1 | //===- HexagonConstExtenders.cpp ------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "HexagonInstrInfo.h" |
10 | #include "HexagonRegisterInfo.h" |
11 | #include "HexagonSubtarget.h" |
12 | #include "llvm/ADT/SetVector.h" |
13 | #include "llvm/ADT/SmallVector.h" |
14 | #include "llvm/CodeGen/MachineDominators.h" |
15 | #include "llvm/CodeGen/MachineFunctionPass.h" |
16 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
18 | #include "llvm/CodeGen/Register.h" |
19 | #include "llvm/InitializePasses.h" |
20 | #include "llvm/Pass.h" |
21 | #include "llvm/Support/CommandLine.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | #include <map> |
24 | #include <set> |
25 | #include <utility> |
26 | #include <vector> |
27 | |
28 | #define DEBUG_TYPE "hexagon-cext-opt" |
29 | |
30 | using namespace llvm; |
31 | |
32 | static cl::opt<unsigned> CountThreshold( |
33 | "hexagon-cext-threshold" , cl::init(Val: 3), cl::Hidden, |
34 | cl::desc("Minimum number of extenders to trigger replacement" )); |
35 | |
36 | static cl::opt<unsigned> |
37 | ReplaceLimit("hexagon-cext-limit" , cl::init(Val: 0), cl::Hidden, |
38 | cl::desc("Maximum number of replacements" )); |
39 | |
40 | static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { |
41 | assert(isPowerOf2_32(A)); |
42 | int32_t U = (V & -A) + O; |
43 | return U >= V ? U : U+A; |
44 | } |
45 | |
46 | static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { |
47 | assert(isPowerOf2_32(A)); |
48 | int32_t U = (V & -A) + O; |
49 | return U <= V ? U : U-A; |
50 | } |
51 | |
52 | namespace { |
53 | struct OffsetRange { |
54 | // The range of values between Min and Max that are of form Align*N+Offset, |
55 | // for some integer N. Min and Max are required to be of that form as well, |
56 | // except in the case of an empty range. |
57 | int32_t Min = INT_MIN, Max = INT_MAX; |
58 | uint8_t Align = 1; |
59 | uint8_t Offset = 0; |
60 | |
61 | OffsetRange() = default; |
62 | OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) |
63 | : Min(L), Max(H), Align(A), Offset(O) {} |
64 | OffsetRange &intersect(OffsetRange A) { |
65 | if (Align < A.Align) |
66 | std::swap(a&: *this, b&: A); |
67 | |
68 | // Align >= A.Align. |
69 | if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { |
70 | Min = adjustUp(V: std::max(a: Min, b: A.Min), A: Align, O: Offset); |
71 | Max = adjustDown(V: std::min(a: Max, b: A.Max), A: Align, O: Offset); |
72 | } else { |
73 | // Make an empty range. |
74 | Min = 0; |
75 | Max = -1; |
76 | } |
77 | // Canonicalize empty ranges. |
78 | if (Min > Max) |
79 | std::tie(args&: Min, args&: Max, args&: Align) = std::make_tuple(args: 0, args: -1, args: 1); |
80 | return *this; |
81 | } |
82 | OffsetRange &shift(int32_t S) { |
83 | Min += S; |
84 | Max += S; |
85 | Offset = (Offset+S) % Align; |
86 | return *this; |
87 | } |
88 | OffsetRange &extendBy(int32_t D) { |
89 | // If D < 0, extend Min, otherwise extend Max. |
90 | assert(D % Align == 0); |
91 | if (D < 0) |
92 | Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; |
93 | else |
94 | Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; |
95 | return *this; |
96 | } |
97 | bool empty() const { |
98 | return Min > Max; |
99 | } |
100 | bool contains(int32_t V) const { |
101 | return Min <= V && V <= Max && (V-Offset) % Align == 0; |
102 | } |
103 | bool operator==(const OffsetRange &R) const { |
104 | return Min == R.Min && Max == R.Max && Align == R.Align; |
105 | } |
106 | bool operator!=(const OffsetRange &R) const { |
107 | return !operator==(R); |
108 | } |
109 | bool operator<(const OffsetRange &R) const { |
110 | return std::tie(args: Min, args: Max, args: Align) < std::tie(args: R.Min, args: R.Max, args: R.Align); |
111 | } |
112 | static OffsetRange zero() { return {0, 0, 1}; } |
113 | }; |
114 | |
115 | struct RangeTree { |
116 | struct Node { |
117 | Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} |
118 | unsigned Height = 1; |
119 | unsigned Count = 1; |
120 | int32_t MaxEnd; |
121 | const OffsetRange &Range; |
122 | Node *Left = nullptr, *Right = nullptr; |
123 | }; |
124 | |
125 | Node *Root = nullptr; |
126 | |
127 | void add(const OffsetRange &R) { |
128 | Root = add(N: Root, R); |
129 | } |
130 | void erase(const Node *N) { |
131 | Root = remove(N: Root, D: N); |
132 | delete N; |
133 | } |
134 | void order(SmallVectorImpl<Node*> &Seq) const { |
135 | order(N: Root, Seq); |
136 | } |
137 | SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { |
138 | SmallVector<Node*,8> Nodes; |
139 | nodesWith(N: Root, P, CheckA: CheckAlign, Seq&: Nodes); |
140 | return Nodes; |
141 | } |
142 | void dump() const; |
143 | ~RangeTree() { |
144 | SmallVector<Node*,8> Nodes; |
145 | order(Seq&: Nodes); |
146 | for (Node *N : Nodes) |
147 | delete N; |
148 | } |
149 | |
150 | private: |
151 | void dump(const Node *N) const; |
152 | void order(Node *N, SmallVectorImpl<Node*> &Seq) const; |
153 | void nodesWith(Node *N, int32_t P, bool CheckA, |
154 | SmallVectorImpl<Node*> &Seq) const; |
155 | |
156 | Node *add(Node *N, const OffsetRange &R); |
157 | Node *remove(Node *N, const Node *D); |
158 | Node *rotateLeft(Node *Lower, Node *Higher); |
159 | Node *rotateRight(Node *Lower, Node *Higher); |
160 | unsigned height(Node *N) { |
161 | return N != nullptr ? N->Height : 0; |
162 | } |
163 | Node *update(Node *N) { |
164 | assert(N != nullptr); |
165 | N->Height = 1 + std::max(a: height(N: N->Left), b: height(N: N->Right)); |
166 | if (N->Left) |
167 | N->MaxEnd = std::max(a: N->MaxEnd, b: N->Left->MaxEnd); |
168 | if (N->Right) |
169 | N->MaxEnd = std::max(a: N->MaxEnd, b: N->Right->MaxEnd); |
170 | return N; |
171 | } |
172 | Node *rebalance(Node *N) { |
173 | assert(N != nullptr); |
174 | int32_t Balance = height(N: N->Right) - height(N: N->Left); |
175 | if (Balance < -1) |
176 | return rotateRight(Lower: N->Left, Higher: N); |
177 | if (Balance > 1) |
178 | return rotateLeft(Lower: N->Right, Higher: N); |
179 | return N; |
180 | } |
181 | }; |
182 | |
183 | struct Loc { |
184 | MachineBasicBlock *Block = nullptr; |
185 | MachineBasicBlock::iterator At; |
186 | |
187 | Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) |
188 | : Block(B), At(It) { |
189 | if (B->end() == It) { |
190 | Pos = -1; |
191 | } else { |
192 | assert(It->getParent() == B); |
193 | Pos = std::distance(first: B->begin(), last: It); |
194 | } |
195 | } |
196 | bool operator<(Loc A) const { |
197 | if (Block != A.Block) |
198 | return Block->getNumber() < A.Block->getNumber(); |
199 | if (A.Pos == -1) |
200 | return Pos != A.Pos; |
201 | return Pos != -1 && Pos < A.Pos; |
202 | } |
203 | private: |
204 | int Pos = 0; |
205 | }; |
206 | |
207 | struct HexagonConstExtenders : public MachineFunctionPass { |
208 | static char ID; |
209 | HexagonConstExtenders() : MachineFunctionPass(ID) {} |
210 | |
211 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
212 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
213 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
214 | MachineFunctionPass::getAnalysisUsage(AU); |
215 | } |
216 | |
217 | StringRef getPassName() const override { |
218 | return "Hexagon constant-extender optimization" ; |
219 | } |
220 | bool runOnMachineFunction(MachineFunction &MF) override; |
221 | |
222 | private: |
223 | struct Register { |
224 | Register() = default; |
225 | Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {} |
226 | Register(const MachineOperand &Op) |
227 | : Reg(Op.getReg()), Sub(Op.getSubReg()) {} |
228 | Register &operator=(const MachineOperand &Op) { |
229 | if (Op.isReg()) { |
230 | Reg = Op.getReg(); |
231 | Sub = Op.getSubReg(); |
232 | } else if (Op.isFI()) { |
233 | Reg = llvm::Register::index2StackSlot(FI: Op.getIndex()); |
234 | } |
235 | return *this; |
236 | } |
237 | bool isVReg() const { |
238 | return Reg != 0 && !Reg.isStack() && Reg.isVirtual(); |
239 | } |
240 | bool isSlot() const { return Reg != 0 && Reg.isStack(); } |
241 | operator MachineOperand() const { |
242 | if (isVReg()) |
243 | return MachineOperand::CreateReg(Reg, /*Def*/isDef: false, /*Imp*/isImp: false, |
244 | /*Kill*/isKill: false, /*Dead*/isDead: false, /*Undef*/isUndef: false, |
245 | /*EarlyClobber*/isEarlyClobber: false, SubReg: Sub); |
246 | if (Reg.isStack()) { |
247 | int FI = Reg.stackSlotIndex(); |
248 | return MachineOperand::CreateFI(Idx: FI); |
249 | } |
250 | llvm_unreachable("Cannot create MachineOperand" ); |
251 | } |
252 | bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } |
253 | bool operator!=(Register R) const { return !operator==(R); } |
254 | bool operator<(Register R) const { |
255 | // For std::map. |
256 | return std::tie(args: Reg, args: Sub) < std::tie(args&: R.Reg, args&: R.Sub); |
257 | } |
258 | llvm::Register Reg; |
259 | unsigned Sub = 0; |
260 | }; |
261 | |
262 | struct ExtExpr { |
263 | // A subexpression in which the extender is used. In general, this |
264 | // represents an expression where adding D to the extender will be |
265 | // equivalent to adding D to the expression as a whole. In other |
266 | // words, expr(add(##V,D) = add(expr(##V),D). |
267 | |
268 | // The original motivation for this are the io/ur addressing modes, |
269 | // where the offset is extended. Consider the io example: |
270 | // In memw(Rs+##V), the ##V could be replaced by a register Rt to |
271 | // form the rr mode: memw(Rt+Rs<<0). In such case, however, the |
272 | // register Rt must have exactly the value of ##V. If there was |
273 | // another instruction memw(Rs+##V+4), it would need a different Rt. |
274 | // Now, if Rt was initialized as "##V+Rs<<0", both of these |
275 | // instructions could use the same Rt, just with different offsets. |
276 | // Here it's clear that "initializer+4" should be the same as if |
277 | // the offset 4 was added to the ##V in the initializer. |
278 | |
279 | // The only kinds of expressions that support the requirement of |
280 | // commuting with addition are addition and subtraction from ##V. |
281 | // Include shifting the Rs to account for the ur addressing mode: |
282 | // ##Val + Rs << S |
283 | // ##Val - Rs |
284 | Register Rs; |
285 | unsigned S = 0; |
286 | bool Neg = false; |
287 | |
288 | ExtExpr() = default; |
289 | ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} |
290 | // Expression is trivial if it does not modify the extender. |
291 | bool trivial() const { |
292 | return Rs.Reg == 0; |
293 | } |
294 | bool operator==(const ExtExpr &Ex) const { |
295 | return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; |
296 | } |
297 | bool operator!=(const ExtExpr &Ex) const { |
298 | return !operator==(Ex); |
299 | } |
300 | bool operator<(const ExtExpr &Ex) const { |
301 | return std::tie(args: Rs, args: S, args: Neg) < std::tie(args: Ex.Rs, args: Ex.S, args: Ex.Neg); |
302 | } |
303 | }; |
304 | |
305 | struct ExtDesc { |
306 | MachineInstr *UseMI = nullptr; |
307 | unsigned OpNum = -1u; |
308 | // The subexpression in which the extender is used (e.g. address |
309 | // computation). |
310 | ExtExpr Expr; |
311 | // Optional register that is assigned the value of Expr. |
312 | Register Rd; |
313 | // Def means that the output of the instruction may differ from the |
314 | // original by a constant c, and that the difference can be corrected |
315 | // by adding/subtracting c in all users of the defined register. |
316 | bool IsDef = false; |
317 | |
318 | MachineOperand &getOp() { |
319 | return UseMI->getOperand(i: OpNum); |
320 | } |
321 | const MachineOperand &getOp() const { |
322 | return UseMI->getOperand(i: OpNum); |
323 | } |
324 | }; |
325 | |
326 | struct ExtRoot { |
327 | union { |
328 | const ConstantFP *CFP; // MO_FPImmediate |
329 | const char *SymbolName; // MO_ExternalSymbol |
330 | const GlobalValue *GV; // MO_GlobalAddress |
331 | const BlockAddress *BA; // MO_BlockAddress |
332 | int64_t ImmVal; // MO_Immediate, MO_TargetIndex, |
333 | // and MO_ConstantPoolIndex |
334 | } V; |
335 | unsigned Kind; // Same as in MachineOperand. |
336 | unsigned char TF; // TargetFlags. |
337 | |
338 | ExtRoot(const MachineOperand &Op); |
339 | bool operator==(const ExtRoot &ER) const { |
340 | return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; |
341 | } |
342 | bool operator!=(const ExtRoot &ER) const { |
343 | return !operator==(ER); |
344 | } |
345 | bool operator<(const ExtRoot &ER) const; |
346 | }; |
347 | |
348 | struct ExtValue : public ExtRoot { |
349 | int32_t Offset; |
350 | |
351 | ExtValue(const MachineOperand &Op); |
352 | ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} |
353 | ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} |
354 | bool operator<(const ExtValue &EV) const; |
355 | bool operator==(const ExtValue &EV) const { |
356 | return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; |
357 | } |
358 | bool operator!=(const ExtValue &EV) const { |
359 | return !operator==(EV); |
360 | } |
361 | explicit operator MachineOperand() const; |
362 | }; |
363 | |
364 | using IndexList = SetVector<unsigned>; |
365 | using ExtenderInit = std::pair<ExtValue, ExtExpr>; |
366 | using AssignmentMap = std::map<ExtenderInit, IndexList>; |
367 | using LocDefList = std::vector<std::pair<Loc, IndexList>>; |
368 | |
369 | const HexagonSubtarget *HST = nullptr; |
370 | const HexagonInstrInfo *HII = nullptr; |
371 | const HexagonRegisterInfo *HRI = nullptr; |
372 | MachineDominatorTree *MDT = nullptr; |
373 | MachineRegisterInfo *MRI = nullptr; |
374 | std::vector<ExtDesc> Extenders; |
375 | std::vector<unsigned> NewRegs; |
376 | |
377 | bool isStoreImmediate(unsigned Opc) const; |
378 | bool isRegOffOpcode(unsigned ExtOpc) const ; |
379 | unsigned getRegOffOpcode(unsigned ExtOpc) const; |
380 | unsigned getDirectRegReplacement(unsigned ExtOpc) const; |
381 | OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; |
382 | OffsetRange getOffsetRange(const ExtDesc &ED) const; |
383 | OffsetRange getOffsetRange(Register Rd) const; |
384 | |
385 | void recordExtender(MachineInstr &MI, unsigned OpNum); |
386 | void collectInstr(MachineInstr &MI); |
387 | void collect(MachineFunction &MF); |
388 | void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
389 | AssignmentMap &IMap); |
390 | void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
391 | LocDefList &Defs); |
392 | Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); |
393 | bool replaceInstrExact(const ExtDesc &ED, Register ExtR); |
394 | bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
395 | Register ExtR, int32_t &Diff); |
396 | bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); |
397 | bool replaceExtenders(const AssignmentMap &IMap); |
398 | |
399 | unsigned getOperandIndex(const MachineInstr &MI, |
400 | const MachineOperand &Op) const; |
401 | const MachineOperand &getPredicateOp(const MachineInstr &MI) const; |
402 | const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; |
403 | const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; |
404 | |
405 | friend struct PrintRegister; |
406 | friend struct PrintExpr; |
407 | friend struct PrintInit; |
408 | friend struct PrintIMap; |
409 | friend raw_ostream &operator<< (raw_ostream &OS, |
410 | const struct PrintRegister &P); |
411 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); |
412 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); |
413 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); |
414 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); |
415 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); |
416 | friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); |
417 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); |
418 | }; |
419 | |
420 | using HCE = HexagonConstExtenders; |
421 | |
422 | LLVM_ATTRIBUTE_UNUSED |
423 | raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { |
424 | if (OR.Min > OR.Max) |
425 | OS << '!'; |
426 | OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) |
427 | << '+' << unsigned(OR.Offset); |
428 | return OS; |
429 | } |
430 | |
431 | struct PrintRegister { |
432 | PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) |
433 | : Rs(R), HRI(I) {} |
434 | HCE::Register Rs; |
435 | const HexagonRegisterInfo &HRI; |
436 | }; |
437 | |
438 | LLVM_ATTRIBUTE_UNUSED |
439 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { |
440 | if (P.Rs.Reg != 0) |
441 | OS << printReg(Reg: P.Rs.Reg, TRI: &P.HRI, SubIdx: P.Rs.Sub); |
442 | else |
443 | OS << "noreg" ; |
444 | return OS; |
445 | } |
446 | |
447 | struct PrintExpr { |
448 | PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) |
449 | : Ex(E), HRI(I) {} |
450 | const HCE::ExtExpr &Ex; |
451 | const HexagonRegisterInfo &HRI; |
452 | }; |
453 | |
454 | LLVM_ATTRIBUTE_UNUSED |
455 | raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { |
456 | OS << "## " << (P.Ex.Neg ? "- " : "+ " ); |
457 | if (P.Ex.Rs.Reg != 0) |
458 | OS << printReg(Reg: P.Ex.Rs.Reg, TRI: &P.HRI, SubIdx: P.Ex.Rs.Sub); |
459 | else |
460 | OS << "__" ; |
461 | OS << " << " << P.Ex.S; |
462 | return OS; |
463 | } |
464 | |
465 | struct PrintInit { |
466 | PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) |
467 | : ExtI(EI), HRI(I) {} |
468 | const HCE::ExtenderInit &ExtI; |
469 | const HexagonRegisterInfo &HRI; |
470 | }; |
471 | |
472 | LLVM_ATTRIBUTE_UNUSED |
473 | raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { |
474 | OS << '[' << P.ExtI.first << ", " |
475 | << PrintExpr(P.ExtI.second, P.HRI) << ']'; |
476 | return OS; |
477 | } |
478 | |
479 | LLVM_ATTRIBUTE_UNUSED |
480 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { |
481 | assert(ED.OpNum != -1u); |
482 | const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); |
483 | const MachineFunction &MF = *MBB.getParent(); |
484 | const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
485 | OS << "bb#" << MBB.getNumber() << ": " ; |
486 | if (ED.Rd.Reg != 0) |
487 | OS << printReg(Reg: ED.Rd.Reg, TRI: &HRI, SubIdx: ED.Rd.Sub); |
488 | else |
489 | OS << "__" ; |
490 | OS << " = " << PrintExpr(ED.Expr, HRI); |
491 | if (ED.IsDef) |
492 | OS << ", def" ; |
493 | return OS; |
494 | } |
495 | |
496 | LLVM_ATTRIBUTE_UNUSED |
497 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { |
498 | switch (ER.Kind) { |
499 | case MachineOperand::MO_Immediate: |
500 | OS << "imm:" << ER.V.ImmVal; |
501 | break; |
502 | case MachineOperand::MO_FPImmediate: |
503 | OS << "fpi:" << *ER.V.CFP; |
504 | break; |
505 | case MachineOperand::MO_ExternalSymbol: |
506 | OS << "sym:" << *ER.V.SymbolName; |
507 | break; |
508 | case MachineOperand::MO_GlobalAddress: |
509 | OS << "gad:" << ER.V.GV->getName(); |
510 | break; |
511 | case MachineOperand::MO_BlockAddress: |
512 | OS << "blk:" << *ER.V.BA; |
513 | break; |
514 | case MachineOperand::MO_TargetIndex: |
515 | OS << "tgi:" << ER.V.ImmVal; |
516 | break; |
517 | case MachineOperand::MO_ConstantPoolIndex: |
518 | OS << "cpi:" << ER.V.ImmVal; |
519 | break; |
520 | case MachineOperand::MO_JumpTableIndex: |
521 | OS << "jti:" << ER.V.ImmVal; |
522 | break; |
523 | default: |
524 | OS << "???:" << ER.V.ImmVal; |
525 | break; |
526 | } |
527 | return OS; |
528 | } |
529 | |
530 | LLVM_ATTRIBUTE_UNUSED |
531 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { |
532 | OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; |
533 | return OS; |
534 | } |
535 | |
536 | struct PrintIMap { |
537 | PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) |
538 | : IMap(M), HRI(I) {} |
539 | const HCE::AssignmentMap &IMap; |
540 | const HexagonRegisterInfo &HRI; |
541 | }; |
542 | |
543 | LLVM_ATTRIBUTE_UNUSED |
544 | raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { |
545 | OS << "{\n" ; |
546 | for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) { |
547 | OS << " " << PrintInit(Q.first, P.HRI) << " -> {" ; |
548 | for (unsigned I : Q.second) |
549 | OS << ' ' << I; |
550 | OS << " }\n" ; |
551 | } |
552 | OS << "}\n" ; |
553 | return OS; |
554 | } |
555 | } |
556 | |
557 | INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt" , |
558 | "Hexagon constant-extender optimization" , false, false) |
559 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
560 | INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt" , |
561 | "Hexagon constant-extender optimization" , false, false) |
562 | |
563 | static unsigned ReplaceCounter = 0; |
564 | |
565 | char HCE::ID = 0; |
566 | |
567 | #ifndef NDEBUG |
568 | LLVM_DUMP_METHOD void RangeTree::dump() const { |
569 | dbgs() << "Root: " << Root << '\n'; |
570 | if (Root) |
571 | dump(Root); |
572 | } |
573 | |
574 | LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { |
575 | dbgs() << "Node: " << N << '\n'; |
576 | dbgs() << " Height: " << N->Height << '\n'; |
577 | dbgs() << " Count: " << N->Count << '\n'; |
578 | dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; |
579 | dbgs() << " Range: " << N->Range << '\n'; |
580 | dbgs() << " Left: " << N->Left << '\n'; |
581 | dbgs() << " Right: " << N->Right << "\n\n" ; |
582 | |
583 | if (N->Left) |
584 | dump(N->Left); |
585 | if (N->Right) |
586 | dump(N->Right); |
587 | } |
588 | #endif |
589 | |
590 | void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { |
591 | if (N == nullptr) |
592 | return; |
593 | order(N: N->Left, Seq); |
594 | Seq.push_back(Elt: N); |
595 | order(N: N->Right, Seq); |
596 | } |
597 | |
598 | void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, |
599 | SmallVectorImpl<Node*> &Seq) const { |
600 | if (N == nullptr || N->MaxEnd < P) |
601 | return; |
602 | nodesWith(N: N->Left, P, CheckA, Seq); |
603 | if (N->Range.Min <= P) { |
604 | if ((CheckA && N->Range.contains(V: P)) || (!CheckA && P <= N->Range.Max)) |
605 | Seq.push_back(Elt: N); |
606 | nodesWith(N: N->Right, P, CheckA, Seq); |
607 | } |
608 | } |
609 | |
610 | RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { |
611 | if (N == nullptr) |
612 | return new Node(R); |
613 | |
614 | if (N->Range == R) { |
615 | N->Count++; |
616 | return N; |
617 | } |
618 | |
619 | if (R < N->Range) |
620 | N->Left = add(N: N->Left, R); |
621 | else |
622 | N->Right = add(N: N->Right, R); |
623 | return rebalance(N: update(N)); |
624 | } |
625 | |
626 | RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { |
627 | assert(N != nullptr); |
628 | |
629 | if (N != D) { |
630 | assert(N->Range != D->Range && "N and D should not be equal" ); |
631 | if (D->Range < N->Range) |
632 | N->Left = remove(N: N->Left, D); |
633 | else |
634 | N->Right = remove(N: N->Right, D); |
635 | return rebalance(N: update(N)); |
636 | } |
637 | |
638 | // We got to the node we need to remove. If any of its children are |
639 | // missing, simply replace it with the other child. |
640 | if (N->Left == nullptr || N->Right == nullptr) |
641 | return (N->Left == nullptr) ? N->Right : N->Left; |
642 | |
643 | // Find the rightmost child of N->Left, remove it and plug it in place |
644 | // of N. |
645 | Node *M = N->Left; |
646 | while (M->Right) |
647 | M = M->Right; |
648 | M->Left = remove(N: N->Left, D: M); |
649 | M->Right = N->Right; |
650 | return rebalance(N: update(N: M)); |
651 | } |
652 | |
653 | RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { |
654 | assert(Higher->Right == Lower); |
655 | // The Lower node is on the right from Higher. Make sure that Lower's |
656 | // balance is greater to the right. Otherwise the rotation will create |
657 | // an unbalanced tree again. |
658 | if (height(N: Lower->Left) > height(N: Lower->Right)) |
659 | Lower = rotateRight(Lower: Lower->Left, Higher: Lower); |
660 | assert(height(Lower->Left) <= height(Lower->Right)); |
661 | Higher->Right = Lower->Left; |
662 | update(N: Higher); |
663 | Lower->Left = Higher; |
664 | update(N: Lower); |
665 | return Lower; |
666 | } |
667 | |
668 | RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { |
669 | assert(Higher->Left == Lower); |
670 | // The Lower node is on the left from Higher. Make sure that Lower's |
671 | // balance is greater to the left. Otherwise the rotation will create |
672 | // an unbalanced tree again. |
673 | if (height(N: Lower->Left) < height(N: Lower->Right)) |
674 | Lower = rotateLeft(Lower: Lower->Right, Higher: Lower); |
675 | assert(height(Lower->Left) >= height(Lower->Right)); |
676 | Higher->Left = Lower->Right; |
677 | update(N: Higher); |
678 | Lower->Right = Higher; |
679 | update(N: Lower); |
680 | return Lower; |
681 | } |
682 | |
683 | |
684 | HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { |
685 | // Always store ImmVal, since it's the field used for comparisons. |
686 | V.ImmVal = 0; |
687 | if (Op.isImm()) |
688 | ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). |
689 | else if (Op.isFPImm()) |
690 | V.CFP = Op.getFPImm(); |
691 | else if (Op.isSymbol()) |
692 | V.SymbolName = Op.getSymbolName(); |
693 | else if (Op.isGlobal()) |
694 | V.GV = Op.getGlobal(); |
695 | else if (Op.isBlockAddress()) |
696 | V.BA = Op.getBlockAddress(); |
697 | else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) |
698 | V.ImmVal = Op.getIndex(); |
699 | else |
700 | llvm_unreachable("Unexpected operand type" ); |
701 | |
702 | Kind = Op.getType(); |
703 | TF = Op.getTargetFlags(); |
704 | } |
705 | |
706 | bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { |
707 | if (Kind != ER.Kind) |
708 | return Kind < ER.Kind; |
709 | switch (Kind) { |
710 | case MachineOperand::MO_Immediate: |
711 | case MachineOperand::MO_TargetIndex: |
712 | case MachineOperand::MO_ConstantPoolIndex: |
713 | case MachineOperand::MO_JumpTableIndex: |
714 | return V.ImmVal < ER.V.ImmVal; |
715 | case MachineOperand::MO_FPImmediate: { |
716 | const APFloat &ThisF = V.CFP->getValueAPF(); |
717 | const APFloat &OtherF = ER.V.CFP->getValueAPF(); |
718 | return ThisF.bitcastToAPInt().ult(RHS: OtherF.bitcastToAPInt()); |
719 | } |
720 | case MachineOperand::MO_ExternalSymbol: |
721 | return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); |
722 | case MachineOperand::MO_GlobalAddress: |
723 | // Do not use GUIDs, since they depend on the source path. Moving the |
724 | // source file to a different directory could cause different GUID |
725 | // values for a pair of given symbols. These symbols could then compare |
726 | // "less" in one directory, but "greater" in another. |
727 | assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); |
728 | return V.GV->getName() < ER.V.GV->getName(); |
729 | case MachineOperand::MO_BlockAddress: { |
730 | const BasicBlock *ThisB = V.BA->getBasicBlock(); |
731 | const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); |
732 | assert(ThisB->getParent() == OtherB->getParent()); |
733 | const Function &F = *ThisB->getParent(); |
734 | return std::distance(first: F.begin(), last: ThisB->getIterator()) < |
735 | std::distance(first: F.begin(), last: OtherB->getIterator()); |
736 | } |
737 | } |
738 | return V.ImmVal < ER.V.ImmVal; |
739 | } |
740 | |
741 | HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { |
742 | if (Op.isImm()) |
743 | Offset = Op.getImm(); |
744 | else if (Op.isFPImm() || Op.isJTI()) |
745 | Offset = 0; |
746 | else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || |
747 | Op.isCPI() || Op.isTargetIndex()) |
748 | Offset = Op.getOffset(); |
749 | else |
750 | llvm_unreachable("Unexpected operand type" ); |
751 | } |
752 | |
753 | bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { |
754 | const ExtRoot &ER = *this; |
755 | if (!(ER == ExtRoot(EV))) |
756 | return ER < EV; |
757 | return Offset < EV.Offset; |
758 | } |
759 | |
760 | HCE::ExtValue::operator MachineOperand() const { |
761 | switch (Kind) { |
762 | case MachineOperand::MO_Immediate: |
763 | return MachineOperand::CreateImm(Val: V.ImmVal + Offset); |
764 | case MachineOperand::MO_FPImmediate: |
765 | assert(Offset == 0); |
766 | return MachineOperand::CreateFPImm(CFP: V.CFP); |
767 | case MachineOperand::MO_ExternalSymbol: |
768 | assert(Offset == 0); |
769 | return MachineOperand::CreateES(SymName: V.SymbolName, TargetFlags: TF); |
770 | case MachineOperand::MO_GlobalAddress: |
771 | return MachineOperand::CreateGA(GV: V.GV, Offset, TargetFlags: TF); |
772 | case MachineOperand::MO_BlockAddress: |
773 | return MachineOperand::CreateBA(BA: V.BA, Offset, TargetFlags: TF); |
774 | case MachineOperand::MO_TargetIndex: |
775 | return MachineOperand::CreateTargetIndex(Idx: V.ImmVal, Offset, TargetFlags: TF); |
776 | case MachineOperand::MO_ConstantPoolIndex: |
777 | return MachineOperand::CreateCPI(Idx: V.ImmVal, Offset, TargetFlags: TF); |
778 | case MachineOperand::MO_JumpTableIndex: |
779 | assert(Offset == 0); |
780 | return MachineOperand::CreateJTI(Idx: V.ImmVal, TargetFlags: TF); |
781 | default: |
782 | llvm_unreachable("Unhandled kind" ); |
783 | } |
784 | } |
785 | |
786 | bool HCE::isStoreImmediate(unsigned Opc) const { |
787 | switch (Opc) { |
788 | case Hexagon::S4_storeirbt_io: |
789 | case Hexagon::S4_storeirbf_io: |
790 | case Hexagon::S4_storeirht_io: |
791 | case Hexagon::S4_storeirhf_io: |
792 | case Hexagon::S4_storeirit_io: |
793 | case Hexagon::S4_storeirif_io: |
794 | case Hexagon::S4_storeirb_io: |
795 | case Hexagon::S4_storeirh_io: |
796 | case Hexagon::S4_storeiri_io: |
797 | return true; |
798 | default: |
799 | break; |
800 | } |
801 | return false; |
802 | } |
803 | |
804 | bool HCE::isRegOffOpcode(unsigned Opc) const { |
805 | switch (Opc) { |
806 | case Hexagon::L2_loadrub_io: |
807 | case Hexagon::L2_loadrb_io: |
808 | case Hexagon::L2_loadruh_io: |
809 | case Hexagon::L2_loadrh_io: |
810 | case Hexagon::L2_loadri_io: |
811 | case Hexagon::L2_loadrd_io: |
812 | case Hexagon::L2_loadbzw2_io: |
813 | case Hexagon::L2_loadbzw4_io: |
814 | case Hexagon::L2_loadbsw2_io: |
815 | case Hexagon::L2_loadbsw4_io: |
816 | case Hexagon::L2_loadalignh_io: |
817 | case Hexagon::L2_loadalignb_io: |
818 | case Hexagon::L2_ploadrubt_io: |
819 | case Hexagon::L2_ploadrubf_io: |
820 | case Hexagon::L2_ploadrbt_io: |
821 | case Hexagon::L2_ploadrbf_io: |
822 | case Hexagon::L2_ploadruht_io: |
823 | case Hexagon::L2_ploadruhf_io: |
824 | case Hexagon::L2_ploadrht_io: |
825 | case Hexagon::L2_ploadrhf_io: |
826 | case Hexagon::L2_ploadrit_io: |
827 | case Hexagon::L2_ploadrif_io: |
828 | case Hexagon::L2_ploadrdt_io: |
829 | case Hexagon::L2_ploadrdf_io: |
830 | case Hexagon::S2_storerb_io: |
831 | case Hexagon::S2_storerh_io: |
832 | case Hexagon::S2_storerf_io: |
833 | case Hexagon::S2_storeri_io: |
834 | case Hexagon::S2_storerd_io: |
835 | case Hexagon::S2_pstorerbt_io: |
836 | case Hexagon::S2_pstorerbf_io: |
837 | case Hexagon::S2_pstorerht_io: |
838 | case Hexagon::S2_pstorerhf_io: |
839 | case Hexagon::S2_pstorerft_io: |
840 | case Hexagon::S2_pstorerff_io: |
841 | case Hexagon::S2_pstorerit_io: |
842 | case Hexagon::S2_pstorerif_io: |
843 | case Hexagon::S2_pstorerdt_io: |
844 | case Hexagon::S2_pstorerdf_io: |
845 | case Hexagon::A2_addi: |
846 | return true; |
847 | default: |
848 | break; |
849 | } |
850 | return false; |
851 | } |
852 | |
853 | unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { |
854 | // If there exists an instruction that takes a register and offset, |
855 | // that corresponds to the ExtOpc, return it, otherwise return 0. |
856 | using namespace Hexagon; |
857 | switch (ExtOpc) { |
858 | case A2_tfrsi: return A2_addi; |
859 | default: |
860 | break; |
861 | } |
862 | const MCInstrDesc &D = HII->get(Opcode: ExtOpc); |
863 | if (D.mayLoad() || D.mayStore()) { |
864 | uint64_t F = D.TSFlags; |
865 | unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; |
866 | switch (AM) { |
867 | case HexagonII::Absolute: |
868 | case HexagonII::AbsoluteSet: |
869 | case HexagonII::BaseLongOffset: |
870 | switch (ExtOpc) { |
871 | case PS_loadrubabs: |
872 | case L4_loadrub_ap: |
873 | case L4_loadrub_ur: return L2_loadrub_io; |
874 | case PS_loadrbabs: |
875 | case L4_loadrb_ap: |
876 | case L4_loadrb_ur: return L2_loadrb_io; |
877 | case PS_loadruhabs: |
878 | case L4_loadruh_ap: |
879 | case L4_loadruh_ur: return L2_loadruh_io; |
880 | case PS_loadrhabs: |
881 | case L4_loadrh_ap: |
882 | case L4_loadrh_ur: return L2_loadrh_io; |
883 | case PS_loadriabs: |
884 | case L4_loadri_ap: |
885 | case L4_loadri_ur: return L2_loadri_io; |
886 | case PS_loadrdabs: |
887 | case L4_loadrd_ap: |
888 | case L4_loadrd_ur: return L2_loadrd_io; |
889 | case L4_loadbzw2_ap: |
890 | case L4_loadbzw2_ur: return L2_loadbzw2_io; |
891 | case L4_loadbzw4_ap: |
892 | case L4_loadbzw4_ur: return L2_loadbzw4_io; |
893 | case L4_loadbsw2_ap: |
894 | case L4_loadbsw2_ur: return L2_loadbsw2_io; |
895 | case L4_loadbsw4_ap: |
896 | case L4_loadbsw4_ur: return L2_loadbsw4_io; |
897 | case L4_loadalignh_ap: |
898 | case L4_loadalignh_ur: return L2_loadalignh_io; |
899 | case L4_loadalignb_ap: |
900 | case L4_loadalignb_ur: return L2_loadalignb_io; |
901 | case L4_ploadrubt_abs: return L2_ploadrubt_io; |
902 | case L4_ploadrubf_abs: return L2_ploadrubf_io; |
903 | case L4_ploadrbt_abs: return L2_ploadrbt_io; |
904 | case L4_ploadrbf_abs: return L2_ploadrbf_io; |
905 | case L4_ploadruht_abs: return L2_ploadruht_io; |
906 | case L4_ploadruhf_abs: return L2_ploadruhf_io; |
907 | case L4_ploadrht_abs: return L2_ploadrht_io; |
908 | case L4_ploadrhf_abs: return L2_ploadrhf_io; |
909 | case L4_ploadrit_abs: return L2_ploadrit_io; |
910 | case L4_ploadrif_abs: return L2_ploadrif_io; |
911 | case L4_ploadrdt_abs: return L2_ploadrdt_io; |
912 | case L4_ploadrdf_abs: return L2_ploadrdf_io; |
913 | case PS_storerbabs: |
914 | case S4_storerb_ap: |
915 | case S4_storerb_ur: return S2_storerb_io; |
916 | case PS_storerhabs: |
917 | case S4_storerh_ap: |
918 | case S4_storerh_ur: return S2_storerh_io; |
919 | case PS_storerfabs: |
920 | case S4_storerf_ap: |
921 | case S4_storerf_ur: return S2_storerf_io; |
922 | case PS_storeriabs: |
923 | case S4_storeri_ap: |
924 | case S4_storeri_ur: return S2_storeri_io; |
925 | case PS_storerdabs: |
926 | case S4_storerd_ap: |
927 | case S4_storerd_ur: return S2_storerd_io; |
928 | case S4_pstorerbt_abs: return S2_pstorerbt_io; |
929 | case S4_pstorerbf_abs: return S2_pstorerbf_io; |
930 | case S4_pstorerht_abs: return S2_pstorerht_io; |
931 | case S4_pstorerhf_abs: return S2_pstorerhf_io; |
932 | case S4_pstorerft_abs: return S2_pstorerft_io; |
933 | case S4_pstorerff_abs: return S2_pstorerff_io; |
934 | case S4_pstorerit_abs: return S2_pstorerit_io; |
935 | case S4_pstorerif_abs: return S2_pstorerif_io; |
936 | case S4_pstorerdt_abs: return S2_pstorerdt_io; |
937 | case S4_pstorerdf_abs: return S2_pstorerdf_io; |
938 | default: |
939 | break; |
940 | } |
941 | break; |
942 | case HexagonII::BaseImmOffset: |
943 | if (!isStoreImmediate(Opc: ExtOpc)) |
944 | return ExtOpc; |
945 | break; |
946 | default: |
947 | break; |
948 | } |
949 | } |
950 | return 0; |
951 | } |
952 | |
953 | unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { |
954 | switch (ExtOpc) { |
955 | case Hexagon::A2_addi: return Hexagon::A2_add; |
956 | case Hexagon::A2_andir: return Hexagon::A2_and; |
957 | case Hexagon::A2_combineii: return Hexagon::A4_combineri; |
958 | case Hexagon::A2_orir: return Hexagon::A2_or; |
959 | case Hexagon::A2_paddif: return Hexagon::A2_paddf; |
960 | case Hexagon::A2_paddit: return Hexagon::A2_paddt; |
961 | case Hexagon::A2_subri: return Hexagon::A2_sub; |
962 | case Hexagon::A2_tfrsi: return TargetOpcode::COPY; |
963 | case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; |
964 | case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; |
965 | case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; |
966 | case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; |
967 | case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; |
968 | case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; |
969 | case Hexagon::A4_combineii: return Hexagon::A4_combineir; |
970 | case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; |
971 | case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; |
972 | case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; |
973 | case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; |
974 | case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; |
975 | case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; |
976 | case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; |
977 | case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; |
978 | case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; |
979 | case Hexagon::C2_muxii: return Hexagon::C2_muxir; |
980 | case Hexagon::C2_muxir: return Hexagon::C2_mux; |
981 | case Hexagon::C2_muxri: return Hexagon::C2_mux; |
982 | case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; |
983 | case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; |
984 | case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; |
985 | case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T |
986 | /* No M2_macsin */ |
987 | case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T |
988 | case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; |
989 | case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; |
990 | case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; |
991 | case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T |
992 | case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; |
993 | case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T |
994 | case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T |
995 | case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T |
996 | case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T |
997 | case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T |
998 | case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T |
999 | case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T |
1000 | case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T |
1001 | case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T |
1002 | case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T |
1003 | case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T |
1004 | case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T |
1005 | |
1006 | // Store-immediates: |
1007 | case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; |
1008 | case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; |
1009 | case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; |
1010 | case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; |
1011 | case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; |
1012 | case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; |
1013 | case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; |
1014 | case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; |
1015 | case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; |
1016 | |
1017 | default: |
1018 | break; |
1019 | } |
1020 | return 0; |
1021 | } |
1022 | |
1023 | // Return the allowable deviation from the current value of Rb (i.e. the |
1024 | // range of values that can be added to the current value) which the |
1025 | // instruction MI can accommodate. |
1026 | // The instruction MI is a user of register Rb, which is defined via an |
1027 | // extender. It may be possible for MI to be tweaked to work for a register |
1028 | // defined with a slightly different value. For example |
1029 | // ... = L2_loadrub_io Rb, 1 |
1030 | // can be modified to be |
1031 | // ... = L2_loadrub_io Rb', 0 |
1032 | // if Rb' = Rb+1. |
1033 | // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range |
1034 | // for L2_loadrub with offset 0. That means that Rb could be replaced with |
1035 | // Rc, where Rc-Rb belongs to [Min+1, Max+1]. |
1036 | OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { |
1037 | unsigned Opc = MI.getOpcode(); |
1038 | // Instructions that are constant-extended may be replaced with something |
1039 | // else that no longer offers the same range as the original. |
1040 | if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) |
1041 | return OffsetRange::zero(); |
1042 | |
1043 | if (Opc == Hexagon::A2_addi) { |
1044 | const MachineOperand &Op1 = MI.getOperand(i: 1), &Op2 = MI.getOperand(i: 2); |
1045 | if (Rb != Register(Op1) || !Op2.isImm()) |
1046 | return OffsetRange::zero(); |
1047 | OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; |
1048 | return R.shift(S: Op2.getImm()); |
1049 | } |
1050 | |
1051 | // HII::getBaseAndOffsetPosition returns the increment position as "offset". |
1052 | if (HII->isPostIncrement(MI)) |
1053 | return OffsetRange::zero(); |
1054 | |
1055 | const MCInstrDesc &D = HII->get(Opcode: Opc); |
1056 | assert(D.mayLoad() || D.mayStore()); |
1057 | |
1058 | unsigned BaseP, OffP; |
1059 | if (!HII->getBaseAndOffsetPosition(MI, BasePos&: BaseP, OffsetPos&: OffP) || |
1060 | Rb != Register(MI.getOperand(i: BaseP)) || |
1061 | !MI.getOperand(i: OffP).isImm()) |
1062 | return OffsetRange::zero(); |
1063 | |
1064 | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
1065 | HexagonII::MemAccesSizeMask; |
1066 | uint8_t A = HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(F)); |
1067 | unsigned L = Log2_32(Value: A); |
1068 | unsigned S = 10+L; // sint11_L |
1069 | int32_t Min = -alignDown(Value: (1<<S)-1, Align: A); |
1070 | |
1071 | // The range will be shifted by Off. To prefer non-negative offsets, |
1072 | // adjust Max accordingly. |
1073 | int32_t Off = MI.getOperand(i: OffP).getImm(); |
1074 | int32_t Max = Off >= 0 ? 0 : -Off; |
1075 | |
1076 | OffsetRange R = { Min, Max, A }; |
1077 | return R.shift(S: Off); |
1078 | } |
1079 | |
1080 | // Return the allowable deviation from the current value of the extender ED, |
1081 | // for which the instruction corresponding to ED can be modified without |
1082 | // using an extender. |
1083 | // The instruction uses the extender directly. It will be replaced with |
1084 | // another instruction, say MJ, where the extender will be replaced with a |
1085 | // register. MJ can allow some variability with respect to the value of |
1086 | // that register, as is the case with indexed memory instructions. |
1087 | OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { |
1088 | // The only way that there can be a non-zero range available is if |
1089 | // the instruction using ED will be converted to an indexed memory |
1090 | // instruction. |
1091 | unsigned IdxOpc = getRegOffOpcode(ExtOpc: ED.UseMI->getOpcode()); |
1092 | switch (IdxOpc) { |
1093 | case 0: |
1094 | return OffsetRange::zero(); |
1095 | case Hexagon::A2_addi: // s16 |
1096 | return { -32767, 32767, 1 }; |
1097 | case Hexagon::A2_subri: // s10 |
1098 | return { -511, 511, 1 }; |
1099 | } |
1100 | |
1101 | if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) |
1102 | return OffsetRange::zero(); |
1103 | const MCInstrDesc &D = HII->get(Opcode: IdxOpc); |
1104 | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
1105 | HexagonII::MemAccesSizeMask; |
1106 | uint8_t A = HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(F)); |
1107 | unsigned L = Log2_32(Value: A); |
1108 | unsigned S = 10+L; // sint11_L |
1109 | int32_t Min = -alignDown(Value: (1<<S)-1, Align: A); |
1110 | int32_t Max = 0; // Force non-negative offsets. |
1111 | return { Min, Max, A }; |
1112 | } |
1113 | |
1114 | // Get the allowable deviation from the current value of Rd by checking |
1115 | // all uses of Rd. |
1116 | OffsetRange HCE::getOffsetRange(Register Rd) const { |
1117 | OffsetRange Range; |
1118 | for (const MachineOperand &Op : MRI->use_operands(Reg: Rd.Reg)) { |
1119 | // Make sure that the register being used by this operand is identical |
1120 | // to the register that was defined: using a different subregister |
1121 | // precludes any non-trivial range. |
1122 | if (Rd != Register(Op)) |
1123 | return OffsetRange::zero(); |
1124 | Range.intersect(A: getOffsetRange(Rb: Rd, MI: *Op.getParent())); |
1125 | } |
1126 | return Range; |
1127 | } |
1128 | |
1129 | void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { |
1130 | unsigned Opc = MI.getOpcode(); |
1131 | ExtDesc ED; |
1132 | ED.OpNum = OpNum; |
1133 | |
1134 | bool IsLoad = MI.mayLoad(); |
1135 | bool IsStore = MI.mayStore(); |
1136 | |
1137 | // Fixed stack slots have negative indexes, and they cannot be used |
1138 | // with Register::stackSlotIndex and Register::index2StackSlot. This is |
1139 | // somewhat unfortunate, but should not be a frequent thing. |
1140 | for (MachineOperand &Op : MI.operands()) |
1141 | if (Op.isFI() && Op.getIndex() < 0) |
1142 | return; |
1143 | |
1144 | if (IsLoad || IsStore) { |
1145 | unsigned AM = HII->getAddrMode(MI); |
1146 | switch (AM) { |
1147 | // (Re: ##Off + Rb<<S) = Rd: ##Val |
1148 | case HexagonII::Absolute: // (__: ## + __<<_) |
1149 | break; |
1150 | case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) |
1151 | ED.Rd = MI.getOperand(i: OpNum-1); |
1152 | ED.IsDef = true; |
1153 | break; |
1154 | case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) |
1155 | // Store-immediates are treated as non-memory operations, since |
1156 | // it's the value being stored that is extended (as opposed to |
1157 | // a part of the address). |
1158 | if (!isStoreImmediate(Opc)) |
1159 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1160 | break; |
1161 | case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) |
1162 | ED.Expr.Rs = MI.getOperand(i: OpNum-2); |
1163 | ED.Expr.S = MI.getOperand(i: OpNum-1).getImm(); |
1164 | break; |
1165 | default: |
1166 | llvm_unreachable("Unhandled memory instruction" ); |
1167 | } |
1168 | } else { |
1169 | switch (Opc) { |
1170 | case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) |
1171 | ED.Rd = MI.getOperand(i: 0); |
1172 | ED.IsDef = true; |
1173 | break; |
1174 | case Hexagon::A2_combineii: // (Rd: ## + __<<_) |
1175 | case Hexagon::A4_combineir: |
1176 | ED.Rd = { MI.getOperand(i: 0).getReg(), Hexagon::isub_hi }; |
1177 | ED.IsDef = true; |
1178 | break; |
1179 | case Hexagon::A4_combineri: // (Rd: ## + __<<_) |
1180 | ED.Rd = { MI.getOperand(i: 0).getReg(), Hexagon::isub_lo }; |
1181 | ED.IsDef = true; |
1182 | break; |
1183 | case Hexagon::A2_addi: // (Rd: ## + Rs<<0) |
1184 | ED.Rd = MI.getOperand(i: 0); |
1185 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1186 | break; |
1187 | case Hexagon::M2_accii: // (__: ## + Rs<<0) |
1188 | case Hexagon::M2_naccii: |
1189 | case Hexagon::S4_addaddi: |
1190 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1191 | break; |
1192 | case Hexagon::A2_subri: // (Rd: ## - Rs<<0) |
1193 | ED.Rd = MI.getOperand(i: 0); |
1194 | ED.Expr.Rs = MI.getOperand(i: OpNum+1); |
1195 | ED.Expr.Neg = true; |
1196 | break; |
1197 | case Hexagon::S4_subaddi: // (__: ## - Rs<<0) |
1198 | ED.Expr.Rs = MI.getOperand(i: OpNum+1); |
1199 | ED.Expr.Neg = true; |
1200 | break; |
1201 | default: // (__: ## + __<<_) |
1202 | break; |
1203 | } |
1204 | } |
1205 | |
1206 | ED.UseMI = &MI; |
1207 | |
1208 | // Ignore unnamed globals. |
1209 | ExtRoot ER(ED.getOp()); |
1210 | if (ER.Kind == MachineOperand::MO_GlobalAddress) |
1211 | if (ER.V.GV->getName().empty()) |
1212 | return; |
1213 | // Ignore block address that points to block in another function |
1214 | if (ER.Kind == MachineOperand::MO_BlockAddress) |
1215 | if (ER.V.BA->getFunction() != &(MI.getMF()->getFunction())) |
1216 | return; |
1217 | Extenders.push_back(x: ED); |
1218 | } |
1219 | |
1220 | void HCE::collectInstr(MachineInstr &MI) { |
1221 | if (!HII->isConstExtended(MI)) |
1222 | return; |
1223 | |
1224 | // Skip some non-convertible instructions. |
1225 | unsigned Opc = MI.getOpcode(); |
1226 | switch (Opc) { |
1227 | case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). |
1228 | case Hexagon::C4_addipc: |
1229 | case Hexagon::S4_or_andi: |
1230 | case Hexagon::S4_or_andix: |
1231 | case Hexagon::S4_or_ori: |
1232 | return; |
1233 | } |
1234 | recordExtender(MI, OpNum: HII->getCExtOpNum(MI)); |
1235 | } |
1236 | |
1237 | void HCE::collect(MachineFunction &MF) { |
1238 | Extenders.clear(); |
1239 | for (MachineBasicBlock &MBB : MF) { |
1240 | // Skip unreachable blocks. |
1241 | if (MBB.getNumber() == -1) |
1242 | continue; |
1243 | for (MachineInstr &MI : MBB) |
1244 | collectInstr(MI); |
1245 | } |
1246 | } |
1247 | |
1248 | void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
1249 | AssignmentMap &IMap) { |
1250 | // Basic correctness: make sure that all extenders in the range [Begin..End) |
1251 | // share the same root ER. |
1252 | for (unsigned I = Begin; I != End; ++I) |
1253 | assert(ER == ExtRoot(Extenders[I].getOp())); |
1254 | |
1255 | // Construct the list of ranges, such that for each P in Ranges[I], |
1256 | // a register Reg = ER+P can be used in place of Extender[I]. If the |
1257 | // instruction allows, uses in the form of Reg+Off are considered |
1258 | // (here, Off = required_value - P). |
1259 | std::vector<OffsetRange> Ranges(End-Begin); |
1260 | |
1261 | // For each extender that is a def, visit all uses of the defined register, |
1262 | // and produce an offset range that works for all uses. The def doesn't |
1263 | // have to be checked, because it can become dead if all uses can be updated |
1264 | // to use a different reg/offset. |
1265 | for (unsigned I = Begin; I != End; ++I) { |
1266 | const ExtDesc &ED = Extenders[I]; |
1267 | if (!ED.IsDef) |
1268 | continue; |
1269 | ExtValue EV(ED); |
1270 | LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); |
1271 | assert(ED.Rd.Reg != 0); |
1272 | Ranges[I-Begin] = getOffsetRange(Rd: ED.Rd).shift(S: EV.Offset); |
1273 | // A2_tfrsi is a special case: it will be replaced with A2_addi, which |
1274 | // has a 16-bit signed offset. This means that A2_tfrsi not only has a |
1275 | // range coming from its uses, but also from the fact that its replacement |
1276 | // has a range as well. |
1277 | if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { |
1278 | int32_t D = alignDown(Value: 32767, Align: Ranges[I-Begin].Align); // XXX hardcoded |
1279 | Ranges[I-Begin].extendBy(D: -D).extendBy(D); |
1280 | } |
1281 | } |
1282 | |
1283 | // Visit all non-def extenders. For each one, determine the offset range |
1284 | // available for it. |
1285 | for (unsigned I = Begin; I != End; ++I) { |
1286 | const ExtDesc &ED = Extenders[I]; |
1287 | if (ED.IsDef) |
1288 | continue; |
1289 | ExtValue EV(ED); |
1290 | LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); |
1291 | OffsetRange Dev = getOffsetRange(ED); |
1292 | Ranges[I-Begin].intersect(A: Dev.shift(S: EV.Offset)); |
1293 | } |
1294 | |
1295 | // Here for each I there is a corresponding Range[I]. Construct the |
1296 | // inverse map, that to each range will assign the set of indexes in |
1297 | // [Begin..End) that this range corresponds to. |
1298 | std::map<OffsetRange, IndexList> RangeMap; |
1299 | for (unsigned I = Begin; I != End; ++I) |
1300 | RangeMap[Ranges[I-Begin]].insert(X: I); |
1301 | |
1302 | LLVM_DEBUG({ |
1303 | dbgs() << "Ranges\n" ; |
1304 | for (unsigned I = Begin; I != End; ++I) |
1305 | dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; |
1306 | dbgs() << "RangeMap\n" ; |
1307 | for (auto &P : RangeMap) { |
1308 | dbgs() << " " << P.first << " ->" ; |
1309 | for (unsigned I : P.second) |
1310 | dbgs() << ' ' << I; |
1311 | dbgs() << '\n'; |
1312 | } |
1313 | }); |
1314 | |
1315 | // Select the definition points, and generate the assignment between |
1316 | // these points and the uses. |
1317 | |
1318 | RangeTree Tree; |
1319 | for (const OffsetRange &R : Ranges) |
1320 | Tree.add(R); |
1321 | SmallVector<RangeTree::Node*,8> Nodes; |
1322 | Tree.order(Seq&: Nodes); |
1323 | |
1324 | auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, |
1325 | uint8_t Align, uint8_t Offset) { |
1326 | for (RangeTree::Node *N : Nodes) { |
1327 | if (N->Range.Align <= Align || N->Range.Offset < Offset) |
1328 | continue; |
1329 | if ((N->Range.Offset - Offset) % Align != 0) |
1330 | continue; |
1331 | Align = N->Range.Align; |
1332 | Offset = N->Range.Offset; |
1333 | } |
1334 | return std::make_pair(x&: Align, y&: Offset); |
1335 | }; |
1336 | |
1337 | // Construct the set of all potential definition points from the endpoints |
1338 | // of the ranges. If a given endpoint also belongs to a different range, |
1339 | // but with a higher alignment, also consider the more-highly-aligned |
1340 | // value of this endpoint. |
1341 | std::set<int32_t> CandSet; |
1342 | for (RangeTree::Node *N : Nodes) { |
1343 | const OffsetRange &R = N->Range; |
1344 | auto P0 = MaxAlign(Tree.nodesWith(P: R.Min, CheckAlign: false), R.Align, R.Offset); |
1345 | CandSet.insert(x: R.Min); |
1346 | if (R.Align < P0.first) |
1347 | CandSet.insert(x: adjustUp(V: R.Min, A: P0.first, O: P0.second)); |
1348 | auto P1 = MaxAlign(Tree.nodesWith(P: R.Max, CheckAlign: false), R.Align, R.Offset); |
1349 | CandSet.insert(x: R.Max); |
1350 | if (R.Align < P1.first) |
1351 | CandSet.insert(x: adjustDown(V: R.Max, A: P1.first, O: P1.second)); |
1352 | } |
1353 | |
1354 | // Build the assignment map: candidate C -> { list of extender indexes }. |
1355 | // This has to be done iteratively: |
1356 | // - pick the candidate that covers the maximum number of extenders, |
1357 | // - add the candidate to the map, |
1358 | // - remove the extenders from the pool. |
1359 | while (true) { |
1360 | using CMap = std::map<int32_t,unsigned>; |
1361 | CMap Counts; |
1362 | for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { |
1363 | auto &&V = Tree.nodesWith(P: *It); |
1364 | unsigned N = std::accumulate(first: V.begin(), last: V.end(), init: 0u, |
1365 | binary_op: [](unsigned Acc, const RangeTree::Node *N) { |
1366 | return Acc + N->Count; |
1367 | }); |
1368 | if (N != 0) |
1369 | Counts.insert(x: {*It, N}); |
1370 | It = (N != 0) ? std::next(x: It) : CandSet.erase(position: It); |
1371 | } |
1372 | if (Counts.empty()) |
1373 | break; |
1374 | |
1375 | // Find the best candidate with respect to the number of extenders covered. |
1376 | auto BestIt = llvm::max_element( |
1377 | Range&: Counts, C: [](const CMap::value_type &A, const CMap::value_type &B) { |
1378 | return A.second < B.second || (A.second == B.second && A < B); |
1379 | }); |
1380 | int32_t Best = BestIt->first; |
1381 | ExtValue BestV(ER, Best); |
1382 | for (RangeTree::Node *N : Tree.nodesWith(P: Best)) { |
1383 | for (unsigned I : RangeMap[N->Range]) |
1384 | IMap[{BestV,Extenders[I].Expr}].insert(X: I); |
1385 | Tree.erase(N); |
1386 | } |
1387 | } |
1388 | |
1389 | LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); |
1390 | |
1391 | // There is some ambiguity in what initializer should be used, if the |
1392 | // descriptor's subexpression is non-trivial: it can be the entire |
1393 | // subexpression (which is what has been done so far), or it can be |
1394 | // the extender's value itself, if all corresponding extenders have the |
1395 | // exact value of the initializer (i.e. require offset of 0). |
1396 | |
1397 | // To reduce the number of initializers, merge such special cases. |
1398 | for (std::pair<const ExtenderInit,IndexList> &P : IMap) { |
1399 | // Skip trivial initializers. |
1400 | if (P.first.second.trivial()) |
1401 | continue; |
1402 | // If the corresponding trivial initializer does not exist, skip this |
1403 | // entry. |
1404 | const ExtValue &EV = P.first.first; |
1405 | AssignmentMap::iterator F = IMap.find(x: {EV, ExtExpr()}); |
1406 | if (F == IMap.end()) |
1407 | continue; |
1408 | |
1409 | // Finally, check if all extenders have the same value as the initializer. |
1410 | // Make sure that extenders that are a part of a stack address are not |
1411 | // merged with those that aren't. Stack addresses need an offset field |
1412 | // (to be used by frame index elimination), while non-stack expressions |
1413 | // can be replaced with forms (such as rr) that do not have such a field. |
1414 | // Example: |
1415 | // |
1416 | // Collected 3 extenders |
1417 | // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def |
1418 | // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 |
1419 | // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 |
1420 | // Ranges |
1421 | // 0. [-756,267]a1+0 |
1422 | // 1. [-756,267]a1+0 |
1423 | // 2. [201,65735]a1+0 |
1424 | // RangeMap |
1425 | // [-756,267]a1+0 -> 0 1 |
1426 | // [201,65735]a1+0 -> 2 |
1427 | // IMap (before fixup) = { |
1428 | // [imm:0 off:267, ## + __ << 0] -> { 2 } |
1429 | // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } |
1430 | // } |
1431 | // IMap (after fixup) = { |
1432 | // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } |
1433 | // [imm:0 off:267, ## + SS#1 << 0] -> { } |
1434 | // } |
1435 | // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] |
1436 | // %12:intregs = A2_tfrsi 267 |
1437 | // |
1438 | // The result was |
1439 | // %12:intregs = A2_tfrsi 267 |
1440 | // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 |
1441 | // Which became |
1442 | // r0 = #267 |
1443 | // if (p0.new) memb(r0+r29<<#4) = r2 |
1444 | |
1445 | bool IsStack = any_of(Range&: F->second, P: [this](unsigned I) { |
1446 | return Extenders[I].Expr.Rs.isSlot(); |
1447 | }); |
1448 | auto SameValue = [&EV,this,IsStack](unsigned I) { |
1449 | const ExtDesc &ED = Extenders[I]; |
1450 | return ED.Expr.Rs.isSlot() == IsStack && |
1451 | ExtValue(ED).Offset == EV.Offset; |
1452 | }; |
1453 | if (all_of(Range&: P.second, P: SameValue)) { |
1454 | F->second.insert_range(R&: P.second); |
1455 | P.second.clear(); |
1456 | } |
1457 | } |
1458 | |
1459 | LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); |
1460 | } |
1461 | |
1462 | void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
1463 | LocDefList &Defs) { |
1464 | if (Refs.empty()) |
1465 | return; |
1466 | |
1467 | // The placement calculation is somewhat simple right now: it finds a |
1468 | // single location for the def that dominates all refs. Since this may |
1469 | // place the def far from the uses, producing several locations for |
1470 | // defs that collectively dominate all refs could be better. |
1471 | // For now only do the single one. |
1472 | DenseSet<MachineBasicBlock*> Blocks; |
1473 | DenseSet<MachineInstr*> RefMIs; |
1474 | const ExtDesc &ED0 = Extenders[Refs[0]]; |
1475 | MachineBasicBlock *DomB = ED0.UseMI->getParent(); |
1476 | RefMIs.insert(V: ED0.UseMI); |
1477 | Blocks.insert(V: DomB); |
1478 | for (unsigned i = 1, e = Refs.size(); i != e; ++i) { |
1479 | const ExtDesc &ED = Extenders[Refs[i]]; |
1480 | MachineBasicBlock *MBB = ED.UseMI->getParent(); |
1481 | RefMIs.insert(V: ED.UseMI); |
1482 | DomB = MDT->findNearestCommonDominator(A: DomB, B: MBB); |
1483 | Blocks.insert(V: MBB); |
1484 | } |
1485 | |
1486 | #ifndef NDEBUG |
1487 | // The block DomB should be dominated by the def of each register used |
1488 | // in the initializer. |
1489 | Register Rs = ExtI.second.Rs; // Only one reg allowed now. |
1490 | const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; |
1491 | |
1492 | // This should be guaranteed given that the entire expression is used |
1493 | // at each instruction in Refs. Add an assertion just in case. |
1494 | assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); |
1495 | #endif |
1496 | |
1497 | MachineBasicBlock::iterator It; |
1498 | if (Blocks.count(V: DomB)) { |
1499 | // Try to find the latest possible location for the def. |
1500 | MachineBasicBlock::iterator End = DomB->end(); |
1501 | for (It = DomB->begin(); It != End; ++It) |
1502 | if (RefMIs.count(V: &*It)) |
1503 | break; |
1504 | assert(It != End && "Should have found a ref in DomB" ); |
1505 | } else { |
1506 | // DomB does not contain any refs. |
1507 | It = DomB->getFirstTerminator(); |
1508 | } |
1509 | Loc DefLoc(DomB, It); |
1510 | Defs.emplace_back(args&: DefLoc, args: Refs); |
1511 | } |
1512 | |
1513 | HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { |
1514 | llvm::Register DefR = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1515 | MachineBasicBlock &MBB = *DefL.Block; |
1516 | MachineBasicBlock::iterator At = DefL.At; |
1517 | DebugLoc dl = DefL.Block->findDebugLoc(MBBI: DefL.At); |
1518 | const ExtValue &EV = ExtI.first; |
1519 | MachineOperand ExtOp(EV); |
1520 | |
1521 | const ExtExpr &Ex = ExtI.second; |
1522 | const MachineInstr *InitI = nullptr; |
1523 | |
1524 | if (Ex.Rs.isSlot()) { |
1525 | assert(Ex.S == 0 && "Cannot have a shift of a stack slot" ); |
1526 | assert(!Ex.Neg && "Cannot subtract a stack slot" ); |
1527 | // DefR = PS_fi Rb,##EV |
1528 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::PS_fi), DestReg: DefR) |
1529 | .add(MO: MachineOperand(Ex.Rs)) |
1530 | .add(MO: ExtOp); |
1531 | } else { |
1532 | assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register" ); |
1533 | if (Ex.trivial()) { |
1534 | // DefR = ##EV |
1535 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_tfrsi), DestReg: DefR) |
1536 | .add(MO: ExtOp); |
1537 | } else if (Ex.S == 0) { |
1538 | if (Ex.Neg) { |
1539 | // DefR = sub(##EV,Rb) |
1540 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_subri), DestReg: DefR) |
1541 | .add(MO: ExtOp) |
1542 | .add(MO: MachineOperand(Ex.Rs)); |
1543 | } else { |
1544 | // DefR = add(Rb,##EV) |
1545 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_addi), DestReg: DefR) |
1546 | .add(MO: MachineOperand(Ex.Rs)) |
1547 | .add(MO: ExtOp); |
1548 | } |
1549 | } else { |
1550 | if (HST->useCompound()) { |
1551 | unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri |
1552 | : Hexagon::S4_addi_asl_ri; |
1553 | // DefR = add(##EV,asl(Rb,S)) |
1554 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc), DestReg: DefR) |
1555 | .add(MO: ExtOp) |
1556 | .add(MO: MachineOperand(Ex.Rs)) |
1557 | .addImm(Val: Ex.S); |
1558 | } else { |
1559 | // No compounds are available. It is not clear whether we should |
1560 | // even process such extenders where the initializer cannot be |
1561 | // a single instruction, but do it for now. |
1562 | llvm::Register TmpR = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1563 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::S2_asl_i_r), DestReg: TmpR) |
1564 | .add(MO: MachineOperand(Ex.Rs)) |
1565 | .addImm(Val: Ex.S); |
1566 | if (Ex.Neg) |
1567 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_subri), DestReg: DefR) |
1568 | .add(MO: ExtOp) |
1569 | .add(MO: MachineOperand(Register(TmpR, 0))); |
1570 | else |
1571 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_addi), DestReg: DefR) |
1572 | .add(MO: MachineOperand(Register(TmpR, 0))) |
1573 | .add(MO: ExtOp); |
1574 | } |
1575 | } |
1576 | } |
1577 | |
1578 | assert(InitI); |
1579 | (void)InitI; |
1580 | LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() |
1581 | << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " |
1582 | << *InitI); |
1583 | return { DefR, 0 }; |
1584 | } |
1585 | |
1586 | // Replace the extender at index Idx with the register ExtR. |
1587 | bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { |
1588 | MachineInstr &MI = *ED.UseMI; |
1589 | MachineBasicBlock &MBB = *MI.getParent(); |
1590 | MachineBasicBlock::iterator At = MI.getIterator(); |
1591 | DebugLoc dl = MI.getDebugLoc(); |
1592 | unsigned ExtOpc = MI.getOpcode(); |
1593 | |
1594 | // With a few exceptions, direct replacement amounts to creating an |
1595 | // instruction with a corresponding register opcode, with all operands |
1596 | // the same, except for the register used in place of the extender. |
1597 | unsigned RegOpc = getDirectRegReplacement(ExtOpc); |
1598 | |
1599 | if (RegOpc == TargetOpcode::REG_SEQUENCE) { |
1600 | if (ExtOpc == Hexagon::A4_combineri) |
1601 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)) |
1602 | .add(MO: MI.getOperand(i: 0)) |
1603 | .add(MO: MI.getOperand(i: 1)) |
1604 | .addImm(Val: Hexagon::isub_hi) |
1605 | .add(MO: MachineOperand(ExtR)) |
1606 | .addImm(Val: Hexagon::isub_lo); |
1607 | else if (ExtOpc == Hexagon::A4_combineir) |
1608 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)) |
1609 | .add(MO: MI.getOperand(i: 0)) |
1610 | .add(MO: MachineOperand(ExtR)) |
1611 | .addImm(Val: Hexagon::isub_hi) |
1612 | .add(MO: MI.getOperand(i: 2)) |
1613 | .addImm(Val: Hexagon::isub_lo); |
1614 | else |
1615 | llvm_unreachable("Unexpected opcode became REG_SEQUENCE" ); |
1616 | MBB.erase(I: MI); |
1617 | return true; |
1618 | } |
1619 | if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { |
1620 | unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt |
1621 | : Hexagon::C2_cmpltu; |
1622 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc)) |
1623 | .add(MO: MI.getOperand(i: 0)) |
1624 | .add(MO: MachineOperand(ExtR)) |
1625 | .add(MO: MI.getOperand(i: 1)); |
1626 | MBB.erase(I: MI); |
1627 | return true; |
1628 | } |
1629 | |
1630 | if (RegOpc != 0) { |
1631 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)); |
1632 | unsigned RegN = ED.OpNum; |
1633 | // Copy all operands except the one that has the extender. |
1634 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1635 | if (i != RegN) |
1636 | MIB.add(MO: MI.getOperand(i)); |
1637 | else |
1638 | MIB.add(MO: MachineOperand(ExtR)); |
1639 | } |
1640 | MIB.cloneMemRefs(OtherMI: MI); |
1641 | MBB.erase(I: MI); |
1642 | return true; |
1643 | } |
1644 | |
1645 | if (MI.mayLoadOrStore() && !isStoreImmediate(Opc: ExtOpc)) { |
1646 | // For memory instructions, there is an asymmetry in the addressing |
1647 | // modes. Addressing modes allowing extenders can be replaced with |
1648 | // addressing modes that use registers, but the order of operands |
1649 | // (or even their number) may be different. |
1650 | // Replacements: |
1651 | // BaseImmOffset (io) -> BaseRegOffset (rr) |
1652 | // BaseLongOffset (ur) -> BaseRegOffset (rr) |
1653 | unsigned RegOpc, Shift; |
1654 | unsigned AM = HII->getAddrMode(MI); |
1655 | if (AM == HexagonII::BaseImmOffset) { |
1656 | RegOpc = HII->changeAddrMode_io_rr(Opc: ExtOpc); |
1657 | Shift = 0; |
1658 | } else if (AM == HexagonII::BaseLongOffset) { |
1659 | // Loads: Rd = L4_loadri_ur Rs, S, ## |
1660 | // Stores: S4_storeri_ur Rs, S, ##, Rt |
1661 | RegOpc = HII->changeAddrMode_ur_rr(Opc: ExtOpc); |
1662 | Shift = MI.getOperand(i: MI.mayLoad() ? 2 : 1).getImm(); |
1663 | } else { |
1664 | llvm_unreachable("Unexpected addressing mode" ); |
1665 | } |
1666 | #ifndef NDEBUG |
1667 | if (RegOpc == -1u) { |
1668 | dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n" ; |
1669 | llvm_unreachable("No corresponding rr instruction" ); |
1670 | } |
1671 | #endif |
1672 | |
1673 | unsigned BaseP, OffP; |
1674 | HII->getBaseAndOffsetPosition(MI, BasePos&: BaseP, OffsetPos&: OffP); |
1675 | |
1676 | // Build an rr instruction: (RegOff + RegBase<<0) |
1677 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)); |
1678 | // First, add the def for loads. |
1679 | if (MI.mayLoad()) |
1680 | MIB.add(MO: getLoadResultOp(MI)); |
1681 | // Handle possible predication. |
1682 | if (HII->isPredicated(MI)) |
1683 | MIB.add(MO: getPredicateOp(MI)); |
1684 | // Build the address. |
1685 | MIB.add(MO: MachineOperand(ExtR)); // RegOff |
1686 | MIB.add(MO: MI.getOperand(i: BaseP)); // RegBase |
1687 | MIB.addImm(Val: Shift); // << Shift |
1688 | // Add the stored value for stores. |
1689 | if (MI.mayStore()) |
1690 | MIB.add(MO: getStoredValueOp(MI)); |
1691 | MIB.cloneMemRefs(OtherMI: MI); |
1692 | MBB.erase(I: MI); |
1693 | return true; |
1694 | } |
1695 | |
1696 | #ifndef NDEBUG |
1697 | dbgs() << '\n' << MI; |
1698 | #endif |
1699 | llvm_unreachable("Unhandled exact replacement" ); |
1700 | return false; |
1701 | } |
1702 | |
1703 | // Replace the extender ED with a form corresponding to the initializer ExtI. |
1704 | bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
1705 | Register ExtR, int32_t &Diff) { |
1706 | MachineInstr &MI = *ED.UseMI; |
1707 | MachineBasicBlock &MBB = *MI.getParent(); |
1708 | MachineBasicBlock::iterator At = MI.getIterator(); |
1709 | DebugLoc dl = MI.getDebugLoc(); |
1710 | unsigned ExtOpc = MI.getOpcode(); |
1711 | |
1712 | if (ExtOpc == Hexagon::A2_tfrsi) { |
1713 | // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces |
1714 | // another range. One range is the one that's common to all tfrsi's uses, |
1715 | // this one is the range of immediates in A2_addi. When calculating ranges, |
1716 | // the addi's 16-bit argument was included, so now we need to make it such |
1717 | // that the produced value is in the range for the uses alone. |
1718 | // Most of the time, simply adding Diff will make the addi produce exact |
1719 | // result, but if Diff is outside of the 16-bit range, some adjustment |
1720 | // will be needed. |
1721 | unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
1722 | assert(IdxOpc == Hexagon::A2_addi); |
1723 | |
1724 | // Clamp Diff to the 16 bit range. |
1725 | int32_t D = isInt<16>(x: Diff) ? Diff : (Diff > 0 ? 32767 : -32768); |
1726 | if (Diff > 32767) { |
1727 | // Split Diff into two values: one that is close to min/max int16, |
1728 | // and the other being the rest, and such that both have the same |
1729 | // "alignment" as Diff. |
1730 | uint32_t UD = Diff; |
1731 | OffsetRange R = getOffsetRange(Rd: MI.getOperand(i: 0)); |
1732 | uint32_t A = std::min<uint32_t>(a: R.Align, b: 1u << llvm::countr_zero(Val: UD)); |
1733 | D &= ~(A-1); |
1734 | } |
1735 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: IdxOpc)) |
1736 | .add(MO: MI.getOperand(i: 0)) |
1737 | .add(MO: MachineOperand(ExtR)) |
1738 | .addImm(Val: D); |
1739 | Diff -= D; |
1740 | #ifndef NDEBUG |
1741 | // Make sure the output is within allowable range for uses. |
1742 | // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, |
1743 | // not DefV - Ext, as the getOffsetRange would calculate. |
1744 | OffsetRange Uses = getOffsetRange(MI.getOperand(0)); |
1745 | if (!Uses.contains(-Diff)) |
1746 | dbgs() << "Diff: " << -Diff << " out of range " << Uses |
1747 | << " for " << MI; |
1748 | assert(Uses.contains(-Diff)); |
1749 | #endif |
1750 | MBB.erase(I: MI); |
1751 | return true; |
1752 | } |
1753 | |
1754 | const ExtValue &EV = ExtI.first; (void)EV; |
1755 | const ExtExpr &Ex = ExtI.second; (void)Ex; |
1756 | |
1757 | if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { |
1758 | // If addi/subri are replaced with the exactly matching initializer, |
1759 | // they amount to COPY. |
1760 | // Check that the initializer is an exact match (for simplicity). |
1761 | #ifndef NDEBUG |
1762 | bool IsAddi = ExtOpc == Hexagon::A2_addi; |
1763 | const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); |
1764 | const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); |
1765 | assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && |
1766 | "Initializer mismatch" ); |
1767 | #endif |
1768 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: TargetOpcode::COPY)) |
1769 | .add(MO: MI.getOperand(i: 0)) |
1770 | .add(MO: MachineOperand(ExtR)); |
1771 | Diff = 0; |
1772 | MBB.erase(I: MI); |
1773 | return true; |
1774 | } |
1775 | if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || |
1776 | ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { |
1777 | // M2_accii: add(Rt,add(Rs,V)) (tied) |
1778 | // M2_naccii: sub(Rt,add(Rs,V)) |
1779 | // S4_addaddi: add(Rt,add(Rs,V)) |
1780 | // S4_subaddi: add(Rt,sub(V,Rs)) |
1781 | // Check that Rs and V match the initializer expression. The Rs+V is the |
1782 | // combination that is considered "subexpression" for V, although Rx+V |
1783 | // would also be valid. |
1784 | #ifndef NDEBUG |
1785 | bool IsSub = ExtOpc == Hexagon::S4_subaddi; |
1786 | Register Rs = MI.getOperand(IsSub ? 3 : 2); |
1787 | ExtValue V = MI.getOperand(IsSub ? 2 : 3); |
1788 | assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch" ); |
1789 | #endif |
1790 | unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub |
1791 | : Hexagon::A2_add; |
1792 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc)) |
1793 | .add(MO: MI.getOperand(i: 0)) |
1794 | .add(MO: MI.getOperand(i: 1)) |
1795 | .add(MO: MachineOperand(ExtR)); |
1796 | MBB.erase(I: MI); |
1797 | return true; |
1798 | } |
1799 | |
1800 | if (MI.mayLoadOrStore()) { |
1801 | unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
1802 | assert(IdxOpc && "Expecting indexed opcode" ); |
1803 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: IdxOpc)); |
1804 | // Construct the new indexed instruction. |
1805 | // First, add the def for loads. |
1806 | if (MI.mayLoad()) |
1807 | MIB.add(MO: getLoadResultOp(MI)); |
1808 | // Handle possible predication. |
1809 | if (HII->isPredicated(MI)) |
1810 | MIB.add(MO: getPredicateOp(MI)); |
1811 | // Build the address. |
1812 | MIB.add(MO: MachineOperand(ExtR)); |
1813 | MIB.addImm(Val: Diff); |
1814 | // Add the stored value for stores. |
1815 | if (MI.mayStore()) |
1816 | MIB.add(MO: getStoredValueOp(MI)); |
1817 | MIB.cloneMemRefs(OtherMI: MI); |
1818 | MBB.erase(I: MI); |
1819 | return true; |
1820 | } |
1821 | |
1822 | #ifndef NDEBUG |
1823 | dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; |
1824 | #endif |
1825 | llvm_unreachable("Unhandled expr replacement" ); |
1826 | return false; |
1827 | } |
1828 | |
1829 | bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { |
1830 | if (ReplaceLimit.getNumOccurrences()) { |
1831 | if (ReplaceLimit <= ReplaceCounter) |
1832 | return false; |
1833 | ++ReplaceCounter; |
1834 | } |
1835 | const ExtDesc &ED = Extenders[Idx]; |
1836 | assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def" ); |
1837 | const ExtValue &DefV = ExtI.first; |
1838 | assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch" ); |
1839 | const ExtExpr &DefEx = ExtI.second; |
1840 | |
1841 | ExtValue EV(ED); |
1842 | int32_t Diff = EV.Offset - DefV.Offset; |
1843 | const MachineInstr &MI = *ED.UseMI; |
1844 | LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" |
1845 | << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); |
1846 | |
1847 | // These two addressing modes must be converted into indexed forms |
1848 | // regardless of what the initializer looks like. |
1849 | bool IsAbs = false, IsAbsSet = false; |
1850 | if (MI.mayLoadOrStore()) { |
1851 | unsigned AM = HII->getAddrMode(MI); |
1852 | IsAbs = AM == HexagonII::Absolute; |
1853 | IsAbsSet = AM == HexagonII::AbsoluteSet; |
1854 | } |
1855 | |
1856 | // If it's a def, remember all operands that need to be updated. |
1857 | // If ED is a def, and Diff is not 0, then all uses of the register Rd |
1858 | // defined by ED must be in the form (Rd, imm), i.e. the immediate offset |
1859 | // must follow the Rd in the operand list. |
1860 | std::vector<std::pair<MachineInstr*,unsigned>> RegOps; |
1861 | if (ED.IsDef && Diff != 0) { |
1862 | for (MachineOperand &Op : MRI->use_operands(Reg: ED.Rd.Reg)) { |
1863 | MachineInstr &UI = *Op.getParent(); |
1864 | RegOps.push_back(x: {&UI, getOperandIndex(MI: UI, Op)}); |
1865 | } |
1866 | } |
1867 | |
1868 | // Replace the instruction. |
1869 | bool Replaced = false; |
1870 | if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) |
1871 | Replaced = replaceInstrExact(ED, ExtR); |
1872 | else |
1873 | Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); |
1874 | |
1875 | if (Diff != 0 && Replaced && ED.IsDef) { |
1876 | // Update offsets of the def's uses. |
1877 | for (std::pair<MachineInstr*,unsigned> P : RegOps) { |
1878 | unsigned J = P.second; |
1879 | assert(P.first->getNumOperands() > J+1 && |
1880 | P.first->getOperand(J+1).isImm()); |
1881 | MachineOperand &ImmOp = P.first->getOperand(i: J+1); |
1882 | ImmOp.setImm(ImmOp.getImm() + Diff); |
1883 | } |
1884 | // If it was an absolute-set instruction, the "set" part has been removed. |
1885 | // ExtR will now be the register with the extended value, and since all |
1886 | // users of Rd have been updated, all that needs to be done is to replace |
1887 | // Rd with ExtR. |
1888 | if (IsAbsSet) { |
1889 | assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); |
1890 | MRI->replaceRegWith(FromReg: ED.Rd.Reg, ToReg: ExtR.Reg); |
1891 | } |
1892 | } |
1893 | |
1894 | return Replaced; |
1895 | } |
1896 | |
1897 | bool HCE::replaceExtenders(const AssignmentMap &IMap) { |
1898 | LocDefList Defs; |
1899 | bool Changed = false; |
1900 | |
1901 | for (const std::pair<const ExtenderInit, IndexList> &P : IMap) { |
1902 | const IndexList &Idxs = P.second; |
1903 | if (Idxs.size() < CountThreshold) |
1904 | continue; |
1905 | |
1906 | Defs.clear(); |
1907 | calculatePlacement(ExtI: P.first, Refs: Idxs, Defs); |
1908 | for (const std::pair<Loc,IndexList> &Q : Defs) { |
1909 | Register DefR = insertInitializer(DefL: Q.first, ExtI: P.first); |
1910 | NewRegs.push_back(x: DefR.Reg); |
1911 | for (unsigned I : Q.second) |
1912 | Changed |= replaceInstr(Idx: I, ExtR: DefR, ExtI: P.first); |
1913 | } |
1914 | } |
1915 | return Changed; |
1916 | } |
1917 | |
1918 | unsigned HCE::getOperandIndex(const MachineInstr &MI, |
1919 | const MachineOperand &Op) const { |
1920 | for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) |
1921 | if (&MI.getOperand(i) == &Op) |
1922 | return i; |
1923 | llvm_unreachable("Not an operand of MI" ); |
1924 | } |
1925 | |
1926 | const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { |
1927 | assert(HII->isPredicated(MI)); |
1928 | for (const MachineOperand &Op : MI.operands()) { |
1929 | if (!Op.isReg() || !Op.isUse() || |
1930 | MRI->getRegClass(Reg: Op.getReg()) != &Hexagon::PredRegsRegClass) |
1931 | continue; |
1932 | assert(Op.getSubReg() == 0 && "Predicate register with a subregister" ); |
1933 | return Op; |
1934 | } |
1935 | llvm_unreachable("Predicate operand not found" ); |
1936 | } |
1937 | |
1938 | const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { |
1939 | assert(MI.mayLoad()); |
1940 | return MI.getOperand(i: 0); |
1941 | } |
1942 | |
1943 | const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { |
1944 | assert(MI.mayStore()); |
1945 | return MI.getOperand(i: MI.getNumExplicitOperands()-1); |
1946 | } |
1947 | |
1948 | bool HCE::runOnMachineFunction(MachineFunction &MF) { |
1949 | if (skipFunction(F: MF.getFunction())) |
1950 | return false; |
1951 | if (MF.getFunction().hasPersonalityFn()) { |
1952 | LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() |
1953 | << " due to exception handling\n" ); |
1954 | return false; |
1955 | } |
1956 | LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); |
1957 | |
1958 | HST = &MF.getSubtarget<HexagonSubtarget>(); |
1959 | HII = HST->getInstrInfo(); |
1960 | HRI = HST->getRegisterInfo(); |
1961 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1962 | MRI = &MF.getRegInfo(); |
1963 | AssignmentMap IMap; |
1964 | |
1965 | collect(MF); |
1966 | llvm::sort(C&: Extenders, Comp: [this](const ExtDesc &A, const ExtDesc &B) { |
1967 | ExtValue VA(A), VB(B); |
1968 | if (VA != VB) |
1969 | return VA < VB; |
1970 | const MachineInstr *MA = A.UseMI; |
1971 | const MachineInstr *MB = B.UseMI; |
1972 | if (MA == MB) { |
1973 | // If it's the same instruction, compare operand numbers. |
1974 | return A.OpNum < B.OpNum; |
1975 | } |
1976 | |
1977 | const MachineBasicBlock *BA = MA->getParent(); |
1978 | const MachineBasicBlock *BB = MB->getParent(); |
1979 | assert(BA->getNumber() != -1 && BB->getNumber() != -1); |
1980 | if (BA != BB) |
1981 | return BA->getNumber() < BB->getNumber(); |
1982 | return MDT->dominates(A: MA, B: MB); |
1983 | }); |
1984 | |
1985 | bool Changed = false; |
1986 | LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n" ); |
1987 | for (unsigned I = 0, E = Extenders.size(); I != E; ) { |
1988 | unsigned B = I; |
1989 | const ExtRoot &T = Extenders[B].getOp(); |
1990 | while (I != E && ExtRoot(Extenders[I].getOp()) == T) |
1991 | ++I; |
1992 | |
1993 | IMap.clear(); |
1994 | assignInits(ER: T, Begin: B, End: I, IMap); |
1995 | Changed |= replaceExtenders(IMap); |
1996 | } |
1997 | |
1998 | LLVM_DEBUG({ |
1999 | if (Changed) |
2000 | MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); |
2001 | else |
2002 | dbgs() << "No changes\n" ; |
2003 | }); |
2004 | return Changed; |
2005 | } |
2006 | |
2007 | FunctionPass *llvm::createHexagonConstExtenders() { |
2008 | return new HexagonConstExtenders(); |
2009 | } |
2010 | |