, RHS: Den); |
| 1323 | Res = Builder.CreateSub(LHS: Num, RHS: Rem); |
| 1324 | } |
| 1325 | |
| 1326 | if (DivBits != 0 && DivBits < 32) { |
| 1327 | // Extend in register from the number of bits this divide really is. |
| 1328 | if (IsSigned) { |
| 1329 | int InRegBits = 32 - DivBits; |
| 1330 | |
| 1331 | Res = Builder.CreateShl(LHS: Res, RHS: InRegBits); |
| 1332 | Res = Builder.CreateAShr(LHS: Res, RHS: InRegBits); |
| 1333 | } else { |
| 1334 | ConstantInt *TruncMask |
| 1335 | = Builder.getInt32(C: (UINT64_C(1) << DivBits) - 1); |
| 1336 | Res = Builder.CreateAnd(LHS: Res, RHS: TruncMask); |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | return Res; |
| 1341 | } |
| 1342 | |
| 1343 | // Try to recognize special cases the DAG will emit special, better expansions |
| 1344 | // than the general expansion we do here. |
| 1345 | |
| 1346 | // TODO: It would be better to just directly handle those optimizations here. |
| 1347 | bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, |
| 1348 | Value *Num, |
| 1349 | Value *Den) const { |
| 1350 | if (Constant *C = dyn_cast<Constant>(Val: Den)) { |
| 1351 | // Arbitrary constants get a better expansion as long as a wider mulhi is |
| 1352 | // legal. |
| 1353 | if (C->getType()->getScalarSizeInBits() <= 32) |
| 1354 | return true; |
| 1355 | |
| 1356 | // TODO: Sdiv check for not exact for some reason. |
| 1357 | |
| 1358 | // If there's no wider mulhi, there's only a better expansion for powers of |
| 1359 | // two. |
| 1360 | // TODO: Should really know for each vector element. |
| 1361 | if (isKnownToBeAPowerOfTwo(V: C, DL, OrZero: true, AC, CxtI: &I, DT)) |
| 1362 | return true; |
| 1363 | |
| 1364 | return false; |
| 1365 | } |
| 1366 | |
| 1367 | if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Val: Den)) { |
| 1368 | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| 1369 | if (BinOpDen->getOpcode() == Instruction::Shl && |
| 1370 | isa<Constant>(Val: BinOpDen->getOperand(i_nocapture: 0)) && |
| 1371 | isKnownToBeAPowerOfTwo(V: BinOpDen->getOperand(i_nocapture: 0), DL, OrZero: true, AC, CxtI: &I, DT)) { |
| 1372 | return true; |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | return false; |
| 1377 | } |
| 1378 | |
| 1379 | static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout DL) { |
| 1380 | // Check whether the sign can be determined statically. |
| 1381 | KnownBits Known = computeKnownBits(V, DL); |
| 1382 | if (Known.isNegative()) |
| 1383 | return Constant::getAllOnesValue(Ty: V->getType()); |
| 1384 | if (Known.isNonNegative()) |
| 1385 | return Constant::getNullValue(Ty: V->getType()); |
| 1386 | return Builder.CreateAShr(LHS: V, RHS: Builder.getInt32(C: 31)); |
| 1387 | } |
| 1388 | |
| 1389 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, |
| 1390 | BinaryOperator &I, Value *X, |
| 1391 | Value *Y) const { |
| 1392 | Instruction::BinaryOps Opc = I.getOpcode(); |
| 1393 | assert(Opc == Instruction::URem || Opc == Instruction::UDiv || |
| 1394 | Opc == Instruction::SRem || Opc == Instruction::SDiv); |
| 1395 | |
| 1396 | FastMathFlags FMF; |
| 1397 | FMF.setFast(); |
| 1398 | Builder.setFastMathFlags(FMF); |
| 1399 | |
| 1400 | if (divHasSpecialOptimization(I, Num: X, Den: Y)) |
| 1401 | return nullptr; // Keep it for later optimization. |
| 1402 | |
| 1403 | bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; |
| 1404 | bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; |
| 1405 | |
| 1406 | Type *Ty = X->getType(); |
| 1407 | Type *I32Ty = Builder.getInt32Ty(); |
| 1408 | Type *F32Ty = Builder.getFloatTy(); |
| 1409 | |
| 1410 | if (Ty->getScalarSizeInBits() != 32) { |
| 1411 | if (IsSigned) { |
| 1412 | X = Builder.CreateSExtOrTrunc(V: X, DestTy: I32Ty); |
| 1413 | Y = Builder.CreateSExtOrTrunc(V: Y, DestTy: I32Ty); |
| 1414 | } else { |
| 1415 | X = Builder.CreateZExtOrTrunc(V: X, DestTy: I32Ty); |
| 1416 | Y = Builder.CreateZExtOrTrunc(V: Y, DestTy: I32Ty); |
| 1417 | } |
| 1418 | } |
| 1419 | |
| 1420 | if (Value *Res = expandDivRem24(Builder, I, Num: X, Den: Y, IsDiv, IsSigned)) { |
| 1421 | return IsSigned ? Builder.CreateSExtOrTrunc(V: Res, DestTy: Ty) : |
| 1422 | Builder.CreateZExtOrTrunc(V: Res, DestTy: Ty); |
| 1423 | } |
| 1424 | |
| 1425 | ConstantInt *Zero = Builder.getInt32(C: 0); |
| 1426 | ConstantInt *One = Builder.getInt32(C: 1); |
| 1427 | |
| 1428 | Value *Sign = nullptr; |
| 1429 | if (IsSigned) { |
| 1430 | Value *SignX = getSign32(V: X, Builder, DL); |
| 1431 | Value *SignY = getSign32(V: Y, Builder, DL); |
| 1432 | // Remainder sign is the same as LHS |
| 1433 | Sign = IsDiv ? Builder.CreateXor(LHS: SignX, RHS: SignY) : SignX; |
| 1434 | |
| 1435 | X = Builder.CreateAdd(LHS: X, RHS: SignX); |
| 1436 | Y = Builder.CreateAdd(LHS: Y, RHS: SignY); |
| 1437 | |
| 1438 | X = Builder.CreateXor(LHS: X, RHS: SignX); |
| 1439 | Y = Builder.CreateXor(LHS: Y, RHS: SignY); |
| 1440 | } |
| 1441 | |
| 1442 | // The algorithm here is based on ideas from "Software Integer Division", Tom |
| 1443 | // Rodeheffer, August 2008. |
| 1444 | // |
| 1445 | // unsigned udiv(unsigned x, unsigned y) { |
| 1446 | // // Initial estimate of inv(y). The constant is less than 2^32 to ensure |
| 1447 | // // that this is a lower bound on inv(y), even if some of the calculations |
| 1448 | // // round up. |
| 1449 | // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); |
| 1450 | // |
| 1451 | // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. |
| 1452 | // // Empirically this is guaranteed to give a "two-y" lower bound on |
| 1453 | // // inv(y). |
| 1454 | // z += umulh(z, -y * z); |
| 1455 | // |
| 1456 | // // Quotient/remainder estimate. |
| 1457 | // unsigned q = umulh(x, z); |
| 1458 | // unsigned r = x - q * y; |
| 1459 | // |
| 1460 | // // Two rounds of quotient/remainder refinement. |
| 1461 | // if (r >= y) { |
| 1462 | // ++q; |
| 1463 | // r -= y; |
| 1464 | // } |
| 1465 | // if (r >= y) { |
| 1466 | // ++q; |
| 1467 | // r -= y; |
| 1468 | // } |
| 1469 | // |
| 1470 | // return q; |
| 1471 | // } |
| 1472 | |
| 1473 | // Initial estimate of inv(y). |
| 1474 | Value *FloatY = Builder.CreateUIToFP(V: Y, DestTy: F32Ty); |
| 1475 | Value *RcpY = Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_rcp, Types: F32Ty, Args: {FloatY}); |
| 1476 | Constant *Scale = ConstantFP::get(Ty: F32Ty, V: llvm::bit_cast<float>(from: 0x4F7FFFFE)); |
| 1477 | Value *ScaledY = Builder.CreateFMul(L: RcpY, R: Scale); |
| 1478 | Value *Z = Builder.CreateFPToUI(V: ScaledY, DestTy: I32Ty); |
| 1479 | |
| 1480 | // One round of UNR. |
| 1481 | Value *NegY = Builder.CreateSub(LHS: Zero, RHS: Y); |
| 1482 | Value *NegYZ = Builder.CreateMul(LHS: NegY, RHS: Z); |
| 1483 | Z = Builder.CreateAdd(LHS: Z, RHS: getMulHu(Builder, LHS: Z, RHS: NegYZ)); |
| 1484 | |
| 1485 | // Quotient/remainder estimate. |
| 1486 | Value *Q = getMulHu(Builder, LHS: X, RHS: Z); |
| 1487 | Value *R = Builder.CreateSub(LHS: X, RHS: Builder.CreateMul(LHS: Q, RHS: Y)); |
| 1488 | |
| 1489 | // First quotient/remainder refinement. |
| 1490 | Value *Cond = Builder.CreateICmpUGE(LHS: R, RHS: Y); |
| 1491 | if (IsDiv) |
| 1492 | Q = Builder.CreateSelect(C: Cond, True: Builder.CreateAdd(LHS: Q, RHS: One), False: Q); |
| 1493 | R = Builder.CreateSelect(C: Cond, True: Builder.CreateSub(LHS: R, RHS: Y), False: R); |
| 1494 | |
| 1495 | // Second quotient/remainder refinement. |
| 1496 | Cond = Builder.CreateICmpUGE(LHS: R, RHS: Y); |
| 1497 | Value *Res; |
| 1498 | if (IsDiv) |
| 1499 | Res = Builder.CreateSelect(C: Cond, True: Builder.CreateAdd(LHS: Q, RHS: One), False: Q); |
| 1500 | else |
| 1501 | Res = Builder.CreateSelect(C: Cond, True: Builder.CreateSub(LHS: R, RHS: Y), False: R); |
| 1502 | |
| 1503 | if (IsSigned) { |
| 1504 | Res = Builder.CreateXor(LHS: Res, RHS: Sign); |
| 1505 | Res = Builder.CreateSub(LHS: Res, RHS: Sign); |
| 1506 | Res = Builder.CreateSExtOrTrunc(V: Res, DestTy: Ty); |
| 1507 | } else { |
| 1508 | Res = Builder.CreateZExtOrTrunc(V: Res, DestTy: Ty); |
| 1509 | } |
| 1510 | return Res; |
| 1511 | } |
| 1512 | |
| 1513 | Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, |
| 1514 | BinaryOperator &I, Value *Num, |
| 1515 | Value *Den) const { |
| 1516 | if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) |
| 1517 | return nullptr; // Keep it for later optimization. |
| 1518 | |
| 1519 | Instruction::BinaryOps Opc = I.getOpcode(); |
| 1520 | |
| 1521 | bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; |
| 1522 | bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; |
| 1523 | |
| 1524 | unsigned NumDivBits = getDivNumBits(I, Num, Den, MaxDivBits: 32, IsSigned); |
| 1525 | if (NumDivBits > 32) |
| 1526 | return nullptr; |
| 1527 | |
| 1528 | Value *Narrowed = nullptr; |
| 1529 | if (NumDivBits <= 24) { |
| 1530 | Narrowed = expandDivRem24Impl(Builder, I, Num, Den, DivBits: NumDivBits, |
| 1531 | IsDiv, IsSigned); |
| 1532 | } else if (NumDivBits <= 32) { |
| 1533 | Narrowed = expandDivRem32(Builder, I, X: Num, Y: Den); |
| 1534 | } |
| 1535 | |
| 1536 | if (Narrowed) { |
| 1537 | return IsSigned ? Builder.CreateSExt(V: Narrowed, DestTy: Num->getType()) : |
| 1538 | Builder.CreateZExt(V: Narrowed, DestTy: Num->getType()); |
| 1539 | } |
| 1540 | |
| 1541 | return nullptr; |
| 1542 | } |
| 1543 | |
| 1544 | void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { |
| 1545 | Instruction::BinaryOps Opc = I.getOpcode(); |
| 1546 | // Do the general expansion. |
| 1547 | if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { |
| 1548 | expandDivisionUpTo64Bits(Div: &I); |
| 1549 | return; |
| 1550 | } |
| 1551 | |
| 1552 | if (Opc == Instruction::URem || Opc == Instruction::SRem) { |
| 1553 | expandRemainderUpTo64Bits(Rem: &I); |
| 1554 | return; |
| 1555 | } |
| 1556 | |
| 1557 | llvm_unreachable("not a division" ); |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | This will cause non-byte load in consistency, for example: |
| 1562 | ``` |
| 1563 | %load = load i1, ptr addrspace(4) %arg, align 4 |
| 1564 | %zext = zext i1 %load to |
| 1565 | i64 %add = add i64 %zext |
| 1566 | ``` |
| 1567 | Instead of creating `s_and_b32 s0, s0, 1`, |
| 1568 | it will create `s_and_b32 s0, s0, 0xff`. |
| 1569 | We accept this change since the non-byte load assumes the upper bits |
| 1570 | within the byte are all 0. |
| 1571 | */ |
| 1572 | static bool tryNarrowMathIfNoOverflow(Instruction *I, |
| 1573 | const SITargetLowering *TLI, |
| 1574 | const TargetTransformInfo &TTI, |
| 1575 | const DataLayout &DL) { |
| 1576 | unsigned Opc = I->getOpcode(); |
| 1577 | Type *OldType = I->getType(); |
| 1578 | |
| 1579 | if (Opc != Instruction::Add && Opc != Instruction::Mul) |
| 1580 | return false; |
| 1581 | |
| 1582 | unsigned OrigBit = OldType->getScalarSizeInBits(); |
| 1583 | |
| 1584 | if (Opc != Instruction::Add && Opc != Instruction::Mul) |
| 1585 | llvm_unreachable("Unexpected opcode, only valid for Instruction::Add and " |
| 1586 | "Instruction::Mul." ); |
| 1587 | |
| 1588 | unsigned MaxBitsNeeded = computeKnownBits(V: I, DL).countMaxActiveBits(); |
| 1589 | |
| 1590 | MaxBitsNeeded = std::max<unsigned>(a: bit_ceil(Value: MaxBitsNeeded), b: 8); |
| 1591 | Type *NewType = DL.getSmallestLegalIntType(C&: I->getContext(), Width: MaxBitsNeeded); |
| 1592 | if (!NewType) |
| 1593 | return false; |
| 1594 | unsigned NewBit = NewType->getIntegerBitWidth(); |
| 1595 | if (NewBit >= OrigBit) |
| 1596 | return false; |
| 1597 | NewType = I->getType()->getWithNewBitWidth(NewBitWidth: NewBit); |
| 1598 | |
| 1599 | // Old cost |
| 1600 | InstructionCost OldCost = |
| 1601 | TTI.getArithmeticInstrCost(Opcode: Opc, Ty: OldType, CostKind: TTI::TCK_RecipThroughput); |
| 1602 | // New cost of new op |
| 1603 | InstructionCost NewCost = |
| 1604 | TTI.getArithmeticInstrCost(Opcode: Opc, Ty: NewType, CostKind: TTI::TCK_RecipThroughput); |
| 1605 | // New cost of narrowing 2 operands (use trunc) |
| 1606 | int NumOfNonConstOps = 2; |
| 1607 | if (isa<Constant>(Val: I->getOperand(i: 0)) || isa<Constant>(Val: I->getOperand(i: 1))) { |
| 1608 | // Cannot be both constant, should be propagated |
| 1609 | NumOfNonConstOps = 1; |
| 1610 | } |
| 1611 | NewCost += NumOfNonConstOps * TTI.getCastInstrCost(Opcode: Instruction::Trunc, |
| 1612 | Dst: NewType, Src: OldType, |
| 1613 | CCH: TTI.getCastContextHint(I), |
| 1614 | CostKind: TTI::TCK_RecipThroughput); |
| 1615 | // New cost of zext narrowed result to original type |
| 1616 | NewCost += |
| 1617 | TTI.getCastInstrCost(Opcode: Instruction::ZExt, Dst: OldType, Src: NewType, |
| 1618 | CCH: TTI.getCastContextHint(I), CostKind: TTI::TCK_RecipThroughput); |
| 1619 | if (NewCost >= OldCost) |
| 1620 | return false; |
| 1621 | |
| 1622 | IRBuilder<> Builder(I); |
| 1623 | Value *Trunc0 = Builder.CreateTrunc(V: I->getOperand(i: 0), DestTy: NewType); |
| 1624 | Value *Trunc1 = Builder.CreateTrunc(V: I->getOperand(i: 1), DestTy: NewType); |
| 1625 | Value *Arith = |
| 1626 | Builder.CreateBinOp(Opc: (Instruction::BinaryOps)Opc, LHS: Trunc0, RHS: Trunc1); |
| 1627 | |
| 1628 | Value *Zext = Builder.CreateZExt(V: Arith, DestTy: OldType); |
| 1629 | I->replaceAllUsesWith(V: Zext); |
| 1630 | I->eraseFromParent(); |
| 1631 | return true; |
| 1632 | } |
| 1633 | |
| 1634 | bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { |
| 1635 | if (foldBinOpIntoSelect(BO&: I)) |
| 1636 | return true; |
| 1637 | |
| 1638 | if (ST.has16BitInsts() && needsPromotionToI32(T: I.getType()) && |
| 1639 | UA.isUniform(I: &I) && promoteUniformOpToI32(I)) |
| 1640 | return true; |
| 1641 | |
| 1642 | if (UseMul24Intrin && replaceMulWithMul24(I)) |
| 1643 | return true; |
| 1644 | if (tryNarrowMathIfNoOverflow(I: &I, TLI: ST.getTargetLowering(), |
| 1645 | TTI: TM.getTargetTransformInfo(F), DL)) |
| 1646 | return true; |
| 1647 | |
| 1648 | bool Changed = false; |
| 1649 | Instruction::BinaryOps Opc = I.getOpcode(); |
| 1650 | Type *Ty = I.getType(); |
| 1651 | Value *NewDiv = nullptr; |
| 1652 | unsigned ScalarSize = Ty->getScalarSizeInBits(); |
| 1653 | |
| 1654 | SmallVector<BinaryOperator *, 8> Div64ToExpand; |
| 1655 | |
| 1656 | if ((Opc == Instruction::URem || Opc == Instruction::UDiv || |
| 1657 | Opc == Instruction::SRem || Opc == Instruction::SDiv) && |
| 1658 | ScalarSize <= 64 && |
| 1659 | !DisableIDivExpand) { |
| 1660 | Value *Num = I.getOperand(i_nocapture: 0); |
| 1661 | Value *Den = I.getOperand(i_nocapture: 1); |
| 1662 | IRBuilder<> Builder(&I); |
| 1663 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 1664 | |
| 1665 | if (auto *VT = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 1666 | NewDiv = PoisonValue::get(T: VT); |
| 1667 | |
| 1668 | for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { |
| 1669 | Value *NumEltN = Builder.CreateExtractElement(Vec: Num, Idx: N); |
| 1670 | Value *DenEltN = Builder.CreateExtractElement(Vec: Den, Idx: N); |
| 1671 | |
| 1672 | Value *NewElt; |
| 1673 | if (ScalarSize <= 32) { |
| 1674 | NewElt = expandDivRem32(Builder, I, X: NumEltN, Y: DenEltN); |
| 1675 | if (!NewElt) |
| 1676 | NewElt = Builder.CreateBinOp(Opc, LHS: NumEltN, RHS: DenEltN); |
| 1677 | } else { |
| 1678 | // See if this 64-bit division can be shrunk to 32/24-bits before |
| 1679 | // producing the general expansion. |
| 1680 | NewElt = shrinkDivRem64(Builder, I, Num: NumEltN, Den: DenEltN); |
| 1681 | if (!NewElt) { |
| 1682 | // The general 64-bit expansion introduces control flow and doesn't |
| 1683 | // return the new value. Just insert a scalar copy and defer |
| 1684 | // expanding it. |
| 1685 | NewElt = Builder.CreateBinOp(Opc, LHS: NumEltN, RHS: DenEltN); |
| 1686 | // CreateBinOp does constant folding. If the operands are constant, |
| 1687 | // it will return a Constant instead of a BinaryOperator. |
| 1688 | if (auto *NewEltBO = dyn_cast<BinaryOperator>(Val: NewElt)) |
| 1689 | Div64ToExpand.push_back(Elt: NewEltBO); |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | if (auto *NewEltI = dyn_cast<Instruction>(Val: NewElt)) |
| 1694 | NewEltI->copyIRFlags(V: &I); |
| 1695 | |
| 1696 | NewDiv = Builder.CreateInsertElement(Vec: NewDiv, NewElt, Idx: N); |
| 1697 | } |
| 1698 | } else { |
| 1699 | if (ScalarSize <= 32) |
| 1700 | NewDiv = expandDivRem32(Builder, I, X: Num, Y: Den); |
| 1701 | else { |
| 1702 | NewDiv = shrinkDivRem64(Builder, I, Num, Den); |
| 1703 | if (!NewDiv) |
| 1704 | Div64ToExpand.push_back(Elt: &I); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | if (NewDiv) { |
| 1709 | I.replaceAllUsesWith(V: NewDiv); |
| 1710 | I.eraseFromParent(); |
| 1711 | Changed = true; |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | if (ExpandDiv64InIR) { |
| 1716 | // TODO: We get much worse code in specially handled constant cases. |
| 1717 | for (BinaryOperator *Div : Div64ToExpand) { |
| 1718 | expandDivRem64(I&: *Div); |
| 1719 | FlowChanged = true; |
| 1720 | Changed = true; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | return Changed; |
| 1725 | } |
| 1726 | |
| 1727 | bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { |
| 1728 | if (!WidenLoads) |
| 1729 | return false; |
| 1730 | |
| 1731 | if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| 1732 | I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| 1733 | canWidenScalarExtLoad(I)) { |
| 1734 | IRBuilder<> Builder(&I); |
| 1735 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| 1736 | |
| 1737 | Type *I32Ty = Builder.getInt32Ty(); |
| 1738 | LoadInst *WidenLoad = Builder.CreateLoad(Ty: I32Ty, Ptr: I.getPointerOperand()); |
| 1739 | WidenLoad->copyMetadata(SrcInst: I); |
| 1740 | |
| 1741 | // If we have range metadata, we need to convert the type, and not make |
| 1742 | // assumptions about the high bits. |
| 1743 | if (auto *Range = WidenLoad->getMetadata(KindID: LLVMContext::MD_range)) { |
| 1744 | ConstantInt *Lower = |
| 1745 | mdconst::extract<ConstantInt>(MD: Range->getOperand(I: 0)); |
| 1746 | |
| 1747 | if (Lower->isNullValue()) { |
| 1748 | WidenLoad->setMetadata(KindID: LLVMContext::MD_range, Node: nullptr); |
| 1749 | } else { |
| 1750 | Metadata *LowAndHigh[] = { |
| 1751 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: I32Ty, V: Lower->getValue().zext(width: 32))), |
| 1752 | // Don't make assumptions about the high bits. |
| 1753 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: I32Ty, V: 0)) |
| 1754 | }; |
| 1755 | |
| 1756 | WidenLoad->setMetadata(KindID: LLVMContext::MD_range, |
| 1757 | Node: MDNode::get(Context&: F.getContext(), MDs: LowAndHigh)); |
| 1758 | } |
| 1759 | } |
| 1760 | |
| 1761 | int TySize = DL.getTypeSizeInBits(Ty: I.getType()); |
| 1762 | Type *IntNTy = Builder.getIntNTy(N: TySize); |
| 1763 | Value *ValTrunc = Builder.CreateTrunc(V: WidenLoad, DestTy: IntNTy); |
| 1764 | Value *ValOrig = Builder.CreateBitCast(V: ValTrunc, DestTy: I.getType()); |
| 1765 | I.replaceAllUsesWith(V: ValOrig); |
| 1766 | I.eraseFromParent(); |
| 1767 | return true; |
| 1768 | } |
| 1769 | |
| 1770 | return false; |
| 1771 | } |
| 1772 | |
| 1773 | bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { |
| 1774 | bool Changed = false; |
| 1775 | |
| 1776 | if (ST.has16BitInsts() && needsPromotionToI32(T: I.getOperand(i_nocapture: 0)->getType()) && |
| 1777 | UA.isUniform(I: &I)) |
| 1778 | Changed |= promoteUniformOpToI32(I); |
| 1779 | |
| 1780 | return Changed; |
| 1781 | } |
| 1782 | |
| 1783 | bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { |
| 1784 | Value *Cond = I.getCondition(); |
| 1785 | Value *TrueVal = I.getTrueValue(); |
| 1786 | Value *FalseVal = I.getFalseValue(); |
| 1787 | Value *CmpVal; |
| 1788 | CmpPredicate Pred; |
| 1789 | |
| 1790 | if (ST.has16BitInsts() && needsPromotionToI32(T: I.getType())) { |
| 1791 | if (UA.isUniform(I: &I)) |
| 1792 | return promoteUniformOpToI32(I); |
| 1793 | return false; |
| 1794 | } |
| 1795 | |
| 1796 | // Match fract pattern with nan check. |
| 1797 | if (!match(V: Cond, P: m_FCmp(Pred, L: m_Value(V&: CmpVal), R: m_NonNaN()))) |
| 1798 | return false; |
| 1799 | |
| 1800 | FPMathOperator *FPOp = dyn_cast<FPMathOperator>(Val: &I); |
| 1801 | if (!FPOp) |
| 1802 | return false; |
| 1803 | |
| 1804 | IRBuilder<> Builder(&I); |
| 1805 | Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
| 1806 | |
| 1807 | auto *IITrue = dyn_cast<IntrinsicInst>(Val: TrueVal); |
| 1808 | auto *IIFalse = dyn_cast<IntrinsicInst>(Val: FalseVal); |
| 1809 | |
| 1810 | Value *Fract = nullptr; |
| 1811 | if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && |
| 1812 | CmpVal == matchFractPat(I&: *IIFalse)) { |
| 1813 | // isnan(x) ? x : fract(x) |
| 1814 | Fract = applyFractPat(Builder, FractArg: CmpVal); |
| 1815 | } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && |
| 1816 | CmpVal == matchFractPat(I&: *IITrue)) { |
| 1817 | // !isnan(x) ? fract(x) : x |
| 1818 | Fract = applyFractPat(Builder, FractArg: CmpVal); |
| 1819 | } else |
| 1820 | return false; |
| 1821 | |
| 1822 | Fract->takeName(V: &I); |
| 1823 | I.replaceAllUsesWith(V: Fract); |
| 1824 | RecursivelyDeleteTriviallyDeadInstructions(V: &I, TLI); |
| 1825 | return true; |
| 1826 | } |
| 1827 | |
| 1828 | static bool areInSameBB(const Value *A, const Value *B) { |
| 1829 | const auto *IA = dyn_cast<Instruction>(Val: A); |
| 1830 | const auto *IB = dyn_cast<Instruction>(Val: B); |
| 1831 | return IA && IB && IA->getParent() == IB->getParent(); |
| 1832 | } |
| 1833 | |
| 1834 | // Helper for breaking large PHIs that returns true when an extractelement on V |
| 1835 | // is likely to be folded away by the DAG combiner. |
| 1836 | static bool isInterestingPHIIncomingValue(const Value *V) { |
| 1837 | const auto *FVT = dyn_cast<FixedVectorType>(Val: V->getType()); |
| 1838 | if (!FVT) |
| 1839 | return false; |
| 1840 | |
| 1841 | const Value *CurVal = V; |
| 1842 | |
| 1843 | // Check for insertelements, keeping track of the elements covered. |
| 1844 | BitVector EltsCovered(FVT->getNumElements()); |
| 1845 | while (const auto *IE = dyn_cast<InsertElementInst>(Val: CurVal)) { |
| 1846 | const auto *Idx = dyn_cast<ConstantInt>(Val: IE->getOperand(i_nocapture: 2)); |
| 1847 | |
| 1848 | // Non constant index/out of bounds index -> folding is unlikely. |
| 1849 | // The latter is more of a sanity check because canonical IR should just |
| 1850 | // have replaced those with poison. |
| 1851 | if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) |
| 1852 | return false; |
| 1853 | |
| 1854 | const auto *VecSrc = IE->getOperand(i_nocapture: 0); |
| 1855 | |
| 1856 | // If the vector source is another instruction, it must be in the same basic |
| 1857 | // block. Otherwise, the DAGCombiner won't see the whole thing and is |
| 1858 | // unlikely to be able to do anything interesting here. |
| 1859 | if (isa<Instruction>(Val: VecSrc) && !areInSameBB(A: VecSrc, B: IE)) |
| 1860 | return false; |
| 1861 | |
| 1862 | CurVal = VecSrc; |
| 1863 | EltsCovered.set(Idx->getZExtValue()); |
| 1864 | |
| 1865 | // All elements covered. |
| 1866 | if (EltsCovered.all()) |
| 1867 | return true; |
| 1868 | } |
| 1869 | |
| 1870 | // We either didn't find a single insertelement, or the insertelement chain |
| 1871 | // ended before all elements were covered. Check for other interesting values. |
| 1872 | |
| 1873 | // Constants are always interesting because we can just constant fold the |
| 1874 | // extractelements. |
| 1875 | if (isa<Constant>(Val: CurVal)) |
| 1876 | return true; |
| 1877 | |
| 1878 | // shufflevector is likely to be profitable if either operand is a constant, |
| 1879 | // or if either source is in the same block. |
| 1880 | // This is because shufflevector is most often lowered as a series of |
| 1881 | // insert/extract elements anyway. |
| 1882 | if (const auto *SV = dyn_cast<ShuffleVectorInst>(Val: CurVal)) { |
| 1883 | return isa<Constant>(Val: SV->getOperand(i_nocapture: 1)) || |
| 1884 | areInSameBB(A: SV, B: SV->getOperand(i_nocapture: 0)) || |
| 1885 | areInSameBB(A: SV, B: SV->getOperand(i_nocapture: 1)); |
| 1886 | } |
| 1887 | |
| 1888 | return false; |
| 1889 | } |
| 1890 | |
| 1891 | static void collectPHINodes(const PHINode &I, |
| 1892 | SmallPtrSet<const PHINode *, 8> &SeenPHIs) { |
| 1893 | const auto [It, Inserted] = SeenPHIs.insert(Ptr: &I); |
| 1894 | if (!Inserted) |
| 1895 | return; |
| 1896 | |
| 1897 | for (const Value *Inc : I.incoming_values()) { |
| 1898 | if (const auto *PhiInc = dyn_cast<PHINode>(Val: Inc)) |
| 1899 | collectPHINodes(I: *PhiInc, SeenPHIs); |
| 1900 | } |
| 1901 | |
| 1902 | for (const User *U : I.users()) { |
| 1903 | if (const auto *PhiU = dyn_cast<PHINode>(Val: U)) |
| 1904 | collectPHINodes(I: *PhiU, SeenPHIs); |
| 1905 | } |
| 1906 | } |
| 1907 | |
| 1908 | bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { |
| 1909 | // Check in the cache first. |
| 1910 | if (const auto It = BreakPhiNodesCache.find(Val: &I); |
| 1911 | It != BreakPhiNodesCache.end()) |
| 1912 | return It->second; |
| 1913 | |
| 1914 | // We consider PHI nodes as part of "chains", so given a PHI node I, we |
| 1915 | // recursively consider all its users and incoming values that are also PHI |
| 1916 | // nodes. We then make a decision about all of those PHIs at once. Either they |
| 1917 | // all get broken up, or none of them do. That way, we avoid cases where a |
| 1918 | // single PHI is/is not broken and we end up reforming/exploding a vector |
| 1919 | // multiple times, or even worse, doing it in a loop. |
| 1920 | SmallPtrSet<const PHINode *, 8> WorkList; |
| 1921 | collectPHINodes(I, SeenPHIs&: WorkList); |
| 1922 | |
| 1923 | #ifndef NDEBUG |
| 1924 | // Check that none of the PHI nodes in the worklist are in the map. If some of |
| 1925 | // them are, it means we're not good enough at collecting related PHIs. |
| 1926 | for (const PHINode *WLP : WorkList) { |
| 1927 | assert(BreakPhiNodesCache.count(WLP) == 0); |
| 1928 | } |
| 1929 | #endif |
| 1930 | |
| 1931 | // To consider a PHI profitable to break, we need to see some interesting |
| 1932 | // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist |
| 1933 | // must have one to consider all PHIs breakable. |
| 1934 | // |
| 1935 | // This threshold has been determined through performance testing. |
| 1936 | // |
| 1937 | // Note that the computation below is equivalent to |
| 1938 | // |
| 1939 | // (unsigned)ceil((K / 3.0) * 2) |
| 1940 | // |
| 1941 | // It's simply written this way to avoid mixing integral/FP arithmetic. |
| 1942 | const auto Threshold = (alignTo(Value: WorkList.size() * 2, Align: 3) / 3); |
| 1943 | unsigned NumBreakablePHIs = 0; |
| 1944 | bool CanBreak = false; |
| 1945 | for (const PHINode *Cur : WorkList) { |
| 1946 | // Don't break PHIs that have no interesting incoming values. That is, where |
| 1947 | // there is no clear opportunity to fold the "extractelement" instructions |
| 1948 | // we would add. |
| 1949 | // |
| 1950 | // Note: IC does not run after this pass, so we're only interested in the |
| 1951 | // foldings that the DAG combiner can do. |
| 1952 | if (any_of(Range: Cur->incoming_values(), P: isInterestingPHIIncomingValue)) { |
| 1953 | if (++NumBreakablePHIs >= Threshold) { |
| 1954 | CanBreak = true; |
| 1955 | break; |
| 1956 | } |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | for (const PHINode *Cur : WorkList) |
| 1961 | BreakPhiNodesCache[Cur] = CanBreak; |
| 1962 | |
| 1963 | return CanBreak; |
| 1964 | } |
| 1965 | |
| 1966 | /// Helper class for "break large PHIs" (visitPHINode). |
| 1967 | /// |
| 1968 | /// This represents a slice of a PHI's incoming value, which is made up of: |
| 1969 | /// - The type of the slice (Ty) |
| 1970 | /// - The index in the incoming value's vector where the slice starts (Idx) |
| 1971 | /// - The number of elements in the slice (NumElts). |
| 1972 | /// It also keeps track of the NewPHI node inserted for this particular slice. |
| 1973 | /// |
| 1974 | /// Slice examples: |
| 1975 | /// <4 x i64> -> Split into four i64 slices. |
| 1976 | /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] |
| 1977 | /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. |
| 1978 | /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] |
| 1979 | class VectorSlice { |
| 1980 | public: |
| 1981 | VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) |
| 1982 | : Ty(Ty), Idx(Idx), NumElts(NumElts) {} |
| 1983 | |
| 1984 | Type *Ty = nullptr; |
| 1985 | unsigned Idx = 0; |
| 1986 | unsigned NumElts = 0; |
| 1987 | PHINode *NewPHI = nullptr; |
| 1988 | |
| 1989 | /// Slice \p Inc according to the information contained within this slice. |
| 1990 | /// This is cached, so if called multiple times for the same \p BB & \p Inc |
| 1991 | /// pair, it returns the same Sliced value as well. |
| 1992 | /// |
| 1993 | /// Note this *intentionally* does not return the same value for, say, |
| 1994 | /// [%bb.0, %0] & [%bb.1, %0] as: |
| 1995 | /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then |
| 1996 | /// the value in bb.1 may not be reachable from bb.0 if it's its |
| 1997 | /// predecessor.) |
| 1998 | /// - We also want to make our extract instructions as local as possible so |
| 1999 | /// the DAG has better chances of folding them out. Duplicating them like |
| 2000 | /// that is beneficial in that regard. |
| 2001 | /// |
| 2002 | /// This is both a minor optimization to avoid creating duplicate |
| 2003 | /// instructions, but also a requirement for correctness. It is not forbidden |
| 2004 | /// for a PHI node to have the same [BB, Val] pair multiple times. If we |
| 2005 | /// returned a new value each time, those previously identical pairs would all |
| 2006 | /// have different incoming values (from the same block) and it'd cause a "PHI |
| 2007 | /// node has multiple entries for the same basic block with different incoming |
| 2008 | /// values!" verifier error. |
| 2009 | Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { |
| 2010 | Value *&Res = SlicedVals[{BB, Inc}]; |
| 2011 | if (Res) |
| 2012 | return Res; |
| 2013 | |
| 2014 | IRBuilder<> B(BB->getTerminator()); |
| 2015 | if (Instruction *IncInst = dyn_cast<Instruction>(Val: Inc)) |
| 2016 | B.SetCurrentDebugLocation(IncInst->getDebugLoc()); |
| 2017 | |
| 2018 | if (NumElts > 1) { |
| 2019 | SmallVector<int, 4> Mask; |
| 2020 | for (unsigned K = Idx; K < (Idx + NumElts); ++K) |
| 2021 | Mask.push_back(Elt: K); |
| 2022 | Res = B.CreateShuffleVector(V: Inc, Mask, Name: NewValName); |
| 2023 | } else |
| 2024 | Res = B.CreateExtractElement(Vec: Inc, Idx, Name: NewValName); |
| 2025 | |
| 2026 | return Res; |
| 2027 | } |
| 2028 | |
| 2029 | private: |
| 2030 | SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; |
| 2031 | }; |
| 2032 | |
| 2033 | bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { |
| 2034 | // Break-up fixed-vector PHIs into smaller pieces. |
| 2035 | // Default threshold is 32, so it breaks up any vector that's >32 bits into |
| 2036 | // its elements, or into 32-bit pieces (for 8/16 bit elts). |
| 2037 | // |
| 2038 | // This is only helpful for DAGISel because it doesn't handle large PHIs as |
| 2039 | // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. |
| 2040 | // With large, odd-sized PHIs we may end up needing many `build_vector` |
| 2041 | // operations with most elements being "undef". This inhibits a lot of |
| 2042 | // optimization opportunities and can result in unreasonably high register |
| 2043 | // pressure and the inevitable stack spilling. |
| 2044 | if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) |
| 2045 | return false; |
| 2046 | |
| 2047 | FixedVectorType *FVT = dyn_cast<FixedVectorType>(Val: I.getType()); |
| 2048 | if (!FVT || FVT->getNumElements() == 1 || |
| 2049 | DL.getTypeSizeInBits(Ty: FVT) <= BreakLargePHIsThreshold) |
| 2050 | return false; |
| 2051 | |
| 2052 | if (!ForceBreakLargePHIs && !canBreakPHINode(I)) |
| 2053 | return false; |
| 2054 | |
| 2055 | std::vector<VectorSlice> Slices; |
| 2056 | |
| 2057 | Type *EltTy = FVT->getElementType(); |
| 2058 | { |
| 2059 | unsigned Idx = 0; |
| 2060 | // For 8/16 bits type, don't scalarize fully but break it up into as many |
| 2061 | // 32-bit slices as we can, and scalarize the tail. |
| 2062 | const unsigned EltSize = DL.getTypeSizeInBits(Ty: EltTy); |
| 2063 | const unsigned NumElts = FVT->getNumElements(); |
| 2064 | if (EltSize == 8 || EltSize == 16) { |
| 2065 | const unsigned SubVecSize = (32 / EltSize); |
| 2066 | Type *SubVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: SubVecSize); |
| 2067 | for (unsigned End = alignDown(Value: NumElts, Align: SubVecSize); Idx < End; |
| 2068 | Idx += SubVecSize) |
| 2069 | Slices.emplace_back(args&: SubVecTy, args&: Idx, args: SubVecSize); |
| 2070 | } |
| 2071 | |
| 2072 | // Scalarize all remaining elements. |
| 2073 | for (; Idx < NumElts; ++Idx) |
| 2074 | Slices.emplace_back(args&: EltTy, args&: Idx, args: 1); |
| 2075 | } |
| 2076 | |
| 2077 | assert(Slices.size() > 1); |
| 2078 | |
| 2079 | // Create one PHI per vector piece. The "VectorSlice" class takes care of |
| 2080 | // creating the necessary instruction to extract the relevant slices of each |
| 2081 | // incoming value. |
| 2082 | IRBuilder<> B(I.getParent()); |
| 2083 | B.SetCurrentDebugLocation(I.getDebugLoc()); |
| 2084 | |
| 2085 | unsigned IncNameSuffix = 0; |
| 2086 | for (VectorSlice &S : Slices) { |
| 2087 | // We need to reset the build on each iteration, because getSlicedVal may |
| 2088 | // have inserted something into I's BB. |
| 2089 | B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); |
| 2090 | S.NewPHI = B.CreatePHI(Ty: S.Ty, NumReservedValues: I.getNumIncomingValues()); |
| 2091 | |
| 2092 | for (const auto &[Idx, BB] : enumerate(First: I.blocks())) { |
| 2093 | S.NewPHI->addIncoming(V: S.getSlicedVal(BB, Inc: I.getIncomingValue(i: Idx), |
| 2094 | NewValName: "largephi.extractslice" + |
| 2095 | std::to_string(val: IncNameSuffix++)), |
| 2096 | BB); |
| 2097 | } |
| 2098 | } |
| 2099 | |
| 2100 | // And replace this PHI with a vector of all the previous PHI values. |
| 2101 | Value *Vec = PoisonValue::get(T: FVT); |
| 2102 | unsigned NameSuffix = 0; |
| 2103 | for (VectorSlice &S : Slices) { |
| 2104 | const auto ValName = "largephi.insertslice" + std::to_string(val: NameSuffix++); |
| 2105 | if (S.NumElts > 1) |
| 2106 | Vec = B.CreateInsertVector(DstType: FVT, SrcVec: Vec, SubVec: S.NewPHI, Idx: S.Idx, Name: ValName); |
| 2107 | else |
| 2108 | Vec = B.CreateInsertElement(Vec, NewElt: S.NewPHI, Idx: S.Idx, Name: ValName); |
| 2109 | } |
| 2110 | |
| 2111 | I.replaceAllUsesWith(V: Vec); |
| 2112 | I.eraseFromParent(); |
| 2113 | return true; |
| 2114 | } |
| 2115 | |
| 2116 | /// \param V Value to check |
| 2117 | /// \param DL DataLayout |
| 2118 | /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) |
| 2119 | /// \param AS Target Address Space |
| 2120 | /// \return true if \p V cannot be the null value of \p AS, false otherwise. |
| 2121 | static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, |
| 2122 | const AMDGPUTargetMachine &TM, unsigned AS) { |
| 2123 | // Pointer cannot be null if it's a block address, GV or alloca. |
| 2124 | // NOTE: We don't support extern_weak, but if we did, we'd need to check for |
| 2125 | // it as the symbol could be null in such cases. |
| 2126 | if (isa<BlockAddress, GlobalValue, AllocaInst>(Val: V)) |
| 2127 | return true; |
| 2128 | |
| 2129 | // Check nonnull arguments. |
| 2130 | if (const auto *Arg = dyn_cast<Argument>(Val: V); Arg && Arg->hasNonNullAttr()) |
| 2131 | return true; |
| 2132 | |
| 2133 | // Check nonnull loads. |
| 2134 | if (const auto *Load = dyn_cast<LoadInst>(Val: V); |
| 2135 | Load && Load->hasMetadata(KindID: LLVMContext::MD_nonnull)) |
| 2136 | return true; |
| 2137 | |
| 2138 | // getUnderlyingObject may have looked through another addrspacecast, although |
| 2139 | // the optimizable situations most likely folded out by now. |
| 2140 | if (AS != cast<PointerType>(Val: V->getType())->getAddressSpace()) |
| 2141 | return false; |
| 2142 | |
| 2143 | // TODO: Calls that return nonnull? |
| 2144 | |
| 2145 | // For all other things, use KnownBits. |
| 2146 | // We either use 0 or all bits set to indicate null, so check whether the |
| 2147 | // value can be zero or all ones. |
| 2148 | // |
| 2149 | // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some |
| 2150 | // address spaces have non-zero null values. |
| 2151 | auto SrcPtrKB = computeKnownBits(V, DL); |
| 2152 | const auto NullVal = TM.getNullPointerValue(AddrSpace: AS); |
| 2153 | |
| 2154 | assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); |
| 2155 | assert((NullVal == 0 || NullVal == -1) && |
| 2156 | "don't know how to check for this null value!" ); |
| 2157 | return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); |
| 2158 | } |
| 2159 | |
| 2160 | bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { |
| 2161 | // Intrinsic doesn't support vectors, also it seems that it's often difficult |
| 2162 | // to prove that a vector cannot have any nulls in it so it's unclear if it's |
| 2163 | // worth supporting. |
| 2164 | if (I.getType()->isVectorTy()) |
| 2165 | return false; |
| 2166 | |
| 2167 | // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. |
| 2168 | // This is only worthwhile for casts from/to priv/local to flat. |
| 2169 | const unsigned SrcAS = I.getSrcAddressSpace(); |
| 2170 | const unsigned DstAS = I.getDestAddressSpace(); |
| 2171 | |
| 2172 | bool CanLower = false; |
| 2173 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
| 2174 | CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || |
| 2175 | DstAS == AMDGPUAS::PRIVATE_ADDRESS); |
| 2176 | else if (DstAS == AMDGPUAS::FLAT_ADDRESS) |
| 2177 | CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
| 2178 | SrcAS == AMDGPUAS::PRIVATE_ADDRESS); |
| 2179 | if (!CanLower) |
| 2180 | return false; |
| 2181 | |
| 2182 | SmallVector<const Value *, 4> WorkList; |
| 2183 | getUnderlyingObjects(V: I.getOperand(i_nocapture: 0), Objects&: WorkList); |
| 2184 | if (!all_of(Range&: WorkList, P: [&](const Value *V) { |
| 2185 | return isPtrKnownNeverNull(V, DL, TM, AS: SrcAS); |
| 2186 | })) |
| 2187 | return false; |
| 2188 | |
| 2189 | IRBuilder<> B(&I); |
| 2190 | auto *Intrin = B.CreateIntrinsic( |
| 2191 | RetTy: I.getType(), ID: Intrinsic::amdgcn_addrspacecast_nonnull, Args: {I.getOperand(i_nocapture: 0)}); |
| 2192 | I.replaceAllUsesWith(V: Intrin); |
| 2193 | I.eraseFromParent(); |
| 2194 | return true; |
| 2195 | } |
| 2196 | |
| 2197 | bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { |
| 2198 | switch (I.getIntrinsicID()) { |
| 2199 | case Intrinsic::bitreverse: |
| 2200 | return visitBitreverseIntrinsicInst(I); |
| 2201 | case Intrinsic::minnum: |
| 2202 | case Intrinsic::minimumnum: |
| 2203 | case Intrinsic::minimum: |
| 2204 | return visitFMinLike(I); |
| 2205 | case Intrinsic::sqrt: |
| 2206 | return visitSqrt(I); |
| 2207 | default: |
| 2208 | return false; |
| 2209 | } |
| 2210 | } |
| 2211 | |
| 2212 | bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { |
| 2213 | bool Changed = false; |
| 2214 | |
| 2215 | if (ST.has16BitInsts() && needsPromotionToI32(T: I.getType()) && |
| 2216 | UA.isUniform(I: &I)) |
| 2217 | Changed |= promoteUniformBitreverseToI32(I); |
| 2218 | |
| 2219 | return Changed; |
| 2220 | } |
| 2221 | |
| 2222 | /// Match non-nan fract pattern. |
| 2223 | /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)) |
| 2224 | /// minimumnum(fsub(x, floor(x)), nextafter(1.0, -1.0)) |
| 2225 | /// minimum(fsub(x, floor(x)), nextafter(1.0, -1.0)) |
| 2226 | /// |
| 2227 | /// If fract is a useful instruction for the subtarget. Does not account for the |
| 2228 | /// nan handling; the instruction has a nan check on the input value. |
| 2229 | Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { |
| 2230 | if (ST.hasFractBug()) |
| 2231 | return nullptr; |
| 2232 | |
| 2233 | Intrinsic::ID IID = I.getIntrinsicID(); |
| 2234 | |
| 2235 | // The value is only used in contexts where we know the input isn't a nan, so |
| 2236 | // any of the fmin variants are fine. |
| 2237 | if (IID != Intrinsic::minnum && IID != Intrinsic::minimum && |
| 2238 | IID != Intrinsic::minimumnum) |
| 2239 | return nullptr; |
| 2240 | |
| 2241 | Type *Ty = I.getType(); |
| 2242 | if (!isLegalFloatingTy(Ty: Ty->getScalarType())) |
| 2243 | return nullptr; |
| 2244 | |
| 2245 | Value *Arg0 = I.getArgOperand(i: 0); |
| 2246 | Value *Arg1 = I.getArgOperand(i: 1); |
| 2247 | |
| 2248 | const APFloat *C; |
| 2249 | if (!match(V: Arg1, P: m_APFloat(Res&: C))) |
| 2250 | return nullptr; |
| 2251 | |
| 2252 | APFloat One(1.0); |
| 2253 | bool LosesInfo; |
| 2254 | One.convert(ToSemantics: C->getSemantics(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 2255 | |
| 2256 | // Match nextafter(1.0, -1) |
| 2257 | One.next(nextDown: true); |
| 2258 | if (One != *C) |
| 2259 | return nullptr; |
| 2260 | |
| 2261 | Value *FloorSrc; |
| 2262 | if (match(V: Arg0, P: m_FSub(L: m_Value(V&: FloorSrc), |
| 2263 | R: m_Intrinsic<Intrinsic::floor>(Op0: m_Deferred(V: FloorSrc))))) |
| 2264 | return FloorSrc; |
| 2265 | return nullptr; |
| 2266 | } |
| 2267 | |
| 2268 | Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, |
| 2269 | Value *FractArg) { |
| 2270 | SmallVector<Value *, 4> FractVals; |
| 2271 | extractValues(Builder, Values&: FractVals, V: FractArg); |
| 2272 | |
| 2273 | SmallVector<Value *, 4> ResultVals(FractVals.size()); |
| 2274 | |
| 2275 | Type *Ty = FractArg->getType()->getScalarType(); |
| 2276 | for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { |
| 2277 | ResultVals[I] = |
| 2278 | Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_fract, Types: {Ty}, Args: {FractVals[I]}); |
| 2279 | } |
| 2280 | |
| 2281 | return insertValues(Builder, Ty: FractArg->getType(), Values&: ResultVals); |
| 2282 | } |
| 2283 | |
| 2284 | bool AMDGPUCodeGenPrepareImpl::visitFMinLike(IntrinsicInst &I) { |
| 2285 | Value *FractArg = matchFractPat(I); |
| 2286 | if (!FractArg) |
| 2287 | return false; |
| 2288 | |
| 2289 | // Match pattern for fract intrinsic in contexts where the nan check has been |
| 2290 | // optimized out (and hope the knowledge the source can't be nan wasn't lost). |
| 2291 | if (!I.hasNoNaNs() && !isKnownNeverNaN(V: FractArg, SQ: SimplifyQuery(DL, TLI))) |
| 2292 | return false; |
| 2293 | |
| 2294 | IRBuilder<> Builder(&I); |
| 2295 | FastMathFlags FMF = I.getFastMathFlags(); |
| 2296 | FMF.setNoNaNs(); |
| 2297 | Builder.setFastMathFlags(FMF); |
| 2298 | |
| 2299 | Value *Fract = applyFractPat(Builder, FractArg); |
| 2300 | Fract->takeName(V: &I); |
| 2301 | I.replaceAllUsesWith(V: Fract); |
| 2302 | |
| 2303 | RecursivelyDeleteTriviallyDeadInstructions(V: &I, TLI); |
| 2304 | return true; |
| 2305 | } |
| 2306 | |
| 2307 | static bool isOneOrNegOne(const Value *Val) { |
| 2308 | const APFloat *C; |
| 2309 | return match(V: Val, P: m_APFloat(Res&: C)) && C->getExactLog2Abs() == 0; |
| 2310 | } |
| 2311 | |
| 2312 | // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. |
| 2313 | bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { |
| 2314 | Type *Ty = Sqrt.getType()->getScalarType(); |
| 2315 | if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST.has16BitInsts())) |
| 2316 | return false; |
| 2317 | |
| 2318 | const FPMathOperator *FPOp = cast<const FPMathOperator>(Val: &Sqrt); |
| 2319 | FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); |
| 2320 | |
| 2321 | // We're trying to handle the fast-but-not-that-fast case only. The lowering |
| 2322 | // of fast llvm.sqrt will give the raw instruction anyway. |
| 2323 | if (SqrtFMF.approxFunc() || HasUnsafeFPMath) |
| 2324 | return false; |
| 2325 | |
| 2326 | const float ReqdAccuracy = FPOp->getFPAccuracy(); |
| 2327 | |
| 2328 | // Defer correctly rounded expansion to codegen. |
| 2329 | if (ReqdAccuracy < 1.0f) |
| 2330 | return false; |
| 2331 | |
| 2332 | // FIXME: This is an ugly hack for this pass using forward iteration instead |
| 2333 | // of reverse. If it worked like a normal combiner, the rsq would form before |
| 2334 | // we saw a sqrt call. |
| 2335 | auto *FDiv = |
| 2336 | dyn_cast_or_null<FPMathOperator>(Val: Sqrt.getUniqueUndroppableUser()); |
| 2337 | if (FDiv && FDiv->getOpcode() == Instruction::FDiv && |
| 2338 | FDiv->getFPAccuracy() >= 1.0f && |
| 2339 | canOptimizeWithRsq(SqrtOp: FPOp, DivFMF: FDiv->getFastMathFlags(), SqrtFMF) && |
| 2340 | // TODO: We should also handle the arcp case for the fdiv with non-1 value |
| 2341 | isOneOrNegOne(Val: FDiv->getOperand(i: 0))) |
| 2342 | return false; |
| 2343 | |
| 2344 | Value *SrcVal = Sqrt.getOperand(i_nocapture: 0); |
| 2345 | bool CanTreatAsDAZ = canIgnoreDenormalInput(V: SrcVal, CtxI: &Sqrt); |
| 2346 | |
| 2347 | // The raw instruction is 1 ulp, but the correction for denormal handling |
| 2348 | // brings it to 2. |
| 2349 | if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) |
| 2350 | return false; |
| 2351 | |
| 2352 | IRBuilder<> Builder(&Sqrt); |
| 2353 | SmallVector<Value *, 4> SrcVals; |
| 2354 | extractValues(Builder, Values&: SrcVals, V: SrcVal); |
| 2355 | |
| 2356 | SmallVector<Value *, 4> ResultVals(SrcVals.size()); |
| 2357 | for (int I = 0, E = SrcVals.size(); I != E; ++I) { |
| 2358 | if (CanTreatAsDAZ) |
| 2359 | ResultVals[I] = Builder.CreateCall(Callee: getSqrtF32(), Args: SrcVals[I]); |
| 2360 | else |
| 2361 | ResultVals[I] = emitSqrtIEEE2ULP(Builder, Src: SrcVals[I], FMF: SqrtFMF); |
| 2362 | } |
| 2363 | |
| 2364 | Value *NewSqrt = insertValues(Builder, Ty: Sqrt.getType(), Values&: ResultVals); |
| 2365 | NewSqrt->takeName(V: &Sqrt); |
| 2366 | Sqrt.replaceAllUsesWith(V: NewSqrt); |
| 2367 | Sqrt.eraseFromParent(); |
| 2368 | return true; |
| 2369 | } |
| 2370 | |
| 2371 | bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { |
| 2372 | if (skipFunction(F)) |
| 2373 | return false; |
| 2374 | |
| 2375 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 2376 | if (!TPC) |
| 2377 | return false; |
| 2378 | |
| 2379 | const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); |
| 2380 | const TargetLibraryInfo *TLI = |
| 2381 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 2382 | AssumptionCache *AC = |
| 2383 | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 2384 | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| 2385 | const DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| 2386 | const UniformityInfo &UA = |
| 2387 | getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); |
| 2388 | return AMDGPUCodeGenPrepareImpl(F, TM, TLI, AC, DT, UA).run(); |
| 2389 | } |
| 2390 | |
| 2391 | PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, |
| 2392 | FunctionAnalysisManager &FAM) { |
| 2393 | const AMDGPUTargetMachine &ATM = static_cast<const AMDGPUTargetMachine &>(TM); |
| 2394 | const TargetLibraryInfo *TLI = &FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 2395 | AssumptionCache *AC = &FAM.getResult<AssumptionAnalysis>(IR&: F); |
| 2396 | const DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(IR&: F); |
| 2397 | const UniformityInfo &UA = FAM.getResult<UniformityInfoAnalysis>(IR&: F); |
| 2398 | AMDGPUCodeGenPrepareImpl Impl(F, ATM, TLI, AC, DT, UA); |
| 2399 | if (!Impl.run()) |
| 2400 | return PreservedAnalyses::all(); |
| 2401 | PreservedAnalyses PA = PreservedAnalyses::none(); |
| 2402 | if (!Impl.FlowChanged) |
| 2403 | PA.preserveSet<CFGAnalyses>(); |
| 2404 | return PA; |
| 2405 | } |
| 2406 | |
| 2407 | INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, |
| 2408 | "AMDGPU IR optimizations" , false, false) |
| 2409 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 2410 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 2411 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
| 2412 | INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations" , |
| 2413 | false, false) |
| 2414 | |
| 2415 | char AMDGPUCodeGenPrepare::ID = 0; |
| 2416 | |
| 2417 | FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { |
| 2418 | return new AMDGPUCodeGenPrepare(); |
| 2419 | } |
| 2420 | |