| 1 | //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the interfaces that NVPTX uses to lower LLVM code into a |
| 10 | // selection DAG. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "NVPTXISelLowering.h" |
| 15 | #include "MCTargetDesc/NVPTXBaseInfo.h" |
| 16 | #include "NVPTX.h" |
| 17 | #include "NVPTXSubtarget.h" |
| 18 | #include "NVPTXTargetMachine.h" |
| 19 | #include "NVPTXTargetObjectFile.h" |
| 20 | #include "NVPTXUtilities.h" |
| 21 | #include "llvm/ADT/APFloat.h" |
| 22 | #include "llvm/ADT/APInt.h" |
| 23 | #include "llvm/ADT/STLExtras.h" |
| 24 | #include "llvm/ADT/SmallVector.h" |
| 25 | #include "llvm/ADT/StringRef.h" |
| 26 | #include "llvm/CodeGen/Analysis.h" |
| 27 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 28 | #include "llvm/CodeGen/MachineFunction.h" |
| 29 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 30 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 31 | #include "llvm/CodeGen/Register.h" |
| 32 | #include "llvm/CodeGen/SelectionDAG.h" |
| 33 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 34 | #include "llvm/CodeGen/TargetCallingConv.h" |
| 35 | #include "llvm/CodeGen/TargetLowering.h" |
| 36 | #include "llvm/CodeGen/ValueTypes.h" |
| 37 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 38 | #include "llvm/IR/Argument.h" |
| 39 | #include "llvm/IR/Attributes.h" |
| 40 | #include "llvm/IR/Constants.h" |
| 41 | #include "llvm/IR/DataLayout.h" |
| 42 | #include "llvm/IR/DerivedTypes.h" |
| 43 | #include "llvm/IR/DiagnosticInfo.h" |
| 44 | #include "llvm/IR/FPEnv.h" |
| 45 | #include "llvm/IR/Function.h" |
| 46 | #include "llvm/IR/GlobalValue.h" |
| 47 | #include "llvm/IR/IRBuilder.h" |
| 48 | #include "llvm/IR/Instruction.h" |
| 49 | #include "llvm/IR/Instructions.h" |
| 50 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 51 | #include "llvm/IR/Module.h" |
| 52 | #include "llvm/IR/Type.h" |
| 53 | #include "llvm/IR/Value.h" |
| 54 | #include "llvm/Support/Alignment.h" |
| 55 | #include "llvm/Support/AtomicOrdering.h" |
| 56 | #include "llvm/Support/Casting.h" |
| 57 | #include "llvm/Support/CodeGen.h" |
| 58 | #include "llvm/Support/CommandLine.h" |
| 59 | #include "llvm/Support/ErrorHandling.h" |
| 60 | #include "llvm/Support/NVPTXAddrSpace.h" |
| 61 | #include "llvm/Support/raw_ostream.h" |
| 62 | #include "llvm/Target/TargetMachine.h" |
| 63 | #include "llvm/Target/TargetOptions.h" |
| 64 | #include <algorithm> |
| 65 | #include <cassert> |
| 66 | #include <cmath> |
| 67 | #include <cstdint> |
| 68 | #include <iterator> |
| 69 | #include <optional> |
| 70 | #include <string> |
| 71 | #include <tuple> |
| 72 | #include <utility> |
| 73 | #include <vector> |
| 74 | |
| 75 | #define DEBUG_TYPE "nvptx-lower" |
| 76 | |
| 77 | using namespace llvm; |
| 78 | |
| 79 | static cl::opt<bool> sched4reg( |
| 80 | "nvptx-sched4reg" , |
| 81 | cl::desc("NVPTX Specific: schedule for register pressue" ), cl::init(Val: false)); |
| 82 | |
| 83 | static cl::opt<unsigned> FMAContractLevelOpt( |
| 84 | "nvptx-fma-level" , cl::Hidden, |
| 85 | cl::desc("NVPTX Specific: FMA contraction (0: don't do it" |
| 86 | " 1: do it 2: do it aggressively" ), |
| 87 | cl::init(Val: 2)); |
| 88 | |
| 89 | static cl::opt<NVPTX::DivPrecisionLevel> UsePrecDivF32( |
| 90 | "nvptx-prec-divf32" , cl::Hidden, |
| 91 | cl::desc( |
| 92 | "NVPTX Specific: Override the precision of the lowering for f32 fdiv" ), |
| 93 | cl::values( |
| 94 | clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0" , "Use div.approx" ), |
| 95 | clEnumValN(NVPTX::DivPrecisionLevel::Full, "1" , "Use div.full" ), |
| 96 | clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2" , |
| 97 | "Use IEEE Compliant F32 div.rnd if available (default)" ), |
| 98 | clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3" , |
| 99 | "Use IEEE Compliant F32 div.rnd if available, no FTZ" )), |
| 100 | cl::init(Val: NVPTX::DivPrecisionLevel::IEEE754)); |
| 101 | |
| 102 | static cl::opt<bool> UsePrecSqrtF32( |
| 103 | "nvptx-prec-sqrtf32" , cl::Hidden, |
| 104 | cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn." ), |
| 105 | cl::init(Val: true)); |
| 106 | |
| 107 | /// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it |
| 108 | /// does NOT use lg2.approx for log2, so this is disabled by default. |
| 109 | static cl::opt<bool> UseApproxLog2F32( |
| 110 | "nvptx-approx-log2f32" , |
| 111 | cl::desc("NVPTX Specific: whether to use lg2.approx for log2" ), |
| 112 | cl::init(Val: false)); |
| 113 | |
| 114 | static cl::opt<bool> ForceMinByValParamAlign( |
| 115 | "nvptx-force-min-byval-param-align" , cl::Hidden, |
| 116 | cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" |
| 117 | " params of device functions." ), |
| 118 | cl::init(Val: false)); |
| 119 | |
| 120 | NVPTX::DivPrecisionLevel |
| 121 | NVPTXTargetLowering::getDivF32Level(const MachineFunction &MF, |
| 122 | const SDNode &N) const { |
| 123 | // If nvptx-prec-div32=N is used on the command-line, always honor it |
| 124 | if (UsePrecDivF32.getNumOccurrences() > 0) |
| 125 | return UsePrecDivF32; |
| 126 | |
| 127 | // Otherwise, use div.approx if fast math is enabled |
| 128 | if (allowUnsafeFPMath(MF)) |
| 129 | return NVPTX::DivPrecisionLevel::Approx; |
| 130 | |
| 131 | const SDNodeFlags Flags = N.getFlags(); |
| 132 | if (Flags.hasApproximateFuncs()) |
| 133 | return NVPTX::DivPrecisionLevel::Approx; |
| 134 | |
| 135 | return NVPTX::DivPrecisionLevel::IEEE754; |
| 136 | } |
| 137 | |
| 138 | bool NVPTXTargetLowering::usePrecSqrtF32(const MachineFunction &MF, |
| 139 | const SDNode *N) const { |
| 140 | // If nvptx-prec-sqrtf32 is used on the command-line, always honor it |
| 141 | if (UsePrecSqrtF32.getNumOccurrences() > 0) |
| 142 | return UsePrecSqrtF32; |
| 143 | |
| 144 | // Otherwise, use sqrt.approx if fast math is enabled |
| 145 | if (allowUnsafeFPMath(MF)) |
| 146 | return false; |
| 147 | |
| 148 | if (N) { |
| 149 | const SDNodeFlags Flags = N->getFlags(); |
| 150 | if (Flags.hasApproximateFuncs()) |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { |
| 158 | return MF.getDenormalMode(FPType: APFloat::IEEEsingle()).Output == |
| 159 | DenormalMode::PreserveSign; |
| 160 | } |
| 161 | |
| 162 | static bool IsPTXVectorType(MVT VT) { |
| 163 | switch (VT.SimpleTy) { |
| 164 | default: |
| 165 | return false; |
| 166 | case MVT::v2i1: |
| 167 | case MVT::v4i1: |
| 168 | case MVT::v2i8: |
| 169 | case MVT::v4i8: |
| 170 | case MVT::v8i8: // <2 x i8x4> |
| 171 | case MVT::v16i8: // <4 x i8x4> |
| 172 | case MVT::v2i16: |
| 173 | case MVT::v4i16: |
| 174 | case MVT::v8i16: // <4 x i16x2> |
| 175 | case MVT::v2i32: |
| 176 | case MVT::v4i32: |
| 177 | case MVT::v2i64: |
| 178 | case MVT::v2f16: |
| 179 | case MVT::v4f16: |
| 180 | case MVT::v8f16: // <4 x f16x2> |
| 181 | case MVT::v2bf16: |
| 182 | case MVT::v4bf16: |
| 183 | case MVT::v8bf16: // <4 x bf16x2> |
| 184 | case MVT::v2f32: |
| 185 | case MVT::v4f32: |
| 186 | case MVT::v2f64: |
| 187 | case MVT::v4i64: |
| 188 | case MVT::v4f64: |
| 189 | case MVT::v8i32: |
| 190 | case MVT::v8f32: |
| 191 | case MVT::v16f16: // <8 x f16x2> |
| 192 | case MVT::v16bf16: // <8 x bf16x2> |
| 193 | case MVT::v16i16: // <8 x i16x2> |
| 194 | case MVT::v32i8: // <8 x i8x4> |
| 195 | return true; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | static bool Is16bitsType(MVT VT) { |
| 200 | return (VT.SimpleTy == MVT::f16 || VT.SimpleTy == MVT::bf16 || |
| 201 | VT.SimpleTy == MVT::i16); |
| 202 | } |
| 203 | |
| 204 | // When legalizing vector loads/stores, this function is called, which does two |
| 205 | // things: |
| 206 | // 1. Determines Whether the vector is something we want to custom lower, |
| 207 | // std::nullopt is returned if we do not want to custom lower it. |
| 208 | // 2. If we do want to handle it, returns two parameters: |
| 209 | // - unsigned int NumElts - The number of elements in the final vector |
| 210 | // - EVT EltVT - The type of the elements in the final vector |
| 211 | static std::optional<std::pair<unsigned int, MVT>> |
| 212 | getVectorLoweringShape(EVT VectorEVT, bool CanLowerTo256Bit) { |
| 213 | if (!VectorEVT.isSimple()) |
| 214 | return std::nullopt; |
| 215 | const MVT VectorVT = VectorEVT.getSimpleVT(); |
| 216 | |
| 217 | if (!VectorVT.isVector()) { |
| 218 | if (VectorVT == MVT::i128 || VectorVT == MVT::f128) |
| 219 | return {{2, MVT::i64}}; |
| 220 | return std::nullopt; |
| 221 | } |
| 222 | |
| 223 | const MVT EltVT = VectorVT.getVectorElementType(); |
| 224 | const unsigned NumElts = VectorVT.getVectorNumElements(); |
| 225 | |
| 226 | // We only handle "native" vector sizes for now, e.g. <4 x double> is not |
| 227 | // legal. We can (and should) split that into 2 stores of <2 x double> here |
| 228 | // but I'm leaving that as a TODO for now. |
| 229 | switch (VectorVT.SimpleTy) { |
| 230 | default: |
| 231 | return std::nullopt; |
| 232 | case MVT::v4i64: |
| 233 | case MVT::v4f64: |
| 234 | case MVT::v8i32: |
| 235 | case MVT::v8f32: |
| 236 | // This is a "native" vector type iff the address space is global |
| 237 | // and the target supports 256-bit loads/stores |
| 238 | if (!CanLowerTo256Bit) |
| 239 | return std::nullopt; |
| 240 | LLVM_FALLTHROUGH; |
| 241 | case MVT::v2i8: |
| 242 | case MVT::v2i32: |
| 243 | case MVT::v2i64: |
| 244 | case MVT::v2f32: |
| 245 | case MVT::v2f64: |
| 246 | case MVT::v4i32: |
| 247 | case MVT::v4f32: |
| 248 | // This is a "native" vector type |
| 249 | return std::pair(NumElts, EltVT); |
| 250 | case MVT::v16f16: // <8 x f16x2> |
| 251 | case MVT::v16bf16: // <8 x bf16x2> |
| 252 | case MVT::v16i16: // <8 x i16x2> |
| 253 | case MVT::v32i8: // <8 x i8x4> |
| 254 | // This can be upsized into a "native" vector type iff the address space is |
| 255 | // global and the target supports 256-bit loads/stores. |
| 256 | if (!CanLowerTo256Bit) |
| 257 | return std::nullopt; |
| 258 | LLVM_FALLTHROUGH; |
| 259 | case MVT::v2i16: // <1 x i16x2> |
| 260 | case MVT::v2f16: // <1 x f16x2> |
| 261 | case MVT::v2bf16: // <1 x bf16x2> |
| 262 | case MVT::v4i8: // <1 x i8x4> |
| 263 | case MVT::v4i16: // <2 x i16x2> |
| 264 | case MVT::v4f16: // <2 x f16x2> |
| 265 | case MVT::v4bf16: // <2 x bf16x2> |
| 266 | case MVT::v8i8: // <2 x i8x4> |
| 267 | case MVT::v8f16: // <4 x f16x2> |
| 268 | case MVT::v8bf16: // <4 x bf16x2> |
| 269 | case MVT::v8i16: // <4 x i16x2> |
| 270 | case MVT::v16i8: // <4 x i8x4> |
| 271 | // This can be upsized into a "native" vector type. |
| 272 | // Despite vectors like v8i8, v16i8, v8i16 being within the bit-limit for |
| 273 | // total load/store size, PTX syntax only supports v2/v4. Thus, we can't use |
| 274 | // vectorized loads/stores with the actual element type for i8/i16 as that |
| 275 | // would require v8/v16 variants that do not exist. |
| 276 | // In order to load/store such vectors efficiently, here in Type |
| 277 | // Legalization, we split the vector into word-sized chunks (v2x16/v4i8). |
| 278 | // Later, we will lower to PTX as vectors of b32. |
| 279 | |
| 280 | // Number of elements to pack in one word. |
| 281 | const unsigned NPerWord = 32 / EltVT.getSizeInBits(); |
| 282 | |
| 283 | return std::pair(NumElts / NPerWord, MVT::getVectorVT(VT: EltVT, NumElements: NPerWord)); |
| 284 | } |
| 285 | |
| 286 | llvm_unreachable("All cases in switch should return." ); |
| 287 | } |
| 288 | |
| 289 | /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive |
| 290 | /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors |
| 291 | /// into their primitive components. |
| 292 | /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the |
| 293 | /// same number of types as the Ins/Outs arrays in LowerFormalArguments, |
| 294 | /// LowerCall, and LowerReturn. |
| 295 | static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
| 296 | Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
| 297 | SmallVectorImpl<uint64_t> *Offsets = nullptr, |
| 298 | uint64_t StartingOffset = 0) { |
| 299 | SmallVector<EVT, 16> TempVTs; |
| 300 | SmallVector<uint64_t, 16> TempOffsets; |
| 301 | |
| 302 | // Special case for i128 - decompose to (i64, i64) |
| 303 | if (Ty->isIntegerTy(Bitwidth: 128) || Ty->isFP128Ty()) { |
| 304 | ValueVTs.append(IL: {MVT::i64, MVT::i64}); |
| 305 | |
| 306 | if (Offsets) |
| 307 | Offsets->append(IL: {StartingOffset + 0, StartingOffset + 8}); |
| 308 | |
| 309 | return; |
| 310 | } |
| 311 | |
| 312 | // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. |
| 313 | if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
| 314 | auto const *SL = DL.getStructLayout(Ty: STy); |
| 315 | auto ElementNum = 0; |
| 316 | for(auto *EI : STy->elements()) { |
| 317 | ComputePTXValueVTs(TLI, DL, Ty: EI, ValueVTs, Offsets, |
| 318 | StartingOffset: StartingOffset + SL->getElementOffset(Idx: ElementNum)); |
| 319 | ++ElementNum; |
| 320 | } |
| 321 | return; |
| 322 | } |
| 323 | |
| 324 | // Given an array type, recursively traverse the elements with custom ComputePTXValueVTs. |
| 325 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
| 326 | Type *EltTy = ATy->getElementType(); |
| 327 | uint64_t EltSize = DL.getTypeAllocSize(Ty: EltTy); |
| 328 | for (int I : llvm::seq<int>(Size: ATy->getNumElements())) |
| 329 | ComputePTXValueVTs(TLI, DL, Ty: EltTy, ValueVTs, Offsets, StartingOffset: StartingOffset + I * EltSize); |
| 330 | return; |
| 331 | } |
| 332 | |
| 333 | ComputeValueVTs(TLI, DL, Ty, ValueVTs&: TempVTs, FixedOffsets: &TempOffsets, StartingOffset); |
| 334 | for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { |
| 335 | EVT VT = TempVTs[i]; |
| 336 | uint64_t Off = TempOffsets[i]; |
| 337 | // Split vectors into individual elements, except for v2f16, which |
| 338 | // we will pass as a single scalar. |
| 339 | if (VT.isVector()) { |
| 340 | unsigned NumElts = VT.getVectorNumElements(); |
| 341 | EVT EltVT = VT.getVectorElementType(); |
| 342 | // We require power-of-2 sized vectors because |
| 343 | // TargetLoweringBase::getVectorTypeBreakdown() which is invoked in |
| 344 | // ComputePTXValueVTs() cannot currently break down non-power-of-2 sized |
| 345 | // vectors. |
| 346 | if ((Is16bitsType(VT: EltVT.getSimpleVT())) && NumElts % 2 == 0 && |
| 347 | isPowerOf2_32(Value: NumElts)) { |
| 348 | // Vectors with an even number of f16 elements will be passed to |
| 349 | // us as an array of v2f16/v2bf16 elements. We must match this so we |
| 350 | // stay in sync with Ins/Outs. |
| 351 | switch (EltVT.getSimpleVT().SimpleTy) { |
| 352 | case MVT::f16: |
| 353 | EltVT = MVT::v2f16; |
| 354 | break; |
| 355 | case MVT::bf16: |
| 356 | EltVT = MVT::v2bf16; |
| 357 | break; |
| 358 | case MVT::i16: |
| 359 | EltVT = MVT::v2i16; |
| 360 | break; |
| 361 | default: |
| 362 | llvm_unreachable("Unexpected type" ); |
| 363 | } |
| 364 | NumElts /= 2; |
| 365 | } else if (EltVT.getSimpleVT() == MVT::i8 && |
| 366 | ((NumElts % 4 == 0 && isPowerOf2_32(Value: NumElts)) || |
| 367 | NumElts == 3)) { |
| 368 | // v*i8 are formally lowered as v4i8 |
| 369 | EltVT = MVT::v4i8; |
| 370 | NumElts = (NumElts + 3) / 4; |
| 371 | } else if (EltVT.getSimpleVT() == MVT::i8 && NumElts == 2) { |
| 372 | // v2i8 is promoted to v2i16 |
| 373 | NumElts = 1; |
| 374 | EltVT = MVT::v2i8; |
| 375 | } |
| 376 | for (unsigned j = 0; j != NumElts; ++j) { |
| 377 | ValueVTs.push_back(Elt: EltVT); |
| 378 | if (Offsets) |
| 379 | Offsets->push_back(Elt: Off + j * EltVT.getStoreSize()); |
| 380 | } |
| 381 | } else { |
| 382 | ValueVTs.push_back(Elt: VT); |
| 383 | if (Offsets) |
| 384 | Offsets->push_back(Elt: Off); |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | /// PromoteScalarIntegerPTX |
| 390 | /// Used to make sure the arguments/returns are suitable for passing |
| 391 | /// and promote them to a larger size if they're not. |
| 392 | /// |
| 393 | /// The promoted type is placed in \p PromoteVT if the function returns true. |
| 394 | static EVT promoteScalarIntegerPTX(const EVT VT) { |
| 395 | if (VT.isScalarInteger()) { |
| 396 | switch (PowerOf2Ceil(A: VT.getFixedSizeInBits())) { |
| 397 | default: |
| 398 | llvm_unreachable( |
| 399 | "Promotion is not suitable for scalars of size larger than 64-bits" ); |
| 400 | case 1: |
| 401 | return MVT::i1; |
| 402 | case 2: |
| 403 | case 4: |
| 404 | case 8: |
| 405 | return MVT::i8; |
| 406 | case 16: |
| 407 | return MVT::i16; |
| 408 | case 32: |
| 409 | return MVT::i32; |
| 410 | case 64: |
| 411 | return MVT::i64; |
| 412 | } |
| 413 | } |
| 414 | return VT; |
| 415 | } |
| 416 | |
| 417 | // Check whether we can merge loads/stores of some of the pieces of a |
| 418 | // flattened function parameter or return value into a single vector |
| 419 | // load/store. |
| 420 | // |
| 421 | // The flattened parameter is represented as a list of EVTs and |
| 422 | // offsets, and the whole structure is aligned to ParamAlignment. This |
| 423 | // function determines whether we can load/store pieces of the |
| 424 | // parameter starting at index Idx using a single vectorized op of |
| 425 | // size AccessSize. If so, it returns the number of param pieces |
| 426 | // covered by the vector op. Otherwise, it returns 1. |
| 427 | static unsigned CanMergeParamLoadStoresStartingAt( |
| 428 | unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, |
| 429 | const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) { |
| 430 | |
| 431 | // Can't vectorize if param alignment is not sufficient. |
| 432 | if (ParamAlignment < AccessSize) |
| 433 | return 1; |
| 434 | // Can't vectorize if offset is not aligned. |
| 435 | if (Offsets[Idx] & (AccessSize - 1)) |
| 436 | return 1; |
| 437 | |
| 438 | EVT EltVT = ValueVTs[Idx]; |
| 439 | unsigned EltSize = EltVT.getStoreSize(); |
| 440 | |
| 441 | // Element is too large to vectorize. |
| 442 | if (EltSize >= AccessSize) |
| 443 | return 1; |
| 444 | |
| 445 | unsigned NumElts = AccessSize / EltSize; |
| 446 | // Can't vectorize if AccessBytes if not a multiple of EltSize. |
| 447 | if (AccessSize != EltSize * NumElts) |
| 448 | return 1; |
| 449 | |
| 450 | // We don't have enough elements to vectorize. |
| 451 | if (Idx + NumElts > ValueVTs.size()) |
| 452 | return 1; |
| 453 | |
| 454 | // PTX ISA can only deal with 2- and 4-element vector ops. |
| 455 | if (NumElts != 4 && NumElts != 2) |
| 456 | return 1; |
| 457 | |
| 458 | for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { |
| 459 | // Types do not match. |
| 460 | if (ValueVTs[j] != EltVT) |
| 461 | return 1; |
| 462 | |
| 463 | // Elements are not contiguous. |
| 464 | if (Offsets[j] - Offsets[j - 1] != EltSize) |
| 465 | return 1; |
| 466 | } |
| 467 | // OK. We can vectorize ValueVTs[i..i+NumElts) |
| 468 | return NumElts; |
| 469 | } |
| 470 | |
| 471 | // Computes whether and how we can vectorize the loads/stores of a |
| 472 | // flattened function parameter or return value. |
| 473 | // |
| 474 | // The flattened parameter is represented as the list of ValueVTs and |
| 475 | // Offsets, and is aligned to ParamAlignment bytes. We return a vector |
| 476 | // of the same size as ValueVTs indicating how each piece should be |
| 477 | // loaded/stored (i.e. as a scalar, or as part of a vector |
| 478 | // load/store). |
| 479 | static SmallVector<unsigned, 16> |
| 480 | VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, |
| 481 | const SmallVectorImpl<uint64_t> &Offsets, |
| 482 | Align ParamAlignment, bool IsVAArg = false) { |
| 483 | // Set vector size to match ValueVTs and mark all elements as |
| 484 | // scalars by default. |
| 485 | |
| 486 | if (IsVAArg) |
| 487 | return SmallVector<unsigned>(ValueVTs.size(), 1); |
| 488 | |
| 489 | SmallVector<unsigned, 16> VectorInfo; |
| 490 | |
| 491 | const auto GetNumElts = [&](unsigned I) -> unsigned { |
| 492 | for (const unsigned AccessSize : {16, 8, 4, 2}) { |
| 493 | const unsigned NumElts = CanMergeParamLoadStoresStartingAt( |
| 494 | Idx: I, AccessSize, ValueVTs, Offsets, ParamAlignment); |
| 495 | assert((NumElts == 1 || NumElts == 2 || NumElts == 4) && |
| 496 | "Unexpected vectorization size" ); |
| 497 | if (NumElts != 1) |
| 498 | return NumElts; |
| 499 | } |
| 500 | return 1; |
| 501 | }; |
| 502 | |
| 503 | // Check what we can vectorize using 128/64/32-bit accesses. |
| 504 | for (unsigned I = 0, E = ValueVTs.size(); I != E;) { |
| 505 | const unsigned NumElts = GetNumElts(I); |
| 506 | VectorInfo.push_back(Elt: NumElts); |
| 507 | I += NumElts; |
| 508 | } |
| 509 | assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) == |
| 510 | ValueVTs.size()); |
| 511 | return VectorInfo; |
| 512 | } |
| 513 | |
| 514 | // NVPTXTargetLowering Constructor. |
| 515 | NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, |
| 516 | const NVPTXSubtarget &STI) |
| 517 | : TargetLowering(TM), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) { |
| 518 | // always lower memset, memcpy, and memmove intrinsics to load/store |
| 519 | // instructions, rather |
| 520 | // then generating calls to memset, mempcy or memmove. |
| 521 | MaxStoresPerMemset = MaxStoresPerMemsetOptSize = (unsigned)0xFFFFFFFF; |
| 522 | MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = (unsigned) 0xFFFFFFFF; |
| 523 | MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = (unsigned) 0xFFFFFFFF; |
| 524 | |
| 525 | setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| 526 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| 527 | |
| 528 | // Jump is Expensive. Don't create extra control flow for 'and', 'or' |
| 529 | // condition branches. |
| 530 | setJumpIsExpensive(true); |
| 531 | |
| 532 | // Wide divides are _very_ slow. Try to reduce the width of the divide if |
| 533 | // possible. |
| 534 | addBypassSlowDiv(SlowBitWidth: 64, FastBitWidth: 32); |
| 535 | |
| 536 | // By default, use the Source scheduling |
| 537 | if (sched4reg) |
| 538 | setSchedulingPreference(Sched::RegPressure); |
| 539 | else |
| 540 | setSchedulingPreference(Sched::Source); |
| 541 | |
| 542 | auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| 543 | LegalizeAction NoF16Action) { |
| 544 | bool IsOpSupported = STI.allowFP16Math(); |
| 545 | switch (Op) { |
| 546 | // Several FP16 instructions are available on sm_80 only. |
| 547 | case ISD::FMINNUM: |
| 548 | case ISD::FMAXNUM: |
| 549 | case ISD::FMAXNUM_IEEE: |
| 550 | case ISD::FMINNUM_IEEE: |
| 551 | case ISD::FMAXIMUM: |
| 552 | case ISD::FMINIMUM: |
| 553 | IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| 554 | break; |
| 555 | case ISD::FEXP2: |
| 556 | IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70; |
| 557 | break; |
| 558 | } |
| 559 | setOperationAction(Op, VT, Action: IsOpSupported ? Action : NoF16Action); |
| 560 | }; |
| 561 | |
| 562 | auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| 563 | LegalizeAction NoBF16Action) { |
| 564 | bool IsOpSupported = STI.hasNativeBF16Support(Opcode: Op); |
| 565 | setOperationAction( |
| 566 | Op, VT, Action: IsOpSupported ? Action : NoBF16Action); |
| 567 | }; |
| 568 | |
| 569 | auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| 570 | LegalizeAction NoI16x2Action) { |
| 571 | bool IsOpSupported = false; |
| 572 | // instructions are available on sm_90 only |
| 573 | switch (Op) { |
| 574 | case ISD::ADD: |
| 575 | case ISD::SMAX: |
| 576 | case ISD::SMIN: |
| 577 | case ISD::UMIN: |
| 578 | case ISD::UMAX: |
| 579 | IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80; |
| 580 | break; |
| 581 | } |
| 582 | setOperationAction(Op, VT, Action: IsOpSupported ? Action : NoI16x2Action); |
| 583 | }; |
| 584 | |
| 585 | addRegisterClass(VT: MVT::i1, RC: &NVPTX::B1RegClass); |
| 586 | addRegisterClass(VT: MVT::i16, RC: &NVPTX::B16RegClass); |
| 587 | addRegisterClass(VT: MVT::v2i16, RC: &NVPTX::B32RegClass); |
| 588 | addRegisterClass(VT: MVT::v4i8, RC: &NVPTX::B32RegClass); |
| 589 | addRegisterClass(VT: MVT::i32, RC: &NVPTX::B32RegClass); |
| 590 | addRegisterClass(VT: MVT::i64, RC: &NVPTX::B64RegClass); |
| 591 | addRegisterClass(VT: MVT::f32, RC: &NVPTX::B32RegClass); |
| 592 | addRegisterClass(VT: MVT::f64, RC: &NVPTX::B64RegClass); |
| 593 | addRegisterClass(VT: MVT::f16, RC: &NVPTX::B16RegClass); |
| 594 | addRegisterClass(VT: MVT::v2f16, RC: &NVPTX::B32RegClass); |
| 595 | addRegisterClass(VT: MVT::bf16, RC: &NVPTX::B16RegClass); |
| 596 | addRegisterClass(VT: MVT::v2bf16, RC: &NVPTX::B32RegClass); |
| 597 | |
| 598 | // Conversion to/from FP16/FP16x2 is always legal. |
| 599 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: MVT::v2f16, Action: Custom); |
| 600 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v2f16, Action: Custom); |
| 601 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v2f16, Action: Expand); |
| 602 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: MVT::v2f16, Action: Expand); |
| 603 | |
| 604 | setOperationAction(Op: ISD::READCYCLECOUNTER, VT: MVT::i64, Action: Legal); |
| 605 | if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31) |
| 606 | setOperationAction(Op: ISD::READSTEADYCOUNTER, VT: MVT::i64, Action: Legal); |
| 607 | |
| 608 | setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); |
| 609 | setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); |
| 610 | |
| 611 | // Conversion to/from BFP16/BFP16x2 is always legal. |
| 612 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: MVT::v2bf16, Action: Custom); |
| 613 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v2bf16, Action: Custom); |
| 614 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v2bf16, Action: Expand); |
| 615 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: MVT::v2bf16, Action: Expand); |
| 616 | |
| 617 | setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand); |
| 618 | setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote); |
| 619 | if (getOperationAction(Op: ISD::SETCC, VT: MVT::bf16) == Promote) |
| 620 | AddPromotedToType(Opc: ISD::SETCC, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 621 | |
| 622 | // Conversion to/from i16/i16x2 is always legal. |
| 623 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: MVT::v2i16, Action: Custom); |
| 624 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v2i16, Action: Custom); |
| 625 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v2i16, Action: Expand); |
| 626 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: MVT::v2i16, Action: Expand); |
| 627 | |
| 628 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: MVT::v4i8, Action: Custom); |
| 629 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: MVT::v4i8, Action: Custom); |
| 630 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: MVT::v4i8, Action: Custom); |
| 631 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: MVT::v4i8, Action: Custom); |
| 632 | |
| 633 | // Custom conversions to/from v2i8. |
| 634 | setOperationAction(Op: ISD::BITCAST, VT: MVT::v2i8, Action: Custom); |
| 635 | |
| 636 | // Only logical ops can be done on v4i8 directly, others must be done |
| 637 | // elementwise. |
| 638 | setOperationAction( |
| 639 | Ops: {ISD::ABS, ISD::ADD, ISD::ADDC, ISD::ADDE, |
| 640 | ISD::BITREVERSE, ISD::CTLZ, ISD::CTPOP, ISD::CTTZ, |
| 641 | ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FSHL, ISD::FSHR, |
| 642 | ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::PARITY, |
| 643 | ISD::ROTL, ISD::ROTR, ISD::SADDO, ISD::SADDO_CARRY, |
| 644 | ISD::SADDSAT, ISD::SDIV, ISD::SDIVREM, ISD::SELECT_CC, |
| 645 | ISD::SETCC, ISD::SHL, ISD::SINT_TO_FP, ISD::SMAX, |
| 646 | ISD::SMIN, ISD::SMULO, ISD::SMUL_LOHI, ISD::SRA, |
| 647 | ISD::SREM, ISD::SRL, ISD::SSHLSAT, ISD::SSUBO, |
| 648 | ISD::SSUBO_CARRY, ISD::SSUBSAT, ISD::SUB, ISD::SUBC, |
| 649 | ISD::SUBE, ISD::UADDO, ISD::UADDO_CARRY, ISD::UADDSAT, |
| 650 | ISD::UDIV, ISD::UDIVREM, ISD::UINT_TO_FP, ISD::UMAX, |
| 651 | ISD::UMIN, ISD::UMULO, ISD::UMUL_LOHI, ISD::UREM, |
| 652 | ISD::USHLSAT, ISD::USUBO, ISD::USUBO_CARRY, ISD::VSELECT, |
| 653 | ISD::USUBSAT}, |
| 654 | VT: MVT::v4i8, Action: Expand); |
| 655 | |
| 656 | // Operations not directly supported by NVPTX. |
| 657 | for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32, |
| 658 | MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16, MVT::v4i8, |
| 659 | MVT::i32, MVT::i64}) { |
| 660 | setOperationAction(Op: ISD::SELECT_CC, VT, Action: Expand); |
| 661 | setOperationAction(Op: ISD::BR_CC, VT, Action: Expand); |
| 662 | } |
| 663 | |
| 664 | // Some SIGN_EXTEND_INREG can be done using cvt instruction. |
| 665 | // For others we will expand to a SHL/SRA pair. |
| 666 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i64, Action: Legal); |
| 667 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i32, Action: Legal); |
| 668 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i16, Action: Legal); |
| 669 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i8 , Action: Legal); |
| 670 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i1, Action: Expand); |
| 671 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::v2i16, Action: Expand); |
| 672 | |
| 673 | setOperationAction(Op: ISD::SHL_PARTS, VT: MVT::i32 , Action: Custom); |
| 674 | setOperationAction(Op: ISD::SRA_PARTS, VT: MVT::i32 , Action: Custom); |
| 675 | setOperationAction(Op: ISD::SRL_PARTS, VT: MVT::i32 , Action: Custom); |
| 676 | setOperationAction(Op: ISD::SHL_PARTS, VT: MVT::i64 , Action: Custom); |
| 677 | setOperationAction(Op: ISD::SRA_PARTS, VT: MVT::i64 , Action: Custom); |
| 678 | setOperationAction(Op: ISD::SRL_PARTS, VT: MVT::i64 , Action: Custom); |
| 679 | |
| 680 | setOperationAction(Op: ISD::BITREVERSE, VT: MVT::i32, Action: Legal); |
| 681 | setOperationAction(Op: ISD::BITREVERSE, VT: MVT::i64, Action: Legal); |
| 682 | |
| 683 | setOperationAction(Ops: {ISD::ROTL, ISD::ROTR}, |
| 684 | VTs: {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64}, |
| 685 | Action: Expand); |
| 686 | |
| 687 | if (STI.hasHWROT32()) { |
| 688 | setOperationAction(Ops: {ISD::FSHL, ISD::FSHR}, VT: MVT::i32, Action: Legal); |
| 689 | setOperationAction(Ops: {ISD::ROTL, ISD::ROTR, ISD::FSHL, ISD::FSHR}, VT: MVT::i64, |
| 690 | Action: Custom); |
| 691 | } |
| 692 | |
| 693 | setOperationAction(Op: ISD::BSWAP, VT: MVT::i16, Action: Expand); |
| 694 | |
| 695 | setOperationAction(Op: ISD::BR_JT, VT: MVT::Other, Action: Custom); |
| 696 | setOperationAction(Op: ISD::BRIND, VT: MVT::Other, Action: Expand); |
| 697 | |
| 698 | // We want to legalize constant related memmove and memcopy |
| 699 | // intrinsics. |
| 700 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::Other, Action: Custom); |
| 701 | |
| 702 | // Turn FP extload into load/fpextend |
| 703 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 704 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 705 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 706 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 707 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 708 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2f16, Action: Expand); |
| 709 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f16, Action: Expand); |
| 710 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2bf16, Action: Expand); |
| 711 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2bf16, Action: Expand); |
| 712 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f32, Action: Expand); |
| 713 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4f16, Action: Expand); |
| 714 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f16, Action: Expand); |
| 715 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4bf16, Action: Expand); |
| 716 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4bf16, Action: Expand); |
| 717 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f32, Action: Expand); |
| 718 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8f16, Action: Expand); |
| 719 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8f16, Action: Expand); |
| 720 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8bf16, Action: Expand); |
| 721 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8bf16, Action: Expand); |
| 722 | // Turn FP truncstore into trunc + store. |
| 723 | // FIXME: vector types should also be expanded |
| 724 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 725 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 726 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 727 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 728 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 729 | |
| 730 | // PTX does not support load / store predicate registers |
| 731 | setOperationAction(Op: ISD::LOAD, VT: MVT::i1, Action: Custom); |
| 732 | setOperationAction(Op: ISD::STORE, VT: MVT::i1, Action: Custom); |
| 733 | |
| 734 | for (MVT VT : MVT::integer_valuetypes()) { |
| 735 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 736 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 737 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 738 | setTruncStoreAction(ValVT: VT, MemVT: MVT::i1, Action: Expand); |
| 739 | } |
| 740 | |
| 741 | setCondCodeAction(CCs: {ISD::SETNE, ISD::SETEQ, ISD::SETUGE, ISD::SETULE, |
| 742 | ISD::SETUGT, ISD::SETULT, ISD::SETGT, ISD::SETLT, |
| 743 | ISD::SETGE, ISD::SETLE}, |
| 744 | VT: MVT::i1, Action: Expand); |
| 745 | |
| 746 | // expand extload of vector of integers. |
| 747 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::v2i16, |
| 748 | MemVT: MVT::v2i8, Action: Expand); |
| 749 | setTruncStoreAction(ValVT: MVT::v2i16, MemVT: MVT::v2i8, Action: Expand); |
| 750 | |
| 751 | // This is legal in NVPTX |
| 752 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f64, Action: Legal); |
| 753 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f32, Action: Legal); |
| 754 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f16, Action: Legal); |
| 755 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::bf16, Action: Legal); |
| 756 | |
| 757 | setOperationAction(Ops: ISD::DYNAMIC_STACKALLOC, VTs: {MVT::i32, MVT::i64}, Action: Custom); |
| 758 | setOperationAction(Ops: {ISD::STACKRESTORE, ISD::STACKSAVE}, VT: MVT::Other, Action: Custom); |
| 759 | |
| 760 | // TRAP can be lowered to PTX trap |
| 761 | setOperationAction(Op: ISD::TRAP, VT: MVT::Other, Action: Legal); |
| 762 | // DEBUGTRAP can be lowered to PTX brkpt |
| 763 | setOperationAction(Op: ISD::DEBUGTRAP, VT: MVT::Other, Action: Legal); |
| 764 | |
| 765 | // Register custom handling for vector loads/stores |
| 766 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) |
| 767 | if (IsPTXVectorType(VT)) |
| 768 | setOperationAction(Ops: {ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN}, VT, |
| 769 | Action: Custom); |
| 770 | |
| 771 | setOperationAction(Ops: {ISD::LOAD, ISD::STORE, ISD::INTRINSIC_W_CHAIN}, |
| 772 | VTs: {MVT::i128, MVT::f128}, Action: Custom); |
| 773 | |
| 774 | // Support varargs. |
| 775 | setOperationAction(Op: ISD::VASTART, VT: MVT::Other, Action: Custom); |
| 776 | setOperationAction(Op: ISD::VAARG, VT: MVT::Other, Action: Custom); |
| 777 | setOperationAction(Op: ISD::VACOPY, VT: MVT::Other, Action: Expand); |
| 778 | setOperationAction(Op: ISD::VAEND, VT: MVT::Other, Action: Expand); |
| 779 | |
| 780 | // Custom handling for i8 intrinsics |
| 781 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::i8, Action: Custom); |
| 782 | |
| 783 | setOperationAction(Ops: {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, |
| 784 | VTs: {MVT::i16, MVT::i32, MVT::i64}, Action: Legal); |
| 785 | |
| 786 | setOperationAction(Ops: {ISD::CTPOP, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, VT: MVT::i16, |
| 787 | Action: Promote); |
| 788 | setOperationAction(Ops: {ISD::CTPOP, ISD::CTLZ}, VT: MVT::i32, Action: Legal); |
| 789 | setOperationAction(Ops: {ISD::CTPOP, ISD::CTLZ}, VT: MVT::i64, Action: Custom); |
| 790 | |
| 791 | setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom); |
| 792 | setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom); |
| 793 | setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom); |
| 794 | setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom); |
| 795 | setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom); |
| 796 | setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand); |
| 797 | setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand); |
| 798 | |
| 799 | setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom); |
| 800 | setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom); |
| 801 | setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom); |
| 802 | setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom); |
| 803 | setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom); |
| 804 | setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom); |
| 805 | |
| 806 | // Other arithmetic and logic ops are unsupported. |
| 807 | setOperationAction(Ops: {ISD::SDIV, ISD::UDIV, ISD::SRA, ISD::SRL, ISD::MULHS, |
| 808 | ISD::MULHU, ISD::FP_TO_SINT, ISD::FP_TO_UINT, |
| 809 | ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SETCC}, |
| 810 | VT: MVT::v2i16, Action: Expand); |
| 811 | |
| 812 | setOperationAction(Op: ISD::ADDC, VT: MVT::i32, Action: Legal); |
| 813 | setOperationAction(Op: ISD::ADDE, VT: MVT::i32, Action: Legal); |
| 814 | setOperationAction(Op: ISD::SUBC, VT: MVT::i32, Action: Legal); |
| 815 | setOperationAction(Op: ISD::SUBE, VT: MVT::i32, Action: Legal); |
| 816 | if (STI.getPTXVersion() >= 43) { |
| 817 | setOperationAction(Op: ISD::ADDC, VT: MVT::i64, Action: Legal); |
| 818 | setOperationAction(Op: ISD::ADDE, VT: MVT::i64, Action: Legal); |
| 819 | setOperationAction(Op: ISD::SUBC, VT: MVT::i64, Action: Legal); |
| 820 | setOperationAction(Op: ISD::SUBE, VT: MVT::i64, Action: Legal); |
| 821 | } |
| 822 | |
| 823 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i16, Action: Expand); |
| 824 | setOperationAction(Op: ISD::CTTZ, VT: MVT::v2i16, Action: Expand); |
| 825 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i32, Action: Expand); |
| 826 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i64, Action: Expand); |
| 827 | |
| 828 | // PTX does not directly support SELP of i1, so promote to i32 first |
| 829 | setOperationAction(Op: ISD::SELECT, VT: MVT::i1, Action: Custom); |
| 830 | |
| 831 | // PTX cannot multiply two i64s in a single instruction. |
| 832 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i64, Action: Expand); |
| 833 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i64, Action: Expand); |
| 834 | |
| 835 | // We have some custom DAG combine patterns for these nodes |
| 836 | setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::EXTRACT_VECTOR_ELT, ISD::FADD, |
| 837 | ISD::MUL, ISD::SHL, ISD::SREM, ISD::UREM, ISD::VSELECT, |
| 838 | ISD::BUILD_VECTOR, ISD::ADDRSPACECAST, ISD::LOAD, |
| 839 | ISD::STORE}); |
| 840 | |
| 841 | // setcc for f16x2 and bf16x2 needs special handling to prevent |
| 842 | // legalizer's attempt to scalarize it due to v2i1 not being legal. |
| 843 | if (STI.allowFP16Math() || STI.hasBF16Math()) |
| 844 | setTargetDAGCombine(ISD::SETCC); |
| 845 | |
| 846 | // Promote fp16 arithmetic if fp16 hardware isn't available or the |
| 847 | // user passed --nvptx-no-fp16-math. The flag is useful because, |
| 848 | // although sm_53+ GPUs have some sort of FP16 support in |
| 849 | // hardware, only sm_53 and sm_60 have full implementation. Others |
| 850 | // only have token amount of hardware and are likely to run faster |
| 851 | // by using fp32 units instead. |
| 852 | for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { |
| 853 | setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| 854 | setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| 855 | setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| 856 | // bf16 must be promoted to f32. |
| 857 | setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| 858 | if (getOperationAction(Op, VT: MVT::bf16) == Promote) |
| 859 | AddPromotedToType(Opc: Op, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 860 | } |
| 861 | |
| 862 | // On SM80, we select add/mul/sub as fma to avoid promotion to float |
| 863 | for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) { |
| 864 | for (const auto &VT : {MVT::bf16, MVT::v2bf16}) { |
| 865 | if (!STI.hasNativeBF16Support(Opcode: Op) && STI.hasNativeBF16Support(Opcode: ISD::FMA)) { |
| 866 | setOperationAction(Op, VT, Action: Custom); |
| 867 | } |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | // f16/f16x2 neg was introduced in PTX 60, SM_53. |
| 872 | const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 && |
| 873 | STI.getPTXVersion() >= 60 && |
| 874 | STI.allowFP16Math(); |
| 875 | for (const auto &VT : {MVT::f16, MVT::v2f16}) |
| 876 | setOperationAction(Op: ISD::FNEG, VT, |
| 877 | Action: IsFP16FP16x2NegAvailable ? Legal : Expand); |
| 878 | |
| 879 | setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand); |
| 880 | setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand); |
| 881 | // (would be) Library functions. |
| 882 | |
| 883 | // These map to conversion instructions for scalar FP types. |
| 884 | for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, |
| 885 | ISD::FROUNDEVEN, ISD::FTRUNC}) { |
| 886 | setOperationAction(Op, VT: MVT::f16, Action: Legal); |
| 887 | setOperationAction(Op, VT: MVT::f32, Action: Legal); |
| 888 | setOperationAction(Op, VT: MVT::f64, Action: Legal); |
| 889 | setOperationAction(Op, VT: MVT::v2f16, Action: Expand); |
| 890 | setOperationAction(Op, VT: MVT::v2bf16, Action: Expand); |
| 891 | setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| 892 | if (getOperationAction(Op, VT: MVT::bf16) == Promote) |
| 893 | AddPromotedToType(Opc: Op, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 894 | } |
| 895 | |
| 896 | if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) { |
| 897 | setOperationAction(Op: ISD::BF16_TO_FP, VT: MVT::f32, Action: Expand); |
| 898 | } |
| 899 | if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| 900 | for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) { |
| 901 | setOperationAction(Op: ISD::FP_EXTEND, VT, Action: Custom); |
| 902 | setOperationAction(Op: ISD::FP_ROUND, VT, Action: Custom); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // sm_80 only has conversions between f32 and bf16. Custom lower all other |
| 907 | // bf16 conversions. |
| 908 | if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| 909 | for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) { |
| 910 | setOperationAction( |
| 911 | Ops: {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| 912 | VT, Action: Custom); |
| 913 | } |
| 914 | setOperationAction( |
| 915 | Ops: {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| 916 | VT: MVT::bf16, Action: Custom); |
| 917 | } |
| 918 | |
| 919 | setOperationAction(Op: ISD::FROUND, VT: MVT::f16, Action: Promote); |
| 920 | setOperationAction(Op: ISD::FROUND, VT: MVT::v2f16, Action: Expand); |
| 921 | setOperationAction(Op: ISD::FROUND, VT: MVT::v2bf16, Action: Expand); |
| 922 | setOperationAction(Op: ISD::FROUND, VT: MVT::f32, Action: Custom); |
| 923 | setOperationAction(Op: ISD::FROUND, VT: MVT::f64, Action: Custom); |
| 924 | setOperationAction(Op: ISD::FROUND, VT: MVT::bf16, Action: Promote); |
| 925 | AddPromotedToType(Opc: ISD::FROUND, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 926 | |
| 927 | // 'Expand' implements FCOPYSIGN without calling an external library. |
| 928 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::f16, Action: Expand); |
| 929 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::v2f16, Action: Expand); |
| 930 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::bf16, Action: Expand); |
| 931 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::v2bf16, Action: Expand); |
| 932 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::f32, Action: Custom); |
| 933 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::f64, Action: Custom); |
| 934 | |
| 935 | // These map to corresponding instructions for f32/f64. f16 must be |
| 936 | // promoted to f32. v2f16 is expanded to f16, which is then promoted |
| 937 | // to f32. |
| 938 | for (const auto &Op : |
| 939 | {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS}) { |
| 940 | setOperationAction(Op, VT: MVT::f16, Action: Promote); |
| 941 | setOperationAction(Op, VT: MVT::f32, Action: Legal); |
| 942 | setOperationAction(Op, VT: MVT::f64, Action: Legal); |
| 943 | setOperationAction(Op, VT: MVT::v2f16, Action: Expand); |
| 944 | setOperationAction(Op, VT: MVT::v2bf16, Action: Expand); |
| 945 | setOperationAction(Op, VT: MVT::bf16, Action: Promote); |
| 946 | AddPromotedToType(Opc: Op, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 947 | } |
| 948 | setOperationAction(Ops: ISD::FREM, VTs: {MVT::f32, MVT::f64}, Action: Custom); |
| 949 | |
| 950 | setOperationAction(Ops: ISD::FABS, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 951 | if (STI.getPTXVersion() >= 65) { |
| 952 | setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote); |
| 953 | setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand); |
| 954 | } else { |
| 955 | setOperationAction(Op: ISD::FABS, VT: MVT::f16, Action: Promote); |
| 956 | setOperationAction(Op: ISD::FABS, VT: MVT::v2f16, Action: Expand); |
| 957 | } |
| 958 | setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand); |
| 959 | setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote); |
| 960 | if (getOperationAction(Op: ISD::FABS, VT: MVT::bf16) == Promote) |
| 961 | AddPromotedToType(Opc: ISD::FABS, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 962 | |
| 963 | for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) { |
| 964 | setOperationAction(Op, VT: MVT::f32, Action: Legal); |
| 965 | setOperationAction(Op, VT: MVT::f64, Action: Legal); |
| 966 | setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| 967 | setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| 968 | setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| 969 | setBF16OperationAction(Op, MVT::bf16, Legal, Promote); |
| 970 | if (getOperationAction(Op, VT: MVT::bf16) == Promote) |
| 971 | AddPromotedToType(Opc: Op, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 972 | } |
| 973 | bool SupportsF32MinMaxNaN = |
| 974 | STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70; |
| 975 | for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) { |
| 976 | setOperationAction(Op, VT: MVT::f32, Action: SupportsF32MinMaxNaN ? Legal : Expand); |
| 977 | setFP16OperationAction(Op, MVT::f16, Legal, Expand); |
| 978 | setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| 979 | setBF16OperationAction(Op, MVT::bf16, Legal, Expand); |
| 980 | setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand); |
| 981 | } |
| 982 | |
| 983 | // Custom lowering for inline asm with 128-bit operands |
| 984 | setOperationAction(Op: ISD::CopyToReg, VT: MVT::i128, Action: Custom); |
| 985 | setOperationAction(Op: ISD::CopyFromReg, VT: MVT::i128, Action: Custom); |
| 986 | |
| 987 | // FEXP2 support: |
| 988 | // - f32 |
| 989 | // - f16/f16x2 (sm_70+, PTX 7.0+) |
| 990 | // - bf16/bf16x2 (sm_90+, PTX 7.8+) |
| 991 | // When f16/bf16 types aren't supported, they are promoted/expanded to f32. |
| 992 | setOperationAction(Op: ISD::FEXP2, VT: MVT::f32, Action: Legal); |
| 993 | setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote); |
| 994 | setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand); |
| 995 | setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote); |
| 996 | setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand); |
| 997 | |
| 998 | // FLOG2 supports f32 only |
| 999 | // f16/bf16 types aren't supported, but they are promoted/expanded to f32. |
| 1000 | if (UseApproxLog2F32) { |
| 1001 | setOperationAction(Op: ISD::FLOG2, VT: MVT::f32, Action: Legal); |
| 1002 | setOperationPromotedToType(Opc: ISD::FLOG2, OrigVT: MVT::f16, DestVT: MVT::f32); |
| 1003 | setOperationPromotedToType(Opc: ISD::FLOG2, OrigVT: MVT::bf16, DestVT: MVT::f32); |
| 1004 | setOperationAction(Ops: ISD::FLOG2, VTs: {MVT::v2f16, MVT::v2bf16}, Action: Expand); |
| 1005 | } |
| 1006 | |
| 1007 | setOperationAction(Ops: ISD::ADDRSPACECAST, VTs: {MVT::i32, MVT::i64}, Action: Custom); |
| 1008 | |
| 1009 | setOperationAction(Ops: ISD::ATOMIC_LOAD_SUB, VTs: {MVT::i32, MVT::i64}, Action: Expand); |
| 1010 | // No FPOW or FREM in PTX. |
| 1011 | |
| 1012 | // Now deduce the information based on the above mentioned |
| 1013 | // actions |
| 1014 | computeRegisterProperties(TRI: STI.getRegisterInfo()); |
| 1015 | |
| 1016 | // PTX support for 16-bit CAS is emulated. Only use 32+ |
| 1017 | setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits()); |
| 1018 | setMaxAtomicSizeInBitsSupported(64); |
| 1019 | setMaxDivRemBitWidthSupported(64); |
| 1020 | |
| 1021 | // Custom lowering for tcgen05.ld vector operands |
| 1022 | setOperationAction(Ops: ISD::INTRINSIC_W_CHAIN, |
| 1023 | VTs: {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| 1024 | MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| 1025 | Action: Custom); |
| 1026 | |
| 1027 | // Custom lowering for tcgen05.st vector operands |
| 1028 | setOperationAction(Ops: ISD::INTRINSIC_VOID, |
| 1029 | VTs: {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32, |
| 1030 | MVT::v32i32, MVT::v64i32, MVT::v128i32}, |
| 1031 | Action: Custom); |
| 1032 | |
| 1033 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 1034 | // Enable custom lowering for the i128 bit operand with clusterlaunchcontrol |
| 1035 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::i128, Action: Custom); |
| 1036 | } |
| 1037 | |
| 1038 | const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 1039 | |
| 1040 | #define MAKE_CASE(V) \ |
| 1041 | case V: \ |
| 1042 | return #V; |
| 1043 | |
| 1044 | switch ((NVPTXISD::NodeType)Opcode) { |
| 1045 | case NVPTXISD::FIRST_NUMBER: |
| 1046 | break; |
| 1047 | |
| 1048 | MAKE_CASE(NVPTXISD::RET_GLUE) |
| 1049 | MAKE_CASE(NVPTXISD::DeclareArrayParam) |
| 1050 | MAKE_CASE(NVPTXISD::DeclareScalarParam) |
| 1051 | MAKE_CASE(NVPTXISD::CALL) |
| 1052 | MAKE_CASE(NVPTXISD::LoadParam) |
| 1053 | MAKE_CASE(NVPTXISD::LoadParamV2) |
| 1054 | MAKE_CASE(NVPTXISD::LoadParamV4) |
| 1055 | MAKE_CASE(NVPTXISD::StoreParam) |
| 1056 | MAKE_CASE(NVPTXISD::StoreParamV2) |
| 1057 | MAKE_CASE(NVPTXISD::StoreParamV4) |
| 1058 | MAKE_CASE(NVPTXISD::MoveParam) |
| 1059 | MAKE_CASE(NVPTXISD::UNPACK_VECTOR) |
| 1060 | MAKE_CASE(NVPTXISD::BUILD_VECTOR) |
| 1061 | MAKE_CASE(NVPTXISD::CallPrototype) |
| 1062 | MAKE_CASE(NVPTXISD::ProxyReg) |
| 1063 | MAKE_CASE(NVPTXISD::LoadV2) |
| 1064 | MAKE_CASE(NVPTXISD::LoadV4) |
| 1065 | MAKE_CASE(NVPTXISD::LoadV8) |
| 1066 | MAKE_CASE(NVPTXISD::LDUV2) |
| 1067 | MAKE_CASE(NVPTXISD::LDUV4) |
| 1068 | MAKE_CASE(NVPTXISD::StoreV2) |
| 1069 | MAKE_CASE(NVPTXISD::StoreV4) |
| 1070 | MAKE_CASE(NVPTXISD::StoreV8) |
| 1071 | MAKE_CASE(NVPTXISD::FSHL_CLAMP) |
| 1072 | MAKE_CASE(NVPTXISD::FSHR_CLAMP) |
| 1073 | MAKE_CASE(NVPTXISD::BFE) |
| 1074 | MAKE_CASE(NVPTXISD::BFI) |
| 1075 | MAKE_CASE(NVPTXISD::PRMT) |
| 1076 | MAKE_CASE(NVPTXISD::FCOPYSIGN) |
| 1077 | MAKE_CASE(NVPTXISD::DYNAMIC_STACKALLOC) |
| 1078 | MAKE_CASE(NVPTXISD::STACKRESTORE) |
| 1079 | MAKE_CASE(NVPTXISD::STACKSAVE) |
| 1080 | MAKE_CASE(NVPTXISD::SETP_F16X2) |
| 1081 | MAKE_CASE(NVPTXISD::SETP_BF16X2) |
| 1082 | MAKE_CASE(NVPTXISD::MUL_WIDE_SIGNED) |
| 1083 | MAKE_CASE(NVPTXISD::MUL_WIDE_UNSIGNED) |
| 1084 | MAKE_CASE(NVPTXISD::BrxEnd) |
| 1085 | MAKE_CASE(NVPTXISD::BrxItem) |
| 1086 | MAKE_CASE(NVPTXISD::BrxStart) |
| 1087 | MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED) |
| 1088 | MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X) |
| 1089 | MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y) |
| 1090 | MAKE_CASE(NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z) |
| 1091 | } |
| 1092 | return nullptr; |
| 1093 | |
| 1094 | #undef MAKE_CASE |
| 1095 | } |
| 1096 | |
| 1097 | TargetLoweringBase::LegalizeTypeAction |
| 1098 | NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { |
| 1099 | if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| 1100 | VT.getScalarType() == MVT::i1) |
| 1101 | return TypeSplitVector; |
| 1102 | return TargetLoweringBase::getPreferredVectorAction(VT); |
| 1103 | } |
| 1104 | |
| 1105 | SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, |
| 1106 | int Enabled, int &, |
| 1107 | bool &UseOneConst, |
| 1108 | bool Reciprocal) const { |
| 1109 | if (!(Enabled == ReciprocalEstimate::Enabled || |
| 1110 | (Enabled == ReciprocalEstimate::Unspecified && |
| 1111 | !usePrecSqrtF32(MF: DAG.getMachineFunction())))) |
| 1112 | return SDValue(); |
| 1113 | |
| 1114 | if (ExtraSteps == ReciprocalEstimate::Unspecified) |
| 1115 | ExtraSteps = 0; |
| 1116 | |
| 1117 | SDLoc DL(Operand); |
| 1118 | EVT VT = Operand.getValueType(); |
| 1119 | bool Ftz = useF32FTZ(MF: DAG.getMachineFunction()); |
| 1120 | |
| 1121 | auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { |
| 1122 | return DAG.getNode(Opcode: ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| 1123 | N1: DAG.getConstant(Val: IID, DL, VT: MVT::i32), N2: Operand); |
| 1124 | }; |
| 1125 | |
| 1126 | // The sqrt and rsqrt refinement processes assume we always start out with an |
| 1127 | // approximation of the rsqrt. Therefore, if we're going to do any refinement |
| 1128 | // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing |
| 1129 | // any refinement, we must return a regular sqrt. |
| 1130 | if (Reciprocal || ExtraSteps > 0) { |
| 1131 | if (VT == MVT::f32) |
| 1132 | return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f |
| 1133 | : Intrinsic::nvvm_rsqrt_approx_f); |
| 1134 | else if (VT == MVT::f64) |
| 1135 | return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); |
| 1136 | else |
| 1137 | return SDValue(); |
| 1138 | } else { |
| 1139 | if (VT == MVT::f32) |
| 1140 | return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f |
| 1141 | : Intrinsic::nvvm_sqrt_approx_f); |
| 1142 | else { |
| 1143 | // There's no sqrt.approx.f64 instruction, so we emit |
| 1144 | // reciprocal(rsqrt(x)). This is faster than |
| 1145 | // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain |
| 1146 | // x * rsqrt(x).) |
| 1147 | return DAG.getNode( |
| 1148 | Opcode: ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| 1149 | N1: DAG.getConstant(Val: Intrinsic::nvvm_rcp_approx_ftz_d, DL, VT: MVT::i32), |
| 1150 | N2: MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); |
| 1151 | } |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | std::string NVPTXTargetLowering::getPrototype( |
| 1156 | const DataLayout &DL, Type *RetTy, const ArgListTy &Args, |
| 1157 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1158 | std::optional<unsigned> FirstVAArg, const CallBase &CB, |
| 1159 | unsigned UniqueCallSite) const { |
| 1160 | auto PtrVT = getPointerTy(DL); |
| 1161 | |
| 1162 | std::string Prototype; |
| 1163 | raw_string_ostream O(Prototype); |
| 1164 | O << "prototype_" << UniqueCallSite << " : .callprototype " ; |
| 1165 | |
| 1166 | if (RetTy->isVoidTy()) { |
| 1167 | O << "()" ; |
| 1168 | } else { |
| 1169 | O << "(" ; |
| 1170 | if (shouldPassAsArray(Ty: RetTy)) { |
| 1171 | const Align RetAlign = getArgumentAlignment(CB: &CB, Ty: RetTy, Idx: 0, DL); |
| 1172 | O << ".param .align " << RetAlign.value() << " .b8 _[" |
| 1173 | << DL.getTypeAllocSize(Ty: RetTy) << "]" ; |
| 1174 | } else if (RetTy->isFloatingPointTy() || RetTy->isIntegerTy()) { |
| 1175 | unsigned size = 0; |
| 1176 | if (auto *ITy = dyn_cast<IntegerType>(Val: RetTy)) { |
| 1177 | size = ITy->getBitWidth(); |
| 1178 | } else { |
| 1179 | assert(RetTy->isFloatingPointTy() && |
| 1180 | "Floating point type expected here" ); |
| 1181 | size = RetTy->getPrimitiveSizeInBits(); |
| 1182 | } |
| 1183 | // PTX ABI requires all scalar return values to be at least 32 |
| 1184 | // bits in size. fp16 normally uses .b16 as its storage type in |
| 1185 | // PTX, so its size must be adjusted here, too. |
| 1186 | size = promoteScalarArgumentSize(size); |
| 1187 | |
| 1188 | O << ".param .b" << size << " _" ; |
| 1189 | } else if (isa<PointerType>(Val: RetTy)) { |
| 1190 | O << ".param .b" << PtrVT.getSizeInBits() << " _" ; |
| 1191 | } else { |
| 1192 | llvm_unreachable("Unknown return type" ); |
| 1193 | } |
| 1194 | O << ") " ; |
| 1195 | } |
| 1196 | O << "_ (" ; |
| 1197 | |
| 1198 | bool first = true; |
| 1199 | |
| 1200 | const unsigned NumArgs = FirstVAArg.value_or(u: Args.size()); |
| 1201 | auto AllOuts = ArrayRef(Outs); |
| 1202 | for (const unsigned I : llvm::seq(Size: NumArgs)) { |
| 1203 | const auto ArgOuts = |
| 1204 | AllOuts.take_while(Pred: [I](auto O) { return O.OrigArgIndex == I; }); |
| 1205 | AllOuts = AllOuts.drop_front(N: ArgOuts.size()); |
| 1206 | |
| 1207 | Type *Ty = Args[I].Ty; |
| 1208 | if (!first) { |
| 1209 | O << ", " ; |
| 1210 | } |
| 1211 | first = false; |
| 1212 | |
| 1213 | if (ArgOuts[0].Flags.isByVal()) { |
| 1214 | // Indirect calls need strict ABI alignment so we disable optimizations by |
| 1215 | // not providing a function to optimize. |
| 1216 | Type *ETy = Args[I].IndirectType; |
| 1217 | Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign(); |
| 1218 | Align ParamByValAlign = |
| 1219 | getFunctionByValParamAlign(/*F=*/nullptr, ArgTy: ETy, InitialAlign, DL); |
| 1220 | |
| 1221 | O << ".param .align " << ParamByValAlign.value() << " .b8 _[" |
| 1222 | << ArgOuts[0].Flags.getByValSize() << "]" ; |
| 1223 | } else { |
| 1224 | if (shouldPassAsArray(Ty)) { |
| 1225 | Align ParamAlign = |
| 1226 | getArgumentAlignment(CB: &CB, Ty, Idx: I + AttributeList::FirstArgIndex, DL); |
| 1227 | O << ".param .align " << ParamAlign.value() << " .b8 _[" |
| 1228 | << DL.getTypeAllocSize(Ty) << "]" ; |
| 1229 | continue; |
| 1230 | } |
| 1231 | // i8 types in IR will be i16 types in SDAG |
| 1232 | assert((getValueType(DL, Ty) == ArgOuts[0].VT || |
| 1233 | (getValueType(DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) && |
| 1234 | "type mismatch between callee prototype and arguments" ); |
| 1235 | // scalar type |
| 1236 | unsigned sz = 0; |
| 1237 | if (auto *ITy = dyn_cast<IntegerType>(Val: Ty)) { |
| 1238 | sz = promoteScalarArgumentSize(size: ITy->getBitWidth()); |
| 1239 | } else if (isa<PointerType>(Val: Ty)) { |
| 1240 | sz = PtrVT.getSizeInBits(); |
| 1241 | } else { |
| 1242 | sz = Ty->getPrimitiveSizeInBits(); |
| 1243 | } |
| 1244 | O << ".param .b" << sz << " _" ; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | if (FirstVAArg) |
| 1249 | O << (first ? "" : "," ) << " .param .align " |
| 1250 | << STI.getMaxRequiredAlignment() << " .b8 _[]" ; |
| 1251 | O << ")" ; |
| 1252 | if (shouldEmitPTXNoReturn(V: &CB, TM: *nvTM)) |
| 1253 | O << " .noreturn" ; |
| 1254 | O << ";" ; |
| 1255 | |
| 1256 | return Prototype; |
| 1257 | } |
| 1258 | |
| 1259 | Align NVPTXTargetLowering::getFunctionArgumentAlignment( |
| 1260 | const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const { |
| 1261 | return getAlign(F: *F, Index: Idx).value_or(u: getFunctionParamOptimizedAlign(F, ArgTy: Ty, DL)); |
| 1262 | } |
| 1263 | |
| 1264 | Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty, |
| 1265 | unsigned Idx, |
| 1266 | const DataLayout &DL) const { |
| 1267 | if (!CB) { |
| 1268 | // CallSite is zero, fallback to ABI type alignment |
| 1269 | return DL.getABITypeAlign(Ty); |
| 1270 | } |
| 1271 | |
| 1272 | const Function *DirectCallee = CB->getCalledFunction(); |
| 1273 | |
| 1274 | if (!DirectCallee) { |
| 1275 | // We don't have a direct function symbol, but that may be because of |
| 1276 | // constant cast instructions in the call. |
| 1277 | |
| 1278 | // With bitcast'd call targets, the instruction will be the call |
| 1279 | if (const auto *CI = dyn_cast<CallInst>(Val: CB)) { |
| 1280 | // Check if we have call alignment metadata |
| 1281 | if (MaybeAlign StackAlign = getAlign(*CI, Idx)) |
| 1282 | return StackAlign.value(); |
| 1283 | } |
| 1284 | DirectCallee = getMaybeBitcastedCallee(CB); |
| 1285 | } |
| 1286 | |
| 1287 | // Check for function alignment information if we found that the |
| 1288 | // ultimate target is a Function |
| 1289 | if (DirectCallee) |
| 1290 | return getFunctionArgumentAlignment(F: DirectCallee, Ty, Idx, DL); |
| 1291 | |
| 1292 | // Call is indirect, fall back to the ABI type alignment |
| 1293 | return DL.getABITypeAlign(Ty); |
| 1294 | } |
| 1295 | |
| 1296 | static bool adjustElementType(EVT &ElementType) { |
| 1297 | switch (ElementType.getSimpleVT().SimpleTy) { |
| 1298 | default: |
| 1299 | return false; |
| 1300 | case MVT::f16: |
| 1301 | case MVT::bf16: |
| 1302 | ElementType = MVT::i16; |
| 1303 | return true; |
| 1304 | case MVT::f32: |
| 1305 | case MVT::v2f16: |
| 1306 | case MVT::v2bf16: |
| 1307 | ElementType = MVT::i32; |
| 1308 | return true; |
| 1309 | case MVT::f64: |
| 1310 | ElementType = MVT::i64; |
| 1311 | return true; |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | // Use byte-store when the param address of the argument value is unaligned. |
| 1316 | // This may happen when the return value is a field of a packed structure. |
| 1317 | // |
| 1318 | // This is called in LowerCall() when passing the param values. |
| 1319 | static SDValue LowerUnalignedStoreParam(SelectionDAG &DAG, SDValue Chain, |
| 1320 | uint64_t Offset, EVT ElementType, |
| 1321 | SDValue StVal, SDValue &InGlue, |
| 1322 | unsigned ArgID, const SDLoc &dl) { |
| 1323 | // Bit logic only works on integer types |
| 1324 | if (adjustElementType(ElementType)) |
| 1325 | StVal = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ElementType, Operand: StVal); |
| 1326 | |
| 1327 | // Store each byte |
| 1328 | SDVTList StoreVTs = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 1329 | for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) { |
| 1330 | // Shift the byte to the last byte position |
| 1331 | SDValue ShiftVal = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ElementType, N1: StVal, |
| 1332 | N2: DAG.getConstant(Val: i * 8, DL: dl, VT: MVT::i32)); |
| 1333 | SDValue StoreOperands[] = {Chain, DAG.getConstant(Val: ArgID, DL: dl, VT: MVT::i32), |
| 1334 | DAG.getConstant(Val: Offset + i, DL: dl, VT: MVT::i32), |
| 1335 | ShiftVal, InGlue}; |
| 1336 | // Trunc store only the last byte by using |
| 1337 | // st.param.b8 |
| 1338 | // The register type can be larger than b8. |
| 1339 | Chain = DAG.getMemIntrinsicNode( |
| 1340 | Opcode: NVPTXISD::StoreParam, dl, VTList: StoreVTs, Ops: StoreOperands, MemVT: MVT::i8, |
| 1341 | PtrInfo: MachinePointerInfo(), Alignment: Align(1), Flags: MachineMemOperand::MOStore); |
| 1342 | InGlue = Chain.getValue(R: 1); |
| 1343 | } |
| 1344 | return Chain; |
| 1345 | } |
| 1346 | |
| 1347 | // Use byte-load when the param adress of the returned value is unaligned. |
| 1348 | // This may happen when the returned value is a field of a packed structure. |
| 1349 | static SDValue |
| 1350 | LowerUnalignedLoadRetParam(SelectionDAG &DAG, SDValue &Chain, uint64_t Offset, |
| 1351 | EVT ElementType, SDValue &InGlue, |
| 1352 | SmallVectorImpl<SDValue> &TempProxyRegOps, |
| 1353 | const SDLoc &dl) { |
| 1354 | // Bit logic only works on integer types |
| 1355 | EVT MergedType = ElementType; |
| 1356 | adjustElementType(ElementType&: MergedType); |
| 1357 | |
| 1358 | // Load each byte and construct the whole value. Initial value to 0 |
| 1359 | SDValue RetVal = DAG.getConstant(Val: 0, DL: dl, VT: MergedType); |
| 1360 | // LoadParamMemI8 loads into i16 register only |
| 1361 | SDVTList LoadVTs = DAG.getVTList(VT1: MVT::i16, VT2: MVT::Other, VT3: MVT::Glue); |
| 1362 | for (unsigned i = 0, n = ElementType.getSizeInBits() / 8; i < n; i++) { |
| 1363 | SDValue LoadOperands[] = {Chain, DAG.getConstant(Val: 1, DL: dl, VT: MVT::i32), |
| 1364 | DAG.getConstant(Val: Offset + i, DL: dl, VT: MVT::i32), |
| 1365 | InGlue}; |
| 1366 | // This will be selected to LoadParamMemI8 |
| 1367 | SDValue LdVal = |
| 1368 | DAG.getMemIntrinsicNode(Opcode: NVPTXISD::LoadParam, dl, VTList: LoadVTs, Ops: LoadOperands, |
| 1369 | MemVT: MVT::i8, PtrInfo: MachinePointerInfo(), Alignment: Align(1)); |
| 1370 | SDValue TmpLdVal = LdVal.getValue(R: 0); |
| 1371 | Chain = LdVal.getValue(R: 1); |
| 1372 | InGlue = LdVal.getValue(R: 2); |
| 1373 | |
| 1374 | TmpLdVal = DAG.getNode(Opcode: NVPTXISD::ProxyReg, DL: dl, |
| 1375 | VT: TmpLdVal.getSimpleValueType(), Operand: TmpLdVal); |
| 1376 | TempProxyRegOps.push_back(Elt: TmpLdVal); |
| 1377 | |
| 1378 | SDValue CMask = DAG.getConstant(Val: 255, DL: dl, VT: MergedType); |
| 1379 | SDValue CShift = DAG.getConstant(Val: i * 8, DL: dl, VT: MVT::i32); |
| 1380 | // Need to extend the i16 register to the whole width. |
| 1381 | TmpLdVal = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MergedType, Operand: TmpLdVal); |
| 1382 | // Mask off the high bits. Leave only the lower 8bits. |
| 1383 | // Do this because we are using loadparam.b8. |
| 1384 | TmpLdVal = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MergedType, N1: TmpLdVal, N2: CMask); |
| 1385 | // Shift and merge |
| 1386 | TmpLdVal = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: MergedType, N1: TmpLdVal, N2: CShift); |
| 1387 | RetVal = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: MergedType, N1: RetVal, N2: TmpLdVal); |
| 1388 | } |
| 1389 | if (ElementType != MergedType) |
| 1390 | RetVal = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ElementType, Operand: RetVal); |
| 1391 | |
| 1392 | return RetVal; |
| 1393 | } |
| 1394 | |
| 1395 | static bool shouldConvertToIndirectCall(const CallBase *CB, |
| 1396 | const GlobalAddressSDNode *Func) { |
| 1397 | if (!Func) |
| 1398 | return false; |
| 1399 | if (auto *CalleeFunc = dyn_cast<Function>(Val: Func->getGlobal())) |
| 1400 | return CB->getFunctionType() != CalleeFunc->getFunctionType(); |
| 1401 | return false; |
| 1402 | } |
| 1403 | |
| 1404 | static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, |
| 1405 | const DataLayout &DL, |
| 1406 | const TargetLowering &TL) { |
| 1407 | if (Ptr->getOpcode() == ISD::FrameIndex) { |
| 1408 | auto Ty = TL.getPointerTy(DL, AS: ADDRESS_SPACE_LOCAL); |
| 1409 | Ptr = DAG.getAddrSpaceCast(dl: SDLoc(), VT: Ty, Ptr, SrcAS: ADDRESS_SPACE_GENERIC, |
| 1410 | DestAS: ADDRESS_SPACE_LOCAL); |
| 1411 | |
| 1412 | return MachinePointerInfo(ADDRESS_SPACE_LOCAL); |
| 1413 | } |
| 1414 | |
| 1415 | // Peel of an addrspacecast to generic and load directly from the specific |
| 1416 | // address space. |
| 1417 | if (Ptr->getOpcode() == ISD::ADDRSPACECAST) { |
| 1418 | const auto *ASC = cast<AddrSpaceCastSDNode>(Val&: Ptr); |
| 1419 | if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) { |
| 1420 | Ptr = ASC->getOperand(Num: 0); |
| 1421 | return MachinePointerInfo(ASC->getSrcAddressSpace()); |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | return MachinePointerInfo(); |
| 1426 | } |
| 1427 | |
| 1428 | static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags) { |
| 1429 | if (Flags.isSExt()) |
| 1430 | return ISD::SIGN_EXTEND; |
| 1431 | if (Flags.isZExt()) |
| 1432 | return ISD::ZERO_EXTEND; |
| 1433 | return ISD::ANY_EXTEND; |
| 1434 | } |
| 1435 | |
| 1436 | static SDValue correctParamType(SDValue V, EVT ExpectedVT, |
| 1437 | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| 1438 | SDLoc dl) { |
| 1439 | const EVT ActualVT = V.getValueType(); |
| 1440 | assert((ActualVT == ExpectedVT || |
| 1441 | (ExpectedVT.isInteger() && ActualVT.isInteger())) && |
| 1442 | "Non-integer argument type size mismatch" ); |
| 1443 | if (ExpectedVT.bitsGT(VT: ActualVT)) |
| 1444 | return DAG.getNode(Opcode: getExtOpcode(Flags), DL: dl, VT: ExpectedVT, Operand: V); |
| 1445 | if (ExpectedVT.bitsLT(VT: ActualVT)) |
| 1446 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: ExpectedVT, Operand: V); |
| 1447 | |
| 1448 | return V; |
| 1449 | } |
| 1450 | |
| 1451 | SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| 1452 | SmallVectorImpl<SDValue> &InVals) const { |
| 1453 | |
| 1454 | if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30)) |
| 1455 | report_fatal_error( |
| 1456 | reason: "Support for variadic functions (unsized array parameter) introduced " |
| 1457 | "in PTX ISA version 6.0 and requires target sm_30." ); |
| 1458 | |
| 1459 | SelectionDAG &DAG = CLI.DAG; |
| 1460 | SDLoc dl = CLI.DL; |
| 1461 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 1462 | SDValue Chain = CLI.Chain; |
| 1463 | SDValue Callee = CLI.Callee; |
| 1464 | bool &isTailCall = CLI.IsTailCall; |
| 1465 | ArgListTy &Args = CLI.getArgs(); |
| 1466 | Type *RetTy = CLI.RetTy; |
| 1467 | const CallBase *CB = CLI.CB; |
| 1468 | const DataLayout &DL = DAG.getDataLayout(); |
| 1469 | |
| 1470 | const auto GetI32 = [&](const unsigned I) { |
| 1471 | return DAG.getConstant(Val: I, DL: dl, VT: MVT::i32); |
| 1472 | }; |
| 1473 | |
| 1474 | // Variadic arguments. |
| 1475 | // |
| 1476 | // Normally, for each argument, we declare a param scalar or a param |
| 1477 | // byte array in the .param space, and store the argument value to that |
| 1478 | // param scalar or array starting at offset 0. |
| 1479 | // |
| 1480 | // In the case of the first variadic argument, we declare a vararg byte array |
| 1481 | // with size 0. The exact size of this array isn't known at this point, so |
| 1482 | // it'll be patched later. All the variadic arguments will be stored to this |
| 1483 | // array at a certain offset (which gets tracked by 'VAOffset'). The offset is |
| 1484 | // initially set to 0, so it can be used for non-variadic arguments (which use |
| 1485 | // 0 offset) to simplify the code. |
| 1486 | // |
| 1487 | // After all vararg is processed, 'VAOffset' holds the size of the |
| 1488 | // vararg byte array. |
| 1489 | |
| 1490 | SDValue VADeclareParam; // vararg byte array |
| 1491 | const unsigned FirstVAArg = CLI.NumFixedArgs; // position of first variadic |
| 1492 | unsigned VAOffset = 0; // current offset in the param array |
| 1493 | |
| 1494 | const unsigned UniqueCallSite = GlobalUniqueCallSite++; |
| 1495 | SDValue TempChain = Chain; |
| 1496 | Chain = DAG.getCALLSEQ_START(Chain, InSize: UniqueCallSite, OutSize: 0, DL: dl); |
| 1497 | SDValue InGlue = Chain.getValue(R: 1); |
| 1498 | |
| 1499 | // Args.size() and Outs.size() need not match. |
| 1500 | // Outs.size() will be larger |
| 1501 | // * if there is an aggregate argument with multiple fields (each field |
| 1502 | // showing up separately in Outs) |
| 1503 | // * if there is a vector argument with more than typical vector-length |
| 1504 | // elements (generally if more than 4) where each vector element is |
| 1505 | // individually present in Outs. |
| 1506 | // So a different index should be used for indexing into Outs/OutVals. |
| 1507 | // See similar issue in LowerFormalArguments. |
| 1508 | auto AllOuts = ArrayRef(CLI.Outs); |
| 1509 | auto AllOutVals = ArrayRef(CLI.OutVals); |
| 1510 | assert(AllOuts.size() == AllOutVals.size() && |
| 1511 | "Outs and OutVals must be the same size" ); |
| 1512 | // Declare the .params or .reg need to pass values |
| 1513 | // to the function |
| 1514 | for (const auto E : llvm::enumerate(First&: Args)) { |
| 1515 | const auto ArgI = E.index(); |
| 1516 | const auto Arg = E.value(); |
| 1517 | const auto ArgOuts = |
| 1518 | AllOuts.take_while(Pred: [&](auto O) { return O.OrigArgIndex == ArgI; }); |
| 1519 | const auto ArgOutVals = AllOutVals.take_front(N: ArgOuts.size()); |
| 1520 | AllOuts = AllOuts.drop_front(N: ArgOuts.size()); |
| 1521 | AllOutVals = AllOutVals.drop_front(N: ArgOuts.size()); |
| 1522 | |
| 1523 | const bool IsVAArg = (ArgI >= FirstVAArg); |
| 1524 | const bool IsByVal = Arg.IsByVal; |
| 1525 | |
| 1526 | const SDValue ParamSymbol = |
| 1527 | getCallParamSymbol(DAG, I: IsVAArg ? FirstVAArg : ArgI, T: MVT::i32); |
| 1528 | |
| 1529 | SmallVector<EVT, 16> VTs; |
| 1530 | SmallVector<uint64_t, 16> Offsets; |
| 1531 | |
| 1532 | assert((!IsByVal || Arg.IndirectType) && |
| 1533 | "byval arg must have indirect type" ); |
| 1534 | Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty); |
| 1535 | ComputePTXValueVTs(TLI: *this, DL, Ty: ETy, ValueVTs&: VTs, Offsets: &Offsets, StartingOffset: IsByVal ? 0 : VAOffset); |
| 1536 | assert(VTs.size() == Offsets.size() && "Size mismatch" ); |
| 1537 | assert((IsByVal || VTs.size() == ArgOuts.size()) && "Size mismatch" ); |
| 1538 | |
| 1539 | const Align ArgAlign = [&]() { |
| 1540 | if (IsByVal) { |
| 1541 | // The ByValAlign in the Outs[OIdx].Flags is always set at this point, |
| 1542 | // so we don't need to worry whether it's naturally aligned or not. |
| 1543 | // See TargetLowering::LowerCallTo(). |
| 1544 | const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign(); |
| 1545 | const Align ByValAlign = getFunctionByValParamAlign( |
| 1546 | F: CB->getCalledFunction(), ArgTy: ETy, InitialAlign, DL); |
| 1547 | if (IsVAArg) |
| 1548 | VAOffset = alignTo(Size: VAOffset, A: ByValAlign); |
| 1549 | return ByValAlign; |
| 1550 | } |
| 1551 | return getArgumentAlignment(CB, Ty: Arg.Ty, Idx: ArgI + 1, DL); |
| 1552 | }(); |
| 1553 | |
| 1554 | const unsigned TypeSize = DL.getTypeAllocSize(Ty: ETy); |
| 1555 | assert((!IsByVal || TypeSize == ArgOuts[0].Flags.getByValSize()) && |
| 1556 | "type size mismatch" ); |
| 1557 | |
| 1558 | const std::optional<SDValue> ArgDeclare = [&]() -> std::optional<SDValue> { |
| 1559 | if (IsVAArg) { |
| 1560 | if (ArgI == FirstVAArg) { |
| 1561 | VADeclareParam = DAG.getNode( |
| 1562 | Opcode: NVPTXISD::DeclareArrayParam, DL: dl, ResultTys: {MVT::Other, MVT::Glue}, |
| 1563 | Ops: {Chain, ParamSymbol, GetI32(STI.getMaxRequiredAlignment()), |
| 1564 | GetI32(0), InGlue}); |
| 1565 | return VADeclareParam; |
| 1566 | } |
| 1567 | return std::nullopt; |
| 1568 | } |
| 1569 | if (IsByVal || shouldPassAsArray(Ty: Arg.Ty)) { |
| 1570 | // declare .param .align <align> .b8 .param<n>[<size>]; |
| 1571 | return DAG.getNode(Opcode: NVPTXISD::DeclareArrayParam, DL: dl, |
| 1572 | ResultTys: {MVT::Other, MVT::Glue}, |
| 1573 | Ops: {Chain, ParamSymbol, GetI32(ArgAlign.value()), |
| 1574 | GetI32(TypeSize), InGlue}); |
| 1575 | } |
| 1576 | assert(ArgOuts.size() == 1 && "We must pass only one value as non-array" ); |
| 1577 | // declare .param .b<size> .param<n>; |
| 1578 | |
| 1579 | // PTX ABI requires integral types to be at least 32 bits in |
| 1580 | // size. FP16 is loaded/stored using i16, so it's handled |
| 1581 | // here as well. |
| 1582 | const unsigned PromotedSize = |
| 1583 | (ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) |
| 1584 | ? promoteScalarArgumentSize(size: TypeSize * 8) |
| 1585 | : TypeSize * 8; |
| 1586 | |
| 1587 | return DAG.getNode(Opcode: NVPTXISD::DeclareScalarParam, DL: dl, |
| 1588 | ResultTys: {MVT::Other, MVT::Glue}, |
| 1589 | Ops: {Chain, ParamSymbol, GetI32(PromotedSize), InGlue}); |
| 1590 | }(); |
| 1591 | if (ArgDeclare) { |
| 1592 | Chain = ArgDeclare->getValue(R: 0); |
| 1593 | InGlue = ArgDeclare->getValue(R: 1); |
| 1594 | } |
| 1595 | |
| 1596 | // PTX Interoperability Guide 3.3(A): [Integer] Values shorter |
| 1597 | // than 32-bits are sign extended or zero extended, depending on |
| 1598 | // whether they are signed or unsigned types. This case applies |
| 1599 | // only to scalar parameters and not to aggregate values. |
| 1600 | const bool ExtendIntegerParam = |
| 1601 | Arg.Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty: Arg.Ty) < 32; |
| 1602 | |
| 1603 | const auto GetStoredValue = [&](const unsigned I, EVT EltVT, |
| 1604 | const Align PartAlign) { |
| 1605 | SDValue StVal; |
| 1606 | if (IsByVal) { |
| 1607 | SDValue Ptr = ArgOutVals[0]; |
| 1608 | auto MPI = refinePtrAS(Ptr, DAG, DL, TL: *this); |
| 1609 | SDValue SrcAddr = |
| 1610 | DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: Offsets[I])); |
| 1611 | |
| 1612 | StVal = DAG.getLoad(VT: EltVT, dl, Chain: TempChain, Ptr: SrcAddr, PtrInfo: MPI, Alignment: PartAlign); |
| 1613 | } else { |
| 1614 | StVal = ArgOutVals[I]; |
| 1615 | |
| 1616 | auto PromotedVT = promoteScalarIntegerPTX(VT: StVal.getValueType()); |
| 1617 | if (PromotedVT != StVal.getValueType()) { |
| 1618 | StVal = DAG.getNode(Opcode: getExtOpcode(Flags: ArgOuts[I].Flags), DL: dl, VT: PromotedVT, |
| 1619 | Operand: StVal); |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | if (ExtendIntegerParam) { |
| 1624 | assert(VTs.size() == 1 && "Scalar can't have multiple parts." ); |
| 1625 | // zext/sext to i32 |
| 1626 | StVal = |
| 1627 | DAG.getNode(Opcode: getExtOpcode(Flags: ArgOuts[I].Flags), DL: dl, VT: MVT::i32, Operand: StVal); |
| 1628 | } else if (EltVT.getSizeInBits() < 16) { |
| 1629 | // Use 16-bit registers for small stores as it's the |
| 1630 | // smallest general purpose register size supported by NVPTX. |
| 1631 | StVal = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: MVT::i16, Operand: StVal); |
| 1632 | } |
| 1633 | return StVal; |
| 1634 | }; |
| 1635 | |
| 1636 | const auto VectorInfo = |
| 1637 | VectorizePTXValueVTs(ValueVTs: VTs, Offsets, ParamAlignment: ArgAlign, IsVAArg); |
| 1638 | |
| 1639 | unsigned J = 0; |
| 1640 | for (const unsigned NumElts : VectorInfo) { |
| 1641 | const int CurOffset = Offsets[J]; |
| 1642 | EVT EltVT = promoteScalarIntegerPTX(VT: VTs[J]); |
| 1643 | const Align PartAlign = commonAlignment(A: ArgAlign, Offset: CurOffset); |
| 1644 | |
| 1645 | // If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a |
| 1646 | // scalar store. In such cases, fall back to byte stores. |
| 1647 | if (NumElts == 1 && !IsVAArg && PartAlign < DAG.getEVTAlign(MemoryVT: EltVT)) { |
| 1648 | |
| 1649 | SDValue StVal = GetStoredValue(J, EltVT, PartAlign); |
| 1650 | Chain = LowerUnalignedStoreParam(DAG, Chain, |
| 1651 | Offset: CurOffset + (IsByVal ? VAOffset : 0), |
| 1652 | ElementType: EltVT, StVal, InGlue, ArgID: ArgI, dl); |
| 1653 | |
| 1654 | // LowerUnalignedStoreParam took care of inserting the necessary nodes |
| 1655 | // into the SDAG, so just move on to the next element. |
| 1656 | J++; |
| 1657 | continue; |
| 1658 | } |
| 1659 | |
| 1660 | if (IsVAArg && !IsByVal) |
| 1661 | // Align each part of the variadic argument to their type. |
| 1662 | VAOffset = alignTo(Size: VAOffset, A: DAG.getEVTAlign(MemoryVT: EltVT)); |
| 1663 | |
| 1664 | assert((IsVAArg || VAOffset == 0) && |
| 1665 | "VAOffset must be 0 for non-VA args" ); |
| 1666 | SmallVector<SDValue, 6> StoreOperands{ |
| 1667 | Chain, GetI32(IsVAArg ? FirstVAArg : ArgI), |
| 1668 | GetI32(VAOffset + ((IsVAArg && !IsByVal) ? 0 : CurOffset))}; |
| 1669 | |
| 1670 | // Record the values to store. |
| 1671 | for (const unsigned K : llvm::seq(Size: NumElts)) |
| 1672 | StoreOperands.push_back(Elt: GetStoredValue(J + K, EltVT, PartAlign)); |
| 1673 | StoreOperands.push_back(Elt: InGlue); |
| 1674 | |
| 1675 | NVPTXISD::NodeType Op; |
| 1676 | switch (NumElts) { |
| 1677 | case 1: |
| 1678 | Op = NVPTXISD::StoreParam; |
| 1679 | break; |
| 1680 | case 2: |
| 1681 | Op = NVPTXISD::StoreParamV2; |
| 1682 | break; |
| 1683 | case 4: |
| 1684 | Op = NVPTXISD::StoreParamV4; |
| 1685 | break; |
| 1686 | default: |
| 1687 | llvm_unreachable("Invalid vector info." ); |
| 1688 | } |
| 1689 | // Adjust type of the store op if we've extended the scalar |
| 1690 | // return value. |
| 1691 | EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT; |
| 1692 | |
| 1693 | Chain = DAG.getMemIntrinsicNode( |
| 1694 | Opcode: Op, dl, VTList: DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue), Ops: StoreOperands, |
| 1695 | MemVT: TheStoreType, PtrInfo: MachinePointerInfo(), Alignment: PartAlign, |
| 1696 | Flags: MachineMemOperand::MOStore); |
| 1697 | InGlue = Chain.getValue(R: 1); |
| 1698 | |
| 1699 | // TODO: We may need to support vector types that can be passed |
| 1700 | // as scalars in variadic arguments. |
| 1701 | if (IsVAArg && !IsByVal) { |
| 1702 | assert(NumElts == 1 && |
| 1703 | "Vectorization is expected to be disabled for variadics." ); |
| 1704 | VAOffset += |
| 1705 | DL.getTypeAllocSize(Ty: TheStoreType.getTypeForEVT(Context&: *DAG.getContext())); |
| 1706 | } |
| 1707 | |
| 1708 | J += NumElts; |
| 1709 | } |
| 1710 | if (IsVAArg && IsByVal) |
| 1711 | VAOffset += TypeSize; |
| 1712 | } |
| 1713 | |
| 1714 | GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Val: Callee.getNode()); |
| 1715 | |
| 1716 | // Handle Result |
| 1717 | if (!Ins.empty()) { |
| 1718 | const SDValue RetDeclare = [&]() { |
| 1719 | const SDValue RetSymbol = DAG.getExternalSymbol(Sym: "retval0" , VT: MVT::i32); |
| 1720 | const unsigned ResultSize = DL.getTypeAllocSizeInBits(Ty: RetTy); |
| 1721 | if (shouldPassAsArray(Ty: RetTy)) { |
| 1722 | const Align RetAlign = getArgumentAlignment(CB, Ty: RetTy, Idx: 0, DL); |
| 1723 | return DAG.getNode(Opcode: NVPTXISD::DeclareArrayParam, DL: dl, |
| 1724 | ResultTys: {MVT::Other, MVT::Glue}, |
| 1725 | Ops: {Chain, RetSymbol, GetI32(RetAlign.value()), |
| 1726 | GetI32(ResultSize / 8), InGlue}); |
| 1727 | } |
| 1728 | const auto PromotedResultSize = promoteScalarArgumentSize(size: ResultSize); |
| 1729 | return DAG.getNode( |
| 1730 | Opcode: NVPTXISD::DeclareScalarParam, DL: dl, ResultTys: {MVT::Other, MVT::Glue}, |
| 1731 | Ops: {Chain, RetSymbol, GetI32(PromotedResultSize), InGlue}); |
| 1732 | }(); |
| 1733 | Chain = RetDeclare.getValue(R: 0); |
| 1734 | InGlue = RetDeclare.getValue(R: 1); |
| 1735 | } |
| 1736 | |
| 1737 | const bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs); |
| 1738 | // Set the size of the vararg param byte array if the callee is a variadic |
| 1739 | // function and the variadic part is not empty. |
| 1740 | if (HasVAArgs) { |
| 1741 | SDValue DeclareParamOps[] = {VADeclareParam.getOperand(i: 0), |
| 1742 | VADeclareParam.getOperand(i: 1), |
| 1743 | VADeclareParam.getOperand(i: 2), GetI32(VAOffset), |
| 1744 | VADeclareParam.getOperand(i: 4)}; |
| 1745 | DAG.MorphNodeTo(N: VADeclareParam.getNode(), Opc: VADeclareParam.getOpcode(), |
| 1746 | VTs: VADeclareParam->getVTList(), Ops: DeclareParamOps); |
| 1747 | } |
| 1748 | |
| 1749 | // If the type of the callsite does not match that of the function, convert |
| 1750 | // the callsite to an indirect call. |
| 1751 | const bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func); |
| 1752 | |
| 1753 | // Both indirect calls and libcalls have nullptr Func. In order to distinguish |
| 1754 | // between them we must rely on the call site value which is valid for |
| 1755 | // indirect calls but is always null for libcalls. |
| 1756 | const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall; |
| 1757 | |
| 1758 | if (isa<ExternalSymbolSDNode>(Val: Callee)) { |
| 1759 | Function* CalleeFunc = nullptr; |
| 1760 | |
| 1761 | // Try to find the callee in the current module. |
| 1762 | Callee = DAG.getSymbolFunctionGlobalAddress(Op: Callee, TargetFunction: &CalleeFunc); |
| 1763 | assert(CalleeFunc != nullptr && "Libcall callee must be set." ); |
| 1764 | |
| 1765 | // Set the "libcall callee" attribute to indicate that the function |
| 1766 | // must always have a declaration. |
| 1767 | CalleeFunc->addFnAttr(Kind: "nvptx-libcall-callee" , Val: "true" ); |
| 1768 | } |
| 1769 | |
| 1770 | if (IsIndirectCall) { |
| 1771 | // This is indirect function call case : PTX requires a prototype of the |
| 1772 | // form |
| 1773 | // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); |
| 1774 | // to be emitted, and the label has to used as the last arg of call |
| 1775 | // instruction. |
| 1776 | // The prototype is embedded in a string and put as the operand for a |
| 1777 | // CallPrototype SDNode which will print out to the value of the string. |
| 1778 | std::string Proto = |
| 1779 | getPrototype(DL, RetTy, Args, Outs: CLI.Outs, |
| 1780 | FirstVAArg: HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, CB: *CB, |
| 1781 | UniqueCallSite); |
| 1782 | const char *ProtoStr = nvTM->getStrPool().save(S: Proto).data(); |
| 1783 | Chain = DAG.getNode( |
| 1784 | Opcode: NVPTXISD::CallPrototype, DL: dl, ResultTys: {MVT::Other, MVT::Glue}, |
| 1785 | Ops: {Chain, DAG.getTargetExternalSymbol(Sym: ProtoStr, VT: MVT::i32), InGlue}); |
| 1786 | InGlue = Chain.getValue(R: 1); |
| 1787 | } |
| 1788 | |
| 1789 | if (ConvertToIndirectCall) { |
| 1790 | // Copy the function ptr to a ptx register and use the register to call the |
| 1791 | // function. |
| 1792 | const MVT DestVT = Callee.getValueType().getSimpleVT(); |
| 1793 | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| 1794 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 1795 | Register DestReg = MRI.createVirtualRegister(RegClass: TLI.getRegClassFor(VT: DestVT)); |
| 1796 | auto RegCopy = DAG.getCopyToReg(Chain: DAG.getEntryNode(), dl, Reg: DestReg, N: Callee); |
| 1797 | Callee = DAG.getCopyFromReg(Chain: RegCopy, dl, Reg: DestReg, VT: DestVT); |
| 1798 | } |
| 1799 | |
| 1800 | const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0; |
| 1801 | const unsigned NumArgs = |
| 1802 | std::min<unsigned>(a: CLI.NumFixedArgs + 1, b: Args.size()); |
| 1803 | /// CALL(Chain, IsConvergent, IsIndirectCall/IsUniform, NumReturns, |
| 1804 | /// NumParams, Callee, Proto, InGlue) |
| 1805 | Chain = DAG.getNode(Opcode: NVPTXISD::CALL, DL: dl, ResultTys: {MVT::Other, MVT::Glue}, |
| 1806 | Ops: {Chain, GetI32(CLI.IsConvergent), GetI32(IsIndirectCall), |
| 1807 | GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, |
| 1808 | GetI32(Proto), InGlue}); |
| 1809 | InGlue = Chain.getValue(R: 1); |
| 1810 | |
| 1811 | SmallVector<SDValue, 16> ProxyRegOps; |
| 1812 | // An item of the vector is filled if the element does not need a ProxyReg |
| 1813 | // operation on it and should be added to InVals as is. ProxyRegOps and |
| 1814 | // ProxyRegTruncates contain empty/none items at the same index. |
| 1815 | SmallVector<SDValue, 16> RetElts; |
| 1816 | // A temporary ProxyReg operations inserted in `LowerUnalignedLoadRetParam()` |
| 1817 | // to use the values of `LoadParam`s and to be replaced later then |
| 1818 | // `CALLSEQ_END` is added. |
| 1819 | SmallVector<SDValue, 16> TempProxyRegOps; |
| 1820 | |
| 1821 | // Generate loads from param memory/moves from registers for result |
| 1822 | if (!Ins.empty()) { |
| 1823 | SmallVector<EVT, 16> VTs; |
| 1824 | SmallVector<uint64_t, 16> Offsets; |
| 1825 | ComputePTXValueVTs(TLI: *this, DL, Ty: RetTy, ValueVTs&: VTs, Offsets: &Offsets, StartingOffset: 0); |
| 1826 | assert(VTs.size() == Ins.size() && "Bad value decomposition" ); |
| 1827 | |
| 1828 | const Align RetAlign = getArgumentAlignment(CB, Ty: RetTy, Idx: 0, DL); |
| 1829 | |
| 1830 | // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| 1831 | // 32-bits are sign extended or zero extended, depending on whether |
| 1832 | // they are signed or unsigned types. |
| 1833 | const bool ExtendIntegerRetVal = |
| 1834 | RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty: RetTy) < 32; |
| 1835 | |
| 1836 | const auto VectorInfo = VectorizePTXValueVTs(ValueVTs: VTs, Offsets, ParamAlignment: RetAlign); |
| 1837 | unsigned I = 0; |
| 1838 | for (const unsigned VectorizedSize : VectorInfo) { |
| 1839 | EVT TheLoadType = promoteScalarIntegerPTX(VT: VTs[I]); |
| 1840 | EVT EltType = Ins[I].VT; |
| 1841 | const Align EltAlign = commonAlignment(A: RetAlign, Offset: Offsets[I]); |
| 1842 | |
| 1843 | if (TheLoadType != VTs[I]) |
| 1844 | EltType = TheLoadType; |
| 1845 | |
| 1846 | if (ExtendIntegerRetVal) { |
| 1847 | TheLoadType = MVT::i32; |
| 1848 | EltType = MVT::i32; |
| 1849 | } else if (TheLoadType.getSizeInBits() < 16) { |
| 1850 | EltType = MVT::i16; |
| 1851 | } |
| 1852 | |
| 1853 | // If we have a PVF_SCALAR entry, it may not be sufficiently aligned for a |
| 1854 | // scalar load. In such cases, fall back to byte loads. |
| 1855 | if (VectorizedSize == 1 && RetTy->isAggregateType() && |
| 1856 | EltAlign < DAG.getEVTAlign(MemoryVT: TheLoadType)) { |
| 1857 | SDValue Ret = LowerUnalignedLoadRetParam( |
| 1858 | DAG, Chain, Offset: Offsets[I], ElementType: TheLoadType, InGlue, TempProxyRegOps, dl); |
| 1859 | ProxyRegOps.push_back(Elt: SDValue()); |
| 1860 | RetElts.resize(N: I); |
| 1861 | RetElts.push_back(Elt: Ret); |
| 1862 | |
| 1863 | I++; |
| 1864 | continue; |
| 1865 | } |
| 1866 | |
| 1867 | SmallVector<EVT, 6> LoadVTs(VectorizedSize, EltType); |
| 1868 | LoadVTs.append(IL: {MVT::Other, MVT::Glue}); |
| 1869 | |
| 1870 | NVPTXISD::NodeType Op; |
| 1871 | switch (VectorizedSize) { |
| 1872 | case 1: |
| 1873 | Op = NVPTXISD::LoadParam; |
| 1874 | break; |
| 1875 | case 2: |
| 1876 | Op = NVPTXISD::LoadParamV2; |
| 1877 | break; |
| 1878 | case 4: |
| 1879 | Op = NVPTXISD::LoadParamV4; |
| 1880 | break; |
| 1881 | default: |
| 1882 | llvm_unreachable("Invalid vector info." ); |
| 1883 | } |
| 1884 | |
| 1885 | SDValue LoadOperands[] = {Chain, GetI32(1), GetI32(Offsets[I]), InGlue}; |
| 1886 | SDValue RetVal = DAG.getMemIntrinsicNode( |
| 1887 | Opcode: Op, dl, VTList: DAG.getVTList(VTs: LoadVTs), Ops: LoadOperands, MemVT: TheLoadType, |
| 1888 | PtrInfo: MachinePointerInfo(), Alignment: EltAlign, Flags: MachineMemOperand::MOLoad); |
| 1889 | |
| 1890 | for (const unsigned J : llvm::seq(Size: VectorizedSize)) { |
| 1891 | ProxyRegOps.push_back(Elt: RetVal.getValue(R: J)); |
| 1892 | } |
| 1893 | |
| 1894 | Chain = RetVal.getValue(R: VectorizedSize); |
| 1895 | InGlue = RetVal.getValue(R: VectorizedSize + 1); |
| 1896 | |
| 1897 | I += VectorizedSize; |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | Chain = |
| 1902 | DAG.getCALLSEQ_END(Chain, Size1: UniqueCallSite, Size2: UniqueCallSite + 1, Glue: InGlue, DL: dl); |
| 1903 | InGlue = Chain.getValue(R: 1); |
| 1904 | |
| 1905 | // Append ProxyReg instructions to the chain to make sure that `callseq_end` |
| 1906 | // will not get lost. Otherwise, during libcalls expansion, the nodes can become |
| 1907 | // dangling. |
| 1908 | for (const unsigned I : llvm::seq(Size: ProxyRegOps.size())) { |
| 1909 | if (I < RetElts.size() && RetElts[I]) { |
| 1910 | InVals.push_back(Elt: RetElts[I]); |
| 1911 | continue; |
| 1912 | } |
| 1913 | |
| 1914 | SDValue Ret = |
| 1915 | DAG.getNode(Opcode: NVPTXISD::ProxyReg, DL: dl, VT: ProxyRegOps[I].getSimpleValueType(), |
| 1916 | Ops: {Chain, ProxyRegOps[I]}); |
| 1917 | |
| 1918 | const EVT ExpectedVT = Ins[I].VT; |
| 1919 | if (!Ret.getValueType().bitsEq(VT: ExpectedVT)) { |
| 1920 | Ret = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: ExpectedVT, Operand: Ret); |
| 1921 | } |
| 1922 | InVals.push_back(Elt: Ret); |
| 1923 | } |
| 1924 | |
| 1925 | for (SDValue &T : TempProxyRegOps) { |
| 1926 | SDValue Repl = DAG.getNode(Opcode: NVPTXISD::ProxyReg, DL: dl, VT: T.getSimpleValueType(), |
| 1927 | Ops: {Chain, T.getOperand(i: 0)}); |
| 1928 | DAG.ReplaceAllUsesWith(From: T, To: Repl); |
| 1929 | DAG.RemoveDeadNode(N: T.getNode()); |
| 1930 | } |
| 1931 | |
| 1932 | // set isTailCall to false for now, until we figure out how to express |
| 1933 | // tail call optimization in PTX |
| 1934 | isTailCall = false; |
| 1935 | return Chain; |
| 1936 | } |
| 1937 | |
| 1938 | SDValue NVPTXTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| 1939 | SelectionDAG &DAG) const { |
| 1940 | |
| 1941 | if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| 1942 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1943 | |
| 1944 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1945 | Fn, |
| 1946 | "Support for dynamic alloca introduced in PTX ISA version 7.3 and " |
| 1947 | "requires target sm_52." , |
| 1948 | SDLoc(Op).getDebugLoc())); |
| 1949 | auto Ops = {DAG.getConstant(Val: 0, DL: SDLoc(), VT: Op.getValueType()), |
| 1950 | Op.getOperand(i: 0)}; |
| 1951 | return DAG.getMergeValues(Ops, dl: SDLoc()); |
| 1952 | } |
| 1953 | |
| 1954 | SDLoc DL(Op.getNode()); |
| 1955 | SDValue Chain = Op.getOperand(i: 0); |
| 1956 | SDValue Size = Op.getOperand(i: 1); |
| 1957 | uint64_t Align = Op.getConstantOperandVal(i: 2); |
| 1958 | |
| 1959 | // The alignment on a ISD::DYNAMIC_STACKALLOC node may be 0 to indicate that |
| 1960 | // the default stack alignment should be used. |
| 1961 | if (Align == 0) |
| 1962 | Align = DAG.getSubtarget().getFrameLowering()->getStackAlign().value(); |
| 1963 | |
| 1964 | // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32. |
| 1965 | const MVT LocalVT = getPointerTy(DL: DAG.getDataLayout(), AS: ADDRESS_SPACE_LOCAL); |
| 1966 | |
| 1967 | SDValue Alloc = |
| 1968 | DAG.getNode(Opcode: NVPTXISD::DYNAMIC_STACKALLOC, DL, ResultTys: {LocalVT, MVT::Other}, |
| 1969 | Ops: {Chain, DAG.getZExtOrTrunc(Op: Size, DL, VT: LocalVT), |
| 1970 | DAG.getTargetConstant(Val: Align, DL, VT: MVT::i32)}); |
| 1971 | |
| 1972 | SDValue ASC = DAG.getAddrSpaceCast( |
| 1973 | dl: DL, VT: Op.getValueType(), Ptr: Alloc, SrcAS: ADDRESS_SPACE_LOCAL, DestAS: ADDRESS_SPACE_GENERIC); |
| 1974 | |
| 1975 | return DAG.getMergeValues(Ops: {ASC, SDValue(Alloc.getNode(), 1)}, dl: DL); |
| 1976 | } |
| 1977 | |
| 1978 | SDValue NVPTXTargetLowering::LowerSTACKRESTORE(SDValue Op, |
| 1979 | SelectionDAG &DAG) const { |
| 1980 | SDLoc DL(Op.getNode()); |
| 1981 | if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| 1982 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1983 | |
| 1984 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1985 | Fn, |
| 1986 | "Support for stackrestore requires PTX ISA version >= 7.3 and target " |
| 1987 | ">= sm_52." , |
| 1988 | DL.getDebugLoc())); |
| 1989 | return Op.getOperand(i: 0); |
| 1990 | } |
| 1991 | |
| 1992 | const MVT LocalVT = getPointerTy(DL: DAG.getDataLayout(), AS: ADDRESS_SPACE_LOCAL); |
| 1993 | SDValue Chain = Op.getOperand(i: 0); |
| 1994 | SDValue Ptr = Op.getOperand(i: 1); |
| 1995 | SDValue ASC = DAG.getAddrSpaceCast(dl: DL, VT: LocalVT, Ptr, SrcAS: ADDRESS_SPACE_GENERIC, |
| 1996 | DestAS: ADDRESS_SPACE_LOCAL); |
| 1997 | return DAG.getNode(Opcode: NVPTXISD::STACKRESTORE, DL, VT: MVT::Other, Ops: {Chain, ASC}); |
| 1998 | } |
| 1999 | |
| 2000 | SDValue NVPTXTargetLowering::LowerSTACKSAVE(SDValue Op, |
| 2001 | SelectionDAG &DAG) const { |
| 2002 | SDLoc DL(Op.getNode()); |
| 2003 | if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) { |
| 2004 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 2005 | |
| 2006 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 2007 | Fn, |
| 2008 | "Support for stacksave requires PTX ISA version >= 7.3 and target >= " |
| 2009 | "sm_52." , |
| 2010 | DL.getDebugLoc())); |
| 2011 | auto Ops = {DAG.getConstant(Val: 0, DL, VT: Op.getValueType()), Op.getOperand(i: 0)}; |
| 2012 | return DAG.getMergeValues(Ops, dl: DL); |
| 2013 | } |
| 2014 | |
| 2015 | const MVT LocalVT = getPointerTy(DL: DAG.getDataLayout(), AS: ADDRESS_SPACE_LOCAL); |
| 2016 | SDValue Chain = Op.getOperand(i: 0); |
| 2017 | SDValue SS = |
| 2018 | DAG.getNode(Opcode: NVPTXISD::STACKSAVE, DL, ResultTys: {LocalVT, MVT::Other}, Ops: Chain); |
| 2019 | SDValue ASC = DAG.getAddrSpaceCast( |
| 2020 | dl: DL, VT: Op.getValueType(), Ptr: SS, SrcAS: ADDRESS_SPACE_LOCAL, DestAS: ADDRESS_SPACE_GENERIC); |
| 2021 | return DAG.getMergeValues(Ops: {ASC, SDValue(SS.getNode(), 1)}, dl: DL); |
| 2022 | } |
| 2023 | |
| 2024 | // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() |
| 2025 | // (see LegalizeDAG.cpp). This is slow and uses local memory. |
| 2026 | // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 |
| 2027 | SDValue |
| 2028 | NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { |
| 2029 | SDNode *Node = Op.getNode(); |
| 2030 | SDLoc dl(Node); |
| 2031 | SmallVector<SDValue, 8> Ops; |
| 2032 | unsigned NumOperands = Node->getNumOperands(); |
| 2033 | for (unsigned i = 0; i < NumOperands; ++i) { |
| 2034 | SDValue SubOp = Node->getOperand(Num: i); |
| 2035 | EVT VVT = SubOp.getNode()->getValueType(ResNo: 0); |
| 2036 | EVT EltVT = VVT.getVectorElementType(); |
| 2037 | unsigned NumSubElem = VVT.getVectorNumElements(); |
| 2038 | for (unsigned j = 0; j < NumSubElem; ++j) { |
| 2039 | Ops.push_back(Elt: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: EltVT, N1: SubOp, |
| 2040 | N2: DAG.getIntPtrConstant(Val: j, DL: dl))); |
| 2041 | } |
| 2042 | } |
| 2043 | return DAG.getBuildVector(VT: Node->getValueType(ResNo: 0), DL: dl, Ops); |
| 2044 | } |
| 2045 | |
| 2046 | SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| 2047 | // Handle bitcasting from v2i8 without hitting the default promotion |
| 2048 | // strategy which goes through stack memory. |
| 2049 | EVT FromVT = Op->getOperand(Num: 0)->getValueType(ResNo: 0); |
| 2050 | if (FromVT != MVT::v2i8) { |
| 2051 | return Op; |
| 2052 | } |
| 2053 | |
| 2054 | // Pack vector elements into i16 and bitcast to final type |
| 2055 | SDLoc DL(Op); |
| 2056 | SDValue Vec0 = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i8, |
| 2057 | N1: Op->getOperand(Num: 0), N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 2058 | SDValue Vec1 = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i8, |
| 2059 | N1: Op->getOperand(Num: 0), N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 2060 | SDValue Extend0 = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i16, Operand: Vec0); |
| 2061 | SDValue Extend1 = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i16, Operand: Vec1); |
| 2062 | SDValue Const8 = DAG.getConstant(Val: 8, DL, VT: MVT::i16); |
| 2063 | SDValue AsInt = DAG.getNode( |
| 2064 | Opcode: ISD::OR, DL, VT: MVT::i16, |
| 2065 | Ops: {Extend0, DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i16, Ops: {Extend1, Const8})}); |
| 2066 | EVT ToVT = Op->getValueType(ResNo: 0); |
| 2067 | return DAG.getBitcast(VT: ToVT, V: AsInt); |
| 2068 | } |
| 2069 | |
| 2070 | // We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it |
| 2071 | // would get lowered as two constant loads and vector-packing move. |
| 2072 | // Instead we want just a constant move: |
| 2073 | // mov.b32 %r2, 0x40003C00 |
| 2074 | SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| 2075 | SelectionDAG &DAG) const { |
| 2076 | EVT VT = Op->getValueType(ResNo: 0); |
| 2077 | if (!(Isv2x16VT(VT) || VT == MVT::v4i8)) |
| 2078 | return Op; |
| 2079 | SDLoc DL(Op); |
| 2080 | |
| 2081 | if (!llvm::all_of(Range: Op->ops(), P: [](SDValue Operand) { |
| 2082 | return Operand->isUndef() || isa<ConstantSDNode>(Val: Operand) || |
| 2083 | isa<ConstantFPSDNode>(Val: Operand); |
| 2084 | })) { |
| 2085 | if (VT != MVT::v4i8) |
| 2086 | return Op; |
| 2087 | // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us |
| 2088 | // to optimize calculation of constant parts. |
| 2089 | auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast, |
| 2090 | uint64_t SelectionValue) -> SDValue { |
| 2091 | SDValue L = Left; |
| 2092 | SDValue R = Right; |
| 2093 | if (Cast) { |
| 2094 | L = DAG.getAnyExtOrTrunc(Op: L, DL, VT: MVT::i32); |
| 2095 | R = DAG.getAnyExtOrTrunc(Op: R, DL, VT: MVT::i32); |
| 2096 | } |
| 2097 | return DAG.getNode( |
| 2098 | Opcode: NVPTXISD::PRMT, DL, VT: MVT::v4i8, |
| 2099 | Ops: {L, R, DAG.getConstant(Val: SelectionValue, DL, VT: MVT::i32), |
| 2100 | DAG.getConstant(Val: NVPTX::PTXPrmtMode::NONE, DL, VT: MVT::i32)}); |
| 2101 | }; |
| 2102 | auto PRMT__10 = GetPRMT(Op->getOperand(Num: 0), Op->getOperand(Num: 1), true, 0x3340); |
| 2103 | auto PRMT__32 = GetPRMT(Op->getOperand(Num: 2), Op->getOperand(Num: 3), true, 0x3340); |
| 2104 | auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410); |
| 2105 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: PRMT3210); |
| 2106 | } |
| 2107 | |
| 2108 | // Get value or the Nth operand as an APInt(32). Undef values treated as 0. |
| 2109 | auto GetOperand = [](SDValue Op, int N) -> APInt { |
| 2110 | const SDValue &Operand = Op->getOperand(Num: N); |
| 2111 | EVT VT = Op->getValueType(ResNo: 0); |
| 2112 | if (Operand->isUndef()) |
| 2113 | return APInt(32, 0); |
| 2114 | APInt Value; |
| 2115 | if (VT == MVT::v2f16 || VT == MVT::v2bf16) |
| 2116 | Value = cast<ConstantFPSDNode>(Val: Operand)->getValueAPF().bitcastToAPInt(); |
| 2117 | else if (VT == MVT::v2i16 || VT == MVT::v4i8) |
| 2118 | Value = Operand->getAsAPIntVal(); |
| 2119 | else |
| 2120 | llvm_unreachable("Unsupported type" ); |
| 2121 | // i8 values are carried around as i16, so we need to zero out upper bits, |
| 2122 | // so they do not get in the way of combining individual byte values |
| 2123 | if (VT == MVT::v4i8) |
| 2124 | Value = Value.trunc(width: 8); |
| 2125 | return Value.zext(width: 32); |
| 2126 | }; |
| 2127 | APInt Value; |
| 2128 | if (Isv2x16VT(VT)) { |
| 2129 | Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(shiftAmt: 16); |
| 2130 | } else if (VT == MVT::v4i8) { |
| 2131 | Value = GetOperand(Op, 0) | GetOperand(Op, 1).shl(shiftAmt: 8) | |
| 2132 | GetOperand(Op, 2).shl(shiftAmt: 16) | GetOperand(Op, 3).shl(shiftAmt: 24); |
| 2133 | } else { |
| 2134 | llvm_unreachable("Unsupported type" ); |
| 2135 | } |
| 2136 | SDValue Const = DAG.getConstant(Val: Value, DL, VT: MVT::i32); |
| 2137 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: Op->getValueType(ResNo: 0), Operand: Const); |
| 2138 | } |
| 2139 | |
| 2140 | SDValue NVPTXTargetLowering::(SDValue Op, |
| 2141 | SelectionDAG &DAG) const { |
| 2142 | SDValue Index = Op->getOperand(Num: 1); |
| 2143 | SDValue Vector = Op->getOperand(Num: 0); |
| 2144 | SDLoc DL(Op); |
| 2145 | EVT VectorVT = Vector.getValueType(); |
| 2146 | |
| 2147 | if (VectorVT == MVT::v4i8) { |
| 2148 | SDValue BFE = |
| 2149 | DAG.getNode(Opcode: NVPTXISD::BFE, DL, VT: MVT::i32, |
| 2150 | Ops: {Vector, |
| 2151 | DAG.getNode(Opcode: ISD::MUL, DL, VT: MVT::i32, |
| 2152 | N1: DAG.getZExtOrTrunc(Op: Index, DL, VT: MVT::i32), |
| 2153 | N2: DAG.getConstant(Val: 8, DL, VT: MVT::i32)), |
| 2154 | DAG.getConstant(Val: 8, DL, VT: MVT::i32)}); |
| 2155 | return DAG.getAnyExtOrTrunc(Op: BFE, DL, VT: Op->getValueType(ResNo: 0)); |
| 2156 | } |
| 2157 | |
| 2158 | // Constant index will be matched by tablegen. |
| 2159 | if (isa<ConstantSDNode>(Val: Index.getNode())) |
| 2160 | return Op; |
| 2161 | |
| 2162 | // Extract individual elements and select one of them. |
| 2163 | assert(Isv2x16VT(VectorVT) && "Unexpected vector type." ); |
| 2164 | EVT EltVT = VectorVT.getVectorElementType(); |
| 2165 | |
| 2166 | SDLoc dl(Op.getNode()); |
| 2167 | SDValue E0 = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: EltVT, N1: Vector, |
| 2168 | N2: DAG.getIntPtrConstant(Val: 0, DL: dl)); |
| 2169 | SDValue E1 = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: EltVT, N1: Vector, |
| 2170 | N2: DAG.getIntPtrConstant(Val: 1, DL: dl)); |
| 2171 | return DAG.getSelectCC(DL: dl, LHS: Index, RHS: DAG.getIntPtrConstant(Val: 0, DL: dl), True: E0, False: E1, |
| 2172 | Cond: ISD::CondCode::SETEQ); |
| 2173 | } |
| 2174 | |
| 2175 | SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| 2176 | SelectionDAG &DAG) const { |
| 2177 | SDValue Vector = Op->getOperand(Num: 0); |
| 2178 | EVT VectorVT = Vector.getValueType(); |
| 2179 | |
| 2180 | if (VectorVT != MVT::v4i8) |
| 2181 | return Op; |
| 2182 | SDLoc DL(Op); |
| 2183 | SDValue Value = Op->getOperand(Num: 1); |
| 2184 | if (Value->isUndef()) |
| 2185 | return Vector; |
| 2186 | |
| 2187 | SDValue Index = Op->getOperand(Num: 2); |
| 2188 | |
| 2189 | SDValue BFI = |
| 2190 | DAG.getNode(Opcode: NVPTXISD::BFI, DL, VT: MVT::i32, |
| 2191 | Ops: {DAG.getZExtOrTrunc(Op: Value, DL, VT: MVT::i32), Vector, |
| 2192 | DAG.getNode(Opcode: ISD::MUL, DL, VT: MVT::i32, |
| 2193 | N1: DAG.getZExtOrTrunc(Op: Index, DL, VT: MVT::i32), |
| 2194 | N2: DAG.getConstant(Val: 8, DL, VT: MVT::i32)), |
| 2195 | DAG.getConstant(Val: 8, DL, VT: MVT::i32)}); |
| 2196 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: Op->getValueType(ResNo: 0), Operand: BFI); |
| 2197 | } |
| 2198 | |
| 2199 | SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| 2200 | SelectionDAG &DAG) const { |
| 2201 | SDValue V1 = Op.getOperand(i: 0); |
| 2202 | EVT VectorVT = V1.getValueType(); |
| 2203 | if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8) |
| 2204 | return Op; |
| 2205 | |
| 2206 | // Lower shuffle to PRMT instruction. |
| 2207 | const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Val: Op.getNode()); |
| 2208 | SDValue V2 = Op.getOperand(i: 1); |
| 2209 | uint32_t Selector = 0; |
| 2210 | for (auto I : llvm::enumerate(First: SVN->getMask())) { |
| 2211 | if (I.value() != -1) // -1 is a placeholder for undef. |
| 2212 | Selector |= (I.value() << (I.index() * 4)); |
| 2213 | } |
| 2214 | |
| 2215 | SDLoc DL(Op); |
| 2216 | return DAG.getNode(Opcode: NVPTXISD::PRMT, DL, VT: MVT::v4i8, N1: V1, N2: V2, |
| 2217 | N3: DAG.getConstant(Val: Selector, DL, VT: MVT::i32), |
| 2218 | N4: DAG.getConstant(Val: NVPTX::PTXPrmtMode::NONE, DL, VT: MVT::i32)); |
| 2219 | } |
| 2220 | /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which |
| 2221 | /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| 2222 | /// amount, or |
| 2223 | /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| 2224 | /// amount. |
| 2225 | SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, |
| 2226 | SelectionDAG &DAG) const { |
| 2227 | assert(Op.getNumOperands() == 3 && "Not a double-shift!" ); |
| 2228 | assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| 2229 | |
| 2230 | EVT VT = Op.getValueType(); |
| 2231 | unsigned VTBits = VT.getSizeInBits(); |
| 2232 | SDLoc dl(Op); |
| 2233 | SDValue ShOpLo = Op.getOperand(i: 0); |
| 2234 | SDValue ShOpHi = Op.getOperand(i: 1); |
| 2235 | SDValue ShAmt = Op.getOperand(i: 2); |
| 2236 | unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| 2237 | |
| 2238 | if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| 2239 | // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| 2240 | // {dHi, dLo} = {aHi, aLo} >> Amt |
| 2241 | // dHi = aHi >> Amt |
| 2242 | // dLo = shf.r.clamp aLo, aHi, Amt |
| 2243 | |
| 2244 | SDValue Hi = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: ShOpHi, N2: ShAmt); |
| 2245 | SDValue Lo = |
| 2246 | DAG.getNode(Opcode: NVPTXISD::FSHR_CLAMP, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
| 2247 | |
| 2248 | SDValue Ops[2] = { Lo, Hi }; |
| 2249 | return DAG.getMergeValues(Ops, dl); |
| 2250 | } |
| 2251 | else { |
| 2252 | // {dHi, dLo} = {aHi, aLo} >> Amt |
| 2253 | // - if (Amt>=size) then |
| 2254 | // dLo = aHi >> (Amt-size) |
| 2255 | // dHi = aHi >> Amt (this is either all 0 or all 1) |
| 2256 | // else |
| 2257 | // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) |
| 2258 | // dHi = aHi >> Amt |
| 2259 | |
| 2260 | SDValue RevShAmt = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, |
| 2261 | N1: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32), |
| 2262 | N2: ShAmt); |
| 2263 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: ShOpLo, N2: ShAmt); |
| 2264 | SDValue = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, N1: ShAmt, |
| 2265 | N2: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32)); |
| 2266 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpHi, N2: RevShAmt); |
| 2267 | SDValue FalseVal = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp1, N2: Tmp2); |
| 2268 | SDValue TrueVal = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: ShOpHi, N2: ExtraShAmt); |
| 2269 | |
| 2270 | SDValue Cmp = DAG.getSetCC(DL: dl, VT: MVT::i1, LHS: ShAmt, |
| 2271 | RHS: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32), |
| 2272 | Cond: ISD::SETGE); |
| 2273 | SDValue Hi = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: ShOpHi, N2: ShAmt); |
| 2274 | SDValue Lo = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cmp, N2: TrueVal, N3: FalseVal); |
| 2275 | |
| 2276 | SDValue Ops[2] = { Lo, Hi }; |
| 2277 | return DAG.getMergeValues(Ops, dl); |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | /// LowerShiftLeftParts - Lower SHL_PARTS, which |
| 2282 | /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| 2283 | /// amount, or |
| 2284 | /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| 2285 | /// amount. |
| 2286 | SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, |
| 2287 | SelectionDAG &DAG) const { |
| 2288 | assert(Op.getNumOperands() == 3 && "Not a double-shift!" ); |
| 2289 | assert(Op.getOpcode() == ISD::SHL_PARTS); |
| 2290 | |
| 2291 | EVT VT = Op.getValueType(); |
| 2292 | unsigned VTBits = VT.getSizeInBits(); |
| 2293 | SDLoc dl(Op); |
| 2294 | SDValue ShOpLo = Op.getOperand(i: 0); |
| 2295 | SDValue ShOpHi = Op.getOperand(i: 1); |
| 2296 | SDValue ShAmt = Op.getOperand(i: 2); |
| 2297 | |
| 2298 | if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| 2299 | // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| 2300 | // {dHi, dLo} = {aHi, aLo} << Amt |
| 2301 | // dHi = shf.l.clamp aLo, aHi, Amt |
| 2302 | // dLo = aLo << Amt |
| 2303 | |
| 2304 | SDValue Hi = |
| 2305 | DAG.getNode(Opcode: NVPTXISD::FSHL_CLAMP, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
| 2306 | SDValue Lo = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpLo, N2: ShAmt); |
| 2307 | |
| 2308 | SDValue Ops[2] = { Lo, Hi }; |
| 2309 | return DAG.getMergeValues(Ops, dl); |
| 2310 | } |
| 2311 | else { |
| 2312 | // {dHi, dLo} = {aHi, aLo} << Amt |
| 2313 | // - if (Amt>=size) then |
| 2314 | // dLo = aLo << Amt (all 0) |
| 2315 | // dLo = aLo << (Amt-size) |
| 2316 | // else |
| 2317 | // dLo = aLo << Amt |
| 2318 | // dHi = (aHi << Amt) | (aLo >> (size-Amt)) |
| 2319 | |
| 2320 | SDValue RevShAmt = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, |
| 2321 | N1: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32), |
| 2322 | N2: ShAmt); |
| 2323 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpHi, N2: ShAmt); |
| 2324 | SDValue = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: MVT::i32, N1: ShAmt, |
| 2325 | N2: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32)); |
| 2326 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: ShOpLo, N2: RevShAmt); |
| 2327 | SDValue FalseVal = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp1, N2: Tmp2); |
| 2328 | SDValue TrueVal = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpLo, N2: ExtraShAmt); |
| 2329 | |
| 2330 | SDValue Cmp = DAG.getSetCC(DL: dl, VT: MVT::i1, LHS: ShAmt, |
| 2331 | RHS: DAG.getConstant(Val: VTBits, DL: dl, VT: MVT::i32), |
| 2332 | Cond: ISD::SETGE); |
| 2333 | SDValue Lo = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpLo, N2: ShAmt); |
| 2334 | SDValue Hi = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cmp, N2: TrueVal, N3: FalseVal); |
| 2335 | |
| 2336 | SDValue Ops[2] = { Lo, Hi }; |
| 2337 | return DAG.getMergeValues(Ops, dl); |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | /// If the types match, convert the generic copysign to the NVPTXISD version, |
| 2342 | /// otherwise bail ensuring that mismatched cases are properly expaned. |
| 2343 | SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op, |
| 2344 | SelectionDAG &DAG) const { |
| 2345 | EVT VT = Op.getValueType(); |
| 2346 | SDLoc DL(Op); |
| 2347 | |
| 2348 | SDValue In1 = Op.getOperand(i: 0); |
| 2349 | SDValue In2 = Op.getOperand(i: 1); |
| 2350 | EVT SrcVT = In2.getValueType(); |
| 2351 | |
| 2352 | if (!SrcVT.bitsEq(VT)) |
| 2353 | return SDValue(); |
| 2354 | |
| 2355 | return DAG.getNode(Opcode: NVPTXISD::FCOPYSIGN, DL, VT, N1: In1, N2: In2); |
| 2356 | } |
| 2357 | |
| 2358 | SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| 2359 | EVT VT = Op.getValueType(); |
| 2360 | |
| 2361 | if (VT == MVT::f32) |
| 2362 | return LowerFROUND32(Op, DAG); |
| 2363 | |
| 2364 | if (VT == MVT::f64) |
| 2365 | return LowerFROUND64(Op, DAG); |
| 2366 | |
| 2367 | llvm_unreachable("unhandled type" ); |
| 2368 | } |
| 2369 | |
| 2370 | // This is the the rounding method used in CUDA libdevice in C like code: |
| 2371 | // float roundf(float A) |
| 2372 | // { |
| 2373 | // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); |
| 2374 | // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| 2375 | // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| 2376 | // } |
| 2377 | SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, |
| 2378 | SelectionDAG &DAG) const { |
| 2379 | SDLoc SL(Op); |
| 2380 | SDValue A = Op.getOperand(i: 0); |
| 2381 | EVT VT = Op.getValueType(); |
| 2382 | |
| 2383 | SDValue AbsA = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: A); |
| 2384 | |
| 2385 | // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) |
| 2386 | SDValue Bitcast = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: A); |
| 2387 | const unsigned SignBitMask = 0x80000000; |
| 2388 | SDValue Sign = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i32, N1: Bitcast, |
| 2389 | N2: DAG.getConstant(Val: SignBitMask, DL: SL, VT: MVT::i32)); |
| 2390 | const unsigned PointFiveInBits = 0x3F000000; |
| 2391 | SDValue PointFiveWithSignRaw = |
| 2392 | DAG.getNode(Opcode: ISD::OR, DL: SL, VT: MVT::i32, N1: Sign, |
| 2393 | N2: DAG.getConstant(Val: PointFiveInBits, DL: SL, VT: MVT::i32)); |
| 2394 | SDValue PointFiveWithSign = |
| 2395 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: PointFiveWithSignRaw); |
| 2396 | SDValue AdjustedA = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: A, N2: PointFiveWithSign); |
| 2397 | SDValue RoundedA = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: AdjustedA); |
| 2398 | |
| 2399 | // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| 2400 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Ctx&: *DAG.getContext(), VT); |
| 2401 | SDValue IsLarge = |
| 2402 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsA, RHS: DAG.getConstantFP(Val: pow(x: 2.0, y: 23.0), DL: SL, VT), |
| 2403 | Cond: ISD::SETOGT); |
| 2404 | RoundedA = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLarge, N2: A, N3: RoundedA); |
| 2405 | |
| 2406 | // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| 2407 | SDValue IsSmall =DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsA, |
| 2408 | RHS: DAG.getConstantFP(Val: 0.5, DL: SL, VT), Cond: ISD::SETOLT); |
| 2409 | SDValue RoundedAForSmallA = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: A); |
| 2410 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsSmall, N2: RoundedAForSmallA, N3: RoundedA); |
| 2411 | } |
| 2412 | |
| 2413 | // The implementation of round(double) is similar to that of round(float) in |
| 2414 | // that they both separate the value range into three regions and use a method |
| 2415 | // specific to the region to round the values. However, round(double) first |
| 2416 | // calculates the round of the absolute value and then adds the sign back while |
| 2417 | // round(float) directly rounds the value with sign. |
| 2418 | SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, |
| 2419 | SelectionDAG &DAG) const { |
| 2420 | SDLoc SL(Op); |
| 2421 | SDValue A = Op.getOperand(i: 0); |
| 2422 | EVT VT = Op.getValueType(); |
| 2423 | |
| 2424 | SDValue AbsA = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: A); |
| 2425 | |
| 2426 | // double RoundedA = (double) (int) (abs(A) + 0.5f); |
| 2427 | SDValue AdjustedA = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: AbsA, |
| 2428 | N2: DAG.getConstantFP(Val: 0.5, DL: SL, VT)); |
| 2429 | SDValue RoundedA = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: AdjustedA); |
| 2430 | |
| 2431 | // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; |
| 2432 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Ctx&: *DAG.getContext(), VT); |
| 2433 | SDValue IsSmall =DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsA, |
| 2434 | RHS: DAG.getConstantFP(Val: 0.5, DL: SL, VT), Cond: ISD::SETOLT); |
| 2435 | RoundedA = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsSmall, |
| 2436 | N2: DAG.getConstantFP(Val: 0, DL: SL, VT), |
| 2437 | N3: RoundedA); |
| 2438 | |
| 2439 | // Add sign to rounded_A |
| 2440 | RoundedA = DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SL, VT, N1: RoundedA, N2: A); |
| 2441 | DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: A); |
| 2442 | |
| 2443 | // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; |
| 2444 | SDValue IsLarge = |
| 2445 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsA, RHS: DAG.getConstantFP(Val: pow(x: 2.0, y: 52.0), DL: SL, VT), |
| 2446 | Cond: ISD::SETOGT); |
| 2447 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLarge, N2: A, N3: RoundedA); |
| 2448 | } |
| 2449 | |
| 2450 | static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG) { |
| 2451 | EVT VT = N->getValueType(ResNo: 0); |
| 2452 | EVT NVT = MVT::f32; |
| 2453 | if (VT.isVector()) { |
| 2454 | NVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: NVT, EC: VT.getVectorElementCount()); |
| 2455 | } |
| 2456 | SDLoc DL(N); |
| 2457 | SDValue Tmp0 = DAG.getFPExtendOrRound(Op: N->getOperand(Num: 0), DL, VT: NVT); |
| 2458 | SDValue Tmp1 = DAG.getFPExtendOrRound(Op: N->getOperand(Num: 1), DL, VT: NVT); |
| 2459 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL, VT: NVT, N1: Tmp0, N2: Tmp1, Flags: N->getFlags()); |
| 2460 | return DAG.getFPExtendOrRound(Op: Res, DL, VT); |
| 2461 | } |
| 2462 | |
| 2463 | SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op, |
| 2464 | SelectionDAG &DAG) const { |
| 2465 | if (useF32FTZ(MF: DAG.getMachineFunction())) { |
| 2466 | return PromoteBinOpToF32(N: Op.getNode(), DAG); |
| 2467 | } |
| 2468 | return Op; |
| 2469 | } |
| 2470 | |
| 2471 | SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op, |
| 2472 | SelectionDAG &DAG) const { |
| 2473 | assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| 2474 | |
| 2475 | if (Op.getValueType() == MVT::bf16) { |
| 2476 | SDLoc Loc(Op); |
| 2477 | return DAG.getNode( |
| 2478 | Opcode: ISD::FP_ROUND, DL: Loc, VT: MVT::bf16, |
| 2479 | N1: DAG.getNode(Opcode: Op.getOpcode(), DL: Loc, VT: MVT::f32, Operand: Op.getOperand(i: 0)), |
| 2480 | N2: DAG.getIntPtrConstant(Val: 0, DL: Loc, /*isTarget=*/true)); |
| 2481 | } |
| 2482 | |
| 2483 | // Everything else is considered legal. |
| 2484 | return Op; |
| 2485 | } |
| 2486 | |
| 2487 | SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op, |
| 2488 | SelectionDAG &DAG) const { |
| 2489 | assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78); |
| 2490 | |
| 2491 | if (Op.getOperand(i: 0).getValueType() == MVT::bf16) { |
| 2492 | SDLoc Loc(Op); |
| 2493 | return DAG.getNode( |
| 2494 | Opcode: Op.getOpcode(), DL: Loc, VT: Op.getValueType(), |
| 2495 | Operand: DAG.getNode(Opcode: ISD::FP_EXTEND, DL: Loc, VT: MVT::f32, Operand: Op.getOperand(i: 0))); |
| 2496 | } |
| 2497 | |
| 2498 | // Everything else is considered legal. |
| 2499 | return Op; |
| 2500 | } |
| 2501 | |
| 2502 | SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op, |
| 2503 | SelectionDAG &DAG) const { |
| 2504 | EVT NarrowVT = Op.getValueType(); |
| 2505 | SDValue Wide = Op.getOperand(i: 0); |
| 2506 | EVT WideVT = Wide.getValueType(); |
| 2507 | if (NarrowVT.getScalarType() == MVT::bf16) { |
| 2508 | const TargetLowering *TLI = STI.getTargetLowering(); |
| 2509 | if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) { |
| 2510 | return TLI->expandFP_ROUND(Node: Op.getNode(), DAG); |
| 2511 | } |
| 2512 | if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) { |
| 2513 | // This combination was the first to support f32 -> bf16. |
| 2514 | if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) { |
| 2515 | if (WideVT.getScalarType() == MVT::f32) { |
| 2516 | return Op; |
| 2517 | } |
| 2518 | if (WideVT.getScalarType() == MVT::f64) { |
| 2519 | SDLoc Loc(Op); |
| 2520 | // Round-inexact-to-odd f64 to f32, then do the final rounding using |
| 2521 | // the hardware f32 -> bf16 instruction. |
| 2522 | SDValue rod = TLI->expandRoundInexactToOdd( |
| 2523 | ResultVT: WideVT.isVector() ? WideVT.changeVectorElementType(EltVT: MVT::f32) |
| 2524 | : MVT::f32, |
| 2525 | Op: Wide, DL: Loc, DAG); |
| 2526 | return DAG.getFPExtendOrRound(Op: rod, DL: Loc, VT: NarrowVT); |
| 2527 | } |
| 2528 | } |
| 2529 | return TLI->expandFP_ROUND(Node: Op.getNode(), DAG); |
| 2530 | } |
| 2531 | } |
| 2532 | |
| 2533 | // Everything else is considered legal. |
| 2534 | return Op; |
| 2535 | } |
| 2536 | |
| 2537 | SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op, |
| 2538 | SelectionDAG &DAG) const { |
| 2539 | SDValue Narrow = Op.getOperand(i: 0); |
| 2540 | EVT NarrowVT = Narrow.getValueType(); |
| 2541 | EVT WideVT = Op.getValueType(); |
| 2542 | if (NarrowVT.getScalarType() == MVT::bf16) { |
| 2543 | if (WideVT.getScalarType() == MVT::f32 && |
| 2544 | (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) { |
| 2545 | SDLoc Loc(Op); |
| 2546 | return DAG.getNode(Opcode: ISD::BF16_TO_FP, DL: Loc, VT: WideVT, Operand: Narrow); |
| 2547 | } |
| 2548 | if (WideVT.getScalarType() == MVT::f64 && |
| 2549 | (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) { |
| 2550 | EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(EltVT: MVT::f32) |
| 2551 | : MVT::f32; |
| 2552 | SDLoc Loc(Op); |
| 2553 | if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) { |
| 2554 | Op = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: Loc, VT: F32, Operand: Narrow); |
| 2555 | } else { |
| 2556 | Op = DAG.getNode(Opcode: ISD::BF16_TO_FP, DL: Loc, VT: F32, Operand: Narrow); |
| 2557 | } |
| 2558 | return DAG.getNode(Opcode: ISD::FP_EXTEND, DL: Loc, VT: WideVT, Operand: Op); |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | // Everything else is considered legal. |
| 2563 | return Op; |
| 2564 | } |
| 2565 | |
| 2566 | static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG) { |
| 2567 | SDLoc DL(Op); |
| 2568 | if (Op.getValueType() != MVT::v2i16) |
| 2569 | return Op; |
| 2570 | EVT EltVT = Op.getValueType().getVectorElementType(); |
| 2571 | SmallVector<SDValue> VecElements; |
| 2572 | for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) { |
| 2573 | SmallVector<SDValue> ScalarArgs; |
| 2574 | llvm::transform(Range: Op->ops(), d_first: std::back_inserter(x&: ScalarArgs), |
| 2575 | F: [&](const SDUse &O) { |
| 2576 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, |
| 2577 | N1: O.get(), N2: DAG.getIntPtrConstant(Val: I, DL)); |
| 2578 | }); |
| 2579 | VecElements.push_back(Elt: DAG.getNode(Opcode: Op.getOpcode(), DL, VT: EltVT, Ops: ScalarArgs)); |
| 2580 | } |
| 2581 | SDValue V = |
| 2582 | DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL, VT: Op.getValueType(), Ops: VecElements); |
| 2583 | return V; |
| 2584 | } |
| 2585 | |
| 2586 | static SDValue LowerTcgen05St(SDValue Op, SelectionDAG &DAG) { |
| 2587 | SDNode *N = Op.getNode(); |
| 2588 | SDLoc DL(N); |
| 2589 | SmallVector<SDValue, 32> Ops; |
| 2590 | |
| 2591 | // split the vector argument |
| 2592 | for (size_t I = 0; I < N->getNumOperands(); I++) { |
| 2593 | SDValue Val = N->getOperand(Num: I); |
| 2594 | EVT ValVT = Val.getValueType(); |
| 2595 | if (ValVT.isVector()) { |
| 2596 | EVT EltVT = ValVT.getVectorElementType(); |
| 2597 | for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++) |
| 2598 | Ops.push_back(Elt: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, N1: Val, |
| 2599 | N2: DAG.getIntPtrConstant(Val: J, DL))); |
| 2600 | } else |
| 2601 | Ops.push_back(Elt: Val); |
| 2602 | } |
| 2603 | |
| 2604 | MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(Val: N); |
| 2605 | SDValue Tcgen05StNode = |
| 2606 | DAG.getMemIntrinsicNode(Opcode: ISD::INTRINSIC_VOID, dl: DL, VTList: N->getVTList(), Ops, |
| 2607 | MemVT: MemSD->getMemoryVT(), MMO: MemSD->getMemOperand()); |
| 2608 | |
| 2609 | return Tcgen05StNode; |
| 2610 | } |
| 2611 | |
| 2612 | static SDValue LowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG) { |
| 2613 | SDNode *N = Op.getNode(); |
| 2614 | SDValue Intrin = N->getOperand(Num: 1); |
| 2615 | |
| 2616 | // Get the intrinsic ID |
| 2617 | unsigned IntrinNo = cast<ConstantSDNode>(Val: Intrin.getNode())->getZExtValue(); |
| 2618 | switch (IntrinNo) { |
| 2619 | default: |
| 2620 | break; |
| 2621 | case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| 2622 | case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| 2623 | case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| 2624 | case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| 2625 | case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| 2626 | case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| 2627 | case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| 2628 | case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| 2629 | case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| 2630 | case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| 2631 | case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| 2632 | case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| 2633 | case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| 2634 | case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| 2635 | case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| 2636 | case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| 2637 | case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| 2638 | case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| 2639 | case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| 2640 | case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| 2641 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: |
| 2642 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: |
| 2643 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: |
| 2644 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: |
| 2645 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: |
| 2646 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: |
| 2647 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: |
| 2648 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: |
| 2649 | case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| 2650 | case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| 2651 | case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| 2652 | case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| 2653 | case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| 2654 | case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| 2655 | case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| 2656 | case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| 2657 | case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| 2658 | return LowerTcgen05St(Op, DAG); |
| 2659 | } |
| 2660 | return Op; |
| 2661 | } |
| 2662 | |
| 2663 | static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, |
| 2664 | SelectionDAG &DAG) { |
| 2665 | |
| 2666 | SDNode *N = Op.getNode(); |
| 2667 | if (N->getOperand(Num: 1).getValueType() != MVT::i128) { |
| 2668 | // return, if the operand is already lowered |
| 2669 | return SDValue(); |
| 2670 | } |
| 2671 | |
| 2672 | unsigned IID = |
| 2673 | cast<ConstantSDNode>(Val: N->getOperand(Num: 0).getNode())->getZExtValue(); |
| 2674 | auto Opcode = [&]() { |
| 2675 | switch (IID) { |
| 2676 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled: |
| 2677 | return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED; |
| 2678 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x: |
| 2679 | return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X; |
| 2680 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y: |
| 2681 | return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y; |
| 2682 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z: |
| 2683 | return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z; |
| 2684 | default: |
| 2685 | llvm_unreachable("unsupported/unhandled intrinsic" ); |
| 2686 | } |
| 2687 | }(); |
| 2688 | |
| 2689 | SDLoc DL(N); |
| 2690 | SDValue TryCancelResponse = N->getOperand(Num: 1); |
| 2691 | SDValue Cast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::v2i64, Operand: TryCancelResponse); |
| 2692 | SDValue TryCancelResponse0 = |
| 2693 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i64, N1: Cast, |
| 2694 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 2695 | SDValue TryCancelResponse1 = |
| 2696 | DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i64, N1: Cast, |
| 2697 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 2698 | |
| 2699 | return DAG.getNode(Opcode, DL, VTList: N->getVTList(), |
| 2700 | Ops: {TryCancelResponse0, TryCancelResponse1}); |
| 2701 | } |
| 2702 | |
| 2703 | static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG) { |
| 2704 | switch (Op->getConstantOperandVal(Num: 0)) { |
| 2705 | default: |
| 2706 | return Op; |
| 2707 | case Intrinsic::nvvm_internal_addrspace_wrap: |
| 2708 | return Op.getOperand(i: 1); |
| 2709 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled: |
| 2710 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x: |
| 2711 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y: |
| 2712 | case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z: |
| 2713 | return LowerClusterLaunchControlQueryCancel(Op, DAG); |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | // In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value. |
| 2718 | // Lower these into a node returning the correct type which is zero-extended |
| 2719 | // back to the correct size. |
| 2720 | static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG) { |
| 2721 | SDValue V = Op->getOperand(Num: 0); |
| 2722 | assert(V.getValueType() == MVT::i64 && |
| 2723 | "Unexpected CTLZ/CTPOP type to legalize" ); |
| 2724 | |
| 2725 | SDLoc DL(Op); |
| 2726 | SDValue CT = DAG.getNode(Opcode: Op->getOpcode(), DL, VT: MVT::i32, Operand: V); |
| 2727 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i64, Operand: CT, Flags: SDNodeFlags::NonNeg); |
| 2728 | } |
| 2729 | |
| 2730 | static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, |
| 2731 | unsigned Opcode, SelectionDAG &DAG) { |
| 2732 | assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64); |
| 2733 | |
| 2734 | const auto *AmtConst = dyn_cast<ConstantSDNode>(Val&: ShiftAmount); |
| 2735 | if (!AmtConst) |
| 2736 | return SDValue(); |
| 2737 | const auto Amt = AmtConst->getZExtValue() & 63; |
| 2738 | |
| 2739 | SDValue UnpackA = |
| 2740 | DAG.getNode(Opcode: NVPTXISD::UNPACK_VECTOR, DL, ResultTys: {MVT::i32, MVT::i32}, Ops: A); |
| 2741 | SDValue UnpackB = |
| 2742 | DAG.getNode(Opcode: NVPTXISD::UNPACK_VECTOR, DL, ResultTys: {MVT::i32, MVT::i32}, Ops: B); |
| 2743 | |
| 2744 | // Arch is Little endiain: 0 = low bits, 1 = high bits |
| 2745 | SDValue ALo = UnpackA.getValue(R: 0); |
| 2746 | SDValue AHi = UnpackA.getValue(R: 1); |
| 2747 | SDValue BLo = UnpackB.getValue(R: 0); |
| 2748 | SDValue BHi = UnpackB.getValue(R: 1); |
| 2749 | |
| 2750 | // The bitfeild consists of { AHi : ALo : BHi : BLo } |
| 2751 | // |
| 2752 | // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi } |
| 2753 | // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo } |
| 2754 | // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo } |
| 2755 | // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi } |
| 2756 | // |
| 2757 | // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts |
| 2758 | // are not needed at all. Amt = 0 is a no-op producing either A or B depending |
| 2759 | // on the direction. Amt = 32 can be implemented by a packing and unpacking |
| 2760 | // move to select and arrange the 32bit values. For simplicity, these cases |
| 2761 | // are not handled here explicitly and instead we rely on DAGCombiner to |
| 2762 | // remove the no-op funnel shifts we insert. |
| 2763 | auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32)) |
| 2764 | ? std::make_tuple(args&: AHi, args&: ALo, args&: BHi) |
| 2765 | : std::make_tuple(args&: ALo, args&: BHi, args&: BLo); |
| 2766 | |
| 2767 | SDValue NewAmt = DAG.getConstant(Val: Amt & 31, DL, VT: MVT::i32); |
| 2768 | SDValue RHi = DAG.getNode(Opcode, DL, VT: MVT::i32, Ops: {High, Mid, NewAmt}); |
| 2769 | SDValue RLo = DAG.getNode(Opcode, DL, VT: MVT::i32, Ops: {Mid, Low, NewAmt}); |
| 2770 | |
| 2771 | return DAG.getNode(Opcode: NVPTXISD::BUILD_VECTOR, DL, VT: MVT::i64, Ops: {RLo, RHi}); |
| 2772 | } |
| 2773 | |
| 2774 | static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG) { |
| 2775 | return expandFSH64(A: Op->getOperand(Num: 0), B: Op->getOperand(Num: 1), ShiftAmount: Op->getOperand(Num: 2), |
| 2776 | DL: SDLoc(Op), Opcode: Op->getOpcode(), DAG); |
| 2777 | } |
| 2778 | |
| 2779 | static SDValue lowerROT(SDValue Op, SelectionDAG &DAG) { |
| 2780 | unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR; |
| 2781 | return expandFSH64(A: Op->getOperand(Num: 0), B: Op->getOperand(Num: 0), ShiftAmount: Op->getOperand(Num: 1), |
| 2782 | DL: SDLoc(Op), Opcode, DAG); |
| 2783 | } |
| 2784 | |
| 2785 | static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG, |
| 2786 | bool AllowUnsafeFPMath) { |
| 2787 | // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)), |
| 2788 | // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches |
| 2789 | // the semantics of LLVM's frem. |
| 2790 | SDLoc DL(Op); |
| 2791 | SDValue X = Op->getOperand(Num: 0); |
| 2792 | SDValue Y = Op->getOperand(Num: 1); |
| 2793 | EVT Ty = Op.getValueType(); |
| 2794 | SDNodeFlags Flags = Op->getFlags(); |
| 2795 | |
| 2796 | SDValue Div = DAG.getNode(Opcode: ISD::FDIV, DL, VT: Ty, N1: X, N2: Y, Flags); |
| 2797 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL, VT: Ty, Operand: Div, Flags); |
| 2798 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL, VT: Ty, N1: Trunc, N2: Y, |
| 2799 | Flags: Flags | SDNodeFlags::AllowContract); |
| 2800 | SDValue Sub = DAG.getNode(Opcode: ISD::FSUB, DL, VT: Ty, N1: X, N2: Mul, |
| 2801 | Flags: Flags | SDNodeFlags::AllowContract); |
| 2802 | |
| 2803 | if (AllowUnsafeFPMath || Flags.hasNoInfs()) |
| 2804 | return Sub; |
| 2805 | |
| 2806 | // If Y is infinite, return X |
| 2807 | SDValue AbsY = DAG.getNode(Opcode: ISD::FABS, DL, VT: Ty, Operand: Y); |
| 2808 | SDValue Inf = |
| 2809 | DAG.getConstantFP(Val: APFloat::getInf(Sem: Ty.getFltSemantics()), DL, VT: Ty); |
| 2810 | SDValue IsInf = DAG.getSetCC(DL, VT: MVT::i1, LHS: AbsY, RHS: Inf, Cond: ISD::SETEQ); |
| 2811 | return DAG.getSelect(DL, VT: Ty, Cond: IsInf, LHS: X, RHS: Sub); |
| 2812 | } |
| 2813 | |
| 2814 | static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) { |
| 2815 | assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1" ); |
| 2816 | |
| 2817 | SDValue Cond = Op->getOperand(Num: 0); |
| 2818 | SDValue TrueVal = Op->getOperand(Num: 1); |
| 2819 | SDValue FalseVal = Op->getOperand(Num: 2); |
| 2820 | SDLoc DL(Op); |
| 2821 | |
| 2822 | // If both operands are truncated, we push the select through the truncates. |
| 2823 | if (TrueVal.getOpcode() == ISD::TRUNCATE && |
| 2824 | FalseVal.getOpcode() == ISD::TRUNCATE) { |
| 2825 | TrueVal = TrueVal.getOperand(i: 0); |
| 2826 | FalseVal = FalseVal.getOperand(i: 0); |
| 2827 | |
| 2828 | EVT VT = TrueVal.getSimpleValueType().bitsLE(VT: FalseVal.getSimpleValueType()) |
| 2829 | ? TrueVal.getValueType() |
| 2830 | : FalseVal.getValueType(); |
| 2831 | TrueVal = DAG.getAnyExtOrTrunc(Op: TrueVal, DL, VT); |
| 2832 | FalseVal = DAG.getAnyExtOrTrunc(Op: FalseVal, DL, VT); |
| 2833 | SDValue Select = DAG.getSelect(DL, VT, Cond, LHS: TrueVal, RHS: FalseVal); |
| 2834 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i1, Operand: Select); |
| 2835 | } |
| 2836 | |
| 2837 | // Otherwise, expand the select into a series of logical operations. These |
| 2838 | // often can be folded into other operations either by us or ptxas. |
| 2839 | TrueVal = DAG.getFreeze(V: TrueVal); |
| 2840 | FalseVal = DAG.getFreeze(V: FalseVal); |
| 2841 | SDValue And1 = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i1, N1: Cond, N2: TrueVal); |
| 2842 | SDValue NotCond = DAG.getNOT(DL, Val: Cond, VT: MVT::i1); |
| 2843 | SDValue And2 = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i1, N1: NotCond, N2: FalseVal); |
| 2844 | SDValue Or = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i1, N1: And1, N2: And2); |
| 2845 | return Or; |
| 2846 | } |
| 2847 | |
| 2848 | SDValue |
| 2849 | NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| 2850 | switch (Op.getOpcode()) { |
| 2851 | case ISD::RETURNADDR: |
| 2852 | return SDValue(); |
| 2853 | case ISD::FRAMEADDR: |
| 2854 | return SDValue(); |
| 2855 | case ISD::ADDRSPACECAST: |
| 2856 | return LowerADDRSPACECAST(Op, DAG); |
| 2857 | case ISD::INTRINSIC_W_CHAIN: |
| 2858 | return Op; |
| 2859 | case ISD::INTRINSIC_WO_CHAIN: |
| 2860 | return lowerIntrinsicWOChain(Op, DAG); |
| 2861 | case ISD::INTRINSIC_VOID: |
| 2862 | return LowerIntrinsicVoid(Op, DAG); |
| 2863 | case ISD::BUILD_VECTOR: |
| 2864 | return LowerBUILD_VECTOR(Op, DAG); |
| 2865 | case ISD::BITCAST: |
| 2866 | return LowerBITCAST(Op, DAG); |
| 2867 | case ISD::EXTRACT_SUBVECTOR: |
| 2868 | return Op; |
| 2869 | case ISD::EXTRACT_VECTOR_ELT: |
| 2870 | return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 2871 | case ISD::INSERT_VECTOR_ELT: |
| 2872 | return LowerINSERT_VECTOR_ELT(Op, DAG); |
| 2873 | case ISD::VECTOR_SHUFFLE: |
| 2874 | return LowerVECTOR_SHUFFLE(Op, DAG); |
| 2875 | case ISD::CONCAT_VECTORS: |
| 2876 | return LowerCONCAT_VECTORS(Op, DAG); |
| 2877 | case ISD::STORE: |
| 2878 | return LowerSTORE(Op, DAG); |
| 2879 | case ISD::LOAD: |
| 2880 | return LowerLOAD(Op, DAG); |
| 2881 | case ISD::SHL_PARTS: |
| 2882 | return LowerShiftLeftParts(Op, DAG); |
| 2883 | case ISD::SRA_PARTS: |
| 2884 | case ISD::SRL_PARTS: |
| 2885 | return LowerShiftRightParts(Op, DAG); |
| 2886 | case ISD::SELECT: |
| 2887 | return lowerSELECT(Op, DAG); |
| 2888 | case ISD::FROUND: |
| 2889 | return LowerFROUND(Op, DAG); |
| 2890 | case ISD::FCOPYSIGN: |
| 2891 | return LowerFCOPYSIGN(Op, DAG); |
| 2892 | case ISD::SINT_TO_FP: |
| 2893 | case ISD::UINT_TO_FP: |
| 2894 | return LowerINT_TO_FP(Op, DAG); |
| 2895 | case ISD::FP_TO_SINT: |
| 2896 | case ISD::FP_TO_UINT: |
| 2897 | return LowerFP_TO_INT(Op, DAG); |
| 2898 | case ISD::FP_ROUND: |
| 2899 | return LowerFP_ROUND(Op, DAG); |
| 2900 | case ISD::FP_EXTEND: |
| 2901 | return LowerFP_EXTEND(Op, DAG); |
| 2902 | case ISD::BR_JT: |
| 2903 | return LowerBR_JT(Op, DAG); |
| 2904 | case ISD::VAARG: |
| 2905 | return LowerVAARG(Op, DAG); |
| 2906 | case ISD::VASTART: |
| 2907 | return LowerVASTART(Op, DAG); |
| 2908 | case ISD::FSHL: |
| 2909 | case ISD::FSHR: |
| 2910 | return lowerFSH(Op, DAG); |
| 2911 | case ISD::ROTL: |
| 2912 | case ISD::ROTR: |
| 2913 | return lowerROT(Op, DAG); |
| 2914 | case ISD::ABS: |
| 2915 | case ISD::SMIN: |
| 2916 | case ISD::SMAX: |
| 2917 | case ISD::UMIN: |
| 2918 | case ISD::UMAX: |
| 2919 | case ISD::ADD: |
| 2920 | case ISD::SUB: |
| 2921 | case ISD::MUL: |
| 2922 | case ISD::SHL: |
| 2923 | case ISD::SREM: |
| 2924 | case ISD::UREM: |
| 2925 | return LowerVectorArith(Op, DAG); |
| 2926 | case ISD::DYNAMIC_STACKALLOC: |
| 2927 | return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| 2928 | case ISD::STACKRESTORE: |
| 2929 | return LowerSTACKRESTORE(Op, DAG); |
| 2930 | case ISD::STACKSAVE: |
| 2931 | return LowerSTACKSAVE(Op, DAG); |
| 2932 | case ISD::CopyToReg: |
| 2933 | return LowerCopyToReg_128(Op, DAG); |
| 2934 | case ISD::FADD: |
| 2935 | case ISD::FSUB: |
| 2936 | case ISD::FMUL: |
| 2937 | // Used only for bf16 on SM80, where we select fma for non-ftz operation |
| 2938 | return PromoteBinOpIfF32FTZ(Op, DAG); |
| 2939 | case ISD::CTPOP: |
| 2940 | case ISD::CTLZ: |
| 2941 | return lowerCTLZCTPOP(Op, DAG); |
| 2942 | case ISD::FREM: |
| 2943 | return lowerFREM(Op, DAG, AllowUnsafeFPMath: allowUnsafeFPMath(MF: DAG.getMachineFunction())); |
| 2944 | |
| 2945 | default: |
| 2946 | llvm_unreachable("Custom lowering not defined for operation" ); |
| 2947 | } |
| 2948 | } |
| 2949 | |
| 2950 | SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| 2951 | SDLoc DL(Op); |
| 2952 | SDValue Chain = Op.getOperand(i: 0); |
| 2953 | const auto *JT = cast<JumpTableSDNode>(Val: Op.getOperand(i: 1)); |
| 2954 | SDValue Index = Op.getOperand(i: 2); |
| 2955 | |
| 2956 | unsigned JId = JT->getIndex(); |
| 2957 | MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); |
| 2958 | ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs; |
| 2959 | |
| 2960 | SDValue IdV = DAG.getConstant(Val: JId, DL, VT: MVT::i32); |
| 2961 | |
| 2962 | // Generate BrxStart node |
| 2963 | SDVTList VTs = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 2964 | Chain = DAG.getNode(Opcode: NVPTXISD::BrxStart, DL, VTList: VTs, N1: Chain, N2: IdV); |
| 2965 | |
| 2966 | // Generate BrxItem nodes |
| 2967 | assert(!MBBs.empty()); |
| 2968 | for (MachineBasicBlock *MBB : MBBs.drop_back()) |
| 2969 | Chain = DAG.getNode(Opcode: NVPTXISD::BrxItem, DL, VTList: VTs, N1: Chain.getValue(R: 0), |
| 2970 | N2: DAG.getBasicBlock(MBB), N3: Chain.getValue(R: 1)); |
| 2971 | |
| 2972 | // Generate BrxEnd nodes |
| 2973 | SDValue EndOps[] = {Chain.getValue(R: 0), DAG.getBasicBlock(MBB: MBBs.back()), Index, |
| 2974 | IdV, Chain.getValue(R: 1)}; |
| 2975 | SDValue BrxEnd = DAG.getNode(Opcode: NVPTXISD::BrxEnd, DL, VTList: VTs, Ops: EndOps); |
| 2976 | |
| 2977 | return BrxEnd; |
| 2978 | } |
| 2979 | |
| 2980 | // This will prevent AsmPrinter from trying to print the jump tables itself. |
| 2981 | unsigned NVPTXTargetLowering::getJumpTableEncoding() const { |
| 2982 | return MachineJumpTableInfo::EK_Inline; |
| 2983 | } |
| 2984 | |
| 2985 | SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op, |
| 2986 | SelectionDAG &DAG) const { |
| 2987 | AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Val: Op.getNode()); |
| 2988 | unsigned SrcAS = N->getSrcAddressSpace(); |
| 2989 | unsigned DestAS = N->getDestAddressSpace(); |
| 2990 | if (SrcAS != llvm::ADDRESS_SPACE_GENERIC && |
| 2991 | DestAS != llvm::ADDRESS_SPACE_GENERIC) { |
| 2992 | // Shared and SharedCluster can be converted to each other through generic |
| 2993 | // space |
| 2994 | if ((SrcAS == llvm::ADDRESS_SPACE_SHARED && |
| 2995 | DestAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER) || |
| 2996 | (SrcAS == llvm::ADDRESS_SPACE_SHARED_CLUSTER && |
| 2997 | DestAS == llvm::ADDRESS_SPACE_SHARED)) { |
| 2998 | SDLoc DL(Op.getNode()); |
| 2999 | const MVT GenerictVT = |
| 3000 | getPointerTy(DL: DAG.getDataLayout(), AS: ADDRESS_SPACE_GENERIC); |
| 3001 | SDValue GenericConversion = DAG.getAddrSpaceCast( |
| 3002 | dl: DL, VT: GenerictVT, Ptr: Op.getOperand(i: 0), SrcAS, DestAS: ADDRESS_SPACE_GENERIC); |
| 3003 | SDValue SharedClusterConversion = |
| 3004 | DAG.getAddrSpaceCast(dl: DL, VT: Op.getValueType(), Ptr: GenericConversion, |
| 3005 | SrcAS: ADDRESS_SPACE_GENERIC, DestAS); |
| 3006 | return SharedClusterConversion; |
| 3007 | } |
| 3008 | |
| 3009 | return DAG.getUNDEF(VT: Op.getValueType()); |
| 3010 | } |
| 3011 | |
| 3012 | return Op; |
| 3013 | } |
| 3014 | |
| 3015 | // This function is almost a copy of SelectionDAG::expandVAArg(). |
| 3016 | // The only diff is that this one produces loads from local address space. |
| 3017 | SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| 3018 | const TargetLowering *TLI = STI.getTargetLowering(); |
| 3019 | SDLoc DL(Op); |
| 3020 | |
| 3021 | SDNode *Node = Op.getNode(); |
| 3022 | const Value *V = cast<SrcValueSDNode>(Val: Node->getOperand(Num: 2))->getValue(); |
| 3023 | EVT VT = Node->getValueType(ResNo: 0); |
| 3024 | auto *Ty = VT.getTypeForEVT(Context&: *DAG.getContext()); |
| 3025 | SDValue Tmp1 = Node->getOperand(Num: 0); |
| 3026 | SDValue Tmp2 = Node->getOperand(Num: 1); |
| 3027 | const MaybeAlign MA(Node->getConstantOperandVal(Num: 3)); |
| 3028 | |
| 3029 | SDValue VAListLoad = DAG.getLoad(VT: TLI->getPointerTy(DL: DAG.getDataLayout()), dl: DL, |
| 3030 | Chain: Tmp1, Ptr: Tmp2, PtrInfo: MachinePointerInfo(V)); |
| 3031 | SDValue VAList = VAListLoad; |
| 3032 | |
| 3033 | if (MA && *MA > TLI->getMinStackArgumentAlignment()) { |
| 3034 | VAList = DAG.getNode( |
| 3035 | Opcode: ISD::ADD, DL, VT: VAList.getValueType(), N1: VAList, |
| 3036 | N2: DAG.getConstant(Val: MA->value() - 1, DL, VT: VAList.getValueType())); |
| 3037 | |
| 3038 | VAList = DAG.getNode(Opcode: ISD::AND, DL, VT: VAList.getValueType(), N1: VAList, |
| 3039 | N2: DAG.getSignedConstant(Val: -(int64_t)MA->value(), DL, |
| 3040 | VT: VAList.getValueType())); |
| 3041 | } |
| 3042 | |
| 3043 | // Increment the pointer, VAList, to the next vaarg |
| 3044 | Tmp1 = DAG.getNode(Opcode: ISD::ADD, DL, VT: VAList.getValueType(), N1: VAList, |
| 3045 | N2: DAG.getConstant(Val: DAG.getDataLayout().getTypeAllocSize(Ty), |
| 3046 | DL, VT: VAList.getValueType())); |
| 3047 | |
| 3048 | // Store the incremented VAList to the legalized pointer |
| 3049 | Tmp1 = DAG.getStore(Chain: VAListLoad.getValue(R: 1), dl: DL, Val: Tmp1, Ptr: Tmp2, |
| 3050 | PtrInfo: MachinePointerInfo(V)); |
| 3051 | |
| 3052 | const Value *SrcV = Constant::getNullValue( |
| 3053 | Ty: PointerType::get(C&: *DAG.getContext(), AddressSpace: ADDRESS_SPACE_LOCAL)); |
| 3054 | |
| 3055 | // Load the actual argument out of the pointer VAList |
| 3056 | return DAG.getLoad(VT, dl: DL, Chain: Tmp1, Ptr: VAList, PtrInfo: MachinePointerInfo(SrcV)); |
| 3057 | } |
| 3058 | |
| 3059 | SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| 3060 | const TargetLowering *TLI = STI.getTargetLowering(); |
| 3061 | SDLoc DL(Op); |
| 3062 | EVT PtrVT = TLI->getPointerTy(DL: DAG.getDataLayout()); |
| 3063 | |
| 3064 | // Store the address of unsized array <function>_vararg[] in the ap object. |
| 3065 | SDValue VAReg = getParamSymbol(DAG, /* vararg */ I: -1, T: PtrVT); |
| 3066 | |
| 3067 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 3068 | return DAG.getStore(Chain: Op.getOperand(i: 0), dl: DL, Val: VAReg, Ptr: Op.getOperand(i: 1), |
| 3069 | PtrInfo: MachinePointerInfo(SV)); |
| 3070 | } |
| 3071 | |
| 3072 | SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| 3073 | if (Op.getValueType() == MVT::i1) |
| 3074 | return LowerLOADi1(Op, DAG); |
| 3075 | |
| 3076 | // v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle |
| 3077 | // unaligned loads and have to handle it here. |
| 3078 | EVT VT = Op.getValueType(); |
| 3079 | if (Isv2x16VT(VT) || VT == MVT::v4i8) { |
| 3080 | LoadSDNode *Load = cast<LoadSDNode>(Val&: Op); |
| 3081 | EVT MemVT = Load->getMemoryVT(); |
| 3082 | if (!allowsMemoryAccessForAlignment(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), |
| 3083 | VT: MemVT, MMO: *Load->getMemOperand())) { |
| 3084 | SDValue Ops[2]; |
| 3085 | std::tie(args&: Ops[0], args&: Ops[1]) = expandUnalignedLoad(LD: Load, DAG); |
| 3086 | return DAG.getMergeValues(Ops, dl: SDLoc(Op)); |
| 3087 | } |
| 3088 | } |
| 3089 | |
| 3090 | return SDValue(); |
| 3091 | } |
| 3092 | |
| 3093 | // v = ld i1* addr |
| 3094 | // => |
| 3095 | // v1 = ld i8* addr (-> i16) |
| 3096 | // v = trunc i16 to i1 |
| 3097 | SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { |
| 3098 | SDNode *Node = Op.getNode(); |
| 3099 | LoadSDNode *LD = cast<LoadSDNode>(Val: Node); |
| 3100 | SDLoc dl(Node); |
| 3101 | assert(LD->getExtensionType() == ISD::NON_EXTLOAD); |
| 3102 | assert(Node->getValueType(0) == MVT::i1 && |
| 3103 | "Custom lowering for i1 load only" ); |
| 3104 | SDValue newLD = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT: MVT::i16, Chain: LD->getChain(), |
| 3105 | Ptr: LD->getBasePtr(), PtrInfo: LD->getPointerInfo(), |
| 3106 | MemVT: MVT::i8, Alignment: LD->getAlign(), |
| 3107 | MMOFlags: LD->getMemOperand()->getFlags()); |
| 3108 | SDValue result = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: MVT::i1, Operand: newLD); |
| 3109 | // The legalizer (the caller) is expecting two values from the legalized |
| 3110 | // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() |
| 3111 | // in LegalizeDAG.cpp which also uses MergeValues. |
| 3112 | SDValue Ops[] = { result, LD->getChain() }; |
| 3113 | return DAG.getMergeValues(Ops, dl); |
| 3114 | } |
| 3115 | |
| 3116 | SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| 3117 | StoreSDNode *Store = cast<StoreSDNode>(Val&: Op); |
| 3118 | EVT VT = Store->getMemoryVT(); |
| 3119 | |
| 3120 | if (VT == MVT::i1) |
| 3121 | return LowerSTOREi1(Op, DAG); |
| 3122 | |
| 3123 | // v2f16 is legal, so we can't rely on legalizer to handle unaligned |
| 3124 | // stores and have to handle it here. |
| 3125 | if ((Isv2x16VT(VT) || VT == MVT::v4i8) && |
| 3126 | !allowsMemoryAccessForAlignment(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), |
| 3127 | VT, MMO: *Store->getMemOperand())) |
| 3128 | return expandUnalignedStore(ST: Store, DAG); |
| 3129 | |
| 3130 | // v2f16, v2bf16 and v2i16 don't need special handling. |
| 3131 | if (Isv2x16VT(VT) || VT == MVT::v4i8) |
| 3132 | return SDValue(); |
| 3133 | |
| 3134 | return LowerSTOREVector(Op, DAG); |
| 3135 | } |
| 3136 | |
| 3137 | SDValue |
| 3138 | NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { |
| 3139 | MemSDNode *N = cast<MemSDNode>(Val: Op.getNode()); |
| 3140 | SDValue Val = N->getOperand(Num: 1); |
| 3141 | SDLoc DL(N); |
| 3142 | const EVT ValVT = Val.getValueType(); |
| 3143 | const EVT MemVT = N->getMemoryVT(); |
| 3144 | |
| 3145 | // If we're truncating as part of the store, avoid lowering to a StoreV node. |
| 3146 | // TODO: consider relaxing this restriction. |
| 3147 | if (ValVT != MemVT) |
| 3148 | return SDValue(); |
| 3149 | |
| 3150 | const auto NumEltsAndEltVT = getVectorLoweringShape( |
| 3151 | VectorEVT: ValVT, CanLowerTo256Bit: STI.has256BitVectorLoadStore(AS: N->getAddressSpace())); |
| 3152 | if (!NumEltsAndEltVT) |
| 3153 | return SDValue(); |
| 3154 | const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| 3155 | |
| 3156 | const DataLayout &TD = DAG.getDataLayout(); |
| 3157 | |
| 3158 | Align Alignment = N->getAlign(); |
| 3159 | Align PrefAlign = TD.getPrefTypeAlign(Ty: ValVT.getTypeForEVT(Context&: *DAG.getContext())); |
| 3160 | if (Alignment < PrefAlign) { |
| 3161 | // This store is not sufficiently aligned, so bail out and let this vector |
| 3162 | // store be scalarized. Note that we may still be able to emit smaller |
| 3163 | // vector stores. For example, if we are storing a <4 x float> with an |
| 3164 | // alignment of 8, this check will fail but the legalizer will try again |
| 3165 | // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| 3166 | return SDValue(); |
| 3167 | } |
| 3168 | |
| 3169 | unsigned Opcode; |
| 3170 | switch (NumElts) { |
| 3171 | default: |
| 3172 | return SDValue(); |
| 3173 | case 2: |
| 3174 | Opcode = NVPTXISD::StoreV2; |
| 3175 | break; |
| 3176 | case 4: |
| 3177 | Opcode = NVPTXISD::StoreV4; |
| 3178 | break; |
| 3179 | case 8: |
| 3180 | Opcode = NVPTXISD::StoreV8; |
| 3181 | break; |
| 3182 | } |
| 3183 | |
| 3184 | SmallVector<SDValue, 8> Ops; |
| 3185 | |
| 3186 | // First is the chain |
| 3187 | Ops.push_back(Elt: N->getOperand(Num: 0)); |
| 3188 | |
| 3189 | // Then the split values |
| 3190 | if (EltVT.isVector()) { |
| 3191 | assert(EVT(EltVT.getVectorElementType()) == ValVT.getVectorElementType()); |
| 3192 | assert(NumElts * EltVT.getVectorNumElements() == |
| 3193 | ValVT.getVectorNumElements()); |
| 3194 | // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be |
| 3195 | // stored as b32s |
| 3196 | const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements(); |
| 3197 | for (const unsigned I : llvm::seq(Size: NumElts)) { |
| 3198 | SmallVector<SDValue, 4> SubVectorElts; |
| 3199 | DAG.ExtractVectorElements(Op: Val, Args&: SubVectorElts, Start: I * NumEltsPerSubVector, |
| 3200 | Count: NumEltsPerSubVector); |
| 3201 | Ops.push_back(Elt: DAG.getBuildVector(VT: EltVT, DL, Ops: SubVectorElts)); |
| 3202 | } |
| 3203 | } else { |
| 3204 | SDValue V = DAG.getBitcast(VT: MVT::getVectorVT(VT: EltVT, NumElements: NumElts), V: Val); |
| 3205 | for (const unsigned I : llvm::seq(Size: NumElts)) { |
| 3206 | SDValue ExtVal = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, N1: V, |
| 3207 | N2: DAG.getIntPtrConstant(Val: I, DL)); |
| 3208 | |
| 3209 | // Since StoreV2 is a target node, we cannot rely on DAG type |
| 3210 | // legalization. Therefore, we must ensure the type is legal. For i1 and |
| 3211 | // i8, we set the stored type to i16 and propagate the "real" type as the |
| 3212 | // memory type. |
| 3213 | if (EltVT.getSizeInBits() < 16) |
| 3214 | ExtVal = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i16, Operand: ExtVal); |
| 3215 | Ops.push_back(Elt: ExtVal); |
| 3216 | } |
| 3217 | } |
| 3218 | |
| 3219 | // Then any remaining arguments |
| 3220 | Ops.append(in_start: N->op_begin() + 2, in_end: N->op_end()); |
| 3221 | |
| 3222 | SDValue NewSt = |
| 3223 | DAG.getMemIntrinsicNode(Opcode, dl: DL, VTList: DAG.getVTList(VT: MVT::Other), Ops, |
| 3224 | MemVT: N->getMemoryVT(), MMO: N->getMemOperand()); |
| 3225 | |
| 3226 | // return DCI.CombineTo(N, NewSt, true); |
| 3227 | return NewSt; |
| 3228 | } |
| 3229 | |
| 3230 | // st i1 v, addr |
| 3231 | // => |
| 3232 | // v1 = zxt v to i16 |
| 3233 | // st.u8 i16, addr |
| 3234 | SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { |
| 3235 | SDNode *Node = Op.getNode(); |
| 3236 | SDLoc dl(Node); |
| 3237 | StoreSDNode *ST = cast<StoreSDNode>(Val: Node); |
| 3238 | SDValue Tmp1 = ST->getChain(); |
| 3239 | SDValue Tmp2 = ST->getBasePtr(); |
| 3240 | SDValue Tmp3 = ST->getValue(); |
| 3241 | assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only" ); |
| 3242 | Tmp3 = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MVT::i16, Operand: Tmp3); |
| 3243 | SDValue Result = |
| 3244 | DAG.getTruncStore(Chain: Tmp1, dl, Val: Tmp3, Ptr: Tmp2, PtrInfo: ST->getPointerInfo(), SVT: MVT::i8, |
| 3245 | Alignment: ST->getAlign(), MMOFlags: ST->getMemOperand()->getFlags()); |
| 3246 | return Result; |
| 3247 | } |
| 3248 | |
| 3249 | SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op, |
| 3250 | SelectionDAG &DAG) const { |
| 3251 | // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit |
| 3252 | // operand so that it can pass the legalization. |
| 3253 | |
| 3254 | assert(Op.getOperand(1).getValueType() == MVT::i128 && |
| 3255 | "Custom lowering for 128-bit CopyToReg only" ); |
| 3256 | |
| 3257 | SDNode *Node = Op.getNode(); |
| 3258 | SDLoc DL(Node); |
| 3259 | |
| 3260 | SDValue Cast = DAG.getBitcast(VT: MVT::v2i64, V: Op->getOperand(Num: 2)); |
| 3261 | SDValue Lo = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i64, N1: Cast, |
| 3262 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 3263 | SDValue Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i64, N1: Cast, |
| 3264 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 3265 | |
| 3266 | SmallVector<SDValue, 5> NewOps(Op->getNumOperands() + 1); |
| 3267 | SmallVector<EVT, 3> ResultsType(Node->values()); |
| 3268 | |
| 3269 | NewOps[0] = Op->getOperand(Num: 0); // Chain |
| 3270 | NewOps[1] = Op->getOperand(Num: 1); // Dst Reg |
| 3271 | NewOps[2] = Lo; // Lower 64-bit |
| 3272 | NewOps[3] = Hi; // Higher 64-bit |
| 3273 | if (Op.getNumOperands() == 4) |
| 3274 | NewOps[4] = Op->getOperand(Num: 3); // Glue if exists |
| 3275 | |
| 3276 | return DAG.getNode(Opcode: ISD::CopyToReg, DL, ResultTys: ResultsType, Ops: NewOps); |
| 3277 | } |
| 3278 | |
| 3279 | unsigned NVPTXTargetLowering::getNumRegisters( |
| 3280 | LLVMContext &Context, EVT VT, |
| 3281 | std::optional<MVT> RegisterVT = std::nullopt) const { |
| 3282 | if (VT == MVT::i128 && RegisterVT == MVT::i128) |
| 3283 | return 1; |
| 3284 | return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT); |
| 3285 | } |
| 3286 | |
| 3287 | bool NVPTXTargetLowering::splitValueIntoRegisterParts( |
| 3288 | SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| 3289 | unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| 3290 | if (Val.getValueType() == MVT::i128 && NumParts == 1) { |
| 3291 | Parts[0] = Val; |
| 3292 | return true; |
| 3293 | } |
| 3294 | return false; |
| 3295 | } |
| 3296 | |
| 3297 | // This creates target external symbol for a function parameter. |
| 3298 | // Name of the symbol is composed from its index and the function name. |
| 3299 | // Negative index corresponds to special parameter (unsized array) used for |
| 3300 | // passing variable arguments. |
| 3301 | SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int I, |
| 3302 | EVT T) const { |
| 3303 | StringRef SavedStr = nvTM->getStrPool().save( |
| 3304 | S: getParamName(F: &DAG.getMachineFunction().getFunction(), Idx: I)); |
| 3305 | return DAG.getExternalSymbol(Sym: SavedStr.data(), VT: T); |
| 3306 | } |
| 3307 | |
| 3308 | SDValue NVPTXTargetLowering::getCallParamSymbol(SelectionDAG &DAG, int I, |
| 3309 | EVT T) const { |
| 3310 | const StringRef SavedStr = nvTM->getStrPool().save(S: "param" + Twine(I)); |
| 3311 | return DAG.getExternalSymbol(Sym: SavedStr.data(), VT: T); |
| 3312 | } |
| 3313 | |
| 3314 | SDValue NVPTXTargetLowering::LowerFormalArguments( |
| 3315 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| 3316 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| 3317 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 3318 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3319 | const DataLayout &DL = DAG.getDataLayout(); |
| 3320 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 3321 | |
| 3322 | const Function *F = &MF.getFunction(); |
| 3323 | |
| 3324 | SDValue Root = DAG.getRoot(); |
| 3325 | SmallVector<SDValue, 16> OutChains; |
| 3326 | |
| 3327 | // argTypes.size() (or theArgs.size()) and Ins.size() need not match. |
| 3328 | // Ins.size() will be larger |
| 3329 | // * if there is an aggregate argument with multiple fields (each field |
| 3330 | // showing up separately in Ins) |
| 3331 | // * if there is a vector argument with more than typical vector-length |
| 3332 | // elements (generally if more than 4) where each vector element is |
| 3333 | // individually present in Ins. |
| 3334 | // So a different index should be used for indexing into Ins. |
| 3335 | // See similar issue in LowerCall. |
| 3336 | |
| 3337 | auto AllIns = ArrayRef(Ins); |
| 3338 | for (const auto &Arg : F->args()) { |
| 3339 | const auto ArgIns = AllIns.take_while( |
| 3340 | Pred: [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); }); |
| 3341 | AllIns = AllIns.drop_front(N: ArgIns.size()); |
| 3342 | |
| 3343 | Type *Ty = Arg.getType(); |
| 3344 | |
| 3345 | if (ArgIns.empty()) |
| 3346 | report_fatal_error(reason: "Empty parameter types are not supported" ); |
| 3347 | |
| 3348 | if (Arg.use_empty()) { |
| 3349 | // argument is dead |
| 3350 | for (const auto &In : ArgIns) { |
| 3351 | assert(!In.Used && "Arg.use_empty() is true but Arg is used?" ); |
| 3352 | InVals.push_back(Elt: DAG.getUNDEF(VT: In.VT)); |
| 3353 | } |
| 3354 | continue; |
| 3355 | } |
| 3356 | |
| 3357 | SDValue ArgSymbol = getParamSymbol(DAG, I: Arg.getArgNo(), T: PtrVT); |
| 3358 | |
| 3359 | // In the following cases, assign a node order of "i+1" |
| 3360 | // to newly created nodes. The SDNodes for params have to |
| 3361 | // appear in the same order as their order of appearance |
| 3362 | // in the original function. "i+1" holds that order. |
| 3363 | if (Arg.hasByValAttr()) { |
| 3364 | // Param has ByVal attribute |
| 3365 | // Return MoveParam(param symbol). |
| 3366 | // Ideally, the param symbol can be returned directly, |
| 3367 | // but when SDNode builder decides to use it in a CopyToReg(), |
| 3368 | // machine instruction fails because TargetExternalSymbol |
| 3369 | // (not lowered) is target dependent, and CopyToReg assumes |
| 3370 | // the source is lowered. |
| 3371 | assert(ArgIns.size() == 1 && "ByVal argument must be a pointer" ); |
| 3372 | const auto &ByvalIn = ArgIns[0]; |
| 3373 | assert(getValueType(DL, Ty) == ByvalIn.VT && |
| 3374 | "Ins type did not match function type" ); |
| 3375 | assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer" ); |
| 3376 | |
| 3377 | SDValue P; |
| 3378 | if (isKernelFunction(F: *F)) { |
| 3379 | P = ArgSymbol; |
| 3380 | P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| 3381 | } else { |
| 3382 | P = DAG.getNode(Opcode: NVPTXISD::MoveParam, DL: dl, VT: ByvalIn.VT, Operand: ArgSymbol); |
| 3383 | P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| 3384 | P = DAG.getAddrSpaceCast(dl, VT: ByvalIn.VT, Ptr: P, SrcAS: ADDRESS_SPACE_LOCAL, |
| 3385 | DestAS: ADDRESS_SPACE_GENERIC); |
| 3386 | } |
| 3387 | InVals.push_back(Elt: P); |
| 3388 | } else { |
| 3389 | SmallVector<EVT, 16> VTs; |
| 3390 | SmallVector<uint64_t, 16> Offsets; |
| 3391 | ComputePTXValueVTs(TLI: *this, DL, Ty, ValueVTs&: VTs, Offsets: &Offsets, StartingOffset: 0); |
| 3392 | assert(VTs.size() == ArgIns.size() && "Size mismatch" ); |
| 3393 | assert(VTs.size() == Offsets.size() && "Size mismatch" ); |
| 3394 | |
| 3395 | const Align ArgAlign = getFunctionArgumentAlignment( |
| 3396 | F, Ty, Idx: Arg.getArgNo() + AttributeList::FirstArgIndex, DL); |
| 3397 | |
| 3398 | const auto VectorInfo = VectorizePTXValueVTs(ValueVTs: VTs, Offsets, ParamAlignment: ArgAlign); |
| 3399 | unsigned I = 0; |
| 3400 | for (const unsigned NumElts : VectorInfo) { |
| 3401 | // i1 is loaded/stored as i8 |
| 3402 | const EVT LoadVT = VTs[I] == MVT::i1 ? MVT::i8 : VTs[I]; |
| 3403 | // If the element is a packed type (ex. v2f16, v4i8, etc) holding |
| 3404 | // multiple elements. |
| 3405 | const unsigned PackingAmt = |
| 3406 | LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; |
| 3407 | |
| 3408 | const EVT VecVT = |
| 3409 | NumElts == 1 |
| 3410 | ? LoadVT |
| 3411 | : EVT::getVectorVT(Context&: F->getContext(), VT: LoadVT.getScalarType(), |
| 3412 | NumElements: NumElts * PackingAmt); |
| 3413 | |
| 3414 | SDValue VecAddr = DAG.getObjectPtrOffset( |
| 3415 | SL: dl, Ptr: ArgSymbol, Offset: TypeSize::getFixed(ExactSize: Offsets[I])); |
| 3416 | |
| 3417 | const MaybeAlign PartAlign = commonAlignment(A: ArgAlign, Offset: Offsets[I]); |
| 3418 | SDValue P = |
| 3419 | DAG.getLoad(VT: VecVT, dl, Chain: Root, Ptr: VecAddr, |
| 3420 | PtrInfo: MachinePointerInfo(ADDRESS_SPACE_PARAM), Alignment: PartAlign, |
| 3421 | MMOFlags: MachineMemOperand::MODereferenceable | |
| 3422 | MachineMemOperand::MOInvariant); |
| 3423 | if (P.getNode()) |
| 3424 | P.getNode()->setIROrder(Arg.getArgNo() + 1); |
| 3425 | for (const unsigned J : llvm::seq(Size: NumElts)) { |
| 3426 | SDValue Elt = |
| 3427 | NumElts == 1 |
| 3428 | ? P |
| 3429 | : DAG.getNode(Opcode: LoadVT.isVector() ? ISD::EXTRACT_SUBVECTOR |
| 3430 | : ISD::EXTRACT_VECTOR_ELT, |
| 3431 | DL: dl, VT: LoadVT, N1: P, |
| 3432 | N2: DAG.getVectorIdxConstant(Val: J * PackingAmt, DL: dl)); |
| 3433 | |
| 3434 | Elt = correctParamType(V: Elt, ExpectedVT: ArgIns[I + J].VT, Flags: ArgIns[I + J].Flags, |
| 3435 | DAG, dl); |
| 3436 | InVals.push_back(Elt); |
| 3437 | } |
| 3438 | I += NumElts; |
| 3439 | } |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | if (!OutChains.empty()) |
| 3444 | DAG.setRoot(DAG.getTokenFactor(DL: dl, Vals&: OutChains)); |
| 3445 | |
| 3446 | return Chain; |
| 3447 | } |
| 3448 | |
| 3449 | SDValue |
| 3450 | NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 3451 | bool isVarArg, |
| 3452 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 3453 | const SmallVectorImpl<SDValue> &OutVals, |
| 3454 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 3455 | const MachineFunction &MF = DAG.getMachineFunction(); |
| 3456 | const Function &F = MF.getFunction(); |
| 3457 | Type *RetTy = MF.getFunction().getReturnType(); |
| 3458 | |
| 3459 | if (RetTy->isVoidTy()) { |
| 3460 | assert(OutVals.empty() && Outs.empty() && "Return value expected for void" ); |
| 3461 | return DAG.getNode(Opcode: NVPTXISD::RET_GLUE, DL: dl, VT: MVT::Other, Operand: Chain); |
| 3462 | } |
| 3463 | |
| 3464 | const DataLayout &DL = DAG.getDataLayout(); |
| 3465 | SmallVector<EVT, 16> VTs; |
| 3466 | SmallVector<uint64_t, 16> Offsets; |
| 3467 | ComputePTXValueVTs(TLI: *this, DL, Ty: RetTy, ValueVTs&: VTs, Offsets: &Offsets); |
| 3468 | assert(VTs.size() == OutVals.size() && "Bad return value decomposition" ); |
| 3469 | |
| 3470 | // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| 3471 | // 32-bits are sign extended or zero extended, depending on whether |
| 3472 | // they are signed or unsigned types. |
| 3473 | const bool ExtendIntegerRetVal = |
| 3474 | RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty: RetTy) < 32; |
| 3475 | |
| 3476 | const auto GetRetVal = [&](unsigned I) -> SDValue { |
| 3477 | SDValue RetVal = OutVals[I]; |
| 3478 | assert(promoteScalarIntegerPTX(RetVal.getValueType()) == |
| 3479 | RetVal.getValueType() && |
| 3480 | "OutVal type should always be legal" ); |
| 3481 | |
| 3482 | const EVT VTI = promoteScalarIntegerPTX(VT: VTs[I]); |
| 3483 | const EVT StoreVT = |
| 3484 | ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI); |
| 3485 | return correctParamType(V: RetVal, ExpectedVT: StoreVT, Flags: Outs[I].Flags, DAG, dl); |
| 3486 | }; |
| 3487 | |
| 3488 | const auto RetAlign = getFunctionParamOptimizedAlign(F: &F, ArgTy: RetTy, DL); |
| 3489 | const auto VectorInfo = VectorizePTXValueVTs(ValueVTs: VTs, Offsets, ParamAlignment: RetAlign); |
| 3490 | unsigned I = 0; |
| 3491 | for (const unsigned NumElts : VectorInfo) { |
| 3492 | const MaybeAlign CurrentAlign = ExtendIntegerRetVal |
| 3493 | ? MaybeAlign(std::nullopt) |
| 3494 | : commonAlignment(A: RetAlign, Offset: Offsets[I]); |
| 3495 | |
| 3496 | SDValue Val; |
| 3497 | if (NumElts == 1) { |
| 3498 | Val = GetRetVal(I); |
| 3499 | } else { |
| 3500 | SmallVector<SDValue, 4> StoreVals; |
| 3501 | for (const unsigned J : llvm::seq(Size: NumElts)) { |
| 3502 | SDValue ValJ = GetRetVal(I + J); |
| 3503 | if (ValJ.getValueType().isVector()) |
| 3504 | DAG.ExtractVectorElements(Op: ValJ, Args&: StoreVals); |
| 3505 | else |
| 3506 | StoreVals.push_back(Elt: ValJ); |
| 3507 | } |
| 3508 | |
| 3509 | EVT VT = EVT::getVectorVT(Context&: F.getContext(), VT: StoreVals[0].getValueType(), |
| 3510 | NumElements: StoreVals.size()); |
| 3511 | Val = DAG.getBuildVector(VT, DL: dl, Ops: StoreVals); |
| 3512 | } |
| 3513 | |
| 3514 | const SDValue RetSymbol = DAG.getExternalSymbol(Sym: "func_retval0" , VT: MVT::i32); |
| 3515 | SDValue Ptr = |
| 3516 | DAG.getObjectPtrOffset(SL: dl, Ptr: RetSymbol, Offset: TypeSize::getFixed(ExactSize: Offsets[I])); |
| 3517 | |
| 3518 | Chain = DAG.getStore(Chain, dl, Val, Ptr, |
| 3519 | PtrInfo: MachinePointerInfo(ADDRESS_SPACE_PARAM), Alignment: CurrentAlign); |
| 3520 | |
| 3521 | I += NumElts; |
| 3522 | } |
| 3523 | |
| 3524 | return DAG.getNode(Opcode: NVPTXISD::RET_GLUE, DL: dl, VT: MVT::Other, Operand: Chain); |
| 3525 | } |
| 3526 | |
| 3527 | void NVPTXTargetLowering::LowerAsmOperandForConstraint( |
| 3528 | SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, |
| 3529 | SelectionDAG &DAG) const { |
| 3530 | if (Constraint.size() > 1) |
| 3531 | return; |
| 3532 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 3533 | } |
| 3534 | |
| 3535 | // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as |
| 3536 | // TgtMemIntrinsic |
| 3537 | // because we need the information that is only available in the "Value" type |
| 3538 | // of destination |
| 3539 | // pointer. In particular, the address space information. |
| 3540 | bool NVPTXTargetLowering::getTgtMemIntrinsic( |
| 3541 | IntrinsicInfo &Info, const CallInst &I, |
| 3542 | MachineFunction &MF, unsigned Intrinsic) const { |
| 3543 | switch (Intrinsic) { |
| 3544 | default: |
| 3545 | return false; |
| 3546 | case Intrinsic::nvvm_match_all_sync_i32p: |
| 3547 | case Intrinsic::nvvm_match_all_sync_i64p: |
| 3548 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3549 | // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute |
| 3550 | // in order to model data exchange with other threads, but perform no real |
| 3551 | // memory accesses. |
| 3552 | Info.memVT = MVT::i1; |
| 3553 | |
| 3554 | // Our result depends on both our and other thread's arguments. |
| 3555 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| 3556 | return true; |
| 3557 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: |
| 3558 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: |
| 3559 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: |
| 3560 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: |
| 3561 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: |
| 3562 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: |
| 3563 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: |
| 3564 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: |
| 3565 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: |
| 3566 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: |
| 3567 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: |
| 3568 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: |
| 3569 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: |
| 3570 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: |
| 3571 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: |
| 3572 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: |
| 3573 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: |
| 3574 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: |
| 3575 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: |
| 3576 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: |
| 3577 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: |
| 3578 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: |
| 3579 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: |
| 3580 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { |
| 3581 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3582 | Info.memVT = MVT::v8f16; |
| 3583 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3584 | Info.offset = 0; |
| 3585 | Info.flags = MachineMemOperand::MOLoad; |
| 3586 | Info.align = Align(16); |
| 3587 | return true; |
| 3588 | } |
| 3589 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: |
| 3590 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: |
| 3591 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: |
| 3592 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: |
| 3593 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: |
| 3594 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: |
| 3595 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: |
| 3596 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: |
| 3597 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col: |
| 3598 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride: |
| 3599 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row: |
| 3600 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride: |
| 3601 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: |
| 3602 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: |
| 3603 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: |
| 3604 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: |
| 3605 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: |
| 3606 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: |
| 3607 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: |
| 3608 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: |
| 3609 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col: |
| 3610 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride: |
| 3611 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row: |
| 3612 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: { |
| 3613 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3614 | Info.memVT = MVT::v2i32; |
| 3615 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3616 | Info.offset = 0; |
| 3617 | Info.flags = MachineMemOperand::MOLoad; |
| 3618 | Info.align = Align(8); |
| 3619 | return true; |
| 3620 | } |
| 3621 | |
| 3622 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: |
| 3623 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: |
| 3624 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: |
| 3625 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: |
| 3626 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: |
| 3627 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: |
| 3628 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: |
| 3629 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: |
| 3630 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col: |
| 3631 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride: |
| 3632 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row: |
| 3633 | case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride: |
| 3634 | case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col: |
| 3635 | case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride: |
| 3636 | case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row: |
| 3637 | case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride: |
| 3638 | |
| 3639 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: |
| 3640 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: |
| 3641 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: |
| 3642 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: |
| 3643 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: |
| 3644 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: |
| 3645 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: |
| 3646 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: |
| 3647 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col: |
| 3648 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride: |
| 3649 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row: |
| 3650 | case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride: |
| 3651 | case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col: |
| 3652 | case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride: |
| 3653 | case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row: |
| 3654 | case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride: |
| 3655 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16: |
| 3656 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: |
| 3657 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8: |
| 3658 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64: |
| 3659 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32: |
| 3660 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64: |
| 3661 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: { |
| 3662 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3663 | Info.memVT = MVT::v4i32; |
| 3664 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3665 | Info.offset = 0; |
| 3666 | Info.flags = MachineMemOperand::MOLoad; |
| 3667 | Info.align = Align(16); |
| 3668 | return true; |
| 3669 | } |
| 3670 | |
| 3671 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: |
| 3672 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: |
| 3673 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: |
| 3674 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: |
| 3675 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: |
| 3676 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: |
| 3677 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: |
| 3678 | case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: |
| 3679 | |
| 3680 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: |
| 3681 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: |
| 3682 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: |
| 3683 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: |
| 3684 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: |
| 3685 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: |
| 3686 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: |
| 3687 | case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: |
| 3688 | case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: |
| 3689 | case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: |
| 3690 | case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: |
| 3691 | case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: |
| 3692 | case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: |
| 3693 | case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: |
| 3694 | case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: |
| 3695 | case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: |
| 3696 | case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: |
| 3697 | case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: |
| 3698 | case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: |
| 3699 | case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: |
| 3700 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16: |
| 3701 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: |
| 3702 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64: |
| 3703 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: { |
| 3704 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3705 | Info.memVT = MVT::i32; |
| 3706 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3707 | Info.offset = 0; |
| 3708 | Info.flags = MachineMemOperand::MOLoad; |
| 3709 | Info.align = Align(4); |
| 3710 | return true; |
| 3711 | } |
| 3712 | |
| 3713 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: |
| 3714 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: |
| 3715 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: |
| 3716 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: |
| 3717 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: |
| 3718 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: |
| 3719 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: |
| 3720 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: |
| 3721 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: |
| 3722 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: |
| 3723 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: |
| 3724 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { |
| 3725 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3726 | Info.memVT = MVT::v4f16; |
| 3727 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3728 | Info.offset = 0; |
| 3729 | Info.flags = MachineMemOperand::MOLoad; |
| 3730 | Info.align = Align(16); |
| 3731 | return true; |
| 3732 | } |
| 3733 | |
| 3734 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: |
| 3735 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: |
| 3736 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: |
| 3737 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: |
| 3738 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: |
| 3739 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: |
| 3740 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: |
| 3741 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: |
| 3742 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: |
| 3743 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: |
| 3744 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: |
| 3745 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: |
| 3746 | case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col: |
| 3747 | case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row: |
| 3748 | case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride: |
| 3749 | case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: { |
| 3750 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3751 | Info.memVT = MVT::v8f32; |
| 3752 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3753 | Info.offset = 0; |
| 3754 | Info.flags = MachineMemOperand::MOLoad; |
| 3755 | Info.align = Align(16); |
| 3756 | return true; |
| 3757 | } |
| 3758 | |
| 3759 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col: |
| 3760 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride: |
| 3761 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row: |
| 3762 | case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride: |
| 3763 | |
| 3764 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col: |
| 3765 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride: |
| 3766 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row: |
| 3767 | case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride: |
| 3768 | |
| 3769 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: |
| 3770 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: |
| 3771 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: |
| 3772 | case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: |
| 3773 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: |
| 3774 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: |
| 3775 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: |
| 3776 | case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: |
| 3777 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: |
| 3778 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: |
| 3779 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: |
| 3780 | case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { |
| 3781 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3782 | Info.memVT = MVT::v8i32; |
| 3783 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3784 | Info.offset = 0; |
| 3785 | Info.flags = MachineMemOperand::MOLoad; |
| 3786 | Info.align = Align(16); |
| 3787 | return true; |
| 3788 | } |
| 3789 | |
| 3790 | case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: |
| 3791 | case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: |
| 3792 | case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: |
| 3793 | case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: |
| 3794 | case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: |
| 3795 | case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: |
| 3796 | case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: |
| 3797 | case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: |
| 3798 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16: |
| 3799 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: |
| 3800 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8: |
| 3801 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64: |
| 3802 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32: |
| 3803 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64: |
| 3804 | case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: { |
| 3805 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3806 | Info.memVT = MVT::v2i32; |
| 3807 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3808 | Info.offset = 0; |
| 3809 | Info.flags = MachineMemOperand::MOLoad; |
| 3810 | Info.align = Align(8); |
| 3811 | return true; |
| 3812 | } |
| 3813 | |
| 3814 | case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col: |
| 3815 | case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride: |
| 3816 | case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row: |
| 3817 | case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride: |
| 3818 | |
| 3819 | case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col: |
| 3820 | case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride: |
| 3821 | case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row: |
| 3822 | case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: { |
| 3823 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3824 | Info.memVT = MVT::f64; |
| 3825 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3826 | Info.offset = 0; |
| 3827 | Info.flags = MachineMemOperand::MOLoad; |
| 3828 | Info.align = Align(8); |
| 3829 | return true; |
| 3830 | } |
| 3831 | |
| 3832 | case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col: |
| 3833 | case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride: |
| 3834 | case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row: |
| 3835 | case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: { |
| 3836 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3837 | Info.memVT = MVT::v2f64; |
| 3838 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3839 | Info.offset = 0; |
| 3840 | Info.flags = MachineMemOperand::MOLoad; |
| 3841 | Info.align = Align(16); |
| 3842 | return true; |
| 3843 | } |
| 3844 | |
| 3845 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: |
| 3846 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: |
| 3847 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: |
| 3848 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: |
| 3849 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: |
| 3850 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: |
| 3851 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: |
| 3852 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: |
| 3853 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: |
| 3854 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: |
| 3855 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: |
| 3856 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { |
| 3857 | Info.opc = ISD::INTRINSIC_VOID; |
| 3858 | Info.memVT = MVT::v4f16; |
| 3859 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3860 | Info.offset = 0; |
| 3861 | Info.flags = MachineMemOperand::MOStore; |
| 3862 | Info.align = Align(16); |
| 3863 | return true; |
| 3864 | } |
| 3865 | |
| 3866 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: |
| 3867 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: |
| 3868 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: |
| 3869 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: |
| 3870 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: |
| 3871 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: |
| 3872 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: |
| 3873 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: |
| 3874 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: |
| 3875 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: |
| 3876 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: |
| 3877 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: |
| 3878 | case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col: |
| 3879 | case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row: |
| 3880 | case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride: |
| 3881 | case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: { |
| 3882 | Info.opc = ISD::INTRINSIC_VOID; |
| 3883 | Info.memVT = MVT::v8f32; |
| 3884 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3885 | Info.offset = 0; |
| 3886 | Info.flags = MachineMemOperand::MOStore; |
| 3887 | Info.align = Align(16); |
| 3888 | return true; |
| 3889 | } |
| 3890 | |
| 3891 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: |
| 3892 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: |
| 3893 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: |
| 3894 | case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: |
| 3895 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: |
| 3896 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: |
| 3897 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: |
| 3898 | case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: |
| 3899 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: |
| 3900 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: |
| 3901 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: |
| 3902 | case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { |
| 3903 | Info.opc = ISD::INTRINSIC_VOID; |
| 3904 | Info.memVT = MVT::v8i32; |
| 3905 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3906 | Info.offset = 0; |
| 3907 | Info.flags = MachineMemOperand::MOStore; |
| 3908 | Info.align = Align(16); |
| 3909 | return true; |
| 3910 | } |
| 3911 | |
| 3912 | case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: |
| 3913 | case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: |
| 3914 | case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: |
| 3915 | case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: |
| 3916 | case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: |
| 3917 | case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: |
| 3918 | case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: |
| 3919 | case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: { |
| 3920 | Info.opc = ISD::INTRINSIC_VOID; |
| 3921 | Info.memVT = MVT::v2i32; |
| 3922 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3923 | Info.offset = 0; |
| 3924 | Info.flags = MachineMemOperand::MOStore; |
| 3925 | Info.align = Align(8); |
| 3926 | return true; |
| 3927 | } |
| 3928 | |
| 3929 | case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col: |
| 3930 | case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride: |
| 3931 | case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row: |
| 3932 | case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: { |
| 3933 | Info.opc = ISD::INTRINSIC_VOID; |
| 3934 | Info.memVT = MVT::v2f64; |
| 3935 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3936 | Info.offset = 0; |
| 3937 | Info.flags = MachineMemOperand::MOStore; |
| 3938 | Info.align = Align(16); |
| 3939 | return true; |
| 3940 | } |
| 3941 | |
| 3942 | case Intrinsic::nvvm_atomic_add_gen_f_cta: |
| 3943 | case Intrinsic::nvvm_atomic_add_gen_f_sys: |
| 3944 | case Intrinsic::nvvm_atomic_add_gen_i_cta: |
| 3945 | case Intrinsic::nvvm_atomic_add_gen_i_sys: |
| 3946 | case Intrinsic::nvvm_atomic_and_gen_i_cta: |
| 3947 | case Intrinsic::nvvm_atomic_and_gen_i_sys: |
| 3948 | case Intrinsic::nvvm_atomic_cas_gen_i_cta: |
| 3949 | case Intrinsic::nvvm_atomic_cas_gen_i_sys: |
| 3950 | case Intrinsic::nvvm_atomic_dec_gen_i_cta: |
| 3951 | case Intrinsic::nvvm_atomic_dec_gen_i_sys: |
| 3952 | case Intrinsic::nvvm_atomic_inc_gen_i_cta: |
| 3953 | case Intrinsic::nvvm_atomic_inc_gen_i_sys: |
| 3954 | case Intrinsic::nvvm_atomic_max_gen_i_cta: |
| 3955 | case Intrinsic::nvvm_atomic_max_gen_i_sys: |
| 3956 | case Intrinsic::nvvm_atomic_min_gen_i_cta: |
| 3957 | case Intrinsic::nvvm_atomic_min_gen_i_sys: |
| 3958 | case Intrinsic::nvvm_atomic_or_gen_i_cta: |
| 3959 | case Intrinsic::nvvm_atomic_or_gen_i_sys: |
| 3960 | case Intrinsic::nvvm_atomic_exch_gen_i_cta: |
| 3961 | case Intrinsic::nvvm_atomic_exch_gen_i_sys: |
| 3962 | case Intrinsic::nvvm_atomic_xor_gen_i_cta: |
| 3963 | case Intrinsic::nvvm_atomic_xor_gen_i_sys: { |
| 3964 | auto &DL = I.getDataLayout(); |
| 3965 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3966 | Info.memVT = getValueType(DL, Ty: I.getType()); |
| 3967 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3968 | Info.offset = 0; |
| 3969 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| 3970 | Info.align.reset(); |
| 3971 | return true; |
| 3972 | } |
| 3973 | |
| 3974 | case Intrinsic::nvvm_ldu_global_i: |
| 3975 | case Intrinsic::nvvm_ldu_global_f: |
| 3976 | case Intrinsic::nvvm_ldu_global_p: { |
| 3977 | auto &DL = I.getDataLayout(); |
| 3978 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 3979 | if (Intrinsic == Intrinsic::nvvm_ldu_global_i) |
| 3980 | Info.memVT = getValueType(DL, Ty: I.getType()); |
| 3981 | else if(Intrinsic == Intrinsic::nvvm_ldu_global_p) |
| 3982 | Info.memVT = getPointerTy(DL); |
| 3983 | else |
| 3984 | Info.memVT = getValueType(DL, Ty: I.getType()); |
| 3985 | Info.ptrVal = I.getArgOperand(i: 0); |
| 3986 | Info.offset = 0; |
| 3987 | Info.flags = MachineMemOperand::MOLoad; |
| 3988 | Info.align = cast<ConstantInt>(Val: I.getArgOperand(i: 1))->getMaybeAlignValue(); |
| 3989 | |
| 3990 | return true; |
| 3991 | } |
| 3992 | case Intrinsic::nvvm_tex_1d_v4f32_s32: |
| 3993 | case Intrinsic::nvvm_tex_1d_v4f32_f32: |
| 3994 | case Intrinsic::nvvm_tex_1d_level_v4f32_f32: |
| 3995 | case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: |
| 3996 | case Intrinsic::nvvm_tex_1d_array_v4f32_s32: |
| 3997 | case Intrinsic::nvvm_tex_1d_array_v4f32_f32: |
| 3998 | case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: |
| 3999 | case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: |
| 4000 | case Intrinsic::nvvm_tex_2d_v4f32_s32: |
| 4001 | case Intrinsic::nvvm_tex_2d_v4f32_f32: |
| 4002 | case Intrinsic::nvvm_tex_2d_level_v4f32_f32: |
| 4003 | case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: |
| 4004 | case Intrinsic::nvvm_tex_2d_array_v4f32_s32: |
| 4005 | case Intrinsic::nvvm_tex_2d_array_v4f32_f32: |
| 4006 | case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: |
| 4007 | case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: |
| 4008 | case Intrinsic::nvvm_tex_3d_v4f32_s32: |
| 4009 | case Intrinsic::nvvm_tex_3d_v4f32_f32: |
| 4010 | case Intrinsic::nvvm_tex_3d_level_v4f32_f32: |
| 4011 | case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: |
| 4012 | case Intrinsic::nvvm_tex_cube_v4f32_f32: |
| 4013 | case Intrinsic::nvvm_tex_cube_level_v4f32_f32: |
| 4014 | case Intrinsic::nvvm_tex_cube_array_v4f32_f32: |
| 4015 | case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: |
| 4016 | case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: |
| 4017 | case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: |
| 4018 | case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: |
| 4019 | case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: |
| 4020 | case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: |
| 4021 | case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: |
| 4022 | case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: |
| 4023 | case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: |
| 4024 | case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: |
| 4025 | case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: |
| 4026 | case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: |
| 4027 | case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: |
| 4028 | case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: |
| 4029 | case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: |
| 4030 | case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: |
| 4031 | case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: |
| 4032 | case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: |
| 4033 | case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: |
| 4034 | case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: |
| 4035 | case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: |
| 4036 | case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: |
| 4037 | case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: |
| 4038 | case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: |
| 4039 | case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: |
| 4040 | case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: |
| 4041 | case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: |
| 4042 | case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: |
| 4043 | case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: |
| 4044 | case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32: |
| 4045 | case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32: |
| 4046 | case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: |
| 4047 | case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: |
| 4048 | case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: |
| 4049 | case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: |
| 4050 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4051 | Info.memVT = MVT::v4f32; |
| 4052 | Info.ptrVal = nullptr; |
| 4053 | Info.offset = 0; |
| 4054 | Info.flags = MachineMemOperand::MOLoad; |
| 4055 | Info.align = Align(16); |
| 4056 | return true; |
| 4057 | |
| 4058 | case Intrinsic::nvvm_tex_1d_v4s32_s32: |
| 4059 | case Intrinsic::nvvm_tex_1d_v4s32_f32: |
| 4060 | case Intrinsic::nvvm_tex_1d_level_v4s32_f32: |
| 4061 | case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: |
| 4062 | case Intrinsic::nvvm_tex_1d_array_v4s32_s32: |
| 4063 | case Intrinsic::nvvm_tex_1d_array_v4s32_f32: |
| 4064 | case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: |
| 4065 | case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: |
| 4066 | case Intrinsic::nvvm_tex_2d_v4s32_s32: |
| 4067 | case Intrinsic::nvvm_tex_2d_v4s32_f32: |
| 4068 | case Intrinsic::nvvm_tex_2d_level_v4s32_f32: |
| 4069 | case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: |
| 4070 | case Intrinsic::nvvm_tex_2d_array_v4s32_s32: |
| 4071 | case Intrinsic::nvvm_tex_2d_array_v4s32_f32: |
| 4072 | case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: |
| 4073 | case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: |
| 4074 | case Intrinsic::nvvm_tex_3d_v4s32_s32: |
| 4075 | case Intrinsic::nvvm_tex_3d_v4s32_f32: |
| 4076 | case Intrinsic::nvvm_tex_3d_level_v4s32_f32: |
| 4077 | case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: |
| 4078 | case Intrinsic::nvvm_tex_cube_v4s32_f32: |
| 4079 | case Intrinsic::nvvm_tex_cube_level_v4s32_f32: |
| 4080 | case Intrinsic::nvvm_tex_cube_array_v4s32_f32: |
| 4081 | case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: |
| 4082 | case Intrinsic::nvvm_tex_cube_v4u32_f32: |
| 4083 | case Intrinsic::nvvm_tex_cube_level_v4u32_f32: |
| 4084 | case Intrinsic::nvvm_tex_cube_array_v4u32_f32: |
| 4085 | case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: |
| 4086 | case Intrinsic::nvvm_tex_1d_v4u32_s32: |
| 4087 | case Intrinsic::nvvm_tex_1d_v4u32_f32: |
| 4088 | case Intrinsic::nvvm_tex_1d_level_v4u32_f32: |
| 4089 | case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: |
| 4090 | case Intrinsic::nvvm_tex_1d_array_v4u32_s32: |
| 4091 | case Intrinsic::nvvm_tex_1d_array_v4u32_f32: |
| 4092 | case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: |
| 4093 | case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: |
| 4094 | case Intrinsic::nvvm_tex_2d_v4u32_s32: |
| 4095 | case Intrinsic::nvvm_tex_2d_v4u32_f32: |
| 4096 | case Intrinsic::nvvm_tex_2d_level_v4u32_f32: |
| 4097 | case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: |
| 4098 | case Intrinsic::nvvm_tex_2d_array_v4u32_s32: |
| 4099 | case Intrinsic::nvvm_tex_2d_array_v4u32_f32: |
| 4100 | case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: |
| 4101 | case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: |
| 4102 | case Intrinsic::nvvm_tex_3d_v4u32_s32: |
| 4103 | case Intrinsic::nvvm_tex_3d_v4u32_f32: |
| 4104 | case Intrinsic::nvvm_tex_3d_level_v4u32_f32: |
| 4105 | case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: |
| 4106 | case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: |
| 4107 | case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: |
| 4108 | case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: |
| 4109 | case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: |
| 4110 | case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: |
| 4111 | case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: |
| 4112 | case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: |
| 4113 | case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: |
| 4114 | case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: |
| 4115 | case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: |
| 4116 | case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: |
| 4117 | case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: |
| 4118 | case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: |
| 4119 | case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: |
| 4120 | case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: |
| 4121 | case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: |
| 4122 | case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: |
| 4123 | case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: |
| 4124 | case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: |
| 4125 | case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: |
| 4126 | case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: |
| 4127 | case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: |
| 4128 | case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: |
| 4129 | case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: |
| 4130 | case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: |
| 4131 | case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: |
| 4132 | case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: |
| 4133 | case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: |
| 4134 | case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: |
| 4135 | case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: |
| 4136 | case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: |
| 4137 | case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: |
| 4138 | case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: |
| 4139 | case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: |
| 4140 | case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: |
| 4141 | case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: |
| 4142 | case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: |
| 4143 | case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: |
| 4144 | case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: |
| 4145 | case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: |
| 4146 | case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: |
| 4147 | case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: |
| 4148 | case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: |
| 4149 | case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: |
| 4150 | case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: |
| 4151 | case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: |
| 4152 | case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: |
| 4153 | case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: |
| 4154 | case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: |
| 4155 | case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: |
| 4156 | case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: |
| 4157 | case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: |
| 4158 | case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: |
| 4159 | case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: |
| 4160 | case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: |
| 4161 | case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: |
| 4162 | case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32: |
| 4163 | case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32: |
| 4164 | case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32: |
| 4165 | case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32: |
| 4166 | case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: |
| 4167 | case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: |
| 4168 | case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: |
| 4169 | case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: |
| 4170 | case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: |
| 4171 | case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: |
| 4172 | case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: |
| 4173 | case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: |
| 4174 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4175 | Info.memVT = MVT::v4i32; |
| 4176 | Info.ptrVal = nullptr; |
| 4177 | Info.offset = 0; |
| 4178 | Info.flags = MachineMemOperand::MOLoad; |
| 4179 | Info.align = Align(16); |
| 4180 | return true; |
| 4181 | |
| 4182 | case Intrinsic::nvvm_suld_1d_i8_clamp: |
| 4183 | case Intrinsic::nvvm_suld_1d_v2i8_clamp: |
| 4184 | case Intrinsic::nvvm_suld_1d_v4i8_clamp: |
| 4185 | case Intrinsic::nvvm_suld_1d_array_i8_clamp: |
| 4186 | case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: |
| 4187 | case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: |
| 4188 | case Intrinsic::nvvm_suld_2d_i8_clamp: |
| 4189 | case Intrinsic::nvvm_suld_2d_v2i8_clamp: |
| 4190 | case Intrinsic::nvvm_suld_2d_v4i8_clamp: |
| 4191 | case Intrinsic::nvvm_suld_2d_array_i8_clamp: |
| 4192 | case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: |
| 4193 | case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: |
| 4194 | case Intrinsic::nvvm_suld_3d_i8_clamp: |
| 4195 | case Intrinsic::nvvm_suld_3d_v2i8_clamp: |
| 4196 | case Intrinsic::nvvm_suld_3d_v4i8_clamp: |
| 4197 | case Intrinsic::nvvm_suld_1d_i8_trap: |
| 4198 | case Intrinsic::nvvm_suld_1d_v2i8_trap: |
| 4199 | case Intrinsic::nvvm_suld_1d_v4i8_trap: |
| 4200 | case Intrinsic::nvvm_suld_1d_array_i8_trap: |
| 4201 | case Intrinsic::nvvm_suld_1d_array_v2i8_trap: |
| 4202 | case Intrinsic::nvvm_suld_1d_array_v4i8_trap: |
| 4203 | case Intrinsic::nvvm_suld_2d_i8_trap: |
| 4204 | case Intrinsic::nvvm_suld_2d_v2i8_trap: |
| 4205 | case Intrinsic::nvvm_suld_2d_v4i8_trap: |
| 4206 | case Intrinsic::nvvm_suld_2d_array_i8_trap: |
| 4207 | case Intrinsic::nvvm_suld_2d_array_v2i8_trap: |
| 4208 | case Intrinsic::nvvm_suld_2d_array_v4i8_trap: |
| 4209 | case Intrinsic::nvvm_suld_3d_i8_trap: |
| 4210 | case Intrinsic::nvvm_suld_3d_v2i8_trap: |
| 4211 | case Intrinsic::nvvm_suld_3d_v4i8_trap: |
| 4212 | case Intrinsic::nvvm_suld_1d_i8_zero: |
| 4213 | case Intrinsic::nvvm_suld_1d_v2i8_zero: |
| 4214 | case Intrinsic::nvvm_suld_1d_v4i8_zero: |
| 4215 | case Intrinsic::nvvm_suld_1d_array_i8_zero: |
| 4216 | case Intrinsic::nvvm_suld_1d_array_v2i8_zero: |
| 4217 | case Intrinsic::nvvm_suld_1d_array_v4i8_zero: |
| 4218 | case Intrinsic::nvvm_suld_2d_i8_zero: |
| 4219 | case Intrinsic::nvvm_suld_2d_v2i8_zero: |
| 4220 | case Intrinsic::nvvm_suld_2d_v4i8_zero: |
| 4221 | case Intrinsic::nvvm_suld_2d_array_i8_zero: |
| 4222 | case Intrinsic::nvvm_suld_2d_array_v2i8_zero: |
| 4223 | case Intrinsic::nvvm_suld_2d_array_v4i8_zero: |
| 4224 | case Intrinsic::nvvm_suld_3d_i8_zero: |
| 4225 | case Intrinsic::nvvm_suld_3d_v2i8_zero: |
| 4226 | case Intrinsic::nvvm_suld_3d_v4i8_zero: |
| 4227 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4228 | Info.memVT = MVT::i8; |
| 4229 | Info.ptrVal = nullptr; |
| 4230 | Info.offset = 0; |
| 4231 | Info.flags = MachineMemOperand::MOLoad; |
| 4232 | Info.align = Align(16); |
| 4233 | return true; |
| 4234 | |
| 4235 | case Intrinsic::nvvm_suld_1d_i16_clamp: |
| 4236 | case Intrinsic::nvvm_suld_1d_v2i16_clamp: |
| 4237 | case Intrinsic::nvvm_suld_1d_v4i16_clamp: |
| 4238 | case Intrinsic::nvvm_suld_1d_array_i16_clamp: |
| 4239 | case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: |
| 4240 | case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: |
| 4241 | case Intrinsic::nvvm_suld_2d_i16_clamp: |
| 4242 | case Intrinsic::nvvm_suld_2d_v2i16_clamp: |
| 4243 | case Intrinsic::nvvm_suld_2d_v4i16_clamp: |
| 4244 | case Intrinsic::nvvm_suld_2d_array_i16_clamp: |
| 4245 | case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: |
| 4246 | case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: |
| 4247 | case Intrinsic::nvvm_suld_3d_i16_clamp: |
| 4248 | case Intrinsic::nvvm_suld_3d_v2i16_clamp: |
| 4249 | case Intrinsic::nvvm_suld_3d_v4i16_clamp: |
| 4250 | case Intrinsic::nvvm_suld_1d_i16_trap: |
| 4251 | case Intrinsic::nvvm_suld_1d_v2i16_trap: |
| 4252 | case Intrinsic::nvvm_suld_1d_v4i16_trap: |
| 4253 | case Intrinsic::nvvm_suld_1d_array_i16_trap: |
| 4254 | case Intrinsic::nvvm_suld_1d_array_v2i16_trap: |
| 4255 | case Intrinsic::nvvm_suld_1d_array_v4i16_trap: |
| 4256 | case Intrinsic::nvvm_suld_2d_i16_trap: |
| 4257 | case Intrinsic::nvvm_suld_2d_v2i16_trap: |
| 4258 | case Intrinsic::nvvm_suld_2d_v4i16_trap: |
| 4259 | case Intrinsic::nvvm_suld_2d_array_i16_trap: |
| 4260 | case Intrinsic::nvvm_suld_2d_array_v2i16_trap: |
| 4261 | case Intrinsic::nvvm_suld_2d_array_v4i16_trap: |
| 4262 | case Intrinsic::nvvm_suld_3d_i16_trap: |
| 4263 | case Intrinsic::nvvm_suld_3d_v2i16_trap: |
| 4264 | case Intrinsic::nvvm_suld_3d_v4i16_trap: |
| 4265 | case Intrinsic::nvvm_suld_1d_i16_zero: |
| 4266 | case Intrinsic::nvvm_suld_1d_v2i16_zero: |
| 4267 | case Intrinsic::nvvm_suld_1d_v4i16_zero: |
| 4268 | case Intrinsic::nvvm_suld_1d_array_i16_zero: |
| 4269 | case Intrinsic::nvvm_suld_1d_array_v2i16_zero: |
| 4270 | case Intrinsic::nvvm_suld_1d_array_v4i16_zero: |
| 4271 | case Intrinsic::nvvm_suld_2d_i16_zero: |
| 4272 | case Intrinsic::nvvm_suld_2d_v2i16_zero: |
| 4273 | case Intrinsic::nvvm_suld_2d_v4i16_zero: |
| 4274 | case Intrinsic::nvvm_suld_2d_array_i16_zero: |
| 4275 | case Intrinsic::nvvm_suld_2d_array_v2i16_zero: |
| 4276 | case Intrinsic::nvvm_suld_2d_array_v4i16_zero: |
| 4277 | case Intrinsic::nvvm_suld_3d_i16_zero: |
| 4278 | case Intrinsic::nvvm_suld_3d_v2i16_zero: |
| 4279 | case Intrinsic::nvvm_suld_3d_v4i16_zero: |
| 4280 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4281 | Info.memVT = MVT::i16; |
| 4282 | Info.ptrVal = nullptr; |
| 4283 | Info.offset = 0; |
| 4284 | Info.flags = MachineMemOperand::MOLoad; |
| 4285 | Info.align = Align(16); |
| 4286 | return true; |
| 4287 | |
| 4288 | case Intrinsic::nvvm_suld_1d_i32_clamp: |
| 4289 | case Intrinsic::nvvm_suld_1d_v2i32_clamp: |
| 4290 | case Intrinsic::nvvm_suld_1d_v4i32_clamp: |
| 4291 | case Intrinsic::nvvm_suld_1d_array_i32_clamp: |
| 4292 | case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: |
| 4293 | case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: |
| 4294 | case Intrinsic::nvvm_suld_2d_i32_clamp: |
| 4295 | case Intrinsic::nvvm_suld_2d_v2i32_clamp: |
| 4296 | case Intrinsic::nvvm_suld_2d_v4i32_clamp: |
| 4297 | case Intrinsic::nvvm_suld_2d_array_i32_clamp: |
| 4298 | case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: |
| 4299 | case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: |
| 4300 | case Intrinsic::nvvm_suld_3d_i32_clamp: |
| 4301 | case Intrinsic::nvvm_suld_3d_v2i32_clamp: |
| 4302 | case Intrinsic::nvvm_suld_3d_v4i32_clamp: |
| 4303 | case Intrinsic::nvvm_suld_1d_i32_trap: |
| 4304 | case Intrinsic::nvvm_suld_1d_v2i32_trap: |
| 4305 | case Intrinsic::nvvm_suld_1d_v4i32_trap: |
| 4306 | case Intrinsic::nvvm_suld_1d_array_i32_trap: |
| 4307 | case Intrinsic::nvvm_suld_1d_array_v2i32_trap: |
| 4308 | case Intrinsic::nvvm_suld_1d_array_v4i32_trap: |
| 4309 | case Intrinsic::nvvm_suld_2d_i32_trap: |
| 4310 | case Intrinsic::nvvm_suld_2d_v2i32_trap: |
| 4311 | case Intrinsic::nvvm_suld_2d_v4i32_trap: |
| 4312 | case Intrinsic::nvvm_suld_2d_array_i32_trap: |
| 4313 | case Intrinsic::nvvm_suld_2d_array_v2i32_trap: |
| 4314 | case Intrinsic::nvvm_suld_2d_array_v4i32_trap: |
| 4315 | case Intrinsic::nvvm_suld_3d_i32_trap: |
| 4316 | case Intrinsic::nvvm_suld_3d_v2i32_trap: |
| 4317 | case Intrinsic::nvvm_suld_3d_v4i32_trap: |
| 4318 | case Intrinsic::nvvm_suld_1d_i32_zero: |
| 4319 | case Intrinsic::nvvm_suld_1d_v2i32_zero: |
| 4320 | case Intrinsic::nvvm_suld_1d_v4i32_zero: |
| 4321 | case Intrinsic::nvvm_suld_1d_array_i32_zero: |
| 4322 | case Intrinsic::nvvm_suld_1d_array_v2i32_zero: |
| 4323 | case Intrinsic::nvvm_suld_1d_array_v4i32_zero: |
| 4324 | case Intrinsic::nvvm_suld_2d_i32_zero: |
| 4325 | case Intrinsic::nvvm_suld_2d_v2i32_zero: |
| 4326 | case Intrinsic::nvvm_suld_2d_v4i32_zero: |
| 4327 | case Intrinsic::nvvm_suld_2d_array_i32_zero: |
| 4328 | case Intrinsic::nvvm_suld_2d_array_v2i32_zero: |
| 4329 | case Intrinsic::nvvm_suld_2d_array_v4i32_zero: |
| 4330 | case Intrinsic::nvvm_suld_3d_i32_zero: |
| 4331 | case Intrinsic::nvvm_suld_3d_v2i32_zero: |
| 4332 | case Intrinsic::nvvm_suld_3d_v4i32_zero: |
| 4333 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4334 | Info.memVT = MVT::i32; |
| 4335 | Info.ptrVal = nullptr; |
| 4336 | Info.offset = 0; |
| 4337 | Info.flags = MachineMemOperand::MOLoad; |
| 4338 | Info.align = Align(16); |
| 4339 | return true; |
| 4340 | |
| 4341 | case Intrinsic::nvvm_suld_1d_i64_clamp: |
| 4342 | case Intrinsic::nvvm_suld_1d_v2i64_clamp: |
| 4343 | case Intrinsic::nvvm_suld_1d_array_i64_clamp: |
| 4344 | case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: |
| 4345 | case Intrinsic::nvvm_suld_2d_i64_clamp: |
| 4346 | case Intrinsic::nvvm_suld_2d_v2i64_clamp: |
| 4347 | case Intrinsic::nvvm_suld_2d_array_i64_clamp: |
| 4348 | case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: |
| 4349 | case Intrinsic::nvvm_suld_3d_i64_clamp: |
| 4350 | case Intrinsic::nvvm_suld_3d_v2i64_clamp: |
| 4351 | case Intrinsic::nvvm_suld_1d_i64_trap: |
| 4352 | case Intrinsic::nvvm_suld_1d_v2i64_trap: |
| 4353 | case Intrinsic::nvvm_suld_1d_array_i64_trap: |
| 4354 | case Intrinsic::nvvm_suld_1d_array_v2i64_trap: |
| 4355 | case Intrinsic::nvvm_suld_2d_i64_trap: |
| 4356 | case Intrinsic::nvvm_suld_2d_v2i64_trap: |
| 4357 | case Intrinsic::nvvm_suld_2d_array_i64_trap: |
| 4358 | case Intrinsic::nvvm_suld_2d_array_v2i64_trap: |
| 4359 | case Intrinsic::nvvm_suld_3d_i64_trap: |
| 4360 | case Intrinsic::nvvm_suld_3d_v2i64_trap: |
| 4361 | case Intrinsic::nvvm_suld_1d_i64_zero: |
| 4362 | case Intrinsic::nvvm_suld_1d_v2i64_zero: |
| 4363 | case Intrinsic::nvvm_suld_1d_array_i64_zero: |
| 4364 | case Intrinsic::nvvm_suld_1d_array_v2i64_zero: |
| 4365 | case Intrinsic::nvvm_suld_2d_i64_zero: |
| 4366 | case Intrinsic::nvvm_suld_2d_v2i64_zero: |
| 4367 | case Intrinsic::nvvm_suld_2d_array_i64_zero: |
| 4368 | case Intrinsic::nvvm_suld_2d_array_v2i64_zero: |
| 4369 | case Intrinsic::nvvm_suld_3d_i64_zero: |
| 4370 | case Intrinsic::nvvm_suld_3d_v2i64_zero: |
| 4371 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4372 | Info.memVT = MVT::i64; |
| 4373 | Info.ptrVal = nullptr; |
| 4374 | Info.offset = 0; |
| 4375 | Info.flags = MachineMemOperand::MOLoad; |
| 4376 | Info.align = Align(16); |
| 4377 | return true; |
| 4378 | |
| 4379 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: |
| 4380 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: |
| 4381 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: { |
| 4382 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4383 | Info.memVT = MVT::v1i32; |
| 4384 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4385 | Info.offset = 0; |
| 4386 | Info.flags = MachineMemOperand::MOLoad; |
| 4387 | Info.align.reset(); |
| 4388 | return true; |
| 4389 | } |
| 4390 | |
| 4391 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| 4392 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| 4393 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| 4394 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: { |
| 4395 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4396 | Info.memVT = MVT::v2i32; |
| 4397 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4398 | Info.offset = 0; |
| 4399 | Info.flags = MachineMemOperand::MOLoad; |
| 4400 | Info.align.reset(); |
| 4401 | return true; |
| 4402 | } |
| 4403 | |
| 4404 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| 4405 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| 4406 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| 4407 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| 4408 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: { |
| 4409 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4410 | Info.memVT = MVT::v4i32; |
| 4411 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4412 | Info.offset = 0; |
| 4413 | Info.flags = MachineMemOperand::MOLoad; |
| 4414 | Info.align.reset(); |
| 4415 | return true; |
| 4416 | } |
| 4417 | |
| 4418 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| 4419 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| 4420 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| 4421 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| 4422 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: { |
| 4423 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4424 | Info.memVT = MVT::v8i32; |
| 4425 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4426 | Info.offset = 0; |
| 4427 | Info.flags = MachineMemOperand::MOLoad; |
| 4428 | Info.align.reset(); |
| 4429 | return true; |
| 4430 | } |
| 4431 | |
| 4432 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| 4433 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| 4434 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| 4435 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| 4436 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: { |
| 4437 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4438 | Info.memVT = MVT::v16i32; |
| 4439 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4440 | Info.offset = 0; |
| 4441 | Info.flags = MachineMemOperand::MOLoad; |
| 4442 | Info.align.reset(); |
| 4443 | return true; |
| 4444 | } |
| 4445 | |
| 4446 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| 4447 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| 4448 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| 4449 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| 4450 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: { |
| 4451 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4452 | Info.memVT = MVT::v32i32; |
| 4453 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4454 | Info.offset = 0; |
| 4455 | Info.flags = MachineMemOperand::MOLoad; |
| 4456 | Info.align.reset(); |
| 4457 | return true; |
| 4458 | } |
| 4459 | |
| 4460 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| 4461 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| 4462 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| 4463 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| 4464 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: { |
| 4465 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4466 | Info.memVT = MVT::v64i32; |
| 4467 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4468 | Info.offset = 0; |
| 4469 | Info.flags = MachineMemOperand::MOLoad; |
| 4470 | Info.align.reset(); |
| 4471 | return true; |
| 4472 | } |
| 4473 | |
| 4474 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| 4475 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| 4476 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| 4477 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| 4478 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: { |
| 4479 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 4480 | Info.memVT = MVT::v128i32; |
| 4481 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4482 | Info.offset = 0; |
| 4483 | Info.flags = MachineMemOperand::MOLoad; |
| 4484 | Info.align.reset(); |
| 4485 | return true; |
| 4486 | } |
| 4487 | |
| 4488 | case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| 4489 | case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| 4490 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: { |
| 4491 | Info.opc = ISD::INTRINSIC_VOID; |
| 4492 | Info.memVT = MVT::i32; |
| 4493 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4494 | Info.offset = 0; |
| 4495 | Info.flags = MachineMemOperand::MOStore; |
| 4496 | Info.align.reset(); |
| 4497 | return true; |
| 4498 | } |
| 4499 | |
| 4500 | case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| 4501 | case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| 4502 | case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| 4503 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: { |
| 4504 | Info.opc = ISD::INTRINSIC_VOID; |
| 4505 | Info.memVT = MVT::v2i32; |
| 4506 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4507 | Info.offset = 0; |
| 4508 | Info.flags = MachineMemOperand::MOStore; |
| 4509 | Info.align.reset(); |
| 4510 | return true; |
| 4511 | } |
| 4512 | |
| 4513 | case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| 4514 | case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| 4515 | case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| 4516 | case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| 4517 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: { |
| 4518 | Info.opc = ISD::INTRINSIC_VOID; |
| 4519 | Info.memVT = MVT::v4i32; |
| 4520 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4521 | Info.offset = 0; |
| 4522 | Info.flags = MachineMemOperand::MOStore; |
| 4523 | Info.align.reset(); |
| 4524 | return true; |
| 4525 | } |
| 4526 | |
| 4527 | case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| 4528 | case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| 4529 | case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| 4530 | case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| 4531 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: { |
| 4532 | Info.opc = ISD::INTRINSIC_VOID; |
| 4533 | Info.memVT = MVT::v8i32; |
| 4534 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4535 | Info.offset = 0; |
| 4536 | Info.flags = MachineMemOperand::MOStore; |
| 4537 | Info.align.reset(); |
| 4538 | return true; |
| 4539 | } |
| 4540 | |
| 4541 | case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| 4542 | case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| 4543 | case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| 4544 | case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| 4545 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: { |
| 4546 | Info.opc = ISD::INTRINSIC_VOID; |
| 4547 | Info.memVT = MVT::v16i32; |
| 4548 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4549 | Info.offset = 0; |
| 4550 | Info.flags = MachineMemOperand::MOStore; |
| 4551 | Info.align.reset(); |
| 4552 | return true; |
| 4553 | } |
| 4554 | |
| 4555 | case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| 4556 | case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| 4557 | case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| 4558 | case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| 4559 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: { |
| 4560 | Info.opc = ISD::INTRINSIC_VOID; |
| 4561 | Info.memVT = MVT::v32i32; |
| 4562 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4563 | Info.offset = 0; |
| 4564 | Info.flags = MachineMemOperand::MOStore; |
| 4565 | Info.align.reset(); |
| 4566 | return true; |
| 4567 | } |
| 4568 | |
| 4569 | case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| 4570 | case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| 4571 | case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| 4572 | case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| 4573 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: { |
| 4574 | Info.opc = ISD::INTRINSIC_VOID; |
| 4575 | Info.memVT = MVT::v64i32; |
| 4576 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4577 | Info.offset = 0; |
| 4578 | Info.flags = MachineMemOperand::MOStore; |
| 4579 | Info.align.reset(); |
| 4580 | return true; |
| 4581 | } |
| 4582 | |
| 4583 | case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| 4584 | case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| 4585 | case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| 4586 | case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| 4587 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: { |
| 4588 | Info.opc = ISD::INTRINSIC_VOID; |
| 4589 | Info.memVT = MVT::v128i32; |
| 4590 | Info.ptrVal = I.getArgOperand(i: 0); |
| 4591 | Info.offset = 0; |
| 4592 | Info.flags = MachineMemOperand::MOStore; |
| 4593 | Info.align.reset(); |
| 4594 | return true; |
| 4595 | } |
| 4596 | } |
| 4597 | return false; |
| 4598 | } |
| 4599 | |
| 4600 | /// getFunctionParamOptimizedAlign - since function arguments are passed via |
| 4601 | /// .param space, we may want to increase their alignment in a way that |
| 4602 | /// ensures that we can effectively vectorize their loads & stores. We can |
| 4603 | /// increase alignment only if the function has internal or has private |
| 4604 | /// linkage as for other linkage types callers may already rely on default |
| 4605 | /// alignment. To allow using 128-bit vectorized loads/stores, this function |
| 4606 | /// ensures that alignment is 16 or greater. |
| 4607 | Align NVPTXTargetLowering::getFunctionParamOptimizedAlign( |
| 4608 | const Function *F, Type *ArgTy, const DataLayout &DL) const { |
| 4609 | // Capping the alignment to 128 bytes as that is the maximum alignment |
| 4610 | // supported by PTX. |
| 4611 | const Align ABITypeAlign = std::min(a: Align(128), b: DL.getABITypeAlign(Ty: ArgTy)); |
| 4612 | |
| 4613 | // If a function has linkage different from internal or private, we |
| 4614 | // must use default ABI alignment as external users rely on it. Same |
| 4615 | // for a function that may be called from a function pointer. |
| 4616 | if (!F || !F->hasLocalLinkage() || |
| 4617 | F->hasAddressTaken(/*Users=*/nullptr, |
| 4618 | /*IgnoreCallbackUses=*/false, |
| 4619 | /*IgnoreAssumeLikeCalls=*/true, |
| 4620 | /*IgnoreLLVMUsed=*/IngoreLLVMUsed: true)) |
| 4621 | return ABITypeAlign; |
| 4622 | |
| 4623 | assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage" ); |
| 4624 | return std::max(a: Align(16), b: ABITypeAlign); |
| 4625 | } |
| 4626 | |
| 4627 | /// Helper for computing alignment of a device function byval parameter. |
| 4628 | Align NVPTXTargetLowering::getFunctionByValParamAlign( |
| 4629 | const Function *F, Type *ArgTy, Align InitialAlign, |
| 4630 | const DataLayout &DL) const { |
| 4631 | Align ArgAlign = InitialAlign; |
| 4632 | // Try to increase alignment to enhance vectorization options. |
| 4633 | if (F) |
| 4634 | ArgAlign = std::max(a: ArgAlign, b: getFunctionParamOptimizedAlign(F, ArgTy, DL)); |
| 4635 | |
| 4636 | // Old ptx versions have a bug. When PTX code takes address of |
| 4637 | // byval parameter with alignment < 4, ptxas generates code to |
| 4638 | // spill argument into memory. Alas on sm_50+ ptxas generates |
| 4639 | // SASS code that fails with misaligned access. To work around |
| 4640 | // the problem, make sure that we align byval parameters by at |
| 4641 | // least 4. This bug seems to be fixed at least starting from |
| 4642 | // ptxas > 9.0. |
| 4643 | // TODO: remove this after verifying the bug is not reproduced |
| 4644 | // on non-deprecated ptxas versions. |
| 4645 | if (ForceMinByValParamAlign) |
| 4646 | ArgAlign = std::max(a: ArgAlign, b: Align(4)); |
| 4647 | |
| 4648 | return ArgAlign; |
| 4649 | } |
| 4650 | |
| 4651 | // Helper for getting a function parameter name. Name is composed from |
| 4652 | // its index and the function name. Negative index corresponds to special |
| 4653 | // parameter (unsized array) used for passing variable arguments. |
| 4654 | std::string NVPTXTargetLowering::getParamName(const Function *F, |
| 4655 | int Idx) const { |
| 4656 | std::string ParamName; |
| 4657 | raw_string_ostream ParamStr(ParamName); |
| 4658 | |
| 4659 | ParamStr << getTargetMachine().getSymbol(GV: F)->getName(); |
| 4660 | if (Idx < 0) |
| 4661 | ParamStr << "_vararg" ; |
| 4662 | else |
| 4663 | ParamStr << "_param_" << Idx; |
| 4664 | |
| 4665 | return ParamName; |
| 4666 | } |
| 4667 | |
| 4668 | /// isLegalAddressingMode - Return true if the addressing mode represented |
| 4669 | /// by AM is legal for this target, for a load/store of the specified type. |
| 4670 | /// Used to guide target specific optimizations, like loop strength reduction |
| 4671 | /// (LoopStrengthReduce.cpp) and memory optimization for address mode |
| 4672 | /// (CodeGenPrepare.cpp) |
| 4673 | bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| 4674 | const AddrMode &AM, Type *Ty, |
| 4675 | unsigned AS, Instruction *I) const { |
| 4676 | // AddrMode - This represents an addressing mode of: |
| 4677 | // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg |
| 4678 | // |
| 4679 | // The legal address modes are |
| 4680 | // - [avar] |
| 4681 | // - [areg] |
| 4682 | // - [areg+immoff] |
| 4683 | // - [immAddr] |
| 4684 | |
| 4685 | // immoff must fit in a signed 32-bit int |
| 4686 | if (!APInt(64, AM.BaseOffs).isSignedIntN(N: 32)) |
| 4687 | return false; |
| 4688 | |
| 4689 | if (AM.BaseGV) |
| 4690 | return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; |
| 4691 | |
| 4692 | switch (AM.Scale) { |
| 4693 | case 0: // "r", "r+i" or "i" is allowed |
| 4694 | break; |
| 4695 | case 1: |
| 4696 | if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. |
| 4697 | return false; |
| 4698 | // Otherwise we have r+i. |
| 4699 | break; |
| 4700 | default: |
| 4701 | // No scale > 1 is allowed |
| 4702 | return false; |
| 4703 | } |
| 4704 | return true; |
| 4705 | } |
| 4706 | |
| 4707 | //===----------------------------------------------------------------------===// |
| 4708 | // NVPTX Inline Assembly Support |
| 4709 | //===----------------------------------------------------------------------===// |
| 4710 | |
| 4711 | /// getConstraintType - Given a constraint letter, return the type of |
| 4712 | /// constraint it is for this target. |
| 4713 | NVPTXTargetLowering::ConstraintType |
| 4714 | NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { |
| 4715 | if (Constraint.size() == 1) { |
| 4716 | switch (Constraint[0]) { |
| 4717 | default: |
| 4718 | break; |
| 4719 | case 'b': |
| 4720 | case 'r': |
| 4721 | case 'h': |
| 4722 | case 'c': |
| 4723 | case 'l': |
| 4724 | case 'f': |
| 4725 | case 'd': |
| 4726 | case 'q': |
| 4727 | case '0': |
| 4728 | case 'N': |
| 4729 | return C_RegisterClass; |
| 4730 | } |
| 4731 | } |
| 4732 | return TargetLowering::getConstraintType(Constraint); |
| 4733 | } |
| 4734 | |
| 4735 | std::pair<unsigned, const TargetRegisterClass *> |
| 4736 | NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| 4737 | StringRef Constraint, |
| 4738 | MVT VT) const { |
| 4739 | if (Constraint.size() == 1) { |
| 4740 | switch (Constraint[0]) { |
| 4741 | case 'b': |
| 4742 | return std::make_pair(x: 0U, y: &NVPTX::B1RegClass); |
| 4743 | case 'c': |
| 4744 | case 'h': |
| 4745 | return std::make_pair(x: 0U, y: &NVPTX::B16RegClass); |
| 4746 | case 'r': |
| 4747 | case 'f': |
| 4748 | return std::make_pair(x: 0U, y: &NVPTX::B32RegClass); |
| 4749 | case 'l': |
| 4750 | case 'N': |
| 4751 | case 'd': |
| 4752 | return std::make_pair(x: 0U, y: &NVPTX::B64RegClass); |
| 4753 | case 'q': { |
| 4754 | if (STI.getSmVersion() < 70) |
| 4755 | report_fatal_error(reason: "Inline asm with 128 bit operands is only " |
| 4756 | "supported for sm_70 and higher!" ); |
| 4757 | return std::make_pair(x: 0U, y: &NVPTX::B128RegClass); |
| 4758 | } |
| 4759 | } |
| 4760 | } |
| 4761 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| 4762 | } |
| 4763 | |
| 4764 | //===----------------------------------------------------------------------===// |
| 4765 | // NVPTX DAG Combining |
| 4766 | //===----------------------------------------------------------------------===// |
| 4767 | |
| 4768 | bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, |
| 4769 | CodeGenOptLevel OptLevel) const { |
| 4770 | // Always honor command-line argument |
| 4771 | if (FMAContractLevelOpt.getNumOccurrences() > 0) |
| 4772 | return FMAContractLevelOpt > 0; |
| 4773 | |
| 4774 | // Do not contract if we're not optimizing the code. |
| 4775 | if (OptLevel == CodeGenOptLevel::None) |
| 4776 | return false; |
| 4777 | |
| 4778 | // Honor TargetOptions flags that explicitly say fusion is okay. |
| 4779 | if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) |
| 4780 | return true; |
| 4781 | |
| 4782 | return allowUnsafeFPMath(MF); |
| 4783 | } |
| 4784 | |
| 4785 | bool NVPTXTargetLowering::allowUnsafeFPMath(const MachineFunction &MF) const { |
| 4786 | // Honor TargetOptions flags that explicitly say unsafe math is okay. |
| 4787 | if (MF.getTarget().Options.UnsafeFPMath) |
| 4788 | return true; |
| 4789 | |
| 4790 | // Allow unsafe math if unsafe-fp-math attribute explicitly says so. |
| 4791 | const Function &F = MF.getFunction(); |
| 4792 | return F.getFnAttribute(Kind: "unsafe-fp-math" ).getValueAsBool(); |
| 4793 | } |
| 4794 | |
| 4795 | static bool isConstZero(const SDValue &Operand) { |
| 4796 | const auto *Const = dyn_cast<ConstantSDNode>(Val: Operand); |
| 4797 | return Const && Const->getZExtValue() == 0; |
| 4798 | } |
| 4799 | |
| 4800 | /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with |
| 4801 | /// operands N0 and N1. This is a helper for PerformADDCombine that is |
| 4802 | /// called with the default operands, and if that fails, with commuted |
| 4803 | /// operands. |
| 4804 | static SDValue |
| 4805 | PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| 4806 | TargetLowering::DAGCombinerInfo &DCI) { |
| 4807 | EVT VT = N0.getValueType(); |
| 4808 | |
| 4809 | // Since integer multiply-add costs the same as integer multiply |
| 4810 | // but is more costly than integer add, do the fusion only when |
| 4811 | // the mul is only used in the add. |
| 4812 | // TODO: this may not be true for later architectures, consider relaxing this |
| 4813 | if (!N0.getNode()->hasOneUse()) |
| 4814 | return SDValue(); |
| 4815 | |
| 4816 | // fold (add (select cond, 0, (mul a, b)), c) |
| 4817 | // -> (select cond, c, (add (mul a, b), c)) |
| 4818 | // |
| 4819 | if (N0.getOpcode() == ISD::SELECT) { |
| 4820 | unsigned ZeroOpNum; |
| 4821 | if (isConstZero(Operand: N0->getOperand(Num: 1))) |
| 4822 | ZeroOpNum = 1; |
| 4823 | else if (isConstZero(Operand: N0->getOperand(Num: 2))) |
| 4824 | ZeroOpNum = 2; |
| 4825 | else |
| 4826 | return SDValue(); |
| 4827 | |
| 4828 | SDValue M = N0->getOperand(Num: (ZeroOpNum == 1) ? 2 : 1); |
| 4829 | if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse()) |
| 4830 | return SDValue(); |
| 4831 | |
| 4832 | SDLoc DL(N); |
| 4833 | SDValue Mul = |
| 4834 | DCI.DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: M->getOperand(Num: 0), N2: M->getOperand(Num: 1)); |
| 4835 | SDValue MAD = DCI.DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Mul, N2: N1); |
| 4836 | return DCI.DAG.getSelect(DL: SDLoc(N), VT, Cond: N0->getOperand(Num: 0), |
| 4837 | LHS: ((ZeroOpNum == 1) ? N1 : MAD), |
| 4838 | RHS: ((ZeroOpNum == 1) ? MAD : N1)); |
| 4839 | } |
| 4840 | |
| 4841 | return SDValue(); |
| 4842 | } |
| 4843 | |
| 4844 | static SDValue |
| 4845 | PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| 4846 | TargetLowering::DAGCombinerInfo &DCI, |
| 4847 | CodeGenOptLevel OptLevel) { |
| 4848 | EVT VT = N0.getValueType(); |
| 4849 | if (N0.getOpcode() == ISD::FMUL) { |
| 4850 | const auto *TLI = static_cast<const NVPTXTargetLowering *>( |
| 4851 | &DCI.DAG.getTargetLoweringInfo()); |
| 4852 | if (!(TLI->allowFMA(MF&: DCI.DAG.getMachineFunction(), OptLevel) || |
| 4853 | (N->getFlags().hasAllowContract() && |
| 4854 | N0->getFlags().hasAllowContract()))) |
| 4855 | return SDValue(); |
| 4856 | |
| 4857 | // For floating point: |
| 4858 | // Do the fusion only when the mul has less than 5 uses and all |
| 4859 | // are add. |
| 4860 | // The heuristic is that if a use is not an add, then that use |
| 4861 | // cannot be fused into fma, therefore mul is still needed anyway. |
| 4862 | // If there are more than 4 uses, even if they are all add, fusing |
| 4863 | // them will increase register pressue. |
| 4864 | // |
| 4865 | int numUses = 0; |
| 4866 | int nonAddCount = 0; |
| 4867 | for (const SDNode *User : N0.getNode()->users()) { |
| 4868 | numUses++; |
| 4869 | if (User->getOpcode() != ISD::FADD) |
| 4870 | ++nonAddCount; |
| 4871 | if (numUses >= 5) |
| 4872 | return SDValue(); |
| 4873 | } |
| 4874 | if (nonAddCount) { |
| 4875 | int orderNo = N->getIROrder(); |
| 4876 | int orderNo2 = N0.getNode()->getIROrder(); |
| 4877 | // simple heuristics here for considering potential register |
| 4878 | // pressure, the logics here is that the differnce are used |
| 4879 | // to measure the distance between def and use, the longer distance |
| 4880 | // more likely cause register pressure. |
| 4881 | if (orderNo - orderNo2 < 500) |
| 4882 | return SDValue(); |
| 4883 | |
| 4884 | // Now, check if at least one of the FMUL's operands is live beyond the |
| 4885 | // node N, which guarantees that the FMA will not increase register |
| 4886 | // pressure at node N. |
| 4887 | bool opIsLive = false; |
| 4888 | const SDNode *left = N0.getOperand(i: 0).getNode(); |
| 4889 | const SDNode *right = N0.getOperand(i: 1).getNode(); |
| 4890 | |
| 4891 | if (isa<ConstantSDNode>(Val: left) || isa<ConstantSDNode>(Val: right)) |
| 4892 | opIsLive = true; |
| 4893 | |
| 4894 | if (!opIsLive) |
| 4895 | for (const SDNode *User : left->users()) { |
| 4896 | int orderNo3 = User->getIROrder(); |
| 4897 | if (orderNo3 > orderNo) { |
| 4898 | opIsLive = true; |
| 4899 | break; |
| 4900 | } |
| 4901 | } |
| 4902 | |
| 4903 | if (!opIsLive) |
| 4904 | for (const SDNode *User : right->users()) { |
| 4905 | int orderNo3 = User->getIROrder(); |
| 4906 | if (orderNo3 > orderNo) { |
| 4907 | opIsLive = true; |
| 4908 | break; |
| 4909 | } |
| 4910 | } |
| 4911 | |
| 4912 | if (!opIsLive) |
| 4913 | return SDValue(); |
| 4914 | } |
| 4915 | |
| 4916 | return DCI.DAG.getNode(Opcode: ISD::FMA, DL: SDLoc(N), VT, N1: N0.getOperand(i: 0), |
| 4917 | N2: N0.getOperand(i: 1), N3: N1); |
| 4918 | } |
| 4919 | |
| 4920 | return SDValue(); |
| 4921 | } |
| 4922 | |
| 4923 | /// Fold extractelts into a load by increasing the number of return values. |
| 4924 | /// |
| 4925 | /// ex: |
| 4926 | /// L: v2f16,ch = load <p> |
| 4927 | /// a: f16 = extractelt L:0, 0 |
| 4928 | /// b: f16 = extractelt L:0, 1 |
| 4929 | /// use(a, b) |
| 4930 | /// |
| 4931 | /// ...is turned into... |
| 4932 | /// L: f16,f16,ch = LoadV2 <p> |
| 4933 | /// use(L:0, L:1) |
| 4934 | static SDValue |
| 4935 | combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| 4936 | // Don't run this optimization before the legalizer |
| 4937 | if (!DCI.isAfterLegalizeDAG()) |
| 4938 | return SDValue(); |
| 4939 | |
| 4940 | EVT ElemVT = N->getValueType(ResNo: 0); |
| 4941 | if (!Isv2x16VT(VT: ElemVT)) |
| 4942 | return SDValue(); |
| 4943 | |
| 4944 | // Check whether all outputs are either used by an extractelt or are |
| 4945 | // glue/chain nodes |
| 4946 | if (!all_of(Range: N->uses(), P: [&](SDUse &U) { |
| 4947 | // Skip glue, chain nodes |
| 4948 | if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other) |
| 4949 | return true; |
| 4950 | if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| 4951 | if (N->getOpcode() != ISD::LOAD) |
| 4952 | return true; |
| 4953 | // Since this is an ISD::LOAD, check all extractelts are used. If |
| 4954 | // any are not used, we don't want to defeat another optimization that |
| 4955 | // will narrow the load. |
| 4956 | // |
| 4957 | // For example: |
| 4958 | // |
| 4959 | // L: v2f16,ch = load <p> |
| 4960 | // e0: f16 = extractelt L:0, 0 |
| 4961 | // e1: f16 = extractelt L:0, 1 <-- unused |
| 4962 | // store e0 |
| 4963 | // |
| 4964 | // Can be optimized by DAGCombiner to: |
| 4965 | // |
| 4966 | // L: f16,ch = load <p> |
| 4967 | // store L:0 |
| 4968 | return !U.getUser()->use_empty(); |
| 4969 | } |
| 4970 | |
| 4971 | // Otherwise, this use prevents us from splitting a value. |
| 4972 | return false; |
| 4973 | })) |
| 4974 | return SDValue(); |
| 4975 | |
| 4976 | auto *LD = cast<MemSDNode>(Val: N); |
| 4977 | EVT MemVT = LD->getMemoryVT(); |
| 4978 | SDLoc DL(LD); |
| 4979 | |
| 4980 | // the new opcode after we double the number of operands |
| 4981 | NVPTXISD::NodeType Opcode; |
| 4982 | SmallVector<SDValue> Operands(LD->ops()); |
| 4983 | unsigned OldNumOutputs; // non-glue, non-chain outputs |
| 4984 | switch (LD->getOpcode()) { |
| 4985 | case ISD::LOAD: |
| 4986 | OldNumOutputs = 1; |
| 4987 | // Any packed type is legal, so the legalizer will not have lowered |
| 4988 | // ISD::LOAD -> NVPTXISD::Load (unless it's under-aligned). We have to do it |
| 4989 | // here. |
| 4990 | Opcode = NVPTXISD::LoadV2; |
| 4991 | Operands.push_back(Elt: DCI.DAG.getIntPtrConstant( |
| 4992 | Val: cast<LoadSDNode>(Val: LD)->getExtensionType(), DL)); |
| 4993 | break; |
| 4994 | case NVPTXISD::LoadParamV2: |
| 4995 | OldNumOutputs = 2; |
| 4996 | Opcode = NVPTXISD::LoadParamV4; |
| 4997 | break; |
| 4998 | case NVPTXISD::LoadV2: |
| 4999 | OldNumOutputs = 2; |
| 5000 | Opcode = NVPTXISD::LoadV4; |
| 5001 | break; |
| 5002 | case NVPTXISD::LoadV4: |
| 5003 | case NVPTXISD::LoadV8: |
| 5004 | // PTX doesn't support the next doubling of outputs |
| 5005 | return SDValue(); |
| 5006 | } |
| 5007 | |
| 5008 | // the non-glue, non-chain outputs in the new load |
| 5009 | const unsigned NewNumOutputs = OldNumOutputs * 2; |
| 5010 | SmallVector<EVT> NewVTs(NewNumOutputs, ElemVT.getVectorElementType()); |
| 5011 | // add remaining chain and glue values |
| 5012 | NewVTs.append(in_start: LD->value_begin() + OldNumOutputs, in_end: LD->value_end()); |
| 5013 | |
| 5014 | // Create the new load |
| 5015 | SDValue NewLoad = |
| 5016 | DCI.DAG.getMemIntrinsicNode(Opcode, dl: DL, VTList: DCI.DAG.getVTList(VTs: NewVTs), |
| 5017 | Ops: Operands, MemVT, MMO: LD->getMemOperand()); |
| 5018 | |
| 5019 | // Now we use a combination of BUILD_VECTORs and a MERGE_VALUES node to keep |
| 5020 | // the outputs the same. These nodes will be optimized away in later |
| 5021 | // DAGCombiner iterations. |
| 5022 | SmallVector<SDValue> Results; |
| 5023 | for (unsigned I : seq(Size: OldNumOutputs)) |
| 5024 | Results.push_back(Elt: DCI.DAG.getBuildVector( |
| 5025 | VT: ElemVT, DL, Ops: {NewLoad.getValue(R: I * 2), NewLoad.getValue(R: I * 2 + 1)})); |
| 5026 | // Add remaining chain and glue nodes |
| 5027 | for (unsigned I : seq(Size: NewLoad->getNumValues() - NewNumOutputs)) |
| 5028 | Results.push_back(Elt: NewLoad.getValue(R: NewNumOutputs + I)); |
| 5029 | |
| 5030 | return DCI.DAG.getMergeValues(Ops: Results, dl: DL); |
| 5031 | } |
| 5032 | |
| 5033 | /// Fold a packing mov into a store. |
| 5034 | /// |
| 5035 | /// ex: |
| 5036 | /// v: v2f16 = BUILD_VECTOR a:f16, b:f16 |
| 5037 | /// StoreRetval v |
| 5038 | /// |
| 5039 | /// ...is turned into... |
| 5040 | /// |
| 5041 | /// StoreRetvalV2 a:f16, b:f16 |
| 5042 | static SDValue combinePackingMovIntoStore(SDNode *N, |
| 5043 | TargetLowering::DAGCombinerInfo &DCI, |
| 5044 | unsigned Front, unsigned Back) { |
| 5045 | // We want to run this as late as possible since other optimizations may |
| 5046 | // eliminate the BUILD_VECTORs. |
| 5047 | if (!DCI.isAfterLegalizeDAG()) |
| 5048 | return SDValue(); |
| 5049 | |
| 5050 | // Get the type of the operands being stored. |
| 5051 | EVT ElementVT = N->getOperand(Num: Front).getValueType(); |
| 5052 | |
| 5053 | if (!Isv2x16VT(VT: ElementVT)) |
| 5054 | return SDValue(); |
| 5055 | |
| 5056 | auto *ST = cast<MemSDNode>(Val: N); |
| 5057 | EVT MemVT = ElementVT.getVectorElementType(); |
| 5058 | |
| 5059 | // The new opcode after we double the number of operands. |
| 5060 | NVPTXISD::NodeType Opcode; |
| 5061 | switch (N->getOpcode()) { |
| 5062 | case ISD::STORE: |
| 5063 | // Any packed type is legal, so the legalizer will not have lowered |
| 5064 | // ISD::STORE -> NVPTXISD::Store (unless it's under-aligned). We have to do |
| 5065 | // it here. |
| 5066 | MemVT = ST->getMemoryVT(); |
| 5067 | Opcode = NVPTXISD::StoreV2; |
| 5068 | break; |
| 5069 | case NVPTXISD::StoreParam: |
| 5070 | Opcode = NVPTXISD::StoreParamV2; |
| 5071 | break; |
| 5072 | case NVPTXISD::StoreParamV2: |
| 5073 | Opcode = NVPTXISD::StoreParamV4; |
| 5074 | break; |
| 5075 | case NVPTXISD::StoreV2: |
| 5076 | MemVT = ST->getMemoryVT(); |
| 5077 | Opcode = NVPTXISD::StoreV4; |
| 5078 | break; |
| 5079 | case NVPTXISD::StoreV4: |
| 5080 | case NVPTXISD::StoreParamV4: |
| 5081 | case NVPTXISD::StoreV8: |
| 5082 | // PTX doesn't support the next doubling of operands |
| 5083 | return SDValue(); |
| 5084 | default: |
| 5085 | llvm_unreachable("Unhandled store opcode" ); |
| 5086 | } |
| 5087 | |
| 5088 | // Scan the operands and if they're all BUILD_VECTORs, we'll have gathered |
| 5089 | // their elements. |
| 5090 | SmallVector<SDValue, 4> Operands(N->ops().take_front(N: Front)); |
| 5091 | for (SDValue BV : N->ops().drop_front(N: Front).drop_back(N: Back)) { |
| 5092 | if (BV.getOpcode() != ISD::BUILD_VECTOR) |
| 5093 | return SDValue(); |
| 5094 | |
| 5095 | // If the operand has multiple uses, this optimization can increase register |
| 5096 | // pressure. |
| 5097 | if (!BV.hasOneUse()) |
| 5098 | return SDValue(); |
| 5099 | |
| 5100 | // DAGCombiner visits nodes bottom-up. Check the BUILD_VECTOR operands for |
| 5101 | // any signs they may be folded by some other pattern or rule. |
| 5102 | for (SDValue Op : BV->ops()) { |
| 5103 | // Peek through bitcasts |
| 5104 | if (Op.getOpcode() == ISD::BITCAST) |
| 5105 | Op = Op.getOperand(i: 0); |
| 5106 | |
| 5107 | // This may be folded into a PRMT. |
| 5108 | if (Op.getValueType() == MVT::i16 && Op.getOpcode() == ISD::TRUNCATE && |
| 5109 | Op->getOperand(Num: 0).getValueType() == MVT::i32) |
| 5110 | return SDValue(); |
| 5111 | |
| 5112 | // This may be folded into cvt.bf16x2 |
| 5113 | if (Op.getOpcode() == ISD::FP_ROUND) |
| 5114 | return SDValue(); |
| 5115 | } |
| 5116 | Operands.append(IL: {BV.getOperand(i: 0), BV.getOperand(i: 1)}); |
| 5117 | } |
| 5118 | Operands.append(in_start: N->op_end() - Back, in_end: N->op_end()); |
| 5119 | |
| 5120 | // Now we replace the store |
| 5121 | return DCI.DAG.getMemIntrinsicNode(Opcode, dl: SDLoc(N), VTList: N->getVTList(), Ops: Operands, |
| 5122 | MemVT, MMO: ST->getMemOperand()); |
| 5123 | } |
| 5124 | |
| 5125 | static SDValue PerformStoreCombineHelper(SDNode *N, |
| 5126 | TargetLowering::DAGCombinerInfo &DCI, |
| 5127 | unsigned Front, unsigned Back) { |
| 5128 | if (all_of(Range: N->ops().drop_front(N: Front).drop_back(N: Back), |
| 5129 | P: [](const SDUse &U) { return U.get()->isUndef(); })) |
| 5130 | // Operand 0 is the previous value in the chain. Cannot return EntryToken |
| 5131 | // as the previous value will become unused and eliminated later. |
| 5132 | return N->getOperand(Num: 0); |
| 5133 | |
| 5134 | return combinePackingMovIntoStore(N, DCI, Front, Back); |
| 5135 | } |
| 5136 | |
| 5137 | static SDValue PerformStoreCombine(SDNode *N, |
| 5138 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5139 | return combinePackingMovIntoStore(N, DCI, Front: 1, Back: 2); |
| 5140 | } |
| 5141 | |
| 5142 | static SDValue PerformStoreParamCombine(SDNode *N, |
| 5143 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5144 | // Operands from the 3rd to the 2nd last one are the values to be stored. |
| 5145 | // {Chain, ArgID, Offset, Val, Glue} |
| 5146 | return PerformStoreCombineHelper(N, DCI, Front: 3, Back: 1); |
| 5147 | } |
| 5148 | |
| 5149 | /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| 5150 | /// |
| 5151 | static SDValue PerformADDCombine(SDNode *N, |
| 5152 | TargetLowering::DAGCombinerInfo &DCI, |
| 5153 | CodeGenOptLevel OptLevel) { |
| 5154 | if (OptLevel == CodeGenOptLevel::None) |
| 5155 | return SDValue(); |
| 5156 | |
| 5157 | SDValue N0 = N->getOperand(Num: 0); |
| 5158 | SDValue N1 = N->getOperand(Num: 1); |
| 5159 | |
| 5160 | // Skip non-integer, non-scalar case |
| 5161 | EVT VT = N0.getValueType(); |
| 5162 | if (VT.isVector() || VT != MVT::i32) |
| 5163 | return SDValue(); |
| 5164 | |
| 5165 | // First try with the default operand order. |
| 5166 | if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI)) |
| 5167 | return Result; |
| 5168 | |
| 5169 | // If that didn't work, try again with the operands commuted. |
| 5170 | return PerformADDCombineWithOperands(N, N0: N1, N1: N0, DCI); |
| 5171 | } |
| 5172 | |
| 5173 | /// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD. |
| 5174 | /// |
| 5175 | static SDValue PerformFADDCombine(SDNode *N, |
| 5176 | TargetLowering::DAGCombinerInfo &DCI, |
| 5177 | CodeGenOptLevel OptLevel) { |
| 5178 | SDValue N0 = N->getOperand(Num: 0); |
| 5179 | SDValue N1 = N->getOperand(Num: 1); |
| 5180 | |
| 5181 | EVT VT = N0.getValueType(); |
| 5182 | if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64)) |
| 5183 | return SDValue(); |
| 5184 | |
| 5185 | // First try with the default operand order. |
| 5186 | if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel)) |
| 5187 | return Result; |
| 5188 | |
| 5189 | // If that didn't work, try again with the operands commuted. |
| 5190 | return PerformFADDCombineWithOperands(N, N0: N1, N1: N0, DCI, OptLevel); |
| 5191 | } |
| 5192 | |
| 5193 | static SDValue PerformANDCombine(SDNode *N, |
| 5194 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5195 | // The type legalizer turns a vector load of i8 values into a zextload to i16 |
| 5196 | // registers, optionally ANY_EXTENDs it (if target type is integer), |
| 5197 | // and ANDs off the high 8 bits. Since we turn this load into a |
| 5198 | // target-specific DAG node, the DAG combiner fails to eliminate these AND |
| 5199 | // nodes. Do that here. |
| 5200 | SDValue Val = N->getOperand(Num: 0); |
| 5201 | SDValue Mask = N->getOperand(Num: 1); |
| 5202 | |
| 5203 | if (isa<ConstantSDNode>(Val)) { |
| 5204 | std::swap(a&: Val, b&: Mask); |
| 5205 | } |
| 5206 | |
| 5207 | SDValue AExt; |
| 5208 | |
| 5209 | // Convert BFE-> truncate i16 -> and 255 |
| 5210 | // To just BFE-> truncate i16, as the value already has all the bits in the |
| 5211 | // right places. |
| 5212 | if (Val.getOpcode() == ISD::TRUNCATE) { |
| 5213 | SDValue BFE = Val.getOperand(i: 0); |
| 5214 | if (BFE.getOpcode() != NVPTXISD::BFE) |
| 5215 | return SDValue(); |
| 5216 | |
| 5217 | ConstantSDNode *BFEBits = dyn_cast<ConstantSDNode>(Val: BFE.getOperand(i: 0)); |
| 5218 | if (!BFEBits) |
| 5219 | return SDValue(); |
| 5220 | uint64_t BFEBitsVal = BFEBits->getZExtValue(); |
| 5221 | |
| 5222 | ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Val&: Mask); |
| 5223 | if (!MaskCnst) { |
| 5224 | // Not an AND with a constant |
| 5225 | return SDValue(); |
| 5226 | } |
| 5227 | uint64_t MaskVal = MaskCnst->getZExtValue(); |
| 5228 | |
| 5229 | if (MaskVal != (uint64_t(1) << BFEBitsVal) - 1) |
| 5230 | return SDValue(); |
| 5231 | // If we get here, the AND is unnecessary. Just replace it with the trunc |
| 5232 | DCI.CombineTo(N, Res: Val, AddTo: false); |
| 5233 | } |
| 5234 | // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and |
| 5235 | if (Val.getOpcode() == ISD::ANY_EXTEND) { |
| 5236 | AExt = Val; |
| 5237 | Val = Val->getOperand(Num: 0); |
| 5238 | } |
| 5239 | |
| 5240 | if (Val->getOpcode() == NVPTXISD::LoadV2 || |
| 5241 | Val->getOpcode() == NVPTXISD::LoadV4) { |
| 5242 | ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Val&: Mask); |
| 5243 | if (!MaskCnst) { |
| 5244 | // Not an AND with a constant |
| 5245 | return SDValue(); |
| 5246 | } |
| 5247 | |
| 5248 | uint64_t MaskVal = MaskCnst->getZExtValue(); |
| 5249 | if (MaskVal != 0xff) { |
| 5250 | // Not an AND that chops off top 8 bits |
| 5251 | return SDValue(); |
| 5252 | } |
| 5253 | |
| 5254 | MemSDNode *Mem = dyn_cast<MemSDNode>(Val); |
| 5255 | if (!Mem) { |
| 5256 | // Not a MemSDNode?!? |
| 5257 | return SDValue(); |
| 5258 | } |
| 5259 | |
| 5260 | EVT MemVT = Mem->getMemoryVT(); |
| 5261 | if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) { |
| 5262 | // We only handle the i8 case |
| 5263 | return SDValue(); |
| 5264 | } |
| 5265 | |
| 5266 | unsigned ExtType = Val->getConstantOperandVal(Num: Val->getNumOperands() - 1); |
| 5267 | if (ExtType == ISD::SEXTLOAD) { |
| 5268 | // If for some reason the load is a sextload, the and is needed to zero |
| 5269 | // out the high 8 bits |
| 5270 | return SDValue(); |
| 5271 | } |
| 5272 | |
| 5273 | bool AddTo = false; |
| 5274 | if (AExt.getNode() != nullptr) { |
| 5275 | // Re-insert the ext as a zext. |
| 5276 | Val = DCI.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SDLoc(N), |
| 5277 | VT: AExt.getValueType(), Operand: Val); |
| 5278 | AddTo = true; |
| 5279 | } |
| 5280 | |
| 5281 | // If we get here, the AND is unnecessary. Just replace it with the load |
| 5282 | DCI.CombineTo(N, Res: Val, AddTo); |
| 5283 | } |
| 5284 | |
| 5285 | return SDValue(); |
| 5286 | } |
| 5287 | |
| 5288 | static SDValue PerformREMCombine(SDNode *N, |
| 5289 | TargetLowering::DAGCombinerInfo &DCI, |
| 5290 | CodeGenOptLevel OptLevel) { |
| 5291 | assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); |
| 5292 | |
| 5293 | // Don't do anything at less than -O2. |
| 5294 | if (OptLevel < CodeGenOptLevel::Default) |
| 5295 | return SDValue(); |
| 5296 | |
| 5297 | SelectionDAG &DAG = DCI.DAG; |
| 5298 | SDLoc DL(N); |
| 5299 | EVT VT = N->getValueType(ResNo: 0); |
| 5300 | bool IsSigned = N->getOpcode() == ISD::SREM; |
| 5301 | unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; |
| 5302 | |
| 5303 | const SDValue &Num = N->getOperand(Num: 0); |
| 5304 | const SDValue &Den = N->getOperand(Num: 1); |
| 5305 | |
| 5306 | for (const SDNode *U : Num->users()) { |
| 5307 | if (U->getOpcode() == DivOpc && U->getOperand(Num: 0) == Num && |
| 5308 | U->getOperand(Num: 1) == Den) { |
| 5309 | // Num % Den -> Num - (Num / Den) * Den |
| 5310 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Num, |
| 5311 | N2: DAG.getNode(Opcode: ISD::MUL, DL, VT, |
| 5312 | N1: DAG.getNode(Opcode: DivOpc, DL, VT, N1: Num, N2: Den), |
| 5313 | N2: Den)); |
| 5314 | } |
| 5315 | } |
| 5316 | return SDValue(); |
| 5317 | } |
| 5318 | |
| 5319 | enum OperandSignedness { |
| 5320 | Signed = 0, |
| 5321 | Unsigned, |
| 5322 | Unknown |
| 5323 | }; |
| 5324 | |
| 5325 | /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand |
| 5326 | /// that can be demoted to \p OptSize bits without loss of information. The |
| 5327 | /// signedness of the operand, if determinable, is placed in \p S. |
| 5328 | static bool IsMulWideOperandDemotable(SDValue Op, |
| 5329 | unsigned OptSize, |
| 5330 | OperandSignedness &S) { |
| 5331 | S = Unknown; |
| 5332 | |
| 5333 | if (Op.getOpcode() == ISD::SIGN_EXTEND || |
| 5334 | Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| 5335 | EVT OrigVT = Op.getOperand(i: 0).getValueType(); |
| 5336 | if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| 5337 | S = Signed; |
| 5338 | return true; |
| 5339 | } |
| 5340 | } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { |
| 5341 | EVT OrigVT = Op.getOperand(i: 0).getValueType(); |
| 5342 | if (OrigVT.getFixedSizeInBits() <= OptSize) { |
| 5343 | S = Unsigned; |
| 5344 | return true; |
| 5345 | } |
| 5346 | } |
| 5347 | |
| 5348 | return false; |
| 5349 | } |
| 5350 | |
| 5351 | /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can |
| 5352 | /// be demoted to \p OptSize bits without loss of information. If the operands |
| 5353 | /// contain a constant, it should appear as the RHS operand. The signedness of |
| 5354 | /// the operands is placed in \p IsSigned. |
| 5355 | static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, |
| 5356 | unsigned OptSize, |
| 5357 | bool &IsSigned) { |
| 5358 | OperandSignedness LHSSign; |
| 5359 | |
| 5360 | // The LHS operand must be a demotable op |
| 5361 | if (!IsMulWideOperandDemotable(Op: LHS, OptSize, S&: LHSSign)) |
| 5362 | return false; |
| 5363 | |
| 5364 | // We should have been able to determine the signedness from the LHS |
| 5365 | if (LHSSign == Unknown) |
| 5366 | return false; |
| 5367 | |
| 5368 | IsSigned = (LHSSign == Signed); |
| 5369 | |
| 5370 | // The RHS can be a demotable op or a constant |
| 5371 | if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 5372 | const APInt &Val = CI->getAPIntValue(); |
| 5373 | if (LHSSign == Unsigned) { |
| 5374 | return Val.isIntN(N: OptSize); |
| 5375 | } else { |
| 5376 | return Val.isSignedIntN(N: OptSize); |
| 5377 | } |
| 5378 | } else { |
| 5379 | OperandSignedness RHSSign; |
| 5380 | if (!IsMulWideOperandDemotable(Op: RHS, OptSize, S&: RHSSign)) |
| 5381 | return false; |
| 5382 | |
| 5383 | return LHSSign == RHSSign; |
| 5384 | } |
| 5385 | } |
| 5386 | |
| 5387 | /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply |
| 5388 | /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform |
| 5389 | /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift |
| 5390 | /// amount. |
| 5391 | static SDValue TryMULWIDECombine(SDNode *N, |
| 5392 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5393 | EVT MulType = N->getValueType(ResNo: 0); |
| 5394 | if (MulType != MVT::i32 && MulType != MVT::i64) { |
| 5395 | return SDValue(); |
| 5396 | } |
| 5397 | |
| 5398 | SDLoc DL(N); |
| 5399 | unsigned OptSize = MulType.getSizeInBits() >> 1; |
| 5400 | SDValue LHS = N->getOperand(Num: 0); |
| 5401 | SDValue RHS = N->getOperand(Num: 1); |
| 5402 | |
| 5403 | // Canonicalize the multiply so the constant (if any) is on the right |
| 5404 | if (N->getOpcode() == ISD::MUL) { |
| 5405 | if (isa<ConstantSDNode>(Val: LHS)) { |
| 5406 | std::swap(a&: LHS, b&: RHS); |
| 5407 | } |
| 5408 | } |
| 5409 | |
| 5410 | // If we have a SHL, determine the actual multiply amount |
| 5411 | if (N->getOpcode() == ISD::SHL) { |
| 5412 | ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 5413 | if (!ShlRHS) { |
| 5414 | return SDValue(); |
| 5415 | } |
| 5416 | |
| 5417 | APInt ShiftAmt = ShlRHS->getAPIntValue(); |
| 5418 | unsigned BitWidth = MulType.getSizeInBits(); |
| 5419 | if (ShiftAmt.sge(RHS: 0) && ShiftAmt.slt(RHS: BitWidth)) { |
| 5420 | APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; |
| 5421 | RHS = DCI.DAG.getConstant(Val: MulVal, DL, VT: MulType); |
| 5422 | } else { |
| 5423 | return SDValue(); |
| 5424 | } |
| 5425 | } |
| 5426 | |
| 5427 | bool Signed; |
| 5428 | // Verify that our operands are demotable |
| 5429 | if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, IsSigned&: Signed)) { |
| 5430 | return SDValue(); |
| 5431 | } |
| 5432 | |
| 5433 | EVT DemotedVT; |
| 5434 | if (MulType == MVT::i32) { |
| 5435 | DemotedVT = MVT::i16; |
| 5436 | } else { |
| 5437 | DemotedVT = MVT::i32; |
| 5438 | } |
| 5439 | |
| 5440 | // Truncate the operands to the correct size. Note that these are just for |
| 5441 | // type consistency and will (likely) be eliminated in later phases. |
| 5442 | SDValue TruncLHS = |
| 5443 | DCI.DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: DemotedVT, Operand: LHS); |
| 5444 | SDValue TruncRHS = |
| 5445 | DCI.DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: DemotedVT, Operand: RHS); |
| 5446 | |
| 5447 | unsigned Opc; |
| 5448 | if (Signed) { |
| 5449 | Opc = NVPTXISD::MUL_WIDE_SIGNED; |
| 5450 | } else { |
| 5451 | Opc = NVPTXISD::MUL_WIDE_UNSIGNED; |
| 5452 | } |
| 5453 | |
| 5454 | return DCI.DAG.getNode(Opcode: Opc, DL, VT: MulType, N1: TruncLHS, N2: TruncRHS); |
| 5455 | } |
| 5456 | |
| 5457 | static bool isConstOne(const SDValue &Operand) { |
| 5458 | const auto *Const = dyn_cast<ConstantSDNode>(Val: Operand); |
| 5459 | return Const && Const->getZExtValue() == 1; |
| 5460 | } |
| 5461 | |
| 5462 | static SDValue matchMADConstOnePattern(SDValue Add) { |
| 5463 | if (Add->getOpcode() != ISD::ADD) |
| 5464 | return SDValue(); |
| 5465 | |
| 5466 | if (isConstOne(Operand: Add->getOperand(Num: 0))) |
| 5467 | return Add->getOperand(Num: 1); |
| 5468 | |
| 5469 | if (isConstOne(Operand: Add->getOperand(Num: 1))) |
| 5470 | return Add->getOperand(Num: 0); |
| 5471 | |
| 5472 | return SDValue(); |
| 5473 | } |
| 5474 | |
| 5475 | static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, |
| 5476 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5477 | |
| 5478 | if (SDValue Y = matchMADConstOnePattern(Add)) { |
| 5479 | SDValue Mul = DCI.DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: X, N2: Y); |
| 5480 | return DCI.DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Mul, N2: X); |
| 5481 | } |
| 5482 | |
| 5483 | return SDValue(); |
| 5484 | } |
| 5485 | |
| 5486 | static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, |
| 5487 | SDLoc DL, |
| 5488 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5489 | if (Select->getOpcode() != ISD::SELECT) |
| 5490 | return SDValue(); |
| 5491 | |
| 5492 | SDValue Cond = Select->getOperand(Num: 0); |
| 5493 | |
| 5494 | unsigned ConstOpNo; |
| 5495 | if (isConstOne(Operand: Select->getOperand(Num: 1))) |
| 5496 | ConstOpNo = 1; |
| 5497 | else if (isConstOne(Operand: Select->getOperand(Num: 2))) |
| 5498 | ConstOpNo = 2; |
| 5499 | else |
| 5500 | return SDValue(); |
| 5501 | |
| 5502 | SDValue Y = Select->getOperand(Num: (ConstOpNo == 1) ? 2 : 1); |
| 5503 | |
| 5504 | // Do not combine if the resulting sequence is not obviously profitable. |
| 5505 | if (!matchMADConstOnePattern(Add: Y)) |
| 5506 | return SDValue(); |
| 5507 | |
| 5508 | SDValue NewMul = DCI.DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: X, N2: Y); |
| 5509 | |
| 5510 | return DCI.DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 5511 | N2: (ConstOpNo == 1) ? X : NewMul, |
| 5512 | N3: (ConstOpNo == 1) ? NewMul : X); |
| 5513 | } |
| 5514 | |
| 5515 | static SDValue |
| 5516 | PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| 5517 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5518 | |
| 5519 | EVT VT = N0.getValueType(); |
| 5520 | if (VT.isVector()) |
| 5521 | return SDValue(); |
| 5522 | |
| 5523 | if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| 5524 | return SDValue(); |
| 5525 | |
| 5526 | SDLoc DL(N); |
| 5527 | |
| 5528 | // (mul x, (add y, 1)) -> (add (mul x, y), x) |
| 5529 | if (SDValue Res = combineMADConstOne(X: N0, Add: N1, VT, DL, DCI)) |
| 5530 | return Res; |
| 5531 | if (SDValue Res = combineMADConstOne(X: N1, Add: N0, VT, DL, DCI)) |
| 5532 | return Res; |
| 5533 | |
| 5534 | // (mul x, (select y, 1)) -> (select (mul x, y), x) |
| 5535 | if (SDValue Res = combineMulSelectConstOne(X: N0, Select: N1, VT, DL, DCI)) |
| 5536 | return Res; |
| 5537 | if (SDValue Res = combineMulSelectConstOne(X: N1, Select: N0, VT, DL, DCI)) |
| 5538 | return Res; |
| 5539 | |
| 5540 | return SDValue(); |
| 5541 | } |
| 5542 | |
| 5543 | /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. |
| 5544 | static SDValue PerformMULCombine(SDNode *N, |
| 5545 | TargetLowering::DAGCombinerInfo &DCI, |
| 5546 | CodeGenOptLevel OptLevel) { |
| 5547 | if (OptLevel == CodeGenOptLevel::None) |
| 5548 | return SDValue(); |
| 5549 | |
| 5550 | if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| 5551 | return Ret; |
| 5552 | |
| 5553 | SDValue N0 = N->getOperand(Num: 0); |
| 5554 | SDValue N1 = N->getOperand(Num: 1); |
| 5555 | return PerformMULCombineWithOperands(N, N0, N1, DCI); |
| 5556 | } |
| 5557 | |
| 5558 | /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. |
| 5559 | static SDValue PerformSHLCombine(SDNode *N, |
| 5560 | TargetLowering::DAGCombinerInfo &DCI, |
| 5561 | CodeGenOptLevel OptLevel) { |
| 5562 | if (OptLevel > CodeGenOptLevel::None) { |
| 5563 | // Try mul.wide combining at OptLevel > 0 |
| 5564 | if (SDValue Ret = TryMULWIDECombine(N, DCI)) |
| 5565 | return Ret; |
| 5566 | } |
| 5567 | |
| 5568 | return SDValue(); |
| 5569 | } |
| 5570 | |
| 5571 | static SDValue PerformSETCCCombine(SDNode *N, |
| 5572 | TargetLowering::DAGCombinerInfo &DCI, |
| 5573 | unsigned int SmVersion) { |
| 5574 | EVT CCType = N->getValueType(ResNo: 0); |
| 5575 | SDValue A = N->getOperand(Num: 0); |
| 5576 | SDValue B = N->getOperand(Num: 1); |
| 5577 | |
| 5578 | EVT AType = A.getValueType(); |
| 5579 | if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16))) |
| 5580 | return SDValue(); |
| 5581 | |
| 5582 | if (A.getValueType() == MVT::v2bf16 && SmVersion < 90) |
| 5583 | return SDValue(); |
| 5584 | |
| 5585 | SDLoc DL(N); |
| 5586 | // setp.f16x2 returns two scalar predicates, which we need to |
| 5587 | // convert back to v2i1. The returned result will be scalarized by |
| 5588 | // the legalizer, but the comparison will remain a single vector |
| 5589 | // instruction. |
| 5590 | SDValue CCNode = DCI.DAG.getNode( |
| 5591 | Opcode: A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2 |
| 5592 | : NVPTXISD::SETP_BF16X2, |
| 5593 | DL, VTList: DCI.DAG.getVTList(VT1: MVT::i1, VT2: MVT::i1), Ops: {A, B, N->getOperand(Num: 2)}); |
| 5594 | return DCI.DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL, VT: CCType, N1: CCNode.getValue(R: 0), |
| 5595 | N2: CCNode.getValue(R: 1)); |
| 5596 | } |
| 5597 | |
| 5598 | static SDValue (SDNode *N, |
| 5599 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5600 | SDValue Vector = N->getOperand(Num: 0); |
| 5601 | if (Vector->getOpcode() == ISD::FREEZE) |
| 5602 | Vector = Vector->getOperand(Num: 0); |
| 5603 | SDLoc DL(N); |
| 5604 | EVT VectorVT = Vector.getValueType(); |
| 5605 | if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() && |
| 5606 | IsPTXVectorType(VT: VectorVT.getSimpleVT())) |
| 5607 | return SDValue(); // Native vector loads already combine nicely w/ |
| 5608 | // extract_vector_elt. |
| 5609 | // Don't mess with singletons or v2*16, v4i8 and v8i8 types, we already |
| 5610 | // handle them OK. |
| 5611 | if (VectorVT.getVectorNumElements() == 1 || Isv2x16VT(VT: VectorVT) || |
| 5612 | VectorVT == MVT::v4i8 || VectorVT == MVT::v8i8) |
| 5613 | return SDValue(); |
| 5614 | |
| 5615 | // Don't mess with undef values as sra may be simplified to 0, not undef. |
| 5616 | if (Vector->isUndef() || ISD::allOperandsUndef(N: Vector.getNode())) |
| 5617 | return SDValue(); |
| 5618 | |
| 5619 | uint64_t VectorBits = VectorVT.getSizeInBits(); |
| 5620 | // We only handle the types we can extract in-register. |
| 5621 | if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64)) |
| 5622 | return SDValue(); |
| 5623 | |
| 5624 | ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 5625 | // Index == 0 is handled by generic DAG combiner. |
| 5626 | if (!Index || Index->getZExtValue() == 0) |
| 5627 | return SDValue(); |
| 5628 | |
| 5629 | MVT IVT = MVT::getIntegerVT(BitWidth: VectorBits); |
| 5630 | EVT EltVT = VectorVT.getVectorElementType(); |
| 5631 | EVT EltIVT = EltVT.changeTypeToInteger(); |
| 5632 | uint64_t EltBits = EltVT.getScalarSizeInBits(); |
| 5633 | |
| 5634 | SDValue Result = DCI.DAG.getNode( |
| 5635 | Opcode: ISD::TRUNCATE, DL, VT: EltIVT, |
| 5636 | Operand: DCI.DAG.getNode( |
| 5637 | Opcode: ISD::SRA, DL, VT: IVT, N1: DCI.DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IVT, Operand: Vector), |
| 5638 | N2: DCI.DAG.getConstant(Val: Index->getZExtValue() * EltBits, DL, VT: IVT))); |
| 5639 | |
| 5640 | // If element has non-integer type, bitcast it back to the expected type. |
| 5641 | if (EltVT != EltIVT) |
| 5642 | Result = DCI.DAG.getNode(Opcode: ISD::BITCAST, DL, VT: EltVT, Operand: Result); |
| 5643 | // Past legalizer, we may need to extent i8 -> i16 to match the register type. |
| 5644 | if (EltVT != N->getValueType(ResNo: 0)) |
| 5645 | Result = DCI.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: N->getValueType(ResNo: 0), Operand: Result); |
| 5646 | |
| 5647 | return Result; |
| 5648 | } |
| 5649 | |
| 5650 | static SDValue PerformVSELECTCombine(SDNode *N, |
| 5651 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5652 | SDValue VA = N->getOperand(Num: 1); |
| 5653 | EVT VectorVT = VA.getValueType(); |
| 5654 | if (VectorVT != MVT::v4i8) |
| 5655 | return SDValue(); |
| 5656 | |
| 5657 | // We need to split vselect into individual per-element operations Because we |
| 5658 | // use BFE/BFI instruction for byte extraction/insertion, we do end up with |
| 5659 | // 32-bit values, so we may as well do comparison as i32 to avoid conversions |
| 5660 | // to/from i16 normally used for i8 values. |
| 5661 | SmallVector<SDValue, 4> E; |
| 5662 | SDLoc DL(N); |
| 5663 | SDValue VCond = N->getOperand(Num: 0); |
| 5664 | SDValue VB = N->getOperand(Num: 2); |
| 5665 | for (int I = 0; I < 4; ++I) { |
| 5666 | SDValue C = DCI.DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i1, N1: VCond, |
| 5667 | N2: DCI.DAG.getConstant(Val: I, DL, VT: MVT::i32)); |
| 5668 | SDValue EA = DCI.DAG.getAnyExtOrTrunc( |
| 5669 | Op: DCI.DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i8, N1: VA, |
| 5670 | N2: DCI.DAG.getConstant(Val: I, DL, VT: MVT::i32)), |
| 5671 | DL, VT: MVT::i32); |
| 5672 | SDValue EB = DCI.DAG.getAnyExtOrTrunc( |
| 5673 | Op: DCI.DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i8, N1: VB, |
| 5674 | N2: DCI.DAG.getConstant(Val: I, DL, VT: MVT::i32)), |
| 5675 | DL, VT: MVT::i32); |
| 5676 | E.push_back(Elt: DCI.DAG.getAnyExtOrTrunc( |
| 5677 | Op: DCI.DAG.getNode(Opcode: ISD::SELECT, DL, VT: MVT::i32, N1: C, N2: EA, N3: EB), DL, VT: MVT::i8)); |
| 5678 | } |
| 5679 | return DCI.DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL, VT: MVT::v4i8, Ops: E); |
| 5680 | } |
| 5681 | |
| 5682 | static SDValue |
| 5683 | PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| 5684 | auto VT = N->getValueType(ResNo: 0); |
| 5685 | if (!DCI.isAfterLegalizeDAG() || !Isv2x16VT(VT)) |
| 5686 | return SDValue(); |
| 5687 | |
| 5688 | auto Op0 = N->getOperand(Num: 0); |
| 5689 | auto Op1 = N->getOperand(Num: 1); |
| 5690 | |
| 5691 | // Start out by assuming we want to take the lower 2 bytes of each i32 |
| 5692 | // operand. |
| 5693 | uint64_t Op0Bytes = 0x10; |
| 5694 | uint64_t Op1Bytes = 0x54; |
| 5695 | |
| 5696 | std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes}, |
| 5697 | {&Op1, &Op1Bytes}}; |
| 5698 | |
| 5699 | // Check that each operand is an i16, truncated from an i32 operand. We'll |
| 5700 | // select individual bytes from those original operands. Optionally, fold in a |
| 5701 | // shift right of that original operand. |
| 5702 | for (auto &[Op, OpBytes] : OpData) { |
| 5703 | // Eat up any bitcast |
| 5704 | if (Op->getOpcode() == ISD::BITCAST) |
| 5705 | *Op = Op->getOperand(i: 0); |
| 5706 | |
| 5707 | if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE && |
| 5708 | Op->getOperand(i: 0).getValueType() == MVT::i32)) |
| 5709 | return SDValue(); |
| 5710 | |
| 5711 | // If the truncate has multiple uses, this optimization can increase |
| 5712 | // register pressure |
| 5713 | if (!Op->hasOneUse()) |
| 5714 | return SDValue(); |
| 5715 | |
| 5716 | *Op = Op->getOperand(i: 0); |
| 5717 | |
| 5718 | // Optionally, fold in a shift-right of the original operand and let permute |
| 5719 | // pick the two higher bytes of the original value directly. |
| 5720 | if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Val: Op->getOperand(i: 1))) { |
| 5721 | if (cast<ConstantSDNode>(Val: Op->getOperand(i: 1))->getZExtValue() == 16) { |
| 5722 | // Shift the PRMT byte selector to pick upper bytes from each respective |
| 5723 | // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76 |
| 5724 | assert((*OpBytes == 0x10 || *OpBytes == 0x54) && |
| 5725 | "PRMT selector values out of range" ); |
| 5726 | *OpBytes += 0x22; |
| 5727 | *Op = Op->getOperand(i: 0); |
| 5728 | } |
| 5729 | } |
| 5730 | } |
| 5731 | |
| 5732 | SDLoc DL(N); |
| 5733 | auto &DAG = DCI.DAG; |
| 5734 | |
| 5735 | auto PRMT = DAG.getNode( |
| 5736 | Opcode: NVPTXISD::PRMT, DL, VT: MVT::v4i8, |
| 5737 | Ops: {Op0, Op1, DAG.getConstant(Val: (Op1Bytes << 8) | Op0Bytes, DL, VT: MVT::i32), |
| 5738 | DAG.getConstant(Val: NVPTX::PTXPrmtMode::NONE, DL, VT: MVT::i32)}); |
| 5739 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: PRMT); |
| 5740 | } |
| 5741 | |
| 5742 | static SDValue combineADDRSPACECAST(SDNode *N, |
| 5743 | TargetLowering::DAGCombinerInfo &DCI) { |
| 5744 | auto *ASCN1 = cast<AddrSpaceCastSDNode>(Val: N); |
| 5745 | |
| 5746 | if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(Val: ASCN1->getOperand(Num: 0))) { |
| 5747 | assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace()); |
| 5748 | |
| 5749 | // Fold asc[B -> A](asc[A -> B](x)) -> x |
| 5750 | if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace()) |
| 5751 | return ASCN2->getOperand(Num: 0); |
| 5752 | } |
| 5753 | |
| 5754 | return SDValue(); |
| 5755 | } |
| 5756 | |
| 5757 | SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, |
| 5758 | DAGCombinerInfo &DCI) const { |
| 5759 | CodeGenOptLevel OptLevel = getTargetMachine().getOptLevel(); |
| 5760 | switch (N->getOpcode()) { |
| 5761 | default: break; |
| 5762 | case ISD::ADD: |
| 5763 | return PerformADDCombine(N, DCI, OptLevel); |
| 5764 | case ISD::FADD: |
| 5765 | return PerformFADDCombine(N, DCI, OptLevel); |
| 5766 | case ISD::MUL: |
| 5767 | return PerformMULCombine(N, DCI, OptLevel); |
| 5768 | case ISD::SHL: |
| 5769 | return PerformSHLCombine(N, DCI, OptLevel); |
| 5770 | case ISD::AND: |
| 5771 | return PerformANDCombine(N, DCI); |
| 5772 | case ISD::UREM: |
| 5773 | case ISD::SREM: |
| 5774 | return PerformREMCombine(N, DCI, OptLevel); |
| 5775 | case ISD::SETCC: |
| 5776 | return PerformSETCCCombine(N, DCI, SmVersion: STI.getSmVersion()); |
| 5777 | case ISD::LOAD: |
| 5778 | case NVPTXISD::LoadParamV2: |
| 5779 | case NVPTXISD::LoadV2: |
| 5780 | case NVPTXISD::LoadV4: |
| 5781 | return combineUnpackingMovIntoLoad(N, DCI); |
| 5782 | case NVPTXISD::StoreParam: |
| 5783 | case NVPTXISD::StoreParamV2: |
| 5784 | case NVPTXISD::StoreParamV4: |
| 5785 | return PerformStoreParamCombine(N, DCI); |
| 5786 | case ISD::STORE: |
| 5787 | case NVPTXISD::StoreV2: |
| 5788 | case NVPTXISD::StoreV4: |
| 5789 | return PerformStoreCombine(N, DCI); |
| 5790 | case ISD::EXTRACT_VECTOR_ELT: |
| 5791 | return PerformEXTRACTCombine(N, DCI); |
| 5792 | case ISD::VSELECT: |
| 5793 | return PerformVSELECTCombine(N, DCI); |
| 5794 | case ISD::BUILD_VECTOR: |
| 5795 | return PerformBUILD_VECTORCombine(N, DCI); |
| 5796 | case ISD::ADDRSPACECAST: |
| 5797 | return combineADDRSPACECAST(N, DCI); |
| 5798 | } |
| 5799 | return SDValue(); |
| 5800 | } |
| 5801 | |
| 5802 | static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, |
| 5803 | SmallVectorImpl<SDValue> &Results) { |
| 5804 | // Handle bitcasting to v2i8 without hitting the default promotion |
| 5805 | // strategy which goes through stack memory. |
| 5806 | SDValue Op(Node, 0); |
| 5807 | EVT ToVT = Op->getValueType(ResNo: 0); |
| 5808 | if (ToVT != MVT::v2i8) { |
| 5809 | return; |
| 5810 | } |
| 5811 | |
| 5812 | // Bitcast to i16 and unpack elements into a vector |
| 5813 | SDLoc DL(Node); |
| 5814 | SDValue AsInt = DAG.getBitcast(VT: MVT::i16, V: Op->getOperand(Num: 0)); |
| 5815 | SDValue Vec0 = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i8, Operand: AsInt); |
| 5816 | SDValue Const8 = DAG.getConstant(Val: 8, DL, VT: MVT::i16); |
| 5817 | SDValue Vec1 = |
| 5818 | DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i8, |
| 5819 | Operand: DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i16, Ops: {AsInt, Const8})); |
| 5820 | Results.push_back( |
| 5821 | Elt: DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL, VT: MVT::v2i8, Ops: {Vec0, Vec1})); |
| 5822 | } |
| 5823 | |
| 5824 | /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. |
| 5825 | static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, |
| 5826 | SmallVectorImpl<SDValue> &Results, |
| 5827 | const NVPTXSubtarget &STI) { |
| 5828 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 5829 | const EVT ResVT = LD->getValueType(ResNo: 0); |
| 5830 | const EVT MemVT = LD->getMemoryVT(); |
| 5831 | |
| 5832 | // If we're doing sign/zero extension as part of the load, avoid lowering to |
| 5833 | // a LoadV node. TODO: consider relaxing this restriction. |
| 5834 | if (ResVT != MemVT) |
| 5835 | return; |
| 5836 | |
| 5837 | const auto NumEltsAndEltVT = getVectorLoweringShape( |
| 5838 | VectorEVT: ResVT, CanLowerTo256Bit: STI.has256BitVectorLoadStore(AS: LD->getAddressSpace())); |
| 5839 | if (!NumEltsAndEltVT) |
| 5840 | return; |
| 5841 | const auto [NumElts, EltVT] = NumEltsAndEltVT.value(); |
| 5842 | |
| 5843 | Align Alignment = LD->getAlign(); |
| 5844 | const auto &TD = DAG.getDataLayout(); |
| 5845 | Align PrefAlign = TD.getPrefTypeAlign(Ty: MemVT.getTypeForEVT(Context&: *DAG.getContext())); |
| 5846 | if (Alignment < PrefAlign) { |
| 5847 | // This load is not sufficiently aligned, so bail out and let this vector |
| 5848 | // load be scalarized. Note that we may still be able to emit smaller |
| 5849 | // vector loads. For example, if we are loading a <4 x float> with an |
| 5850 | // alignment of 8, this check will fail but the legalizer will try again |
| 5851 | // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| 5852 | return; |
| 5853 | } |
| 5854 | |
| 5855 | // Since LoadV2 is a target node, we cannot rely on DAG type legalization. |
| 5856 | // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| 5857 | // loaded type to i16 and propagate the "real" type as the memory type. |
| 5858 | const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT; |
| 5859 | |
| 5860 | unsigned Opcode; |
| 5861 | switch (NumElts) { |
| 5862 | default: |
| 5863 | return; |
| 5864 | case 2: |
| 5865 | Opcode = NVPTXISD::LoadV2; |
| 5866 | break; |
| 5867 | case 4: |
| 5868 | Opcode = NVPTXISD::LoadV4; |
| 5869 | break; |
| 5870 | case 8: |
| 5871 | Opcode = NVPTXISD::LoadV8; |
| 5872 | break; |
| 5873 | } |
| 5874 | auto ListVTs = SmallVector<EVT, 9>(NumElts, LoadEltVT); |
| 5875 | ListVTs.push_back(Elt: MVT::Other); |
| 5876 | SDVTList LdResVTs = DAG.getVTList(VTs: ListVTs); |
| 5877 | |
| 5878 | SDLoc DL(LD); |
| 5879 | |
| 5880 | // Copy regular operands |
| 5881 | SmallVector<SDValue, 8> OtherOps(LD->ops()); |
| 5882 | |
| 5883 | // The select routine does not have access to the LoadSDNode instance, so |
| 5884 | // pass along the extension information |
| 5885 | OtherOps.push_back(Elt: DAG.getIntPtrConstant(Val: LD->getExtensionType(), DL)); |
| 5886 | |
| 5887 | SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, dl: DL, VTList: LdResVTs, Ops: OtherOps, |
| 5888 | MemVT: LD->getMemoryVT(), |
| 5889 | MMO: LD->getMemOperand()); |
| 5890 | |
| 5891 | SmallVector<SDValue> ScalarRes; |
| 5892 | if (EltVT.isVector()) { |
| 5893 | assert(EVT(EltVT.getVectorElementType()) == ResVT.getVectorElementType()); |
| 5894 | assert(NumElts * EltVT.getVectorNumElements() == |
| 5895 | ResVT.getVectorNumElements()); |
| 5896 | // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back |
| 5897 | // into individual elements. |
| 5898 | for (const unsigned I : llvm::seq(Size: NumElts)) { |
| 5899 | SDValue SubVector = NewLD.getValue(R: I); |
| 5900 | DAG.ExtractVectorElements(Op: SubVector, Args&: ScalarRes); |
| 5901 | } |
| 5902 | } else { |
| 5903 | for (const unsigned I : llvm::seq(Size: NumElts)) { |
| 5904 | SDValue Res = NewLD.getValue(R: I); |
| 5905 | if (LoadEltVT != EltVT) |
| 5906 | Res = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: EltVT, Operand: Res); |
| 5907 | ScalarRes.push_back(Elt: Res); |
| 5908 | } |
| 5909 | } |
| 5910 | |
| 5911 | SDValue LoadChain = NewLD.getValue(R: NumElts); |
| 5912 | |
| 5913 | const MVT BuildVecVT = |
| 5914 | MVT::getVectorVT(VT: EltVT.getScalarType(), NumElements: ScalarRes.size()); |
| 5915 | SDValue BuildVec = DAG.getBuildVector(VT: BuildVecVT, DL, Ops: ScalarRes); |
| 5916 | SDValue LoadValue = DAG.getBitcast(VT: ResVT, V: BuildVec); |
| 5917 | |
| 5918 | Results.append(IL: {LoadValue, LoadChain}); |
| 5919 | } |
| 5920 | |
| 5921 | // Lower vector return type of tcgen05.ld intrinsics |
| 5922 | static void ReplaceTcgen05Ld(SDNode *N, SelectionDAG &DAG, |
| 5923 | SmallVectorImpl<SDValue> &Results, |
| 5924 | bool hasOffset = false) { |
| 5925 | SDLoc DL(N); |
| 5926 | EVT ResVT = N->getValueType(ResNo: 0); |
| 5927 | if (!ResVT.isVector()) |
| 5928 | return; // already legalized. |
| 5929 | |
| 5930 | const unsigned NumElts = ResVT.getVectorNumElements(); |
| 5931 | |
| 5932 | // Create the return type of the instructions |
| 5933 | SmallVector<EVT, 5> ListVTs; |
| 5934 | for (unsigned i = 0; i < NumElts; ++i) |
| 5935 | ListVTs.push_back(Elt: MVT::i32); |
| 5936 | |
| 5937 | ListVTs.push_back(Elt: N->getValueType(ResNo: 1)); // Chain |
| 5938 | |
| 5939 | SDVTList ResVTs = DAG.getVTList(VTs: ListVTs); |
| 5940 | |
| 5941 | SmallVector<SDValue, 8> Ops{N->getOperand(Num: 0), N->getOperand(Num: 1), |
| 5942 | N->getOperand(Num: 2)}; |
| 5943 | |
| 5944 | if (hasOffset) { |
| 5945 | Ops.push_back(Elt: N->getOperand(Num: 3)); // offset |
| 5946 | Ops.push_back(Elt: N->getOperand(Num: 4)); // Pack flag |
| 5947 | } else |
| 5948 | Ops.push_back(Elt: N->getOperand(Num: 3)); // Pack flag |
| 5949 | |
| 5950 | MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(Val: N); |
| 5951 | SDValue NewNode = |
| 5952 | DAG.getMemIntrinsicNode(Opcode: ISD::INTRINSIC_W_CHAIN, dl: DL, VTList: ResVTs, Ops, |
| 5953 | MemVT: MemSD->getMemoryVT(), MMO: MemSD->getMemOperand()); |
| 5954 | |
| 5955 | // split the vector result |
| 5956 | SmallVector<SDValue, 4> ScalarRes; |
| 5957 | for (unsigned i = 0; i < NumElts; ++i) { |
| 5958 | SDValue Res = NewNode.getValue(R: i); |
| 5959 | ScalarRes.push_back(Elt: Res); |
| 5960 | } |
| 5961 | |
| 5962 | SDValue Chain = NewNode.getValue(R: NumElts); |
| 5963 | SDValue BuildVector = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL, VT: ResVT, Ops: ScalarRes); |
| 5964 | Results.push_back(Elt: BuildVector); // Build Vector |
| 5965 | Results.push_back(Elt: Chain); // Chain |
| 5966 | } |
| 5967 | |
| 5968 | static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, |
| 5969 | SmallVectorImpl<SDValue> &Results) { |
| 5970 | SDValue Chain = N->getOperand(Num: 0); |
| 5971 | SDValue Intrin = N->getOperand(Num: 1); |
| 5972 | SDLoc DL(N); |
| 5973 | |
| 5974 | // Get the intrinsic ID |
| 5975 | unsigned IntrinNo = Intrin.getNode()->getAsZExtVal(); |
| 5976 | switch (IntrinNo) { |
| 5977 | default: |
| 5978 | return; |
| 5979 | case Intrinsic::nvvm_ldu_global_i: |
| 5980 | case Intrinsic::nvvm_ldu_global_f: |
| 5981 | case Intrinsic::nvvm_ldu_global_p: { |
| 5982 | EVT ResVT = N->getValueType(ResNo: 0); |
| 5983 | |
| 5984 | if (ResVT.isVector()) { |
| 5985 | // Vector LDG/LDU |
| 5986 | |
| 5987 | unsigned NumElts = ResVT.getVectorNumElements(); |
| 5988 | EVT EltVT = ResVT.getVectorElementType(); |
| 5989 | |
| 5990 | // Since LDU/LDG are target nodes, we cannot rely on DAG type |
| 5991 | // legalization. |
| 5992 | // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| 5993 | // loaded type to i16 and propagate the "real" type as the memory type. |
| 5994 | bool NeedTrunc = false; |
| 5995 | if (EltVT.getSizeInBits() < 16) { |
| 5996 | EltVT = MVT::i16; |
| 5997 | NeedTrunc = true; |
| 5998 | } |
| 5999 | |
| 6000 | unsigned Opcode = 0; |
| 6001 | SDVTList LdResVTs; |
| 6002 | |
| 6003 | switch (NumElts) { |
| 6004 | default: |
| 6005 | return; |
| 6006 | case 2: |
| 6007 | Opcode = NVPTXISD::LDUV2; |
| 6008 | LdResVTs = DAG.getVTList(VT1: EltVT, VT2: EltVT, VT3: MVT::Other); |
| 6009 | break; |
| 6010 | case 4: { |
| 6011 | Opcode = NVPTXISD::LDUV4; |
| 6012 | EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; |
| 6013 | LdResVTs = DAG.getVTList(VTs: ListVTs); |
| 6014 | break; |
| 6015 | } |
| 6016 | } |
| 6017 | |
| 6018 | SmallVector<SDValue, 8> OtherOps; |
| 6019 | |
| 6020 | // Copy regular operands |
| 6021 | |
| 6022 | OtherOps.push_back(Elt: Chain); // Chain |
| 6023 | // Skip operand 1 (intrinsic ID) |
| 6024 | // Others |
| 6025 | OtherOps.append(in_start: N->op_begin() + 2, in_end: N->op_end()); |
| 6026 | |
| 6027 | MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(Val: N); |
| 6028 | |
| 6029 | SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, dl: DL, VTList: LdResVTs, Ops: OtherOps, |
| 6030 | MemVT: MemSD->getMemoryVT(), |
| 6031 | MMO: MemSD->getMemOperand()); |
| 6032 | |
| 6033 | SmallVector<SDValue, 4> ScalarRes; |
| 6034 | |
| 6035 | for (unsigned i = 0; i < NumElts; ++i) { |
| 6036 | SDValue Res = NewLD.getValue(R: i); |
| 6037 | if (NeedTrunc) |
| 6038 | Res = |
| 6039 | DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: ResVT.getVectorElementType(), Operand: Res); |
| 6040 | ScalarRes.push_back(Elt: Res); |
| 6041 | } |
| 6042 | |
| 6043 | SDValue LoadChain = NewLD.getValue(R: NumElts); |
| 6044 | |
| 6045 | SDValue BuildVec = |
| 6046 | DAG.getBuildVector(VT: ResVT, DL, Ops: ScalarRes); |
| 6047 | |
| 6048 | Results.push_back(Elt: BuildVec); |
| 6049 | Results.push_back(Elt: LoadChain); |
| 6050 | } else { |
| 6051 | // i8 LDG/LDU |
| 6052 | assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && |
| 6053 | "Custom handling of non-i8 ldu/ldg?" ); |
| 6054 | |
| 6055 | // Just copy all operands as-is |
| 6056 | SmallVector<SDValue, 4> Ops(N->ops()); |
| 6057 | |
| 6058 | // Force output to i16 |
| 6059 | SDVTList LdResVTs = DAG.getVTList(VT1: MVT::i16, VT2: MVT::Other); |
| 6060 | |
| 6061 | MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(Val: N); |
| 6062 | |
| 6063 | // We make sure the memory type is i8, which will be used during isel |
| 6064 | // to select the proper instruction. |
| 6065 | SDValue NewLD = |
| 6066 | DAG.getMemIntrinsicNode(Opcode: ISD::INTRINSIC_W_CHAIN, dl: DL, VTList: LdResVTs, Ops, |
| 6067 | MemVT: MVT::i8, MMO: MemSD->getMemOperand()); |
| 6068 | |
| 6069 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i8, |
| 6070 | Operand: NewLD.getValue(R: 0))); |
| 6071 | Results.push_back(Elt: NewLD.getValue(R: 1)); |
| 6072 | } |
| 6073 | return; |
| 6074 | } |
| 6075 | |
| 6076 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| 6077 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| 6078 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| 6079 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| 6080 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| 6081 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| 6082 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| 6083 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| 6084 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| 6085 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| 6086 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| 6087 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| 6088 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| 6089 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| 6090 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| 6091 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| 6092 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| 6093 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| 6094 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| 6095 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| 6096 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| 6097 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| 6098 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| 6099 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| 6100 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| 6101 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| 6102 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| 6103 | return ReplaceTcgen05Ld(N, DAG, Results); |
| 6104 | |
| 6105 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: |
| 6106 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: |
| 6107 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: |
| 6108 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: |
| 6109 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: |
| 6110 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: |
| 6111 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: |
| 6112 | return ReplaceTcgen05Ld(N, DAG, Results, /* Offset */ hasOffset: true); |
| 6113 | } |
| 6114 | } |
| 6115 | |
| 6116 | static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, |
| 6117 | SmallVectorImpl<SDValue> &Results) { |
| 6118 | // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit |
| 6119 | // result so that it can pass the legalization |
| 6120 | SDLoc DL(N); |
| 6121 | SDValue Chain = N->getOperand(Num: 0); |
| 6122 | SDValue Reg = N->getOperand(Num: 1); |
| 6123 | SDValue Glue = N->getOperand(Num: 2); |
| 6124 | |
| 6125 | assert(Reg.getValueType() == MVT::i128 && |
| 6126 | "Custom lowering for CopyFromReg with 128-bit reg only" ); |
| 6127 | SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(ResNo: 1), |
| 6128 | N->getValueType(ResNo: 2)}; |
| 6129 | SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue}; |
| 6130 | |
| 6131 | SDValue NewValue = DAG.getNode(Opcode: ISD::CopyFromReg, DL, ResultTys: ResultsType, Ops: NewOps); |
| 6132 | SDValue Pair = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i128, |
| 6133 | Ops: {NewValue.getValue(R: 0), NewValue.getValue(R: 1)}); |
| 6134 | |
| 6135 | Results.push_back(Elt: Pair); |
| 6136 | Results.push_back(Elt: NewValue.getValue(R: 2)); |
| 6137 | Results.push_back(Elt: NewValue.getValue(R: 3)); |
| 6138 | } |
| 6139 | |
| 6140 | void NVPTXTargetLowering::ReplaceNodeResults( |
| 6141 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| 6142 | switch (N->getOpcode()) { |
| 6143 | default: |
| 6144 | report_fatal_error(reason: "Unhandled custom legalization" ); |
| 6145 | case ISD::BITCAST: |
| 6146 | ReplaceBITCAST(Node: N, DAG, Results); |
| 6147 | return; |
| 6148 | case ISD::LOAD: |
| 6149 | ReplaceLoadVector(N, DAG, Results, STI); |
| 6150 | return; |
| 6151 | case ISD::INTRINSIC_W_CHAIN: |
| 6152 | ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); |
| 6153 | return; |
| 6154 | case ISD::CopyFromReg: |
| 6155 | ReplaceCopyFromReg_128(N, DAG, Results); |
| 6156 | return; |
| 6157 | } |
| 6158 | } |
| 6159 | |
| 6160 | NVPTXTargetLowering::AtomicExpansionKind |
| 6161 | NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| 6162 | Type *Ty = AI->getValOperand()->getType(); |
| 6163 | |
| 6164 | if (AI->isFloatingPointOperation()) { |
| 6165 | if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) { |
| 6166 | if (Ty->isHalfTy() && STI.getSmVersion() >= 70 && |
| 6167 | STI.getPTXVersion() >= 63) |
| 6168 | return AtomicExpansionKind::None; |
| 6169 | if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 && |
| 6170 | STI.getPTXVersion() >= 78) |
| 6171 | return AtomicExpansionKind::None; |
| 6172 | if (Ty->isFloatTy()) |
| 6173 | return AtomicExpansionKind::None; |
| 6174 | if (Ty->isDoubleTy() && STI.hasAtomAddF64()) |
| 6175 | return AtomicExpansionKind::None; |
| 6176 | } |
| 6177 | return AtomicExpansionKind::CmpXChg; |
| 6178 | } |
| 6179 | |
| 6180 | assert(Ty->isIntegerTy() && "Ty should be integer at this point" ); |
| 6181 | auto ITy = cast<llvm::IntegerType>(Val: Ty); |
| 6182 | |
| 6183 | switch (AI->getOperation()) { |
| 6184 | default: |
| 6185 | return AtomicExpansionKind::CmpXChg; |
| 6186 | case AtomicRMWInst::BinOp::And: |
| 6187 | case AtomicRMWInst::BinOp::Or: |
| 6188 | case AtomicRMWInst::BinOp::Xor: |
| 6189 | case AtomicRMWInst::BinOp::Xchg: |
| 6190 | switch (ITy->getBitWidth()) { |
| 6191 | case 8: |
| 6192 | case 16: |
| 6193 | return AtomicExpansionKind::CmpXChg; |
| 6194 | case 32: |
| 6195 | return AtomicExpansionKind::None; |
| 6196 | case 64: |
| 6197 | if (STI.hasAtomBitwise64()) |
| 6198 | return AtomicExpansionKind::None; |
| 6199 | return AtomicExpansionKind::CmpXChg; |
| 6200 | default: |
| 6201 | llvm_unreachable("unsupported width encountered" ); |
| 6202 | } |
| 6203 | case AtomicRMWInst::BinOp::Add: |
| 6204 | case AtomicRMWInst::BinOp::Sub: |
| 6205 | case AtomicRMWInst::BinOp::Max: |
| 6206 | case AtomicRMWInst::BinOp::Min: |
| 6207 | case AtomicRMWInst::BinOp::UMax: |
| 6208 | case AtomicRMWInst::BinOp::UMin: |
| 6209 | switch (ITy->getBitWidth()) { |
| 6210 | case 8: |
| 6211 | case 16: |
| 6212 | return AtomicExpansionKind::CmpXChg; |
| 6213 | case 32: |
| 6214 | return AtomicExpansionKind::None; |
| 6215 | case 64: |
| 6216 | if (STI.hasAtomMinMax64()) |
| 6217 | return AtomicExpansionKind::None; |
| 6218 | return AtomicExpansionKind::CmpXChg; |
| 6219 | default: |
| 6220 | llvm_unreachable("unsupported width encountered" ); |
| 6221 | } |
| 6222 | case AtomicRMWInst::BinOp::UIncWrap: |
| 6223 | case AtomicRMWInst::BinOp::UDecWrap: |
| 6224 | switch (ITy->getBitWidth()) { |
| 6225 | case 32: |
| 6226 | return AtomicExpansionKind::None; |
| 6227 | case 8: |
| 6228 | case 16: |
| 6229 | case 64: |
| 6230 | return AtomicExpansionKind::CmpXChg; |
| 6231 | default: |
| 6232 | llvm_unreachable("unsupported width encountered" ); |
| 6233 | } |
| 6234 | } |
| 6235 | |
| 6236 | return AtomicExpansionKind::CmpXChg; |
| 6237 | } |
| 6238 | |
| 6239 | bool NVPTXTargetLowering::shouldInsertFencesForAtomic( |
| 6240 | const Instruction *I) const { |
| 6241 | auto *CI = dyn_cast<AtomicCmpXchgInst>(Val: I); |
| 6242 | // When CAS bitwidth is not supported on the hardware, the CAS is emulated |
| 6243 | // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce |
| 6244 | // the memory order using explicit fences around the retry loop. |
| 6245 | // The memory order of natively supported CAS operations can be enforced |
| 6246 | // by lowering to an atom.cas with the right memory synchronizing effect. |
| 6247 | // However, atom.cas only supports relaxed, acquire, release and acq_rel. |
| 6248 | // So we also use explicit fences for enforcing memory order for |
| 6249 | // seq_cast CAS with natively-supported bitwidths. |
| 6250 | return CI && |
| 6251 | (cast<IntegerType>(Val: CI->getCompareOperand()->getType())->getBitWidth() < |
| 6252 | STI.getMinCmpXchgSizeInBits() || |
| 6253 | CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent); |
| 6254 | } |
| 6255 | |
| 6256 | AtomicOrdering NVPTXTargetLowering::atomicOperationOrderAfterFenceSplit( |
| 6257 | const Instruction *I) const { |
| 6258 | auto *CI = dyn_cast<AtomicCmpXchgInst>(Val: I); |
| 6259 | bool BitwidthSupportedAndIsSeqCst = |
| 6260 | CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent && |
| 6261 | cast<IntegerType>(Val: CI->getCompareOperand()->getType())->getBitWidth() >= |
| 6262 | STI.getMinCmpXchgSizeInBits(); |
| 6263 | return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire |
| 6264 | : AtomicOrdering::Monotonic; |
| 6265 | } |
| 6266 | |
| 6267 | Instruction *NVPTXTargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| 6268 | Instruction *Inst, |
| 6269 | AtomicOrdering Ord) const { |
| 6270 | if (!isa<AtomicCmpXchgInst>(Val: Inst)) |
| 6271 | return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord); |
| 6272 | |
| 6273 | // Specialize for cmpxchg |
| 6274 | // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated |
| 6275 | if (isReleaseOrStronger(AO: Ord)) |
| 6276 | return Ord == AtomicOrdering::SequentiallyConsistent |
| 6277 | ? Builder.CreateFence(Ordering: AtomicOrdering::SequentiallyConsistent) |
| 6278 | : Builder.CreateFence(Ordering: AtomicOrdering::Release); |
| 6279 | |
| 6280 | return nullptr; |
| 6281 | } |
| 6282 | |
| 6283 | Instruction *NVPTXTargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| 6284 | Instruction *Inst, |
| 6285 | AtomicOrdering Ord) const { |
| 6286 | // Specialize for cmpxchg |
| 6287 | if (!isa<AtomicCmpXchgInst>(Val: Inst)) |
| 6288 | return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord); |
| 6289 | |
| 6290 | auto CASWidth = |
| 6291 | cast<IntegerType>( |
| 6292 | Val: dyn_cast<AtomicCmpXchgInst>(Val: Inst)->getCompareOperand()->getType()) |
| 6293 | ->getBitWidth(); |
| 6294 | // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated |
| 6295 | if (isAcquireOrStronger(AO: Ord) && |
| 6296 | (Ord != AtomicOrdering::SequentiallyConsistent || |
| 6297 | CASWidth < STI.getMinCmpXchgSizeInBits())) |
| 6298 | return Builder.CreateFence(Ordering: AtomicOrdering::Acquire); |
| 6299 | |
| 6300 | return nullptr; |
| 6301 | } |
| 6302 | |
| 6303 | // Rather than default to SINT when both UINT and SINT are custom, we only |
| 6304 | // change the opcode when UINT is not legal and SINT is. UINT is preferred when |
| 6305 | // both are custom since unsigned CVT instructions can lead to slightly better |
| 6306 | // SASS code with fewer instructions. |
| 6307 | unsigned NVPTXTargetLowering::getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, |
| 6308 | EVT ToVT) const { |
| 6309 | if (isOperationLegal(Op, VT: ToVT)) |
| 6310 | return Op; |
| 6311 | switch (Op) { |
| 6312 | case ISD::FP_TO_UINT: |
| 6313 | if (isOperationLegal(Op: ISD::FP_TO_SINT, VT: ToVT)) |
| 6314 | return ISD::FP_TO_SINT; |
| 6315 | break; |
| 6316 | case ISD::STRICT_FP_TO_UINT: |
| 6317 | if (isOperationLegal(Op: ISD::STRICT_FP_TO_SINT, VT: ToVT)) |
| 6318 | return ISD::STRICT_FP_TO_SINT; |
| 6319 | break; |
| 6320 | case ISD::VP_FP_TO_UINT: |
| 6321 | if (isOperationLegal(Op: ISD::VP_FP_TO_SINT, VT: ToVT)) |
| 6322 | return ISD::VP_FP_TO_SINT; |
| 6323 | break; |
| 6324 | default: |
| 6325 | break; |
| 6326 | } |
| 6327 | return Op; |
| 6328 | } |
| 6329 | |
| 6330 | // Pin NVPTXTargetObjectFile's vtables to this file. |
| 6331 | NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default; |
| 6332 | |
| 6333 | MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( |
| 6334 | const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { |
| 6335 | return getDataSection(); |
| 6336 | } |
| 6337 | |