| 1 | //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements a register stacking pass. |
| 11 | /// |
| 12 | /// This pass reorders instructions to put register uses and defs in an order |
| 13 | /// such that they form single-use expression trees. Registers fitting this form |
| 14 | /// are then marked as "stackified", meaning references to them are replaced by |
| 15 | /// "push" and "pop" from the value stack. |
| 16 | /// |
| 17 | /// This is primarily a code size optimization, since temporary values on the |
| 18 | /// value stack don't need to be named. |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* |
| 23 | #include "WebAssembly.h" |
| 24 | #include "WebAssemblyDebugValueManager.h" |
| 25 | #include "WebAssemblyMachineFunctionInfo.h" |
| 26 | #include "WebAssemblySubtarget.h" |
| 27 | #include "WebAssemblyUtilities.h" |
| 28 | #include "llvm/CodeGen/LiveIntervals.h" |
| 29 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 30 | #include "llvm/CodeGen/MachineDominators.h" |
| 31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 33 | #include "llvm/CodeGen/Passes.h" |
| 34 | #include "llvm/IR/GlobalAlias.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include <iterator> |
| 38 | using namespace llvm; |
| 39 | |
| 40 | #define DEBUG_TYPE "wasm-reg-stackify" |
| 41 | |
| 42 | namespace { |
| 43 | class WebAssemblyRegStackify final : public MachineFunctionPass { |
| 44 | bool Optimize; |
| 45 | |
| 46 | StringRef getPassName() const override { |
| 47 | return "WebAssembly Register Stackify" ; |
| 48 | } |
| 49 | |
| 50 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 51 | AU.setPreservesCFG(); |
| 52 | if (Optimize) { |
| 53 | AU.addRequired<LiveIntervalsWrapperPass>(); |
| 54 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 55 | } |
| 56 | AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); |
| 57 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 58 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 59 | AU.addPreservedID(ID&: LiveVariablesID); |
| 60 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 61 | MachineFunctionPass::getAnalysisUsage(AU); |
| 62 | } |
| 63 | |
| 64 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 65 | |
| 66 | public: |
| 67 | static char ID; // Pass identification, replacement for typeid |
| 68 | WebAssemblyRegStackify(CodeGenOptLevel OptLevel) |
| 69 | : MachineFunctionPass(ID), Optimize(OptLevel != CodeGenOptLevel::None) {} |
| 70 | WebAssemblyRegStackify() : WebAssemblyRegStackify(CodeGenOptLevel::Default) {} |
| 71 | }; |
| 72 | } // end anonymous namespace |
| 73 | |
| 74 | char WebAssemblyRegStackify::ID = 0; |
| 75 | INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, |
| 76 | "Reorder instructions to use the WebAssembly value stack" , |
| 77 | false, false) |
| 78 | |
| 79 | FunctionPass *llvm::createWebAssemblyRegStackify(CodeGenOptLevel OptLevel) { |
| 80 | return new WebAssemblyRegStackify(OptLevel); |
| 81 | } |
| 82 | |
| 83 | // Decorate the given instruction with implicit operands that enforce the |
| 84 | // expression stack ordering constraints for an instruction which is on |
| 85 | // the expression stack. |
| 86 | static void imposeStackOrdering(MachineInstr *MI) { |
| 87 | // Write the opaque VALUE_STACK register. |
| 88 | if (!MI->definesRegister(Reg: WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) |
| 89 | MI->addOperand(Op: MachineOperand::CreateReg(Reg: WebAssembly::VALUE_STACK, |
| 90 | /*isDef=*/true, |
| 91 | /*isImp=*/true)); |
| 92 | |
| 93 | // Also read the opaque VALUE_STACK register. |
| 94 | if (!MI->readsRegister(Reg: WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) |
| 95 | MI->addOperand(Op: MachineOperand::CreateReg(Reg: WebAssembly::VALUE_STACK, |
| 96 | /*isDef=*/false, |
| 97 | /*isImp=*/true)); |
| 98 | } |
| 99 | |
| 100 | // Convert an IMPLICIT_DEF instruction into an instruction which defines |
| 101 | // a constant zero value. |
| 102 | static void convertImplicitDefToConstZero(MachineInstr *MI, |
| 103 | MachineRegisterInfo &MRI, |
| 104 | const TargetInstrInfo *TII, |
| 105 | MachineFunction &MF) { |
| 106 | assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); |
| 107 | |
| 108 | const auto *RegClass = MRI.getRegClass(Reg: MI->getOperand(i: 0).getReg()); |
| 109 | if (RegClass == &WebAssembly::I32RegClass) { |
| 110 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_I32)); |
| 111 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 112 | } else if (RegClass == &WebAssembly::I64RegClass) { |
| 113 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_I64)); |
| 114 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 115 | } else if (RegClass == &WebAssembly::F32RegClass) { |
| 116 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_F32)); |
| 117 | auto *Val = cast<ConstantFP>(Val: Constant::getNullValue( |
| 118 | Ty: Type::getFloatTy(C&: MF.getFunction().getContext()))); |
| 119 | MI->addOperand(Op: MachineOperand::CreateFPImm(CFP: Val)); |
| 120 | } else if (RegClass == &WebAssembly::F64RegClass) { |
| 121 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_F64)); |
| 122 | auto *Val = cast<ConstantFP>(Val: Constant::getNullValue( |
| 123 | Ty: Type::getDoubleTy(C&: MF.getFunction().getContext()))); |
| 124 | MI->addOperand(Op: MachineOperand::CreateFPImm(CFP: Val)); |
| 125 | } else if (RegClass == &WebAssembly::V128RegClass) { |
| 126 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_V128_I64x2)); |
| 127 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 128 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 129 | } else { |
| 130 | llvm_unreachable("Unexpected reg class" ); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // Determine whether a call to the callee referenced by |
| 135 | // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side |
| 136 | // effects. |
| 137 | static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, |
| 138 | bool &Effects, bool &StackPointer) { |
| 139 | // All calls can use the stack pointer. |
| 140 | StackPointer = true; |
| 141 | |
| 142 | const MachineOperand &MO = WebAssembly::getCalleeOp(MI); |
| 143 | if (MO.isGlobal()) { |
| 144 | const Constant *GV = MO.getGlobal(); |
| 145 | if (const auto *GA = dyn_cast<GlobalAlias>(Val: GV)) |
| 146 | if (!GA->isInterposable()) |
| 147 | GV = GA->getAliasee(); |
| 148 | |
| 149 | if (const auto *F = dyn_cast<Function>(Val: GV)) { |
| 150 | if (!F->doesNotThrow()) |
| 151 | Effects = true; |
| 152 | if (F->doesNotAccessMemory()) |
| 153 | return; |
| 154 | if (F->onlyReadsMemory()) { |
| 155 | Read = true; |
| 156 | return; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Assume the worst. |
| 162 | Write = true; |
| 163 | Read = true; |
| 164 | Effects = true; |
| 165 | } |
| 166 | |
| 167 | // Determine whether MI reads memory, writes memory, has side effects, |
| 168 | // and/or uses the stack pointer value. |
| 169 | static void query(const MachineInstr &MI, bool &Read, bool &Write, |
| 170 | bool &Effects, bool &StackPointer) { |
| 171 | assert(!MI.isTerminator()); |
| 172 | |
| 173 | if (MI.isDebugInstr() || MI.isPosition()) |
| 174 | return; |
| 175 | |
| 176 | // Check for loads. |
| 177 | if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) |
| 178 | Read = true; |
| 179 | |
| 180 | // Check for stores. |
| 181 | if (MI.mayStore()) { |
| 182 | Write = true; |
| 183 | } else if (MI.hasOrderedMemoryRef()) { |
| 184 | switch (MI.getOpcode()) { |
| 185 | case WebAssembly::DIV_S_I32: |
| 186 | case WebAssembly::DIV_S_I64: |
| 187 | case WebAssembly::REM_S_I32: |
| 188 | case WebAssembly::REM_S_I64: |
| 189 | case WebAssembly::DIV_U_I32: |
| 190 | case WebAssembly::DIV_U_I64: |
| 191 | case WebAssembly::REM_U_I32: |
| 192 | case WebAssembly::REM_U_I64: |
| 193 | case WebAssembly::I32_TRUNC_S_F32: |
| 194 | case WebAssembly::I64_TRUNC_S_F32: |
| 195 | case WebAssembly::I32_TRUNC_S_F64: |
| 196 | case WebAssembly::I64_TRUNC_S_F64: |
| 197 | case WebAssembly::I32_TRUNC_U_F32: |
| 198 | case WebAssembly::I64_TRUNC_U_F32: |
| 199 | case WebAssembly::I32_TRUNC_U_F64: |
| 200 | case WebAssembly::I64_TRUNC_U_F64: |
| 201 | // These instruction have hasUnmodeledSideEffects() returning true |
| 202 | // because they trap on overflow and invalid so they can't be arbitrarily |
| 203 | // moved, however hasOrderedMemoryRef() interprets this plus their lack |
| 204 | // of memoperands as having a potential unknown memory reference. |
| 205 | break; |
| 206 | default: |
| 207 | // Record volatile accesses, unless it's a call, as calls are handled |
| 208 | // specially below. |
| 209 | if (!MI.isCall()) { |
| 210 | Write = true; |
| 211 | Effects = true; |
| 212 | } |
| 213 | break; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | // Check for side effects. |
| 218 | if (MI.hasUnmodeledSideEffects()) { |
| 219 | switch (MI.getOpcode()) { |
| 220 | case WebAssembly::DIV_S_I32: |
| 221 | case WebAssembly::DIV_S_I64: |
| 222 | case WebAssembly::REM_S_I32: |
| 223 | case WebAssembly::REM_S_I64: |
| 224 | case WebAssembly::DIV_U_I32: |
| 225 | case WebAssembly::DIV_U_I64: |
| 226 | case WebAssembly::REM_U_I32: |
| 227 | case WebAssembly::REM_U_I64: |
| 228 | case WebAssembly::I32_TRUNC_S_F32: |
| 229 | case WebAssembly::I64_TRUNC_S_F32: |
| 230 | case WebAssembly::I32_TRUNC_S_F64: |
| 231 | case WebAssembly::I64_TRUNC_S_F64: |
| 232 | case WebAssembly::I32_TRUNC_U_F32: |
| 233 | case WebAssembly::I64_TRUNC_U_F32: |
| 234 | case WebAssembly::I32_TRUNC_U_F64: |
| 235 | case WebAssembly::I64_TRUNC_U_F64: |
| 236 | // These instructions have hasUnmodeledSideEffects() returning true |
| 237 | // because they trap on overflow and invalid so they can't be arbitrarily |
| 238 | // moved, however in the specific case of register stackifying, it is safe |
| 239 | // to move them because overflow and invalid are Undefined Behavior. |
| 240 | break; |
| 241 | default: |
| 242 | Effects = true; |
| 243 | break; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // Check for writes to __stack_pointer global. |
| 248 | if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || |
| 249 | MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && |
| 250 | strcmp(s1: MI.getOperand(i: 0).getSymbolName(), s2: "__stack_pointer" ) == 0) |
| 251 | StackPointer = true; |
| 252 | |
| 253 | // Analyze calls. |
| 254 | if (MI.isCall()) { |
| 255 | queryCallee(MI, Read, Write, Effects, StackPointer); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | // Test whether Def is safe and profitable to rematerialize. |
| 260 | static bool shouldRematerialize(const MachineInstr &Def, |
| 261 | const WebAssemblyInstrInfo *TII) { |
| 262 | return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(MI: Def); |
| 263 | } |
| 264 | |
| 265 | // Identify the definition for this register at this point. This is a |
| 266 | // generalization of MachineRegisterInfo::getUniqueVRegDef that uses |
| 267 | // LiveIntervals to handle complex cases. |
| 268 | static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, |
| 269 | const MachineRegisterInfo &MRI, |
| 270 | const LiveIntervals *LIS) { |
| 271 | // Most registers are in SSA form here so we try a quick MRI query first. |
| 272 | if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) |
| 273 | return Def; |
| 274 | |
| 275 | // MRI doesn't know what the Def is. Try asking LIS. |
| 276 | if (LIS != nullptr) { |
| 277 | SlotIndex InstIndex = LIS->getInstructionIndex(Instr: *Insert); |
| 278 | if (const VNInfo *ValNo = LIS->getInterval(Reg).getVNInfoBefore(Idx: InstIndex)) |
| 279 | return LIS->getInstructionFromIndex(index: ValNo->def); |
| 280 | } |
| 281 | |
| 282 | return nullptr; |
| 283 | } |
| 284 | |
| 285 | // Test whether Reg, as defined at Def, has exactly one use. This is a |
| 286 | // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses |
| 287 | // LiveIntervals to handle complex cases in optimized code. |
| 288 | static bool hasSingleUse(unsigned Reg, MachineRegisterInfo &MRI, |
| 289 | WebAssemblyFunctionInfo &MFI, bool Optimize, |
| 290 | MachineInstr *Def, LiveIntervals *LIS) { |
| 291 | if (!Optimize) { |
| 292 | // Using "hasOneUse" instead of "hasOneNonDBGUse" here because we don't |
| 293 | // want to stackify DBG_VALUE operands - WASM stack locations are less |
| 294 | // useful and less widely supported than WASM local locations. |
| 295 | if (!MRI.hasOneUse(RegNo: Reg)) |
| 296 | return false; |
| 297 | // The frame base always has an implicit DBG use as DW_AT_frame_base. |
| 298 | if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) |
| 299 | return false; |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | // Most registers are in SSA form here so we try a quick MRI query first. |
| 304 | if (MRI.hasOneNonDBGUse(RegNo: Reg)) |
| 305 | return true; |
| 306 | |
| 307 | if (LIS == nullptr) |
| 308 | return false; |
| 309 | |
| 310 | bool HasOne = false; |
| 311 | const LiveInterval &LI = LIS->getInterval(Reg); |
| 312 | const VNInfo *DefVNI = |
| 313 | LI.getVNInfoAt(Idx: LIS->getInstructionIndex(Instr: *Def).getRegSlot()); |
| 314 | assert(DefVNI); |
| 315 | for (auto &I : MRI.use_nodbg_operands(Reg)) { |
| 316 | const auto &Result = LI.Query(Idx: LIS->getInstructionIndex(Instr: *I.getParent())); |
| 317 | if (Result.valueIn() == DefVNI) { |
| 318 | if (!Result.isKill()) |
| 319 | return false; |
| 320 | if (HasOne) |
| 321 | return false; |
| 322 | HasOne = true; |
| 323 | } |
| 324 | } |
| 325 | return HasOne; |
| 326 | } |
| 327 | |
| 328 | // Test whether it's safe to move Def to just before Insert. |
| 329 | // TODO: Compute memory dependencies in a way that doesn't require always |
| 330 | // walking the block. |
| 331 | // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be |
| 332 | // more precise. |
| 333 | static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, |
| 334 | const MachineInstr *Insert, |
| 335 | const WebAssemblyFunctionInfo &MFI, |
| 336 | const MachineRegisterInfo &MRI, bool Optimize) { |
| 337 | const MachineInstr *DefI = Def->getParent(); |
| 338 | const MachineInstr *UseI = Use->getParent(); |
| 339 | assert(DefI->getParent() == Insert->getParent()); |
| 340 | assert(UseI->getParent() == Insert->getParent()); |
| 341 | |
| 342 | // The first def of a multivalue instruction can be stackified by moving, |
| 343 | // since the later defs can always be placed into locals if necessary. Later |
| 344 | // defs can only be stackified if all previous defs are already stackified |
| 345 | // since ExplicitLocals will not know how to place a def in a local if a |
| 346 | // subsequent def is stackified. But only one def can be stackified by moving |
| 347 | // the instruction, so it must be the first one. |
| 348 | // |
| 349 | // TODO: This could be loosened to be the first *live* def, but care would |
| 350 | // have to be taken to ensure the drops of the initial dead defs can be |
| 351 | // placed. This would require checking that no previous defs are used in the |
| 352 | // same instruction as subsequent defs. |
| 353 | if (Def != DefI->defs().begin()) |
| 354 | return false; |
| 355 | |
| 356 | // If any subsequent def is used prior to the current value by the same |
| 357 | // instruction in which the current value is used, we cannot |
| 358 | // stackify. Stackifying in this case would require that def moving below the |
| 359 | // current def in the stack, which cannot be achieved, even with locals. |
| 360 | // Also ensure we don't sink the def past any other prior uses. |
| 361 | for (const auto &SubsequentDef : drop_begin(RangeOrContainer: DefI->defs())) { |
| 362 | auto I = std::next(x: MachineBasicBlock::const_iterator(DefI)); |
| 363 | auto E = std::next(x: MachineBasicBlock::const_iterator(UseI)); |
| 364 | for (; I != E; ++I) { |
| 365 | for (const auto &PriorUse : I->uses()) { |
| 366 | if (&PriorUse == Use) |
| 367 | break; |
| 368 | if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) |
| 369 | return false; |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | // If moving is a semantic nop, it is always allowed |
| 375 | const MachineBasicBlock *MBB = DefI->getParent(); |
| 376 | auto NextI = std::next(x: MachineBasicBlock::const_iterator(DefI)); |
| 377 | for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) |
| 378 | ; |
| 379 | if (NextI == Insert) |
| 380 | return true; |
| 381 | |
| 382 | // When not optimizing, we only handle the trivial case above |
| 383 | // to guarantee no impact to debugging and to avoid spending |
| 384 | // compile time. |
| 385 | if (!Optimize) |
| 386 | return false; |
| 387 | |
| 388 | // 'catch' and 'catch_all' should be the first instruction of a BB and cannot |
| 389 | // move. |
| 390 | if (WebAssembly::isCatch(Opc: DefI->getOpcode())) |
| 391 | return false; |
| 392 | |
| 393 | // Check for register dependencies. |
| 394 | SmallVector<unsigned, 4> MutableRegisters; |
| 395 | for (const MachineOperand &MO : DefI->operands()) { |
| 396 | if (!MO.isReg() || MO.isUndef()) |
| 397 | continue; |
| 398 | Register Reg = MO.getReg(); |
| 399 | |
| 400 | // If the register is dead here and at Insert, ignore it. |
| 401 | if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) && |
| 402 | !Insert->readsRegister(Reg, /*TRI=*/nullptr)) |
| 403 | continue; |
| 404 | |
| 405 | if (Reg.isPhysical()) { |
| 406 | // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions |
| 407 | // from moving down, and we've already checked for that. |
| 408 | if (Reg == WebAssembly::ARGUMENTS) |
| 409 | continue; |
| 410 | // If the physical register is never modified, ignore it. |
| 411 | if (!MRI.isPhysRegModified(PhysReg: Reg)) |
| 412 | continue; |
| 413 | // Otherwise, it's a physical register with unknown liveness. |
| 414 | return false; |
| 415 | } |
| 416 | |
| 417 | // If one of the operands isn't in SSA form, it has different values at |
| 418 | // different times, and we need to make sure we don't move our use across |
| 419 | // a different def. |
| 420 | if (!MO.isDef() && !MRI.hasOneDef(RegNo: Reg)) |
| 421 | MutableRegisters.push_back(Elt: Reg); |
| 422 | } |
| 423 | |
| 424 | bool Read = false, Write = false, Effects = false, StackPointer = false; |
| 425 | query(MI: *DefI, Read, Write, Effects, StackPointer); |
| 426 | |
| 427 | // If the instruction does not access memory and has no side effects, it has |
| 428 | // no additional dependencies. |
| 429 | bool HasMutableRegisters = !MutableRegisters.empty(); |
| 430 | if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) |
| 431 | return true; |
| 432 | |
| 433 | // Scan through the intervening instructions between DefI and Insert. |
| 434 | MachineBasicBlock::const_iterator D(DefI), I(Insert); |
| 435 | for (--I; I != D; --I) { |
| 436 | bool InterveningRead = false; |
| 437 | bool InterveningWrite = false; |
| 438 | bool InterveningEffects = false; |
| 439 | bool InterveningStackPointer = false; |
| 440 | query(MI: *I, Read&: InterveningRead, Write&: InterveningWrite, Effects&: InterveningEffects, |
| 441 | StackPointer&: InterveningStackPointer); |
| 442 | if (Effects && InterveningEffects) |
| 443 | return false; |
| 444 | if (Read && InterveningWrite) |
| 445 | return false; |
| 446 | if (Write && (InterveningRead || InterveningWrite)) |
| 447 | return false; |
| 448 | if (StackPointer && InterveningStackPointer) |
| 449 | return false; |
| 450 | |
| 451 | for (unsigned Reg : MutableRegisters) |
| 452 | for (const MachineOperand &MO : I->operands()) |
| 453 | if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) |
| 454 | return false; |
| 455 | } |
| 456 | |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. |
| 461 | static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, |
| 462 | const MachineBasicBlock &MBB, |
| 463 | const MachineRegisterInfo &MRI, |
| 464 | const MachineDominatorTree &MDT, |
| 465 | LiveIntervals &LIS, |
| 466 | WebAssemblyFunctionInfo &MFI) { |
| 467 | const LiveInterval &LI = LIS.getInterval(Reg); |
| 468 | |
| 469 | const MachineInstr *OneUseInst = OneUse.getParent(); |
| 470 | VNInfo *OneUseVNI = LI.getVNInfoBefore(Idx: LIS.getInstructionIndex(Instr: *OneUseInst)); |
| 471 | |
| 472 | for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { |
| 473 | if (&Use == &OneUse) |
| 474 | continue; |
| 475 | |
| 476 | const MachineInstr *UseInst = Use.getParent(); |
| 477 | VNInfo *UseVNI = LI.getVNInfoBefore(Idx: LIS.getInstructionIndex(Instr: *UseInst)); |
| 478 | |
| 479 | if (UseVNI != OneUseVNI) |
| 480 | continue; |
| 481 | |
| 482 | if (UseInst == OneUseInst) { |
| 483 | // Another use in the same instruction. We need to ensure that the one |
| 484 | // selected use happens "before" it. |
| 485 | if (&OneUse > &Use) |
| 486 | return false; |
| 487 | } else { |
| 488 | // Test that the use is dominated by the one selected use. |
| 489 | while (!MDT.dominates(A: OneUseInst, B: UseInst)) { |
| 490 | // Actually, dominating is over-conservative. Test that the use would |
| 491 | // happen after the one selected use in the stack evaluation order. |
| 492 | // |
| 493 | // This is needed as a consequence of using implicit local.gets for |
| 494 | // uses and implicit local.sets for defs. |
| 495 | if (UseInst->getDesc().getNumDefs() == 0) |
| 496 | return false; |
| 497 | const MachineOperand &MO = UseInst->getOperand(i: 0); |
| 498 | if (!MO.isReg()) |
| 499 | return false; |
| 500 | Register DefReg = MO.getReg(); |
| 501 | if (!DefReg.isVirtual() || !MFI.isVRegStackified(VReg: DefReg)) |
| 502 | return false; |
| 503 | assert(MRI.hasOneNonDBGUse(DefReg)); |
| 504 | const MachineOperand &NewUse = *MRI.use_nodbg_begin(RegNo: DefReg); |
| 505 | const MachineInstr *NewUseInst = NewUse.getParent(); |
| 506 | if (NewUseInst == OneUseInst) { |
| 507 | if (&OneUse > &NewUse) |
| 508 | return false; |
| 509 | break; |
| 510 | } |
| 511 | UseInst = NewUseInst; |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | return true; |
| 516 | } |
| 517 | |
| 518 | /// Get the appropriate tee opcode for the given register class. |
| 519 | static unsigned getTeeOpcode(const TargetRegisterClass *RC) { |
| 520 | if (RC == &WebAssembly::I32RegClass) |
| 521 | return WebAssembly::TEE_I32; |
| 522 | if (RC == &WebAssembly::I64RegClass) |
| 523 | return WebAssembly::TEE_I64; |
| 524 | if (RC == &WebAssembly::F32RegClass) |
| 525 | return WebAssembly::TEE_F32; |
| 526 | if (RC == &WebAssembly::F64RegClass) |
| 527 | return WebAssembly::TEE_F64; |
| 528 | if (RC == &WebAssembly::V128RegClass) |
| 529 | return WebAssembly::TEE_V128; |
| 530 | if (RC == &WebAssembly::EXTERNREFRegClass) |
| 531 | return WebAssembly::TEE_EXTERNREF; |
| 532 | if (RC == &WebAssembly::FUNCREFRegClass) |
| 533 | return WebAssembly::TEE_FUNCREF; |
| 534 | if (RC == &WebAssembly::EXNREFRegClass) |
| 535 | return WebAssembly::TEE_EXNREF; |
| 536 | llvm_unreachable("Unexpected register class" ); |
| 537 | } |
| 538 | |
| 539 | // Shrink LI to its uses, cleaning up LI. |
| 540 | static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { |
| 541 | if (LIS.shrinkToUses(li: &LI)) { |
| 542 | SmallVector<LiveInterval *, 4> SplitLIs; |
| 543 | LIS.splitSeparateComponents(LI, SplitLIs); |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /// A single-use def in the same block with no intervening memory or register |
| 548 | /// dependencies; move the def down and nest it with the current instruction. |
| 549 | static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, |
| 550 | MachineInstr *Def, MachineBasicBlock &MBB, |
| 551 | MachineInstr *Insert, LiveIntervals *LIS, |
| 552 | WebAssemblyFunctionInfo &MFI, |
| 553 | MachineRegisterInfo &MRI) { |
| 554 | LLVM_DEBUG(dbgs() << "Move for single use: " ; Def->dump()); |
| 555 | |
| 556 | WebAssemblyDebugValueManager DefDIs(Def); |
| 557 | DefDIs.sink(Insert); |
| 558 | if (LIS != nullptr) |
| 559 | LIS->handleMove(MI&: *Def); |
| 560 | |
| 561 | if (MRI.hasOneDef(RegNo: Reg) && MRI.hasOneNonDBGUse(RegNo: Reg)) { |
| 562 | // No one else is using this register for anything so we can just stackify |
| 563 | // it in place. |
| 564 | MFI.stackifyVReg(MRI, VReg: Reg); |
| 565 | } else { |
| 566 | // The register may have unrelated uses or defs; create a new register for |
| 567 | // just our one def and use so that we can stackify it. |
| 568 | Register NewReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg)); |
| 569 | Op.setReg(NewReg); |
| 570 | DefDIs.updateReg(Reg: NewReg); |
| 571 | |
| 572 | if (LIS != nullptr) { |
| 573 | // Tell LiveIntervals about the new register. |
| 574 | LIS->createAndComputeVirtRegInterval(Reg: NewReg); |
| 575 | |
| 576 | // Tell LiveIntervals about the changes to the old register. |
| 577 | LiveInterval &LI = LIS->getInterval(Reg); |
| 578 | LI.removeSegment(Start: LIS->getInstructionIndex(Instr: *Def).getRegSlot(), |
| 579 | End: LIS->getInstructionIndex(Instr: *Op.getParent()).getRegSlot(), |
| 580 | /*RemoveDeadValNo=*/true); |
| 581 | } |
| 582 | |
| 583 | MFI.stackifyVReg(MRI, VReg: NewReg); |
| 584 | LLVM_DEBUG(dbgs() << " - Replaced register: " ; Def->dump()); |
| 585 | } |
| 586 | |
| 587 | imposeStackOrdering(MI: Def); |
| 588 | return Def; |
| 589 | } |
| 590 | |
| 591 | static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) { |
| 592 | for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode()) |
| 593 | if (!I->isDebugInstr()) |
| 594 | return I; |
| 595 | return nullptr; |
| 596 | } |
| 597 | |
| 598 | /// A trivially cloneable instruction; clone it and nest the new copy with the |
| 599 | /// current instruction. |
| 600 | static MachineInstr * |
| 601 | rematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr &Def, |
| 602 | MachineBasicBlock::instr_iterator Insert, |
| 603 | LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, |
| 604 | MachineRegisterInfo &MRI, |
| 605 | const WebAssemblyInstrInfo *TII) { |
| 606 | LLVM_DEBUG(dbgs() << "Rematerializing cheap def: " ; Def.dump()); |
| 607 | LLVM_DEBUG(dbgs() << " - for use in " ; Op.getParent()->dump()); |
| 608 | |
| 609 | WebAssemblyDebugValueManager DefDIs(&Def); |
| 610 | |
| 611 | Register NewReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg)); |
| 612 | DefDIs.cloneSink(Insert: &*Insert, NewReg); |
| 613 | Op.setReg(NewReg); |
| 614 | MachineInstr *Clone = getPrevNonDebugInst(MI: &*Insert); |
| 615 | assert(Clone); |
| 616 | LIS.InsertMachineInstrInMaps(MI&: *Clone); |
| 617 | LIS.createAndComputeVirtRegInterval(Reg: NewReg); |
| 618 | MFI.stackifyVReg(MRI, VReg: NewReg); |
| 619 | imposeStackOrdering(MI: Clone); |
| 620 | |
| 621 | LLVM_DEBUG(dbgs() << " - Cloned to " ; Clone->dump()); |
| 622 | |
| 623 | // Shrink the interval. |
| 624 | bool IsDead = MRI.use_empty(RegNo: Reg); |
| 625 | if (!IsDead) { |
| 626 | LiveInterval &LI = LIS.getInterval(Reg); |
| 627 | shrinkToUses(LI, LIS); |
| 628 | IsDead = !LI.liveAt(index: LIS.getInstructionIndex(Instr: Def).getDeadSlot()); |
| 629 | } |
| 630 | |
| 631 | // If that was the last use of the original, delete the original. |
| 632 | if (IsDead) { |
| 633 | LLVM_DEBUG(dbgs() << " - Deleting original\n" ); |
| 634 | SlotIndex Idx = LIS.getInstructionIndex(Instr: Def).getRegSlot(); |
| 635 | LIS.removePhysRegDefAt(Reg: MCRegister::from(Val: WebAssembly::ARGUMENTS), Pos: Idx); |
| 636 | LIS.removeInterval(Reg); |
| 637 | LIS.RemoveMachineInstrFromMaps(MI&: Def); |
| 638 | DefDIs.removeDef(); |
| 639 | } |
| 640 | |
| 641 | return Clone; |
| 642 | } |
| 643 | |
| 644 | /// A multiple-use def in the same block with no intervening memory or register |
| 645 | /// dependencies; move the def down, nest it with the current instruction, and |
| 646 | /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite |
| 647 | /// this: |
| 648 | /// |
| 649 | /// Reg = INST ... // Def |
| 650 | /// INST ..., Reg, ... // Insert |
| 651 | /// INST ..., Reg, ... |
| 652 | /// INST ..., Reg, ... |
| 653 | /// |
| 654 | /// to this: |
| 655 | /// |
| 656 | /// DefReg = INST ... // Def (to become the new Insert) |
| 657 | /// TeeReg, Reg = TEE_... DefReg |
| 658 | /// INST ..., TeeReg, ... // Insert |
| 659 | /// INST ..., Reg, ... |
| 660 | /// INST ..., Reg, ... |
| 661 | /// |
| 662 | /// with DefReg and TeeReg stackified. This eliminates a local.get from the |
| 663 | /// resulting code. |
| 664 | static MachineInstr *moveAndTeeForMultiUse( |
| 665 | unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, |
| 666 | MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, |
| 667 | MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { |
| 668 | LLVM_DEBUG(dbgs() << "Move and tee for multi-use:" ; Def->dump()); |
| 669 | |
| 670 | const auto *RegClass = MRI.getRegClass(Reg); |
| 671 | Register TeeReg = MRI.createVirtualRegister(RegClass); |
| 672 | Register DefReg = MRI.createVirtualRegister(RegClass); |
| 673 | |
| 674 | // Move Def into place. |
| 675 | WebAssemblyDebugValueManager DefDIs(Def); |
| 676 | DefDIs.sink(Insert); |
| 677 | LIS.handleMove(MI&: *Def); |
| 678 | |
| 679 | // Create the Tee and attach the registers. |
| 680 | MachineOperand &DefMO = Def->getOperand(i: 0); |
| 681 | MachineInstr *Tee = BuildMI(BB&: MBB, I: Insert, MIMD: Insert->getDebugLoc(), |
| 682 | MCID: TII->get(Opcode: getTeeOpcode(RC: RegClass)), DestReg: TeeReg) |
| 683 | .addReg(RegNo: Reg, flags: RegState::Define) |
| 684 | .addReg(RegNo: DefReg, flags: getUndefRegState(B: DefMO.isDead())); |
| 685 | Op.setReg(TeeReg); |
| 686 | DefDIs.updateReg(Reg: DefReg); |
| 687 | SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(MI&: *Tee).getRegSlot(); |
| 688 | SlotIndex DefIdx = LIS.getInstructionIndex(Instr: *Def).getRegSlot(); |
| 689 | |
| 690 | // Tell LiveIntervals we moved the original vreg def from Def to Tee. |
| 691 | LiveInterval &LI = LIS.getInterval(Reg); |
| 692 | LiveInterval::iterator I = LI.FindSegmentContaining(Idx: DefIdx); |
| 693 | VNInfo *ValNo = LI.getVNInfoAt(Idx: DefIdx); |
| 694 | I->start = TeeIdx; |
| 695 | ValNo->def = TeeIdx; |
| 696 | shrinkToUses(LI, LIS); |
| 697 | |
| 698 | // Finish stackifying the new regs. |
| 699 | LIS.createAndComputeVirtRegInterval(Reg: TeeReg); |
| 700 | LIS.createAndComputeVirtRegInterval(Reg: DefReg); |
| 701 | MFI.stackifyVReg(MRI, VReg: DefReg); |
| 702 | MFI.stackifyVReg(MRI, VReg: TeeReg); |
| 703 | imposeStackOrdering(MI: Def); |
| 704 | imposeStackOrdering(MI: Tee); |
| 705 | |
| 706 | // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone |
| 707 | // DBG_VALUEs for both of them, given that the latter will cancel the former |
| 708 | // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted |
| 709 | // to a local index in ExplicitLocals pass. |
| 710 | DefDIs.cloneSink(Insert, NewReg: TeeReg, /* CloneDef */ false); |
| 711 | |
| 712 | LLVM_DEBUG(dbgs() << " - Replaced register: " ; Def->dump()); |
| 713 | LLVM_DEBUG(dbgs() << " - Tee instruction: " ; Tee->dump()); |
| 714 | return Def; |
| 715 | } |
| 716 | |
| 717 | namespace { |
| 718 | /// A stack for walking the tree of instructions being built, visiting the |
| 719 | /// MachineOperands in DFS order. |
| 720 | class TreeWalkerState { |
| 721 | using mop_iterator = MachineInstr::mop_iterator; |
| 722 | using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; |
| 723 | using RangeTy = iterator_range<mop_reverse_iterator>; |
| 724 | SmallVector<RangeTy, 4> Worklist; |
| 725 | |
| 726 | public: |
| 727 | explicit TreeWalkerState(MachineInstr *Insert) { |
| 728 | const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); |
| 729 | if (!Range.empty()) |
| 730 | Worklist.push_back(Elt: reverse(C: Range)); |
| 731 | } |
| 732 | |
| 733 | bool done() const { return Worklist.empty(); } |
| 734 | |
| 735 | MachineOperand &pop() { |
| 736 | RangeTy &Range = Worklist.back(); |
| 737 | MachineOperand &Op = *Range.begin(); |
| 738 | Range = drop_begin(RangeOrContainer&: Range); |
| 739 | if (Range.empty()) |
| 740 | Worklist.pop_back(); |
| 741 | assert((Worklist.empty() || !Worklist.back().empty()) && |
| 742 | "Empty ranges shouldn't remain in the worklist" ); |
| 743 | return Op; |
| 744 | } |
| 745 | |
| 746 | /// Push Instr's operands onto the stack to be visited. |
| 747 | void pushOperands(MachineInstr *Instr) { |
| 748 | const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); |
| 749 | if (!Range.empty()) |
| 750 | Worklist.push_back(Elt: reverse(C: Range)); |
| 751 | } |
| 752 | |
| 753 | /// Some of Instr's operands are on the top of the stack; remove them and |
| 754 | /// re-insert them starting from the beginning (because we've commuted them). |
| 755 | void resetTopOperands(MachineInstr *Instr) { |
| 756 | assert(hasRemainingOperands(Instr) && |
| 757 | "Reseting operands should only be done when the instruction has " |
| 758 | "an operand still on the stack" ); |
| 759 | Worklist.back() = reverse(C: Instr->explicit_uses()); |
| 760 | } |
| 761 | |
| 762 | /// Test whether Instr has operands remaining to be visited at the top of |
| 763 | /// the stack. |
| 764 | bool hasRemainingOperands(const MachineInstr *Instr) const { |
| 765 | if (Worklist.empty()) |
| 766 | return false; |
| 767 | const RangeTy &Range = Worklist.back(); |
| 768 | return !Range.empty() && Range.begin()->getParent() == Instr; |
| 769 | } |
| 770 | |
| 771 | /// Test whether the given register is present on the stack, indicating an |
| 772 | /// operand in the tree that we haven't visited yet. Moving a definition of |
| 773 | /// Reg to a point in the tree after that would change its value. |
| 774 | /// |
| 775 | /// This is needed as a consequence of using implicit local.gets for |
| 776 | /// uses and implicit local.sets for defs. |
| 777 | bool isOnStack(unsigned Reg) const { |
| 778 | for (const RangeTy &Range : Worklist) |
| 779 | for (const MachineOperand &MO : Range) |
| 780 | if (MO.isReg() && MO.getReg() == Reg) |
| 781 | return true; |
| 782 | return false; |
| 783 | } |
| 784 | }; |
| 785 | |
| 786 | /// State to keep track of whether commuting is in flight or whether it's been |
| 787 | /// tried for the current instruction and didn't work. |
| 788 | class CommutingState { |
| 789 | /// There are effectively three states: the initial state where we haven't |
| 790 | /// started commuting anything and we don't know anything yet, the tentative |
| 791 | /// state where we've commuted the operands of the current instruction and are |
| 792 | /// revisiting it, and the declined state where we've reverted the operands |
| 793 | /// back to their original order and will no longer commute it further. |
| 794 | bool TentativelyCommuting = false; |
| 795 | bool Declined = false; |
| 796 | |
| 797 | /// During the tentative state, these hold the operand indices of the commuted |
| 798 | /// operands. |
| 799 | unsigned Operand0, Operand1; |
| 800 | |
| 801 | public: |
| 802 | /// Stackification for an operand was not successful due to ordering |
| 803 | /// constraints. If possible, and if we haven't already tried it and declined |
| 804 | /// it, commute Insert's operands and prepare to revisit it. |
| 805 | void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, |
| 806 | const WebAssemblyInstrInfo *TII) { |
| 807 | if (TentativelyCommuting) { |
| 808 | assert(!Declined && |
| 809 | "Don't decline commuting until you've finished trying it" ); |
| 810 | // Commuting didn't help. Revert it. |
| 811 | TII->commuteInstruction(MI&: *Insert, /*NewMI=*/false, OpIdx1: Operand0, OpIdx2: Operand1); |
| 812 | TentativelyCommuting = false; |
| 813 | Declined = true; |
| 814 | } else if (!Declined && TreeWalker.hasRemainingOperands(Instr: Insert)) { |
| 815 | Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; |
| 816 | Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; |
| 817 | if (TII->findCommutedOpIndices(MI: *Insert, SrcOpIdx1&: Operand0, SrcOpIdx2&: Operand1)) { |
| 818 | // Tentatively commute the operands and try again. |
| 819 | TII->commuteInstruction(MI&: *Insert, /*NewMI=*/false, OpIdx1: Operand0, OpIdx2: Operand1); |
| 820 | TreeWalker.resetTopOperands(Instr: Insert); |
| 821 | TentativelyCommuting = true; |
| 822 | Declined = false; |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | /// Stackification for some operand was successful. Reset to the default |
| 828 | /// state. |
| 829 | void reset() { |
| 830 | TentativelyCommuting = false; |
| 831 | Declined = false; |
| 832 | } |
| 833 | }; |
| 834 | } // end anonymous namespace |
| 835 | |
| 836 | bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { |
| 837 | LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" |
| 838 | "********** Function: " |
| 839 | << MF.getName() << '\n'); |
| 840 | |
| 841 | bool Changed = false; |
| 842 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 843 | WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); |
| 844 | const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
| 845 | MachineDominatorTree *MDT = nullptr; |
| 846 | LiveIntervals *LIS = nullptr; |
| 847 | if (Optimize) { |
| 848 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 849 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 850 | } |
| 851 | |
| 852 | // Walk the instructions from the bottom up. Currently we don't look past |
| 853 | // block boundaries, and the blocks aren't ordered so the block visitation |
| 854 | // order isn't significant, but we may want to change this in the future. |
| 855 | for (MachineBasicBlock &MBB : MF) { |
| 856 | // Don't use a range-based for loop, because we modify the list as we're |
| 857 | // iterating over it and the end iterator may change. |
| 858 | for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { |
| 859 | MachineInstr *Insert = &*MII; |
| 860 | // Don't nest anything inside an inline asm, because we don't have |
| 861 | // constraints for $push inputs. |
| 862 | if (Insert->isInlineAsm()) |
| 863 | continue; |
| 864 | |
| 865 | // Ignore debugging intrinsics. |
| 866 | if (Insert->isDebugValue()) |
| 867 | continue; |
| 868 | |
| 869 | // Iterate through the inputs in reverse order, since we'll be pulling |
| 870 | // operands off the stack in LIFO order. |
| 871 | CommutingState Commuting; |
| 872 | TreeWalkerState TreeWalker(Insert); |
| 873 | while (!TreeWalker.done()) { |
| 874 | MachineOperand &Use = TreeWalker.pop(); |
| 875 | |
| 876 | // We're only interested in explicit virtual register operands. |
| 877 | if (!Use.isReg()) |
| 878 | continue; |
| 879 | |
| 880 | Register Reg = Use.getReg(); |
| 881 | assert(Use.isUse() && "explicit_uses() should only iterate over uses" ); |
| 882 | assert(!Use.isImplicit() && |
| 883 | "explicit_uses() should only iterate over explicit operands" ); |
| 884 | if (Reg.isPhysical()) |
| 885 | continue; |
| 886 | |
| 887 | // Identify the definition for this register at this point. |
| 888 | MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); |
| 889 | if (!DefI) |
| 890 | continue; |
| 891 | |
| 892 | // Don't nest an INLINE_ASM def into anything, because we don't have |
| 893 | // constraints for $pop outputs. |
| 894 | if (DefI->isInlineAsm()) |
| 895 | continue; |
| 896 | |
| 897 | // Argument instructions represent live-in registers and not real |
| 898 | // instructions. |
| 899 | if (WebAssembly::isArgument(Opc: DefI->getOpcode())) |
| 900 | continue; |
| 901 | |
| 902 | MachineOperand *Def = |
| 903 | DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr); |
| 904 | assert(Def != nullptr); |
| 905 | |
| 906 | // Decide which strategy to take. Prefer to move a single-use value |
| 907 | // over cloning it, and prefer cloning over introducing a tee. |
| 908 | // For moving, we require the def to be in the same block as the use; |
| 909 | // this makes things simpler (LiveIntervals' handleMove function only |
| 910 | // supports intra-block moves) and it's MachineSink's job to catch all |
| 911 | // the sinking opportunities anyway. |
| 912 | bool SameBlock = DefI->getParent() == &MBB; |
| 913 | bool CanMove = SameBlock && |
| 914 | isSafeToMove(Def, Use: &Use, Insert, MFI, MRI, Optimize) && |
| 915 | !TreeWalker.isOnStack(Reg); |
| 916 | if (CanMove && hasSingleUse(Reg, MRI, MFI, Optimize, Def: DefI, LIS)) { |
| 917 | Insert = moveForSingleUse(Reg, Op&: Use, Def: DefI, MBB, Insert, LIS, MFI, MRI); |
| 918 | |
| 919 | // If we are removing the frame base reg completely, remove the debug |
| 920 | // info as well. |
| 921 | // TODO: Encode this properly as a stackified value. |
| 922 | if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) { |
| 923 | assert( |
| 924 | Optimize && |
| 925 | "Stackifying away frame base in unoptimized code not expected" ); |
| 926 | MFI.clearFrameBaseVreg(); |
| 927 | } |
| 928 | } else if (Optimize && shouldRematerialize(Def: *DefI, TII)) { |
| 929 | Insert = rematerializeCheapDef(Reg, Op&: Use, Def&: *DefI, Insert: Insert->getIterator(), |
| 930 | LIS&: *LIS, MFI, MRI, TII); |
| 931 | } else if (Optimize && CanMove && |
| 932 | oneUseDominatesOtherUses(Reg, OneUse: Use, MBB, MRI, MDT: *MDT, LIS&: *LIS, |
| 933 | MFI)) { |
| 934 | Insert = moveAndTeeForMultiUse(Reg, Op&: Use, Def: DefI, MBB, Insert, LIS&: *LIS, MFI, |
| 935 | MRI, TII); |
| 936 | } else { |
| 937 | // We failed to stackify the operand. If the problem was ordering |
| 938 | // constraints, Commuting may be able to help. |
| 939 | if (!CanMove && SameBlock) |
| 940 | Commuting.maybeCommute(Insert, TreeWalker, TII); |
| 941 | // Proceed to the next operand. |
| 942 | continue; |
| 943 | } |
| 944 | |
| 945 | // Stackifying a multivalue def may unlock in-place stackification of |
| 946 | // subsequent defs. TODO: Handle the case where the consecutive uses are |
| 947 | // not all in the same instruction. |
| 948 | auto *SubsequentDef = Insert->defs().begin(); |
| 949 | auto *SubsequentUse = &Use; |
| 950 | while (SubsequentDef != Insert->defs().end() && |
| 951 | SubsequentUse != Use.getParent()->uses().end()) { |
| 952 | if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) |
| 953 | break; |
| 954 | Register DefReg = SubsequentDef->getReg(); |
| 955 | Register UseReg = SubsequentUse->getReg(); |
| 956 | // TODO: This single-use restriction could be relaxed by using tees |
| 957 | if (DefReg != UseReg || |
| 958 | !hasSingleUse(Reg: DefReg, MRI, MFI, Optimize, Def: nullptr, LIS: nullptr)) |
| 959 | break; |
| 960 | MFI.stackifyVReg(MRI, VReg: DefReg); |
| 961 | ++SubsequentDef; |
| 962 | ++SubsequentUse; |
| 963 | } |
| 964 | |
| 965 | // If the instruction we just stackified is an IMPLICIT_DEF, convert it |
| 966 | // to a constant 0 so that the def is explicit, and the push/pop |
| 967 | // correspondence is maintained. |
| 968 | if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) |
| 969 | convertImplicitDefToConstZero(MI: Insert, MRI, TII, MF); |
| 970 | |
| 971 | // We stackified an operand. Add the defining instruction's operands to |
| 972 | // the worklist stack now to continue to build an ever deeper tree. |
| 973 | Commuting.reset(); |
| 974 | TreeWalker.pushOperands(Instr: Insert); |
| 975 | } |
| 976 | |
| 977 | // If we stackified any operands, skip over the tree to start looking for |
| 978 | // the next instruction we can build a tree on. |
| 979 | if (Insert != &*MII) { |
| 980 | imposeStackOrdering(MI: &*MII); |
| 981 | MII = MachineBasicBlock::iterator(Insert).getReverse(); |
| 982 | Changed = true; |
| 983 | } |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so |
| 988 | // that it never looks like a use-before-def. |
| 989 | if (Changed) { |
| 990 | MF.getRegInfo().addLiveIn(Reg: WebAssembly::VALUE_STACK); |
| 991 | for (MachineBasicBlock &MBB : MF) |
| 992 | MBB.addLiveIn(PhysReg: WebAssembly::VALUE_STACK); |
| 993 | } |
| 994 | |
| 995 | #ifndef NDEBUG |
| 996 | // Verify that pushes and pops are performed in LIFO order. |
| 997 | SmallVector<unsigned, 0> Stack; |
| 998 | for (MachineBasicBlock &MBB : MF) { |
| 999 | for (MachineInstr &MI : MBB) { |
| 1000 | if (MI.isDebugInstr()) |
| 1001 | continue; |
| 1002 | for (MachineOperand &MO : reverse(MI.explicit_uses())) { |
| 1003 | if (!MO.isReg()) |
| 1004 | continue; |
| 1005 | Register Reg = MO.getReg(); |
| 1006 | if (MFI.isVRegStackified(Reg)) |
| 1007 | assert(Stack.pop_back_val() == Reg && |
| 1008 | "Register stack pop should be paired with a push" ); |
| 1009 | } |
| 1010 | for (MachineOperand &MO : MI.defs()) { |
| 1011 | if (!MO.isReg()) |
| 1012 | continue; |
| 1013 | Register Reg = MO.getReg(); |
| 1014 | if (MFI.isVRegStackified(Reg)) |
| 1015 | Stack.push_back(MO.getReg()); |
| 1016 | } |
| 1017 | } |
| 1018 | // TODO: Generalize this code to support keeping values on the stack across |
| 1019 | // basic block boundaries. |
| 1020 | assert(Stack.empty() && |
| 1021 | "Register stack pushes and pops should be balanced" ); |
| 1022 | } |
| 1023 | #endif |
| 1024 | |
| 1025 | return Changed; |
| 1026 | } |
| 1027 | |