1 | //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the X86MCCodeEmitter class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "MCTargetDesc/X86BaseInfo.h" |
14 | #include "MCTargetDesc/X86FixupKinds.h" |
15 | #include "MCTargetDesc/X86MCAsmInfo.h" |
16 | #include "MCTargetDesc/X86MCTargetDesc.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/BinaryFormat/ELF.h" |
19 | #include "llvm/MC/MCCodeEmitter.h" |
20 | #include "llvm/MC/MCContext.h" |
21 | #include "llvm/MC/MCExpr.h" |
22 | #include "llvm/MC/MCFixup.h" |
23 | #include "llvm/MC/MCInst.h" |
24 | #include "llvm/MC/MCInstrDesc.h" |
25 | #include "llvm/MC/MCInstrInfo.h" |
26 | #include "llvm/MC/MCRegisterInfo.h" |
27 | #include "llvm/MC/MCSubtargetInfo.h" |
28 | #include "llvm/MC/MCSymbol.h" |
29 | #include "llvm/Support/Casting.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | #include <cassert> |
32 | #include <cstdint> |
33 | #include <cstdlib> |
34 | |
35 | using namespace llvm; |
36 | |
37 | #define DEBUG_TYPE "mccodeemitter" |
38 | |
39 | namespace { |
40 | |
41 | enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX }; |
42 | |
43 | static void emitByte(uint8_t C, SmallVectorImpl<char> &CB) { CB.push_back(Elt: C); } |
44 | |
45 | class X86OpcodePrefixHelper { |
46 | // REX (1 byte) |
47 | // +-----+ +------+ |
48 | // | 40H | | WRXB | |
49 | // +-----+ +------+ |
50 | |
51 | // REX2 (2 bytes) |
52 | // +-----+ +-------------------+ |
53 | // | D5H | | M | R'X'B' | WRXB | |
54 | // +-----+ +-------------------+ |
55 | |
56 | // XOP (3-byte) |
57 | // +-----+ +--------------+ +-------------------+ |
58 | // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | |
59 | // +-----+ +--------------+ +-------------------+ |
60 | |
61 | // VEX2 (2 bytes) |
62 | // +-----+ +-------------------+ |
63 | // | C5h | | R | vvvv | L | pp | |
64 | // +-----+ +-------------------+ |
65 | |
66 | // VEX3 (3 bytes) |
67 | // +-----+ +--------------+ +-------------------+ |
68 | // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | |
69 | // +-----+ +--------------+ +-------------------+ |
70 | |
71 | // VEX_R: opcode externsion equivalent to REX.R in |
72 | // 1's complement (inverted) form |
73 | // |
74 | // 1: Same as REX_R=0 (must be 1 in 32-bit mode) |
75 | // 0: Same as REX_R=1 (64 bit mode only) |
76 | |
77 | // VEX_X: equivalent to REX.X, only used when a |
78 | // register is used for index in SIB Byte. |
79 | // |
80 | // 1: Same as REX.X=0 (must be 1 in 32-bit mode) |
81 | // 0: Same as REX.X=1 (64-bit mode only) |
82 | |
83 | // VEX_B: |
84 | // 1: Same as REX_B=0 (ignored in 32-bit mode) |
85 | // 0: Same as REX_B=1 (64 bit mode only) |
86 | |
87 | // VEX_W: opcode specific (use like REX.W, or used for |
88 | // opcode extension, or ignored, depending on the opcode byte) |
89 | |
90 | // VEX_5M (VEX m-mmmmm field): |
91 | // |
92 | // 0b00000: Reserved for future use |
93 | // 0b00001: implied 0F leading opcode |
94 | // 0b00010: implied 0F 38 leading opcode bytes |
95 | // 0b00011: implied 0F 3A leading opcode bytes |
96 | // 0b00100: Reserved for future use |
97 | // 0b00101: VEX MAP5 |
98 | // 0b00110: VEX MAP6 |
99 | // 0b00111: VEX MAP7 |
100 | // 0b00111-0b11111: Reserved for future use |
101 | // 0b01000: XOP map select - 08h instructions with imm byte |
102 | // 0b01001: XOP map select - 09h instructions with no imm byte |
103 | // 0b01010: XOP map select - 0Ah instructions with imm dword |
104 | |
105 | // VEX_4V (VEX vvvv field): a register specifier |
106 | // (in 1's complement form) or 1111 if unused. |
107 | |
108 | // VEX_PP: opcode extension providing equivalent |
109 | // functionality of a SIMD prefix |
110 | // 0b00: None |
111 | // 0b01: 66 |
112 | // 0b10: F3 |
113 | // 0b11: F2 |
114 | |
115 | // EVEX (4 bytes) |
116 | // +-----+ +---------------+ +-------------------+ +------------------------+ |
117 | // | 62h | | RXBR' | B'mmm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | |
118 | // +-----+ +---------------+ +-------------------+ +------------------------+ |
119 | |
120 | // EVEX_L2/VEX_L (Vector Length): |
121 | // L2 L |
122 | // 0 0: scalar or 128-bit vector |
123 | // 0 1: 256-bit vector |
124 | // 1 0: 512-bit vector |
125 | |
126 | // 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits: |
127 | // |
128 | // +----------+---------+--------+-----------+---------+--------------+ |
129 | // | | 4 | 3 | [2:0] | Type | Common Usage | |
130 | // +----------+---------+--------+-----------+---------+--------------+ |
131 | // | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src | |
132 | // | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src | |
133 | // | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src | |
134 | // | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src | |
135 | // | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA | |
136 | // | INDEX | EVEX_U | EVEX_X | sib.index | GPR | MA | |
137 | // | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA | |
138 | // +----------+---------+--------+-----------+---------+--------------+ |
139 | // |
140 | // * GPR - General-purpose register |
141 | // * VR - Vector register |
142 | // * VIDX - Vector index |
143 | // * VSIB - Vector SIB |
144 | // * MA - Memory addressing |
145 | |
146 | private: |
147 | unsigned W : 1; |
148 | unsigned R : 1; |
149 | unsigned X : 1; |
150 | unsigned B : 1; |
151 | unsigned M : 1; |
152 | unsigned R2 : 1; |
153 | unsigned X2 : 1; |
154 | unsigned B2 : 1; |
155 | unsigned VEX_4V : 4; |
156 | unsigned VEX_L : 1; |
157 | unsigned VEX_PP : 2; |
158 | unsigned VEX_5M : 5; |
159 | unsigned EVEX_z : 1; |
160 | unsigned EVEX_L2 : 1; |
161 | unsigned EVEX_b : 1; |
162 | unsigned EVEX_V2 : 1; |
163 | unsigned EVEX_aaa : 3; |
164 | PrefixKind Kind = None; |
165 | const MCRegisterInfo &MRI; |
166 | |
167 | unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const { |
168 | return MRI.getEncodingValue(Reg: MI.getOperand(i: OpNum).getReg()); |
169 | } |
170 | |
171 | void setR(unsigned Encoding) { R = Encoding >> 3 & 1; } |
172 | void setR2(unsigned Encoding) { |
173 | R2 = Encoding >> 4 & 1; |
174 | assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting" ); |
175 | } |
176 | void setX(unsigned Encoding) { X = Encoding >> 3 & 1; } |
177 | void setX2(unsigned Encoding) { |
178 | assert((Kind <= REX2 || Kind == EVEX) && "invalid setting" ); |
179 | X2 = Encoding >> 4 & 1; |
180 | } |
181 | void setB(unsigned Encoding) { B = Encoding >> 3 & 1; } |
182 | void setB2(unsigned Encoding) { |
183 | assert((Kind <= REX2 || Kind == EVEX) && "invalid setting" ); |
184 | B2 = Encoding >> 4 & 1; |
185 | } |
186 | void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; } |
187 | void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; } |
188 | |
189 | public: |
190 | void setW(bool V) { W = V; } |
191 | void setR(const MCInst &MI, unsigned OpNum) { |
192 | setR(getRegEncoding(MI, OpNum)); |
193 | } |
194 | void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) { |
195 | MCRegister Reg = MI.getOperand(i: OpNum).getReg(); |
196 | // X is used to extend vector register only when shift is not 3. |
197 | if (Shift != 3 && X86II::isApxExtendedReg(Reg)) |
198 | return; |
199 | unsigned Encoding = MRI.getEncodingValue(Reg); |
200 | X = Encoding >> Shift & 1; |
201 | } |
202 | void setB(const MCInst &MI, unsigned OpNum) { |
203 | B = getRegEncoding(MI, OpNum) >> 3 & 1; |
204 | } |
205 | void set4V(const MCInst &MI, unsigned OpNum, bool IsImm = false) { |
206 | // OF, SF, ZF and CF reuse VEX_4V bits but are not reversed |
207 | if (IsImm) |
208 | set4V(~(MI.getOperand(i: OpNum).getImm())); |
209 | else |
210 | set4V(getRegEncoding(MI, OpNum)); |
211 | } |
212 | void setL(bool V) { VEX_L = V; } |
213 | void setPP(unsigned V) { VEX_PP = V; } |
214 | void set5M(unsigned V) { VEX_5M = V; } |
215 | void setR2(const MCInst &MI, unsigned OpNum) { |
216 | setR2(getRegEncoding(MI, OpNum)); |
217 | } |
218 | void setRR2(const MCInst &MI, unsigned OpNum) { |
219 | unsigned Encoding = getRegEncoding(MI, OpNum); |
220 | setR(Encoding); |
221 | setR2(Encoding); |
222 | } |
223 | void setM(bool V) { M = V; } |
224 | void setXX2(const MCInst &MI, unsigned OpNum) { |
225 | MCRegister Reg = MI.getOperand(i: OpNum).getReg(); |
226 | unsigned Encoding = MRI.getEncodingValue(Reg); |
227 | setX(Encoding); |
228 | // Index can be a vector register while X2 is used to extend GPR only. |
229 | if (Kind <= REX2 || X86II::isApxExtendedReg(Reg)) |
230 | setX2(Encoding); |
231 | } |
232 | void setBB2(const MCInst &MI, unsigned OpNum) { |
233 | MCRegister Reg = MI.getOperand(i: OpNum).getReg(); |
234 | unsigned Encoding = MRI.getEncodingValue(Reg); |
235 | setB(Encoding); |
236 | // Base can be a vector register while B2 is used to extend GPR only |
237 | if (Kind <= REX2 || X86II::isApxExtendedReg(Reg)) |
238 | setB2(Encoding); |
239 | } |
240 | void setZ(bool V) { EVEX_z = V; } |
241 | void setL2(bool V) { EVEX_L2 = V; } |
242 | void setEVEX_b(bool V) { EVEX_b = V; } |
243 | void setEVEX_U(bool V) { X2 = V; } |
244 | void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) { |
245 | // Only needed with VSIB which don't use VVVV. |
246 | if (HasVEX_4V) |
247 | return; |
248 | MCRegister Reg = MI.getOperand(i: OpNum).getReg(); |
249 | if (X86II::isApxExtendedReg(Reg)) |
250 | return; |
251 | setV2(MRI.getEncodingValue(Reg)); |
252 | } |
253 | void set4VV2(const MCInst &MI, unsigned OpNum) { |
254 | unsigned Encoding = getRegEncoding(MI, OpNum); |
255 | set4V(Encoding); |
256 | setV2(Encoding); |
257 | } |
258 | void setAAA(const MCInst &MI, unsigned OpNum) { |
259 | EVEX_aaa = getRegEncoding(MI, OpNum); |
260 | } |
261 | void setNF(bool V) { EVEX_aaa |= V << 2; } |
262 | void setSC(const MCInst &MI, unsigned OpNum) { |
263 | unsigned Encoding = MI.getOperand(i: OpNum).getImm(); |
264 | EVEX_V2 = ~(Encoding >> 3) & 0x1; |
265 | EVEX_aaa = Encoding & 0x7; |
266 | } |
267 | |
268 | X86OpcodePrefixHelper(const MCRegisterInfo &MRI) |
269 | : W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0), |
270 | VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0), |
271 | EVEX_aaa(0), MRI(MRI) {} |
272 | |
273 | void setLowerBound(PrefixKind K) { Kind = K; } |
274 | |
275 | PrefixKind determineOptimalKind() { |
276 | switch (Kind) { |
277 | case None: |
278 | // Not M bit here by intention b/c |
279 | // 1. No guarantee that REX2 is supported by arch w/o explict EGPR |
280 | // 2. REX2 is longer than 0FH |
281 | Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None; |
282 | break; |
283 | case REX: |
284 | Kind = (R2 | X2 | B2) ? REX2 : REX; |
285 | break; |
286 | case REX2: |
287 | case XOP: |
288 | case VEX3: |
289 | case EVEX: |
290 | break; |
291 | case VEX2: |
292 | Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2; |
293 | break; |
294 | } |
295 | return Kind; |
296 | } |
297 | |
298 | void emit(SmallVectorImpl<char> &CB) const { |
299 | uint8_t FirstPayload = |
300 | ((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5; |
301 | uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP; |
302 | switch (Kind) { |
303 | case None: |
304 | return; |
305 | case REX: |
306 | emitByte(C: 0x40 | W << 3 | R << 2 | X << 1 | B, CB); |
307 | return; |
308 | case REX2: |
309 | emitByte(C: 0xD5, CB); |
310 | emitByte(C: M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 | |
311 | B, |
312 | CB); |
313 | return; |
314 | case VEX2: |
315 | emitByte(C: 0xC5, CB); |
316 | emitByte(C: ((~R) & 1) << 7 | LastPayload, CB); |
317 | return; |
318 | case VEX3: |
319 | case XOP: |
320 | emitByte(C: Kind == VEX3 ? 0xC4 : 0x8F, CB); |
321 | emitByte(C: FirstPayload | VEX_5M, CB); |
322 | emitByte(C: W << 7 | LastPayload, CB); |
323 | return; |
324 | case EVEX: |
325 | assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!" ); |
326 | emitByte(C: 0x62, CB); |
327 | emitByte(C: FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB); |
328 | emitByte(C: W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP, |
329 | CB); |
330 | emitByte(C: EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 | |
331 | ((~EVEX_V2) & 0x1) << 3 | EVEX_aaa, |
332 | CB); |
333 | return; |
334 | } |
335 | } |
336 | }; |
337 | |
338 | class X86MCCodeEmitter : public MCCodeEmitter { |
339 | const MCInstrInfo &MCII; |
340 | MCContext &Ctx; |
341 | |
342 | public: |
343 | X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) |
344 | : MCII(mcii), Ctx(ctx) {} |
345 | X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; |
346 | X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; |
347 | ~X86MCCodeEmitter() override = default; |
348 | |
349 | void emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB, |
350 | const MCSubtargetInfo &STI) const; |
351 | |
352 | void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB, |
353 | SmallVectorImpl<MCFixup> &Fixups, |
354 | const MCSubtargetInfo &STI) const override; |
355 | |
356 | private: |
357 | unsigned getX86RegNum(const MCOperand &MO) const; |
358 | |
359 | unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const; |
360 | |
361 | void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, |
362 | MCFixupKind FixupKind, uint64_t StartByte, |
363 | SmallVectorImpl<char> &CB, |
364 | SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const; |
365 | |
366 | void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, |
367 | SmallVectorImpl<char> &CB) const; |
368 | |
369 | void emitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
370 | SmallVectorImpl<char> &CB) const; |
371 | |
372 | void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, |
373 | uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte, |
374 | SmallVectorImpl<char> &CB, |
375 | SmallVectorImpl<MCFixup> &Fixups, |
376 | const MCSubtargetInfo &STI, |
377 | bool ForceSIB = false) const; |
378 | |
379 | PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI, |
380 | const MCSubtargetInfo &STI, |
381 | SmallVectorImpl<char> &CB) const; |
382 | |
383 | PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, |
384 | const MCSubtargetInfo &STI, |
385 | SmallVectorImpl<char> &CB) const; |
386 | |
387 | void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, |
388 | SmallVectorImpl<char> &CB) const; |
389 | |
390 | PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI, |
391 | const MCSubtargetInfo &STI, |
392 | SmallVectorImpl<char> &CB) const; |
393 | |
394 | PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI, |
395 | const MCSubtargetInfo &STI, |
396 | SmallVectorImpl<char> &CB) const; |
397 | }; |
398 | |
399 | } // end anonymous namespace |
400 | |
401 | static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { |
402 | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!" ); |
403 | return RM | (RegOpcode << 3) | (Mod << 6); |
404 | } |
405 | |
406 | static void emitConstant(uint64_t Val, unsigned Size, |
407 | SmallVectorImpl<char> &CB) { |
408 | // Output the constant in little endian byte order. |
409 | for (unsigned i = 0; i != Size; ++i) { |
410 | emitByte(C: Val & 255, CB); |
411 | Val >>= 8; |
412 | } |
413 | } |
414 | |
415 | /// Determine if this immediate can fit in a disp8 or a compressed disp8 for |
416 | /// EVEX instructions. \p will be set to the value to pass to the ImmOffset |
417 | /// parameter of emitImmediate. |
418 | static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) { |
419 | bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; |
420 | |
421 | unsigned CD8_Scale = |
422 | (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; |
423 | CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U; |
424 | if (!HasEVEX || !CD8_Scale) |
425 | return isInt<8>(x: Value); |
426 | |
427 | assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!" ); |
428 | if (Value & (CD8_Scale - 1)) // Unaligned offset |
429 | return false; |
430 | |
431 | int CDisp8 = Value / static_cast<int>(CD8_Scale); |
432 | if (!isInt<8>(x: CDisp8)) |
433 | return false; |
434 | |
435 | // ImmOffset will be added to Value in emitImmediate leaving just CDisp8. |
436 | ImmOffset = CDisp8 - Value; |
437 | return true; |
438 | } |
439 | |
440 | /// \returns the appropriate fixup kind to use for an immediate in an |
441 | /// instruction with the specified TSFlags. |
442 | static MCFixupKind getImmFixupKind(uint64_t TSFlags) { |
443 | unsigned Size = X86II::getSizeOfImm(TSFlags); |
444 | bool isPCRel = X86II::isImmPCRel(TSFlags); |
445 | |
446 | if (X86II::isImmSigned(TSFlags)) { |
447 | switch (Size) { |
448 | default: |
449 | llvm_unreachable("Unsupported signed fixup size!" ); |
450 | case 4: |
451 | return MCFixupKind(X86::reloc_signed_4byte); |
452 | } |
453 | } |
454 | switch (Size) { |
455 | default: |
456 | llvm_unreachable("Invalid generic fixup size!" ); |
457 | case 1: |
458 | return isPCRel ? FK_PCRel_1 : FK_Data_1; |
459 | case 2: |
460 | return isPCRel ? FK_PCRel_2 : FK_Data_2; |
461 | case 4: |
462 | return isPCRel ? FK_PCRel_4 : FK_Data_4; |
463 | case 8: |
464 | return isPCRel ? FK_PCRel_8 : FK_Data_8; |
465 | } |
466 | } |
467 | |
468 | enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; |
469 | |
470 | /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is |
471 | /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on |
472 | /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that |
473 | /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a |
474 | /// binary expression. |
475 | static GlobalOffsetTableExprKind |
476 | startsWithGlobalOffsetTable(const MCExpr *Expr) { |
477 | const MCExpr *RHS = nullptr; |
478 | if (Expr->getKind() == MCExpr::Binary) { |
479 | const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); |
480 | Expr = BE->getLHS(); |
481 | RHS = BE->getRHS(); |
482 | } |
483 | |
484 | if (Expr->getKind() != MCExpr::SymbolRef) |
485 | return GOT_None; |
486 | |
487 | const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); |
488 | const MCSymbol &S = Ref->getSymbol(); |
489 | if (S.getName() != "_GLOBAL_OFFSET_TABLE_" ) |
490 | return GOT_None; |
491 | if (RHS && RHS->getKind() == MCExpr::SymbolRef) |
492 | return GOT_SymDiff; |
493 | return GOT_Normal; |
494 | } |
495 | |
496 | static bool hasSecRelSymbolRef(const MCExpr *Expr) { |
497 | if (Expr->getKind() == MCExpr::SymbolRef) { |
498 | auto *Ref = static_cast<const MCSymbolRefExpr *>(Expr); |
499 | return Ref->getSpecifier() == X86::S_COFF_SECREL; |
500 | } |
501 | return false; |
502 | } |
503 | |
504 | static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) { |
505 | unsigned Opcode = MI.getOpcode(); |
506 | const MCInstrDesc &Desc = MCII.get(Opcode); |
507 | if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 && |
508 | Opcode != X86::JCC_4) || |
509 | getImmFixupKind(TSFlags: Desc.TSFlags) != FK_PCRel_4) |
510 | return false; |
511 | |
512 | unsigned CurOp = X86II::getOperandBias(Desc); |
513 | const MCOperand &Op = MI.getOperand(i: CurOp); |
514 | if (!Op.isExpr()) |
515 | return false; |
516 | |
517 | auto *Ref = dyn_cast<MCSymbolRefExpr>(Val: Op.getExpr()); |
518 | return Ref && Ref->getSpecifier() == X86::S_None; |
519 | } |
520 | |
521 | unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const { |
522 | return Ctx.getRegisterInfo()->getEncodingValue(Reg: MO.getReg()) & 0x7; |
523 | } |
524 | |
525 | unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI, |
526 | unsigned OpNum) const { |
527 | return Ctx.getRegisterInfo()->getEncodingValue(Reg: MI.getOperand(i: OpNum).getReg()); |
528 | } |
529 | |
530 | void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc, |
531 | unsigned Size, MCFixupKind FixupKind, |
532 | uint64_t StartByte, |
533 | SmallVectorImpl<char> &CB, |
534 | SmallVectorImpl<MCFixup> &Fixups, |
535 | int ImmOffset) const { |
536 | const MCExpr *Expr = nullptr; |
537 | if (DispOp.isImm()) { |
538 | // If this is a simple integer displacement that doesn't require a |
539 | // relocation, emit it now. |
540 | if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && |
541 | FixupKind != FK_PCRel_4) { |
542 | emitConstant(Val: DispOp.getImm() + ImmOffset, Size, CB); |
543 | return; |
544 | } |
545 | Expr = MCConstantExpr::create(Value: DispOp.getImm(), Ctx); |
546 | } else { |
547 | Expr = DispOp.getExpr(); |
548 | } |
549 | |
550 | // If we have an immoffset, add it to the expression. |
551 | if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || |
552 | FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { |
553 | GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr); |
554 | if (Kind != GOT_None) { |
555 | assert(ImmOffset == 0); |
556 | |
557 | if (Size == 8) { |
558 | FixupKind = |
559 | MCFixupKind(FirstLiteralRelocationKind + ELF::R_X86_64_GOTPC64); |
560 | } else { |
561 | assert(Size == 4); |
562 | FixupKind = MCFixupKind(X86::reloc_global_offset_table); |
563 | } |
564 | |
565 | if (Kind == GOT_Normal) |
566 | ImmOffset = static_cast<int>(CB.size() - StartByte); |
567 | } else if (Expr->getKind() == MCExpr::SymbolRef) { |
568 | if (hasSecRelSymbolRef(Expr)) { |
569 | FixupKind = MCFixupKind(FK_SecRel_4); |
570 | } |
571 | } else if (Expr->getKind() == MCExpr::Binary) { |
572 | const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr); |
573 | if (hasSecRelSymbolRef(Expr: Bin->getLHS()) || |
574 | hasSecRelSymbolRef(Expr: Bin->getRHS())) { |
575 | FixupKind = MCFixupKind(FK_SecRel_4); |
576 | } |
577 | } |
578 | } |
579 | |
580 | // If the fixup is pc-relative, we need to bias the value to be relative to |
581 | // the start of the field, not the end of the field. |
582 | if (FixupKind == FK_PCRel_4 || |
583 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || |
584 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || |
585 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load_rex2) || |
586 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || |
587 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || |
588 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex2) || |
589 | FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel) || |
590 | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_evex)) { |
591 | ImmOffset -= 4; |
592 | // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: |
593 | // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 |
594 | // this needs to be a GOTPC32 relocation. |
595 | if (startsWithGlobalOffsetTable(Expr) != GOT_None) |
596 | FixupKind = MCFixupKind(X86::reloc_global_offset_table); |
597 | } |
598 | |
599 | if (FixupKind == FK_PCRel_2) |
600 | ImmOffset -= 2; |
601 | if (FixupKind == FK_PCRel_1) |
602 | ImmOffset -= 1; |
603 | |
604 | if (ImmOffset) |
605 | Expr = MCBinaryExpr::createAdd(LHS: Expr, RHS: MCConstantExpr::create(Value: ImmOffset, Ctx), |
606 | Ctx, Loc: Expr->getLoc()); |
607 | |
608 | // Emit a symbolic constant as a fixup and 4 zeros. |
609 | Fixups.push_back(Elt: MCFixup::create(Offset: static_cast<uint32_t>(CB.size() - StartByte), |
610 | Value: Expr, Kind: FixupKind, Loc)); |
611 | emitConstant(Val: 0, Size, CB); |
612 | } |
613 | |
614 | void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg, |
615 | unsigned RegOpcodeFld, |
616 | SmallVectorImpl<char> &CB) const { |
617 | emitByte(C: modRMByte(Mod: 3, RegOpcode: RegOpcodeFld, RM: getX86RegNum(MO: ModRMReg)), CB); |
618 | } |
619 | |
620 | void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
621 | SmallVectorImpl<char> &CB) const { |
622 | // SIB byte is in the same format as the modRMByte. |
623 | emitByte(C: modRMByte(Mod: SS, RegOpcode: Index, RM: Base), CB); |
624 | } |
625 | |
626 | void X86MCCodeEmitter::emitMemModRMByte( |
627 | const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, |
628 | PrefixKind Kind, uint64_t StartByte, SmallVectorImpl<char> &CB, |
629 | SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI, |
630 | bool ForceSIB) const { |
631 | const MCOperand &Disp = MI.getOperand(i: Op + X86::AddrDisp); |
632 | const MCOperand &Base = MI.getOperand(i: Op + X86::AddrBaseReg); |
633 | const MCOperand &Scale = MI.getOperand(i: Op + X86::AddrScaleAmt); |
634 | const MCOperand &IndexReg = MI.getOperand(i: Op + X86::AddrIndexReg); |
635 | MCRegister BaseReg = Base.getReg(); |
636 | |
637 | // Handle %rip relative addressing. |
638 | if (BaseReg == X86::RIP || |
639 | BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode |
640 | assert(STI.hasFeature(X86::Is64Bit) && |
641 | "Rip-relative addressing requires 64-bit mode" ); |
642 | assert(!IndexReg.getReg() && !ForceSIB && "Invalid rip-relative address" ); |
643 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 5), CB); |
644 | |
645 | unsigned Opcode = MI.getOpcode(); |
646 | unsigned FixupKind = [&]() { |
647 | // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a |
648 | // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4). |
649 | if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Val: Disp.getExpr()))) |
650 | return X86::reloc_riprel_4byte; |
651 | |
652 | // Certain loads for GOT references can be relocated against the symbol |
653 | // directly if the symbol ends up in the same linkage unit. |
654 | switch (Opcode) { |
655 | default: |
656 | return X86::reloc_riprel_4byte; |
657 | case X86::MOV64rm: |
658 | // movq loads is a subset of reloc_riprel_4byte_relax_rex/rex2. It is a |
659 | // special case because COFF and Mach-O don't support ELF's more |
660 | // flexible R_X86_64_REX_GOTPCRELX/R_X86_64_CODE_4_GOTPCRELX relaxation. |
661 | return Kind == REX2 ? X86::reloc_riprel_4byte_movq_load_rex2 |
662 | : X86::reloc_riprel_4byte_movq_load; |
663 | case X86::ADC32rm: |
664 | case X86::ADD32rm: |
665 | case X86::AND32rm: |
666 | case X86::CMP32rm: |
667 | case X86::MOV32rm: |
668 | case X86::OR32rm: |
669 | case X86::SBB32rm: |
670 | case X86::SUB32rm: |
671 | case X86::TEST32mr: |
672 | case X86::XOR32rm: |
673 | case X86::CALL64m: |
674 | case X86::JMP64m: |
675 | case X86::TAILJMPm64: |
676 | case X86::TEST64mr: |
677 | case X86::ADC64rm: |
678 | case X86::ADD64rm: |
679 | case X86::AND64rm: |
680 | case X86::CMP64rm: |
681 | case X86::OR64rm: |
682 | case X86::SBB64rm: |
683 | case X86::SUB64rm: |
684 | case X86::XOR64rm: |
685 | case X86::LEA64r: |
686 | return Kind == REX2 ? X86::reloc_riprel_4byte_relax_rex2 |
687 | : Kind == REX ? X86::reloc_riprel_4byte_relax_rex |
688 | : X86::reloc_riprel_4byte_relax; |
689 | case X86::ADD64rm_NF: |
690 | case X86::ADD64rm_ND: |
691 | case X86::ADD64mr_ND: |
692 | case X86::ADD64mr_NF_ND: |
693 | case X86::ADD64rm_NF_ND: |
694 | return X86::reloc_riprel_4byte_relax_evex; |
695 | } |
696 | }(); |
697 | |
698 | // rip-relative addressing is actually relative to the *next* instruction. |
699 | // Since an immediate can follow the mod/rm byte for an instruction, this |
700 | // means that we need to bias the displacement field of the instruction with |
701 | // the size of the immediate field. If we have this case, add it into the |
702 | // expression to emit. |
703 | // Note: rip-relative addressing using immediate displacement values should |
704 | // not be adjusted, assuming it was the user's intent. |
705 | int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) |
706 | ? X86II::getSizeOfImm(TSFlags) |
707 | : 0; |
708 | |
709 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(FixupKind), StartByte, CB, |
710 | Fixups, ImmOffset: -ImmSize); |
711 | return; |
712 | } |
713 | |
714 | unsigned BaseRegNo = BaseReg ? getX86RegNum(MO: Base) : -1U; |
715 | |
716 | bool IsAdSize16 = STI.hasFeature(Feature: X86::Is32Bit) && |
717 | (TSFlags & X86II::AdSizeMask) == X86II::AdSize16; |
718 | |
719 | // 16-bit addressing forms of the ModR/M byte have a different encoding for |
720 | // the R/M field and are far more limited in which registers can be used. |
721 | if (IsAdSize16 || X86_MC::is16BitMemOperand(MI, Op, STI)) { |
722 | if (BaseReg) { |
723 | // For 32-bit addressing, the row and column values in Table 2-2 are |
724 | // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with |
725 | // some special cases. And getX86RegNum reflects that numbering. |
726 | // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, |
727 | // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only |
728 | // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, |
729 | // while values 0-3 indicate the allowed combinations (base+index) of |
730 | // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. |
731 | // |
732 | // R16Table[] is a lookup from the normal RegNo, to the row values from |
733 | // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. |
734 | static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5}; |
735 | unsigned RMfield = R16Table[BaseRegNo]; |
736 | |
737 | assert(RMfield && "invalid 16-bit base register" ); |
738 | |
739 | if (IndexReg.getReg()) { |
740 | unsigned IndexReg16 = R16Table[getX86RegNum(MO: IndexReg)]; |
741 | |
742 | assert(IndexReg16 && "invalid 16-bit index register" ); |
743 | // We must have one of SI/DI (4,5), and one of BP/BX (6,7). |
744 | assert(((IndexReg16 ^ RMfield) & 2) && |
745 | "invalid 16-bit base/index register combination" ); |
746 | assert(Scale.getImm() == 1 && |
747 | "invalid scale for 16-bit memory reference" ); |
748 | |
749 | // Allow base/index to appear in either order (although GAS doesn't). |
750 | if (IndexReg16 & 2) |
751 | RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); |
752 | else |
753 | RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); |
754 | } |
755 | |
756 | if (Disp.isImm() && isInt<8>(x: Disp.getImm())) { |
757 | if (Disp.getImm() == 0 && RMfield != 6) { |
758 | // There is no displacement; just the register. |
759 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
760 | return; |
761 | } |
762 | // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. |
763 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
764 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups); |
765 | return; |
766 | } |
767 | // This is the [REG]+disp16 case. |
768 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: RMfield), CB); |
769 | } else { |
770 | assert(!IndexReg.getReg() && "Unexpected index register!" ); |
771 | // There is no BaseReg; this is the plain [disp16] case. |
772 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 6), CB); |
773 | } |
774 | |
775 | // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. |
776 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 2, FixupKind: FK_Data_2, StartByte, CB, Fixups); |
777 | return; |
778 | } |
779 | |
780 | // Check for presence of {disp8} or {disp32} pseudo prefixes. |
781 | bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8; |
782 | bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32; |
783 | |
784 | // We only allow no displacement if no pseudo prefix is present. |
785 | bool AllowNoDisp = !UseDisp8 && !UseDisp32; |
786 | // Disp8 is allowed unless the {disp32} prefix is present. |
787 | bool AllowDisp8 = !UseDisp32; |
788 | |
789 | // Determine whether a SIB byte is needed. |
790 | if (!ForceSIB && !X86II::needSIB(BaseReg, IndexReg: IndexReg.getReg(), |
791 | In64BitMode: STI.hasFeature(Feature: X86::Is64Bit))) { |
792 | if (!BaseReg) { // [disp32] in X86-32 mode |
793 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 5), CB); |
794 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: FK_Data_4, StartByte, CB, Fixups); |
795 | return; |
796 | } |
797 | |
798 | // If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no |
799 | // displacement, use simple indirect register encoding, this handles |
800 | // addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28] |
801 | // or [R29] with no displacement means [disp32] so we handle it by emitting |
802 | // a displacement of 0 later. |
803 | if (BaseRegNo != N86::EBP) { |
804 | if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) { |
805 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
806 | return; |
807 | } |
808 | |
809 | // If the displacement is @tlscall, treat it as a zero. |
810 | if (Disp.isExpr()) { |
811 | auto *Sym = dyn_cast<MCSymbolRefExpr>(Val: Disp.getExpr()); |
812 | if (Sym && Sym->getSpecifier() == X86::S_TLSCALL) { |
813 | // This is exclusively used by call *a@tlscall(base). The relocation |
814 | // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning. |
815 | Fixups.push_back(Elt: MCFixup::create(Offset: 0, Value: Sym, Kind: FK_NONE, Loc: MI.getLoc())); |
816 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
817 | return; |
818 | } |
819 | } |
820 | } |
821 | |
822 | // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. |
823 | // Including a compressed disp8 for EVEX instructions that support it. |
824 | // This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We |
825 | // can't use disp8 if the {disp32} pseudo prefix is present. |
826 | if (Disp.isImm() && AllowDisp8) { |
827 | int ImmOffset = 0; |
828 | if (isDispOrCDisp8(TSFlags, Value: Disp.getImm(), ImmOffset)) { |
829 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
830 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups, |
831 | ImmOffset); |
832 | return; |
833 | } |
834 | } |
835 | |
836 | // Otherwise, emit the most general non-SIB encoding: [REG+disp32]. |
837 | // Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32} |
838 | // pseudo prefix prevented using disp8 above. |
839 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: BaseRegNo), CB); |
840 | unsigned Opcode = MI.getOpcode(); |
841 | unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax |
842 | : X86::reloc_signed_4byte; |
843 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(FixupKind), StartByte, CB, |
844 | Fixups); |
845 | return; |
846 | } |
847 | |
848 | // We need a SIB byte, so start by outputting the ModR/M byte first |
849 | assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && |
850 | "Cannot use ESP as index reg!" ); |
851 | |
852 | bool ForceDisp32 = false; |
853 | bool ForceDisp8 = false; |
854 | int ImmOffset = 0; |
855 | if (!BaseReg) { |
856 | // If there is no base register, we emit the special case SIB byte with |
857 | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
858 | BaseRegNo = 5; |
859 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 4), CB); |
860 | ForceDisp32 = true; |
861 | } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp && |
862 | // Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with |
863 | // '5' as the base field, but that is the magic [*] nomenclature |
864 | // that indicates no base when mod=0. For these cases we'll emit a |
865 | // 0 displacement instead. |
866 | BaseRegNo != N86::EBP) { |
867 | // Emit no displacement ModR/M byte |
868 | emitByte(C: modRMByte(Mod: 0, RegOpcode: RegOpcodeField, RM: 4), CB); |
869 | } else if (Disp.isImm() && AllowDisp8 && |
870 | isDispOrCDisp8(TSFlags, Value: Disp.getImm(), ImmOffset)) { |
871 | // Displacement fits in a byte or matches an EVEX compressed disp8, use |
872 | // disp8 encoding. This also handles EBP/R13/R21/R29 base with 0 |
873 | // displacement unless {disp32} pseudo prefix was used. |
874 | emitByte(C: modRMByte(Mod: 1, RegOpcode: RegOpcodeField, RM: 4), CB); |
875 | ForceDisp8 = true; |
876 | } else { |
877 | // Otherwise, emit the normal disp32 encoding. |
878 | emitByte(C: modRMByte(Mod: 2, RegOpcode: RegOpcodeField, RM: 4), CB); |
879 | ForceDisp32 = true; |
880 | } |
881 | |
882 | // Calculate what the SS field value should be... |
883 | static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3}; |
884 | unsigned SS = SSTable[Scale.getImm()]; |
885 | |
886 | unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(MO: IndexReg) : 4; |
887 | |
888 | emitSIBByte(SS, Index: IndexRegNo, Base: BaseRegNo, CB); |
889 | |
890 | // Do we need to output a displacement? |
891 | if (ForceDisp8) |
892 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, CB, Fixups, |
893 | ImmOffset); |
894 | else if (ForceDisp32) |
895 | emitImmediate(DispOp: Disp, Loc: MI.getLoc(), Size: 4, FixupKind: MCFixupKind(X86::reloc_signed_4byte), |
896 | StartByte, CB, Fixups); |
897 | } |
898 | |
899 | /// Emit all instruction prefixes. |
900 | /// |
901 | /// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used, |
902 | /// otherwise returns None. |
903 | PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI, |
904 | const MCSubtargetInfo &STI, |
905 | SmallVectorImpl<char> &CB) const { |
906 | uint64_t TSFlags = MCII.get(Opcode: MI.getOpcode()).TSFlags; |
907 | // Determine where the memory operand starts, if present. |
908 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
909 | // Emit segment override opcode prefix as needed. |
910 | if (MemoryOperand != -1) { |
911 | MemoryOperand += CurOp; |
912 | emitSegmentOverridePrefix(SegOperand: MemoryOperand + X86::AddrSegmentReg, MI, CB); |
913 | } |
914 | |
915 | // Emit the repeat opcode prefix as needed. |
916 | unsigned Flags = MI.getFlags(); |
917 | if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) |
918 | emitByte(C: 0xF3, CB); |
919 | if (Flags & X86::IP_HAS_REPEAT_NE) |
920 | emitByte(C: 0xF2, CB); |
921 | |
922 | // Emit the address size opcode prefix as needed. |
923 | if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) || |
924 | Flags & X86::IP_HAS_AD_SIZE) |
925 | emitByte(C: 0x67, CB); |
926 | |
927 | uint64_t Form = TSFlags & X86II::FormMask; |
928 | switch (Form) { |
929 | default: |
930 | break; |
931 | case X86II::RawFrmDstSrc: { |
932 | // Emit segment override opcode prefix as needed (not for %ds). |
933 | if (MI.getOperand(i: 2).getReg() != X86::DS) |
934 | emitSegmentOverridePrefix(SegOperand: 2, MI, CB); |
935 | CurOp += 3; // Consume operands. |
936 | break; |
937 | } |
938 | case X86II::RawFrmSrc: { |
939 | // Emit segment override opcode prefix as needed (not for %ds). |
940 | if (MI.getOperand(i: 1).getReg() != X86::DS) |
941 | emitSegmentOverridePrefix(SegOperand: 1, MI, CB); |
942 | CurOp += 2; // Consume operands. |
943 | break; |
944 | } |
945 | case X86II::RawFrmDst: { |
946 | ++CurOp; // Consume operand. |
947 | break; |
948 | } |
949 | case X86II::RawFrmMemOffs: { |
950 | // Emit segment override opcode prefix as needed. |
951 | emitSegmentOverridePrefix(SegOperand: 1, MI, CB); |
952 | break; |
953 | } |
954 | } |
955 | |
956 | // REX prefix is optional, but if used must be immediately before the opcode |
957 | // Encoding type for this instruction. |
958 | return (TSFlags & X86II::EncodingMask) |
959 | ? emitVEXOpcodePrefix(MemOperand: MemoryOperand, MI, STI, CB) |
960 | : emitOpcodePrefix(MemOperand: MemoryOperand, MI, STI, CB); |
961 | } |
962 | |
963 | // AVX instructions are encoded using an encoding scheme that combines |
964 | // prefix bytes, opcode extension field, operand encoding fields, and vector |
965 | // length encoding capability into a new prefix, referred to as VEX. |
966 | |
967 | // The majority of the AVX-512 family of instructions (operating on |
968 | // 512/256/128-bit vector register operands) are encoded using a new prefix |
969 | // (called EVEX). |
970 | |
971 | // XOP is a revised subset of what was originally intended as SSE5. It was |
972 | // changed to be similar but not overlapping with AVX. |
973 | |
974 | /// Emit XOP, VEX2, VEX3 or EVEX prefix. |
975 | /// \returns the used prefix. |
976 | PrefixKind |
977 | X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, |
978 | const MCSubtargetInfo &STI, |
979 | SmallVectorImpl<char> &CB) const { |
980 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
981 | uint64_t TSFlags = Desc.TSFlags; |
982 | |
983 | assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX." ); |
984 | |
985 | #ifndef NDEBUG |
986 | unsigned NumOps = MI.getNumOperands(); |
987 | for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps; |
988 | ++I) { |
989 | const MCOperand &MO = MI.getOperand(I); |
990 | if (!MO.isReg()) |
991 | continue; |
992 | MCRegister Reg = MO.getReg(); |
993 | if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) |
994 | report_fatal_error( |
995 | "Cannot encode high byte register in VEX/EVEX-prefixed instruction" ); |
996 | } |
997 | #endif |
998 | |
999 | X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); |
1000 | switch (TSFlags & X86II::EncodingMask) { |
1001 | default: |
1002 | break; |
1003 | case X86II::XOP: |
1004 | Prefix.setLowerBound(XOP); |
1005 | break; |
1006 | case X86II::VEX: |
1007 | // VEX can be 2 byte or 3 byte, not determined yet if not explicit |
1008 | Prefix.setLowerBound((MI.getFlags() & X86::IP_USE_VEX3) ? VEX3 : VEX2); |
1009 | break; |
1010 | case X86II::EVEX: |
1011 | Prefix.setLowerBound(EVEX); |
1012 | break; |
1013 | } |
1014 | |
1015 | Prefix.setW(TSFlags & X86II::REX_W); |
1016 | Prefix.setNF(TSFlags & X86II::EVEX_NF); |
1017 | |
1018 | bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
1019 | bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
1020 | bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V |
1021 | bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; |
1022 | |
1023 | switch (TSFlags & X86II::OpMapMask) { |
1024 | default: |
1025 | llvm_unreachable("Invalid prefix!" ); |
1026 | case X86II::TB: |
1027 | Prefix.set5M(0x1); // 0F |
1028 | break; |
1029 | case X86II::T8: |
1030 | Prefix.set5M(0x2); // 0F 38 |
1031 | break; |
1032 | case X86II::TA: |
1033 | Prefix.set5M(0x3); // 0F 3A |
1034 | break; |
1035 | case X86II::XOP8: |
1036 | Prefix.set5M(0x8); |
1037 | break; |
1038 | case X86II::XOP9: |
1039 | Prefix.set5M(0x9); |
1040 | break; |
1041 | case X86II::XOPA: |
1042 | Prefix.set5M(0xA); |
1043 | break; |
1044 | case X86II::T_MAP4: |
1045 | Prefix.set5M(0x4); |
1046 | break; |
1047 | case X86II::T_MAP5: |
1048 | Prefix.set5M(0x5); |
1049 | break; |
1050 | case X86II::T_MAP6: |
1051 | Prefix.set5M(0x6); |
1052 | break; |
1053 | case X86II::T_MAP7: |
1054 | Prefix.set5M(0x7); |
1055 | break; |
1056 | } |
1057 | |
1058 | Prefix.setL(TSFlags & X86II::VEX_L); |
1059 | Prefix.setL2(TSFlags & X86II::EVEX_L2); |
1060 | if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(Feature: X86::FeatureAVX512) && |
1061 | !STI.hasFeature(Feature: X86::FeatureEVEX512)) |
1062 | report_fatal_error(reason: "ZMM registers are not supported without EVEX512" ); |
1063 | switch (TSFlags & X86II::OpPrefixMask) { |
1064 | case X86II::PD: |
1065 | Prefix.setPP(0x1); // 66 |
1066 | break; |
1067 | case X86II::XS: |
1068 | Prefix.setPP(0x2); // F3 |
1069 | break; |
1070 | case X86II::XD: |
1071 | Prefix.setPP(0x3); // F2 |
1072 | break; |
1073 | } |
1074 | |
1075 | Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z)); |
1076 | Prefix.setEVEX_b(TSFlags & X86II::EVEX_B); |
1077 | Prefix.setEVEX_U(TSFlags & X86II::EVEX_U); |
1078 | |
1079 | bool EncodeRC = false; |
1080 | uint8_t EVEX_rc = 0; |
1081 | |
1082 | unsigned CurOp = X86II::getOperandBias(Desc); |
1083 | bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps; |
1084 | |
1085 | switch (TSFlags & X86II::FormMask) { |
1086 | default: |
1087 | llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!" ); |
1088 | case X86II::MRMDestMem4VOp3CC: { |
1089 | // src1(ModR/M), MemAddr, src2(VEX_4V) |
1090 | Prefix.setRR2(MI, OpNum: CurOp++); |
1091 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1092 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1093 | CurOp += X86::AddrNumOperands; |
1094 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1095 | break; |
1096 | } |
1097 | case X86II::MRM_C0: |
1098 | case X86II::RawFrm: |
1099 | break; |
1100 | case X86II::MRMDestMemCC: |
1101 | case X86II::MRMDestMemFSIB: |
1102 | case X86II::MRMDestMem: { |
1103 | // MRMDestMem instructions forms: |
1104 | // MemAddr, src1(ModR/M) |
1105 | // MemAddr, src1(VEX_4V), src2(ModR/M) |
1106 | // MemAddr, src1(ModR/M), imm8 |
1107 | // |
1108 | // NDD: |
1109 | // dst(VEX_4V), MemAddr, src1(ModR/M) |
1110 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1111 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1112 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1113 | |
1114 | if (IsND) |
1115 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1116 | |
1117 | CurOp += X86::AddrNumOperands; |
1118 | |
1119 | if (HasEVEX_K) |
1120 | Prefix.setAAA(MI, OpNum: CurOp++); |
1121 | |
1122 | if (!IsND && HasVEX_4V) |
1123 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1124 | |
1125 | Prefix.setRR2(MI, OpNum: CurOp++); |
1126 | if (HasTwoConditionalOps) { |
1127 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1128 | Prefix.setSC(MI, OpNum: CurOp++); |
1129 | } |
1130 | break; |
1131 | } |
1132 | case X86II::MRMSrcMemCC: |
1133 | case X86II::MRMSrcMemFSIB: |
1134 | case X86II::MRMSrcMem: { |
1135 | // MRMSrcMem instructions forms: |
1136 | // src1(ModR/M), MemAddr |
1137 | // src1(ModR/M), src2(VEX_4V), MemAddr |
1138 | // src1(ModR/M), MemAddr, imm8 |
1139 | // src1(ModR/M), MemAddr, src2(Imm[7:4]) |
1140 | // |
1141 | // FMA4: |
1142 | // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) |
1143 | // |
1144 | // NDD: |
1145 | // dst(VEX_4V), src1(ModR/M), MemAddr |
1146 | if (IsND) |
1147 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1148 | |
1149 | Prefix.setRR2(MI, OpNum: CurOp++); |
1150 | |
1151 | if (HasEVEX_K) |
1152 | Prefix.setAAA(MI, OpNum: CurOp++); |
1153 | |
1154 | if (!IsND && HasVEX_4V) |
1155 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1156 | |
1157 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1158 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1159 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1160 | CurOp += X86::AddrNumOperands; |
1161 | if (HasTwoConditionalOps) { |
1162 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1163 | Prefix.setSC(MI, OpNum: CurOp++); |
1164 | } |
1165 | break; |
1166 | } |
1167 | case X86II::MRMSrcMem4VOp3: { |
1168 | // Instruction format for 4VOp3: |
1169 | // src1(ModR/M), MemAddr, src3(VEX_4V) |
1170 | Prefix.setRR2(MI, OpNum: CurOp++); |
1171 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1172 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1173 | Prefix.set4VV2(MI, OpNum: CurOp + X86::AddrNumOperands); |
1174 | break; |
1175 | } |
1176 | case X86II::MRMSrcMemOp4: { |
1177 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1178 | Prefix.setR(MI, OpNum: CurOp++); |
1179 | Prefix.set4V(MI, OpNum: CurOp++); |
1180 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1181 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1182 | break; |
1183 | } |
1184 | case X86II::MRMXmCC: |
1185 | case X86II::MRM0m: |
1186 | case X86II::MRM1m: |
1187 | case X86II::MRM2m: |
1188 | case X86II::MRM3m: |
1189 | case X86II::MRM4m: |
1190 | case X86II::MRM5m: |
1191 | case X86II::MRM6m: |
1192 | case X86II::MRM7m: { |
1193 | // MRM[0-9]m instructions forms: |
1194 | // MemAddr |
1195 | // src1(VEX_4V), MemAddr |
1196 | if (HasVEX_4V) |
1197 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1198 | |
1199 | if (HasEVEX_K) |
1200 | Prefix.setAAA(MI, OpNum: CurOp++); |
1201 | |
1202 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1203 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1204 | Prefix.setV2(MI, OpNum: MemOperand + X86::AddrIndexReg, HasVEX_4V); |
1205 | CurOp += X86::AddrNumOperands + 1; // Skip first imm. |
1206 | if (HasTwoConditionalOps) { |
1207 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1208 | Prefix.setSC(MI, OpNum: CurOp++); |
1209 | } |
1210 | break; |
1211 | } |
1212 | case X86II::MRMSrcRegCC: |
1213 | case X86II::MRMSrcReg: { |
1214 | // MRMSrcReg instructions forms: |
1215 | // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) |
1216 | // dst(ModR/M), src1(ModR/M) |
1217 | // dst(ModR/M), src1(ModR/M), imm8 |
1218 | // |
1219 | // FMA4: |
1220 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1221 | // |
1222 | // NDD: |
1223 | // dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M) |
1224 | if (IsND) |
1225 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1226 | Prefix.setRR2(MI, OpNum: CurOp++); |
1227 | |
1228 | if (HasEVEX_K) |
1229 | Prefix.setAAA(MI, OpNum: CurOp++); |
1230 | |
1231 | if (!IsND && HasVEX_4V) |
1232 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1233 | |
1234 | Prefix.setBB2(MI, OpNum: CurOp); |
1235 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1236 | ++CurOp; |
1237 | |
1238 | if (HasTwoConditionalOps) { |
1239 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1240 | Prefix.setSC(MI, OpNum: CurOp++); |
1241 | } |
1242 | |
1243 | if (TSFlags & X86II::EVEX_B) { |
1244 | if (HasEVEX_RC) { |
1245 | unsigned NumOps = Desc.getNumOperands(); |
1246 | unsigned RcOperand = NumOps - 1; |
1247 | assert(RcOperand >= CurOp); |
1248 | EVEX_rc = MI.getOperand(i: RcOperand).getImm(); |
1249 | assert(EVEX_rc <= 3 && "Invalid rounding control!" ); |
1250 | } |
1251 | EncodeRC = true; |
1252 | } |
1253 | break; |
1254 | } |
1255 | case X86II::MRMSrcReg4VOp3: { |
1256 | // Instruction format for 4VOp3: |
1257 | // src1(ModR/M), src2(ModR/M), src3(VEX_4V) |
1258 | Prefix.setRR2(MI, OpNum: CurOp++); |
1259 | Prefix.setBB2(MI, OpNum: CurOp++); |
1260 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1261 | break; |
1262 | } |
1263 | case X86II::MRMSrcRegOp4: { |
1264 | // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), |
1265 | Prefix.setR(MI, OpNum: CurOp++); |
1266 | Prefix.set4V(MI, OpNum: CurOp++); |
1267 | // Skip second register source (encoded in Imm[7:4]) |
1268 | ++CurOp; |
1269 | |
1270 | Prefix.setB(MI, OpNum: CurOp); |
1271 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1272 | ++CurOp; |
1273 | break; |
1274 | } |
1275 | case X86II::MRMDestRegCC: |
1276 | case X86II::MRMDestReg: { |
1277 | // MRMDestReg instructions forms: |
1278 | // dst(ModR/M), src(ModR/M) |
1279 | // dst(ModR/M), src(ModR/M), imm8 |
1280 | // dst(ModR/M), src1(VEX_4V), src2(ModR/M) |
1281 | // |
1282 | // NDD: |
1283 | // dst(VEX_4V), src1(ModR/M), src2(ModR/M) |
1284 | if (IsND) |
1285 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1286 | Prefix.setBB2(MI, OpNum: CurOp); |
1287 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1288 | ++CurOp; |
1289 | |
1290 | if (HasEVEX_K) |
1291 | Prefix.setAAA(MI, OpNum: CurOp++); |
1292 | |
1293 | if (!IsND && HasVEX_4V) |
1294 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1295 | |
1296 | Prefix.setRR2(MI, OpNum: CurOp++); |
1297 | if (HasTwoConditionalOps) { |
1298 | Prefix.set4V(MI, OpNum: CurOp++, /*IsImm=*/true); |
1299 | Prefix.setSC(MI, OpNum: CurOp++); |
1300 | } |
1301 | if (TSFlags & X86II::EVEX_B) |
1302 | EncodeRC = true; |
1303 | break; |
1304 | } |
1305 | case X86II::MRMr0: { |
1306 | // MRMr0 instructions forms: |
1307 | // 11:rrr:000 |
1308 | // dst(ModR/M) |
1309 | Prefix.setRR2(MI, OpNum: CurOp++); |
1310 | break; |
1311 | } |
1312 | case X86II::MRMXrCC: |
1313 | case X86II::MRM0r: |
1314 | case X86II::MRM1r: |
1315 | case X86II::MRM2r: |
1316 | case X86II::MRM3r: |
1317 | case X86II::MRM4r: |
1318 | case X86II::MRM5r: |
1319 | case X86II::MRM6r: |
1320 | case X86II::MRM7r: { |
1321 | // MRM0r-MRM7r instructions forms: |
1322 | // dst(VEX_4V), src(ModR/M), imm8 |
1323 | if (HasVEX_4V) |
1324 | Prefix.set4VV2(MI, OpNum: CurOp++); |
1325 | |
1326 | if (HasEVEX_K) |
1327 | Prefix.setAAA(MI, OpNum: CurOp++); |
1328 | |
1329 | Prefix.setBB2(MI, OpNum: CurOp); |
1330 | Prefix.setX(MI, OpNum: CurOp, Shift: 4); |
1331 | ++CurOp; |
1332 | if (HasTwoConditionalOps) { |
1333 | Prefix.set4V(MI, OpNum: ++CurOp, /*IsImm=*/true); |
1334 | Prefix.setSC(MI, OpNum: ++CurOp); |
1335 | } |
1336 | break; |
1337 | } |
1338 | } |
1339 | if (EncodeRC) { |
1340 | Prefix.setL(EVEX_rc & 0x1); |
1341 | Prefix.setL2(EVEX_rc & 0x2); |
1342 | } |
1343 | PrefixKind Kind = Prefix.determineOptimalKind(); |
1344 | Prefix.emit(CB); |
1345 | return Kind; |
1346 | } |
1347 | |
1348 | /// Emit REX prefix which specifies |
1349 | /// 1) 64-bit instructions, |
1350 | /// 2) non-default operand size, and |
1351 | /// 3) use of X86-64 extended registers. |
1352 | /// |
1353 | /// \returns the used prefix (REX or None). |
1354 | PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI, |
1355 | const MCSubtargetInfo &STI, |
1356 | SmallVectorImpl<char> &CB) const { |
1357 | if (!STI.hasFeature(Feature: X86::Is64Bit)) |
1358 | return None; |
1359 | X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); |
1360 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
1361 | uint64_t TSFlags = Desc.TSFlags; |
1362 | Prefix.setW(TSFlags & X86II::REX_W); |
1363 | unsigned NumOps = MI.getNumOperands(); |
1364 | bool UsesHighByteReg = false; |
1365 | #ifndef NDEBUG |
1366 | bool HasRegOp = false; |
1367 | #endif |
1368 | unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0; |
1369 | for (unsigned i = CurOp; i != NumOps; ++i) { |
1370 | const MCOperand &MO = MI.getOperand(i); |
1371 | if (MO.isReg()) { |
1372 | #ifndef NDEBUG |
1373 | HasRegOp = true; |
1374 | #endif |
1375 | MCRegister Reg = MO.getReg(); |
1376 | if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) |
1377 | UsesHighByteReg = true; |
1378 | // If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix. |
1379 | if (X86II::isX86_64NonExtLowByteReg(Reg)) |
1380 | Prefix.setLowerBound(REX); |
1381 | } else if (MO.isExpr() && STI.getTargetTriple().isX32()) { |
1382 | // GOTTPOFF and TLSDESC relocations require a REX prefix to allow |
1383 | // linker optimizations: even if the instructions we see may not require |
1384 | // any prefix, they may be replaced by instructions that do. This is |
1385 | // handled as a special case here so that it also works for hand-written |
1386 | // assembly without the user needing to write REX, as with GNU as. |
1387 | const auto *Ref = dyn_cast<MCSymbolRefExpr>(Val: MO.getExpr()); |
1388 | if (Ref && (Ref->getSpecifier() == X86::S_GOTTPOFF || |
1389 | Ref->getSpecifier() == X86::S_TLSDESC)) { |
1390 | Prefix.setLowerBound(REX); |
1391 | } |
1392 | } |
1393 | } |
1394 | if (MI.getFlags() & X86::IP_USE_REX) |
1395 | Prefix.setLowerBound(REX); |
1396 | if ((TSFlags & X86II::ExplicitOpPrefixMask) == X86II::ExplicitREX2Prefix || |
1397 | MI.getFlags() & X86::IP_USE_REX2) |
1398 | Prefix.setLowerBound(REX2); |
1399 | switch (TSFlags & X86II::FormMask) { |
1400 | default: |
1401 | assert(!HasRegOp && "Unexpected form in emitREXPrefix!" ); |
1402 | break; |
1403 | case X86II::RawFrm: |
1404 | case X86II::RawFrmMemOffs: |
1405 | case X86II::RawFrmSrc: |
1406 | case X86II::RawFrmDst: |
1407 | case X86II::RawFrmDstSrc: |
1408 | break; |
1409 | case X86II::AddRegFrm: |
1410 | Prefix.setBB2(MI, OpNum: CurOp++); |
1411 | break; |
1412 | case X86II::MRMSrcReg: |
1413 | case X86II::MRMSrcRegCC: |
1414 | Prefix.setRR2(MI, OpNum: CurOp++); |
1415 | Prefix.setBB2(MI, OpNum: CurOp++); |
1416 | break; |
1417 | case X86II::MRMSrcMem: |
1418 | case X86II::MRMSrcMemCC: |
1419 | Prefix.setRR2(MI, OpNum: CurOp++); |
1420 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1421 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1422 | CurOp += X86::AddrNumOperands; |
1423 | break; |
1424 | case X86II::MRMDestReg: |
1425 | Prefix.setBB2(MI, OpNum: CurOp++); |
1426 | Prefix.setRR2(MI, OpNum: CurOp++); |
1427 | break; |
1428 | case X86II::MRMDestMem: |
1429 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1430 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1431 | CurOp += X86::AddrNumOperands; |
1432 | Prefix.setRR2(MI, OpNum: CurOp++); |
1433 | break; |
1434 | case X86II::MRMXmCC: |
1435 | case X86II::MRMXm: |
1436 | case X86II::MRM0m: |
1437 | case X86II::MRM1m: |
1438 | case X86II::MRM2m: |
1439 | case X86II::MRM3m: |
1440 | case X86II::MRM4m: |
1441 | case X86II::MRM5m: |
1442 | case X86II::MRM6m: |
1443 | case X86II::MRM7m: |
1444 | Prefix.setBB2(MI, OpNum: MemOperand + X86::AddrBaseReg); |
1445 | Prefix.setXX2(MI, OpNum: MemOperand + X86::AddrIndexReg); |
1446 | break; |
1447 | case X86II::MRMXrCC: |
1448 | case X86II::MRMXr: |
1449 | case X86II::MRM0r: |
1450 | case X86II::MRM1r: |
1451 | case X86II::MRM2r: |
1452 | case X86II::MRM3r: |
1453 | case X86II::MRM4r: |
1454 | case X86II::MRM5r: |
1455 | case X86II::MRM6r: |
1456 | case X86II::MRM7r: |
1457 | Prefix.setBB2(MI, OpNum: CurOp++); |
1458 | break; |
1459 | } |
1460 | Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB); |
1461 | PrefixKind Kind = Prefix.determineOptimalKind(); |
1462 | if (Kind && UsesHighByteReg) |
1463 | report_fatal_error( |
1464 | reason: "Cannot encode high byte register in REX-prefixed instruction" ); |
1465 | Prefix.emit(CB); |
1466 | return Kind; |
1467 | } |
1468 | |
1469 | /// Emit segment override opcode prefix as needed. |
1470 | void X86MCCodeEmitter::emitSegmentOverridePrefix( |
1471 | unsigned SegOperand, const MCInst &MI, SmallVectorImpl<char> &CB) const { |
1472 | // Check for explicit segment override on memory operand. |
1473 | if (MCRegister Reg = MI.getOperand(i: SegOperand).getReg()) |
1474 | emitByte(C: X86::getSegmentOverridePrefixForReg(Reg), CB); |
1475 | } |
1476 | |
1477 | /// Emit all instruction prefixes prior to the opcode. |
1478 | /// |
1479 | /// \param MemOperand the operand # of the start of a memory operand if present. |
1480 | /// If not present, it is -1. |
1481 | /// |
1482 | /// \returns the used prefix (REX or None). |
1483 | PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI, |
1484 | const MCSubtargetInfo &STI, |
1485 | SmallVectorImpl<char> &CB) const { |
1486 | const MCInstrDesc &Desc = MCII.get(Opcode: MI.getOpcode()); |
1487 | uint64_t TSFlags = Desc.TSFlags; |
1488 | |
1489 | // Emit the operand size opcode prefix as needed. |
1490 | if ((TSFlags & X86II::OpSizeMask) == |
1491 | (STI.hasFeature(Feature: X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16)) |
1492 | emitByte(C: 0x66, CB); |
1493 | |
1494 | // Emit the LOCK opcode prefix. |
1495 | if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) |
1496 | emitByte(C: 0xF0, CB); |
1497 | |
1498 | // Emit the NOTRACK opcode prefix. |
1499 | if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) |
1500 | emitByte(C: 0x3E, CB); |
1501 | |
1502 | switch (TSFlags & X86II::OpPrefixMask) { |
1503 | case X86II::PD: // 66 |
1504 | emitByte(C: 0x66, CB); |
1505 | break; |
1506 | case X86II::XS: // F3 |
1507 | emitByte(C: 0xF3, CB); |
1508 | break; |
1509 | case X86II::XD: // F2 |
1510 | emitByte(C: 0xF2, CB); |
1511 | break; |
1512 | } |
1513 | |
1514 | // Handle REX prefix. |
1515 | assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) && |
1516 | "REX.W requires 64bit mode." ); |
1517 | PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB); |
1518 | |
1519 | // 0x0F escape code must be emitted just before the opcode. |
1520 | switch (TSFlags & X86II::OpMapMask) { |
1521 | case X86II::TB: // Two-byte opcode map |
1522 | // Encoded by M bit in REX2 |
1523 | if (Kind == REX2) |
1524 | break; |
1525 | [[fallthrough]]; |
1526 | case X86II::T8: // 0F 38 |
1527 | case X86II::TA: // 0F 3A |
1528 | case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. |
1529 | emitByte(C: 0x0F, CB); |
1530 | break; |
1531 | } |
1532 | |
1533 | switch (TSFlags & X86II::OpMapMask) { |
1534 | case X86II::T8: // 0F 38 |
1535 | emitByte(C: 0x38, CB); |
1536 | break; |
1537 | case X86II::TA: // 0F 3A |
1538 | emitByte(C: 0x3A, CB); |
1539 | break; |
1540 | } |
1541 | |
1542 | return Kind; |
1543 | } |
1544 | |
1545 | void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB, |
1546 | const MCSubtargetInfo &STI) const { |
1547 | unsigned Opcode = MI.getOpcode(); |
1548 | const MCInstrDesc &Desc = MCII.get(Opcode); |
1549 | uint64_t TSFlags = Desc.TSFlags; |
1550 | |
1551 | // Pseudo instructions don't get encoded. |
1552 | if (X86II::isPseudo(TSFlags)) |
1553 | return; |
1554 | |
1555 | unsigned CurOp = X86II::getOperandBias(Desc); |
1556 | |
1557 | emitPrefixImpl(CurOp, MI, STI, CB); |
1558 | } |
1559 | |
1560 | void X86_MC::emitPrefix(MCCodeEmitter &MCE, const MCInst &MI, |
1561 | SmallVectorImpl<char> &CB, const MCSubtargetInfo &STI) { |
1562 | static_cast<X86MCCodeEmitter &>(MCE).emitPrefix(MI, CB, STI); |
1563 | } |
1564 | |
1565 | void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, |
1566 | SmallVectorImpl<char> &CB, |
1567 | SmallVectorImpl<MCFixup> &Fixups, |
1568 | const MCSubtargetInfo &STI) const { |
1569 | unsigned Opcode = MI.getOpcode(); |
1570 | const MCInstrDesc &Desc = MCII.get(Opcode); |
1571 | uint64_t TSFlags = Desc.TSFlags; |
1572 | |
1573 | // Pseudo instructions don't get encoded. |
1574 | if (X86II::isPseudo(TSFlags)) |
1575 | return; |
1576 | |
1577 | unsigned NumOps = Desc.getNumOperands(); |
1578 | unsigned CurOp = X86II::getOperandBias(Desc); |
1579 | |
1580 | uint64_t StartByte = CB.size(); |
1581 | |
1582 | PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB); |
1583 | |
1584 | // It uses the VEX.VVVV field? |
1585 | bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
1586 | bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; |
1587 | |
1588 | // It uses the EVEX.aaa field? |
1589 | bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
1590 | bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; |
1591 | |
1592 | // Used if a register is encoded in 7:4 of immediate. |
1593 | unsigned I8RegNum = 0; |
1594 | |
1595 | uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); |
1596 | |
1597 | if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) |
1598 | BaseOpcode = 0x0F; // Weird 3DNow! encoding. |
1599 | |
1600 | unsigned OpcodeOffset = 0; |
1601 | |
1602 | bool IsND = X86II::hasNewDataDest(TSFlags); |
1603 | bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps; |
1604 | |
1605 | uint64_t Form = TSFlags & X86II::FormMask; |
1606 | switch (Form) { |
1607 | default: |
1608 | errs() << "FORM: " << Form << "\n" ; |
1609 | llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!" ); |
1610 | case X86II::Pseudo: |
1611 | llvm_unreachable("Pseudo instruction shouldn't be emitted" ); |
1612 | case X86II::RawFrmDstSrc: |
1613 | case X86II::RawFrmSrc: |
1614 | case X86II::RawFrmDst: |
1615 | case X86II::PrefixByte: |
1616 | emitByte(C: BaseOpcode, CB); |
1617 | break; |
1618 | case X86II::AddCCFrm: { |
1619 | // This will be added to the opcode in the fallthrough. |
1620 | OpcodeOffset = MI.getOperand(i: NumOps - 1).getImm(); |
1621 | assert(OpcodeOffset < 16 && "Unexpected opcode offset!" ); |
1622 | --NumOps; // Drop the operand from the end. |
1623 | [[fallthrough]]; |
1624 | case X86II::RawFrm: |
1625 | emitByte(C: BaseOpcode + OpcodeOffset, CB); |
1626 | |
1627 | if (!STI.hasFeature(Feature: X86::Is64Bit) || !isPCRel32Branch(MI, MCII)) |
1628 | break; |
1629 | |
1630 | const MCOperand &Op = MI.getOperand(i: CurOp++); |
1631 | emitImmediate(DispOp: Op, Loc: MI.getLoc(), Size: X86II::getSizeOfImm(TSFlags), |
1632 | FixupKind: MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, CB, |
1633 | Fixups); |
1634 | break; |
1635 | } |
1636 | case X86II::RawFrmMemOffs: |
1637 | emitByte(C: BaseOpcode, CB); |
1638 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1639 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1640 | StartByte, CB, Fixups); |
1641 | ++CurOp; // skip segment operand |
1642 | break; |
1643 | case X86II::RawFrmImm8: |
1644 | emitByte(C: BaseOpcode, CB); |
1645 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1646 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1647 | StartByte, CB, Fixups); |
1648 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, StartByte, |
1649 | CB, Fixups); |
1650 | break; |
1651 | case X86II::RawFrmImm16: |
1652 | emitByte(C: BaseOpcode, CB); |
1653 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
1654 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
1655 | StartByte, CB, Fixups); |
1656 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), Size: 2, FixupKind: FK_Data_2, StartByte, |
1657 | CB, Fixups); |
1658 | break; |
1659 | |
1660 | case X86II::AddRegFrm: |
1661 | emitByte(C: BaseOpcode + getX86RegNum(MO: MI.getOperand(i: CurOp++)), CB); |
1662 | break; |
1663 | |
1664 | case X86II::MRMDestReg: { |
1665 | emitByte(C: BaseOpcode, CB); |
1666 | unsigned SrcRegNum = CurOp + 1; |
1667 | |
1668 | if (HasEVEX_K) // Skip writemask |
1669 | ++SrcRegNum; |
1670 | |
1671 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1672 | ++SrcRegNum; |
1673 | if (IsND) // Skip the NDD operand encoded in EVEX_VVVV |
1674 | ++CurOp; |
1675 | |
1676 | emitRegModRMByte(ModRMReg: MI.getOperand(i: CurOp), |
1677 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: SrcRegNum)), CB); |
1678 | CurOp = SrcRegNum + 1; |
1679 | break; |
1680 | } |
1681 | case X86II::MRMDestRegCC: { |
1682 | unsigned FirstOp = CurOp++; |
1683 | unsigned SecondOp = CurOp++; |
1684 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1685 | emitByte(C: BaseOpcode + CC, CB); |
1686 | emitRegModRMByte(ModRMReg: MI.getOperand(i: FirstOp), |
1687 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: SecondOp)), CB); |
1688 | break; |
1689 | } |
1690 | case X86II::MRMDestMem4VOp3CC: { |
1691 | unsigned CC = MI.getOperand(i: 8).getImm(); |
1692 | emitByte(C: BaseOpcode + CC, CB); |
1693 | unsigned SrcRegNum = CurOp + X86::AddrNumOperands; |
1694 | emitMemModRMByte(MI, Op: CurOp + 1, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: 0)), TSFlags, |
1695 | Kind, StartByte, CB, Fixups, STI, ForceSIB: false); |
1696 | CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC |
1697 | break; |
1698 | } |
1699 | case X86II::MRMDestMemFSIB: |
1700 | case X86II::MRMDestMem: { |
1701 | emitByte(C: BaseOpcode, CB); |
1702 | unsigned SrcRegNum = CurOp + X86::AddrNumOperands; |
1703 | |
1704 | if (HasEVEX_K) // Skip writemask |
1705 | ++SrcRegNum; |
1706 | |
1707 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1708 | ++SrcRegNum; |
1709 | |
1710 | if (IsND) // Skip new data destination |
1711 | ++CurOp; |
1712 | |
1713 | bool ForceSIB = (Form == X86II::MRMDestMemFSIB); |
1714 | emitMemModRMByte(MI, Op: CurOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: SrcRegNum)), TSFlags, |
1715 | Kind, StartByte, CB, Fixups, STI, ForceSIB); |
1716 | CurOp = SrcRegNum + 1; |
1717 | break; |
1718 | } |
1719 | case X86II::MRMDestMemCC: { |
1720 | unsigned MemOp = CurOp; |
1721 | CurOp = MemOp + X86::AddrNumOperands; |
1722 | unsigned RegOp = CurOp++; |
1723 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1724 | emitByte(C: BaseOpcode + CC, CB); |
1725 | emitMemModRMByte(MI, Op: MemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: RegOp)), TSFlags, |
1726 | Kind, StartByte, CB, Fixups, STI); |
1727 | break; |
1728 | } |
1729 | case X86II::MRMSrcReg: { |
1730 | emitByte(C: BaseOpcode, CB); |
1731 | unsigned SrcRegNum = CurOp + 1; |
1732 | |
1733 | if (HasEVEX_K) // Skip writemask |
1734 | ++SrcRegNum; |
1735 | |
1736 | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) |
1737 | ++SrcRegNum; |
1738 | |
1739 | if (IsND) // Skip new data destination |
1740 | ++CurOp; |
1741 | |
1742 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1743 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1744 | CurOp = SrcRegNum + 1; |
1745 | if (HasVEX_I8Reg) |
1746 | I8RegNum = getX86RegEncoding(MI, OpNum: CurOp++); |
1747 | // do not count the rounding control operand |
1748 | if (HasEVEX_RC) |
1749 | --NumOps; |
1750 | break; |
1751 | } |
1752 | case X86II::MRMSrcReg4VOp3: { |
1753 | emitByte(C: BaseOpcode, CB); |
1754 | unsigned SrcRegNum = CurOp + 1; |
1755 | |
1756 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1757 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1758 | CurOp = SrcRegNum + 1; |
1759 | ++CurOp; // Encoded in VEX.VVVV |
1760 | break; |
1761 | } |
1762 | case X86II::MRMSrcRegOp4: { |
1763 | emitByte(C: BaseOpcode, CB); |
1764 | unsigned SrcRegNum = CurOp + 1; |
1765 | |
1766 | // Skip 1st src (which is encoded in VEX_VVVV) |
1767 | ++SrcRegNum; |
1768 | |
1769 | // Capture 2nd src (which is encoded in Imm[7:4]) |
1770 | assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg" ); |
1771 | I8RegNum = getX86RegEncoding(MI, OpNum: SrcRegNum++); |
1772 | |
1773 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SrcRegNum), |
1774 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: CurOp)), CB); |
1775 | CurOp = SrcRegNum + 1; |
1776 | break; |
1777 | } |
1778 | case X86II::MRMSrcRegCC: { |
1779 | if (IsND) // Skip new data destination |
1780 | ++CurOp; |
1781 | unsigned FirstOp = CurOp++; |
1782 | unsigned SecondOp = CurOp++; |
1783 | |
1784 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1785 | emitByte(C: BaseOpcode + CC, CB); |
1786 | |
1787 | emitRegModRMByte(ModRMReg: MI.getOperand(i: SecondOp), |
1788 | RegOpcodeFld: getX86RegNum(MO: MI.getOperand(i: FirstOp)), CB); |
1789 | break; |
1790 | } |
1791 | case X86II::MRMSrcMemFSIB: |
1792 | case X86II::MRMSrcMem: { |
1793 | unsigned FirstMemOp = CurOp + 1; |
1794 | |
1795 | if (IsND) // Skip new data destination |
1796 | CurOp++; |
1797 | |
1798 | if (HasEVEX_K) // Skip writemask |
1799 | ++FirstMemOp; |
1800 | |
1801 | if (HasVEX_4V) |
1802 | ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). |
1803 | |
1804 | emitByte(C: BaseOpcode, CB); |
1805 | |
1806 | bool ForceSIB = (Form == X86II::MRMSrcMemFSIB); |
1807 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1808 | TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB); |
1809 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1810 | if (HasVEX_I8Reg) |
1811 | I8RegNum = getX86RegEncoding(MI, OpNum: CurOp++); |
1812 | break; |
1813 | } |
1814 | case X86II::MRMSrcMem4VOp3: { |
1815 | unsigned FirstMemOp = CurOp + 1; |
1816 | |
1817 | emitByte(C: BaseOpcode, CB); |
1818 | |
1819 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1820 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1821 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1822 | ++CurOp; // Encoded in VEX.VVVV. |
1823 | break; |
1824 | } |
1825 | case X86II::MRMSrcMemOp4: { |
1826 | unsigned FirstMemOp = CurOp + 1; |
1827 | |
1828 | ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). |
1829 | |
1830 | // Capture second register source (encoded in Imm[7:4]) |
1831 | assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg" ); |
1832 | I8RegNum = getX86RegEncoding(MI, OpNum: FirstMemOp++); |
1833 | |
1834 | emitByte(C: BaseOpcode, CB); |
1835 | |
1836 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: CurOp)), |
1837 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1838 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1839 | break; |
1840 | } |
1841 | case X86II::MRMSrcMemCC: { |
1842 | if (IsND) // Skip new data destination |
1843 | ++CurOp; |
1844 | unsigned RegOp = CurOp++; |
1845 | unsigned FirstMemOp = CurOp; |
1846 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1847 | |
1848 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1849 | emitByte(C: BaseOpcode + CC, CB); |
1850 | |
1851 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: getX86RegNum(MO: MI.getOperand(i: RegOp)), |
1852 | TSFlags, Kind, StartByte, CB, Fixups, STI); |
1853 | break; |
1854 | } |
1855 | |
1856 | case X86II::MRMXrCC: { |
1857 | unsigned RegOp = CurOp++; |
1858 | |
1859 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1860 | emitByte(C: BaseOpcode + CC, CB); |
1861 | emitRegModRMByte(ModRMReg: MI.getOperand(i: RegOp), RegOpcodeFld: 0, CB); |
1862 | break; |
1863 | } |
1864 | |
1865 | case X86II::MRMXr: |
1866 | case X86II::MRM0r: |
1867 | case X86II::MRM1r: |
1868 | case X86II::MRM2r: |
1869 | case X86II::MRM3r: |
1870 | case X86II::MRM4r: |
1871 | case X86II::MRM5r: |
1872 | case X86II::MRM6r: |
1873 | case X86II::MRM7r: |
1874 | if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). |
1875 | ++CurOp; |
1876 | if (HasEVEX_K) // Skip writemask |
1877 | ++CurOp; |
1878 | emitByte(C: BaseOpcode, CB); |
1879 | emitRegModRMByte(ModRMReg: MI.getOperand(i: CurOp++), |
1880 | RegOpcodeFld: (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB); |
1881 | break; |
1882 | case X86II::MRMr0: |
1883 | emitByte(C: BaseOpcode, CB); |
1884 | emitByte(C: modRMByte(Mod: 3, RegOpcode: getX86RegNum(MO: MI.getOperand(i: CurOp++)), RM: 0), CB); |
1885 | break; |
1886 | |
1887 | case X86II::MRMXmCC: { |
1888 | unsigned FirstMemOp = CurOp; |
1889 | CurOp = FirstMemOp + X86::AddrNumOperands; |
1890 | |
1891 | unsigned CC = MI.getOperand(i: CurOp++).getImm(); |
1892 | emitByte(C: BaseOpcode + CC, CB); |
1893 | |
1894 | emitMemModRMByte(MI, Op: FirstMemOp, RegOpcodeField: 0, TSFlags, Kind, StartByte, CB, Fixups, |
1895 | STI); |
1896 | break; |
1897 | } |
1898 | |
1899 | case X86II::MRMXm: |
1900 | case X86II::MRM0m: |
1901 | case X86II::MRM1m: |
1902 | case X86II::MRM2m: |
1903 | case X86II::MRM3m: |
1904 | case X86II::MRM4m: |
1905 | case X86II::MRM5m: |
1906 | case X86II::MRM6m: |
1907 | case X86II::MRM7m: |
1908 | if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). |
1909 | ++CurOp; |
1910 | if (HasEVEX_K) // Skip writemask |
1911 | ++CurOp; |
1912 | emitByte(C: BaseOpcode, CB); |
1913 | emitMemModRMByte(MI, Op: CurOp, |
1914 | RegOpcodeField: (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, |
1915 | Kind, StartByte, CB, Fixups, STI); |
1916 | CurOp += X86::AddrNumOperands; |
1917 | break; |
1918 | |
1919 | case X86II::MRM0X: |
1920 | case X86II::MRM1X: |
1921 | case X86II::MRM2X: |
1922 | case X86II::MRM3X: |
1923 | case X86II::MRM4X: |
1924 | case X86II::MRM5X: |
1925 | case X86II::MRM6X: |
1926 | case X86II::MRM7X: |
1927 | emitByte(C: BaseOpcode, CB); |
1928 | emitByte(C: 0xC0 + ((Form - X86II::MRM0X) << 3), CB); |
1929 | break; |
1930 | |
1931 | case X86II::MRM_C0: |
1932 | case X86II::MRM_C1: |
1933 | case X86II::MRM_C2: |
1934 | case X86II::MRM_C3: |
1935 | case X86II::MRM_C4: |
1936 | case X86II::MRM_C5: |
1937 | case X86II::MRM_C6: |
1938 | case X86II::MRM_C7: |
1939 | case X86II::MRM_C8: |
1940 | case X86II::MRM_C9: |
1941 | case X86II::MRM_CA: |
1942 | case X86II::MRM_CB: |
1943 | case X86II::MRM_CC: |
1944 | case X86II::MRM_CD: |
1945 | case X86II::MRM_CE: |
1946 | case X86II::MRM_CF: |
1947 | case X86II::MRM_D0: |
1948 | case X86II::MRM_D1: |
1949 | case X86II::MRM_D2: |
1950 | case X86II::MRM_D3: |
1951 | case X86II::MRM_D4: |
1952 | case X86II::MRM_D5: |
1953 | case X86II::MRM_D6: |
1954 | case X86II::MRM_D7: |
1955 | case X86II::MRM_D8: |
1956 | case X86II::MRM_D9: |
1957 | case X86II::MRM_DA: |
1958 | case X86II::MRM_DB: |
1959 | case X86II::MRM_DC: |
1960 | case X86II::MRM_DD: |
1961 | case X86II::MRM_DE: |
1962 | case X86II::MRM_DF: |
1963 | case X86II::MRM_E0: |
1964 | case X86II::MRM_E1: |
1965 | case X86II::MRM_E2: |
1966 | case X86II::MRM_E3: |
1967 | case X86II::MRM_E4: |
1968 | case X86II::MRM_E5: |
1969 | case X86II::MRM_E6: |
1970 | case X86II::MRM_E7: |
1971 | case X86II::MRM_E8: |
1972 | case X86II::MRM_E9: |
1973 | case X86II::MRM_EA: |
1974 | case X86II::MRM_EB: |
1975 | case X86II::MRM_EC: |
1976 | case X86II::MRM_ED: |
1977 | case X86II::MRM_EE: |
1978 | case X86II::MRM_EF: |
1979 | case X86II::MRM_F0: |
1980 | case X86II::MRM_F1: |
1981 | case X86II::MRM_F2: |
1982 | case X86II::MRM_F3: |
1983 | case X86II::MRM_F4: |
1984 | case X86II::MRM_F5: |
1985 | case X86II::MRM_F6: |
1986 | case X86II::MRM_F7: |
1987 | case X86II::MRM_F8: |
1988 | case X86II::MRM_F9: |
1989 | case X86II::MRM_FA: |
1990 | case X86II::MRM_FB: |
1991 | case X86II::MRM_FC: |
1992 | case X86II::MRM_FD: |
1993 | case X86II::MRM_FE: |
1994 | case X86II::MRM_FF: |
1995 | emitByte(C: BaseOpcode, CB); |
1996 | emitByte(C: 0xC0 + Form - X86II::MRM_C0, CB); |
1997 | break; |
1998 | } |
1999 | |
2000 | if (HasVEX_I8Reg) { |
2001 | // The last source register of a 4 operand instruction in AVX is encoded |
2002 | // in bits[7:4] of a immediate byte. |
2003 | assert(I8RegNum < 16 && "Register encoding out of range" ); |
2004 | I8RegNum <<= 4; |
2005 | if (CurOp != NumOps) { |
2006 | unsigned Val = MI.getOperand(i: CurOp++).getImm(); |
2007 | assert(Val < 16 && "Immediate operand value out of range" ); |
2008 | I8RegNum |= Val; |
2009 | } |
2010 | emitImmediate(DispOp: MCOperand::createImm(Val: I8RegNum), Loc: MI.getLoc(), Size: 1, FixupKind: FK_Data_1, |
2011 | StartByte, CB, Fixups); |
2012 | } else { |
2013 | // If there is a remaining operand, it must be a trailing immediate. Emit it |
2014 | // according to the right size for the instruction. Some instructions |
2015 | // (SSE4a extrq and insertq) have two trailing immediates. |
2016 | |
2017 | // Skip two trainling conditional operands encoded in EVEX prefix |
2018 | unsigned RemaningOps = NumOps - CurOp - 2 * HasTwoConditionalOps; |
2019 | while (RemaningOps) { |
2020 | emitImmediate(DispOp: MI.getOperand(i: CurOp++), Loc: MI.getLoc(), |
2021 | Size: X86II::getSizeOfImm(TSFlags), FixupKind: getImmFixupKind(TSFlags), |
2022 | StartByte, CB, Fixups); |
2023 | --RemaningOps; |
2024 | } |
2025 | CurOp += 2 * HasTwoConditionalOps; |
2026 | } |
2027 | |
2028 | if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) |
2029 | emitByte(C: X86II::getBaseOpcodeFor(TSFlags), CB); |
2030 | |
2031 | if (CB.size() - StartByte > 15) |
2032 | Ctx.reportError(L: MI.getLoc(), Msg: "instruction length exceeds the limit of 15" ); |
2033 | #ifndef NDEBUG |
2034 | // FIXME: Verify. |
2035 | if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { |
2036 | errs() << "Cannot encode all operands of: " ; |
2037 | MI.dump(); |
2038 | errs() << '\n'; |
2039 | abort(); |
2040 | } |
2041 | #endif |
2042 | } |
2043 | |
2044 | MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, |
2045 | MCContext &Ctx) { |
2046 | return new X86MCCodeEmitter(MCII, Ctx); |
2047 | } |
2048 | |