| 1 | //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements a pass that removes irreducible control flow. |
| 11 | /// Irreducible control flow means multiple-entry loops, which this pass |
| 12 | /// transforms to have a single entry. |
| 13 | /// |
| 14 | /// Note that LLVM has a generic pass that lowers irreducible control flow, but |
| 15 | /// it linearizes control flow, turning diamonds into two triangles, which is |
| 16 | /// both unnecessary and undesirable for WebAssembly. |
| 17 | /// |
| 18 | /// The big picture: We recursively process each "region", defined as a group |
| 19 | /// of blocks with a single entry and no branches back to that entry. A region |
| 20 | /// may be the entire function body, or the inner part of a loop, i.e., the |
| 21 | /// loop's body without branches back to the loop entry. In each region we fix |
| 22 | /// up multi-entry loops by adding a new block that can dispatch to each of the |
| 23 | /// loop entries, based on the value of a label "helper" variable, and we |
| 24 | /// replace direct branches to the entries with assignments to the label |
| 25 | /// variable and a branch to the dispatch block. Then the dispatch block is the |
| 26 | /// single entry in the loop containing the previous multiple entries. After |
| 27 | /// ensuring all the loops in a region are reducible, we recurse into them. The |
| 28 | /// total time complexity of this pass is: |
| 29 | /// |
| 30 | /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + |
| 31 | /// NumLoops * NumLoops) |
| 32 | /// |
| 33 | /// This pass is similar to what the Relooper [1] does. Both identify looping |
| 34 | /// code that requires multiple entries, and resolve it in a similar way (in |
| 35 | /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note |
| 36 | /// also that like the Relooper, we implement a "minimal" intervention: we only |
| 37 | /// use the "label" helper for the blocks we absolutely must and no others. We |
| 38 | /// also prioritize code size and do not duplicate code in order to resolve |
| 39 | /// irreducibility. The graph algorithms for finding loops and entries and so |
| 40 | /// forth are also similar to the Relooper. The main differences between this |
| 41 | /// pass and the Relooper are: |
| 42 | /// |
| 43 | /// * We just care about irreducibility, so we just look at loops. |
| 44 | /// * The Relooper emits structured control flow (with ifs etc.), while we |
| 45 | /// emit a CFG. |
| 46 | /// |
| 47 | /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In |
| 48 | /// Proceedings of the ACM international conference companion on Object oriented |
| 49 | /// programming systems languages and applications companion (SPLASH '11). ACM, |
| 50 | /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 |
| 51 | /// http://doi.acm.org/10.1145/2048147.2048224 |
| 52 | /// |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | |
| 55 | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" |
| 56 | #include "WebAssembly.h" |
| 57 | #include "WebAssemblySubtarget.h" |
| 58 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 59 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 60 | #include "llvm/Support/Debug.h" |
| 61 | using namespace llvm; |
| 62 | |
| 63 | #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" |
| 64 | |
| 65 | namespace { |
| 66 | |
| 67 | using BlockVector = SmallVector<MachineBasicBlock *, 4>; |
| 68 | using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; |
| 69 | |
| 70 | static BlockVector getSortedEntries(const BlockSet &Entries) { |
| 71 | BlockVector SortedEntries(Entries.begin(), Entries.end()); |
| 72 | llvm::sort(C&: SortedEntries, |
| 73 | Comp: [](const MachineBasicBlock *A, const MachineBasicBlock *B) { |
| 74 | auto ANum = A->getNumber(); |
| 75 | auto BNum = B->getNumber(); |
| 76 | return ANum < BNum; |
| 77 | }); |
| 78 | return SortedEntries; |
| 79 | } |
| 80 | |
| 81 | // Calculates reachability in a region. Ignores branches to blocks outside of |
| 82 | // the region, and ignores branches to the region entry (for the case where |
| 83 | // the region is the inner part of a loop). |
| 84 | class ReachabilityGraph { |
| 85 | public: |
| 86 | ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) |
| 87 | : Entry(Entry), Blocks(Blocks) { |
| 88 | #ifndef NDEBUG |
| 89 | // The region must have a single entry. |
| 90 | for (auto *MBB : Blocks) { |
| 91 | if (MBB != Entry) { |
| 92 | for (auto *Pred : MBB->predecessors()) { |
| 93 | assert(inRegion(Pred)); |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | #endif |
| 98 | calculate(); |
| 99 | } |
| 100 | |
| 101 | bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { |
| 102 | assert(inRegion(From) && inRegion(To)); |
| 103 | auto I = Reachable.find(Val: From); |
| 104 | if (I == Reachable.end()) |
| 105 | return false; |
| 106 | return I->second.count(Ptr: To); |
| 107 | } |
| 108 | |
| 109 | // "Loopers" are blocks that are in a loop. We detect these by finding blocks |
| 110 | // that can reach themselves. |
| 111 | const BlockSet &getLoopers() const { return Loopers; } |
| 112 | |
| 113 | // Get all blocks that are loop entries. |
| 114 | const BlockSet &getLoopEntries() const { return LoopEntries; } |
| 115 | |
| 116 | // Get all blocks that enter a particular loop from outside. |
| 117 | const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { |
| 118 | assert(inRegion(LoopEntry)); |
| 119 | auto I = LoopEnterers.find(Val: LoopEntry); |
| 120 | assert(I != LoopEnterers.end()); |
| 121 | return I->second; |
| 122 | } |
| 123 | |
| 124 | private: |
| 125 | MachineBasicBlock *Entry; |
| 126 | const BlockSet &Blocks; |
| 127 | |
| 128 | BlockSet Loopers, LoopEntries; |
| 129 | DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; |
| 130 | |
| 131 | bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(Ptr: MBB); } |
| 132 | |
| 133 | // Maps a block to all the other blocks it can reach. |
| 134 | DenseMap<MachineBasicBlock *, BlockSet> Reachable; |
| 135 | |
| 136 | void calculate() { |
| 137 | // Reachability computation work list. Contains pairs of recent additions |
| 138 | // (A, B) where we just added a link A => B. |
| 139 | using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; |
| 140 | SmallVector<BlockPair, 4> WorkList; |
| 141 | |
| 142 | // Add all relevant direct branches. |
| 143 | for (auto *MBB : Blocks) { |
| 144 | for (auto *Succ : MBB->successors()) { |
| 145 | if (Succ != Entry && inRegion(MBB: Succ)) { |
| 146 | Reachable[MBB].insert(Ptr: Succ); |
| 147 | WorkList.emplace_back(Args&: MBB, Args&: Succ); |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | while (!WorkList.empty()) { |
| 153 | MachineBasicBlock *MBB, *Succ; |
| 154 | std::tie(args&: MBB, args&: Succ) = WorkList.pop_back_val(); |
| 155 | assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); |
| 156 | if (MBB != Entry) { |
| 157 | // We recently added MBB => Succ, and that means we may have enabled |
| 158 | // Pred => MBB => Succ. |
| 159 | for (auto *Pred : MBB->predecessors()) { |
| 160 | if (Reachable[Pred].insert(Ptr: Succ).second) { |
| 161 | WorkList.emplace_back(Args&: Pred, Args&: Succ); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | // Blocks that can return to themselves are in a loop. |
| 168 | for (auto *MBB : Blocks) { |
| 169 | if (canReach(From: MBB, To: MBB)) { |
| 170 | Loopers.insert(Ptr: MBB); |
| 171 | } |
| 172 | } |
| 173 | assert(!Loopers.count(Entry)); |
| 174 | |
| 175 | // Find the loop entries - loopers reachable from blocks not in that loop - |
| 176 | // and those outside blocks that reach them, the "loop enterers". |
| 177 | for (auto *Looper : Loopers) { |
| 178 | for (auto *Pred : Looper->predecessors()) { |
| 179 | // Pred can reach Looper. If Looper can reach Pred, it is in the loop; |
| 180 | // otherwise, it is a block that enters into the loop. |
| 181 | if (!canReach(From: Looper, To: Pred)) { |
| 182 | LoopEntries.insert(Ptr: Looper); |
| 183 | LoopEnterers[Looper].insert(Ptr: Pred); |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | }; |
| 189 | |
| 190 | // Finds the blocks in a single-entry loop, given the loop entry and the |
| 191 | // list of blocks that enter the loop. |
| 192 | class LoopBlocks { |
| 193 | public: |
| 194 | LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) |
| 195 | : Entry(Entry), Enterers(Enterers) { |
| 196 | calculate(); |
| 197 | } |
| 198 | |
| 199 | BlockSet &getBlocks() { return Blocks; } |
| 200 | |
| 201 | private: |
| 202 | MachineBasicBlock *Entry; |
| 203 | const BlockSet &Enterers; |
| 204 | |
| 205 | BlockSet Blocks; |
| 206 | |
| 207 | void calculate() { |
| 208 | // Going backwards from the loop entry, if we ignore the blocks entering |
| 209 | // from outside, we will traverse all the blocks in the loop. |
| 210 | BlockVector WorkList; |
| 211 | BlockSet AddedToWorkList; |
| 212 | Blocks.insert(Ptr: Entry); |
| 213 | for (auto *Pred : Entry->predecessors()) { |
| 214 | if (!Enterers.count(Ptr: Pred)) { |
| 215 | WorkList.push_back(Elt: Pred); |
| 216 | AddedToWorkList.insert(Ptr: Pred); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | while (!WorkList.empty()) { |
| 221 | auto *MBB = WorkList.pop_back_val(); |
| 222 | assert(!Enterers.count(MBB)); |
| 223 | if (Blocks.insert(Ptr: MBB).second) { |
| 224 | for (auto *Pred : MBB->predecessors()) { |
| 225 | if (AddedToWorkList.insert(Ptr: Pred).second) |
| 226 | WorkList.push_back(Elt: Pred); |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | }; |
| 232 | |
| 233 | class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { |
| 234 | StringRef getPassName() const override { |
| 235 | return "WebAssembly Fix Irreducible Control Flow" ; |
| 236 | } |
| 237 | |
| 238 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 239 | |
| 240 | bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, |
| 241 | MachineFunction &MF); |
| 242 | |
| 243 | void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, |
| 244 | MachineFunction &MF, const ReachabilityGraph &Graph); |
| 245 | |
| 246 | public: |
| 247 | static char ID; // Pass identification, replacement for typeid |
| 248 | WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} |
| 249 | }; |
| 250 | |
| 251 | bool WebAssemblyFixIrreducibleControlFlow::processRegion( |
| 252 | MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { |
| 253 | bool Changed = false; |
| 254 | // Remove irreducibility before processing child loops, which may take |
| 255 | // multiple iterations. |
| 256 | while (true) { |
| 257 | ReachabilityGraph Graph(Entry, Blocks); |
| 258 | |
| 259 | bool FoundIrreducibility = false; |
| 260 | |
| 261 | for (auto *LoopEntry : getSortedEntries(Entries: Graph.getLoopEntries())) { |
| 262 | // Find mutual entries - all entries which can reach this one, and |
| 263 | // are reached by it (that always includes LoopEntry itself). All mutual |
| 264 | // entries must be in the same loop, so if we have more than one, then we |
| 265 | // have irreducible control flow. |
| 266 | // |
| 267 | // (Note that we need to sort the entries here, as otherwise the order can |
| 268 | // matter: being mutual is a symmetric relationship, and each set of |
| 269 | // mutuals will be handled properly no matter which we see first. However, |
| 270 | // there can be multiple disjoint sets of mutuals, and which we process |
| 271 | // first changes the output.) |
| 272 | // |
| 273 | // Note that irreducibility may involve inner loops, e.g. imagine A |
| 274 | // starts one loop, and it has B inside it which starts an inner loop. |
| 275 | // If we add a branch from all the way on the outside to B, then in a |
| 276 | // sense B is no longer an "inner" loop, semantically speaking. We will |
| 277 | // fix that irreducibility by adding a block that dispatches to either |
| 278 | // either A or B, so B will no longer be an inner loop in our output. |
| 279 | // (A fancier approach might try to keep it as such.) |
| 280 | // |
| 281 | // Note that we still need to recurse into inner loops later, to handle |
| 282 | // the case where the irreducibility is entirely nested - we would not |
| 283 | // be able to identify that at this point, since the enclosing loop is |
| 284 | // a group of blocks all of whom can reach each other. (We'll see the |
| 285 | // irreducibility after removing branches to the top of that enclosing |
| 286 | // loop.) |
| 287 | BlockSet MutualLoopEntries; |
| 288 | MutualLoopEntries.insert(Ptr: LoopEntry); |
| 289 | for (auto *OtherLoopEntry : Graph.getLoopEntries()) { |
| 290 | if (OtherLoopEntry != LoopEntry && |
| 291 | Graph.canReach(From: LoopEntry, To: OtherLoopEntry) && |
| 292 | Graph.canReach(From: OtherLoopEntry, To: LoopEntry)) { |
| 293 | MutualLoopEntries.insert(Ptr: OtherLoopEntry); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | if (MutualLoopEntries.size() > 1) { |
| 298 | makeSingleEntryLoop(Entries&: MutualLoopEntries, Blocks, MF, Graph); |
| 299 | FoundIrreducibility = true; |
| 300 | Changed = true; |
| 301 | break; |
| 302 | } |
| 303 | } |
| 304 | // Only go on to actually process the inner loops when we are done |
| 305 | // removing irreducible control flow and changing the graph. Modifying |
| 306 | // the graph as we go is possible, and that might let us avoid looking at |
| 307 | // the already-fixed loops again if we are careful, but all that is |
| 308 | // complex and bug-prone. Since irreducible loops are rare, just starting |
| 309 | // another iteration is best. |
| 310 | if (FoundIrreducibility) { |
| 311 | continue; |
| 312 | } |
| 313 | |
| 314 | for (auto *LoopEntry : Graph.getLoopEntries()) { |
| 315 | LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); |
| 316 | // Each of these calls to processRegion may change the graph, but are |
| 317 | // guaranteed not to interfere with each other. The only changes we make |
| 318 | // to the graph are to add blocks on the way to a loop entry. As the |
| 319 | // loops are disjoint, that means we may only alter branches that exit |
| 320 | // another loop, which are ignored when recursing into that other loop |
| 321 | // anyhow. |
| 322 | if (processRegion(Entry: LoopEntry, Blocks&: InnerBlocks.getBlocks(), MF)) { |
| 323 | Changed = true; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | return Changed; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | // Given a set of entries to a single loop, create a single entry for that |
| 332 | // loop by creating a dispatch block for them, routing control flow using |
| 333 | // a helper variable. Also updates Blocks with any new blocks created, so |
| 334 | // that we properly track all the blocks in the region. But this does not update |
| 335 | // ReachabilityGraph; this will be updated in the caller of this function as |
| 336 | // needed. |
| 337 | void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( |
| 338 | BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, |
| 339 | const ReachabilityGraph &Graph) { |
| 340 | assert(Entries.size() >= 2); |
| 341 | |
| 342 | // Sort the entries to ensure a deterministic build. |
| 343 | BlockVector SortedEntries = getSortedEntries(Entries); |
| 344 | |
| 345 | #ifndef NDEBUG |
| 346 | for (auto *Block : SortedEntries) |
| 347 | assert(Block->getNumber() != -1); |
| 348 | if (SortedEntries.size() > 1) { |
| 349 | for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; |
| 350 | ++I) { |
| 351 | auto ANum = (*I)->getNumber(); |
| 352 | auto BNum = (*(std::next(I)))->getNumber(); |
| 353 | assert(ANum != BNum); |
| 354 | } |
| 355 | } |
| 356 | #endif |
| 357 | |
| 358 | // Create a dispatch block which will contain a jump table to the entries. |
| 359 | MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); |
| 360 | MF.insert(MBBI: MF.end(), MBB: Dispatch); |
| 361 | Blocks.insert(Ptr: Dispatch); |
| 362 | |
| 363 | // Add the jump table. |
| 364 | const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
| 365 | MachineInstrBuilder MIB = |
| 366 | BuildMI(BB: Dispatch, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::BR_TABLE_I32)); |
| 367 | |
| 368 | // Add the register which will be used to tell the jump table which block to |
| 369 | // jump to. |
| 370 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 371 | Register Reg = MRI.createVirtualRegister(RegClass: &WebAssembly::I32RegClass); |
| 372 | MIB.addReg(RegNo: Reg); |
| 373 | |
| 374 | // Compute the indices in the superheader, one for each bad block, and |
| 375 | // add them as successors. |
| 376 | DenseMap<MachineBasicBlock *, unsigned> Indices; |
| 377 | for (auto *Entry : SortedEntries) { |
| 378 | auto Pair = Indices.try_emplace(Key: Entry); |
| 379 | assert(Pair.second); |
| 380 | |
| 381 | unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; |
| 382 | Pair.first->second = Index; |
| 383 | |
| 384 | MIB.addMBB(MBB: Entry); |
| 385 | Dispatch->addSuccessor(Succ: Entry); |
| 386 | } |
| 387 | |
| 388 | // Rewrite the problematic successors for every block that wants to reach |
| 389 | // the bad blocks. For simplicity, we just introduce a new block for every |
| 390 | // edge we need to rewrite. (Fancier things are possible.) |
| 391 | |
| 392 | BlockVector AllPreds; |
| 393 | for (auto *Entry : SortedEntries) { |
| 394 | for (auto *Pred : Entry->predecessors()) { |
| 395 | if (Pred != Dispatch) { |
| 396 | AllPreds.push_back(Elt: Pred); |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // This set stores predecessors within this loop. |
| 402 | DenseSet<MachineBasicBlock *> InLoop; |
| 403 | for (auto *Pred : AllPreds) { |
| 404 | for (auto *Entry : Pred->successors()) { |
| 405 | if (!Entries.count(Ptr: Entry)) |
| 406 | continue; |
| 407 | if (Graph.canReach(From: Entry, To: Pred)) { |
| 408 | InLoop.insert(V: Pred); |
| 409 | break; |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | // Record if each entry has a layout predecessor. This map stores |
| 415 | // <<loop entry, Predecessor is within the loop?>, layout predecessor> |
| 416 | DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> |
| 417 | EntryToLayoutPred; |
| 418 | for (auto *Pred : AllPreds) { |
| 419 | bool PredInLoop = InLoop.count(V: Pred); |
| 420 | for (auto *Entry : Pred->successors()) |
| 421 | if (Entries.count(Ptr: Entry) && Pred->isLayoutSuccessor(MBB: Entry)) |
| 422 | EntryToLayoutPred[{Entry, PredInLoop}] = Pred; |
| 423 | } |
| 424 | |
| 425 | // We need to create at most two routing blocks per entry: one for |
| 426 | // predecessors outside the loop and one for predecessors inside the loop. |
| 427 | // This map stores |
| 428 | // <<loop entry, Predecessor is within the loop?>, routing block> |
| 429 | DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> |
| 430 | Map; |
| 431 | for (auto *Pred : AllPreds) { |
| 432 | bool PredInLoop = InLoop.count(V: Pred); |
| 433 | for (auto *Entry : Pred->successors()) { |
| 434 | if (!Entries.count(Ptr: Entry) || Map.count(Val: {Entry, PredInLoop})) |
| 435 | continue; |
| 436 | // If there exists a layout predecessor of this entry and this predecessor |
| 437 | // is not that, we rather create a routing block after that layout |
| 438 | // predecessor to save a branch. |
| 439 | if (auto *OtherPred = EntryToLayoutPred.lookup(Val: {Entry, PredInLoop})) |
| 440 | if (OtherPred != Pred) |
| 441 | continue; |
| 442 | |
| 443 | // This is a successor we need to rewrite. |
| 444 | MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); |
| 445 | MF.insert(MBBI: Pred->isLayoutSuccessor(MBB: Entry) |
| 446 | ? MachineFunction::iterator(Entry) |
| 447 | : MF.end(), |
| 448 | MBB: Routing); |
| 449 | Blocks.insert(Ptr: Routing); |
| 450 | |
| 451 | // Set the jump table's register of the index of the block we wish to |
| 452 | // jump to, and jump to the jump table. |
| 453 | BuildMI(BB: Routing, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::CONST_I32), DestReg: Reg) |
| 454 | .addImm(Val: Indices[Entry]); |
| 455 | BuildMI(BB: Routing, MIMD: DebugLoc(), MCID: TII.get(Opcode: WebAssembly::BR)).addMBB(MBB: Dispatch); |
| 456 | Routing->addSuccessor(Succ: Dispatch); |
| 457 | Map[{Entry, PredInLoop}] = Routing; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | for (auto *Pred : AllPreds) { |
| 462 | bool PredInLoop = InLoop.count(V: Pred); |
| 463 | // Remap the terminator operands and the successor list. |
| 464 | for (MachineInstr &Term : Pred->terminators()) |
| 465 | for (auto &Op : Term.explicit_uses()) |
| 466 | if (Op.isMBB() && Indices.count(Val: Op.getMBB())) |
| 467 | Op.setMBB(Map[{Op.getMBB(), PredInLoop}]); |
| 468 | |
| 469 | for (auto *Succ : Pred->successors()) { |
| 470 | if (!Entries.count(Ptr: Succ)) |
| 471 | continue; |
| 472 | auto *Routing = Map[{Succ, PredInLoop}]; |
| 473 | Pred->replaceSuccessor(Old: Succ, New: Routing); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | // Create a fake default label, because br_table requires one. |
| 478 | MIB.addMBB(MBB: MIB.getInstr() |
| 479 | ->getOperand(i: MIB.getInstr()->getNumExplicitOperands() - 1) |
| 480 | .getMBB()); |
| 481 | } |
| 482 | |
| 483 | } // end anonymous namespace |
| 484 | |
| 485 | char WebAssemblyFixIrreducibleControlFlow::ID = 0; |
| 486 | INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, |
| 487 | "Removes irreducible control flow" , false, false) |
| 488 | |
| 489 | FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { |
| 490 | return new WebAssemblyFixIrreducibleControlFlow(); |
| 491 | } |
| 492 | |
| 493 | // Test whether the given register has an ARGUMENT def. |
| 494 | static bool hasArgumentDef(unsigned Reg, const MachineRegisterInfo &MRI) { |
| 495 | for (const auto &Def : MRI.def_instructions(Reg)) |
| 496 | if (WebAssembly::isArgument(Opc: Def.getOpcode())) |
| 497 | return true; |
| 498 | return false; |
| 499 | } |
| 500 | |
| 501 | // Add a register definition with IMPLICIT_DEFs for every register to cover for |
| 502 | // register uses that don't have defs in every possible path. |
| 503 | // TODO: This is fairly heavy-handed; find a better approach. |
| 504 | static void addImplicitDefs(MachineFunction &MF) { |
| 505 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 506 | const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
| 507 | MachineBasicBlock &Entry = *MF.begin(); |
| 508 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I < E; ++I) { |
| 509 | Register Reg = Register::index2VirtReg(Index: I); |
| 510 | |
| 511 | // Skip unused registers. |
| 512 | if (MRI.use_nodbg_empty(RegNo: Reg)) |
| 513 | continue; |
| 514 | |
| 515 | // Skip registers that have an ARGUMENT definition. |
| 516 | if (hasArgumentDef(Reg, MRI)) |
| 517 | continue; |
| 518 | |
| 519 | BuildMI(BB&: Entry, I: Entry.begin(), MIMD: DebugLoc(), |
| 520 | MCID: TII.get(Opcode: WebAssembly::IMPLICIT_DEF), DestReg: Reg); |
| 521 | } |
| 522 | |
| 523 | // Move ARGUMENT_* instructions to the top of the entry block, so that their |
| 524 | // liveness reflects the fact that these really are live-in values. |
| 525 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: Entry)) { |
| 526 | if (WebAssembly::isArgument(Opc: MI.getOpcode())) { |
| 527 | MI.removeFromParent(); |
| 528 | Entry.insert(I: Entry.begin(), MI: &MI); |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( |
| 534 | MachineFunction &MF) { |
| 535 | LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" |
| 536 | "********** Function: " |
| 537 | << MF.getName() << '\n'); |
| 538 | |
| 539 | // Start the recursive process on the entire function body. |
| 540 | BlockSet AllBlocks; |
| 541 | for (auto &MBB : MF) { |
| 542 | AllBlocks.insert(Ptr: &MBB); |
| 543 | } |
| 544 | |
| 545 | if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { |
| 546 | // We rewrote part of the function; recompute relevant things. |
| 547 | MF.RenumberBlocks(); |
| 548 | // Now we've inserted dispatch blocks, some register uses can have incoming |
| 549 | // paths without a def. For example, before this pass register %a was |
| 550 | // defined in BB1 and used in BB2, and there was only one path from BB1 and |
| 551 | // BB2. But if this pass inserts a dispatch block having multiple |
| 552 | // predecessors between the two BBs, now there are paths to BB2 without |
| 553 | // visiting BB1, and %a's use in BB2 is not dominated by its def. Adding |
| 554 | // IMPLICIT_DEFs to all regs is one simple way to fix it. |
| 555 | addImplicitDefs(MF); |
| 556 | return true; |
| 557 | } |
| 558 | |
| 559 | return false; |
| 560 | } |
| 561 | |