| 1 | //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements hazard recognizers for scheduling on GCN processors. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "GCNHazardRecognizer.h" |
| 14 | #include "GCNSubtarget.h" |
| 15 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 16 | #include "SIMachineFunctionInfo.h" |
| 17 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 18 | #include "llvm/CodeGen/MachineFunction.h" |
| 19 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 20 | #include "llvm/TargetParser/TargetParser.h" |
| 21 | |
| 22 | using namespace llvm; |
| 23 | |
| 24 | namespace { |
| 25 | |
| 26 | struct MFMAPaddingRatioParser : public cl::parser<unsigned> { |
| 27 | MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} |
| 28 | |
| 29 | bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { |
| 30 | if (Arg.getAsInteger(Radix: 0, Result&: Value)) |
| 31 | return O.error(Message: "'" + Arg + "' value invalid for uint argument!" ); |
| 32 | |
| 33 | if (Value > 100) |
| 34 | return O.error(Message: "'" + Arg + "' value must be in the range [0, 100]!" ); |
| 35 | |
| 36 | return false; |
| 37 | } |
| 38 | }; |
| 39 | |
| 40 | } // end anonymous namespace |
| 41 | |
| 42 | static cl::opt<unsigned, false, MFMAPaddingRatioParser> |
| 43 | MFMAPaddingRatio("amdgpu-mfma-padding-ratio" , cl::init(Val: 0), cl::Hidden, |
| 44 | cl::desc("Fill a percentage of the latency between " |
| 45 | "neighboring MFMA with s_nops." )); |
| 46 | |
| 47 | // This is intended for debugging purposes only. |
| 48 | static cl::opt<unsigned> |
| 49 | NopPadding("amdgpu-snop-padding" , cl::init(Val: 0), cl::Hidden, |
| 50 | cl::desc("Insert a s_nop x before every instruction" )); |
| 51 | |
| 52 | //===----------------------------------------------------------------------===// |
| 53 | // Hazard Recognizer Implementation |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | |
| 56 | static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, |
| 57 | const GCNSubtarget &ST); |
| 58 | |
| 59 | GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) |
| 60 | : IsHazardRecognizerMode(false), CurrCycleInstr(nullptr), MF(MF), |
| 61 | ST(MF.getSubtarget<GCNSubtarget>()), TII(*ST.getInstrInfo()), |
| 62 | TRI(TII.getRegisterInfo()), TSchedModel(TII.getSchedModel()), |
| 63 | ClauseUses(TRI.getNumRegUnits()), ClauseDefs(TRI.getNumRegUnits()) { |
| 64 | MaxLookAhead = MF.getRegInfo().isPhysRegUsed(PhysReg: AMDGPU::AGPR0) ? 19 : 5; |
| 65 | RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); |
| 66 | } |
| 67 | |
| 68 | void GCNHazardRecognizer::Reset() { |
| 69 | EmittedInstrs.clear(); |
| 70 | } |
| 71 | |
| 72 | void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { |
| 73 | EmitInstruction(MI: SU->getInstr()); |
| 74 | } |
| 75 | |
| 76 | void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { |
| 77 | CurrCycleInstr = MI; |
| 78 | } |
| 79 | |
| 80 | static bool isDivFMas(unsigned Opcode) { |
| 81 | return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; |
| 82 | } |
| 83 | |
| 84 | static bool isSGetReg(unsigned Opcode) { |
| 85 | return Opcode == AMDGPU::S_GETREG_B32; |
| 86 | } |
| 87 | |
| 88 | static bool isSSetReg(unsigned Opcode) { |
| 89 | switch (Opcode) { |
| 90 | case AMDGPU::S_SETREG_B32: |
| 91 | case AMDGPU::S_SETREG_B32_mode: |
| 92 | case AMDGPU::S_SETREG_IMM32_B32: |
| 93 | case AMDGPU::S_SETREG_IMM32_B32_mode: |
| 94 | return true; |
| 95 | } |
| 96 | return false; |
| 97 | } |
| 98 | |
| 99 | static bool isRWLane(unsigned Opcode) { |
| 100 | return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; |
| 101 | } |
| 102 | |
| 103 | static bool isRFE(unsigned Opcode) { |
| 104 | return Opcode == AMDGPU::S_RFE_B64; |
| 105 | } |
| 106 | |
| 107 | static bool isSMovRel(unsigned Opcode) { |
| 108 | switch (Opcode) { |
| 109 | case AMDGPU::S_MOVRELS_B32: |
| 110 | case AMDGPU::S_MOVRELS_B64: |
| 111 | case AMDGPU::S_MOVRELD_B32: |
| 112 | case AMDGPU::S_MOVRELD_B64: |
| 113 | return true; |
| 114 | default: |
| 115 | return false; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, |
| 120 | const MachineInstr &MI) { |
| 121 | if (TII.isAlwaysGDS(Opcode: MI.getOpcode())) |
| 122 | return true; |
| 123 | |
| 124 | switch (MI.getOpcode()) { |
| 125 | case AMDGPU::S_SENDMSG: |
| 126 | case AMDGPU::S_SENDMSGHALT: |
| 127 | case AMDGPU::S_TTRACEDATA: |
| 128 | return true; |
| 129 | // These DS opcodes don't support GDS. |
| 130 | case AMDGPU::DS_NOP: |
| 131 | case AMDGPU::DS_PERMUTE_B32: |
| 132 | case AMDGPU::DS_BPERMUTE_B32: |
| 133 | return false; |
| 134 | default: |
| 135 | if (TII.isDS(Opcode: MI.getOpcode())) { |
| 136 | int GDS = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), |
| 137 | Name: AMDGPU::OpName::gds); |
| 138 | if (MI.getOperand(i: GDS).getImm()) |
| 139 | return true; |
| 140 | } |
| 141 | return false; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | static bool isPermlane(const MachineInstr &MI) { |
| 146 | unsigned Opcode = MI.getOpcode(); |
| 147 | return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || |
| 148 | Opcode == AMDGPU::V_PERMLANE64_B32 || |
| 149 | Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || |
| 150 | Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || |
| 151 | Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64 || |
| 152 | Opcode == AMDGPU::V_PERMLANE16_SWAP_B32_e32 || |
| 153 | Opcode == AMDGPU::V_PERMLANE16_SWAP_B32_e64 || |
| 154 | Opcode == AMDGPU::V_PERMLANE32_SWAP_B32_e32 || |
| 155 | Opcode == AMDGPU::V_PERMLANE32_SWAP_B32_e64; |
| 156 | } |
| 157 | |
| 158 | static bool isLdsDma(const MachineInstr &MI) { |
| 159 | return SIInstrInfo::isVALU(MI) && |
| 160 | (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); |
| 161 | } |
| 162 | |
| 163 | static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { |
| 164 | const MachineOperand *RegOp = TII->getNamedOperand(MI: RegInstr, |
| 165 | OperandName: AMDGPU::OpName::simm16); |
| 166 | return std::get<0>(t: AMDGPU::Hwreg::HwregEncoding::decode(Encoded: RegOp->getImm())); |
| 167 | } |
| 168 | |
| 169 | ScheduleHazardRecognizer::HazardType |
| 170 | GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { |
| 171 | MachineInstr *MI = SU->getInstr(); |
| 172 | // If we are not in "HazardRecognizerMode" and therefore not being run from |
| 173 | // the scheduler, track possible stalls from hazards but don't insert noops. |
| 174 | auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; |
| 175 | |
| 176 | if (MI->isBundle()) |
| 177 | return NoHazard; |
| 178 | |
| 179 | if (SIInstrInfo::isSMRD(MI: *MI) && checkSMRDHazards(SMRD: MI) > 0) |
| 180 | return HazardType; |
| 181 | |
| 182 | if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) |
| 183 | return HazardType; |
| 184 | |
| 185 | if (checkFPAtomicToDenormModeHazard(MI) > 0) |
| 186 | return HazardType; |
| 187 | |
| 188 | if (ST.hasNoDataDepHazard()) |
| 189 | return NoHazard; |
| 190 | |
| 191 | if (SIInstrInfo::isVMEM(MI: *MI) && checkVMEMHazards(VMEM: MI) > 0) |
| 192 | return HazardType; |
| 193 | |
| 194 | if (SIInstrInfo::isVALU(MI: *MI) && checkVALUHazards(VALU: MI) > 0) |
| 195 | return HazardType; |
| 196 | |
| 197 | if (SIInstrInfo::isDPP(MI: *MI) && checkDPPHazards(DPP: MI) > 0) |
| 198 | return HazardType; |
| 199 | |
| 200 | if (isDivFMas(Opcode: MI->getOpcode()) && checkDivFMasHazards(DivFMas: MI) > 0) |
| 201 | return HazardType; |
| 202 | |
| 203 | if (isRWLane(Opcode: MI->getOpcode()) && checkRWLaneHazards(RWLane: MI) > 0) |
| 204 | return HazardType; |
| 205 | |
| 206 | if ((SIInstrInfo::isVALU(MI: *MI) || SIInstrInfo::isVMEM(MI: *MI) || |
| 207 | SIInstrInfo::isDS(MI: *MI) || SIInstrInfo::isEXP(MI: *MI)) && |
| 208 | checkMAIVALUHazards(MI) > 0) |
| 209 | return HazardType; |
| 210 | |
| 211 | if (isSGetReg(Opcode: MI->getOpcode()) && checkGetRegHazards(GetRegInstr: MI) > 0) |
| 212 | return HazardType; |
| 213 | |
| 214 | if (isSSetReg(Opcode: MI->getOpcode()) && checkSetRegHazards(SetRegInstr: MI) > 0) |
| 215 | return HazardType; |
| 216 | |
| 217 | if (isRFE(Opcode: MI->getOpcode()) && checkRFEHazards(RFE: MI) > 0) |
| 218 | return HazardType; |
| 219 | |
| 220 | if (((ST.hasReadM0MovRelInterpHazard() && |
| 221 | (TII.isVINTRP(MI: *MI) || isSMovRel(Opcode: MI->getOpcode()) || |
| 222 | MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || |
| 223 | MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || |
| 224 | (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, MI: *MI)) || |
| 225 | (ST.hasReadM0LdsDmaHazard() && isLdsDma(MI: *MI)) || |
| 226 | (ST.hasReadM0LdsDirectHazard() && |
| 227 | MI->readsRegister(Reg: AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) && |
| 228 | checkReadM0Hazards(SMovRel: MI) > 0) |
| 229 | return HazardType; |
| 230 | |
| 231 | if (SIInstrInfo::isMAI(MI: *MI) && checkMAIHazards(MI) > 0) |
| 232 | return HazardType; |
| 233 | |
| 234 | if ((SIInstrInfo::isVMEM(MI: *MI) || SIInstrInfo::isDS(MI: *MI)) && |
| 235 | checkMAILdStHazards(MI) > 0) |
| 236 | return HazardType; |
| 237 | |
| 238 | if (MI->isInlineAsm() && checkInlineAsmHazards(IA: MI) > 0) |
| 239 | return HazardType; |
| 240 | |
| 241 | return NoHazard; |
| 242 | } |
| 243 | |
| 244 | static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, |
| 245 | unsigned Quantity) { |
| 246 | while (Quantity > 0) { |
| 247 | unsigned Arg = std::min(a: Quantity, b: 8u); |
| 248 | Quantity -= Arg; |
| 249 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), MCID: TII.get(Opcode: AMDGPU::S_NOP)) |
| 250 | .addImm(Val: Arg - 1); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | unsigned |
| 255 | GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { |
| 256 | const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(MI: &MI); |
| 257 | assert(TSchedModel.getWriteProcResBegin(SC) != |
| 258 | TSchedModel.getWriteProcResEnd(SC)); |
| 259 | return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; |
| 260 | } |
| 261 | |
| 262 | void GCNHazardRecognizer::processBundle() { |
| 263 | MachineBasicBlock::instr_iterator MI = std::next(x: CurrCycleInstr->getIterator()); |
| 264 | MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); |
| 265 | // Check bundled MachineInstr's for hazards. |
| 266 | for (; MI != E && MI->isInsideBundle(); ++MI) { |
| 267 | CurrCycleInstr = &*MI; |
| 268 | unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); |
| 269 | |
| 270 | if (IsHazardRecognizerMode) { |
| 271 | fixHazards(MI: CurrCycleInstr); |
| 272 | |
| 273 | insertNoopsInBundle(MI: CurrCycleInstr, TII, Quantity: WaitStates); |
| 274 | } |
| 275 | |
| 276 | // It’s unnecessary to track more than MaxLookAhead instructions. Since we |
| 277 | // include the bundled MI directly after, only add a maximum of |
| 278 | // (MaxLookAhead - 1) noops to EmittedInstrs. |
| 279 | for (unsigned i = 0, e = std::min(a: WaitStates, b: MaxLookAhead - 1); i < e; ++i) |
| 280 | EmittedInstrs.push_front(x: nullptr); |
| 281 | |
| 282 | EmittedInstrs.push_front(x: CurrCycleInstr); |
| 283 | EmittedInstrs.resize(new_size: MaxLookAhead); |
| 284 | } |
| 285 | CurrCycleInstr = nullptr; |
| 286 | } |
| 287 | |
| 288 | void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { |
| 289 | assert(IsHazardRecognizerMode); |
| 290 | |
| 291 | unsigned NumPreNoops = PreEmitNoops(MI); |
| 292 | EmitNoops(Quantity: NumPreNoops); |
| 293 | if (MI->isInsideBundle()) |
| 294 | insertNoopsInBundle(MI, TII, Quantity: NumPreNoops); |
| 295 | else |
| 296 | TII.insertNoops(MBB&: *MI->getParent(), MI: MachineBasicBlock::iterator(MI), |
| 297 | Quantity: NumPreNoops); |
| 298 | EmitInstruction(MI); |
| 299 | AdvanceCycle(); |
| 300 | } |
| 301 | |
| 302 | unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { |
| 303 | IsHazardRecognizerMode = true; |
| 304 | CurrCycleInstr = MI; |
| 305 | unsigned W = PreEmitNoopsCommon(MI); |
| 306 | fixHazards(MI); |
| 307 | CurrCycleInstr = nullptr; |
| 308 | return std::max(a: W, b: NopPadding.getValue()); |
| 309 | } |
| 310 | |
| 311 | unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { |
| 312 | if (MI->isBundle()) |
| 313 | return 0; |
| 314 | |
| 315 | int WaitStates = 0; |
| 316 | |
| 317 | if (SIInstrInfo::isSMRD(MI: *MI)) |
| 318 | return std::max(a: WaitStates, b: checkSMRDHazards(SMRD: MI)); |
| 319 | |
| 320 | if (ST.hasNSAtoVMEMBug()) |
| 321 | WaitStates = std::max(a: WaitStates, b: checkNSAtoVMEMHazard(MI)); |
| 322 | |
| 323 | WaitStates = std::max(a: WaitStates, b: checkFPAtomicToDenormModeHazard(MI)); |
| 324 | |
| 325 | if (ST.hasNoDataDepHazard()) |
| 326 | return WaitStates; |
| 327 | |
| 328 | if (SIInstrInfo::isVMEM(MI: *MI)) |
| 329 | WaitStates = std::max(a: WaitStates, b: checkVMEMHazards(VMEM: MI)); |
| 330 | |
| 331 | if (SIInstrInfo::isVALU(MI: *MI)) |
| 332 | WaitStates = std::max(a: WaitStates, b: checkVALUHazards(VALU: MI)); |
| 333 | |
| 334 | if (SIInstrInfo::isDPP(MI: *MI)) |
| 335 | WaitStates = std::max(a: WaitStates, b: checkDPPHazards(DPP: MI)); |
| 336 | |
| 337 | if (isDivFMas(Opcode: MI->getOpcode())) |
| 338 | WaitStates = std::max(a: WaitStates, b: checkDivFMasHazards(DivFMas: MI)); |
| 339 | |
| 340 | if (isRWLane(Opcode: MI->getOpcode())) |
| 341 | WaitStates = std::max(a: WaitStates, b: checkRWLaneHazards(RWLane: MI)); |
| 342 | |
| 343 | if ((SIInstrInfo::isVALU(MI: *MI) || SIInstrInfo::isVMEM(MI: *MI) || |
| 344 | SIInstrInfo::isDS(MI: *MI) || SIInstrInfo::isEXP(MI: *MI)) && |
| 345 | checkMAIVALUHazards(MI) > 0) |
| 346 | WaitStates = std::max(a: WaitStates, b: checkMAIVALUHazards(MI)); |
| 347 | |
| 348 | if (MI->isInlineAsm()) |
| 349 | return std::max(a: WaitStates, b: checkInlineAsmHazards(IA: MI)); |
| 350 | |
| 351 | if (isSGetReg(Opcode: MI->getOpcode())) |
| 352 | return std::max(a: WaitStates, b: checkGetRegHazards(GetRegInstr: MI)); |
| 353 | |
| 354 | if (isSSetReg(Opcode: MI->getOpcode())) |
| 355 | return std::max(a: WaitStates, b: checkSetRegHazards(SetRegInstr: MI)); |
| 356 | |
| 357 | if (isRFE(Opcode: MI->getOpcode())) |
| 358 | return std::max(a: WaitStates, b: checkRFEHazards(RFE: MI)); |
| 359 | |
| 360 | if ((ST.hasReadM0MovRelInterpHazard() && |
| 361 | (TII.isVINTRP(MI: *MI) || isSMovRel(Opcode: MI->getOpcode()) || |
| 362 | MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || |
| 363 | MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || |
| 364 | (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, MI: *MI)) || |
| 365 | (ST.hasReadM0LdsDmaHazard() && isLdsDma(MI: *MI)) || |
| 366 | (ST.hasReadM0LdsDirectHazard() && |
| 367 | MI->readsRegister(Reg: AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) |
| 368 | return std::max(a: WaitStates, b: checkReadM0Hazards(SMovRel: MI)); |
| 369 | |
| 370 | if (SIInstrInfo::isMAI(MI: *MI)) |
| 371 | return std::max(a: WaitStates, b: checkMAIHazards(MI)); |
| 372 | |
| 373 | if (SIInstrInfo::isVMEM(MI: *MI) || SIInstrInfo::isDS(MI: *MI)) |
| 374 | return std::max(a: WaitStates, b: checkMAILdStHazards(MI)); |
| 375 | |
| 376 | if (ST.hasGFX950Insts() && isPermlane(MI: *MI)) |
| 377 | return std::max(a: WaitStates, b: checkPermlaneHazards(MI)); |
| 378 | |
| 379 | return WaitStates; |
| 380 | } |
| 381 | |
| 382 | void GCNHazardRecognizer::EmitNoop() { |
| 383 | EmittedInstrs.push_front(x: nullptr); |
| 384 | } |
| 385 | |
| 386 | void GCNHazardRecognizer::AdvanceCycle() { |
| 387 | // When the scheduler detects a stall, it will call AdvanceCycle() without |
| 388 | // emitting any instructions. |
| 389 | if (!CurrCycleInstr) { |
| 390 | EmittedInstrs.push_front(x: nullptr); |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | if (CurrCycleInstr->isBundle()) { |
| 395 | processBundle(); |
| 396 | return; |
| 397 | } |
| 398 | |
| 399 | unsigned NumWaitStates = TII.getNumWaitStates(MI: *CurrCycleInstr); |
| 400 | if (!NumWaitStates) { |
| 401 | CurrCycleInstr = nullptr; |
| 402 | return; |
| 403 | } |
| 404 | |
| 405 | // Keep track of emitted instructions |
| 406 | EmittedInstrs.push_front(x: CurrCycleInstr); |
| 407 | |
| 408 | // Add a nullptr for each additional wait state after the first. Make sure |
| 409 | // not to add more than getMaxLookAhead() items to the list, since we |
| 410 | // truncate the list to that size right after this loop. |
| 411 | for (unsigned i = 1, e = std::min(a: NumWaitStates, b: getMaxLookAhead()); |
| 412 | i < e; ++i) { |
| 413 | EmittedInstrs.push_front(x: nullptr); |
| 414 | } |
| 415 | |
| 416 | // getMaxLookahead() is the largest number of wait states we will ever need |
| 417 | // to insert, so there is no point in keeping track of more than that many |
| 418 | // wait states. |
| 419 | EmittedInstrs.resize(new_size: getMaxLookAhead()); |
| 420 | |
| 421 | CurrCycleInstr = nullptr; |
| 422 | } |
| 423 | |
| 424 | void GCNHazardRecognizer::RecedeCycle() { |
| 425 | assert(!IsHazardRecognizerMode && |
| 426 | "Bottom-up scheduling shouldn't run in hazard recognizer mode" ); |
| 427 | } |
| 428 | |
| 429 | //===----------------------------------------------------------------------===// |
| 430 | // Helper Functions |
| 431 | //===----------------------------------------------------------------------===// |
| 432 | |
| 433 | using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound }; |
| 434 | |
| 435 | using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>; |
| 436 | using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>; |
| 437 | |
| 438 | // Search for a hazard in a block and its predecessors. |
| 439 | template <typename StateT> |
| 440 | static bool |
| 441 | hasHazard(StateT State, |
| 442 | function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, |
| 443 | function_ref<void(StateT &, const MachineInstr &)> UpdateState, |
| 444 | const MachineBasicBlock *MBB, |
| 445 | MachineBasicBlock::const_reverse_instr_iterator I, |
| 446 | DenseSet<const MachineBasicBlock *> &Visited) { |
| 447 | for (auto E = MBB->instr_rend(); I != E; ++I) { |
| 448 | // No need to look at parent BUNDLE instructions. |
| 449 | if (I->isBundle()) |
| 450 | continue; |
| 451 | |
| 452 | switch (IsHazard(State, *I)) { |
| 453 | case HazardFound: |
| 454 | return true; |
| 455 | case HazardExpired: |
| 456 | return false; |
| 457 | default: |
| 458 | // Continue search |
| 459 | break; |
| 460 | } |
| 461 | |
| 462 | if (I->isInlineAsm() || I->isMetaInstruction()) |
| 463 | continue; |
| 464 | |
| 465 | UpdateState(State, *I); |
| 466 | } |
| 467 | |
| 468 | for (MachineBasicBlock *Pred : MBB->predecessors()) { |
| 469 | if (!Visited.insert(V: Pred).second) |
| 470 | continue; |
| 471 | |
| 472 | if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), |
| 473 | Visited)) |
| 474 | return true; |
| 475 | } |
| 476 | |
| 477 | return false; |
| 478 | } |
| 479 | |
| 480 | // Returns a minimum wait states since \p I walking all predecessors. |
| 481 | // Only scans until \p IsExpired does not return true. |
| 482 | // Can only be run in a hazard recognizer mode. |
| 483 | static int getWaitStatesSince( |
| 484 | GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, |
| 485 | MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, |
| 486 | IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, |
| 487 | GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { |
| 488 | for (auto E = MBB->instr_rend(); I != E; ++I) { |
| 489 | // Don't add WaitStates for parent BUNDLE instructions. |
| 490 | if (I->isBundle()) |
| 491 | continue; |
| 492 | |
| 493 | if (IsHazard(*I)) |
| 494 | return WaitStates; |
| 495 | |
| 496 | if (I->isInlineAsm()) |
| 497 | continue; |
| 498 | |
| 499 | WaitStates += GetNumWaitStates(*I); |
| 500 | |
| 501 | if (IsExpired(*I, WaitStates)) |
| 502 | return std::numeric_limits<int>::max(); |
| 503 | } |
| 504 | |
| 505 | int MinWaitStates = std::numeric_limits<int>::max(); |
| 506 | for (MachineBasicBlock *Pred : MBB->predecessors()) { |
| 507 | if (!Visited.insert(V: Pred).second) |
| 508 | continue; |
| 509 | |
| 510 | int W = getWaitStatesSince(IsHazard, MBB: Pred, I: Pred->instr_rbegin(), WaitStates, |
| 511 | IsExpired, Visited, GetNumWaitStates); |
| 512 | |
| 513 | MinWaitStates = std::min(a: MinWaitStates, b: W); |
| 514 | } |
| 515 | |
| 516 | return MinWaitStates; |
| 517 | } |
| 518 | |
| 519 | static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, |
| 520 | const MachineInstr *MI, IsExpiredFn IsExpired) { |
| 521 | DenseSet<const MachineBasicBlock *> Visited; |
| 522 | return getWaitStatesSince(IsHazard, MBB: MI->getParent(), |
| 523 | I: std::next(x: MI->getReverseIterator()), |
| 524 | WaitStates: 0, IsExpired, Visited); |
| 525 | } |
| 526 | |
| 527 | int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { |
| 528 | if (IsHazardRecognizerMode) { |
| 529 | auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { |
| 530 | return WaitStates >= Limit; |
| 531 | }; |
| 532 | return ::getWaitStatesSince(IsHazard, MI: CurrCycleInstr, IsExpired: IsExpiredFn); |
| 533 | } |
| 534 | |
| 535 | int WaitStates = 0; |
| 536 | for (MachineInstr *MI : EmittedInstrs) { |
| 537 | if (MI) { |
| 538 | if (IsHazard(*MI)) |
| 539 | return WaitStates; |
| 540 | |
| 541 | if (MI->isInlineAsm()) |
| 542 | continue; |
| 543 | } |
| 544 | ++WaitStates; |
| 545 | |
| 546 | if (WaitStates >= Limit) |
| 547 | break; |
| 548 | } |
| 549 | return std::numeric_limits<int>::max(); |
| 550 | } |
| 551 | |
| 552 | int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, |
| 553 | IsHazardFn IsHazardDef, |
| 554 | int Limit) { |
| 555 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 556 | |
| 557 | auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { |
| 558 | return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); |
| 559 | }; |
| 560 | |
| 561 | return getWaitStatesSince(IsHazard: IsHazardFn, Limit); |
| 562 | } |
| 563 | |
| 564 | int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, |
| 565 | int Limit) { |
| 566 | auto IsHazardFn = [IsHazard](const MachineInstr &MI) { |
| 567 | return isSSetReg(Opcode: MI.getOpcode()) && IsHazard(MI); |
| 568 | }; |
| 569 | |
| 570 | return getWaitStatesSince(IsHazard: IsHazardFn, Limit); |
| 571 | } |
| 572 | |
| 573 | //===----------------------------------------------------------------------===// |
| 574 | // No-op Hazard Detection |
| 575 | //===----------------------------------------------------------------------===// |
| 576 | |
| 577 | static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, |
| 578 | MCRegister Reg) { |
| 579 | for (MCRegUnit Unit : TRI.regunits(Reg)) |
| 580 | BV.set(Unit); |
| 581 | } |
| 582 | |
| 583 | static void addRegsToSet(const SIRegisterInfo &TRI, |
| 584 | iterator_range<MachineInstr::const_mop_iterator> Ops, |
| 585 | BitVector &DefSet, BitVector &UseSet) { |
| 586 | for (const MachineOperand &Op : Ops) { |
| 587 | if (Op.isReg()) |
| 588 | addRegUnits(TRI, BV&: Op.isDef() ? DefSet : UseSet, Reg: Op.getReg().asMCReg()); |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { |
| 593 | addRegsToSet(TRI, Ops: MI.operands(), DefSet&: ClauseDefs, UseSet&: ClauseUses); |
| 594 | } |
| 595 | |
| 596 | static bool breaksSMEMSoftClause(MachineInstr *MI) { |
| 597 | return !SIInstrInfo::isSMRD(MI: *MI); |
| 598 | } |
| 599 | |
| 600 | static bool breaksVMEMSoftClause(MachineInstr *MI) { |
| 601 | return !SIInstrInfo::isVMEM(MI: *MI); |
| 602 | } |
| 603 | |
| 604 | int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { |
| 605 | // SMEM soft clause are only present on VI+, and only matter if xnack is |
| 606 | // enabled. |
| 607 | if (!ST.isXNACKEnabled()) |
| 608 | return 0; |
| 609 | |
| 610 | bool IsSMRD = TII.isSMRD(MI: *MEM); |
| 611 | |
| 612 | resetClause(); |
| 613 | |
| 614 | // A soft-clause is any group of consecutive SMEM instructions. The |
| 615 | // instructions in this group may return out of order and/or may be |
| 616 | // replayed (i.e. the same instruction issued more than once). |
| 617 | // |
| 618 | // In order to handle these situations correctly we need to make sure that |
| 619 | // when a clause has more than one instruction, no instruction in the clause |
| 620 | // writes to a register that is read by another instruction in the clause |
| 621 | // (including itself). If we encounter this situation, we need to break the |
| 622 | // clause by inserting a non SMEM instruction. |
| 623 | |
| 624 | for (MachineInstr *MI : EmittedInstrs) { |
| 625 | // When we hit a non-SMEM instruction then we have passed the start of the |
| 626 | // clause and we can stop. |
| 627 | if (!MI) |
| 628 | break; |
| 629 | |
| 630 | if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) |
| 631 | break; |
| 632 | |
| 633 | addClauseInst(MI: *MI); |
| 634 | } |
| 635 | |
| 636 | if (ClauseDefs.none()) |
| 637 | return 0; |
| 638 | |
| 639 | // We need to make sure not to put loads and stores in the same clause if they |
| 640 | // use the same address. For now, just start a new clause whenever we see a |
| 641 | // store. |
| 642 | if (MEM->mayStore()) |
| 643 | return 1; |
| 644 | |
| 645 | addClauseInst(MI: *MEM); |
| 646 | |
| 647 | // If the set of defs and uses intersect then we cannot add this instruction |
| 648 | // to the clause, so we have a hazard. |
| 649 | return ClauseDefs.anyCommon(RHS: ClauseUses) ? 1 : 0; |
| 650 | } |
| 651 | |
| 652 | int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { |
| 653 | int WaitStatesNeeded = 0; |
| 654 | |
| 655 | WaitStatesNeeded = checkSoftClauseHazards(MEM: SMRD); |
| 656 | |
| 657 | // This SMRD hazard only affects SI. |
| 658 | if (!ST.hasSMRDReadVALUDefHazard()) |
| 659 | return WaitStatesNeeded; |
| 660 | |
| 661 | // A read of an SGPR by SMRD instruction requires 4 wait states when the |
| 662 | // SGPR was written by a VALU instruction. |
| 663 | int SmrdSgprWaitStates = 4; |
| 664 | auto IsHazardDefFn = [this](const MachineInstr &MI) { |
| 665 | return TII.isVALU(MI); |
| 666 | }; |
| 667 | auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { |
| 668 | return TII.isSALU(MI); |
| 669 | }; |
| 670 | |
| 671 | bool IsBufferSMRD = TII.isBufferSMRD(MI: *SMRD); |
| 672 | |
| 673 | for (const MachineOperand &Use : SMRD->uses()) { |
| 674 | if (!Use.isReg()) |
| 675 | continue; |
| 676 | int WaitStatesNeededForUse = |
| 677 | SmrdSgprWaitStates - getWaitStatesSinceDef(Reg: Use.getReg(), IsHazardDef: IsHazardDefFn, |
| 678 | Limit: SmrdSgprWaitStates); |
| 679 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 680 | |
| 681 | // This fixes what appears to be undocumented hardware behavior in SI where |
| 682 | // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor |
| 683 | // needs some number of nops in between. We don't know how many we need, but |
| 684 | // let's use 4. This wasn't discovered before probably because the only |
| 685 | // case when this happens is when we expand a 64-bit pointer into a full |
| 686 | // descriptor and use s_buffer_load_dword instead of s_load_dword, which was |
| 687 | // probably never encountered in the closed-source land. |
| 688 | if (IsBufferSMRD) { |
| 689 | int WaitStatesNeededForUse = |
| 690 | SmrdSgprWaitStates - getWaitStatesSinceDef(Reg: Use.getReg(), |
| 691 | IsHazardDef: IsBufferHazardDefFn, |
| 692 | Limit: SmrdSgprWaitStates); |
| 693 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | return WaitStatesNeeded; |
| 698 | } |
| 699 | |
| 700 | int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { |
| 701 | if (!ST.hasVMEMReadSGPRVALUDefHazard()) |
| 702 | return 0; |
| 703 | |
| 704 | int WaitStatesNeeded = checkSoftClauseHazards(MEM: VMEM); |
| 705 | |
| 706 | // A read of an SGPR by a VMEM instruction requires 5 wait states when the |
| 707 | // SGPR was written by a VALU Instruction. |
| 708 | const int VmemSgprWaitStates = 5; |
| 709 | auto IsHazardDefFn = [this](const MachineInstr &MI) { |
| 710 | return TII.isVALU(MI); |
| 711 | }; |
| 712 | for (const MachineOperand &Use : VMEM->uses()) { |
| 713 | if (!Use.isReg() || TRI.isVectorRegister(MRI: MF.getRegInfo(), Reg: Use.getReg())) |
| 714 | continue; |
| 715 | |
| 716 | int WaitStatesNeededForUse = |
| 717 | VmemSgprWaitStates - getWaitStatesSinceDef(Reg: Use.getReg(), IsHazardDef: IsHazardDefFn, |
| 718 | Limit: VmemSgprWaitStates); |
| 719 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 720 | } |
| 721 | return WaitStatesNeeded; |
| 722 | } |
| 723 | |
| 724 | int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { |
| 725 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 726 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 727 | |
| 728 | // Check for DPP VGPR read after VALU VGPR write and EXEC write. |
| 729 | int DppVgprWaitStates = 2; |
| 730 | int DppExecWaitStates = 5; |
| 731 | int WaitStatesNeeded = 0; |
| 732 | auto IsHazardDefFn = [TII](const MachineInstr &MI) { |
| 733 | return TII->isVALU(MI); |
| 734 | }; |
| 735 | |
| 736 | for (const MachineOperand &Use : DPP->uses()) { |
| 737 | if (!Use.isReg() || !TRI->isVGPR(MRI: MF.getRegInfo(), Reg: Use.getReg())) |
| 738 | continue; |
| 739 | int WaitStatesNeededForUse = |
| 740 | DppVgprWaitStates - getWaitStatesSinceDef( |
| 741 | Reg: Use.getReg(), |
| 742 | IsHazardDef: [](const MachineInstr &) { return true; }, |
| 743 | Limit: DppVgprWaitStates); |
| 744 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 745 | } |
| 746 | |
| 747 | WaitStatesNeeded = std::max( |
| 748 | a: WaitStatesNeeded, |
| 749 | b: DppExecWaitStates - getWaitStatesSinceDef(Reg: AMDGPU::EXEC, IsHazardDef: IsHazardDefFn, |
| 750 | Limit: DppExecWaitStates)); |
| 751 | |
| 752 | return WaitStatesNeeded; |
| 753 | } |
| 754 | |
| 755 | int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { |
| 756 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 757 | |
| 758 | // v_div_fmas requires 4 wait states after a write to vcc from a VALU |
| 759 | // instruction. |
| 760 | const int DivFMasWaitStates = 4; |
| 761 | auto IsHazardDefFn = [TII](const MachineInstr &MI) { |
| 762 | return TII->isVALU(MI); |
| 763 | }; |
| 764 | int WaitStatesNeeded = getWaitStatesSinceDef(Reg: AMDGPU::VCC, IsHazardDef: IsHazardDefFn, |
| 765 | Limit: DivFMasWaitStates); |
| 766 | |
| 767 | return DivFMasWaitStates - WaitStatesNeeded; |
| 768 | } |
| 769 | |
| 770 | int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { |
| 771 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 772 | unsigned GetRegHWReg = getHWReg(TII, RegInstr: *GetRegInstr); |
| 773 | |
| 774 | const int GetRegWaitStates = 2; |
| 775 | auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { |
| 776 | return GetRegHWReg == getHWReg(TII, RegInstr: MI); |
| 777 | }; |
| 778 | int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazard: IsHazardFn, Limit: GetRegWaitStates); |
| 779 | |
| 780 | return GetRegWaitStates - WaitStatesNeeded; |
| 781 | } |
| 782 | |
| 783 | int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { |
| 784 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 785 | unsigned HWReg = getHWReg(TII, RegInstr: *SetRegInstr); |
| 786 | |
| 787 | const int SetRegWaitStates = ST.getSetRegWaitStates(); |
| 788 | auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { |
| 789 | return HWReg == getHWReg(TII, RegInstr: MI); |
| 790 | }; |
| 791 | int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazard: IsHazardFn, Limit: SetRegWaitStates); |
| 792 | return SetRegWaitStates - WaitStatesNeeded; |
| 793 | } |
| 794 | |
| 795 | int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { |
| 796 | if (!MI.mayStore()) |
| 797 | return -1; |
| 798 | |
| 799 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 800 | unsigned Opcode = MI.getOpcode(); |
| 801 | const MCInstrDesc &Desc = MI.getDesc(); |
| 802 | |
| 803 | int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::vdata); |
| 804 | int VDataRCID = -1; |
| 805 | if (VDataIdx != -1) |
| 806 | VDataRCID = Desc.operands()[VDataIdx].RegClass; |
| 807 | |
| 808 | if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { |
| 809 | // There is no hazard if the instruction does not use vector regs |
| 810 | // (like wbinvl1) |
| 811 | if (VDataIdx == -1) |
| 812 | return -1; |
| 813 | // For MUBUF/MTBUF instructions this hazard only exists if the |
| 814 | // instruction is not using a register in the soffset field. |
| 815 | const MachineOperand *SOffset = |
| 816 | TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::soffset); |
| 817 | // If we have no soffset operand, then assume this field has been |
| 818 | // hardcoded to zero. |
| 819 | if (AMDGPU::getRegBitWidth(RCID: VDataRCID) > 64 && |
| 820 | (!SOffset || !SOffset->isReg())) |
| 821 | return VDataIdx; |
| 822 | } |
| 823 | |
| 824 | // MIMG instructions create a hazard if they don't use a 256-bit T# and |
| 825 | // the store size is greater than 8 bytes and they have more than two bits |
| 826 | // of their dmask set. |
| 827 | // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. |
| 828 | if (TII->isMIMG(MI)) { |
| 829 | int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::srsrc); |
| 830 | assert(SRsrcIdx != -1 && |
| 831 | AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); |
| 832 | (void)SRsrcIdx; |
| 833 | } |
| 834 | |
| 835 | if (TII->isFLAT(MI)) { |
| 836 | // There is no hazard if the instruction does not use vector regs |
| 837 | if (VDataIdx == -1) |
| 838 | return -1; |
| 839 | |
| 840 | if (AMDGPU::getRegBitWidth(RCID: VDataRCID) > 64) |
| 841 | return VDataIdx; |
| 842 | } |
| 843 | |
| 844 | return -1; |
| 845 | } |
| 846 | |
| 847 | int |
| 848 | GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, |
| 849 | const MachineRegisterInfo &MRI) { |
| 850 | // Helper to check for the hazard where VMEM instructions that store more than |
| 851 | // 8 bytes can have there store data over written by the next instruction. |
| 852 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 853 | |
| 854 | const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; |
| 855 | int WaitStatesNeeded = 0; |
| 856 | |
| 857 | if (!TRI->isVectorRegister(MRI, Reg: Def.getReg())) |
| 858 | return WaitStatesNeeded; |
| 859 | Register Reg = Def.getReg(); |
| 860 | auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { |
| 861 | int DataIdx = createsVALUHazard(MI); |
| 862 | return DataIdx >= 0 && |
| 863 | TRI->regsOverlap(RegA: MI.getOperand(i: DataIdx).getReg(), RegB: Reg); |
| 864 | }; |
| 865 | |
| 866 | int WaitStatesNeededForDef = |
| 867 | VALUWaitStates - getWaitStatesSince(IsHazard: IsHazardFn, Limit: VALUWaitStates); |
| 868 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 869 | |
| 870 | return WaitStatesNeeded; |
| 871 | } |
| 872 | |
| 873 | /// Dest sel forwarding issue occurs if additional logic is needed to swizzle / |
| 874 | /// pack the computed value into correct bit position of the dest register. This |
| 875 | /// occurs if we have SDWA with dst_sel != DWORD or if we have op_sel with |
| 876 | /// dst_sel that is not aligned to the register. This function analayzes the \p |
| 877 | /// MI and \returns an operand with dst forwarding issue, or nullptr if |
| 878 | /// none exists. |
| 879 | static const MachineOperand * |
| 880 | getDstSelForwardingOperand(const MachineInstr &MI, const GCNSubtarget &ST) { |
| 881 | if (!SIInstrInfo::isVALU(MI)) |
| 882 | return nullptr; |
| 883 | |
| 884 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 885 | |
| 886 | unsigned Opcode = MI.getOpcode(); |
| 887 | |
| 888 | // There are three different types of instructions |
| 889 | // which produce forwarded dest: 1. SDWA with dst_sel != DWORD, 2. VOP3 |
| 890 | // which write hi bits (e.g. op_sel[3] == 1), and 3. FP8DstSelInst |
| 891 | // (instructions with dest byte sel, e.g. CVT_SR_BF8_F32) and |
| 892 | // op_sel[3:2] |
| 893 | // != 0 |
| 894 | if (SIInstrInfo::isSDWA(MI)) { |
| 895 | // Type 1: SDWA with dst_sel != DWORD |
| 896 | if (auto *DstSel = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::dst_sel)) |
| 897 | if (DstSel->getImm() != AMDGPU::SDWA::DWORD) |
| 898 | return TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::vdst); |
| 899 | } |
| 900 | |
| 901 | AMDGPU::FPType IsFP4OrFP8ConvOpc = AMDGPU::getFPDstSelType(Opc: Opcode); |
| 902 | if (AMDGPU::hasNamedOperand(Opcode, NamedIdx: AMDGPU::OpName::op_sel)) { |
| 903 | // Type 2: VOP3 which write the hi bits |
| 904 | if (TII->getNamedImmOperand(MI, OperandName: AMDGPU::OpName::src0_modifiers) & |
| 905 | SISrcMods::DST_OP_SEL) |
| 906 | return TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::vdst); |
| 907 | |
| 908 | // Type 3: FP8DstSelInst with op_sel[3:2] != 0) |
| 909 | if (IsFP4OrFP8ConvOpc == AMDGPU::FPType::FP8 && |
| 910 | (TII->getNamedImmOperand(MI, OperandName: AMDGPU::OpName::src2_modifiers) & |
| 911 | SISrcMods::OP_SEL_0)) |
| 912 | return TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::vdst); |
| 913 | } |
| 914 | |
| 915 | // Special case: nop is required for all the opsel values for fp4 sr variant |
| 916 | // cvt scale instructions |
| 917 | if (IsFP4OrFP8ConvOpc == AMDGPU::FPType::FP4) |
| 918 | return TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::vdst); |
| 919 | |
| 920 | return nullptr; |
| 921 | } |
| 922 | |
| 923 | /// Checks whether the provided \p MI "consumes" the operand with a Dest sel |
| 924 | /// fowarding issue \p Dst . We may "consume" the Dst via a standard explicit |
| 925 | /// RAW, or through irregular ways (e.g implicit RAW, certain types of WAW) |
| 926 | static bool consumesDstSelForwardingOperand(const MachineInstr *VALU, |
| 927 | const MachineOperand *Dst, |
| 928 | const SIRegisterInfo *TRI) { |
| 929 | // We must consider implicit reads of the VALU. SDWA with dst_sel and |
| 930 | // UNUSED_PRESERVE will implicitly read the result from forwarded dest, |
| 931 | // and we must account for that hazard. |
| 932 | // We also must account for WAW hazards. In particular, WAW with dest |
| 933 | // preserve semantics (e.g. VOP3 with op_sel, VOP2 && |
| 934 | // !zeroesHigh16BitsOfDest) will read the forwarded dest for parity |
| 935 | // check for ECC. Without accounting for this hazard, the ECC will be |
| 936 | // wrong. |
| 937 | // TODO: limit to RAW (including implicit reads) + problematic WAW (i.e. |
| 938 | // complete zeroesHigh16BitsOfDest) |
| 939 | for (auto &Operand : VALU->operands()) { |
| 940 | if (Operand.isReg() && TRI->regsOverlap(RegA: Dst->getReg(), RegB: Operand.getReg())) { |
| 941 | return true; |
| 942 | } |
| 943 | } |
| 944 | return false; |
| 945 | } |
| 946 | |
| 947 | int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { |
| 948 | int WaitStatesNeeded = 0; |
| 949 | |
| 950 | if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(MI: *VALU)) { |
| 951 | const int TransDefWaitstates = 1; |
| 952 | |
| 953 | auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { |
| 954 | if (!SIInstrInfo::isTRANS(MI)) |
| 955 | return false; |
| 956 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 957 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 958 | Register Def = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::vdst)->getReg(); |
| 959 | |
| 960 | for (const MachineOperand &Use : VALU->explicit_uses()) { |
| 961 | if (Use.isReg() && TRI->regsOverlap(RegA: Def, RegB: Use.getReg())) |
| 962 | return true; |
| 963 | } |
| 964 | |
| 965 | return false; |
| 966 | }; |
| 967 | |
| 968 | int WaitStatesNeededForDef = |
| 969 | TransDefWaitstates - |
| 970 | getWaitStatesSince(IsHazard: IsTransDefFn, Limit: TransDefWaitstates); |
| 971 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 972 | } |
| 973 | |
| 974 | if (ST.hasDstSelForwardingHazard() || ST.hasCvtScaleForwardingHazard()) { |
| 975 | const int Shift16DefWaitstates = 1; |
| 976 | |
| 977 | auto IsShift16BitDefFn = [this, VALU](const MachineInstr &ProducerMI) { |
| 978 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 979 | const MachineOperand *ForwardedDst = |
| 980 | getDstSelForwardingOperand(MI: ProducerMI, ST); |
| 981 | if (ForwardedDst) { |
| 982 | return consumesDstSelForwardingOperand(VALU, Dst: ForwardedDst, TRI); |
| 983 | } |
| 984 | |
| 985 | if (ProducerMI.isInlineAsm()) { |
| 986 | // Assume inline asm has dst forwarding hazard |
| 987 | for (auto &Def : ProducerMI.all_defs()) { |
| 988 | if (consumesDstSelForwardingOperand(VALU, Dst: &Def, TRI)) |
| 989 | return true; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | return false; |
| 994 | }; |
| 995 | |
| 996 | int WaitStatesNeededForDef = |
| 997 | Shift16DefWaitstates - |
| 998 | getWaitStatesSince(IsHazard: IsShift16BitDefFn, Limit: Shift16DefWaitstates); |
| 999 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1000 | } |
| 1001 | |
| 1002 | if (ST.hasVDecCoExecHazard()) { |
| 1003 | const int VALUWriteSGPRVALUReadWaitstates = 2; |
| 1004 | const int VALUWriteEXECRWLane = 4; |
| 1005 | const int VALUWriteVGPRReadlaneRead = 1; |
| 1006 | |
| 1007 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1008 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1009 | Register UseReg; |
| 1010 | auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { |
| 1011 | if (!SIInstrInfo::isVALU(MI)) |
| 1012 | return false; |
| 1013 | return MI.modifiesRegister(Reg: UseReg, TRI); |
| 1014 | }; |
| 1015 | |
| 1016 | for (const MachineOperand &Use : VALU->explicit_uses()) { |
| 1017 | if (!Use.isReg()) |
| 1018 | continue; |
| 1019 | |
| 1020 | UseReg = Use.getReg(); |
| 1021 | if (TRI->isSGPRReg(MRI, Reg: UseReg)) { |
| 1022 | int WaitStatesNeededForDef = |
| 1023 | VALUWriteSGPRVALUReadWaitstates - |
| 1024 | getWaitStatesSince(IsHazard: IsVALUDefSGPRFn, |
| 1025 | Limit: VALUWriteSGPRVALUReadWaitstates); |
| 1026 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | if (VALU->readsRegister(Reg: AMDGPU::VCC, TRI)) { |
| 1031 | UseReg = AMDGPU::VCC; |
| 1032 | int WaitStatesNeededForDef = |
| 1033 | VALUWriteSGPRVALUReadWaitstates - |
| 1034 | getWaitStatesSince(IsHazard: IsVALUDefSGPRFn, Limit: VALUWriteSGPRVALUReadWaitstates); |
| 1035 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1036 | } |
| 1037 | |
| 1038 | switch (VALU->getOpcode()) { |
| 1039 | case AMDGPU::V_READLANE_B32: |
| 1040 | case AMDGPU::V_READFIRSTLANE_B32: { |
| 1041 | MachineOperand *Src = TII.getNamedOperand(MI&: *VALU, OperandName: AMDGPU::OpName::src0); |
| 1042 | UseReg = Src->getReg(); |
| 1043 | int WaitStatesNeededForDef = |
| 1044 | VALUWriteVGPRReadlaneRead - |
| 1045 | getWaitStatesSince(IsHazard: IsVALUDefSGPRFn, Limit: VALUWriteVGPRReadlaneRead); |
| 1046 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1047 | } |
| 1048 | [[fallthrough]]; |
| 1049 | case AMDGPU::V_WRITELANE_B32: { |
| 1050 | UseReg = AMDGPU::EXEC; |
| 1051 | int WaitStatesNeededForDef = |
| 1052 | VALUWriteEXECRWLane - |
| 1053 | getWaitStatesSince(IsHazard: IsVALUDefSGPRFn, Limit: VALUWriteEXECRWLane); |
| 1054 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1055 | break; |
| 1056 | } |
| 1057 | default: |
| 1058 | break; |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | // This checks for the hazard where VMEM instructions that store more than |
| 1063 | // 8 bytes can have there store data over written by the next instruction. |
| 1064 | if (!ST.has12DWordStoreHazard()) |
| 1065 | return WaitStatesNeeded; |
| 1066 | |
| 1067 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1068 | |
| 1069 | for (const MachineOperand &Def : VALU->defs()) { |
| 1070 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: checkVALUHazardsHelper(Def, MRI)); |
| 1071 | } |
| 1072 | |
| 1073 | return WaitStatesNeeded; |
| 1074 | } |
| 1075 | |
| 1076 | int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { |
| 1077 | // This checks for hazards associated with inline asm statements. |
| 1078 | // Since inline asms can contain just about anything, we use this |
| 1079 | // to call/leverage other check*Hazard routines. Note that |
| 1080 | // this function doesn't attempt to address all possible inline asm |
| 1081 | // hazards (good luck), but is a collection of what has been |
| 1082 | // problematic thus far. |
| 1083 | |
| 1084 | // see checkVALUHazards() |
| 1085 | if (!ST.has12DWordStoreHazard() && !ST.hasDstSelForwardingHazard() && |
| 1086 | !ST.hasCvtScaleForwardingHazard()) |
| 1087 | return 0; |
| 1088 | |
| 1089 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1090 | int WaitStatesNeeded = 0; |
| 1091 | |
| 1092 | for (const MachineOperand &Op : |
| 1093 | llvm::drop_begin(RangeOrContainer: IA->operands(), N: InlineAsm::MIOp_FirstOperand)) { |
| 1094 | if (Op.isReg() && Op.isDef()) { |
| 1095 | if (!TRI.isVectorRegister(MRI, Reg: Op.getReg())) |
| 1096 | continue; |
| 1097 | |
| 1098 | if (ST.has12DWordStoreHazard()) { |
| 1099 | WaitStatesNeeded = |
| 1100 | std::max(a: WaitStatesNeeded, b: checkVALUHazardsHelper(Def: Op, MRI)); |
| 1101 | } |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | if (ST.hasDstSelForwardingHazard()) { |
| 1106 | const int Shift16DefWaitstates = 1; |
| 1107 | |
| 1108 | auto IsShift16BitDefFn = [this, &IA](const MachineInstr &ProducerMI) { |
| 1109 | const MachineOperand *Dst = getDstSelForwardingOperand(MI: ProducerMI, ST); |
| 1110 | // Assume inline asm reads the dst |
| 1111 | if (Dst) |
| 1112 | return IA->modifiesRegister(Reg: Dst->getReg(), TRI: &TRI) || |
| 1113 | IA->readsRegister(Reg: Dst->getReg(), TRI: &TRI); |
| 1114 | |
| 1115 | if (ProducerMI.isInlineAsm()) { |
| 1116 | // If MI is inline asm, assume it has dst forwarding hazard |
| 1117 | for (auto &Def : ProducerMI.all_defs()) { |
| 1118 | if (IA->modifiesRegister(Reg: Def.getReg(), TRI: &TRI) || |
| 1119 | IA->readsRegister(Reg: Def.getReg(), TRI: &TRI)) { |
| 1120 | return true; |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | return false; |
| 1126 | }; |
| 1127 | |
| 1128 | int WaitStatesNeededForDef = |
| 1129 | Shift16DefWaitstates - |
| 1130 | getWaitStatesSince(IsHazard: IsShift16BitDefFn, Limit: Shift16DefWaitstates); |
| 1131 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForDef); |
| 1132 | } |
| 1133 | |
| 1134 | return WaitStatesNeeded; |
| 1135 | } |
| 1136 | |
| 1137 | int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { |
| 1138 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1139 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1140 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1141 | |
| 1142 | const MachineOperand *LaneSelectOp = |
| 1143 | TII->getNamedOperand(MI&: *RWLane, OperandName: AMDGPU::OpName::src1); |
| 1144 | |
| 1145 | if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, Reg: LaneSelectOp->getReg())) |
| 1146 | return 0; |
| 1147 | |
| 1148 | Register LaneSelectReg = LaneSelectOp->getReg(); |
| 1149 | auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; |
| 1150 | |
| 1151 | const int RWLaneWaitStates = 4; |
| 1152 | int WaitStatesSince = getWaitStatesSinceDef(Reg: LaneSelectReg, IsHazardDef: IsHazardFn, |
| 1153 | Limit: RWLaneWaitStates); |
| 1154 | return RWLaneWaitStates - WaitStatesSince; |
| 1155 | } |
| 1156 | |
| 1157 | int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { |
| 1158 | if (!ST.hasRFEHazards()) |
| 1159 | return 0; |
| 1160 | |
| 1161 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1162 | |
| 1163 | const int RFEWaitStates = 1; |
| 1164 | |
| 1165 | auto IsHazardFn = [TII](const MachineInstr &MI) { |
| 1166 | return getHWReg(TII, RegInstr: MI) == AMDGPU::Hwreg::ID_TRAPSTS; |
| 1167 | }; |
| 1168 | int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazard: IsHazardFn, Limit: RFEWaitStates); |
| 1169 | return RFEWaitStates - WaitStatesNeeded; |
| 1170 | } |
| 1171 | |
| 1172 | int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { |
| 1173 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1174 | const int ReadM0WaitStates = 1; |
| 1175 | auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; |
| 1176 | return ReadM0WaitStates - |
| 1177 | getWaitStatesSinceDef(Reg: AMDGPU::M0, IsHazardDef: IsHazardFn, Limit: ReadM0WaitStates); |
| 1178 | } |
| 1179 | |
| 1180 | void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { |
| 1181 | fixVMEMtoScalarWriteHazards(MI); |
| 1182 | fixVcmpxPermlaneHazards(MI); |
| 1183 | fixSMEMtoVectorWriteHazards(MI); |
| 1184 | fixVcmpxExecWARHazard(MI); |
| 1185 | fixLdsBranchVmemWARHazard(MI); |
| 1186 | if (ST.hasLdsDirect()) { |
| 1187 | fixLdsDirectVALUHazard(MI); |
| 1188 | fixLdsDirectVMEMHazard(MI); |
| 1189 | } |
| 1190 | fixVALUPartialForwardingHazard(MI); |
| 1191 | fixVALUTransUseHazard(MI); |
| 1192 | fixWMMAHazards(MI); |
| 1193 | fixShift64HighRegBug(MI); |
| 1194 | fixVALUMaskWriteHazard(MI); |
| 1195 | fixRequiredExportPriority(MI); |
| 1196 | } |
| 1197 | |
| 1198 | static bool isVCmpXWritesExec(const SIInstrInfo &TII, const SIRegisterInfo &TRI, |
| 1199 | const MachineInstr &MI) { |
| 1200 | return (TII.isVOPC(MI) || |
| 1201 | (MI.isCompare() && (TII.isVOP3(MI) || TII.isSDWA(MI)))) && |
| 1202 | MI.modifiesRegister(Reg: AMDGPU::EXEC, TRI: &TRI); |
| 1203 | } |
| 1204 | |
| 1205 | bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { |
| 1206 | if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(MI: *MI)) |
| 1207 | return false; |
| 1208 | |
| 1209 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1210 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1211 | auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { |
| 1212 | return isVCmpXWritesExec(TII: *TII, TRI: *TRI, MI); |
| 1213 | }; |
| 1214 | |
| 1215 | auto IsExpiredFn = [](const MachineInstr &MI, int) { |
| 1216 | unsigned Opc = MI.getOpcode(); |
| 1217 | return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && |
| 1218 | Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; |
| 1219 | }; |
| 1220 | |
| 1221 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1222 | std::numeric_limits<int>::max()) |
| 1223 | return false; |
| 1224 | |
| 1225 | // V_NOP will be discarded by SQ. |
| 1226 | // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* |
| 1227 | // which is always a VGPR and available. |
| 1228 | auto *Src0 = TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src0); |
| 1229 | Register Reg = Src0->getReg(); |
| 1230 | bool IsUndef = Src0->isUndef(); |
| 1231 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1232 | MCID: TII->get(Opcode: AMDGPU::V_MOV_B32_e32)) |
| 1233 | .addReg(RegNo: Reg, flags: RegState::Define | (IsUndef ? RegState::Dead : 0)) |
| 1234 | .addReg(RegNo: Reg, flags: IsUndef ? RegState::Undef : RegState::Kill); |
| 1235 | |
| 1236 | return true; |
| 1237 | } |
| 1238 | |
| 1239 | bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { |
| 1240 | if (!ST.hasVMEMtoScalarWriteHazard()) |
| 1241 | return false; |
| 1242 | assert(!ST.hasExtendedWaitCounts()); |
| 1243 | |
| 1244 | if (!SIInstrInfo::isSALU(MI: *MI) && !SIInstrInfo::isSMRD(MI: *MI)) |
| 1245 | return false; |
| 1246 | |
| 1247 | if (MI->getNumDefs() == 0) |
| 1248 | return false; |
| 1249 | |
| 1250 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1251 | |
| 1252 | auto IsHazardFn = [TRI, MI](const MachineInstr &I) { |
| 1253 | if (!SIInstrInfo::isVMEM(MI: I) && !SIInstrInfo::isDS(MI: I)) |
| 1254 | return false; |
| 1255 | |
| 1256 | for (const MachineOperand &Def : MI->defs()) { |
| 1257 | const MachineOperand *Op = |
| 1258 | I.findRegisterUseOperand(Reg: Def.getReg(), TRI, isKill: false); |
| 1259 | if (!Op) |
| 1260 | continue; |
| 1261 | return true; |
| 1262 | } |
| 1263 | return false; |
| 1264 | }; |
| 1265 | |
| 1266 | auto IsExpiredFn = [](const MachineInstr &MI, int) { |
| 1267 | return SIInstrInfo::isVALU(MI) || |
| 1268 | (MI.getOpcode() == AMDGPU::S_WAITCNT && |
| 1269 | !MI.getOperand(i: 0).getImm()) || |
| 1270 | (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 1271 | AMDGPU::DepCtr::decodeFieldVmVsrc(Encoded: MI.getOperand(i: 0).getImm()) == 0); |
| 1272 | }; |
| 1273 | |
| 1274 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1275 | std::numeric_limits<int>::max()) |
| 1276 | return false; |
| 1277 | |
| 1278 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1279 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1280 | MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 1281 | .addImm(Val: AMDGPU::DepCtr::encodeFieldVmVsrc(VmVsrc: 0)); |
| 1282 | return true; |
| 1283 | } |
| 1284 | |
| 1285 | bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { |
| 1286 | if (!ST.hasSMEMtoVectorWriteHazard()) |
| 1287 | return false; |
| 1288 | assert(!ST.hasExtendedWaitCounts()); |
| 1289 | |
| 1290 | if (!SIInstrInfo::isVALU(MI: *MI)) |
| 1291 | return false; |
| 1292 | |
| 1293 | AMDGPU::OpName SDSTName; |
| 1294 | switch (MI->getOpcode()) { |
| 1295 | case AMDGPU::V_READLANE_B32: |
| 1296 | case AMDGPU::V_READFIRSTLANE_B32: |
| 1297 | SDSTName = AMDGPU::OpName::vdst; |
| 1298 | break; |
| 1299 | default: |
| 1300 | SDSTName = AMDGPU::OpName::sdst; |
| 1301 | break; |
| 1302 | } |
| 1303 | |
| 1304 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1305 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1306 | const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(GPU: ST.getCPU()); |
| 1307 | const MachineOperand *SDST = TII->getNamedOperand(MI&: *MI, OperandName: SDSTName); |
| 1308 | if (!SDST) { |
| 1309 | for (const auto &MO : MI->implicit_operands()) { |
| 1310 | if (MO.isDef() && TRI->isSGPRClass(RC: TRI->getPhysRegBaseClass(Reg: MO.getReg()))) { |
| 1311 | SDST = &MO; |
| 1312 | break; |
| 1313 | } |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | if (!SDST) |
| 1318 | return false; |
| 1319 | |
| 1320 | const Register SDSTReg = SDST->getReg(); |
| 1321 | auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { |
| 1322 | return SIInstrInfo::isSMRD(MI: I) && I.readsRegister(Reg: SDSTReg, TRI); |
| 1323 | }; |
| 1324 | |
| 1325 | auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { |
| 1326 | if (TII->isSALU(MI)) { |
| 1327 | switch (MI.getOpcode()) { |
| 1328 | case AMDGPU::S_SETVSKIP: |
| 1329 | case AMDGPU::S_VERSION: |
| 1330 | case AMDGPU::S_WAITCNT_VSCNT: |
| 1331 | case AMDGPU::S_WAITCNT_VMCNT: |
| 1332 | case AMDGPU::S_WAITCNT_EXPCNT: |
| 1333 | // These instructions cannot not mitigate the hazard. |
| 1334 | return false; |
| 1335 | case AMDGPU::S_WAITCNT_LGKMCNT: |
| 1336 | // Reducing lgkmcnt count to 0 always mitigates the hazard. |
| 1337 | return (MI.getOperand(i: 1).getImm() == 0) && |
| 1338 | (MI.getOperand(i: 0).getReg() == AMDGPU::SGPR_NULL); |
| 1339 | case AMDGPU::S_WAITCNT: { |
| 1340 | const int64_t Imm = MI.getOperand(i: 0).getImm(); |
| 1341 | AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(Version: IV, Encoded: Imm); |
| 1342 | // DsCnt corresponds to LGKMCnt here. |
| 1343 | return (Decoded.DsCnt == 0); |
| 1344 | } |
| 1345 | default: |
| 1346 | // SOPP instructions cannot mitigate the hazard. |
| 1347 | if (TII->isSOPP(MI)) |
| 1348 | return false; |
| 1349 | // At this point the SALU can be assumed to mitigate the hazard |
| 1350 | // because either: |
| 1351 | // (a) it is independent of the at risk SMEM (breaking chain), |
| 1352 | // or |
| 1353 | // (b) it is dependent on the SMEM, in which case an appropriate |
| 1354 | // s_waitcnt lgkmcnt _must_ exist between it and the at risk |
| 1355 | // SMEM instruction. |
| 1356 | return true; |
| 1357 | } |
| 1358 | } |
| 1359 | return false; |
| 1360 | }; |
| 1361 | |
| 1362 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1363 | std::numeric_limits<int>::max()) |
| 1364 | return false; |
| 1365 | |
| 1366 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1367 | MCID: TII->get(Opcode: AMDGPU::S_MOV_B32), DestReg: AMDGPU::SGPR_NULL) |
| 1368 | .addImm(Val: 0); |
| 1369 | return true; |
| 1370 | } |
| 1371 | |
| 1372 | bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { |
| 1373 | if (!ST.hasVcmpxExecWARHazard()) |
| 1374 | return false; |
| 1375 | assert(!ST.hasExtendedWaitCounts()); |
| 1376 | |
| 1377 | if (!SIInstrInfo::isVALU(MI: *MI)) |
| 1378 | return false; |
| 1379 | |
| 1380 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1381 | if (!MI->modifiesRegister(Reg: AMDGPU::EXEC, TRI)) |
| 1382 | return false; |
| 1383 | |
| 1384 | auto IsHazardFn = [TRI](const MachineInstr &I) { |
| 1385 | if (SIInstrInfo::isVALU(MI: I)) |
| 1386 | return false; |
| 1387 | return I.readsRegister(Reg: AMDGPU::EXEC, TRI); |
| 1388 | }; |
| 1389 | |
| 1390 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1391 | auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { |
| 1392 | if (SIInstrInfo::isVALU(MI)) { |
| 1393 | if (TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::sdst)) |
| 1394 | return true; |
| 1395 | for (auto MO : MI.implicit_operands()) |
| 1396 | if (MO.isDef() && TRI->isSGPRClass(RC: TRI->getPhysRegBaseClass(Reg: MO.getReg()))) |
| 1397 | return true; |
| 1398 | } |
| 1399 | if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 1400 | AMDGPU::DepCtr::decodeFieldSaSdst(Encoded: MI.getOperand(i: 0).getImm()) == 0) |
| 1401 | return true; |
| 1402 | return false; |
| 1403 | }; |
| 1404 | |
| 1405 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1406 | std::numeric_limits<int>::max()) |
| 1407 | return false; |
| 1408 | |
| 1409 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1410 | MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 1411 | .addImm(Val: AMDGPU::DepCtr::encodeFieldSaSdst(SaSdst: 0)); |
| 1412 | return true; |
| 1413 | } |
| 1414 | |
| 1415 | static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, |
| 1416 | const GCNSubtarget &ST) { |
| 1417 | if (!ST.hasLdsBranchVmemWARHazard()) |
| 1418 | return false; |
| 1419 | |
| 1420 | // Check if the necessary condition for the hazard is met: both LDS and VMEM |
| 1421 | // instructions need to appear in the same function. |
| 1422 | bool HasLds = false; |
| 1423 | bool HasVmem = false; |
| 1424 | for (auto &MBB : MF) { |
| 1425 | for (auto &MI : MBB) { |
| 1426 | HasLds |= SIInstrInfo::isDS(MI); |
| 1427 | HasVmem |= (SIInstrInfo::isVMEM(MI) && !SIInstrInfo::isFLAT(MI)) || |
| 1428 | SIInstrInfo::isSegmentSpecificFLAT(MI); |
| 1429 | if (HasLds && HasVmem) |
| 1430 | return true; |
| 1431 | } |
| 1432 | } |
| 1433 | return false; |
| 1434 | } |
| 1435 | |
| 1436 | static bool isStoreCountWaitZero(const MachineInstr &I) { |
| 1437 | return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && |
| 1438 | I.getOperand(i: 0).getReg() == AMDGPU::SGPR_NULL && |
| 1439 | !I.getOperand(i: 1).getImm(); |
| 1440 | } |
| 1441 | |
| 1442 | bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { |
| 1443 | if (!RunLdsBranchVmemWARHazardFixup) |
| 1444 | return false; |
| 1445 | |
| 1446 | assert(ST.hasLdsBranchVmemWARHazard()); |
| 1447 | assert(!ST.hasExtendedWaitCounts()); |
| 1448 | |
| 1449 | auto IsHazardInst = [](const MachineInstr &MI) { |
| 1450 | if (SIInstrInfo::isDS(MI)) |
| 1451 | return 1; |
| 1452 | if ((SIInstrInfo::isVMEM(MI) && !SIInstrInfo::isFLAT(MI)) || |
| 1453 | SIInstrInfo::isSegmentSpecificFLAT(MI)) |
| 1454 | return 2; |
| 1455 | return 0; |
| 1456 | }; |
| 1457 | |
| 1458 | auto InstType = IsHazardInst(*MI); |
| 1459 | if (!InstType) |
| 1460 | return false; |
| 1461 | |
| 1462 | auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { |
| 1463 | return IsHazardInst(I) || isStoreCountWaitZero(I); |
| 1464 | }; |
| 1465 | |
| 1466 | auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { |
| 1467 | if (!I.isBranch()) |
| 1468 | return false; |
| 1469 | |
| 1470 | auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { |
| 1471 | auto InstType2 = IsHazardInst(I); |
| 1472 | return InstType2 && InstType != InstType2; |
| 1473 | }; |
| 1474 | |
| 1475 | auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { |
| 1476 | auto InstType2 = IsHazardInst(I); |
| 1477 | if (InstType == InstType2) |
| 1478 | return true; |
| 1479 | |
| 1480 | return isStoreCountWaitZero(I); |
| 1481 | }; |
| 1482 | |
| 1483 | return ::getWaitStatesSince(IsHazard: IsHazardFn, MI: &I, IsExpired: IsExpiredFn) != |
| 1484 | std::numeric_limits<int>::max(); |
| 1485 | }; |
| 1486 | |
| 1487 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1488 | std::numeric_limits<int>::max()) |
| 1489 | return false; |
| 1490 | |
| 1491 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1492 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1493 | MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_VSCNT)) |
| 1494 | .addReg(RegNo: AMDGPU::SGPR_NULL, flags: RegState::Undef) |
| 1495 | .addImm(Val: 0); |
| 1496 | |
| 1497 | return true; |
| 1498 | } |
| 1499 | |
| 1500 | bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { |
| 1501 | if (!SIInstrInfo::isLDSDIR(MI: *MI)) |
| 1502 | return false; |
| 1503 | |
| 1504 | const int NoHazardWaitStates = 15; |
| 1505 | const MachineOperand *VDST = TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::vdst); |
| 1506 | const Register VDSTReg = VDST->getReg(); |
| 1507 | |
| 1508 | bool VisitedTrans = false; |
| 1509 | auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { |
| 1510 | if (!SIInstrInfo::isVALU(MI: I)) |
| 1511 | return false; |
| 1512 | VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(MI: I); |
| 1513 | // Cover both WAR and WAW |
| 1514 | return I.readsRegister(Reg: VDSTReg, TRI: &TRI) || I.modifiesRegister(Reg: VDSTReg, TRI: &TRI); |
| 1515 | }; |
| 1516 | auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { |
| 1517 | if (WaitStates >= NoHazardWaitStates) |
| 1518 | return true; |
| 1519 | // Instructions which cause va_vdst==0 expire hazard |
| 1520 | return SIInstrInfo::isVMEM(MI: I) || SIInstrInfo::isDS(MI: I) || |
| 1521 | SIInstrInfo::isEXP(MI: I); |
| 1522 | }; |
| 1523 | auto GetWaitStatesFn = [](const MachineInstr &MI) { |
| 1524 | return SIInstrInfo::isVALU(MI) ? 1 : 0; |
| 1525 | }; |
| 1526 | |
| 1527 | DenseSet<const MachineBasicBlock *> Visited; |
| 1528 | auto Count = ::getWaitStatesSince(IsHazard: IsHazardFn, MBB: MI->getParent(), |
| 1529 | I: std::next(x: MI->getReverseIterator()), WaitStates: 0, |
| 1530 | IsExpired: IsExpiredFn, Visited, GetNumWaitStates: GetWaitStatesFn); |
| 1531 | |
| 1532 | // Transcendentals can execute in parallel to other VALUs. |
| 1533 | // This makes va_vdst count unusable with a mixture of VALU and TRANS. |
| 1534 | if (VisitedTrans) |
| 1535 | Count = 0; |
| 1536 | |
| 1537 | MachineOperand *WaitVdstOp = |
| 1538 | TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::waitvdst); |
| 1539 | WaitVdstOp->setImm(std::min(a: Count, b: NoHazardWaitStates)); |
| 1540 | |
| 1541 | return true; |
| 1542 | } |
| 1543 | |
| 1544 | bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { |
| 1545 | if (!SIInstrInfo::isLDSDIR(MI: *MI)) |
| 1546 | return false; |
| 1547 | |
| 1548 | const MachineOperand *VDST = TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::vdst); |
| 1549 | const Register VDSTReg = VDST->getReg(); |
| 1550 | |
| 1551 | auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { |
| 1552 | if (!SIInstrInfo::isVMEM(MI: I) && !SIInstrInfo::isDS(MI: I)) |
| 1553 | return false; |
| 1554 | return I.readsRegister(Reg: VDSTReg, TRI: &TRI) || I.modifiesRegister(Reg: VDSTReg, TRI: &TRI); |
| 1555 | }; |
| 1556 | bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); |
| 1557 | // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT |
| 1558 | // according to the type of VMEM instruction. |
| 1559 | auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { |
| 1560 | return SIInstrInfo::isVALU(MI: I) || SIInstrInfo::isEXP(MI: I) || |
| 1561 | (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(i: 0).getImm()) || |
| 1562 | (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 1563 | AMDGPU::DepCtr::decodeFieldVmVsrc(Encoded: I.getOperand(i: 0).getImm()) == 0) || |
| 1564 | (LdsdirCanWait && SIInstrInfo::isLDSDIR(MI: I) && |
| 1565 | !TII.getNamedOperand(MI: I, OperandName: AMDGPU::OpName::waitvsrc)->getImm()); |
| 1566 | }; |
| 1567 | |
| 1568 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1569 | std::numeric_limits<int>::max()) |
| 1570 | return false; |
| 1571 | |
| 1572 | if (LdsdirCanWait) { |
| 1573 | TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::waitvsrc)->setImm(0); |
| 1574 | } else { |
| 1575 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1576 | MCID: TII.get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 1577 | .addImm(Val: AMDGPU::DepCtr::encodeFieldVmVsrc(VmVsrc: 0)); |
| 1578 | } |
| 1579 | |
| 1580 | return true; |
| 1581 | } |
| 1582 | |
| 1583 | bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { |
| 1584 | if (!ST.hasVALUPartialForwardingHazard()) |
| 1585 | return false; |
| 1586 | assert(!ST.hasExtendedWaitCounts()); |
| 1587 | |
| 1588 | if (!ST.isWave64() || !SIInstrInfo::isVALU(MI: *MI)) |
| 1589 | return false; |
| 1590 | |
| 1591 | SmallSetVector<Register, 4> SrcVGPRs; |
| 1592 | |
| 1593 | for (const MachineOperand &Use : MI->explicit_uses()) { |
| 1594 | if (Use.isReg() && TRI.isVGPR(MRI: MF.getRegInfo(), Reg: Use.getReg())) |
| 1595 | SrcVGPRs.insert(X: Use.getReg()); |
| 1596 | } |
| 1597 | |
| 1598 | // Only applies with >= 2 unique VGPR sources |
| 1599 | if (SrcVGPRs.size() <= 1) |
| 1600 | return false; |
| 1601 | |
| 1602 | // Look for the following pattern: |
| 1603 | // Va <- VALU [PreExecPos] |
| 1604 | // intv1 |
| 1605 | // Exec <- SALU [ExecPos] |
| 1606 | // intv2 |
| 1607 | // Vb <- VALU [PostExecPos] |
| 1608 | // intv3 |
| 1609 | // MI Va, Vb (WaitState = 0) |
| 1610 | // |
| 1611 | // Where: |
| 1612 | // intv1 + intv2 <= 2 VALUs |
| 1613 | // intv3 <= 4 VALUs |
| 1614 | // |
| 1615 | // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. |
| 1616 | |
| 1617 | const int Intv1plus2MaxVALUs = 2; |
| 1618 | const int Intv3MaxVALUs = 4; |
| 1619 | const int IntvMaxVALUs = 6; |
| 1620 | const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; |
| 1621 | |
| 1622 | struct StateType { |
| 1623 | SmallDenseMap<Register, int, 4> DefPos; |
| 1624 | int ExecPos = std::numeric_limits<int>::max(); |
| 1625 | int VALUs = 0; |
| 1626 | }; |
| 1627 | |
| 1628 | StateType State; |
| 1629 | |
| 1630 | // This overloads expiry testing with all the hazard detection |
| 1631 | auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { |
| 1632 | // Too many VALU states have passed |
| 1633 | if (State.VALUs > NoHazardVALUWaitStates) |
| 1634 | return HazardExpired; |
| 1635 | |
| 1636 | // Instructions which cause va_vdst==0 expire hazard |
| 1637 | if (SIInstrInfo::isVMEM(MI: I) || SIInstrInfo::isDS(MI: I) || |
| 1638 | SIInstrInfo::isEXP(MI: I) || |
| 1639 | (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 1640 | AMDGPU::DepCtr::decodeFieldVaVdst(Encoded: I.getOperand(i: 0).getImm()) == 0)) |
| 1641 | return HazardExpired; |
| 1642 | |
| 1643 | // Track registers writes |
| 1644 | bool Changed = false; |
| 1645 | if (SIInstrInfo::isVALU(MI: I)) { |
| 1646 | for (Register Src : SrcVGPRs) { |
| 1647 | if (!State.DefPos.count(Val: Src) && I.modifiesRegister(Reg: Src, TRI: &TRI)) { |
| 1648 | State.DefPos[Src] = State.VALUs; |
| 1649 | Changed = true; |
| 1650 | } |
| 1651 | } |
| 1652 | } else if (SIInstrInfo::isSALU(MI: I)) { |
| 1653 | if (State.ExecPos == std::numeric_limits<int>::max()) { |
| 1654 | if (!State.DefPos.empty() && I.modifiesRegister(Reg: AMDGPU::EXEC, TRI: &TRI)) { |
| 1655 | State.ExecPos = State.VALUs; |
| 1656 | Changed = true; |
| 1657 | } |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | // Early expiration: too many VALUs in intv3 |
| 1662 | if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) |
| 1663 | return HazardExpired; |
| 1664 | |
| 1665 | // Only evaluate state if something changed |
| 1666 | if (!Changed) |
| 1667 | return NoHazardFound; |
| 1668 | |
| 1669 | // Determine positions of VALUs pre/post exec change |
| 1670 | if (State.ExecPos == std::numeric_limits<int>::max()) |
| 1671 | return NoHazardFound; |
| 1672 | |
| 1673 | int PreExecPos = std::numeric_limits<int>::max(); |
| 1674 | int PostExecPos = std::numeric_limits<int>::max(); |
| 1675 | |
| 1676 | for (auto Entry : State.DefPos) { |
| 1677 | int DefVALUs = Entry.second; |
| 1678 | if (DefVALUs != std::numeric_limits<int>::max()) { |
| 1679 | if (DefVALUs >= State.ExecPos) |
| 1680 | PreExecPos = std::min(a: PreExecPos, b: DefVALUs); |
| 1681 | else |
| 1682 | PostExecPos = std::min(a: PostExecPos, b: DefVALUs); |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | // Need a VALUs post exec change |
| 1687 | if (PostExecPos == std::numeric_limits<int>::max()) |
| 1688 | return NoHazardFound; |
| 1689 | |
| 1690 | // Too many VALUs in intv3? |
| 1691 | int Intv3VALUs = PostExecPos; |
| 1692 | if (Intv3VALUs > Intv3MaxVALUs) |
| 1693 | return HazardExpired; |
| 1694 | |
| 1695 | // Too many VALUs in intv2? |
| 1696 | int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; |
| 1697 | if (Intv2VALUs > Intv1plus2MaxVALUs) |
| 1698 | return HazardExpired; |
| 1699 | |
| 1700 | // Need a VALUs pre exec change |
| 1701 | if (PreExecPos == std::numeric_limits<int>::max()) |
| 1702 | return NoHazardFound; |
| 1703 | |
| 1704 | // Too many VALUs in intv1? |
| 1705 | int Intv1VALUs = PreExecPos - State.ExecPos; |
| 1706 | if (Intv1VALUs > Intv1plus2MaxVALUs) |
| 1707 | return HazardExpired; |
| 1708 | |
| 1709 | // Too many VALUs in intv1 + intv2 |
| 1710 | if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) |
| 1711 | return HazardExpired; |
| 1712 | |
| 1713 | return HazardFound; |
| 1714 | }; |
| 1715 | auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { |
| 1716 | if (SIInstrInfo::isVALU(MI)) |
| 1717 | State.VALUs += 1; |
| 1718 | }; |
| 1719 | |
| 1720 | DenseSet<const MachineBasicBlock *> Visited; |
| 1721 | if (!hasHazard<StateType>(State, IsHazard: IsHazardFn, UpdateState: UpdateStateFn, MBB: MI->getParent(), |
| 1722 | I: std::next(x: MI->getReverseIterator()), Visited)) |
| 1723 | return false; |
| 1724 | |
| 1725 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1726 | MCID: TII.get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 1727 | .addImm(Val: 0x0fff); |
| 1728 | |
| 1729 | return true; |
| 1730 | } |
| 1731 | |
| 1732 | bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { |
| 1733 | if (!ST.hasVALUTransUseHazard()) |
| 1734 | return false; |
| 1735 | assert(!ST.hasExtendedWaitCounts()); |
| 1736 | |
| 1737 | if (!SIInstrInfo::isVALU(MI: *MI)) |
| 1738 | return false; |
| 1739 | |
| 1740 | SmallSet<Register, 4> SrcVGPRs; |
| 1741 | |
| 1742 | for (const MachineOperand &Use : MI->explicit_uses()) { |
| 1743 | if (Use.isReg() && TRI.isVGPR(MRI: MF.getRegInfo(), Reg: Use.getReg())) |
| 1744 | SrcVGPRs.insert(V: Use.getReg()); |
| 1745 | } |
| 1746 | |
| 1747 | // Look for the following pattern: |
| 1748 | // Va <- TRANS VALU |
| 1749 | // intv |
| 1750 | // MI Va (WaitState = 0) |
| 1751 | // |
| 1752 | // Where: |
| 1753 | // intv <= 5 VALUs / 1 TRANS |
| 1754 | // |
| 1755 | // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. |
| 1756 | |
| 1757 | const int IntvMaxVALUs = 5; |
| 1758 | const int IntvMaxTRANS = 1; |
| 1759 | |
| 1760 | struct StateType { |
| 1761 | int VALUs = 0; |
| 1762 | int TRANS = 0; |
| 1763 | }; |
| 1764 | |
| 1765 | StateType State; |
| 1766 | |
| 1767 | // This overloads expiry testing with all the hazard detection |
| 1768 | auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { |
| 1769 | // Too many VALU states have passed |
| 1770 | if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) |
| 1771 | return HazardExpired; |
| 1772 | |
| 1773 | // Instructions which cause va_vdst==0 expire hazard |
| 1774 | if (SIInstrInfo::isVMEM(MI: I) || SIInstrInfo::isDS(MI: I) || |
| 1775 | SIInstrInfo::isEXP(MI: I) || |
| 1776 | (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 1777 | I.getOperand(i: 0).getImm() == 0x0fff)) |
| 1778 | return HazardExpired; |
| 1779 | |
| 1780 | // Track registers writes |
| 1781 | if (SIInstrInfo::isTRANS(MI: I)) { |
| 1782 | for (Register Src : SrcVGPRs) { |
| 1783 | if (I.modifiesRegister(Reg: Src, TRI: &TRI)) { |
| 1784 | return HazardFound; |
| 1785 | } |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | return NoHazardFound; |
| 1790 | }; |
| 1791 | auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { |
| 1792 | if (SIInstrInfo::isVALU(MI)) |
| 1793 | State.VALUs += 1; |
| 1794 | if (SIInstrInfo::isTRANS(MI)) |
| 1795 | State.TRANS += 1; |
| 1796 | }; |
| 1797 | |
| 1798 | DenseSet<const MachineBasicBlock *> Visited; |
| 1799 | if (!hasHazard<StateType>(State, IsHazard: IsHazardFn, UpdateState: UpdateStateFn, MBB: MI->getParent(), |
| 1800 | I: std::next(x: MI->getReverseIterator()), Visited)) |
| 1801 | return false; |
| 1802 | |
| 1803 | // Hazard is observed - insert a wait on va_dst counter to ensure hazard is |
| 1804 | // avoided. |
| 1805 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1806 | MCID: TII.get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 1807 | .addImm(Val: AMDGPU::DepCtr::encodeFieldVaVdst(VaVdst: 0)); |
| 1808 | |
| 1809 | return true; |
| 1810 | } |
| 1811 | |
| 1812 | bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { |
| 1813 | if (!SIInstrInfo::isWMMA(MI: *MI) && !SIInstrInfo::isSWMMAC(MI: *MI)) |
| 1814 | return false; |
| 1815 | |
| 1816 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1817 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1818 | |
| 1819 | auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) { |
| 1820 | if (!SIInstrInfo::isWMMA(MI: I) && !SIInstrInfo::isSWMMAC(MI: I)) |
| 1821 | return false; |
| 1822 | |
| 1823 | // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps |
| 1824 | // with the dest(matrix D) of the previous wmma. |
| 1825 | const Register CurSrc0Reg = |
| 1826 | TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src0)->getReg(); |
| 1827 | const Register CurSrc1Reg = |
| 1828 | TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src1)->getReg(); |
| 1829 | |
| 1830 | const Register PrevDstReg = |
| 1831 | TII->getNamedOperand(MI: I, OperandName: AMDGPU::OpName::vdst)->getReg(); |
| 1832 | |
| 1833 | if (TRI->regsOverlap(RegA: PrevDstReg, RegB: CurSrc0Reg) || |
| 1834 | TRI->regsOverlap(RegA: PrevDstReg, RegB: CurSrc1Reg)) { |
| 1835 | return true; |
| 1836 | } |
| 1837 | |
| 1838 | // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall) |
| 1839 | // but Index can't overlap with PrevDstReg. |
| 1840 | if (AMDGPU::isGFX12Plus(STI: ST)) { |
| 1841 | if (SIInstrInfo::isSWMMAC(MI: *MI)) { |
| 1842 | const Register CurIndex = |
| 1843 | TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src2)->getReg(); |
| 1844 | if (TRI->regsOverlap(RegA: PrevDstReg, RegB: CurIndex)) |
| 1845 | return true; |
| 1846 | } |
| 1847 | return false; |
| 1848 | } |
| 1849 | |
| 1850 | return false; |
| 1851 | }; |
| 1852 | |
| 1853 | auto IsExpiredFn = [](const MachineInstr &I, int) { |
| 1854 | return SIInstrInfo::isVALU(MI: I); |
| 1855 | }; |
| 1856 | |
| 1857 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 1858 | std::numeric_limits<int>::max()) |
| 1859 | return false; |
| 1860 | |
| 1861 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::V_NOP_e32)); |
| 1862 | |
| 1863 | return true; |
| 1864 | } |
| 1865 | |
| 1866 | bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { |
| 1867 | if (!ST.hasShift64HighRegBug()) |
| 1868 | return false; |
| 1869 | assert(!ST.hasExtendedWaitCounts()); |
| 1870 | |
| 1871 | switch (MI->getOpcode()) { |
| 1872 | default: |
| 1873 | return false; |
| 1874 | case AMDGPU::V_LSHLREV_B64_e64: |
| 1875 | case AMDGPU::V_LSHRREV_B64_e64: |
| 1876 | case AMDGPU::V_ASHRREV_I64_e64: |
| 1877 | break; |
| 1878 | } |
| 1879 | |
| 1880 | MachineOperand *Amt = TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src0); |
| 1881 | if (!Amt->isReg()) |
| 1882 | return false; |
| 1883 | |
| 1884 | Register AmtReg = Amt->getReg(); |
| 1885 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1886 | // Check if this is a last VGPR in the allocation block. |
| 1887 | if (!TRI.isVGPR(MRI, Reg: AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) |
| 1888 | return false; |
| 1889 | |
| 1890 | if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(PhysReg: AmtReg + 1)) |
| 1891 | return false; |
| 1892 | |
| 1893 | MachineOperand *Src1 = TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::src1); |
| 1894 | bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(RegA: Src1->getReg(), RegB: AmtReg); |
| 1895 | bool OverlappedDst = MI->modifiesRegister(Reg: AmtReg, TRI: &TRI); |
| 1896 | bool Overlapped = OverlappedSrc || OverlappedDst; |
| 1897 | |
| 1898 | assert(!OverlappedDst || !OverlappedSrc || |
| 1899 | Src1->getReg() == MI->getOperand(0).getReg()); |
| 1900 | assert(ST.needsAlignedVGPRs()); |
| 1901 | static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); |
| 1902 | |
| 1903 | Register NewReg; |
| 1904 | for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass |
| 1905 | : AMDGPU::VGPR_32RegClass) { |
| 1906 | if (!MI->modifiesRegister(Reg, TRI: &TRI) && !MI->readsRegister(Reg, TRI: &TRI)) { |
| 1907 | NewReg = Reg; |
| 1908 | break; |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | Register NewAmt = Overlapped ? (Register)TRI.getSubReg(Reg: NewReg, Idx: AMDGPU::sub1) |
| 1913 | : NewReg; |
| 1914 | Register NewAmtLo; |
| 1915 | |
| 1916 | if (Overlapped) |
| 1917 | NewAmtLo = TRI.getSubReg(Reg: NewReg, Idx: AMDGPU::sub0); |
| 1918 | |
| 1919 | DebugLoc DL = MI->getDebugLoc(); |
| 1920 | MachineBasicBlock *MBB = MI->getParent(); |
| 1921 | // Insert a full wait count because found register might be pending a wait. |
| 1922 | BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_WAITCNT)) |
| 1923 | .addImm(Val: 0); |
| 1924 | |
| 1925 | // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. |
| 1926 | if (Overlapped) |
| 1927 | runOnInstruction( |
| 1928 | MI: BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::V_SWAP_B32), DestReg: NewAmtLo) |
| 1929 | .addDef(RegNo: AmtReg - 1) |
| 1930 | .addReg(RegNo: AmtReg - 1, flags: RegState::Undef) |
| 1931 | .addReg(RegNo: NewAmtLo, flags: RegState::Undef)); |
| 1932 | runOnInstruction(MI: BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::V_SWAP_B32), DestReg: NewAmt) |
| 1933 | .addDef(RegNo: AmtReg) |
| 1934 | .addReg(RegNo: AmtReg, flags: RegState::Undef) |
| 1935 | .addReg(RegNo: NewAmt, flags: RegState::Undef)); |
| 1936 | |
| 1937 | // Instructions emitted after the current instruction will be processed by the |
| 1938 | // parent loop of the hazard recognizer in a natural way. |
| 1939 | BuildMI(BB&: *MBB, I: std::next(x: MI->getIterator()), MIMD: DL, MCID: TII.get(Opcode: AMDGPU::V_SWAP_B32), |
| 1940 | DestReg: AmtReg) |
| 1941 | .addDef(RegNo: NewAmt) |
| 1942 | .addReg(RegNo: NewAmt) |
| 1943 | .addReg(RegNo: AmtReg); |
| 1944 | if (Overlapped) |
| 1945 | BuildMI(BB&: *MBB, I: std::next(x: MI->getIterator()), MIMD: DL, MCID: TII.get(Opcode: AMDGPU::V_SWAP_B32), |
| 1946 | DestReg: AmtReg - 1) |
| 1947 | .addDef(RegNo: NewAmtLo) |
| 1948 | .addReg(RegNo: NewAmtLo) |
| 1949 | .addReg(RegNo: AmtReg - 1); |
| 1950 | |
| 1951 | // Re-running hazard recognizer on the modified instruction is not necessary, |
| 1952 | // inserted V_SWAP_B32 has already both read and write new registers so |
| 1953 | // hazards related to these register has already been handled. |
| 1954 | Amt->setReg(NewAmt); |
| 1955 | Amt->setIsKill(false); |
| 1956 | // We do not update liveness, so verifier may see it as undef. |
| 1957 | Amt->setIsUndef(); |
| 1958 | if (OverlappedDst) |
| 1959 | MI->getOperand(i: 0).setReg(NewReg); |
| 1960 | if (OverlappedSrc) { |
| 1961 | Src1->setReg(NewReg); |
| 1962 | Src1->setIsKill(false); |
| 1963 | Src1->setIsUndef(); |
| 1964 | } |
| 1965 | |
| 1966 | return true; |
| 1967 | } |
| 1968 | |
| 1969 | int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { |
| 1970 | int NSAtoVMEMWaitStates = 1; |
| 1971 | |
| 1972 | if (!ST.hasNSAtoVMEMBug()) |
| 1973 | return 0; |
| 1974 | |
| 1975 | if (!SIInstrInfo::isMUBUF(MI: *MI) && !SIInstrInfo::isMTBUF(MI: *MI)) |
| 1976 | return 0; |
| 1977 | |
| 1978 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1979 | const auto *Offset = TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::offset); |
| 1980 | if (!Offset || (Offset->getImm() & 6) == 0) |
| 1981 | return 0; |
| 1982 | |
| 1983 | auto IsHazardFn = [TII](const MachineInstr &I) { |
| 1984 | if (!SIInstrInfo::isMIMG(MI: I)) |
| 1985 | return false; |
| 1986 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: I.getOpcode()); |
| 1987 | return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && |
| 1988 | TII->getInstSizeInBytes(MI: I) >= 16; |
| 1989 | }; |
| 1990 | |
| 1991 | return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazard: IsHazardFn, Limit: 1); |
| 1992 | } |
| 1993 | |
| 1994 | int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { |
| 1995 | int FPAtomicToDenormModeWaitStates = 3; |
| 1996 | |
| 1997 | if (!ST.hasFPAtomicToDenormModeHazard()) |
| 1998 | return 0; |
| 1999 | assert(!ST.hasExtendedWaitCounts()); |
| 2000 | |
| 2001 | if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) |
| 2002 | return 0; |
| 2003 | |
| 2004 | auto IsHazardFn = [](const MachineInstr &I) { |
| 2005 | if (!SIInstrInfo::isVMEM(MI: I)) |
| 2006 | return false; |
| 2007 | return SIInstrInfo::isFPAtomic(MI: I); |
| 2008 | }; |
| 2009 | |
| 2010 | auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { |
| 2011 | if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) |
| 2012 | return true; |
| 2013 | |
| 2014 | switch (MI.getOpcode()) { |
| 2015 | case AMDGPU::S_WAITCNT: |
| 2016 | case AMDGPU::S_WAITCNT_VSCNT: |
| 2017 | case AMDGPU::S_WAITCNT_VMCNT: |
| 2018 | case AMDGPU::S_WAITCNT_EXPCNT: |
| 2019 | case AMDGPU::S_WAITCNT_LGKMCNT: |
| 2020 | case AMDGPU::S_WAIT_IDLE: |
| 2021 | return true; |
| 2022 | default: |
| 2023 | break; |
| 2024 | } |
| 2025 | |
| 2026 | return false; |
| 2027 | }; |
| 2028 | |
| 2029 | return FPAtomicToDenormModeWaitStates - |
| 2030 | ::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn); |
| 2031 | } |
| 2032 | |
| 2033 | int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { |
| 2034 | assert(SIInstrInfo::isMAI(*MI)); |
| 2035 | |
| 2036 | return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); |
| 2037 | } |
| 2038 | |
| 2039 | int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { |
| 2040 | // Early exit if no padding is requested. |
| 2041 | if (MFMAPaddingRatio == 0) |
| 2042 | return 0; |
| 2043 | |
| 2044 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2045 | if (!SIInstrInfo::isMFMA(MI: *MI) || MFI->getOccupancy() < 2) |
| 2046 | return 0; |
| 2047 | |
| 2048 | int NeighborMFMALatency = 0; |
| 2049 | auto IsNeighboringMFMA = [&NeighborMFMALatency, |
| 2050 | this](const MachineInstr &MI) { |
| 2051 | if (!SIInstrInfo::isMFMA(MI)) |
| 2052 | return false; |
| 2053 | |
| 2054 | NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); |
| 2055 | return true; |
| 2056 | }; |
| 2057 | |
| 2058 | const int MaxMFMAPipelineWaitStates = 16; |
| 2059 | int WaitStatesSinceNeighborMFMA = |
| 2060 | getWaitStatesSince(IsHazard: IsNeighboringMFMA, Limit: MaxMFMAPipelineWaitStates); |
| 2061 | |
| 2062 | int NeighborMFMAPaddingNeeded = |
| 2063 | (NeighborMFMALatency * MFMAPaddingRatio / 100) - |
| 2064 | WaitStatesSinceNeighborMFMA; |
| 2065 | |
| 2066 | return std::max(a: 0, b: NeighborMFMAPaddingNeeded); |
| 2067 | } |
| 2068 | |
| 2069 | int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { |
| 2070 | int WaitStatesNeeded = 0; |
| 2071 | unsigned Opc = MI->getOpcode(); |
| 2072 | |
| 2073 | auto IsVALUFn = [](const MachineInstr &MI) { |
| 2074 | return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); |
| 2075 | }; |
| 2076 | |
| 2077 | if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write |
| 2078 | const int LegacyVALUWritesVGPRWaitStates = 2; |
| 2079 | const int VALUWritesExecWaitStates = 4; |
| 2080 | const int MaxWaitStates = 4; |
| 2081 | |
| 2082 | int WaitStatesNeededForUse = VALUWritesExecWaitStates - |
| 2083 | getWaitStatesSinceDef(Reg: AMDGPU::EXEC, IsHazardDef: IsVALUFn, Limit: MaxWaitStates); |
| 2084 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2085 | |
| 2086 | if (WaitStatesNeeded < MaxWaitStates) { |
| 2087 | for (const MachineOperand &Use : MI->explicit_uses()) { |
| 2088 | const int MaxWaitStates = 2; |
| 2089 | |
| 2090 | if (!Use.isReg() || !TRI.isVGPR(MRI: MF.getRegInfo(), Reg: Use.getReg())) |
| 2091 | continue; |
| 2092 | |
| 2093 | int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - |
| 2094 | getWaitStatesSinceDef(Reg: Use.getReg(), IsHazardDef: IsVALUFn, Limit: MaxWaitStates); |
| 2095 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2096 | |
| 2097 | if (WaitStatesNeeded == MaxWaitStates) |
| 2098 | break; |
| 2099 | } |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | for (const MachineOperand &Op : MI->explicit_operands()) { |
| 2104 | if (!Op.isReg() || !TRI.isAGPR(MRI: MF.getRegInfo(), Reg: Op.getReg())) |
| 2105 | continue; |
| 2106 | |
| 2107 | if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) |
| 2108 | continue; |
| 2109 | |
| 2110 | const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; |
| 2111 | const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; |
| 2112 | const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; |
| 2113 | const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; |
| 2114 | const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; |
| 2115 | const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; |
| 2116 | const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; |
| 2117 | const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; |
| 2118 | const int MaxWaitStates = 18; |
| 2119 | Register Reg = Op.getReg(); |
| 2120 | unsigned HazardDefLatency = 0; |
| 2121 | |
| 2122 | auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, |
| 2123 | this](const MachineInstr &MI) { |
| 2124 | if (!SIInstrInfo::isMFMA(MI)) |
| 2125 | return false; |
| 2126 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 2127 | if (DstReg == Reg) |
| 2128 | return false; |
| 2129 | HazardDefLatency = |
| 2130 | std::max(a: HazardDefLatency, b: TSchedModel.computeInstrLatency(MI: &MI)); |
| 2131 | return TRI.regsOverlap(RegA: DstReg, RegB: Reg); |
| 2132 | }; |
| 2133 | |
| 2134 | int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsHazardDef: IsOverlappedMFMAFn, |
| 2135 | Limit: MaxWaitStates); |
| 2136 | int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; |
| 2137 | int SrcCIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src2); |
| 2138 | int OpNo = Op.getOperandNo(); |
| 2139 | if (OpNo == SrcCIdx) { |
| 2140 | NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; |
| 2141 | } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { |
| 2142 | switch (HazardDefLatency) { |
| 2143 | case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; |
| 2144 | break; |
| 2145 | case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; |
| 2146 | break; |
| 2147 | case 16: [[fallthrough]]; |
| 2148 | default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; |
| 2149 | break; |
| 2150 | } |
| 2151 | } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { |
| 2152 | switch (HazardDefLatency) { |
| 2153 | case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; |
| 2154 | break; |
| 2155 | case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; |
| 2156 | break; |
| 2157 | case 16: [[fallthrough]]; |
| 2158 | default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; |
| 2159 | break; |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; |
| 2164 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2165 | |
| 2166 | if (WaitStatesNeeded == MaxWaitStates) |
| 2167 | return WaitStatesNeeded; // Early exit. |
| 2168 | |
| 2169 | auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { |
| 2170 | if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) |
| 2171 | return false; |
| 2172 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 2173 | return TRI.regsOverlap(RegA: Reg, RegB: DstReg); |
| 2174 | }; |
| 2175 | |
| 2176 | const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; |
| 2177 | const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; |
| 2178 | const int AccVGPRWriteAccVgprReadWaitStates = 3; |
| 2179 | NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; |
| 2180 | if (OpNo == SrcCIdx) |
| 2181 | NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; |
| 2182 | else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) |
| 2183 | NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; |
| 2184 | |
| 2185 | WaitStatesNeededForUse = NeedWaitStates - |
| 2186 | getWaitStatesSinceDef(Reg, IsHazardDef: IsAccVgprWriteFn, Limit: MaxWaitStates); |
| 2187 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2188 | |
| 2189 | if (WaitStatesNeeded == MaxWaitStates) |
| 2190 | return WaitStatesNeeded; // Early exit. |
| 2191 | } |
| 2192 | |
| 2193 | if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { |
| 2194 | const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; |
| 2195 | const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; |
| 2196 | const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; |
| 2197 | const int MaxWaitStates = 13; |
| 2198 | Register DstReg = MI->getOperand(i: 0).getReg(); |
| 2199 | unsigned HazardDefLatency = 0; |
| 2200 | |
| 2201 | auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, |
| 2202 | this](const MachineInstr &MI) { |
| 2203 | if (!SIInstrInfo::isMFMA(MI)) |
| 2204 | return false; |
| 2205 | Register Reg = TII.getNamedOperand(MI, OperandName: AMDGPU::OpName::src2)->getReg(); |
| 2206 | HazardDefLatency = |
| 2207 | std::max(a: HazardDefLatency, b: TSchedModel.computeInstrLatency(MI: &MI)); |
| 2208 | return TRI.regsOverlap(RegA: Reg, RegB: DstReg); |
| 2209 | }; |
| 2210 | |
| 2211 | int WaitStatesSince = getWaitStatesSince(IsHazard: IsSrcCMFMAFn, Limit: MaxWaitStates); |
| 2212 | int NeedWaitStates; |
| 2213 | switch (HazardDefLatency) { |
| 2214 | case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; |
| 2215 | break; |
| 2216 | case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; |
| 2217 | break; |
| 2218 | case 16: [[fallthrough]]; |
| 2219 | default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; |
| 2220 | break; |
| 2221 | } |
| 2222 | |
| 2223 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; |
| 2224 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2225 | } |
| 2226 | |
| 2227 | // Pad neighboring MFMA with noops for better inter-wave performance. |
| 2228 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: checkMFMAPadding(MI)); |
| 2229 | |
| 2230 | return WaitStatesNeeded; |
| 2231 | } |
| 2232 | |
| 2233 | static int |
| 2234 | GFX940_XDL_N_PassWritesVGPROverlappedXDLOrSMFMASrcCWaitStates(int NumPasses, |
| 2235 | bool IsGFX950) { |
| 2236 | // xdl def cycles | gfx940 | gfx950 |
| 2237 | // 2 pass | 3 4 |
| 2238 | // 4 pass | 5 6 |
| 2239 | // 8 pass | 9 10 |
| 2240 | // 16 pass | 17 18 |
| 2241 | return NumPasses + 1 + IsGFX950; |
| 2242 | } |
| 2243 | |
| 2244 | static int |
| 2245 | GFX940_XDL_N_PassWritesVGPROverlappedSGEMMDGEMMSrcCWaitStates(int NumPasses, |
| 2246 | bool IsGFX950) { |
| 2247 | // xdl def cycles | gfx940 | gfx950 |
| 2248 | // 2 pass | 3 3 |
| 2249 | // 4 pass | 5 6 |
| 2250 | // 8 pass | 9 10 |
| 2251 | // 16 pass | 17 18 |
| 2252 | return NumPasses + 1 + (NumPasses != 2 && IsGFX950); |
| 2253 | } |
| 2254 | |
| 2255 | static int |
| 2256 | GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { |
| 2257 | // 2 pass -> 2 |
| 2258 | // 4 pass -> 4 |
| 2259 | // 8 pass -> 8 |
| 2260 | // 16 pass -> 16 |
| 2261 | return NumPasses; |
| 2262 | } |
| 2263 | |
| 2264 | static int |
| 2265 | GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { |
| 2266 | // 2 pass -> 4 |
| 2267 | // 4 pass -> 6 |
| 2268 | // 8 pass -> 10 |
| 2269 | // 16 pass -> 18 |
| 2270 | return NumPasses + 2; |
| 2271 | } |
| 2272 | |
| 2273 | static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses, |
| 2274 | bool IsGFX950) { |
| 2275 | // xdl def cycles | gfx942 | gfx950 |
| 2276 | // 2 pass | 5 5 |
| 2277 | // 4 pass | 7 8 |
| 2278 | // 8 pass | 11 12 |
| 2279 | // 16 pass | 19 20 |
| 2280 | return NumPasses + 3 + (NumPasses != 2 && IsGFX950); |
| 2281 | } |
| 2282 | |
| 2283 | int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { |
| 2284 | int WaitStatesNeeded = 0; |
| 2285 | unsigned Opc = MI->getOpcode(); |
| 2286 | |
| 2287 | auto IsLegacyVALUFn = [](const MachineInstr &MI) { |
| 2288 | return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); |
| 2289 | }; |
| 2290 | |
| 2291 | auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { |
| 2292 | return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && |
| 2293 | !SIInstrInfo::isDOT(MI); |
| 2294 | }; |
| 2295 | |
| 2296 | if (!SIInstrInfo::isMFMA(MI: *MI)) |
| 2297 | return WaitStatesNeeded; |
| 2298 | |
| 2299 | const int VALUWritesExecWaitStates = 4; |
| 2300 | int WaitStatesNeededForUse = VALUWritesExecWaitStates - |
| 2301 | getWaitStatesSinceDef(Reg: AMDGPU::EXEC, IsHazardDef: IsLegacyVALUFn, |
| 2302 | Limit: VALUWritesExecWaitStates); |
| 2303 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2304 | |
| 2305 | int SrcCIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src2); |
| 2306 | |
| 2307 | // Loop for both DGEMM and S/HGEMM 2nd instruction. |
| 2308 | for (const MachineOperand &Use : MI->explicit_uses()) { |
| 2309 | const int LegacyVALUNotDotWritesVGPRWaitStates = 2; |
| 2310 | const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; |
| 2311 | const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; |
| 2312 | const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; |
| 2313 | const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; |
| 2314 | const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; |
| 2315 | const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; |
| 2316 | const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; |
| 2317 | const int GFX950_DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 17; |
| 2318 | const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; |
| 2319 | const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; |
| 2320 | const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; |
| 2321 | const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; |
| 2322 | const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; |
| 2323 | const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; |
| 2324 | const int GFX950_DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 19; |
| 2325 | const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; |
| 2326 | const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; |
| 2327 | const int MaxWaitStates = 19; |
| 2328 | |
| 2329 | if (!Use.isReg()) |
| 2330 | continue; |
| 2331 | Register Reg = Use.getReg(); |
| 2332 | bool FullReg; |
| 2333 | const MachineInstr *MI1; |
| 2334 | |
| 2335 | auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, |
| 2336 | this](const MachineInstr &MI) { |
| 2337 | if (!SIInstrInfo::isMFMA(MI)) |
| 2338 | return false; |
| 2339 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 2340 | FullReg = (DstReg == Reg); |
| 2341 | MI1 = &MI; |
| 2342 | return TRI.regsOverlap(RegA: DstReg, RegB: Reg); |
| 2343 | }; |
| 2344 | |
| 2345 | WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - |
| 2346 | getWaitStatesSinceDef(Reg, IsHazardDef: IsLegacyVALUNotDotFn, Limit: MaxWaitStates); |
| 2347 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2348 | |
| 2349 | int NumWaitStates = |
| 2350 | getWaitStatesSinceDef(Reg, IsHazardDef: IsOverlappedMFMAFn, Limit: MaxWaitStates); |
| 2351 | if (NumWaitStates == std::numeric_limits<int>::max()) |
| 2352 | continue; |
| 2353 | |
| 2354 | int OpNo = Use.getOperandNo(); |
| 2355 | unsigned Opc1 = MI1->getOpcode(); |
| 2356 | int NeedWaitStates = 0; |
| 2357 | if (OpNo == SrcCIdx) { |
| 2358 | if (!SIInstrInfo::isDGEMM(Opcode: Opc) && |
| 2359 | (!ST.hasGFX940Insts() && SIInstrInfo::isDGEMM(Opcode: Opc1))) { |
| 2360 | NeedWaitStates = 0; |
| 2361 | } else if (FullReg) { |
| 2362 | if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || |
| 2363 | Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && |
| 2364 | (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || |
| 2365 | Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) |
| 2366 | NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; |
| 2367 | else if (ST.hasGFX940Insts() && |
| 2368 | TSchedModel.computeInstrLatency(MI: MI1) == 2) |
| 2369 | NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; |
| 2370 | } else { |
| 2371 | switch (Opc1) { |
| 2372 | case AMDGPU::V_MFMA_F64_16X16X4F64_e64: |
| 2373 | case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: |
| 2374 | case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: |
| 2375 | case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: |
| 2376 | if (!TII.isXDL(MI: *MI)) |
| 2377 | NeedWaitStates = |
| 2378 | ST.hasGFX950Insts() |
| 2379 | ? GFX950_DMFMA16x16WritesVGPROverlappedSrcCWaitStates |
| 2380 | : DMFMA16x16WritesVGPROverlappedSrcCWaitStates; |
| 2381 | break; |
| 2382 | case AMDGPU::V_MFMA_F64_4X4X4F64_e64: |
| 2383 | case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: |
| 2384 | if (!TII.isXDL(MI: *MI)) |
| 2385 | NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; |
| 2386 | break; |
| 2387 | default: |
| 2388 | int NumPasses = TSchedModel.computeInstrLatency(MI: MI1); |
| 2389 | if (ST.hasGFX940Insts()) { |
| 2390 | if (TII.isXDL(MI: *MI) && !TII.isXDL(MI: *MI1)) |
| 2391 | break; |
| 2392 | |
| 2393 | NeedWaitStates = |
| 2394 | TII.isXDL(MI: *MI1) |
| 2395 | ? (TII.isXDL(MI: *MI) |
| 2396 | ? GFX940_XDL_N_PassWritesVGPROverlappedXDLOrSMFMASrcCWaitStates( |
| 2397 | NumPasses, IsGFX950: ST.hasGFX950Insts()) |
| 2398 | : GFX940_XDL_N_PassWritesVGPROverlappedSGEMMDGEMMSrcCWaitStates( |
| 2399 | NumPasses, IsGFX950: ST.hasGFX950Insts())) |
| 2400 | : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( |
| 2401 | NumPasses); |
| 2402 | break; |
| 2403 | } |
| 2404 | |
| 2405 | switch (NumPasses) { |
| 2406 | case 2: |
| 2407 | NeedWaitStates = |
| 2408 | SIInstrInfo::isDGEMM(Opcode: Opc) |
| 2409 | ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates |
| 2410 | : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; |
| 2411 | break; |
| 2412 | case 8: |
| 2413 | NeedWaitStates = |
| 2414 | SIInstrInfo::isDGEMM(Opcode: Opc) |
| 2415 | ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates |
| 2416 | : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; |
| 2417 | break; |
| 2418 | case 16: |
| 2419 | NeedWaitStates = |
| 2420 | SIInstrInfo::isDGEMM(Opcode: Opc) |
| 2421 | ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates |
| 2422 | : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; |
| 2423 | break; |
| 2424 | default: |
| 2425 | llvm_unreachable("unexpected number of passes" ); |
| 2426 | } |
| 2427 | } |
| 2428 | } |
| 2429 | } else { |
| 2430 | switch (Opc1) { |
| 2431 | case AMDGPU::V_MFMA_F64_16X16X4F64_e64: |
| 2432 | case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: |
| 2433 | case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: |
| 2434 | case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: |
| 2435 | NeedWaitStates = |
| 2436 | ST.hasGFX950Insts() |
| 2437 | ? GFX950_DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates |
| 2438 | : DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; |
| 2439 | break; |
| 2440 | case AMDGPU::V_MFMA_F64_4X4X4F64_e64: |
| 2441 | case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: |
| 2442 | NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; |
| 2443 | break; |
| 2444 | default: |
| 2445 | int NumPasses = TSchedModel.computeInstrLatency(MI: MI1); |
| 2446 | |
| 2447 | if (ST.hasGFX940Insts()) { |
| 2448 | NeedWaitStates = |
| 2449 | TII.isXDL(MI: *MI1) |
| 2450 | ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates( |
| 2451 | NumPasses, IsGFX950: ST.hasGFX950Insts()) |
| 2452 | : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates( |
| 2453 | NumPasses); |
| 2454 | break; |
| 2455 | } |
| 2456 | |
| 2457 | switch (NumPasses) { |
| 2458 | case 2: |
| 2459 | NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates; |
| 2460 | break; |
| 2461 | case 4: |
| 2462 | llvm_unreachable("unexpected number of passes for mfma" ); |
| 2463 | case 8: |
| 2464 | NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates; |
| 2465 | break; |
| 2466 | case 16: |
| 2467 | default: |
| 2468 | NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates; |
| 2469 | } |
| 2470 | } |
| 2471 | } |
| 2472 | if (WaitStatesNeeded >= NeedWaitStates) |
| 2473 | continue; |
| 2474 | |
| 2475 | WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; |
| 2476 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2477 | |
| 2478 | if (WaitStatesNeeded == MaxWaitStates) |
| 2479 | break; |
| 2480 | } |
| 2481 | |
| 2482 | // Pad neighboring MFMA with noops for better inter-wave performance. |
| 2483 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: checkMFMAPadding(MI)); |
| 2484 | |
| 2485 | return WaitStatesNeeded; |
| 2486 | } |
| 2487 | |
| 2488 | int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { |
| 2489 | // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() |
| 2490 | if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) |
| 2491 | return 0; |
| 2492 | |
| 2493 | int WaitStatesNeeded = 0; |
| 2494 | |
| 2495 | auto IsAccVgprReadFn = [](const MachineInstr &MI) { |
| 2496 | return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; |
| 2497 | }; |
| 2498 | |
| 2499 | for (const MachineOperand &Op : MI->explicit_uses()) { |
| 2500 | if (!Op.isReg() || !TRI.isVGPR(MRI: MF.getRegInfo(), Reg: Op.getReg())) |
| 2501 | continue; |
| 2502 | |
| 2503 | Register Reg = Op.getReg(); |
| 2504 | |
| 2505 | const int AccVgprReadLdStWaitStates = 2; |
| 2506 | const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; |
| 2507 | const int MaxWaitStates = 2; |
| 2508 | |
| 2509 | int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - |
| 2510 | getWaitStatesSinceDef(Reg, IsHazardDef: IsAccVgprReadFn, Limit: MaxWaitStates); |
| 2511 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2512 | |
| 2513 | if (WaitStatesNeeded == MaxWaitStates) |
| 2514 | return WaitStatesNeeded; // Early exit. |
| 2515 | |
| 2516 | auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { |
| 2517 | if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && |
| 2518 | MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) |
| 2519 | return false; |
| 2520 | auto IsVALUFn = [](const MachineInstr &MI) { |
| 2521 | return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); |
| 2522 | }; |
| 2523 | return getWaitStatesSinceDef(Reg, IsHazardDef: IsVALUFn, Limit: 2 /*MaxWaitStates*/) < |
| 2524 | std::numeric_limits<int>::max(); |
| 2525 | }; |
| 2526 | |
| 2527 | WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - |
| 2528 | getWaitStatesSince(IsHazard: IsVALUAccVgprRdWrCheckFn, Limit: MaxWaitStates); |
| 2529 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2530 | } |
| 2531 | |
| 2532 | return WaitStatesNeeded; |
| 2533 | } |
| 2534 | |
| 2535 | int GCNHazardRecognizer::checkPermlaneHazards(MachineInstr *MI) { |
| 2536 | assert(!ST.hasVcmpxPermlaneHazard() && |
| 2537 | "this is a different vcmpx+permlane hazard" ); |
| 2538 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 2539 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 2540 | |
| 2541 | auto IsVCmpXWritesExecFn = [TII, TRI](const MachineInstr &MI) { |
| 2542 | return isVCmpXWritesExec(TII: *TII, TRI: *TRI, MI); |
| 2543 | }; |
| 2544 | |
| 2545 | auto IsVALUFn = [](const MachineInstr &MI) { |
| 2546 | return SIInstrInfo::isVALU(MI); |
| 2547 | }; |
| 2548 | |
| 2549 | const int VCmpXWritesExecWaitStates = 4; |
| 2550 | const int VALUWritesVDstWaitStates = 2; |
| 2551 | int WaitStatesNeeded = 0; |
| 2552 | |
| 2553 | for (const MachineOperand &Op : MI->explicit_uses()) { |
| 2554 | if (!Op.isReg() || !TRI->isVGPR(MRI: MF.getRegInfo(), Reg: Op.getReg())) |
| 2555 | continue; |
| 2556 | Register Reg = Op.getReg(); |
| 2557 | |
| 2558 | int WaitStatesSinceDef = |
| 2559 | VALUWritesVDstWaitStates - |
| 2560 | getWaitStatesSinceDef(Reg, IsHazardDef: IsVALUFn, |
| 2561 | /*MaxWaitStates=*/Limit: VALUWritesVDstWaitStates); |
| 2562 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesSinceDef); |
| 2563 | if (WaitStatesNeeded >= VALUWritesVDstWaitStates) |
| 2564 | break; |
| 2565 | } |
| 2566 | |
| 2567 | int VCmpXHazardWaits = |
| 2568 | VCmpXWritesExecWaitStates - |
| 2569 | getWaitStatesSince(IsHazard: IsVCmpXWritesExecFn, Limit: VCmpXWritesExecWaitStates); |
| 2570 | |
| 2571 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: VCmpXHazardWaits); |
| 2572 | return WaitStatesNeeded; |
| 2573 | } |
| 2574 | |
| 2575 | static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { |
| 2576 | // 2 pass -> 4 |
| 2577 | // 4 pass -> 6 |
| 2578 | // 8 pass -> 10 |
| 2579 | // 16 pass -> 18 |
| 2580 | return NumPasses + 2; |
| 2581 | } |
| 2582 | |
| 2583 | static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses, |
| 2584 | bool IsGFX950) { |
| 2585 | // xdl def cycles | gfx942 | gfx950 |
| 2586 | // 2 pass | 5 5 |
| 2587 | // 4 pass | 7 8 |
| 2588 | // 8 pass | 11 12 |
| 2589 | // 16 pass | 19 20 |
| 2590 | return NumPasses + 3 + (NumPasses != 2 && IsGFX950); |
| 2591 | } |
| 2592 | |
| 2593 | static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses, |
| 2594 | bool IsGFX950) { |
| 2595 | // xdl def cycles | gfx942 | gfx950 |
| 2596 | // 2 pass | 5 5 |
| 2597 | // 4 pass | 7 8 |
| 2598 | // 8 pass | 11 12 |
| 2599 | // 16 pass | 19 20 |
| 2600 | return NumPasses + 3 + (NumPasses != 2 && IsGFX950); |
| 2601 | } |
| 2602 | |
| 2603 | static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { |
| 2604 | // 2 pass -> 4 |
| 2605 | // 4 pass -> 6 |
| 2606 | // 8 pass -> 10 |
| 2607 | // 16 pass -> 18 |
| 2608 | return NumPasses + 2; |
| 2609 | } |
| 2610 | |
| 2611 | int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { |
| 2612 | if (!ST.hasGFX90AInsts()) |
| 2613 | return 0; |
| 2614 | |
| 2615 | auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { |
| 2616 | return SIInstrInfo::isDGEMM(Opcode: MI.getOpcode()); |
| 2617 | }; |
| 2618 | |
| 2619 | // This is checked in checkMAIHazards90A() |
| 2620 | if (SIInstrInfo::isMFMA(MI: *MI)) |
| 2621 | return 0; |
| 2622 | |
| 2623 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2624 | |
| 2625 | int WaitStatesNeeded = 0; |
| 2626 | |
| 2627 | bool IsMem = SIInstrInfo::isVMEM(MI: *MI) || SIInstrInfo::isDS(MI: *MI); |
| 2628 | bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(MI: *MI); |
| 2629 | bool IsVALU = SIInstrInfo::isVALU(MI: *MI); |
| 2630 | |
| 2631 | const MachineInstr *MFMA = nullptr; |
| 2632 | unsigned Reg; |
| 2633 | auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { |
| 2634 | if (!SIInstrInfo::isMFMA(MI) || |
| 2635 | !TRI.regsOverlap(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 2636 | return false; |
| 2637 | MFMA = &MI; |
| 2638 | return true; |
| 2639 | }; |
| 2640 | |
| 2641 | const MachineInstr *DOT = nullptr; |
| 2642 | auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { |
| 2643 | if (!SIInstrInfo::isDOT(MI) || |
| 2644 | !TRI.regsOverlap(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 2645 | return false; |
| 2646 | DOT = &MI; |
| 2647 | return true; |
| 2648 | }; |
| 2649 | |
| 2650 | bool DGEMMAfterVALUWrite = false; |
| 2651 | auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { |
| 2652 | // Found DGEMM on reverse traversal to def. |
| 2653 | if (SIInstrInfo::isDGEMM(Opcode: MI.getOpcode())) |
| 2654 | DGEMMAfterVALUWrite = true; |
| 2655 | |
| 2656 | // Only hazard if register is defined by a VALU and a DGEMM is found after |
| 2657 | // after the def. |
| 2658 | if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) |
| 2659 | return false; |
| 2660 | |
| 2661 | return true; |
| 2662 | }; |
| 2663 | |
| 2664 | int SrcCIdx = AMDGPU::getNamedOperandIdx(Opcode: MI->getOpcode(), |
| 2665 | Name: AMDGPU::OpName::src2); |
| 2666 | |
| 2667 | if (IsMemOrExport || IsVALU) { |
| 2668 | const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; |
| 2669 | const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; |
| 2670 | const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; |
| 2671 | const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; |
| 2672 | const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; |
| 2673 | const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; |
| 2674 | const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; |
| 2675 | const int GFX950_DMFMA16x16WriteVgprVALUReadWaitStates = 19; |
| 2676 | const int DotWriteSameDotReadSrcAB = 3; |
| 2677 | const int DotWriteDifferentVALURead = 3; |
| 2678 | const int DMFMABetweenVALUWriteVMEMRead = 2; |
| 2679 | const int MaxWaitStates = 19; |
| 2680 | |
| 2681 | for (const MachineOperand &Use : MI->explicit_uses()) { |
| 2682 | if (!Use.isReg()) |
| 2683 | continue; |
| 2684 | Reg = Use.getReg(); |
| 2685 | |
| 2686 | DOT = nullptr; |
| 2687 | int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsHazardDef: IsDotWriteFn, |
| 2688 | Limit: MaxWaitStates); |
| 2689 | if (DOT) { |
| 2690 | int NeedWaitStates = 0; |
| 2691 | if (DOT->getOpcode() == MI->getOpcode()) { |
| 2692 | if (&Use - &MI->getOperand(i: 0) != SrcCIdx) |
| 2693 | NeedWaitStates = DotWriteSameDotReadSrcAB; |
| 2694 | } else { |
| 2695 | NeedWaitStates = DotWriteDifferentVALURead; |
| 2696 | } |
| 2697 | |
| 2698 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; |
| 2699 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2700 | } |
| 2701 | |
| 2702 | // Workaround for HW data hazard bug observed only in GFX90A. When there |
| 2703 | // is a DGEMM instruction in-between a VALU and a VMEM instruction it |
| 2704 | // causes the SQ to incorrectly not insert two wait states between the two |
| 2705 | // instructions needed to avoid data hazard. |
| 2706 | if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { |
| 2707 | DGEMMAfterVALUWrite = false; |
| 2708 | if (TRI.isVectorRegister(MRI, Reg)) { |
| 2709 | int WaitStatesNeededForUse = |
| 2710 | DMFMABetweenVALUWriteVMEMRead - |
| 2711 | getWaitStatesSinceDef(Reg, IsHazardDef: IsDGEMMHazard, |
| 2712 | Limit: DMFMABetweenVALUWriteVMEMRead); |
| 2713 | |
| 2714 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2715 | } |
| 2716 | } |
| 2717 | |
| 2718 | MFMA = nullptr; |
| 2719 | WaitStatesSinceDef = |
| 2720 | getWaitStatesSinceDef(Reg, IsHazardDef: IsMFMAWriteFn, Limit: MaxWaitStates); |
| 2721 | if (!MFMA) |
| 2722 | continue; |
| 2723 | |
| 2724 | unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MI: MFMA); |
| 2725 | int NumPasses = HazardDefLatency; |
| 2726 | int NeedWaitStates = MaxWaitStates; |
| 2727 | |
| 2728 | if (SIInstrInfo::isDGEMM(Opcode: MFMA->getOpcode())) { |
| 2729 | switch (HazardDefLatency) { |
| 2730 | case 4: |
| 2731 | NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates |
| 2732 | : DMFMA4x4WriteVgprVALUReadWaitStates; |
| 2733 | break; |
| 2734 | case 8: |
| 2735 | case 16: |
| 2736 | NeedWaitStates = |
| 2737 | IsMemOrExport |
| 2738 | ? DMFMA16x16WriteVgprMemExpReadWaitStates |
| 2739 | : (ST.hasGFX950Insts() |
| 2740 | ? GFX950_DMFMA16x16WriteVgprVALUReadWaitStates |
| 2741 | : DMFMA16x16WriteVgprVALUReadWaitStates); |
| 2742 | break; |
| 2743 | default: |
| 2744 | llvm_unreachable("unexpected dgemm" ); |
| 2745 | } |
| 2746 | } else if (ST.hasGFX940Insts()) { |
| 2747 | NeedWaitStates = |
| 2748 | TII.isXDL(MI: *MFMA) |
| 2749 | ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates( |
| 2750 | NumPasses, IsGFX950: ST.hasGFX950Insts()) |
| 2751 | : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates( |
| 2752 | NumPasses); |
| 2753 | } else { |
| 2754 | switch (HazardDefLatency) { |
| 2755 | case 2: |
| 2756 | NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates; |
| 2757 | break; |
| 2758 | case 8: |
| 2759 | NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates; |
| 2760 | break; |
| 2761 | case 16: |
| 2762 | NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates; |
| 2763 | break; |
| 2764 | default: |
| 2765 | llvm_unreachable("unexpected number of passes for mfma" ); |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; |
| 2770 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2771 | |
| 2772 | if (WaitStatesNeeded == MaxWaitStates) |
| 2773 | break; |
| 2774 | } |
| 2775 | } |
| 2776 | |
| 2777 | unsigned Opc = MI->getOpcode(); |
| 2778 | const int DMFMAToFMA64WaitStates = 2; |
| 2779 | if ((Opc == AMDGPU::V_FMA_F64_e64 || |
| 2780 | Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || |
| 2781 | Opc == AMDGPU::V_FMAC_F64_dpp) && |
| 2782 | WaitStatesNeeded < DMFMAToFMA64WaitStates) { |
| 2783 | int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - |
| 2784 | getWaitStatesSince(IsHazard: IsDGEMMFn, Limit: DMFMAToFMA64WaitStates); |
| 2785 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2786 | } |
| 2787 | |
| 2788 | if (!IsVALU && !IsMemOrExport) |
| 2789 | return WaitStatesNeeded; |
| 2790 | |
| 2791 | for (const MachineOperand &Def : MI->defs()) { |
| 2792 | const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; |
| 2793 | const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; |
| 2794 | const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; |
| 2795 | const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; |
| 2796 | const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; |
| 2797 | const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; |
| 2798 | const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; |
| 2799 | const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; |
| 2800 | const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; |
| 2801 | const int DotWriteDifferentVALUWrite = 3; |
| 2802 | const int MaxWaitStates = 19; |
| 2803 | const int MaxWarWaitStates = 15; |
| 2804 | |
| 2805 | Reg = Def.getReg(); |
| 2806 | |
| 2807 | DOT = nullptr; |
| 2808 | int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsHazardDef: IsDotWriteFn, |
| 2809 | Limit: MaxWaitStates); |
| 2810 | if (DOT && DOT->getOpcode() != MI->getOpcode()) |
| 2811 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: DotWriteDifferentVALUWrite - |
| 2812 | WaitStatesSinceDef); |
| 2813 | |
| 2814 | MFMA = nullptr; |
| 2815 | WaitStatesSinceDef = |
| 2816 | getWaitStatesSinceDef(Reg, IsHazardDef: IsMFMAWriteFn, Limit: MaxWaitStates); |
| 2817 | if (MFMA) { |
| 2818 | int NeedWaitStates = MaxWaitStates; |
| 2819 | int NumPasses = TSchedModel.computeInstrLatency(MI: MFMA); |
| 2820 | |
| 2821 | if (SIInstrInfo::isDGEMM(Opcode: MFMA->getOpcode())) { |
| 2822 | switch (NumPasses) { |
| 2823 | case 4: |
| 2824 | NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates; |
| 2825 | break; |
| 2826 | case 8: |
| 2827 | case 16: |
| 2828 | NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates; |
| 2829 | break; |
| 2830 | default: |
| 2831 | llvm_unreachable("unexpected number of cycles for dgemm" ); |
| 2832 | } |
| 2833 | } else if (ST.hasGFX940Insts()) { |
| 2834 | NeedWaitStates = |
| 2835 | TII.isXDL(MI: *MFMA) |
| 2836 | ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates( |
| 2837 | NumPasses, IsGFX950: ST.hasGFX950Insts()) |
| 2838 | : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses); |
| 2839 | } else { |
| 2840 | switch (NumPasses) { |
| 2841 | case 2: |
| 2842 | NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates; |
| 2843 | break; |
| 2844 | case 8: |
| 2845 | NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates; |
| 2846 | break; |
| 2847 | case 16: |
| 2848 | NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates; |
| 2849 | break; |
| 2850 | default: |
| 2851 | llvm_unreachable("Unexpected number of passes for mfma" ); |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; |
| 2856 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2857 | |
| 2858 | if (WaitStatesNeeded == MaxWaitStates) |
| 2859 | break; |
| 2860 | } |
| 2861 | |
| 2862 | auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { |
| 2863 | if (!SIInstrInfo::isMFMA(MI) || SIInstrInfo::isDGEMM(Opcode: MI.getOpcode()) || |
| 2864 | !MI.readsRegister(Reg, TRI: &TRI)) |
| 2865 | return false; |
| 2866 | |
| 2867 | if (ST.hasGFX940Insts() && !TII.isXDL(MI)) |
| 2868 | return false; |
| 2869 | |
| 2870 | const MachineOperand *SrcC = |
| 2871 | TII.getNamedOperand(MI, OperandName: AMDGPU::OpName::src2); |
| 2872 | assert(SrcC); |
| 2873 | if (!SrcC->isReg() || !TRI.regsOverlap(RegA: SrcC->getReg(), RegB: Reg)) |
| 2874 | return false; |
| 2875 | |
| 2876 | MFMA = &MI; |
| 2877 | return true; |
| 2878 | }; |
| 2879 | |
| 2880 | MFMA = nullptr; |
| 2881 | int WaitStatesSinceUse = getWaitStatesSince(IsHazard: IsSMFMAReadAsCFn, |
| 2882 | Limit: MaxWarWaitStates); |
| 2883 | if (!MFMA) |
| 2884 | continue; |
| 2885 | |
| 2886 | unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MI: MFMA); |
| 2887 | int NeedWaitStates = MaxWaitStates; |
| 2888 | switch (HazardDefLatency) { |
| 2889 | case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; |
| 2890 | break; |
| 2891 | case 4: assert(ST.hasGFX940Insts()); |
| 2892 | NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; |
| 2893 | break; |
| 2894 | case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; |
| 2895 | break; |
| 2896 | case 16: [[fallthrough]]; |
| 2897 | default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; |
| 2898 | break; |
| 2899 | } |
| 2900 | |
| 2901 | int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; |
| 2902 | WaitStatesNeeded = std::max(a: WaitStatesNeeded, b: WaitStatesNeededForUse); |
| 2903 | } |
| 2904 | |
| 2905 | return WaitStatesNeeded; |
| 2906 | } |
| 2907 | |
| 2908 | bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { |
| 2909 | if (!SU->isInstr()) |
| 2910 | return false; |
| 2911 | |
| 2912 | const MachineInstr *MAI = nullptr; |
| 2913 | |
| 2914 | auto IsMFMAFn = [&MAI](const MachineInstr &MI) { |
| 2915 | MAI = nullptr; |
| 2916 | if (SIInstrInfo::isMFMA(MI)) |
| 2917 | MAI = &MI; |
| 2918 | return MAI != nullptr; |
| 2919 | }; |
| 2920 | |
| 2921 | MachineInstr *MI = SU->getInstr(); |
| 2922 | if (IsMFMAFn(*MI)) { |
| 2923 | int W = getWaitStatesSince(IsHazard: IsMFMAFn, Limit: 16); |
| 2924 | if (MAI) |
| 2925 | return W < (int)TSchedModel.computeInstrLatency(MI: MAI); |
| 2926 | } |
| 2927 | |
| 2928 | return false; |
| 2929 | } |
| 2930 | |
| 2931 | // Adjust global offsets for instructions bundled with S_GETPC_B64 after |
| 2932 | // insertion of a new instruction. |
| 2933 | static void updateGetPCBundle(MachineInstr *NewMI) { |
| 2934 | if (!NewMI->isBundled()) |
| 2935 | return; |
| 2936 | |
| 2937 | // Find start of bundle. |
| 2938 | auto I = NewMI->getIterator(); |
| 2939 | while (I->isBundledWithPred()) |
| 2940 | I--; |
| 2941 | if (I->isBundle()) |
| 2942 | I++; |
| 2943 | |
| 2944 | // Bail if this is not an S_GETPC bundle. |
| 2945 | if (I->getOpcode() != AMDGPU::S_GETPC_B64) |
| 2946 | return; |
| 2947 | |
| 2948 | // Update offsets of any references in the bundle. |
| 2949 | const unsigned NewBytes = 4; |
| 2950 | assert(NewMI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 2951 | "Unexpected instruction insertion in bundle" ); |
| 2952 | auto NextMI = std::next(x: NewMI->getIterator()); |
| 2953 | auto End = NewMI->getParent()->end(); |
| 2954 | while (NextMI != End && NextMI->isBundledWithPred()) { |
| 2955 | for (auto &Operand : NextMI->operands()) { |
| 2956 | if (Operand.isGlobal()) |
| 2957 | Operand.setOffset(Operand.getOffset() + NewBytes); |
| 2958 | } |
| 2959 | NextMI++; |
| 2960 | } |
| 2961 | } |
| 2962 | |
| 2963 | bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { |
| 2964 | if (!ST.hasVALUMaskWriteHazard()) |
| 2965 | return false; |
| 2966 | assert(!ST.hasExtendedWaitCounts()); |
| 2967 | |
| 2968 | if (!ST.isWave64() || !SIInstrInfo::isSALU(MI: *MI)) |
| 2969 | return false; |
| 2970 | |
| 2971 | // The hazard sequence is three instructions: |
| 2972 | // 1. VALU reads SGPR as mask |
| 2973 | // 2. SALU writes SGPR |
| 2974 | // 3. SALU reads SGPR |
| 2975 | // The hazard can expire if the distance between 2 and 3 is sufficient. |
| 2976 | // In practice this happens <10% of the time, hence this always assumes |
| 2977 | // the hazard exists if 1 and 2 are present to avoid searching. |
| 2978 | |
| 2979 | const MachineOperand *SDSTOp = TII.getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::sdst); |
| 2980 | if (!SDSTOp || !SDSTOp->isReg()) |
| 2981 | return false; |
| 2982 | |
| 2983 | const Register HazardReg = SDSTOp->getReg(); |
| 2984 | if (HazardReg == AMDGPU::EXEC || |
| 2985 | HazardReg == AMDGPU::EXEC_LO || |
| 2986 | HazardReg == AMDGPU::EXEC_HI || |
| 2987 | HazardReg == AMDGPU::M0) |
| 2988 | return false; |
| 2989 | |
| 2990 | auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { |
| 2991 | switch (I.getOpcode()) { |
| 2992 | case AMDGPU::V_ADDC_U32_e32: |
| 2993 | case AMDGPU::V_ADDC_U32_dpp: |
| 2994 | case AMDGPU::V_CNDMASK_B16_t16_e32: |
| 2995 | case AMDGPU::V_CNDMASK_B16_fake16_e32: |
| 2996 | case AMDGPU::V_CNDMASK_B16_t16_dpp: |
| 2997 | case AMDGPU::V_CNDMASK_B16_fake16_dpp: |
| 2998 | case AMDGPU::V_CNDMASK_B32_e32: |
| 2999 | case AMDGPU::V_CNDMASK_B32_dpp: |
| 3000 | case AMDGPU::V_DIV_FMAS_F32_e64: |
| 3001 | case AMDGPU::V_DIV_FMAS_F64_e64: |
| 3002 | case AMDGPU::V_SUBB_U32_e32: |
| 3003 | case AMDGPU::V_SUBB_U32_dpp: |
| 3004 | case AMDGPU::V_SUBBREV_U32_e32: |
| 3005 | case AMDGPU::V_SUBBREV_U32_dpp: |
| 3006 | // These implicitly read VCC as mask source. |
| 3007 | return HazardReg == AMDGPU::VCC || |
| 3008 | HazardReg == AMDGPU::VCC_LO || |
| 3009 | HazardReg == AMDGPU::VCC_HI; |
| 3010 | case AMDGPU::V_ADDC_U32_e64: |
| 3011 | case AMDGPU::V_ADDC_U32_e64_dpp: |
| 3012 | case AMDGPU::V_CNDMASK_B16_t16_e64: |
| 3013 | case AMDGPU::V_CNDMASK_B16_fake16_e64: |
| 3014 | case AMDGPU::V_CNDMASK_B16_t16_e64_dpp: |
| 3015 | case AMDGPU::V_CNDMASK_B16_fake16_e64_dpp: |
| 3016 | case AMDGPU::V_CNDMASK_B32_e64: |
| 3017 | case AMDGPU::V_CNDMASK_B32_e64_dpp: |
| 3018 | case AMDGPU::V_SUBB_U32_e64: |
| 3019 | case AMDGPU::V_SUBB_U32_e64_dpp: |
| 3020 | case AMDGPU::V_SUBBREV_U32_e64: |
| 3021 | case AMDGPU::V_SUBBREV_U32_e64_dpp: { |
| 3022 | // Only check mask register overlaps. |
| 3023 | const MachineOperand *SSRCOp = TII.getNamedOperand(MI: I, OperandName: AMDGPU::OpName::src2); |
| 3024 | assert(SSRCOp); |
| 3025 | return TRI.regsOverlap(RegA: SSRCOp->getReg(), RegB: HazardReg); |
| 3026 | } |
| 3027 | default: |
| 3028 | return false; |
| 3029 | } |
| 3030 | }; |
| 3031 | |
| 3032 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 3033 | auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { |
| 3034 | // s_waitcnt_depctr sa_sdst(0) mitigates hazard. |
| 3035 | if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && |
| 3036 | AMDGPU::DepCtr::decodeFieldSaSdst(Encoded: I.getOperand(i: 0).getImm()) == 0) |
| 3037 | return true; |
| 3038 | |
| 3039 | // VALU access to any SGPR or literal constant other than HazardReg |
| 3040 | // mitigates hazard. No need to check HazardReg here as this will |
| 3041 | // only be called when !IsHazardFn. |
| 3042 | if (!SIInstrInfo::isVALU(MI: I)) |
| 3043 | return false; |
| 3044 | for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { |
| 3045 | const MachineOperand &Op = I.getOperand(i: OpNo); |
| 3046 | if (Op.isReg()) { |
| 3047 | Register OpReg = Op.getReg(); |
| 3048 | // Only consider uses |
| 3049 | if (!Op.isUse()) |
| 3050 | continue; |
| 3051 | // Ignore EXEC |
| 3052 | if (OpReg == AMDGPU::EXEC || |
| 3053 | OpReg == AMDGPU::EXEC_LO || |
| 3054 | OpReg == AMDGPU::EXEC_HI) |
| 3055 | continue; |
| 3056 | // Ignore all implicit uses except VCC |
| 3057 | if (Op.isImplicit()) { |
| 3058 | if (OpReg == AMDGPU::VCC || |
| 3059 | OpReg == AMDGPU::VCC_LO || |
| 3060 | OpReg == AMDGPU::VCC_HI) |
| 3061 | return true; |
| 3062 | continue; |
| 3063 | } |
| 3064 | if (TRI.isSGPRReg(MRI, Reg: OpReg)) |
| 3065 | return true; |
| 3066 | } else { |
| 3067 | const MCInstrDesc &InstDesc = I.getDesc(); |
| 3068 | const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; |
| 3069 | if (!TII.isInlineConstant(MO: Op, OpInfo)) |
| 3070 | return true; |
| 3071 | } |
| 3072 | } |
| 3073 | return false; |
| 3074 | }; |
| 3075 | |
| 3076 | // Check for hazard |
| 3077 | if (::getWaitStatesSince(IsHazard: IsHazardFn, MI, IsExpired: IsExpiredFn) == |
| 3078 | std::numeric_limits<int>::max()) |
| 3079 | return false; |
| 3080 | |
| 3081 | auto NextMI = std::next(x: MI->getIterator()); |
| 3082 | |
| 3083 | // Add s_waitcnt_depctr sa_sdst(0) after SALU write. |
| 3084 | auto NewMI = BuildMI(BB&: *MI->getParent(), I: NextMI, MIMD: MI->getDebugLoc(), |
| 3085 | MCID: TII.get(Opcode: AMDGPU::S_WAITCNT_DEPCTR)) |
| 3086 | .addImm(Val: AMDGPU::DepCtr::encodeFieldSaSdst(SaSdst: 0)); |
| 3087 | |
| 3088 | // SALU write may be s_getpc in a bundle. |
| 3089 | updateGetPCBundle(NewMI); |
| 3090 | |
| 3091 | return true; |
| 3092 | } |
| 3093 | |
| 3094 | static bool ensureEntrySetPrio(MachineFunction *MF, int Priority, |
| 3095 | const SIInstrInfo &TII) { |
| 3096 | MachineBasicBlock &EntryMBB = MF->front(); |
| 3097 | if (EntryMBB.begin() != EntryMBB.end()) { |
| 3098 | auto &EntryMI = *EntryMBB.begin(); |
| 3099 | if (EntryMI.getOpcode() == AMDGPU::S_SETPRIO && |
| 3100 | EntryMI.getOperand(i: 0).getImm() >= Priority) |
| 3101 | return false; |
| 3102 | } |
| 3103 | |
| 3104 | BuildMI(BB&: EntryMBB, I: EntryMBB.begin(), MIMD: DebugLoc(), MCID: TII.get(Opcode: AMDGPU::S_SETPRIO)) |
| 3105 | .addImm(Val: Priority); |
| 3106 | return true; |
| 3107 | } |
| 3108 | |
| 3109 | bool GCNHazardRecognizer::fixRequiredExportPriority(MachineInstr *MI) { |
| 3110 | if (!ST.hasRequiredExportPriority()) |
| 3111 | return false; |
| 3112 | |
| 3113 | // Assume the following shader types will never have exports, |
| 3114 | // and avoid adding or adjusting S_SETPRIO. |
| 3115 | MachineBasicBlock *MBB = MI->getParent(); |
| 3116 | MachineFunction *MF = MBB->getParent(); |
| 3117 | auto CC = MF->getFunction().getCallingConv(); |
| 3118 | switch (CC) { |
| 3119 | case CallingConv::AMDGPU_CS: |
| 3120 | case CallingConv::AMDGPU_CS_Chain: |
| 3121 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 3122 | case CallingConv::AMDGPU_KERNEL: |
| 3123 | return false; |
| 3124 | default: |
| 3125 | break; |
| 3126 | } |
| 3127 | |
| 3128 | const int MaxPriority = 3; |
| 3129 | const int NormalPriority = 2; |
| 3130 | const int PostExportPriority = 0; |
| 3131 | |
| 3132 | auto It = MI->getIterator(); |
| 3133 | switch (MI->getOpcode()) { |
| 3134 | case AMDGPU::S_ENDPGM: |
| 3135 | case AMDGPU::S_ENDPGM_SAVED: |
| 3136 | case AMDGPU::S_ENDPGM_ORDERED_PS_DONE: |
| 3137 | case AMDGPU::SI_RETURN_TO_EPILOG: |
| 3138 | // Ensure shader with calls raises priority at entry. |
| 3139 | // This ensures correct priority if exports exist in callee. |
| 3140 | if (MF->getFrameInfo().hasCalls()) |
| 3141 | return ensureEntrySetPrio(MF, Priority: NormalPriority, TII); |
| 3142 | return false; |
| 3143 | case AMDGPU::S_SETPRIO: { |
| 3144 | // Raise minimum priority unless in workaround. |
| 3145 | auto &PrioOp = MI->getOperand(i: 0); |
| 3146 | int Prio = PrioOp.getImm(); |
| 3147 | bool InWA = (Prio == PostExportPriority) && |
| 3148 | (It != MBB->begin() && TII.isEXP(MI: *std::prev(x: It))); |
| 3149 | if (InWA || Prio >= NormalPriority) |
| 3150 | return false; |
| 3151 | PrioOp.setImm(std::min(a: Prio + NormalPriority, b: MaxPriority)); |
| 3152 | return true; |
| 3153 | } |
| 3154 | default: |
| 3155 | if (!TII.isEXP(MI: *MI)) |
| 3156 | return false; |
| 3157 | break; |
| 3158 | } |
| 3159 | |
| 3160 | // Check entry priority at each export (as there will only be a few). |
| 3161 | // Note: amdgpu_gfx can only be a callee, so defer to caller setprio. |
| 3162 | bool Changed = false; |
| 3163 | if (CC != CallingConv::AMDGPU_Gfx) |
| 3164 | Changed = ensureEntrySetPrio(MF, Priority: NormalPriority, TII); |
| 3165 | |
| 3166 | auto NextMI = std::next(x: It); |
| 3167 | bool EndOfShader = false; |
| 3168 | if (NextMI != MBB->end()) { |
| 3169 | // Only need WA at end of sequence of exports. |
| 3170 | if (TII.isEXP(MI: *NextMI)) |
| 3171 | return Changed; |
| 3172 | // Assume appropriate S_SETPRIO after export means WA already applied. |
| 3173 | if (NextMI->getOpcode() == AMDGPU::S_SETPRIO && |
| 3174 | NextMI->getOperand(i: 0).getImm() == PostExportPriority) |
| 3175 | return Changed; |
| 3176 | EndOfShader = NextMI->getOpcode() == AMDGPU::S_ENDPGM; |
| 3177 | } |
| 3178 | |
| 3179 | const DebugLoc &DL = MI->getDebugLoc(); |
| 3180 | |
| 3181 | // Lower priority. |
| 3182 | BuildMI(BB&: *MBB, I: NextMI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_SETPRIO)) |
| 3183 | .addImm(Val: PostExportPriority); |
| 3184 | |
| 3185 | if (!EndOfShader) { |
| 3186 | // Wait for exports to complete. |
| 3187 | BuildMI(BB&: *MBB, I: NextMI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_WAITCNT_EXPCNT)) |
| 3188 | .addReg(RegNo: AMDGPU::SGPR_NULL) |
| 3189 | .addImm(Val: 0); |
| 3190 | } |
| 3191 | |
| 3192 | BuildMI(BB&: *MBB, I: NextMI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_NOP)).addImm(Val: 0); |
| 3193 | BuildMI(BB&: *MBB, I: NextMI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_NOP)).addImm(Val: 0); |
| 3194 | |
| 3195 | if (!EndOfShader) { |
| 3196 | // Return to normal (higher) priority. |
| 3197 | BuildMI(BB&: *MBB, I: NextMI, MIMD: DL, MCID: TII.get(Opcode: AMDGPU::S_SETPRIO)) |
| 3198 | .addImm(Val: NormalPriority); |
| 3199 | } |
| 3200 | |
| 3201 | return true; |
| 3202 | } |
| 3203 | |