| 1 | //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements the checking of insns inside a bundle according to the |
| 10 | // packet constraint rules of the Hexagon ISA. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "MCTargetDesc/HexagonMCChecker.h" |
| 15 | #include "MCTargetDesc/HexagonBaseInfo.h" |
| 16 | #include "MCTargetDesc/HexagonMCInstrInfo.h" |
| 17 | #include "MCTargetDesc/HexagonMCShuffler.h" |
| 18 | #include "MCTargetDesc/HexagonMCTargetDesc.h" |
| 19 | |
| 20 | #include "llvm/ADT/Twine.h" |
| 21 | #include "llvm/MC/MCContext.h" |
| 22 | #include "llvm/MC/MCInst.h" |
| 23 | #include "llvm/MC/MCInstrDesc.h" |
| 24 | #include "llvm/MC/MCRegisterInfo.h" |
| 25 | #include "llvm/MC/MCSubtargetInfo.h" |
| 26 | #include "llvm/Support/CommandLine.h" |
| 27 | #include "llvm/Support/SourceMgr.h" |
| 28 | #include <cassert> |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | static cl::opt<bool> |
| 33 | RelaxNVChecks("relax-nv-checks" , cl::Hidden, |
| 34 | cl::desc("Relax checks of new-value validity" )); |
| 35 | |
| 36 | const HexagonMCChecker::PredSense |
| 37 | HexagonMCChecker::Unconditional(Hexagon::NoRegister, false); |
| 38 | |
| 39 | void HexagonMCChecker::init() { |
| 40 | // Initialize read-only registers set. |
| 41 | ReadOnly.insert(x: Hexagon::PC); |
| 42 | ReadOnly.insert(x: Hexagon::C9_8); |
| 43 | |
| 44 | // Figure out the loop-registers definitions. |
| 45 | if (HexagonMCInstrInfo::isInnerLoop(MCI: MCB)) { |
| 46 | Defs[Hexagon::SA0].insert(x: Unconditional); // FIXME: define or change SA0? |
| 47 | Defs[Hexagon::LC0].insert(x: Unconditional); |
| 48 | } |
| 49 | if (HexagonMCInstrInfo::isOuterLoop(MCI: MCB)) { |
| 50 | Defs[Hexagon::SA1].insert(x: Unconditional); // FIXME: define or change SA0? |
| 51 | Defs[Hexagon::LC1].insert(x: Unconditional); |
| 52 | } |
| 53 | |
| 54 | if (HexagonMCInstrInfo::isBundle(MCI: MCB)) |
| 55 | // Unfurl a bundle. |
| 56 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI: MCB)) { |
| 57 | MCInst const &Inst = *I.getInst(); |
| 58 | if (HexagonMCInstrInfo::isDuplex(MCII, MCI: Inst)) { |
| 59 | init(*Inst.getOperand(i: 0).getInst()); |
| 60 | init(*Inst.getOperand(i: 1).getInst()); |
| 61 | } else |
| 62 | init(Inst); |
| 63 | } |
| 64 | else |
| 65 | init(MCB); |
| 66 | } |
| 67 | |
| 68 | void HexagonMCChecker::initReg(MCInst const &MCI, MCRegister R, |
| 69 | MCRegister &PredReg, bool &isTrue) { |
| 70 | if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && |
| 71 | HexagonMCInstrInfo::isPredReg(MRI: RI, Reg: R)) { |
| 72 | // Note an used predicate register. |
| 73 | PredReg = R; |
| 74 | isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI); |
| 75 | |
| 76 | // Note use of new predicate register. |
| 77 | if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| 78 | NewPreds.insert(x: PredReg); |
| 79 | } else |
| 80 | // Note register use. Super-registers are not tracked directly, |
| 81 | // but their components. |
| 82 | for (MCRegAliasIterator SRI(R, &RI, RI.subregs(Reg: R).empty()); SRI.isValid(); |
| 83 | ++SRI) |
| 84 | if (RI.subregs(Reg: *SRI).empty()) |
| 85 | // Skip super-registers used indirectly. |
| 86 | Uses.insert(x: *SRI); |
| 87 | |
| 88 | if (HexagonMCInstrInfo::IsReverseVecRegPair(VecReg: R)) |
| 89 | ReversePairs.insert(x: R); |
| 90 | } |
| 91 | |
| 92 | void HexagonMCChecker::init(MCInst const &MCI) { |
| 93 | const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI); |
| 94 | MCRegister PredReg; |
| 95 | bool isTrue = false; |
| 96 | |
| 97 | // Get used registers. |
| 98 | for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| 99 | if (MCI.getOperand(i).isReg()) |
| 100 | initReg(MCI, R: MCI.getOperand(i).getReg(), PredReg, isTrue); |
| 101 | for (MCPhysReg ImpUse : MCID.implicit_uses()) |
| 102 | initReg(MCI, R: ImpUse, PredReg, isTrue); |
| 103 | |
| 104 | const bool IgnoreTmpDst = (HexagonMCInstrInfo::hasTmpDst(MCII, MCI) || |
| 105 | HexagonMCInstrInfo::hasHvxTmp(MCII, MCI)) && |
| 106 | STI.hasFeature(Feature: Hexagon::ArchV69); |
| 107 | |
| 108 | // Get implicit register definitions. |
| 109 | for (MCPhysReg R : MCID.implicit_defs()) { |
| 110 | if (Hexagon::R31 != R && MCID.isCall()) |
| 111 | // Any register other than the LR and the PC are actually volatile ones |
| 112 | // as defined by the ABI, not modified implicitly by the call insn. |
| 113 | continue; |
| 114 | if (Hexagon::PC == R) |
| 115 | // Branches are the only insns that can change the PC, |
| 116 | // otherwise a read-only register. |
| 117 | continue; |
| 118 | |
| 119 | if (Hexagon::USR_OVF == R) |
| 120 | // Many insns change the USR implicitly, but only one or another flag. |
| 121 | // The instruction table models the USR.OVF flag, which can be |
| 122 | // implicitly modified more than once, but cannot be modified in the |
| 123 | // same packet with an instruction that modifies is explicitly. Deal |
| 124 | // with such situations individually. |
| 125 | SoftDefs.insert(x: R); |
| 126 | else if (HexagonMCInstrInfo::isPredReg(MRI: RI, Reg: R) && |
| 127 | HexagonMCInstrInfo::isPredicateLate(MCII, MCI)) |
| 128 | // Include implicit late predicates. |
| 129 | LatePreds.insert(x: R); |
| 130 | else if (!IgnoreTmpDst) |
| 131 | Defs[R].insert(x: PredSense(PredReg, isTrue)); |
| 132 | } |
| 133 | |
| 134 | // Figure out explicit register definitions. |
| 135 | for (unsigned i = 0; i < MCID.getNumDefs(); ++i) { |
| 136 | MCRegister R = MCI.getOperand(i).getReg(), S = MCRegister(); |
| 137 | // USR has subregisters (while C8 does not for technical reasons), so |
| 138 | // reset R to USR, since we know how to handle multiple defs of USR, |
| 139 | // taking into account its subregisters. |
| 140 | if (R == Hexagon::C8) |
| 141 | R = Hexagon::USR; |
| 142 | |
| 143 | if (HexagonMCInstrInfo::IsReverseVecRegPair(VecReg: R)) |
| 144 | ReversePairs.insert(x: R); |
| 145 | |
| 146 | // Note register definitions, direct ones as well as indirect side-effects. |
| 147 | // Super-registers are not tracked directly, but their components. |
| 148 | for (MCRegAliasIterator SRI(R, &RI, RI.subregs(Reg: R).empty()); SRI.isValid(); |
| 149 | ++SRI) { |
| 150 | if (!RI.subregs(Reg: *SRI).empty()) |
| 151 | // Skip super-registers defined indirectly. |
| 152 | continue; |
| 153 | |
| 154 | if (R == *SRI) { |
| 155 | if (S == R) |
| 156 | // Avoid scoring the defined register multiple times. |
| 157 | continue; |
| 158 | else |
| 159 | // Note that the defined register has already been scored. |
| 160 | S = R; |
| 161 | } |
| 162 | |
| 163 | if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI) |
| 164 | // P3:0 is a special case, since multiple predicate register definitions |
| 165 | // in a packet is allowed as the equivalent of their logical "and". |
| 166 | // Only an explicit definition of P3:0 is noted as such; if a |
| 167 | // side-effect, then note as a soft definition. |
| 168 | SoftDefs.insert(x: *SRI); |
| 169 | else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && |
| 170 | HexagonMCInstrInfo::isPredReg(MRI: RI, Reg: *SRI)) |
| 171 | // Some insns produce predicates too late to be used in the same packet. |
| 172 | LatePreds.insert(x: *SRI); |
| 173 | else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) == |
| 174 | HexagonII::TypeCVI_VM_TMP_LD) |
| 175 | // Temporary loads should be used in the same packet, but don't commit |
| 176 | // results, so it should be disregarded if another insn changes the same |
| 177 | // register. |
| 178 | // TODO: relies on the impossibility of a current and a temporary loads |
| 179 | // in the same packet. |
| 180 | TmpDefs.insert(x: *SRI); |
| 181 | else if (!IgnoreTmpDst) |
| 182 | Defs[*SRI].insert(x: PredSense(PredReg, isTrue)); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // Figure out definitions of new predicate registers. |
| 187 | if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| 188 | for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| 189 | if (MCI.getOperand(i).isReg()) { |
| 190 | MCRegister P = MCI.getOperand(i).getReg(); |
| 191 | |
| 192 | if (HexagonMCInstrInfo::isPredReg(MRI: RI, Reg: P)) |
| 193 | NewPreds.insert(x: P); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII, |
| 198 | MCSubtargetInfo const &STI, MCInst &mcb, |
| 199 | MCRegisterInfo const &ri, bool ReportErrors) |
| 200 | : Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI), |
| 201 | ReportErrors(ReportErrors) { |
| 202 | init(); |
| 203 | } |
| 204 | |
| 205 | HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other, |
| 206 | MCSubtargetInfo const &STI, |
| 207 | bool CopyReportErrors) |
| 208 | : Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII), |
| 209 | STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false) { |
| 210 | init(); |
| 211 | } |
| 212 | |
| 213 | bool HexagonMCChecker::check(bool FullCheck) { |
| 214 | bool chkP = checkPredicates(); |
| 215 | bool chkNV = checkNewValues(); |
| 216 | bool chkR = checkRegisters(); |
| 217 | bool chkRRO = checkRegistersReadOnly(); |
| 218 | checkRegisterCurDefs(); |
| 219 | bool chkS = checkSolo(); |
| 220 | bool chkSh = true; |
| 221 | if (FullCheck) |
| 222 | chkSh = checkShuffle(); |
| 223 | bool chkSl = true; |
| 224 | if (FullCheck) |
| 225 | chkSl = checkSlots(); |
| 226 | bool chkAXOK = checkAXOK(); |
| 227 | bool chkCofMax1 = checkCOFMax1(); |
| 228 | bool chkHWLoop = checkHWLoop(); |
| 229 | bool chkValidTmpDst = FullCheck ? checkValidTmpDst() : true; |
| 230 | bool chkLegalVecRegPair = checkLegalVecRegPair(); |
| 231 | bool ChkHVXAccum = checkHVXAccum(); |
| 232 | bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl && |
| 233 | chkAXOK && chkCofMax1 && chkHWLoop && chkValidTmpDst && |
| 234 | chkLegalVecRegPair && ChkHVXAccum; |
| 235 | |
| 236 | return chk; |
| 237 | } |
| 238 | |
| 239 | static bool isDuplexAGroup(unsigned Opcode) { |
| 240 | switch (Opcode) { |
| 241 | case Hexagon::SA1_addi: |
| 242 | case Hexagon::SA1_addrx: |
| 243 | case Hexagon::SA1_addsp: |
| 244 | case Hexagon::SA1_and1: |
| 245 | case Hexagon::SA1_clrf: |
| 246 | case Hexagon::SA1_clrfnew: |
| 247 | case Hexagon::SA1_clrt: |
| 248 | case Hexagon::SA1_clrtnew: |
| 249 | case Hexagon::SA1_cmpeqi: |
| 250 | case Hexagon::SA1_combine0i: |
| 251 | case Hexagon::SA1_combine1i: |
| 252 | case Hexagon::SA1_combine2i: |
| 253 | case Hexagon::SA1_combine3i: |
| 254 | case Hexagon::SA1_combinerz: |
| 255 | case Hexagon::SA1_combinezr: |
| 256 | case Hexagon::SA1_dec: |
| 257 | case Hexagon::SA1_inc: |
| 258 | case Hexagon::SA1_seti: |
| 259 | case Hexagon::SA1_setin1: |
| 260 | case Hexagon::SA1_sxtb: |
| 261 | case Hexagon::SA1_sxth: |
| 262 | case Hexagon::SA1_tfr: |
| 263 | case Hexagon::SA1_zxtb: |
| 264 | case Hexagon::SA1_zxth: |
| 265 | return true; |
| 266 | break; |
| 267 | default: |
| 268 | return false; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) { |
| 273 | if (HexagonMCInstrInfo::isFloat(MCII, MCI: ID)) |
| 274 | return true; |
| 275 | unsigned Type = HexagonMCInstrInfo::getType(MCII, MCI: ID); |
| 276 | switch (Type) { |
| 277 | case HexagonII::TypeALU32_2op: |
| 278 | case HexagonII::TypeALU32_3op: |
| 279 | case HexagonII::TypeALU32_ADDI: |
| 280 | case HexagonII::TypeS_2op: |
| 281 | case HexagonII::TypeS_3op: |
| 282 | case HexagonII::TypeEXTENDER: |
| 283 | case HexagonII::TypeM: |
| 284 | case HexagonII::TypeALU64: |
| 285 | return false; |
| 286 | case HexagonII::TypeSUBINSN: { |
| 287 | return !isDuplexAGroup(Opcode: ID.getOpcode()); |
| 288 | } |
| 289 | case HexagonII::TypeDUPLEX: |
| 290 | llvm_unreachable("unexpected duplex instruction" ); |
| 291 | default: |
| 292 | return true; |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | bool HexagonMCChecker::checkAXOK() { |
| 297 | MCInst const *HasSoloAXInst = nullptr; |
| 298 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 299 | if (HexagonMCInstrInfo::isSoloAX(MCII, MCI: I)) { |
| 300 | HasSoloAXInst = &I; |
| 301 | } |
| 302 | } |
| 303 | if (!HasSoloAXInst) |
| 304 | return true; |
| 305 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 306 | if (&I != HasSoloAXInst && isNeitherAnorX(MCII, ID: I)) { |
| 307 | reportError( |
| 308 | Loc: HasSoloAXInst->getLoc(), |
| 309 | Msg: Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE " |
| 310 | "instructions" )); |
| 311 | reportError(Loc: I.getLoc(), |
| 312 | Msg: Twine("Not an ALU or non-FPU XTYPE instruction" )); |
| 313 | return false; |
| 314 | } |
| 315 | } |
| 316 | return true; |
| 317 | } |
| 318 | |
| 319 | void HexagonMCChecker::reportBranchErrors() { |
| 320 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 321 | if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) |
| 322 | reportNote(Loc: I.getLoc(), Msg: "Branching instruction" ); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | bool HexagonMCChecker::checkHWLoop() { |
| 327 | if (!HexagonMCInstrInfo::isInnerLoop(MCI: MCB) && |
| 328 | !HexagonMCInstrInfo::isOuterLoop(MCI: MCB)) |
| 329 | return true; |
| 330 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 331 | if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) { |
| 332 | reportError(Loc: MCB.getLoc(), |
| 333 | Msg: "Branches cannot be in a packet with hardware loops" ); |
| 334 | reportBranchErrors(); |
| 335 | return false; |
| 336 | } |
| 337 | } |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | bool HexagonMCChecker::checkCOFMax1() { |
| 342 | SmallVector<MCInst const *, 2> BranchLocations; |
| 343 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 344 | if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) |
| 345 | BranchLocations.push_back(Elt: &I); |
| 346 | } |
| 347 | for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) { |
| 348 | MCInst const &I = *BranchLocations[J]; |
| 349 | if (HexagonMCInstrInfo::isCofMax1(MCII, MCI: I)) { |
| 350 | bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, MCI: I); |
| 351 | bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, MCI: I); |
| 352 | if (N > 1 && !Relax1 && !Relax2) { |
| 353 | reportError(Loc: I.getLoc(), |
| 354 | Msg: "Instruction may not be in a packet with other branches" ); |
| 355 | reportBranchErrors(); |
| 356 | return false; |
| 357 | } |
| 358 | if (N > 1 && J == 0 && !Relax1) { |
| 359 | reportError(Loc: I.getLoc(), |
| 360 | Msg: "Instruction may not be the first branch in packet" ); |
| 361 | reportBranchErrors(); |
| 362 | return false; |
| 363 | } |
| 364 | if (N > 1 && J == 1 && !Relax2) { |
| 365 | reportError(Loc: I.getLoc(), |
| 366 | Msg: "Instruction may not be the second branch in packet" ); |
| 367 | reportBranchErrors(); |
| 368 | return false; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | return true; |
| 373 | } |
| 374 | |
| 375 | bool HexagonMCChecker::checkSlots() { |
| 376 | if (HexagonMCInstrInfo::slotsConsumed(MCII, STI, MCI: MCB) > |
| 377 | HexagonMCInstrInfo::packetSizeSlots(STI)) { |
| 378 | reportError(Msg: "invalid instruction packet: out of slots" ); |
| 379 | return false; |
| 380 | } |
| 381 | return true; |
| 382 | } |
| 383 | |
| 384 | // Check legal use of predicate registers. |
| 385 | bool HexagonMCChecker::checkPredicates() { |
| 386 | // Check for proper use of new predicate registers. |
| 387 | for (const auto &I : NewPreds) { |
| 388 | unsigned P = I; |
| 389 | |
| 390 | if (!Defs.count(Val: P) || LatePreds.count(x: P) || Defs.count(Val: Hexagon::P3_0)) { |
| 391 | // Error out if the new predicate register is not defined, |
| 392 | // or defined "late" |
| 393 | // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }"). |
| 394 | reportErrorNewValue(Register: P); |
| 395 | return false; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | // Check for proper use of auto-anded of predicate registers. |
| 400 | for (const auto &I : LatePreds) { |
| 401 | unsigned P = I; |
| 402 | |
| 403 | if (LatePreds.count(x: P) > 1 || Defs.count(Val: P)) { |
| 404 | // Error out if predicate register defined "late" multiple times or |
| 405 | // defined late and regularly defined |
| 406 | // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }". |
| 407 | reportErrorRegisters(Register: P); |
| 408 | return false; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | // Check legal use of new values. |
| 416 | bool HexagonMCChecker::checkNewValues() { |
| 417 | for (auto const &ConsumerInst : |
| 418 | HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 419 | if (!HexagonMCInstrInfo::isNewValue(MCII, MCI: ConsumerInst)) |
| 420 | continue; |
| 421 | |
| 422 | const HexagonMCInstrInfo::PredicateInfo ConsumerPredInfo = |
| 423 | HexagonMCInstrInfo::predicateInfo(MCII, MCI: ConsumerInst); |
| 424 | |
| 425 | bool Branch = HexagonMCInstrInfo::getDesc(MCII, MCI: ConsumerInst).isBranch(); |
| 426 | MCOperand const &Op = |
| 427 | HexagonMCInstrInfo::getNewValueOperand(MCII, MCI: ConsumerInst); |
| 428 | assert(Op.isReg()); |
| 429 | |
| 430 | auto Producer = registerProducer(Register: Op.getReg(), Predicated: ConsumerPredInfo); |
| 431 | const MCInst *const ProducerInst = std::get<0>(t&: Producer); |
| 432 | const HexagonMCInstrInfo::PredicateInfo ProducerPredInfo = |
| 433 | std::get<2>(t&: Producer); |
| 434 | |
| 435 | if (ProducerInst == nullptr) { |
| 436 | reportError(Loc: ConsumerInst.getLoc(), |
| 437 | Msg: "New value register consumer has no producer" ); |
| 438 | return false; |
| 439 | } |
| 440 | if (!RelaxNVChecks) { |
| 441 | // Checks that statically prove correct new value consumption |
| 442 | if (ProducerPredInfo.isPredicated() && |
| 443 | (!ConsumerPredInfo.isPredicated() || |
| 444 | llvm::HexagonMCInstrInfo::getType(MCII, MCI: ConsumerInst) == |
| 445 | HexagonII::TypeNCJ)) { |
| 446 | reportNote( |
| 447 | Loc: ProducerInst->getLoc(), |
| 448 | Msg: "Register producer is predicated and consumer is unconditional" ); |
| 449 | reportError(Loc: ConsumerInst.getLoc(), |
| 450 | Msg: "Instruction does not have a valid new register producer" ); |
| 451 | return false; |
| 452 | } |
| 453 | if (ProducerPredInfo.Register != Hexagon::NoRegister && |
| 454 | ProducerPredInfo.Register != ConsumerPredInfo.Register) { |
| 455 | reportNote(Loc: ProducerInst->getLoc(), |
| 456 | Msg: "Register producer does not use the same predicate " |
| 457 | "register as the consumer" ); |
| 458 | reportError(Loc: ConsumerInst.getLoc(), |
| 459 | Msg: "Instruction does not have a valid new register producer" ); |
| 460 | return false; |
| 461 | } |
| 462 | } |
| 463 | if (ProducerPredInfo.Register == ConsumerPredInfo.Register && |
| 464 | ConsumerPredInfo.PredicatedTrue != ProducerPredInfo.PredicatedTrue) { |
| 465 | reportNote( |
| 466 | Loc: ProducerInst->getLoc(), |
| 467 | Msg: "Register producer has the opposite predicate sense as consumer" ); |
| 468 | reportError(Loc: ConsumerInst.getLoc(), |
| 469 | Msg: "Instruction does not have a valid new register producer" ); |
| 470 | return false; |
| 471 | } |
| 472 | |
| 473 | MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: *ProducerInst); |
| 474 | const unsigned ProducerOpIndex = std::get<1>(t&: Producer); |
| 475 | |
| 476 | if (Desc.operands()[ProducerOpIndex].RegClass == |
| 477 | Hexagon::DoubleRegsRegClassID) { |
| 478 | reportNote(Loc: ProducerInst->getLoc(), |
| 479 | Msg: "Double registers cannot be new-value producers" ); |
| 480 | reportError(Loc: ConsumerInst.getLoc(), |
| 481 | Msg: "Instruction does not have a valid new register producer" ); |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | // The ProducerOpIsMemIndex logic checks for the index of the producer |
| 486 | // register operand. Z-reg load instructions have an implicit operand |
| 487 | // that's not encoded, so the producer won't appear as the 1-th def, it |
| 488 | // will be at the 0-th. |
| 489 | const unsigned ProducerOpSearchIndex = |
| 490 | (HexagonMCInstrInfo::getType(MCII, MCI: *ProducerInst) == |
| 491 | HexagonII::TypeCVI_ZW) |
| 492 | ? 0 |
| 493 | : 1; |
| 494 | |
| 495 | const bool ProducerOpIsMemIndex = |
| 496 | ((Desc.mayLoad() && ProducerOpIndex == ProducerOpSearchIndex) || |
| 497 | (Desc.mayStore() && ProducerOpIndex == 0)); |
| 498 | |
| 499 | if (ProducerOpIsMemIndex) { |
| 500 | unsigned Mode = HexagonMCInstrInfo::getAddrMode(MCII, MCI: *ProducerInst); |
| 501 | |
| 502 | StringRef ModeError; |
| 503 | if (Mode == HexagonII::AbsoluteSet) |
| 504 | ModeError = "Absolute-set" ; |
| 505 | if (Mode == HexagonII::PostInc) |
| 506 | ModeError = "Auto-increment" ; |
| 507 | if (!ModeError.empty()) { |
| 508 | reportNote(Loc: ProducerInst->getLoc(), |
| 509 | Msg: ModeError + " registers cannot be a new-value " |
| 510 | "producer" ); |
| 511 | reportError(Loc: ConsumerInst.getLoc(), |
| 512 | Msg: "Instruction does not have a valid new register producer" ); |
| 513 | return false; |
| 514 | } |
| 515 | } |
| 516 | if (Branch && HexagonMCInstrInfo::isFloat(MCII, MCI: *ProducerInst)) { |
| 517 | reportNote(Loc: ProducerInst->getLoc(), |
| 518 | Msg: "FPU instructions cannot be new-value producers for jumps" ); |
| 519 | reportError(Loc: ConsumerInst.getLoc(), |
| 520 | Msg: "Instruction does not have a valid new register producer" ); |
| 521 | return false; |
| 522 | } |
| 523 | } |
| 524 | return true; |
| 525 | } |
| 526 | |
| 527 | bool HexagonMCChecker::checkRegistersReadOnly() { |
| 528 | for (auto I : HexagonMCInstrInfo::bundleInstructions(MCI: MCB)) { |
| 529 | MCInst const &Inst = *I.getInst(); |
| 530 | unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, MCI: Inst).getNumDefs(); |
| 531 | for (unsigned j = 0; j < Defs; ++j) { |
| 532 | MCOperand const &Operand = Inst.getOperand(i: j); |
| 533 | assert(Operand.isReg() && "Def is not a register" ); |
| 534 | MCRegister Register = Operand.getReg(); |
| 535 | if (ReadOnly.find(x: Register) != ReadOnly.end()) { |
| 536 | reportError(Loc: Inst.getLoc(), Msg: "Cannot write to read-only register `" + |
| 537 | Twine(RI.getName(RegNo: Register)) + "'" ); |
| 538 | return false; |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | return true; |
| 543 | } |
| 544 | |
| 545 | bool HexagonMCChecker::registerUsed(MCRegister Register) { |
| 546 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) |
| 547 | for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, MCI: I).getNumDefs(), |
| 548 | n = I.getNumOperands(); |
| 549 | j < n; ++j) { |
| 550 | MCOperand const &Operand = I.getOperand(i: j); |
| 551 | if (Operand.isReg() && Operand.getReg() == Register) |
| 552 | return true; |
| 553 | } |
| 554 | return false; |
| 555 | } |
| 556 | |
| 557 | std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> |
| 558 | HexagonMCChecker::registerProducer( |
| 559 | MCRegister Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) { |
| 560 | std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> |
| 561 | WrongSense; |
| 562 | |
| 563 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 564 | MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, MCI: I); |
| 565 | auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, MCI: I); |
| 566 | |
| 567 | for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J) |
| 568 | for (auto K = MCRegAliasIterator(I.getOperand(i: J).getReg(), &RI, true); |
| 569 | K.isValid(); ++K) |
| 570 | if (*K == Register) { |
| 571 | if (RelaxNVChecks || |
| 572 | (ProducerPredicate.Register == ConsumerPredicate.Register && |
| 573 | (ProducerPredicate.Register == Hexagon::NoRegister || |
| 574 | ProducerPredicate.PredicatedTrue == |
| 575 | ConsumerPredicate.PredicatedTrue))) |
| 576 | return std::make_tuple(args: &I, args&: J, args&: ProducerPredicate); |
| 577 | std::get<0>(t&: WrongSense) = &I; |
| 578 | std::get<1>(t&: WrongSense) = J; |
| 579 | std::get<2>(t&: WrongSense) = ProducerPredicate; |
| 580 | } |
| 581 | if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, MCI: I)) |
| 582 | return std::make_tuple(args: &I, args: 0, args: HexagonMCInstrInfo::PredicateInfo()); |
| 583 | } |
| 584 | return WrongSense; |
| 585 | } |
| 586 | |
| 587 | void HexagonMCChecker::checkRegisterCurDefs() { |
| 588 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 589 | if (HexagonMCInstrInfo::isCVINew(MCII, MCI: I) && |
| 590 | HexagonMCInstrInfo::getDesc(MCII, MCI: I).mayLoad()) { |
| 591 | const MCRegister RegDef = I.getOperand(i: 0).getReg(); |
| 592 | |
| 593 | bool HasRegDefUse = false; |
| 594 | for (MCRegAliasIterator Alias(RegDef, &RI, true); Alias.isValid(); |
| 595 | ++Alias) |
| 596 | HasRegDefUse = HasRegDefUse || registerUsed(Register: *Alias); |
| 597 | |
| 598 | if (!HasRegDefUse) |
| 599 | reportWarning(Msg: "Register `" + Twine(RI.getName(RegNo: RegDef)) + |
| 600 | "' used with `.cur' " |
| 601 | "but not used in the same packet" ); |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | // Check for legal register uses and definitions. |
| 607 | bool HexagonMCChecker::checkRegisters() { |
| 608 | // Check for proper register definitions. |
| 609 | for (const auto &I : Defs) { |
| 610 | unsigned R = I.first; |
| 611 | |
| 612 | if (isLoopRegister(R) && Defs.count(Val: R) > 1 && |
| 613 | (HexagonMCInstrInfo::isInnerLoop(MCI: MCB) || |
| 614 | HexagonMCInstrInfo::isOuterLoop(MCI: MCB))) { |
| 615 | // Error out for definitions of loop registers at the end of a loop. |
| 616 | reportError(Msg: "loop-setup and some branch instructions " |
| 617 | "cannot be in the same packet" ); |
| 618 | return false; |
| 619 | } |
| 620 | if (SoftDefs.count(x: R)) { |
| 621 | // Error out for explicit changes to registers also weakly defined |
| 622 | // (e.g., "{ usr = r0; r0 = sfadd(...) }"). |
| 623 | unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:. |
| 624 | unsigned BadR = RI.isSubRegister(RegA: Hexagon::USR, RegB: R) ? UsrR : R; |
| 625 | reportErrorRegisters(Register: BadR); |
| 626 | return false; |
| 627 | } |
| 628 | if (!HexagonMCInstrInfo::isPredReg(MRI: RI, Reg: R) && Defs[R].size() > 1) { |
| 629 | // Check for multiple register definitions. |
| 630 | PredSet &PM = Defs[R]; |
| 631 | |
| 632 | // Check for multiple unconditional register definitions. |
| 633 | if (PM.count(x: Unconditional)) { |
| 634 | // Error out on an unconditional change when there are any other |
| 635 | // changes, conditional or not. |
| 636 | unsigned UsrR = Hexagon::USR; |
| 637 | unsigned BadR = RI.isSubRegister(RegA: Hexagon::USR, RegB: R) ? UsrR : R; |
| 638 | reportErrorRegisters(Register: BadR); |
| 639 | return false; |
| 640 | } |
| 641 | // Check for multiple conditional register definitions. |
| 642 | for (const auto &J : PM) { |
| 643 | PredSense P = J; |
| 644 | |
| 645 | // Check for multiple uses of the same condition. |
| 646 | if (PM.count(x: P) > 1) { |
| 647 | // Error out on conditional changes based on the same predicate |
| 648 | // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }"). |
| 649 | reportErrorRegisters(Register: R); |
| 650 | return false; |
| 651 | } |
| 652 | // Check for the use of the complementary condition. |
| 653 | P.second = !P.second; |
| 654 | if (PM.count(x: P) && PM.size() > 2) { |
| 655 | // Error out on conditional changes based on the same predicate |
| 656 | // multiple times |
| 657 | // (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =..."). |
| 658 | reportErrorRegisters(Register: R); |
| 659 | return false; |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | // Check for use of temporary definitions. |
| 666 | for (const auto &I : TmpDefs) { |
| 667 | unsigned R = I; |
| 668 | |
| 669 | if (!Uses.count(x: R)) { |
| 670 | // special case for vhist |
| 671 | bool vHistFound = false; |
| 672 | for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCI: MCB)) { |
| 673 | if (HexagonMCInstrInfo::getType(MCII, MCI: *HMI.getInst()) == |
| 674 | HexagonII::TypeCVI_HIST) { |
| 675 | vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp |
| 676 | break; |
| 677 | } |
| 678 | } |
| 679 | // Warn on an unused temporary definition. |
| 680 | if (!vHistFound) { |
| 681 | reportWarning(Msg: "register `" + Twine(RI.getName(RegNo: R)) + |
| 682 | "' used with `.tmp' but not used in the same packet" ); |
| 683 | return true; |
| 684 | } |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | return true; |
| 689 | } |
| 690 | |
| 691 | // Check for legal use of solo insns. |
| 692 | bool HexagonMCChecker::checkSolo() { |
| 693 | if (HexagonMCInstrInfo::bundleSize(MCI: MCB) > 1) |
| 694 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 695 | if (HexagonMCInstrInfo::isSolo(MCII, MCI: I)) { |
| 696 | reportError(Loc: I.getLoc(), Msg: "Instruction is marked `isSolo' and " |
| 697 | "cannot have other instructions in " |
| 698 | "the same packet" ); |
| 699 | return false; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | return true; |
| 704 | } |
| 705 | |
| 706 | bool HexagonMCChecker::checkShuffle() { |
| 707 | HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB); |
| 708 | return MCSDX.check(); |
| 709 | } |
| 710 | |
| 711 | bool HexagonMCChecker::checkValidTmpDst() { |
| 712 | if (!STI.hasFeature(Feature: Hexagon::ArchV69)) { |
| 713 | return true; |
| 714 | } |
| 715 | auto HasTmp = [&](MCInst const &I) { |
| 716 | return HexagonMCInstrInfo::hasTmpDst(MCII, MCI: I) || |
| 717 | HexagonMCInstrInfo::hasHvxTmp(MCII, MCI: I); |
| 718 | }; |
| 719 | unsigned HasTmpCount = |
| 720 | llvm::count_if(Range: HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB), P: HasTmp); |
| 721 | |
| 722 | if (HasTmpCount > 1) { |
| 723 | reportError( |
| 724 | Loc: MCB.getLoc(), |
| 725 | Msg: "this packet has more than one HVX vtmp/.tmp destination instruction" ); |
| 726 | |
| 727 | for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) |
| 728 | if (HasTmp(I)) |
| 729 | reportNote(Loc: I.getLoc(), |
| 730 | Msg: "this is an HVX vtmp/.tmp destination instruction" ); |
| 731 | |
| 732 | return false; |
| 733 | } |
| 734 | return true; |
| 735 | } |
| 736 | |
| 737 | void HexagonMCChecker::compoundRegisterMap(unsigned &Register) { |
| 738 | switch (Register) { |
| 739 | default: |
| 740 | break; |
| 741 | case Hexagon::R15: |
| 742 | Register = Hexagon::R23; |
| 743 | break; |
| 744 | case Hexagon::R14: |
| 745 | Register = Hexagon::R22; |
| 746 | break; |
| 747 | case Hexagon::R13: |
| 748 | Register = Hexagon::R21; |
| 749 | break; |
| 750 | case Hexagon::R12: |
| 751 | Register = Hexagon::R20; |
| 752 | break; |
| 753 | case Hexagon::R11: |
| 754 | Register = Hexagon::R19; |
| 755 | break; |
| 756 | case Hexagon::R10: |
| 757 | Register = Hexagon::R18; |
| 758 | break; |
| 759 | case Hexagon::R9: |
| 760 | Register = Hexagon::R17; |
| 761 | break; |
| 762 | case Hexagon::R8: |
| 763 | Register = Hexagon::R16; |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | void HexagonMCChecker::reportErrorRegisters(unsigned Register) { |
| 769 | reportError(Msg: "register `" + Twine(RI.getName(RegNo: Register)) + |
| 770 | "' modified more than once" ); |
| 771 | } |
| 772 | |
| 773 | void HexagonMCChecker::reportErrorNewValue(unsigned Register) { |
| 774 | reportError(Msg: "register `" + Twine(RI.getName(RegNo: Register)) + |
| 775 | "' used with `.new' " |
| 776 | "but not validly modified in the same packet" ); |
| 777 | } |
| 778 | |
| 779 | void HexagonMCChecker::reportError(Twine const &Msg) { |
| 780 | reportError(Loc: MCB.getLoc(), Msg); |
| 781 | } |
| 782 | |
| 783 | void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) { |
| 784 | if (ReportErrors) |
| 785 | Context.reportError(L: Loc, Msg); |
| 786 | } |
| 787 | |
| 788 | void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) { |
| 789 | if (ReportErrors) { |
| 790 | auto SM = Context.getSourceManager(); |
| 791 | if (SM) |
| 792 | SM->PrintMessage(Loc, Kind: SourceMgr::DK_Note, Msg); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | void HexagonMCChecker::reportWarning(Twine const &Msg) { |
| 797 | if (ReportErrors) |
| 798 | Context.reportWarning(L: MCB.getLoc(), Msg); |
| 799 | } |
| 800 | |
| 801 | bool HexagonMCChecker::checkLegalVecRegPair() { |
| 802 | const bool IsPermitted = STI.hasFeature(Feature: Hexagon::ArchV67); |
| 803 | const bool HasReversePairs = ReversePairs.size() != 0; |
| 804 | |
| 805 | if (!IsPermitted && HasReversePairs) { |
| 806 | for (auto R : ReversePairs) |
| 807 | reportError(Msg: "register pair `" + Twine(RI.getName(RegNo: R)) + |
| 808 | "' is not permitted for this architecture" ); |
| 809 | return false; |
| 810 | } |
| 811 | return true; |
| 812 | } |
| 813 | |
| 814 | // Vd.tmp can't be accumulated |
| 815 | bool HexagonMCChecker::checkHVXAccum() |
| 816 | { |
| 817 | for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCI: MCB)) { |
| 818 | bool IsTarget = |
| 819 | HexagonMCInstrInfo::isAccumulator(MCII, MCI: I) && I.getOperand(i: 0).isReg(); |
| 820 | if (!IsTarget) |
| 821 | continue; |
| 822 | MCRegister R = I.getOperand(i: 0).getReg(); |
| 823 | TmpDefsIterator It = TmpDefs.find(x: R); |
| 824 | if (It != TmpDefs.end()) { |
| 825 | reportError(Msg: "register `" + Twine(RI.getName(RegNo: R)) + ".tmp" + |
| 826 | "' is accumulated in this packet" ); |
| 827 | return false; |
| 828 | } |
| 829 | } |
| 830 | return true; |
| 831 | } |
| 832 | |