1 | //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a register stacking pass. |
11 | /// |
12 | /// This pass reorders instructions to put register uses and defs in an order |
13 | /// such that they form single-use expression trees. Registers fitting this form |
14 | /// are then marked as "stackified", meaning references to them are replaced by |
15 | /// "push" and "pop" from the value stack. |
16 | /// |
17 | /// This is primarily a code size optimization, since temporary values on the |
18 | /// value stack don't need to be named. |
19 | /// |
20 | //===----------------------------------------------------------------------===// |
21 | |
22 | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* |
23 | #include "WebAssembly.h" |
24 | #include "WebAssemblyDebugValueManager.h" |
25 | #include "WebAssemblyMachineFunctionInfo.h" |
26 | #include "WebAssemblySubtarget.h" |
27 | #include "WebAssemblyUtilities.h" |
28 | #include "llvm/CodeGen/LiveIntervals.h" |
29 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
30 | #include "llvm/CodeGen/MachineDominators.h" |
31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
33 | #include "llvm/CodeGen/Passes.h" |
34 | #include "llvm/IR/GlobalAlias.h" |
35 | #include "llvm/Support/Debug.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include <iterator> |
38 | using namespace llvm; |
39 | |
40 | #define DEBUG_TYPE "wasm-reg-stackify" |
41 | |
42 | namespace { |
43 | class WebAssemblyRegStackify final : public MachineFunctionPass { |
44 | bool Optimize; |
45 | |
46 | StringRef getPassName() const override { |
47 | return "WebAssembly Register Stackify" ; |
48 | } |
49 | |
50 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
51 | AU.setPreservesCFG(); |
52 | if (Optimize) { |
53 | AU.addRequired<LiveIntervalsWrapperPass>(); |
54 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
55 | } |
56 | AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); |
57 | AU.addPreserved<SlotIndexesWrapperPass>(); |
58 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
59 | AU.addPreservedID(ID&: LiveVariablesID); |
60 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
61 | MachineFunctionPass::getAnalysisUsage(AU); |
62 | } |
63 | |
64 | bool runOnMachineFunction(MachineFunction &MF) override; |
65 | |
66 | public: |
67 | static char ID; // Pass identification, replacement for typeid |
68 | WebAssemblyRegStackify(CodeGenOptLevel OptLevel) |
69 | : MachineFunctionPass(ID), Optimize(OptLevel != CodeGenOptLevel::None) {} |
70 | WebAssemblyRegStackify() : WebAssemblyRegStackify(CodeGenOptLevel::Default) {} |
71 | }; |
72 | } // end anonymous namespace |
73 | |
74 | char WebAssemblyRegStackify::ID = 0; |
75 | INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, |
76 | "Reorder instructions to use the WebAssembly value stack" , |
77 | false, false) |
78 | |
79 | FunctionPass *llvm::createWebAssemblyRegStackify(CodeGenOptLevel OptLevel) { |
80 | return new WebAssemblyRegStackify(OptLevel); |
81 | } |
82 | |
83 | // Decorate the given instruction with implicit operands that enforce the |
84 | // expression stack ordering constraints for an instruction which is on |
85 | // the expression stack. |
86 | static void imposeStackOrdering(MachineInstr *MI) { |
87 | // Write the opaque VALUE_STACK register. |
88 | if (!MI->definesRegister(Reg: WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) |
89 | MI->addOperand(Op: MachineOperand::CreateReg(Reg: WebAssembly::VALUE_STACK, |
90 | /*isDef=*/true, |
91 | /*isImp=*/true)); |
92 | |
93 | // Also read the opaque VALUE_STACK register. |
94 | if (!MI->readsRegister(Reg: WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) |
95 | MI->addOperand(Op: MachineOperand::CreateReg(Reg: WebAssembly::VALUE_STACK, |
96 | /*isDef=*/false, |
97 | /*isImp=*/true)); |
98 | } |
99 | |
100 | // Convert an IMPLICIT_DEF instruction into an instruction which defines |
101 | // a constant zero value. |
102 | static void convertImplicitDefToConstZero(MachineInstr *MI, |
103 | MachineRegisterInfo &MRI, |
104 | const TargetInstrInfo *TII, |
105 | MachineFunction &MF) { |
106 | assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); |
107 | |
108 | const auto *RegClass = MRI.getRegClass(Reg: MI->getOperand(i: 0).getReg()); |
109 | if (RegClass == &WebAssembly::I32RegClass) { |
110 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_I32)); |
111 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
112 | } else if (RegClass == &WebAssembly::I64RegClass) { |
113 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_I64)); |
114 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
115 | } else if (RegClass == &WebAssembly::F32RegClass) { |
116 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_F32)); |
117 | auto *Val = cast<ConstantFP>(Val: Constant::getNullValue( |
118 | Ty: Type::getFloatTy(C&: MF.getFunction().getContext()))); |
119 | MI->addOperand(Op: MachineOperand::CreateFPImm(CFP: Val)); |
120 | } else if (RegClass == &WebAssembly::F64RegClass) { |
121 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_F64)); |
122 | auto *Val = cast<ConstantFP>(Val: Constant::getNullValue( |
123 | Ty: Type::getDoubleTy(C&: MF.getFunction().getContext()))); |
124 | MI->addOperand(Op: MachineOperand::CreateFPImm(CFP: Val)); |
125 | } else if (RegClass == &WebAssembly::V128RegClass) { |
126 | MI->setDesc(TII->get(Opcode: WebAssembly::CONST_V128_I64x2)); |
127 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
128 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
129 | } else { |
130 | llvm_unreachable("Unexpected reg class" ); |
131 | } |
132 | } |
133 | |
134 | // Determine whether a call to the callee referenced by |
135 | // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side |
136 | // effects. |
137 | static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, |
138 | bool &Effects, bool &StackPointer) { |
139 | // All calls can use the stack pointer. |
140 | StackPointer = true; |
141 | |
142 | const MachineOperand &MO = WebAssembly::getCalleeOp(MI); |
143 | if (MO.isGlobal()) { |
144 | const Constant *GV = MO.getGlobal(); |
145 | if (const auto *GA = dyn_cast<GlobalAlias>(Val: GV)) |
146 | if (!GA->isInterposable()) |
147 | GV = GA->getAliasee(); |
148 | |
149 | if (const auto *F = dyn_cast<Function>(Val: GV)) { |
150 | if (!F->doesNotThrow()) |
151 | Effects = true; |
152 | if (F->doesNotAccessMemory()) |
153 | return; |
154 | if (F->onlyReadsMemory()) { |
155 | Read = true; |
156 | return; |
157 | } |
158 | } |
159 | } |
160 | |
161 | // Assume the worst. |
162 | Write = true; |
163 | Read = true; |
164 | Effects = true; |
165 | } |
166 | |
167 | // Determine whether MI reads memory, writes memory, has side effects, |
168 | // and/or uses the stack pointer value. |
169 | static void query(const MachineInstr &MI, bool &Read, bool &Write, |
170 | bool &Effects, bool &StackPointer) { |
171 | assert(!MI.isTerminator()); |
172 | |
173 | if (MI.isDebugInstr() || MI.isPosition()) |
174 | return; |
175 | |
176 | // Check for loads. |
177 | if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) |
178 | Read = true; |
179 | |
180 | // Check for stores. |
181 | if (MI.mayStore()) { |
182 | Write = true; |
183 | } else if (MI.hasOrderedMemoryRef()) { |
184 | switch (MI.getOpcode()) { |
185 | case WebAssembly::DIV_S_I32: |
186 | case WebAssembly::DIV_S_I64: |
187 | case WebAssembly::REM_S_I32: |
188 | case WebAssembly::REM_S_I64: |
189 | case WebAssembly::DIV_U_I32: |
190 | case WebAssembly::DIV_U_I64: |
191 | case WebAssembly::REM_U_I32: |
192 | case WebAssembly::REM_U_I64: |
193 | case WebAssembly::I32_TRUNC_S_F32: |
194 | case WebAssembly::I64_TRUNC_S_F32: |
195 | case WebAssembly::I32_TRUNC_S_F64: |
196 | case WebAssembly::I64_TRUNC_S_F64: |
197 | case WebAssembly::I32_TRUNC_U_F32: |
198 | case WebAssembly::I64_TRUNC_U_F32: |
199 | case WebAssembly::I32_TRUNC_U_F64: |
200 | case WebAssembly::I64_TRUNC_U_F64: |
201 | // These instruction have hasUnmodeledSideEffects() returning true |
202 | // because they trap on overflow and invalid so they can't be arbitrarily |
203 | // moved, however hasOrderedMemoryRef() interprets this plus their lack |
204 | // of memoperands as having a potential unknown memory reference. |
205 | break; |
206 | default: |
207 | // Record volatile accesses, unless it's a call, as calls are handled |
208 | // specially below. |
209 | if (!MI.isCall()) { |
210 | Write = true; |
211 | Effects = true; |
212 | } |
213 | break; |
214 | } |
215 | } |
216 | |
217 | // Check for side effects. |
218 | if (MI.hasUnmodeledSideEffects()) { |
219 | switch (MI.getOpcode()) { |
220 | case WebAssembly::DIV_S_I32: |
221 | case WebAssembly::DIV_S_I64: |
222 | case WebAssembly::REM_S_I32: |
223 | case WebAssembly::REM_S_I64: |
224 | case WebAssembly::DIV_U_I32: |
225 | case WebAssembly::DIV_U_I64: |
226 | case WebAssembly::REM_U_I32: |
227 | case WebAssembly::REM_U_I64: |
228 | case WebAssembly::I32_TRUNC_S_F32: |
229 | case WebAssembly::I64_TRUNC_S_F32: |
230 | case WebAssembly::I32_TRUNC_S_F64: |
231 | case WebAssembly::I64_TRUNC_S_F64: |
232 | case WebAssembly::I32_TRUNC_U_F32: |
233 | case WebAssembly::I64_TRUNC_U_F32: |
234 | case WebAssembly::I32_TRUNC_U_F64: |
235 | case WebAssembly::I64_TRUNC_U_F64: |
236 | // These instructions have hasUnmodeledSideEffects() returning true |
237 | // because they trap on overflow and invalid so they can't be arbitrarily |
238 | // moved, however in the specific case of register stackifying, it is safe |
239 | // to move them because overflow and invalid are Undefined Behavior. |
240 | break; |
241 | default: |
242 | Effects = true; |
243 | break; |
244 | } |
245 | } |
246 | |
247 | // Check for writes to __stack_pointer global. |
248 | if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || |
249 | MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && |
250 | strcmp(s1: MI.getOperand(i: 0).getSymbolName(), s2: "__stack_pointer" ) == 0) |
251 | StackPointer = true; |
252 | |
253 | // Analyze calls. |
254 | if (MI.isCall()) { |
255 | queryCallee(MI, Read, Write, Effects, StackPointer); |
256 | } |
257 | } |
258 | |
259 | // Test whether Def is safe and profitable to rematerialize. |
260 | static bool shouldRematerialize(const MachineInstr &Def, |
261 | const WebAssemblyInstrInfo *TII) { |
262 | return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(MI: Def); |
263 | } |
264 | |
265 | // Identify the definition for this register at this point. This is a |
266 | // generalization of MachineRegisterInfo::getUniqueVRegDef that uses |
267 | // LiveIntervals to handle complex cases. |
268 | static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, |
269 | const MachineRegisterInfo &MRI, |
270 | const LiveIntervals *LIS) { |
271 | // Most registers are in SSA form here so we try a quick MRI query first. |
272 | if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) |
273 | return Def; |
274 | |
275 | // MRI doesn't know what the Def is. Try asking LIS. |
276 | if (LIS != nullptr) { |
277 | SlotIndex InstIndex = LIS->getInstructionIndex(Instr: *Insert); |
278 | if (const VNInfo *ValNo = LIS->getInterval(Reg).getVNInfoBefore(Idx: InstIndex)) |
279 | return LIS->getInstructionFromIndex(index: ValNo->def); |
280 | } |
281 | |
282 | return nullptr; |
283 | } |
284 | |
285 | // Test whether Reg, as defined at Def, has exactly one use. This is a |
286 | // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses |
287 | // LiveIntervals to handle complex cases in optimized code. |
288 | static bool hasSingleUse(unsigned Reg, MachineRegisterInfo &MRI, |
289 | WebAssemblyFunctionInfo &MFI, bool Optimize, |
290 | MachineInstr *Def, LiveIntervals *LIS) { |
291 | if (!Optimize) { |
292 | // Using "hasOneUse" instead of "hasOneNonDBGUse" here because we don't |
293 | // want to stackify DBG_VALUE operands - WASM stack locations are less |
294 | // useful and less widely supported than WASM local locations. |
295 | if (!MRI.hasOneUse(RegNo: Reg)) |
296 | return false; |
297 | // The frame base always has an implicit DBG use as DW_AT_frame_base. |
298 | if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) |
299 | return false; |
300 | return true; |
301 | } |
302 | |
303 | // Most registers are in SSA form here so we try a quick MRI query first. |
304 | if (MRI.hasOneNonDBGUse(RegNo: Reg)) |
305 | return true; |
306 | |
307 | if (LIS == nullptr) |
308 | return false; |
309 | |
310 | bool HasOne = false; |
311 | const LiveInterval &LI = LIS->getInterval(Reg); |
312 | const VNInfo *DefVNI = |
313 | LI.getVNInfoAt(Idx: LIS->getInstructionIndex(Instr: *Def).getRegSlot()); |
314 | assert(DefVNI); |
315 | for (auto &I : MRI.use_nodbg_operands(Reg)) { |
316 | const auto &Result = LI.Query(Idx: LIS->getInstructionIndex(Instr: *I.getParent())); |
317 | if (Result.valueIn() == DefVNI) { |
318 | if (!Result.isKill()) |
319 | return false; |
320 | if (HasOne) |
321 | return false; |
322 | HasOne = true; |
323 | } |
324 | } |
325 | return HasOne; |
326 | } |
327 | |
328 | // Test whether it's safe to move Def to just before Insert. |
329 | // TODO: Compute memory dependencies in a way that doesn't require always |
330 | // walking the block. |
331 | // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be |
332 | // more precise. |
333 | static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, |
334 | const MachineInstr *Insert, |
335 | const WebAssemblyFunctionInfo &MFI, |
336 | const MachineRegisterInfo &MRI, bool Optimize) { |
337 | const MachineInstr *DefI = Def->getParent(); |
338 | const MachineInstr *UseI = Use->getParent(); |
339 | assert(DefI->getParent() == Insert->getParent()); |
340 | assert(UseI->getParent() == Insert->getParent()); |
341 | |
342 | // The first def of a multivalue instruction can be stackified by moving, |
343 | // since the later defs can always be placed into locals if necessary. Later |
344 | // defs can only be stackified if all previous defs are already stackified |
345 | // since ExplicitLocals will not know how to place a def in a local if a |
346 | // subsequent def is stackified. But only one def can be stackified by moving |
347 | // the instruction, so it must be the first one. |
348 | // |
349 | // TODO: This could be loosened to be the first *live* def, but care would |
350 | // have to be taken to ensure the drops of the initial dead defs can be |
351 | // placed. This would require checking that no previous defs are used in the |
352 | // same instruction as subsequent defs. |
353 | if (Def != DefI->defs().begin()) |
354 | return false; |
355 | |
356 | // If any subsequent def is used prior to the current value by the same |
357 | // instruction in which the current value is used, we cannot |
358 | // stackify. Stackifying in this case would require that def moving below the |
359 | // current def in the stack, which cannot be achieved, even with locals. |
360 | // Also ensure we don't sink the def past any other prior uses. |
361 | for (const auto &SubsequentDef : drop_begin(RangeOrContainer: DefI->defs())) { |
362 | auto I = std::next(x: MachineBasicBlock::const_iterator(DefI)); |
363 | auto E = std::next(x: MachineBasicBlock::const_iterator(UseI)); |
364 | for (; I != E; ++I) { |
365 | for (const auto &PriorUse : I->uses()) { |
366 | if (&PriorUse == Use) |
367 | break; |
368 | if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) |
369 | return false; |
370 | } |
371 | } |
372 | } |
373 | |
374 | // If moving is a semantic nop, it is always allowed |
375 | const MachineBasicBlock *MBB = DefI->getParent(); |
376 | auto NextI = std::next(x: MachineBasicBlock::const_iterator(DefI)); |
377 | for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) |
378 | ; |
379 | if (NextI == Insert) |
380 | return true; |
381 | |
382 | // When not optimizing, we only handle the trivial case above |
383 | // to guarantee no impact to debugging and to avoid spending |
384 | // compile time. |
385 | if (!Optimize) |
386 | return false; |
387 | |
388 | // 'catch' and 'catch_all' should be the first instruction of a BB and cannot |
389 | // move. |
390 | if (WebAssembly::isCatch(Opc: DefI->getOpcode())) |
391 | return false; |
392 | |
393 | // Check for register dependencies. |
394 | SmallVector<unsigned, 4> MutableRegisters; |
395 | for (const MachineOperand &MO : DefI->operands()) { |
396 | if (!MO.isReg() || MO.isUndef()) |
397 | continue; |
398 | Register Reg = MO.getReg(); |
399 | |
400 | // If the register is dead here and at Insert, ignore it. |
401 | if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) && |
402 | !Insert->readsRegister(Reg, /*TRI=*/nullptr)) |
403 | continue; |
404 | |
405 | if (Reg.isPhysical()) { |
406 | // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions |
407 | // from moving down, and we've already checked for that. |
408 | if (Reg == WebAssembly::ARGUMENTS) |
409 | continue; |
410 | // If the physical register is never modified, ignore it. |
411 | if (!MRI.isPhysRegModified(PhysReg: Reg)) |
412 | continue; |
413 | // Otherwise, it's a physical register with unknown liveness. |
414 | return false; |
415 | } |
416 | |
417 | // If one of the operands isn't in SSA form, it has different values at |
418 | // different times, and we need to make sure we don't move our use across |
419 | // a different def. |
420 | if (!MO.isDef() && !MRI.hasOneDef(RegNo: Reg)) |
421 | MutableRegisters.push_back(Elt: Reg); |
422 | } |
423 | |
424 | bool Read = false, Write = false, Effects = false, StackPointer = false; |
425 | query(MI: *DefI, Read, Write, Effects, StackPointer); |
426 | |
427 | // If the instruction does not access memory and has no side effects, it has |
428 | // no additional dependencies. |
429 | bool HasMutableRegisters = !MutableRegisters.empty(); |
430 | if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) |
431 | return true; |
432 | |
433 | // Scan through the intervening instructions between DefI and Insert. |
434 | MachineBasicBlock::const_iterator D(DefI), I(Insert); |
435 | for (--I; I != D; --I) { |
436 | bool InterveningRead = false; |
437 | bool InterveningWrite = false; |
438 | bool InterveningEffects = false; |
439 | bool InterveningStackPointer = false; |
440 | query(MI: *I, Read&: InterveningRead, Write&: InterveningWrite, Effects&: InterveningEffects, |
441 | StackPointer&: InterveningStackPointer); |
442 | if (Effects && InterveningEffects) |
443 | return false; |
444 | if (Read && InterveningWrite) |
445 | return false; |
446 | if (Write && (InterveningRead || InterveningWrite)) |
447 | return false; |
448 | if (StackPointer && InterveningStackPointer) |
449 | return false; |
450 | |
451 | for (unsigned Reg : MutableRegisters) |
452 | for (const MachineOperand &MO : I->operands()) |
453 | if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) |
454 | return false; |
455 | } |
456 | |
457 | return true; |
458 | } |
459 | |
460 | /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. |
461 | static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, |
462 | const MachineBasicBlock &MBB, |
463 | const MachineRegisterInfo &MRI, |
464 | const MachineDominatorTree &MDT, |
465 | LiveIntervals &LIS, |
466 | WebAssemblyFunctionInfo &MFI) { |
467 | const LiveInterval &LI = LIS.getInterval(Reg); |
468 | |
469 | const MachineInstr *OneUseInst = OneUse.getParent(); |
470 | VNInfo *OneUseVNI = LI.getVNInfoBefore(Idx: LIS.getInstructionIndex(Instr: *OneUseInst)); |
471 | |
472 | for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { |
473 | if (&Use == &OneUse) |
474 | continue; |
475 | |
476 | const MachineInstr *UseInst = Use.getParent(); |
477 | VNInfo *UseVNI = LI.getVNInfoBefore(Idx: LIS.getInstructionIndex(Instr: *UseInst)); |
478 | |
479 | if (UseVNI != OneUseVNI) |
480 | continue; |
481 | |
482 | if (UseInst == OneUseInst) { |
483 | // Another use in the same instruction. We need to ensure that the one |
484 | // selected use happens "before" it. |
485 | if (&OneUse > &Use) |
486 | return false; |
487 | } else { |
488 | // Test that the use is dominated by the one selected use. |
489 | while (!MDT.dominates(A: OneUseInst, B: UseInst)) { |
490 | // Actually, dominating is over-conservative. Test that the use would |
491 | // happen after the one selected use in the stack evaluation order. |
492 | // |
493 | // This is needed as a consequence of using implicit local.gets for |
494 | // uses and implicit local.sets for defs. |
495 | if (UseInst->getDesc().getNumDefs() == 0) |
496 | return false; |
497 | const MachineOperand &MO = UseInst->getOperand(i: 0); |
498 | if (!MO.isReg()) |
499 | return false; |
500 | Register DefReg = MO.getReg(); |
501 | if (!DefReg.isVirtual() || !MFI.isVRegStackified(VReg: DefReg)) |
502 | return false; |
503 | assert(MRI.hasOneNonDBGUse(DefReg)); |
504 | const MachineOperand &NewUse = *MRI.use_nodbg_begin(RegNo: DefReg); |
505 | const MachineInstr *NewUseInst = NewUse.getParent(); |
506 | if (NewUseInst == OneUseInst) { |
507 | if (&OneUse > &NewUse) |
508 | return false; |
509 | break; |
510 | } |
511 | UseInst = NewUseInst; |
512 | } |
513 | } |
514 | } |
515 | return true; |
516 | } |
517 | |
518 | /// Get the appropriate tee opcode for the given register class. |
519 | static unsigned getTeeOpcode(const TargetRegisterClass *RC) { |
520 | if (RC == &WebAssembly::I32RegClass) |
521 | return WebAssembly::TEE_I32; |
522 | if (RC == &WebAssembly::I64RegClass) |
523 | return WebAssembly::TEE_I64; |
524 | if (RC == &WebAssembly::F32RegClass) |
525 | return WebAssembly::TEE_F32; |
526 | if (RC == &WebAssembly::F64RegClass) |
527 | return WebAssembly::TEE_F64; |
528 | if (RC == &WebAssembly::V128RegClass) |
529 | return WebAssembly::TEE_V128; |
530 | if (RC == &WebAssembly::EXTERNREFRegClass) |
531 | return WebAssembly::TEE_EXTERNREF; |
532 | if (RC == &WebAssembly::FUNCREFRegClass) |
533 | return WebAssembly::TEE_FUNCREF; |
534 | if (RC == &WebAssembly::EXNREFRegClass) |
535 | return WebAssembly::TEE_EXNREF; |
536 | llvm_unreachable("Unexpected register class" ); |
537 | } |
538 | |
539 | // Shrink LI to its uses, cleaning up LI. |
540 | static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { |
541 | if (LIS.shrinkToUses(li: &LI)) { |
542 | SmallVector<LiveInterval *, 4> SplitLIs; |
543 | LIS.splitSeparateComponents(LI, SplitLIs); |
544 | } |
545 | } |
546 | |
547 | /// A single-use def in the same block with no intervening memory or register |
548 | /// dependencies; move the def down and nest it with the current instruction. |
549 | static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, |
550 | MachineInstr *Def, MachineBasicBlock &MBB, |
551 | MachineInstr *Insert, LiveIntervals *LIS, |
552 | WebAssemblyFunctionInfo &MFI, |
553 | MachineRegisterInfo &MRI) { |
554 | LLVM_DEBUG(dbgs() << "Move for single use: " ; Def->dump()); |
555 | |
556 | WebAssemblyDebugValueManager DefDIs(Def); |
557 | DefDIs.sink(Insert); |
558 | if (LIS != nullptr) |
559 | LIS->handleMove(MI&: *Def); |
560 | |
561 | if (MRI.hasOneDef(RegNo: Reg) && MRI.hasOneNonDBGUse(RegNo: Reg)) { |
562 | // No one else is using this register for anything so we can just stackify |
563 | // it in place. |
564 | MFI.stackifyVReg(MRI, VReg: Reg); |
565 | } else { |
566 | // The register may have unrelated uses or defs; create a new register for |
567 | // just our one def and use so that we can stackify it. |
568 | Register NewReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg)); |
569 | Op.setReg(NewReg); |
570 | DefDIs.updateReg(Reg: NewReg); |
571 | |
572 | if (LIS != nullptr) { |
573 | // Tell LiveIntervals about the new register. |
574 | LIS->createAndComputeVirtRegInterval(Reg: NewReg); |
575 | |
576 | // Tell LiveIntervals about the changes to the old register. |
577 | LiveInterval &LI = LIS->getInterval(Reg); |
578 | LI.removeSegment(Start: LIS->getInstructionIndex(Instr: *Def).getRegSlot(), |
579 | End: LIS->getInstructionIndex(Instr: *Op.getParent()).getRegSlot(), |
580 | /*RemoveDeadValNo=*/true); |
581 | } |
582 | |
583 | MFI.stackifyVReg(MRI, VReg: NewReg); |
584 | LLVM_DEBUG(dbgs() << " - Replaced register: " ; Def->dump()); |
585 | } |
586 | |
587 | imposeStackOrdering(MI: Def); |
588 | return Def; |
589 | } |
590 | |
591 | static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) { |
592 | for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode()) |
593 | if (!I->isDebugInstr()) |
594 | return I; |
595 | return nullptr; |
596 | } |
597 | |
598 | /// A trivially cloneable instruction; clone it and nest the new copy with the |
599 | /// current instruction. |
600 | static MachineInstr * |
601 | rematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr &Def, |
602 | MachineBasicBlock::instr_iterator Insert, |
603 | LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, |
604 | MachineRegisterInfo &MRI, |
605 | const WebAssemblyInstrInfo *TII) { |
606 | LLVM_DEBUG(dbgs() << "Rematerializing cheap def: " ; Def.dump()); |
607 | LLVM_DEBUG(dbgs() << " - for use in " ; Op.getParent()->dump()); |
608 | |
609 | WebAssemblyDebugValueManager DefDIs(&Def); |
610 | |
611 | Register NewReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg)); |
612 | DefDIs.cloneSink(Insert: &*Insert, NewReg); |
613 | Op.setReg(NewReg); |
614 | MachineInstr *Clone = getPrevNonDebugInst(MI: &*Insert); |
615 | assert(Clone); |
616 | LIS.InsertMachineInstrInMaps(MI&: *Clone); |
617 | LIS.createAndComputeVirtRegInterval(Reg: NewReg); |
618 | MFI.stackifyVReg(MRI, VReg: NewReg); |
619 | imposeStackOrdering(MI: Clone); |
620 | |
621 | LLVM_DEBUG(dbgs() << " - Cloned to " ; Clone->dump()); |
622 | |
623 | // Shrink the interval. |
624 | bool IsDead = MRI.use_empty(RegNo: Reg); |
625 | if (!IsDead) { |
626 | LiveInterval &LI = LIS.getInterval(Reg); |
627 | shrinkToUses(LI, LIS); |
628 | IsDead = !LI.liveAt(index: LIS.getInstructionIndex(Instr: Def).getDeadSlot()); |
629 | } |
630 | |
631 | // If that was the last use of the original, delete the original. |
632 | if (IsDead) { |
633 | LLVM_DEBUG(dbgs() << " - Deleting original\n" ); |
634 | SlotIndex Idx = LIS.getInstructionIndex(Instr: Def).getRegSlot(); |
635 | LIS.removePhysRegDefAt(Reg: MCRegister::from(Val: WebAssembly::ARGUMENTS), Pos: Idx); |
636 | LIS.removeInterval(Reg); |
637 | LIS.RemoveMachineInstrFromMaps(MI&: Def); |
638 | DefDIs.removeDef(); |
639 | } |
640 | |
641 | return Clone; |
642 | } |
643 | |
644 | /// A multiple-use def in the same block with no intervening memory or register |
645 | /// dependencies; move the def down, nest it with the current instruction, and |
646 | /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite |
647 | /// this: |
648 | /// |
649 | /// Reg = INST ... // Def |
650 | /// INST ..., Reg, ... // Insert |
651 | /// INST ..., Reg, ... |
652 | /// INST ..., Reg, ... |
653 | /// |
654 | /// to this: |
655 | /// |
656 | /// DefReg = INST ... // Def (to become the new Insert) |
657 | /// TeeReg, Reg = TEE_... DefReg |
658 | /// INST ..., TeeReg, ... // Insert |
659 | /// INST ..., Reg, ... |
660 | /// INST ..., Reg, ... |
661 | /// |
662 | /// with DefReg and TeeReg stackified. This eliminates a local.get from the |
663 | /// resulting code. |
664 | static MachineInstr *moveAndTeeForMultiUse( |
665 | unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, |
666 | MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, |
667 | MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { |
668 | LLVM_DEBUG(dbgs() << "Move and tee for multi-use:" ; Def->dump()); |
669 | |
670 | const auto *RegClass = MRI.getRegClass(Reg); |
671 | Register TeeReg = MRI.createVirtualRegister(RegClass); |
672 | Register DefReg = MRI.createVirtualRegister(RegClass); |
673 | |
674 | // Move Def into place. |
675 | WebAssemblyDebugValueManager DefDIs(Def); |
676 | DefDIs.sink(Insert); |
677 | LIS.handleMove(MI&: *Def); |
678 | |
679 | // Create the Tee and attach the registers. |
680 | MachineOperand &DefMO = Def->getOperand(i: 0); |
681 | MachineInstr *Tee = BuildMI(BB&: MBB, I: Insert, MIMD: Insert->getDebugLoc(), |
682 | MCID: TII->get(Opcode: getTeeOpcode(RC: RegClass)), DestReg: TeeReg) |
683 | .addReg(RegNo: Reg, flags: RegState::Define) |
684 | .addReg(RegNo: DefReg, flags: getUndefRegState(B: DefMO.isDead())); |
685 | Op.setReg(TeeReg); |
686 | DefDIs.updateReg(Reg: DefReg); |
687 | SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(MI&: *Tee).getRegSlot(); |
688 | SlotIndex DefIdx = LIS.getInstructionIndex(Instr: *Def).getRegSlot(); |
689 | |
690 | // Tell LiveIntervals we moved the original vreg def from Def to Tee. |
691 | LiveInterval &LI = LIS.getInterval(Reg); |
692 | LiveInterval::iterator I = LI.FindSegmentContaining(Idx: DefIdx); |
693 | VNInfo *ValNo = LI.getVNInfoAt(Idx: DefIdx); |
694 | I->start = TeeIdx; |
695 | ValNo->def = TeeIdx; |
696 | shrinkToUses(LI, LIS); |
697 | |
698 | // Finish stackifying the new regs. |
699 | LIS.createAndComputeVirtRegInterval(Reg: TeeReg); |
700 | LIS.createAndComputeVirtRegInterval(Reg: DefReg); |
701 | MFI.stackifyVReg(MRI, VReg: DefReg); |
702 | MFI.stackifyVReg(MRI, VReg: TeeReg); |
703 | imposeStackOrdering(MI: Def); |
704 | imposeStackOrdering(MI: Tee); |
705 | |
706 | // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone |
707 | // DBG_VALUEs for both of them, given that the latter will cancel the former |
708 | // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted |
709 | // to a local index in ExplicitLocals pass. |
710 | DefDIs.cloneSink(Insert, NewReg: TeeReg, /* CloneDef */ false); |
711 | |
712 | LLVM_DEBUG(dbgs() << " - Replaced register: " ; Def->dump()); |
713 | LLVM_DEBUG(dbgs() << " - Tee instruction: " ; Tee->dump()); |
714 | return Def; |
715 | } |
716 | |
717 | namespace { |
718 | /// A stack for walking the tree of instructions being built, visiting the |
719 | /// MachineOperands in DFS order. |
720 | class TreeWalkerState { |
721 | using mop_iterator = MachineInstr::mop_iterator; |
722 | using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; |
723 | using RangeTy = iterator_range<mop_reverse_iterator>; |
724 | SmallVector<RangeTy, 4> Worklist; |
725 | |
726 | public: |
727 | explicit TreeWalkerState(MachineInstr *Insert) { |
728 | const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); |
729 | if (!Range.empty()) |
730 | Worklist.push_back(Elt: reverse(C: Range)); |
731 | } |
732 | |
733 | bool done() const { return Worklist.empty(); } |
734 | |
735 | MachineOperand &pop() { |
736 | RangeTy &Range = Worklist.back(); |
737 | MachineOperand &Op = *Range.begin(); |
738 | Range = drop_begin(RangeOrContainer&: Range); |
739 | if (Range.empty()) |
740 | Worklist.pop_back(); |
741 | assert((Worklist.empty() || !Worklist.back().empty()) && |
742 | "Empty ranges shouldn't remain in the worklist" ); |
743 | return Op; |
744 | } |
745 | |
746 | /// Push Instr's operands onto the stack to be visited. |
747 | void pushOperands(MachineInstr *Instr) { |
748 | const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); |
749 | if (!Range.empty()) |
750 | Worklist.push_back(Elt: reverse(C: Range)); |
751 | } |
752 | |
753 | /// Some of Instr's operands are on the top of the stack; remove them and |
754 | /// re-insert them starting from the beginning (because we've commuted them). |
755 | void resetTopOperands(MachineInstr *Instr) { |
756 | assert(hasRemainingOperands(Instr) && |
757 | "Reseting operands should only be done when the instruction has " |
758 | "an operand still on the stack" ); |
759 | Worklist.back() = reverse(C: Instr->explicit_uses()); |
760 | } |
761 | |
762 | /// Test whether Instr has operands remaining to be visited at the top of |
763 | /// the stack. |
764 | bool hasRemainingOperands(const MachineInstr *Instr) const { |
765 | if (Worklist.empty()) |
766 | return false; |
767 | const RangeTy &Range = Worklist.back(); |
768 | return !Range.empty() && Range.begin()->getParent() == Instr; |
769 | } |
770 | |
771 | /// Test whether the given register is present on the stack, indicating an |
772 | /// operand in the tree that we haven't visited yet. Moving a definition of |
773 | /// Reg to a point in the tree after that would change its value. |
774 | /// |
775 | /// This is needed as a consequence of using implicit local.gets for |
776 | /// uses and implicit local.sets for defs. |
777 | bool isOnStack(unsigned Reg) const { |
778 | for (const RangeTy &Range : Worklist) |
779 | for (const MachineOperand &MO : Range) |
780 | if (MO.isReg() && MO.getReg() == Reg) |
781 | return true; |
782 | return false; |
783 | } |
784 | }; |
785 | |
786 | /// State to keep track of whether commuting is in flight or whether it's been |
787 | /// tried for the current instruction and didn't work. |
788 | class CommutingState { |
789 | /// There are effectively three states: the initial state where we haven't |
790 | /// started commuting anything and we don't know anything yet, the tentative |
791 | /// state where we've commuted the operands of the current instruction and are |
792 | /// revisiting it, and the declined state where we've reverted the operands |
793 | /// back to their original order and will no longer commute it further. |
794 | bool TentativelyCommuting = false; |
795 | bool Declined = false; |
796 | |
797 | /// During the tentative state, these hold the operand indices of the commuted |
798 | /// operands. |
799 | unsigned Operand0, Operand1; |
800 | |
801 | public: |
802 | /// Stackification for an operand was not successful due to ordering |
803 | /// constraints. If possible, and if we haven't already tried it and declined |
804 | /// it, commute Insert's operands and prepare to revisit it. |
805 | void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, |
806 | const WebAssemblyInstrInfo *TII) { |
807 | if (TentativelyCommuting) { |
808 | assert(!Declined && |
809 | "Don't decline commuting until you've finished trying it" ); |
810 | // Commuting didn't help. Revert it. |
811 | TII->commuteInstruction(MI&: *Insert, /*NewMI=*/false, OpIdx1: Operand0, OpIdx2: Operand1); |
812 | TentativelyCommuting = false; |
813 | Declined = true; |
814 | } else if (!Declined && TreeWalker.hasRemainingOperands(Instr: Insert)) { |
815 | Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; |
816 | Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; |
817 | if (TII->findCommutedOpIndices(MI: *Insert, SrcOpIdx1&: Operand0, SrcOpIdx2&: Operand1)) { |
818 | // Tentatively commute the operands and try again. |
819 | TII->commuteInstruction(MI&: *Insert, /*NewMI=*/false, OpIdx1: Operand0, OpIdx2: Operand1); |
820 | TreeWalker.resetTopOperands(Instr: Insert); |
821 | TentativelyCommuting = true; |
822 | Declined = false; |
823 | } |
824 | } |
825 | } |
826 | |
827 | /// Stackification for some operand was successful. Reset to the default |
828 | /// state. |
829 | void reset() { |
830 | TentativelyCommuting = false; |
831 | Declined = false; |
832 | } |
833 | }; |
834 | } // end anonymous namespace |
835 | |
836 | bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { |
837 | LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" |
838 | "********** Function: " |
839 | << MF.getName() << '\n'); |
840 | |
841 | bool Changed = false; |
842 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
843 | WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); |
844 | const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
845 | MachineDominatorTree *MDT = nullptr; |
846 | LiveIntervals *LIS = nullptr; |
847 | if (Optimize) { |
848 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
849 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
850 | } |
851 | |
852 | // Walk the instructions from the bottom up. Currently we don't look past |
853 | // block boundaries, and the blocks aren't ordered so the block visitation |
854 | // order isn't significant, but we may want to change this in the future. |
855 | for (MachineBasicBlock &MBB : MF) { |
856 | // Don't use a range-based for loop, because we modify the list as we're |
857 | // iterating over it and the end iterator may change. |
858 | for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { |
859 | MachineInstr *Insert = &*MII; |
860 | // Don't nest anything inside an inline asm, because we don't have |
861 | // constraints for $push inputs. |
862 | if (Insert->isInlineAsm()) |
863 | continue; |
864 | |
865 | // Ignore debugging intrinsics. |
866 | if (Insert->isDebugValue()) |
867 | continue; |
868 | |
869 | // Iterate through the inputs in reverse order, since we'll be pulling |
870 | // operands off the stack in LIFO order. |
871 | CommutingState Commuting; |
872 | TreeWalkerState TreeWalker(Insert); |
873 | while (!TreeWalker.done()) { |
874 | MachineOperand &Use = TreeWalker.pop(); |
875 | |
876 | // We're only interested in explicit virtual register operands. |
877 | if (!Use.isReg()) |
878 | continue; |
879 | |
880 | Register Reg = Use.getReg(); |
881 | assert(Use.isUse() && "explicit_uses() should only iterate over uses" ); |
882 | assert(!Use.isImplicit() && |
883 | "explicit_uses() should only iterate over explicit operands" ); |
884 | if (Reg.isPhysical()) |
885 | continue; |
886 | |
887 | // Identify the definition for this register at this point. |
888 | MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); |
889 | if (!DefI) |
890 | continue; |
891 | |
892 | // Don't nest an INLINE_ASM def into anything, because we don't have |
893 | // constraints for $pop outputs. |
894 | if (DefI->isInlineAsm()) |
895 | continue; |
896 | |
897 | // Argument instructions represent live-in registers and not real |
898 | // instructions. |
899 | if (WebAssembly::isArgument(Opc: DefI->getOpcode())) |
900 | continue; |
901 | |
902 | MachineOperand *Def = |
903 | DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr); |
904 | assert(Def != nullptr); |
905 | |
906 | // Decide which strategy to take. Prefer to move a single-use value |
907 | // over cloning it, and prefer cloning over introducing a tee. |
908 | // For moving, we require the def to be in the same block as the use; |
909 | // this makes things simpler (LiveIntervals' handleMove function only |
910 | // supports intra-block moves) and it's MachineSink's job to catch all |
911 | // the sinking opportunities anyway. |
912 | bool SameBlock = DefI->getParent() == &MBB; |
913 | bool CanMove = SameBlock && |
914 | isSafeToMove(Def, Use: &Use, Insert, MFI, MRI, Optimize) && |
915 | !TreeWalker.isOnStack(Reg); |
916 | if (CanMove && hasSingleUse(Reg, MRI, MFI, Optimize, Def: DefI, LIS)) { |
917 | Insert = moveForSingleUse(Reg, Op&: Use, Def: DefI, MBB, Insert, LIS, MFI, MRI); |
918 | |
919 | // If we are removing the frame base reg completely, remove the debug |
920 | // info as well. |
921 | // TODO: Encode this properly as a stackified value. |
922 | if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) { |
923 | assert( |
924 | Optimize && |
925 | "Stackifying away frame base in unoptimized code not expected" ); |
926 | MFI.clearFrameBaseVreg(); |
927 | } |
928 | } else if (Optimize && shouldRematerialize(Def: *DefI, TII)) { |
929 | Insert = rematerializeCheapDef(Reg, Op&: Use, Def&: *DefI, Insert: Insert->getIterator(), |
930 | LIS&: *LIS, MFI, MRI, TII); |
931 | } else if (Optimize && CanMove && |
932 | oneUseDominatesOtherUses(Reg, OneUse: Use, MBB, MRI, MDT: *MDT, LIS&: *LIS, |
933 | MFI)) { |
934 | Insert = moveAndTeeForMultiUse(Reg, Op&: Use, Def: DefI, MBB, Insert, LIS&: *LIS, MFI, |
935 | MRI, TII); |
936 | } else { |
937 | // We failed to stackify the operand. If the problem was ordering |
938 | // constraints, Commuting may be able to help. |
939 | if (!CanMove && SameBlock) |
940 | Commuting.maybeCommute(Insert, TreeWalker, TII); |
941 | // Proceed to the next operand. |
942 | continue; |
943 | } |
944 | |
945 | // Stackifying a multivalue def may unlock in-place stackification of |
946 | // subsequent defs. TODO: Handle the case where the consecutive uses are |
947 | // not all in the same instruction. |
948 | auto *SubsequentDef = Insert->defs().begin(); |
949 | auto *SubsequentUse = &Use; |
950 | while (SubsequentDef != Insert->defs().end() && |
951 | SubsequentUse != Use.getParent()->uses().end()) { |
952 | if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) |
953 | break; |
954 | Register DefReg = SubsequentDef->getReg(); |
955 | Register UseReg = SubsequentUse->getReg(); |
956 | // TODO: This single-use restriction could be relaxed by using tees |
957 | if (DefReg != UseReg || |
958 | !hasSingleUse(Reg: DefReg, MRI, MFI, Optimize, Def: nullptr, LIS: nullptr)) |
959 | break; |
960 | MFI.stackifyVReg(MRI, VReg: DefReg); |
961 | ++SubsequentDef; |
962 | ++SubsequentUse; |
963 | } |
964 | |
965 | // If the instruction we just stackified is an IMPLICIT_DEF, convert it |
966 | // to a constant 0 so that the def is explicit, and the push/pop |
967 | // correspondence is maintained. |
968 | if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) |
969 | convertImplicitDefToConstZero(MI: Insert, MRI, TII, MF); |
970 | |
971 | // We stackified an operand. Add the defining instruction's operands to |
972 | // the worklist stack now to continue to build an ever deeper tree. |
973 | Commuting.reset(); |
974 | TreeWalker.pushOperands(Instr: Insert); |
975 | } |
976 | |
977 | // If we stackified any operands, skip over the tree to start looking for |
978 | // the next instruction we can build a tree on. |
979 | if (Insert != &*MII) { |
980 | imposeStackOrdering(MI: &*MII); |
981 | MII = MachineBasicBlock::iterator(Insert).getReverse(); |
982 | Changed = true; |
983 | } |
984 | } |
985 | } |
986 | |
987 | // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so |
988 | // that it never looks like a use-before-def. |
989 | if (Changed) { |
990 | MF.getRegInfo().addLiveIn(Reg: WebAssembly::VALUE_STACK); |
991 | for (MachineBasicBlock &MBB : MF) |
992 | MBB.addLiveIn(PhysReg: WebAssembly::VALUE_STACK); |
993 | } |
994 | |
995 | #ifndef NDEBUG |
996 | // Verify that pushes and pops are performed in LIFO order. |
997 | SmallVector<unsigned, 0> Stack; |
998 | for (MachineBasicBlock &MBB : MF) { |
999 | for (MachineInstr &MI : MBB) { |
1000 | if (MI.isDebugInstr()) |
1001 | continue; |
1002 | for (MachineOperand &MO : reverse(MI.explicit_uses())) { |
1003 | if (!MO.isReg()) |
1004 | continue; |
1005 | Register Reg = MO.getReg(); |
1006 | if (MFI.isVRegStackified(Reg)) |
1007 | assert(Stack.pop_back_val() == Reg && |
1008 | "Register stack pop should be paired with a push" ); |
1009 | } |
1010 | for (MachineOperand &MO : MI.defs()) { |
1011 | if (!MO.isReg()) |
1012 | continue; |
1013 | Register Reg = MO.getReg(); |
1014 | if (MFI.isVRegStackified(Reg)) |
1015 | Stack.push_back(MO.getReg()); |
1016 | } |
1017 | } |
1018 | // TODO: Generalize this code to support keeping values on the stack across |
1019 | // basic block boundaries. |
1020 | assert(Stack.empty() && |
1021 | "Register stack pushes and pops should be balanced" ); |
1022 | } |
1023 | #endif |
1024 | |
1025 | return Changed; |
1026 | } |
1027 | |