1//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that expands pseudo instructions into target
10// instructions to allow proper scheduling, if-conversion, other late
11// optimizations, or simply the encoding of the instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86FrameLowering.h"
17#include "X86InstrInfo.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "llvm/CodeGen/LivePhysRegs.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
24#include "llvm/IR/EHPersonalities.h"
25#include "llvm/IR/GlobalValue.h"
26#include "llvm/Target/TargetMachine.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "x86-pseudo"
30#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
31
32namespace {
33class X86ExpandPseudo : public MachineFunctionPass {
34public:
35 static char ID;
36 X86ExpandPseudo() : MachineFunctionPass(ID) {}
37
38 void getAnalysisUsage(AnalysisUsage &AU) const override {
39 AU.setPreservesCFG();
40 AU.addPreservedID(ID&: MachineLoopInfoID);
41 AU.addPreservedID(ID&: MachineDominatorsID);
42 MachineFunctionPass::getAnalysisUsage(AU);
43 }
44
45 const X86Subtarget *STI = nullptr;
46 const X86InstrInfo *TII = nullptr;
47 const X86RegisterInfo *TRI = nullptr;
48 const X86MachineFunctionInfo *X86FI = nullptr;
49 const X86FrameLowering *X86FL = nullptr;
50
51 bool runOnMachineFunction(MachineFunction &MF) override;
52
53 MachineFunctionProperties getRequiredProperties() const override {
54 return MachineFunctionProperties().setNoVRegs();
55 }
56
57 StringRef getPassName() const override {
58 return "X86 pseudo instruction expansion pass";
59 }
60
61private:
62 void expandICallBranchFunnel(MachineBasicBlock *MBB,
63 MachineBasicBlock::iterator MBBI);
64 void expandCALL_RVMARKER(MachineBasicBlock &MBB,
65 MachineBasicBlock::iterator MBBI);
66 bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
67 bool expandMBB(MachineBasicBlock &MBB);
68
69 /// This function expands pseudos which affects control flow.
70 /// It is done in separate pass to simplify blocks navigation in main
71 /// pass(calling expandMBB).
72 bool expandPseudosWhichAffectControlFlow(MachineFunction &MF);
73
74 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
75 /// placed into separate block guarded by check for al register(for SystemV
76 /// abi).
77 void expandVastartSaveXmmRegs(
78 MachineBasicBlock *EntryBlk,
79 MachineBasicBlock::iterator VAStartPseudoInstr) const;
80};
81char X86ExpandPseudo::ID = 0;
82
83} // End anonymous namespace.
84
85INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
86 false)
87
88void X86ExpandPseudo::expandICallBranchFunnel(
89 MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
90 MachineBasicBlock *JTMBB = MBB;
91 MachineInstr *JTInst = &*MBBI;
92 MachineFunction *MF = MBB->getParent();
93 const BasicBlock *BB = MBB->getBasicBlock();
94 auto InsPt = MachineFunction::iterator(MBB);
95 ++InsPt;
96
97 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
98 const DebugLoc &DL = JTInst->getDebugLoc();
99 MachineOperand Selector = JTInst->getOperand(i: 0);
100 const GlobalValue *CombinedGlobal = JTInst->getOperand(i: 1).getGlobal();
101
102 auto CmpTarget = [&](unsigned Target) {
103 if (Selector.isReg())
104 MBB->addLiveIn(PhysReg: Selector.getReg());
105 BuildMI(BB&: *MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::LEA64r), DestReg: X86::R11)
106 .addReg(RegNo: X86::RIP)
107 .addImm(Val: 1)
108 .addReg(RegNo: 0)
109 .addGlobalAddress(GV: CombinedGlobal,
110 Offset: JTInst->getOperand(i: 2 + 2 * Target).getImm())
111 .addReg(RegNo: 0);
112 BuildMI(BB&: *MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::CMP64rr))
113 .add(MO: Selector)
114 .addReg(RegNo: X86::R11);
115 };
116
117 auto CreateMBB = [&]() {
118 auto *NewMBB = MF->CreateMachineBasicBlock(BB);
119 MBB->addSuccessor(Succ: NewMBB);
120 if (!MBB->isLiveIn(Reg: X86::EFLAGS))
121 MBB->addLiveIn(PhysReg: X86::EFLAGS);
122 return NewMBB;
123 };
124
125 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
126 BuildMI(BB&: *MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::JCC_1)).addMBB(MBB: ThenMBB).addImm(Val: CC);
127
128 auto *ElseMBB = CreateMBB();
129 MF->insert(MBBI: InsPt, MBB: ElseMBB);
130 MBB = ElseMBB;
131 MBBI = MBB->end();
132 };
133
134 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
135 auto *ThenMBB = CreateMBB();
136 TargetMBBs.push_back(x: {ThenMBB, Target});
137 EmitCondJump(CC, ThenMBB);
138 };
139
140 auto EmitTailCall = [&](unsigned Target) {
141 BuildMI(BB&: *MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TAILJMPd64))
142 .add(MO: JTInst->getOperand(i: 3 + 2 * Target));
143 };
144
145 std::function<void(unsigned, unsigned)> EmitBranchFunnel =
146 [&](unsigned FirstTarget, unsigned NumTargets) {
147 if (NumTargets == 1) {
148 EmitTailCall(FirstTarget);
149 return;
150 }
151
152 if (NumTargets == 2) {
153 CmpTarget(FirstTarget + 1);
154 EmitCondJumpTarget(X86::COND_B, FirstTarget);
155 EmitTailCall(FirstTarget + 1);
156 return;
157 }
158
159 if (NumTargets < 6) {
160 CmpTarget(FirstTarget + 1);
161 EmitCondJumpTarget(X86::COND_B, FirstTarget);
162 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
163 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
164 return;
165 }
166
167 auto *ThenMBB = CreateMBB();
168 CmpTarget(FirstTarget + (NumTargets / 2));
169 EmitCondJump(X86::COND_B, ThenMBB);
170 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
171 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
172 NumTargets - (NumTargets / 2) - 1);
173
174 MF->insert(MBBI: InsPt, MBB: ThenMBB);
175 MBB = ThenMBB;
176 MBBI = MBB->end();
177 EmitBranchFunnel(FirstTarget, NumTargets / 2);
178 };
179
180 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
181 for (auto P : TargetMBBs) {
182 MF->insert(MBBI: InsPt, MBB: P.first);
183 BuildMI(BB: P.first, MIMD: DL, MCID: TII->get(Opcode: X86::TAILJMPd64))
184 .add(MO: JTInst->getOperand(i: 3 + 2 * P.second));
185 }
186 JTMBB->erase(I: JTInst);
187}
188
189void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
190 MachineBasicBlock::iterator MBBI) {
191 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
192 //"movq %rax, %rdi" marker.
193 MachineInstr &MI = *MBBI;
194
195 MachineInstr *OriginalCall;
196 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
197 "invalid operand for regular call");
198 unsigned Opc = -1;
199 if (MI.getOpcode() == X86::CALL64m_RVMARKER)
200 Opc = X86::CALL64m;
201 else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
202 Opc = X86::CALL64r;
203 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
204 Opc = X86::CALL64pcrel32;
205 else
206 llvm_unreachable("unexpected opcode");
207
208 OriginalCall = BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: Opc)).getInstr();
209 bool RAXImplicitDead = false;
210 for (MachineOperand &Op : llvm::drop_begin(RangeOrContainer: MI.operands())) {
211 // RAX may be 'implicit dead', if there are no other users of the return
212 // value. We introduce a new use, so change it to 'implicit def'.
213 if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
214 TRI->regsOverlap(RegA: Op.getReg(), RegB: X86::RAX)) {
215 Op.setIsDead(false);
216 Op.setIsDef(true);
217 RAXImplicitDead = true;
218 }
219 OriginalCall->addOperand(Op);
220 }
221
222 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be
223 // live across the earlier call. The call to the ObjC runtime function returns
224 // the first argument, so the value of %rax is unchanged after the ObjC
225 // runtime call. On Windows targets, the runtime call follows the regular
226 // x64 calling convention and expects the first argument in %rcx.
227 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
228 auto *Marker = BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: X86::MOV64rr))
229 .addReg(RegNo: TargetReg, flags: RegState::Define)
230 .addReg(RegNo: X86::RAX)
231 .getInstr();
232 if (MI.shouldUpdateAdditionalCallInfo())
233 MBB.getParent()->moveAdditionalCallInfo(Old: &MI, New: Marker);
234
235 // Emit call to ObjC runtime.
236 const uint32_t *RegMask =
237 TRI->getCallPreservedMask(MF: *MBB.getParent(), CallingConv::C);
238 MachineInstr *RtCall =
239 BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: X86::CALL64pcrel32))
240 .addGlobalAddress(GV: MI.getOperand(i: 0).getGlobal(), Offset: 0, TargetFlags: 0)
241 .addRegMask(Mask: RegMask)
242 .addReg(RegNo: X86::RAX,
243 flags: RegState::Implicit |
244 (RAXImplicitDead ? (RegState::Dead | RegState::Define)
245 : RegState::Define))
246 .getInstr();
247 MI.eraseFromParent();
248
249 auto &TM = MBB.getParent()->getTarget();
250 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
251 // later optimizations from breaking up the sequence.
252 if (TM.getTargetTriple().isOSDarwin())
253 finalizeBundle(MBB, FirstMI: OriginalCall->getIterator(),
254 LastMI: std::next(x: RtCall->getIterator()));
255}
256
257/// If \p MBBI is a pseudo instruction, this method expands
258/// it to the corresponding (sequence of) actual instruction(s).
259/// \returns true if \p MBBI has been expanded.
260bool X86ExpandPseudo::expandMI(MachineBasicBlock &MBB,
261 MachineBasicBlock::iterator MBBI) {
262 MachineInstr &MI = *MBBI;
263 unsigned Opcode = MI.getOpcode();
264 const DebugLoc &DL = MBBI->getDebugLoc();
265#define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC)
266 switch (Opcode) {
267 default:
268 return false;
269 case X86::TCRETURNdi:
270 case X86::TCRETURNdicc:
271 case X86::TCRETURNri:
272 case X86::TCRETURNmi:
273 case X86::TCRETURNdi64:
274 case X86::TCRETURNdi64cc:
275 case X86::TCRETURNri64:
276 case X86::TCRETURNri64_ImpCall:
277 case X86::TCRETURNmi64: {
278 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
279 MachineOperand &JumpTarget = MBBI->getOperand(i: 0);
280 MachineOperand &StackAdjust = MBBI->getOperand(i: isMem ? X86::AddrNumOperands
281 : 1);
282 assert(StackAdjust.isImm() && "Expecting immediate value.");
283
284 // Adjust stack pointer.
285 int StackAdj = StackAdjust.getImm();
286 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
287 int64_t Offset = 0;
288 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
289
290 // Incoporate the retaddr area.
291 Offset = StackAdj - MaxTCDelta;
292 assert(Offset >= 0 && "Offset should never be negative");
293
294 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
295 assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
296 }
297
298 if (Offset) {
299 // Check for possible merge with preceding ADD instruction.
300 Offset = X86FL->mergeSPAdd(MBB, MBBI, AddOffset: Offset, doMergeWithPrevious: true);
301 X86FL->emitSPUpdate(MBB, MBBI, DL, NumBytes: Offset, /*InEpilogue=*/true);
302 }
303
304 // Use this predicate to set REX prefix for X86_64 targets.
305 bool IsX64 = STI->isTargetWin64() || STI->isTargetUEFI64();
306 // Jump to label or value in register.
307 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
308 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
309 unsigned Op;
310 switch (Opcode) {
311 case X86::TCRETURNdi:
312 Op = X86::TAILJMPd;
313 break;
314 case X86::TCRETURNdicc:
315 Op = X86::TAILJMPd_CC;
316 break;
317 case X86::TCRETURNdi64cc:
318 assert(!MBB.getParent()->hasWinCFI() &&
319 "Conditional tail calls confuse "
320 "the Win64 unwinder.");
321 Op = X86::TAILJMPd64_CC;
322 break;
323 default:
324 // Note: Win64 uses REX prefixes indirect jumps out of functions, but
325 // not direct ones.
326 Op = X86::TAILJMPd64;
327 break;
328 }
329 MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: Op));
330 if (JumpTarget.isGlobal()) {
331 MIB.addGlobalAddress(GV: JumpTarget.getGlobal(), Offset: JumpTarget.getOffset(),
332 TargetFlags: JumpTarget.getTargetFlags());
333 } else {
334 assert(JumpTarget.isSymbol());
335 MIB.addExternalSymbol(FnName: JumpTarget.getSymbolName(),
336 TargetFlags: JumpTarget.getTargetFlags());
337 }
338 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
339 MIB.addImm(Val: MBBI->getOperand(i: 2).getImm());
340 }
341
342 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
343 unsigned Op = (Opcode == X86::TCRETURNmi)
344 ? X86::TAILJMPm
345 : (IsX64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
346 MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: Op));
347 for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
348 MIB.add(MO: MBBI->getOperand(i));
349 } else if ((Opcode == X86::TCRETURNri64) ||
350 (Opcode == X86::TCRETURNri64_ImpCall)) {
351 JumpTarget.setIsKill();
352 BuildMI(BB&: MBB, I: MBBI, MIMD: DL,
353 MCID: TII->get(Opcode: IsX64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
354 .add(MO: JumpTarget);
355 } else {
356 assert(!IsX64 && "Win64 and UEFI64 require REX for indirect jumps.");
357 JumpTarget.setIsKill();
358 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TAILJMPr))
359 .add(MO: JumpTarget);
360 }
361
362 MachineInstr &NewMI = *std::prev(x: MBBI);
363 NewMI.copyImplicitOps(MF&: *MBBI->getParent()->getParent(), MI: *MBBI);
364 NewMI.setCFIType(MF&: *MBB.getParent(), Type: MI.getCFIType());
365
366 // Update the call info.
367 if (MBBI->isCandidateForAdditionalCallInfo())
368 MBB.getParent()->moveAdditionalCallInfo(Old: &*MBBI, New: &NewMI);
369
370 // Delete the pseudo instruction TCRETURN.
371 MBB.erase(I: MBBI);
372
373 return true;
374 }
375 case X86::EH_RETURN:
376 case X86::EH_RETURN64: {
377 MachineOperand &DestAddr = MBBI->getOperand(i: 0);
378 assert(DestAddr.isReg() && "Offset should be in register!");
379 const bool Uses64BitFramePtr =
380 STI->isTarget64BitLP64() || STI->isTargetNaCl64();
381 Register StackPtr = TRI->getStackRegister();
382 BuildMI(BB&: MBB, I: MBBI, MIMD: DL,
383 MCID: TII->get(Opcode: Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), DestReg: StackPtr)
384 .addReg(RegNo: DestAddr.getReg());
385 // The EH_RETURN pseudo is really removed during the MC Lowering.
386 return true;
387 }
388 case X86::IRET: {
389 // Adjust stack to erase error code
390 int64_t StackAdj = MBBI->getOperand(i: 0).getImm();
391 X86FL->emitSPUpdate(MBB, MBBI, DL, NumBytes: StackAdj, InEpilogue: true);
392 // Replace pseudo with machine iret
393 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
394 // Use UIRET if UINTR is present (except for building kernel)
395 if (STI->is64Bit() && STI->hasUINTR() &&
396 MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
397 RetOp = X86::UIRET;
398 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: RetOp));
399 MBB.erase(I: MBBI);
400 return true;
401 }
402 case X86::RET: {
403 // Adjust stack to erase error code
404 int64_t StackAdj = MBBI->getOperand(i: 0).getImm();
405 MachineInstrBuilder MIB;
406 if (StackAdj == 0) {
407 MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL,
408 MCID: TII->get(Opcode: STI->is64Bit() ? X86::RET64 : X86::RET32));
409 } else if (isUInt<16>(x: StackAdj)) {
410 MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL,
411 MCID: TII->get(Opcode: STI->is64Bit() ? X86::RETI64 : X86::RETI32))
412 .addImm(Val: StackAdj);
413 } else {
414 assert(!STI->is64Bit() &&
415 "shouldn't need to do this for x86_64 targets!");
416 // A ret can only handle immediates as big as 2**16-1. If we need to pop
417 // off bytes before the return address, we must do it manually.
418 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::POP32r)).addReg(RegNo: X86::ECX, flags: RegState::Define);
419 X86FL->emitSPUpdate(MBB, MBBI, DL, NumBytes: StackAdj, /*InEpilogue=*/true);
420 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::PUSH32r)).addReg(RegNo: X86::ECX);
421 MIB = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::RET32));
422 }
423 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
424 MIB.add(MO: MBBI->getOperand(i: I));
425 MBB.erase(I: MBBI);
426 return true;
427 }
428 case X86::LCMPXCHG16B_SAVE_RBX: {
429 // Perform the following transformation.
430 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
431 // =>
432 // RBX = InArg
433 // actualcmpxchg Addr
434 // RBX = SaveRbx
435 const MachineOperand &InArg = MBBI->getOperand(i: 6);
436 Register SaveRbx = MBBI->getOperand(i: 7).getReg();
437
438 // Copy the input argument of the pseudo into the argument of the
439 // actual instruction.
440 // NOTE: We don't copy the kill flag since the input might be the same reg
441 // as one of the other operands of LCMPXCHG16B.
442 TII->copyPhysReg(MBB, MI: MBBI, DL, DestReg: X86::RBX, SrcReg: InArg.getReg(), KillSrc: false);
443 // Create the actual instruction.
444 MachineInstr *NewInstr = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::LCMPXCHG16B));
445 // Copy the operands related to the address. If we access a frame variable,
446 // we need to replace the RBX base with SaveRbx, as RBX has another value.
447 const MachineOperand &Base = MBBI->getOperand(i: 1);
448 if (Base.getReg() == X86::RBX || Base.getReg() == X86::EBX)
449 NewInstr->addOperand(Op: MachineOperand::CreateReg(
450 Reg: Base.getReg() == X86::RBX
451 ? SaveRbx
452 : Register(TRI->getSubReg(Reg: SaveRbx, Idx: X86::sub_32bit)),
453 /*IsDef=*/isDef: false));
454 else
455 NewInstr->addOperand(Op: Base);
456 for (unsigned Idx = 1 + 1; Idx < 1 + X86::AddrNumOperands; ++Idx)
457 NewInstr->addOperand(Op: MBBI->getOperand(i: Idx));
458 // Finally, restore the value of RBX.
459 TII->copyPhysReg(MBB, MI: MBBI, DL, DestReg: X86::RBX, SrcReg: SaveRbx,
460 /*SrcIsKill*/ KillSrc: true);
461
462 // Delete the pseudo.
463 MBBI->eraseFromParent();
464 return true;
465 }
466 // Loading/storing mask pairs requires two kmov operations. The second one of
467 // these needs a 2 byte displacement relative to the specified address (with
468 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
469 // same spill size, they all are stored using MASKPAIR16STORE, loaded using
470 // MASKPAIR16LOAD.
471 //
472 // The displacement value might wrap around in theory, thus the asserts in
473 // both cases.
474 case X86::MASKPAIR16LOAD: {
475 int64_t Disp = MBBI->getOperand(i: 1 + X86::AddrDisp).getImm();
476 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
477 Register Reg = MBBI->getOperand(i: 0).getReg();
478 bool DstIsDead = MBBI->getOperand(i: 0).isDead();
479 Register Reg0 = TRI->getSubReg(Reg, Idx: X86::sub_mask_0);
480 Register Reg1 = TRI->getSubReg(Reg, Idx: X86::sub_mask_1);
481
482 auto MIBLo =
483 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
484 .addReg(RegNo: Reg0, flags: RegState::Define | getDeadRegState(B: DstIsDead));
485 auto MIBHi =
486 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
487 .addReg(RegNo: Reg1, flags: RegState::Define | getDeadRegState(B: DstIsDead));
488
489 for (int i = 0; i < X86::AddrNumOperands; ++i) {
490 MIBLo.add(MO: MBBI->getOperand(i: 1 + i));
491 if (i == X86::AddrDisp)
492 MIBHi.addImm(Val: Disp + 2);
493 else
494 MIBHi.add(MO: MBBI->getOperand(i: 1 + i));
495 }
496
497 // Split the memory operand, adjusting the offset and size for the halves.
498 MachineMemOperand *OldMMO = MBBI->memoperands().front();
499 MachineFunction *MF = MBB.getParent();
500 MachineMemOperand *MMOLo = MF->getMachineMemOperand(MMO: OldMMO, Offset: 0, Size: 2);
501 MachineMemOperand *MMOHi = MF->getMachineMemOperand(MMO: OldMMO, Offset: 2, Size: 2);
502
503 MIBLo.setMemRefs(MMOLo);
504 MIBHi.setMemRefs(MMOHi);
505
506 // Delete the pseudo.
507 MBB.erase(I: MBBI);
508 return true;
509 }
510 case X86::MASKPAIR16STORE: {
511 int64_t Disp = MBBI->getOperand(i: X86::AddrDisp).getImm();
512 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
513 Register Reg = MBBI->getOperand(i: X86::AddrNumOperands).getReg();
514 bool SrcIsKill = MBBI->getOperand(i: X86::AddrNumOperands).isKill();
515 Register Reg0 = TRI->getSubReg(Reg, Idx: X86::sub_mask_0);
516 Register Reg1 = TRI->getSubReg(Reg, Idx: X86::sub_mask_1);
517
518 auto MIBLo =
519 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
520 auto MIBHi =
521 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
522
523 for (int i = 0; i < X86::AddrNumOperands; ++i) {
524 MIBLo.add(MO: MBBI->getOperand(i));
525 if (i == X86::AddrDisp)
526 MIBHi.addImm(Val: Disp + 2);
527 else
528 MIBHi.add(MO: MBBI->getOperand(i));
529 }
530 MIBLo.addReg(RegNo: Reg0, flags: getKillRegState(B: SrcIsKill));
531 MIBHi.addReg(RegNo: Reg1, flags: getKillRegState(B: SrcIsKill));
532
533 // Split the memory operand, adjusting the offset and size for the halves.
534 MachineMemOperand *OldMMO = MBBI->memoperands().front();
535 MachineFunction *MF = MBB.getParent();
536 MachineMemOperand *MMOLo = MF->getMachineMemOperand(MMO: OldMMO, Offset: 0, Size: 2);
537 MachineMemOperand *MMOHi = MF->getMachineMemOperand(MMO: OldMMO, Offset: 2, Size: 2);
538
539 MIBLo.setMemRefs(MMOLo);
540 MIBHi.setMemRefs(MMOHi);
541
542 // Delete the pseudo.
543 MBB.erase(I: MBBI);
544 return true;
545 }
546 case X86::MWAITX_SAVE_RBX: {
547 // Perform the following transformation.
548 // SaveRbx = pseudomwaitx InArg, SaveRbx
549 // =>
550 // [E|R]BX = InArg
551 // actualmwaitx
552 // [E|R]BX = SaveRbx
553 const MachineOperand &InArg = MBBI->getOperand(i: 1);
554 // Copy the input argument of the pseudo into the argument of the
555 // actual instruction.
556 TII->copyPhysReg(MBB, MI: MBBI, DL, DestReg: X86::EBX, SrcReg: InArg.getReg(), KillSrc: InArg.isKill());
557 // Create the actual instruction.
558 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::MWAITXrrr));
559 // Finally, restore the value of RBX.
560 Register SaveRbx = MBBI->getOperand(i: 2).getReg();
561 TII->copyPhysReg(MBB, MI: MBBI, DL, DestReg: X86::RBX, SrcReg: SaveRbx, /*SrcIsKill*/ KillSrc: true);
562 // Delete the pseudo.
563 MBBI->eraseFromParent();
564 return true;
565 }
566 case TargetOpcode::ICALL_BRANCH_FUNNEL:
567 expandICallBranchFunnel(MBB: &MBB, MBBI);
568 return true;
569 case X86::PLDTILECFGV: {
570 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG)));
571 return true;
572 }
573 case X86::PTILELOADDV:
574 case X86::PTILELOADDT1V:
575 case X86::PTILELOADDRSV:
576 case X86::PTILELOADDRST1V:
577 case X86::PTCVTROWD2PSrreV:
578 case X86::PTCVTROWD2PSrriV:
579 case X86::PTCVTROWPS2BF16HrreV:
580 case X86::PTCVTROWPS2BF16HrriV:
581 case X86::PTCVTROWPS2BF16LrreV:
582 case X86::PTCVTROWPS2BF16LrriV:
583 case X86::PTCVTROWPS2PHHrreV:
584 case X86::PTCVTROWPS2PHHrriV:
585 case X86::PTCVTROWPS2PHLrreV:
586 case X86::PTCVTROWPS2PHLrriV:
587 case X86::PTILEMOVROWrreV:
588 case X86::PTILEMOVROWrriV: {
589 for (unsigned i = 2; i > 0; --i)
590 MI.removeOperand(OpNo: i);
591 unsigned Opc;
592 switch (Opcode) {
593 case X86::PTILELOADDRSV:
594 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDRS);
595 break;
596 case X86::PTILELOADDRST1V:
597 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDRST1);
598 break;
599 case X86::PTILELOADDV:
600 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADD);
601 break;
602 case X86::PTILELOADDT1V:
603 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDT1);
604 break;
605 case X86::PTCVTROWD2PSrreV:
606 Opc = X86::TCVTROWD2PSrre;
607 break;
608 case X86::PTCVTROWD2PSrriV:
609 Opc = X86::TCVTROWD2PSrri;
610 break;
611 case X86::PTCVTROWPS2BF16HrreV:
612 Opc = X86::TCVTROWPS2BF16Hrre;
613 break;
614 case X86::PTCVTROWPS2BF16HrriV:
615 Opc = X86::TCVTROWPS2BF16Hrri;
616 break;
617 case X86::PTCVTROWPS2BF16LrreV:
618 Opc = X86::TCVTROWPS2BF16Lrre;
619 break;
620 case X86::PTCVTROWPS2BF16LrriV:
621 Opc = X86::TCVTROWPS2BF16Lrri;
622 break;
623 case X86::PTCVTROWPS2PHHrreV:
624 Opc = X86::TCVTROWPS2PHHrre;
625 break;
626 case X86::PTCVTROWPS2PHHrriV:
627 Opc = X86::TCVTROWPS2PHHrri;
628 break;
629 case X86::PTCVTROWPS2PHLrreV:
630 Opc = X86::TCVTROWPS2PHLrre;
631 break;
632 case X86::PTCVTROWPS2PHLrriV:
633 Opc = X86::TCVTROWPS2PHLrri;
634 break;
635 case X86::PTILEMOVROWrreV:
636 Opc = X86::TILEMOVROWrre;
637 break;
638 case X86::PTILEMOVROWrriV:
639 Opc = X86::TILEMOVROWrri;
640 break;
641 default:
642 llvm_unreachable("Unexpected Opcode");
643 }
644 MI.setDesc(TII->get(Opcode: Opc));
645 return true;
646 }
647 // TILEPAIRLOAD is just for TILEPair spill, we don't have corresponding
648 // AMX instruction to support it. So, split it to 2 load instructions:
649 // "TILEPAIRLOAD TMM0:TMM1, Base, Scale, Index, Offset, Segment" -->
650 // "TILELOAD TMM0, Base, Scale, Index, Offset, Segment" +
651 // "TILELOAD TMM1, Base, Scale, Index, Offset + TMM_SIZE, Segment"
652 case X86::PTILEPAIRLOAD: {
653 int64_t Disp = MBBI->getOperand(i: 1 + X86::AddrDisp).getImm();
654 Register TReg = MBBI->getOperand(i: 0).getReg();
655 bool DstIsDead = MBBI->getOperand(i: 0).isDead();
656 Register TReg0 = TRI->getSubReg(Reg: TReg, Idx: X86::sub_t0);
657 Register TReg1 = TRI->getSubReg(Reg: TReg, Idx: X86::sub_t1);
658 unsigned TmmSize = TRI->getRegSizeInBits(RC: X86::TILERegClass) / 8;
659
660 MachineInstrBuilder MIBLo =
661 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TILELOADD))
662 .addReg(RegNo: TReg0, flags: RegState::Define | getDeadRegState(B: DstIsDead));
663 MachineInstrBuilder MIBHi =
664 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TILELOADD))
665 .addReg(RegNo: TReg1, flags: RegState::Define | getDeadRegState(B: DstIsDead));
666
667 for (int i = 0; i < X86::AddrNumOperands; ++i) {
668 MIBLo.add(MO: MBBI->getOperand(i: 1 + i));
669 if (i == X86::AddrDisp)
670 MIBHi.addImm(Val: Disp + TmmSize);
671 else
672 MIBHi.add(MO: MBBI->getOperand(i: 1 + i));
673 }
674
675 // Make sure the first stride reg used in first tileload is alive.
676 MachineOperand &Stride =
677 MIBLo.getInstr()->getOperand(i: 1 + X86::AddrIndexReg);
678 Stride.setIsKill(false);
679
680 // Split the memory operand, adjusting the offset and size for the halves.
681 MachineMemOperand *OldMMO = MBBI->memoperands().front();
682 MachineFunction *MF = MBB.getParent();
683 MachineMemOperand *MMOLo = MF->getMachineMemOperand(MMO: OldMMO, Offset: 0, Size: TmmSize);
684 MachineMemOperand *MMOHi =
685 MF->getMachineMemOperand(MMO: OldMMO, Offset: TmmSize, Size: TmmSize);
686
687 MIBLo.setMemRefs(MMOLo);
688 MIBHi.setMemRefs(MMOHi);
689
690 // Delete the pseudo.
691 MBB.erase(I: MBBI);
692 return true;
693 }
694 // Similar with TILEPAIRLOAD, TILEPAIRSTORE is just for TILEPair spill, no
695 // corresponding AMX instruction to support it. So, split it too:
696 // "TILEPAIRSTORE Base, Scale, Index, Offset, Segment, TMM0:TMM1" -->
697 // "TILESTORE Base, Scale, Index, Offset, Segment, TMM0" +
698 // "TILESTORE Base, Scale, Index, Offset + TMM_SIZE, Segment, TMM1"
699 case X86::PTILEPAIRSTORE: {
700 int64_t Disp = MBBI->getOperand(i: X86::AddrDisp).getImm();
701 Register TReg = MBBI->getOperand(i: X86::AddrNumOperands).getReg();
702 bool SrcIsKill = MBBI->getOperand(i: X86::AddrNumOperands).isKill();
703 Register TReg0 = TRI->getSubReg(Reg: TReg, Idx: X86::sub_t0);
704 Register TReg1 = TRI->getSubReg(Reg: TReg, Idx: X86::sub_t1);
705 unsigned TmmSize = TRI->getRegSizeInBits(RC: X86::TILERegClass) / 8;
706
707 MachineInstrBuilder MIBLo =
708 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TILESTORED));
709 MachineInstrBuilder MIBHi =
710 BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::TILESTORED));
711
712 for (int i = 0; i < X86::AddrNumOperands; ++i) {
713 MIBLo.add(MO: MBBI->getOperand(i));
714 if (i == X86::AddrDisp)
715 MIBHi.addImm(Val: Disp + TmmSize);
716 else
717 MIBHi.add(MO: MBBI->getOperand(i));
718 }
719 MIBLo.addReg(RegNo: TReg0, flags: getKillRegState(B: SrcIsKill));
720 MIBHi.addReg(RegNo: TReg1, flags: getKillRegState(B: SrcIsKill));
721
722 // Make sure the first stride reg used in first tilestore is alive.
723 MachineOperand &Stride = MIBLo.getInstr()->getOperand(i: X86::AddrIndexReg);
724 Stride.setIsKill(false);
725
726 // Split the memory operand, adjusting the offset and size for the halves.
727 MachineMemOperand *OldMMO = MBBI->memoperands().front();
728 MachineFunction *MF = MBB.getParent();
729 MachineMemOperand *MMOLo = MF->getMachineMemOperand(MMO: OldMMO, Offset: 0, Size: TmmSize);
730 MachineMemOperand *MMOHi =
731 MF->getMachineMemOperand(MMO: OldMMO, Offset: TmmSize, Size: TmmSize);
732
733 MIBLo.setMemRefs(MMOLo);
734 MIBHi.setMemRefs(MMOHi);
735
736 // Delete the pseudo.
737 MBB.erase(I: MBBI);
738 return true;
739 }
740 case X86::PT2RPNTLVWZ0V:
741 case X86::PT2RPNTLVWZ0T1V:
742 case X86::PT2RPNTLVWZ1V:
743 case X86::PT2RPNTLVWZ1T1V:
744 case X86::PT2RPNTLVWZ0RSV:
745 case X86::PT2RPNTLVWZ0RST1V:
746 case X86::PT2RPNTLVWZ1RSV:
747 case X86::PT2RPNTLVWZ1RST1V: {
748 for (unsigned i = 3; i > 0; --i)
749 MI.removeOperand(OpNo: i);
750 unsigned Opc;
751 switch (Opcode) {
752 case X86::PT2RPNTLVWZ0V:
753 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ0);
754 break;
755 case X86::PT2RPNTLVWZ0T1V:
756 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ0T1);
757 break;
758 case X86::PT2RPNTLVWZ1V:
759 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ1);
760 break;
761 case X86::PT2RPNTLVWZ1T1V:
762 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ1T1);
763 break;
764 case X86::PT2RPNTLVWZ0RSV:
765 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ0RS);
766 break;
767 case X86::PT2RPNTLVWZ0RST1V:
768 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ0RST1);
769 break;
770 case X86::PT2RPNTLVWZ1RSV:
771 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ1RS);
772 break;
773 case X86::PT2RPNTLVWZ1RST1V:
774 Opc = GET_EGPR_IF_ENABLED(X86::T2RPNTLVWZ1RST1);
775 break;
776 default:
777 llvm_unreachable("Impossible Opcode!");
778 }
779 MI.setDesc(TII->get(Opcode: Opc));
780 return true;
781 }
782 case X86::PTTRANSPOSEDV:
783 case X86::PTCONJTFP16V: {
784 for (int i = 2; i > 0; --i)
785 MI.removeOperand(OpNo: i);
786 MI.setDesc(TII->get(Opcode: Opcode == X86::PTTRANSPOSEDV ? X86::TTRANSPOSED
787 : X86::TCONJTFP16));
788 return true;
789 }
790 case X86::PTCMMIMFP16PSV:
791 case X86::PTCMMRLFP16PSV:
792 case X86::PTDPBSSDV:
793 case X86::PTDPBSUDV:
794 case X86::PTDPBUSDV:
795 case X86::PTDPBUUDV:
796 case X86::PTDPBF16PSV:
797 case X86::PTDPFP16PSV:
798 case X86::PTTDPBF16PSV:
799 case X86::PTTDPFP16PSV:
800 case X86::PTTCMMIMFP16PSV:
801 case X86::PTTCMMRLFP16PSV:
802 case X86::PTCONJTCMMIMFP16PSV:
803 case X86::PTMMULTF32PSV:
804 case X86::PTTMMULTF32PSV:
805 case X86::PTDPBF8PSV:
806 case X86::PTDPBHF8PSV:
807 case X86::PTDPHBF8PSV:
808 case X86::PTDPHF8PSV: {
809 MI.untieRegOperand(OpIdx: 4);
810 for (unsigned i = 3; i > 0; --i)
811 MI.removeOperand(OpNo: i);
812 unsigned Opc;
813 switch (Opcode) {
814 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break;
815 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break;
816 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break;
817 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break;
818 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break;
819 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break;
820 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
821 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
822 case X86::PTTDPBF16PSV:
823 Opc = X86::TTDPBF16PS;
824 break;
825 case X86::PTTDPFP16PSV:
826 Opc = X86::TTDPFP16PS;
827 break;
828 case X86::PTTCMMIMFP16PSV:
829 Opc = X86::TTCMMIMFP16PS;
830 break;
831 case X86::PTTCMMRLFP16PSV:
832 Opc = X86::TTCMMRLFP16PS;
833 break;
834 case X86::PTCONJTCMMIMFP16PSV:
835 Opc = X86::TCONJTCMMIMFP16PS;
836 break;
837 case X86::PTMMULTF32PSV:
838 Opc = X86::TMMULTF32PS;
839 break;
840 case X86::PTTMMULTF32PSV:
841 Opc = X86::TTMMULTF32PS;
842 break;
843 case X86::PTDPBF8PSV:
844 Opc = X86::TDPBF8PS;
845 break;
846 case X86::PTDPBHF8PSV:
847 Opc = X86::TDPBHF8PS;
848 break;
849 case X86::PTDPHBF8PSV:
850 Opc = X86::TDPHBF8PS;
851 break;
852 case X86::PTDPHF8PSV:
853 Opc = X86::TDPHF8PS;
854 break;
855
856 default:
857 llvm_unreachable("Unexpected Opcode");
858 }
859 MI.setDesc(TII->get(Opcode: Opc));
860 MI.tieOperands(DefIdx: 0, UseIdx: 1);
861 return true;
862 }
863 case X86::PTILESTOREDV: {
864 for (int i = 1; i >= 0; --i)
865 MI.removeOperand(OpNo: i);
866 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED)));
867 return true;
868 }
869#undef GET_EGPR_IF_ENABLED
870 case X86::PTILEZEROV: {
871 for (int i = 2; i > 0; --i) // Remove row, col
872 MI.removeOperand(OpNo: i);
873 MI.setDesc(TII->get(Opcode: X86::TILEZERO));
874 return true;
875 }
876 case X86::CALL64pcrel32_RVMARKER:
877 case X86::CALL64r_RVMARKER:
878 case X86::CALL64m_RVMARKER:
879 expandCALL_RVMARKER(MBB, MBBI);
880 return true;
881 case X86::CALL64r_ImpCall:
882 MI.setDesc(TII->get(Opcode: X86::CALL64r));
883 return true;
884 case X86::ADD32mi_ND:
885 case X86::ADD64mi32_ND:
886 case X86::SUB32mi_ND:
887 case X86::SUB64mi32_ND:
888 case X86::AND32mi_ND:
889 case X86::AND64mi32_ND:
890 case X86::OR32mi_ND:
891 case X86::OR64mi32_ND:
892 case X86::XOR32mi_ND:
893 case X86::XOR64mi32_ND:
894 case X86::ADC32mi_ND:
895 case X86::ADC64mi32_ND:
896 case X86::SBB32mi_ND:
897 case X86::SBB64mi32_ND: {
898 // It's possible for an EVEX-encoded legacy instruction to reach the 15-byte
899 // instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1
900 // byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of
901 // immediate = 15 bytes in total, e.g.
902 //
903 // subq $184, %fs:257(%rbx, %rcx), %rax
904 //
905 // In such a case, no additional (ADSIZE or segment override) prefix can be
906 // used. To resolve the issue, we split the “long” instruction into 2
907 // instructions:
908 //
909 // movq %fs:257(%rbx, %rcx),%rax
910 // subq $184, %rax
911 //
912 // Therefore we consider the OPmi_ND to be a pseudo instruction to some
913 // extent.
914 const MachineOperand &ImmOp =
915 MI.getOperand(i: MI.getNumExplicitOperands() - 1);
916 // If the immediate is a expr, conservatively estimate 4 bytes.
917 if (ImmOp.isImm() && isInt<8>(x: ImmOp.getImm()))
918 return false;
919 int MemOpNo = X86::getFirstAddrOperandIdx(MI);
920 const MachineOperand &DispOp = MI.getOperand(i: MemOpNo + X86::AddrDisp);
921 Register Base = MI.getOperand(i: MemOpNo + X86::AddrBaseReg).getReg();
922 // If the displacement is a expr, conservatively estimate 4 bytes.
923 if (Base && DispOp.isImm() && isInt<8>(x: DispOp.getImm()))
924 return false;
925 // There can only be one of three: SIB, segment override register, ADSIZE
926 Register Index = MI.getOperand(i: MemOpNo + X86::AddrIndexReg).getReg();
927 unsigned Count = !!MI.getOperand(i: MemOpNo + X86::AddrSegmentReg).getReg();
928 if (X86II::needSIB(BaseReg: Base, IndexReg: Index, /*In64BitMode=*/true))
929 ++Count;
930 if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg: Base) ||
931 X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg: Index))
932 ++Count;
933 if (Count < 2)
934 return false;
935 unsigned Opc, LoadOpc;
936 switch (Opcode) {
937#define MI_TO_RI(OP) \
938 case X86::OP##32mi_ND: \
939 Opc = X86::OP##32ri; \
940 LoadOpc = X86::MOV32rm; \
941 break; \
942 case X86::OP##64mi32_ND: \
943 Opc = X86::OP##64ri32; \
944 LoadOpc = X86::MOV64rm; \
945 break;
946
947 default:
948 llvm_unreachable("Unexpected Opcode");
949 MI_TO_RI(ADD);
950 MI_TO_RI(SUB);
951 MI_TO_RI(AND);
952 MI_TO_RI(OR);
953 MI_TO_RI(XOR);
954 MI_TO_RI(ADC);
955 MI_TO_RI(SBB);
956#undef MI_TO_RI
957 }
958 // Insert OPri.
959 Register DestReg = MI.getOperand(i: 0).getReg();
960 BuildMI(BB&: MBB, I: std::next(x: MBBI), MIMD: DL, MCID: TII->get(Opcode: Opc), DestReg)
961 .addReg(RegNo: DestReg)
962 .add(MO: ImmOp);
963 // Change OPmi_ND to MOVrm.
964 for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I)
965 MI.removeOperand(OpNo: MI.getNumOperands() - 1);
966 MI.setDesc(TII->get(Opcode: LoadOpc));
967 return true;
968 }
969 }
970 llvm_unreachable("Previous switch has a fallthrough?");
971}
972
973// This function creates additional block for storing varargs guarded
974// registers. It adds check for %al into entry block, to skip
975// GuardedRegsBlk if xmm registers should not be stored.
976//
977// EntryBlk[VAStartPseudoInstr] EntryBlk
978// | | .
979// | | .
980// | | GuardedRegsBlk
981// | => | .
982// | | .
983// | TailBlk
984// | |
985// | |
986//
987void X86ExpandPseudo::expandVastartSaveXmmRegs(
988 MachineBasicBlock *EntryBlk,
989 MachineBasicBlock::iterator VAStartPseudoInstr) const {
990 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
991
992 MachineFunction *Func = EntryBlk->getParent();
993 const TargetInstrInfo *TII = STI->getInstrInfo();
994 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
995 Register CountReg = VAStartPseudoInstr->getOperand(i: 0).getReg();
996
997 // Calculate liveins for newly created blocks.
998 LivePhysRegs LiveRegs(*STI->getRegisterInfo());
999 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
1000
1001 LiveRegs.addLiveIns(MBB: *EntryBlk);
1002 for (MachineInstr &MI : EntryBlk->instrs()) {
1003 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
1004 break;
1005
1006 LiveRegs.stepForward(MI, Clobbers);
1007 }
1008
1009 // Create the new basic blocks. One block contains all the XMM stores,
1010 // and another block is the final destination regardless of whether any
1011 // stores were performed.
1012 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
1013 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
1014 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(BB: LLVMBlk);
1015 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(BB: LLVMBlk);
1016 Func->insert(MBBI: EntryBlkIter, MBB: GuardedRegsBlk);
1017 Func->insert(MBBI: EntryBlkIter, MBB: TailBlk);
1018
1019 // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
1020 TailBlk->splice(Where: TailBlk->begin(), Other: EntryBlk,
1021 From: std::next(x: MachineBasicBlock::iterator(VAStartPseudoInstr)),
1022 To: EntryBlk->end());
1023 TailBlk->transferSuccessorsAndUpdatePHIs(FromMBB: EntryBlk);
1024
1025 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(i: 4).getImm();
1026 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(i: 6).getImm();
1027
1028 // TODO: add support for YMM and ZMM here.
1029 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
1030
1031 // In the XMM save block, save all the XMM argument registers.
1032 for (int64_t OpndIdx = 7, RegIdx = 0;
1033 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
1034 OpndIdx++, RegIdx++) {
1035 auto NewMI = BuildMI(BB: GuardedRegsBlk, MIMD: DL, MCID: TII->get(Opcode: MOVOpc));
1036 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1037 if (i == X86::AddrDisp)
1038 NewMI.addImm(Val: FrameOffset + VarArgsRegsOffset + RegIdx * 16);
1039 else
1040 NewMI.add(MO: VAStartPseudoInstr->getOperand(i: i + 1));
1041 }
1042 NewMI.addReg(RegNo: VAStartPseudoInstr->getOperand(i: OpndIdx).getReg());
1043 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
1044 }
1045
1046 // The original block will now fall through to the GuardedRegsBlk.
1047 EntryBlk->addSuccessor(Succ: GuardedRegsBlk);
1048 // The GuardedRegsBlk will fall through to the TailBlk.
1049 GuardedRegsBlk->addSuccessor(Succ: TailBlk);
1050
1051 if (!STI->isCallingConvWin64(CC: Func->getFunction().getCallingConv())) {
1052 // If %al is 0, branch around the XMM save block.
1053 BuildMI(BB: EntryBlk, MIMD: DL, MCID: TII->get(Opcode: X86::TEST8rr))
1054 .addReg(RegNo: CountReg)
1055 .addReg(RegNo: CountReg);
1056 BuildMI(BB: EntryBlk, MIMD: DL, MCID: TII->get(Opcode: X86::JCC_1))
1057 .addMBB(MBB: TailBlk)
1058 .addImm(Val: X86::COND_E);
1059 EntryBlk->addSuccessor(Succ: TailBlk);
1060 }
1061
1062 // Add liveins to the created block.
1063 addLiveIns(MBB&: *GuardedRegsBlk, LiveRegs);
1064 addLiveIns(MBB&: *TailBlk, LiveRegs);
1065
1066 // Delete the pseudo.
1067 VAStartPseudoInstr->eraseFromParent();
1068}
1069
1070/// Expand all pseudo instructions contained in \p MBB.
1071/// \returns true if any expansion occurred for \p MBB.
1072bool X86ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
1073 bool Modified = false;
1074
1075 // MBBI may be invalidated by the expansion.
1076 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1077 while (MBBI != E) {
1078 MachineBasicBlock::iterator NMBBI = std::next(x: MBBI);
1079 Modified |= expandMI(MBB, MBBI);
1080 MBBI = NMBBI;
1081 }
1082
1083 return Modified;
1084}
1085
1086bool X86ExpandPseudo::expandPseudosWhichAffectControlFlow(MachineFunction &MF) {
1087 // Currently pseudo which affects control flow is only
1088 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
1089 // So we do not need to evaluate other blocks.
1090 for (MachineInstr &Instr : MF.front().instrs()) {
1091 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
1092 expandVastartSaveXmmRegs(EntryBlk: &(MF.front()), VAStartPseudoInstr: Instr);
1093 return true;
1094 }
1095 }
1096
1097 return false;
1098}
1099
1100bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
1101 STI = &MF.getSubtarget<X86Subtarget>();
1102 TII = STI->getInstrInfo();
1103 TRI = STI->getRegisterInfo();
1104 X86FI = MF.getInfo<X86MachineFunctionInfo>();
1105 X86FL = STI->getFrameLowering();
1106
1107 bool Modified = expandPseudosWhichAffectControlFlow(MF);
1108
1109 for (MachineBasicBlock &MBB : MF)
1110 Modified |= expandMBB(MBB);
1111 return Modified;
1112}
1113
1114/// Returns an instance of the pseudo instruction expansion pass.
1115FunctionPass *llvm::createX86ExpandPseudoPass() {
1116 return new X86ExpandPseudo();
1117}
1118