| 1 | //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // \file |
| 10 | // This file implements a TargetTransformInfo analysis pass specific to the |
| 11 | // AMDGPU target machine. It uses the target's detailed information to provide |
| 12 | // more precise answers to certain TTI queries, while letting the target |
| 13 | // independent and default TTI implementations handle the rest. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "AMDGPUInstrInfo.h" |
| 18 | #include "AMDGPUTargetTransformInfo.h" |
| 19 | #include "GCNSubtarget.h" |
| 20 | #include "llvm/ADT/FloatingPointMode.h" |
| 21 | #include "llvm/IR/Dominators.h" |
| 22 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 23 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 24 | #include <optional> |
| 25 | |
| 26 | using namespace llvm; |
| 27 | using namespace llvm::PatternMatch; |
| 28 | |
| 29 | #define DEBUG_TYPE "AMDGPUtti" |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | struct AMDGPUImageDMaskIntrinsic { |
| 34 | unsigned Intr; |
| 35 | }; |
| 36 | |
| 37 | #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL |
| 38 | #include "InstCombineTables.inc" |
| 39 | |
| 40 | } // end anonymous namespace |
| 41 | |
| 42 | // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. |
| 43 | // |
| 44 | // A single NaN input is folded to minnum, so we rely on that folding for |
| 45 | // handling NaNs. |
| 46 | static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, |
| 47 | const APFloat &Src2) { |
| 48 | APFloat Max3 = maxnum(A: maxnum(A: Src0, B: Src1), B: Src2); |
| 49 | |
| 50 | APFloat::cmpResult Cmp0 = Max3.compare(RHS: Src0); |
| 51 | assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately" ); |
| 52 | if (Cmp0 == APFloat::cmpEqual) |
| 53 | return maxnum(A: Src1, B: Src2); |
| 54 | |
| 55 | APFloat::cmpResult Cmp1 = Max3.compare(RHS: Src1); |
| 56 | assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately" ); |
| 57 | if (Cmp1 == APFloat::cmpEqual) |
| 58 | return maxnum(A: Src0, B: Src2); |
| 59 | |
| 60 | return maxnum(A: Src0, B: Src1); |
| 61 | } |
| 62 | |
| 63 | // Check if a value can be converted to a 16-bit value without losing |
| 64 | // precision. |
| 65 | // The value is expected to be either a float (IsFloat = true) or an unsigned |
| 66 | // integer (IsFloat = false). |
| 67 | static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { |
| 68 | Type *VTy = V.getType(); |
| 69 | if (VTy->isHalfTy() || VTy->isIntegerTy(Bitwidth: 16)) { |
| 70 | // The value is already 16-bit, so we don't want to convert to 16-bit again! |
| 71 | return false; |
| 72 | } |
| 73 | if (IsFloat) { |
| 74 | if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(Val: &V)) { |
| 75 | // We need to check that if we cast the index down to a half, we do not |
| 76 | // lose precision. |
| 77 | APFloat FloatValue(ConstFloat->getValueAPF()); |
| 78 | bool LosesInfo = true; |
| 79 | FloatValue.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmTowardZero, |
| 80 | losesInfo: &LosesInfo); |
| 81 | return !LosesInfo; |
| 82 | } |
| 83 | } else { |
| 84 | if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: &V)) { |
| 85 | // We need to check that if we cast the index down to an i16, we do not |
| 86 | // lose precision. |
| 87 | APInt IntValue(ConstInt->getValue()); |
| 88 | return IntValue.getActiveBits() <= 16; |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | Value *CastSrc; |
| 93 | bool IsExt = IsFloat ? match(V: &V, P: m_FPExt(Op: PatternMatch::m_Value(V&: CastSrc))) |
| 94 | : match(V: &V, P: m_ZExt(Op: PatternMatch::m_Value(V&: CastSrc))); |
| 95 | if (IsExt) { |
| 96 | Type *CastSrcTy = CastSrc->getType(); |
| 97 | if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(Bitwidth: 16)) |
| 98 | return true; |
| 99 | } |
| 100 | |
| 101 | return false; |
| 102 | } |
| 103 | |
| 104 | // Convert a value to 16-bit. |
| 105 | static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { |
| 106 | Type *VTy = V.getType(); |
| 107 | if (isa<FPExtInst, SExtInst, ZExtInst>(Val: &V)) |
| 108 | return cast<Instruction>(Val: &V)->getOperand(i: 0); |
| 109 | if (VTy->isIntegerTy()) |
| 110 | return Builder.CreateIntCast(V: &V, DestTy: Type::getInt16Ty(C&: V.getContext()), isSigned: false); |
| 111 | if (VTy->isFloatingPointTy()) |
| 112 | return Builder.CreateFPCast(V: &V, DestTy: Type::getHalfTy(C&: V.getContext())); |
| 113 | |
| 114 | llvm_unreachable("Should never be called!" ); |
| 115 | } |
| 116 | |
| 117 | /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with |
| 118 | /// modified arguments (based on OldIntr) and replaces InstToReplace with |
| 119 | /// this newly created intrinsic call. |
| 120 | static std::optional<Instruction *> modifyIntrinsicCall( |
| 121 | IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr, |
| 122 | InstCombiner &IC, |
| 123 | std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)> |
| 124 | Func) { |
| 125 | SmallVector<Type *, 4> ArgTys; |
| 126 | if (!Intrinsic::getIntrinsicSignature(F: OldIntr.getCalledFunction(), ArgTys)) |
| 127 | return std::nullopt; |
| 128 | |
| 129 | SmallVector<Value *, 8> Args(OldIntr.args()); |
| 130 | |
| 131 | // Modify arguments and types |
| 132 | Func(Args, ArgTys); |
| 133 | |
| 134 | CallInst *NewCall = IC.Builder.CreateIntrinsic(ID: NewIntr, Types: ArgTys, Args); |
| 135 | NewCall->takeName(V: &OldIntr); |
| 136 | NewCall->copyMetadata(SrcInst: OldIntr); |
| 137 | if (isa<FPMathOperator>(Val: NewCall)) |
| 138 | NewCall->copyFastMathFlags(I: &OldIntr); |
| 139 | |
| 140 | // Erase and replace uses |
| 141 | if (!InstToReplace.getType()->isVoidTy()) |
| 142 | IC.replaceInstUsesWith(I&: InstToReplace, V: NewCall); |
| 143 | |
| 144 | bool RemoveOldIntr = &OldIntr != &InstToReplace; |
| 145 | |
| 146 | auto *RetValue = IC.eraseInstFromFunction(I&: InstToReplace); |
| 147 | if (RemoveOldIntr) |
| 148 | IC.eraseInstFromFunction(I&: OldIntr); |
| 149 | |
| 150 | return RetValue; |
| 151 | } |
| 152 | |
| 153 | static std::optional<Instruction *> |
| 154 | simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, |
| 155 | const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, |
| 156 | IntrinsicInst &II, InstCombiner &IC) { |
| 157 | // Optimize _L to _LZ when _L is zero |
| 158 | if (const auto *LZMappingInfo = |
| 159 | AMDGPU::getMIMGLZMappingInfo(L: ImageDimIntr->BaseOpcode)) { |
| 160 | if (auto *ConstantLod = |
| 161 | dyn_cast<ConstantFP>(Val: II.getOperand(i_nocapture: ImageDimIntr->LodIndex))) { |
| 162 | if (ConstantLod->isZero() || ConstantLod->isNegative()) { |
| 163 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
| 164 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: LZMappingInfo->LZ, |
| 165 | Dim: ImageDimIntr->Dim); |
| 166 | return modifyIntrinsicCall( |
| 167 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
| 168 | Args.erase(Args.begin() + ImageDimIntr->LodIndex); |
| 169 | }); |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Optimize _mip away, when 'lod' is zero |
| 175 | if (const auto *MIPMappingInfo = |
| 176 | AMDGPU::getMIMGMIPMappingInfo(MIP: ImageDimIntr->BaseOpcode)) { |
| 177 | if (auto *ConstantMip = |
| 178 | dyn_cast<ConstantInt>(Val: II.getOperand(i_nocapture: ImageDimIntr->MipIndex))) { |
| 179 | if (ConstantMip->isZero()) { |
| 180 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
| 181 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: MIPMappingInfo->NONMIP, |
| 182 | Dim: ImageDimIntr->Dim); |
| 183 | return modifyIntrinsicCall( |
| 184 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
| 185 | Args.erase(Args.begin() + ImageDimIntr->MipIndex); |
| 186 | }); |
| 187 | } |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | // Optimize _bias away when 'bias' is zero |
| 192 | if (const auto *BiasMappingInfo = |
| 193 | AMDGPU::getMIMGBiasMappingInfo(Bias: ImageDimIntr->BaseOpcode)) { |
| 194 | if (auto *ConstantBias = |
| 195 | dyn_cast<ConstantFP>(Val: II.getOperand(i_nocapture: ImageDimIntr->BiasIndex))) { |
| 196 | if (ConstantBias->isZero()) { |
| 197 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
| 198 | AMDGPU::getImageDimIntrinsicByBaseOpcode(BaseOpcode: BiasMappingInfo->NoBias, |
| 199 | Dim: ImageDimIntr->Dim); |
| 200 | return modifyIntrinsicCall( |
| 201 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
| 202 | Args.erase(Args.begin() + ImageDimIntr->BiasIndex); |
| 203 | ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); |
| 204 | }); |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | // Optimize _offset away when 'offset' is zero |
| 210 | if (const auto *OffsetMappingInfo = |
| 211 | AMDGPU::getMIMGOffsetMappingInfo(Offset: ImageDimIntr->BaseOpcode)) { |
| 212 | if (auto *ConstantOffset = |
| 213 | dyn_cast<ConstantInt>(Val: II.getOperand(i_nocapture: ImageDimIntr->OffsetIndex))) { |
| 214 | if (ConstantOffset->isZero()) { |
| 215 | const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = |
| 216 | AMDGPU::getImageDimIntrinsicByBaseOpcode( |
| 217 | BaseOpcode: OffsetMappingInfo->NoOffset, Dim: ImageDimIntr->Dim); |
| 218 | return modifyIntrinsicCall( |
| 219 | OldIntr&: II, InstToReplace&: II, NewIntr: NewImageDimIntr->Intr, IC, Func: [&](auto &Args, auto &ArgTys) { |
| 220 | Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); |
| 221 | }); |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // Try to use D16 |
| 227 | if (ST->hasD16Images()) { |
| 228 | |
| 229 | const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
| 230 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: ImageDimIntr->BaseOpcode); |
| 231 | |
| 232 | if (BaseOpcode->HasD16) { |
| 233 | |
| 234 | // If the only use of image intrinsic is a fptrunc (with conversion to |
| 235 | // half) then both fptrunc and image intrinsic will be replaced with image |
| 236 | // intrinsic with D16 flag. |
| 237 | if (II.hasOneUse()) { |
| 238 | Instruction *User = II.user_back(); |
| 239 | |
| 240 | if (User->getOpcode() == Instruction::FPTrunc && |
| 241 | User->getType()->getScalarType()->isHalfTy()) { |
| 242 | |
| 243 | return modifyIntrinsicCall(OldIntr&: II, InstToReplace&: *User, NewIntr: ImageDimIntr->Intr, IC, |
| 244 | Func: [&](auto &Args, auto &ArgTys) { |
| 245 | // Change return type of image intrinsic. |
| 246 | // Set it to return type of fptrunc. |
| 247 | ArgTys[0] = User->getType(); |
| 248 | }); |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | // Only perform D16 folding if every user of the image sample is |
| 253 | // an ExtractElementInst immediately followed by an FPTrunc to half. |
| 254 | SmallVector<std::pair<ExtractElementInst *, FPTruncInst *>, 4> |
| 255 | ; |
| 256 | bool = true; |
| 257 | |
| 258 | for (User *U : II.users()) { |
| 259 | auto *Ext = dyn_cast<ExtractElementInst>(Val: U); |
| 260 | if (!Ext || !Ext->hasOneUse()) { |
| 261 | AllHalfExtracts = false; |
| 262 | break; |
| 263 | } |
| 264 | |
| 265 | auto *Tr = dyn_cast<FPTruncInst>(Val: *Ext->user_begin()); |
| 266 | if (!Tr || !Tr->getType()->isHalfTy()) { |
| 267 | AllHalfExtracts = false; |
| 268 | break; |
| 269 | } |
| 270 | |
| 271 | ExtractTruncPairs.emplace_back(Args&: Ext, Args&: Tr); |
| 272 | } |
| 273 | |
| 274 | if (!ExtractTruncPairs.empty() && AllHalfExtracts) { |
| 275 | auto *VecTy = cast<VectorType>(Val: II.getType()); |
| 276 | Type *HalfVecTy = |
| 277 | VecTy->getWithNewType(EltTy: Type::getHalfTy(C&: II.getContext())); |
| 278 | |
| 279 | // Obtain the original image sample intrinsic's signature |
| 280 | // and replace its return type with the half-vector for D16 folding |
| 281 | SmallVector<Type *, 8> SigTys; |
| 282 | Intrinsic::getIntrinsicSignature(F: II.getCalledFunction(), ArgTys&: SigTys); |
| 283 | SigTys[0] = HalfVecTy; |
| 284 | |
| 285 | Module *M = II.getModule(); |
| 286 | Function *HalfDecl = |
| 287 | Intrinsic::getOrInsertDeclaration(M, id: ImageDimIntr->Intr, Tys: SigTys); |
| 288 | |
| 289 | II.mutateType(Ty: HalfVecTy); |
| 290 | II.setCalledFunction(HalfDecl); |
| 291 | |
| 292 | IRBuilder<> Builder(II.getContext()); |
| 293 | for (auto &[Ext, Tr] : ExtractTruncPairs) { |
| 294 | Value *Idx = Ext->getIndexOperand(); |
| 295 | |
| 296 | Builder.SetInsertPoint(Tr); |
| 297 | |
| 298 | Value * = Builder.CreateExtractElement(Vec: &II, Idx); |
| 299 | HalfExtract->takeName(V: Tr); |
| 300 | |
| 301 | Tr->replaceAllUsesWith(V: HalfExtract); |
| 302 | } |
| 303 | |
| 304 | for (auto &[Ext, Tr] : ExtractTruncPairs) { |
| 305 | IC.eraseInstFromFunction(I&: *Tr); |
| 306 | IC.eraseInstFromFunction(I&: *Ext); |
| 307 | } |
| 308 | |
| 309 | return &II; |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | // Try to use A16 or G16 |
| 315 | if (!ST->hasA16() && !ST->hasG16()) |
| 316 | return std::nullopt; |
| 317 | |
| 318 | // Address is interpreted as float if the instruction has a sampler or as |
| 319 | // unsigned int if there is no sampler. |
| 320 | bool HasSampler = |
| 321 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: ImageDimIntr->BaseOpcode)->Sampler; |
| 322 | bool FloatCoord = false; |
| 323 | // true means derivatives can be converted to 16 bit, coordinates not |
| 324 | bool OnlyDerivatives = false; |
| 325 | |
| 326 | for (unsigned OperandIndex = ImageDimIntr->GradientStart; |
| 327 | OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { |
| 328 | Value *Coord = II.getOperand(i_nocapture: OperandIndex); |
| 329 | // If the values are not derived from 16-bit values, we cannot optimize. |
| 330 | if (!canSafelyConvertTo16Bit(V&: *Coord, IsFloat: HasSampler)) { |
| 331 | if (OperandIndex < ImageDimIntr->CoordStart || |
| 332 | ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { |
| 333 | return std::nullopt; |
| 334 | } |
| 335 | // All gradients can be converted, so convert only them |
| 336 | OnlyDerivatives = true; |
| 337 | break; |
| 338 | } |
| 339 | |
| 340 | assert(OperandIndex == ImageDimIntr->GradientStart || |
| 341 | FloatCoord == Coord->getType()->isFloatingPointTy()); |
| 342 | FloatCoord = Coord->getType()->isFloatingPointTy(); |
| 343 | } |
| 344 | |
| 345 | if (!OnlyDerivatives && !ST->hasA16()) |
| 346 | OnlyDerivatives = true; // Only supports G16 |
| 347 | |
| 348 | // Check if there is a bias parameter and if it can be converted to f16 |
| 349 | if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { |
| 350 | Value *Bias = II.getOperand(i_nocapture: ImageDimIntr->BiasIndex); |
| 351 | assert(HasSampler && |
| 352 | "Only image instructions with a sampler can have a bias" ); |
| 353 | if (!canSafelyConvertTo16Bit(V&: *Bias, IsFloat: HasSampler)) |
| 354 | OnlyDerivatives = true; |
| 355 | } |
| 356 | |
| 357 | if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == |
| 358 | ImageDimIntr->CoordStart)) |
| 359 | return std::nullopt; |
| 360 | |
| 361 | Type *CoordType = FloatCoord ? Type::getHalfTy(C&: II.getContext()) |
| 362 | : Type::getInt16Ty(C&: II.getContext()); |
| 363 | |
| 364 | return modifyIntrinsicCall( |
| 365 | OldIntr&: II, InstToReplace&: II, NewIntr: II.getIntrinsicID(), IC, Func: [&](auto &Args, auto &ArgTys) { |
| 366 | ArgTys[ImageDimIntr->GradientTyArg] = CoordType; |
| 367 | if (!OnlyDerivatives) { |
| 368 | ArgTys[ImageDimIntr->CoordTyArg] = CoordType; |
| 369 | |
| 370 | // Change the bias type |
| 371 | if (ImageDimIntr->NumBiasArgs != 0) |
| 372 | ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(C&: II.getContext()); |
| 373 | } |
| 374 | |
| 375 | unsigned EndIndex = |
| 376 | OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; |
| 377 | for (unsigned OperandIndex = ImageDimIntr->GradientStart; |
| 378 | OperandIndex < EndIndex; OperandIndex++) { |
| 379 | Args[OperandIndex] = |
| 380 | convertTo16Bit(V&: *II.getOperand(i_nocapture: OperandIndex), Builder&: IC.Builder); |
| 381 | } |
| 382 | |
| 383 | // Convert the bias |
| 384 | if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { |
| 385 | Value *Bias = II.getOperand(i_nocapture: ImageDimIntr->BiasIndex); |
| 386 | Args[ImageDimIntr->BiasIndex] = convertTo16Bit(V&: *Bias, Builder&: IC.Builder); |
| 387 | } |
| 388 | }); |
| 389 | } |
| 390 | |
| 391 | bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I, |
| 392 | const Value *Op0, const Value *Op1, |
| 393 | InstCombiner &IC) const { |
| 394 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
| 395 | // infinity, gives +0.0. If we can prove we don't have one of the special |
| 396 | // cases then we can use a normal multiply instead. |
| 397 | // TODO: Create and use isKnownFiniteNonZero instead of just matching |
| 398 | // constants here. |
| 399 | if (match(V: Op0, P: PatternMatch::m_FiniteNonZero()) || |
| 400 | match(V: Op1, P: PatternMatch::m_FiniteNonZero())) { |
| 401 | // One operand is not zero or infinity or NaN. |
| 402 | return true; |
| 403 | } |
| 404 | |
| 405 | SimplifyQuery SQ = IC.getSimplifyQuery().getWithInstruction(I: &I); |
| 406 | if (isKnownNeverInfOrNaN(V: Op0, SQ) && isKnownNeverInfOrNaN(V: Op1, SQ)) { |
| 407 | // Neither operand is infinity or NaN. |
| 408 | return true; |
| 409 | } |
| 410 | return false; |
| 411 | } |
| 412 | |
| 413 | /// Match an fpext from half to float, or a constant we can convert. |
| 414 | static Value *matchFPExtFromF16(Value *Arg) { |
| 415 | Value *Src = nullptr; |
| 416 | ConstantFP *CFP = nullptr; |
| 417 | if (match(V: Arg, P: m_OneUse(SubPattern: m_FPExt(Op: m_Value(V&: Src))))) { |
| 418 | if (Src->getType()->isHalfTy()) |
| 419 | return Src; |
| 420 | } else if (match(V: Arg, P: m_ConstantFP(C&: CFP))) { |
| 421 | bool LosesInfo; |
| 422 | APFloat Val(CFP->getValueAPF()); |
| 423 | Val.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 424 | if (!LosesInfo) |
| 425 | return ConstantFP::get(Ty: Type::getHalfTy(C&: Arg->getContext()), V: Val); |
| 426 | } |
| 427 | return nullptr; |
| 428 | } |
| 429 | |
| 430 | // Trim all zero components from the end of the vector \p UseV and return |
| 431 | // an appropriate bitset with known elements. |
| 432 | static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV, |
| 433 | Instruction *I) { |
| 434 | auto *VTy = cast<FixedVectorType>(Val: UseV->getType()); |
| 435 | unsigned VWidth = VTy->getNumElements(); |
| 436 | APInt DemandedElts = APInt::getAllOnes(numBits: VWidth); |
| 437 | |
| 438 | for (int i = VWidth - 1; i > 0; --i) { |
| 439 | auto *Elt = findScalarElement(V: UseV, EltNo: i); |
| 440 | if (!Elt) |
| 441 | break; |
| 442 | |
| 443 | if (auto *ConstElt = dyn_cast<Constant>(Val: Elt)) { |
| 444 | if (!ConstElt->isNullValue() && !isa<UndefValue>(Val: Elt)) |
| 445 | break; |
| 446 | } else { |
| 447 | break; |
| 448 | } |
| 449 | |
| 450 | DemandedElts.clearBit(BitPosition: i); |
| 451 | } |
| 452 | |
| 453 | return DemandedElts; |
| 454 | } |
| 455 | |
| 456 | // Trim elements of the end of the vector \p V, if they are |
| 457 | // equal to the first element of the vector. |
| 458 | static APInt defaultComponentBroadcast(Value *V) { |
| 459 | auto *VTy = cast<FixedVectorType>(Val: V->getType()); |
| 460 | unsigned VWidth = VTy->getNumElements(); |
| 461 | APInt DemandedElts = APInt::getAllOnes(numBits: VWidth); |
| 462 | Value *FirstComponent = findScalarElement(V, EltNo: 0); |
| 463 | |
| 464 | SmallVector<int> ShuffleMask; |
| 465 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(Val: V)) |
| 466 | SVI->getShuffleMask(Result&: ShuffleMask); |
| 467 | |
| 468 | for (int I = VWidth - 1; I > 0; --I) { |
| 469 | if (ShuffleMask.empty()) { |
| 470 | auto *Elt = findScalarElement(V, EltNo: I); |
| 471 | if (!Elt || (Elt != FirstComponent && !isa<UndefValue>(Val: Elt))) |
| 472 | break; |
| 473 | } else { |
| 474 | // Detect identical elements in the shufflevector result, even though |
| 475 | // findScalarElement cannot tell us what that element is. |
| 476 | if (ShuffleMask[I] != ShuffleMask[0] && ShuffleMask[I] != PoisonMaskElem) |
| 477 | break; |
| 478 | } |
| 479 | DemandedElts.clearBit(BitPosition: I); |
| 480 | } |
| 481 | |
| 482 | return DemandedElts; |
| 483 | } |
| 484 | |
| 485 | static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, |
| 486 | IntrinsicInst &II, |
| 487 | APInt DemandedElts, |
| 488 | int DMaskIdx = -1, |
| 489 | bool IsLoad = true); |
| 490 | |
| 491 | /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt) |
| 492 | static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) { |
| 493 | return (SqrtOp->getType()->isFloatTy() && |
| 494 | (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) || |
| 495 | SqrtOp->getType()->isHalfTy(); |
| 496 | } |
| 497 | |
| 498 | /// Return true if we can easily prove that use U is uniform. |
| 499 | static bool isTriviallyUniform(const Use &U) { |
| 500 | Value *V = U.get(); |
| 501 | if (isa<Constant>(Val: V)) |
| 502 | return true; |
| 503 | if (const auto *A = dyn_cast<Argument>(Val: V)) |
| 504 | return AMDGPU::isArgPassedInSGPR(Arg: A); |
| 505 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: V)) { |
| 506 | if (!AMDGPU::isIntrinsicAlwaysUniform(IntrID: II->getIntrinsicID())) |
| 507 | return false; |
| 508 | // If II and U are in different blocks then there is a possibility of |
| 509 | // temporal divergence. |
| 510 | return II->getParent() == cast<Instruction>(Val: U.getUser())->getParent(); |
| 511 | } |
| 512 | return false; |
| 513 | } |
| 514 | |
| 515 | /// Simplify a lane index operand (e.g. llvm.amdgcn.readlane src1). |
| 516 | /// |
| 517 | /// The instruction only reads the low 5 bits for wave32, and 6 bits for wave64. |
| 518 | bool GCNTTIImpl::simplifyDemandedLaneMaskArg(InstCombiner &IC, |
| 519 | IntrinsicInst &II, |
| 520 | unsigned LaneArgIdx) const { |
| 521 | unsigned MaskBits = ST->getWavefrontSizeLog2(); |
| 522 | APInt DemandedMask(32, maskTrailingOnes<unsigned>(N: MaskBits)); |
| 523 | |
| 524 | KnownBits Known(32); |
| 525 | if (IC.SimplifyDemandedBits(I: &II, OpNo: LaneArgIdx, DemandedMask, Known)) |
| 526 | return true; |
| 527 | |
| 528 | if (!Known.isConstant()) |
| 529 | return false; |
| 530 | |
| 531 | // Out of bounds indexes may appear in wave64 code compiled for wave32. |
| 532 | // Unlike the DAG version, SimplifyDemandedBits does not change constants, so |
| 533 | // manually fix it up. |
| 534 | |
| 535 | Value *LaneArg = II.getArgOperand(i: LaneArgIdx); |
| 536 | Constant *MaskedConst = |
| 537 | ConstantInt::get(Ty: LaneArg->getType(), V: Known.getConstant() & DemandedMask); |
| 538 | if (MaskedConst != LaneArg) { |
| 539 | II.getOperandUse(i: LaneArgIdx).set(MaskedConst); |
| 540 | return true; |
| 541 | } |
| 542 | |
| 543 | return false; |
| 544 | } |
| 545 | |
| 546 | static CallInst *rewriteCall(IRBuilderBase &B, CallInst &Old, |
| 547 | Function &NewCallee, ArrayRef<Value *> Ops) { |
| 548 | SmallVector<OperandBundleDef, 2> OpBundles; |
| 549 | Old.getOperandBundlesAsDefs(Defs&: OpBundles); |
| 550 | |
| 551 | CallInst *NewCall = B.CreateCall(Callee: &NewCallee, Args: Ops, OpBundles); |
| 552 | NewCall->takeName(V: &Old); |
| 553 | return NewCall; |
| 554 | } |
| 555 | |
| 556 | Instruction * |
| 557 | GCNTTIImpl::hoistLaneIntrinsicThroughOperand(InstCombiner &IC, |
| 558 | IntrinsicInst &II) const { |
| 559 | const auto IID = II.getIntrinsicID(); |
| 560 | assert(IID == Intrinsic::amdgcn_readlane || |
| 561 | IID == Intrinsic::amdgcn_readfirstlane || |
| 562 | IID == Intrinsic::amdgcn_permlane64); |
| 563 | |
| 564 | Instruction *OpInst = dyn_cast<Instruction>(Val: II.getOperand(i_nocapture: 0)); |
| 565 | |
| 566 | // Only do this if both instructions are in the same block |
| 567 | // (so the exec mask won't change) and the readlane is the only user of its |
| 568 | // operand. |
| 569 | if (!OpInst || !OpInst->hasOneUser() || OpInst->getParent() != II.getParent()) |
| 570 | return nullptr; |
| 571 | |
| 572 | const bool IsReadLane = (IID == Intrinsic::amdgcn_readlane); |
| 573 | |
| 574 | // If this is a readlane, check that the second operand is a constant, or is |
| 575 | // defined before OpInst so we know it's safe to move this intrinsic higher. |
| 576 | Value *LaneID = nullptr; |
| 577 | if (IsReadLane) { |
| 578 | LaneID = II.getOperand(i_nocapture: 1); |
| 579 | |
| 580 | // readlane take an extra operand for the lane ID, so we must check if that |
| 581 | // LaneID value can be used at the point where we want to move the |
| 582 | // intrinsic. |
| 583 | if (auto *LaneIDInst = dyn_cast<Instruction>(Val: LaneID)) { |
| 584 | if (!IC.getDominatorTree().dominates(Def: LaneIDInst, User: OpInst)) |
| 585 | return nullptr; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | // Hoist the intrinsic (II) through OpInst. |
| 590 | // |
| 591 | // (II (OpInst x)) -> (OpInst (II x)) |
| 592 | const auto DoIt = [&](unsigned OpIdx, |
| 593 | Function *NewIntrinsic) -> Instruction * { |
| 594 | SmallVector<Value *, 2> Ops{OpInst->getOperand(i: OpIdx)}; |
| 595 | if (IsReadLane) |
| 596 | Ops.push_back(Elt: LaneID); |
| 597 | |
| 598 | // Rewrite the intrinsic call. |
| 599 | CallInst *NewII = rewriteCall(B&: IC.Builder, Old&: II, NewCallee&: *NewIntrinsic, Ops); |
| 600 | |
| 601 | // Rewrite OpInst so it takes the result of the intrinsic now. |
| 602 | Instruction &NewOp = *OpInst->clone(); |
| 603 | NewOp.setOperand(i: OpIdx, Val: NewII); |
| 604 | return &NewOp; |
| 605 | }; |
| 606 | |
| 607 | // TODO(?): Should we do more with permlane64? |
| 608 | if (IID == Intrinsic::amdgcn_permlane64 && !isa<BitCastInst>(Val: OpInst)) |
| 609 | return nullptr; |
| 610 | |
| 611 | if (isa<UnaryOperator>(Val: OpInst)) |
| 612 | return DoIt(0, II.getCalledFunction()); |
| 613 | |
| 614 | if (isa<CastInst>(Val: OpInst)) { |
| 615 | Value *Src = OpInst->getOperand(i: 0); |
| 616 | Type *SrcTy = Src->getType(); |
| 617 | if (!isTypeLegal(Ty: SrcTy)) |
| 618 | return nullptr; |
| 619 | |
| 620 | Function *Remangled = |
| 621 | Intrinsic::getOrInsertDeclaration(M: II.getModule(), id: IID, Tys: {SrcTy}); |
| 622 | return DoIt(0, Remangled); |
| 623 | } |
| 624 | |
| 625 | // We can also hoist through binary operators if the other operand is uniform. |
| 626 | if (isa<BinaryOperator>(Val: OpInst)) { |
| 627 | // FIXME: If we had access to UniformityInfo here we could just check |
| 628 | // if the operand is uniform. |
| 629 | if (isTriviallyUniform(U: OpInst->getOperandUse(i: 0))) |
| 630 | return DoIt(1, II.getCalledFunction()); |
| 631 | if (isTriviallyUniform(U: OpInst->getOperandUse(i: 1))) |
| 632 | return DoIt(0, II.getCalledFunction()); |
| 633 | } |
| 634 | |
| 635 | return nullptr; |
| 636 | } |
| 637 | |
| 638 | std::optional<Instruction *> |
| 639 | GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| 640 | Intrinsic::ID IID = II.getIntrinsicID(); |
| 641 | switch (IID) { |
| 642 | case Intrinsic::amdgcn_rcp: { |
| 643 | Value *Src = II.getArgOperand(i: 0); |
| 644 | if (isa<PoisonValue>(Val: Src)) |
| 645 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 646 | |
| 647 | // TODO: Move to ConstantFolding/InstSimplify? |
| 648 | if (isa<UndefValue>(Val: Src)) { |
| 649 | Type *Ty = II.getType(); |
| 650 | auto *QNaN = ConstantFP::get(Ty, V: APFloat::getQNaN(Sem: Ty->getFltSemantics())); |
| 651 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
| 652 | } |
| 653 | |
| 654 | if (II.isStrictFP()) |
| 655 | break; |
| 656 | |
| 657 | if (const ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
| 658 | const APFloat &ArgVal = C->getValueAPF(); |
| 659 | APFloat Val(ArgVal.getSemantics(), 1); |
| 660 | Val.divide(RHS: ArgVal, RM: APFloat::rmNearestTiesToEven); |
| 661 | |
| 662 | // This is more precise than the instruction may give. |
| 663 | // |
| 664 | // TODO: The instruction always flushes denormal results (except for f16), |
| 665 | // should this also? |
| 666 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Context&: II.getContext(), V: Val)); |
| 667 | } |
| 668 | |
| 669 | FastMathFlags FMF = cast<FPMathOperator>(Val&: II).getFastMathFlags(); |
| 670 | if (!FMF.allowContract()) |
| 671 | break; |
| 672 | auto *SrcCI = dyn_cast<IntrinsicInst>(Val: Src); |
| 673 | if (!SrcCI) |
| 674 | break; |
| 675 | |
| 676 | auto IID = SrcCI->getIntrinsicID(); |
| 677 | // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable |
| 678 | // |
| 679 | // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and |
| 680 | // relaxed. |
| 681 | if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) { |
| 682 | const FPMathOperator *SqrtOp = cast<FPMathOperator>(Val: SrcCI); |
| 683 | FastMathFlags InnerFMF = SqrtOp->getFastMathFlags(); |
| 684 | if (!InnerFMF.allowContract() || !SrcCI->hasOneUse()) |
| 685 | break; |
| 686 | |
| 687 | if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp)) |
| 688 | break; |
| 689 | |
| 690 | Function *NewDecl = Intrinsic::getOrInsertDeclaration( |
| 691 | M: SrcCI->getModule(), id: Intrinsic::amdgcn_rsq, Tys: {SrcCI->getType()}); |
| 692 | |
| 693 | InnerFMF |= FMF; |
| 694 | II.setFastMathFlags(InnerFMF); |
| 695 | |
| 696 | II.setCalledFunction(NewDecl); |
| 697 | return IC.replaceOperand(I&: II, OpNum: 0, V: SrcCI->getArgOperand(i: 0)); |
| 698 | } |
| 699 | |
| 700 | break; |
| 701 | } |
| 702 | case Intrinsic::amdgcn_sqrt: |
| 703 | case Intrinsic::amdgcn_rsq: { |
| 704 | Value *Src = II.getArgOperand(i: 0); |
| 705 | if (isa<PoisonValue>(Val: Src)) |
| 706 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 707 | |
| 708 | // TODO: Move to ConstantFolding/InstSimplify? |
| 709 | if (isa<UndefValue>(Val: Src)) { |
| 710 | Type *Ty = II.getType(); |
| 711 | auto *QNaN = ConstantFP::get(Ty, V: APFloat::getQNaN(Sem: Ty->getFltSemantics())); |
| 712 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
| 713 | } |
| 714 | |
| 715 | // f16 amdgcn.sqrt is identical to regular sqrt. |
| 716 | if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) { |
| 717 | Function *NewDecl = Intrinsic::getOrInsertDeclaration( |
| 718 | M: II.getModule(), id: Intrinsic::sqrt, Tys: {II.getType()}); |
| 719 | II.setCalledFunction(NewDecl); |
| 720 | return &II; |
| 721 | } |
| 722 | |
| 723 | break; |
| 724 | } |
| 725 | case Intrinsic::amdgcn_log: |
| 726 | case Intrinsic::amdgcn_exp2: { |
| 727 | const bool IsLog = IID == Intrinsic::amdgcn_log; |
| 728 | const bool IsExp = IID == Intrinsic::amdgcn_exp2; |
| 729 | Value *Src = II.getArgOperand(i: 0); |
| 730 | Type *Ty = II.getType(); |
| 731 | |
| 732 | if (isa<PoisonValue>(Val: Src)) |
| 733 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 734 | |
| 735 | if (IC.getSimplifyQuery().isUndefValue(V: Src)) |
| 736 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getNaN(Ty)); |
| 737 | |
| 738 | if (ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
| 739 | if (C->isInfinity()) { |
| 740 | // exp2(+inf) -> +inf |
| 741 | // log2(+inf) -> +inf |
| 742 | if (!C->isNegative()) |
| 743 | return IC.replaceInstUsesWith(I&: II, V: C); |
| 744 | |
| 745 | // exp2(-inf) -> 0 |
| 746 | if (IsExp && C->isNegative()) |
| 747 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getZero(Ty)); |
| 748 | } |
| 749 | |
| 750 | if (II.isStrictFP()) |
| 751 | break; |
| 752 | |
| 753 | if (C->isNaN()) { |
| 754 | Constant *Quieted = ConstantFP::get(Ty, V: C->getValue().makeQuiet()); |
| 755 | return IC.replaceInstUsesWith(I&: II, V: Quieted); |
| 756 | } |
| 757 | |
| 758 | // f32 instruction doesn't handle denormals, f16 does. |
| 759 | if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) { |
| 760 | Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, Negative: true) |
| 761 | : ConstantFP::get(Ty, V: 1.0); |
| 762 | return IC.replaceInstUsesWith(I&: II, V: FoldedValue); |
| 763 | } |
| 764 | |
| 765 | if (IsLog && C->isNegative()) |
| 766 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getNaN(Ty)); |
| 767 | |
| 768 | // TODO: Full constant folding matching hardware behavior. |
| 769 | } |
| 770 | |
| 771 | break; |
| 772 | } |
| 773 | case Intrinsic::amdgcn_frexp_mant: |
| 774 | case Intrinsic::amdgcn_frexp_exp: { |
| 775 | Value *Src = II.getArgOperand(i: 0); |
| 776 | if (const ConstantFP *C = dyn_cast<ConstantFP>(Val: Src)) { |
| 777 | int Exp; |
| 778 | APFloat Significand = |
| 779 | frexp(X: C->getValueAPF(), Exp, RM: APFloat::rmNearestTiesToEven); |
| 780 | |
| 781 | if (IID == Intrinsic::amdgcn_frexp_mant) { |
| 782 | return IC.replaceInstUsesWith( |
| 783 | I&: II, V: ConstantFP::get(Context&: II.getContext(), V: Significand)); |
| 784 | } |
| 785 | |
| 786 | // Match instruction special case behavior. |
| 787 | if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) |
| 788 | Exp = 0; |
| 789 | |
| 790 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: Exp)); |
| 791 | } |
| 792 | |
| 793 | if (isa<PoisonValue>(Val: Src)) |
| 794 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 795 | |
| 796 | if (isa<UndefValue>(Val: Src)) { |
| 797 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
| 798 | } |
| 799 | |
| 800 | break; |
| 801 | } |
| 802 | case Intrinsic::amdgcn_class: { |
| 803 | Value *Src0 = II.getArgOperand(i: 0); |
| 804 | Value *Src1 = II.getArgOperand(i: 1); |
| 805 | const ConstantInt *CMask = dyn_cast<ConstantInt>(Val: Src1); |
| 806 | if (CMask) { |
| 807 | II.setCalledOperand(Intrinsic::getOrInsertDeclaration( |
| 808 | M: II.getModule(), id: Intrinsic::is_fpclass, Tys: Src0->getType())); |
| 809 | |
| 810 | // Clamp any excess bits, as they're illegal for the generic intrinsic. |
| 811 | II.setArgOperand(i: 1, v: ConstantInt::get(Ty: Src1->getType(), |
| 812 | V: CMask->getZExtValue() & fcAllFlags)); |
| 813 | return &II; |
| 814 | } |
| 815 | |
| 816 | // Propagate poison. |
| 817 | if (isa<PoisonValue>(Val: Src0) || isa<PoisonValue>(Val: Src1)) |
| 818 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 819 | |
| 820 | // llvm.amdgcn.class(_, undef) -> false |
| 821 | if (IC.getSimplifyQuery().isUndefValue(V: Src1)) |
| 822 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: false)); |
| 823 | |
| 824 | // llvm.amdgcn.class(undef, mask) -> mask != 0 |
| 825 | if (IC.getSimplifyQuery().isUndefValue(V: Src0)) { |
| 826 | Value *CmpMask = IC.Builder.CreateICmpNE( |
| 827 | LHS: Src1, RHS: ConstantInt::getNullValue(Ty: Src1->getType())); |
| 828 | return IC.replaceInstUsesWith(I&: II, V: CmpMask); |
| 829 | } |
| 830 | break; |
| 831 | } |
| 832 | case Intrinsic::amdgcn_cvt_pkrtz: { |
| 833 | auto foldFPTruncToF16RTZ = [](Value *Arg) -> Value * { |
| 834 | Type *HalfTy = Type::getHalfTy(C&: Arg->getContext()); |
| 835 | |
| 836 | if (isa<PoisonValue>(Val: Arg)) |
| 837 | return PoisonValue::get(T: HalfTy); |
| 838 | if (isa<UndefValue>(Val: Arg)) |
| 839 | return UndefValue::get(T: HalfTy); |
| 840 | |
| 841 | ConstantFP *CFP = nullptr; |
| 842 | if (match(V: Arg, P: m_ConstantFP(C&: CFP))) { |
| 843 | bool LosesInfo; |
| 844 | APFloat Val(CFP->getValueAPF()); |
| 845 | Val.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmTowardZero, losesInfo: &LosesInfo); |
| 846 | return ConstantFP::get(Ty: HalfTy, V: Val); |
| 847 | } |
| 848 | |
| 849 | Value *Src = nullptr; |
| 850 | if (match(V: Arg, P: m_FPExt(Op: m_Value(V&: Src)))) { |
| 851 | if (Src->getType()->isHalfTy()) |
| 852 | return Src; |
| 853 | } |
| 854 | |
| 855 | return nullptr; |
| 856 | }; |
| 857 | |
| 858 | if (Value *Src0 = foldFPTruncToF16RTZ(II.getArgOperand(i: 0))) { |
| 859 | if (Value *Src1 = foldFPTruncToF16RTZ(II.getArgOperand(i: 1))) { |
| 860 | Value *V = PoisonValue::get(T: II.getType()); |
| 861 | V = IC.Builder.CreateInsertElement(Vec: V, NewElt: Src0, Idx: (uint64_t)0); |
| 862 | V = IC.Builder.CreateInsertElement(Vec: V, NewElt: Src1, Idx: (uint64_t)1); |
| 863 | return IC.replaceInstUsesWith(I&: II, V); |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | break; |
| 868 | } |
| 869 | case Intrinsic::amdgcn_cvt_pknorm_i16: |
| 870 | case Intrinsic::amdgcn_cvt_pknorm_u16: |
| 871 | case Intrinsic::amdgcn_cvt_pk_i16: |
| 872 | case Intrinsic::amdgcn_cvt_pk_u16: { |
| 873 | Value *Src0 = II.getArgOperand(i: 0); |
| 874 | Value *Src1 = II.getArgOperand(i: 1); |
| 875 | |
| 876 | // TODO: Replace call with scalar operation if only one element is poison. |
| 877 | if (isa<PoisonValue>(Val: Src0) && isa<PoisonValue>(Val: Src1)) |
| 878 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 879 | |
| 880 | if (isa<UndefValue>(Val: Src0) && isa<UndefValue>(Val: Src1)) { |
| 881 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
| 882 | } |
| 883 | |
| 884 | break; |
| 885 | } |
| 886 | case Intrinsic::amdgcn_cvt_off_f32_i4: { |
| 887 | Value* Arg = II.getArgOperand(i: 0); |
| 888 | Type *Ty = II.getType(); |
| 889 | |
| 890 | if (isa<PoisonValue>(Val: Arg)) |
| 891 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: Ty)); |
| 892 | |
| 893 | if(IC.getSimplifyQuery().isUndefValue(V: Arg)) |
| 894 | return IC.replaceInstUsesWith(I&: II, V: Constant::getNullValue(Ty)); |
| 895 | |
| 896 | ConstantInt *CArg = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
| 897 | if (!CArg) |
| 898 | break; |
| 899 | |
| 900 | // Tabulated 0.0625 * (sext (CArg & 0xf)). |
| 901 | constexpr size_t ResValsSize = 16; |
| 902 | static constexpr float ResVals[ResValsSize] = { |
| 903 | 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, |
| 904 | -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625}; |
| 905 | Constant *Res = |
| 906 | ConstantFP::get(Ty, V: ResVals[CArg->getZExtValue() & (ResValsSize - 1)]); |
| 907 | return IC.replaceInstUsesWith(I&: II, V: Res); |
| 908 | } |
| 909 | case Intrinsic::amdgcn_ubfe: |
| 910 | case Intrinsic::amdgcn_sbfe: { |
| 911 | // Decompose simple cases into standard shifts. |
| 912 | Value *Src = II.getArgOperand(i: 0); |
| 913 | if (isa<UndefValue>(Val: Src)) { |
| 914 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 915 | } |
| 916 | |
| 917 | unsigned Width; |
| 918 | Type *Ty = II.getType(); |
| 919 | unsigned IntSize = Ty->getIntegerBitWidth(); |
| 920 | |
| 921 | ConstantInt *CWidth = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
| 922 | if (CWidth) { |
| 923 | Width = CWidth->getZExtValue(); |
| 924 | if ((Width & (IntSize - 1)) == 0) { |
| 925 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::getNullValue(Ty)); |
| 926 | } |
| 927 | |
| 928 | // Hardware ignores high bits, so remove those. |
| 929 | if (Width >= IntSize) { |
| 930 | return IC.replaceOperand( |
| 931 | I&: II, OpNum: 2, V: ConstantInt::get(Ty: CWidth->getType(), V: Width & (IntSize - 1))); |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | unsigned Offset; |
| 936 | ConstantInt *COffset = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
| 937 | if (COffset) { |
| 938 | Offset = COffset->getZExtValue(); |
| 939 | if (Offset >= IntSize) { |
| 940 | return IC.replaceOperand( |
| 941 | I&: II, OpNum: 1, |
| 942 | V: ConstantInt::get(Ty: COffset->getType(), V: Offset & (IntSize - 1))); |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | bool Signed = IID == Intrinsic::amdgcn_sbfe; |
| 947 | |
| 948 | if (!CWidth || !COffset) |
| 949 | break; |
| 950 | |
| 951 | // The case of Width == 0 is handled above, which makes this transformation |
| 952 | // safe. If Width == 0, then the ashr and lshr instructions become poison |
| 953 | // value since the shift amount would be equal to the bit size. |
| 954 | assert(Width != 0); |
| 955 | |
| 956 | // TODO: This allows folding to undef when the hardware has specific |
| 957 | // behavior? |
| 958 | if (Offset + Width < IntSize) { |
| 959 | Value *Shl = IC.Builder.CreateShl(LHS: Src, RHS: IntSize - Offset - Width); |
| 960 | Value *RightShift = Signed ? IC.Builder.CreateAShr(LHS: Shl, RHS: IntSize - Width) |
| 961 | : IC.Builder.CreateLShr(LHS: Shl, RHS: IntSize - Width); |
| 962 | RightShift->takeName(V: &II); |
| 963 | return IC.replaceInstUsesWith(I&: II, V: RightShift); |
| 964 | } |
| 965 | |
| 966 | Value *RightShift = Signed ? IC.Builder.CreateAShr(LHS: Src, RHS: Offset) |
| 967 | : IC.Builder.CreateLShr(LHS: Src, RHS: Offset); |
| 968 | |
| 969 | RightShift->takeName(V: &II); |
| 970 | return IC.replaceInstUsesWith(I&: II, V: RightShift); |
| 971 | } |
| 972 | case Intrinsic::amdgcn_exp: |
| 973 | case Intrinsic::amdgcn_exp_row: |
| 974 | case Intrinsic::amdgcn_exp_compr: { |
| 975 | ConstantInt *En = cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
| 976 | unsigned EnBits = En->getZExtValue(); |
| 977 | if (EnBits == 0xf) |
| 978 | break; // All inputs enabled. |
| 979 | |
| 980 | bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; |
| 981 | bool Changed = false; |
| 982 | for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { |
| 983 | if ((!IsCompr && (EnBits & (1 << I)) == 0) || |
| 984 | (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { |
| 985 | Value *Src = II.getArgOperand(i: I + 2); |
| 986 | if (!isa<PoisonValue>(Val: Src)) { |
| 987 | IC.replaceOperand(I&: II, OpNum: I + 2, V: PoisonValue::get(T: Src->getType())); |
| 988 | Changed = true; |
| 989 | } |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | if (Changed) { |
| 994 | return &II; |
| 995 | } |
| 996 | |
| 997 | break; |
| 998 | } |
| 999 | case Intrinsic::amdgcn_fmed3: { |
| 1000 | Value *Src0 = II.getArgOperand(i: 0); |
| 1001 | Value *Src1 = II.getArgOperand(i: 1); |
| 1002 | Value *Src2 = II.getArgOperand(i: 2); |
| 1003 | |
| 1004 | for (Value *Src : {Src0, Src1, Src2}) { |
| 1005 | if (isa<PoisonValue>(Val: Src)) |
| 1006 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 1007 | } |
| 1008 | |
| 1009 | if (II.isStrictFP()) |
| 1010 | break; |
| 1011 | |
| 1012 | // med3 with a nan input acts like |
| 1013 | // v_min_f32(v_min_f32(s0, s1), s2) |
| 1014 | // |
| 1015 | // Signalingness is ignored with ieee=0, so we fold to |
| 1016 | // minimumnum/maximumnum. With ieee=1, the v_min_f32 acts like llvm.minnum |
| 1017 | // with signaling nan handling. With ieee=0, like llvm.minimumnum except a |
| 1018 | // returned signaling nan will not be quieted. |
| 1019 | |
| 1020 | // ieee=1 |
| 1021 | // s0 snan: s2 |
| 1022 | // s1 snan: s2 |
| 1023 | // s2 snan: qnan |
| 1024 | |
| 1025 | // s0 qnan: min(s1, s2) |
| 1026 | // s1 qnan: min(s0, s2) |
| 1027 | // s2 qnan: min(s0, s1) |
| 1028 | |
| 1029 | // ieee=0 |
| 1030 | // s0 _nan: min(s1, s2) |
| 1031 | // s1 _nan: min(s0, s2) |
| 1032 | // s2 _nan: min(s0, s1) |
| 1033 | |
| 1034 | // med3 behavior with infinity |
| 1035 | // s0 +inf: max(s1, s2) |
| 1036 | // s1 +inf: max(s0, s2) |
| 1037 | // s2 +inf: max(s0, s1) |
| 1038 | // s0 -inf: min(s1, s2) |
| 1039 | // s1 -inf: min(s0, s2) |
| 1040 | // s2 -inf: min(s0, s1) |
| 1041 | |
| 1042 | // Checking for NaN before canonicalization provides better fidelity when |
| 1043 | // mapping other operations onto fmed3 since the order of operands is |
| 1044 | // unchanged. |
| 1045 | Value *V = nullptr; |
| 1046 | const APFloat *ConstSrc0 = nullptr; |
| 1047 | const APFloat *ConstSrc1 = nullptr; |
| 1048 | const APFloat *ConstSrc2 = nullptr; |
| 1049 | |
| 1050 | if ((match(V: Src0, P: m_APFloat(Res&: ConstSrc0)) && |
| 1051 | (ConstSrc0->isNaN() || ConstSrc0->isInfinity())) || |
| 1052 | isa<UndefValue>(Val: Src0)) { |
| 1053 | const bool IsPosInfinity = ConstSrc0 && ConstSrc0->isPosInfinity(); |
| 1054 | switch (fpenvIEEEMode(I: II)) { |
| 1055 | case KnownIEEEMode::On: |
| 1056 | // TODO: If Src2 is snan, does it need quieting? |
| 1057 | if (ConstSrc0 && ConstSrc0->isNaN() && ConstSrc0->isSignaling()) |
| 1058 | return IC.replaceInstUsesWith(I&: II, V: Src2); |
| 1059 | |
| 1060 | V = IsPosInfinity ? IC.Builder.CreateMaxNum(LHS: Src1, RHS: Src2) |
| 1061 | : IC.Builder.CreateMinNum(LHS: Src1, RHS: Src2); |
| 1062 | break; |
| 1063 | case KnownIEEEMode::Off: |
| 1064 | V = IsPosInfinity ? IC.Builder.CreateMaximumNum(LHS: Src1, RHS: Src2) |
| 1065 | : IC.Builder.CreateMinimumNum(LHS: Src1, RHS: Src2); |
| 1066 | break; |
| 1067 | case KnownIEEEMode::Unknown: |
| 1068 | break; |
| 1069 | } |
| 1070 | } else if ((match(V: Src1, P: m_APFloat(Res&: ConstSrc1)) && |
| 1071 | (ConstSrc1->isNaN() || ConstSrc1->isInfinity())) || |
| 1072 | isa<UndefValue>(Val: Src1)) { |
| 1073 | const bool IsPosInfinity = ConstSrc1 && ConstSrc1->isPosInfinity(); |
| 1074 | switch (fpenvIEEEMode(I: II)) { |
| 1075 | case KnownIEEEMode::On: |
| 1076 | // TODO: If Src2 is snan, does it need quieting? |
| 1077 | if (ConstSrc1 && ConstSrc1->isNaN() && ConstSrc1->isSignaling()) |
| 1078 | return IC.replaceInstUsesWith(I&: II, V: Src2); |
| 1079 | |
| 1080 | V = IsPosInfinity ? IC.Builder.CreateMaxNum(LHS: Src0, RHS: Src2) |
| 1081 | : IC.Builder.CreateMinNum(LHS: Src0, RHS: Src2); |
| 1082 | break; |
| 1083 | case KnownIEEEMode::Off: |
| 1084 | V = IsPosInfinity ? IC.Builder.CreateMaximumNum(LHS: Src0, RHS: Src2) |
| 1085 | : IC.Builder.CreateMinimumNum(LHS: Src0, RHS: Src2); |
| 1086 | break; |
| 1087 | case KnownIEEEMode::Unknown: |
| 1088 | break; |
| 1089 | } |
| 1090 | } else if ((match(V: Src2, P: m_APFloat(Res&: ConstSrc2)) && |
| 1091 | (ConstSrc2->isNaN() || ConstSrc2->isInfinity())) || |
| 1092 | isa<UndefValue>(Val: Src2)) { |
| 1093 | switch (fpenvIEEEMode(I: II)) { |
| 1094 | case KnownIEEEMode::On: |
| 1095 | if (ConstSrc2 && ConstSrc2->isNaN() && ConstSrc2->isSignaling()) { |
| 1096 | auto *Quieted = ConstantFP::get(Ty: II.getType(), V: ConstSrc2->makeQuiet()); |
| 1097 | return IC.replaceInstUsesWith(I&: II, V: Quieted); |
| 1098 | } |
| 1099 | |
| 1100 | V = (ConstSrc2 && ConstSrc2->isPosInfinity()) |
| 1101 | ? IC.Builder.CreateMaxNum(LHS: Src0, RHS: Src1) |
| 1102 | : IC.Builder.CreateMinNum(LHS: Src0, RHS: Src1); |
| 1103 | break; |
| 1104 | case KnownIEEEMode::Off: |
| 1105 | V = (ConstSrc2 && ConstSrc2->isNegInfinity()) |
| 1106 | ? IC.Builder.CreateMinimumNum(LHS: Src0, RHS: Src1) |
| 1107 | : IC.Builder.CreateMaximumNum(LHS: Src0, RHS: Src1); |
| 1108 | break; |
| 1109 | case KnownIEEEMode::Unknown: |
| 1110 | break; |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | if (V) { |
| 1115 | if (auto *CI = dyn_cast<CallInst>(Val: V)) { |
| 1116 | CI->copyFastMathFlags(I: &II); |
| 1117 | CI->takeName(V: &II); |
| 1118 | } |
| 1119 | return IC.replaceInstUsesWith(I&: II, V); |
| 1120 | } |
| 1121 | |
| 1122 | bool Swap = false; |
| 1123 | // Canonicalize constants to RHS operands. |
| 1124 | // |
| 1125 | // fmed3(c0, x, c1) -> fmed3(x, c0, c1) |
| 1126 | if (isa<Constant>(Val: Src0) && !isa<Constant>(Val: Src1)) { |
| 1127 | std::swap(a&: Src0, b&: Src1); |
| 1128 | Swap = true; |
| 1129 | } |
| 1130 | |
| 1131 | if (isa<Constant>(Val: Src1) && !isa<Constant>(Val: Src2)) { |
| 1132 | std::swap(a&: Src1, b&: Src2); |
| 1133 | Swap = true; |
| 1134 | } |
| 1135 | |
| 1136 | if (isa<Constant>(Val: Src0) && !isa<Constant>(Val: Src1)) { |
| 1137 | std::swap(a&: Src0, b&: Src1); |
| 1138 | Swap = true; |
| 1139 | } |
| 1140 | |
| 1141 | if (Swap) { |
| 1142 | II.setArgOperand(i: 0, v: Src0); |
| 1143 | II.setArgOperand(i: 1, v: Src1); |
| 1144 | II.setArgOperand(i: 2, v: Src2); |
| 1145 | return &II; |
| 1146 | } |
| 1147 | |
| 1148 | if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Val: Src0)) { |
| 1149 | if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Val: Src1)) { |
| 1150 | if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Val: Src2)) { |
| 1151 | APFloat Result = fmed3AMDGCN(Src0: C0->getValueAPF(), Src1: C1->getValueAPF(), |
| 1152 | Src2: C2->getValueAPF()); |
| 1153 | return IC.replaceInstUsesWith(I&: II, |
| 1154 | V: ConstantFP::get(Ty: II.getType(), V: Result)); |
| 1155 | } |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | if (!ST->hasMed3_16()) |
| 1160 | break; |
| 1161 | |
| 1162 | // Repeat floating-point width reduction done for minnum/maxnum. |
| 1163 | // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z)) |
| 1164 | if (Value *X = matchFPExtFromF16(Arg: Src0)) { |
| 1165 | if (Value *Y = matchFPExtFromF16(Arg: Src1)) { |
| 1166 | if (Value *Z = matchFPExtFromF16(Arg: Src2)) { |
| 1167 | Value *NewCall = IC.Builder.CreateIntrinsic( |
| 1168 | ID: IID, Types: {X->getType()}, Args: {X, Y, Z}, FMFSource: &II, Name: II.getName()); |
| 1169 | return new FPExtInst(NewCall, II.getType()); |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | break; |
| 1175 | } |
| 1176 | case Intrinsic::amdgcn_icmp: |
| 1177 | case Intrinsic::amdgcn_fcmp: { |
| 1178 | const ConstantInt *CC = cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
| 1179 | // Guard against invalid arguments. |
| 1180 | int64_t CCVal = CC->getZExtValue(); |
| 1181 | bool IsInteger = IID == Intrinsic::amdgcn_icmp; |
| 1182 | if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || |
| 1183 | CCVal > CmpInst::LAST_ICMP_PREDICATE)) || |
| 1184 | (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || |
| 1185 | CCVal > CmpInst::LAST_FCMP_PREDICATE))) |
| 1186 | break; |
| 1187 | |
| 1188 | Value *Src0 = II.getArgOperand(i: 0); |
| 1189 | Value *Src1 = II.getArgOperand(i: 1); |
| 1190 | |
| 1191 | if (auto *CSrc0 = dyn_cast<Constant>(Val: Src0)) { |
| 1192 | if (auto *CSrc1 = dyn_cast<Constant>(Val: Src1)) { |
| 1193 | Constant *CCmp = ConstantFoldCompareInstOperands( |
| 1194 | Predicate: (ICmpInst::Predicate)CCVal, LHS: CSrc0, RHS: CSrc1, DL); |
| 1195 | if (CCmp && CCmp->isNullValue()) { |
| 1196 | return IC.replaceInstUsesWith( |
| 1197 | I&: II, V: IC.Builder.CreateSExt(V: CCmp, DestTy: II.getType())); |
| 1198 | } |
| 1199 | |
| 1200 | // The result of V_ICMP/V_FCMP assembly instructions (which this |
| 1201 | // intrinsic exposes) is one bit per thread, masked with the EXEC |
| 1202 | // register (which contains the bitmask of live threads). So a |
| 1203 | // comparison that always returns true is the same as a read of the |
| 1204 | // EXEC register. |
| 1205 | Metadata *MDArgs[] = {MDString::get(Context&: II.getContext(), Str: "exec" )}; |
| 1206 | MDNode *MD = MDNode::get(Context&: II.getContext(), MDs: MDArgs); |
| 1207 | Value *Args[] = {MetadataAsValue::get(Context&: II.getContext(), MD)}; |
| 1208 | CallInst *NewCall = IC.Builder.CreateIntrinsic(ID: Intrinsic::read_register, |
| 1209 | Types: II.getType(), Args); |
| 1210 | NewCall->addFnAttr(Kind: Attribute::Convergent); |
| 1211 | NewCall->takeName(V: &II); |
| 1212 | return IC.replaceInstUsesWith(I&: II, V: NewCall); |
| 1213 | } |
| 1214 | |
| 1215 | // Canonicalize constants to RHS. |
| 1216 | CmpInst::Predicate SwapPred = |
| 1217 | CmpInst::getSwappedPredicate(pred: static_cast<CmpInst::Predicate>(CCVal)); |
| 1218 | II.setArgOperand(i: 0, v: Src1); |
| 1219 | II.setArgOperand(i: 1, v: Src0); |
| 1220 | II.setArgOperand( |
| 1221 | i: 2, v: ConstantInt::get(Ty: CC->getType(), V: static_cast<int>(SwapPred))); |
| 1222 | return &II; |
| 1223 | } |
| 1224 | |
| 1225 | if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) |
| 1226 | break; |
| 1227 | |
| 1228 | // Canonicalize compare eq with true value to compare != 0 |
| 1229 | // llvm.amdgcn.icmp(zext (i1 x), 1, eq) |
| 1230 | // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) |
| 1231 | // llvm.amdgcn.icmp(sext (i1 x), -1, eq) |
| 1232 | // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) |
| 1233 | Value *ExtSrc; |
| 1234 | if (CCVal == CmpInst::ICMP_EQ && |
| 1235 | ((match(V: Src1, P: PatternMatch::m_One()) && |
| 1236 | match(V: Src0, P: m_ZExt(Op: PatternMatch::m_Value(V&: ExtSrc)))) || |
| 1237 | (match(V: Src1, P: PatternMatch::m_AllOnes()) && |
| 1238 | match(V: Src0, P: m_SExt(Op: PatternMatch::m_Value(V&: ExtSrc))))) && |
| 1239 | ExtSrc->getType()->isIntegerTy(Bitwidth: 1)) { |
| 1240 | IC.replaceOperand(I&: II, OpNum: 1, V: ConstantInt::getNullValue(Ty: Src1->getType())); |
| 1241 | IC.replaceOperand(I&: II, OpNum: 2, |
| 1242 | V: ConstantInt::get(Ty: CC->getType(), V: CmpInst::ICMP_NE)); |
| 1243 | return &II; |
| 1244 | } |
| 1245 | |
| 1246 | CmpPredicate SrcPred; |
| 1247 | Value *SrcLHS; |
| 1248 | Value *SrcRHS; |
| 1249 | |
| 1250 | // Fold compare eq/ne with 0 from a compare result as the predicate to the |
| 1251 | // intrinsic. The typical use is a wave vote function in the library, which |
| 1252 | // will be fed from a user code condition compared with 0. Fold in the |
| 1253 | // redundant compare. |
| 1254 | |
| 1255 | // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) |
| 1256 | // -> llvm.amdgcn.[if]cmp(a, b, pred) |
| 1257 | // |
| 1258 | // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) |
| 1259 | // -> llvm.amdgcn.[if]cmp(a, b, inv pred) |
| 1260 | if (match(V: Src1, P: PatternMatch::m_Zero()) && |
| 1261 | match(V: Src0, P: PatternMatch::m_ZExtOrSExt( |
| 1262 | Op: m_Cmp(Pred&: SrcPred, L: PatternMatch::m_Value(V&: SrcLHS), |
| 1263 | R: PatternMatch::m_Value(V&: SrcRHS))))) { |
| 1264 | if (CCVal == CmpInst::ICMP_EQ) |
| 1265 | SrcPred = CmpInst::getInversePredicate(pred: SrcPred); |
| 1266 | |
| 1267 | Intrinsic::ID NewIID = CmpInst::isFPPredicate(P: SrcPred) |
| 1268 | ? Intrinsic::amdgcn_fcmp |
| 1269 | : Intrinsic::amdgcn_icmp; |
| 1270 | |
| 1271 | Type *Ty = SrcLHS->getType(); |
| 1272 | if (auto *CmpType = dyn_cast<IntegerType>(Val: Ty)) { |
| 1273 | // Promote to next legal integer type. |
| 1274 | unsigned Width = CmpType->getBitWidth(); |
| 1275 | unsigned NewWidth = Width; |
| 1276 | |
| 1277 | // Don't do anything for i1 comparisons. |
| 1278 | if (Width == 1) |
| 1279 | break; |
| 1280 | |
| 1281 | if (Width <= 16) |
| 1282 | NewWidth = 16; |
| 1283 | else if (Width <= 32) |
| 1284 | NewWidth = 32; |
| 1285 | else if (Width <= 64) |
| 1286 | NewWidth = 64; |
| 1287 | else |
| 1288 | break; // Can't handle this. |
| 1289 | |
| 1290 | if (Width != NewWidth) { |
| 1291 | IntegerType *CmpTy = IC.Builder.getIntNTy(N: NewWidth); |
| 1292 | if (CmpInst::isSigned(predicate: SrcPred)) { |
| 1293 | SrcLHS = IC.Builder.CreateSExt(V: SrcLHS, DestTy: CmpTy); |
| 1294 | SrcRHS = IC.Builder.CreateSExt(V: SrcRHS, DestTy: CmpTy); |
| 1295 | } else { |
| 1296 | SrcLHS = IC.Builder.CreateZExt(V: SrcLHS, DestTy: CmpTy); |
| 1297 | SrcRHS = IC.Builder.CreateZExt(V: SrcRHS, DestTy: CmpTy); |
| 1298 | } |
| 1299 | } |
| 1300 | } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) |
| 1301 | break; |
| 1302 | |
| 1303 | Value *Args[] = {SrcLHS, SrcRHS, |
| 1304 | ConstantInt::get(Ty: CC->getType(), V: SrcPred)}; |
| 1305 | CallInst *NewCall = IC.Builder.CreateIntrinsic( |
| 1306 | ID: NewIID, Types: {II.getType(), SrcLHS->getType()}, Args); |
| 1307 | NewCall->takeName(V: &II); |
| 1308 | return IC.replaceInstUsesWith(I&: II, V: NewCall); |
| 1309 | } |
| 1310 | |
| 1311 | break; |
| 1312 | } |
| 1313 | case Intrinsic::amdgcn_mbcnt_hi: { |
| 1314 | // exec_hi is all 0, so this is just a copy. |
| 1315 | if (ST->isWave32()) |
| 1316 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 1)); |
| 1317 | break; |
| 1318 | } |
| 1319 | case Intrinsic::amdgcn_ballot: { |
| 1320 | Value *Arg = II.getArgOperand(i: 0); |
| 1321 | if (isa<PoisonValue>(Val: Arg)) |
| 1322 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 1323 | |
| 1324 | if (auto *Src = dyn_cast<ConstantInt>(Val: Arg)) { |
| 1325 | if (Src->isZero()) { |
| 1326 | // amdgcn.ballot(i1 0) is zero. |
| 1327 | return IC.replaceInstUsesWith(I&: II, V: Constant::getNullValue(Ty: II.getType())); |
| 1328 | } |
| 1329 | } |
| 1330 | if (ST->isWave32() && II.getType()->getIntegerBitWidth() == 64) { |
| 1331 | // %b64 = call i64 ballot.i64(...) |
| 1332 | // => |
| 1333 | // %b32 = call i32 ballot.i32(...) |
| 1334 | // %b64 = zext i32 %b32 to i64 |
| 1335 | Value *Call = IC.Builder.CreateZExt( |
| 1336 | V: IC.Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_ballot, |
| 1337 | Types: {IC.Builder.getInt32Ty()}, |
| 1338 | Args: {II.getArgOperand(i: 0)}), |
| 1339 | DestTy: II.getType()); |
| 1340 | Call->takeName(V: &II); |
| 1341 | return IC.replaceInstUsesWith(I&: II, V: Call); |
| 1342 | } |
| 1343 | break; |
| 1344 | } |
| 1345 | case Intrinsic::amdgcn_wavefrontsize: { |
| 1346 | if (ST->isWaveSizeKnown()) |
| 1347 | return IC.replaceInstUsesWith( |
| 1348 | I&: II, V: ConstantInt::get(Ty: II.getType(), V: ST->getWavefrontSize())); |
| 1349 | break; |
| 1350 | } |
| 1351 | case Intrinsic::amdgcn_wqm_vote: { |
| 1352 | // wqm_vote is identity when the argument is constant. |
| 1353 | if (!isa<Constant>(Val: II.getArgOperand(i: 0))) |
| 1354 | break; |
| 1355 | |
| 1356 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 0)); |
| 1357 | } |
| 1358 | case Intrinsic::amdgcn_kill: { |
| 1359 | const ConstantInt *C = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
| 1360 | if (!C || !C->getZExtValue()) |
| 1361 | break; |
| 1362 | |
| 1363 | // amdgcn.kill(i1 1) is a no-op |
| 1364 | return IC.eraseInstFromFunction(I&: II); |
| 1365 | } |
| 1366 | case Intrinsic::amdgcn_update_dpp: { |
| 1367 | Value *Old = II.getArgOperand(i: 0); |
| 1368 | |
| 1369 | auto *BC = cast<ConstantInt>(Val: II.getArgOperand(i: 5)); |
| 1370 | auto *RM = cast<ConstantInt>(Val: II.getArgOperand(i: 3)); |
| 1371 | auto *BM = cast<ConstantInt>(Val: II.getArgOperand(i: 4)); |
| 1372 | if (BC->isZeroValue() || RM->getZExtValue() != 0xF || |
| 1373 | BM->getZExtValue() != 0xF || isa<PoisonValue>(Val: Old)) |
| 1374 | break; |
| 1375 | |
| 1376 | // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. |
| 1377 | return IC.replaceOperand(I&: II, OpNum: 0, V: PoisonValue::get(T: Old->getType())); |
| 1378 | } |
| 1379 | case Intrinsic::amdgcn_permlane16: |
| 1380 | case Intrinsic::amdgcn_permlane16_var: |
| 1381 | case Intrinsic::amdgcn_permlanex16: |
| 1382 | case Intrinsic::amdgcn_permlanex16_var: { |
| 1383 | // Discard vdst_in if it's not going to be read. |
| 1384 | Value *VDstIn = II.getArgOperand(i: 0); |
| 1385 | if (isa<PoisonValue>(Val: VDstIn)) |
| 1386 | break; |
| 1387 | |
| 1388 | // FetchInvalid operand idx. |
| 1389 | unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 || |
| 1390 | IID == Intrinsic::amdgcn_permlanex16) |
| 1391 | ? 4 /* for permlane16 and permlanex16 */ |
| 1392 | : 3; /* for permlane16_var and permlanex16_var */ |
| 1393 | |
| 1394 | // BoundCtrl operand idx. |
| 1395 | // For permlane16 and permlanex16 it should be 5 |
| 1396 | // For Permlane16_var and permlanex16_var it should be 4 |
| 1397 | unsigned int BcIdx = FiIdx + 1; |
| 1398 | |
| 1399 | ConstantInt *FetchInvalid = cast<ConstantInt>(Val: II.getArgOperand(i: FiIdx)); |
| 1400 | ConstantInt *BoundCtrl = cast<ConstantInt>(Val: II.getArgOperand(i: BcIdx)); |
| 1401 | if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) |
| 1402 | break; |
| 1403 | |
| 1404 | return IC.replaceOperand(I&: II, OpNum: 0, V: PoisonValue::get(T: VDstIn->getType())); |
| 1405 | } |
| 1406 | case Intrinsic::amdgcn_permlane64: |
| 1407 | case Intrinsic::amdgcn_readfirstlane: |
| 1408 | case Intrinsic::amdgcn_readlane: |
| 1409 | case Intrinsic::amdgcn_ds_bpermute: { |
| 1410 | // If the data argument is uniform these intrinsics return it unchanged. |
| 1411 | unsigned SrcIdx = IID == Intrinsic::amdgcn_ds_bpermute ? 1 : 0; |
| 1412 | const Use &Src = II.getArgOperandUse(i: SrcIdx); |
| 1413 | if (isTriviallyUniform(U: Src)) |
| 1414 | return IC.replaceInstUsesWith(I&: II, V: Src.get()); |
| 1415 | |
| 1416 | if (IID == Intrinsic::amdgcn_readlane && |
| 1417 | simplifyDemandedLaneMaskArg(IC, II, LaneArgIdx: 1)) |
| 1418 | return &II; |
| 1419 | |
| 1420 | // If the lane argument of bpermute is uniform, change it to readlane. This |
| 1421 | // generates better code and can enable further optimizations because |
| 1422 | // readlane is AlwaysUniform. |
| 1423 | if (IID == Intrinsic::amdgcn_ds_bpermute) { |
| 1424 | const Use &Lane = II.getArgOperandUse(i: 0); |
| 1425 | if (isTriviallyUniform(U: Lane)) { |
| 1426 | Value *NewLane = IC.Builder.CreateLShr(LHS: Lane, RHS: 2); |
| 1427 | Function *NewDecl = Intrinsic::getOrInsertDeclaration( |
| 1428 | M: II.getModule(), id: Intrinsic::amdgcn_readlane, Tys: II.getType()); |
| 1429 | II.setCalledFunction(NewDecl); |
| 1430 | II.setOperand(i_nocapture: 0, Val_nocapture: Src); |
| 1431 | II.setOperand(i_nocapture: 1, Val_nocapture: NewLane); |
| 1432 | return &II; |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | if (IID != Intrinsic::amdgcn_ds_bpermute) { |
| 1437 | if (Instruction *Res = hoistLaneIntrinsicThroughOperand(IC, II)) |
| 1438 | return Res; |
| 1439 | } |
| 1440 | |
| 1441 | return std::nullopt; |
| 1442 | } |
| 1443 | case Intrinsic::amdgcn_writelane: { |
| 1444 | // TODO: Fold bitcast like readlane. |
| 1445 | if (simplifyDemandedLaneMaskArg(IC, II, LaneArgIdx: 1)) |
| 1446 | return &II; |
| 1447 | return std::nullopt; |
| 1448 | } |
| 1449 | case Intrinsic::amdgcn_trig_preop: { |
| 1450 | // The intrinsic is declared with name mangling, but currently the |
| 1451 | // instruction only exists for f64 |
| 1452 | if (!II.getType()->isDoubleTy()) |
| 1453 | break; |
| 1454 | |
| 1455 | Value *Src = II.getArgOperand(i: 0); |
| 1456 | Value *Segment = II.getArgOperand(i: 1); |
| 1457 | if (isa<PoisonValue>(Val: Src) || isa<PoisonValue>(Val: Segment)) |
| 1458 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 1459 | |
| 1460 | if (isa<UndefValue>(Val: Src)) { |
| 1461 | auto *QNaN = ConstantFP::get( |
| 1462 | Ty: II.getType(), V: APFloat::getQNaN(Sem: II.getType()->getFltSemantics())); |
| 1463 | return IC.replaceInstUsesWith(I&: II, V: QNaN); |
| 1464 | } |
| 1465 | |
| 1466 | const ConstantFP *Csrc = dyn_cast<ConstantFP>(Val: Src); |
| 1467 | if (!Csrc) |
| 1468 | break; |
| 1469 | |
| 1470 | if (II.isStrictFP()) |
| 1471 | break; |
| 1472 | |
| 1473 | const APFloat &Fsrc = Csrc->getValueAPF(); |
| 1474 | if (Fsrc.isNaN()) { |
| 1475 | auto *Quieted = ConstantFP::get(Ty: II.getType(), V: Fsrc.makeQuiet()); |
| 1476 | return IC.replaceInstUsesWith(I&: II, V: Quieted); |
| 1477 | } |
| 1478 | |
| 1479 | const ConstantInt *Cseg = dyn_cast<ConstantInt>(Val: Segment); |
| 1480 | if (!Cseg) |
| 1481 | break; |
| 1482 | |
| 1483 | unsigned Exponent = (Fsrc.bitcastToAPInt().getZExtValue() >> 52) & 0x7ff; |
| 1484 | unsigned SegmentVal = Cseg->getValue().trunc(width: 5).getZExtValue(); |
| 1485 | unsigned Shift = SegmentVal * 53; |
| 1486 | if (Exponent > 1077) |
| 1487 | Shift += Exponent - 1077; |
| 1488 | |
| 1489 | // 2.0/PI table. |
| 1490 | static const uint32_t TwoByPi[] = { |
| 1491 | 0xa2f9836e, 0x4e441529, 0xfc2757d1, 0xf534ddc0, 0xdb629599, 0x3c439041, |
| 1492 | 0xfe5163ab, 0xdebbc561, 0xb7246e3a, 0x424dd2e0, 0x06492eea, 0x09d1921c, |
| 1493 | 0xfe1deb1c, 0xb129a73e, 0xe88235f5, 0x2ebb4484, 0xe99c7026, 0xb45f7e41, |
| 1494 | 0x3991d639, 0x835339f4, 0x9c845f8b, 0xbdf9283b, 0x1ff897ff, 0xde05980f, |
| 1495 | 0xef2f118b, 0x5a0a6d1f, 0x6d367ecf, 0x27cb09b7, 0x4f463f66, 0x9e5fea2d, |
| 1496 | 0x7527bac7, 0xebe5f17b, 0x3d0739f7, 0x8a5292ea, 0x6bfb5fb1, 0x1f8d5d08, |
| 1497 | 0x56033046}; |
| 1498 | |
| 1499 | // Return 0 for outbound segment (hardware behavior). |
| 1500 | unsigned Idx = Shift >> 5; |
| 1501 | if (Idx + 2 >= std::size(TwoByPi)) { |
| 1502 | APFloat Zero = APFloat::getZero(Sem: II.getType()->getFltSemantics()); |
| 1503 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Ty: II.getType(), V: Zero)); |
| 1504 | } |
| 1505 | |
| 1506 | unsigned BShift = Shift & 0x1f; |
| 1507 | uint64_t Thi = Make_64(High: TwoByPi[Idx], Low: TwoByPi[Idx + 1]); |
| 1508 | uint64_t Tlo = Make_64(High: TwoByPi[Idx + 2], Low: 0); |
| 1509 | if (BShift) |
| 1510 | Thi = (Thi << BShift) | (Tlo >> (64 - BShift)); |
| 1511 | Thi = Thi >> 11; |
| 1512 | APFloat Result = APFloat((double)Thi); |
| 1513 | |
| 1514 | int Scale = -53 - Shift; |
| 1515 | if (Exponent >= 1968) |
| 1516 | Scale += 128; |
| 1517 | |
| 1518 | Result = scalbn(X: Result, Exp: Scale, RM: RoundingMode::NearestTiesToEven); |
| 1519 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::get(Ty: Src->getType(), V: Result)); |
| 1520 | } |
| 1521 | case Intrinsic::amdgcn_fmul_legacy: { |
| 1522 | Value *Op0 = II.getArgOperand(i: 0); |
| 1523 | Value *Op1 = II.getArgOperand(i: 1); |
| 1524 | |
| 1525 | for (Value *Src : {Op0, Op1}) { |
| 1526 | if (isa<PoisonValue>(Val: Src)) |
| 1527 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 1528 | } |
| 1529 | |
| 1530 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
| 1531 | // infinity, gives +0.0. |
| 1532 | // TODO: Move to InstSimplify? |
| 1533 | if (match(V: Op0, P: PatternMatch::m_AnyZeroFP()) || |
| 1534 | match(V: Op1, P: PatternMatch::m_AnyZeroFP())) |
| 1535 | return IC.replaceInstUsesWith(I&: II, V: ConstantFP::getZero(Ty: II.getType())); |
| 1536 | |
| 1537 | // If we can prove we don't have one of the special cases then we can use a |
| 1538 | // normal fmul instruction instead. |
| 1539 | if (canSimplifyLegacyMulToMul(I: II, Op0, Op1, IC)) { |
| 1540 | auto *FMul = IC.Builder.CreateFMulFMF(L: Op0, R: Op1, FMFSource: &II); |
| 1541 | FMul->takeName(V: &II); |
| 1542 | return IC.replaceInstUsesWith(I&: II, V: FMul); |
| 1543 | } |
| 1544 | break; |
| 1545 | } |
| 1546 | case Intrinsic::amdgcn_fma_legacy: { |
| 1547 | Value *Op0 = II.getArgOperand(i: 0); |
| 1548 | Value *Op1 = II.getArgOperand(i: 1); |
| 1549 | Value *Op2 = II.getArgOperand(i: 2); |
| 1550 | |
| 1551 | for (Value *Src : {Op0, Op1, Op2}) { |
| 1552 | if (isa<PoisonValue>(Val: Src)) |
| 1553 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 1554 | } |
| 1555 | |
| 1556 | // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or |
| 1557 | // infinity, gives +0.0. |
| 1558 | // TODO: Move to InstSimplify? |
| 1559 | if (match(V: Op0, P: PatternMatch::m_AnyZeroFP()) || |
| 1560 | match(V: Op1, P: PatternMatch::m_AnyZeroFP())) { |
| 1561 | // It's tempting to just return Op2 here, but that would give the wrong |
| 1562 | // result if Op2 was -0.0. |
| 1563 | auto *Zero = ConstantFP::getZero(Ty: II.getType()); |
| 1564 | auto *FAdd = IC.Builder.CreateFAddFMF(L: Zero, R: Op2, FMFSource: &II); |
| 1565 | FAdd->takeName(V: &II); |
| 1566 | return IC.replaceInstUsesWith(I&: II, V: FAdd); |
| 1567 | } |
| 1568 | |
| 1569 | // If we can prove we don't have one of the special cases then we can use a |
| 1570 | // normal fma instead. |
| 1571 | if (canSimplifyLegacyMulToMul(I: II, Op0, Op1, IC)) { |
| 1572 | II.setCalledOperand(Intrinsic::getOrInsertDeclaration( |
| 1573 | M: II.getModule(), id: Intrinsic::fma, Tys: II.getType())); |
| 1574 | return &II; |
| 1575 | } |
| 1576 | break; |
| 1577 | } |
| 1578 | case Intrinsic::amdgcn_is_shared: |
| 1579 | case Intrinsic::amdgcn_is_private: { |
| 1580 | Value *Src = II.getArgOperand(i: 0); |
| 1581 | if (isa<PoisonValue>(Val: Src)) |
| 1582 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 1583 | if (isa<UndefValue>(Val: Src)) |
| 1584 | return IC.replaceInstUsesWith(I&: II, V: UndefValue::get(T: II.getType())); |
| 1585 | |
| 1586 | if (isa<ConstantPointerNull>(Val: II.getArgOperand(i: 0))) |
| 1587 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::getFalse(Ty: II.getType())); |
| 1588 | break; |
| 1589 | } |
| 1590 | case Intrinsic::amdgcn_make_buffer_rsrc: { |
| 1591 | Value *Src = II.getArgOperand(i: 0); |
| 1592 | if (isa<PoisonValue>(Val: Src)) |
| 1593 | return IC.replaceInstUsesWith(I&: II, V: PoisonValue::get(T: II.getType())); |
| 1594 | return std::nullopt; |
| 1595 | } |
| 1596 | case Intrinsic::amdgcn_raw_buffer_store_format: |
| 1597 | case Intrinsic::amdgcn_struct_buffer_store_format: |
| 1598 | case Intrinsic::amdgcn_raw_tbuffer_store: |
| 1599 | case Intrinsic::amdgcn_struct_tbuffer_store: |
| 1600 | case Intrinsic::amdgcn_image_store_1d: |
| 1601 | case Intrinsic::amdgcn_image_store_1darray: |
| 1602 | case Intrinsic::amdgcn_image_store_2d: |
| 1603 | case Intrinsic::amdgcn_image_store_2darray: |
| 1604 | case Intrinsic::amdgcn_image_store_2darraymsaa: |
| 1605 | case Intrinsic::amdgcn_image_store_2dmsaa: |
| 1606 | case Intrinsic::amdgcn_image_store_3d: |
| 1607 | case Intrinsic::amdgcn_image_store_cube: |
| 1608 | case Intrinsic::amdgcn_image_store_mip_1d: |
| 1609 | case Intrinsic::amdgcn_image_store_mip_1darray: |
| 1610 | case Intrinsic::amdgcn_image_store_mip_2d: |
| 1611 | case Intrinsic::amdgcn_image_store_mip_2darray: |
| 1612 | case Intrinsic::amdgcn_image_store_mip_3d: |
| 1613 | case Intrinsic::amdgcn_image_store_mip_cube: { |
| 1614 | if (!isa<FixedVectorType>(Val: II.getArgOperand(i: 0)->getType())) |
| 1615 | break; |
| 1616 | |
| 1617 | APInt DemandedElts; |
| 1618 | if (ST->hasDefaultComponentBroadcast()) |
| 1619 | DemandedElts = defaultComponentBroadcast(V: II.getArgOperand(i: 0)); |
| 1620 | else if (ST->hasDefaultComponentZero()) |
| 1621 | DemandedElts = trimTrailingZerosInVector(IC, UseV: II.getArgOperand(i: 0), I: &II); |
| 1622 | else |
| 1623 | break; |
| 1624 | |
| 1625 | int DMaskIdx = getAMDGPUImageDMaskIntrinsic(Intr: II.getIntrinsicID()) ? 1 : -1; |
| 1626 | if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx, |
| 1627 | IsLoad: false)) { |
| 1628 | return IC.eraseInstFromFunction(I&: II); |
| 1629 | } |
| 1630 | |
| 1631 | break; |
| 1632 | } |
| 1633 | case Intrinsic::amdgcn_prng_b32: { |
| 1634 | auto *Src = II.getArgOperand(i: 0); |
| 1635 | if (isa<UndefValue>(Val: Src)) { |
| 1636 | return IC.replaceInstUsesWith(I&: II, V: Src); |
| 1637 | } |
| 1638 | return std::nullopt; |
| 1639 | } |
| 1640 | case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4: |
| 1641 | case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: { |
| 1642 | Value *Src0 = II.getArgOperand(i: 0); |
| 1643 | Value *Src1 = II.getArgOperand(i: 1); |
| 1644 | uint64_t CBSZ = cast<ConstantInt>(Val: II.getArgOperand(i: 3))->getZExtValue(); |
| 1645 | uint64_t BLGP = cast<ConstantInt>(Val: II.getArgOperand(i: 4))->getZExtValue(); |
| 1646 | auto *Src0Ty = cast<FixedVectorType>(Val: Src0->getType()); |
| 1647 | auto *Src1Ty = cast<FixedVectorType>(Val: Src1->getType()); |
| 1648 | |
| 1649 | auto getFormatNumRegs = [](unsigned FormatVal) { |
| 1650 | switch (FormatVal) { |
| 1651 | case AMDGPU::MFMAScaleFormats::FP6_E2M3: |
| 1652 | case AMDGPU::MFMAScaleFormats::FP6_E3M2: |
| 1653 | return 6u; |
| 1654 | case AMDGPU::MFMAScaleFormats::FP4_E2M1: |
| 1655 | return 4u; |
| 1656 | case AMDGPU::MFMAScaleFormats::FP8_E4M3: |
| 1657 | case AMDGPU::MFMAScaleFormats::FP8_E5M2: |
| 1658 | return 8u; |
| 1659 | default: |
| 1660 | llvm_unreachable("invalid format value" ); |
| 1661 | } |
| 1662 | }; |
| 1663 | |
| 1664 | bool MadeChange = false; |
| 1665 | unsigned Src0NumElts = getFormatNumRegs(CBSZ); |
| 1666 | unsigned Src1NumElts = getFormatNumRegs(BLGP); |
| 1667 | |
| 1668 | // Depending on the used format, fewer registers are required so shrink the |
| 1669 | // vector type. |
| 1670 | if (Src0Ty->getNumElements() > Src0NumElts) { |
| 1671 | Src0 = IC.Builder.CreateExtractVector( |
| 1672 | DstType: FixedVectorType::get(ElementType: Src0Ty->getElementType(), NumElts: Src0NumElts), SrcVec: Src0, |
| 1673 | Idx: uint64_t(0)); |
| 1674 | MadeChange = true; |
| 1675 | } |
| 1676 | |
| 1677 | if (Src1Ty->getNumElements() > Src1NumElts) { |
| 1678 | Src1 = IC.Builder.CreateExtractVector( |
| 1679 | DstType: FixedVectorType::get(ElementType: Src1Ty->getElementType(), NumElts: Src1NumElts), SrcVec: Src1, |
| 1680 | Idx: uint64_t(0)); |
| 1681 | MadeChange = true; |
| 1682 | } |
| 1683 | |
| 1684 | if (!MadeChange) |
| 1685 | return std::nullopt; |
| 1686 | |
| 1687 | SmallVector<Value *, 10> Args(II.args()); |
| 1688 | Args[0] = Src0; |
| 1689 | Args[1] = Src1; |
| 1690 | |
| 1691 | CallInst *NewII = IC.Builder.CreateIntrinsic( |
| 1692 | ID: IID, Types: {Src0->getType(), Src1->getType()}, Args, FMFSource: &II); |
| 1693 | NewII->takeName(V: &II); |
| 1694 | return IC.replaceInstUsesWith(I&: II, V: NewII); |
| 1695 | } |
| 1696 | } |
| 1697 | if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| 1698 | AMDGPU::getImageDimIntrinsicInfo(Intr: II.getIntrinsicID())) { |
| 1699 | return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); |
| 1700 | } |
| 1701 | return std::nullopt; |
| 1702 | } |
| 1703 | |
| 1704 | /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. |
| 1705 | /// |
| 1706 | /// The result of simplifying amdgcn image and buffer store intrinsics is updating |
| 1707 | /// definitions of the intrinsics vector argument, not Uses of the result like |
| 1708 | /// image and buffer loads. |
| 1709 | /// Note: This only supports non-TFE/LWE image intrinsic calls; those have |
| 1710 | /// struct returns. |
| 1711 | static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, |
| 1712 | IntrinsicInst &II, |
| 1713 | APInt DemandedElts, |
| 1714 | int DMaskIdx, bool IsLoad) { |
| 1715 | |
| 1716 | auto *IIVTy = cast<FixedVectorType>(Val: IsLoad ? II.getType() |
| 1717 | : II.getOperand(i_nocapture: 0)->getType()); |
| 1718 | unsigned VWidth = IIVTy->getNumElements(); |
| 1719 | if (VWidth == 1) |
| 1720 | return nullptr; |
| 1721 | Type *EltTy = IIVTy->getElementType(); |
| 1722 | |
| 1723 | IRBuilderBase::InsertPointGuard Guard(IC.Builder); |
| 1724 | IC.Builder.SetInsertPoint(&II); |
| 1725 | |
| 1726 | // Assume the arguments are unchanged and later override them, if needed. |
| 1727 | SmallVector<Value *, 16> Args(II.args()); |
| 1728 | |
| 1729 | if (DMaskIdx < 0) { |
| 1730 | // Buffer case. |
| 1731 | |
| 1732 | const unsigned ActiveBits = DemandedElts.getActiveBits(); |
| 1733 | const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero(); |
| 1734 | |
| 1735 | // Start assuming the prefix of elements is demanded, but possibly clear |
| 1736 | // some other bits if there are trailing zeros (unused components at front) |
| 1737 | // and update offset. |
| 1738 | DemandedElts = (1 << ActiveBits) - 1; |
| 1739 | |
| 1740 | if (UnusedComponentsAtFront > 0) { |
| 1741 | static const unsigned InvalidOffsetIdx = 0xf; |
| 1742 | |
| 1743 | unsigned OffsetIdx; |
| 1744 | switch (II.getIntrinsicID()) { |
| 1745 | case Intrinsic::amdgcn_raw_buffer_load: |
| 1746 | case Intrinsic::amdgcn_raw_ptr_buffer_load: |
| 1747 | OffsetIdx = 1; |
| 1748 | break; |
| 1749 | case Intrinsic::amdgcn_s_buffer_load: |
| 1750 | // If resulting type is vec3, there is no point in trimming the |
| 1751 | // load with updated offset, as the vec3 would most likely be widened to |
| 1752 | // vec4 anyway during lowering. |
| 1753 | if (ActiveBits == 4 && UnusedComponentsAtFront == 1) |
| 1754 | OffsetIdx = InvalidOffsetIdx; |
| 1755 | else |
| 1756 | OffsetIdx = 1; |
| 1757 | break; |
| 1758 | case Intrinsic::amdgcn_struct_buffer_load: |
| 1759 | case Intrinsic::amdgcn_struct_ptr_buffer_load: |
| 1760 | OffsetIdx = 2; |
| 1761 | break; |
| 1762 | default: |
| 1763 | // TODO: handle tbuffer* intrinsics. |
| 1764 | OffsetIdx = InvalidOffsetIdx; |
| 1765 | break; |
| 1766 | } |
| 1767 | |
| 1768 | if (OffsetIdx != InvalidOffsetIdx) { |
| 1769 | // Clear demanded bits and update the offset. |
| 1770 | DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); |
| 1771 | auto *Offset = Args[OffsetIdx]; |
| 1772 | unsigned SingleComponentSizeInBits = |
| 1773 | IC.getDataLayout().getTypeSizeInBits(Ty: EltTy); |
| 1774 | unsigned OffsetAdd = |
| 1775 | UnusedComponentsAtFront * SingleComponentSizeInBits / 8; |
| 1776 | auto *OffsetAddVal = ConstantInt::get(Ty: Offset->getType(), V: OffsetAdd); |
| 1777 | Args[OffsetIdx] = IC.Builder.CreateAdd(LHS: Offset, RHS: OffsetAddVal); |
| 1778 | } |
| 1779 | } |
| 1780 | } else { |
| 1781 | // Image case. |
| 1782 | |
| 1783 | ConstantInt *DMask = cast<ConstantInt>(Val: Args[DMaskIdx]); |
| 1784 | unsigned DMaskVal = DMask->getZExtValue() & 0xf; |
| 1785 | |
| 1786 | // dmask 0 has special semantics, do not simplify. |
| 1787 | if (DMaskVal == 0) |
| 1788 | return nullptr; |
| 1789 | |
| 1790 | // Mask off values that are undefined because the dmask doesn't cover them |
| 1791 | DemandedElts &= (1 << llvm::popcount(Value: DMaskVal)) - 1; |
| 1792 | |
| 1793 | unsigned NewDMaskVal = 0; |
| 1794 | unsigned OrigLdStIdx = 0; |
| 1795 | for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { |
| 1796 | const unsigned Bit = 1 << SrcIdx; |
| 1797 | if (!!(DMaskVal & Bit)) { |
| 1798 | if (!!DemandedElts[OrigLdStIdx]) |
| 1799 | NewDMaskVal |= Bit; |
| 1800 | OrigLdStIdx++; |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | if (DMaskVal != NewDMaskVal) |
| 1805 | Args[DMaskIdx] = ConstantInt::get(Ty: DMask->getType(), V: NewDMaskVal); |
| 1806 | } |
| 1807 | |
| 1808 | unsigned NewNumElts = DemandedElts.popcount(); |
| 1809 | if (!NewNumElts) |
| 1810 | return PoisonValue::get(T: IIVTy); |
| 1811 | |
| 1812 | if (NewNumElts >= VWidth && DemandedElts.isMask()) { |
| 1813 | if (DMaskIdx >= 0) |
| 1814 | II.setArgOperand(i: DMaskIdx, v: Args[DMaskIdx]); |
| 1815 | return nullptr; |
| 1816 | } |
| 1817 | |
| 1818 | // Validate function argument and return types, extracting overloaded types |
| 1819 | // along the way. |
| 1820 | SmallVector<Type *, 6> OverloadTys; |
| 1821 | if (!Intrinsic::getIntrinsicSignature(F: II.getCalledFunction(), ArgTys&: OverloadTys)) |
| 1822 | return nullptr; |
| 1823 | |
| 1824 | Type *NewTy = |
| 1825 | (NewNumElts == 1) ? EltTy : FixedVectorType::get(ElementType: EltTy, NumElts: NewNumElts); |
| 1826 | OverloadTys[0] = NewTy; |
| 1827 | |
| 1828 | if (!IsLoad) { |
| 1829 | SmallVector<int, 8> EltMask; |
| 1830 | for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx) |
| 1831 | if (DemandedElts[OrigStoreIdx]) |
| 1832 | EltMask.push_back(Elt: OrigStoreIdx); |
| 1833 | |
| 1834 | if (NewNumElts == 1) |
| 1835 | Args[0] = IC.Builder.CreateExtractElement(Vec: II.getOperand(i_nocapture: 0), Idx: EltMask[0]); |
| 1836 | else |
| 1837 | Args[0] = IC.Builder.CreateShuffleVector(V: II.getOperand(i_nocapture: 0), Mask: EltMask); |
| 1838 | } |
| 1839 | |
| 1840 | CallInst *NewCall = |
| 1841 | IC.Builder.CreateIntrinsic(ID: II.getIntrinsicID(), Types: OverloadTys, Args); |
| 1842 | NewCall->takeName(V: &II); |
| 1843 | NewCall->copyMetadata(SrcInst: II); |
| 1844 | |
| 1845 | if (IsLoad) { |
| 1846 | if (NewNumElts == 1) { |
| 1847 | return IC.Builder.CreateInsertElement(Vec: PoisonValue::get(T: IIVTy), NewElt: NewCall, |
| 1848 | Idx: DemandedElts.countr_zero()); |
| 1849 | } |
| 1850 | |
| 1851 | SmallVector<int, 8> EltMask; |
| 1852 | unsigned NewLoadIdx = 0; |
| 1853 | for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { |
| 1854 | if (!!DemandedElts[OrigLoadIdx]) |
| 1855 | EltMask.push_back(Elt: NewLoadIdx++); |
| 1856 | else |
| 1857 | EltMask.push_back(Elt: NewNumElts); |
| 1858 | } |
| 1859 | |
| 1860 | auto *Shuffle = IC.Builder.CreateShuffleVector(V: NewCall, Mask: EltMask); |
| 1861 | |
| 1862 | return Shuffle; |
| 1863 | } |
| 1864 | |
| 1865 | return NewCall; |
| 1866 | } |
| 1867 | |
| 1868 | Value *GCNTTIImpl::simplifyAMDGCNLaneIntrinsicDemanded( |
| 1869 | InstCombiner &IC, IntrinsicInst &II, const APInt &DemandedElts, |
| 1870 | APInt &UndefElts) const { |
| 1871 | auto *VT = dyn_cast<FixedVectorType>(Val: II.getType()); |
| 1872 | if (!VT) |
| 1873 | return nullptr; |
| 1874 | |
| 1875 | const unsigned FirstElt = DemandedElts.countr_zero(); |
| 1876 | const unsigned LastElt = DemandedElts.getActiveBits() - 1; |
| 1877 | const unsigned MaskLen = LastElt - FirstElt + 1; |
| 1878 | |
| 1879 | unsigned OldNumElts = VT->getNumElements(); |
| 1880 | if (MaskLen == OldNumElts && MaskLen != 1) |
| 1881 | return nullptr; |
| 1882 | |
| 1883 | Type *EltTy = VT->getElementType(); |
| 1884 | Type *NewVT = MaskLen == 1 ? EltTy : FixedVectorType::get(ElementType: EltTy, NumElts: MaskLen); |
| 1885 | |
| 1886 | // Theoretically we should support these intrinsics for any legal type. Avoid |
| 1887 | // introducing cases that aren't direct register types like v3i16. |
| 1888 | if (!isTypeLegal(Ty: NewVT)) |
| 1889 | return nullptr; |
| 1890 | |
| 1891 | Value *Src = II.getArgOperand(i: 0); |
| 1892 | |
| 1893 | // Make sure convergence tokens are preserved. |
| 1894 | // TODO: CreateIntrinsic should allow directly copying bundles |
| 1895 | SmallVector<OperandBundleDef, 2> OpBundles; |
| 1896 | II.getOperandBundlesAsDefs(Defs&: OpBundles); |
| 1897 | |
| 1898 | Module *M = IC.Builder.GetInsertBlock()->getModule(); |
| 1899 | Function *Remangled = |
| 1900 | Intrinsic::getOrInsertDeclaration(M, id: II.getIntrinsicID(), Tys: {NewVT}); |
| 1901 | |
| 1902 | if (MaskLen == 1) { |
| 1903 | Value * = IC.Builder.CreateExtractElement(Vec: Src, Idx: FirstElt); |
| 1904 | |
| 1905 | // TODO: Preserve callsite attributes? |
| 1906 | CallInst *NewCall = IC.Builder.CreateCall(Callee: Remangled, Args: {Extract}, OpBundles); |
| 1907 | |
| 1908 | return IC.Builder.CreateInsertElement(Vec: PoisonValue::get(T: II.getType()), |
| 1909 | NewElt: NewCall, Idx: FirstElt); |
| 1910 | } |
| 1911 | |
| 1912 | SmallVector<int> (MaskLen, -1); |
| 1913 | for (unsigned I = 0; I != MaskLen; ++I) { |
| 1914 | if (DemandedElts[FirstElt + I]) |
| 1915 | ExtractMask[I] = FirstElt + I; |
| 1916 | } |
| 1917 | |
| 1918 | Value * = IC.Builder.CreateShuffleVector(V: Src, Mask: ExtractMask); |
| 1919 | |
| 1920 | // TODO: Preserve callsite attributes? |
| 1921 | CallInst *NewCall = IC.Builder.CreateCall(Callee: Remangled, Args: {Extract}, OpBundles); |
| 1922 | |
| 1923 | SmallVector<int> InsertMask(OldNumElts, -1); |
| 1924 | for (unsigned I = 0; I != MaskLen; ++I) { |
| 1925 | if (DemandedElts[FirstElt + I]) |
| 1926 | InsertMask[FirstElt + I] = I; |
| 1927 | } |
| 1928 | |
| 1929 | // FIXME: If the call has a convergence bundle, we end up leaving the dead |
| 1930 | // call behind. |
| 1931 | return IC.Builder.CreateShuffleVector(V: NewCall, Mask: InsertMask); |
| 1932 | } |
| 1933 | |
| 1934 | std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( |
| 1935 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
| 1936 | APInt &UndefElts2, APInt &UndefElts3, |
| 1937 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| 1938 | SimplifyAndSetOp) const { |
| 1939 | switch (II.getIntrinsicID()) { |
| 1940 | case Intrinsic::amdgcn_readfirstlane: |
| 1941 | SimplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 1942 | return simplifyAMDGCNLaneIntrinsicDemanded(IC, II, DemandedElts, UndefElts); |
| 1943 | case Intrinsic::amdgcn_raw_buffer_load: |
| 1944 | case Intrinsic::amdgcn_raw_ptr_buffer_load: |
| 1945 | case Intrinsic::amdgcn_raw_buffer_load_format: |
| 1946 | case Intrinsic::amdgcn_raw_ptr_buffer_load_format: |
| 1947 | case Intrinsic::amdgcn_raw_tbuffer_load: |
| 1948 | case Intrinsic::amdgcn_raw_ptr_tbuffer_load: |
| 1949 | case Intrinsic::amdgcn_s_buffer_load: |
| 1950 | case Intrinsic::amdgcn_struct_buffer_load: |
| 1951 | case Intrinsic::amdgcn_struct_ptr_buffer_load: |
| 1952 | case Intrinsic::amdgcn_struct_buffer_load_format: |
| 1953 | case Intrinsic::amdgcn_struct_ptr_buffer_load_format: |
| 1954 | case Intrinsic::amdgcn_struct_tbuffer_load: |
| 1955 | case Intrinsic::amdgcn_struct_ptr_tbuffer_load: |
| 1956 | return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); |
| 1957 | default: { |
| 1958 | if (getAMDGPUImageDMaskIntrinsic(Intr: II.getIntrinsicID())) { |
| 1959 | return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx: 0); |
| 1960 | } |
| 1961 | break; |
| 1962 | } |
| 1963 | } |
| 1964 | return std::nullopt; |
| 1965 | } |
| 1966 | |