1 | //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file defines the pass that looks through the machine instructions |
10 | /// late in the compilation, and finds byte or word instructions that |
11 | /// can be profitably replaced with 32 bit instructions that give equivalent |
12 | /// results for the bits of the results that are used. There are two possible |
13 | /// reasons to do this. |
14 | /// |
15 | /// One reason is to avoid false-dependences on the upper portions |
16 | /// of the registers. Only instructions that have a destination register |
17 | /// which is not in any of the source registers can be affected by this. |
18 | /// Any instruction where one of the source registers is also the destination |
19 | /// register is unaffected, because it has a true dependence on the source |
20 | /// register already. So, this consideration primarily affects load |
21 | /// instructions and register-to-register moves. It would |
22 | /// seem like cmov(s) would also be affected, but because of the way cmov is |
23 | /// really implemented by most machines as reading both the destination and |
24 | /// and source registers, and then "merging" the two based on a condition, |
25 | /// it really already should be considered as having a true dependence on the |
26 | /// destination register as well. |
27 | /// |
28 | /// The other reason to do this is for potential code size savings. Word |
29 | /// operations need an extra override byte compared to their 32 bit |
30 | /// versions. So this can convert many word operations to their larger |
31 | /// size, saving a byte in encoding. This could introduce partial register |
32 | /// dependences where none existed however. As an example take: |
33 | /// orw ax, $0x1000 |
34 | /// addw ax, $3 |
35 | /// now if this were to get transformed into |
36 | /// orw ax, $1000 |
37 | /// addl eax, $3 |
38 | /// because the addl encodes shorter than the addw, this would introduce |
39 | /// a use of a register that was only partially written earlier. On older |
40 | /// Intel processors this can be quite a performance penalty, so this should |
41 | /// probably only be done when it can be proven that a new partial dependence |
42 | /// wouldn't be created, or when your know a newer processor is being |
43 | /// targeted, or when optimizing for minimum code size. |
44 | /// |
45 | //===----------------------------------------------------------------------===// |
46 | |
47 | #include "X86.h" |
48 | #include "X86InstrInfo.h" |
49 | #include "X86Subtarget.h" |
50 | #include "llvm/ADT/Statistic.h" |
51 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
52 | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
53 | #include "llvm/CodeGen/LiveRegUnits.h" |
54 | #include "llvm/CodeGen/MachineFunctionPass.h" |
55 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
56 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
57 | #include "llvm/CodeGen/MachineSizeOpts.h" |
58 | #include "llvm/CodeGen/Passes.h" |
59 | #include "llvm/CodeGen/TargetInstrInfo.h" |
60 | #include "llvm/Support/Debug.h" |
61 | #include "llvm/Support/raw_ostream.h" |
62 | using namespace llvm; |
63 | |
64 | #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" |
65 | #define FIXUPBW_NAME "x86-fixup-bw-insts" |
66 | |
67 | #define DEBUG_TYPE FIXUPBW_NAME |
68 | |
69 | // Option to allow this optimization pass to have fine-grained control. |
70 | static cl::opt<bool> |
71 | FixupBWInsts("fixup-byte-word-insts" , |
72 | cl::desc("Change byte and word instructions to larger sizes" ), |
73 | cl::init(Val: true), cl::Hidden); |
74 | |
75 | namespace { |
76 | class FixupBWInstPass : public MachineFunctionPass { |
77 | /// Loop over all of the instructions in the basic block replacing applicable |
78 | /// byte or word instructions with better alternatives. |
79 | void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
80 | |
81 | /// This returns the 32 bit super reg of the original destination register of |
82 | /// the MachineInstr passed in, if that super register is dead just prior to |
83 | /// \p OrigMI. Otherwise it returns Register(). |
84 | Register getSuperRegDestIfDead(MachineInstr *OrigMI) const; |
85 | |
86 | /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit |
87 | /// register if it is safe to do so. Return the replacement instruction if |
88 | /// OK, otherwise return nullptr. |
89 | MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; |
90 | |
91 | /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is |
92 | /// safe to do so. Return the replacement instruction if OK, otherwise return |
93 | /// nullptr. |
94 | MachineInstr *tryReplaceCopy(MachineInstr *MI) const; |
95 | |
96 | /// Change the MachineInstr \p MI into the equivalent extend to 32 bit |
97 | /// register if it is safe to do so. Return the replacement instruction if |
98 | /// OK, otherwise return nullptr. |
99 | MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, |
100 | MachineInstr *MI) const; |
101 | |
102 | // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if |
103 | // possible. Return the replacement instruction if OK, return nullptr |
104 | // otherwise. |
105 | MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; |
106 | |
107 | public: |
108 | static char ID; |
109 | |
110 | StringRef getPassName() const override { return FIXUPBW_DESC; } |
111 | |
112 | FixupBWInstPass() : MachineFunctionPass(ID) { } |
113 | |
114 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
115 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
116 | AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
117 | MachineFunctionPass::getAnalysisUsage(AU); |
118 | } |
119 | |
120 | /// Loop over all of the basic blocks, replacing byte and word instructions by |
121 | /// equivalent 32 bit instructions where performance or code size can be |
122 | /// improved. |
123 | bool runOnMachineFunction(MachineFunction &MF) override; |
124 | |
125 | MachineFunctionProperties getRequiredProperties() const override { |
126 | return MachineFunctionProperties().setNoVRegs(); |
127 | } |
128 | |
129 | private: |
130 | MachineFunction *MF = nullptr; |
131 | |
132 | /// Machine instruction info used throughout the class. |
133 | const X86InstrInfo *TII = nullptr; |
134 | |
135 | const TargetRegisterInfo *TRI = nullptr; |
136 | |
137 | /// Local member for function's OptForSize attribute. |
138 | bool OptForSize = false; |
139 | |
140 | /// Register Liveness information after the current instruction. |
141 | LiveRegUnits LiveUnits; |
142 | |
143 | ProfileSummaryInfo *PSI = nullptr; |
144 | MachineBlockFrequencyInfo *MBFI = nullptr; |
145 | }; |
146 | char FixupBWInstPass::ID = 0; |
147 | } |
148 | |
149 | INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) |
150 | |
151 | FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } |
152 | |
153 | bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { |
154 | if (!FixupBWInsts || skipFunction(F: MF.getFunction())) |
155 | return false; |
156 | |
157 | this->MF = &MF; |
158 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
159 | TRI = MF.getRegInfo().getTargetRegisterInfo(); |
160 | PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
161 | MBFI = (PSI && PSI->hasProfileSummary()) ? |
162 | &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : |
163 | nullptr; |
164 | LiveUnits.init(TRI: TII->getRegisterInfo()); |
165 | |
166 | LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n" ;); |
167 | |
168 | // Process all basic blocks. |
169 | for (auto &MBB : MF) |
170 | processBasicBlock(MF, MBB); |
171 | |
172 | LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n" ;); |
173 | |
174 | return true; |
175 | } |
176 | |
177 | /// Check if after \p OrigMI the only portion of super register |
178 | /// of the destination register of \p OrigMI that is alive is that |
179 | /// destination register. |
180 | /// |
181 | /// If so, return that super register in \p SuperDestReg. |
182 | Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const { |
183 | const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
184 | Register OrigDestReg = OrigMI->getOperand(i: 0).getReg(); |
185 | Register SuperDestReg = getX86SubSuperRegister(Reg: OrigDestReg, Size: 32); |
186 | assert(SuperDestReg.isValid() && "Invalid Operand" ); |
187 | |
188 | const auto SubRegIdx = TRI->getSubRegIndex(RegNo: SuperDestReg, SubRegNo: OrigDestReg); |
189 | |
190 | // Make sure that the sub-register that this instruction has as its |
191 | // destination is the lowest order sub-register of the super-register. |
192 | // If it isn't, then the register isn't really dead even if the |
193 | // super-register is considered dead. |
194 | if (SubRegIdx == X86::sub_8bit_hi) |
195 | return Register(); |
196 | |
197 | // Test all regunits of the super register that are not part of the |
198 | // sub register. If none of them are live then the super register is safe to |
199 | // use. |
200 | bool SuperIsLive = false; |
201 | auto Range = TRI->regunits(Reg: OrigDestReg); |
202 | MCRegUnitIterator I = Range.begin(), E = Range.end(); |
203 | for (MCRegUnit S : TRI->regunits(Reg: SuperDestReg)) { |
204 | I = std::lower_bound(first: I, last: E, val: S); |
205 | if ((I == E || *I > S) && LiveUnits.getBitVector().test(Idx: S)) { |
206 | SuperIsLive = true; |
207 | break; |
208 | } |
209 | } |
210 | if (!SuperIsLive) |
211 | return SuperDestReg; |
212 | |
213 | // If we get here, the super-register destination (or some part of it) is |
214 | // marked as live after the original instruction. |
215 | // |
216 | // The X86 backend does not have subregister liveness tracking enabled, |
217 | // so liveness information might be overly conservative. Specifically, the |
218 | // super register might be marked as live because it is implicitly defined |
219 | // by the instruction we are examining. |
220 | // |
221 | // However, for some specific instructions (this pass only cares about MOVs) |
222 | // we can produce more precise results by analysing that MOV's operands. |
223 | // |
224 | // Indeed, if super-register is not live before the mov it means that it |
225 | // was originally <read-undef> and so we are free to modify these |
226 | // undef upper bits. That may happen in case where the use is in another MBB |
227 | // and the vreg/physreg corresponding to the move has higher width than |
228 | // necessary (e.g. due to register coalescing with a "truncate" copy). |
229 | // So, we would like to handle patterns like this: |
230 | // |
231 | // %bb.2: derived from LLVM BB %if.then |
232 | // Live Ins: %rdi |
233 | // Predecessors according to CFG: %bb.0 |
234 | // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax |
235 | // ; No implicit %eax |
236 | // Successors according to CFG: %bb.3(?%) |
237 | // |
238 | // %bb.3: derived from LLVM BB %if.end |
239 | // Live Ins: %eax Only %ax is actually live |
240 | // Predecessors according to CFG: %bb.2 %bb.1 |
241 | // %ax = KILL %ax, implicit killed %eax |
242 | // RET 0, %ax |
243 | unsigned Opc = OrigMI->getOpcode(); |
244 | // These are the opcodes currently known to work with the code below, if |
245 | // something // else will be added we need to ensure that new opcode has the |
246 | // same properties. |
247 | if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && |
248 | Opc != X86::MOV16rr) |
249 | return Register(); |
250 | |
251 | bool IsDefined = false; |
252 | for (auto &MO: OrigMI->implicit_operands()) { |
253 | if (!MO.isReg()) |
254 | continue; |
255 | |
256 | if (MO.isDef() && TRI->isSuperRegisterEq(RegA: OrigDestReg, RegB: MO.getReg())) |
257 | IsDefined = true; |
258 | |
259 | // If MO is a use of any part of the destination register but is not equal |
260 | // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. |
261 | // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, |
262 | // %eax, or %rax will prevent us from using the %eax register. |
263 | if (MO.isUse() && !TRI->isSubRegisterEq(RegA: OrigDestReg, RegB: MO.getReg()) && |
264 | TRI->regsOverlap(RegA: SuperDestReg, RegB: MO.getReg())) |
265 | return Register(); |
266 | } |
267 | // Reg is not Imp-def'ed -> it's live both before/after the instruction. |
268 | if (!IsDefined) |
269 | return Register(); |
270 | |
271 | // Otherwise, the Reg is not live before the MI and the MOV can't |
272 | // make it really live, so it's in fact dead even after the MI. |
273 | return SuperDestReg; |
274 | } |
275 | |
276 | MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, |
277 | MachineInstr *MI) const { |
278 | // We are going to try to rewrite this load to a larger zero-extending |
279 | // load. This is safe if all portions of the 32 bit super-register |
280 | // of the original destination register, except for the original destination |
281 | // register are dead. getSuperRegDestIfDead checks that. |
282 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
283 | if (!NewDestReg) |
284 | return nullptr; |
285 | |
286 | // Safe to change the instruction. |
287 | MachineInstrBuilder MIB = |
288 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: New32BitOpcode), DestReg: NewDestReg); |
289 | |
290 | unsigned NumArgs = MI->getNumOperands(); |
291 | for (unsigned i = 1; i < NumArgs; ++i) |
292 | MIB.add(MO: MI->getOperand(i)); |
293 | |
294 | MIB.setMemRefs(MI->memoperands()); |
295 | |
296 | // If it was debug tracked, record a substitution. |
297 | if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
298 | unsigned Subreg = TRI->getSubRegIndex(RegNo: MIB->getOperand(i: 0).getReg(), |
299 | SubRegNo: MI->getOperand(i: 0).getReg()); |
300 | unsigned NewInstrNum = MIB->getDebugInstrNum(MF&: *MF); |
301 | MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, SubReg: Subreg); |
302 | } |
303 | |
304 | return MIB; |
305 | } |
306 | |
307 | MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { |
308 | assert(MI->getNumExplicitOperands() == 2); |
309 | auto &OldDest = MI->getOperand(i: 0); |
310 | auto &OldSrc = MI->getOperand(i: 1); |
311 | |
312 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
313 | if (!NewDestReg) |
314 | return nullptr; |
315 | |
316 | Register NewSrcReg = getX86SubSuperRegister(Reg: OldSrc.getReg(), Size: 32); |
317 | assert(NewSrcReg.isValid() && "Invalid Operand" ); |
318 | |
319 | // This is only correct if we access the same subregister index: otherwise, |
320 | // we could try to replace "movb %ah, %al" with "movl %eax, %eax". |
321 | const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
322 | if (TRI->getSubRegIndex(RegNo: NewSrcReg, SubRegNo: OldSrc.getReg()) != |
323 | TRI->getSubRegIndex(RegNo: NewDestReg, SubRegNo: OldDest.getReg())) |
324 | return nullptr; |
325 | |
326 | // Safe to change the instruction. |
327 | // Don't set src flags, as we don't know if we're also killing the superreg. |
328 | // However, the superregister might not be defined; make it explicit that |
329 | // we don't care about the higher bits by reading it as Undef, and adding |
330 | // an imp-use on the original subregister. |
331 | MachineInstrBuilder MIB = |
332 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: X86::MOV32rr), DestReg: NewDestReg) |
333 | .addReg(RegNo: NewSrcReg, flags: RegState::Undef) |
334 | .addReg(RegNo: OldSrc.getReg(), flags: RegState::Implicit); |
335 | |
336 | // Drop imp-defs/uses that would be redundant with the new def/use. |
337 | for (auto &Op : MI->implicit_operands()) |
338 | if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) |
339 | MIB.add(MO: Op); |
340 | |
341 | return MIB; |
342 | } |
343 | |
344 | MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, |
345 | MachineInstr *MI) const { |
346 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
347 | if (!NewDestReg) |
348 | return nullptr; |
349 | |
350 | // Don't interfere with formation of CBW instructions which should be a |
351 | // shorter encoding than even the MOVSX32rr8. It's also immune to partial |
352 | // merge issues on Intel CPUs. |
353 | if (MI->getOpcode() == X86::MOVSX16rr8 && |
354 | MI->getOperand(i: 0).getReg() == X86::AX && |
355 | MI->getOperand(i: 1).getReg() == X86::AL) |
356 | return nullptr; |
357 | |
358 | // Safe to change the instruction. |
359 | MachineInstrBuilder MIB = |
360 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: New32BitOpcode), DestReg: NewDestReg); |
361 | |
362 | unsigned NumArgs = MI->getNumOperands(); |
363 | for (unsigned i = 1; i < NumArgs; ++i) |
364 | MIB.add(MO: MI->getOperand(i)); |
365 | |
366 | MIB.setMemRefs(MI->memoperands()); |
367 | |
368 | if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
369 | unsigned Subreg = TRI->getSubRegIndex(RegNo: MIB->getOperand(i: 0).getReg(), |
370 | SubRegNo: MI->getOperand(i: 0).getReg()); |
371 | unsigned NewInstrNum = MIB->getDebugInstrNum(MF&: *MF); |
372 | MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, SubReg: Subreg); |
373 | } |
374 | |
375 | return MIB; |
376 | } |
377 | |
378 | MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, |
379 | MachineBasicBlock &MBB) const { |
380 | // See if this is an instruction of the type we are currently looking for. |
381 | switch (MI->getOpcode()) { |
382 | |
383 | case X86::MOV8rm: |
384 | // Replace 8-bit loads with the zero-extending version if not optimizing |
385 | // for size. The extending op is cheaper across a wide range of uarch and |
386 | // it avoids a potentially expensive partial register stall. It takes an |
387 | // extra byte to encode, however, so don't do this when optimizing for size. |
388 | if (!OptForSize) |
389 | return tryReplaceLoad(New32BitOpcode: X86::MOVZX32rm8, MI); |
390 | break; |
391 | |
392 | case X86::MOV16rm: |
393 | // Always try to replace 16 bit load with 32 bit zero extending. |
394 | // Code size is the same, and there is sometimes a perf advantage |
395 | // from eliminating a false dependence on the upper portion of |
396 | // the register. |
397 | return tryReplaceLoad(New32BitOpcode: X86::MOVZX32rm16, MI); |
398 | |
399 | case X86::MOV8rr: |
400 | case X86::MOV16rr: |
401 | // Always try to replace 8/16 bit copies with a 32 bit copy. |
402 | // Code size is either less (16) or equal (8), and there is sometimes a |
403 | // perf advantage from eliminating a false dependence on the upper portion |
404 | // of the register. |
405 | return tryReplaceCopy(MI); |
406 | |
407 | case X86::MOVSX16rr8: |
408 | return tryReplaceExtend(New32BitOpcode: X86::MOVSX32rr8, MI); |
409 | case X86::MOVSX16rm8: |
410 | return tryReplaceExtend(New32BitOpcode: X86::MOVSX32rm8, MI); |
411 | case X86::MOVZX16rr8: |
412 | return tryReplaceExtend(New32BitOpcode: X86::MOVZX32rr8, MI); |
413 | case X86::MOVZX16rm8: |
414 | return tryReplaceExtend(New32BitOpcode: X86::MOVZX32rm8, MI); |
415 | |
416 | default: |
417 | // nothing to do here. |
418 | break; |
419 | } |
420 | |
421 | return nullptr; |
422 | } |
423 | |
424 | void FixupBWInstPass::processBasicBlock(MachineFunction &MF, |
425 | MachineBasicBlock &MBB) { |
426 | |
427 | // This algorithm doesn't delete the instructions it is replacing |
428 | // right away. By leaving the existing instructions in place, the |
429 | // register liveness information doesn't change, and this makes the |
430 | // analysis that goes on be better than if the replaced instructions |
431 | // were immediately removed. |
432 | // |
433 | // This algorithm always creates a replacement instruction |
434 | // and notes that and the original in a data structure, until the |
435 | // whole BB has been analyzed. This keeps the replacement instructions |
436 | // from making it seem as if the larger register might be live. |
437 | SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; |
438 | |
439 | // Start computing liveness for this block. We iterate from the end to be able |
440 | // to update this for each instruction. |
441 | LiveUnits.clear(); |
442 | // We run after PEI, so we need to AddPristinesAndCSRs. |
443 | LiveUnits.addLiveOuts(MBB); |
444 | |
445 | OptForSize = llvm::shouldOptimizeForSize(MBB: &MBB, PSI, MBFI); |
446 | |
447 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
448 | if (MachineInstr *NewMI = tryReplaceInstr(MI: &MI, MBB)) |
449 | MIReplacements.push_back(Elt: std::make_pair(x: &MI, y&: NewMI)); |
450 | |
451 | // We're done with this instruction, update liveness for the next one. |
452 | LiveUnits.stepBackward(MI); |
453 | } |
454 | |
455 | while (!MIReplacements.empty()) { |
456 | MachineInstr *MI = MIReplacements.back().first; |
457 | MachineInstr *NewMI = MIReplacements.back().second; |
458 | MIReplacements.pop_back(); |
459 | MBB.insert(I: MI, MI: NewMI); |
460 | MBB.erase(I: MI); |
461 | } |
462 | } |
463 | |