| 1 | //=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// Post-legalization lowering for instructions. |
| 11 | /// |
| 12 | /// This is used to offload pattern matching from the selector. |
| 13 | /// |
| 14 | /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually |
| 15 | /// a G_ZIP, G_UZP, etc. |
| 16 | /// |
| 17 | /// General optimization combines should be handled by either the |
| 18 | /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner. |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "AArch64ExpandImm.h" |
| 23 | #include "AArch64GlobalISelUtils.h" |
| 24 | #include "AArch64PerfectShuffle.h" |
| 25 | #include "AArch64Subtarget.h" |
| 26 | #include "GISel/AArch64LegalizerInfo.h" |
| 27 | #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| 28 | #include "Utils/AArch64BaseInfo.h" |
| 29 | #include "llvm/CodeGen/GlobalISel/Combiner.h" |
| 30 | #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" |
| 31 | #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" |
| 32 | #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" |
| 33 | #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" |
| 34 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 35 | #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| 36 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| 37 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 38 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 39 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 40 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 41 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 43 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 44 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 45 | #include "llvm/IR/InstrTypes.h" |
| 46 | #include "llvm/Support/ErrorHandling.h" |
| 47 | #include <optional> |
| 48 | |
| 49 | #define GET_GICOMBINER_DEPS |
| 50 | #include "AArch64GenPostLegalizeGILowering.inc" |
| 51 | #undef GET_GICOMBINER_DEPS |
| 52 | |
| 53 | #define DEBUG_TYPE "aarch64-postlegalizer-lowering" |
| 54 | |
| 55 | using namespace llvm; |
| 56 | using namespace MIPatternMatch; |
| 57 | using namespace AArch64GISelUtils; |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | #define GET_GICOMBINER_TYPES |
| 62 | #include "AArch64GenPostLegalizeGILowering.inc" |
| 63 | #undef GET_GICOMBINER_TYPES |
| 64 | |
| 65 | /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR. |
| 66 | /// |
| 67 | /// Used for matching target-supported shuffles before codegen. |
| 68 | struct ShuffleVectorPseudo { |
| 69 | unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1) |
| 70 | Register Dst; ///< Destination register. |
| 71 | SmallVector<SrcOp, 2> SrcOps; ///< Source registers. |
| 72 | ShuffleVectorPseudo(unsigned Opc, Register Dst, |
| 73 | std::initializer_list<SrcOp> SrcOps) |
| 74 | : Opc(Opc), Dst(Dst), SrcOps(SrcOps){}; |
| 75 | ShuffleVectorPseudo() = default; |
| 76 | }; |
| 77 | |
| 78 | /// Return true if a G_FCONSTANT instruction is known to be better-represented |
| 79 | /// as a G_CONSTANT. |
| 80 | bool matchFConstantToConstant(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 81 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); |
| 82 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 83 | const unsigned DstSize = MRI.getType(Reg: DstReg).getSizeInBits(); |
| 84 | if (DstSize != 16 && DstSize != 32 && DstSize != 64) |
| 85 | return false; |
| 86 | |
| 87 | // When we're storing a value, it doesn't matter what register bank it's on. |
| 88 | // Since not all floating point constants can be materialized using a fmov, |
| 89 | // it makes more sense to just use a GPR. |
| 90 | return all_of(Range: MRI.use_nodbg_instructions(Reg: DstReg), |
| 91 | P: [](const MachineInstr &Use) { return Use.mayStore(); }); |
| 92 | } |
| 93 | |
| 94 | /// Change a G_FCONSTANT into a G_CONSTANT. |
| 95 | void applyFConstantToConstant(MachineInstr &MI) { |
| 96 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); |
| 97 | MachineIRBuilder MIB(MI); |
| 98 | const APFloat &ImmValAPF = MI.getOperand(i: 1).getFPImm()->getValueAPF(); |
| 99 | MIB.buildConstant(Res: MI.getOperand(i: 0).getReg(), Val: ImmValAPF.bitcastToAPInt()); |
| 100 | MI.eraseFromParent(); |
| 101 | } |
| 102 | |
| 103 | /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector |
| 104 | /// sources of the shuffle are different. |
| 105 | std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M, |
| 106 | unsigned NumElts) { |
| 107 | // Look for the first non-undef element. |
| 108 | auto FirstRealElt = find_if(Range&: M, P: [](int Elt) { return Elt >= 0; }); |
| 109 | if (FirstRealElt == M.end()) |
| 110 | return std::nullopt; |
| 111 | |
| 112 | // Use APInt to handle overflow when calculating expected element. |
| 113 | unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); |
| 114 | APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1, false, true); |
| 115 | |
| 116 | // The following shuffle indices must be the successive elements after the |
| 117 | // first real element. |
| 118 | if (any_of( |
| 119 | Range: make_range(x: std::next(x: FirstRealElt), y: M.end()), |
| 120 | P: [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; })) |
| 121 | return std::nullopt; |
| 122 | |
| 123 | // The index of an EXT is the first element if it is not UNDEF. |
| 124 | // Watch out for the beginning UNDEFs. The EXT index should be the expected |
| 125 | // value of the first element. E.g. |
| 126 | // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. |
| 127 | // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. |
| 128 | // ExpectedElt is the last mask index plus 1. |
| 129 | uint64_t Imm = ExpectedElt.getZExtValue(); |
| 130 | bool ReverseExt = false; |
| 131 | |
| 132 | // There are two difference cases requiring to reverse input vectors. |
| 133 | // For example, for vector <4 x i32> we have the following cases, |
| 134 | // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) |
| 135 | // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) |
| 136 | // For both cases, we finally use mask <5, 6, 7, 0>, which requires |
| 137 | // to reverse two input vectors. |
| 138 | if (Imm < NumElts) |
| 139 | ReverseExt = true; |
| 140 | else |
| 141 | Imm -= NumElts; |
| 142 | return std::make_pair(x&: ReverseExt, y&: Imm); |
| 143 | } |
| 144 | |
| 145 | /// Helper function for matchINS. |
| 146 | /// |
| 147 | /// \returns a value when \p M is an ins mask for \p NumInputElements. |
| 148 | /// |
| 149 | /// First element of the returned pair is true when the produced |
| 150 | /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR. |
| 151 | /// |
| 152 | /// Second element is the destination lane for the G_INSERT_VECTOR_ELT. |
| 153 | std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M, |
| 154 | int NumInputElements) { |
| 155 | if (M.size() != static_cast<size_t>(NumInputElements)) |
| 156 | return std::nullopt; |
| 157 | int NumLHSMatch = 0, NumRHSMatch = 0; |
| 158 | int LastLHSMismatch = -1, LastRHSMismatch = -1; |
| 159 | for (int Idx = 0; Idx < NumInputElements; ++Idx) { |
| 160 | if (M[Idx] == -1) { |
| 161 | ++NumLHSMatch; |
| 162 | ++NumRHSMatch; |
| 163 | continue; |
| 164 | } |
| 165 | M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx; |
| 166 | M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx; |
| 167 | } |
| 168 | const int NumNeededToMatch = NumInputElements - 1; |
| 169 | if (NumLHSMatch == NumNeededToMatch) |
| 170 | return std::make_pair(x: true, y&: LastLHSMismatch); |
| 171 | if (NumRHSMatch == NumNeededToMatch) |
| 172 | return std::make_pair(x: false, y&: LastRHSMismatch); |
| 173 | return std::nullopt; |
| 174 | } |
| 175 | |
| 176 | /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a |
| 177 | /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc. |
| 178 | bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 179 | ShuffleVectorPseudo &MatchInfo) { |
| 180 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 181 | ArrayRef<int> ShuffleMask = MI.getOperand(i: 3).getShuffleMask(); |
| 182 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 183 | Register Src = MI.getOperand(i: 1).getReg(); |
| 184 | LLT Ty = MRI.getType(Reg: Dst); |
| 185 | unsigned EltSize = Ty.getScalarSizeInBits(); |
| 186 | |
| 187 | // Element size for a rev cannot be 64. |
| 188 | if (EltSize == 64) |
| 189 | return false; |
| 190 | |
| 191 | unsigned NumElts = Ty.getNumElements(); |
| 192 | |
| 193 | // Try to produce a G_REV instruction |
| 194 | for (unsigned LaneSize : {64U, 32U, 16U}) { |
| 195 | if (isREVMask(M: ShuffleMask, EltSize, NumElts, BlockSize: LaneSize)) { |
| 196 | unsigned Opcode; |
| 197 | if (LaneSize == 64U) |
| 198 | Opcode = AArch64::G_REV64; |
| 199 | else if (LaneSize == 32U) |
| 200 | Opcode = AArch64::G_REV32; |
| 201 | else |
| 202 | Opcode = AArch64::G_REV16; |
| 203 | |
| 204 | MatchInfo = ShuffleVectorPseudo(Opcode, Dst, {Src}); |
| 205 | return true; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | return false; |
| 210 | } |
| 211 | |
| 212 | /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with |
| 213 | /// a G_TRN1 or G_TRN2 instruction. |
| 214 | bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 215 | ShuffleVectorPseudo &MatchInfo) { |
| 216 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 217 | unsigned WhichResult; |
| 218 | unsigned OperandOrder; |
| 219 | ArrayRef<int> ShuffleMask = MI.getOperand(i: 3).getShuffleMask(); |
| 220 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 221 | unsigned NumElts = MRI.getType(Reg: Dst).getNumElements(); |
| 222 | if (!isTRNMask(M: ShuffleMask, NumElts, WhichResultOut&: WhichResult, OperandOrderOut&: OperandOrder)) |
| 223 | return false; |
| 224 | unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2; |
| 225 | Register V1 = MI.getOperand(i: OperandOrder == 0 ? 1 : 2).getReg(); |
| 226 | Register V2 = MI.getOperand(i: OperandOrder == 0 ? 2 : 1).getReg(); |
| 227 | MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with |
| 232 | /// a G_UZP1 or G_UZP2 instruction. |
| 233 | /// |
| 234 | /// \param [in] MI - The shuffle vector instruction. |
| 235 | /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success. |
| 236 | bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 237 | ShuffleVectorPseudo &MatchInfo) { |
| 238 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 239 | unsigned WhichResult; |
| 240 | ArrayRef<int> ShuffleMask = MI.getOperand(i: 3).getShuffleMask(); |
| 241 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 242 | unsigned NumElts = MRI.getType(Reg: Dst).getNumElements(); |
| 243 | if (!isUZPMask(M: ShuffleMask, NumElts, WhichResultOut&: WhichResult)) |
| 244 | return false; |
| 245 | unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2; |
| 246 | Register V1 = MI.getOperand(i: 1).getReg(); |
| 247 | Register V2 = MI.getOperand(i: 2).getReg(); |
| 248 | MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); |
| 249 | return true; |
| 250 | } |
| 251 | |
| 252 | bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 253 | ShuffleVectorPseudo &MatchInfo) { |
| 254 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 255 | unsigned WhichResult; |
| 256 | unsigned OperandOrder; |
| 257 | ArrayRef<int> ShuffleMask = MI.getOperand(i: 3).getShuffleMask(); |
| 258 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 259 | unsigned NumElts = MRI.getType(Reg: Dst).getNumElements(); |
| 260 | if (!isZIPMask(M: ShuffleMask, NumElts, WhichResultOut&: WhichResult, OperandOrderOut&: OperandOrder)) |
| 261 | return false; |
| 262 | unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2; |
| 263 | Register V1 = MI.getOperand(i: OperandOrder == 0 ? 1 : 2).getReg(); |
| 264 | Register V2 = MI.getOperand(i: OperandOrder == 0 ? 2 : 1).getReg(); |
| 265 | MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); |
| 266 | return true; |
| 267 | } |
| 268 | |
| 269 | /// Helper function for matchDup. |
| 270 | bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI, |
| 271 | MachineRegisterInfo &MRI, |
| 272 | ShuffleVectorPseudo &MatchInfo) { |
| 273 | if (Lane != 0) |
| 274 | return false; |
| 275 | |
| 276 | // Try to match a vector splat operation into a dup instruction. |
| 277 | // We're looking for this pattern: |
| 278 | // |
| 279 | // %scalar:gpr(s64) = COPY $x0 |
| 280 | // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF |
| 281 | // %cst0:gpr(s32) = G_CONSTANT i32 0 |
| 282 | // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32) |
| 283 | // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32) |
| 284 | // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, |
| 285 | // %zerovec(<2 x s32>) |
| 286 | // |
| 287 | // ...into: |
| 288 | // %splat = G_DUP %scalar |
| 289 | |
| 290 | // Begin matching the insert. |
| 291 | auto *InsMI = getOpcodeDef(Opcode: TargetOpcode::G_INSERT_VECTOR_ELT, |
| 292 | Reg: MI.getOperand(i: 1).getReg(), MRI); |
| 293 | if (!InsMI) |
| 294 | return false; |
| 295 | // Match the undef vector operand. |
| 296 | if (!getOpcodeDef(Opcode: TargetOpcode::G_IMPLICIT_DEF, Reg: InsMI->getOperand(i: 1).getReg(), |
| 297 | MRI)) |
| 298 | return false; |
| 299 | |
| 300 | // Match the index constant 0. |
| 301 | if (!mi_match(R: InsMI->getOperand(i: 3).getReg(), MRI, P: m_ZeroInt())) |
| 302 | return false; |
| 303 | |
| 304 | MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(i: 0).getReg(), |
| 305 | {InsMI->getOperand(i: 2).getReg()}); |
| 306 | return true; |
| 307 | } |
| 308 | |
| 309 | /// Helper function for matchDup. |
| 310 | bool matchDupFromBuildVector(int Lane, MachineInstr &MI, |
| 311 | MachineRegisterInfo &MRI, |
| 312 | ShuffleVectorPseudo &MatchInfo) { |
| 313 | assert(Lane >= 0 && "Expected positive lane?" ); |
| 314 | int NumElements = MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getNumElements(); |
| 315 | // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the |
| 316 | // lane's definition directly. |
| 317 | auto *BuildVecMI = |
| 318 | getOpcodeDef(Opcode: TargetOpcode::G_BUILD_VECTOR, |
| 319 | Reg: MI.getOperand(i: Lane < NumElements ? 1 : 2).getReg(), MRI); |
| 320 | // If Lane >= NumElements then it is point to RHS, just check from RHS |
| 321 | if (NumElements <= Lane) |
| 322 | Lane -= NumElements; |
| 323 | |
| 324 | if (!BuildVecMI) |
| 325 | return false; |
| 326 | Register Reg = BuildVecMI->getOperand(i: Lane + 1).getReg(); |
| 327 | MatchInfo = |
| 328 | ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(i: 0).getReg(), {Reg}); |
| 329 | return true; |
| 330 | } |
| 331 | |
| 332 | bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 333 | ShuffleVectorPseudo &MatchInfo) { |
| 334 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 335 | auto MaybeLane = getSplatIndex(MI); |
| 336 | if (!MaybeLane) |
| 337 | return false; |
| 338 | int Lane = *MaybeLane; |
| 339 | // If this is undef splat, generate it via "just" vdup, if possible. |
| 340 | if (Lane < 0) |
| 341 | Lane = 0; |
| 342 | if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo)) |
| 343 | return true; |
| 344 | if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo)) |
| 345 | return true; |
| 346 | return false; |
| 347 | } |
| 348 | |
| 349 | // Check if an EXT instruction can handle the shuffle mask when the vector |
| 350 | // sources of the shuffle are the same. |
| 351 | bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) { |
| 352 | unsigned NumElts = Ty.getNumElements(); |
| 353 | |
| 354 | // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| 355 | if (M[0] < 0) |
| 356 | return false; |
| 357 | |
| 358 | // If this is a VEXT shuffle, the immediate value is the index of the first |
| 359 | // element. The other shuffle indices must be the successive elements after |
| 360 | // the first one. |
| 361 | unsigned ExpectedElt = M[0]; |
| 362 | for (unsigned I = 1; I < NumElts; ++I) { |
| 363 | // Increment the expected index. If it wraps around, just follow it |
| 364 | // back to index zero and keep going. |
| 365 | ++ExpectedElt; |
| 366 | if (ExpectedElt == NumElts) |
| 367 | ExpectedElt = 0; |
| 368 | |
| 369 | if (M[I] < 0) |
| 370 | continue; // Ignore UNDEF indices. |
| 371 | if (ExpectedElt != static_cast<unsigned>(M[I])) |
| 372 | return false; |
| 373 | } |
| 374 | |
| 375 | return true; |
| 376 | } |
| 377 | |
| 378 | bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 379 | ShuffleVectorPseudo &MatchInfo) { |
| 380 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 381 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 382 | LLT DstTy = MRI.getType(Reg: Dst); |
| 383 | Register V1 = MI.getOperand(i: 1).getReg(); |
| 384 | Register V2 = MI.getOperand(i: 2).getReg(); |
| 385 | auto Mask = MI.getOperand(i: 3).getShuffleMask(); |
| 386 | uint64_t Imm; |
| 387 | auto ExtInfo = getExtMask(M: Mask, NumElts: DstTy.getNumElements()); |
| 388 | uint64_t ExtFactor = MRI.getType(Reg: V1).getScalarSizeInBits() / 8; |
| 389 | |
| 390 | if (!ExtInfo) { |
| 391 | if (!getOpcodeDef<GImplicitDef>(Reg: V2, MRI) || |
| 392 | !isSingletonExtMask(M: Mask, Ty: DstTy)) |
| 393 | return false; |
| 394 | |
| 395 | Imm = Mask[0] * ExtFactor; |
| 396 | MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm}); |
| 397 | return true; |
| 398 | } |
| 399 | bool ReverseExt; |
| 400 | std::tie(args&: ReverseExt, args&: Imm) = *ExtInfo; |
| 401 | if (ReverseExt) |
| 402 | std::swap(a&: V1, b&: V2); |
| 403 | Imm *= ExtFactor; |
| 404 | MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm}); |
| 405 | return true; |
| 406 | } |
| 407 | |
| 408 | /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo. |
| 409 | /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR. |
| 410 | void applyShuffleVectorPseudo(MachineInstr &MI, |
| 411 | ShuffleVectorPseudo &MatchInfo) { |
| 412 | MachineIRBuilder MIRBuilder(MI); |
| 413 | MIRBuilder.buildInstr(Opc: MatchInfo.Opc, DstOps: {MatchInfo.Dst}, SrcOps: MatchInfo.SrcOps); |
| 414 | MI.eraseFromParent(); |
| 415 | } |
| 416 | |
| 417 | /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT. |
| 418 | /// Special-cased because the constant operand must be emitted as a G_CONSTANT |
| 419 | /// for the imported tablegen patterns to work. |
| 420 | void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { |
| 421 | MachineIRBuilder MIRBuilder(MI); |
| 422 | if (MatchInfo.SrcOps[2].getImm() == 0) |
| 423 | MIRBuilder.buildCopy(Res: MatchInfo.Dst, Op: MatchInfo.SrcOps[0]); |
| 424 | else { |
| 425 | // Tablegen patterns expect an i32 G_CONSTANT as the final op. |
| 426 | auto Cst = |
| 427 | MIRBuilder.buildConstant(Res: LLT::scalar(SizeInBits: 32), Val: MatchInfo.SrcOps[2].getImm()); |
| 428 | MIRBuilder.buildInstr(Opc: MatchInfo.Opc, DstOps: {MatchInfo.Dst}, |
| 429 | SrcOps: {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst}); |
| 430 | } |
| 431 | MI.eraseFromParent(); |
| 432 | } |
| 433 | |
| 434 | void applyFullRev(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 435 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 436 | Register Src = MI.getOperand(i: 1).getReg(); |
| 437 | LLT DstTy = MRI.getType(Reg: Dst); |
| 438 | assert(DstTy.getSizeInBits() == 128 && |
| 439 | "Expected 128bit vector in applyFullRev" ); |
| 440 | MachineIRBuilder MIRBuilder(MI); |
| 441 | auto Cst = MIRBuilder.buildConstant(Res: LLT::scalar(SizeInBits: 32), Val: 8); |
| 442 | auto Rev = MIRBuilder.buildInstr(Opc: AArch64::G_REV64, DstOps: {DstTy}, SrcOps: {Src}); |
| 443 | MIRBuilder.buildInstr(Opc: AArch64::G_EXT, DstOps: {Dst}, SrcOps: {Rev, Rev, Cst}); |
| 444 | MI.eraseFromParent(); |
| 445 | } |
| 446 | |
| 447 | bool matchNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 448 | assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT); |
| 449 | |
| 450 | auto ValAndVReg = |
| 451 | getIConstantVRegValWithLookThrough(VReg: MI.getOperand(i: 3).getReg(), MRI); |
| 452 | return !ValAndVReg; |
| 453 | } |
| 454 | |
| 455 | void applyNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 456 | MachineIRBuilder &Builder) { |
| 457 | auto &Insert = cast<GInsertVectorElement>(Val&: MI); |
| 458 | Builder.setInstrAndDebugLoc(Insert); |
| 459 | |
| 460 | Register Offset = Insert.getIndexReg(); |
| 461 | LLT VecTy = MRI.getType(Reg: Insert.getReg(Idx: 0)); |
| 462 | LLT EltTy = MRI.getType(Reg: Insert.getElementReg()); |
| 463 | LLT IdxTy = MRI.getType(Reg: Insert.getIndexReg()); |
| 464 | |
| 465 | if (VecTy.isScalableVector()) |
| 466 | return; |
| 467 | |
| 468 | // Create a stack slot and store the vector into it |
| 469 | MachineFunction &MF = Builder.getMF(); |
| 470 | Align Alignment( |
| 471 | std::min<uint64_t>(a: VecTy.getSizeInBytes().getKnownMinValue(), b: 16)); |
| 472 | int FrameIdx = MF.getFrameInfo().CreateStackObject(Size: VecTy.getSizeInBytes(), |
| 473 | Alignment, isSpillSlot: false); |
| 474 | LLT FramePtrTy = LLT::pointer(AddressSpace: 0, SizeInBits: 64); |
| 475 | MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI: FrameIdx); |
| 476 | auto StackTemp = Builder.buildFrameIndex(Res: FramePtrTy, Idx: FrameIdx); |
| 477 | |
| 478 | Builder.buildStore(Val: Insert.getOperand(i: 1), Addr: StackTemp, PtrInfo, Alignment: Align(8)); |
| 479 | |
| 480 | // Get the pointer to the element, and be sure not to hit undefined behavior |
| 481 | // if the index is out of bounds. |
| 482 | assert(isPowerOf2_64(VecTy.getNumElements()) && |
| 483 | "Expected a power-2 vector size" ); |
| 484 | auto Mask = Builder.buildConstant(Res: IdxTy, Val: VecTy.getNumElements() - 1); |
| 485 | Register And = Builder.buildAnd(Dst: IdxTy, Src0: Offset, Src1: Mask).getReg(Idx: 0); |
| 486 | auto EltSize = Builder.buildConstant(Res: IdxTy, Val: EltTy.getSizeInBytes()); |
| 487 | Register Mul = Builder.buildMul(Dst: IdxTy, Src0: And, Src1: EltSize).getReg(Idx: 0); |
| 488 | Register EltPtr = |
| 489 | Builder.buildPtrAdd(Res: MRI.getType(Reg: StackTemp.getReg(Idx: 0)), Op0: StackTemp, Op1: Mul) |
| 490 | .getReg(Idx: 0); |
| 491 | |
| 492 | // Write the inserted element |
| 493 | Builder.buildStore(Val: Insert.getElementReg(), Addr: EltPtr, PtrInfo, Alignment: Align(1)); |
| 494 | // Reload the whole vector. |
| 495 | Builder.buildLoad(Res: Insert.getReg(Idx: 0), Addr: StackTemp, PtrInfo, Alignment: Align(8)); |
| 496 | Insert.eraseFromParent(); |
| 497 | } |
| 498 | |
| 499 | /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a |
| 500 | /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair. |
| 501 | /// |
| 502 | /// e.g. |
| 503 | /// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0) |
| 504 | /// |
| 505 | /// Can be represented as |
| 506 | /// |
| 507 | /// %extract = G_EXTRACT_VECTOR_ELT %left, 0 |
| 508 | /// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1 |
| 509 | /// |
| 510 | bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 511 | std::tuple<Register, int, Register, int> &MatchInfo) { |
| 512 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 513 | ArrayRef<int> ShuffleMask = MI.getOperand(i: 3).getShuffleMask(); |
| 514 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 515 | int NumElts = MRI.getType(Reg: Dst).getNumElements(); |
| 516 | auto DstIsLeftAndDstLane = isINSMask(M: ShuffleMask, NumInputElements: NumElts); |
| 517 | if (!DstIsLeftAndDstLane) |
| 518 | return false; |
| 519 | bool DstIsLeft; |
| 520 | int DstLane; |
| 521 | std::tie(args&: DstIsLeft, args&: DstLane) = *DstIsLeftAndDstLane; |
| 522 | Register Left = MI.getOperand(i: 1).getReg(); |
| 523 | Register Right = MI.getOperand(i: 2).getReg(); |
| 524 | Register DstVec = DstIsLeft ? Left : Right; |
| 525 | Register SrcVec = Left; |
| 526 | |
| 527 | int SrcLane = ShuffleMask[DstLane]; |
| 528 | if (SrcLane >= NumElts) { |
| 529 | SrcVec = Right; |
| 530 | SrcLane -= NumElts; |
| 531 | } |
| 532 | |
| 533 | MatchInfo = std::make_tuple(args&: DstVec, args&: DstLane, args&: SrcVec, args&: SrcLane); |
| 534 | return true; |
| 535 | } |
| 536 | |
| 537 | void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 538 | MachineIRBuilder &Builder, |
| 539 | std::tuple<Register, int, Register, int> &MatchInfo) { |
| 540 | Builder.setInstrAndDebugLoc(MI); |
| 541 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 542 | auto ScalarTy = MRI.getType(Reg: Dst).getElementType(); |
| 543 | Register DstVec, SrcVec; |
| 544 | int DstLane, SrcLane; |
| 545 | std::tie(args&: DstVec, args&: DstLane, args&: SrcVec, args&: SrcLane) = MatchInfo; |
| 546 | auto SrcCst = Builder.buildConstant(Res: LLT::scalar(SizeInBits: 64), Val: SrcLane); |
| 547 | auto = Builder.buildExtractVectorElement(Res: ScalarTy, Val: SrcVec, Idx: SrcCst); |
| 548 | auto DstCst = Builder.buildConstant(Res: LLT::scalar(SizeInBits: 64), Val: DstLane); |
| 549 | Builder.buildInsertVectorElement(Res: Dst, Val: DstVec, Elt: Extract, Idx: DstCst); |
| 550 | MI.eraseFromParent(); |
| 551 | } |
| 552 | |
| 553 | /// isVShiftRImm - Check if this is a valid vector for the immediate |
| 554 | /// operand of a vector shift right operation. The value must be in the range: |
| 555 | /// 1 <= Value <= ElementBits for a right shift. |
| 556 | bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty, |
| 557 | int64_t &Cnt) { |
| 558 | assert(Ty.isVector() && "vector shift count is not a vector type" ); |
| 559 | MachineInstr *MI = MRI.getVRegDef(Reg); |
| 560 | auto Cst = getAArch64VectorSplatScalar(MI: *MI, MRI); |
| 561 | if (!Cst) |
| 562 | return false; |
| 563 | Cnt = *Cst; |
| 564 | int64_t ElementBits = Ty.getScalarSizeInBits(); |
| 565 | return Cnt >= 1 && Cnt <= ElementBits; |
| 566 | } |
| 567 | |
| 568 | /// Match a vector G_ASHR or G_LSHR with a valid immediate shift. |
| 569 | bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 570 | int64_t &Imm) { |
| 571 | assert(MI.getOpcode() == TargetOpcode::G_ASHR || |
| 572 | MI.getOpcode() == TargetOpcode::G_LSHR); |
| 573 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 574 | if (!Ty.isVector()) |
| 575 | return false; |
| 576 | return isVShiftRImm(Reg: MI.getOperand(i: 2).getReg(), MRI, Ty, Cnt&: Imm); |
| 577 | } |
| 578 | |
| 579 | void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 580 | int64_t &Imm) { |
| 581 | unsigned Opc = MI.getOpcode(); |
| 582 | assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR); |
| 583 | unsigned NewOpc = |
| 584 | Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR; |
| 585 | MachineIRBuilder MIB(MI); |
| 586 | MIB.buildInstr(Opc: NewOpc, DstOps: {MI.getOperand(i: 0)}, SrcOps: {MI.getOperand(i: 1)}).addImm(Val: Imm); |
| 587 | MI.eraseFromParent(); |
| 588 | } |
| 589 | |
| 590 | /// Determine if it is possible to modify the \p RHS and predicate \p P of a |
| 591 | /// G_ICMP instruction such that the right-hand side is an arithmetic immediate. |
| 592 | /// |
| 593 | /// \returns A pair containing the updated immediate and predicate which may |
| 594 | /// be used to optimize the instruction. |
| 595 | /// |
| 596 | /// \note This assumes that the comparison has been legalized. |
| 597 | std::optional<std::pair<uint64_t, CmpInst::Predicate>> |
| 598 | tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P, |
| 599 | const MachineRegisterInfo &MRI) { |
| 600 | const auto &Ty = MRI.getType(Reg: RHS); |
| 601 | if (Ty.isVector()) |
| 602 | return std::nullopt; |
| 603 | unsigned Size = Ty.getSizeInBits(); |
| 604 | assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?" ); |
| 605 | |
| 606 | // If the RHS is not a constant, or the RHS is already a valid arithmetic |
| 607 | // immediate, then there is nothing to change. |
| 608 | auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: RHS, MRI); |
| 609 | if (!ValAndVReg) |
| 610 | return std::nullopt; |
| 611 | uint64_t OriginalC = ValAndVReg->Value.getZExtValue(); |
| 612 | uint64_t C = OriginalC; |
| 613 | if (isLegalArithImmed(C)) |
| 614 | return std::nullopt; |
| 615 | |
| 616 | // We have a non-arithmetic immediate. Check if adjusting the immediate and |
| 617 | // adjusting the predicate will result in a legal arithmetic immediate. |
| 618 | switch (P) { |
| 619 | default: |
| 620 | return std::nullopt; |
| 621 | case CmpInst::ICMP_SLT: |
| 622 | case CmpInst::ICMP_SGE: |
| 623 | // Check for |
| 624 | // |
| 625 | // x slt c => x sle c - 1 |
| 626 | // x sge c => x sgt c - 1 |
| 627 | // |
| 628 | // When c is not the smallest possible negative number. |
| 629 | if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) || |
| 630 | (Size == 32 && static_cast<int32_t>(C) == INT32_MIN)) |
| 631 | return std::nullopt; |
| 632 | P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT; |
| 633 | C -= 1; |
| 634 | break; |
| 635 | case CmpInst::ICMP_ULT: |
| 636 | case CmpInst::ICMP_UGE: |
| 637 | // Check for |
| 638 | // |
| 639 | // x ult c => x ule c - 1 |
| 640 | // x uge c => x ugt c - 1 |
| 641 | // |
| 642 | // When c is not zero. |
| 643 | assert(C != 0 && "C should not be zero here!" ); |
| 644 | P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; |
| 645 | C -= 1; |
| 646 | break; |
| 647 | case CmpInst::ICMP_SLE: |
| 648 | case CmpInst::ICMP_SGT: |
| 649 | // Check for |
| 650 | // |
| 651 | // x sle c => x slt c + 1 |
| 652 | // x sgt c => s sge c + 1 |
| 653 | // |
| 654 | // When c is not the largest possible signed integer. |
| 655 | if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) || |
| 656 | (Size == 64 && static_cast<int64_t>(C) == INT64_MAX)) |
| 657 | return std::nullopt; |
| 658 | P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE; |
| 659 | C += 1; |
| 660 | break; |
| 661 | case CmpInst::ICMP_ULE: |
| 662 | case CmpInst::ICMP_UGT: |
| 663 | // Check for |
| 664 | // |
| 665 | // x ule c => x ult c + 1 |
| 666 | // x ugt c => s uge c + 1 |
| 667 | // |
| 668 | // When c is not the largest possible unsigned integer. |
| 669 | if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) || |
| 670 | (Size == 64 && C == UINT64_MAX)) |
| 671 | return std::nullopt; |
| 672 | P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; |
| 673 | C += 1; |
| 674 | break; |
| 675 | } |
| 676 | |
| 677 | // Check if the new constant is valid, and return the updated constant and |
| 678 | // predicate if it is. |
| 679 | if (Size == 32) |
| 680 | C = static_cast<uint32_t>(C); |
| 681 | if (isLegalArithImmed(C)) |
| 682 | return {{C, P}}; |
| 683 | |
| 684 | auto NumberOfInstrToLoadImm = [=](uint64_t Imm) { |
| 685 | SmallVector<AArch64_IMM::ImmInsnModel> Insn; |
| 686 | AArch64_IMM::expandMOVImm(Imm, BitSize: 32, Insn); |
| 687 | return Insn.size(); |
| 688 | }; |
| 689 | |
| 690 | if (NumberOfInstrToLoadImm(OriginalC) > NumberOfInstrToLoadImm(C)) |
| 691 | return {{C, P}}; |
| 692 | |
| 693 | return std::nullopt; |
| 694 | } |
| 695 | |
| 696 | /// Determine whether or not it is possible to update the RHS and predicate of |
| 697 | /// a G_ICMP instruction such that the RHS will be selected as an arithmetic |
| 698 | /// immediate. |
| 699 | /// |
| 700 | /// \p MI - The G_ICMP instruction |
| 701 | /// \p MatchInfo - The new RHS immediate and predicate on success |
| 702 | /// |
| 703 | /// See tryAdjustICmpImmAndPred for valid transformations. |
| 704 | bool matchAdjustICmpImmAndPred( |
| 705 | MachineInstr &MI, const MachineRegisterInfo &MRI, |
| 706 | std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) { |
| 707 | assert(MI.getOpcode() == TargetOpcode::G_ICMP); |
| 708 | Register RHS = MI.getOperand(i: 3).getReg(); |
| 709 | auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(i: 1).getPredicate()); |
| 710 | if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, P: Pred, MRI)) { |
| 711 | MatchInfo = *MaybeNewImmAndPred; |
| 712 | return true; |
| 713 | } |
| 714 | return false; |
| 715 | } |
| 716 | |
| 717 | void applyAdjustICmpImmAndPred( |
| 718 | MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo, |
| 719 | MachineIRBuilder &MIB, GISelChangeObserver &Observer) { |
| 720 | MIB.setInstrAndDebugLoc(MI); |
| 721 | MachineOperand &RHS = MI.getOperand(i: 3); |
| 722 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 723 | auto Cst = MIB.buildConstant(Res: MRI.cloneVirtualRegister(VReg: RHS.getReg()), |
| 724 | Val: MatchInfo.first); |
| 725 | Observer.changingInstr(MI); |
| 726 | RHS.setReg(Cst->getOperand(i: 0).getReg()); |
| 727 | MI.getOperand(i: 1).setPredicate(MatchInfo.second); |
| 728 | Observer.changedInstr(MI); |
| 729 | } |
| 730 | |
| 731 | bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 732 | std::pair<unsigned, int> &MatchInfo) { |
| 733 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 734 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
| 735 | const LLT SrcTy = MRI.getType(Reg: Src1Reg); |
| 736 | const LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 737 | |
| 738 | auto LaneIdx = getSplatIndex(MI); |
| 739 | if (!LaneIdx) |
| 740 | return false; |
| 741 | |
| 742 | // The lane idx should be within the first source vector. |
| 743 | if (*LaneIdx >= SrcTy.getNumElements()) |
| 744 | return false; |
| 745 | |
| 746 | if (DstTy != SrcTy) |
| 747 | return false; |
| 748 | |
| 749 | LLT ScalarTy = SrcTy.getElementType(); |
| 750 | unsigned ScalarSize = ScalarTy.getSizeInBits(); |
| 751 | |
| 752 | unsigned Opc = 0; |
| 753 | switch (SrcTy.getNumElements()) { |
| 754 | case 2: |
| 755 | if (ScalarSize == 64) |
| 756 | Opc = AArch64::G_DUPLANE64; |
| 757 | else if (ScalarSize == 32) |
| 758 | Opc = AArch64::G_DUPLANE32; |
| 759 | break; |
| 760 | case 4: |
| 761 | if (ScalarSize == 32) |
| 762 | Opc = AArch64::G_DUPLANE32; |
| 763 | else if (ScalarSize == 16) |
| 764 | Opc = AArch64::G_DUPLANE16; |
| 765 | break; |
| 766 | case 8: |
| 767 | if (ScalarSize == 8) |
| 768 | Opc = AArch64::G_DUPLANE8; |
| 769 | else if (ScalarSize == 16) |
| 770 | Opc = AArch64::G_DUPLANE16; |
| 771 | break; |
| 772 | case 16: |
| 773 | if (ScalarSize == 8) |
| 774 | Opc = AArch64::G_DUPLANE8; |
| 775 | break; |
| 776 | default: |
| 777 | break; |
| 778 | } |
| 779 | if (!Opc) |
| 780 | return false; |
| 781 | |
| 782 | MatchInfo.first = Opc; |
| 783 | MatchInfo.second = *LaneIdx; |
| 784 | return true; |
| 785 | } |
| 786 | |
| 787 | void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 788 | MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) { |
| 789 | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| 790 | Register Src1Reg = MI.getOperand(i: 1).getReg(); |
| 791 | const LLT SrcTy = MRI.getType(Reg: Src1Reg); |
| 792 | |
| 793 | B.setInstrAndDebugLoc(MI); |
| 794 | auto Lane = B.buildConstant(Res: LLT::scalar(SizeInBits: 64), Val: MatchInfo.second); |
| 795 | |
| 796 | Register DupSrc = MI.getOperand(i: 1).getReg(); |
| 797 | // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source. |
| 798 | // To do this, we can use a G_CONCAT_VECTORS to do the widening. |
| 799 | if (SrcTy.getSizeInBits() == 64) { |
| 800 | auto Undef = B.buildUndef(Res: SrcTy); |
| 801 | DupSrc = B.buildConcatVectors(Res: SrcTy.multiplyElements(Factor: 2), |
| 802 | Ops: {Src1Reg, Undef.getReg(Idx: 0)}) |
| 803 | .getReg(Idx: 0); |
| 804 | } |
| 805 | B.buildInstr(Opc: MatchInfo.first, DstOps: {MI.getOperand(i: 0).getReg()}, SrcOps: {DupSrc, Lane}); |
| 806 | MI.eraseFromParent(); |
| 807 | } |
| 808 | |
| 809 | bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 810 | auto &Unmerge = cast<GUnmerge>(Val&: MI); |
| 811 | Register Src1Reg = Unmerge.getReg(Idx: Unmerge.getNumOperands() - 1); |
| 812 | const LLT SrcTy = MRI.getType(Reg: Src1Reg); |
| 813 | if (SrcTy.getSizeInBits() != 128 && SrcTy.getSizeInBits() != 64) |
| 814 | return false; |
| 815 | return SrcTy.isVector() && !SrcTy.isScalable() && |
| 816 | Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1; |
| 817 | } |
| 818 | |
| 819 | void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 820 | MachineIRBuilder &B) { |
| 821 | auto &Unmerge = cast<GUnmerge>(Val&: MI); |
| 822 | Register Src1Reg = Unmerge.getReg(Idx: Unmerge.getNumOperands() - 1); |
| 823 | const LLT SrcTy = MRI.getType(Reg: Src1Reg); |
| 824 | assert((SrcTy.isVector() && !SrcTy.isScalable()) && |
| 825 | "Expected a fixed length vector" ); |
| 826 | |
| 827 | for (int I = 0; I < SrcTy.getNumElements(); ++I) |
| 828 | B.buildExtractVectorElementConstant(Res: Unmerge.getReg(Idx: I), Val: Src1Reg, Idx: I); |
| 829 | MI.eraseFromParent(); |
| 830 | } |
| 831 | |
| 832 | bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 833 | assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); |
| 834 | |
| 835 | // Later, during selection, we'll try to match imported patterns using |
| 836 | // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower |
| 837 | // G_BUILD_VECTORs which could match those patterns. |
| 838 | if (isBuildVectorAllZeros(MI, MRI) || isBuildVectorAllOnes(MI, MRI)) |
| 839 | return false; |
| 840 | |
| 841 | return getAArch64VectorSplat(MI, MRI).has_value(); |
| 842 | } |
| 843 | |
| 844 | void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 845 | MachineIRBuilder &B) { |
| 846 | B.setInstrAndDebugLoc(MI); |
| 847 | B.buildInstr(Opc: AArch64::G_DUP, DstOps: {MI.getOperand(i: 0).getReg()}, |
| 848 | SrcOps: {MI.getOperand(i: 1).getReg()}); |
| 849 | MI.eraseFromParent(); |
| 850 | } |
| 851 | |
| 852 | /// \returns how many instructions would be saved by folding a G_ICMP's shift |
| 853 | /// and/or extension operations. |
| 854 | unsigned getCmpOperandFoldingProfit(Register CmpOp, MachineRegisterInfo &MRI) { |
| 855 | // No instructions to save if there's more than one use or no uses. |
| 856 | if (!MRI.hasOneNonDBGUse(RegNo: CmpOp)) |
| 857 | return 0; |
| 858 | |
| 859 | // FIXME: This is duplicated with the selector. (See: selectShiftedRegister) |
| 860 | auto IsSupportedExtend = [&](const MachineInstr &MI) { |
| 861 | if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG) |
| 862 | return true; |
| 863 | if (MI.getOpcode() != TargetOpcode::G_AND) |
| 864 | return false; |
| 865 | auto ValAndVReg = |
| 866 | getIConstantVRegValWithLookThrough(VReg: MI.getOperand(i: 2).getReg(), MRI); |
| 867 | if (!ValAndVReg) |
| 868 | return false; |
| 869 | uint64_t Mask = ValAndVReg->Value.getZExtValue(); |
| 870 | return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); |
| 871 | }; |
| 872 | |
| 873 | MachineInstr *Def = getDefIgnoringCopies(Reg: CmpOp, MRI); |
| 874 | if (IsSupportedExtend(*Def)) |
| 875 | return 1; |
| 876 | |
| 877 | unsigned Opc = Def->getOpcode(); |
| 878 | if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR && |
| 879 | Opc != TargetOpcode::G_LSHR) |
| 880 | return 0; |
| 881 | |
| 882 | auto MaybeShiftAmt = |
| 883 | getIConstantVRegValWithLookThrough(VReg: Def->getOperand(i: 2).getReg(), MRI); |
| 884 | if (!MaybeShiftAmt) |
| 885 | return 0; |
| 886 | uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue(); |
| 887 | MachineInstr *ShiftLHS = |
| 888 | getDefIgnoringCopies(Reg: Def->getOperand(i: 1).getReg(), MRI); |
| 889 | |
| 890 | // Check if we can fold an extend and a shift. |
| 891 | // FIXME: This is duplicated with the selector. (See: |
| 892 | // selectArithExtendedRegister) |
| 893 | if (IsSupportedExtend(*ShiftLHS)) |
| 894 | return (ShiftAmt <= 4) ? 2 : 1; |
| 895 | |
| 896 | LLT Ty = MRI.getType(Reg: Def->getOperand(i: 0).getReg()); |
| 897 | if (Ty.isVector()) |
| 898 | return 0; |
| 899 | unsigned ShiftSize = Ty.getSizeInBits(); |
| 900 | if ((ShiftSize == 32 && ShiftAmt <= 31) || |
| 901 | (ShiftSize == 64 && ShiftAmt <= 63)) |
| 902 | return 1; |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP |
| 907 | /// instruction \p MI. |
| 908 | bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 909 | assert(MI.getOpcode() == TargetOpcode::G_ICMP); |
| 910 | // Swap the operands if it would introduce a profitable folding opportunity. |
| 911 | // (e.g. a shift + extend). |
| 912 | // |
| 913 | // For example: |
| 914 | // lsl w13, w11, #1 |
| 915 | // cmp w13, w12 |
| 916 | // can be turned into: |
| 917 | // cmp w12, w11, lsl #1 |
| 918 | |
| 919 | // Don't swap if there's a constant on the RHS, because we know we can fold |
| 920 | // that. |
| 921 | Register RHS = MI.getOperand(i: 3).getReg(); |
| 922 | auto RHSCst = getIConstantVRegValWithLookThrough(VReg: RHS, MRI); |
| 923 | if (RHSCst && isLegalArithImmed(C: RHSCst->Value.getSExtValue())) |
| 924 | return false; |
| 925 | |
| 926 | Register LHS = MI.getOperand(i: 2).getReg(); |
| 927 | auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(i: 1).getPredicate()); |
| 928 | auto GetRegForProfit = [&](Register Reg) { |
| 929 | MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); |
| 930 | return isCMN(MaybeSub: Def, Pred, MRI) ? Def->getOperand(i: 2).getReg() : Reg; |
| 931 | }; |
| 932 | |
| 933 | // Don't have a constant on the RHS. If we swap the LHS and RHS of the |
| 934 | // compare, would we be able to fold more instructions? |
| 935 | Register TheLHS = GetRegForProfit(LHS); |
| 936 | Register TheRHS = GetRegForProfit(RHS); |
| 937 | |
| 938 | // If the LHS is more likely to give us a folding opportunity, then swap the |
| 939 | // LHS and RHS. |
| 940 | return (getCmpOperandFoldingProfit(CmpOp: TheLHS, MRI) > |
| 941 | getCmpOperandFoldingProfit(CmpOp: TheRHS, MRI)); |
| 942 | } |
| 943 | |
| 944 | void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) { |
| 945 | auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(i: 1).getPredicate()); |
| 946 | Register LHS = MI.getOperand(i: 2).getReg(); |
| 947 | Register RHS = MI.getOperand(i: 3).getReg(); |
| 948 | Observer.changedInstr(MI); |
| 949 | MI.getOperand(i: 1).setPredicate(CmpInst::getSwappedPredicate(pred: Pred)); |
| 950 | MI.getOperand(i: 2).setReg(RHS); |
| 951 | MI.getOperand(i: 3).setReg(LHS); |
| 952 | Observer.changedInstr(MI); |
| 953 | } |
| 954 | |
| 955 | /// \returns a function which builds a vector floating point compare instruction |
| 956 | /// for a condition code \p CC. |
| 957 | /// \param [in] NoNans - True if the target has NoNansFPMath. |
| 958 | std::function<Register(MachineIRBuilder &)> |
| 959 | getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool NoNans, |
| 960 | MachineRegisterInfo &MRI) { |
| 961 | LLT DstTy = MRI.getType(Reg: LHS); |
| 962 | assert(DstTy.isVector() && "Expected vector types only?" ); |
| 963 | assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!" ); |
| 964 | switch (CC) { |
| 965 | default: |
| 966 | llvm_unreachable("Unexpected condition code!" ); |
| 967 | case AArch64CC::NE: |
| 968 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 969 | auto FCmp = MIB.buildInstr(Opc: AArch64::G_FCMEQ, DstOps: {DstTy}, SrcOps: {LHS, RHS}); |
| 970 | return MIB.buildNot(Dst: DstTy, Src0: FCmp).getReg(Idx: 0); |
| 971 | }; |
| 972 | case AArch64CC::EQ: |
| 973 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 974 | return MIB.buildInstr(Opc: AArch64::G_FCMEQ, DstOps: {DstTy}, SrcOps: {LHS, RHS}).getReg(Idx: 0); |
| 975 | }; |
| 976 | case AArch64CC::GE: |
| 977 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 978 | return MIB.buildInstr(Opc: AArch64::G_FCMGE, DstOps: {DstTy}, SrcOps: {LHS, RHS}).getReg(Idx: 0); |
| 979 | }; |
| 980 | case AArch64CC::GT: |
| 981 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 982 | return MIB.buildInstr(Opc: AArch64::G_FCMGT, DstOps: {DstTy}, SrcOps: {LHS, RHS}).getReg(Idx: 0); |
| 983 | }; |
| 984 | case AArch64CC::LS: |
| 985 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 986 | return MIB.buildInstr(Opc: AArch64::G_FCMGE, DstOps: {DstTy}, SrcOps: {RHS, LHS}).getReg(Idx: 0); |
| 987 | }; |
| 988 | case AArch64CC::MI: |
| 989 | return [LHS, RHS, DstTy](MachineIRBuilder &MIB) { |
| 990 | return MIB.buildInstr(Opc: AArch64::G_FCMGT, DstOps: {DstTy}, SrcOps: {RHS, LHS}).getReg(Idx: 0); |
| 991 | }; |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo. |
| 996 | bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 997 | MachineIRBuilder &MIB) { |
| 998 | assert(MI.getOpcode() == TargetOpcode::G_FCMP); |
| 999 | const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>(); |
| 1000 | |
| 1001 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 1002 | LLT DstTy = MRI.getType(Reg: Dst); |
| 1003 | if (!DstTy.isVector() || !ST.hasNEON()) |
| 1004 | return false; |
| 1005 | Register LHS = MI.getOperand(i: 2).getReg(); |
| 1006 | unsigned EltSize = MRI.getType(Reg: LHS).getScalarSizeInBits(); |
| 1007 | if (EltSize == 16 && !ST.hasFullFP16()) |
| 1008 | return false; |
| 1009 | if (EltSize != 16 && EltSize != 32 && EltSize != 64) |
| 1010 | return false; |
| 1011 | |
| 1012 | return true; |
| 1013 | } |
| 1014 | |
| 1015 | /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo. |
| 1016 | void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1017 | MachineIRBuilder &MIB) { |
| 1018 | assert(MI.getOpcode() == TargetOpcode::G_FCMP); |
| 1019 | const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>(); |
| 1020 | |
| 1021 | const auto &CmpMI = cast<GFCmp>(Val&: MI); |
| 1022 | |
| 1023 | Register Dst = CmpMI.getReg(Idx: 0); |
| 1024 | CmpInst::Predicate Pred = CmpMI.getCond(); |
| 1025 | Register LHS = CmpMI.getLHSReg(); |
| 1026 | Register RHS = CmpMI.getRHSReg(); |
| 1027 | |
| 1028 | LLT DstTy = MRI.getType(Reg: Dst); |
| 1029 | |
| 1030 | bool Invert = false; |
| 1031 | AArch64CC::CondCode CC, CC2 = AArch64CC::AL; |
| 1032 | if ((Pred == CmpInst::Predicate::FCMP_ORD || |
| 1033 | Pred == CmpInst::Predicate::FCMP_UNO) && |
| 1034 | isBuildVectorAllZeros(MI: *MRI.getVRegDef(Reg: RHS), MRI)) { |
| 1035 | // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't |
| 1036 | // NaN, so equivalent to a == a and doesn't need the two comparisons an |
| 1037 | // "ord" normally would. |
| 1038 | // Similarly, "fcmp uno %a, 0" is the canonical check that LHS is NaN and is |
| 1039 | // thus equivalent to a != a. |
| 1040 | RHS = LHS; |
| 1041 | CC = Pred == CmpInst::Predicate::FCMP_ORD ? AArch64CC::EQ : AArch64CC::NE; |
| 1042 | } else |
| 1043 | changeVectorFCMPPredToAArch64CC(P: Pred, CondCode&: CC, CondCode2&: CC2, Invert); |
| 1044 | |
| 1045 | // Instead of having an apply function, just build here to simplify things. |
| 1046 | MIB.setInstrAndDebugLoc(MI); |
| 1047 | |
| 1048 | const bool NoNans = |
| 1049 | ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath; |
| 1050 | |
| 1051 | auto Cmp = getVectorFCMP(CC, LHS, RHS, NoNans, MRI); |
| 1052 | Register CmpRes; |
| 1053 | if (CC2 == AArch64CC::AL) |
| 1054 | CmpRes = Cmp(MIB); |
| 1055 | else { |
| 1056 | auto Cmp2 = getVectorFCMP(CC: CC2, LHS, RHS, NoNans, MRI); |
| 1057 | auto Cmp2Dst = Cmp2(MIB); |
| 1058 | auto Cmp1Dst = Cmp(MIB); |
| 1059 | CmpRes = MIB.buildOr(Dst: DstTy, Src0: Cmp1Dst, Src1: Cmp2Dst).getReg(Idx: 0); |
| 1060 | } |
| 1061 | if (Invert) |
| 1062 | CmpRes = MIB.buildNot(Dst: DstTy, Src0: CmpRes).getReg(Idx: 0); |
| 1063 | MRI.replaceRegWith(FromReg: Dst, ToReg: CmpRes); |
| 1064 | MI.eraseFromParent(); |
| 1065 | } |
| 1066 | |
| 1067 | // Matches G_BUILD_VECTOR where at least one source operand is not a constant |
| 1068 | bool matchLowerBuildToInsertVecElt(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 1069 | auto *GBuildVec = cast<GBuildVector>(Val: &MI); |
| 1070 | |
| 1071 | // Check if the values are all constants |
| 1072 | for (unsigned I = 0; I < GBuildVec->getNumSources(); ++I) { |
| 1073 | auto ConstVal = |
| 1074 | getAnyConstantVRegValWithLookThrough(VReg: GBuildVec->getSourceReg(I), MRI); |
| 1075 | |
| 1076 | if (!ConstVal.has_value()) |
| 1077 | return true; |
| 1078 | } |
| 1079 | |
| 1080 | return false; |
| 1081 | } |
| 1082 | |
| 1083 | void applyLowerBuildToInsertVecElt(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1084 | MachineIRBuilder &B) { |
| 1085 | auto *GBuildVec = cast<GBuildVector>(Val: &MI); |
| 1086 | LLT DstTy = MRI.getType(Reg: GBuildVec->getReg(Idx: 0)); |
| 1087 | Register DstReg = B.buildUndef(Res: DstTy).getReg(Idx: 0); |
| 1088 | |
| 1089 | for (unsigned I = 0; I < GBuildVec->getNumSources(); ++I) { |
| 1090 | Register SrcReg = GBuildVec->getSourceReg(I); |
| 1091 | if (mi_match(R: SrcReg, MRI, P: m_GImplicitDef())) |
| 1092 | continue; |
| 1093 | auto IdxReg = B.buildConstant(Res: LLT::scalar(SizeInBits: 64), Val: I); |
| 1094 | DstReg = |
| 1095 | B.buildInsertVectorElement(Res: DstTy, Val: DstReg, Elt: SrcReg, Idx: IdxReg).getReg(Idx: 0); |
| 1096 | } |
| 1097 | B.buildCopy(Res: GBuildVec->getReg(Idx: 0), Op: DstReg); |
| 1098 | GBuildVec->eraseFromParent(); |
| 1099 | } |
| 1100 | |
| 1101 | bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1102 | Register &SrcReg) { |
| 1103 | assert(MI.getOpcode() == TargetOpcode::G_STORE); |
| 1104 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1105 | if (MRI.getType(Reg: DstReg).isVector()) |
| 1106 | return false; |
| 1107 | // Match a store of a truncate. |
| 1108 | if (!mi_match(R: DstReg, MRI, P: m_GTrunc(Src: m_Reg(R&: SrcReg)))) |
| 1109 | return false; |
| 1110 | // Only form truncstores for value types of max 64b. |
| 1111 | return MRI.getType(Reg: SrcReg).getSizeInBits() <= 64; |
| 1112 | } |
| 1113 | |
| 1114 | void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1115 | MachineIRBuilder &B, GISelChangeObserver &Observer, |
| 1116 | Register &SrcReg) { |
| 1117 | assert(MI.getOpcode() == TargetOpcode::G_STORE); |
| 1118 | Observer.changingInstr(MI); |
| 1119 | MI.getOperand(i: 0).setReg(SrcReg); |
| 1120 | Observer.changedInstr(MI); |
| 1121 | } |
| 1122 | |
| 1123 | // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to |
| 1124 | // form in the first place for combine opportunities, so any remaining ones |
| 1125 | // at this stage need be lowered back. |
| 1126 | bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 1127 | assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); |
| 1128 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1129 | LLT DstTy = MRI.getType(Reg: DstReg); |
| 1130 | return DstTy.isVector(); |
| 1131 | } |
| 1132 | |
| 1133 | void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1134 | MachineIRBuilder &B, GISelChangeObserver &Observer) { |
| 1135 | assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); |
| 1136 | B.setInstrAndDebugLoc(MI); |
| 1137 | LegalizerHelper Helper(*MI.getMF(), Observer, B); |
| 1138 | Helper.lower(MI, TypeIdx: 0, /* Unused hint type */ Ty: LLT()); |
| 1139 | } |
| 1140 | |
| 1141 | /// Combine <N x t>, unused = unmerge(G_EXT <2*N x t> v, undef, N) |
| 1142 | /// => unused, <N x t> = unmerge v |
| 1143 | bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1144 | Register &MatchInfo) { |
| 1145 | auto &Unmerge = cast<GUnmerge>(Val&: MI); |
| 1146 | if (Unmerge.getNumDefs() != 2) |
| 1147 | return false; |
| 1148 | if (!MRI.use_nodbg_empty(RegNo: Unmerge.getReg(Idx: 1))) |
| 1149 | return false; |
| 1150 | |
| 1151 | LLT DstTy = MRI.getType(Reg: Unmerge.getReg(Idx: 0)); |
| 1152 | if (!DstTy.isVector()) |
| 1153 | return false; |
| 1154 | |
| 1155 | MachineInstr *Ext = getOpcodeDef(Opcode: AArch64::G_EXT, Reg: Unmerge.getSourceReg(), MRI); |
| 1156 | if (!Ext) |
| 1157 | return false; |
| 1158 | |
| 1159 | Register ExtSrc1 = Ext->getOperand(i: 1).getReg(); |
| 1160 | Register ExtSrc2 = Ext->getOperand(i: 2).getReg(); |
| 1161 | auto LowestVal = |
| 1162 | getIConstantVRegValWithLookThrough(VReg: Ext->getOperand(i: 3).getReg(), MRI); |
| 1163 | if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes()) |
| 1164 | return false; |
| 1165 | |
| 1166 | if (!getOpcodeDef<GImplicitDef>(Reg: ExtSrc2, MRI)) |
| 1167 | return false; |
| 1168 | |
| 1169 | MatchInfo = ExtSrc1; |
| 1170 | return true; |
| 1171 | } |
| 1172 | |
| 1173 | void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1174 | MachineIRBuilder &B, |
| 1175 | GISelChangeObserver &Observer, Register &SrcReg) { |
| 1176 | Observer.changingInstr(MI); |
| 1177 | // Swap dst registers. |
| 1178 | Register Dst1 = MI.getOperand(i: 0).getReg(); |
| 1179 | MI.getOperand(i: 0).setReg(MI.getOperand(i: 1).getReg()); |
| 1180 | MI.getOperand(i: 1).setReg(Dst1); |
| 1181 | MI.getOperand(i: 2).setReg(SrcReg); |
| 1182 | Observer.changedInstr(MI); |
| 1183 | } |
| 1184 | |
| 1185 | // Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR |
| 1186 | // Match v2s64 mul instructions, which will then be scalarised later on |
| 1187 | // Doing these two matches in one function to ensure that the order of matching |
| 1188 | // will always be the same. |
| 1189 | // Try lowering MUL to MULL before trying to scalarize if needed. |
| 1190 | bool matchMulv2s64(MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 1191 | // Get the instructions that defined the source operand |
| 1192 | LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 1193 | return DstTy == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 64); |
| 1194 | } |
| 1195 | |
| 1196 | void applyMulv2s64(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 1197 | MachineIRBuilder &B, GISelChangeObserver &Observer) { |
| 1198 | assert(MI.getOpcode() == TargetOpcode::G_MUL && |
| 1199 | "Expected a G_MUL instruction" ); |
| 1200 | |
| 1201 | // Get the instructions that defined the source operand |
| 1202 | LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 1203 | assert(DstTy == LLT::fixed_vector(2, 64) && "Expected v2s64 Mul" ); |
| 1204 | LegalizerHelper Helper(*MI.getMF(), Observer, B); |
| 1205 | Helper.fewerElementsVector( |
| 1206 | MI, TypeIdx: 0, |
| 1207 | NarrowTy: DstTy.changeElementCount(EC: DstTy.getElementCount().divideCoefficientBy(RHS: 2))); |
| 1208 | } |
| 1209 | |
| 1210 | class AArch64PostLegalizerLoweringImpl : public Combiner { |
| 1211 | protected: |
| 1212 | const CombinerHelper Helper; |
| 1213 | const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig; |
| 1214 | const AArch64Subtarget &STI; |
| 1215 | |
| 1216 | public: |
| 1217 | AArch64PostLegalizerLoweringImpl( |
| 1218 | MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, |
| 1219 | GISelCSEInfo *CSEInfo, |
| 1220 | const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig, |
| 1221 | const AArch64Subtarget &STI); |
| 1222 | |
| 1223 | static const char *getName() { return "AArch6400PreLegalizerCombiner" ; } |
| 1224 | |
| 1225 | bool tryCombineAll(MachineInstr &I) const override; |
| 1226 | |
| 1227 | private: |
| 1228 | #define GET_GICOMBINER_CLASS_MEMBERS |
| 1229 | #include "AArch64GenPostLegalizeGILowering.inc" |
| 1230 | #undef GET_GICOMBINER_CLASS_MEMBERS |
| 1231 | }; |
| 1232 | |
| 1233 | #define GET_GICOMBINER_IMPL |
| 1234 | #include "AArch64GenPostLegalizeGILowering.inc" |
| 1235 | #undef GET_GICOMBINER_IMPL |
| 1236 | |
| 1237 | AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl( |
| 1238 | MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, |
| 1239 | GISelCSEInfo *CSEInfo, |
| 1240 | const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig, |
| 1241 | const AArch64Subtarget &STI) |
| 1242 | : Combiner(MF, CInfo, TPC, /*VT*/ nullptr, CSEInfo), |
| 1243 | Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig), |
| 1244 | STI(STI), |
| 1245 | #define GET_GICOMBINER_CONSTRUCTOR_INITS |
| 1246 | #include "AArch64GenPostLegalizeGILowering.inc" |
| 1247 | #undef GET_GICOMBINER_CONSTRUCTOR_INITS |
| 1248 | { |
| 1249 | } |
| 1250 | |
| 1251 | class AArch64PostLegalizerLowering : public MachineFunctionPass { |
| 1252 | public: |
| 1253 | static char ID; |
| 1254 | |
| 1255 | AArch64PostLegalizerLowering(); |
| 1256 | |
| 1257 | StringRef getPassName() const override { |
| 1258 | return "AArch64PostLegalizerLowering" ; |
| 1259 | } |
| 1260 | |
| 1261 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 1262 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 1263 | |
| 1264 | private: |
| 1265 | AArch64PostLegalizerLoweringImplRuleConfig RuleConfig; |
| 1266 | }; |
| 1267 | } // end anonymous namespace |
| 1268 | |
| 1269 | void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1270 | AU.addRequired<TargetPassConfig>(); |
| 1271 | AU.setPreservesCFG(); |
| 1272 | getSelectionDAGFallbackAnalysisUsage(AU); |
| 1273 | MachineFunctionPass::getAnalysisUsage(AU); |
| 1274 | } |
| 1275 | |
| 1276 | AArch64PostLegalizerLowering::AArch64PostLegalizerLowering() |
| 1277 | : MachineFunctionPass(ID) { |
| 1278 | if (!RuleConfig.parseCommandLineOption()) |
| 1279 | report_fatal_error(reason: "Invalid rule identifier" ); |
| 1280 | } |
| 1281 | |
| 1282 | bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) { |
| 1283 | if (MF.getProperties().hasFailedISel()) |
| 1284 | return false; |
| 1285 | assert(MF.getProperties().hasLegalized() && "Expected a legalized function?" ); |
| 1286 | auto *TPC = &getAnalysis<TargetPassConfig>(); |
| 1287 | const Function &F = MF.getFunction(); |
| 1288 | |
| 1289 | const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>(); |
| 1290 | CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, |
| 1291 | /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true, |
| 1292 | F.hasOptSize(), F.hasMinSize()); |
| 1293 | // Disable fixed-point iteration to reduce compile-time |
| 1294 | CInfo.MaxIterations = 1; |
| 1295 | CInfo.ObserverLvl = CombinerInfo::ObserverLevel::SinglePass; |
| 1296 | // PostLegalizerCombiner performs DCE, so a full DCE pass is unnecessary. |
| 1297 | CInfo.EnableFullDCE = false; |
| 1298 | AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr, |
| 1299 | RuleConfig, ST); |
| 1300 | return Impl.combineMachineInstrs(); |
| 1301 | } |
| 1302 | |
| 1303 | char AArch64PostLegalizerLowering::ID = 0; |
| 1304 | INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE, |
| 1305 | "Lower AArch64 MachineInstrs after legalization" , false, |
| 1306 | false) |
| 1307 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 1308 | INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE, |
| 1309 | "Lower AArch64 MachineInstrs after legalization" , false, |
| 1310 | false) |
| 1311 | |
| 1312 | namespace llvm { |
| 1313 | FunctionPass *createAArch64PostLegalizerLowering() { |
| 1314 | return new AArch64PostLegalizerLowering(); |
| 1315 | } |
| 1316 | } // end namespace llvm |
| 1317 | |