1 | //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the pass which converts floating point instructions from |
10 | // pseudo registers into register stack instructions. This pass uses live |
11 | // variable information to indicate where the FPn registers are used and their |
12 | // lifetimes. |
13 | // |
14 | // The x87 hardware tracks liveness of the stack registers, so it is necessary |
15 | // to implement exact liveness tracking between basic blocks. The CFG edges are |
16 | // partitioned into bundles where the same FP registers must be live in |
17 | // identical stack positions. Instructions are inserted at the end of each basic |
18 | // block to rearrange the live registers to match the outgoing bundle. |
19 | // |
20 | // This approach avoids splitting critical edges at the potential cost of more |
21 | // live register shuffling instructions when critical edges are present. |
22 | // |
23 | //===----------------------------------------------------------------------===// |
24 | |
25 | #include "X86.h" |
26 | #include "X86InstrInfo.h" |
27 | #include "llvm/ADT/DepthFirstIterator.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/SmallSet.h" |
30 | #include "llvm/ADT/SmallVector.h" |
31 | #include "llvm/ADT/Statistic.h" |
32 | #include "llvm/CodeGen/EdgeBundles.h" |
33 | #include "llvm/CodeGen/LiveRegUnits.h" |
34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
35 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
37 | #include "llvm/CodeGen/Passes.h" |
38 | #include "llvm/CodeGen/TargetInstrInfo.h" |
39 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
40 | #include "llvm/Config/llvm-config.h" |
41 | #include "llvm/IR/InlineAsm.h" |
42 | #include "llvm/InitializePasses.h" |
43 | #include "llvm/Support/Debug.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/Support/raw_ostream.h" |
46 | #include "llvm/Target/TargetMachine.h" |
47 | #include <algorithm> |
48 | #include <bitset> |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "x86-codegen" |
52 | |
53 | STATISTIC(NumFXCH, "Number of fxch instructions inserted" ); |
54 | STATISTIC(NumFP , "Number of floating point instructions" ); |
55 | |
56 | namespace { |
57 | const unsigned ScratchFPReg = 7; |
58 | |
59 | struct FPS : public MachineFunctionPass { |
60 | static char ID; |
61 | FPS() : MachineFunctionPass(ID) { |
62 | // This is really only to keep valgrind quiet. |
63 | // The logic in isLive() is too much for it. |
64 | memset(s: Stack, c: 0, n: sizeof(Stack)); |
65 | memset(s: RegMap, c: 0, n: sizeof(RegMap)); |
66 | } |
67 | |
68 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
69 | AU.setPreservesCFG(); |
70 | AU.addRequired<EdgeBundlesWrapperLegacy>(); |
71 | AU.addPreservedID(ID&: MachineLoopInfoID); |
72 | AU.addPreservedID(ID&: MachineDominatorsID); |
73 | MachineFunctionPass::getAnalysisUsage(AU); |
74 | } |
75 | |
76 | bool runOnMachineFunction(MachineFunction &MF) override; |
77 | |
78 | MachineFunctionProperties getRequiredProperties() const override { |
79 | return MachineFunctionProperties().setNoVRegs(); |
80 | } |
81 | |
82 | StringRef getPassName() const override { return "X86 FP Stackifier" ; } |
83 | |
84 | private: |
85 | const TargetInstrInfo *TII = nullptr; // Machine instruction info. |
86 | |
87 | // Two CFG edges are related if they leave the same block, or enter the same |
88 | // block. The transitive closure of an edge under this relation is a |
89 | // LiveBundle. It represents a set of CFG edges where the live FP stack |
90 | // registers must be allocated identically in the x87 stack. |
91 | // |
92 | // A LiveBundle is usually all the edges leaving a block, or all the edges |
93 | // entering a block, but it can contain more edges if critical edges are |
94 | // present. |
95 | // |
96 | // The set of live FP registers in a LiveBundle is calculated by bundleCFG, |
97 | // but the exact mapping of FP registers to stack slots is fixed later. |
98 | struct LiveBundle { |
99 | // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. |
100 | unsigned Mask = 0; |
101 | |
102 | // Number of pre-assigned live registers in FixStack. This is 0 when the |
103 | // stack order has not yet been fixed. |
104 | unsigned FixCount = 0; |
105 | |
106 | // Assigned stack order for live-in registers. |
107 | // FixStack[i] == getStackEntry(i) for all i < FixCount. |
108 | unsigned char FixStack[8]; |
109 | |
110 | LiveBundle() = default; |
111 | |
112 | // Have the live registers been assigned a stack order yet? |
113 | bool isFixed() const { return !Mask || FixCount; } |
114 | }; |
115 | |
116 | // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges |
117 | // with no live FP registers. |
118 | SmallVector<LiveBundle, 8> LiveBundles; |
119 | |
120 | // The edge bundle analysis provides indices into the LiveBundles vector. |
121 | EdgeBundles *Bundles = nullptr; |
122 | |
123 | // Return a bitmask of FP registers in block's live-in list. |
124 | static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { |
125 | unsigned Mask = 0; |
126 | for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); |
127 | I != MBB->livein_end(); ) { |
128 | MCPhysReg Reg = I->PhysReg; |
129 | static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums" ); |
130 | if (Reg >= X86::FP0 && Reg <= X86::FP6) { |
131 | Mask |= 1 << (Reg - X86::FP0); |
132 | if (RemoveFPs) { |
133 | I = MBB->removeLiveIn(I); |
134 | continue; |
135 | } |
136 | } |
137 | ++I; |
138 | } |
139 | return Mask; |
140 | } |
141 | |
142 | // Partition all the CFG edges into LiveBundles. |
143 | void bundleCFGRecomputeKillFlags(MachineFunction &MF); |
144 | |
145 | MachineBasicBlock *MBB = nullptr; // Current basic block |
146 | |
147 | // The hardware keeps track of how many FP registers are live, so we have |
148 | // to model that exactly. Usually, each live register corresponds to an |
149 | // FP<n> register, but when dealing with calls, returns, and inline |
150 | // assembly, it is sometimes necessary to have live scratch registers. |
151 | unsigned Stack[8]; // FP<n> Registers in each stack slot... |
152 | unsigned StackTop = 0; // The current top of the FP stack. |
153 | |
154 | enum { |
155 | NumFPRegs = 8 // Including scratch pseudo-registers. |
156 | }; |
157 | |
158 | // For each live FP<n> register, point to its Stack[] entry. |
159 | // The first entries correspond to FP0-FP6, the rest are scratch registers |
160 | // used when we need slightly different live registers than what the |
161 | // register allocator thinks. |
162 | unsigned RegMap[NumFPRegs]; |
163 | |
164 | // Set up our stack model to match the incoming registers to MBB. |
165 | void setupBlockStack(); |
166 | |
167 | // Shuffle live registers to match the expectations of successor blocks. |
168 | void finishBlockStack(); |
169 | |
170 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
171 | void dumpStack() const { |
172 | dbgs() << "Stack contents:" ; |
173 | for (unsigned i = 0; i != StackTop; ++i) { |
174 | dbgs() << " FP" << Stack[i]; |
175 | assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!" ); |
176 | } |
177 | } |
178 | #endif |
179 | |
180 | /// getSlot - Return the stack slot number a particular register number is |
181 | /// in. |
182 | unsigned getSlot(unsigned RegNo) const { |
183 | assert(RegNo < NumFPRegs && "Regno out of range!" ); |
184 | return RegMap[RegNo]; |
185 | } |
186 | |
187 | /// isLive - Is RegNo currently live in the stack? |
188 | bool isLive(unsigned RegNo) const { |
189 | unsigned Slot = getSlot(RegNo); |
190 | return Slot < StackTop && Stack[Slot] == RegNo; |
191 | } |
192 | |
193 | /// getStackEntry - Return the X86::FP<n> register in register ST(i). |
194 | unsigned getStackEntry(unsigned STi) const { |
195 | if (STi >= StackTop) |
196 | report_fatal_error(reason: "Access past stack top!" ); |
197 | return Stack[StackTop-1-STi]; |
198 | } |
199 | |
200 | /// getSTReg - Return the X86::ST(i) register which contains the specified |
201 | /// FP<RegNo> register. |
202 | unsigned getSTReg(unsigned RegNo) const { |
203 | return StackTop - 1 - getSlot(RegNo) + X86::ST0; |
204 | } |
205 | |
206 | // pushReg - Push the specified FP<n> register onto the stack. |
207 | void pushReg(unsigned Reg) { |
208 | assert(Reg < NumFPRegs && "Register number out of range!" ); |
209 | if (StackTop >= 8) |
210 | report_fatal_error(reason: "Stack overflow!" ); |
211 | Stack[StackTop] = Reg; |
212 | RegMap[Reg] = StackTop++; |
213 | } |
214 | |
215 | // popReg - Pop a register from the stack. |
216 | void popReg() { |
217 | if (StackTop == 0) |
218 | report_fatal_error(reason: "Cannot pop empty stack!" ); |
219 | RegMap[Stack[--StackTop]] = ~0; // Update state |
220 | } |
221 | |
222 | bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } |
223 | void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { |
224 | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
225 | if (isAtTop(RegNo)) return; |
226 | |
227 | unsigned STReg = getSTReg(RegNo); |
228 | unsigned RegOnTop = getStackEntry(STi: 0); |
229 | |
230 | // Swap the slots the regs are in. |
231 | std::swap(a&: RegMap[RegNo], b&: RegMap[RegOnTop]); |
232 | |
233 | // Swap stack slot contents. |
234 | if (RegMap[RegOnTop] >= StackTop) |
235 | report_fatal_error(reason: "Access past stack top!" ); |
236 | std::swap(a&: Stack[RegMap[RegOnTop]], b&: Stack[StackTop-1]); |
237 | |
238 | // Emit an fxch to update the runtime processors version of the state. |
239 | BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode: X86::XCH_F)).addReg(RegNo: STReg); |
240 | ++NumFXCH; |
241 | } |
242 | |
243 | void duplicateToTop(unsigned RegNo, unsigned AsReg, |
244 | MachineBasicBlock::iterator I) { |
245 | DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
246 | unsigned STReg = getSTReg(RegNo); |
247 | pushReg(Reg: AsReg); // New register on top of stack |
248 | |
249 | BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode: X86::LD_Frr)).addReg(RegNo: STReg); |
250 | } |
251 | |
252 | /// popStackAfter - Pop the current value off of the top of the FP stack |
253 | /// after the specified instruction. |
254 | void popStackAfter(MachineBasicBlock::iterator &I); |
255 | |
256 | /// freeStackSlotAfter - Free the specified register from the register |
257 | /// stack, so that it is no longer in a register. If the register is |
258 | /// currently at the top of the stack, we just pop the current instruction, |
259 | /// otherwise we store the current top-of-stack into the specified slot, |
260 | /// then pop the top of stack. |
261 | void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); |
262 | |
263 | /// freeStackSlotBefore - Just the pop, no folding. Return the inserted |
264 | /// instruction. |
265 | MachineBasicBlock::iterator |
266 | freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); |
267 | |
268 | /// Adjust the live registers to be the set in Mask. |
269 | void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); |
270 | |
271 | /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is |
272 | /// st(0), FP reg FixStack[1] is st(1) etc. |
273 | void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, |
274 | MachineBasicBlock::iterator I); |
275 | |
276 | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
277 | |
278 | void handleCall(MachineBasicBlock::iterator &I); |
279 | void handleReturn(MachineBasicBlock::iterator &I); |
280 | void handleZeroArgFP(MachineBasicBlock::iterator &I); |
281 | void handleOneArgFP(MachineBasicBlock::iterator &I); |
282 | void handleOneArgFPRW(MachineBasicBlock::iterator &I); |
283 | void handleTwoArgFP(MachineBasicBlock::iterator &I); |
284 | void handleCompareFP(MachineBasicBlock::iterator &I); |
285 | void handleCondMovFP(MachineBasicBlock::iterator &I); |
286 | void handleSpecialFP(MachineBasicBlock::iterator &I); |
287 | |
288 | // Check if a COPY instruction is using FP registers. |
289 | static bool isFPCopy(MachineInstr &MI) { |
290 | Register DstReg = MI.getOperand(i: 0).getReg(); |
291 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
292 | |
293 | return X86::RFP80RegClass.contains(Reg: DstReg) || |
294 | X86::RFP80RegClass.contains(Reg: SrcReg); |
295 | } |
296 | |
297 | void setKillFlags(MachineBasicBlock &MBB) const; |
298 | }; |
299 | } |
300 | |
301 | char FPS::ID = 0; |
302 | |
303 | INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier" , |
304 | false, false) |
305 | INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy) |
306 | INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier" , |
307 | false, false) |
308 | |
309 | FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } |
310 | |
311 | /// getFPReg - Return the X86::FPx register number for the specified operand. |
312 | /// For example, this returns 3 for X86::FP3. |
313 | static unsigned getFPReg(const MachineOperand &MO) { |
314 | assert(MO.isReg() && "Expected an FP register!" ); |
315 | Register Reg = MO.getReg(); |
316 | assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!" ); |
317 | return Reg - X86::FP0; |
318 | } |
319 | |
320 | /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP |
321 | /// register references into FP stack references. |
322 | /// |
323 | bool FPS::runOnMachineFunction(MachineFunction &MF) { |
324 | // We only need to run this pass if there are any FP registers used in this |
325 | // function. If it is all integer, there is nothing for us to do! |
326 | bool FPIsUsed = false; |
327 | |
328 | static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!" ); |
329 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
330 | for (unsigned i = 0; i <= 6; ++i) |
331 | if (!MRI.reg_nodbg_empty(RegNo: X86::FP0 + i)) { |
332 | FPIsUsed = true; |
333 | break; |
334 | } |
335 | |
336 | // Early exit. |
337 | if (!FPIsUsed) return false; |
338 | |
339 | Bundles = &getAnalysis<EdgeBundlesWrapperLegacy>().getEdgeBundles(); |
340 | TII = MF.getSubtarget().getInstrInfo(); |
341 | |
342 | // Prepare cross-MBB liveness. |
343 | bundleCFGRecomputeKillFlags(MF); |
344 | |
345 | StackTop = 0; |
346 | |
347 | // Process the function in depth first order so that we process at least one |
348 | // of the predecessors for every reachable block in the function. |
349 | df_iterator_default_set<MachineBasicBlock*> Processed; |
350 | MachineBasicBlock *Entry = &MF.front(); |
351 | |
352 | LiveBundle &Bundle = |
353 | LiveBundles[Bundles->getBundle(N: Entry->getNumber(), Out: false)]; |
354 | |
355 | // In regcall convention, some FP registers may not be passed through |
356 | // the stack, so they will need to be assigned to the stack first |
357 | if ((Entry->getParent()->getFunction().getCallingConv() == |
358 | CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { |
359 | // In the register calling convention, up to one FP argument could be |
360 | // saved in the first FP register. |
361 | // If bundle.mask is non-zero and Bundle.FixCount is zero, it means |
362 | // that the FP registers contain arguments. |
363 | // The actual value is passed in FP0. |
364 | // Here we fix the stack and mark FP0 as pre-assigned register. |
365 | assert((Bundle.Mask & 0xFE) == 0 && |
366 | "Only FP0 could be passed as an argument" ); |
367 | Bundle.FixCount = 1; |
368 | Bundle.FixStack[0] = 0; |
369 | } |
370 | |
371 | bool Changed = false; |
372 | for (MachineBasicBlock *BB : depth_first_ext(G: Entry, S&: Processed)) |
373 | Changed |= processBasicBlock(MF, MBB&: *BB); |
374 | |
375 | // Process any unreachable blocks in arbitrary order now. |
376 | if (MF.size() != Processed.size()) |
377 | for (MachineBasicBlock &BB : MF) |
378 | if (Processed.insert(N: &BB).second) |
379 | Changed |= processBasicBlock(MF, MBB&: BB); |
380 | |
381 | LiveBundles.clear(); |
382 | |
383 | return Changed; |
384 | } |
385 | |
386 | /// bundleCFG - Scan all the basic blocks to determine consistent live-in and |
387 | /// live-out sets for the FP registers. Consistent means that the set of |
388 | /// registers live-out from a block is identical to the live-in set of all |
389 | /// successors. This is not enforced by the normal live-in lists since |
390 | /// registers may be implicitly defined, or not used by all successors. |
391 | void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { |
392 | assert(LiveBundles.empty() && "Stale data in LiveBundles" ); |
393 | LiveBundles.resize(N: Bundles->getNumBundles()); |
394 | |
395 | // Gather the actual live-in masks for all MBBs. |
396 | for (MachineBasicBlock &MBB : MF) { |
397 | setKillFlags(MBB); |
398 | |
399 | const unsigned Mask = calcLiveInMask(MBB: &MBB, RemoveFPs: false); |
400 | if (!Mask) |
401 | continue; |
402 | // Update MBB ingoing bundle mask. |
403 | LiveBundles[Bundles->getBundle(N: MBB.getNumber(), Out: false)].Mask |= Mask; |
404 | } |
405 | } |
406 | |
407 | /// processBasicBlock - Loop over all of the instructions in the basic block, |
408 | /// transforming FP instructions into their stack form. |
409 | /// |
410 | bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { |
411 | bool Changed = false; |
412 | MBB = &BB; |
413 | |
414 | setupBlockStack(); |
415 | |
416 | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { |
417 | MachineInstr &MI = *I; |
418 | uint64_t Flags = MI.getDesc().TSFlags; |
419 | |
420 | unsigned FPInstClass = Flags & X86II::FPTypeMask; |
421 | if (MI.isInlineAsm()) |
422 | FPInstClass = X86II::SpecialFP; |
423 | |
424 | if (MI.isCopy() && isFPCopy(MI)) |
425 | FPInstClass = X86II::SpecialFP; |
426 | |
427 | if (MI.isImplicitDef() && |
428 | X86::RFP80RegClass.contains(Reg: MI.getOperand(i: 0).getReg())) |
429 | FPInstClass = X86II::SpecialFP; |
430 | |
431 | if (MI.isCall()) |
432 | FPInstClass = X86II::SpecialFP; |
433 | |
434 | // A fake_use with a floating point pseudo register argument that is |
435 | // killed must behave like any other floating point operation and pop |
436 | // the floating point stack (this is done in handleSpecialFP()). |
437 | // Fake_use is, however, unusual, in that sometimes its operand is not |
438 | // killed because a later instruction (probably a return) will use it. |
439 | // It is this instruction that will pop the stack. |
440 | // In this scenario we can safely remove the fake_use's operand |
441 | // (it is live anyway). |
442 | if (MI.isFakeUse()) { |
443 | const MachineOperand &MO = MI.getOperand(i: 0); |
444 | if (MO.isReg() && X86::RFP80RegClass.contains(Reg: MO.getReg())) { |
445 | if (MO.isKill()) |
446 | FPInstClass = X86II::SpecialFP; |
447 | else |
448 | MI.removeOperand(OpNo: 0); |
449 | } |
450 | } |
451 | |
452 | if (FPInstClass == X86II::NotFP) |
453 | continue; // Efficiently ignore non-fp insts! |
454 | |
455 | MachineInstr *PrevMI = nullptr; |
456 | if (I != BB.begin()) |
457 | PrevMI = &*std::prev(x: I); |
458 | |
459 | ++NumFP; // Keep track of # of pseudo instrs |
460 | LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); |
461 | |
462 | // Get dead variables list now because the MI pointer may be deleted as part |
463 | // of processing! |
464 | SmallVector<Register, 8> DeadRegs; |
465 | for (const MachineOperand &MO : MI.operands()) |
466 | if (MO.isReg() && MO.isDead()) |
467 | DeadRegs.push_back(Elt: MO.getReg()); |
468 | |
469 | switch (FPInstClass) { |
470 | case X86II::ZeroArgFP: handleZeroArgFP(I); break; |
471 | case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) |
472 | case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) |
473 | case X86II::TwoArgFP: handleTwoArgFP(I); break; |
474 | case X86II::CompareFP: handleCompareFP(I); break; |
475 | case X86II::CondMovFP: handleCondMovFP(I); break; |
476 | case X86II::SpecialFP: handleSpecialFP(I); break; |
477 | default: llvm_unreachable("Unknown FP Type!" ); |
478 | } |
479 | |
480 | // Check to see if any of the values defined by this instruction are dead |
481 | // after definition. If so, pop them. |
482 | for (Register Reg : DeadRegs) { |
483 | // Check if Reg is live on the stack. An inline-asm register operand that |
484 | // is in the clobber list and marked dead might not be live on the stack. |
485 | static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers" ); |
486 | if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(RegNo: Reg-X86::FP0)) { |
487 | LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n" ); |
488 | freeStackSlotAfter(I, Reg: Reg-X86::FP0); |
489 | } |
490 | } |
491 | |
492 | // Print out all of the instructions expanded to if -debug |
493 | LLVM_DEBUG({ |
494 | MachineBasicBlock::iterator PrevI = PrevMI; |
495 | if (I == PrevI) { |
496 | dbgs() << "Just deleted pseudo instruction\n" ; |
497 | } else { |
498 | MachineBasicBlock::iterator Start = I; |
499 | // Rewind to first instruction newly inserted. |
500 | while (Start != BB.begin() && std::prev(Start) != PrevI) |
501 | --Start; |
502 | dbgs() << "Inserted instructions:\n\t" ; |
503 | Start->print(dbgs()); |
504 | while (++Start != std::next(I)) { |
505 | } |
506 | } |
507 | dumpStack(); |
508 | }); |
509 | (void)PrevMI; |
510 | |
511 | Changed = true; |
512 | } |
513 | |
514 | finishBlockStack(); |
515 | |
516 | return Changed; |
517 | } |
518 | |
519 | /// setupBlockStack - Use the live bundles to set up our model of the stack |
520 | /// to match predecessors' live out stack. |
521 | void FPS::setupBlockStack() { |
522 | LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) |
523 | << " derived from " << MBB->getName() << ".\n" ); |
524 | StackTop = 0; |
525 | // Get the live-in bundle for MBB. |
526 | const LiveBundle &Bundle = |
527 | LiveBundles[Bundles->getBundle(N: MBB->getNumber(), Out: false)]; |
528 | |
529 | if (!Bundle.Mask) { |
530 | LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n" ); |
531 | return; |
532 | } |
533 | |
534 | // Depth-first iteration should ensure that we always have an assigned stack. |
535 | assert(Bundle.isFixed() && "Reached block before any predecessors" ); |
536 | |
537 | // Push the fixed live-in registers. |
538 | for (unsigned i = Bundle.FixCount; i > 0; --i) { |
539 | LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" |
540 | << unsigned(Bundle.FixStack[i - 1]) << '\n'); |
541 | pushReg(Reg: Bundle.FixStack[i-1]); |
542 | } |
543 | |
544 | // Kill off unwanted live-ins. This can happen with a critical edge. |
545 | // FIXME: We could keep these live registers around as zombies. They may need |
546 | // to be revived at the end of a short block. It might save a few instrs. |
547 | unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); |
548 | adjustLiveRegs(Mask, I: MBB->begin()); |
549 | LLVM_DEBUG(MBB->dump()); |
550 | } |
551 | |
552 | /// finishBlockStack - Revive live-outs that are implicitly defined out of |
553 | /// MBB. Shuffle live registers to match the expected fixed stack of any |
554 | /// predecessors, and ensure that all predecessors are expecting the same |
555 | /// stack. |
556 | void FPS::finishBlockStack() { |
557 | // The RET handling below takes care of return blocks for us. |
558 | if (MBB->succ_empty()) |
559 | return; |
560 | |
561 | LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) |
562 | << " derived from " << MBB->getName() << ".\n" ); |
563 | |
564 | // Get MBB's live-out bundle. |
565 | unsigned BundleIdx = Bundles->getBundle(N: MBB->getNumber(), Out: true); |
566 | LiveBundle &Bundle = LiveBundles[BundleIdx]; |
567 | |
568 | // We may need to kill and define some registers to match successors. |
569 | // FIXME: This can probably be combined with the shuffle below. |
570 | MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); |
571 | adjustLiveRegs(Mask: Bundle.Mask, I: Term); |
572 | |
573 | if (!Bundle.Mask) { |
574 | LLVM_DEBUG(dbgs() << "No live-outs.\n" ); |
575 | return; |
576 | } |
577 | |
578 | // Has the stack order been fixed yet? |
579 | LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": " ); |
580 | if (Bundle.isFixed()) { |
581 | LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n" ); |
582 | shuffleStackTop(FixStack: Bundle.FixStack, FixCount: Bundle.FixCount, I: Term); |
583 | } else { |
584 | // Not fixed yet, we get to choose. |
585 | LLVM_DEBUG(dbgs() << "Fixing stack order now.\n" ); |
586 | Bundle.FixCount = StackTop; |
587 | for (unsigned i = 0; i < StackTop; ++i) |
588 | Bundle.FixStack[i] = getStackEntry(STi: i); |
589 | } |
590 | } |
591 | |
592 | |
593 | //===----------------------------------------------------------------------===// |
594 | // Efficient Lookup Table Support |
595 | //===----------------------------------------------------------------------===// |
596 | |
597 | namespace { |
598 | struct TableEntry { |
599 | uint16_t from; |
600 | uint16_t to; |
601 | bool operator<(const TableEntry &TE) const { return from < TE.from; } |
602 | friend bool operator<(const TableEntry &TE, unsigned V) { |
603 | return TE.from < V; |
604 | } |
605 | friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, |
606 | const TableEntry &TE) { |
607 | return V < TE.from; |
608 | } |
609 | }; |
610 | } |
611 | |
612 | static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { |
613 | const TableEntry *I = llvm::lower_bound(Range&: Table, Value&: Opcode); |
614 | if (I != Table.end() && I->from == Opcode) |
615 | return I->to; |
616 | return -1; |
617 | } |
618 | |
619 | #ifdef NDEBUG |
620 | #define ASSERT_SORTED(TABLE) |
621 | #else |
622 | #define ASSERT_SORTED(TABLE) \ |
623 | { \ |
624 | static std::atomic<bool> TABLE##Checked(false); \ |
625 | if (!TABLE##Checked.load(std::memory_order_relaxed)) { \ |
626 | assert(is_sorted(TABLE) && \ |
627 | "All lookup tables must be sorted for efficient access!"); \ |
628 | TABLE##Checked.store(true, std::memory_order_relaxed); \ |
629 | } \ |
630 | } |
631 | #endif |
632 | |
633 | //===----------------------------------------------------------------------===// |
634 | // Register File -> Register Stack Mapping Methods |
635 | //===----------------------------------------------------------------------===// |
636 | |
637 | // OpcodeTable - Sorted map of register instructions to their stack version. |
638 | // The first element is an register file pseudo instruction, the second is the |
639 | // concrete X86 instruction which uses the register stack. |
640 | // |
641 | static const TableEntry OpcodeTable[] = { |
642 | { .from: X86::ABS_Fp32 , .to: X86::ABS_F }, |
643 | { .from: X86::ABS_Fp64 , .to: X86::ABS_F }, |
644 | { .from: X86::ABS_Fp80 , .to: X86::ABS_F }, |
645 | { .from: X86::ADD_Fp32m , .to: X86::ADD_F32m }, |
646 | { .from: X86::ADD_Fp64m , .to: X86::ADD_F64m }, |
647 | { .from: X86::ADD_Fp64m32 , .to: X86::ADD_F32m }, |
648 | { .from: X86::ADD_Fp80m32 , .to: X86::ADD_F32m }, |
649 | { .from: X86::ADD_Fp80m64 , .to: X86::ADD_F64m }, |
650 | { .from: X86::ADD_FpI16m32 , .to: X86::ADD_FI16m }, |
651 | { .from: X86::ADD_FpI16m64 , .to: X86::ADD_FI16m }, |
652 | { .from: X86::ADD_FpI16m80 , .to: X86::ADD_FI16m }, |
653 | { .from: X86::ADD_FpI32m32 , .to: X86::ADD_FI32m }, |
654 | { .from: X86::ADD_FpI32m64 , .to: X86::ADD_FI32m }, |
655 | { .from: X86::ADD_FpI32m80 , .to: X86::ADD_FI32m }, |
656 | { .from: X86::CHS_Fp32 , .to: X86::CHS_F }, |
657 | { .from: X86::CHS_Fp64 , .to: X86::CHS_F }, |
658 | { .from: X86::CHS_Fp80 , .to: X86::CHS_F }, |
659 | { .from: X86::CMOVBE_Fp32 , .to: X86::CMOVBE_F }, |
660 | { .from: X86::CMOVBE_Fp64 , .to: X86::CMOVBE_F }, |
661 | { .from: X86::CMOVBE_Fp80 , .to: X86::CMOVBE_F }, |
662 | { .from: X86::CMOVB_Fp32 , .to: X86::CMOVB_F }, |
663 | { .from: X86::CMOVB_Fp64 , .to: X86::CMOVB_F }, |
664 | { .from: X86::CMOVB_Fp80 , .to: X86::CMOVB_F }, |
665 | { .from: X86::CMOVE_Fp32 , .to: X86::CMOVE_F }, |
666 | { .from: X86::CMOVE_Fp64 , .to: X86::CMOVE_F }, |
667 | { .from: X86::CMOVE_Fp80 , .to: X86::CMOVE_F }, |
668 | { .from: X86::CMOVNBE_Fp32 , .to: X86::CMOVNBE_F }, |
669 | { .from: X86::CMOVNBE_Fp64 , .to: X86::CMOVNBE_F }, |
670 | { .from: X86::CMOVNBE_Fp80 , .to: X86::CMOVNBE_F }, |
671 | { .from: X86::CMOVNB_Fp32 , .to: X86::CMOVNB_F }, |
672 | { .from: X86::CMOVNB_Fp64 , .to: X86::CMOVNB_F }, |
673 | { .from: X86::CMOVNB_Fp80 , .to: X86::CMOVNB_F }, |
674 | { .from: X86::CMOVNE_Fp32 , .to: X86::CMOVNE_F }, |
675 | { .from: X86::CMOVNE_Fp64 , .to: X86::CMOVNE_F }, |
676 | { .from: X86::CMOVNE_Fp80 , .to: X86::CMOVNE_F }, |
677 | { .from: X86::CMOVNP_Fp32 , .to: X86::CMOVNP_F }, |
678 | { .from: X86::CMOVNP_Fp64 , .to: X86::CMOVNP_F }, |
679 | { .from: X86::CMOVNP_Fp80 , .to: X86::CMOVNP_F }, |
680 | { .from: X86::CMOVP_Fp32 , .to: X86::CMOVP_F }, |
681 | { .from: X86::CMOVP_Fp64 , .to: X86::CMOVP_F }, |
682 | { .from: X86::CMOVP_Fp80 , .to: X86::CMOVP_F }, |
683 | { .from: X86::COM_FpIr32 , .to: X86::COM_FIr }, |
684 | { .from: X86::COM_FpIr64 , .to: X86::COM_FIr }, |
685 | { .from: X86::COM_FpIr80 , .to: X86::COM_FIr }, |
686 | { .from: X86::COM_Fpr32 , .to: X86::COM_FST0r }, |
687 | { .from: X86::COM_Fpr64 , .to: X86::COM_FST0r }, |
688 | { .from: X86::COM_Fpr80 , .to: X86::COM_FST0r }, |
689 | { .from: X86::DIVR_Fp32m , .to: X86::DIVR_F32m }, |
690 | { .from: X86::DIVR_Fp64m , .to: X86::DIVR_F64m }, |
691 | { .from: X86::DIVR_Fp64m32 , .to: X86::DIVR_F32m }, |
692 | { .from: X86::DIVR_Fp80m32 , .to: X86::DIVR_F32m }, |
693 | { .from: X86::DIVR_Fp80m64 , .to: X86::DIVR_F64m }, |
694 | { .from: X86::DIVR_FpI16m32, .to: X86::DIVR_FI16m}, |
695 | { .from: X86::DIVR_FpI16m64, .to: X86::DIVR_FI16m}, |
696 | { .from: X86::DIVR_FpI16m80, .to: X86::DIVR_FI16m}, |
697 | { .from: X86::DIVR_FpI32m32, .to: X86::DIVR_FI32m}, |
698 | { .from: X86::DIVR_FpI32m64, .to: X86::DIVR_FI32m}, |
699 | { .from: X86::DIVR_FpI32m80, .to: X86::DIVR_FI32m}, |
700 | { .from: X86::DIV_Fp32m , .to: X86::DIV_F32m }, |
701 | { .from: X86::DIV_Fp64m , .to: X86::DIV_F64m }, |
702 | { .from: X86::DIV_Fp64m32 , .to: X86::DIV_F32m }, |
703 | { .from: X86::DIV_Fp80m32 , .to: X86::DIV_F32m }, |
704 | { .from: X86::DIV_Fp80m64 , .to: X86::DIV_F64m }, |
705 | { .from: X86::DIV_FpI16m32 , .to: X86::DIV_FI16m }, |
706 | { .from: X86::DIV_FpI16m64 , .to: X86::DIV_FI16m }, |
707 | { .from: X86::DIV_FpI16m80 , .to: X86::DIV_FI16m }, |
708 | { .from: X86::DIV_FpI32m32 , .to: X86::DIV_FI32m }, |
709 | { .from: X86::DIV_FpI32m64 , .to: X86::DIV_FI32m }, |
710 | { .from: X86::DIV_FpI32m80 , .to: X86::DIV_FI32m }, |
711 | { .from: X86::ILD_Fp16m32 , .to: X86::ILD_F16m }, |
712 | { .from: X86::ILD_Fp16m64 , .to: X86::ILD_F16m }, |
713 | { .from: X86::ILD_Fp16m80 , .to: X86::ILD_F16m }, |
714 | { .from: X86::ILD_Fp32m32 , .to: X86::ILD_F32m }, |
715 | { .from: X86::ILD_Fp32m64 , .to: X86::ILD_F32m }, |
716 | { .from: X86::ILD_Fp32m80 , .to: X86::ILD_F32m }, |
717 | { .from: X86::ILD_Fp64m32 , .to: X86::ILD_F64m }, |
718 | { .from: X86::ILD_Fp64m64 , .to: X86::ILD_F64m }, |
719 | { .from: X86::ILD_Fp64m80 , .to: X86::ILD_F64m }, |
720 | { .from: X86::ISTT_Fp16m32 , .to: X86::ISTT_FP16m}, |
721 | { .from: X86::ISTT_Fp16m64 , .to: X86::ISTT_FP16m}, |
722 | { .from: X86::ISTT_Fp16m80 , .to: X86::ISTT_FP16m}, |
723 | { .from: X86::ISTT_Fp32m32 , .to: X86::ISTT_FP32m}, |
724 | { .from: X86::ISTT_Fp32m64 , .to: X86::ISTT_FP32m}, |
725 | { .from: X86::ISTT_Fp32m80 , .to: X86::ISTT_FP32m}, |
726 | { .from: X86::ISTT_Fp64m32 , .to: X86::ISTT_FP64m}, |
727 | { .from: X86::ISTT_Fp64m64 , .to: X86::ISTT_FP64m}, |
728 | { .from: X86::ISTT_Fp64m80 , .to: X86::ISTT_FP64m}, |
729 | { .from: X86::IST_Fp16m32 , .to: X86::IST_F16m }, |
730 | { .from: X86::IST_Fp16m64 , .to: X86::IST_F16m }, |
731 | { .from: X86::IST_Fp16m80 , .to: X86::IST_F16m }, |
732 | { .from: X86::IST_Fp32m32 , .to: X86::IST_F32m }, |
733 | { .from: X86::IST_Fp32m64 , .to: X86::IST_F32m }, |
734 | { .from: X86::IST_Fp32m80 , .to: X86::IST_F32m }, |
735 | { .from: X86::IST_Fp64m32 , .to: X86::IST_FP64m }, |
736 | { .from: X86::IST_Fp64m64 , .to: X86::IST_FP64m }, |
737 | { .from: X86::IST_Fp64m80 , .to: X86::IST_FP64m }, |
738 | { .from: X86::LD_Fp032 , .to: X86::LD_F0 }, |
739 | { .from: X86::LD_Fp064 , .to: X86::LD_F0 }, |
740 | { .from: X86::LD_Fp080 , .to: X86::LD_F0 }, |
741 | { .from: X86::LD_Fp132 , .to: X86::LD_F1 }, |
742 | { .from: X86::LD_Fp164 , .to: X86::LD_F1 }, |
743 | { .from: X86::LD_Fp180 , .to: X86::LD_F1 }, |
744 | { .from: X86::LD_Fp32m , .to: X86::LD_F32m }, |
745 | { .from: X86::LD_Fp32m64 , .to: X86::LD_F32m }, |
746 | { .from: X86::LD_Fp32m80 , .to: X86::LD_F32m }, |
747 | { .from: X86::LD_Fp64m , .to: X86::LD_F64m }, |
748 | { .from: X86::LD_Fp64m80 , .to: X86::LD_F64m }, |
749 | { .from: X86::LD_Fp80m , .to: X86::LD_F80m }, |
750 | { .from: X86::MUL_Fp32m , .to: X86::MUL_F32m }, |
751 | { .from: X86::MUL_Fp64m , .to: X86::MUL_F64m }, |
752 | { .from: X86::MUL_Fp64m32 , .to: X86::MUL_F32m }, |
753 | { .from: X86::MUL_Fp80m32 , .to: X86::MUL_F32m }, |
754 | { .from: X86::MUL_Fp80m64 , .to: X86::MUL_F64m }, |
755 | { .from: X86::MUL_FpI16m32 , .to: X86::MUL_FI16m }, |
756 | { .from: X86::MUL_FpI16m64 , .to: X86::MUL_FI16m }, |
757 | { .from: X86::MUL_FpI16m80 , .to: X86::MUL_FI16m }, |
758 | { .from: X86::MUL_FpI32m32 , .to: X86::MUL_FI32m }, |
759 | { .from: X86::MUL_FpI32m64 , .to: X86::MUL_FI32m }, |
760 | { .from: X86::MUL_FpI32m80 , .to: X86::MUL_FI32m }, |
761 | { .from: X86::SQRT_Fp32 , .to: X86::SQRT_F }, |
762 | { .from: X86::SQRT_Fp64 , .to: X86::SQRT_F }, |
763 | { .from: X86::SQRT_Fp80 , .to: X86::SQRT_F }, |
764 | { .from: X86::ST_Fp32m , .to: X86::ST_F32m }, |
765 | { .from: X86::ST_Fp64m , .to: X86::ST_F64m }, |
766 | { .from: X86::ST_Fp64m32 , .to: X86::ST_F32m }, |
767 | { .from: X86::ST_Fp80m32 , .to: X86::ST_F32m }, |
768 | { .from: X86::ST_Fp80m64 , .to: X86::ST_F64m }, |
769 | { .from: X86::ST_FpP80m , .to: X86::ST_FP80m }, |
770 | { .from: X86::SUBR_Fp32m , .to: X86::SUBR_F32m }, |
771 | { .from: X86::SUBR_Fp64m , .to: X86::SUBR_F64m }, |
772 | { .from: X86::SUBR_Fp64m32 , .to: X86::SUBR_F32m }, |
773 | { .from: X86::SUBR_Fp80m32 , .to: X86::SUBR_F32m }, |
774 | { .from: X86::SUBR_Fp80m64 , .to: X86::SUBR_F64m }, |
775 | { .from: X86::SUBR_FpI16m32, .to: X86::SUBR_FI16m}, |
776 | { .from: X86::SUBR_FpI16m64, .to: X86::SUBR_FI16m}, |
777 | { .from: X86::SUBR_FpI16m80, .to: X86::SUBR_FI16m}, |
778 | { .from: X86::SUBR_FpI32m32, .to: X86::SUBR_FI32m}, |
779 | { .from: X86::SUBR_FpI32m64, .to: X86::SUBR_FI32m}, |
780 | { .from: X86::SUBR_FpI32m80, .to: X86::SUBR_FI32m}, |
781 | { .from: X86::SUB_Fp32m , .to: X86::SUB_F32m }, |
782 | { .from: X86::SUB_Fp64m , .to: X86::SUB_F64m }, |
783 | { .from: X86::SUB_Fp64m32 , .to: X86::SUB_F32m }, |
784 | { .from: X86::SUB_Fp80m32 , .to: X86::SUB_F32m }, |
785 | { .from: X86::SUB_Fp80m64 , .to: X86::SUB_F64m }, |
786 | { .from: X86::SUB_FpI16m32 , .to: X86::SUB_FI16m }, |
787 | { .from: X86::SUB_FpI16m64 , .to: X86::SUB_FI16m }, |
788 | { .from: X86::SUB_FpI16m80 , .to: X86::SUB_FI16m }, |
789 | { .from: X86::SUB_FpI32m32 , .to: X86::SUB_FI32m }, |
790 | { .from: X86::SUB_FpI32m64 , .to: X86::SUB_FI32m }, |
791 | { .from: X86::SUB_FpI32m80 , .to: X86::SUB_FI32m }, |
792 | { .from: X86::TST_Fp32 , .to: X86::TST_F }, |
793 | { .from: X86::TST_Fp64 , .to: X86::TST_F }, |
794 | { .from: X86::TST_Fp80 , .to: X86::TST_F }, |
795 | { .from: X86::UCOM_FpIr32 , .to: X86::UCOM_FIr }, |
796 | { .from: X86::UCOM_FpIr64 , .to: X86::UCOM_FIr }, |
797 | { .from: X86::UCOM_FpIr80 , .to: X86::UCOM_FIr }, |
798 | { .from: X86::UCOM_Fpr32 , .to: X86::UCOM_Fr }, |
799 | { .from: X86::UCOM_Fpr64 , .to: X86::UCOM_Fr }, |
800 | { .from: X86::UCOM_Fpr80 , .to: X86::UCOM_Fr }, |
801 | { .from: X86::XAM_Fp32 , .to: X86::XAM_F }, |
802 | { .from: X86::XAM_Fp64 , .to: X86::XAM_F }, |
803 | { .from: X86::XAM_Fp80 , .to: X86::XAM_F }, |
804 | }; |
805 | |
806 | static unsigned getConcreteOpcode(unsigned Opcode) { |
807 | ASSERT_SORTED(OpcodeTable); |
808 | int Opc = Lookup(Table: OpcodeTable, Opcode); |
809 | assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!" ); |
810 | return Opc; |
811 | } |
812 | |
813 | //===----------------------------------------------------------------------===// |
814 | // Helper Methods |
815 | //===----------------------------------------------------------------------===// |
816 | |
817 | // PopTable - Sorted map of instructions to their popping version. The first |
818 | // element is an instruction, the second is the version which pops. |
819 | // |
820 | static const TableEntry PopTable[] = { |
821 | { .from: X86::ADD_FrST0 , .to: X86::ADD_FPrST0 }, |
822 | |
823 | { .from: X86::COMP_FST0r, .to: X86::FCOMPP }, |
824 | { .from: X86::COM_FIr , .to: X86::COM_FIPr }, |
825 | { .from: X86::COM_FST0r , .to: X86::COMP_FST0r }, |
826 | |
827 | { .from: X86::DIVR_FrST0, .to: X86::DIVR_FPrST0 }, |
828 | { .from: X86::DIV_FrST0 , .to: X86::DIV_FPrST0 }, |
829 | |
830 | { .from: X86::IST_F16m , .to: X86::IST_FP16m }, |
831 | { .from: X86::IST_F32m , .to: X86::IST_FP32m }, |
832 | |
833 | { .from: X86::MUL_FrST0 , .to: X86::MUL_FPrST0 }, |
834 | |
835 | { .from: X86::ST_F32m , .to: X86::ST_FP32m }, |
836 | { .from: X86::ST_F64m , .to: X86::ST_FP64m }, |
837 | { .from: X86::ST_Frr , .to: X86::ST_FPrr }, |
838 | |
839 | { .from: X86::SUBR_FrST0, .to: X86::SUBR_FPrST0 }, |
840 | { .from: X86::SUB_FrST0 , .to: X86::SUB_FPrST0 }, |
841 | |
842 | { .from: X86::UCOM_FIr , .to: X86::UCOM_FIPr }, |
843 | |
844 | { .from: X86::UCOM_FPr , .to: X86::UCOM_FPPr }, |
845 | { .from: X86::UCOM_Fr , .to: X86::UCOM_FPr }, |
846 | }; |
847 | |
848 | static bool doesInstructionSetFPSW(MachineInstr &MI) { |
849 | if (const MachineOperand *MO = |
850 | MI.findRegisterDefOperand(Reg: X86::FPSW, /*TRI=*/nullptr)) |
851 | if (!MO->isDead()) |
852 | return true; |
853 | return false; |
854 | } |
855 | |
856 | static MachineBasicBlock::iterator |
857 | getNextFPInstruction(MachineBasicBlock::iterator I) { |
858 | MachineBasicBlock &MBB = *I->getParent(); |
859 | while (++I != MBB.end()) { |
860 | MachineInstr &MI = *I; |
861 | if (X86::isX87Instruction(MI)) |
862 | return I; |
863 | } |
864 | return MBB.end(); |
865 | } |
866 | |
867 | /// popStackAfter - Pop the current value off of the top of the FP stack after |
868 | /// the specified instruction. This attempts to be sneaky and combine the pop |
869 | /// into the instruction itself if possible. The iterator is left pointing to |
870 | /// the last instruction, be it a new pop instruction inserted, or the old |
871 | /// instruction if it was modified in place. |
872 | /// |
873 | void FPS::popStackAfter(MachineBasicBlock::iterator &I) { |
874 | MachineInstr &MI = *I; |
875 | const DebugLoc &dl = MI.getDebugLoc(); |
876 | ASSERT_SORTED(PopTable); |
877 | |
878 | popReg(); |
879 | |
880 | // Check to see if there is a popping version of this instruction... |
881 | int Opcode = Lookup(Table: PopTable, Opcode: I->getOpcode()); |
882 | if (Opcode != -1) { |
883 | I->setDesc(TII->get(Opcode)); |
884 | if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr) |
885 | I->removeOperand(OpNo: 0); |
886 | MI.dropDebugNumber(); |
887 | } else { // Insert an explicit pop |
888 | // If this instruction sets FPSW, which is read in following instruction, |
889 | // insert pop after that reader. |
890 | if (doesInstructionSetFPSW(MI)) { |
891 | MachineBasicBlock &MBB = *MI.getParent(); |
892 | MachineBasicBlock::iterator Next = getNextFPInstruction(I); |
893 | if (Next != MBB.end() && Next->readsRegister(Reg: X86::FPSW, /*TRI=*/nullptr)) |
894 | I = Next; |
895 | } |
896 | I = BuildMI(BB&: *MBB, I: ++I, MIMD: dl, MCID: TII->get(Opcode: X86::ST_FPrr)).addReg(RegNo: X86::ST0); |
897 | } |
898 | } |
899 | |
900 | /// freeStackSlotAfter - Free the specified register from the register stack, so |
901 | /// that it is no longer in a register. If the register is currently at the top |
902 | /// of the stack, we just pop the current instruction, otherwise we store the |
903 | /// current top-of-stack into the specified slot, then pop the top of stack. |
904 | void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { |
905 | if (getStackEntry(STi: 0) == FPRegNo) { // already at the top of stack? easy. |
906 | popStackAfter(I); |
907 | return; |
908 | } |
909 | |
910 | // Otherwise, store the top of stack into the dead slot, killing the operand |
911 | // without having to add in an explicit xchg then pop. |
912 | // |
913 | I = freeStackSlotBefore(I: ++I, FPRegNo); |
914 | } |
915 | |
916 | /// freeStackSlotBefore - Free the specified register without trying any |
917 | /// folding. |
918 | MachineBasicBlock::iterator |
919 | FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { |
920 | unsigned STReg = getSTReg(RegNo: FPRegNo); |
921 | unsigned OldSlot = getSlot(RegNo: FPRegNo); |
922 | unsigned TopReg = Stack[StackTop-1]; |
923 | Stack[OldSlot] = TopReg; |
924 | RegMap[TopReg] = OldSlot; |
925 | RegMap[FPRegNo] = ~0; |
926 | Stack[--StackTop] = ~0; |
927 | return BuildMI(BB&: *MBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::ST_FPrr)) |
928 | .addReg(RegNo: STReg) |
929 | .getInstr(); |
930 | } |
931 | |
932 | /// adjustLiveRegs - Kill and revive registers such that exactly the FP |
933 | /// registers with a bit in Mask are live. |
934 | void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { |
935 | unsigned Defs = Mask; |
936 | unsigned Kills = 0; |
937 | for (unsigned i = 0; i < StackTop; ++i) { |
938 | unsigned RegNo = Stack[i]; |
939 | if (!(Defs & (1 << RegNo))) |
940 | // This register is live, but we don't want it. |
941 | Kills |= (1 << RegNo); |
942 | else |
943 | // We don't need to imp-def this live register. |
944 | Defs &= ~(1 << RegNo); |
945 | } |
946 | assert((Kills & Defs) == 0 && "Register needs killing and def'ing?" ); |
947 | |
948 | // Produce implicit-defs for free by using killed registers. |
949 | while (Kills && Defs) { |
950 | unsigned KReg = llvm::countr_zero(Val: Kills); |
951 | unsigned DReg = llvm::countr_zero(Val: Defs); |
952 | LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg |
953 | << "\n" ); |
954 | std::swap(a&: Stack[getSlot(RegNo: KReg)], b&: Stack[getSlot(RegNo: DReg)]); |
955 | std::swap(a&: RegMap[KReg], b&: RegMap[DReg]); |
956 | Kills &= ~(1 << KReg); |
957 | Defs &= ~(1 << DReg); |
958 | } |
959 | |
960 | // Kill registers by popping. |
961 | if (Kills && I != MBB->begin()) { |
962 | MachineBasicBlock::iterator I2 = std::prev(x: I); |
963 | while (StackTop) { |
964 | unsigned KReg = getStackEntry(STi: 0); |
965 | if (!(Kills & (1 << KReg))) |
966 | break; |
967 | LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n" ); |
968 | popStackAfter(I&: I2); |
969 | Kills &= ~(1 << KReg); |
970 | } |
971 | } |
972 | |
973 | // Manually kill the rest. |
974 | while (Kills) { |
975 | unsigned KReg = llvm::countr_zero(Val: Kills); |
976 | LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n" ); |
977 | freeStackSlotBefore(I, FPRegNo: KReg); |
978 | Kills &= ~(1 << KReg); |
979 | } |
980 | |
981 | // Load zeros for all the imp-defs. |
982 | while(Defs) { |
983 | unsigned DReg = llvm::countr_zero(Val: Defs); |
984 | LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n" ); |
985 | BuildMI(BB&: *MBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LD_F0)); |
986 | pushReg(Reg: DReg); |
987 | Defs &= ~(1 << DReg); |
988 | } |
989 | |
990 | // Now we should have the correct registers live. |
991 | LLVM_DEBUG(dumpStack()); |
992 | assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch" ); |
993 | } |
994 | |
995 | /// shuffleStackTop - emit fxch instructions before I to shuffle the top |
996 | /// FixCount entries into the order given by FixStack. |
997 | /// FIXME: Is there a better algorithm than insertion sort? |
998 | void FPS::shuffleStackTop(const unsigned char *FixStack, |
999 | unsigned FixCount, |
1000 | MachineBasicBlock::iterator I) { |
1001 | // Move items into place, starting from the desired stack bottom. |
1002 | while (FixCount--) { |
1003 | // Old register at position FixCount. |
1004 | unsigned OldReg = getStackEntry(STi: FixCount); |
1005 | // Desired register at position FixCount. |
1006 | unsigned Reg = FixStack[FixCount]; |
1007 | if (Reg == OldReg) |
1008 | continue; |
1009 | // (Reg st0) (OldReg st0) = (Reg OldReg st0) |
1010 | moveToTop(RegNo: Reg, I); |
1011 | if (FixCount > 0) |
1012 | moveToTop(RegNo: OldReg, I); |
1013 | } |
1014 | LLVM_DEBUG(dumpStack()); |
1015 | } |
1016 | |
1017 | |
1018 | //===----------------------------------------------------------------------===// |
1019 | // Instruction transformation implementation |
1020 | //===----------------------------------------------------------------------===// |
1021 | |
1022 | void FPS::handleCall(MachineBasicBlock::iterator &I) { |
1023 | MachineInstr &MI = *I; |
1024 | unsigned STReturns = 0; |
1025 | |
1026 | bool ClobbersFPStack = false; |
1027 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1028 | MachineOperand &Op = MI.getOperand(i); |
1029 | // Check if this call clobbers the FP stack. |
1030 | // is sufficient. |
1031 | if (Op.isRegMask()) { |
1032 | bool ClobbersFP0 = Op.clobbersPhysReg(PhysReg: X86::FP0); |
1033 | #ifndef NDEBUG |
1034 | static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers" ); |
1035 | for (unsigned i = 1; i != 8; ++i) |
1036 | assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 && |
1037 | "Inconsistent FP register clobber" ); |
1038 | #endif |
1039 | |
1040 | if (ClobbersFP0) |
1041 | ClobbersFPStack = true; |
1042 | } |
1043 | |
1044 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1045 | continue; |
1046 | |
1047 | assert(Op.isImplicit() && "Expected implicit def/use" ); |
1048 | |
1049 | if (Op.isDef()) |
1050 | STReturns |= 1 << getFPReg(MO: Op); |
1051 | |
1052 | // Remove the operand so that later passes don't see it. |
1053 | MI.removeOperand(OpNo: i); |
1054 | --i; |
1055 | --e; |
1056 | } |
1057 | |
1058 | // Most calls should have a regmask that clobbers the FP registers. If it |
1059 | // isn't present then the register allocator didn't spill the FP registers |
1060 | // so they are still on the stack. |
1061 | assert((ClobbersFPStack || STReturns == 0) && |
1062 | "ST returns without FP stack clobber" ); |
1063 | if (!ClobbersFPStack) |
1064 | return; |
1065 | |
1066 | unsigned N = llvm::countr_one(Value: STReturns); |
1067 | |
1068 | // FP registers used for function return must be consecutive starting at |
1069 | // FP0 |
1070 | assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); |
1071 | |
1072 | // Reset the FP Stack - It is required because of possible leftovers from |
1073 | // passed arguments. The caller should assume that the FP stack is |
1074 | // returned empty (unless the callee returns values on FP stack). |
1075 | while (StackTop > 0) |
1076 | popReg(); |
1077 | |
1078 | for (unsigned I = 0; I < N; ++I) |
1079 | pushReg(Reg: N - I - 1); |
1080 | |
1081 | // If this call has been modified, drop all variable values defined by it. |
1082 | // We can't track them once they've been stackified. |
1083 | if (STReturns) |
1084 | I->dropDebugNumber(); |
1085 | } |
1086 | |
1087 | /// If RET has an FP register use operand, pass the first one in ST(0) and |
1088 | /// the second one in ST(1). |
1089 | void FPS::handleReturn(MachineBasicBlock::iterator &I) { |
1090 | MachineInstr &MI = *I; |
1091 | |
1092 | // Find the register operands. |
1093 | unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; |
1094 | unsigned LiveMask = 0; |
1095 | |
1096 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1097 | MachineOperand &Op = MI.getOperand(i); |
1098 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1099 | continue; |
1100 | // FP Register uses must be kills unless there are two uses of the same |
1101 | // register, in which case only one will be a kill. |
1102 | assert(Op.isUse() && |
1103 | (Op.isKill() || // Marked kill. |
1104 | getFPReg(Op) == FirstFPRegOp || // Second instance. |
1105 | MI.killsRegister(Op.getReg(), |
1106 | /*TRI=*/nullptr)) && // Later use is marked kill. |
1107 | "Ret only defs operands, and values aren't live beyond it" ); |
1108 | |
1109 | if (FirstFPRegOp == ~0U) |
1110 | FirstFPRegOp = getFPReg(MO: Op); |
1111 | else { |
1112 | assert(SecondFPRegOp == ~0U && "More than two fp operands!" ); |
1113 | SecondFPRegOp = getFPReg(MO: Op); |
1114 | } |
1115 | LiveMask |= (1 << getFPReg(MO: Op)); |
1116 | |
1117 | // Remove the operand so that later passes don't see it. |
1118 | MI.removeOperand(OpNo: i); |
1119 | --i; |
1120 | --e; |
1121 | } |
1122 | |
1123 | // We may have been carrying spurious live-ins, so make sure only the |
1124 | // returned registers are left live. |
1125 | adjustLiveRegs(Mask: LiveMask, I: MI); |
1126 | if (!LiveMask) return; // Quick check to see if any are possible. |
1127 | |
1128 | // There are only four possibilities here: |
1129 | // 1) we are returning a single FP value. In this case, it has to be in |
1130 | // ST(0) already, so just declare success by removing the value from the |
1131 | // FP Stack. |
1132 | if (SecondFPRegOp == ~0U) { |
1133 | // Assert that the top of stack contains the right FP register. |
1134 | assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && |
1135 | "Top of stack not the right register for RET!" ); |
1136 | |
1137 | // Ok, everything is good, mark the value as not being on the stack |
1138 | // anymore so that our assertion about the stack being empty at end of |
1139 | // block doesn't fire. |
1140 | StackTop = 0; |
1141 | return; |
1142 | } |
1143 | |
1144 | // Otherwise, we are returning two values: |
1145 | // 2) If returning the same value for both, we only have one thing in the FP |
1146 | // stack. Consider: RET FP1, FP1 |
1147 | if (StackTop == 1) { |
1148 | assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& |
1149 | "Stack misconfiguration for RET!" ); |
1150 | |
1151 | // Duplicate the TOS so that we return it twice. Just pick some other FPx |
1152 | // register to hold it. |
1153 | unsigned NewReg = ScratchFPReg; |
1154 | duplicateToTop(RegNo: FirstFPRegOp, AsReg: NewReg, I: MI); |
1155 | FirstFPRegOp = NewReg; |
1156 | } |
1157 | |
1158 | /// Okay we know we have two different FPx operands now: |
1159 | assert(StackTop == 2 && "Must have two values live!" ); |
1160 | |
1161 | /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently |
1162 | /// in ST(1). In this case, emit an fxch. |
1163 | if (getStackEntry(STi: 0) == SecondFPRegOp) { |
1164 | assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live" ); |
1165 | moveToTop(RegNo: FirstFPRegOp, I: MI); |
1166 | } |
1167 | |
1168 | /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in |
1169 | /// ST(1). Just remove both from our understanding of the stack and return. |
1170 | assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live" ); |
1171 | assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live" ); |
1172 | StackTop = 0; |
1173 | } |
1174 | |
1175 | /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> |
1176 | /// |
1177 | void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { |
1178 | MachineInstr &MI = *I; |
1179 | unsigned DestReg = getFPReg(MO: MI.getOperand(i: 0)); |
1180 | |
1181 | // Change from the pseudo instruction to the concrete instruction. |
1182 | MI.removeOperand(OpNo: 0); // Remove the explicit ST(0) operand |
1183 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1184 | MI.addOperand( |
1185 | Op: MachineOperand::CreateReg(Reg: X86::ST0, /*isDef*/ true, /*isImp*/ true)); |
1186 | |
1187 | // Result gets pushed on the stack. |
1188 | pushReg(Reg: DestReg); |
1189 | |
1190 | MI.dropDebugNumber(); |
1191 | } |
1192 | |
1193 | /// handleOneArgFP - fst <mem>, ST(0) |
1194 | /// |
1195 | void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { |
1196 | MachineInstr &MI = *I; |
1197 | unsigned NumOps = MI.getDesc().getNumOperands(); |
1198 | assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && |
1199 | "Can only handle fst* & ftst instructions!" ); |
1200 | |
1201 | // Is this the last use of the source register? |
1202 | unsigned Reg = getFPReg(MO: MI.getOperand(i: NumOps - 1)); |
1203 | bool KillsSrc = MI.killsRegister(Reg: X86::FP0 + Reg, /*TRI=*/nullptr); |
1204 | |
1205 | // FISTP64m is strange because there isn't a non-popping versions. |
1206 | // If we have one _and_ we don't want to pop the operand, duplicate the value |
1207 | // on the stack instead of moving it. This ensure that popping the value is |
1208 | // always ok. |
1209 | // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. |
1210 | // |
1211 | if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || |
1212 | MI.getOpcode() == X86::ISTT_Fp16m32 || |
1213 | MI.getOpcode() == X86::ISTT_Fp32m32 || |
1214 | MI.getOpcode() == X86::ISTT_Fp64m32 || |
1215 | MI.getOpcode() == X86::IST_Fp64m64 || |
1216 | MI.getOpcode() == X86::ISTT_Fp16m64 || |
1217 | MI.getOpcode() == X86::ISTT_Fp32m64 || |
1218 | MI.getOpcode() == X86::ISTT_Fp64m64 || |
1219 | MI.getOpcode() == X86::IST_Fp64m80 || |
1220 | MI.getOpcode() == X86::ISTT_Fp16m80 || |
1221 | MI.getOpcode() == X86::ISTT_Fp32m80 || |
1222 | MI.getOpcode() == X86::ISTT_Fp64m80 || |
1223 | MI.getOpcode() == X86::ST_FpP80m)) { |
1224 | duplicateToTop(RegNo: Reg, AsReg: ScratchFPReg, I); |
1225 | } else { |
1226 | moveToTop(RegNo: Reg, I); // Move to the top of the stack... |
1227 | } |
1228 | |
1229 | // Convert from the pseudo instruction to the concrete instruction. |
1230 | MI.removeOperand(OpNo: NumOps - 1); // Remove explicit ST(0) operand |
1231 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1232 | MI.addOperand( |
1233 | Op: MachineOperand::CreateReg(Reg: X86::ST0, /*isDef*/ false, /*isImp*/ true)); |
1234 | |
1235 | if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || |
1236 | MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || |
1237 | MI.getOpcode() == X86::ST_FP80m) { |
1238 | if (StackTop == 0) |
1239 | report_fatal_error(reason: "Stack empty??" ); |
1240 | --StackTop; |
1241 | } else if (KillsSrc) { // Last use of operand? |
1242 | popStackAfter(I); |
1243 | } |
1244 | |
1245 | MI.dropDebugNumber(); |
1246 | } |
1247 | |
1248 | |
1249 | /// handleOneArgFPRW: Handle instructions that read from the top of stack and |
1250 | /// replace the value with a newly computed value. These instructions may have |
1251 | /// non-fp operands after their FP operands. |
1252 | /// |
1253 | /// Examples: |
1254 | /// R1 = fchs R2 |
1255 | /// R1 = fadd R2, [mem] |
1256 | /// |
1257 | void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { |
1258 | MachineInstr &MI = *I; |
1259 | #ifndef NDEBUG |
1260 | unsigned NumOps = MI.getDesc().getNumOperands(); |
1261 | assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!" ); |
1262 | #endif |
1263 | |
1264 | // Is this the last use of the source register? |
1265 | unsigned Reg = getFPReg(MO: MI.getOperand(i: 1)); |
1266 | bool KillsSrc = MI.killsRegister(Reg: X86::FP0 + Reg, /*TRI=*/nullptr); |
1267 | |
1268 | if (KillsSrc) { |
1269 | // If this is the last use of the source register, just make sure it's on |
1270 | // the top of the stack. |
1271 | moveToTop(RegNo: Reg, I); |
1272 | if (StackTop == 0) |
1273 | report_fatal_error(reason: "Stack cannot be empty!" ); |
1274 | --StackTop; |
1275 | pushReg(Reg: getFPReg(MO: MI.getOperand(i: 0))); |
1276 | } else { |
1277 | // If this is not the last use of the source register, _copy_ it to the top |
1278 | // of the stack. |
1279 | duplicateToTop(RegNo: Reg, AsReg: getFPReg(MO: MI.getOperand(i: 0)), I); |
1280 | } |
1281 | |
1282 | // Change from the pseudo instruction to the concrete instruction. |
1283 | MI.removeOperand(OpNo: 1); // Drop the source operand. |
1284 | MI.removeOperand(OpNo: 0); // Drop the destination operand. |
1285 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1286 | MI.dropDebugNumber(); |
1287 | } |
1288 | |
1289 | |
1290 | //===----------------------------------------------------------------------===// |
1291 | // Define tables of various ways to map pseudo instructions |
1292 | // |
1293 | |
1294 | // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) |
1295 | static const TableEntry ForwardST0Table[] = { |
1296 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FST0r }, |
1297 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FST0r }, |
1298 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FST0r }, |
1299 | { .from: X86::DIV_Fp32 , .to: X86::DIV_FST0r }, |
1300 | { .from: X86::DIV_Fp64 , .to: X86::DIV_FST0r }, |
1301 | { .from: X86::DIV_Fp80 , .to: X86::DIV_FST0r }, |
1302 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FST0r }, |
1303 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FST0r }, |
1304 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FST0r }, |
1305 | { .from: X86::SUB_Fp32 , .to: X86::SUB_FST0r }, |
1306 | { .from: X86::SUB_Fp64 , .to: X86::SUB_FST0r }, |
1307 | { .from: X86::SUB_Fp80 , .to: X86::SUB_FST0r }, |
1308 | }; |
1309 | |
1310 | // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) |
1311 | static const TableEntry ReverseST0Table[] = { |
1312 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FST0r }, // commutative |
1313 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FST0r }, // commutative |
1314 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FST0r }, // commutative |
1315 | { .from: X86::DIV_Fp32 , .to: X86::DIVR_FST0r }, |
1316 | { .from: X86::DIV_Fp64 , .to: X86::DIVR_FST0r }, |
1317 | { .from: X86::DIV_Fp80 , .to: X86::DIVR_FST0r }, |
1318 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FST0r }, // commutative |
1319 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FST0r }, // commutative |
1320 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FST0r }, // commutative |
1321 | { .from: X86::SUB_Fp32 , .to: X86::SUBR_FST0r }, |
1322 | { .from: X86::SUB_Fp64 , .to: X86::SUBR_FST0r }, |
1323 | { .from: X86::SUB_Fp80 , .to: X86::SUBR_FST0r }, |
1324 | }; |
1325 | |
1326 | // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) |
1327 | static const TableEntry ForwardSTiTable[] = { |
1328 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FrST0 }, // commutative |
1329 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FrST0 }, // commutative |
1330 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FrST0 }, // commutative |
1331 | { .from: X86::DIV_Fp32 , .to: X86::DIVR_FrST0 }, |
1332 | { .from: X86::DIV_Fp64 , .to: X86::DIVR_FrST0 }, |
1333 | { .from: X86::DIV_Fp80 , .to: X86::DIVR_FrST0 }, |
1334 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FrST0 }, // commutative |
1335 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FrST0 }, // commutative |
1336 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FrST0 }, // commutative |
1337 | { .from: X86::SUB_Fp32 , .to: X86::SUBR_FrST0 }, |
1338 | { .from: X86::SUB_Fp64 , .to: X86::SUBR_FrST0 }, |
1339 | { .from: X86::SUB_Fp80 , .to: X86::SUBR_FrST0 }, |
1340 | }; |
1341 | |
1342 | // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) |
1343 | static const TableEntry ReverseSTiTable[] = { |
1344 | { .from: X86::ADD_Fp32 , .to: X86::ADD_FrST0 }, |
1345 | { .from: X86::ADD_Fp64 , .to: X86::ADD_FrST0 }, |
1346 | { .from: X86::ADD_Fp80 , .to: X86::ADD_FrST0 }, |
1347 | { .from: X86::DIV_Fp32 , .to: X86::DIV_FrST0 }, |
1348 | { .from: X86::DIV_Fp64 , .to: X86::DIV_FrST0 }, |
1349 | { .from: X86::DIV_Fp80 , .to: X86::DIV_FrST0 }, |
1350 | { .from: X86::MUL_Fp32 , .to: X86::MUL_FrST0 }, |
1351 | { .from: X86::MUL_Fp64 , .to: X86::MUL_FrST0 }, |
1352 | { .from: X86::MUL_Fp80 , .to: X86::MUL_FrST0 }, |
1353 | { .from: X86::SUB_Fp32 , .to: X86::SUB_FrST0 }, |
1354 | { .from: X86::SUB_Fp64 , .to: X86::SUB_FrST0 }, |
1355 | { .from: X86::SUB_Fp80 , .to: X86::SUB_FrST0 }, |
1356 | }; |
1357 | |
1358 | |
1359 | /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual |
1360 | /// instructions which need to be simplified and possibly transformed. |
1361 | /// |
1362 | /// Result: ST(0) = fsub ST(0), ST(i) |
1363 | /// ST(i) = fsub ST(0), ST(i) |
1364 | /// ST(0) = fsubr ST(0), ST(i) |
1365 | /// ST(i) = fsubr ST(0), ST(i) |
1366 | /// |
1367 | void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { |
1368 | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
1369 | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
1370 | MachineInstr &MI = *I; |
1371 | |
1372 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
1373 | assert(NumOperands == 3 && "Illegal TwoArgFP instruction!" ); |
1374 | unsigned Dest = getFPReg(MO: MI.getOperand(i: 0)); |
1375 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: NumOperands - 2)); |
1376 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: NumOperands - 1)); |
1377 | bool KillsOp0 = MI.killsRegister(Reg: X86::FP0 + Op0, /*TRI=*/nullptr); |
1378 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1379 | const DebugLoc &dl = MI.getDebugLoc(); |
1380 | |
1381 | unsigned TOS = getStackEntry(STi: 0); |
1382 | |
1383 | // One of our operands must be on the top of the stack. If neither is yet, we |
1384 | // need to move one. |
1385 | if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? |
1386 | // We can choose to move either operand to the top of the stack. If one of |
1387 | // the operands is killed by this instruction, we want that one so that we |
1388 | // can update right on top of the old version. |
1389 | if (KillsOp0) { |
1390 | moveToTop(RegNo: Op0, I); // Move dead operand to TOS. |
1391 | TOS = Op0; |
1392 | } else if (KillsOp1) { |
1393 | moveToTop(RegNo: Op1, I); |
1394 | TOS = Op1; |
1395 | } else { |
1396 | // All of the operands are live after this instruction executes, so we |
1397 | // cannot update on top of any operand. Because of this, we must |
1398 | // duplicate one of the stack elements to the top. It doesn't matter |
1399 | // which one we pick. |
1400 | // |
1401 | duplicateToTop(RegNo: Op0, AsReg: Dest, I); |
1402 | Op0 = TOS = Dest; |
1403 | KillsOp0 = true; |
1404 | } |
1405 | } else if (!KillsOp0 && !KillsOp1) { |
1406 | // If we DO have one of our operands at the top of the stack, but we don't |
1407 | // have a dead operand, we must duplicate one of the operands to a new slot |
1408 | // on the stack. |
1409 | duplicateToTop(RegNo: Op0, AsReg: Dest, I); |
1410 | Op0 = TOS = Dest; |
1411 | KillsOp0 = true; |
1412 | } |
1413 | |
1414 | // Now we know that one of our operands is on the top of the stack, and at |
1415 | // least one of our operands is killed by this instruction. |
1416 | assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && |
1417 | "Stack conditions not set up right!" ); |
1418 | |
1419 | // We decide which form to use based on what is on the top of the stack, and |
1420 | // which operand is killed by this instruction. |
1421 | ArrayRef<TableEntry> InstTable; |
1422 | bool isForward = TOS == Op0; |
1423 | bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); |
1424 | if (updateST0) { |
1425 | if (isForward) |
1426 | InstTable = ForwardST0Table; |
1427 | else |
1428 | InstTable = ReverseST0Table; |
1429 | } else { |
1430 | if (isForward) |
1431 | InstTable = ForwardSTiTable; |
1432 | else |
1433 | InstTable = ReverseSTiTable; |
1434 | } |
1435 | |
1436 | int Opcode = Lookup(Table: InstTable, Opcode: MI.getOpcode()); |
1437 | assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!" ); |
1438 | |
1439 | // NotTOS - The register which is not on the top of stack... |
1440 | unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; |
1441 | |
1442 | // Replace the old instruction with a new instruction |
1443 | MBB->remove(I: &*I++); |
1444 | I = BuildMI(BB&: *MBB, I, MIMD: dl, MCID: TII->get(Opcode)).addReg(RegNo: getSTReg(RegNo: NotTOS)); |
1445 | |
1446 | if (!MI.mayRaiseFPException()) |
1447 | I->setFlag(MachineInstr::MIFlag::NoFPExcept); |
1448 | |
1449 | // If both operands are killed, pop one off of the stack in addition to |
1450 | // overwriting the other one. |
1451 | if (KillsOp0 && KillsOp1 && Op0 != Op1) { |
1452 | assert(!updateST0 && "Should have updated other operand!" ); |
1453 | popStackAfter(I); // Pop the top of stack |
1454 | } |
1455 | |
1456 | // Update stack information so that we know the destination register is now on |
1457 | // the stack. |
1458 | unsigned UpdatedSlot = getSlot(RegNo: updateST0 ? TOS : NotTOS); |
1459 | assert(UpdatedSlot < StackTop && Dest < 7); |
1460 | Stack[UpdatedSlot] = Dest; |
1461 | RegMap[Dest] = UpdatedSlot; |
1462 | MBB->getParent()->deleteMachineInstr(MI: &MI); // Remove the old instruction |
1463 | } |
1464 | |
1465 | /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP |
1466 | /// register arguments and no explicit destinations. |
1467 | /// |
1468 | void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { |
1469 | MachineInstr &MI = *I; |
1470 | |
1471 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
1472 | assert(NumOperands == 2 && "Illegal FUCOM* instruction!" ); |
1473 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: NumOperands - 2)); |
1474 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: NumOperands - 1)); |
1475 | bool KillsOp0 = MI.killsRegister(Reg: X86::FP0 + Op0, /*TRI=*/nullptr); |
1476 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1477 | |
1478 | // Make sure the first operand is on the top of stack, the other one can be |
1479 | // anywhere. |
1480 | moveToTop(RegNo: Op0, I); |
1481 | |
1482 | // Change from the pseudo instruction to the concrete instruction. |
1483 | MI.getOperand(i: 0).setReg(getSTReg(RegNo: Op1)); |
1484 | MI.removeOperand(OpNo: 1); |
1485 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1486 | MI.dropDebugNumber(); |
1487 | |
1488 | // If any of the operands are killed by this instruction, free them. |
1489 | if (KillsOp0) freeStackSlotAfter(I, FPRegNo: Op0); |
1490 | if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, FPRegNo: Op1); |
1491 | } |
1492 | |
1493 | /// handleCondMovFP - Handle two address conditional move instructions. These |
1494 | /// instructions move a st(i) register to st(0) iff a condition is true. These |
1495 | /// instructions require that the first operand is at the top of the stack, but |
1496 | /// otherwise don't modify the stack at all. |
1497 | void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { |
1498 | MachineInstr &MI = *I; |
1499 | |
1500 | unsigned Op0 = getFPReg(MO: MI.getOperand(i: 0)); |
1501 | unsigned Op1 = getFPReg(MO: MI.getOperand(i: 2)); |
1502 | bool KillsOp1 = MI.killsRegister(Reg: X86::FP0 + Op1, /*TRI=*/nullptr); |
1503 | |
1504 | // The first operand *must* be on the top of the stack. |
1505 | moveToTop(RegNo: Op0, I); |
1506 | |
1507 | // Change the second operand to the stack register that the operand is in. |
1508 | // Change from the pseudo instruction to the concrete instruction. |
1509 | MI.removeOperand(OpNo: 0); |
1510 | MI.removeOperand(OpNo: 1); |
1511 | MI.getOperand(i: 0).setReg(getSTReg(RegNo: Op1)); |
1512 | MI.setDesc(TII->get(Opcode: getConcreteOpcode(Opcode: MI.getOpcode()))); |
1513 | MI.dropDebugNumber(); |
1514 | |
1515 | // If we kill the second operand, make sure to pop it from the stack. |
1516 | if (Op0 != Op1 && KillsOp1) { |
1517 | // Get this value off of the register stack. |
1518 | freeStackSlotAfter(I, FPRegNo: Op1); |
1519 | } |
1520 | } |
1521 | |
1522 | |
1523 | /// handleSpecialFP - Handle special instructions which behave unlike other |
1524 | /// floating point instructions. This is primarily intended for use by pseudo |
1525 | /// instructions. |
1526 | /// |
1527 | void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { |
1528 | MachineInstr &MI = *Inst; |
1529 | |
1530 | if (MI.isCall()) { |
1531 | handleCall(I&: Inst); |
1532 | return; |
1533 | } |
1534 | |
1535 | if (MI.isReturn()) { |
1536 | handleReturn(I&: Inst); |
1537 | return; |
1538 | } |
1539 | |
1540 | switch (MI.getOpcode()) { |
1541 | default: llvm_unreachable("Unknown SpecialFP instruction!" ); |
1542 | case TargetOpcode::COPY: { |
1543 | // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. |
1544 | const MachineOperand &MO1 = MI.getOperand(i: 1); |
1545 | const MachineOperand &MO0 = MI.getOperand(i: 0); |
1546 | bool KillsSrc = MI.killsRegister(Reg: MO1.getReg(), /*TRI=*/nullptr); |
1547 | |
1548 | // FP <- FP copy. |
1549 | unsigned DstFP = getFPReg(MO: MO0); |
1550 | unsigned SrcFP = getFPReg(MO: MO1); |
1551 | assert(isLive(SrcFP) && "Cannot copy dead register" ); |
1552 | if (KillsSrc) { |
1553 | // If the input operand is killed, we can just change the owner of the |
1554 | // incoming stack slot into the result. |
1555 | unsigned Slot = getSlot(RegNo: SrcFP); |
1556 | Stack[Slot] = DstFP; |
1557 | RegMap[DstFP] = Slot; |
1558 | } else { |
1559 | // For COPY we just duplicate the specified value to a new stack slot. |
1560 | // This could be made better, but would require substantial changes. |
1561 | duplicateToTop(RegNo: SrcFP, AsReg: DstFP, I: Inst); |
1562 | } |
1563 | break; |
1564 | } |
1565 | |
1566 | case TargetOpcode::IMPLICIT_DEF: { |
1567 | // All FP registers must be explicitly defined, so load a 0 instead. |
1568 | unsigned Reg = MI.getOperand(i: 0).getReg() - X86::FP0; |
1569 | LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); |
1570 | BuildMI(BB&: *MBB, I: Inst, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: X86::LD_F0)); |
1571 | pushReg(Reg); |
1572 | break; |
1573 | } |
1574 | |
1575 | case TargetOpcode::INLINEASM: |
1576 | case TargetOpcode::INLINEASM_BR: { |
1577 | // The inline asm MachineInstr currently only *uses* FP registers for the |
1578 | // 'f' constraint. These should be turned into the current ST(x) register |
1579 | // in the machine instr. |
1580 | // |
1581 | // There are special rules for x87 inline assembly. The compiler must know |
1582 | // exactly how many registers are popped and pushed implicitly by the asm. |
1583 | // Otherwise it is not possible to restore the stack state after the inline |
1584 | // asm. |
1585 | // |
1586 | // There are 3 kinds of input operands: |
1587 | // |
1588 | // 1. Popped inputs. These must appear at the stack top in ST0-STn. A |
1589 | // popped input operand must be in a fixed stack slot, and it is either |
1590 | // tied to an output operand, or in the clobber list. The MI has ST use |
1591 | // and def operands for these inputs. |
1592 | // |
1593 | // 2. Fixed inputs. These inputs appear in fixed stack slots, but are |
1594 | // preserved by the inline asm. The fixed stack slots must be STn-STm |
1595 | // following the popped inputs. A fixed input operand cannot be tied to |
1596 | // an output or appear in the clobber list. The MI has ST use operands |
1597 | // and no defs for these inputs. |
1598 | // |
1599 | // 3. Preserved inputs. These inputs use the "f" constraint which is |
1600 | // represented as an FP register. The inline asm won't change these |
1601 | // stack slots. |
1602 | // |
1603 | // Outputs must be in ST registers, FP outputs are not allowed. Clobbered |
1604 | // registers do not count as output operands. The inline asm changes the |
1605 | // stack as if it popped all the popped inputs and then pushed all the |
1606 | // output operands. |
1607 | |
1608 | // Scan the assembly for ST registers used, defined and clobbered. We can |
1609 | // only tell clobbers from defs by looking at the asm descriptor. |
1610 | unsigned STUses = 0, STDefs = 0, STClobbers = 0; |
1611 | unsigned NumOps = 0; |
1612 | SmallSet<unsigned, 1> FRegIdx; |
1613 | unsigned RCID; |
1614 | |
1615 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); |
1616 | i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { |
1617 | unsigned Flags = MI.getOperand(i).getImm(); |
1618 | const InlineAsm::Flag F(Flags); |
1619 | |
1620 | NumOps = F.getNumOperandRegisters(); |
1621 | if (NumOps != 1) |
1622 | continue; |
1623 | const MachineOperand &MO = MI.getOperand(i: i + 1); |
1624 | if (!MO.isReg()) |
1625 | continue; |
1626 | unsigned STReg = MO.getReg() - X86::FP0; |
1627 | if (STReg >= 8) |
1628 | continue; |
1629 | |
1630 | // If the flag has a register class constraint, this must be an operand |
1631 | // with constraint "f". Record its index and continue. |
1632 | if (F.hasRegClassConstraint(RC&: RCID)) { |
1633 | FRegIdx.insert(V: i + 1); |
1634 | continue; |
1635 | } |
1636 | |
1637 | switch (F.getKind()) { |
1638 | case InlineAsm::Kind::RegUse: |
1639 | STUses |= (1u << STReg); |
1640 | break; |
1641 | case InlineAsm::Kind::RegDef: |
1642 | case InlineAsm::Kind::RegDefEarlyClobber: |
1643 | STDefs |= (1u << STReg); |
1644 | break; |
1645 | case InlineAsm::Kind::Clobber: |
1646 | STClobbers |= (1u << STReg); |
1647 | break; |
1648 | default: |
1649 | break; |
1650 | } |
1651 | } |
1652 | |
1653 | if (STUses && !isMask_32(Value: STUses)) |
1654 | MI.emitGenericError(ErrMsg: "fixed input regs must be last on the x87 stack" ); |
1655 | unsigned NumSTUses = llvm::countr_one(Value: STUses); |
1656 | |
1657 | // Defs must be contiguous from the stack top. ST0-STn. |
1658 | if (STDefs && !isMask_32(Value: STDefs)) { |
1659 | MI.emitGenericError(ErrMsg: "output regs must be last on the x87 stack" ); |
1660 | STDefs = NextPowerOf2(A: STDefs) - 1; |
1661 | } |
1662 | unsigned NumSTDefs = llvm::countr_one(Value: STDefs); |
1663 | |
1664 | // So must the clobbered stack slots. ST0-STm, m >= n. |
1665 | if (STClobbers && !isMask_32(Value: STDefs | STClobbers)) |
1666 | MI.emitGenericError(ErrMsg: "clobbers must be last on the x87 stack" ); |
1667 | |
1668 | // Popped inputs are the ones that are also clobbered or defined. |
1669 | unsigned STPopped = STUses & (STDefs | STClobbers); |
1670 | if (STPopped && !isMask_32(Value: STPopped)) |
1671 | MI.emitGenericError( |
1672 | ErrMsg: "implicitly popped regs must be last on the x87 stack" ); |
1673 | unsigned NumSTPopped = llvm::countr_one(Value: STPopped); |
1674 | |
1675 | LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " |
1676 | << NumSTPopped << ", and defines " << NumSTDefs |
1677 | << " regs.\n" ); |
1678 | |
1679 | #ifndef NDEBUG |
1680 | // If any input operand uses constraint "f", all output register |
1681 | // constraints must be early-clobber defs. |
1682 | for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) |
1683 | if (FRegIdx.count(I)) { |
1684 | assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && |
1685 | "Operands with constraint \"f\" cannot overlap with defs" ); |
1686 | } |
1687 | #endif |
1688 | |
1689 | // Collect all FP registers (register operands with constraints "t", "u", |
1690 | // and "f") to kill afer the instruction. |
1691 | unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; |
1692 | for (const MachineOperand &Op : MI.operands()) { |
1693 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1694 | continue; |
1695 | unsigned FPReg = getFPReg(MO: Op); |
1696 | |
1697 | // If we kill this operand, make sure to pop it from the stack after the |
1698 | // asm. We just remember it for now, and pop them all off at the end in |
1699 | // a batch. |
1700 | if (Op.isUse() && Op.isKill()) |
1701 | FPKills |= 1U << FPReg; |
1702 | } |
1703 | |
1704 | // Do not include registers that are implicitly popped by defs/clobbers. |
1705 | FPKills &= ~(STDefs | STClobbers); |
1706 | |
1707 | // Now we can rearrange the live registers to match what was requested. |
1708 | unsigned char STUsesArray[8]; |
1709 | |
1710 | for (unsigned I = 0; I < NumSTUses; ++I) |
1711 | STUsesArray[I] = I; |
1712 | |
1713 | shuffleStackTop(FixStack: STUsesArray, FixCount: NumSTUses, I: Inst); |
1714 | LLVM_DEBUG({ |
1715 | dbgs() << "Before asm: " ; |
1716 | dumpStack(); |
1717 | }); |
1718 | |
1719 | // With the stack layout fixed, rewrite the FP registers. |
1720 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1721 | MachineOperand &Op = MI.getOperand(i); |
1722 | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
1723 | continue; |
1724 | |
1725 | unsigned FPReg = getFPReg(MO: Op); |
1726 | |
1727 | if (FRegIdx.count(V: i)) |
1728 | // Operand with constraint "f". |
1729 | Op.setReg(getSTReg(RegNo: FPReg)); |
1730 | else |
1731 | // Operand with a single register class constraint ("t" or "u"). |
1732 | Op.setReg(X86::ST0 + FPReg); |
1733 | } |
1734 | |
1735 | // Simulate the inline asm popping its inputs and pushing its outputs. |
1736 | StackTop -= NumSTPopped; |
1737 | |
1738 | for (unsigned i = 0; i < NumSTDefs; ++i) |
1739 | pushReg(Reg: NumSTDefs - i - 1); |
1740 | |
1741 | // If this asm kills any FP registers (is the last use of them) we must |
1742 | // explicitly emit pop instructions for them. Do this now after the asm has |
1743 | // executed so that the ST(x) numbers are not off (which would happen if we |
1744 | // did this inline with operand rewriting). |
1745 | // |
1746 | // Note: this might be a non-optimal pop sequence. We might be able to do |
1747 | // better by trying to pop in stack order or something. |
1748 | while (FPKills) { |
1749 | unsigned FPReg = llvm::countr_zero(Val: FPKills); |
1750 | if (isLive(RegNo: FPReg)) |
1751 | freeStackSlotAfter(I&: Inst, FPRegNo: FPReg); |
1752 | FPKills &= ~(1U << FPReg); |
1753 | } |
1754 | |
1755 | // Don't delete the inline asm! |
1756 | return; |
1757 | } |
1758 | |
1759 | // FAKE_USE must pop its register operand off the stack if it is killed, |
1760 | // because this constitutes the register's last use. If the operand |
1761 | // is not killed, it will have its last use later, so we leave it alone. |
1762 | // In either case we remove the operand so later passes don't see it. |
1763 | case TargetOpcode::FAKE_USE: { |
1764 | assert(MI.getNumExplicitOperands() == 1 && |
1765 | "FAKE_USE must have exactly one operand" ); |
1766 | if (MI.getOperand(i: 0).isKill()) { |
1767 | freeStackSlotBefore(I: Inst, FPRegNo: getFPReg(MO: MI.getOperand(i: 0))); |
1768 | } |
1769 | MI.removeOperand(OpNo: 0); |
1770 | return; |
1771 | } |
1772 | } |
1773 | |
1774 | Inst = MBB->erase(I: Inst); // Remove the pseudo instruction |
1775 | |
1776 | // We want to leave I pointing to the previous instruction, but what if we |
1777 | // just erased the first instruction? |
1778 | if (Inst == MBB->begin()) { |
1779 | LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n" ); |
1780 | Inst = BuildMI(BB&: *MBB, I: Inst, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::KILL)); |
1781 | } else |
1782 | --Inst; |
1783 | } |
1784 | |
1785 | void FPS::setKillFlags(MachineBasicBlock &MBB) const { |
1786 | const TargetRegisterInfo &TRI = |
1787 | *MBB.getParent()->getSubtarget().getRegisterInfo(); |
1788 | LiveRegUnits LPR(TRI); |
1789 | |
1790 | LPR.addLiveOuts(MBB); |
1791 | |
1792 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
1793 | if (MI.isDebugInstr()) |
1794 | continue; |
1795 | |
1796 | std::bitset<8> Defs; |
1797 | SmallVector<MachineOperand *, 2> Uses; |
1798 | |
1799 | for (auto &MO : MI.operands()) { |
1800 | if (!MO.isReg()) |
1801 | continue; |
1802 | |
1803 | unsigned Reg = MO.getReg() - X86::FP0; |
1804 | |
1805 | if (Reg >= 8) |
1806 | continue; |
1807 | |
1808 | if (MO.isDef()) { |
1809 | Defs.set(position: Reg); |
1810 | if (LPR.available(Reg: MO.getReg())) |
1811 | MO.setIsDead(); |
1812 | } else |
1813 | Uses.push_back(Elt: &MO); |
1814 | } |
1815 | |
1816 | for (auto *MO : Uses) |
1817 | if (Defs.test(position: getFPReg(MO: *MO)) || LPR.available(Reg: MO->getReg())) |
1818 | MO->setIsKill(); |
1819 | |
1820 | LPR.stepBackward(MI); |
1821 | } |
1822 | } |
1823 | |