| 1 | //===- X86CompressEVEX.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space |
| 10 | // when possible in order to reduce code size or facilitate HW decoding. |
| 11 | // |
| 12 | // Possible compression: |
| 13 | // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) |
| 14 | // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) |
| 15 | // c. NDD (EVEX) -> non-NDD (legacy) |
| 16 | // d. NF_ND (EVEX) -> NF (EVEX) |
| 17 | // e. NonNF (EVEX) -> NF (EVEX) |
| 18 | // |
| 19 | // Compression a, b and c can always reduce code size, with some exceptions |
| 20 | // such as promoted 16-bit CRC32 which is as long as the legacy version. |
| 21 | // |
| 22 | // legacy: |
| 23 | // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] |
| 24 | // promoted: |
| 25 | // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] |
| 26 | // |
| 27 | // From performance perspective, these should be same (same uops and same EXE |
| 28 | // ports). From a FMV perspective, an older legacy encoding is preferred b/c it |
| 29 | // can execute in more places (broader HW install base). So we will still do |
| 30 | // the compression. |
| 31 | // |
| 32 | // Compression d can help hardware decode (HW may skip reading the NDD |
| 33 | // register) although the instruction length remains unchanged. |
| 34 | // |
| 35 | // Compression e can help hardware skip updating EFLAGS although the instruction |
| 36 | // length remains unchanged. |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | |
| 39 | #include "MCTargetDesc/X86BaseInfo.h" |
| 40 | #include "X86.h" |
| 41 | #include "X86InstrInfo.h" |
| 42 | #include "X86Subtarget.h" |
| 43 | #include "llvm/ADT/StringRef.h" |
| 44 | #include "llvm/CodeGen/MachineFunction.h" |
| 45 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 46 | #include "llvm/CodeGen/MachineInstr.h" |
| 47 | #include "llvm/CodeGen/MachineOperand.h" |
| 48 | #include "llvm/MC/MCInstrDesc.h" |
| 49 | #include "llvm/Pass.h" |
| 50 | #include <atomic> |
| 51 | #include <cassert> |
| 52 | #include <cstdint> |
| 53 | |
| 54 | using namespace llvm; |
| 55 | |
| 56 | #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" |
| 57 | #define COMP_EVEX_NAME "x86-compress-evex" |
| 58 | |
| 59 | #define DEBUG_TYPE COMP_EVEX_NAME |
| 60 | |
| 61 | extern cl::opt<bool> X86EnableAPXForRelocation; |
| 62 | |
| 63 | namespace { |
| 64 | // Including the generated EVEX compression tables. |
| 65 | #define GET_X86_COMPRESS_EVEX_TABLE |
| 66 | #include "X86GenInstrMapping.inc" |
| 67 | |
| 68 | class CompressEVEXPass : public MachineFunctionPass { |
| 69 | public: |
| 70 | static char ID; |
| 71 | CompressEVEXPass() : MachineFunctionPass(ID) {} |
| 72 | StringRef getPassName() const override { return COMP_EVEX_DESC; } |
| 73 | |
| 74 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 75 | |
| 76 | // This pass runs after regalloc and doesn't support VReg operands. |
| 77 | MachineFunctionProperties getRequiredProperties() const override { |
| 78 | return MachineFunctionProperties().setNoVRegs(); |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | } // end anonymous namespace |
| 83 | |
| 84 | char CompressEVEXPass::ID = 0; |
| 85 | |
| 86 | static bool usesExtendedRegister(const MachineInstr &MI) { |
| 87 | auto isHiRegIdx = [](MCRegister Reg) { |
| 88 | // Check for XMM register with indexes between 16 - 31. |
| 89 | if (Reg >= X86::XMM16 && Reg <= X86::XMM31) |
| 90 | return true; |
| 91 | // Check for YMM register with indexes between 16 - 31. |
| 92 | if (Reg >= X86::YMM16 && Reg <= X86::YMM31) |
| 93 | return true; |
| 94 | // Check for GPR with indexes between 16 - 31. |
| 95 | if (X86II::isApxExtendedReg(Reg)) |
| 96 | return true; |
| 97 | return false; |
| 98 | }; |
| 99 | |
| 100 | // Check that operands are not ZMM regs or |
| 101 | // XMM/YMM regs with hi indexes between 16 - 31. |
| 102 | for (const MachineOperand &MO : MI.explicit_operands()) { |
| 103 | if (!MO.isReg()) |
| 104 | continue; |
| 105 | |
| 106 | MCRegister Reg = MO.getReg().asMCReg(); |
| 107 | assert(!X86II::isZMMReg(Reg) && |
| 108 | "ZMM instructions should not be in the EVEX->VEX tables" ); |
| 109 | if (isHiRegIdx(Reg)) |
| 110 | return true; |
| 111 | } |
| 112 | |
| 113 | return false; |
| 114 | } |
| 115 | |
| 116 | // Do any custom cleanup needed to finalize the conversion. |
| 117 | static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { |
| 118 | (void)NewOpc; |
| 119 | unsigned Opc = MI.getOpcode(); |
| 120 | switch (Opc) { |
| 121 | case X86::VALIGNDZ128rri: |
| 122 | case X86::VALIGNDZ128rmi: |
| 123 | case X86::VALIGNQZ128rri: |
| 124 | case X86::VALIGNQZ128rmi: { |
| 125 | assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && |
| 126 | "Unexpected new opcode!" ); |
| 127 | unsigned Scale = |
| 128 | (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; |
| 129 | MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 130 | Imm.setImm(Imm.getImm() * Scale); |
| 131 | break; |
| 132 | } |
| 133 | case X86::VSHUFF32X4Z256rmi: |
| 134 | case X86::VSHUFF32X4Z256rri: |
| 135 | case X86::VSHUFF64X2Z256rmi: |
| 136 | case X86::VSHUFF64X2Z256rri: |
| 137 | case X86::VSHUFI32X4Z256rmi: |
| 138 | case X86::VSHUFI32X4Z256rri: |
| 139 | case X86::VSHUFI64X2Z256rmi: |
| 140 | case X86::VSHUFI64X2Z256rri: { |
| 141 | assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri || |
| 142 | NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) && |
| 143 | "Unexpected new opcode!" ); |
| 144 | MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 145 | int64_t ImmVal = Imm.getImm(); |
| 146 | // Set bit 5, move bit 1 to bit 4, copy bit 0. |
| 147 | Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); |
| 148 | break; |
| 149 | } |
| 150 | case X86::VRNDSCALEPDZ128rri: |
| 151 | case X86::VRNDSCALEPDZ128rmi: |
| 152 | case X86::VRNDSCALEPSZ128rri: |
| 153 | case X86::VRNDSCALEPSZ128rmi: |
| 154 | case X86::VRNDSCALEPDZ256rri: |
| 155 | case X86::VRNDSCALEPDZ256rmi: |
| 156 | case X86::VRNDSCALEPSZ256rri: |
| 157 | case X86::VRNDSCALEPSZ256rmi: |
| 158 | case X86::VRNDSCALESDZrri: |
| 159 | case X86::VRNDSCALESDZrmi: |
| 160 | case X86::VRNDSCALESSZrri: |
| 161 | case X86::VRNDSCALESSZrmi: |
| 162 | case X86::VRNDSCALESDZrri_Int: |
| 163 | case X86::VRNDSCALESDZrmi_Int: |
| 164 | case X86::VRNDSCALESSZrri_Int: |
| 165 | case X86::VRNDSCALESSZrmi_Int: |
| 166 | const MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 167 | int64_t ImmVal = Imm.getImm(); |
| 168 | // Ensure that only bits 3:0 of the immediate are used. |
| 169 | if ((ImmVal & 0xf) != ImmVal) |
| 170 | return false; |
| 171 | break; |
| 172 | } |
| 173 | |
| 174 | return true; |
| 175 | } |
| 176 | |
| 177 | static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) { |
| 178 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 179 | |
| 180 | // Check for EVEX instructions only. |
| 181 | if ((TSFlags & X86II::EncodingMask) != X86II::EVEX) |
| 182 | return false; |
| 183 | |
| 184 | // Instructions with mask or 512-bit vector can't be converted to VEX. |
| 185 | if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2)) |
| 186 | return false; |
| 187 | |
| 188 | auto IsRedundantNewDataDest = [&](unsigned &Opc) { |
| 189 | // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx |
| 190 | // -> |
| 191 | // $rbx = ADD64rr $rbx, $rax |
| 192 | const MCInstrDesc &Desc = MI.getDesc(); |
| 193 | Register Reg0 = MI.getOperand(i: 0).getReg(); |
| 194 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
| 195 | if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 || |
| 196 | X86::isCFCMOVCC(Opcode: MI.getOpcode())) |
| 197 | return false; |
| 198 | Register Reg1 = Op1.getReg(); |
| 199 | if (Reg1 == Reg0) |
| 200 | return true; |
| 201 | |
| 202 | // Op1 and Op2 may be commutable for ND instructions. |
| 203 | if (!Desc.isCommutable() || Desc.getNumOperands() < 3 || |
| 204 | !MI.getOperand(i: 2).isReg() || MI.getOperand(i: 2).getReg() != Reg0) |
| 205 | return false; |
| 206 | // Opcode may change after commute, e.g. SHRD -> SHLD |
| 207 | ST.getInstrInfo()->commuteInstruction(MI, NewMI: false, OpIdx1: 1, OpIdx2: 2); |
| 208 | Opc = MI.getOpcode(); |
| 209 | return true; |
| 210 | }; |
| 211 | |
| 212 | // EVEX_B has several meanings. |
| 213 | // AVX512: |
| 214 | // register form: rounding control or SAE |
| 215 | // memory form: broadcast |
| 216 | // |
| 217 | // APX: |
| 218 | // MAP4: NDD |
| 219 | // |
| 220 | // For AVX512 cases, EVEX prefix is needed in order to carry this information |
| 221 | // thus preventing the transformation to VEX encoding. |
| 222 | bool IsND = X86II::hasNewDataDest(TSFlags); |
| 223 | if (TSFlags & X86II::EVEX_B && !IsND) |
| 224 | return false; |
| 225 | unsigned Opc = MI.getOpcode(); |
| 226 | // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B. |
| 227 | bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr; |
| 228 | bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false; |
| 229 | |
| 230 | auto GetCompressedOpc = [&](unsigned Opc) -> unsigned { |
| 231 | ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable); |
| 232 | const auto I = llvm::lower_bound(Range&: Table, Value&: Opc); |
| 233 | if (I == Table.end() || I->OldOpc != Opc) |
| 234 | return 0; |
| 235 | |
| 236 | if (usesExtendedRegister(MI) || !checkPredicate(Opc: I->NewOpc, Subtarget: &ST) || |
| 237 | !performCustomAdjustments(MI, NewOpc: I->NewOpc)) |
| 238 | return 0; |
| 239 | return I->NewOpc; |
| 240 | }; |
| 241 | |
| 242 | // Redundant NDD ops cannot be safely compressed if either: |
| 243 | // - the legacy op would introduce a partial write that BreakFalseDeps |
| 244 | // identified as a potential stall, or |
| 245 | // - the op is writing to a subregister of a live register, i.e. the |
| 246 | // full (zeroed) result is used. |
| 247 | // Both cases are indicated by an implicit def of the superregister. |
| 248 | if (IsRedundantNDD) { |
| 249 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 250 | if (Dst && |
| 251 | (X86::GR16RegClass.contains(Reg: Dst) || X86::GR8RegClass.contains(Reg: Dst))) { |
| 252 | Register Super = getX86SubSuperRegister(Reg: Dst, Size: 64); |
| 253 | if (MI.definesRegister(Reg: Super, /*TRI=*/nullptr)) |
| 254 | IsRedundantNDD = false; |
| 255 | } |
| 256 | |
| 257 | // ADDrm/mr instructions with NDD + relocation had been transformed to the |
| 258 | // instructions without NDD in X86SuppressAPXForRelocation pass. That is to |
| 259 | // keep backward compatibility with linkers without APX support. |
| 260 | if (!X86EnableAPXForRelocation) |
| 261 | assert(!isAddMemInstrWithRelocation(MI) && |
| 262 | "Unexpected NDD instruction with relocation!" ); |
| 263 | } |
| 264 | |
| 265 | // NonNF -> NF only if it's not a compressible NDD instruction and eflags is |
| 266 | // dead. |
| 267 | unsigned NewOpc = IsRedundantNDD |
| 268 | ? X86::getNonNDVariant(Opc) |
| 269 | : ((IsNDLike && ST.hasNF() && |
| 270 | MI.registerDefIsDead(Reg: X86::EFLAGS, /*TRI=*/nullptr)) |
| 271 | ? X86::getNFVariant(Opc) |
| 272 | : GetCompressedOpc(Opc)); |
| 273 | |
| 274 | if (!NewOpc) |
| 275 | return false; |
| 276 | |
| 277 | const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(Opcode: NewOpc); |
| 278 | MI.setDesc(NewDesc); |
| 279 | unsigned ; |
| 280 | switch (NewDesc.TSFlags & X86II::EncodingMask) { |
| 281 | case X86II::LEGACY: |
| 282 | AsmComment = X86::AC_EVEX_2_LEGACY; |
| 283 | break; |
| 284 | case X86II::VEX: |
| 285 | AsmComment = X86::AC_EVEX_2_VEX; |
| 286 | break; |
| 287 | case X86II::EVEX: |
| 288 | AsmComment = X86::AC_EVEX_2_EVEX; |
| 289 | assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) && |
| 290 | "Unknown EVEX2EVEX compression" ); |
| 291 | break; |
| 292 | default: |
| 293 | llvm_unreachable("Unknown EVEX compression" ); |
| 294 | } |
| 295 | MI.setAsmPrinterFlag(AsmComment); |
| 296 | if (IsRedundantNDD) |
| 297 | MI.tieOperands(DefIdx: 0, UseIdx: 1); |
| 298 | |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) { |
| 303 | LLVM_DEBUG(dbgs() << "Start X86CompressEVEXPass\n" ;); |
| 304 | #ifndef NDEBUG |
| 305 | // Make sure the tables are sorted. |
| 306 | static std::atomic<bool> TableChecked(false); |
| 307 | if (!TableChecked.load(std::memory_order_relaxed)) { |
| 308 | assert(llvm::is_sorted(X86CompressEVEXTable) && |
| 309 | "X86CompressEVEXTable is not sorted!" ); |
| 310 | TableChecked.store(true, std::memory_order_relaxed); |
| 311 | } |
| 312 | #endif |
| 313 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
| 314 | if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD()) |
| 315 | return false; |
| 316 | |
| 317 | bool Changed = false; |
| 318 | |
| 319 | for (MachineBasicBlock &MBB : MF) { |
| 320 | // Traverse the basic block. |
| 321 | for (MachineInstr &MI : MBB) |
| 322 | Changed |= CompressEVEXImpl(MI, ST); |
| 323 | } |
| 324 | LLVM_DEBUG(dbgs() << "End X86CompressEVEXPass\n" ;); |
| 325 | return Changed; |
| 326 | } |
| 327 | |
| 328 | INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false) |
| 329 | |
| 330 | FunctionPass *llvm::createX86CompressEVEXPass() { |
| 331 | return new CompressEVEXPass(); |
| 332 | } |
| 333 | |