| 1 | //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===---------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs peephole optimizations to clean up ugly code |
| 10 | // sequences at the MachineInstruction layer. It runs at the end of |
| 11 | // the SSA phases, following VSX swap removal. A pass of dead code |
| 12 | // elimination follows this one for quick clean-up of any dead |
| 13 | // instructions introduced here. Although we could do this as callbacks |
| 14 | // from the generic peephole pass, this would have a couple of bad |
| 15 | // effects: it might remove optimization opportunities for VSX swap |
| 16 | // removal, and it would miss cleanups made possible following VSX |
| 17 | // swap removal. |
| 18 | // |
| 19 | // NOTE: We run the verifier after this pass in Asserts/Debug builds so it |
| 20 | // is important to keep the code valid after transformations. |
| 21 | // Common causes of errors stem from violating the contract specified |
| 22 | // by kill flags. Whenever a transformation changes the live range of |
| 23 | // a register, that register should be added to the work list using |
| 24 | // addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation |
| 25 | // is changing the definition of a register (i.e. removing the single |
| 26 | // definition of the original vreg), it needs to provide a dummy |
| 27 | // definition of that register using addDummyDef(<MBB>, <Reg>). |
| 28 | //===---------------------------------------------------------------------===// |
| 29 | |
| 30 | #include "MCTargetDesc/PPCMCTargetDesc.h" |
| 31 | #include "MCTargetDesc/PPCPredicates.h" |
| 32 | #include "PPC.h" |
| 33 | #include "PPCInstrInfo.h" |
| 34 | #include "PPCMachineFunctionInfo.h" |
| 35 | #include "PPCTargetMachine.h" |
| 36 | #include "llvm/ADT/Statistic.h" |
| 37 | #include "llvm/CodeGen/LiveVariables.h" |
| 38 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 39 | #include "llvm/CodeGen/MachineDominators.h" |
| 40 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 41 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 42 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 43 | #include "llvm/CodeGen/MachinePostDominators.h" |
| 44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 45 | #include "llvm/IR/GlobalVariable.h" |
| 46 | #include "llvm/Support/Debug.h" |
| 47 | #include "llvm/Support/DebugCounter.h" |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "ppc-mi-peepholes" |
| 52 | |
| 53 | STATISTIC(RemoveTOCSave, "Number of TOC saves removed" ); |
| 54 | STATISTIC(MultiTOCSaves, |
| 55 | "Number of functions with multiple TOC saves that must be kept" ); |
| 56 | STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue" ); |
| 57 | STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions" ); |
| 58 | STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions" ); |
| 59 | STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI" ); |
| 60 | STATISTIC(NumConvertedToImmediateForm, |
| 61 | "Number of instructions converted to their immediate form" ); |
| 62 | STATISTIC(NumFunctionsEnteredInMIPeephole, |
| 63 | "Number of functions entered in PPC MI Peepholes" ); |
| 64 | STATISTIC(NumFixedPointIterations, |
| 65 | "Number of fixed-point iterations converting reg-reg instructions " |
| 66 | "to reg-imm ones" ); |
| 67 | STATISTIC(NumRotatesCollapsed, |
| 68 | "Number of pairs of rotate left, clear left/right collapsed" ); |
| 69 | STATISTIC(NumEXTSWAndSLDICombined, |
| 70 | "Number of pairs of EXTSW and SLDI combined as EXTSWSLI" ); |
| 71 | STATISTIC(NumLoadImmZeroFoldedAndRemoved, |
| 72 | "Number of LI(8) reg, 0 that are folded to r0 and removed" ); |
| 73 | |
| 74 | static cl::opt<bool> |
| 75 | FixedPointRegToImm("ppc-reg-to-imm-fixed-point" , cl::Hidden, cl::init(Val: true), |
| 76 | cl::desc("Iterate to a fixed point when attempting to " |
| 77 | "convert reg-reg instructions to reg-imm" )); |
| 78 | |
| 79 | static cl::opt<bool> |
| 80 | ConvertRegReg("ppc-convert-rr-to-ri" , cl::Hidden, cl::init(Val: true), |
| 81 | cl::desc("Convert eligible reg+reg instructions to reg+imm" )); |
| 82 | |
| 83 | static cl::opt<bool> |
| 84 | EnableSExtElimination("ppc-eliminate-signext" , |
| 85 | cl::desc("enable elimination of sign-extensions" ), |
| 86 | cl::init(Val: true), cl::Hidden); |
| 87 | |
| 88 | static cl::opt<bool> |
| 89 | EnableZExtElimination("ppc-eliminate-zeroext" , |
| 90 | cl::desc("enable elimination of zero-extensions" ), |
| 91 | cl::init(Val: true), cl::Hidden); |
| 92 | |
| 93 | static cl::opt<bool> |
| 94 | EnableTrapOptimization("ppc-opt-conditional-trap" , |
| 95 | cl::desc("enable optimization of conditional traps" ), |
| 96 | cl::init(Val: false), cl::Hidden); |
| 97 | |
| 98 | DEBUG_COUNTER( |
| 99 | PeepholeXToICounter, "ppc-xtoi-peephole" , |
| 100 | "Controls whether PPC reg+reg to reg+imm peephole is performed on a MI" ); |
| 101 | |
| 102 | DEBUG_COUNTER(PeepholePerOpCounter, "ppc-per-op-peephole" , |
| 103 | "Controls whether PPC per opcode peephole is performed on a MI" ); |
| 104 | |
| 105 | namespace { |
| 106 | |
| 107 | struct PPCMIPeephole : public MachineFunctionPass { |
| 108 | |
| 109 | static char ID; |
| 110 | const PPCInstrInfo *TII; |
| 111 | MachineFunction *MF; |
| 112 | MachineRegisterInfo *MRI; |
| 113 | LiveVariables *LV; |
| 114 | |
| 115 | PPCMIPeephole() : MachineFunctionPass(ID) {} |
| 116 | |
| 117 | private: |
| 118 | MachineDominatorTree *MDT; |
| 119 | MachinePostDominatorTree *MPDT; |
| 120 | MachineBlockFrequencyInfo *MBFI; |
| 121 | BlockFrequency EntryFreq; |
| 122 | SmallSet<Register, 16> RegsToUpdate; |
| 123 | |
| 124 | // Initialize class variables. |
| 125 | void initialize(MachineFunction &MFParm); |
| 126 | |
| 127 | // Perform peepholes. |
| 128 | bool simplifyCode(); |
| 129 | |
| 130 | // Perform peepholes. |
| 131 | bool eliminateRedundantCompare(); |
| 132 | bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); |
| 133 | bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase); |
| 134 | bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI, |
| 135 | MachineInstr *&ToErase); |
| 136 | void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, |
| 137 | MachineInstr *MI); |
| 138 | |
| 139 | // A number of transformations will eliminate the definition of a register |
| 140 | // as all of its uses will be removed. However, this leaves a register |
| 141 | // without a definition for LiveVariables. Such transformations should |
| 142 | // use this function to provide a dummy definition of the register that |
| 143 | // will simply be removed by DCE. |
| 144 | void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) { |
| 145 | BuildMI(BB&: MBB, I: At, MIMD: At->getDebugLoc(), MCID: TII->get(Opcode: PPC::IMPLICIT_DEF), DestReg: Reg); |
| 146 | } |
| 147 | void addRegToUpdateWithLine(Register Reg, int Line); |
| 148 | void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI, |
| 149 | SmallVectorImpl<MachineInstr *> &PHIs, |
| 150 | Register Dst); |
| 151 | |
| 152 | public: |
| 153 | |
| 154 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 155 | AU.addRequired<LiveVariablesWrapperPass>(); |
| 156 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 157 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
| 158 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 159 | AU.addPreserved<LiveVariablesWrapperPass>(); |
| 160 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 161 | AU.addPreserved<MachinePostDominatorTreeWrapperPass>(); |
| 162 | AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); |
| 163 | MachineFunctionPass::getAnalysisUsage(AU); |
| 164 | } |
| 165 | |
| 166 | // Main entry point for this pass. |
| 167 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 168 | initialize(MFParm&: MF); |
| 169 | // At this point, TOC pointer should not be used in a function that uses |
| 170 | // PC-Relative addressing. |
| 171 | assert((MF.getRegInfo().use_empty(PPC::X2) || |
| 172 | !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) && |
| 173 | "TOC pointer used in a function using PC-Relative addressing!" ); |
| 174 | if (skipFunction(F: MF.getFunction())) |
| 175 | return false; |
| 176 | bool Changed = simplifyCode(); |
| 177 | #ifndef NDEBUG |
| 178 | if (Changed) |
| 179 | MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with " |
| 180 | "-mllvm -disable-ppc-peephole" ); |
| 181 | #endif |
| 182 | return Changed; |
| 183 | } |
| 184 | }; |
| 185 | |
| 186 | #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__) |
| 187 | void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) { |
| 188 | if (!Reg.isVirtual()) |
| 189 | return; |
| 190 | if (RegsToUpdate.insert(V: Reg).second) |
| 191 | LLVM_DEBUG(dbgs() << "Adding register: " << printReg(Reg) << " on line " |
| 192 | << Line << " for re-computation of kill flags\n" ); |
| 193 | } |
| 194 | |
| 195 | // Initialize class variables. |
| 196 | void PPCMIPeephole::initialize(MachineFunction &MFParm) { |
| 197 | MF = &MFParm; |
| 198 | MRI = &MF->getRegInfo(); |
| 199 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 200 | MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); |
| 201 | MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
| 202 | LV = &getAnalysis<LiveVariablesWrapperPass>().getLV(); |
| 203 | EntryFreq = MBFI->getEntryFreq(); |
| 204 | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 205 | RegsToUpdate.clear(); |
| 206 | LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n" ); |
| 207 | LLVM_DEBUG(MF->dump()); |
| 208 | } |
| 209 | |
| 210 | static MachineInstr *getVRegDefOrNull(MachineOperand *Op, |
| 211 | MachineRegisterInfo *MRI) { |
| 212 | assert(Op && "Invalid Operand!" ); |
| 213 | if (!Op->isReg()) |
| 214 | return nullptr; |
| 215 | |
| 216 | Register Reg = Op->getReg(); |
| 217 | if (!Reg.isVirtual()) |
| 218 | return nullptr; |
| 219 | |
| 220 | return MRI->getVRegDef(Reg); |
| 221 | } |
| 222 | |
| 223 | // This function returns number of known zero bits in output of MI |
| 224 | // starting from the most significant bit. |
| 225 | static unsigned getKnownLeadingZeroCount(const unsigned Reg, |
| 226 | const PPCInstrInfo *TII, |
| 227 | const MachineRegisterInfo *MRI) { |
| 228 | MachineInstr *MI = MRI->getVRegDef(Reg); |
| 229 | unsigned Opcode = MI->getOpcode(); |
| 230 | if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || |
| 231 | Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec) |
| 232 | return MI->getOperand(i: 3).getImm(); |
| 233 | |
| 234 | if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && |
| 235 | MI->getOperand(i: 3).getImm() <= 63 - MI->getOperand(i: 2).getImm()) |
| 236 | return MI->getOperand(i: 3).getImm(); |
| 237 | |
| 238 | if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| 239 | Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || |
| 240 | Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && |
| 241 | MI->getOperand(i: 3).getImm() <= MI->getOperand(i: 4).getImm()) |
| 242 | return 32 + MI->getOperand(i: 3).getImm(); |
| 243 | |
| 244 | if (Opcode == PPC::ANDI_rec) { |
| 245 | uint16_t Imm = MI->getOperand(i: 2).getImm(); |
| 246 | return 48 + llvm::countl_zero(Val: Imm); |
| 247 | } |
| 248 | |
| 249 | if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || |
| 250 | Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || |
| 251 | Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) |
| 252 | // The result ranges from 0 to 32. |
| 253 | return 58; |
| 254 | |
| 255 | if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || |
| 256 | Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec) |
| 257 | // The result ranges from 0 to 64. |
| 258 | return 57; |
| 259 | |
| 260 | if (Opcode == PPC::LHZ || Opcode == PPC::LHZX || |
| 261 | Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || |
| 262 | Opcode == PPC::LHZU || Opcode == PPC::LHZUX || |
| 263 | Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) |
| 264 | return 48; |
| 265 | |
| 266 | if (Opcode == PPC::LBZ || Opcode == PPC::LBZX || |
| 267 | Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || |
| 268 | Opcode == PPC::LBZU || Opcode == PPC::LBZUX || |
| 269 | Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) |
| 270 | return 56; |
| 271 | |
| 272 | if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec || |
| 273 | Opcode == PPC::AND8_rec) |
| 274 | return std::max( |
| 275 | a: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 1).getReg(), TII, MRI), |
| 276 | b: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 2).getReg(), TII, MRI)); |
| 277 | |
| 278 | if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR || |
| 279 | Opcode == PPC::XOR8 || Opcode == PPC::OR_rec || |
| 280 | Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec || |
| 281 | Opcode == PPC::XOR8_rec) |
| 282 | return std::min( |
| 283 | a: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 1).getReg(), TII, MRI), |
| 284 | b: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 2).getReg(), TII, MRI)); |
| 285 | |
| 286 | if (TII->isZeroExtended(Reg, MRI)) |
| 287 | return 32; |
| 288 | |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | // This function maintains a map for the pairs <TOC Save Instr, Keep> |
| 293 | // Each time a new TOC save is encountered, it checks if any of the existing |
| 294 | // ones are dominated by the new one. If so, it marks the existing one as |
| 295 | // redundant by setting it's entry in the map as false. It then adds the new |
| 296 | // instruction to the map with either true or false depending on if any |
| 297 | // existing instructions dominated the new one. |
| 298 | void PPCMIPeephole::UpdateTOCSaves( |
| 299 | std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { |
| 300 | assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here" ); |
| 301 | // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part, |
| 302 | // here only support it under ELFv2. |
| 303 | if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) { |
| 304 | PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); |
| 305 | |
| 306 | MachineBasicBlock *Entry = &MF->front(); |
| 307 | BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MBB: MI->getParent()); |
| 308 | |
| 309 | // If the block in which the TOC save resides is in a block that |
| 310 | // post-dominates Entry, or a block that is hotter than entry (keep in mind |
| 311 | // that early MachineLICM has already run so the TOC save won't be hoisted) |
| 312 | // we can just do the save in the prologue. |
| 313 | if (CurrBlockFreq > EntryFreq || MPDT->dominates(A: MI->getParent(), B: Entry)) |
| 314 | FI->setMustSaveTOC(true); |
| 315 | |
| 316 | // If we are saving the TOC in the prologue, all the TOC saves can be |
| 317 | // removed from the code. |
| 318 | if (FI->mustSaveTOC()) { |
| 319 | for (auto &TOCSave : TOCSaves) |
| 320 | TOCSave.second = false; |
| 321 | // Add new instruction to map. |
| 322 | TOCSaves[MI] = false; |
| 323 | return; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | bool Keep = true; |
| 328 | for (auto &I : TOCSaves) { |
| 329 | MachineInstr *CurrInst = I.first; |
| 330 | // If new instruction dominates an existing one, mark existing one as |
| 331 | // redundant. |
| 332 | if (I.second && MDT->dominates(A: MI, B: CurrInst)) |
| 333 | I.second = false; |
| 334 | // Check if the new instruction is redundant. |
| 335 | if (MDT->dominates(A: CurrInst, B: MI)) { |
| 336 | Keep = false; |
| 337 | break; |
| 338 | } |
| 339 | } |
| 340 | // Add new instruction to map. |
| 341 | TOCSaves[MI] = Keep; |
| 342 | } |
| 343 | |
| 344 | // This function returns a list of all PHI nodes in the tree starting from |
| 345 | // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes. |
| 346 | // The list initially only contains the root PHI. When we visit a PHI node, we |
| 347 | // add it to the list. We continue to look for other PHI node operands while |
| 348 | // there are nodes to visit in the list. The function returns false if the |
| 349 | // optimization cannot be applied on this tree. |
| 350 | static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI, |
| 351 | MachineInstr *RootPHI, |
| 352 | SmallVectorImpl<MachineInstr *> &PHIs) { |
| 353 | PHIs.push_back(Elt: RootPHI); |
| 354 | unsigned VisitedIndex = 0; |
| 355 | while (VisitedIndex < PHIs.size()) { |
| 356 | MachineInstr *VisitedPHI = PHIs[VisitedIndex]; |
| 357 | for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands(); |
| 358 | PHIOp != NumOps; PHIOp += 2) { |
| 359 | Register RegOp = VisitedPHI->getOperand(i: PHIOp).getReg(); |
| 360 | if (!RegOp.isVirtual()) |
| 361 | return false; |
| 362 | MachineInstr *Instr = MRI->getVRegDef(Reg: RegOp); |
| 363 | // While collecting the PHI nodes, we check if they can be converted (i.e. |
| 364 | // all the operands are either copies, implicit defs or PHI nodes). |
| 365 | unsigned Opcode = Instr->getOpcode(); |
| 366 | if (Opcode == PPC::COPY) { |
| 367 | Register Reg = Instr->getOperand(i: 1).getReg(); |
| 368 | if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass) |
| 369 | return false; |
| 370 | } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI) |
| 371 | return false; |
| 372 | // If we detect a cycle in the PHI nodes, we exit. It would be |
| 373 | // possible to change cycles as well, but that would add a lot |
| 374 | // of complexity for a case that is unlikely to occur with MMA |
| 375 | // code. |
| 376 | if (Opcode != PPC::PHI) |
| 377 | continue; |
| 378 | if (llvm::is_contained(Range&: PHIs, Element: Instr)) |
| 379 | return false; |
| 380 | PHIs.push_back(Elt: Instr); |
| 381 | } |
| 382 | VisitedIndex++; |
| 383 | } |
| 384 | return true; |
| 385 | } |
| 386 | |
| 387 | // This function changes the unprimed accumulator PHI nodes in the PHIs list to |
| 388 | // primed accumulator PHI nodes. The list is traversed in reverse order to |
| 389 | // change all the PHI operands of a PHI node before changing the node itself. |
| 390 | // We keep a map to associate each changed PHI node to its non-changed form. |
| 391 | void PPCMIPeephole::convertUnprimedAccPHIs( |
| 392 | const PPCInstrInfo *TII, MachineRegisterInfo *MRI, |
| 393 | SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) { |
| 394 | DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap; |
| 395 | for (MachineInstr *PHI : llvm::reverse(C&: PHIs)) { |
| 396 | SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps; |
| 397 | // We check if the current PHI node can be changed by looking at its |
| 398 | // operands. If all the operands are either copies from primed |
| 399 | // accumulators, implicit definitions or other unprimed accumulator |
| 400 | // PHI nodes, we change it. |
| 401 | for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps; |
| 402 | PHIOp += 2) { |
| 403 | Register RegOp = PHI->getOperand(i: PHIOp).getReg(); |
| 404 | MachineInstr *PHIInput = MRI->getVRegDef(Reg: RegOp); |
| 405 | unsigned Opcode = PHIInput->getOpcode(); |
| 406 | assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF || |
| 407 | Opcode == PPC::PHI) && |
| 408 | "Unexpected instruction" ); |
| 409 | if (Opcode == PPC::COPY) { |
| 410 | assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) == |
| 411 | &PPC::ACCRCRegClass && |
| 412 | "Unexpected register class" ); |
| 413 | PHIOps.push_back(Elt: {PHIInput->getOperand(i: 1), PHI->getOperand(i: PHIOp + 1)}); |
| 414 | } else if (Opcode == PPC::IMPLICIT_DEF) { |
| 415 | Register AccReg = MRI->createVirtualRegister(RegClass: &PPC::ACCRCRegClass); |
| 416 | BuildMI(BB&: *PHIInput->getParent(), I: PHIInput, MIMD: PHIInput->getDebugLoc(), |
| 417 | MCID: TII->get(Opcode: PPC::IMPLICIT_DEF), DestReg: AccReg); |
| 418 | PHIOps.push_back(Elt: {MachineOperand::CreateReg(Reg: AccReg, isDef: false), |
| 419 | PHI->getOperand(i: PHIOp + 1)}); |
| 420 | } else if (Opcode == PPC::PHI) { |
| 421 | // We found a PHI operand. At this point we know this operand |
| 422 | // has already been changed so we get its associated changed form |
| 423 | // from the map. |
| 424 | assert(ChangedPHIMap.count(PHIInput) == 1 && |
| 425 | "This PHI node should have already been changed." ); |
| 426 | MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(Val: PHIInput); |
| 427 | PHIOps.push_back(Elt: {MachineOperand::CreateReg( |
| 428 | Reg: PrimedAccPHI->getOperand(i: 0).getReg(), isDef: false), |
| 429 | PHI->getOperand(i: PHIOp + 1)}); |
| 430 | } |
| 431 | } |
| 432 | Register AccReg = Dst; |
| 433 | // If the PHI node we are changing is the root node, the register it defines |
| 434 | // will be the destination register of the original copy (of the PHI def). |
| 435 | // For all other PHI's in the list, we need to create another primed |
| 436 | // accumulator virtual register as the PHI will no longer define the |
| 437 | // unprimed accumulator. |
| 438 | if (PHI != PHIs[0]) |
| 439 | AccReg = MRI->createVirtualRegister(RegClass: &PPC::ACCRCRegClass); |
| 440 | MachineInstrBuilder NewPHI = BuildMI( |
| 441 | BB&: *PHI->getParent(), I: PHI, MIMD: PHI->getDebugLoc(), MCID: TII->get(Opcode: PPC::PHI), DestReg: AccReg); |
| 442 | for (auto RegMBB : PHIOps) { |
| 443 | NewPHI.add(MO: RegMBB.first).add(MO: RegMBB.second); |
| 444 | if (MRI->isSSA()) |
| 445 | addRegToUpdate(RegMBB.first.getReg()); |
| 446 | } |
| 447 | // The liveness of old PHI and new PHI have to be updated. |
| 448 | addRegToUpdate(PHI->getOperand(0).getReg()); |
| 449 | addRegToUpdate(AccReg); |
| 450 | ChangedPHIMap[PHI] = NewPHI.getInstr(); |
| 451 | LLVM_DEBUG(dbgs() << "Converting PHI: " ); |
| 452 | LLVM_DEBUG(PHI->dump()); |
| 453 | LLVM_DEBUG(dbgs() << "To: " ); |
| 454 | LLVM_DEBUG(NewPHI.getInstr()->dump()); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | // Perform peephole optimizations. |
| 459 | bool PPCMIPeephole::simplifyCode() { |
| 460 | bool Simplified = false; |
| 461 | bool TrapOpt = false; |
| 462 | MachineInstr* ToErase = nullptr; |
| 463 | std::map<MachineInstr *, bool> TOCSaves; |
| 464 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
| 465 | NumFunctionsEnteredInMIPeephole++; |
| 466 | if (ConvertRegReg) { |
| 467 | // Fixed-point conversion of reg/reg instructions fed by load-immediate |
| 468 | // into reg/imm instructions. FIXME: This is expensive, control it with |
| 469 | // an option. |
| 470 | bool SomethingChanged = false; |
| 471 | do { |
| 472 | NumFixedPointIterations++; |
| 473 | SomethingChanged = false; |
| 474 | for (MachineBasicBlock &MBB : *MF) { |
| 475 | for (MachineInstr &MI : MBB) { |
| 476 | if (MI.isDebugInstr()) |
| 477 | continue; |
| 478 | |
| 479 | if (!DebugCounter::shouldExecute(CounterName: PeepholeXToICounter)) |
| 480 | continue; |
| 481 | |
| 482 | SmallSet<Register, 4> RRToRIRegsToUpdate; |
| 483 | if (!TII->convertToImmediateForm(MI, RegsToUpdate&: RRToRIRegsToUpdate)) |
| 484 | continue; |
| 485 | for (Register R : RRToRIRegsToUpdate) |
| 486 | addRegToUpdate(R); |
| 487 | // The updated instruction may now have new register operands. |
| 488 | // Conservatively add them to recompute the flags as well. |
| 489 | for (const MachineOperand &MO : MI.operands()) |
| 490 | if (MO.isReg()) |
| 491 | addRegToUpdate(MO.getReg()); |
| 492 | // We don't erase anything in case the def has other uses. Let DCE |
| 493 | // remove it if it can be removed. |
| 494 | LLVM_DEBUG(dbgs() << "Converted instruction to imm form: " ); |
| 495 | LLVM_DEBUG(MI.dump()); |
| 496 | NumConvertedToImmediateForm++; |
| 497 | SomethingChanged = true; |
| 498 | Simplified = true; |
| 499 | } |
| 500 | } |
| 501 | } while (SomethingChanged && FixedPointRegToImm); |
| 502 | } |
| 503 | |
| 504 | // Since we are deleting this instruction, we need to run LiveVariables |
| 505 | // on any of its definitions that are marked as needing an update since |
| 506 | // we can't run LiveVariables on a deleted register. This only needs |
| 507 | // to be done for defs since uses will have their own defining |
| 508 | // instructions so we won't be running LiveVariables on a deleted reg. |
| 509 | auto recomputeLVForDyingInstr = [&]() { |
| 510 | if (RegsToUpdate.empty()) |
| 511 | return; |
| 512 | for (MachineOperand &MO : ToErase->operands()) { |
| 513 | if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(V: MO.getReg())) |
| 514 | continue; |
| 515 | Register RegToUpdate = MO.getReg(); |
| 516 | RegsToUpdate.erase(V: RegToUpdate); |
| 517 | // If some transformation has introduced an additional definition of |
| 518 | // this register (breaking SSA), we can safely convert this def to |
| 519 | // a def of an invalid register as the instruction is going away. |
| 520 | if (!MRI->getUniqueVRegDef(Reg: RegToUpdate)) |
| 521 | MO.setReg(PPC::NoRegister); |
| 522 | LV->recomputeForSingleDefVirtReg(Reg: RegToUpdate); |
| 523 | } |
| 524 | }; |
| 525 | |
| 526 | for (MachineBasicBlock &MBB : *MF) { |
| 527 | for (MachineInstr &MI : MBB) { |
| 528 | |
| 529 | // If the previous instruction was marked for elimination, |
| 530 | // remove it now. |
| 531 | if (ToErase) { |
| 532 | LLVM_DEBUG(dbgs() << "Deleting instruction: " ); |
| 533 | LLVM_DEBUG(ToErase->dump()); |
| 534 | recomputeLVForDyingInstr(); |
| 535 | ToErase->eraseFromParent(); |
| 536 | ToErase = nullptr; |
| 537 | } |
| 538 | // If a conditional trap instruction got optimized to an |
| 539 | // unconditional trap, eliminate all the instructions after |
| 540 | // the trap. |
| 541 | if (EnableTrapOptimization && TrapOpt) { |
| 542 | ToErase = &MI; |
| 543 | continue; |
| 544 | } |
| 545 | |
| 546 | // Ignore debug instructions. |
| 547 | if (MI.isDebugInstr()) |
| 548 | continue; |
| 549 | |
| 550 | if (!DebugCounter::shouldExecute(CounterName: PeepholePerOpCounter)) |
| 551 | continue; |
| 552 | |
| 553 | // Per-opcode peepholes. |
| 554 | switch (MI.getOpcode()) { |
| 555 | |
| 556 | default: |
| 557 | break; |
| 558 | case PPC::COPY: { |
| 559 | Register Src = MI.getOperand(i: 1).getReg(); |
| 560 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 561 | if (!Src.isVirtual() || !Dst.isVirtual()) |
| 562 | break; |
| 563 | if (MRI->getRegClass(Reg: Src) != &PPC::UACCRCRegClass || |
| 564 | MRI->getRegClass(Reg: Dst) != &PPC::ACCRCRegClass) |
| 565 | break; |
| 566 | |
| 567 | // We are copying an unprimed accumulator to a primed accumulator. |
| 568 | // If the input to the copy is a PHI that is fed only by (i) copies in |
| 569 | // the other direction (ii) implicitly defined unprimed accumulators or |
| 570 | // (iii) other PHI nodes satisfying (i) and (ii), we can change |
| 571 | // the PHI to a PHI on primed accumulators (as long as we also change |
| 572 | // its operands). To detect and change such copies, we first get a list |
| 573 | // of all the PHI nodes starting from the root PHI node in BFS order. |
| 574 | // We then visit all these PHI nodes to check if they can be changed to |
| 575 | // primed accumulator PHI nodes and if so, we change them. |
| 576 | MachineInstr *RootPHI = MRI->getVRegDef(Reg: Src); |
| 577 | if (RootPHI->getOpcode() != PPC::PHI) |
| 578 | break; |
| 579 | |
| 580 | SmallVector<MachineInstr *, 4> PHIs; |
| 581 | if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs)) |
| 582 | break; |
| 583 | |
| 584 | convertUnprimedAccPHIs(TII, MRI, PHIs, Dst); |
| 585 | |
| 586 | ToErase = &MI; |
| 587 | break; |
| 588 | } |
| 589 | case PPC::LI: |
| 590 | case PPC::LI8: { |
| 591 | // If we are materializing a zero, look for any use operands for which |
| 592 | // zero means immediate zero. All such operands can be replaced with |
| 593 | // PPC::ZERO. |
| 594 | if (!MI.getOperand(i: 1).isImm() || MI.getOperand(i: 1).getImm() != 0) |
| 595 | break; |
| 596 | Register MIDestReg = MI.getOperand(i: 0).getReg(); |
| 597 | bool Folded = false; |
| 598 | for (MachineInstr& UseMI : MRI->use_instructions(Reg: MIDestReg)) |
| 599 | Folded |= TII->onlyFoldImmediate(UseMI, DefMI&: MI, Reg: MIDestReg); |
| 600 | if (MRI->use_nodbg_empty(RegNo: MIDestReg)) { |
| 601 | ++NumLoadImmZeroFoldedAndRemoved; |
| 602 | ToErase = &MI; |
| 603 | } |
| 604 | if (Folded) |
| 605 | addRegToUpdate(MIDestReg); |
| 606 | Simplified |= Folded; |
| 607 | break; |
| 608 | } |
| 609 | case PPC::STW: |
| 610 | case PPC::STD: { |
| 611 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 612 | if (MFI.hasVarSizedObjects() || |
| 613 | (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() && |
| 614 | !MF->getSubtarget<PPCSubtarget>().isAIXABI())) |
| 615 | break; |
| 616 | // When encountering a TOC save instruction, call UpdateTOCSaves |
| 617 | // to add it to the TOCSaves map and mark any existing TOC saves |
| 618 | // it dominates as redundant. |
| 619 | if (TII->isTOCSaveMI(MI)) |
| 620 | UpdateTOCSaves(TOCSaves, MI: &MI); |
| 621 | break; |
| 622 | } |
| 623 | case PPC::XXPERMDI: { |
| 624 | // Perform simplifications of 2x64 vector swaps and splats. |
| 625 | // A swap is identified by an immediate value of 2, and a splat |
| 626 | // is identified by an immediate value of 0 or 3. |
| 627 | int Immed = MI.getOperand(i: 3).getImm(); |
| 628 | |
| 629 | if (Immed == 1) |
| 630 | break; |
| 631 | |
| 632 | // For each of these simplifications, we need the two source |
| 633 | // regs to match. Unfortunately, MachineCSE ignores COPY and |
| 634 | // SUBREG_TO_REG, so for example we can see |
| 635 | // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. |
| 636 | // We have to look through chains of COPY and SUBREG_TO_REG |
| 637 | // to find the real source values for comparison. |
| 638 | Register TrueReg1 = |
| 639 | TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI); |
| 640 | Register TrueReg2 = |
| 641 | TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 2).getReg(), MRI); |
| 642 | |
| 643 | if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual())) |
| 644 | break; |
| 645 | |
| 646 | MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg1); |
| 647 | |
| 648 | if (!DefMI) |
| 649 | break; |
| 650 | |
| 651 | unsigned DefOpc = DefMI->getOpcode(); |
| 652 | |
| 653 | // If this is a splat fed by a splatting load, the splat is |
| 654 | // redundant. Replace with a copy. This doesn't happen directly due |
| 655 | // to code in PPCDAGToDAGISel.cpp, but it can happen when converting |
| 656 | // a load of a double to a vector of 64-bit integers. |
| 657 | auto isConversionOfLoadAndSplat = [=]() -> bool { |
| 658 | if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) |
| 659 | return false; |
| 660 | Register FeedReg1 = |
| 661 | TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 1).getReg(), MRI); |
| 662 | if (FeedReg1.isVirtual()) { |
| 663 | MachineInstr *LoadMI = MRI->getVRegDef(Reg: FeedReg1); |
| 664 | if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) |
| 665 | return true; |
| 666 | } |
| 667 | return false; |
| 668 | }; |
| 669 | if ((Immed == 0 || Immed == 3) && |
| 670 | (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) { |
| 671 | LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " |
| 672 | "to load-and-splat/copy: " ); |
| 673 | LLVM_DEBUG(MI.dump()); |
| 674 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 675 | DestReg: MI.getOperand(i: 0).getReg()) |
| 676 | .add(MO: MI.getOperand(i: 1)); |
| 677 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 678 | ToErase = &MI; |
| 679 | Simplified = true; |
| 680 | } |
| 681 | |
| 682 | // If this is a splat or a swap fed by another splat, we |
| 683 | // can replace it with a copy. |
| 684 | if (DefOpc == PPC::XXPERMDI) { |
| 685 | Register DefReg1 = DefMI->getOperand(i: 1).getReg(); |
| 686 | Register DefReg2 = DefMI->getOperand(i: 2).getReg(); |
| 687 | unsigned DefImmed = DefMI->getOperand(i: 3).getImm(); |
| 688 | |
| 689 | // If the two inputs are not the same register, check to see if |
| 690 | // they originate from the same virtual register after only |
| 691 | // copy-like instructions. |
| 692 | if (DefReg1 != DefReg2) { |
| 693 | Register FeedReg1 = TRI->lookThruCopyLike(SrcReg: DefReg1, MRI); |
| 694 | Register FeedReg2 = TRI->lookThruCopyLike(SrcReg: DefReg2, MRI); |
| 695 | |
| 696 | if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual())) |
| 697 | break; |
| 698 | } |
| 699 | |
| 700 | if (DefImmed == 0 || DefImmed == 3) { |
| 701 | LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " |
| 702 | "to splat/copy: " ); |
| 703 | LLVM_DEBUG(MI.dump()); |
| 704 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 705 | DestReg: MI.getOperand(i: 0).getReg()) |
| 706 | .add(MO: MI.getOperand(i: 1)); |
| 707 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 708 | ToErase = &MI; |
| 709 | Simplified = true; |
| 710 | } |
| 711 | |
| 712 | // If this is a splat fed by a swap, we can simplify modify |
| 713 | // the splat to splat the other value from the swap's input |
| 714 | // parameter. |
| 715 | else if ((Immed == 0 || Immed == 3) && DefImmed == 2) { |
| 716 | LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: " ); |
| 717 | LLVM_DEBUG(MI.dump()); |
| 718 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 719 | addRegToUpdate(MI.getOperand(2).getReg()); |
| 720 | MI.getOperand(i: 1).setReg(DefReg1); |
| 721 | MI.getOperand(i: 2).setReg(DefReg2); |
| 722 | MI.getOperand(i: 3).setImm(3 - Immed); |
| 723 | addRegToUpdate(DefReg1); |
| 724 | addRegToUpdate(DefReg2); |
| 725 | Simplified = true; |
| 726 | } |
| 727 | |
| 728 | // If this is a swap fed by a swap, we can replace it |
| 729 | // with a copy from the first swap's input. |
| 730 | else if (Immed == 2 && DefImmed == 2) { |
| 731 | LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: " ); |
| 732 | LLVM_DEBUG(MI.dump()); |
| 733 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 734 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 735 | DestReg: MI.getOperand(i: 0).getReg()) |
| 736 | .add(MO: DefMI->getOperand(i: 1)); |
| 737 | addRegToUpdate(DefMI->getOperand(0).getReg()); |
| 738 | addRegToUpdate(DefMI->getOperand(1).getReg()); |
| 739 | ToErase = &MI; |
| 740 | Simplified = true; |
| 741 | } |
| 742 | } else if ((Immed == 0 || Immed == 3 || Immed == 2) && |
| 743 | DefOpc == PPC::XXPERMDIs && |
| 744 | (DefMI->getOperand(i: 2).getImm() == 0 || |
| 745 | DefMI->getOperand(i: 2).getImm() == 3)) { |
| 746 | ToErase = &MI; |
| 747 | Simplified = true; |
| 748 | // Swap of a splat, convert to copy. |
| 749 | if (Immed == 2) { |
| 750 | LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): " ); |
| 751 | LLVM_DEBUG(MI.dump()); |
| 752 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 753 | DestReg: MI.getOperand(i: 0).getReg()) |
| 754 | .add(MO: MI.getOperand(i: 1)); |
| 755 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 756 | break; |
| 757 | } |
| 758 | // Splat fed by another splat - switch the output of the first |
| 759 | // and remove the second. |
| 760 | DefMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg()); |
| 761 | LLVM_DEBUG(dbgs() << "Removing redundant splat: " ); |
| 762 | LLVM_DEBUG(MI.dump()); |
| 763 | } else if (Immed == 2 && |
| 764 | (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH || |
| 765 | DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW || |
| 766 | DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH || |
| 767 | DefOpc == PPC::VSPLTISW)) { |
| 768 | // Swap of various vector splats, convert to copy. |
| 769 | ToErase = &MI; |
| 770 | Simplified = true; |
| 771 | LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => " |
| 772 | "copy(vsplt(is)?[b|h|w]|xxspltw): " ); |
| 773 | LLVM_DEBUG(MI.dump()); |
| 774 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 775 | DestReg: MI.getOperand(i: 0).getReg()) |
| 776 | .add(MO: MI.getOperand(i: 1)); |
| 777 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 778 | } else if ((Immed == 0 || Immed == 3 || Immed == 2) && |
| 779 | TII->isLoadFromConstantPool(I: DefMI)) { |
| 780 | const Constant *C = TII->getConstantFromConstantPool(I: DefMI); |
| 781 | if (C && C->getType()->isVectorTy() && C->getSplatValue()) { |
| 782 | ToErase = &MI; |
| 783 | Simplified = true; |
| 784 | LLVM_DEBUG(dbgs() |
| 785 | << "Optimizing swap(splat pattern from constant-pool) " |
| 786 | "=> copy(splat pattern from constant-pool): " ); |
| 787 | LLVM_DEBUG(MI.dump()); |
| 788 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 789 | DestReg: MI.getOperand(i: 0).getReg()) |
| 790 | .add(MO: MI.getOperand(i: 1)); |
| 791 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 792 | } |
| 793 | } |
| 794 | break; |
| 795 | } |
| 796 | case PPC::VSPLTB: |
| 797 | case PPC::VSPLTH: |
| 798 | case PPC::XXSPLTW: { |
| 799 | unsigned MyOpcode = MI.getOpcode(); |
| 800 | unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; |
| 801 | Register TrueReg = |
| 802 | TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: OpNo).getReg(), MRI); |
| 803 | if (!TrueReg.isVirtual()) |
| 804 | break; |
| 805 | MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg); |
| 806 | if (!DefMI) |
| 807 | break; |
| 808 | unsigned DefOpcode = DefMI->getOpcode(); |
| 809 | auto isConvertOfSplat = [=]() -> bool { |
| 810 | if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) |
| 811 | return false; |
| 812 | Register ConvReg = DefMI->getOperand(i: 1).getReg(); |
| 813 | if (!ConvReg.isVirtual()) |
| 814 | return false; |
| 815 | MachineInstr *Splt = MRI->getVRegDef(Reg: ConvReg); |
| 816 | return Splt && (Splt->getOpcode() == PPC::LXVWSX || |
| 817 | Splt->getOpcode() == PPC::XXSPLTW); |
| 818 | }; |
| 819 | bool AlreadySplat = (MyOpcode == DefOpcode) || |
| 820 | (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || |
| 821 | (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || |
| 822 | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || |
| 823 | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || |
| 824 | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| |
| 825 | (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); |
| 826 | // If the instruction[s] that feed this splat have already splat |
| 827 | // the value, this splat is redundant. |
| 828 | if (AlreadySplat) { |
| 829 | LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: " ); |
| 830 | LLVM_DEBUG(MI.dump()); |
| 831 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 832 | DestReg: MI.getOperand(i: 0).getReg()) |
| 833 | .add(MO: MI.getOperand(i: OpNo)); |
| 834 | addRegToUpdate(MI.getOperand(OpNo).getReg()); |
| 835 | ToErase = &MI; |
| 836 | Simplified = true; |
| 837 | } |
| 838 | // Splat fed by a shift. Usually when we align value to splat into |
| 839 | // vector element zero. |
| 840 | if (DefOpcode == PPC::XXSLDWI) { |
| 841 | Register ShiftRes = DefMI->getOperand(i: 0).getReg(); |
| 842 | Register ShiftOp1 = DefMI->getOperand(i: 1).getReg(); |
| 843 | Register ShiftOp2 = DefMI->getOperand(i: 2).getReg(); |
| 844 | unsigned ShiftImm = DefMI->getOperand(i: 3).getImm(); |
| 845 | unsigned SplatImm = |
| 846 | MI.getOperand(i: MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm(); |
| 847 | if (ShiftOp1 == ShiftOp2) { |
| 848 | unsigned NewElem = (SplatImm + ShiftImm) & 0x3; |
| 849 | if (MRI->hasOneNonDBGUse(RegNo: ShiftRes)) { |
| 850 | LLVM_DEBUG(dbgs() << "Removing redundant shift: " ); |
| 851 | LLVM_DEBUG(DefMI->dump()); |
| 852 | ToErase = DefMI; |
| 853 | } |
| 854 | Simplified = true; |
| 855 | LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm |
| 856 | << " to " << NewElem << " in instruction: " ); |
| 857 | LLVM_DEBUG(MI.dump()); |
| 858 | addRegToUpdate(MI.getOperand(OpNo).getReg()); |
| 859 | addRegToUpdate(ShiftOp1); |
| 860 | MI.getOperand(i: OpNo).setReg(ShiftOp1); |
| 861 | MI.getOperand(i: 2).setImm(NewElem); |
| 862 | } |
| 863 | } |
| 864 | break; |
| 865 | } |
| 866 | case PPC::XVCVDPSP: { |
| 867 | // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. |
| 868 | Register TrueReg = |
| 869 | TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI); |
| 870 | if (!TrueReg.isVirtual()) |
| 871 | break; |
| 872 | MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg); |
| 873 | |
| 874 | // This can occur when building a vector of single precision or integer |
| 875 | // values. |
| 876 | if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { |
| 877 | Register DefsReg1 = |
| 878 | TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 1).getReg(), MRI); |
| 879 | Register DefsReg2 = |
| 880 | TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 2).getReg(), MRI); |
| 881 | if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual()) |
| 882 | break; |
| 883 | MachineInstr *P1 = MRI->getVRegDef(Reg: DefsReg1); |
| 884 | MachineInstr *P2 = MRI->getVRegDef(Reg: DefsReg2); |
| 885 | |
| 886 | if (!P1 || !P2) |
| 887 | break; |
| 888 | |
| 889 | // Remove the passed FRSP/XSRSP instruction if it only feeds this MI |
| 890 | // and set any uses of that FRSP/XSRSP (in this MI) to the source of |
| 891 | // the FRSP/XSRSP. |
| 892 | auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { |
| 893 | unsigned Opc = RoundInstr->getOpcode(); |
| 894 | if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) && |
| 895 | MRI->hasOneNonDBGUse(RegNo: RoundInstr->getOperand(i: 0).getReg())) { |
| 896 | Simplified = true; |
| 897 | Register ConvReg1 = RoundInstr->getOperand(i: 1).getReg(); |
| 898 | Register FRSPDefines = RoundInstr->getOperand(i: 0).getReg(); |
| 899 | MachineInstr &Use = *(MRI->use_instr_nodbg_begin(RegNo: FRSPDefines)); |
| 900 | for (int i = 0, e = Use.getNumOperands(); i < e; ++i) |
| 901 | if (Use.getOperand(i).isReg() && |
| 902 | Use.getOperand(i).getReg() == FRSPDefines) |
| 903 | Use.getOperand(i).setReg(ConvReg1); |
| 904 | LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n" ); |
| 905 | LLVM_DEBUG(RoundInstr->dump()); |
| 906 | LLVM_DEBUG(dbgs() << "As it feeds instruction:\n" ); |
| 907 | LLVM_DEBUG(MI.dump()); |
| 908 | LLVM_DEBUG(dbgs() << "Through instruction:\n" ); |
| 909 | LLVM_DEBUG(DefMI->dump()); |
| 910 | addRegToUpdate(ConvReg1); |
| 911 | addRegToUpdate(FRSPDefines); |
| 912 | ToErase = RoundInstr; |
| 913 | } |
| 914 | }; |
| 915 | |
| 916 | // If the input to XVCVDPSP is a vector that was built (even |
| 917 | // partially) out of FRSP's, the FRSP(s) can safely be removed |
| 918 | // since this instruction performs the same operation. |
| 919 | if (P1 != P2) { |
| 920 | removeFRSPIfPossible(P1); |
| 921 | removeFRSPIfPossible(P2); |
| 922 | break; |
| 923 | } |
| 924 | removeFRSPIfPossible(P1); |
| 925 | } |
| 926 | break; |
| 927 | } |
| 928 | case PPC::EXTSH: |
| 929 | case PPC::EXTSH8: |
| 930 | case PPC::EXTSH8_32_64: { |
| 931 | if (!EnableSExtElimination) break; |
| 932 | Register NarrowReg = MI.getOperand(i: 1).getReg(); |
| 933 | if (!NarrowReg.isVirtual()) |
| 934 | break; |
| 935 | |
| 936 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: NarrowReg); |
| 937 | unsigned SrcOpcode = SrcMI->getOpcode(); |
| 938 | // If we've used a zero-extending load that we will sign-extend, |
| 939 | // just do a sign-extending load. |
| 940 | if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) { |
| 941 | if (!MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 0).getReg())) |
| 942 | break; |
| 943 | // Determine the new opcode. We need to make sure that if the original |
| 944 | // instruction has a 64 bit opcode we keep using a 64 bit opcode. |
| 945 | // Likewise if the source is X-Form the new opcode should also be |
| 946 | // X-Form. |
| 947 | unsigned Opc = PPC::LHA; |
| 948 | bool SourceIsXForm = SrcOpcode == PPC::LHZX; |
| 949 | bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 || |
| 950 | MI.getOpcode() == PPC::EXTSH8_32_64; |
| 951 | |
| 952 | if (SourceIsXForm && MIIs64Bit) |
| 953 | Opc = PPC::LHAX8; |
| 954 | else if (SourceIsXForm && !MIIs64Bit) |
| 955 | Opc = PPC::LHAX; |
| 956 | else if (MIIs64Bit) |
| 957 | Opc = PPC::LHA8; |
| 958 | |
| 959 | addRegToUpdate(NarrowReg); |
| 960 | addRegToUpdate(MI.getOperand(0).getReg()); |
| 961 | |
| 962 | // We are removing a definition of NarrowReg which will cause |
| 963 | // problems in AliveBlocks. Add an implicit def that will be |
| 964 | // removed so that AliveBlocks are updated correctly. |
| 965 | addDummyDef(MBB, At: &MI, Reg: NarrowReg); |
| 966 | LLVM_DEBUG(dbgs() << "Zero-extending load\n" ); |
| 967 | LLVM_DEBUG(SrcMI->dump()); |
| 968 | LLVM_DEBUG(dbgs() << "and sign-extension\n" ); |
| 969 | LLVM_DEBUG(MI.dump()); |
| 970 | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n" ); |
| 971 | SrcMI->setDesc(TII->get(Opcode: Opc)); |
| 972 | SrcMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg()); |
| 973 | ToErase = &MI; |
| 974 | Simplified = true; |
| 975 | NumEliminatedSExt++; |
| 976 | } |
| 977 | break; |
| 978 | } |
| 979 | case PPC::EXTSW: |
| 980 | case PPC::EXTSW_32: |
| 981 | case PPC::EXTSW_32_64: { |
| 982 | if (!EnableSExtElimination) break; |
| 983 | Register NarrowReg = MI.getOperand(i: 1).getReg(); |
| 984 | if (!NarrowReg.isVirtual()) |
| 985 | break; |
| 986 | |
| 987 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: NarrowReg); |
| 988 | unsigned SrcOpcode = SrcMI->getOpcode(); |
| 989 | // If we've used a zero-extending load that we will sign-extend, |
| 990 | // just do a sign-extending load. |
| 991 | if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) { |
| 992 | if (!MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 0).getReg())) |
| 993 | break; |
| 994 | |
| 995 | // The transformation from a zero-extending load to a sign-extending |
| 996 | // load is only legal when the displacement is a multiple of 4. |
| 997 | // If the displacement is not at least 4 byte aligned, don't perform |
| 998 | // the transformation. |
| 999 | bool IsWordAligned = false; |
| 1000 | if (SrcMI->getOperand(i: 1).isGlobal()) { |
| 1001 | const GlobalVariable *GV = |
| 1002 | dyn_cast<GlobalVariable>(Val: SrcMI->getOperand(i: 1).getGlobal()); |
| 1003 | if (GV && GV->getAlign() && *GV->getAlign() >= 4 && |
| 1004 | (SrcMI->getOperand(i: 1).getOffset() % 4 == 0)) |
| 1005 | IsWordAligned = true; |
| 1006 | } else if (SrcMI->getOperand(i: 1).isImm()) { |
| 1007 | int64_t Value = SrcMI->getOperand(i: 1).getImm(); |
| 1008 | if (Value % 4 == 0) |
| 1009 | IsWordAligned = true; |
| 1010 | } |
| 1011 | |
| 1012 | // Determine the new opcode. We need to make sure that if the original |
| 1013 | // instruction has a 64 bit opcode we keep using a 64 bit opcode. |
| 1014 | // Likewise if the source is X-Form the new opcode should also be |
| 1015 | // X-Form. |
| 1016 | unsigned Opc = PPC::LWA_32; |
| 1017 | bool SourceIsXForm = SrcOpcode == PPC::LWZX; |
| 1018 | bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW || |
| 1019 | MI.getOpcode() == PPC::EXTSW_32_64; |
| 1020 | |
| 1021 | if (SourceIsXForm && MIIs64Bit) |
| 1022 | Opc = PPC::LWAX; |
| 1023 | else if (SourceIsXForm && !MIIs64Bit) |
| 1024 | Opc = PPC::LWAX_32; |
| 1025 | else if (MIIs64Bit) |
| 1026 | Opc = PPC::LWA; |
| 1027 | |
| 1028 | if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32)) |
| 1029 | break; |
| 1030 | |
| 1031 | addRegToUpdate(NarrowReg); |
| 1032 | addRegToUpdate(MI.getOperand(0).getReg()); |
| 1033 | |
| 1034 | // We are removing a definition of NarrowReg which will cause |
| 1035 | // problems in AliveBlocks. Add an implicit def that will be |
| 1036 | // removed so that AliveBlocks are updated correctly. |
| 1037 | addDummyDef(MBB, At: &MI, Reg: NarrowReg); |
| 1038 | LLVM_DEBUG(dbgs() << "Zero-extending load\n" ); |
| 1039 | LLVM_DEBUG(SrcMI->dump()); |
| 1040 | LLVM_DEBUG(dbgs() << "and sign-extension\n" ); |
| 1041 | LLVM_DEBUG(MI.dump()); |
| 1042 | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n" ); |
| 1043 | SrcMI->setDesc(TII->get(Opcode: Opc)); |
| 1044 | SrcMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg()); |
| 1045 | ToErase = &MI; |
| 1046 | Simplified = true; |
| 1047 | NumEliminatedSExt++; |
| 1048 | } else if (MI.getOpcode() == PPC::EXTSW_32_64 && |
| 1049 | TII->isSignExtended(Reg: NarrowReg, MRI)) { |
| 1050 | // We can eliminate EXTSW if the input is known to be already |
| 1051 | // sign-extended. However, we are not sure whether a spill will occur |
| 1052 | // during register allocation. If there is no promotion, it will use |
| 1053 | // 'stw' instead of 'std', and 'lwz' instead of 'ld' when spilling, |
| 1054 | // since the register class is 32-bits. Consequently, the high 32-bit |
| 1055 | // information will be lost. Therefore, all these instructions in the |
| 1056 | // chain used to deduce sign extension to eliminate the 'extsw' will |
| 1057 | // need to be promoted to 64-bit pseudo instructions when the 'extsw' |
| 1058 | // is eliminated. |
| 1059 | TII->promoteInstr32To64ForElimEXTSW(Reg: NarrowReg, MRI, BinOpDepth: 0, LV); |
| 1060 | |
| 1061 | LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n" ); |
| 1062 | Register TmpReg = |
| 1063 | MF->getRegInfo().createVirtualRegister(RegClass: &PPC::G8RCRegClass); |
| 1064 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::IMPLICIT_DEF), |
| 1065 | DestReg: TmpReg); |
| 1066 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::INSERT_SUBREG), |
| 1067 | DestReg: MI.getOperand(i: 0).getReg()) |
| 1068 | .addReg(RegNo: TmpReg) |
| 1069 | .addReg(RegNo: NarrowReg) |
| 1070 | .addImm(Val: PPC::sub_32); |
| 1071 | ToErase = &MI; |
| 1072 | Simplified = true; |
| 1073 | NumEliminatedSExt++; |
| 1074 | } |
| 1075 | break; |
| 1076 | } |
| 1077 | case PPC::RLDICL: { |
| 1078 | // We can eliminate RLDICL (e.g. for zero-extension) |
| 1079 | // if all bits to clear are already zero in the input. |
| 1080 | // This code assume following code sequence for zero-extension. |
| 1081 | // %6 = COPY %5:sub_32; (optional) |
| 1082 | // %8 = IMPLICIT_DEF; |
| 1083 | // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; |
| 1084 | if (!EnableZExtElimination) break; |
| 1085 | |
| 1086 | if (MI.getOperand(i: 2).getImm() != 0) |
| 1087 | break; |
| 1088 | |
| 1089 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1090 | if (!SrcReg.isVirtual()) |
| 1091 | break; |
| 1092 | |
| 1093 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg); |
| 1094 | if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && |
| 1095 | SrcMI->getOperand(i: 0).isReg() && SrcMI->getOperand(i: 1).isReg())) |
| 1096 | break; |
| 1097 | |
| 1098 | MachineInstr *ImpDefMI, *SubRegMI; |
| 1099 | ImpDefMI = MRI->getVRegDef(Reg: SrcMI->getOperand(i: 1).getReg()); |
| 1100 | SubRegMI = MRI->getVRegDef(Reg: SrcMI->getOperand(i: 2).getReg()); |
| 1101 | if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; |
| 1102 | |
| 1103 | SrcMI = SubRegMI; |
| 1104 | if (SubRegMI->getOpcode() == PPC::COPY) { |
| 1105 | Register CopyReg = SubRegMI->getOperand(i: 1).getReg(); |
| 1106 | if (CopyReg.isVirtual()) |
| 1107 | SrcMI = MRI->getVRegDef(Reg: CopyReg); |
| 1108 | } |
| 1109 | if (!SrcMI->getOperand(i: 0).isReg()) |
| 1110 | break; |
| 1111 | |
| 1112 | unsigned KnownZeroCount = |
| 1113 | getKnownLeadingZeroCount(Reg: SrcMI->getOperand(i: 0).getReg(), TII, MRI); |
| 1114 | if (MI.getOperand(i: 3).getImm() <= KnownZeroCount) { |
| 1115 | LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n" ); |
| 1116 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 1117 | DestReg: MI.getOperand(i: 0).getReg()) |
| 1118 | .addReg(RegNo: SrcReg); |
| 1119 | addRegToUpdate(SrcReg); |
| 1120 | ToErase = &MI; |
| 1121 | Simplified = true; |
| 1122 | NumEliminatedZExt++; |
| 1123 | } |
| 1124 | break; |
| 1125 | } |
| 1126 | |
| 1127 | // TODO: Any instruction that has an immediate form fed only by a PHI |
| 1128 | // whose operands are all load immediate can be folded away. We currently |
| 1129 | // do this for ADD instructions, but should expand it to arithmetic and |
| 1130 | // binary instructions with immediate forms in the future. |
| 1131 | case PPC::ADD4: |
| 1132 | case PPC::ADD8: { |
| 1133 | auto isSingleUsePHI = [&](MachineOperand *PhiOp) { |
| 1134 | assert(PhiOp && "Invalid Operand!" ); |
| 1135 | MachineInstr *DefPhiMI = getVRegDefOrNull(Op: PhiOp, MRI); |
| 1136 | |
| 1137 | return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && |
| 1138 | MRI->hasOneNonDBGUse(RegNo: DefPhiMI->getOperand(i: 0).getReg()); |
| 1139 | }; |
| 1140 | |
| 1141 | auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, |
| 1142 | MachineOperand *PhiOp) { |
| 1143 | assert(PhiOp && "Invalid Operand!" ); |
| 1144 | assert(DominatorOp && "Invalid Operand!" ); |
| 1145 | MachineInstr *DefPhiMI = getVRegDefOrNull(Op: PhiOp, MRI); |
| 1146 | MachineInstr *DefDomMI = getVRegDefOrNull(Op: DominatorOp, MRI); |
| 1147 | |
| 1148 | // Note: the vregs only show up at odd indices position of PHI Node, |
| 1149 | // the even indices position save the BB info. |
| 1150 | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { |
| 1151 | MachineInstr *LiMI = |
| 1152 | getVRegDefOrNull(Op: &DefPhiMI->getOperand(i), MRI); |
| 1153 | if (!LiMI || |
| 1154 | (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) |
| 1155 | || !MRI->hasOneNonDBGUse(RegNo: LiMI->getOperand(i: 0).getReg()) || |
| 1156 | !MDT->dominates(A: DefDomMI, B: LiMI)) |
| 1157 | return false; |
| 1158 | } |
| 1159 | |
| 1160 | return true; |
| 1161 | }; |
| 1162 | |
| 1163 | MachineOperand Op1 = MI.getOperand(i: 1); |
| 1164 | MachineOperand Op2 = MI.getOperand(i: 2); |
| 1165 | if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) |
| 1166 | std::swap(a&: Op1, b&: Op2); |
| 1167 | else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) |
| 1168 | break; // We don't have an ADD fed by LI's that can be transformed |
| 1169 | |
| 1170 | // Now we know that Op1 is the PHI node and Op2 is the dominator |
| 1171 | Register DominatorReg = Op2.getReg(); |
| 1172 | |
| 1173 | const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 |
| 1174 | ? &PPC::G8RC_and_G8RC_NOX0RegClass |
| 1175 | : &PPC::GPRC_and_GPRC_NOR0RegClass; |
| 1176 | MRI->setRegClass(Reg: DominatorReg, RC: TRC); |
| 1177 | |
| 1178 | // replace LIs with ADDIs |
| 1179 | MachineInstr *DefPhiMI = getVRegDefOrNull(Op: &Op1, MRI); |
| 1180 | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { |
| 1181 | MachineInstr *LiMI = getVRegDefOrNull(Op: &DefPhiMI->getOperand(i), MRI); |
| 1182 | LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: " ); |
| 1183 | LLVM_DEBUG(LiMI->dump()); |
| 1184 | |
| 1185 | // There could be repeated registers in the PHI, e.g: %1 = |
| 1186 | // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've |
| 1187 | // already replaced the def instruction, skip. |
| 1188 | if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) |
| 1189 | continue; |
| 1190 | |
| 1191 | assert((LiMI->getOpcode() == PPC::LI || |
| 1192 | LiMI->getOpcode() == PPC::LI8) && |
| 1193 | "Invalid Opcode!" ); |
| 1194 | auto LiImm = LiMI->getOperand(i: 1).getImm(); // save the imm of LI |
| 1195 | LiMI->removeOperand(OpNo: 1); // remove the imm of LI |
| 1196 | LiMI->setDesc(TII->get(Opcode: LiMI->getOpcode() == PPC::LI ? PPC::ADDI |
| 1197 | : PPC::ADDI8)); |
| 1198 | MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) |
| 1199 | .addReg(RegNo: DominatorReg) |
| 1200 | .addImm(Val: LiImm); // restore the imm of LI |
| 1201 | LLVM_DEBUG(LiMI->dump()); |
| 1202 | } |
| 1203 | |
| 1204 | // Replace ADD with COPY |
| 1205 | LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: " ); |
| 1206 | LLVM_DEBUG(MI.dump()); |
| 1207 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::COPY), |
| 1208 | DestReg: MI.getOperand(i: 0).getReg()) |
| 1209 | .add(MO: Op1); |
| 1210 | addRegToUpdate(Op1.getReg()); |
| 1211 | addRegToUpdate(Op2.getReg()); |
| 1212 | ToErase = &MI; |
| 1213 | Simplified = true; |
| 1214 | NumOptADDLIs++; |
| 1215 | break; |
| 1216 | } |
| 1217 | case PPC::RLDICR: { |
| 1218 | Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) || |
| 1219 | combineSEXTAndSHL(MI, ToErase); |
| 1220 | break; |
| 1221 | } |
| 1222 | case PPC::ANDI_rec: |
| 1223 | case PPC::ANDI8_rec: |
| 1224 | case PPC::ANDIS_rec: |
| 1225 | case PPC::ANDIS8_rec: { |
| 1226 | Register TrueReg = |
| 1227 | TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI); |
| 1228 | if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(RegNo: TrueReg)) |
| 1229 | break; |
| 1230 | |
| 1231 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: TrueReg); |
| 1232 | if (!SrcMI) |
| 1233 | break; |
| 1234 | |
| 1235 | unsigned SrcOpCode = SrcMI->getOpcode(); |
| 1236 | if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR) |
| 1237 | break; |
| 1238 | |
| 1239 | Register SrcReg, DstReg; |
| 1240 | SrcReg = SrcMI->getOperand(i: 1).getReg(); |
| 1241 | DstReg = MI.getOperand(i: 1).getReg(); |
| 1242 | const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(Reg: SrcReg); |
| 1243 | const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: DstReg); |
| 1244 | if (DstRC != SrcRC) |
| 1245 | break; |
| 1246 | |
| 1247 | uint64_t AndImm = MI.getOperand(i: 2).getImm(); |
| 1248 | if (MI.getOpcode() == PPC::ANDIS_rec || |
| 1249 | MI.getOpcode() == PPC::ANDIS8_rec) |
| 1250 | AndImm <<= 16; |
| 1251 | uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(Val: AndImm); |
| 1252 | uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(Val: AndImm); |
| 1253 | uint64_t ImmSrc = SrcMI->getOperand(i: 3).getImm(); |
| 1254 | |
| 1255 | // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0` |
| 1256 | // if all bits to AND are already zero in the input. |
| 1257 | bool PatternResultZero = |
| 1258 | (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) || |
| 1259 | (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc); |
| 1260 | |
| 1261 | // We can eliminate RLDICL/RLDICR if it's used to clear bits and all |
| 1262 | // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec. |
| 1263 | bool PatternRemoveRotate = |
| 1264 | SrcMI->getOperand(i: 2).getImm() == 0 && |
| 1265 | ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) || |
| 1266 | (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63))); |
| 1267 | |
| 1268 | if (!PatternResultZero && !PatternRemoveRotate) |
| 1269 | break; |
| 1270 | |
| 1271 | LLVM_DEBUG(dbgs() << "Combining pair: " ); |
| 1272 | LLVM_DEBUG(SrcMI->dump()); |
| 1273 | LLVM_DEBUG(MI.dump()); |
| 1274 | if (PatternResultZero) |
| 1275 | MI.getOperand(i: 2).setImm(0); |
| 1276 | MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg()); |
| 1277 | LLVM_DEBUG(dbgs() << "To: " ); |
| 1278 | LLVM_DEBUG(MI.dump()); |
| 1279 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 1280 | addRegToUpdate(SrcMI->getOperand(0).getReg()); |
| 1281 | Simplified = true; |
| 1282 | break; |
| 1283 | } |
| 1284 | case PPC::RLWINM: |
| 1285 | case PPC::RLWINM_rec: |
| 1286 | case PPC::RLWINM8: |
| 1287 | case PPC::RLWINM8_rec: { |
| 1288 | // We might replace operand 1 of the instruction which will |
| 1289 | // require we recompute kill flags for it. |
| 1290 | Register OrigOp1Reg = MI.getOperand(i: 1).isReg() |
| 1291 | ? MI.getOperand(i: 1).getReg() |
| 1292 | : PPC::NoRegister; |
| 1293 | Simplified = TII->combineRLWINM(MI, ToErase: &ToErase); |
| 1294 | if (Simplified) { |
| 1295 | addRegToUpdate(OrigOp1Reg); |
| 1296 | if (MI.getOperand(i: 1).isReg()) |
| 1297 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 1298 | if (ToErase && ToErase->getOperand(i: 1).isReg()) |
| 1299 | for (auto UseReg : ToErase->explicit_uses()) |
| 1300 | if (UseReg.isReg()) |
| 1301 | addRegToUpdate(UseReg.getReg()); |
| 1302 | ++NumRotatesCollapsed; |
| 1303 | } |
| 1304 | break; |
| 1305 | } |
| 1306 | // We will replace TD/TW/TDI/TWI with an unconditional trap if it will |
| 1307 | // always trap, we will delete the node if it will never trap. |
| 1308 | case PPC::TDI: |
| 1309 | case PPC::TWI: |
| 1310 | case PPC::TD: |
| 1311 | case PPC::TW: { |
| 1312 | if (!EnableTrapOptimization) break; |
| 1313 | MachineInstr *LiMI1 = getVRegDefOrNull(Op: &MI.getOperand(i: 1), MRI); |
| 1314 | MachineInstr *LiMI2 = getVRegDefOrNull(Op: &MI.getOperand(i: 2), MRI); |
| 1315 | bool IsOperand2Immediate = MI.getOperand(i: 2).isImm(); |
| 1316 | // We can only do the optimization if we can get immediates |
| 1317 | // from both operands |
| 1318 | if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI || |
| 1319 | LiMI1->getOpcode() == PPC::LI8))) |
| 1320 | break; |
| 1321 | if (!IsOperand2Immediate && |
| 1322 | !(LiMI2 && (LiMI2->getOpcode() == PPC::LI || |
| 1323 | LiMI2->getOpcode() == PPC::LI8))) |
| 1324 | break; |
| 1325 | |
| 1326 | auto ImmOperand0 = MI.getOperand(i: 0).getImm(); |
| 1327 | auto ImmOperand1 = LiMI1->getOperand(i: 1).getImm(); |
| 1328 | auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(i: 2).getImm() |
| 1329 | : LiMI2->getOperand(i: 1).getImm(); |
| 1330 | |
| 1331 | // We will replace the MI with an unconditional trap if it will always |
| 1332 | // trap. |
| 1333 | if ((ImmOperand0 == 31) || |
| 1334 | ((ImmOperand0 & 0x10) && |
| 1335 | ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) || |
| 1336 | ((ImmOperand0 & 0x8) && |
| 1337 | ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) || |
| 1338 | ((ImmOperand0 & 0x2) && |
| 1339 | ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) || |
| 1340 | ((ImmOperand0 & 0x1) && |
| 1341 | ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) || |
| 1342 | ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) { |
| 1343 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: PPC::TRAP)); |
| 1344 | TrapOpt = true; |
| 1345 | } |
| 1346 | // We will delete the MI if it will never trap. |
| 1347 | ToErase = &MI; |
| 1348 | Simplified = true; |
| 1349 | break; |
| 1350 | } |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | // If the last instruction was marked for elimination, |
| 1355 | // remove it now. |
| 1356 | if (ToErase) { |
| 1357 | recomputeLVForDyingInstr(); |
| 1358 | ToErase->eraseFromParent(); |
| 1359 | ToErase = nullptr; |
| 1360 | } |
| 1361 | // Reset TrapOpt to false at the end of the basic block. |
| 1362 | if (EnableTrapOptimization) |
| 1363 | TrapOpt = false; |
| 1364 | } |
| 1365 | |
| 1366 | // Eliminate all the TOC save instructions which are redundant. |
| 1367 | Simplified |= eliminateRedundantTOCSaves(TOCSaves); |
| 1368 | PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); |
| 1369 | if (FI->mustSaveTOC()) |
| 1370 | NumTOCSavesInPrologue++; |
| 1371 | |
| 1372 | // We try to eliminate redundant compare instruction. |
| 1373 | Simplified |= eliminateRedundantCompare(); |
| 1374 | |
| 1375 | // If we have made any modifications and added any registers to the set of |
| 1376 | // registers for which we need to update the kill flags, do so by recomputing |
| 1377 | // LiveVariables for those registers. |
| 1378 | for (Register Reg : RegsToUpdate) { |
| 1379 | if (!MRI->reg_empty(RegNo: Reg)) |
| 1380 | LV->recomputeForSingleDefVirtReg(Reg); |
| 1381 | } |
| 1382 | return Simplified; |
| 1383 | } |
| 1384 | |
| 1385 | // helper functions for eliminateRedundantCompare |
| 1386 | static bool isEqOrNe(MachineInstr *BI) { |
| 1387 | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm(); |
| 1388 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 1389 | return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); |
| 1390 | } |
| 1391 | |
| 1392 | static bool isSupportedCmpOp(unsigned opCode) { |
| 1393 | return (opCode == PPC::CMPLD || opCode == PPC::CMPD || |
| 1394 | opCode == PPC::CMPLW || opCode == PPC::CMPW || |
| 1395 | opCode == PPC::CMPLDI || opCode == PPC::CMPDI || |
| 1396 | opCode == PPC::CMPLWI || opCode == PPC::CMPWI); |
| 1397 | } |
| 1398 | |
| 1399 | static bool is64bitCmpOp(unsigned opCode) { |
| 1400 | return (opCode == PPC::CMPLD || opCode == PPC::CMPD || |
| 1401 | opCode == PPC::CMPLDI || opCode == PPC::CMPDI); |
| 1402 | } |
| 1403 | |
| 1404 | static bool isSignedCmpOp(unsigned opCode) { |
| 1405 | return (opCode == PPC::CMPD || opCode == PPC::CMPW || |
| 1406 | opCode == PPC::CMPDI || opCode == PPC::CMPWI); |
| 1407 | } |
| 1408 | |
| 1409 | static unsigned getSignedCmpOpCode(unsigned opCode) { |
| 1410 | if (opCode == PPC::CMPLD) return PPC::CMPD; |
| 1411 | if (opCode == PPC::CMPLW) return PPC::CMPW; |
| 1412 | if (opCode == PPC::CMPLDI) return PPC::CMPDI; |
| 1413 | if (opCode == PPC::CMPLWI) return PPC::CMPWI; |
| 1414 | return opCode; |
| 1415 | } |
| 1416 | |
| 1417 | // We can decrement immediate x in (GE x) by changing it to (GT x-1) or |
| 1418 | // (LT x) to (LE x-1) |
| 1419 | static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { |
| 1420 | uint64_t Imm = CMPI->getOperand(i: 2).getImm(); |
| 1421 | bool SignedCmp = isSignedCmpOp(opCode: CMPI->getOpcode()); |
| 1422 | if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) |
| 1423 | return 0; |
| 1424 | |
| 1425 | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm(); |
| 1426 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 1427 | unsigned PredHint = PPC::getPredicateHint(Opcode: Pred); |
| 1428 | if (PredCond == PPC::PRED_GE) |
| 1429 | return PPC::getPredicate(Condition: PPC::PRED_GT, Hint: PredHint); |
| 1430 | if (PredCond == PPC::PRED_LT) |
| 1431 | return PPC::getPredicate(Condition: PPC::PRED_LE, Hint: PredHint); |
| 1432 | |
| 1433 | return 0; |
| 1434 | } |
| 1435 | |
| 1436 | // We can increment immediate x in (GT x) by changing it to (GE x+1) or |
| 1437 | // (LE x) to (LT x+1) |
| 1438 | static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { |
| 1439 | uint64_t Imm = CMPI->getOperand(i: 2).getImm(); |
| 1440 | bool SignedCmp = isSignedCmpOp(opCode: CMPI->getOpcode()); |
| 1441 | if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) |
| 1442 | return 0; |
| 1443 | |
| 1444 | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm(); |
| 1445 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 1446 | unsigned PredHint = PPC::getPredicateHint(Opcode: Pred); |
| 1447 | if (PredCond == PPC::PRED_GT) |
| 1448 | return PPC::getPredicate(Condition: PPC::PRED_GE, Hint: PredHint); |
| 1449 | if (PredCond == PPC::PRED_LE) |
| 1450 | return PPC::getPredicate(Condition: PPC::PRED_LT, Hint: PredHint); |
| 1451 | |
| 1452 | return 0; |
| 1453 | } |
| 1454 | |
| 1455 | // This takes a Phi node and returns a register value for the specified BB. |
| 1456 | static unsigned getIncomingRegForBlock(MachineInstr *Phi, |
| 1457 | MachineBasicBlock *MBB) { |
| 1458 | for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { |
| 1459 | MachineOperand &MO = Phi->getOperand(i: I); |
| 1460 | if (MO.getMBB() == MBB) |
| 1461 | return Phi->getOperand(i: I-1).getReg(); |
| 1462 | } |
| 1463 | llvm_unreachable("invalid src basic block for this Phi node\n" ); |
| 1464 | return 0; |
| 1465 | } |
| 1466 | |
| 1467 | // This function tracks the source of the register through register copy. |
| 1468 | // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 |
| 1469 | // assuming that the control comes from BB1 into BB2. |
| 1470 | static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, |
| 1471 | MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { |
| 1472 | unsigned SrcReg = Reg; |
| 1473 | while (true) { |
| 1474 | unsigned NextReg = SrcReg; |
| 1475 | MachineInstr *Inst = MRI->getVRegDef(Reg: SrcReg); |
| 1476 | if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { |
| 1477 | NextReg = getIncomingRegForBlock(Phi: Inst, MBB: BB1); |
| 1478 | // We track through PHI only once to avoid infinite loop. |
| 1479 | BB1 = nullptr; |
| 1480 | } |
| 1481 | else if (Inst->isFullCopy()) |
| 1482 | NextReg = Inst->getOperand(i: 1).getReg(); |
| 1483 | if (NextReg == SrcReg || !Register::isVirtualRegister(Reg: NextReg)) |
| 1484 | break; |
| 1485 | SrcReg = NextReg; |
| 1486 | } |
| 1487 | return SrcReg; |
| 1488 | } |
| 1489 | |
| 1490 | static bool eligibleForCompareElimination(MachineBasicBlock &MBB, |
| 1491 | MachineBasicBlock *&PredMBB, |
| 1492 | MachineBasicBlock *&MBBtoMoveCmp, |
| 1493 | MachineRegisterInfo *MRI) { |
| 1494 | |
| 1495 | auto isEligibleBB = [&](MachineBasicBlock &BB) { |
| 1496 | auto BII = BB.getFirstInstrTerminator(); |
| 1497 | // We optimize BBs ending with a conditional branch. |
| 1498 | // We check only for BCC here, not BCCLR, because BCCLR |
| 1499 | // will be formed only later in the pipeline. |
| 1500 | if (BB.succ_size() == 2 && |
| 1501 | BII != BB.instr_end() && |
| 1502 | (*BII).getOpcode() == PPC::BCC && |
| 1503 | (*BII).getOperand(i: 1).isReg()) { |
| 1504 | // We optimize only if the condition code is used only by one BCC. |
| 1505 | Register CndReg = (*BII).getOperand(i: 1).getReg(); |
| 1506 | if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(RegNo: CndReg)) |
| 1507 | return false; |
| 1508 | |
| 1509 | MachineInstr *CMPI = MRI->getVRegDef(Reg: CndReg); |
| 1510 | // We assume compare and branch are in the same BB for ease of analysis. |
| 1511 | if (CMPI->getParent() != &BB) |
| 1512 | return false; |
| 1513 | |
| 1514 | // We skip this BB if a physical register is used in comparison. |
| 1515 | for (MachineOperand &MO : CMPI->operands()) |
| 1516 | if (MO.isReg() && !MO.getReg().isVirtual()) |
| 1517 | return false; |
| 1518 | |
| 1519 | return true; |
| 1520 | } |
| 1521 | return false; |
| 1522 | }; |
| 1523 | |
| 1524 | // If this BB has more than one successor, we can create a new BB and |
| 1525 | // move the compare instruction in the new BB. |
| 1526 | // So far, we do not move compare instruction to a BB having multiple |
| 1527 | // successors to avoid potentially increasing code size. |
| 1528 | auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { |
| 1529 | return BB.succ_size() == 1; |
| 1530 | }; |
| 1531 | |
| 1532 | if (!isEligibleBB(MBB)) |
| 1533 | return false; |
| 1534 | |
| 1535 | unsigned NumPredBBs = MBB.pred_size(); |
| 1536 | if (NumPredBBs == 1) { |
| 1537 | MachineBasicBlock *TmpMBB = *MBB.pred_begin(); |
| 1538 | if (isEligibleBB(*TmpMBB)) { |
| 1539 | PredMBB = TmpMBB; |
| 1540 | MBBtoMoveCmp = nullptr; |
| 1541 | return true; |
| 1542 | } |
| 1543 | } |
| 1544 | else if (NumPredBBs == 2) { |
| 1545 | // We check for partially redundant case. |
| 1546 | // So far, we support cases with only two predecessors |
| 1547 | // to avoid increasing the number of instructions. |
| 1548 | MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); |
| 1549 | MachineBasicBlock *Pred1MBB = *PI; |
| 1550 | MachineBasicBlock *Pred2MBB = *(PI+1); |
| 1551 | |
| 1552 | if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { |
| 1553 | // We assume Pred1MBB is the BB containing the compare to be merged and |
| 1554 | // Pred2MBB is the BB to which we will append a compare instruction. |
| 1555 | // Proceed as is if Pred1MBB is different from MBB. |
| 1556 | } |
| 1557 | else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { |
| 1558 | // We need to swap Pred1MBB and Pred2MBB to canonicalize. |
| 1559 | std::swap(a&: Pred1MBB, b&: Pred2MBB); |
| 1560 | } |
| 1561 | else return false; |
| 1562 | |
| 1563 | if (Pred1MBB == &MBB) |
| 1564 | return false; |
| 1565 | |
| 1566 | // Here, Pred2MBB is the BB to which we need to append a compare inst. |
| 1567 | // We cannot move the compare instruction if operands are not available |
| 1568 | // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). |
| 1569 | MachineInstr *BI = &*MBB.getFirstInstrTerminator(); |
| 1570 | MachineInstr *CMPI = MRI->getVRegDef(Reg: BI->getOperand(i: 1).getReg()); |
| 1571 | for (int I = 1; I <= 2; I++) |
| 1572 | if (CMPI->getOperand(i: I).isReg()) { |
| 1573 | MachineInstr *Inst = MRI->getVRegDef(Reg: CMPI->getOperand(i: I).getReg()); |
| 1574 | if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) |
| 1575 | return false; |
| 1576 | } |
| 1577 | |
| 1578 | PredMBB = Pred1MBB; |
| 1579 | MBBtoMoveCmp = Pred2MBB; |
| 1580 | return true; |
| 1581 | } |
| 1582 | |
| 1583 | return false; |
| 1584 | } |
| 1585 | |
| 1586 | // This function will iterate over the input map containing a pair of TOC save |
| 1587 | // instruction and a flag. The flag will be set to false if the TOC save is |
| 1588 | // proven redundant. This function will erase from the basic block all the TOC |
| 1589 | // saves marked as redundant. |
| 1590 | bool PPCMIPeephole::eliminateRedundantTOCSaves( |
| 1591 | std::map<MachineInstr *, bool> &TOCSaves) { |
| 1592 | bool Simplified = false; |
| 1593 | int NumKept = 0; |
| 1594 | for (auto TOCSave : TOCSaves) { |
| 1595 | if (!TOCSave.second) { |
| 1596 | TOCSave.first->eraseFromParent(); |
| 1597 | RemoveTOCSave++; |
| 1598 | Simplified = true; |
| 1599 | } else { |
| 1600 | NumKept++; |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | if (NumKept > 1) |
| 1605 | MultiTOCSaves++; |
| 1606 | |
| 1607 | return Simplified; |
| 1608 | } |
| 1609 | |
| 1610 | // If multiple conditional branches are executed based on the (essentially) |
| 1611 | // same comparison, we merge compare instructions into one and make multiple |
| 1612 | // conditional branches on this comparison. |
| 1613 | // For example, |
| 1614 | // if (a == 0) { ... } |
| 1615 | // else if (a < 0) { ... } |
| 1616 | // can be executed by one compare and two conditional branches instead of |
| 1617 | // two pairs of a compare and a conditional branch. |
| 1618 | // |
| 1619 | // This method merges two compare instructions in two MBBs and modifies the |
| 1620 | // compare and conditional branch instructions if needed. |
| 1621 | // For the above example, the input for this pass looks like: |
| 1622 | // cmplwi r3, 0 |
| 1623 | // beq 0, .LBB0_3 |
| 1624 | // cmpwi r3, -1 |
| 1625 | // bgt 0, .LBB0_4 |
| 1626 | // So, before merging two compares, we need to modify these instructions as |
| 1627 | // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq |
| 1628 | // beq 0, .LBB0_3 |
| 1629 | // cmpwi r3, 0 ; greather than -1 means greater or equal to 0 |
| 1630 | // bge 0, .LBB0_4 |
| 1631 | |
| 1632 | bool PPCMIPeephole::eliminateRedundantCompare() { |
| 1633 | bool Simplified = false; |
| 1634 | |
| 1635 | for (MachineBasicBlock &MBB2 : *MF) { |
| 1636 | MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; |
| 1637 | |
| 1638 | // For fully redundant case, we select two basic blocks MBB1 and MBB2 |
| 1639 | // as an optimization target if |
| 1640 | // - both MBBs end with a conditional branch, |
| 1641 | // - MBB1 is the only predecessor of MBB2, and |
| 1642 | // - compare does not take a physical register as a operand in both MBBs. |
| 1643 | // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. |
| 1644 | // |
| 1645 | // As partially redundant case, we additionally handle if MBB2 has one |
| 1646 | // additional predecessor, which has only one successor (MBB2). |
| 1647 | // In this case, we move the compare instruction originally in MBB2 into |
| 1648 | // MBBtoMoveCmp. This partially redundant case is typically appear by |
| 1649 | // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. |
| 1650 | // |
| 1651 | // Overview of CFG of related basic blocks |
| 1652 | // Fully redundant case Partially redundant case |
| 1653 | // -------- ---------------- -------- |
| 1654 | // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ) |
| 1655 | // -------- ---------------- -------- |
| 1656 | // | \ (w/ 1 succ) \ | \ |
| 1657 | // | \ \ | \ |
| 1658 | // | \ | |
| 1659 | // -------- -------- |
| 1660 | // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred |
| 1661 | // -------- and 2 succ) -------- and 2 succ) |
| 1662 | // | \ | \ |
| 1663 | // | \ | \ |
| 1664 | // |
| 1665 | if (!eligibleForCompareElimination(MBB&: MBB2, PredMBB&: MBB1, MBBtoMoveCmp, MRI)) |
| 1666 | continue; |
| 1667 | |
| 1668 | MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator(); |
| 1669 | MachineInstr *CMPI1 = MRI->getVRegDef(Reg: BI1->getOperand(i: 1).getReg()); |
| 1670 | |
| 1671 | MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator(); |
| 1672 | MachineInstr *CMPI2 = MRI->getVRegDef(Reg: BI2->getOperand(i: 1).getReg()); |
| 1673 | bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); |
| 1674 | |
| 1675 | // We cannot optimize an unsupported compare opcode or |
| 1676 | // a mix of 32-bit and 64-bit comparisons |
| 1677 | if (!isSupportedCmpOp(opCode: CMPI1->getOpcode()) || |
| 1678 | !isSupportedCmpOp(opCode: CMPI2->getOpcode()) || |
| 1679 | is64bitCmpOp(opCode: CMPI1->getOpcode()) != is64bitCmpOp(opCode: CMPI2->getOpcode())) |
| 1680 | continue; |
| 1681 | |
| 1682 | unsigned NewOpCode = 0; |
| 1683 | unsigned NewPredicate1 = 0, NewPredicate2 = 0; |
| 1684 | int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; |
| 1685 | bool SwapOperands = false; |
| 1686 | |
| 1687 | if (CMPI1->getOpcode() != CMPI2->getOpcode()) { |
| 1688 | // Typically, unsigned comparison is used for equality check, but |
| 1689 | // we replace it with a signed comparison if the comparison |
| 1690 | // to be merged is a signed comparison. |
| 1691 | // In other cases of opcode mismatch, we cannot optimize this. |
| 1692 | |
| 1693 | // We cannot change opcode when comparing against an immediate |
| 1694 | // if the most significant bit of the immediate is one |
| 1695 | // due to the difference in sign extension. |
| 1696 | auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { |
| 1697 | if (!I->getOperand(i: 2).isImm()) |
| 1698 | return false; |
| 1699 | int16_t Imm = (int16_t)I->getOperand(i: 2).getImm(); |
| 1700 | return Imm < 0; |
| 1701 | }; |
| 1702 | |
| 1703 | if (isEqOrNe(BI: BI2) && !CmpAgainstImmWithSignBit(CMPI2) && |
| 1704 | CMPI1->getOpcode() == getSignedCmpOpCode(opCode: CMPI2->getOpcode())) |
| 1705 | NewOpCode = CMPI1->getOpcode(); |
| 1706 | else if (isEqOrNe(BI: BI1) && !CmpAgainstImmWithSignBit(CMPI1) && |
| 1707 | getSignedCmpOpCode(opCode: CMPI1->getOpcode()) == CMPI2->getOpcode()) |
| 1708 | NewOpCode = CMPI2->getOpcode(); |
| 1709 | else continue; |
| 1710 | } |
| 1711 | |
| 1712 | if (CMPI1->getOperand(i: 2).isReg() && CMPI2->getOperand(i: 2).isReg()) { |
| 1713 | // In case of comparisons between two registers, these two registers |
| 1714 | // must be same to merge two comparisons. |
| 1715 | unsigned Cmp1Operand1 = getSrcVReg(Reg: CMPI1->getOperand(i: 1).getReg(), |
| 1716 | BB1: nullptr, BB2: nullptr, MRI); |
| 1717 | unsigned Cmp1Operand2 = getSrcVReg(Reg: CMPI1->getOperand(i: 2).getReg(), |
| 1718 | BB1: nullptr, BB2: nullptr, MRI); |
| 1719 | unsigned Cmp2Operand1 = getSrcVReg(Reg: CMPI2->getOperand(i: 1).getReg(), |
| 1720 | BB1: MBB1, BB2: &MBB2, MRI); |
| 1721 | unsigned Cmp2Operand2 = getSrcVReg(Reg: CMPI2->getOperand(i: 2).getReg(), |
| 1722 | BB1: MBB1, BB2: &MBB2, MRI); |
| 1723 | |
| 1724 | if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { |
| 1725 | // Same pair of registers in the same order; ready to merge as is. |
| 1726 | } |
| 1727 | else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { |
| 1728 | // Same pair of registers in different order. |
| 1729 | // We reverse the predicate to merge compare instructions. |
| 1730 | PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(i: 0).getImm(); |
| 1731 | NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Opcode: Pred); |
| 1732 | // In case of partial redundancy, we need to swap operands |
| 1733 | // in another compare instruction. |
| 1734 | SwapOperands = true; |
| 1735 | } |
| 1736 | else continue; |
| 1737 | } |
| 1738 | else if (CMPI1->getOperand(i: 2).isImm() && CMPI2->getOperand(i: 2).isImm()) { |
| 1739 | // In case of comparisons between a register and an immediate, |
| 1740 | // the operand register must be same for two compare instructions. |
| 1741 | unsigned Cmp1Operand1 = getSrcVReg(Reg: CMPI1->getOperand(i: 1).getReg(), |
| 1742 | BB1: nullptr, BB2: nullptr, MRI); |
| 1743 | unsigned Cmp2Operand1 = getSrcVReg(Reg: CMPI2->getOperand(i: 1).getReg(), |
| 1744 | BB1: MBB1, BB2: &MBB2, MRI); |
| 1745 | if (Cmp1Operand1 != Cmp2Operand1) |
| 1746 | continue; |
| 1747 | |
| 1748 | NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(i: 2).getImm(); |
| 1749 | NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(i: 2).getImm(); |
| 1750 | |
| 1751 | // If immediate are not same, we try to adjust by changing predicate; |
| 1752 | // e.g. GT imm means GE (imm+1). |
| 1753 | if (Imm1 != Imm2 && (!isEqOrNe(BI: BI2) || !isEqOrNe(BI: BI1))) { |
| 1754 | int Diff = Imm1 - Imm2; |
| 1755 | if (Diff < -2 || Diff > 2) |
| 1756 | continue; |
| 1757 | |
| 1758 | unsigned PredToInc1 = getPredicateToIncImm(BI: BI1, CMPI: CMPI1); |
| 1759 | unsigned PredToDec1 = getPredicateToDecImm(BI: BI1, CMPI: CMPI1); |
| 1760 | unsigned PredToInc2 = getPredicateToIncImm(BI: BI2, CMPI: CMPI2); |
| 1761 | unsigned PredToDec2 = getPredicateToDecImm(BI: BI2, CMPI: CMPI2); |
| 1762 | if (Diff == 2) { |
| 1763 | if (PredToInc2 && PredToDec1) { |
| 1764 | NewPredicate2 = PredToInc2; |
| 1765 | NewPredicate1 = PredToDec1; |
| 1766 | NewImm2++; |
| 1767 | NewImm1--; |
| 1768 | } |
| 1769 | } |
| 1770 | else if (Diff == 1) { |
| 1771 | if (PredToInc2) { |
| 1772 | NewImm2++; |
| 1773 | NewPredicate2 = PredToInc2; |
| 1774 | } |
| 1775 | else if (PredToDec1) { |
| 1776 | NewImm1--; |
| 1777 | NewPredicate1 = PredToDec1; |
| 1778 | } |
| 1779 | } |
| 1780 | else if (Diff == -1) { |
| 1781 | if (PredToDec2) { |
| 1782 | NewImm2--; |
| 1783 | NewPredicate2 = PredToDec2; |
| 1784 | } |
| 1785 | else if (PredToInc1) { |
| 1786 | NewImm1++; |
| 1787 | NewPredicate1 = PredToInc1; |
| 1788 | } |
| 1789 | } |
| 1790 | else if (Diff == -2) { |
| 1791 | if (PredToDec2 && PredToInc1) { |
| 1792 | NewPredicate2 = PredToDec2; |
| 1793 | NewPredicate1 = PredToInc1; |
| 1794 | NewImm2--; |
| 1795 | NewImm1++; |
| 1796 | } |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | // We cannot merge two compares if the immediates are not same. |
| 1801 | if (NewImm2 != NewImm1) |
| 1802 | continue; |
| 1803 | } |
| 1804 | |
| 1805 | LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n" ); |
| 1806 | LLVM_DEBUG(CMPI1->dump()); |
| 1807 | LLVM_DEBUG(BI1->dump()); |
| 1808 | LLVM_DEBUG(CMPI2->dump()); |
| 1809 | LLVM_DEBUG(BI2->dump()); |
| 1810 | for (const MachineOperand &MO : CMPI1->operands()) |
| 1811 | if (MO.isReg()) |
| 1812 | addRegToUpdate(MO.getReg()); |
| 1813 | for (const MachineOperand &MO : CMPI2->operands()) |
| 1814 | if (MO.isReg()) |
| 1815 | addRegToUpdate(MO.getReg()); |
| 1816 | |
| 1817 | // We adjust opcode, predicates and immediate as we determined above. |
| 1818 | if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { |
| 1819 | CMPI1->setDesc(TII->get(Opcode: NewOpCode)); |
| 1820 | } |
| 1821 | if (NewPredicate1) { |
| 1822 | BI1->getOperand(i: 0).setImm(NewPredicate1); |
| 1823 | } |
| 1824 | if (NewPredicate2) { |
| 1825 | BI2->getOperand(i: 0).setImm(NewPredicate2); |
| 1826 | } |
| 1827 | if (NewImm1 != Imm1) { |
| 1828 | CMPI1->getOperand(i: 2).setImm(NewImm1); |
| 1829 | } |
| 1830 | |
| 1831 | if (IsPartiallyRedundant) { |
| 1832 | // We touch up the compare instruction in MBB2 and move it to |
| 1833 | // a previous BB to handle partially redundant case. |
| 1834 | if (SwapOperands) { |
| 1835 | Register Op1 = CMPI2->getOperand(i: 1).getReg(); |
| 1836 | Register Op2 = CMPI2->getOperand(i: 2).getReg(); |
| 1837 | CMPI2->getOperand(i: 1).setReg(Op2); |
| 1838 | CMPI2->getOperand(i: 2).setReg(Op1); |
| 1839 | } |
| 1840 | if (NewImm2 != Imm2) |
| 1841 | CMPI2->getOperand(i: 2).setImm(NewImm2); |
| 1842 | |
| 1843 | for (int I = 1; I <= 2; I++) { |
| 1844 | if (CMPI2->getOperand(i: I).isReg()) { |
| 1845 | MachineInstr *Inst = MRI->getVRegDef(Reg: CMPI2->getOperand(i: I).getReg()); |
| 1846 | if (Inst->getParent() != &MBB2) |
| 1847 | continue; |
| 1848 | |
| 1849 | assert(Inst->getOpcode() == PPC::PHI && |
| 1850 | "We cannot support if an operand comes from this BB." ); |
| 1851 | unsigned SrcReg = getIncomingRegForBlock(Phi: Inst, MBB: MBBtoMoveCmp); |
| 1852 | CMPI2->getOperand(i: I).setReg(SrcReg); |
| 1853 | addRegToUpdate(SrcReg); |
| 1854 | } |
| 1855 | } |
| 1856 | auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); |
| 1857 | MBBtoMoveCmp->splice(Where: I, Other: &MBB2, From: MachineBasicBlock::iterator(CMPI2)); |
| 1858 | |
| 1859 | DebugLoc DL = CMPI2->getDebugLoc(); |
| 1860 | Register NewVReg = MRI->createVirtualRegister(RegClass: &PPC::CRRCRegClass); |
| 1861 | BuildMI(BB&: MBB2, I: MBB2.begin(), MIMD: DL, |
| 1862 | MCID: TII->get(Opcode: PPC::PHI), DestReg: NewVReg) |
| 1863 | .addReg(RegNo: BI1->getOperand(i: 1).getReg()).addMBB(MBB: MBB1) |
| 1864 | .addReg(RegNo: BI2->getOperand(i: 1).getReg()).addMBB(MBB: MBBtoMoveCmp); |
| 1865 | BI2->getOperand(i: 1).setReg(NewVReg); |
| 1866 | addRegToUpdate(NewVReg); |
| 1867 | } |
| 1868 | else { |
| 1869 | // We finally eliminate compare instruction in MBB2. |
| 1870 | // We do not need to treat CMPI2 specially here in terms of re-computing |
| 1871 | // live variables even though it is being deleted because: |
| 1872 | // - It defines a register that has a single use (already checked in |
| 1873 | // eligibleForCompareElimination()) |
| 1874 | // - The only user (BI2) is no longer using it so the register is dead (no |
| 1875 | // def, no uses) |
| 1876 | // - We do not attempt to recompute live variables for dead registers |
| 1877 | BI2->getOperand(i: 1).setReg(BI1->getOperand(i: 1).getReg()); |
| 1878 | CMPI2->eraseFromParent(); |
| 1879 | } |
| 1880 | |
| 1881 | LLVM_DEBUG(dbgs() << "into a compare and two branches:\n" ); |
| 1882 | LLVM_DEBUG(CMPI1->dump()); |
| 1883 | LLVM_DEBUG(BI1->dump()); |
| 1884 | LLVM_DEBUG(BI2->dump()); |
| 1885 | if (IsPartiallyRedundant) { |
| 1886 | LLVM_DEBUG(dbgs() << "The following compare is moved into " |
| 1887 | << printMBBReference(*MBBtoMoveCmp) |
| 1888 | << " to handle partial redundancy.\n" ); |
| 1889 | LLVM_DEBUG(CMPI2->dump()); |
| 1890 | } |
| 1891 | Simplified = true; |
| 1892 | } |
| 1893 | |
| 1894 | return Simplified; |
| 1895 | } |
| 1896 | |
| 1897 | // We miss the opportunity to emit an RLDIC when lowering jump tables |
| 1898 | // since ISEL sees only a single basic block. When selecting, the clear |
| 1899 | // and shift left will be in different blocks. |
| 1900 | bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI, |
| 1901 | MachineInstr *&ToErase) { |
| 1902 | if (MI.getOpcode() != PPC::RLDICR) |
| 1903 | return false; |
| 1904 | |
| 1905 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1906 | if (!SrcReg.isVirtual()) |
| 1907 | return false; |
| 1908 | |
| 1909 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg); |
| 1910 | if (SrcMI->getOpcode() != PPC::RLDICL) |
| 1911 | return false; |
| 1912 | |
| 1913 | MachineOperand MOpSHSrc = SrcMI->getOperand(i: 2); |
| 1914 | MachineOperand MOpMBSrc = SrcMI->getOperand(i: 3); |
| 1915 | MachineOperand MOpSHMI = MI.getOperand(i: 2); |
| 1916 | MachineOperand MOpMEMI = MI.getOperand(i: 3); |
| 1917 | if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() && |
| 1918 | MOpMEMI.isImm())) |
| 1919 | return false; |
| 1920 | |
| 1921 | uint64_t SHSrc = MOpSHSrc.getImm(); |
| 1922 | uint64_t MBSrc = MOpMBSrc.getImm(); |
| 1923 | uint64_t SHMI = MOpSHMI.getImm(); |
| 1924 | uint64_t MEMI = MOpMEMI.getImm(); |
| 1925 | uint64_t NewSH = SHSrc + SHMI; |
| 1926 | uint64_t NewMB = MBSrc - SHMI; |
| 1927 | if (NewMB > 63 || NewSH > 63) |
| 1928 | return false; |
| 1929 | |
| 1930 | // The bits cleared with RLDICL are [0, MBSrc). |
| 1931 | // The bits cleared with RLDICR are (MEMI, 63]. |
| 1932 | // After the sequence, the bits cleared are: |
| 1933 | // [0, MBSrc-SHMI) and (MEMI, 63). |
| 1934 | // |
| 1935 | // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63]. |
| 1936 | if ((63 - NewSH) != MEMI) |
| 1937 | return false; |
| 1938 | |
| 1939 | LLVM_DEBUG(dbgs() << "Converting pair: " ); |
| 1940 | LLVM_DEBUG(SrcMI->dump()); |
| 1941 | LLVM_DEBUG(MI.dump()); |
| 1942 | |
| 1943 | MI.setDesc(TII->get(Opcode: PPC::RLDIC)); |
| 1944 | MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg()); |
| 1945 | MI.getOperand(i: 2).setImm(NewSH); |
| 1946 | MI.getOperand(i: 3).setImm(NewMB); |
| 1947 | addRegToUpdate(MI.getOperand(1).getReg()); |
| 1948 | addRegToUpdate(SrcMI->getOperand(0).getReg()); |
| 1949 | |
| 1950 | LLVM_DEBUG(dbgs() << "To: " ); |
| 1951 | LLVM_DEBUG(MI.dump()); |
| 1952 | NumRotatesCollapsed++; |
| 1953 | // If SrcReg has no non-debug use it's safe to delete its def SrcMI. |
| 1954 | if (MRI->use_nodbg_empty(RegNo: SrcReg)) { |
| 1955 | assert(!SrcMI->hasImplicitDef() && |
| 1956 | "Not expecting an implicit def with this instr." ); |
| 1957 | ToErase = SrcMI; |
| 1958 | } |
| 1959 | return true; |
| 1960 | } |
| 1961 | |
| 1962 | // For case in LLVM IR |
| 1963 | // entry: |
| 1964 | // %iconv = sext i32 %index to i64 |
| 1965 | // br i1 undef label %true, label %false |
| 1966 | // true: |
| 1967 | // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv |
| 1968 | // ... |
| 1969 | // PPCISelLowering::combineSHL fails to combine, because sext and shl are in |
| 1970 | // different BBs when conducting instruction selection. We can do a peephole |
| 1971 | // optimization to combine these two instructions into extswsli after |
| 1972 | // instruction selection. |
| 1973 | bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI, |
| 1974 | MachineInstr *&ToErase) { |
| 1975 | if (MI.getOpcode() != PPC::RLDICR) |
| 1976 | return false; |
| 1977 | |
| 1978 | if (!MF->getSubtarget<PPCSubtarget>().isISA3_0()) |
| 1979 | return false; |
| 1980 | |
| 1981 | assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands" ); |
| 1982 | |
| 1983 | MachineOperand MOpSHMI = MI.getOperand(i: 2); |
| 1984 | MachineOperand MOpMEMI = MI.getOperand(i: 3); |
| 1985 | if (!(MOpSHMI.isImm() && MOpMEMI.isImm())) |
| 1986 | return false; |
| 1987 | |
| 1988 | uint64_t SHMI = MOpSHMI.getImm(); |
| 1989 | uint64_t MEMI = MOpMEMI.getImm(); |
| 1990 | if (SHMI + MEMI != 63) |
| 1991 | return false; |
| 1992 | |
| 1993 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1994 | if (!SrcReg.isVirtual()) |
| 1995 | return false; |
| 1996 | |
| 1997 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg); |
| 1998 | if (SrcMI->getOpcode() != PPC::EXTSW && |
| 1999 | SrcMI->getOpcode() != PPC::EXTSW_32_64) |
| 2000 | return false; |
| 2001 | |
| 2002 | // If the register defined by extsw has more than one use, combination is not |
| 2003 | // needed. |
| 2004 | if (!MRI->hasOneNonDBGUse(RegNo: SrcReg)) |
| 2005 | return false; |
| 2006 | |
| 2007 | assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands" ); |
| 2008 | assert(SrcMI->getOperand(1).isReg() && |
| 2009 | "EXTSW's second operand should be a register" ); |
| 2010 | if (!SrcMI->getOperand(i: 1).getReg().isVirtual()) |
| 2011 | return false; |
| 2012 | |
| 2013 | LLVM_DEBUG(dbgs() << "Combining pair: " ); |
| 2014 | LLVM_DEBUG(SrcMI->dump()); |
| 2015 | LLVM_DEBUG(MI.dump()); |
| 2016 | |
| 2017 | MachineInstr *NewInstr = |
| 2018 | BuildMI(BB&: *MI.getParent(), I: &MI, MIMD: MI.getDebugLoc(), |
| 2019 | MCID: SrcMI->getOpcode() == PPC::EXTSW ? TII->get(Opcode: PPC::EXTSWSLI) |
| 2020 | : TII->get(Opcode: PPC::EXTSWSLI_32_64), |
| 2021 | DestReg: MI.getOperand(i: 0).getReg()) |
| 2022 | .add(MO: SrcMI->getOperand(i: 1)) |
| 2023 | .add(MO: MOpSHMI); |
| 2024 | (void)NewInstr; |
| 2025 | |
| 2026 | LLVM_DEBUG(dbgs() << "TO: " ); |
| 2027 | LLVM_DEBUG(NewInstr->dump()); |
| 2028 | ++NumEXTSWAndSLDICombined; |
| 2029 | ToErase = &MI; |
| 2030 | // SrcMI, which is extsw, is of no use now, but we don't erase it here so we |
| 2031 | // can recompute its kill flags. We run DCE immediately after this pass |
| 2032 | // to clean up dead instructions such as this. |
| 2033 | addRegToUpdate(NewInstr->getOperand(1).getReg()); |
| 2034 | addRegToUpdate(SrcMI->getOperand(0).getReg()); |
| 2035 | return true; |
| 2036 | } |
| 2037 | |
| 2038 | } // end default namespace |
| 2039 | |
| 2040 | INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, |
| 2041 | "PowerPC MI Peephole Optimization" , false, false) |
| 2042 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 2043 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 2044 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
| 2045 | INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) |
| 2046 | INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, |
| 2047 | "PowerPC MI Peephole Optimization" , false, false) |
| 2048 | |
| 2049 | char PPCMIPeephole::ID = 0; |
| 2050 | FunctionPass* |
| 2051 | llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } |
| 2052 | |