| 1 | //===- HexagonExpandCondsets.cpp ------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // Replace mux instructions with the corresponding legal instructions. |
| 10 | // It is meant to work post-SSA, but still on virtual registers. It was |
| 11 | // originally placed between register coalescing and machine instruction |
| 12 | // scheduler. |
| 13 | // In this place in the optimization sequence, live interval analysis had |
| 14 | // been performed, and the live intervals should be preserved. A large part |
| 15 | // of the code deals with preserving the liveness information. |
| 16 | // |
| 17 | // Liveness tracking aside, the main functionality of this pass is divided |
| 18 | // into two steps. The first step is to replace an instruction |
| 19 | // %0 = C2_mux %1, %2, %3 |
| 20 | // with a pair of conditional transfers |
| 21 | // %0 = A2_tfrt %1, %2 |
| 22 | // %0 = A2_tfrf %1, %3 |
| 23 | // It is the intention that the execution of this pass could be terminated |
| 24 | // after this step, and the code generated would be functionally correct. |
| 25 | // |
| 26 | // If the uses of the source values %1 and %2 are kills, and their |
| 27 | // definitions are predicable, then in the second step, the conditional |
| 28 | // transfers will then be rewritten as predicated instructions. E.g. |
| 29 | // %0 = A2_or %1, %2 |
| 30 | // %3 = A2_tfrt %99, killed %0 |
| 31 | // will be rewritten as |
| 32 | // %3 = A2_port %99, %1, %2 |
| 33 | // |
| 34 | // This replacement has two variants: "up" and "down". Consider this case: |
| 35 | // %0 = A2_or %1, %2 |
| 36 | // ... [intervening instructions] ... |
| 37 | // %3 = A2_tfrt %99, killed %0 |
| 38 | // variant "up": |
| 39 | // %3 = A2_port %99, %1, %2 |
| 40 | // ... [intervening instructions, %0->vreg3] ... |
| 41 | // [deleted] |
| 42 | // variant "down": |
| 43 | // [deleted] |
| 44 | // ... [intervening instructions] ... |
| 45 | // %3 = A2_port %99, %1, %2 |
| 46 | // |
| 47 | // Both, one or none of these variants may be valid, and checks are made |
| 48 | // to rule out inapplicable variants. |
| 49 | // |
| 50 | // As an additional optimization, before either of the two steps above is |
| 51 | // executed, the pass attempts to coalesce the target register with one of |
| 52 | // the source registers, e.g. given an instruction |
| 53 | // %3 = C2_mux %0, %1, %2 |
| 54 | // %3 will be coalesced with either %1 or %2. If this succeeds, |
| 55 | // the instruction would then be (for example) |
| 56 | // %3 = C2_mux %0, %3, %2 |
| 57 | // and, under certain circumstances, this could result in only one predicated |
| 58 | // instruction: |
| 59 | // %3 = A2_tfrf %0, %2 |
| 60 | // |
| 61 | |
| 62 | // Splitting a definition of a register into two predicated transfers |
| 63 | // creates a complication in liveness tracking. Live interval computation |
| 64 | // will see both instructions as actual definitions, and will mark the |
| 65 | // first one as dead. The definition is not actually dead, and this |
| 66 | // situation will need to be fixed. For example: |
| 67 | // dead %1 = A2_tfrt ... ; marked as dead |
| 68 | // %1 = A2_tfrf ... |
| 69 | // |
| 70 | // Since any of the individual predicated transfers may end up getting |
| 71 | // removed (in case it is an identity copy), some pre-existing def may |
| 72 | // be marked as dead after live interval recomputation: |
| 73 | // dead %1 = ... ; marked as dead |
| 74 | // ... |
| 75 | // %1 = A2_tfrf ... ; if A2_tfrt is removed |
| 76 | // This case happens if %1 was used as a source in A2_tfrt, which means |
| 77 | // that is it actually live at the A2_tfrf, and so the now dead definition |
| 78 | // of %1 will need to be updated to non-dead at some point. |
| 79 | // |
| 80 | // This issue could be remedied by adding implicit uses to the predicated |
| 81 | // transfers, but this will create a problem with subsequent predication, |
| 82 | // since the transfers will no longer be possible to reorder. To avoid |
| 83 | // that, the initial splitting will not add any implicit uses. These |
| 84 | // implicit uses will be added later, after predication. The extra price, |
| 85 | // however, is that finding the locations where the implicit uses need |
| 86 | // to be added, and updating the live ranges will be more involved. |
| 87 | |
| 88 | #include "Hexagon.h" |
| 89 | #include "HexagonInstrInfo.h" |
| 90 | #include "HexagonRegisterInfo.h" |
| 91 | #include "llvm/ADT/DenseMap.h" |
| 92 | #include "llvm/ADT/SetVector.h" |
| 93 | #include "llvm/ADT/SmallVector.h" |
| 94 | #include "llvm/ADT/StringRef.h" |
| 95 | #include "llvm/CodeGen/LiveInterval.h" |
| 96 | #include "llvm/CodeGen/LiveIntervals.h" |
| 97 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 98 | #include "llvm/CodeGen/MachineDominators.h" |
| 99 | #include "llvm/CodeGen/MachineFunction.h" |
| 100 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 101 | #include "llvm/CodeGen/MachineInstr.h" |
| 102 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 103 | #include "llvm/CodeGen/MachineOperand.h" |
| 104 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 105 | #include "llvm/CodeGen/SlotIndexes.h" |
| 106 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 107 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 108 | #include "llvm/IR/DebugLoc.h" |
| 109 | #include "llvm/IR/Function.h" |
| 110 | #include "llvm/InitializePasses.h" |
| 111 | #include "llvm/MC/LaneBitmask.h" |
| 112 | #include "llvm/Pass.h" |
| 113 | #include "llvm/Support/CommandLine.h" |
| 114 | #include "llvm/Support/Debug.h" |
| 115 | #include "llvm/Support/ErrorHandling.h" |
| 116 | #include "llvm/Support/raw_ostream.h" |
| 117 | #include <cassert> |
| 118 | #include <iterator> |
| 119 | #include <map> |
| 120 | #include <set> |
| 121 | #include <utility> |
| 122 | |
| 123 | #define DEBUG_TYPE "expand-condsets" |
| 124 | |
| 125 | using namespace llvm; |
| 126 | |
| 127 | static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit" , |
| 128 | cl::init(Val: ~0U), cl::Hidden, cl::desc("Max number of mux expansions" )); |
| 129 | static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit" , |
| 130 | cl::init(Val: ~0U), cl::Hidden, cl::desc("Max number of segment coalescings" )); |
| 131 | |
| 132 | namespace { |
| 133 | |
| 134 | class HexagonExpandCondsets : public MachineFunctionPass { |
| 135 | public: |
| 136 | static char ID; |
| 137 | |
| 138 | HexagonExpandCondsets() : MachineFunctionPass(ID) { |
| 139 | if (OptCoaLimit.getPosition()) |
| 140 | CoaLimitActive = true, CoaLimit = OptCoaLimit; |
| 141 | if (OptTfrLimit.getPosition()) |
| 142 | TfrLimitActive = true, TfrLimit = OptTfrLimit; |
| 143 | } |
| 144 | |
| 145 | StringRef getPassName() const override { return "Hexagon Expand Condsets" ; } |
| 146 | |
| 147 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 148 | AU.addRequired<LiveIntervalsWrapperPass>(); |
| 149 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 150 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 151 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 152 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 153 | MachineFunctionPass::getAnalysisUsage(AU); |
| 154 | } |
| 155 | |
| 156 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 157 | |
| 158 | private: |
| 159 | const HexagonInstrInfo *HII = nullptr; |
| 160 | const TargetRegisterInfo *TRI = nullptr; |
| 161 | MachineDominatorTree *MDT; |
| 162 | MachineRegisterInfo *MRI = nullptr; |
| 163 | LiveIntervals *LIS = nullptr; |
| 164 | bool CoaLimitActive = false; |
| 165 | bool TfrLimitActive = false; |
| 166 | unsigned CoaLimit; |
| 167 | unsigned TfrLimit; |
| 168 | unsigned CoaCounter = 0; |
| 169 | unsigned TfrCounter = 0; |
| 170 | |
| 171 | // FIXME: Consolidate duplicate definitions of RegisterRef |
| 172 | struct RegisterRef { |
| 173 | RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), |
| 174 | Sub(Op.getSubReg()) {} |
| 175 | RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} |
| 176 | |
| 177 | bool operator== (RegisterRef RR) const { |
| 178 | return Reg == RR.Reg && Sub == RR.Sub; |
| 179 | } |
| 180 | bool operator!= (RegisterRef RR) const { return !operator==(RR); } |
| 181 | bool operator< (RegisterRef RR) const { |
| 182 | return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); |
| 183 | } |
| 184 | |
| 185 | Register Reg; |
| 186 | unsigned Sub; |
| 187 | }; |
| 188 | |
| 189 | using ReferenceMap = DenseMap<unsigned, unsigned>; |
| 190 | enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; |
| 191 | enum { Exec_Then = 0x10, Exec_Else = 0x20 }; |
| 192 | |
| 193 | unsigned getMaskForSub(unsigned Sub); |
| 194 | bool isCondset(const MachineInstr &MI); |
| 195 | LaneBitmask getLaneMask(Register Reg, unsigned Sub); |
| 196 | |
| 197 | void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); |
| 198 | bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); |
| 199 | |
| 200 | void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range); |
| 201 | void updateKillFlags(Register Reg); |
| 202 | void updateDeadFlags(Register Reg); |
| 203 | void recalculateLiveInterval(Register Reg); |
| 204 | void removeInstr(MachineInstr &MI); |
| 205 | void updateLiveness(const std::set<Register> &RegSet, bool Recalc, |
| 206 | bool UpdateKills, bool UpdateDeads); |
| 207 | void distributeLiveIntervals(const std::set<Register> &Regs); |
| 208 | |
| 209 | unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); |
| 210 | MachineInstr *genCondTfrFor(MachineOperand &SrcOp, |
| 211 | MachineBasicBlock::iterator At, unsigned DstR, |
| 212 | unsigned DstSR, const MachineOperand &PredOp, bool PredSense, |
| 213 | bool ReadUndef, bool ImpUse); |
| 214 | bool split(MachineInstr &MI, std::set<Register> &UpdRegs); |
| 215 | |
| 216 | bool isPredicable(MachineInstr *MI); |
| 217 | MachineInstr *getReachingDefForPred(RegisterRef RD, |
| 218 | MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); |
| 219 | bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); |
| 220 | bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); |
| 221 | void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, |
| 222 | MachineBasicBlock::iterator Where, |
| 223 | const MachineOperand &PredOp, bool Cond, |
| 224 | std::set<Register> &UpdRegs); |
| 225 | void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, |
| 226 | bool Cond, MachineBasicBlock::iterator First, |
| 227 | MachineBasicBlock::iterator Last); |
| 228 | bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs); |
| 229 | bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs); |
| 230 | |
| 231 | bool isIntReg(RegisterRef RR, unsigned &BW); |
| 232 | bool isIntraBlocks(LiveInterval &LI); |
| 233 | bool coalesceRegisters(RegisterRef R1, RegisterRef R2); |
| 234 | bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets, |
| 235 | std::set<Register> &UpdRegs); |
| 236 | }; |
| 237 | |
| 238 | } // end anonymous namespace |
| 239 | |
| 240 | char HexagonExpandCondsets::ID = 0; |
| 241 | char &llvm::HexagonExpandCondsetsID = HexagonExpandCondsets::ID; |
| 242 | |
| 243 | INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets" , |
| 244 | "Hexagon Expand Condsets" , false, false) |
| 245 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 246 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
| 247 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
| 248 | INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets" , |
| 249 | "Hexagon Expand Condsets" , false, false) |
| 250 | |
| 251 | unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { |
| 252 | switch (Sub) { |
| 253 | case Hexagon::isub_lo: |
| 254 | case Hexagon::vsub_lo: |
| 255 | return Sub_Low; |
| 256 | case Hexagon::isub_hi: |
| 257 | case Hexagon::vsub_hi: |
| 258 | return Sub_High; |
| 259 | case Hexagon::NoSubRegister: |
| 260 | return Sub_None; |
| 261 | } |
| 262 | llvm_unreachable("Invalid subregister" ); |
| 263 | } |
| 264 | |
| 265 | bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { |
| 266 | unsigned Opc = MI.getOpcode(); |
| 267 | switch (Opc) { |
| 268 | case Hexagon::C2_mux: |
| 269 | case Hexagon::C2_muxii: |
| 270 | case Hexagon::C2_muxir: |
| 271 | case Hexagon::C2_muxri: |
| 272 | case Hexagon::PS_pselect: |
| 273 | return true; |
| 274 | break; |
| 275 | } |
| 276 | return false; |
| 277 | } |
| 278 | |
| 279 | LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) { |
| 280 | assert(Reg.isVirtual()); |
| 281 | return Sub != 0 ? TRI->getSubRegIndexLaneMask(SubIdx: Sub) |
| 282 | : MRI->getMaxLaneMaskForVReg(Reg); |
| 283 | } |
| 284 | |
| 285 | void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, |
| 286 | unsigned Exec) { |
| 287 | unsigned Mask = getMaskForSub(Sub: RR.Sub) | Exec; |
| 288 | Map[RR.Reg] |= Mask; |
| 289 | } |
| 290 | |
| 291 | bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, |
| 292 | unsigned Exec) { |
| 293 | ReferenceMap::iterator F = Map.find(Val: RR.Reg); |
| 294 | if (F == Map.end()) |
| 295 | return false; |
| 296 | unsigned Mask = getMaskForSub(Sub: RR.Sub) | Exec; |
| 297 | if (Mask & F->second) |
| 298 | return true; |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | void HexagonExpandCondsets::updateKillFlags(Register Reg) { |
| 303 | auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { |
| 304 | // Set the <kill> flag on a use of Reg whose lane mask is contained in LM. |
| 305 | MachineInstr *MI = LIS->getInstructionFromIndex(index: K); |
| 306 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 307 | MachineOperand &Op = MI->getOperand(i); |
| 308 | if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg || |
| 309 | MI->isRegTiedToDefOperand(UseOpIdx: i)) |
| 310 | continue; |
| 311 | LaneBitmask SLM = getLaneMask(Reg, Sub: Op.getSubReg()); |
| 312 | if ((SLM & LM) == SLM) { |
| 313 | // Only set the kill flag on the first encountered use of Reg in this |
| 314 | // instruction. |
| 315 | Op.setIsKill(true); |
| 316 | break; |
| 317 | } |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | LiveInterval &LI = LIS->getInterval(Reg); |
| 322 | for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { |
| 323 | if (!I->end.isRegister()) |
| 324 | continue; |
| 325 | // Do not mark the end of the segment as <kill>, if the next segment |
| 326 | // starts with a predicated instruction. |
| 327 | auto NextI = std::next(x: I); |
| 328 | if (NextI != E && NextI->start.isRegister()) { |
| 329 | MachineInstr *DefI = LIS->getInstructionFromIndex(index: NextI->start); |
| 330 | if (HII->isPredicated(MI: *DefI)) |
| 331 | continue; |
| 332 | } |
| 333 | bool WholeReg = true; |
| 334 | if (LI.hasSubRanges()) { |
| 335 | auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { |
| 336 | LiveRange::iterator F = S.find(Pos: I->end); |
| 337 | return F != S.end() && I->end == F->end; |
| 338 | }; |
| 339 | // Check if all subranges end at I->end. If so, make sure to kill |
| 340 | // the whole register. |
| 341 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 342 | if (EndsAtI(S)) |
| 343 | KillAt(I->end, S.LaneMask); |
| 344 | else |
| 345 | WholeReg = false; |
| 346 | } |
| 347 | } |
| 348 | if (WholeReg) |
| 349 | KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM, |
| 354 | LiveRange &Range) { |
| 355 | assert(Reg.isVirtual()); |
| 356 | if (Range.empty()) |
| 357 | return; |
| 358 | |
| 359 | // Return two booleans: { def-modifes-reg, def-covers-reg }. |
| 360 | auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { |
| 361 | if (!Op.isReg() || !Op.isDef()) |
| 362 | return { false, false }; |
| 363 | Register DR = Op.getReg(), DSR = Op.getSubReg(); |
| 364 | if (!DR.isVirtual() || DR != Reg) |
| 365 | return { false, false }; |
| 366 | LaneBitmask SLM = getLaneMask(Reg: DR, Sub: DSR); |
| 367 | LaneBitmask A = SLM & LM; |
| 368 | return { A.any(), A == SLM }; |
| 369 | }; |
| 370 | |
| 371 | // The splitting step will create pairs of predicated definitions without |
| 372 | // any implicit uses (since implicit uses would interfere with predication). |
| 373 | // This can cause the reaching defs to become dead after live range |
| 374 | // recomputation, even though they are not really dead. |
| 375 | // We need to identify predicated defs that need implicit uses, and |
| 376 | // dead defs that are not really dead, and correct both problems. |
| 377 | |
| 378 | auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, |
| 379 | MachineBasicBlock *Dest) -> bool { |
| 380 | for (MachineBasicBlock *D : Defs) { |
| 381 | if (D != Dest && MDT->dominates(A: D, B: Dest)) |
| 382 | return true; |
| 383 | } |
| 384 | MachineBasicBlock *Entry = &Dest->getParent()->front(); |
| 385 | SetVector<MachineBasicBlock *> Work(llvm::from_range, Dest->predecessors()); |
| 386 | for (unsigned i = 0; i < Work.size(); ++i) { |
| 387 | MachineBasicBlock *B = Work[i]; |
| 388 | if (Defs.count(key: B)) |
| 389 | continue; |
| 390 | if (B == Entry) |
| 391 | return false; |
| 392 | Work.insert_range(R: B->predecessors()); |
| 393 | } |
| 394 | return true; |
| 395 | }; |
| 396 | |
| 397 | // First, try to extend live range within individual basic blocks. This |
| 398 | // will leave us only with dead defs that do not reach any predicated |
| 399 | // defs in the same block. |
| 400 | SetVector<MachineBasicBlock*> Defs; |
| 401 | SmallVector<SlotIndex,4> PredDefs; |
| 402 | for (auto &Seg : Range) { |
| 403 | if (!Seg.start.isRegister()) |
| 404 | continue; |
| 405 | MachineInstr *DefI = LIS->getInstructionFromIndex(index: Seg.start); |
| 406 | Defs.insert(X: DefI->getParent()); |
| 407 | if (HII->isPredicated(MI: *DefI)) |
| 408 | PredDefs.push_back(Elt: Seg.start); |
| 409 | } |
| 410 | |
| 411 | SmallVector<SlotIndex,8> Undefs; |
| 412 | LiveInterval &LI = LIS->getInterval(Reg); |
| 413 | LI.computeSubRangeUndefs(Undefs, LaneMask: LM, MRI: *MRI, Indexes: *LIS->getSlotIndexes()); |
| 414 | |
| 415 | for (auto &SI : PredDefs) { |
| 416 | MachineBasicBlock *BB = LIS->getMBBFromIndex(index: SI); |
| 417 | auto P = Range.extendInBlock(Undefs, StartIdx: LIS->getMBBStartIdx(mbb: BB), Kill: SI); |
| 418 | if (P.first != nullptr || P.second) |
| 419 | SI = SlotIndex(); |
| 420 | } |
| 421 | |
| 422 | // Calculate reachability for those predicated defs that were not handled |
| 423 | // by the in-block extension. |
| 424 | SmallVector<SlotIndex,4> ExtTo; |
| 425 | for (auto &SI : PredDefs) { |
| 426 | if (!SI.isValid()) |
| 427 | continue; |
| 428 | MachineBasicBlock *BB = LIS->getMBBFromIndex(index: SI); |
| 429 | if (BB->pred_empty()) |
| 430 | continue; |
| 431 | // If the defs from this range reach SI via all predecessors, it is live. |
| 432 | // It can happen that SI is reached by the defs through some paths, but |
| 433 | // not all. In the IR coming into this optimization, SI would not be |
| 434 | // considered live, since the defs would then not jointly dominate SI. |
| 435 | // That means that SI is an overwriting def, and no implicit use is |
| 436 | // needed at this point. Do not add SI to the extension points, since |
| 437 | // extendToIndices will abort if there is no joint dominance. |
| 438 | // If the abort was avoided by adding extra undefs added to Undefs, |
| 439 | // extendToIndices could actually indicate that SI is live, contrary |
| 440 | // to the original IR. |
| 441 | if (Dominate(Defs, BB)) |
| 442 | ExtTo.push_back(Elt: SI); |
| 443 | } |
| 444 | |
| 445 | if (!ExtTo.empty()) |
| 446 | LIS->extendToIndices(LR&: Range, Indices: ExtTo, Undefs); |
| 447 | |
| 448 | // Remove <dead> flags from all defs that are not dead after live range |
| 449 | // extension, and collect all def operands. They will be used to generate |
| 450 | // the necessary implicit uses. |
| 451 | // At the same time, add <dead> flag to all defs that are actually dead. |
| 452 | // This can happen, for example, when a mux with identical inputs is |
| 453 | // replaced with a COPY: the use of the predicate register disappears and |
| 454 | // the dead can become dead. |
| 455 | std::set<RegisterRef> DefRegs; |
| 456 | for (auto &Seg : Range) { |
| 457 | if (!Seg.start.isRegister()) |
| 458 | continue; |
| 459 | MachineInstr *DefI = LIS->getInstructionFromIndex(index: Seg.start); |
| 460 | for (auto &Op : DefI->operands()) { |
| 461 | auto P = IsRegDef(Op); |
| 462 | if (P.second && Seg.end.isDead()) { |
| 463 | Op.setIsDead(true); |
| 464 | } else if (P.first) { |
| 465 | DefRegs.insert(x: Op); |
| 466 | Op.setIsDead(false); |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | // Now, add implicit uses to each predicated def that is reached |
| 472 | // by other defs. |
| 473 | for (auto &Seg : Range) { |
| 474 | if (!Seg.start.isRegister() || !Range.liveAt(index: Seg.start.getPrevSlot())) |
| 475 | continue; |
| 476 | MachineInstr *DefI = LIS->getInstructionFromIndex(index: Seg.start); |
| 477 | if (!HII->isPredicated(MI: *DefI)) |
| 478 | continue; |
| 479 | // Construct the set of all necessary implicit uses, based on the def |
| 480 | // operands in the instruction. We need to tie the implicit uses to |
| 481 | // the corresponding defs. |
| 482 | std::map<RegisterRef,unsigned> ImpUses; |
| 483 | for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) { |
| 484 | MachineOperand &Op = DefI->getOperand(i); |
| 485 | if (!Op.isReg() || !DefRegs.count(x: Op)) |
| 486 | continue; |
| 487 | if (Op.isDef()) { |
| 488 | // Tied defs will always have corresponding uses, so no extra |
| 489 | // implicit uses are needed. |
| 490 | if (!Op.isTied()) |
| 491 | ImpUses.insert(x: {Op, i}); |
| 492 | } else { |
| 493 | // This function can be called for the same register with different |
| 494 | // lane masks. If the def in this instruction was for the whole |
| 495 | // register, we can get here more than once. Avoid adding multiple |
| 496 | // implicit uses (or adding an implicit use when an explicit one is |
| 497 | // present). |
| 498 | if (Op.isTied()) |
| 499 | ImpUses.erase(x: Op); |
| 500 | } |
| 501 | } |
| 502 | if (ImpUses.empty()) |
| 503 | continue; |
| 504 | MachineFunction &MF = *DefI->getParent()->getParent(); |
| 505 | for (auto [R, DefIdx] : ImpUses) { |
| 506 | MachineInstrBuilder(MF, DefI).addReg(RegNo: R.Reg, flags: RegState::Implicit, SubReg: R.Sub); |
| 507 | DefI->tieOperands(DefIdx, UseIdx: DefI->getNumOperands()-1); |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | void HexagonExpandCondsets::updateDeadFlags(Register Reg) { |
| 513 | LiveInterval &LI = LIS->getInterval(Reg); |
| 514 | if (LI.hasSubRanges()) { |
| 515 | for (LiveInterval::SubRange &S : LI.subranges()) { |
| 516 | updateDeadsInRange(Reg, LM: S.LaneMask, Range&: S); |
| 517 | LIS->shrinkToUses(SR&: S, Reg); |
| 518 | } |
| 519 | LI.clear(); |
| 520 | LIS->constructMainRangeFromSubranges(LI); |
| 521 | } else { |
| 522 | updateDeadsInRange(Reg, LM: MRI->getMaxLaneMaskForVReg(Reg), Range&: LI); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) { |
| 527 | LIS->removeInterval(Reg); |
| 528 | LIS->createAndComputeVirtRegInterval(Reg); |
| 529 | } |
| 530 | |
| 531 | void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { |
| 532 | LIS->RemoveMachineInstrFromMaps(MI); |
| 533 | MI.eraseFromParent(); |
| 534 | } |
| 535 | |
| 536 | void HexagonExpandCondsets::updateLiveness(const std::set<Register> &RegSet, |
| 537 | bool Recalc, bool UpdateKills, |
| 538 | bool UpdateDeads) { |
| 539 | UpdateKills |= UpdateDeads; |
| 540 | for (Register R : RegSet) { |
| 541 | if (!R.isVirtual()) { |
| 542 | assert(R.isPhysical()); |
| 543 | // There shouldn't be any physical registers as operands, except |
| 544 | // possibly reserved registers. |
| 545 | assert(MRI->isReserved(R)); |
| 546 | continue; |
| 547 | } |
| 548 | if (Recalc) |
| 549 | recalculateLiveInterval(Reg: R); |
| 550 | if (UpdateKills) |
| 551 | MRI->clearKillFlags(Reg: R); |
| 552 | if (UpdateDeads) |
| 553 | updateDeadFlags(Reg: R); |
| 554 | // Fixing <dead> flags may extend live ranges, so reset <kill> flags |
| 555 | // after that. |
| 556 | if (UpdateKills) |
| 557 | updateKillFlags(Reg: R); |
| 558 | assert(LIS->getInterval(R).verify()); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | void HexagonExpandCondsets::distributeLiveIntervals( |
| 563 | const std::set<Register> &Regs) { |
| 564 | ConnectedVNInfoEqClasses EQC(*LIS); |
| 565 | for (Register R : Regs) { |
| 566 | if (!R.isVirtual()) |
| 567 | continue; |
| 568 | LiveInterval &LI = LIS->getInterval(Reg: R); |
| 569 | unsigned NumComp = EQC.Classify(LR: LI); |
| 570 | if (NumComp == 1) |
| 571 | continue; |
| 572 | |
| 573 | SmallVector<LiveInterval*> NewLIs; |
| 574 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: LI.reg()); |
| 575 | for (unsigned I = 1; I < NumComp; ++I) { |
| 576 | Register NewR = MRI->createVirtualRegister(RegClass: RC); |
| 577 | NewLIs.push_back(Elt: &LIS->createEmptyInterval(Reg: NewR)); |
| 578 | } |
| 579 | EQC.Distribute(LI, LIV: NewLIs.begin(), MRI&: *MRI); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | /// Get the opcode for a conditional transfer of the value in SO (source |
| 584 | /// operand). The condition (true/false) is given in Cond. |
| 585 | unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, |
| 586 | bool IfTrue) { |
| 587 | if (SO.isReg()) { |
| 588 | MCRegister PhysR; |
| 589 | RegisterRef RS = SO; |
| 590 | if (RS.Reg.isVirtual()) { |
| 591 | const TargetRegisterClass *VC = MRI->getRegClass(Reg: RS.Reg); |
| 592 | assert(VC->begin() != VC->end() && "Empty register class" ); |
| 593 | PhysR = *VC->begin(); |
| 594 | } else { |
| 595 | PhysR = RS.Reg; |
| 596 | } |
| 597 | MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(Reg: PhysR, Idx: RS.Sub); |
| 598 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg: PhysS); |
| 599 | switch (TRI->getRegSizeInBits(RC: *RC)) { |
| 600 | case 32: |
| 601 | return IfTrue ? Hexagon::A2_tfrt : Hexagon::A2_tfrf; |
| 602 | case 64: |
| 603 | return IfTrue ? Hexagon::A2_tfrpt : Hexagon::A2_tfrpf; |
| 604 | } |
| 605 | llvm_unreachable("Invalid register operand" ); |
| 606 | } |
| 607 | switch (SO.getType()) { |
| 608 | case MachineOperand::MO_Immediate: |
| 609 | case MachineOperand::MO_FPImmediate: |
| 610 | case MachineOperand::MO_ConstantPoolIndex: |
| 611 | case MachineOperand::MO_TargetIndex: |
| 612 | case MachineOperand::MO_JumpTableIndex: |
| 613 | case MachineOperand::MO_ExternalSymbol: |
| 614 | case MachineOperand::MO_GlobalAddress: |
| 615 | case MachineOperand::MO_BlockAddress: |
| 616 | return IfTrue ? Hexagon::C2_cmoveit : Hexagon::C2_cmoveif; |
| 617 | default: |
| 618 | break; |
| 619 | } |
| 620 | llvm_unreachable("Unexpected source operand" ); |
| 621 | } |
| 622 | |
| 623 | /// Generate a conditional transfer, copying the value SrcOp to the |
| 624 | /// destination register DstR:DstSR, and using the predicate register from |
| 625 | /// PredOp. The Cond argument specifies whether the predicate is to be |
| 626 | /// if(PredOp), or if(!PredOp). |
| 627 | MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, |
| 628 | MachineBasicBlock::iterator At, |
| 629 | unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, |
| 630 | bool PredSense, bool ReadUndef, bool ImpUse) { |
| 631 | MachineInstr *MI = SrcOp.getParent(); |
| 632 | MachineBasicBlock &B = *At->getParent(); |
| 633 | const DebugLoc &DL = MI->getDebugLoc(); |
| 634 | |
| 635 | // Don't avoid identity copies here (i.e. if the source and the destination |
| 636 | // are the same registers). It is actually better to generate them here, |
| 637 | // since this would cause the copy to potentially be predicated in the next |
| 638 | // step. The predication will remove such a copy if it is unable to |
| 639 | /// predicate. |
| 640 | |
| 641 | unsigned Opc = getCondTfrOpcode(SO: SrcOp, IfTrue: PredSense); |
| 642 | unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); |
| 643 | unsigned PredState = getRegState(RegOp: PredOp) & ~RegState::Kill; |
| 644 | MachineInstrBuilder MIB; |
| 645 | |
| 646 | if (SrcOp.isReg()) { |
| 647 | unsigned SrcState = getRegState(RegOp: SrcOp); |
| 648 | if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) |
| 649 | SrcState &= ~RegState::Kill; |
| 650 | MIB = BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII->get(Opcode: Opc)) |
| 651 | .addReg(RegNo: DstR, flags: DstState, SubReg: DstSR) |
| 652 | .addReg(RegNo: PredOp.getReg(), flags: PredState, SubReg: PredOp.getSubReg()) |
| 653 | .addReg(RegNo: SrcOp.getReg(), flags: SrcState, SubReg: SrcOp.getSubReg()); |
| 654 | } else { |
| 655 | MIB = BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII->get(Opcode: Opc)) |
| 656 | .addReg(RegNo: DstR, flags: DstState, SubReg: DstSR) |
| 657 | .addReg(RegNo: PredOp.getReg(), flags: PredState, SubReg: PredOp.getSubReg()) |
| 658 | .add(MO: SrcOp); |
| 659 | } |
| 660 | |
| 661 | LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB); |
| 662 | return &*MIB; |
| 663 | } |
| 664 | |
| 665 | /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function |
| 666 | /// performs all necessary changes to complete the replacement. |
| 667 | bool HexagonExpandCondsets::split(MachineInstr &MI, |
| 668 | std::set<Register> &UpdRegs) { |
| 669 | if (TfrLimitActive) { |
| 670 | if (TfrCounter >= TfrLimit) |
| 671 | return false; |
| 672 | TfrCounter++; |
| 673 | } |
| 674 | LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) |
| 675 | << ": " << MI); |
| 676 | MachineOperand &MD = MI.getOperand(i: 0); // Definition |
| 677 | MachineOperand &MP = MI.getOperand(i: 1); // Predicate register |
| 678 | assert(MD.isDef()); |
| 679 | Register DR = MD.getReg(), DSR = MD.getSubReg(); |
| 680 | bool ReadUndef = MD.isUndef(); |
| 681 | MachineBasicBlock::iterator At = MI; |
| 682 | |
| 683 | auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void { |
| 684 | for (auto &Op : MI.operands()) { |
| 685 | if (Op.isReg()) |
| 686 | UpdRegs.insert(x: Op.getReg()); |
| 687 | } |
| 688 | }; |
| 689 | |
| 690 | // If this is a mux of the same register, just replace it with COPY. |
| 691 | // Ideally, this would happen earlier, so that register coalescing would |
| 692 | // see it. |
| 693 | MachineOperand &ST = MI.getOperand(i: 2); |
| 694 | MachineOperand &SF = MI.getOperand(i: 3); |
| 695 | if (ST.isReg() && SF.isReg()) { |
| 696 | RegisterRef RT(ST); |
| 697 | if (RT == RegisterRef(SF)) { |
| 698 | // Copy regs to update first. |
| 699 | updateRegs(MI); |
| 700 | MI.setDesc(HII->get(Opcode: TargetOpcode::COPY)); |
| 701 | unsigned S = getRegState(RegOp: ST); |
| 702 | while (MI.getNumOperands() > 1) |
| 703 | MI.removeOperand(OpNo: MI.getNumOperands()-1); |
| 704 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 705 | MachineInstrBuilder(MF, MI).addReg(RegNo: RT.Reg, flags: S, SubReg: RT.Sub); |
| 706 | return true; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | // First, create the two individual conditional transfers, and add each |
| 711 | // of them to the live intervals information. Do that first and then remove |
| 712 | // the old instruction from live intervals. |
| 713 | MachineInstr *TfrT = |
| 714 | genCondTfrFor(SrcOp&: ST, At, DstR: DR, DstSR: DSR, PredOp: MP, PredSense: true, ReadUndef, ImpUse: false); |
| 715 | MachineInstr *TfrF = |
| 716 | genCondTfrFor(SrcOp&: SF, At, DstR: DR, DstSR: DSR, PredOp: MP, PredSense: false, ReadUndef, ImpUse: true); |
| 717 | LIS->InsertMachineInstrInMaps(MI&: *TfrT); |
| 718 | LIS->InsertMachineInstrInMaps(MI&: *TfrF); |
| 719 | |
| 720 | // Will need to recalculate live intervals for all registers in MI. |
| 721 | updateRegs(MI); |
| 722 | |
| 723 | removeInstr(MI); |
| 724 | return true; |
| 725 | } |
| 726 | |
| 727 | bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { |
| 728 | if (HII->isPredicated(MI: *MI) || !HII->isPredicable(MI: *MI)) |
| 729 | return false; |
| 730 | if (MI->hasUnmodeledSideEffects() || MI->mayStore()) |
| 731 | return false; |
| 732 | // Reject instructions with multiple defs (e.g. post-increment loads). |
| 733 | bool HasDef = false; |
| 734 | for (auto &Op : MI->operands()) { |
| 735 | if (!Op.isReg() || !Op.isDef()) |
| 736 | continue; |
| 737 | if (HasDef) |
| 738 | return false; |
| 739 | HasDef = true; |
| 740 | } |
| 741 | for (auto &Mo : MI->memoperands()) { |
| 742 | if (Mo->isVolatile() || Mo->isAtomic()) |
| 743 | return false; |
| 744 | } |
| 745 | return true; |
| 746 | } |
| 747 | |
| 748 | /// Find the reaching definition for a predicated use of RD. The RD is used |
| 749 | /// under the conditions given by PredR and Cond, and this function will ignore |
| 750 | /// definitions that set RD under the opposite conditions. |
| 751 | MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, |
| 752 | MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { |
| 753 | MachineBasicBlock &B = *UseIt->getParent(); |
| 754 | MachineBasicBlock::iterator I = UseIt, S = B.begin(); |
| 755 | if (I == S) |
| 756 | return nullptr; |
| 757 | |
| 758 | bool PredValid = true; |
| 759 | do { |
| 760 | --I; |
| 761 | MachineInstr *MI = &*I; |
| 762 | // Check if this instruction can be ignored, i.e. if it is predicated |
| 763 | // on the complementary condition. |
| 764 | if (PredValid && HII->isPredicated(MI: *MI)) { |
| 765 | if (MI->readsRegister(Reg: PredR, /*TRI=*/nullptr) && |
| 766 | (Cond != HII->isPredicatedTrue(MI: *MI))) |
| 767 | continue; |
| 768 | } |
| 769 | |
| 770 | // Check the defs. If the PredR is defined, invalidate it. If RD is |
| 771 | // defined, return the instruction or 0, depending on the circumstances. |
| 772 | for (auto &Op : MI->operands()) { |
| 773 | if (!Op.isReg() || !Op.isDef()) |
| 774 | continue; |
| 775 | RegisterRef RR = Op; |
| 776 | if (RR.Reg == PredR) { |
| 777 | PredValid = false; |
| 778 | continue; |
| 779 | } |
| 780 | if (RR.Reg != RD.Reg) |
| 781 | continue; |
| 782 | // If the "Reg" part agrees, there is still the subregister to check. |
| 783 | // If we are looking for %1:loreg, we can skip %1:hireg, but |
| 784 | // not %1 (w/o subregisters). |
| 785 | if (RR.Sub == RD.Sub) |
| 786 | return MI; |
| 787 | if (RR.Sub == 0 || RD.Sub == 0) |
| 788 | return nullptr; |
| 789 | // We have different subregisters, so we can continue looking. |
| 790 | } |
| 791 | } while (I != S); |
| 792 | |
| 793 | return nullptr; |
| 794 | } |
| 795 | |
| 796 | /// Check if the instruction MI can be safely moved over a set of instructions |
| 797 | /// whose side-effects (in terms of register defs and uses) are expressed in |
| 798 | /// the maps Defs and Uses. These maps reflect the conditional defs and uses |
| 799 | /// that depend on the same predicate register to allow moving instructions |
| 800 | /// over instructions predicated on the opposite condition. |
| 801 | bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, |
| 802 | ReferenceMap &Uses) { |
| 803 | // In order to be able to safely move MI over instructions that define |
| 804 | // "Defs" and use "Uses", no def operand from MI can be defined or used |
| 805 | // and no use operand can be defined. |
| 806 | for (auto &Op : MI.operands()) { |
| 807 | if (!Op.isReg()) |
| 808 | continue; |
| 809 | RegisterRef RR = Op; |
| 810 | // For physical register we would need to check register aliases, etc. |
| 811 | // and we don't want to bother with that. It would be of little value |
| 812 | // before the actual register rewriting (from virtual to physical). |
| 813 | if (!RR.Reg.isVirtual()) |
| 814 | return false; |
| 815 | // No redefs for any operand. |
| 816 | if (isRefInMap(RR, Map&: Defs, Exec: Exec_Then)) |
| 817 | return false; |
| 818 | // For defs, there cannot be uses. |
| 819 | if (Op.isDef() && isRefInMap(RR, Map&: Uses, Exec: Exec_Then)) |
| 820 | return false; |
| 821 | } |
| 822 | return true; |
| 823 | } |
| 824 | |
| 825 | /// Check if the instruction accessing memory (TheI) can be moved to the |
| 826 | /// location ToI. |
| 827 | bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, |
| 828 | bool IsDown) { |
| 829 | bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); |
| 830 | if (!IsLoad && !IsStore) |
| 831 | return true; |
| 832 | if (HII->areMemAccessesTriviallyDisjoint(MIa: TheI, MIb: ToI)) |
| 833 | return true; |
| 834 | if (TheI.hasUnmodeledSideEffects()) |
| 835 | return false; |
| 836 | |
| 837 | MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; |
| 838 | MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; |
| 839 | bool Ordered = TheI.hasOrderedMemoryRef(); |
| 840 | |
| 841 | // Search for aliased memory reference in (StartI, EndI). |
| 842 | for (MachineInstr &MI : llvm::make_range(x: std::next(x: StartI), y: EndI)) { |
| 843 | if (MI.hasUnmodeledSideEffects()) |
| 844 | return false; |
| 845 | bool L = MI.mayLoad(), S = MI.mayStore(); |
| 846 | if (!L && !S) |
| 847 | continue; |
| 848 | if (Ordered && MI.hasOrderedMemoryRef()) |
| 849 | return false; |
| 850 | |
| 851 | bool Conflict = (L && IsStore) || S; |
| 852 | if (Conflict) |
| 853 | return false; |
| 854 | } |
| 855 | return true; |
| 856 | } |
| 857 | |
| 858 | /// Generate a predicated version of MI (where the condition is given via |
| 859 | /// PredR and Cond) at the point indicated by Where. |
| 860 | void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, |
| 861 | MachineInstr &MI, |
| 862 | MachineBasicBlock::iterator Where, |
| 863 | const MachineOperand &PredOp, bool Cond, |
| 864 | std::set<Register> &UpdRegs) { |
| 865 | // The problem with updating live intervals is that we can move one def |
| 866 | // past another def. In particular, this can happen when moving an A2_tfrt |
| 867 | // over an A2_tfrf defining the same register. From the point of view of |
| 868 | // live intervals, these two instructions are two separate definitions, |
| 869 | // and each one starts another live segment. LiveIntervals's "handleMove" |
| 870 | // does not allow such moves, so we need to handle it ourselves. To avoid |
| 871 | // invalidating liveness data while we are using it, the move will be |
| 872 | // implemented in 4 steps: (1) add a clone of the instruction MI at the |
| 873 | // target location, (2) update liveness, (3) delete the old instruction, |
| 874 | // and (4) update liveness again. |
| 875 | |
| 876 | MachineBasicBlock &B = *MI.getParent(); |
| 877 | DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. |
| 878 | unsigned Opc = MI.getOpcode(); |
| 879 | unsigned PredOpc = HII->getCondOpcode(Opc, sense: !Cond); |
| 880 | MachineInstrBuilder MB = BuildMI(BB&: B, I: Where, MIMD: DL, MCID: HII->get(Opcode: PredOpc)); |
| 881 | unsigned Ox = 0, NP = MI.getNumOperands(); |
| 882 | // Skip all defs from MI first. |
| 883 | while (Ox < NP) { |
| 884 | MachineOperand &MO = MI.getOperand(i: Ox); |
| 885 | if (!MO.isReg() || !MO.isDef()) |
| 886 | break; |
| 887 | Ox++; |
| 888 | } |
| 889 | // Add the new def, then the predicate register, then the rest of the |
| 890 | // operands. |
| 891 | MB.addReg(RegNo: DefOp.getReg(), flags: getRegState(RegOp: DefOp), SubReg: DefOp.getSubReg()); |
| 892 | MB.addReg(RegNo: PredOp.getReg(), flags: PredOp.isUndef() ? RegState::Undef : 0, |
| 893 | SubReg: PredOp.getSubReg()); |
| 894 | while (Ox < NP) { |
| 895 | MachineOperand &MO = MI.getOperand(i: Ox); |
| 896 | if (!MO.isReg() || !MO.isImplicit()) |
| 897 | MB.add(MO); |
| 898 | Ox++; |
| 899 | } |
| 900 | MB.cloneMemRefs(OtherMI: MI); |
| 901 | |
| 902 | MachineInstr *NewI = MB; |
| 903 | NewI->clearKillInfo(); |
| 904 | LIS->InsertMachineInstrInMaps(MI&: *NewI); |
| 905 | |
| 906 | for (auto &Op : NewI->operands()) { |
| 907 | if (Op.isReg()) |
| 908 | UpdRegs.insert(x: Op.getReg()); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /// In the range [First, Last], rename all references to the "old" register RO |
| 913 | /// to the "new" register RN, but only in instructions predicated on the given |
| 914 | /// condition. |
| 915 | void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, |
| 916 | unsigned PredR, bool Cond, MachineBasicBlock::iterator First, |
| 917 | MachineBasicBlock::iterator Last) { |
| 918 | MachineBasicBlock::iterator End = std::next(x: Last); |
| 919 | for (MachineInstr &MI : llvm::make_range(x: First, y: End)) { |
| 920 | // Do not touch instructions that are not predicated, or are predicated |
| 921 | // on the opposite condition. |
| 922 | if (!HII->isPredicated(MI)) |
| 923 | continue; |
| 924 | if (!MI.readsRegister(Reg: PredR, /*TRI=*/nullptr) || |
| 925 | (Cond != HII->isPredicatedTrue(MI))) |
| 926 | continue; |
| 927 | |
| 928 | for (auto &Op : MI.operands()) { |
| 929 | if (!Op.isReg() || RO != RegisterRef(Op)) |
| 930 | continue; |
| 931 | Op.setReg(RN.Reg); |
| 932 | Op.setSubReg(RN.Sub); |
| 933 | // In practice, this isn't supposed to see any defs. |
| 934 | assert(!Op.isDef() && "Not expecting a def" ); |
| 935 | } |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | /// For a given conditional copy, predicate the definition of the source of |
| 940 | /// the copy under the given condition (using the same predicate register as |
| 941 | /// the copy). |
| 942 | bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, |
| 943 | std::set<Register> &UpdRegs) { |
| 944 | // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). |
| 945 | unsigned Opc = TfrI.getOpcode(); |
| 946 | (void)Opc; |
| 947 | assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); |
| 948 | LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false" ) |
| 949 | << ": " << TfrI); |
| 950 | |
| 951 | MachineOperand &MD = TfrI.getOperand(i: 0); |
| 952 | MachineOperand &MP = TfrI.getOperand(i: 1); |
| 953 | MachineOperand &MS = TfrI.getOperand(i: 2); |
| 954 | // The source operand should be a <kill>. This is not strictly necessary, |
| 955 | // but it makes things a lot simpler. Otherwise, we would need to rename |
| 956 | // some registers, which would complicate the transformation considerably. |
| 957 | if (!MS.isKill()) |
| 958 | return false; |
| 959 | // Avoid predicating instructions that define a subregister if subregister |
| 960 | // liveness tracking is not enabled. |
| 961 | if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(VReg: MD.getReg())) |
| 962 | return false; |
| 963 | |
| 964 | RegisterRef RT(MS); |
| 965 | Register PredR = MP.getReg(); |
| 966 | MachineInstr *DefI = getReachingDefForPred(RD: RT, UseIt: TfrI, PredR, Cond); |
| 967 | if (!DefI || !isPredicable(MI: DefI)) |
| 968 | return false; |
| 969 | |
| 970 | LLVM_DEBUG(dbgs() << "Source def: " << *DefI); |
| 971 | |
| 972 | // Collect the information about registers defined and used between the |
| 973 | // DefI and the TfrI. |
| 974 | // Map: reg -> bitmask of subregs |
| 975 | ReferenceMap Uses, Defs; |
| 976 | MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; |
| 977 | |
| 978 | // Check if the predicate register is valid between DefI and TfrI. |
| 979 | // If it is, we can then ignore instructions predicated on the negated |
| 980 | // conditions when collecting def and use information. |
| 981 | bool PredValid = true; |
| 982 | for (MachineInstr &MI : llvm::make_range(x: std::next(x: DefIt), y: TfrIt)) { |
| 983 | if (!MI.modifiesRegister(Reg: PredR, TRI: nullptr)) |
| 984 | continue; |
| 985 | PredValid = false; |
| 986 | break; |
| 987 | } |
| 988 | |
| 989 | for (MachineInstr &MI : llvm::make_range(x: std::next(x: DefIt), y: TfrIt)) { |
| 990 | // If this instruction is predicated on the same register, it could |
| 991 | // potentially be ignored. |
| 992 | // By default assume that the instruction executes on the same condition |
| 993 | // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). |
| 994 | unsigned Exec = Exec_Then | Exec_Else; |
| 995 | if (PredValid && HII->isPredicated(MI) && |
| 996 | MI.readsRegister(Reg: PredR, /*TRI=*/nullptr)) |
| 997 | Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; |
| 998 | |
| 999 | for (auto &Op : MI.operands()) { |
| 1000 | if (!Op.isReg()) |
| 1001 | continue; |
| 1002 | // We don't want to deal with physical registers. The reason is that |
| 1003 | // they can be aliased with other physical registers. Aliased virtual |
| 1004 | // registers must share the same register number, and can only differ |
| 1005 | // in the subregisters, which we are keeping track of. Physical |
| 1006 | // registers ters no longer have subregisters---their super- and |
| 1007 | // subregisters are other physical registers, and we are not checking |
| 1008 | // that. |
| 1009 | RegisterRef RR = Op; |
| 1010 | if (!RR.Reg.isVirtual()) |
| 1011 | return false; |
| 1012 | |
| 1013 | ReferenceMap &Map = Op.isDef() ? Defs : Uses; |
| 1014 | if (Op.isDef() && Op.isUndef()) { |
| 1015 | assert(RR.Sub && "Expecting a subregister on <def,read-undef>" ); |
| 1016 | // If this is a <def,read-undef>, then it invalidates the non-written |
| 1017 | // part of the register. For the purpose of checking the validity of |
| 1018 | // the move, assume that it modifies the whole register. |
| 1019 | RR.Sub = 0; |
| 1020 | } |
| 1021 | addRefToMap(RR, Map, Exec); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | // The situation: |
| 1026 | // RT = DefI |
| 1027 | // ... |
| 1028 | // RD = TfrI ..., RT |
| 1029 | |
| 1030 | // If the register-in-the-middle (RT) is used or redefined between |
| 1031 | // DefI and TfrI, we may not be able proceed with this transformation. |
| 1032 | // We can ignore a def that will not execute together with TfrI, and a |
| 1033 | // use that will. If there is such a use (that does execute together with |
| 1034 | // TfrI), we will not be able to move DefI down. If there is a use that |
| 1035 | // executed if TfrI's condition is false, then RT must be available |
| 1036 | // unconditionally (cannot be predicated). |
| 1037 | // Essentially, we need to be able to rename RT to RD in this segment. |
| 1038 | if (isRefInMap(RR: RT, Map&: Defs, Exec: Exec_Then) || isRefInMap(RR: RT, Map&: Uses, Exec: Exec_Else)) |
| 1039 | return false; |
| 1040 | RegisterRef RD = MD; |
| 1041 | // If the predicate register is defined between DefI and TfrI, the only |
| 1042 | // potential thing to do would be to move the DefI down to TfrI, and then |
| 1043 | // predicate. The reaching def (DefI) must be movable down to the location |
| 1044 | // of the TfrI. |
| 1045 | // If the target register of the TfrI (RD) is not used or defined between |
| 1046 | // DefI and TfrI, consider moving TfrI up to DefI. |
| 1047 | bool CanUp = canMoveOver(MI&: TfrI, Defs, Uses); |
| 1048 | bool CanDown = canMoveOver(MI&: *DefI, Defs, Uses); |
| 1049 | // The TfrI does not access memory, but DefI could. Check if it's safe |
| 1050 | // to move DefI down to TfrI. |
| 1051 | if (DefI->mayLoadOrStore()) { |
| 1052 | if (!canMoveMemTo(TheI&: *DefI, ToI&: TfrI, IsDown: true)) |
| 1053 | CanDown = false; |
| 1054 | } |
| 1055 | |
| 1056 | LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no" ) |
| 1057 | << ", can move down: " << (CanDown ? "yes\n" : "no\n" )); |
| 1058 | MachineBasicBlock::iterator PastDefIt = std::next(x: DefIt); |
| 1059 | if (CanUp) |
| 1060 | predicateAt(DefOp: MD, MI&: *DefI, Where: PastDefIt, PredOp: MP, Cond, UpdRegs); |
| 1061 | else if (CanDown) |
| 1062 | predicateAt(DefOp: MD, MI&: *DefI, Where: TfrIt, PredOp: MP, Cond, UpdRegs); |
| 1063 | else |
| 1064 | return false; |
| 1065 | |
| 1066 | if (RT != RD) { |
| 1067 | renameInRange(RO: RT, RN: RD, PredR, Cond, First: PastDefIt, Last: TfrIt); |
| 1068 | UpdRegs.insert(x: RT.Reg); |
| 1069 | } |
| 1070 | |
| 1071 | removeInstr(MI&: TfrI); |
| 1072 | removeInstr(MI&: *DefI); |
| 1073 | return true; |
| 1074 | } |
| 1075 | |
| 1076 | /// Predicate all cases of conditional copies in the specified block. |
| 1077 | bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, |
| 1078 | std::set<Register> &UpdRegs) { |
| 1079 | bool Changed = false; |
| 1080 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: B)) { |
| 1081 | unsigned Opc = MI.getOpcode(); |
| 1082 | if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { |
| 1083 | bool Done = predicate(TfrI&: MI, Cond: (Opc == Hexagon::A2_tfrt), UpdRegs); |
| 1084 | if (!Done) { |
| 1085 | // If we didn't predicate I, we may need to remove it in case it is |
| 1086 | // an "identity" copy, e.g. %1 = A2_tfrt %2, %1. |
| 1087 | if (RegisterRef(MI.getOperand(i: 0)) == RegisterRef(MI.getOperand(i: 2))) { |
| 1088 | for (auto &Op : MI.operands()) { |
| 1089 | if (Op.isReg()) |
| 1090 | UpdRegs.insert(x: Op.getReg()); |
| 1091 | } |
| 1092 | removeInstr(MI); |
| 1093 | } |
| 1094 | } |
| 1095 | Changed |= Done; |
| 1096 | } |
| 1097 | } |
| 1098 | return Changed; |
| 1099 | } |
| 1100 | |
| 1101 | bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { |
| 1102 | if (!RR.Reg.isVirtual()) |
| 1103 | return false; |
| 1104 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: RR.Reg); |
| 1105 | if (RC == &Hexagon::IntRegsRegClass) { |
| 1106 | BW = 32; |
| 1107 | return true; |
| 1108 | } |
| 1109 | if (RC == &Hexagon::DoubleRegsRegClass) { |
| 1110 | BW = (RR.Sub != 0) ? 32 : 64; |
| 1111 | return true; |
| 1112 | } |
| 1113 | return false; |
| 1114 | } |
| 1115 | |
| 1116 | bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { |
| 1117 | for (LiveRange::Segment &LR : LI) { |
| 1118 | // Range must start at a register... |
| 1119 | if (!LR.start.isRegister()) |
| 1120 | return false; |
| 1121 | // ...and end in a register or in a dead slot. |
| 1122 | if (!LR.end.isRegister() && !LR.end.isDead()) |
| 1123 | return false; |
| 1124 | } |
| 1125 | return true; |
| 1126 | } |
| 1127 | |
| 1128 | bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { |
| 1129 | if (CoaLimitActive) { |
| 1130 | if (CoaCounter >= CoaLimit) |
| 1131 | return false; |
| 1132 | CoaCounter++; |
| 1133 | } |
| 1134 | unsigned BW1, BW2; |
| 1135 | if (!isIntReg(RR: R1, BW&: BW1) || !isIntReg(RR: R2, BW&: BW2) || BW1 != BW2) |
| 1136 | return false; |
| 1137 | if (MRI->isLiveIn(Reg: R1.Reg)) |
| 1138 | return false; |
| 1139 | if (MRI->isLiveIn(Reg: R2.Reg)) |
| 1140 | return false; |
| 1141 | |
| 1142 | LiveInterval &L1 = LIS->getInterval(Reg: R1.Reg); |
| 1143 | LiveInterval &L2 = LIS->getInterval(Reg: R2.Reg); |
| 1144 | if (L2.empty()) |
| 1145 | return false; |
| 1146 | if (L1.hasSubRanges() || L2.hasSubRanges()) |
| 1147 | return false; |
| 1148 | bool Overlap = L1.overlaps(other: L2); |
| 1149 | |
| 1150 | LLVM_DEBUG(dbgs() << "compatible registers: (" |
| 1151 | << (Overlap ? "overlap" : "disjoint" ) << ")\n " |
| 1152 | << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " |
| 1153 | << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n" ); |
| 1154 | if (R1.Sub || R2.Sub) |
| 1155 | return false; |
| 1156 | if (Overlap) |
| 1157 | return false; |
| 1158 | |
| 1159 | // Coalescing could have a negative impact on scheduling, so try to limit |
| 1160 | // to some reasonable extent. Only consider coalescing segments, when one |
| 1161 | // of them does not cross basic block boundaries. |
| 1162 | if (!isIntraBlocks(LI&: L1) && !isIntraBlocks(LI&: L2)) |
| 1163 | return false; |
| 1164 | |
| 1165 | MRI->replaceRegWith(FromReg: R2.Reg, ToReg: R1.Reg); |
| 1166 | |
| 1167 | // Move all live segments from L2 to L1. |
| 1168 | using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>; |
| 1169 | ValueInfoMap VM; |
| 1170 | for (LiveRange::Segment &I : L2) { |
| 1171 | VNInfo *NewVN, *OldVN = I.valno; |
| 1172 | ValueInfoMap::iterator F = VM.find(Val: OldVN); |
| 1173 | if (F == VM.end()) { |
| 1174 | NewVN = L1.getNextValue(Def: I.valno->def, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
| 1175 | VM.insert(KV: std::make_pair(x&: OldVN, y&: NewVN)); |
| 1176 | } else { |
| 1177 | NewVN = F->second; |
| 1178 | } |
| 1179 | L1.addSegment(S: LiveRange::Segment(I.start, I.end, NewVN)); |
| 1180 | } |
| 1181 | while (!L2.empty()) |
| 1182 | L2.removeSegment(S: *L2.begin()); |
| 1183 | LIS->removeInterval(Reg: R2.Reg); |
| 1184 | |
| 1185 | updateKillFlags(Reg: R1.Reg); |
| 1186 | LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n" ); |
| 1187 | assert(L1.verify()); |
| 1188 | |
| 1189 | return true; |
| 1190 | } |
| 1191 | |
| 1192 | /// Attempt to coalesce one of the source registers to a MUX instruction with |
| 1193 | /// the destination register. This could lead to having only one predicated |
| 1194 | /// instruction in the end instead of two. |
| 1195 | bool HexagonExpandCondsets::coalesceSegments( |
| 1196 | const SmallVectorImpl<MachineInstr *> &Condsets, |
| 1197 | std::set<Register> &UpdRegs) { |
| 1198 | SmallVector<MachineInstr*,16> TwoRegs; |
| 1199 | for (MachineInstr *MI : Condsets) { |
| 1200 | MachineOperand &S1 = MI->getOperand(i: 2), &S2 = MI->getOperand(i: 3); |
| 1201 | if (!S1.isReg() && !S2.isReg()) |
| 1202 | continue; |
| 1203 | TwoRegs.push_back(Elt: MI); |
| 1204 | } |
| 1205 | |
| 1206 | bool Changed = false; |
| 1207 | for (MachineInstr *CI : TwoRegs) { |
| 1208 | RegisterRef RD = CI->getOperand(i: 0); |
| 1209 | RegisterRef RP = CI->getOperand(i: 1); |
| 1210 | MachineOperand &S1 = CI->getOperand(i: 2), &S2 = CI->getOperand(i: 3); |
| 1211 | bool Done = false; |
| 1212 | // Consider this case: |
| 1213 | // %1 = instr1 ... |
| 1214 | // %2 = instr2 ... |
| 1215 | // %0 = C2_mux ..., %1, %2 |
| 1216 | // If %0 was coalesced with %1, we could end up with the following |
| 1217 | // code: |
| 1218 | // %0 = instr1 ... |
| 1219 | // %2 = instr2 ... |
| 1220 | // %0 = A2_tfrf ..., %2 |
| 1221 | // which will later become: |
| 1222 | // %0 = instr1 ... |
| 1223 | // %0 = instr2_cNotPt ... |
| 1224 | // i.e. there will be an unconditional definition (instr1) of %0 |
| 1225 | // followed by a conditional one. The output dependency was there before |
| 1226 | // and it unavoidable, but if instr1 is predicable, we will no longer be |
| 1227 | // able to predicate it here. |
| 1228 | // To avoid this scenario, don't coalesce the destination register with |
| 1229 | // a source register that is defined by a predicable instruction. |
| 1230 | if (S1.isReg()) { |
| 1231 | RegisterRef RS = S1; |
| 1232 | MachineInstr *RDef = getReachingDefForPred(RD: RS, UseIt: CI, PredR: RP.Reg, Cond: true); |
| 1233 | if (!RDef || !HII->isPredicable(MI: *RDef)) { |
| 1234 | Done = coalesceRegisters(R1: RD, R2: RegisterRef(S1)); |
| 1235 | if (Done) { |
| 1236 | UpdRegs.insert(x: RD.Reg); |
| 1237 | UpdRegs.insert(x: S1.getReg()); |
| 1238 | } |
| 1239 | } |
| 1240 | } |
| 1241 | if (!Done && S2.isReg()) { |
| 1242 | RegisterRef RS = S2; |
| 1243 | MachineInstr *RDef = getReachingDefForPred(RD: RS, UseIt: CI, PredR: RP.Reg, Cond: false); |
| 1244 | if (!RDef || !HII->isPredicable(MI: *RDef)) { |
| 1245 | Done = coalesceRegisters(R1: RD, R2: RegisterRef(S2)); |
| 1246 | if (Done) { |
| 1247 | UpdRegs.insert(x: RD.Reg); |
| 1248 | UpdRegs.insert(x: S2.getReg()); |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | Changed |= Done; |
| 1253 | } |
| 1254 | return Changed; |
| 1255 | } |
| 1256 | |
| 1257 | bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { |
| 1258 | if (skipFunction(F: MF.getFunction())) |
| 1259 | return false; |
| 1260 | |
| 1261 | HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); |
| 1262 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 1263 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 1264 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 1265 | MRI = &MF.getRegInfo(); |
| 1266 | |
| 1267 | LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n" )); |
| 1268 | |
| 1269 | bool Changed = false; |
| 1270 | std::set<Register> CoalUpd, PredUpd; |
| 1271 | |
| 1272 | SmallVector<MachineInstr*,16> Condsets; |
| 1273 | for (auto &B : MF) { |
| 1274 | for (auto &I : B) { |
| 1275 | if (isCondset(MI: I)) |
| 1276 | Condsets.push_back(Elt: &I); |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | // Try to coalesce the target of a mux with one of its sources. |
| 1281 | // This could eliminate a register copy in some circumstances. |
| 1282 | Changed |= coalesceSegments(Condsets, UpdRegs&: CoalUpd); |
| 1283 | |
| 1284 | // Update kill flags on all source operands. This is done here because |
| 1285 | // at this moment (when expand-condsets runs), there are no kill flags |
| 1286 | // in the IR (they have been removed by live range analysis). |
| 1287 | // Updating them right before we split is the easiest, because splitting |
| 1288 | // adds definitions which would interfere with updating kills afterwards. |
| 1289 | std::set<Register> KillUpd; |
| 1290 | for (MachineInstr *MI : Condsets) { |
| 1291 | for (MachineOperand &Op : MI->operands()) { |
| 1292 | if (Op.isReg() && Op.isUse()) { |
| 1293 | if (!CoalUpd.count(x: Op.getReg())) |
| 1294 | KillUpd.insert(x: Op.getReg()); |
| 1295 | } |
| 1296 | } |
| 1297 | } |
| 1298 | updateLiveness(RegSet: KillUpd, Recalc: false, UpdateKills: true, UpdateDeads: false); |
| 1299 | LLVM_DEBUG(LIS->print(dbgs() << "After coalescing\n" )); |
| 1300 | |
| 1301 | // First, simply split all muxes into a pair of conditional transfers |
| 1302 | // and update the live intervals to reflect the new arrangement. The |
| 1303 | // goal is to update the kill flags, since predication will rely on |
| 1304 | // them. |
| 1305 | for (MachineInstr *MI : Condsets) |
| 1306 | Changed |= split(MI&: *MI, UpdRegs&: PredUpd); |
| 1307 | Condsets.clear(); // The contents of Condsets are invalid here anyway. |
| 1308 | |
| 1309 | // Do not update live ranges after splitting. Recalculation of live |
| 1310 | // intervals removes kill flags, which were preserved by splitting on |
| 1311 | // the source operands of condsets. These kill flags are needed by |
| 1312 | // predication, and after splitting they are difficult to recalculate |
| 1313 | // (because of predicated defs), so make sure they are left untouched. |
| 1314 | // Predication does not use live intervals. |
| 1315 | LLVM_DEBUG(LIS->print(dbgs() << "After splitting\n" )); |
| 1316 | |
| 1317 | // Traverse all blocks and collapse predicable instructions feeding |
| 1318 | // conditional transfers into predicated instructions. |
| 1319 | // Walk over all the instructions again, so we may catch pre-existing |
| 1320 | // cases that were not created in the previous step. |
| 1321 | for (auto &B : MF) |
| 1322 | Changed |= predicateInBlock(B, UpdRegs&: PredUpd); |
| 1323 | LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n" )); |
| 1324 | |
| 1325 | PredUpd.insert(first: CoalUpd.begin(), last: CoalUpd.end()); |
| 1326 | updateLiveness(RegSet: PredUpd, Recalc: true, UpdateKills: true, UpdateDeads: true); |
| 1327 | |
| 1328 | if (Changed) |
| 1329 | distributeLiveIntervals(Regs: PredUpd); |
| 1330 | |
| 1331 | LLVM_DEBUG({ |
| 1332 | if (Changed) |
| 1333 | LIS->print(dbgs() << "After expand-condsets\n" ); |
| 1334 | }); |
| 1335 | |
| 1336 | return Changed; |
| 1337 | } |
| 1338 | |
| 1339 | //===----------------------------------------------------------------------===// |
| 1340 | // Public Constructor Functions |
| 1341 | //===----------------------------------------------------------------------===// |
| 1342 | FunctionPass *llvm::createHexagonExpandCondsets() { |
| 1343 | return new HexagonExpandCondsets(); |
| 1344 | } |
| 1345 | |