| 1 | //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the interfaces that VE uses to lower LLVM code into a |
| 10 | // selection DAG. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "VEISelLowering.h" |
| 15 | #include "MCTargetDesc/VEMCAsmInfo.h" |
| 16 | #include "VECustomDAG.h" |
| 17 | #include "VEInstrBuilder.h" |
| 18 | #include "VEMachineFunctionInfo.h" |
| 19 | #include "VERegisterInfo.h" |
| 20 | #include "VESelectionDAGInfo.h" |
| 21 | #include "VETargetMachine.h" |
| 22 | #include "llvm/ADT/StringSwitch.h" |
| 23 | #include "llvm/CodeGen/CallingConvLower.h" |
| 24 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 25 | #include "llvm/CodeGen/MachineFunction.h" |
| 26 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 27 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 28 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | #include "llvm/CodeGen/SelectionDAG.h" |
| 31 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 32 | #include "llvm/IR/DerivedTypes.h" |
| 33 | #include "llvm/IR/Function.h" |
| 34 | #include "llvm/IR/IRBuilder.h" |
| 35 | #include "llvm/IR/Module.h" |
| 36 | #include "llvm/Support/ErrorHandling.h" |
| 37 | using namespace llvm; |
| 38 | |
| 39 | #define DEBUG_TYPE "ve-lower" |
| 40 | |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | // Calling Convention Implementation |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | |
| 45 | #include "VEGenCallingConv.inc" |
| 46 | |
| 47 | CCAssignFn *getReturnCC(CallingConv::ID CallConv) { |
| 48 | switch (CallConv) { |
| 49 | default: |
| 50 | return RetCC_VE_C; |
| 51 | case CallingConv::Fast: |
| 52 | return RetCC_VE_Fast; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { |
| 57 | if (IsVarArg) |
| 58 | return CC_VE2; |
| 59 | switch (CallConv) { |
| 60 | default: |
| 61 | return CC_VE_C; |
| 62 | case CallingConv::Fast: |
| 63 | return CC_VE_Fast; |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | bool VETargetLowering::CanLowerReturn( |
| 68 | CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| 69 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, |
| 70 | const Type *RetTy) const { |
| 71 | CCAssignFn *RetCC = getReturnCC(CallConv); |
| 72 | SmallVector<CCValAssign, 16> RVLocs; |
| 73 | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| 74 | return CCInfo.CheckReturn(Outs, Fn: RetCC); |
| 75 | } |
| 76 | |
| 77 | static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, |
| 78 | MVT::v256f32, MVT::v512f32, MVT::v256f64}; |
| 79 | |
| 80 | static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; |
| 81 | |
| 82 | static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; |
| 83 | |
| 84 | void VETargetLowering::initRegisterClasses() { |
| 85 | // Set up the register classes. |
| 86 | addRegisterClass(VT: MVT::i32, RC: &VE::I32RegClass); |
| 87 | addRegisterClass(VT: MVT::i64, RC: &VE::I64RegClass); |
| 88 | addRegisterClass(VT: MVT::f32, RC: &VE::F32RegClass); |
| 89 | addRegisterClass(VT: MVT::f64, RC: &VE::I64RegClass); |
| 90 | addRegisterClass(VT: MVT::f128, RC: &VE::F128RegClass); |
| 91 | |
| 92 | if (Subtarget->enableVPU()) { |
| 93 | for (MVT VecVT : AllVectorVTs) |
| 94 | addRegisterClass(VT: VecVT, RC: &VE::V64RegClass); |
| 95 | addRegisterClass(VT: MVT::v256i1, RC: &VE::VMRegClass); |
| 96 | addRegisterClass(VT: MVT::v512i1, RC: &VE::VM512RegClass); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | void VETargetLowering::initSPUActions() { |
| 101 | const auto &TM = getTargetMachine(); |
| 102 | /// Load & Store { |
| 103 | |
| 104 | // VE doesn't have i1 sign extending load. |
| 105 | for (MVT VT : MVT::integer_valuetypes()) { |
| 106 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 107 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 108 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 109 | setTruncStoreAction(ValVT: VT, MemVT: MVT::i1, Action: Expand); |
| 110 | } |
| 111 | |
| 112 | // VE doesn't have floating point extload/truncstore, so expand them. |
| 113 | for (MVT FPVT : MVT::fp_valuetypes()) { |
| 114 | for (MVT OtherFPVT : MVT::fp_valuetypes()) { |
| 115 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: FPVT, MemVT: OtherFPVT, Action: Expand); |
| 116 | setTruncStoreAction(ValVT: FPVT, MemVT: OtherFPVT, Action: Expand); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | // VE doesn't have fp128 load/store, so expand them in custom lower. |
| 121 | setOperationAction(Op: ISD::LOAD, VT: MVT::f128, Action: Custom); |
| 122 | setOperationAction(Op: ISD::STORE, VT: MVT::f128, Action: Custom); |
| 123 | |
| 124 | /// } Load & Store |
| 125 | |
| 126 | // Custom legalize address nodes into LO/HI parts. |
| 127 | MVT PtrVT = MVT::getIntegerVT(BitWidth: TM.getPointerSizeInBits(AS: 0)); |
| 128 | setOperationAction(Op: ISD::BlockAddress, VT: PtrVT, Action: Custom); |
| 129 | setOperationAction(Op: ISD::GlobalAddress, VT: PtrVT, Action: Custom); |
| 130 | setOperationAction(Op: ISD::GlobalTLSAddress, VT: PtrVT, Action: Custom); |
| 131 | setOperationAction(Op: ISD::ConstantPool, VT: PtrVT, Action: Custom); |
| 132 | setOperationAction(Op: ISD::JumpTable, VT: PtrVT, Action: Custom); |
| 133 | |
| 134 | /// VAARG handling { |
| 135 | setOperationAction(Op: ISD::VASTART, VT: MVT::Other, Action: Custom); |
| 136 | // VAARG needs to be lowered to access with 8 bytes alignment. |
| 137 | setOperationAction(Op: ISD::VAARG, VT: MVT::Other, Action: Custom); |
| 138 | // Use the default implementation. |
| 139 | setOperationAction(Op: ISD::VACOPY, VT: MVT::Other, Action: Expand); |
| 140 | setOperationAction(Op: ISD::VAEND, VT: MVT::Other, Action: Expand); |
| 141 | /// } VAARG handling |
| 142 | |
| 143 | /// Stack { |
| 144 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i32, Action: Custom); |
| 145 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i64, Action: Custom); |
| 146 | |
| 147 | // Use the default implementation. |
| 148 | setOperationAction(Op: ISD::STACKSAVE, VT: MVT::Other, Action: Expand); |
| 149 | setOperationAction(Op: ISD::STACKRESTORE, VT: MVT::Other, Action: Expand); |
| 150 | /// } Stack |
| 151 | |
| 152 | /// Branch { |
| 153 | |
| 154 | // VE doesn't have BRCOND |
| 155 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Expand); |
| 156 | |
| 157 | // BR_JT is not implemented yet. |
| 158 | setOperationAction(Op: ISD::BR_JT, VT: MVT::Other, Action: Expand); |
| 159 | |
| 160 | /// } Branch |
| 161 | |
| 162 | /// Int Ops { |
| 163 | for (MVT IntVT : {MVT::i32, MVT::i64}) { |
| 164 | // VE has no REM or DIVREM operations. |
| 165 | setOperationAction(Op: ISD::UREM, VT: IntVT, Action: Expand); |
| 166 | setOperationAction(Op: ISD::SREM, VT: IntVT, Action: Expand); |
| 167 | setOperationAction(Op: ISD::SDIVREM, VT: IntVT, Action: Expand); |
| 168 | setOperationAction(Op: ISD::UDIVREM, VT: IntVT, Action: Expand); |
| 169 | |
| 170 | // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. |
| 171 | setOperationAction(Op: ISD::SHL_PARTS, VT: IntVT, Action: Expand); |
| 172 | setOperationAction(Op: ISD::SRA_PARTS, VT: IntVT, Action: Expand); |
| 173 | setOperationAction(Op: ISD::SRL_PARTS, VT: IntVT, Action: Expand); |
| 174 | |
| 175 | // VE has no MULHU/S or U/SMUL_LOHI operations. |
| 176 | // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. |
| 177 | setOperationAction(Op: ISD::MULHU, VT: IntVT, Action: Expand); |
| 178 | setOperationAction(Op: ISD::MULHS, VT: IntVT, Action: Expand); |
| 179 | setOperationAction(Op: ISD::UMUL_LOHI, VT: IntVT, Action: Expand); |
| 180 | setOperationAction(Op: ISD::SMUL_LOHI, VT: IntVT, Action: Expand); |
| 181 | |
| 182 | // VE has no CTTZ, ROTL, ROTR operations. |
| 183 | setOperationAction(Op: ISD::CTTZ, VT: IntVT, Action: Expand); |
| 184 | setOperationAction(Op: ISD::ROTL, VT: IntVT, Action: Expand); |
| 185 | setOperationAction(Op: ISD::ROTR, VT: IntVT, Action: Expand); |
| 186 | |
| 187 | // VE has 64 bits instruction which works as i64 BSWAP operation. This |
| 188 | // instruction works fine as i32 BSWAP operation with an additional |
| 189 | // parameter. Use isel patterns to lower BSWAP. |
| 190 | setOperationAction(Op: ISD::BSWAP, VT: IntVT, Action: Legal); |
| 191 | |
| 192 | // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP |
| 193 | // operations. Use isel patterns for i64, promote for i32. |
| 194 | LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; |
| 195 | setOperationAction(Op: ISD::BITREVERSE, VT: IntVT, Action: Act); |
| 196 | setOperationAction(Op: ISD::CTLZ, VT: IntVT, Action: Act); |
| 197 | setOperationAction(Op: ISD::CTLZ_ZERO_UNDEF, VT: IntVT, Action: Act); |
| 198 | setOperationAction(Op: ISD::CTPOP, VT: IntVT, Action: Act); |
| 199 | |
| 200 | // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. |
| 201 | // Use isel patterns for i64, promote for i32. |
| 202 | setOperationAction(Op: ISD::AND, VT: IntVT, Action: Act); |
| 203 | setOperationAction(Op: ISD::OR, VT: IntVT, Action: Act); |
| 204 | setOperationAction(Op: ISD::XOR, VT: IntVT, Action: Act); |
| 205 | |
| 206 | // Legal smax and smin |
| 207 | setOperationAction(Op: ISD::SMAX, VT: IntVT, Action: Legal); |
| 208 | setOperationAction(Op: ISD::SMIN, VT: IntVT, Action: Legal); |
| 209 | } |
| 210 | /// } Int Ops |
| 211 | |
| 212 | /// Conversion { |
| 213 | // VE doesn't have instructions for fp<->uint, so expand them by llvm |
| 214 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::i32, Action: Promote); // use i64 |
| 215 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::i32, Action: Promote); // use i64 |
| 216 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::i64, Action: Expand); |
| 217 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::i64, Action: Expand); |
| 218 | |
| 219 | // fp16 not supported |
| 220 | for (MVT FPVT : MVT::fp_valuetypes()) { |
| 221 | setOperationAction(Op: ISD::FP16_TO_FP, VT: FPVT, Action: Expand); |
| 222 | setOperationAction(Op: ISD::FP_TO_FP16, VT: FPVT, Action: Expand); |
| 223 | } |
| 224 | /// } Conversion |
| 225 | |
| 226 | /// Floating-point Ops { |
| 227 | /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, |
| 228 | /// and fcmp. |
| 229 | |
| 230 | // VE doesn't have following floating point operations. |
| 231 | for (MVT VT : MVT::fp_valuetypes()) { |
| 232 | setOperationAction(Op: ISD::FNEG, VT, Action: Expand); |
| 233 | setOperationAction(Op: ISD::FREM, VT, Action: LibCall); |
| 234 | } |
| 235 | |
| 236 | // VE doesn't have fdiv of f128. |
| 237 | setOperationAction(Op: ISD::FDIV, VT: MVT::f128, Action: Expand); |
| 238 | |
| 239 | for (MVT FPVT : {MVT::f32, MVT::f64}) { |
| 240 | // f32 and f64 uses ConstantFP. f128 uses ConstantPool. |
| 241 | setOperationAction(Op: ISD::ConstantFP, VT: FPVT, Action: Legal); |
| 242 | } |
| 243 | /// } Floating-point Ops |
| 244 | |
| 245 | /// Floating-point math functions { |
| 246 | |
| 247 | // VE doesn't have following floating point math functions. |
| 248 | for (MVT VT : MVT::fp_valuetypes()) { |
| 249 | setOperationAction(Op: ISD::FABS, VT, Action: Expand); |
| 250 | setOperationAction(Op: ISD::FCOPYSIGN, VT, Action: Expand); |
| 251 | setOperationAction(Op: ISD::FCOS, VT, Action: Expand); |
| 252 | setOperationAction(Op: ISD::FMA, VT, Action: Expand); |
| 253 | setOperationAction(Op: ISD::FPOW, VT, Action: Expand); |
| 254 | setOperationAction(Op: ISD::FSIN, VT, Action: Expand); |
| 255 | setOperationAction(Op: ISD::FSQRT, VT, Action: Expand); |
| 256 | } |
| 257 | |
| 258 | // VE has single and double FMINNUM and FMAXNUM |
| 259 | for (MVT VT : {MVT::f32, MVT::f64}) { |
| 260 | setOperationAction(Ops: {ISD::FMAXNUM, ISD::FMINNUM}, VT, Action: Legal); |
| 261 | } |
| 262 | |
| 263 | /// } Floating-point math functions |
| 264 | |
| 265 | /// Atomic instructions { |
| 266 | |
| 267 | setMaxAtomicSizeInBitsSupported(64); |
| 268 | setMinCmpXchgSizeInBits(32); |
| 269 | setSupportsUnalignedAtomics(false); |
| 270 | |
| 271 | // Use custom inserter for ATOMIC_FENCE. |
| 272 | setOperationAction(Op: ISD::ATOMIC_FENCE, VT: MVT::Other, Action: Custom); |
| 273 | |
| 274 | // Other atomic instructions. |
| 275 | for (MVT VT : MVT::integer_valuetypes()) { |
| 276 | // Support i8/i16 atomic swap. |
| 277 | setOperationAction(Op: ISD::ATOMIC_SWAP, VT, Action: Custom); |
| 278 | |
| 279 | // FIXME: Support "atmam" instructions. |
| 280 | setOperationAction(Op: ISD::ATOMIC_LOAD_ADD, VT, Action: Expand); |
| 281 | setOperationAction(Op: ISD::ATOMIC_LOAD_SUB, VT, Action: Expand); |
| 282 | setOperationAction(Op: ISD::ATOMIC_LOAD_AND, VT, Action: Expand); |
| 283 | setOperationAction(Op: ISD::ATOMIC_LOAD_OR, VT, Action: Expand); |
| 284 | |
| 285 | // VE doesn't have follwing instructions. |
| 286 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Action: Expand); |
| 287 | setOperationAction(Op: ISD::ATOMIC_LOAD_CLR, VT, Action: Expand); |
| 288 | setOperationAction(Op: ISD::ATOMIC_LOAD_XOR, VT, Action: Expand); |
| 289 | setOperationAction(Op: ISD::ATOMIC_LOAD_NAND, VT, Action: Expand); |
| 290 | setOperationAction(Op: ISD::ATOMIC_LOAD_MIN, VT, Action: Expand); |
| 291 | setOperationAction(Op: ISD::ATOMIC_LOAD_MAX, VT, Action: Expand); |
| 292 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMIN, VT, Action: Expand); |
| 293 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMAX, VT, Action: Expand); |
| 294 | } |
| 295 | |
| 296 | /// } Atomic instructions |
| 297 | |
| 298 | /// SJLJ instructions { |
| 299 | setOperationAction(Op: ISD::EH_SJLJ_LONGJMP, VT: MVT::Other, Action: Custom); |
| 300 | setOperationAction(Op: ISD::EH_SJLJ_SETJMP, VT: MVT::i32, Action: Custom); |
| 301 | setOperationAction(Op: ISD::EH_SJLJ_SETUP_DISPATCH, VT: MVT::Other, Action: Custom); |
| 302 | /// } SJLJ instructions |
| 303 | |
| 304 | // Intrinsic instructions |
| 305 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 306 | } |
| 307 | |
| 308 | void VETargetLowering::initVPUActions() { |
| 309 | for (MVT LegalMaskVT : AllMaskVTs) |
| 310 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: LegalMaskVT, Action: Custom); |
| 311 | |
| 312 | for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) |
| 313 | setOperationAction(Op: Opc, VT: MVT::v512i1, Action: Custom); |
| 314 | |
| 315 | for (MVT LegalVecVT : AllVectorVTs) { |
| 316 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: LegalVecVT, Action: Custom); |
| 317 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: LegalVecVT, Action: Legal); |
| 318 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: LegalVecVT, Action: Legal); |
| 319 | // Translate all vector instructions with legal element types to VVP_* |
| 320 | // nodes. |
| 321 | // TODO We will custom-widen into VVP_* nodes in the future. While we are |
| 322 | // buildling the infrastructure for this, we only do this for legal vector |
| 323 | // VTs. |
| 324 | #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ |
| 325 | setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); |
| 326 | #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ |
| 327 | setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); |
| 328 | setOperationAction(Op: ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VT: LegalVecVT, Action: Custom); |
| 329 | setOperationAction(Op: ISD::EXPERIMENTAL_VP_STRIDED_STORE, VT: LegalVecVT, Action: Custom); |
| 330 | #include "VVPNodes.def" |
| 331 | } |
| 332 | |
| 333 | for (MVT LegalPackedVT : AllPackedVTs) { |
| 334 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: LegalPackedVT, Action: Custom); |
| 335 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: LegalPackedVT, Action: Custom); |
| 336 | } |
| 337 | |
| 338 | // vNt32, vNt64 ops (legal element types) |
| 339 | for (MVT VT : MVT::vector_valuetypes()) { |
| 340 | MVT ElemVT = VT.getVectorElementType(); |
| 341 | unsigned ElemBits = ElemVT.getScalarSizeInBits(); |
| 342 | if (ElemBits != 32 && ElemBits != 64) |
| 343 | continue; |
| 344 | |
| 345 | for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) |
| 346 | setOperationAction(Op: MemOpc, VT, Action: Custom); |
| 347 | |
| 348 | const ISD::NodeType IntReductionOCs[] = { |
| 349 | ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, |
| 350 | ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, |
| 351 | ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; |
| 352 | |
| 353 | for (unsigned IntRedOpc : IntReductionOCs) |
| 354 | setOperationAction(Op: IntRedOpc, VT, Action: Custom); |
| 355 | } |
| 356 | |
| 357 | // v256i1 and v512i1 ops |
| 358 | for (MVT MaskVT : AllMaskVTs) { |
| 359 | // Custom lower mask ops |
| 360 | setOperationAction(Op: ISD::STORE, VT: MaskVT, Action: Custom); |
| 361 | setOperationAction(Op: ISD::LOAD, VT: MaskVT, Action: Custom); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | SDValue |
| 366 | VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 367 | bool IsVarArg, |
| 368 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 369 | const SmallVectorImpl<SDValue> &OutVals, |
| 370 | const SDLoc &DL, SelectionDAG &DAG) const { |
| 371 | // CCValAssign - represent the assignment of the return value to locations. |
| 372 | SmallVector<CCValAssign, 16> RVLocs; |
| 373 | |
| 374 | // CCState - Info about the registers and stack slot. |
| 375 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| 376 | *DAG.getContext()); |
| 377 | |
| 378 | // Analyze return values. |
| 379 | CCInfo.AnalyzeReturn(Outs, Fn: getReturnCC(CallConv)); |
| 380 | |
| 381 | SDValue Glue; |
| 382 | SmallVector<SDValue, 4> RetOps(1, Chain); |
| 383 | |
| 384 | // Copy the result values into the output registers. |
| 385 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 386 | CCValAssign &VA = RVLocs[i]; |
| 387 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 388 | assert(!VA.needsCustom() && "Unexpected custom lowering" ); |
| 389 | SDValue OutVal = OutVals[i]; |
| 390 | |
| 391 | // Integer return values must be sign or zero extended by the callee. |
| 392 | switch (VA.getLocInfo()) { |
| 393 | case CCValAssign::Full: |
| 394 | break; |
| 395 | case CCValAssign::SExt: |
| 396 | OutVal = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: VA.getLocVT(), Operand: OutVal); |
| 397 | break; |
| 398 | case CCValAssign::ZExt: |
| 399 | OutVal = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: VA.getLocVT(), Operand: OutVal); |
| 400 | break; |
| 401 | case CCValAssign::AExt: |
| 402 | OutVal = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: VA.getLocVT(), Operand: OutVal); |
| 403 | break; |
| 404 | case CCValAssign::BCvt: { |
| 405 | // Convert a float return value to i64 with padding. |
| 406 | // 63 31 0 |
| 407 | // +------+------+ |
| 408 | // | float| 0 | |
| 409 | // +------+------+ |
| 410 | assert(VA.getLocVT() == MVT::i64); |
| 411 | assert(VA.getValVT() == MVT::f32); |
| 412 | SDValue Undef = SDValue( |
| 413 | DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MVT::i64), 0); |
| 414 | SDValue Sub_f32 = DAG.getTargetConstant(Val: VE::sub_f32, DL, VT: MVT::i32); |
| 415 | OutVal = SDValue(DAG.getMachineNode(Opcode: TargetOpcode::INSERT_SUBREG, dl: DL, |
| 416 | VT: MVT::i64, Op1: Undef, Op2: OutVal, Op3: Sub_f32), |
| 417 | 0); |
| 418 | break; |
| 419 | } |
| 420 | default: |
| 421 | llvm_unreachable("Unknown loc info!" ); |
| 422 | } |
| 423 | |
| 424 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: VA.getLocReg(), N: OutVal, Glue); |
| 425 | |
| 426 | // Guarantee that all emitted copies are stuck together with flags. |
| 427 | Glue = Chain.getValue(R: 1); |
| 428 | RetOps.push_back(Elt: DAG.getRegister(Reg: VA.getLocReg(), VT: VA.getLocVT())); |
| 429 | } |
| 430 | |
| 431 | RetOps[0] = Chain; // Update chain. |
| 432 | |
| 433 | // Add the glue if we have it. |
| 434 | if (Glue.getNode()) |
| 435 | RetOps.push_back(Elt: Glue); |
| 436 | |
| 437 | return DAG.getNode(Opcode: VEISD::RET_GLUE, DL, VT: MVT::Other, Ops: RetOps); |
| 438 | } |
| 439 | |
| 440 | SDValue VETargetLowering::LowerFormalArguments( |
| 441 | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 442 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| 443 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 444 | MachineFunction &MF = DAG.getMachineFunction(); |
| 445 | |
| 446 | // Get the base offset of the incoming arguments stack space. |
| 447 | unsigned ArgsBaseOffset = Subtarget->getRsaSize(); |
| 448 | // Get the size of the preserved arguments area |
| 449 | unsigned ArgsPreserved = 64; |
| 450 | |
| 451 | // Analyze arguments according to CC_VE. |
| 452 | SmallVector<CCValAssign, 16> ArgLocs; |
| 453 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| 454 | *DAG.getContext()); |
| 455 | // Allocate the preserved area first. |
| 456 | CCInfo.AllocateStack(Size: ArgsPreserved, Alignment: Align(8)); |
| 457 | // We already allocated the preserved area, so the stack offset computed |
| 458 | // by CC_VE would be correct now. |
| 459 | CCInfo.AnalyzeFormalArguments(Ins, Fn: getParamCC(CallConv, IsVarArg: false)); |
| 460 | |
| 461 | for (const CCValAssign &VA : ArgLocs) { |
| 462 | assert(!VA.needsCustom() && "Unexpected custom lowering" ); |
| 463 | if (VA.isRegLoc()) { |
| 464 | // This argument is passed in a register. |
| 465 | // All integer register arguments are promoted by the caller to i64. |
| 466 | |
| 467 | // Create a virtual register for the promoted live-in value. |
| 468 | Register VReg = |
| 469 | MF.addLiveIn(PReg: VA.getLocReg(), RC: getRegClassFor(VT: VA.getLocVT())); |
| 470 | SDValue Arg = DAG.getCopyFromReg(Chain, dl: DL, Reg: VReg, VT: VA.getLocVT()); |
| 471 | |
| 472 | // The caller promoted the argument, so insert an Assert?ext SDNode so we |
| 473 | // won't promote the value again in this function. |
| 474 | switch (VA.getLocInfo()) { |
| 475 | case CCValAssign::SExt: |
| 476 | Arg = DAG.getNode(Opcode: ISD::AssertSext, DL, VT: VA.getLocVT(), N1: Arg, |
| 477 | N2: DAG.getValueType(VA.getValVT())); |
| 478 | break; |
| 479 | case CCValAssign::ZExt: |
| 480 | Arg = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: VA.getLocVT(), N1: Arg, |
| 481 | N2: DAG.getValueType(VA.getValVT())); |
| 482 | break; |
| 483 | case CCValAssign::BCvt: { |
| 484 | // Extract a float argument from i64 with padding. |
| 485 | // 63 31 0 |
| 486 | // +------+------+ |
| 487 | // | float| 0 | |
| 488 | // +------+------+ |
| 489 | assert(VA.getLocVT() == MVT::i64); |
| 490 | assert(VA.getValVT() == MVT::f32); |
| 491 | SDValue Sub_f32 = DAG.getTargetConstant(Val: VE::sub_f32, DL, VT: MVT::i32); |
| 492 | Arg = SDValue(DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, |
| 493 | VT: MVT::f32, Op1: Arg, Op2: Sub_f32), |
| 494 | 0); |
| 495 | break; |
| 496 | } |
| 497 | default: |
| 498 | break; |
| 499 | } |
| 500 | |
| 501 | // Truncate the register down to the argument type. |
| 502 | if (VA.isExtInLoc()) |
| 503 | Arg = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: VA.getValVT(), Operand: Arg); |
| 504 | |
| 505 | InVals.push_back(Elt: Arg); |
| 506 | continue; |
| 507 | } |
| 508 | |
| 509 | // The registers are exhausted. This argument was passed on the stack. |
| 510 | assert(VA.isMemLoc()); |
| 511 | // The CC_VE_Full/Half functions compute stack offsets relative to the |
| 512 | // beginning of the arguments area at %fp + the size of reserved area. |
| 513 | unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; |
| 514 | unsigned ValSize = VA.getValVT().getSizeInBits() / 8; |
| 515 | |
| 516 | // Adjust offset for a float argument by adding 4 since the argument is |
| 517 | // stored in 8 bytes buffer with offset like below. LLVM generates |
| 518 | // 4 bytes load instruction, so need to adjust offset here. This |
| 519 | // adjustment is required in only LowerFormalArguments. In LowerCall, |
| 520 | // a float argument is converted to i64 first, and stored as 8 bytes |
| 521 | // data, which is required by ABI, so no need for adjustment. |
| 522 | // 0 4 |
| 523 | // +------+------+ |
| 524 | // | empty| float| |
| 525 | // +------+------+ |
| 526 | if (VA.getValVT() == MVT::f32) |
| 527 | Offset += 4; |
| 528 | |
| 529 | int FI = MF.getFrameInfo().CreateFixedObject(Size: ValSize, SPOffset: Offset, IsImmutable: true); |
| 530 | InVals.push_back( |
| 531 | Elt: DAG.getLoad(VT: VA.getValVT(), dl: DL, Chain, |
| 532 | Ptr: DAG.getFrameIndex(FI, VT: getPointerTy(DL: MF.getDataLayout())), |
| 533 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI))); |
| 534 | } |
| 535 | |
| 536 | if (!IsVarArg) |
| 537 | return Chain; |
| 538 | |
| 539 | // This function takes variable arguments, some of which may have been passed |
| 540 | // in registers %s0-%s8. |
| 541 | // |
| 542 | // The va_start intrinsic needs to know the offset to the first variable |
| 543 | // argument. |
| 544 | // TODO: need to calculate offset correctly once we support f128. |
| 545 | unsigned ArgOffset = ArgLocs.size() * 8; |
| 546 | VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); |
| 547 | // Skip the reserved area at the top of stack. |
| 548 | FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); |
| 549 | |
| 550 | return Chain; |
| 551 | } |
| 552 | |
| 553 | // FIXME? Maybe this could be a TableGen attribute on some registers and |
| 554 | // this table could be generated automatically from RegInfo. |
| 555 | Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| 556 | const MachineFunction &MF) const { |
| 557 | Register Reg = StringSwitch<Register>(RegName) |
| 558 | .Case(S: "sp" , Value: VE::SX11) // Stack pointer |
| 559 | .Case(S: "fp" , Value: VE::SX9) // Frame pointer |
| 560 | .Case(S: "sl" , Value: VE::SX8) // Stack limit |
| 561 | .Case(S: "lr" , Value: VE::SX10) // Link register |
| 562 | .Case(S: "tp" , Value: VE::SX14) // Thread pointer |
| 563 | .Case(S: "outer" , Value: VE::SX12) // Outer regiser |
| 564 | .Case(S: "info" , Value: VE::SX17) // Info area register |
| 565 | .Case(S: "got" , Value: VE::SX15) // Global offset table register |
| 566 | .Case(S: "plt" , Value: VE::SX16) // Procedure linkage table register |
| 567 | .Default(Value: Register()); |
| 568 | return Reg; |
| 569 | } |
| 570 | |
| 571 | //===----------------------------------------------------------------------===// |
| 572 | // TargetLowering Implementation |
| 573 | //===----------------------------------------------------------------------===// |
| 574 | |
| 575 | SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| 576 | SmallVectorImpl<SDValue> &InVals) const { |
| 577 | SelectionDAG &DAG = CLI.DAG; |
| 578 | SDLoc DL = CLI.DL; |
| 579 | SDValue Chain = CLI.Chain; |
| 580 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 581 | |
| 582 | // VE target does not yet support tail call optimization. |
| 583 | CLI.IsTailCall = false; |
| 584 | |
| 585 | // Get the base offset of the outgoing arguments stack space. |
| 586 | unsigned ArgsBaseOffset = Subtarget->getRsaSize(); |
| 587 | // Get the size of the preserved arguments area |
| 588 | unsigned ArgsPreserved = 8 * 8u; |
| 589 | |
| 590 | // Analyze operands of the call, assigning locations to each operand. |
| 591 | SmallVector<CCValAssign, 16> ArgLocs; |
| 592 | CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| 593 | *DAG.getContext()); |
| 594 | // Allocate the preserved area first. |
| 595 | CCInfo.AllocateStack(Size: ArgsPreserved, Alignment: Align(8)); |
| 596 | // We already allocated the preserved area, so the stack offset computed |
| 597 | // by CC_VE would be correct now. |
| 598 | CCInfo.AnalyzeCallOperands(Outs: CLI.Outs, Fn: getParamCC(CallConv: CLI.CallConv, IsVarArg: false)); |
| 599 | |
| 600 | // VE requires to use both register and stack for varargs or no-prototyped |
| 601 | // functions. |
| 602 | bool UseBoth = CLI.IsVarArg; |
| 603 | |
| 604 | // Analyze operands again if it is required to store BOTH. |
| 605 | SmallVector<CCValAssign, 16> ArgLocs2; |
| 606 | CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), |
| 607 | ArgLocs2, *DAG.getContext()); |
| 608 | if (UseBoth) |
| 609 | CCInfo2.AnalyzeCallOperands(Outs: CLI.Outs, Fn: getParamCC(CallConv: CLI.CallConv, IsVarArg: true)); |
| 610 | |
| 611 | // Get the size of the outgoing arguments stack space requirement. |
| 612 | unsigned ArgsSize = CCInfo.getStackSize(); |
| 613 | |
| 614 | // Keep stack frames 16-byte aligned. |
| 615 | ArgsSize = alignTo(Value: ArgsSize, Align: 16); |
| 616 | |
| 617 | // Adjust the stack pointer to make room for the arguments. |
| 618 | // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls |
| 619 | // with more than 6 arguments. |
| 620 | Chain = DAG.getCALLSEQ_START(Chain, InSize: ArgsSize, OutSize: 0, DL); |
| 621 | |
| 622 | // Collect the set of registers to pass to the function and their values. |
| 623 | // This will be emitted as a sequence of CopyToReg nodes glued to the call |
| 624 | // instruction. |
| 625 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| 626 | |
| 627 | // Collect chains from all the memory opeations that copy arguments to the |
| 628 | // stack. They must follow the stack pointer adjustment above and precede the |
| 629 | // call instruction itself. |
| 630 | SmallVector<SDValue, 8> MemOpChains; |
| 631 | |
| 632 | // VE needs to get address of callee function in a register |
| 633 | // So, prepare to copy it to SX12 here. |
| 634 | |
| 635 | // If the callee is a GlobalAddress node (quite common, every direct call is) |
| 636 | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| 637 | // Likewise ExternalSymbol -> TargetExternalSymbol. |
| 638 | SDValue Callee = CLI.Callee; |
| 639 | |
| 640 | bool IsPICCall = isPositionIndependent(); |
| 641 | |
| 642 | // PC-relative references to external symbols should go through $stub. |
| 643 | // If so, we need to prepare GlobalBaseReg first. |
| 644 | const TargetMachine &TM = DAG.getTarget(); |
| 645 | const GlobalValue *GV = nullptr; |
| 646 | auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Val&: Callee); |
| 647 | if (CalleeG) |
| 648 | GV = CalleeG->getGlobal(); |
| 649 | bool Local = TM.shouldAssumeDSOLocal(GV); |
| 650 | bool UsePlt = !Local; |
| 651 | MachineFunction &MF = DAG.getMachineFunction(); |
| 652 | |
| 653 | // Turn GlobalAddress/ExternalSymbol node into a value node |
| 654 | // containing the address of them here. |
| 655 | if (CalleeG) { |
| 656 | if (IsPICCall) { |
| 657 | if (UsePlt) |
| 658 | Subtarget->getInstrInfo()->getGlobalBaseReg(MF: &MF); |
| 659 | Callee = DAG.getTargetGlobalAddress(GV, DL, VT: PtrVT, offset: 0, TargetFlags: 0); |
| 660 | Callee = DAG.getNode(Opcode: VEISD::GETFUNPLT, DL, VT: PtrVT, Operand: Callee); |
| 661 | } else { |
| 662 | Callee = makeHiLoPair(Op: Callee, HiTF: VE::S_HI32, LoTF: VE::S_LO32, DAG); |
| 663 | } |
| 664 | } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) { |
| 665 | if (IsPICCall) { |
| 666 | if (UsePlt) |
| 667 | Subtarget->getInstrInfo()->getGlobalBaseReg(MF: &MF); |
| 668 | Callee = DAG.getTargetExternalSymbol(Sym: E->getSymbol(), VT: PtrVT, TargetFlags: 0); |
| 669 | Callee = DAG.getNode(Opcode: VEISD::GETFUNPLT, DL, VT: PtrVT, Operand: Callee); |
| 670 | } else { |
| 671 | Callee = makeHiLoPair(Op: Callee, HiTF: VE::S_HI32, LoTF: VE::S_LO32, DAG); |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | RegsToPass.push_back(Elt: std::make_pair(x: VE::SX12, y&: Callee)); |
| 676 | |
| 677 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 678 | CCValAssign &VA = ArgLocs[i]; |
| 679 | SDValue Arg = CLI.OutVals[i]; |
| 680 | |
| 681 | // Promote the value if needed. |
| 682 | switch (VA.getLocInfo()) { |
| 683 | default: |
| 684 | llvm_unreachable("Unknown location info!" ); |
| 685 | case CCValAssign::Full: |
| 686 | break; |
| 687 | case CCValAssign::SExt: |
| 688 | Arg = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: VA.getLocVT(), Operand: Arg); |
| 689 | break; |
| 690 | case CCValAssign::ZExt: |
| 691 | Arg = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: VA.getLocVT(), Operand: Arg); |
| 692 | break; |
| 693 | case CCValAssign::AExt: |
| 694 | Arg = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: VA.getLocVT(), Operand: Arg); |
| 695 | break; |
| 696 | case CCValAssign::BCvt: { |
| 697 | // Convert a float argument to i64 with padding. |
| 698 | // 63 31 0 |
| 699 | // +------+------+ |
| 700 | // | float| 0 | |
| 701 | // +------+------+ |
| 702 | assert(VA.getLocVT() == MVT::i64); |
| 703 | assert(VA.getValVT() == MVT::f32); |
| 704 | SDValue Undef = SDValue( |
| 705 | DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MVT::i64), 0); |
| 706 | SDValue Sub_f32 = DAG.getTargetConstant(Val: VE::sub_f32, DL, VT: MVT::i32); |
| 707 | Arg = SDValue(DAG.getMachineNode(Opcode: TargetOpcode::INSERT_SUBREG, dl: DL, |
| 708 | VT: MVT::i64, Op1: Undef, Op2: Arg, Op3: Sub_f32), |
| 709 | 0); |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | if (VA.isRegLoc()) { |
| 715 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: Arg)); |
| 716 | if (!UseBoth) |
| 717 | continue; |
| 718 | VA = ArgLocs2[i]; |
| 719 | } |
| 720 | |
| 721 | assert(VA.isMemLoc()); |
| 722 | |
| 723 | // Create a store off the stack pointer for this argument. |
| 724 | SDValue StackPtr = DAG.getRegister(Reg: VE::SX11, VT: PtrVT); |
| 725 | // The argument area starts at %fp/%sp + the size of reserved area. |
| 726 | SDValue PtrOff = |
| 727 | DAG.getIntPtrConstant(Val: VA.getLocMemOffset() + ArgsBaseOffset, DL); |
| 728 | PtrOff = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, N2: PtrOff); |
| 729 | MemOpChains.push_back( |
| 730 | Elt: DAG.getStore(Chain, dl: DL, Val: Arg, Ptr: PtrOff, PtrInfo: MachinePointerInfo())); |
| 731 | } |
| 732 | |
| 733 | // Emit all stores, make sure they occur before the call. |
| 734 | if (!MemOpChains.empty()) |
| 735 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOpChains); |
| 736 | |
| 737 | // Build a sequence of CopyToReg nodes glued together with token chain and |
| 738 | // glue operands which copy the outgoing args into registers. The InGlue is |
| 739 | // necessary since all emitted instructions must be stuck together in order |
| 740 | // to pass the live physical registers. |
| 741 | SDValue InGlue; |
| 742 | for (const auto &[Reg, N] : RegsToPass) { |
| 743 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg, N, Glue: InGlue); |
| 744 | InGlue = Chain.getValue(R: 1); |
| 745 | } |
| 746 | |
| 747 | // Build the operands for the call instruction itself. |
| 748 | SmallVector<SDValue, 8> Ops; |
| 749 | Ops.push_back(Elt: Chain); |
| 750 | for (const auto &[Reg, N] : RegsToPass) |
| 751 | Ops.push_back(Elt: DAG.getRegister(Reg, VT: N.getValueType())); |
| 752 | |
| 753 | // Add a register mask operand representing the call-preserved registers. |
| 754 | const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| 755 | const uint32_t *Mask = |
| 756 | TRI->getCallPreservedMask(MF: DAG.getMachineFunction(), CC: CLI.CallConv); |
| 757 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 758 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 759 | |
| 760 | // Make sure the CopyToReg nodes are glued to the call instruction which |
| 761 | // consumes the registers. |
| 762 | if (InGlue.getNode()) |
| 763 | Ops.push_back(Elt: InGlue); |
| 764 | |
| 765 | // Now the call itself. |
| 766 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 767 | Chain = DAG.getNode(Opcode: VEISD::CALL, DL, VTList: NodeTys, Ops); |
| 768 | InGlue = Chain.getValue(R: 1); |
| 769 | |
| 770 | // Revert the stack pointer immediately after the call. |
| 771 | Chain = DAG.getCALLSEQ_END(Chain, Size1: ArgsSize, Size2: 0, Glue: InGlue, DL); |
| 772 | InGlue = Chain.getValue(R: 1); |
| 773 | |
| 774 | // Now extract the return values. This is more or less the same as |
| 775 | // LowerFormalArguments. |
| 776 | |
| 777 | // Assign locations to each value returned by this call. |
| 778 | SmallVector<CCValAssign, 16> RVLocs; |
| 779 | CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, |
| 780 | *DAG.getContext()); |
| 781 | |
| 782 | // Set inreg flag manually for codegen generated library calls that |
| 783 | // return float. |
| 784 | if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) |
| 785 | CLI.Ins[0].Flags.setInReg(); |
| 786 | |
| 787 | RVInfo.AnalyzeCallResult(Ins: CLI.Ins, Fn: getReturnCC(CallConv: CLI.CallConv)); |
| 788 | |
| 789 | // Copy all of the result registers out of their specified physreg. |
| 790 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 791 | CCValAssign &VA = RVLocs[i]; |
| 792 | assert(!VA.needsCustom() && "Unexpected custom lowering" ); |
| 793 | Register Reg = VA.getLocReg(); |
| 794 | |
| 795 | // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can |
| 796 | // reside in the same register in the high and low bits. Reuse the |
| 797 | // CopyFromReg previous node to avoid duplicate copies. |
| 798 | SDValue RV; |
| 799 | if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Val: Chain.getOperand(i: 1))) |
| 800 | if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) |
| 801 | RV = Chain.getValue(R: 0); |
| 802 | |
| 803 | // But usually we'll create a new CopyFromReg for a different register. |
| 804 | if (!RV.getNode()) { |
| 805 | RV = DAG.getCopyFromReg(Chain, dl: DL, Reg, VT: RVLocs[i].getLocVT(), Glue: InGlue); |
| 806 | Chain = RV.getValue(R: 1); |
| 807 | InGlue = Chain.getValue(R: 2); |
| 808 | } |
| 809 | |
| 810 | // The callee promoted the return value, so insert an Assert?ext SDNode so |
| 811 | // we won't promote the value again in this function. |
| 812 | switch (VA.getLocInfo()) { |
| 813 | case CCValAssign::SExt: |
| 814 | RV = DAG.getNode(Opcode: ISD::AssertSext, DL, VT: VA.getLocVT(), N1: RV, |
| 815 | N2: DAG.getValueType(VA.getValVT())); |
| 816 | break; |
| 817 | case CCValAssign::ZExt: |
| 818 | RV = DAG.getNode(Opcode: ISD::AssertZext, DL, VT: VA.getLocVT(), N1: RV, |
| 819 | N2: DAG.getValueType(VA.getValVT())); |
| 820 | break; |
| 821 | case CCValAssign::BCvt: { |
| 822 | // Extract a float return value from i64 with padding. |
| 823 | // 63 31 0 |
| 824 | // +------+------+ |
| 825 | // | float| 0 | |
| 826 | // +------+------+ |
| 827 | assert(VA.getLocVT() == MVT::i64); |
| 828 | assert(VA.getValVT() == MVT::f32); |
| 829 | SDValue Sub_f32 = DAG.getTargetConstant(Val: VE::sub_f32, DL, VT: MVT::i32); |
| 830 | RV = SDValue(DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, |
| 831 | VT: MVT::f32, Op1: RV, Op2: Sub_f32), |
| 832 | 0); |
| 833 | break; |
| 834 | } |
| 835 | default: |
| 836 | break; |
| 837 | } |
| 838 | |
| 839 | // Truncate the register down to the return value type. |
| 840 | if (VA.isExtInLoc()) |
| 841 | RV = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: VA.getValVT(), Operand: RV); |
| 842 | |
| 843 | InVals.push_back(Elt: RV); |
| 844 | } |
| 845 | |
| 846 | return Chain; |
| 847 | } |
| 848 | |
| 849 | bool VETargetLowering::isOffsetFoldingLegal( |
| 850 | const GlobalAddressSDNode *GA) const { |
| 851 | // VE uses 64 bit addressing, so we need multiple instructions to generate |
| 852 | // an address. Folding address with offset increases the number of |
| 853 | // instructions, so that we disable it here. Offsets will be folded in |
| 854 | // the DAG combine later if it worth to do so. |
| 855 | return false; |
| 856 | } |
| 857 | |
| 858 | /// isFPImmLegal - Returns true if the target can instruction select the |
| 859 | /// specified FP immediate natively. If false, the legalizer will |
| 860 | /// materialize the FP immediate as a load from a constant pool. |
| 861 | bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| 862 | bool ForCodeSize) const { |
| 863 | return VT == MVT::f32 || VT == MVT::f64; |
| 864 | } |
| 865 | |
| 866 | /// Determine if the target supports unaligned memory accesses. |
| 867 | /// |
| 868 | /// This function returns true if the target allows unaligned memory accesses |
| 869 | /// of the specified type in the given address space. If true, it also returns |
| 870 | /// whether the unaligned memory access is "fast" in the last argument by |
| 871 | /// reference. This is used, for example, in situations where an array |
| 872 | /// copy/move/set is converted to a sequence of store operations. Its use |
| 873 | /// helps to ensure that such replacements don't generate code that causes an |
| 874 | /// alignment error (trap) on the target machine. |
| 875 | bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, |
| 876 | unsigned AddrSpace, |
| 877 | Align A, |
| 878 | MachineMemOperand::Flags, |
| 879 | unsigned *Fast) const { |
| 880 | if (Fast) { |
| 881 | // It's fast anytime on VE |
| 882 | *Fast = 1; |
| 883 | } |
| 884 | return true; |
| 885 | } |
| 886 | |
| 887 | VETargetLowering::VETargetLowering(const TargetMachine &TM, |
| 888 | const VESubtarget &STI) |
| 889 | : TargetLowering(TM, STI), Subtarget(&STI) { |
| 890 | // Instructions which use registers as conditionals examine all the |
| 891 | // bits (as does the pseudo SELECT_CC expansion). I don't think it |
| 892 | // matters much whether it's ZeroOrOneBooleanContent, or |
| 893 | // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the |
| 894 | // former. |
| 895 | setBooleanContents(ZeroOrOneBooleanContent); |
| 896 | setBooleanVectorContents(ZeroOrOneBooleanContent); |
| 897 | |
| 898 | initRegisterClasses(); |
| 899 | initSPUActions(); |
| 900 | initVPUActions(); |
| 901 | |
| 902 | setStackPointerRegisterToSaveRestore(VE::SX11); |
| 903 | |
| 904 | // We have target-specific dag combine patterns for the following nodes: |
| 905 | setTargetDAGCombine(ISD::TRUNCATE); |
| 906 | setTargetDAGCombine(ISD::SELECT); |
| 907 | setTargetDAGCombine(ISD::SELECT_CC); |
| 908 | |
| 909 | // Set function alignment to 16 bytes |
| 910 | setMinFunctionAlignment(Align(16)); |
| 911 | |
| 912 | // VE stores all argument by 8 bytes alignment |
| 913 | setMinStackArgumentAlignment(Align(8)); |
| 914 | |
| 915 | computeRegisterProperties(TRI: Subtarget->getRegisterInfo()); |
| 916 | } |
| 917 | |
| 918 | EVT VETargetLowering::getSetCCResultType(const DataLayout &, |
| 919 | LLVMContext &Context, EVT VT) const { |
| 920 | if (VT.isVector()) |
| 921 | return VT.changeVectorElementType(Context, EltVT: MVT::i1); |
| 922 | return MVT::i32; |
| 923 | } |
| 924 | |
| 925 | // Convert to a target node and set target flags. |
| 926 | SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, |
| 927 | SelectionDAG &DAG) const { |
| 928 | if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val&: Op)) |
| 929 | return DAG.getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(GA), |
| 930 | VT: GA->getValueType(ResNo: 0), offset: GA->getOffset(), TargetFlags: TF); |
| 931 | |
| 932 | if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Val&: Op)) |
| 933 | return DAG.getTargetBlockAddress(BA: BA->getBlockAddress(), VT: Op.getValueType(), |
| 934 | Offset: 0, TargetFlags: TF); |
| 935 | |
| 936 | if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Val&: Op)) |
| 937 | return DAG.getTargetConstantPool(C: CP->getConstVal(), VT: CP->getValueType(ResNo: 0), |
| 938 | Align: CP->getAlign(), Offset: CP->getOffset(), TargetFlags: TF); |
| 939 | |
| 940 | if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Val&: Op)) |
| 941 | return DAG.getTargetExternalSymbol(Sym: ES->getSymbol(), VT: ES->getValueType(ResNo: 0), |
| 942 | TargetFlags: TF); |
| 943 | |
| 944 | if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Val&: Op)) |
| 945 | return DAG.getTargetJumpTable(JTI: JT->getIndex(), VT: JT->getValueType(ResNo: 0), TargetFlags: TF); |
| 946 | |
| 947 | llvm_unreachable("Unhandled address SDNode" ); |
| 948 | } |
| 949 | |
| 950 | // Split Op into high and low parts according to HiTF and LoTF. |
| 951 | // Return an ADD node combining the parts. |
| 952 | SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, |
| 953 | SelectionDAG &DAG) const { |
| 954 | SDLoc DL(Op); |
| 955 | EVT VT = Op.getValueType(); |
| 956 | SDValue Hi = DAG.getNode(Opcode: VEISD::Hi, DL, VT, Operand: withTargetFlags(Op, TF: HiTF, DAG)); |
| 957 | SDValue Lo = DAG.getNode(Opcode: VEISD::Lo, DL, VT, Operand: withTargetFlags(Op, TF: LoTF, DAG)); |
| 958 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Hi, N2: Lo); |
| 959 | } |
| 960 | |
| 961 | // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, |
| 962 | // or ExternalSymbol SDNode. |
| 963 | SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { |
| 964 | SDLoc DL(Op); |
| 965 | EVT PtrVT = Op.getValueType(); |
| 966 | |
| 967 | // Handle PIC mode first. VE needs a got load for every variable! |
| 968 | if (isPositionIndependent()) { |
| 969 | auto GlobalN = dyn_cast<GlobalAddressSDNode>(Val&: Op); |
| 970 | |
| 971 | if (isa<ConstantPoolSDNode>(Val: Op) || isa<JumpTableSDNode>(Val: Op) || |
| 972 | (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { |
| 973 | // Create following instructions for local linkage PIC code. |
| 974 | // lea %reg, label@gotoff_lo |
| 975 | // and %reg, %reg, (32)0 |
| 976 | // lea.sl %reg, label@gotoff_hi(%reg, %got) |
| 977 | SDValue HiLo = |
| 978 | makeHiLoPair(Op, HiTF: VE::S_GOTOFF_HI32, LoTF: VE::S_GOTOFF_LO32, DAG); |
| 979 | SDValue GlobalBase = DAG.getNode(Opcode: VEISD::GLOBAL_BASE_REG, DL, VT: PtrVT); |
| 980 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: GlobalBase, N2: HiLo); |
| 981 | } |
| 982 | // Create following instructions for not local linkage PIC code. |
| 983 | // lea %reg, label@got_lo |
| 984 | // and %reg, %reg, (32)0 |
| 985 | // lea.sl %reg, label@got_hi(%reg) |
| 986 | // ld %reg, (%reg, %got) |
| 987 | SDValue HiLo = makeHiLoPair(Op, HiTF: VE::S_GOT_HI32, LoTF: VE::S_GOT_LO32, DAG); |
| 988 | SDValue GlobalBase = DAG.getNode(Opcode: VEISD::GLOBAL_BASE_REG, DL, VT: PtrVT); |
| 989 | SDValue AbsAddr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: GlobalBase, N2: HiLo); |
| 990 | return DAG.getLoad(VT: PtrVT, dl: DL, Chain: DAG.getEntryNode(), Ptr: AbsAddr, |
| 991 | PtrInfo: MachinePointerInfo::getGOT(MF&: DAG.getMachineFunction())); |
| 992 | } |
| 993 | |
| 994 | // This is one of the absolute code models. |
| 995 | switch (getTargetMachine().getCodeModel()) { |
| 996 | default: |
| 997 | llvm_unreachable("Unsupported absolute code model" ); |
| 998 | case CodeModel::Small: |
| 999 | case CodeModel::Medium: |
| 1000 | case CodeModel::Large: |
| 1001 | // abs64. |
| 1002 | return makeHiLoPair(Op, HiTF: VE::S_HI32, LoTF: VE::S_LO32, DAG); |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | /// Custom Lower { |
| 1007 | |
| 1008 | // The mappings for emitLeading/TrailingFence for VE is designed by following |
| 1009 | // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html |
| 1010 | Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| 1011 | Instruction *Inst, |
| 1012 | AtomicOrdering Ord) const { |
| 1013 | switch (Ord) { |
| 1014 | case AtomicOrdering::NotAtomic: |
| 1015 | case AtomicOrdering::Unordered: |
| 1016 | llvm_unreachable("Invalid fence: unordered/non-atomic" ); |
| 1017 | case AtomicOrdering::Monotonic: |
| 1018 | case AtomicOrdering::Acquire: |
| 1019 | return nullptr; // Nothing to do |
| 1020 | case AtomicOrdering::Release: |
| 1021 | case AtomicOrdering::AcquireRelease: |
| 1022 | return Builder.CreateFence(Ordering: AtomicOrdering::Release); |
| 1023 | case AtomicOrdering::SequentiallyConsistent: |
| 1024 | if (!Inst->hasAtomicStore()) |
| 1025 | return nullptr; // Nothing to do |
| 1026 | return Builder.CreateFence(Ordering: AtomicOrdering::SequentiallyConsistent); |
| 1027 | } |
| 1028 | llvm_unreachable("Unknown fence ordering in emitLeadingFence" ); |
| 1029 | } |
| 1030 | |
| 1031 | Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| 1032 | Instruction *Inst, |
| 1033 | AtomicOrdering Ord) const { |
| 1034 | switch (Ord) { |
| 1035 | case AtomicOrdering::NotAtomic: |
| 1036 | case AtomicOrdering::Unordered: |
| 1037 | llvm_unreachable("Invalid fence: unordered/not-atomic" ); |
| 1038 | case AtomicOrdering::Monotonic: |
| 1039 | case AtomicOrdering::Release: |
| 1040 | return nullptr; // Nothing to do |
| 1041 | case AtomicOrdering::Acquire: |
| 1042 | case AtomicOrdering::AcquireRelease: |
| 1043 | return Builder.CreateFence(Ordering: AtomicOrdering::Acquire); |
| 1044 | case AtomicOrdering::SequentiallyConsistent: |
| 1045 | return Builder.CreateFence(Ordering: AtomicOrdering::SequentiallyConsistent); |
| 1046 | } |
| 1047 | llvm_unreachable("Unknown fence ordering in emitTrailingFence" ); |
| 1048 | } |
| 1049 | |
| 1050 | SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, |
| 1051 | SelectionDAG &DAG) const { |
| 1052 | SDLoc DL(Op); |
| 1053 | AtomicOrdering FenceOrdering = |
| 1054 | static_cast<AtomicOrdering>(Op.getConstantOperandVal(i: 1)); |
| 1055 | SyncScope::ID FenceSSID = |
| 1056 | static_cast<SyncScope::ID>(Op.getConstantOperandVal(i: 2)); |
| 1057 | |
| 1058 | // VE uses Release consistency, so need a fence instruction if it is a |
| 1059 | // cross-thread fence. |
| 1060 | if (FenceSSID == SyncScope::System) { |
| 1061 | switch (FenceOrdering) { |
| 1062 | case AtomicOrdering::NotAtomic: |
| 1063 | case AtomicOrdering::Unordered: |
| 1064 | case AtomicOrdering::Monotonic: |
| 1065 | // No need to generate fencem instruction here. |
| 1066 | break; |
| 1067 | case AtomicOrdering::Acquire: |
| 1068 | // Generate "fencem 2" as acquire fence. |
| 1069 | return SDValue(DAG.getMachineNode(Opcode: VE::FENCEM, dl: DL, VT: MVT::Other, |
| 1070 | Op1: DAG.getTargetConstant(Val: 2, DL, VT: MVT::i32), |
| 1071 | Op2: Op.getOperand(i: 0)), |
| 1072 | 0); |
| 1073 | case AtomicOrdering::Release: |
| 1074 | // Generate "fencem 1" as release fence. |
| 1075 | return SDValue(DAG.getMachineNode(Opcode: VE::FENCEM, dl: DL, VT: MVT::Other, |
| 1076 | Op1: DAG.getTargetConstant(Val: 1, DL, VT: MVT::i32), |
| 1077 | Op2: Op.getOperand(i: 0)), |
| 1078 | 0); |
| 1079 | case AtomicOrdering::AcquireRelease: |
| 1080 | case AtomicOrdering::SequentiallyConsistent: |
| 1081 | // Generate "fencem 3" as acq_rel and seq_cst fence. |
| 1082 | // FIXME: "fencem 3" doesn't wait for PCIe deveices accesses, |
| 1083 | // so seq_cst may require more instruction for them. |
| 1084 | return SDValue(DAG.getMachineNode(Opcode: VE::FENCEM, dl: DL, VT: MVT::Other, |
| 1085 | Op1: DAG.getTargetConstant(Val: 3, DL, VT: MVT::i32), |
| 1086 | Op2: Op.getOperand(i: 0)), |
| 1087 | 0); |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| 1092 | return DAG.getNode(Opcode: ISD::MEMBARRIER, DL, VT: MVT::Other, Operand: Op.getOperand(i: 0)); |
| 1093 | } |
| 1094 | |
| 1095 | TargetLowering::AtomicExpansionKind |
| 1096 | VETargetLowering::shouldExpandAtomicRMWInIR(const AtomicRMWInst *AI) const { |
| 1097 | // We have TS1AM implementation for i8/i16/i32/i64, so use it. |
| 1098 | if (AI->getOperation() == AtomicRMWInst::Xchg) { |
| 1099 | return AtomicExpansionKind::None; |
| 1100 | } |
| 1101 | // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. |
| 1102 | |
| 1103 | // Otherwise, expand it using compare and exchange instruction to not call |
| 1104 | // __sync_fetch_and_* functions. |
| 1105 | return AtomicExpansionKind::CmpXChg; |
| 1106 | } |
| 1107 | |
| 1108 | static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, |
| 1109 | SDValue &Bits) { |
| 1110 | SDLoc DL(Op); |
| 1111 | AtomicSDNode *N = cast<AtomicSDNode>(Val&: Op); |
| 1112 | SDValue Ptr = N->getOperand(Num: 1); |
| 1113 | SDValue Val = N->getOperand(Num: 2); |
| 1114 | EVT PtrVT = Ptr.getValueType(); |
| 1115 | bool Byte = N->getMemoryVT() == MVT::i8; |
| 1116 | // Remainder = AND Ptr, 3 |
| 1117 | // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) |
| 1118 | // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) |
| 1119 | // Bits = Remainder << 3 |
| 1120 | // NewVal = Val << Bits |
| 1121 | SDValue Const3 = DAG.getConstant(Val: 3, DL, VT: PtrVT); |
| 1122 | SDValue Remainder = DAG.getNode(Opcode: ISD::AND, DL, VT: PtrVT, Ops: {Ptr, Const3}); |
| 1123 | SDValue Mask = Byte ? DAG.getConstant(Val: 1, DL, VT: MVT::i32) |
| 1124 | : DAG.getConstant(Val: 3, DL, VT: MVT::i32); |
| 1125 | Flag = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, Ops: {Mask, Remainder}); |
| 1126 | Bits = DAG.getNode(Opcode: ISD::SHL, DL, VT: PtrVT, Ops: {Remainder, Const3}); |
| 1127 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: Val.getValueType(), Ops: {Val, Bits}); |
| 1128 | } |
| 1129 | |
| 1130 | static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, |
| 1131 | SDValue Bits) { |
| 1132 | SDLoc DL(Op); |
| 1133 | EVT VT = Data.getValueType(); |
| 1134 | bool Byte = cast<AtomicSDNode>(Val&: Op)->getMemoryVT() == MVT::i8; |
| 1135 | // NewData = Data >> Bits |
| 1136 | // Result = NewData & 0xff ; If Byte is true (1 byte) |
| 1137 | // Result = NewData & 0xffff ; If Byte is false (2 bytes) |
| 1138 | |
| 1139 | SDValue NewData = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Data, N2: Bits); |
| 1140 | return DAG.getNode(Opcode: ISD::AND, DL, VT, |
| 1141 | Ops: {NewData, DAG.getConstant(Val: Byte ? 0xff : 0xffff, DL, VT)}); |
| 1142 | } |
| 1143 | |
| 1144 | SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, |
| 1145 | SelectionDAG &DAG) const { |
| 1146 | SDLoc DL(Op); |
| 1147 | AtomicSDNode *N = cast<AtomicSDNode>(Val&: Op); |
| 1148 | |
| 1149 | if (N->getMemoryVT() == MVT::i8) { |
| 1150 | // For i8, use "ts1am" |
| 1151 | // Input: |
| 1152 | // ATOMIC_SWAP Ptr, Val, Order |
| 1153 | // |
| 1154 | // Output: |
| 1155 | // Remainder = AND Ptr, 3 |
| 1156 | // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. |
| 1157 | // Bits = Remainder << 3 |
| 1158 | // NewVal = Val << Bits |
| 1159 | // |
| 1160 | // Aligned = AND Ptr, -4 |
| 1161 | // Data = TS1AM Aligned, Flag, NewVal |
| 1162 | // |
| 1163 | // NewData = Data >> Bits |
| 1164 | // Result = NewData & 0xff ; 1 byte result |
| 1165 | SDValue Flag; |
| 1166 | SDValue Bits; |
| 1167 | SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); |
| 1168 | |
| 1169 | SDValue Ptr = N->getOperand(Num: 1); |
| 1170 | SDValue Aligned = |
| 1171 | DAG.getNode(Opcode: ISD::AND, DL, VT: Ptr.getValueType(), |
| 1172 | Ops: {Ptr, DAG.getSignedConstant(Val: -4, DL, VT: MVT::i64)}); |
| 1173 | SDValue TS1AM = DAG.getAtomic(Opcode: VEISD::TS1AM, dl: DL, MemVT: N->getMemoryVT(), |
| 1174 | VTList: DAG.getVTList(VT1: Op.getNode()->getValueType(ResNo: 0), |
| 1175 | VT2: Op.getNode()->getValueType(ResNo: 1)), |
| 1176 | Ops: {N->getChain(), Aligned, Flag, NewVal}, |
| 1177 | MMO: N->getMemOperand()); |
| 1178 | |
| 1179 | SDValue Result = finalizeTS1AM(Op, DAG, Data: TS1AM, Bits); |
| 1180 | SDValue Chain = TS1AM.getValue(R: 1); |
| 1181 | return DAG.getMergeValues(Ops: {Result, Chain}, dl: DL); |
| 1182 | } |
| 1183 | if (N->getMemoryVT() == MVT::i16) { |
| 1184 | // For i16, use "ts1am" |
| 1185 | SDValue Flag; |
| 1186 | SDValue Bits; |
| 1187 | SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); |
| 1188 | |
| 1189 | SDValue Ptr = N->getOperand(Num: 1); |
| 1190 | SDValue Aligned = |
| 1191 | DAG.getNode(Opcode: ISD::AND, DL, VT: Ptr.getValueType(), |
| 1192 | Ops: {Ptr, DAG.getSignedConstant(Val: -4, DL, VT: MVT::i64)}); |
| 1193 | SDValue TS1AM = DAG.getAtomic(Opcode: VEISD::TS1AM, dl: DL, MemVT: N->getMemoryVT(), |
| 1194 | VTList: DAG.getVTList(VT1: Op.getNode()->getValueType(ResNo: 0), |
| 1195 | VT2: Op.getNode()->getValueType(ResNo: 1)), |
| 1196 | Ops: {N->getChain(), Aligned, Flag, NewVal}, |
| 1197 | MMO: N->getMemOperand()); |
| 1198 | |
| 1199 | SDValue Result = finalizeTS1AM(Op, DAG, Data: TS1AM, Bits); |
| 1200 | SDValue Chain = TS1AM.getValue(R: 1); |
| 1201 | return DAG.getMergeValues(Ops: {Result, Chain}, dl: DL); |
| 1202 | } |
| 1203 | // Otherwise, let llvm legalize it. |
| 1204 | return Op; |
| 1205 | } |
| 1206 | |
| 1207 | SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, |
| 1208 | SelectionDAG &DAG) const { |
| 1209 | return makeAddress(Op, DAG); |
| 1210 | } |
| 1211 | |
| 1212 | SDValue VETargetLowering::lowerBlockAddress(SDValue Op, |
| 1213 | SelectionDAG &DAG) const { |
| 1214 | return makeAddress(Op, DAG); |
| 1215 | } |
| 1216 | |
| 1217 | SDValue VETargetLowering::lowerConstantPool(SDValue Op, |
| 1218 | SelectionDAG &DAG) const { |
| 1219 | return makeAddress(Op, DAG); |
| 1220 | } |
| 1221 | |
| 1222 | SDValue |
| 1223 | VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, |
| 1224 | SelectionDAG &DAG) const { |
| 1225 | SDLoc DL(Op); |
| 1226 | |
| 1227 | // Generate the following code: |
| 1228 | // t1: ch,glue = callseq_start t0, 0, 0 |
| 1229 | // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 |
| 1230 | // t3: ch,glue = callseq_end t2, 0, 0, t2:2 |
| 1231 | // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 |
| 1232 | SDValue Label = withTargetFlags(Op, TF: 0, DAG); |
| 1233 | EVT PtrVT = Op.getValueType(); |
| 1234 | |
| 1235 | // Lowering the machine isd will make sure everything is in the right |
| 1236 | // location. |
| 1237 | SDValue Chain = DAG.getEntryNode(); |
| 1238 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 1239 | const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( |
| 1240 | MF: DAG.getMachineFunction(), CC: CallingConv::C); |
| 1241 | Chain = DAG.getCALLSEQ_START(Chain, InSize: 64, OutSize: 0, DL); |
| 1242 | SDValue Args[] = {Chain, Label, DAG.getRegisterMask(RegMask: Mask), Chain.getValue(R: 1)}; |
| 1243 | Chain = DAG.getNode(Opcode: VEISD::GETTLSADDR, DL, VTList: NodeTys, Ops: Args); |
| 1244 | Chain = DAG.getCALLSEQ_END(Chain, Size1: 64, Size2: 0, Glue: Chain.getValue(R: 1), DL); |
| 1245 | Chain = DAG.getCopyFromReg(Chain, dl: DL, Reg: VE::SX0, VT: PtrVT, Glue: Chain.getValue(R: 1)); |
| 1246 | |
| 1247 | // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| 1248 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| 1249 | MFI.setHasCalls(true); |
| 1250 | |
| 1251 | // Also generate code to prepare a GOT register if it is PIC. |
| 1252 | if (isPositionIndependent()) { |
| 1253 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1254 | Subtarget->getInstrInfo()->getGlobalBaseReg(MF: &MF); |
| 1255 | } |
| 1256 | |
| 1257 | return Chain; |
| 1258 | } |
| 1259 | |
| 1260 | SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, |
| 1261 | SelectionDAG &DAG) const { |
| 1262 | // The current implementation of nld (2.26) doesn't allow local exec model |
| 1263 | // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always |
| 1264 | // generate the general dynamic model code sequence. |
| 1265 | // |
| 1266 | // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf |
| 1267 | return lowerToTLSGeneralDynamicModel(Op, DAG); |
| 1268 | } |
| 1269 | |
| 1270 | SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| 1271 | return makeAddress(Op, DAG); |
| 1272 | } |
| 1273 | |
| 1274 | // Lower a f128 load into two f64 loads. |
| 1275 | static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { |
| 1276 | SDLoc DL(Op); |
| 1277 | LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Val: Op.getNode()); |
| 1278 | assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type" ); |
| 1279 | Align Alignment = LdNode->getAlign(); |
| 1280 | if (Alignment > 8) |
| 1281 | Alignment = Align(8); |
| 1282 | |
| 1283 | SDValue Lo64 = |
| 1284 | DAG.getLoad(VT: MVT::f64, dl: DL, Chain: LdNode->getChain(), Ptr: LdNode->getBasePtr(), |
| 1285 | PtrInfo: LdNode->getPointerInfo(), Alignment, |
| 1286 | MMOFlags: LdNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1287 | : MachineMemOperand::MONone); |
| 1288 | EVT AddrVT = LdNode->getBasePtr().getValueType(); |
| 1289 | SDValue HiPtr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: LdNode->getBasePtr(), |
| 1290 | N2: DAG.getConstant(Val: 8, DL, VT: AddrVT)); |
| 1291 | SDValue Hi64 = |
| 1292 | DAG.getLoad(VT: MVT::f64, dl: DL, Chain: LdNode->getChain(), Ptr: HiPtr, |
| 1293 | PtrInfo: LdNode->getPointerInfo(), Alignment, |
| 1294 | MMOFlags: LdNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1295 | : MachineMemOperand::MONone); |
| 1296 | |
| 1297 | SDValue SubRegEven = DAG.getTargetConstant(Val: VE::sub_even, DL, VT: MVT::i32); |
| 1298 | SDValue SubRegOdd = DAG.getTargetConstant(Val: VE::sub_odd, DL, VT: MVT::i32); |
| 1299 | |
| 1300 | // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) |
| 1301 | SDNode *InFP128 = |
| 1302 | DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MVT::f128); |
| 1303 | InFP128 = DAG.getMachineNode(Opcode: TargetOpcode::INSERT_SUBREG, dl: DL, VT: MVT::f128, |
| 1304 | Op1: SDValue(InFP128, 0), Op2: Hi64, Op3: SubRegEven); |
| 1305 | InFP128 = DAG.getMachineNode(Opcode: TargetOpcode::INSERT_SUBREG, dl: DL, VT: MVT::f128, |
| 1306 | Op1: SDValue(InFP128, 0), Op2: Lo64, Op3: SubRegOdd); |
| 1307 | SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), |
| 1308 | SDValue(Hi64.getNode(), 1)}; |
| 1309 | SDValue OutChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1310 | SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; |
| 1311 | return DAG.getMergeValues(Ops, dl: DL); |
| 1312 | } |
| 1313 | |
| 1314 | // Lower a vXi1 load into following instructions |
| 1315 | // LDrii %1, (,%addr) |
| 1316 | // LVMxir %vm, 0, %1 |
| 1317 | // LDrii %2, 8(,%addr) |
| 1318 | // LVMxir %vm, 0, %2 |
| 1319 | // ... |
| 1320 | static SDValue lowerLoadI1(SDValue Op, SelectionDAG &DAG) { |
| 1321 | SDLoc DL(Op); |
| 1322 | LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Val: Op.getNode()); |
| 1323 | assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type" ); |
| 1324 | |
| 1325 | SDValue BasePtr = LdNode->getBasePtr(); |
| 1326 | Align Alignment = LdNode->getAlign(); |
| 1327 | if (Alignment > 8) |
| 1328 | Alignment = Align(8); |
| 1329 | |
| 1330 | EVT AddrVT = BasePtr.getValueType(); |
| 1331 | EVT MemVT = LdNode->getMemoryVT(); |
| 1332 | if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { |
| 1333 | SDValue OutChains[4]; |
| 1334 | SDNode *VM = DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MemVT); |
| 1335 | for (int i = 0; i < 4; ++i) { |
| 1336 | // Generate load dag and prepare chains. |
| 1337 | SDValue Addr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: BasePtr, |
| 1338 | N2: DAG.getConstant(Val: 8 * i, DL, VT: AddrVT)); |
| 1339 | SDValue Val = |
| 1340 | DAG.getLoad(VT: MVT::i64, dl: DL, Chain: LdNode->getChain(), Ptr: Addr, |
| 1341 | PtrInfo: LdNode->getPointerInfo(), Alignment, |
| 1342 | MMOFlags: LdNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1343 | : MachineMemOperand::MONone); |
| 1344 | OutChains[i] = SDValue(Val.getNode(), 1); |
| 1345 | |
| 1346 | VM = DAG.getMachineNode(Opcode: VE::LVMir_m, dl: DL, VT: MVT::i64, |
| 1347 | Op1: DAG.getTargetConstant(Val: i, DL, VT: MVT::i64), Op2: Val, |
| 1348 | Op3: SDValue(VM, 0)); |
| 1349 | } |
| 1350 | SDValue OutChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1351 | SDValue Ops[2] = {SDValue(VM, 0), OutChain}; |
| 1352 | return DAG.getMergeValues(Ops, dl: DL); |
| 1353 | } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { |
| 1354 | SDValue OutChains[8]; |
| 1355 | SDNode *VM = DAG.getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT: MemVT); |
| 1356 | for (int i = 0; i < 8; ++i) { |
| 1357 | // Generate load dag and prepare chains. |
| 1358 | SDValue Addr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: BasePtr, |
| 1359 | N2: DAG.getConstant(Val: 8 * i, DL, VT: AddrVT)); |
| 1360 | SDValue Val = |
| 1361 | DAG.getLoad(VT: MVT::i64, dl: DL, Chain: LdNode->getChain(), Ptr: Addr, |
| 1362 | PtrInfo: LdNode->getPointerInfo(), Alignment, |
| 1363 | MMOFlags: LdNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1364 | : MachineMemOperand::MONone); |
| 1365 | OutChains[i] = SDValue(Val.getNode(), 1); |
| 1366 | |
| 1367 | VM = DAG.getMachineNode(Opcode: VE::LVMyir_y, dl: DL, VT: MVT::i64, |
| 1368 | Op1: DAG.getTargetConstant(Val: i, DL, VT: MVT::i64), Op2: Val, |
| 1369 | Op3: SDValue(VM, 0)); |
| 1370 | } |
| 1371 | SDValue OutChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1372 | SDValue Ops[2] = {SDValue(VM, 0), OutChain}; |
| 1373 | return DAG.getMergeValues(Ops, dl: DL); |
| 1374 | } else { |
| 1375 | // Otherwise, ask llvm to expand it. |
| 1376 | return SDValue(); |
| 1377 | } |
| 1378 | } |
| 1379 | |
| 1380 | SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| 1381 | LoadSDNode *LdNode = cast<LoadSDNode>(Val: Op.getNode()); |
| 1382 | EVT MemVT = LdNode->getMemoryVT(); |
| 1383 | |
| 1384 | // If VPU is enabled, always expand non-mask vector loads to VVP |
| 1385 | if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(SomeVT: MemVT)) |
| 1386 | return lowerToVVP(Op, DAG); |
| 1387 | |
| 1388 | SDValue BasePtr = LdNode->getBasePtr(); |
| 1389 | if (isa<FrameIndexSDNode>(Val: BasePtr.getNode())) { |
| 1390 | // Do not expand store instruction with frame index here because of |
| 1391 | // dependency problems. We expand it later in eliminateFrameIndex(). |
| 1392 | return Op; |
| 1393 | } |
| 1394 | |
| 1395 | if (MemVT == MVT::f128) |
| 1396 | return lowerLoadF128(Op, DAG); |
| 1397 | if (isMaskType(SomeVT: MemVT)) |
| 1398 | return lowerLoadI1(Op, DAG); |
| 1399 | |
| 1400 | return Op; |
| 1401 | } |
| 1402 | |
| 1403 | // Lower a f128 store into two f64 stores. |
| 1404 | static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { |
| 1405 | SDLoc DL(Op); |
| 1406 | StoreSDNode *StNode = dyn_cast<StoreSDNode>(Val: Op.getNode()); |
| 1407 | assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type" ); |
| 1408 | |
| 1409 | SDValue SubRegEven = DAG.getTargetConstant(Val: VE::sub_even, DL, VT: MVT::i32); |
| 1410 | SDValue SubRegOdd = DAG.getTargetConstant(Val: VE::sub_odd, DL, VT: MVT::i32); |
| 1411 | |
| 1412 | SDNode *Hi64 = DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, VT: MVT::i64, |
| 1413 | Op1: StNode->getValue(), Op2: SubRegEven); |
| 1414 | SDNode *Lo64 = DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, VT: MVT::i64, |
| 1415 | Op1: StNode->getValue(), Op2: SubRegOdd); |
| 1416 | |
| 1417 | Align Alignment = StNode->getAlign(); |
| 1418 | if (Alignment > 8) |
| 1419 | Alignment = Align(8); |
| 1420 | |
| 1421 | // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) |
| 1422 | SDValue OutChains[2]; |
| 1423 | OutChains[0] = |
| 1424 | DAG.getStore(Chain: StNode->getChain(), dl: DL, Val: SDValue(Lo64, 0), |
| 1425 | Ptr: StNode->getBasePtr(), PtrInfo: MachinePointerInfo(), Alignment, |
| 1426 | MMOFlags: StNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1427 | : MachineMemOperand::MONone); |
| 1428 | EVT AddrVT = StNode->getBasePtr().getValueType(); |
| 1429 | SDValue HiPtr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: StNode->getBasePtr(), |
| 1430 | N2: DAG.getConstant(Val: 8, DL, VT: AddrVT)); |
| 1431 | OutChains[1] = |
| 1432 | DAG.getStore(Chain: StNode->getChain(), dl: DL, Val: SDValue(Hi64, 0), Ptr: HiPtr, |
| 1433 | PtrInfo: MachinePointerInfo(), Alignment, |
| 1434 | MMOFlags: StNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1435 | : MachineMemOperand::MONone); |
| 1436 | return DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1437 | } |
| 1438 | |
| 1439 | // Lower a vXi1 store into following instructions |
| 1440 | // SVMi %1, %vm, 0 |
| 1441 | // STrii %1, (,%addr) |
| 1442 | // SVMi %2, %vm, 1 |
| 1443 | // STrii %2, 8(,%addr) |
| 1444 | // ... |
| 1445 | static SDValue lowerStoreI1(SDValue Op, SelectionDAG &DAG) { |
| 1446 | SDLoc DL(Op); |
| 1447 | StoreSDNode *StNode = dyn_cast<StoreSDNode>(Val: Op.getNode()); |
| 1448 | assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type" ); |
| 1449 | |
| 1450 | SDValue BasePtr = StNode->getBasePtr(); |
| 1451 | Align Alignment = StNode->getAlign(); |
| 1452 | if (Alignment > 8) |
| 1453 | Alignment = Align(8); |
| 1454 | EVT AddrVT = BasePtr.getValueType(); |
| 1455 | EVT MemVT = StNode->getMemoryVT(); |
| 1456 | if (MemVT == MVT::v256i1 || MemVT == MVT::v4i64) { |
| 1457 | SDValue OutChains[4]; |
| 1458 | for (int i = 0; i < 4; ++i) { |
| 1459 | SDNode *V = |
| 1460 | DAG.getMachineNode(Opcode: VE::SVMmi, dl: DL, VT: MVT::i64, Op1: StNode->getValue(), |
| 1461 | Op2: DAG.getTargetConstant(Val: i, DL, VT: MVT::i64)); |
| 1462 | SDValue Addr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: BasePtr, |
| 1463 | N2: DAG.getConstant(Val: 8 * i, DL, VT: AddrVT)); |
| 1464 | OutChains[i] = |
| 1465 | DAG.getStore(Chain: StNode->getChain(), dl: DL, Val: SDValue(V, 0), Ptr: Addr, |
| 1466 | PtrInfo: MachinePointerInfo(), Alignment, |
| 1467 | MMOFlags: StNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1468 | : MachineMemOperand::MONone); |
| 1469 | } |
| 1470 | return DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1471 | } else if (MemVT == MVT::v512i1 || MemVT == MVT::v8i64) { |
| 1472 | SDValue OutChains[8]; |
| 1473 | for (int i = 0; i < 8; ++i) { |
| 1474 | SDNode *V = |
| 1475 | DAG.getMachineNode(Opcode: VE::SVMyi, dl: DL, VT: MVT::i64, Op1: StNode->getValue(), |
| 1476 | Op2: DAG.getTargetConstant(Val: i, DL, VT: MVT::i64)); |
| 1477 | SDValue Addr = DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: BasePtr, |
| 1478 | N2: DAG.getConstant(Val: 8 * i, DL, VT: AddrVT)); |
| 1479 | OutChains[i] = |
| 1480 | DAG.getStore(Chain: StNode->getChain(), dl: DL, Val: SDValue(V, 0), Ptr: Addr, |
| 1481 | PtrInfo: MachinePointerInfo(), Alignment, |
| 1482 | MMOFlags: StNode->isVolatile() ? MachineMemOperand::MOVolatile |
| 1483 | : MachineMemOperand::MONone); |
| 1484 | } |
| 1485 | return DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 1486 | } else { |
| 1487 | // Otherwise, ask llvm to expand it. |
| 1488 | return SDValue(); |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| 1493 | StoreSDNode *StNode = cast<StoreSDNode>(Val: Op.getNode()); |
| 1494 | assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type" ); |
| 1495 | EVT MemVT = StNode->getMemoryVT(); |
| 1496 | |
| 1497 | // If VPU is enabled, always expand non-mask vector stores to VVP |
| 1498 | if (Subtarget->enableVPU() && MemVT.isVector() && !isMaskType(SomeVT: MemVT)) |
| 1499 | return lowerToVVP(Op, DAG); |
| 1500 | |
| 1501 | SDValue BasePtr = StNode->getBasePtr(); |
| 1502 | if (isa<FrameIndexSDNode>(Val: BasePtr.getNode())) { |
| 1503 | // Do not expand store instruction with frame index here because of |
| 1504 | // dependency problems. We expand it later in eliminateFrameIndex(). |
| 1505 | return Op; |
| 1506 | } |
| 1507 | |
| 1508 | if (MemVT == MVT::f128) |
| 1509 | return lowerStoreF128(Op, DAG); |
| 1510 | if (isMaskType(SomeVT: MemVT)) |
| 1511 | return lowerStoreI1(Op, DAG); |
| 1512 | |
| 1513 | // Otherwise, ask llvm to expand it. |
| 1514 | return SDValue(); |
| 1515 | } |
| 1516 | |
| 1517 | SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| 1518 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1519 | VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); |
| 1520 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 1521 | |
| 1522 | // Need frame address to find the address of VarArgsFrameIndex. |
| 1523 | MF.getFrameInfo().setFrameAddressIsTaken(true); |
| 1524 | |
| 1525 | // vastart just stores the address of the VarArgsFrameIndex slot into the |
| 1526 | // memory location argument. |
| 1527 | SDLoc DL(Op); |
| 1528 | SDValue Offset = |
| 1529 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: DAG.getRegister(Reg: VE::SX9, VT: PtrVT), |
| 1530 | N2: DAG.getIntPtrConstant(Val: FuncInfo->getVarArgsFrameOffset(), DL)); |
| 1531 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 1532 | return DAG.getStore(Chain: Op.getOperand(i: 0), dl: DL, Val: Offset, Ptr: Op.getOperand(i: 1), |
| 1533 | PtrInfo: MachinePointerInfo(SV)); |
| 1534 | } |
| 1535 | |
| 1536 | SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| 1537 | SDNode *Node = Op.getNode(); |
| 1538 | EVT VT = Node->getValueType(ResNo: 0); |
| 1539 | SDValue InChain = Node->getOperand(Num: 0); |
| 1540 | SDValue VAListPtr = Node->getOperand(Num: 1); |
| 1541 | EVT PtrVT = VAListPtr.getValueType(); |
| 1542 | const Value *SV = cast<SrcValueSDNode>(Val: Node->getOperand(Num: 2))->getValue(); |
| 1543 | SDLoc DL(Node); |
| 1544 | SDValue VAList = |
| 1545 | DAG.getLoad(VT: PtrVT, dl: DL, Chain: InChain, Ptr: VAListPtr, PtrInfo: MachinePointerInfo(SV)); |
| 1546 | SDValue Chain = VAList.getValue(R: 1); |
| 1547 | SDValue NextPtr; |
| 1548 | |
| 1549 | if (VT == MVT::f128) { |
| 1550 | // VE f128 values must be stored with 16 bytes alignment. We don't |
| 1551 | // know the actual alignment of VAList, so we take alignment of it |
| 1552 | // dynamically. |
| 1553 | int Align = 16; |
| 1554 | VAList = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: VAList, |
| 1555 | N2: DAG.getConstant(Val: Align - 1, DL, VT: PtrVT)); |
| 1556 | VAList = DAG.getNode(Opcode: ISD::AND, DL, VT: PtrVT, N1: VAList, |
| 1557 | N2: DAG.getSignedConstant(Val: -Align, DL, VT: PtrVT)); |
| 1558 | // Increment the pointer, VAList, by 16 to the next vaarg. |
| 1559 | NextPtr = |
| 1560 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: VAList, N2: DAG.getIntPtrConstant(Val: 16, DL)); |
| 1561 | } else if (VT == MVT::f32) { |
| 1562 | // float --> need special handling like below. |
| 1563 | // 0 4 |
| 1564 | // +------+------+ |
| 1565 | // | empty| float| |
| 1566 | // +------+------+ |
| 1567 | // Increment the pointer, VAList, by 8 to the next vaarg. |
| 1568 | NextPtr = |
| 1569 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: VAList, N2: DAG.getIntPtrConstant(Val: 8, DL)); |
| 1570 | // Then, adjust VAList. |
| 1571 | unsigned InternalOffset = 4; |
| 1572 | VAList = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: VAList, |
| 1573 | N2: DAG.getConstant(Val: InternalOffset, DL, VT: PtrVT)); |
| 1574 | } else { |
| 1575 | // Increment the pointer, VAList, by 8 to the next vaarg. |
| 1576 | NextPtr = |
| 1577 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: VAList, N2: DAG.getIntPtrConstant(Val: 8, DL)); |
| 1578 | } |
| 1579 | |
| 1580 | // Store the incremented VAList to the legalized pointer. |
| 1581 | InChain = DAG.getStore(Chain, dl: DL, Val: NextPtr, Ptr: VAListPtr, PtrInfo: MachinePointerInfo(SV)); |
| 1582 | |
| 1583 | // Load the actual argument out of the pointer VAList. |
| 1584 | // We can't count on greater alignment than the word size. |
| 1585 | return DAG.getLoad( |
| 1586 | VT, dl: DL, Chain: InChain, Ptr: VAList, PtrInfo: MachinePointerInfo(), |
| 1587 | Alignment: Align(std::min(a: PtrVT.getSizeInBits(), b: VT.getSizeInBits()) / 8)); |
| 1588 | } |
| 1589 | |
| 1590 | SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, |
| 1591 | SelectionDAG &DAG) const { |
| 1592 | // Generate following code. |
| 1593 | // (void)__llvm_grow_stack(size); |
| 1594 | // ret = GETSTACKTOP; // pseudo instruction |
| 1595 | SDLoc DL(Op); |
| 1596 | |
| 1597 | // Get the inputs. |
| 1598 | SDNode *Node = Op.getNode(); |
| 1599 | SDValue Chain = Op.getOperand(i: 0); |
| 1600 | SDValue Size = Op.getOperand(i: 1); |
| 1601 | MaybeAlign Alignment(Op.getConstantOperandVal(i: 2)); |
| 1602 | EVT VT = Node->getValueType(ResNo: 0); |
| 1603 | |
| 1604 | // Chain the dynamic stack allocation so that it doesn't modify the stack |
| 1605 | // pointer when other instructions are using the stack. |
| 1606 | Chain = DAG.getCALLSEQ_START(Chain, InSize: 0, OutSize: 0, DL); |
| 1607 | |
| 1608 | const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); |
| 1609 | Align StackAlign = TFI.getStackAlign(); |
| 1610 | bool NeedsAlign = Alignment.valueOrOne() > StackAlign; |
| 1611 | |
| 1612 | // Prepare arguments |
| 1613 | TargetLowering::ArgListTy Args; |
| 1614 | Args.emplace_back(args&: Size, args: Size.getValueType().getTypeForEVT(Context&: *DAG.getContext())); |
| 1615 | if (NeedsAlign) { |
| 1616 | SDValue Align = DAG.getConstant(Val: ~(Alignment->value() - 1ULL), DL, VT); |
| 1617 | Args.emplace_back(args&: Align, |
| 1618 | args: Align.getValueType().getTypeForEVT(Context&: *DAG.getContext())); |
| 1619 | } |
| 1620 | Type *RetTy = Type::getVoidTy(C&: *DAG.getContext()); |
| 1621 | |
| 1622 | EVT PtrVT = Op.getValueType(); |
| 1623 | SDValue Callee; |
| 1624 | if (NeedsAlign) { |
| 1625 | Callee = DAG.getTargetExternalSymbol(Sym: "__ve_grow_stack_align" , VT: PtrVT, TargetFlags: 0); |
| 1626 | } else { |
| 1627 | Callee = DAG.getTargetExternalSymbol(Sym: "__ve_grow_stack" , VT: PtrVT, TargetFlags: 0); |
| 1628 | } |
| 1629 | |
| 1630 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 1631 | CLI.setDebugLoc(DL) |
| 1632 | .setChain(Chain) |
| 1633 | .setCallee(CC: CallingConv::PreserveAll, ResultType: RetTy, Target: Callee, ArgsList: std::move(Args)) |
| 1634 | .setDiscardResult(true); |
| 1635 | std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); |
| 1636 | Chain = pair.second; |
| 1637 | SDValue Result = DAG.getNode(Opcode: VEISD::GETSTACKTOP, DL, VT, Operand: Chain); |
| 1638 | if (NeedsAlign) { |
| 1639 | Result = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Result, |
| 1640 | N2: DAG.getConstant(Val: (Alignment->value() - 1ULL), DL, VT)); |
| 1641 | Result = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Result, |
| 1642 | N2: DAG.getConstant(Val: ~(Alignment->value() - 1ULL), DL, VT)); |
| 1643 | } |
| 1644 | // Chain = Result.getValue(1); |
| 1645 | Chain = DAG.getCALLSEQ_END(Chain, Size1: 0, Size2: 0, Glue: SDValue(), DL); |
| 1646 | |
| 1647 | SDValue Ops[2] = {Result, Chain}; |
| 1648 | return DAG.getMergeValues(Ops, dl: DL); |
| 1649 | } |
| 1650 | |
| 1651 | SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, |
| 1652 | SelectionDAG &DAG) const { |
| 1653 | SDLoc DL(Op); |
| 1654 | return DAG.getNode(Opcode: VEISD::EH_SJLJ_LONGJMP, DL, VT: MVT::Other, N1: Op.getOperand(i: 0), |
| 1655 | N2: Op.getOperand(i: 1)); |
| 1656 | } |
| 1657 | |
| 1658 | SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, |
| 1659 | SelectionDAG &DAG) const { |
| 1660 | SDLoc DL(Op); |
| 1661 | return DAG.getNode(Opcode: VEISD::EH_SJLJ_SETJMP, DL, |
| 1662 | VTList: DAG.getVTList(VT1: MVT::i32, VT2: MVT::Other), N1: Op.getOperand(i: 0), |
| 1663 | N2: Op.getOperand(i: 1)); |
| 1664 | } |
| 1665 | |
| 1666 | SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, |
| 1667 | SelectionDAG &DAG) const { |
| 1668 | SDLoc DL(Op); |
| 1669 | return DAG.getNode(Opcode: VEISD::EH_SJLJ_SETUP_DISPATCH, DL, VT: MVT::Other, |
| 1670 | Operand: Op.getOperand(i: 0)); |
| 1671 | } |
| 1672 | |
| 1673 | static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, |
| 1674 | const VETargetLowering &TLI, |
| 1675 | const VESubtarget *Subtarget) { |
| 1676 | SDLoc DL(Op); |
| 1677 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1678 | EVT PtrVT = TLI.getPointerTy(DL: MF.getDataLayout()); |
| 1679 | |
| 1680 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1681 | MFI.setFrameAddressIsTaken(true); |
| 1682 | |
| 1683 | unsigned Depth = Op.getConstantOperandVal(i: 0); |
| 1684 | const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| 1685 | Register FrameReg = RegInfo->getFrameRegister(MF); |
| 1686 | SDValue FrameAddr = |
| 1687 | DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: DL, Reg: FrameReg, VT: PtrVT); |
| 1688 | while (Depth--) |
| 1689 | FrameAddr = DAG.getLoad(VT: Op.getValueType(), dl: DL, Chain: DAG.getEntryNode(), |
| 1690 | Ptr: FrameAddr, PtrInfo: MachinePointerInfo()); |
| 1691 | return FrameAddr; |
| 1692 | } |
| 1693 | |
| 1694 | static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, |
| 1695 | const VETargetLowering &TLI, |
| 1696 | const VESubtarget *Subtarget) { |
| 1697 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1698 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1699 | MFI.setReturnAddressIsTaken(true); |
| 1700 | |
| 1701 | SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); |
| 1702 | |
| 1703 | SDLoc DL(Op); |
| 1704 | EVT VT = Op.getValueType(); |
| 1705 | SDValue Offset = DAG.getConstant(Val: 8, DL, VT); |
| 1706 | return DAG.getLoad(VT, dl: DL, Chain: DAG.getEntryNode(), |
| 1707 | Ptr: DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: FrameAddr, N2: Offset), |
| 1708 | PtrInfo: MachinePointerInfo()); |
| 1709 | } |
| 1710 | |
| 1711 | SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, |
| 1712 | SelectionDAG &DAG) const { |
| 1713 | SDLoc DL(Op); |
| 1714 | unsigned IntNo = Op.getConstantOperandVal(i: 0); |
| 1715 | switch (IntNo) { |
| 1716 | default: // Don't custom lower most intrinsics. |
| 1717 | return SDValue(); |
| 1718 | case Intrinsic::eh_sjlj_lsda: { |
| 1719 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1720 | MVT VT = Op.getSimpleValueType(); |
| 1721 | const VETargetMachine *TM = |
| 1722 | static_cast<const VETargetMachine *>(&DAG.getTarget()); |
| 1723 | |
| 1724 | // Create GCC_except_tableXX string. The real symbol for that will be |
| 1725 | // generated in EHStreamer::emitExceptionTable() later. So, we just |
| 1726 | // borrow it's name here. |
| 1727 | TM->getStrList()->push_back(x: std::string( |
| 1728 | (Twine("GCC_except_table" ) + Twine(MF.getFunctionNumber())).str())); |
| 1729 | SDValue Addr = |
| 1730 | DAG.getTargetExternalSymbol(Sym: TM->getStrList()->back().c_str(), VT, TargetFlags: 0); |
| 1731 | if (isPositionIndependent()) { |
| 1732 | Addr = makeHiLoPair(Op: Addr, HiTF: VE::S_GOTOFF_HI32, LoTF: VE::S_GOTOFF_LO32, DAG); |
| 1733 | SDValue GlobalBase = DAG.getNode(Opcode: VEISD::GLOBAL_BASE_REG, DL, VT); |
| 1734 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: GlobalBase, N2: Addr); |
| 1735 | } |
| 1736 | return makeHiLoPair(Op: Addr, HiTF: VE::S_HI32, LoTF: VE::S_LO32, DAG); |
| 1737 | } |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { |
| 1742 | if (!isa<BuildVectorSDNode>(Val: N)) |
| 1743 | return false; |
| 1744 | const auto *BVN = cast<BuildVectorSDNode>(Val: N); |
| 1745 | |
| 1746 | // Find first non-undef insertion. |
| 1747 | unsigned Idx; |
| 1748 | for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { |
| 1749 | auto ElemV = BVN->getOperand(Num: Idx); |
| 1750 | if (!ElemV->isUndef()) |
| 1751 | break; |
| 1752 | } |
| 1753 | // Catch the (hypothetical) all-undef case. |
| 1754 | if (Idx == BVN->getNumOperands()) |
| 1755 | return false; |
| 1756 | // Remember insertion. |
| 1757 | UniqueIdx = Idx++; |
| 1758 | // Verify that all other insertions are undef. |
| 1759 | for (; Idx < BVN->getNumOperands(); ++Idx) { |
| 1760 | auto ElemV = BVN->getOperand(Num: Idx); |
| 1761 | if (!ElemV->isUndef()) |
| 1762 | return false; |
| 1763 | } |
| 1764 | return true; |
| 1765 | } |
| 1766 | |
| 1767 | static SDValue getSplatValue(SDNode *N) { |
| 1768 | if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(Val: N)) { |
| 1769 | return BuildVec->getSplatValue(); |
| 1770 | } |
| 1771 | return SDValue(); |
| 1772 | } |
| 1773 | |
| 1774 | SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| 1775 | SelectionDAG &DAG) const { |
| 1776 | VECustomDAG CDAG(DAG, Op); |
| 1777 | MVT ResultVT = Op.getSimpleValueType(); |
| 1778 | |
| 1779 | // If there is just one element, expand to INSERT_VECTOR_ELT. |
| 1780 | unsigned UniqueIdx; |
| 1781 | if (getUniqueInsertion(N: Op.getNode(), UniqueIdx)) { |
| 1782 | SDValue AccuV = CDAG.getUNDEF(VT: Op.getValueType()); |
| 1783 | auto ElemV = Op->getOperand(Num: UniqueIdx); |
| 1784 | SDValue IdxV = CDAG.getConstant(Val: UniqueIdx, VT: MVT::i64); |
| 1785 | return CDAG.getNode(OC: ISD::INSERT_VECTOR_ELT, ResVT: ResultVT, OpV: {AccuV, ElemV, IdxV}); |
| 1786 | } |
| 1787 | |
| 1788 | // Else emit a broadcast. |
| 1789 | if (SDValue ScalarV = getSplatValue(N: Op.getNode())) { |
| 1790 | unsigned NumEls = ResultVT.getVectorNumElements(); |
| 1791 | auto AVL = CDAG.getConstant(Val: NumEls, VT: MVT::i32); |
| 1792 | return CDAG.getBroadcast(ResultVT, Scalar: ScalarV, AVL); |
| 1793 | } |
| 1794 | |
| 1795 | // Expand |
| 1796 | return SDValue(); |
| 1797 | } |
| 1798 | |
| 1799 | TargetLowering::LegalizeAction |
| 1800 | VETargetLowering::getCustomOperationAction(SDNode &Op) const { |
| 1801 | // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize |
| 1802 | // these operations (transform nodes such that their AVL parameter refers to |
| 1803 | // packs of 64bit, instead of number of elements. |
| 1804 | |
| 1805 | // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to |
| 1806 | // re-visit them. |
| 1807 | if (isPackingSupportOpcode(Opc: Op.getOpcode())) |
| 1808 | return Legal; |
| 1809 | |
| 1810 | // Custom lower to legalize AVL for packed mode. |
| 1811 | if (isVVPOrVEC(Op.getOpcode())) |
| 1812 | return Custom; |
| 1813 | return Legal; |
| 1814 | } |
| 1815 | |
| 1816 | SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| 1817 | LLVM_DEBUG(dbgs() << "::LowerOperation " ; Op.dump(&DAG)); |
| 1818 | unsigned Opcode = Op.getOpcode(); |
| 1819 | |
| 1820 | /// Scalar isel. |
| 1821 | switch (Opcode) { |
| 1822 | case ISD::ATOMIC_FENCE: |
| 1823 | return lowerATOMIC_FENCE(Op, DAG); |
| 1824 | case ISD::ATOMIC_SWAP: |
| 1825 | return lowerATOMIC_SWAP(Op, DAG); |
| 1826 | case ISD::BlockAddress: |
| 1827 | return lowerBlockAddress(Op, DAG); |
| 1828 | case ISD::ConstantPool: |
| 1829 | return lowerConstantPool(Op, DAG); |
| 1830 | case ISD::DYNAMIC_STACKALLOC: |
| 1831 | return lowerDYNAMIC_STACKALLOC(Op, DAG); |
| 1832 | case ISD::EH_SJLJ_LONGJMP: |
| 1833 | return lowerEH_SJLJ_LONGJMP(Op, DAG); |
| 1834 | case ISD::EH_SJLJ_SETJMP: |
| 1835 | return lowerEH_SJLJ_SETJMP(Op, DAG); |
| 1836 | case ISD::EH_SJLJ_SETUP_DISPATCH: |
| 1837 | return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); |
| 1838 | case ISD::FRAMEADDR: |
| 1839 | return lowerFRAMEADDR(Op, DAG, TLI: *this, Subtarget); |
| 1840 | case ISD::GlobalAddress: |
| 1841 | return lowerGlobalAddress(Op, DAG); |
| 1842 | case ISD::GlobalTLSAddress: |
| 1843 | return lowerGlobalTLSAddress(Op, DAG); |
| 1844 | case ISD::INTRINSIC_WO_CHAIN: |
| 1845 | return lowerINTRINSIC_WO_CHAIN(Op, DAG); |
| 1846 | case ISD::JumpTable: |
| 1847 | return lowerJumpTable(Op, DAG); |
| 1848 | case ISD::LOAD: |
| 1849 | return lowerLOAD(Op, DAG); |
| 1850 | case ISD::RETURNADDR: |
| 1851 | return lowerRETURNADDR(Op, DAG, TLI: *this, Subtarget); |
| 1852 | case ISD::BUILD_VECTOR: |
| 1853 | return lowerBUILD_VECTOR(Op, DAG); |
| 1854 | case ISD::STORE: |
| 1855 | return lowerSTORE(Op, DAG); |
| 1856 | case ISD::VASTART: |
| 1857 | return lowerVASTART(Op, DAG); |
| 1858 | case ISD::VAARG: |
| 1859 | return lowerVAARG(Op, DAG); |
| 1860 | |
| 1861 | case ISD::INSERT_VECTOR_ELT: |
| 1862 | return lowerINSERT_VECTOR_ELT(Op, DAG); |
| 1863 | case ISD::EXTRACT_VECTOR_ELT: |
| 1864 | return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 1865 | } |
| 1866 | |
| 1867 | /// Vector isel. |
| 1868 | if (ISD::isVPOpcode(Opcode)) |
| 1869 | return lowerToVVP(Op, DAG); |
| 1870 | |
| 1871 | switch (Opcode) { |
| 1872 | default: |
| 1873 | llvm_unreachable("Should not custom lower this!" ); |
| 1874 | |
| 1875 | // Legalize the AVL of this internal node. |
| 1876 | case VEISD::VEC_BROADCAST: |
| 1877 | #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: |
| 1878 | #include "VVPNodes.def" |
| 1879 | // AVL already legalized. |
| 1880 | if (getAnnotatedNodeAVL(Op).second) |
| 1881 | return Op; |
| 1882 | return legalizeInternalVectorOp(Op, DAG); |
| 1883 | |
| 1884 | // Translate into a VEC_*/VVP_* layer operation. |
| 1885 | case ISD::MLOAD: |
| 1886 | case ISD::MSTORE: |
| 1887 | #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: |
| 1888 | #include "VVPNodes.def" |
| 1889 | if (isMaskArithmetic(Op) && isPackedVectorType(SomeVT: Op.getValueType())) |
| 1890 | return splitMaskArithmetic(Op, DAG); |
| 1891 | return lowerToVVP(Op, DAG); |
| 1892 | } |
| 1893 | } |
| 1894 | /// } Custom Lower |
| 1895 | |
| 1896 | void VETargetLowering::ReplaceNodeResults(SDNode *N, |
| 1897 | SmallVectorImpl<SDValue> &Results, |
| 1898 | SelectionDAG &DAG) const { |
| 1899 | switch (N->getOpcode()) { |
| 1900 | case ISD::ATOMIC_SWAP: |
| 1901 | // Let LLVM expand atomic swap instruction through LowerOperation. |
| 1902 | return; |
| 1903 | default: |
| 1904 | LLVM_DEBUG(N->dumpr(&DAG)); |
| 1905 | llvm_unreachable("Do not know how to custom type legalize this operation!" ); |
| 1906 | } |
| 1907 | } |
| 1908 | |
| 1909 | /// JumpTable for VE. |
| 1910 | /// |
| 1911 | /// VE cannot generate relocatable symbol in jump table. VE cannot |
| 1912 | /// generate expressions using symbols in both text segment and data |
| 1913 | /// segment like below. |
| 1914 | /// .4byte .LBB0_2-.LJTI0_0 |
| 1915 | /// So, we generate offset from the top of function like below as |
| 1916 | /// a custom label. |
| 1917 | /// .4byte .LBB0_2-<function name> |
| 1918 | |
| 1919 | unsigned VETargetLowering::getJumpTableEncoding() const { |
| 1920 | // Use custom label for PIC. |
| 1921 | if (isPositionIndependent()) |
| 1922 | return MachineJumpTableInfo::EK_Custom32; |
| 1923 | |
| 1924 | // Otherwise, use the normal jump table encoding heuristics. |
| 1925 | return TargetLowering::getJumpTableEncoding(); |
| 1926 | } |
| 1927 | |
| 1928 | const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( |
| 1929 | const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, |
| 1930 | unsigned Uid, MCContext &Ctx) const { |
| 1931 | assert(isPositionIndependent()); |
| 1932 | |
| 1933 | // Generate custom label for PIC like below. |
| 1934 | // .4bytes .LBB0_2-<function name> |
| 1935 | const auto *Value = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx); |
| 1936 | MCSymbol *Sym = Ctx.getOrCreateSymbol(Name: MBB->getParent()->getName().data()); |
| 1937 | const auto *Base = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
| 1938 | return MCBinaryExpr::createSub(LHS: Value, RHS: Base, Ctx); |
| 1939 | } |
| 1940 | |
| 1941 | SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| 1942 | SelectionDAG &DAG) const { |
| 1943 | assert(isPositionIndependent()); |
| 1944 | SDLoc DL(Table); |
| 1945 | Function *Function = &DAG.getMachineFunction().getFunction(); |
| 1946 | assert(Function != nullptr); |
| 1947 | auto PtrTy = getPointerTy(DL: DAG.getDataLayout(), AS: Function->getAddressSpace()); |
| 1948 | |
| 1949 | // In the jump table, we have following values in PIC mode. |
| 1950 | // .4bytes .LBB0_2-<function name> |
| 1951 | // We need to add this value and the address of this function to generate |
| 1952 | // .LBB0_2 label correctly under PIC mode. So, we want to generate following |
| 1953 | // instructions: |
| 1954 | // lea %reg, fun@gotoff_lo |
| 1955 | // and %reg, %reg, (32)0 |
| 1956 | // lea.sl %reg, fun@gotoff_hi(%reg, %got) |
| 1957 | // In order to do so, we need to genarate correctly marked DAG node using |
| 1958 | // makeHiLoPair. |
| 1959 | SDValue Op = DAG.getGlobalAddress(GV: Function, DL, VT: PtrTy); |
| 1960 | SDValue HiLo = makeHiLoPair(Op, HiTF: VE::S_GOTOFF_HI32, LoTF: VE::S_GOTOFF_LO32, DAG); |
| 1961 | SDValue GlobalBase = DAG.getNode(Opcode: VEISD::GLOBAL_BASE_REG, DL, VT: PtrTy); |
| 1962 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrTy, N1: GlobalBase, N2: HiLo); |
| 1963 | } |
| 1964 | |
| 1965 | Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, |
| 1966 | MachineBasicBlock::iterator I, |
| 1967 | MachineBasicBlock *TargetBB, |
| 1968 | const DebugLoc &DL) const { |
| 1969 | MachineFunction *MF = MBB.getParent(); |
| 1970 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 1971 | const VEInstrInfo *TII = Subtarget->getInstrInfo(); |
| 1972 | |
| 1973 | const TargetRegisterClass *RC = &VE::I64RegClass; |
| 1974 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 1975 | Register Tmp2 = MRI.createVirtualRegister(RegClass: RC); |
| 1976 | Register Result = MRI.createVirtualRegister(RegClass: RC); |
| 1977 | |
| 1978 | if (isPositionIndependent()) { |
| 1979 | // Create following instructions for local linkage PIC code. |
| 1980 | // lea %Tmp1, TargetBB@gotoff_lo |
| 1981 | // and %Tmp2, %Tmp1, (32)0 |
| 1982 | // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT |
| 1983 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 1984 | .addImm(Val: 0) |
| 1985 | .addImm(Val: 0) |
| 1986 | .addMBB(MBB: TargetBB, TargetFlags: VE::S_GOTOFF_LO32); |
| 1987 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 1988 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 1989 | .addImm(Val: M0(Val: 32)); |
| 1990 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrri), DestReg: Result) |
| 1991 | .addReg(RegNo: VE::SX15) |
| 1992 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 1993 | .addMBB(MBB: TargetBB, TargetFlags: VE::S_GOTOFF_HI32); |
| 1994 | } else { |
| 1995 | // Create following instructions for non-PIC code. |
| 1996 | // lea %Tmp1, TargetBB@lo |
| 1997 | // and %Tmp2, %Tmp1, (32)0 |
| 1998 | // lea.sl %Result, TargetBB@hi(%Tmp2) |
| 1999 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2000 | .addImm(Val: 0) |
| 2001 | .addImm(Val: 0) |
| 2002 | .addMBB(MBB: TargetBB, TargetFlags: VE::S_LO32); |
| 2003 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2004 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2005 | .addImm(Val: M0(Val: 32)); |
| 2006 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrii), DestReg: Result) |
| 2007 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2008 | .addImm(Val: 0) |
| 2009 | .addMBB(MBB: TargetBB, TargetFlags: VE::S_HI32); |
| 2010 | } |
| 2011 | return Result; |
| 2012 | } |
| 2013 | |
| 2014 | Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, |
| 2015 | MachineBasicBlock::iterator I, |
| 2016 | StringRef Symbol, const DebugLoc &DL, |
| 2017 | bool IsLocal = false, |
| 2018 | bool IsCall = false) const { |
| 2019 | MachineFunction *MF = MBB.getParent(); |
| 2020 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 2021 | const VEInstrInfo *TII = Subtarget->getInstrInfo(); |
| 2022 | |
| 2023 | const TargetRegisterClass *RC = &VE::I64RegClass; |
| 2024 | Register Result = MRI.createVirtualRegister(RegClass: RC); |
| 2025 | |
| 2026 | if (isPositionIndependent()) { |
| 2027 | if (IsCall && !IsLocal) { |
| 2028 | // Create following instructions for non-local linkage PIC code function |
| 2029 | // calls. These instructions uses IC and magic number -24, so we expand |
| 2030 | // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. |
| 2031 | // lea %Reg, Symbol@plt_lo(-24) |
| 2032 | // and %Reg, %Reg, (32)0 |
| 2033 | // sic %s16 |
| 2034 | // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT |
| 2035 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::GETFUNPLT), DestReg: Result) |
| 2036 | .addExternalSymbol(FnName: "abort" ); |
| 2037 | } else if (IsLocal) { |
| 2038 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2039 | Register Tmp2 = MRI.createVirtualRegister(RegClass: RC); |
| 2040 | // Create following instructions for local linkage PIC code. |
| 2041 | // lea %Tmp1, Symbol@gotoff_lo |
| 2042 | // and %Tmp2, %Tmp1, (32)0 |
| 2043 | // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT |
| 2044 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2045 | .addImm(Val: 0) |
| 2046 | .addImm(Val: 0) |
| 2047 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_GOTOFF_LO32); |
| 2048 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2049 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2050 | .addImm(Val: M0(Val: 32)); |
| 2051 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrri), DestReg: Result) |
| 2052 | .addReg(RegNo: VE::SX15) |
| 2053 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2054 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_GOTOFF_HI32); |
| 2055 | } else { |
| 2056 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2057 | Register Tmp2 = MRI.createVirtualRegister(RegClass: RC); |
| 2058 | // Create following instructions for not local linkage PIC code. |
| 2059 | // lea %Tmp1, Symbol@got_lo |
| 2060 | // and %Tmp2, %Tmp1, (32)0 |
| 2061 | // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT |
| 2062 | // ld %Result, 0(%Tmp3) |
| 2063 | Register Tmp3 = MRI.createVirtualRegister(RegClass: RC); |
| 2064 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2065 | .addImm(Val: 0) |
| 2066 | .addImm(Val: 0) |
| 2067 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_GOT_LO32); |
| 2068 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2069 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2070 | .addImm(Val: M0(Val: 32)); |
| 2071 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrri), DestReg: Tmp3) |
| 2072 | .addReg(RegNo: VE::SX15) |
| 2073 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2074 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_GOT_HI32); |
| 2075 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LDrii), DestReg: Result) |
| 2076 | .addReg(RegNo: Tmp3, Flags: getKillRegState(B: true)) |
| 2077 | .addImm(Val: 0) |
| 2078 | .addImm(Val: 0); |
| 2079 | } |
| 2080 | } else { |
| 2081 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2082 | Register Tmp2 = MRI.createVirtualRegister(RegClass: RC); |
| 2083 | // Create following instructions for non-PIC code. |
| 2084 | // lea %Tmp1, Symbol@lo |
| 2085 | // and %Tmp2, %Tmp1, (32)0 |
| 2086 | // lea.sl %Result, Symbol@hi(%Tmp2) |
| 2087 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2088 | .addImm(Val: 0) |
| 2089 | .addImm(Val: 0) |
| 2090 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_LO32); |
| 2091 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2092 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2093 | .addImm(Val: M0(Val: 32)); |
| 2094 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrii), DestReg: Result) |
| 2095 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2096 | .addImm(Val: 0) |
| 2097 | .addExternalSymbol(FnName: Symbol.data(), TargetFlags: VE::S_HI32); |
| 2098 | } |
| 2099 | return Result; |
| 2100 | } |
| 2101 | |
| 2102 | void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, |
| 2103 | MachineBasicBlock *MBB, |
| 2104 | MachineBasicBlock *DispatchBB, |
| 2105 | int FI, int Offset) const { |
| 2106 | DebugLoc DL = MI.getDebugLoc(); |
| 2107 | const VEInstrInfo *TII = Subtarget->getInstrInfo(); |
| 2108 | |
| 2109 | Register LabelReg = |
| 2110 | prepareMBB(MBB&: *MBB, I: MachineBasicBlock::iterator(MI), TargetBB: DispatchBB, DL); |
| 2111 | |
| 2112 | // Store an address of DispatchBB to a given jmpbuf[1] where has next IC |
| 2113 | // referenced by longjmp (throw) later. |
| 2114 | MachineInstrBuilder MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::STrii)); |
| 2115 | addFrameReference(MIB, FI, Offset); // jmpbuf[1] |
| 2116 | MIB.addReg(RegNo: LabelReg, Flags: getKillRegState(B: true)); |
| 2117 | } |
| 2118 | |
| 2119 | MachineBasicBlock * |
| 2120 | VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, |
| 2121 | MachineBasicBlock *MBB) const { |
| 2122 | DebugLoc DL = MI.getDebugLoc(); |
| 2123 | MachineFunction *MF = MBB->getParent(); |
| 2124 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| 2125 | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| 2126 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 2127 | |
| 2128 | const BasicBlock *BB = MBB->getBasicBlock(); |
| 2129 | MachineFunction::iterator I = ++MBB->getIterator(); |
| 2130 | |
| 2131 | // Memory Reference. |
| 2132 | SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands()); |
| 2133 | Register BufReg = MI.getOperand(i: 1).getReg(); |
| 2134 | |
| 2135 | Register DstReg; |
| 2136 | |
| 2137 | DstReg = MI.getOperand(i: 0).getReg(); |
| 2138 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: DstReg); |
| 2139 | assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!" ); |
| 2140 | (void)TRI; |
| 2141 | Register MainDestReg = MRI.createVirtualRegister(RegClass: RC); |
| 2142 | Register RestoreDestReg = MRI.createVirtualRegister(RegClass: RC); |
| 2143 | |
| 2144 | // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following |
| 2145 | // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. |
| 2146 | // |
| 2147 | // ThisMBB: |
| 2148 | // buf[3] = %s17 iff %s17 is used as BP |
| 2149 | // buf[1] = RestoreMBB as IC after longjmp |
| 2150 | // # SjLjSetup RestoreMBB |
| 2151 | // |
| 2152 | // MainMBB: |
| 2153 | // v_main = 0 |
| 2154 | // |
| 2155 | // SinkMBB: |
| 2156 | // v = phi(v_main, MainMBB, v_restore, RestoreMBB) |
| 2157 | // ... |
| 2158 | // |
| 2159 | // RestoreMBB: |
| 2160 | // %s17 = buf[3] = iff %s17 is used as BP |
| 2161 | // v_restore = 1 |
| 2162 | // goto SinkMBB |
| 2163 | |
| 2164 | MachineBasicBlock *ThisMBB = MBB; |
| 2165 | MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); |
| 2166 | MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); |
| 2167 | MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); |
| 2168 | MF->insert(MBBI: I, MBB: MainMBB); |
| 2169 | MF->insert(MBBI: I, MBB: SinkMBB); |
| 2170 | MF->push_back(MBB: RestoreMBB); |
| 2171 | RestoreMBB->setMachineBlockAddressTaken(); |
| 2172 | |
| 2173 | // Transfer the remainder of BB and its successor edges to SinkMBB. |
| 2174 | SinkMBB->splice(Where: SinkMBB->begin(), Other: MBB, |
| 2175 | From: std::next(x: MachineBasicBlock::iterator(MI)), To: MBB->end()); |
| 2176 | SinkMBB->transferSuccessorsAndUpdatePHIs(FromMBB: MBB); |
| 2177 | |
| 2178 | // ThisMBB: |
| 2179 | Register LabelReg = |
| 2180 | prepareMBB(MBB&: *MBB, I: MachineBasicBlock::iterator(MI), TargetBB: RestoreMBB, DL); |
| 2181 | |
| 2182 | // Store BP in buf[3] iff this function is using BP. |
| 2183 | const VEFrameLowering *TFI = Subtarget->getFrameLowering(); |
| 2184 | if (TFI->hasBP(MF: *MF)) { |
| 2185 | MachineInstrBuilder MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::STrii)); |
| 2186 | MIB.addReg(RegNo: BufReg); |
| 2187 | MIB.addImm(Val: 0); |
| 2188 | MIB.addImm(Val: 24); |
| 2189 | MIB.addReg(RegNo: VE::SX17); |
| 2190 | MIB.setMemRefs(MMOs); |
| 2191 | } |
| 2192 | |
| 2193 | // Store IP in buf[1]. |
| 2194 | MachineInstrBuilder MIB = BuildMI(BB&: *MBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::STrii)); |
| 2195 | MIB.add(MO: MI.getOperand(i: 1)); // we can preserve the kill flags here. |
| 2196 | MIB.addImm(Val: 0); |
| 2197 | MIB.addImm(Val: 8); |
| 2198 | MIB.addReg(RegNo: LabelReg, Flags: getKillRegState(B: true)); |
| 2199 | MIB.setMemRefs(MMOs); |
| 2200 | |
| 2201 | // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. |
| 2202 | |
| 2203 | // Insert setup. |
| 2204 | MIB = |
| 2205 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::EH_SjLj_Setup)).addMBB(MBB: RestoreMBB); |
| 2206 | |
| 2207 | const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| 2208 | MIB.addRegMask(Mask: RegInfo->getNoPreservedMask()); |
| 2209 | ThisMBB->addSuccessor(Succ: MainMBB); |
| 2210 | ThisMBB->addSuccessor(Succ: RestoreMBB); |
| 2211 | |
| 2212 | // MainMBB: |
| 2213 | BuildMI(BB: MainMBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: MainDestReg) |
| 2214 | .addImm(Val: 0) |
| 2215 | .addImm(Val: 0) |
| 2216 | .addImm(Val: 0); |
| 2217 | MainMBB->addSuccessor(Succ: SinkMBB); |
| 2218 | |
| 2219 | // SinkMBB: |
| 2220 | BuildMI(BB&: *SinkMBB, I: SinkMBB->begin(), MIMD: DL, MCID: TII->get(Opcode: VE::PHI), DestReg: DstReg) |
| 2221 | .addReg(RegNo: MainDestReg) |
| 2222 | .addMBB(MBB: MainMBB) |
| 2223 | .addReg(RegNo: RestoreDestReg) |
| 2224 | .addMBB(MBB: RestoreMBB); |
| 2225 | |
| 2226 | // RestoreMBB: |
| 2227 | // Restore BP from buf[3] iff this function is using BP. The address of |
| 2228 | // buf is in SX10. |
| 2229 | // FIXME: Better to not use SX10 here |
| 2230 | if (TFI->hasBP(MF: *MF)) { |
| 2231 | MachineInstrBuilder MIB = |
| 2232 | BuildMI(BB: RestoreMBB, MIMD: DL, MCID: TII->get(Opcode: VE::LDrii), DestReg: VE::SX17); |
| 2233 | MIB.addReg(RegNo: VE::SX10); |
| 2234 | MIB.addImm(Val: 0); |
| 2235 | MIB.addImm(Val: 24); |
| 2236 | MIB.setMemRefs(MMOs); |
| 2237 | } |
| 2238 | BuildMI(BB: RestoreMBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: RestoreDestReg) |
| 2239 | .addImm(Val: 0) |
| 2240 | .addImm(Val: 0) |
| 2241 | .addImm(Val: 1); |
| 2242 | BuildMI(BB: RestoreMBB, MIMD: DL, MCID: TII->get(Opcode: VE::BRCFLa_t)).addMBB(MBB: SinkMBB); |
| 2243 | RestoreMBB->addSuccessor(Succ: SinkMBB); |
| 2244 | |
| 2245 | MI.eraseFromParent(); |
| 2246 | return SinkMBB; |
| 2247 | } |
| 2248 | |
| 2249 | MachineBasicBlock * |
| 2250 | VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, |
| 2251 | MachineBasicBlock *MBB) const { |
| 2252 | DebugLoc DL = MI.getDebugLoc(); |
| 2253 | MachineFunction *MF = MBB->getParent(); |
| 2254 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| 2255 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 2256 | |
| 2257 | // Memory Reference. |
| 2258 | SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands()); |
| 2259 | Register BufReg = MI.getOperand(i: 0).getReg(); |
| 2260 | |
| 2261 | Register Tmp = MRI.createVirtualRegister(RegClass: &VE::I64RegClass); |
| 2262 | // Since FP is only updated here but NOT referenced, it's treated as GPR. |
| 2263 | Register FP = VE::SX9; |
| 2264 | Register SP = VE::SX11; |
| 2265 | |
| 2266 | MachineInstrBuilder MIB; |
| 2267 | |
| 2268 | MachineBasicBlock *ThisMBB = MBB; |
| 2269 | |
| 2270 | // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. |
| 2271 | // |
| 2272 | // ThisMBB: |
| 2273 | // %fp = load buf[0] |
| 2274 | // %jmp = load buf[1] |
| 2275 | // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB |
| 2276 | // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. |
| 2277 | // jmp %jmp |
| 2278 | |
| 2279 | // Reload FP. |
| 2280 | MIB = BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::LDrii), DestReg: FP); |
| 2281 | MIB.addReg(RegNo: BufReg); |
| 2282 | MIB.addImm(Val: 0); |
| 2283 | MIB.addImm(Val: 0); |
| 2284 | MIB.setMemRefs(MMOs); |
| 2285 | |
| 2286 | // Reload IP. |
| 2287 | MIB = BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::LDrii), DestReg: Tmp); |
| 2288 | MIB.addReg(RegNo: BufReg); |
| 2289 | MIB.addImm(Val: 0); |
| 2290 | MIB.addImm(Val: 8); |
| 2291 | MIB.setMemRefs(MMOs); |
| 2292 | |
| 2293 | // Copy BufReg to SX10 for later use in setjmp. |
| 2294 | // FIXME: Better to not use SX10 here |
| 2295 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::ORri), DestReg: VE::SX10) |
| 2296 | .addReg(RegNo: BufReg) |
| 2297 | .addImm(Val: 0); |
| 2298 | |
| 2299 | // Reload SP. |
| 2300 | MIB = BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::LDrii), DestReg: SP); |
| 2301 | MIB.add(MO: MI.getOperand(i: 0)); // we can preserve the kill flags here. |
| 2302 | MIB.addImm(Val: 0); |
| 2303 | MIB.addImm(Val: 16); |
| 2304 | MIB.setMemRefs(MMOs); |
| 2305 | |
| 2306 | // Jump. |
| 2307 | BuildMI(BB&: *ThisMBB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: VE::BCFLari_t)) |
| 2308 | .addReg(RegNo: Tmp, Flags: getKillRegState(B: true)) |
| 2309 | .addImm(Val: 0); |
| 2310 | |
| 2311 | MI.eraseFromParent(); |
| 2312 | return ThisMBB; |
| 2313 | } |
| 2314 | |
| 2315 | MachineBasicBlock * |
| 2316 | VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, |
| 2317 | MachineBasicBlock *BB) const { |
| 2318 | DebugLoc DL = MI.getDebugLoc(); |
| 2319 | MachineFunction *MF = BB->getParent(); |
| 2320 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 2321 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 2322 | const VEInstrInfo *TII = Subtarget->getInstrInfo(); |
| 2323 | int FI = MFI.getFunctionContextIndex(); |
| 2324 | |
| 2325 | // Get a mapping of the call site numbers to all of the landing pads they're |
| 2326 | // associated with. |
| 2327 | DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; |
| 2328 | unsigned MaxCSNum = 0; |
| 2329 | for (auto &MBB : *MF) { |
| 2330 | if (!MBB.isEHPad()) |
| 2331 | continue; |
| 2332 | |
| 2333 | MCSymbol *Sym = nullptr; |
| 2334 | for (const auto &MI : MBB) { |
| 2335 | if (MI.isDebugInstr()) |
| 2336 | continue; |
| 2337 | |
| 2338 | assert(MI.isEHLabel() && "expected EH_LABEL" ); |
| 2339 | Sym = MI.getOperand(i: 0).getMCSymbol(); |
| 2340 | break; |
| 2341 | } |
| 2342 | |
| 2343 | if (!MF->hasCallSiteLandingPad(Sym)) |
| 2344 | continue; |
| 2345 | |
| 2346 | for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { |
| 2347 | CallSiteNumToLPad[CSI].push_back(Elt: &MBB); |
| 2348 | MaxCSNum = std::max(a: MaxCSNum, b: CSI); |
| 2349 | } |
| 2350 | } |
| 2351 | |
| 2352 | // Get an ordered list of the machine basic blocks for the jump table. |
| 2353 | std::vector<MachineBasicBlock *> LPadList; |
| 2354 | SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; |
| 2355 | LPadList.reserve(n: CallSiteNumToLPad.size()); |
| 2356 | |
| 2357 | for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { |
| 2358 | for (auto &LP : CallSiteNumToLPad[CSI]) { |
| 2359 | LPadList.push_back(x: LP); |
| 2360 | InvokeBBs.insert_range(R: LP->predecessors()); |
| 2361 | } |
| 2362 | } |
| 2363 | |
| 2364 | assert(!LPadList.empty() && |
| 2365 | "No landing pad destinations for the dispatch jump table!" ); |
| 2366 | |
| 2367 | // The %fn_context is allocated like below (from --print-after=sjljehprepare): |
| 2368 | // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } |
| 2369 | // |
| 2370 | // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. |
| 2371 | // First `i64` is callsite, so callsite is FI+8. |
| 2372 | static const int OffsetIC = 72; |
| 2373 | static const int OffsetCS = 8; |
| 2374 | |
| 2375 | // Create the MBBs for the dispatch code like following: |
| 2376 | // |
| 2377 | // ThisMBB: |
| 2378 | // Prepare DispatchBB address and store it to buf[1]. |
| 2379 | // ... |
| 2380 | // |
| 2381 | // DispatchBB: |
| 2382 | // %s15 = GETGOT iff isPositionIndependent |
| 2383 | // %callsite = load callsite |
| 2384 | // brgt.l.t #size of callsites, %callsite, DispContBB |
| 2385 | // |
| 2386 | // TrapBB: |
| 2387 | // Call abort. |
| 2388 | // |
| 2389 | // DispContBB: |
| 2390 | // %breg = address of jump table |
| 2391 | // %pc = load and calculate next pc from %breg and %callsite |
| 2392 | // jmp %pc |
| 2393 | |
| 2394 | // Shove the dispatch's address into the return slot in the function context. |
| 2395 | MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); |
| 2396 | DispatchBB->setIsEHPad(true); |
| 2397 | |
| 2398 | // Trap BB will causes trap like `assert(0)`. |
| 2399 | MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| 2400 | DispatchBB->addSuccessor(Succ: TrapBB); |
| 2401 | |
| 2402 | MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); |
| 2403 | DispatchBB->addSuccessor(Succ: DispContBB); |
| 2404 | |
| 2405 | // Insert MBBs. |
| 2406 | MF->push_back(MBB: DispatchBB); |
| 2407 | MF->push_back(MBB: DispContBB); |
| 2408 | MF->push_back(MBB: TrapBB); |
| 2409 | |
| 2410 | // Insert code to call abort in the TrapBB. |
| 2411 | Register Abort = prepareSymbol(MBB&: *TrapBB, I: TrapBB->end(), Symbol: "abort" , DL, |
| 2412 | /* Local */ IsLocal: false, /* Call */ IsCall: true); |
| 2413 | BuildMI(BB: TrapBB, MIMD: DL, MCID: TII->get(Opcode: VE::BSICrii), DestReg: VE::SX10) |
| 2414 | .addReg(RegNo: Abort, Flags: getKillRegState(B: true)) |
| 2415 | .addImm(Val: 0) |
| 2416 | .addImm(Val: 0); |
| 2417 | |
| 2418 | // Insert code into the entry block that creates and registers the function |
| 2419 | // context. |
| 2420 | setupEntryBlockForSjLj(MI, MBB: BB, DispatchBB, FI, Offset: OffsetIC); |
| 2421 | |
| 2422 | // Create the jump table and associated information |
| 2423 | unsigned JTE = getJumpTableEncoding(); |
| 2424 | MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTEntryKind: JTE); |
| 2425 | unsigned MJTI = JTI->createJumpTableIndex(DestBBs: LPadList); |
| 2426 | |
| 2427 | const VERegisterInfo &RI = TII->getRegisterInfo(); |
| 2428 | // Add a register mask with no preserved registers. This results in all |
| 2429 | // registers being marked as clobbered. |
| 2430 | BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::NOP)) |
| 2431 | .addRegMask(Mask: RI.getNoPreservedMask()); |
| 2432 | |
| 2433 | if (isPositionIndependent()) { |
| 2434 | // Force to generate GETGOT, since current implementation doesn't store GOT |
| 2435 | // register. |
| 2436 | BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::GETGOT), DestReg: VE::SX15); |
| 2437 | } |
| 2438 | |
| 2439 | // IReg is used as an index in a memory operand and therefore can't be SP |
| 2440 | const TargetRegisterClass *RC = &VE::I64RegClass; |
| 2441 | Register IReg = MRI.createVirtualRegister(RegClass: RC); |
| 2442 | addFrameReference(MIB: BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::LDLZXrii), DestReg: IReg), FI, |
| 2443 | Offset: OffsetCS); |
| 2444 | if (LPadList.size() < 64) { |
| 2445 | BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::BRCFLir_t)) |
| 2446 | .addImm(Val: VECC::CC_ILE) |
| 2447 | .addImm(Val: LPadList.size()) |
| 2448 | .addReg(RegNo: IReg) |
| 2449 | .addMBB(MBB: TrapBB); |
| 2450 | } else { |
| 2451 | assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!" ); |
| 2452 | Register TmpReg = MRI.createVirtualRegister(RegClass: RC); |
| 2453 | BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: TmpReg) |
| 2454 | .addImm(Val: 0) |
| 2455 | .addImm(Val: 0) |
| 2456 | .addImm(Val: LPadList.size()); |
| 2457 | BuildMI(BB: DispatchBB, MIMD: DL, MCID: TII->get(Opcode: VE::BRCFLrr_t)) |
| 2458 | .addImm(Val: VECC::CC_ILE) |
| 2459 | .addReg(RegNo: TmpReg, Flags: getKillRegState(B: true)) |
| 2460 | .addReg(RegNo: IReg) |
| 2461 | .addMBB(MBB: TrapBB); |
| 2462 | } |
| 2463 | |
| 2464 | Register BReg = MRI.createVirtualRegister(RegClass: RC); |
| 2465 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2466 | Register Tmp2 = MRI.createVirtualRegister(RegClass: RC); |
| 2467 | |
| 2468 | if (isPositionIndependent()) { |
| 2469 | // Create following instructions for local linkage PIC code. |
| 2470 | // lea %Tmp1, .LJTI0_0@gotoff_lo |
| 2471 | // and %Tmp2, %Tmp1, (32)0 |
| 2472 | // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT |
| 2473 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2474 | .addImm(Val: 0) |
| 2475 | .addImm(Val: 0) |
| 2476 | .addJumpTableIndex(Idx: MJTI, TargetFlags: VE::S_GOTOFF_LO32); |
| 2477 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2478 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2479 | .addImm(Val: M0(Val: 32)); |
| 2480 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrri), DestReg: BReg) |
| 2481 | .addReg(RegNo: VE::SX15) |
| 2482 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2483 | .addJumpTableIndex(Idx: MJTI, TargetFlags: VE::S_GOTOFF_HI32); |
| 2484 | } else { |
| 2485 | // Create following instructions for non-PIC code. |
| 2486 | // lea %Tmp1, .LJTI0_0@lo |
| 2487 | // and %Tmp2, %Tmp1, (32)0 |
| 2488 | // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) |
| 2489 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEAzii), DestReg: Tmp1) |
| 2490 | .addImm(Val: 0) |
| 2491 | .addImm(Val: 0) |
| 2492 | .addJumpTableIndex(Idx: MJTI, TargetFlags: VE::S_LO32); |
| 2493 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::ANDrm), DestReg: Tmp2) |
| 2494 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2495 | .addImm(Val: M0(Val: 32)); |
| 2496 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LEASLrii), DestReg: BReg) |
| 2497 | .addReg(RegNo: Tmp2, Flags: getKillRegState(B: true)) |
| 2498 | .addImm(Val: 0) |
| 2499 | .addJumpTableIndex(Idx: MJTI, TargetFlags: VE::S_HI32); |
| 2500 | } |
| 2501 | |
| 2502 | switch (JTE) { |
| 2503 | case MachineJumpTableInfo::EK_BlockAddress: { |
| 2504 | // Generate simple block address code for no-PIC model. |
| 2505 | // sll %Tmp1, %IReg, 3 |
| 2506 | // lds %TReg, 0(%Tmp1, %BReg) |
| 2507 | // bcfla %TReg |
| 2508 | |
| 2509 | Register TReg = MRI.createVirtualRegister(RegClass: RC); |
| 2510 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2511 | |
| 2512 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::SLLri), DestReg: Tmp1) |
| 2513 | .addReg(RegNo: IReg, Flags: getKillRegState(B: true)) |
| 2514 | .addImm(Val: 3); |
| 2515 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LDrri), DestReg: TReg) |
| 2516 | .addReg(RegNo: BReg, Flags: getKillRegState(B: true)) |
| 2517 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2518 | .addImm(Val: 0); |
| 2519 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::BCFLari_t)) |
| 2520 | .addReg(RegNo: TReg, Flags: getKillRegState(B: true)) |
| 2521 | .addImm(Val: 0); |
| 2522 | break; |
| 2523 | } |
| 2524 | case MachineJumpTableInfo::EK_Custom32: { |
| 2525 | // Generate block address code using differences from the function pointer |
| 2526 | // for PIC model. |
| 2527 | // sll %Tmp1, %IReg, 2 |
| 2528 | // ldl.zx %OReg, 0(%Tmp1, %BReg) |
| 2529 | // Prepare function address in BReg2. |
| 2530 | // adds.l %TReg, %BReg2, %OReg |
| 2531 | // bcfla %TReg |
| 2532 | |
| 2533 | assert(isPositionIndependent()); |
| 2534 | Register OReg = MRI.createVirtualRegister(RegClass: RC); |
| 2535 | Register TReg = MRI.createVirtualRegister(RegClass: RC); |
| 2536 | Register Tmp1 = MRI.createVirtualRegister(RegClass: RC); |
| 2537 | |
| 2538 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::SLLri), DestReg: Tmp1) |
| 2539 | .addReg(RegNo: IReg, Flags: getKillRegState(B: true)) |
| 2540 | .addImm(Val: 2); |
| 2541 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::LDLZXrri), DestReg: OReg) |
| 2542 | .addReg(RegNo: BReg, Flags: getKillRegState(B: true)) |
| 2543 | .addReg(RegNo: Tmp1, Flags: getKillRegState(B: true)) |
| 2544 | .addImm(Val: 0); |
| 2545 | Register BReg2 = |
| 2546 | prepareSymbol(MBB&: *DispContBB, I: DispContBB->end(), |
| 2547 | Symbol: DispContBB->getParent()->getName(), DL, /* Local */ IsLocal: true); |
| 2548 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::ADDSLrr), DestReg: TReg) |
| 2549 | .addReg(RegNo: OReg, Flags: getKillRegState(B: true)) |
| 2550 | .addReg(RegNo: BReg2, Flags: getKillRegState(B: true)); |
| 2551 | BuildMI(BB: DispContBB, MIMD: DL, MCID: TII->get(Opcode: VE::BCFLari_t)) |
| 2552 | .addReg(RegNo: TReg, Flags: getKillRegState(B: true)) |
| 2553 | .addImm(Val: 0); |
| 2554 | break; |
| 2555 | } |
| 2556 | default: |
| 2557 | llvm_unreachable("Unexpected jump table encoding" ); |
| 2558 | } |
| 2559 | |
| 2560 | // Add the jump table entries as successors to the MBB. |
| 2561 | SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; |
| 2562 | for (auto &LP : LPadList) |
| 2563 | if (SeenMBBs.insert(Ptr: LP).second) |
| 2564 | DispContBB->addSuccessor(Succ: LP); |
| 2565 | |
| 2566 | // N.B. the order the invoke BBs are processed in doesn't matter here. |
| 2567 | SmallVector<MachineBasicBlock *, 64> MBBLPads; |
| 2568 | const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); |
| 2569 | for (MachineBasicBlock *MBB : InvokeBBs) { |
| 2570 | // Remove the landing pad successor from the invoke block and replace it |
| 2571 | // with the new dispatch block. |
| 2572 | // Keep a copy of Successors since it's modified inside the loop. |
| 2573 | SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), |
| 2574 | MBB->succ_rend()); |
| 2575 | // FIXME: Avoid quadratic complexity. |
| 2576 | for (auto *MBBS : Successors) { |
| 2577 | if (MBBS->isEHPad()) { |
| 2578 | MBB->removeSuccessor(Succ: MBBS); |
| 2579 | MBBLPads.push_back(Elt: MBBS); |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | MBB->addSuccessor(Succ: DispatchBB); |
| 2584 | |
| 2585 | // Find the invoke call and mark all of the callee-saved registers as |
| 2586 | // 'implicit defined' so that they're spilled. This prevents code from |
| 2587 | // moving instructions to before the EH block, where they will never be |
| 2588 | // executed. |
| 2589 | for (auto &II : reverse(C&: *MBB)) { |
| 2590 | if (!II.isCall()) |
| 2591 | continue; |
| 2592 | |
| 2593 | DenseSet<Register> DefRegs; |
| 2594 | for (auto &MOp : II.operands()) |
| 2595 | if (MOp.isReg()) |
| 2596 | DefRegs.insert(V: MOp.getReg()); |
| 2597 | |
| 2598 | MachineInstrBuilder MIB(*MF, &II); |
| 2599 | for (unsigned RI = 0; SavedRegs[RI]; ++RI) { |
| 2600 | Register Reg = SavedRegs[RI]; |
| 2601 | if (!DefRegs.contains(V: Reg)) |
| 2602 | MIB.addReg(RegNo: Reg, Flags: RegState::ImplicitDefine | RegState::Dead); |
| 2603 | } |
| 2604 | |
| 2605 | break; |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | // Mark all former landing pads as non-landing pads. The dispatch is the only |
| 2610 | // landing pad now. |
| 2611 | for (auto &LP : MBBLPads) |
| 2612 | LP->setIsEHPad(false); |
| 2613 | |
| 2614 | // The instruction is gone now. |
| 2615 | MI.eraseFromParent(); |
| 2616 | return BB; |
| 2617 | } |
| 2618 | |
| 2619 | MachineBasicBlock * |
| 2620 | VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 2621 | MachineBasicBlock *BB) const { |
| 2622 | switch (MI.getOpcode()) { |
| 2623 | default: |
| 2624 | llvm_unreachable("Unknown Custom Instruction!" ); |
| 2625 | case VE::EH_SjLj_LongJmp: |
| 2626 | return emitEHSjLjLongJmp(MI, MBB: BB); |
| 2627 | case VE::EH_SjLj_SetJmp: |
| 2628 | return emitEHSjLjSetJmp(MI, MBB: BB); |
| 2629 | case VE::EH_SjLj_Setup_Dispatch: |
| 2630 | return emitSjLjDispatchBlock(MI, BB); |
| 2631 | } |
| 2632 | } |
| 2633 | |
| 2634 | static bool isSimm7(SDValue V) { |
| 2635 | EVT VT = V.getValueType(); |
| 2636 | if (VT.isVector()) |
| 2637 | return false; |
| 2638 | |
| 2639 | if (VT.isInteger()) { |
| 2640 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: V)) |
| 2641 | return isInt<7>(x: C->getSExtValue()); |
| 2642 | } else if (VT.isFloatingPoint()) { |
| 2643 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: V)) { |
| 2644 | if (VT == MVT::f32 || VT == MVT::f64) { |
| 2645 | const APInt &Imm = C->getValueAPF().bitcastToAPInt(); |
| 2646 | uint64_t Val = Imm.getSExtValue(); |
| 2647 | if (Imm.getBitWidth() == 32) |
| 2648 | Val <<= 32; // Immediate value of float place at higher bits on VE. |
| 2649 | return isInt<7>(x: Val); |
| 2650 | } |
| 2651 | } |
| 2652 | } |
| 2653 | return false; |
| 2654 | } |
| 2655 | |
| 2656 | static bool isMImm(SDValue V) { |
| 2657 | EVT VT = V.getValueType(); |
| 2658 | if (VT.isVector()) |
| 2659 | return false; |
| 2660 | |
| 2661 | if (VT.isInteger()) { |
| 2662 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: V)) |
| 2663 | return isMImmVal(Val: getImmVal(N: C)); |
| 2664 | } else if (VT.isFloatingPoint()) { |
| 2665 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: V)) { |
| 2666 | if (VT == MVT::f32) { |
| 2667 | // Float value places at higher bits, so ignore lower 32 bits. |
| 2668 | return isMImm32Val(Val: getFpImmVal(N: C) >> 32); |
| 2669 | } else if (VT == MVT::f64) { |
| 2670 | return isMImmVal(Val: getFpImmVal(N: C)); |
| 2671 | } |
| 2672 | } |
| 2673 | } |
| 2674 | return false; |
| 2675 | } |
| 2676 | |
| 2677 | static unsigned decideComp(EVT SrcVT, ISD::CondCode CC) { |
| 2678 | if (SrcVT.isFloatingPoint()) { |
| 2679 | if (SrcVT == MVT::f128) |
| 2680 | return VEISD::CMPQ; |
| 2681 | return VEISD::CMPF; |
| 2682 | } |
| 2683 | return isSignedIntSetCC(Code: CC) ? VEISD::CMPI : VEISD::CMPU; |
| 2684 | } |
| 2685 | |
| 2686 | static EVT decideCompType(EVT SrcVT) { |
| 2687 | if (SrcVT == MVT::f128) |
| 2688 | return MVT::f64; |
| 2689 | return SrcVT; |
| 2690 | } |
| 2691 | |
| 2692 | static bool safeWithoutCompWithNull(EVT SrcVT, ISD::CondCode CC, |
| 2693 | bool WithCMov) { |
| 2694 | if (SrcVT.isFloatingPoint()) { |
| 2695 | // For the case of floating point setcc, only unordered comparison |
| 2696 | // or general comparison with -enable-no-nans-fp-math option reach |
| 2697 | // here, so it is safe even if values are NaN. Only f128 doesn't |
| 2698 | // safe since VE uses f64 result of f128 comparison. |
| 2699 | return SrcVT != MVT::f128; |
| 2700 | } |
| 2701 | if (isIntEqualitySetCC(Code: CC)) { |
| 2702 | // For the case of equal or not equal, it is safe without comparison with 0. |
| 2703 | return true; |
| 2704 | } |
| 2705 | if (WithCMov) { |
| 2706 | // For the case of integer setcc with cmov, all signed comparison with 0 |
| 2707 | // are safe. |
| 2708 | return isSignedIntSetCC(Code: CC); |
| 2709 | } |
| 2710 | // For the case of integer setcc, only signed 64 bits comparison is safe. |
| 2711 | // For unsigned, "CMPU 0x80000000, 0" has to be greater than 0, but it becomes |
| 2712 | // less than 0 witout CMPU. For 32 bits, other half of 32 bits are |
| 2713 | // uncoditional, so it is not safe too without CMPI.. |
| 2714 | return isSignedIntSetCC(Code: CC) && SrcVT == MVT::i64; |
| 2715 | } |
| 2716 | |
| 2717 | static SDValue generateComparison(EVT VT, SDValue LHS, SDValue RHS, |
| 2718 | ISD::CondCode CC, bool WithCMov, |
| 2719 | const SDLoc &DL, SelectionDAG &DAG) { |
| 2720 | // Compare values. If RHS is 0 and it is safe to calculate without |
| 2721 | // comparison, we don't generate an instruction for comparison. |
| 2722 | EVT CompVT = decideCompType(SrcVT: VT); |
| 2723 | if (CompVT == VT && safeWithoutCompWithNull(SrcVT: VT, CC, WithCMov) && |
| 2724 | (isNullConstant(V: RHS) || isNullFPConstant(V: RHS))) { |
| 2725 | return LHS; |
| 2726 | } |
| 2727 | return DAG.getNode(Opcode: decideComp(SrcVT: VT, CC), DL, VT: CompVT, N1: LHS, N2: RHS); |
| 2728 | } |
| 2729 | |
| 2730 | SDValue VETargetLowering::combineSelect(SDNode *N, |
| 2731 | DAGCombinerInfo &DCI) const { |
| 2732 | assert(N->getOpcode() == ISD::SELECT && |
| 2733 | "Should be called with a SELECT node" ); |
| 2734 | ISD::CondCode CC = ISD::CondCode::SETNE; |
| 2735 | SDValue Cond = N->getOperand(Num: 0); |
| 2736 | SDValue True = N->getOperand(Num: 1); |
| 2737 | SDValue False = N->getOperand(Num: 2); |
| 2738 | |
| 2739 | // We handle only scalar SELECT. |
| 2740 | EVT VT = N->getValueType(ResNo: 0); |
| 2741 | if (VT.isVector()) |
| 2742 | return SDValue(); |
| 2743 | |
| 2744 | // Peform combineSelect after leagalize DAG. |
| 2745 | if (!DCI.isAfterLegalizeDAG()) |
| 2746 | return SDValue(); |
| 2747 | |
| 2748 | EVT VT0 = Cond.getValueType(); |
| 2749 | if (isMImm(V: True)) { |
| 2750 | // VE's condition move can handle MImm in True clause, so nothing to do. |
| 2751 | } else if (isMImm(V: False)) { |
| 2752 | // VE's condition move can handle MImm in True clause, so swap True and |
| 2753 | // False clauses if False has MImm value. And, update condition code. |
| 2754 | std::swap(a&: True, b&: False); |
| 2755 | CC = getSetCCInverse(Operation: CC, Type: VT0); |
| 2756 | } |
| 2757 | |
| 2758 | SDLoc DL(N); |
| 2759 | SelectionDAG &DAG = DCI.DAG; |
| 2760 | VECC::CondCode VECCVal; |
| 2761 | if (VT0.isFloatingPoint()) { |
| 2762 | VECCVal = fpCondCode2Fcc(CC); |
| 2763 | } else { |
| 2764 | VECCVal = intCondCode2Icc(CC); |
| 2765 | } |
| 2766 | SDValue Ops[] = {Cond, True, False, |
| 2767 | DAG.getConstant(Val: VECCVal, DL, VT: MVT::i32)}; |
| 2768 | return DAG.getNode(Opcode: VEISD::CMOV, DL, VT, Ops); |
| 2769 | } |
| 2770 | |
| 2771 | SDValue VETargetLowering::combineSelectCC(SDNode *N, |
| 2772 | DAGCombinerInfo &DCI) const { |
| 2773 | assert(N->getOpcode() == ISD::SELECT_CC && |
| 2774 | "Should be called with a SELECT_CC node" ); |
| 2775 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: N->getOperand(Num: 4))->get(); |
| 2776 | SDValue LHS = N->getOperand(Num: 0); |
| 2777 | SDValue RHS = N->getOperand(Num: 1); |
| 2778 | SDValue True = N->getOperand(Num: 2); |
| 2779 | SDValue False = N->getOperand(Num: 3); |
| 2780 | |
| 2781 | // We handle only scalar SELECT_CC. |
| 2782 | EVT VT = N->getValueType(ResNo: 0); |
| 2783 | if (VT.isVector()) |
| 2784 | return SDValue(); |
| 2785 | |
| 2786 | // Peform combineSelectCC after leagalize DAG. |
| 2787 | if (!DCI.isAfterLegalizeDAG()) |
| 2788 | return SDValue(); |
| 2789 | |
| 2790 | // We handle only i32/i64/f32/f64/f128 comparisons. |
| 2791 | EVT LHSVT = LHS.getValueType(); |
| 2792 | assert(LHSVT == RHS.getValueType()); |
| 2793 | switch (LHSVT.getSimpleVT().SimpleTy) { |
| 2794 | case MVT::i32: |
| 2795 | case MVT::i64: |
| 2796 | case MVT::f32: |
| 2797 | case MVT::f64: |
| 2798 | case MVT::f128: |
| 2799 | break; |
| 2800 | default: |
| 2801 | // Return SDValue to let llvm handle other types. |
| 2802 | return SDValue(); |
| 2803 | } |
| 2804 | |
| 2805 | if (isMImm(V: RHS)) { |
| 2806 | // VE's comparison can handle MImm in RHS, so nothing to do. |
| 2807 | } else if (isSimm7(V: RHS)) { |
| 2808 | // VE's comparison can handle Simm7 in LHS, so swap LHS and RHS, and |
| 2809 | // update condition code. |
| 2810 | std::swap(a&: LHS, b&: RHS); |
| 2811 | CC = getSetCCSwappedOperands(Operation: CC); |
| 2812 | } |
| 2813 | if (isMImm(V: True)) { |
| 2814 | // VE's condition move can handle MImm in True clause, so nothing to do. |
| 2815 | } else if (isMImm(V: False)) { |
| 2816 | // VE's condition move can handle MImm in True clause, so swap True and |
| 2817 | // False clauses if False has MImm value. And, update condition code. |
| 2818 | std::swap(a&: True, b&: False); |
| 2819 | CC = getSetCCInverse(Operation: CC, Type: LHSVT); |
| 2820 | } |
| 2821 | |
| 2822 | SDLoc DL(N); |
| 2823 | SelectionDAG &DAG = DCI.DAG; |
| 2824 | |
| 2825 | bool WithCMov = true; |
| 2826 | SDValue CompNode = generateComparison(VT: LHSVT, LHS, RHS, CC, WithCMov, DL, DAG); |
| 2827 | |
| 2828 | VECC::CondCode VECCVal; |
| 2829 | if (LHSVT.isFloatingPoint()) { |
| 2830 | VECCVal = fpCondCode2Fcc(CC); |
| 2831 | } else { |
| 2832 | VECCVal = intCondCode2Icc(CC); |
| 2833 | } |
| 2834 | SDValue Ops[] = {CompNode, True, False, |
| 2835 | DAG.getConstant(Val: VECCVal, DL, VT: MVT::i32)}; |
| 2836 | return DAG.getNode(Opcode: VEISD::CMOV, DL, VT, Ops); |
| 2837 | } |
| 2838 | |
| 2839 | static bool isI32InsnAllUses(const SDNode *User, const SDNode *N); |
| 2840 | static bool isI32Insn(const SDNode *User, const SDNode *N) { |
| 2841 | switch (User->getOpcode()) { |
| 2842 | default: |
| 2843 | return false; |
| 2844 | case ISD::ADD: |
| 2845 | case ISD::SUB: |
| 2846 | case ISD::MUL: |
| 2847 | case ISD::SDIV: |
| 2848 | case ISD::UDIV: |
| 2849 | case ISD::SETCC: |
| 2850 | case ISD::SMIN: |
| 2851 | case ISD::SMAX: |
| 2852 | case ISD::SHL: |
| 2853 | case ISD::SRA: |
| 2854 | case ISD::BSWAP: |
| 2855 | case ISD::SINT_TO_FP: |
| 2856 | case ISD::UINT_TO_FP: |
| 2857 | case ISD::BR_CC: |
| 2858 | case ISD::BITCAST: |
| 2859 | case ISD::ATOMIC_CMP_SWAP: |
| 2860 | case ISD::ATOMIC_SWAP: |
| 2861 | case VEISD::CMPU: |
| 2862 | case VEISD::CMPI: |
| 2863 | return true; |
| 2864 | case ISD::SRL: |
| 2865 | if (N->getOperand(Num: 0).getOpcode() != ISD::SRL) |
| 2866 | return true; |
| 2867 | // (srl (trunc (srl ...))) may be optimized by combining srl, so |
| 2868 | // doesn't optimize trunc now. |
| 2869 | return false; |
| 2870 | case ISD::SELECT_CC: |
| 2871 | if (User->getOperand(Num: 2).getNode() != N && |
| 2872 | User->getOperand(Num: 3).getNode() != N) |
| 2873 | return true; |
| 2874 | return isI32InsnAllUses(User, N); |
| 2875 | case VEISD::CMOV: |
| 2876 | // CMOV in (cmov (trunc ...), true, false, int-comparison) is safe. |
| 2877 | // However, trunc in true or false clauses is not safe. |
| 2878 | if (User->getOperand(Num: 1).getNode() != N && |
| 2879 | User->getOperand(Num: 2).getNode() != N && |
| 2880 | isa<ConstantSDNode>(Val: User->getOperand(Num: 3))) { |
| 2881 | VECC::CondCode VECCVal = |
| 2882 | static_cast<VECC::CondCode>(User->getConstantOperandVal(Num: 3)); |
| 2883 | return isIntVECondCode(CC: VECCVal); |
| 2884 | } |
| 2885 | [[fallthrough]]; |
| 2886 | case ISD::AND: |
| 2887 | case ISD::OR: |
| 2888 | case ISD::XOR: |
| 2889 | case ISD::SELECT: |
| 2890 | case ISD::CopyToReg: |
| 2891 | // Check all use of selections, bit operations, and copies. If all of them |
| 2892 | // are safe, optimize truncate to extract_subreg. |
| 2893 | return isI32InsnAllUses(User, N); |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | static bool isI32InsnAllUses(const SDNode *User, const SDNode *N) { |
| 2898 | // Check all use of User node. If all of them are safe, optimize |
| 2899 | // truncate to extract_subreg. |
| 2900 | for (const SDNode *U : User->users()) { |
| 2901 | switch (U->getOpcode()) { |
| 2902 | default: |
| 2903 | // If the use is an instruction which treats the source operand as i32, |
| 2904 | // it is safe to avoid truncate here. |
| 2905 | if (isI32Insn(User: U, N)) |
| 2906 | continue; |
| 2907 | break; |
| 2908 | case ISD::ANY_EXTEND: |
| 2909 | case ISD::SIGN_EXTEND: |
| 2910 | case ISD::ZERO_EXTEND: { |
| 2911 | // Special optimizations to the combination of ext and trunc. |
| 2912 | // (ext ... (select ... (trunc ...))) is safe to avoid truncate here |
| 2913 | // since this truncate instruction clears higher 32 bits which is filled |
| 2914 | // by one of ext instructions later. |
| 2915 | assert(N->getValueType(0) == MVT::i32 && |
| 2916 | "find truncate to not i32 integer" ); |
| 2917 | if (User->getOpcode() == ISD::SELECT_CC || |
| 2918 | User->getOpcode() == ISD::SELECT || User->getOpcode() == VEISD::CMOV) |
| 2919 | continue; |
| 2920 | break; |
| 2921 | } |
| 2922 | } |
| 2923 | return false; |
| 2924 | } |
| 2925 | return true; |
| 2926 | } |
| 2927 | |
| 2928 | // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is |
| 2929 | // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td |
| 2930 | // is sometime too late. So, doing it at here. |
| 2931 | SDValue VETargetLowering::combineTRUNCATE(SDNode *N, |
| 2932 | DAGCombinerInfo &DCI) const { |
| 2933 | assert(N->getOpcode() == ISD::TRUNCATE && |
| 2934 | "Should be called with a TRUNCATE node" ); |
| 2935 | |
| 2936 | SelectionDAG &DAG = DCI.DAG; |
| 2937 | SDLoc DL(N); |
| 2938 | EVT VT = N->getValueType(ResNo: 0); |
| 2939 | |
| 2940 | // We prefer to do this when all types are legal. |
| 2941 | if (!DCI.isAfterLegalizeDAG()) |
| 2942 | return SDValue(); |
| 2943 | |
| 2944 | // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. |
| 2945 | if (N->getOperand(Num: 0)->getOpcode() == ISD::SELECT_CC && |
| 2946 | isa<ConstantSDNode>(Val: N->getOperand(Num: 0)->getOperand(Num: 0)) && |
| 2947 | isa<ConstantSDNode>(Val: N->getOperand(Num: 0)->getOperand(Num: 1))) |
| 2948 | return SDValue(); |
| 2949 | |
| 2950 | // Check all use of this TRUNCATE. |
| 2951 | for (const SDNode *User : N->users()) { |
| 2952 | // Make sure that we're not going to replace TRUNCATE for non i32 |
| 2953 | // instructions. |
| 2954 | // |
| 2955 | // FIXME: Although we could sometimes handle this, and it does occur in |
| 2956 | // practice that one of the condition inputs to the select is also one of |
| 2957 | // the outputs, we currently can't deal with this. |
| 2958 | if (isI32Insn(User, N)) |
| 2959 | continue; |
| 2960 | |
| 2961 | return SDValue(); |
| 2962 | } |
| 2963 | |
| 2964 | SDValue SubI32 = DAG.getTargetConstant(Val: VE::sub_i32, DL, VT: MVT::i32); |
| 2965 | return SDValue(DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, VT, |
| 2966 | Op1: N->getOperand(Num: 0), Op2: SubI32), |
| 2967 | 0); |
| 2968 | } |
| 2969 | |
| 2970 | SDValue VETargetLowering::PerformDAGCombine(SDNode *N, |
| 2971 | DAGCombinerInfo &DCI) const { |
| 2972 | switch (N->getOpcode()) { |
| 2973 | default: |
| 2974 | break; |
| 2975 | case ISD::SELECT: |
| 2976 | return combineSelect(N, DCI); |
| 2977 | case ISD::SELECT_CC: |
| 2978 | return combineSelectCC(N, DCI); |
| 2979 | case ISD::TRUNCATE: |
| 2980 | return combineTRUNCATE(N, DCI); |
| 2981 | } |
| 2982 | |
| 2983 | return SDValue(); |
| 2984 | } |
| 2985 | |
| 2986 | //===----------------------------------------------------------------------===// |
| 2987 | // VE Inline Assembly Support |
| 2988 | //===----------------------------------------------------------------------===// |
| 2989 | |
| 2990 | VETargetLowering::ConstraintType |
| 2991 | VETargetLowering::getConstraintType(StringRef Constraint) const { |
| 2992 | if (Constraint.size() == 1) { |
| 2993 | switch (Constraint[0]) { |
| 2994 | default: |
| 2995 | break; |
| 2996 | case 'v': // vector registers |
| 2997 | return C_RegisterClass; |
| 2998 | } |
| 2999 | } |
| 3000 | return TargetLowering::getConstraintType(Constraint); |
| 3001 | } |
| 3002 | |
| 3003 | std::pair<unsigned, const TargetRegisterClass *> |
| 3004 | VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| 3005 | StringRef Constraint, |
| 3006 | MVT VT) const { |
| 3007 | const TargetRegisterClass *RC = nullptr; |
| 3008 | if (Constraint.size() == 1) { |
| 3009 | switch (Constraint[0]) { |
| 3010 | default: |
| 3011 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| 3012 | case 'r': |
| 3013 | RC = &VE::I64RegClass; |
| 3014 | break; |
| 3015 | case 'v': |
| 3016 | RC = &VE::V64RegClass; |
| 3017 | break; |
| 3018 | } |
| 3019 | return std::make_pair(x: 0U, y&: RC); |
| 3020 | } |
| 3021 | |
| 3022 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| 3023 | } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // VE Target Optimization Support |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | unsigned VETargetLowering::getMinimumJumpTableEntries() const { |
| 3030 | // Specify 8 for PIC model to relieve the impact of PIC load instructions. |
| 3031 | if (isJumpTableRelative()) |
| 3032 | return 8; |
| 3033 | |
| 3034 | return TargetLowering::getMinimumJumpTableEntries(); |
| 3035 | } |
| 3036 | |
| 3037 | bool VETargetLowering::hasAndNot(SDValue Y) const { |
| 3038 | EVT VT = Y.getValueType(); |
| 3039 | |
| 3040 | // VE doesn't have vector and not instruction. |
| 3041 | if (VT.isVector()) |
| 3042 | return false; |
| 3043 | |
| 3044 | // VE allows different immediate values for X and Y where ~X & Y. |
| 3045 | // Only simm7 works for X, and only mimm works for Y on VE. However, this |
| 3046 | // function is used to check whether an immediate value is OK for and-not |
| 3047 | // instruction as both X and Y. Generating additional instruction to |
| 3048 | // retrieve an immediate value is no good since the purpose of this |
| 3049 | // function is to convert a series of 3 instructions to another series of |
| 3050 | // 3 instructions with better parallelism. Therefore, we return false |
| 3051 | // for all immediate values now. |
| 3052 | // FIXME: Change hasAndNot function to have two operands to make it work |
| 3053 | // correctly with Aurora VE. |
| 3054 | if (isa<ConstantSDNode>(Val: Y)) |
| 3055 | return false; |
| 3056 | |
| 3057 | // It's ok for generic registers. |
| 3058 | return true; |
| 3059 | } |
| 3060 | |
| 3061 | SDValue VETargetLowering::(SDValue Op, |
| 3062 | SelectionDAG &DAG) const { |
| 3063 | assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!" ); |
| 3064 | MVT VT = Op.getOperand(i: 0).getSimpleValueType(); |
| 3065 | |
| 3066 | // Special treatment for packed V64 types. |
| 3067 | assert(VT == MVT::v512i32 || VT == MVT::v512f32); |
| 3068 | (void)VT; |
| 3069 | // Example of codes: |
| 3070 | // %packed_v = extractelt %vr, %idx / 2 |
| 3071 | // %v = %packed_v >> (%idx % 2 * 32) |
| 3072 | // %res = %v & 0xffffffff |
| 3073 | |
| 3074 | SDValue Vec = Op.getOperand(i: 0); |
| 3075 | SDValue Idx = Op.getOperand(i: 1); |
| 3076 | SDLoc DL(Op); |
| 3077 | SDValue Result = Op; |
| 3078 | if (false /* Idx->isConstant() */) { |
| 3079 | // TODO: optimized implementation using constant values |
| 3080 | } else { |
| 3081 | SDValue Const1 = DAG.getConstant(Val: 1, DL, VT: MVT::i64); |
| 3082 | SDValue HalfIdx = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, Ops: {Idx, Const1}); |
| 3083 | SDValue PackedElt = |
| 3084 | SDValue(DAG.getMachineNode(Opcode: VE::LVSvr, dl: DL, VT: MVT::i64, Ops: {Vec, HalfIdx}), 0); |
| 3085 | SDValue AndIdx = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i64, Ops: {Idx, Const1}); |
| 3086 | SDValue Shift = DAG.getNode(Opcode: ISD::XOR, DL, VT: MVT::i64, Ops: {AndIdx, Const1}); |
| 3087 | SDValue Const5 = DAG.getConstant(Val: 5, DL, VT: MVT::i64); |
| 3088 | Shift = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i64, Ops: {Shift, Const5}); |
| 3089 | PackedElt = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, Ops: {PackedElt, Shift}); |
| 3090 | SDValue Mask = DAG.getConstant(Val: 0xFFFFFFFFL, DL, VT: MVT::i64); |
| 3091 | PackedElt = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i64, Ops: {PackedElt, Mask}); |
| 3092 | SDValue SubI32 = DAG.getTargetConstant(Val: VE::sub_i32, DL, VT: MVT::i32); |
| 3093 | Result = SDValue(DAG.getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: DL, |
| 3094 | VT: MVT::i32, Op1: PackedElt, Op2: SubI32), |
| 3095 | 0); |
| 3096 | |
| 3097 | if (Op.getSimpleValueType() == MVT::f32) { |
| 3098 | Result = DAG.getBitcast(VT: MVT::f32, V: Result); |
| 3099 | } else { |
| 3100 | assert(Op.getSimpleValueType() == MVT::i32); |
| 3101 | } |
| 3102 | } |
| 3103 | return Result; |
| 3104 | } |
| 3105 | |
| 3106 | SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| 3107 | SelectionDAG &DAG) const { |
| 3108 | assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!" ); |
| 3109 | MVT VT = Op.getOperand(i: 0).getSimpleValueType(); |
| 3110 | |
| 3111 | // Special treatment for packed V64 types. |
| 3112 | assert(VT == MVT::v512i32 || VT == MVT::v512f32); |
| 3113 | (void)VT; |
| 3114 | // The v512i32 and v512f32 starts from upper bits (0..31). This "upper |
| 3115 | // bits" required `val << 32` from C implementation's point of view. |
| 3116 | // |
| 3117 | // Example of codes: |
| 3118 | // %packed_elt = extractelt %vr, (%idx >> 1) |
| 3119 | // %shift = ((%idx & 1) ^ 1) << 5 |
| 3120 | // %packed_elt &= 0xffffffff00000000 >> shift |
| 3121 | // %packed_elt |= (zext %val) << shift |
| 3122 | // %vr = insertelt %vr, %packed_elt, (%idx >> 1) |
| 3123 | |
| 3124 | SDLoc DL(Op); |
| 3125 | SDValue Vec = Op.getOperand(i: 0); |
| 3126 | SDValue Val = Op.getOperand(i: 1); |
| 3127 | SDValue Idx = Op.getOperand(i: 2); |
| 3128 | if (Idx.getSimpleValueType() == MVT::i32) |
| 3129 | Idx = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i64, Operand: Idx); |
| 3130 | if (Val.getSimpleValueType() == MVT::f32) |
| 3131 | Val = DAG.getBitcast(VT: MVT::i32, V: Val); |
| 3132 | assert(Val.getSimpleValueType() == MVT::i32); |
| 3133 | Val = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i64, Operand: Val); |
| 3134 | |
| 3135 | SDValue Result = Op; |
| 3136 | if (false /* Idx->isConstant()*/) { |
| 3137 | // TODO: optimized implementation using constant values |
| 3138 | } else { |
| 3139 | SDValue Const1 = DAG.getConstant(Val: 1, DL, VT: MVT::i64); |
| 3140 | SDValue HalfIdx = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, Ops: {Idx, Const1}); |
| 3141 | SDValue PackedElt = |
| 3142 | SDValue(DAG.getMachineNode(Opcode: VE::LVSvr, dl: DL, VT: MVT::i64, Ops: {Vec, HalfIdx}), 0); |
| 3143 | SDValue AndIdx = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i64, Ops: {Idx, Const1}); |
| 3144 | SDValue Shift = DAG.getNode(Opcode: ISD::XOR, DL, VT: MVT::i64, Ops: {AndIdx, Const1}); |
| 3145 | SDValue Const5 = DAG.getConstant(Val: 5, DL, VT: MVT::i64); |
| 3146 | Shift = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i64, Ops: {Shift, Const5}); |
| 3147 | SDValue Mask = DAG.getConstant(Val: 0xFFFFFFFF00000000L, DL, VT: MVT::i64); |
| 3148 | Mask = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, Ops: {Mask, Shift}); |
| 3149 | PackedElt = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i64, Ops: {PackedElt, Mask}); |
| 3150 | Val = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i64, Ops: {Val, Shift}); |
| 3151 | PackedElt = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i64, Ops: {PackedElt, Val}); |
| 3152 | Result = |
| 3153 | SDValue(DAG.getMachineNode(Opcode: VE::LSVrr_v, dl: DL, VT: Vec.getSimpleValueType(), |
| 3154 | Ops: {HalfIdx, PackedElt, Vec}), |
| 3155 | 0); |
| 3156 | } |
| 3157 | return Result; |
| 3158 | } |
| 3159 | |