| 1 | //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file defines the pass that looks through the machine instructions |
| 10 | /// late in the compilation, and finds byte or word instructions that |
| 11 | /// can be profitably replaced with 32 bit instructions that give equivalent |
| 12 | /// results for the bits of the results that are used. There are two possible |
| 13 | /// reasons to do this. |
| 14 | /// |
| 15 | /// One reason is to avoid false-dependences on the upper portions |
| 16 | /// of the registers. Only instructions that have a destination register |
| 17 | /// which is not in any of the source registers can be affected by this. |
| 18 | /// Any instruction where one of the source registers is also the destination |
| 19 | /// register is unaffected, because it has a true dependence on the source |
| 20 | /// register already. So, this consideration primarily affects load |
| 21 | /// instructions and register-to-register moves. It would |
| 22 | /// seem like cmov(s) would also be affected, but because of the way cmov is |
| 23 | /// really implemented by most machines as reading both the destination and |
| 24 | /// and source registers, and then "merging" the two based on a condition, |
| 25 | /// it really already should be considered as having a true dependence on the |
| 26 | /// destination register as well. |
| 27 | /// |
| 28 | /// The other reason to do this is for potential code size savings. Word |
| 29 | /// operations need an extra override byte compared to their 32 bit |
| 30 | /// versions. So this can convert many word operations to their larger |
| 31 | /// size, saving a byte in encoding. This could introduce partial register |
| 32 | /// dependences where none existed however. As an example take: |
| 33 | /// orw ax, $0x1000 |
| 34 | /// addw ax, $3 |
| 35 | /// now if this were to get transformed into |
| 36 | /// orw ax, $1000 |
| 37 | /// addl eax, $3 |
| 38 | /// because the addl encodes shorter than the addw, this would introduce |
| 39 | /// a use of a register that was only partially written earlier. On older |
| 40 | /// Intel processors this can be quite a performance penalty, so this should |
| 41 | /// probably only be done when it can be proven that a new partial dependence |
| 42 | /// wouldn't be created, or when your know a newer processor is being |
| 43 | /// targeted, or when optimizing for minimum code size. |
| 44 | /// |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | |
| 47 | #include "X86.h" |
| 48 | #include "X86InstrInfo.h" |
| 49 | #include "X86Subtarget.h" |
| 50 | #include "llvm/ADT/Statistic.h" |
| 51 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 52 | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
| 53 | #include "llvm/CodeGen/LiveRegUnits.h" |
| 54 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 55 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 56 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 57 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 58 | #include "llvm/CodeGen/MachineSizeOpts.h" |
| 59 | #include "llvm/CodeGen/Passes.h" |
| 60 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 61 | #include "llvm/Support/Debug.h" |
| 62 | #include "llvm/Support/raw_ostream.h" |
| 63 | using namespace llvm; |
| 64 | |
| 65 | #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" |
| 66 | #define FIXUPBW_NAME "x86-fixup-bw-insts" |
| 67 | |
| 68 | #define DEBUG_TYPE FIXUPBW_NAME |
| 69 | |
| 70 | // Option to allow this optimization pass to have fine-grained control. |
| 71 | static cl::opt<bool> |
| 72 | FixupBWInsts("fixup-byte-word-insts" , |
| 73 | cl::desc("Change byte and word instructions to larger sizes" ), |
| 74 | cl::init(Val: true), cl::Hidden); |
| 75 | |
| 76 | namespace { |
| 77 | class X86FixupBWInstImpl { |
| 78 | public: |
| 79 | X86FixupBWInstImpl(ProfileSummaryInfo *PSI, MachineBlockFrequencyInfo *MBFI) |
| 80 | : PSI(PSI), MBFI(MBFI) {} |
| 81 | bool runOnMachineFunction(MachineFunction &MF); |
| 82 | |
| 83 | private: |
| 84 | /// Loop over all of the instructions in the basic block replacing applicable |
| 85 | /// byte or word instructions with better alternatives. |
| 86 | void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
| 87 | |
| 88 | /// This returns the 32 bit super reg of the original destination register of |
| 89 | /// the MachineInstr passed in, if that super register is dead just prior to |
| 90 | /// \p OrigMI. Otherwise it returns Register(). |
| 91 | Register getSuperRegDestIfDead(MachineInstr *OrigMI) const; |
| 92 | |
| 93 | /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit |
| 94 | /// register if it is safe to do so. Return the replacement instruction if |
| 95 | /// OK, otherwise return nullptr. |
| 96 | MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; |
| 97 | |
| 98 | /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is |
| 99 | /// safe to do so. Return the replacement instruction if OK, otherwise return |
| 100 | /// nullptr. |
| 101 | MachineInstr *tryReplaceCopy(MachineInstr *MI) const; |
| 102 | |
| 103 | /// Change the MachineInstr \p MI into the equivalent extend to 32 bit |
| 104 | /// register if it is safe to do so. Return the replacement instruction if |
| 105 | /// OK, otherwise return nullptr. |
| 106 | MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, |
| 107 | MachineInstr *MI) const; |
| 108 | |
| 109 | // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if |
| 110 | // possible. Return the replacement instruction if OK, return nullptr |
| 111 | // otherwise. |
| 112 | MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; |
| 113 | |
| 114 | MachineFunction *MF = nullptr; |
| 115 | |
| 116 | /// Machine instruction info used throughout the class. |
| 117 | const X86InstrInfo *TII = nullptr; |
| 118 | |
| 119 | const TargetRegisterInfo *TRI = nullptr; |
| 120 | |
| 121 | /// Local member for function's OptForSize attribute. |
| 122 | bool OptForSize = false; |
| 123 | |
| 124 | /// Register Liveness information after the current instruction. |
| 125 | LiveRegUnits LiveUnits; |
| 126 | |
| 127 | ProfileSummaryInfo *PSI = nullptr; |
| 128 | MachineBlockFrequencyInfo *MBFI = nullptr; |
| 129 | }; |
| 130 | |
| 131 | class X86FixupBWInstLegacy : public MachineFunctionPass { |
| 132 | public: |
| 133 | static char ID; |
| 134 | |
| 135 | StringRef getPassName() const override { return FIXUPBW_DESC; } |
| 136 | |
| 137 | X86FixupBWInstLegacy() : MachineFunctionPass(ID) {} |
| 138 | |
| 139 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 140 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 141 | AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
| 142 | MachineFunctionPass::getAnalysisUsage(AU); |
| 143 | } |
| 144 | |
| 145 | /// Loop over all of the basic blocks, replacing byte and word instructions by |
| 146 | /// equivalent 32 bit instructions where performance or code size can be |
| 147 | /// improved. |
| 148 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 149 | |
| 150 | MachineFunctionProperties getRequiredProperties() const override { |
| 151 | return MachineFunctionProperties().setNoVRegs(); |
| 152 | } |
| 153 | }; |
| 154 | |
| 155 | char X86FixupBWInstLegacy::ID = 0; |
| 156 | |
| 157 | } // namespace |
| 158 | |
| 159 | INITIALIZE_PASS(X86FixupBWInstLegacy, FIXUPBW_NAME, FIXUPBW_DESC, false, false) |
| 160 | |
| 161 | FunctionPass *llvm::createX86FixupBWInstsLegacyPass() { |
| 162 | return new X86FixupBWInstLegacy(); |
| 163 | } |
| 164 | |
| 165 | bool X86FixupBWInstImpl::runOnMachineFunction(MachineFunction &MF) { |
| 166 | if (!FixupBWInsts) |
| 167 | return false; |
| 168 | |
| 169 | this->MF = &MF; |
| 170 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| 171 | TRI = MF.getRegInfo().getTargetRegisterInfo(); |
| 172 | LiveUnits.init(TRI: TII->getRegisterInfo()); |
| 173 | |
| 174 | LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n" ;); |
| 175 | |
| 176 | // Process all basic blocks. |
| 177 | for (auto &MBB : MF) |
| 178 | processBasicBlock(MF, MBB); |
| 179 | |
| 180 | LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n" ;); |
| 181 | |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | /// Check if after \p OrigMI the only portion of super register |
| 186 | /// of the destination register of \p OrigMI that is alive is that |
| 187 | /// destination register. |
| 188 | /// |
| 189 | /// If so, return that super register in \p SuperDestReg. |
| 190 | Register X86FixupBWInstImpl::getSuperRegDestIfDead(MachineInstr *OrigMI) const { |
| 191 | const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
| 192 | Register OrigDestReg = OrigMI->getOperand(i: 0).getReg(); |
| 193 | Register SuperDestReg = getX86SubSuperRegister(Reg: OrigDestReg, Size: 32); |
| 194 | assert(SuperDestReg.isValid() && "Invalid Operand" ); |
| 195 | |
| 196 | const auto SubRegIdx = TRI->getSubRegIndex(RegNo: SuperDestReg, SubRegNo: OrigDestReg); |
| 197 | |
| 198 | // Make sure that the sub-register that this instruction has as its |
| 199 | // destination is the lowest order sub-register of the super-register. |
| 200 | // If it isn't, then the register isn't really dead even if the |
| 201 | // super-register is considered dead. |
| 202 | if (SubRegIdx == X86::sub_8bit_hi) |
| 203 | return Register(); |
| 204 | |
| 205 | // Test all regunits of the super register that are not part of the |
| 206 | // sub register. If none of them are live then the super register is safe to |
| 207 | // use. |
| 208 | bool SuperIsLive = false; |
| 209 | auto Range = TRI->regunits(Reg: OrigDestReg); |
| 210 | MCRegUnitIterator I = Range.begin(), E = Range.end(); |
| 211 | for (MCRegUnit S : TRI->regunits(Reg: SuperDestReg)) { |
| 212 | I = std::lower_bound(first: I, last: E, val: S); |
| 213 | if ((I == E || *I > S) && |
| 214 | LiveUnits.getBitVector().test(Idx: static_cast<unsigned>(S))) { |
| 215 | SuperIsLive = true; |
| 216 | break; |
| 217 | } |
| 218 | } |
| 219 | if (!SuperIsLive) |
| 220 | return SuperDestReg; |
| 221 | |
| 222 | // If we get here, the super-register destination (or some part of it) is |
| 223 | // marked as live after the original instruction. |
| 224 | // |
| 225 | // The X86 backend does not have subregister liveness tracking enabled, |
| 226 | // so liveness information might be overly conservative. Specifically, the |
| 227 | // super register might be marked as live because it is implicitly defined |
| 228 | // by the instruction we are examining. |
| 229 | // |
| 230 | // However, for some specific instructions (this pass only cares about MOVs) |
| 231 | // we can produce more precise results by analysing that MOV's operands. |
| 232 | // |
| 233 | // Indeed, if super-register is not live before the mov it means that it |
| 234 | // was originally <read-undef> and so we are free to modify these |
| 235 | // undef upper bits. That may happen in case where the use is in another MBB |
| 236 | // and the vreg/physreg corresponding to the move has higher width than |
| 237 | // necessary (e.g. due to register coalescing with a "truncate" copy). |
| 238 | // So, we would like to handle patterns like this: |
| 239 | // |
| 240 | // %bb.2: derived from LLVM BB %if.then |
| 241 | // Live Ins: %rdi |
| 242 | // Predecessors according to CFG: %bb.0 |
| 243 | // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax |
| 244 | // ; No implicit %eax |
| 245 | // Successors according to CFG: %bb.3(?%) |
| 246 | // |
| 247 | // %bb.3: derived from LLVM BB %if.end |
| 248 | // Live Ins: %eax Only %ax is actually live |
| 249 | // Predecessors according to CFG: %bb.2 %bb.1 |
| 250 | // %ax = KILL %ax, implicit killed %eax |
| 251 | // RET 0, %ax |
| 252 | unsigned Opc = OrigMI->getOpcode(); |
| 253 | // These are the opcodes currently known to work with the code below, if |
| 254 | // something // else will be added we need to ensure that new opcode has the |
| 255 | // same properties. |
| 256 | if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && |
| 257 | Opc != X86::MOV16rr) |
| 258 | return Register(); |
| 259 | |
| 260 | bool IsDefined = false; |
| 261 | for (auto &MO: OrigMI->implicit_operands()) { |
| 262 | if (!MO.isReg()) |
| 263 | continue; |
| 264 | |
| 265 | if (MO.isDef() && TRI->isSuperRegisterEq(RegA: OrigDestReg, RegB: MO.getReg())) |
| 266 | IsDefined = true; |
| 267 | |
| 268 | // If MO is a use of any part of the destination register but is not equal |
| 269 | // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. |
| 270 | // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, |
| 271 | // %eax, or %rax will prevent us from using the %eax register. |
| 272 | if (MO.isUse() && !TRI->isSubRegisterEq(RegA: OrigDestReg, RegB: MO.getReg()) && |
| 273 | TRI->regsOverlap(RegA: SuperDestReg, RegB: MO.getReg())) |
| 274 | return Register(); |
| 275 | } |
| 276 | // Reg is not Imp-def'ed -> it's live both before/after the instruction. |
| 277 | if (!IsDefined) |
| 278 | return Register(); |
| 279 | |
| 280 | // Otherwise, the Reg is not live before the MI and the MOV can't |
| 281 | // make it really live, so it's in fact dead even after the MI. |
| 282 | return SuperDestReg; |
| 283 | } |
| 284 | |
| 285 | MachineInstr *X86FixupBWInstImpl::tryReplaceLoad(unsigned New32BitOpcode, |
| 286 | MachineInstr *MI) const { |
| 287 | // We are going to try to rewrite this load to a larger zero-extending |
| 288 | // load. This is safe if all portions of the 32 bit super-register |
| 289 | // of the original destination register, except for the original destination |
| 290 | // register are dead. getSuperRegDestIfDead checks that. |
| 291 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
| 292 | if (!NewDestReg) |
| 293 | return nullptr; |
| 294 | |
| 295 | // Safe to change the instruction. |
| 296 | MachineInstrBuilder MIB = |
| 297 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: New32BitOpcode), DestReg: NewDestReg); |
| 298 | |
| 299 | unsigned NumArgs = MI->getNumOperands(); |
| 300 | for (unsigned i = 1; i < NumArgs; ++i) |
| 301 | MIB.add(MO: MI->getOperand(i)); |
| 302 | |
| 303 | MIB.setMemRefs(MI->memoperands()); |
| 304 | |
| 305 | // If it was debug tracked, record a substitution. |
| 306 | if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
| 307 | unsigned Subreg = TRI->getSubRegIndex(RegNo: MIB->getOperand(i: 0).getReg(), |
| 308 | SubRegNo: MI->getOperand(i: 0).getReg()); |
| 309 | unsigned NewInstrNum = MIB->getDebugInstrNum(MF&: *MF); |
| 310 | MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, SubReg: Subreg); |
| 311 | } |
| 312 | |
| 313 | return MIB; |
| 314 | } |
| 315 | |
| 316 | MachineInstr *X86FixupBWInstImpl::tryReplaceCopy(MachineInstr *MI) const { |
| 317 | assert(MI->getNumExplicitOperands() == 2); |
| 318 | auto &OldDest = MI->getOperand(i: 0); |
| 319 | auto &OldSrc = MI->getOperand(i: 1); |
| 320 | |
| 321 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
| 322 | if (!NewDestReg) |
| 323 | return nullptr; |
| 324 | |
| 325 | Register NewSrcReg = getX86SubSuperRegister(Reg: OldSrc.getReg(), Size: 32); |
| 326 | assert(NewSrcReg.isValid() && "Invalid Operand" ); |
| 327 | |
| 328 | // This is only correct if we access the same subregister index: otherwise, |
| 329 | // we could try to replace "movb %ah, %al" with "movl %eax, %eax". |
| 330 | const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
| 331 | if (TRI->getSubRegIndex(RegNo: NewSrcReg, SubRegNo: OldSrc.getReg()) != |
| 332 | TRI->getSubRegIndex(RegNo: NewDestReg, SubRegNo: OldDest.getReg())) |
| 333 | return nullptr; |
| 334 | |
| 335 | // Safe to change the instruction. |
| 336 | // Don't set src flags, as we don't know if we're also killing the superreg. |
| 337 | // However, the superregister might not be defined; make it explicit that |
| 338 | // we don't care about the higher bits by reading it as Undef, and adding |
| 339 | // an imp-use on the original subregister. |
| 340 | MachineInstrBuilder MIB = |
| 341 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: X86::MOV32rr), DestReg: NewDestReg) |
| 342 | .addReg(RegNo: NewSrcReg, Flags: RegState::Undef) |
| 343 | .addReg(RegNo: OldSrc.getReg(), Flags: RegState::Implicit); |
| 344 | |
| 345 | // Drop imp-defs/uses that would be redundant with the new def/use. |
| 346 | for (auto &Op : MI->implicit_operands()) |
| 347 | if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) |
| 348 | MIB.add(MO: Op); |
| 349 | |
| 350 | return MIB; |
| 351 | } |
| 352 | |
| 353 | MachineInstr *X86FixupBWInstImpl::tryReplaceExtend(unsigned New32BitOpcode, |
| 354 | MachineInstr *MI) const { |
| 355 | Register NewDestReg = getSuperRegDestIfDead(OrigMI: MI); |
| 356 | if (!NewDestReg) |
| 357 | return nullptr; |
| 358 | |
| 359 | // Don't interfere with formation of CBW instructions which should be a |
| 360 | // shorter encoding than even the MOVSX32rr8. It's also immune to partial |
| 361 | // merge issues on Intel CPUs. |
| 362 | if (MI->getOpcode() == X86::MOVSX16rr8 && |
| 363 | MI->getOperand(i: 0).getReg() == X86::AX && |
| 364 | MI->getOperand(i: 1).getReg() == X86::AL) |
| 365 | return nullptr; |
| 366 | |
| 367 | // Safe to change the instruction. |
| 368 | MachineInstrBuilder MIB = |
| 369 | BuildMI(MF&: *MF, MIMD: MIMetadata(*MI), MCID: TII->get(Opcode: New32BitOpcode), DestReg: NewDestReg); |
| 370 | |
| 371 | unsigned NumArgs = MI->getNumOperands(); |
| 372 | for (unsigned i = 1; i < NumArgs; ++i) |
| 373 | MIB.add(MO: MI->getOperand(i)); |
| 374 | |
| 375 | MIB.setMemRefs(MI->memoperands()); |
| 376 | |
| 377 | if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
| 378 | unsigned Subreg = TRI->getSubRegIndex(RegNo: MIB->getOperand(i: 0).getReg(), |
| 379 | SubRegNo: MI->getOperand(i: 0).getReg()); |
| 380 | unsigned NewInstrNum = MIB->getDebugInstrNum(MF&: *MF); |
| 381 | MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, SubReg: Subreg); |
| 382 | } |
| 383 | |
| 384 | return MIB; |
| 385 | } |
| 386 | |
| 387 | MachineInstr * |
| 388 | X86FixupBWInstImpl::tryReplaceInstr(MachineInstr *MI, |
| 389 | MachineBasicBlock &MBB) const { |
| 390 | // See if this is an instruction of the type we are currently looking for. |
| 391 | switch (MI->getOpcode()) { |
| 392 | |
| 393 | case X86::MOV8rm: |
| 394 | // Replace 8-bit loads with the zero-extending version if not optimizing |
| 395 | // for size. The extending op is cheaper across a wide range of uarch and |
| 396 | // it avoids a potentially expensive partial register stall. It takes an |
| 397 | // extra byte to encode, however, so don't do this when optimizing for size. |
| 398 | if (!OptForSize) |
| 399 | return tryReplaceLoad(New32BitOpcode: X86::MOVZX32rm8, MI); |
| 400 | break; |
| 401 | |
| 402 | case X86::MOV16rm: |
| 403 | // Always try to replace 16 bit load with 32 bit zero extending. |
| 404 | // Code size is the same, and there is sometimes a perf advantage |
| 405 | // from eliminating a false dependence on the upper portion of |
| 406 | // the register. |
| 407 | return tryReplaceLoad(New32BitOpcode: X86::MOVZX32rm16, MI); |
| 408 | |
| 409 | case X86::MOV8rr: |
| 410 | case X86::MOV16rr: |
| 411 | // Always try to replace 8/16 bit copies with a 32 bit copy. |
| 412 | // Code size is either less (16) or equal (8), and there is sometimes a |
| 413 | // perf advantage from eliminating a false dependence on the upper portion |
| 414 | // of the register. |
| 415 | return tryReplaceCopy(MI); |
| 416 | |
| 417 | case X86::MOVSX16rr8: |
| 418 | return tryReplaceExtend(New32BitOpcode: X86::MOVSX32rr8, MI); |
| 419 | case X86::MOVSX16rm8: |
| 420 | return tryReplaceExtend(New32BitOpcode: X86::MOVSX32rm8, MI); |
| 421 | case X86::MOVZX16rr8: |
| 422 | return tryReplaceExtend(New32BitOpcode: X86::MOVZX32rr8, MI); |
| 423 | case X86::MOVZX16rm8: |
| 424 | return tryReplaceExtend(New32BitOpcode: X86::MOVZX32rm8, MI); |
| 425 | |
| 426 | default: |
| 427 | // nothing to do here. |
| 428 | break; |
| 429 | } |
| 430 | |
| 431 | return nullptr; |
| 432 | } |
| 433 | |
| 434 | void X86FixupBWInstImpl::processBasicBlock(MachineFunction &MF, |
| 435 | MachineBasicBlock &MBB) { |
| 436 | |
| 437 | // This algorithm doesn't delete the instructions it is replacing |
| 438 | // right away. By leaving the existing instructions in place, the |
| 439 | // register liveness information doesn't change, and this makes the |
| 440 | // analysis that goes on be better than if the replaced instructions |
| 441 | // were immediately removed. |
| 442 | // |
| 443 | // This algorithm always creates a replacement instruction |
| 444 | // and notes that and the original in a data structure, until the |
| 445 | // whole BB has been analyzed. This keeps the replacement instructions |
| 446 | // from making it seem as if the larger register might be live. |
| 447 | SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; |
| 448 | |
| 449 | // Start computing liveness for this block. We iterate from the end to be able |
| 450 | // to update this for each instruction. |
| 451 | LiveUnits.clear(); |
| 452 | // We run after PEI, so we need to AddPristinesAndCSRs. |
| 453 | LiveUnits.addLiveOuts(MBB); |
| 454 | |
| 455 | OptForSize = llvm::shouldOptimizeForSize(MBB: &MBB, PSI, MBFI); |
| 456 | |
| 457 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
| 458 | if (MachineInstr *NewMI = tryReplaceInstr(MI: &MI, MBB)) |
| 459 | MIReplacements.push_back(Elt: std::make_pair(x: &MI, y&: NewMI)); |
| 460 | |
| 461 | // We're done with this instruction, update liveness for the next one. |
| 462 | LiveUnits.stepBackward(MI); |
| 463 | } |
| 464 | |
| 465 | while (!MIReplacements.empty()) { |
| 466 | MachineInstr *MI = MIReplacements.back().first; |
| 467 | MachineInstr *NewMI = MIReplacements.back().second; |
| 468 | MIReplacements.pop_back(); |
| 469 | MBB.insert(I: MI, MI: NewMI); |
| 470 | MBB.erase(I: MI); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | bool X86FixupBWInstLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 475 | if (skipFunction(F: MF.getFunction())) |
| 476 | return false; |
| 477 | ProfileSummaryInfo *PSI = |
| 478 | &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 479 | MachineBlockFrequencyInfo *MBFI = |
| 480 | (PSI && PSI->hasProfileSummary()) |
| 481 | ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() |
| 482 | : nullptr; |
| 483 | X86FixupBWInstImpl Impl(PSI, MBFI); |
| 484 | return Impl.runOnMachineFunction(MF); |
| 485 | } |
| 486 | |
| 487 | PreservedAnalyses |
| 488 | X86FixupBWInstsPass::run(MachineFunction &MF, |
| 489 | MachineFunctionAnalysisManager &MFAM) { |
| 490 | ProfileSummaryInfo *PSI = |
| 491 | MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: MF) |
| 492 | .getCachedResult<ProfileSummaryAnalysis>( |
| 493 | IR&: *MF.getFunction().getParent()); |
| 494 | MachineBlockFrequencyInfo *MBFI = nullptr; |
| 495 | if (PSI && PSI->hasProfileSummary()) |
| 496 | MBFI = &MFAM.getResult<MachineBlockFrequencyAnalysis>(IR&: MF); |
| 497 | X86FixupBWInstImpl Impl(PSI, MBFI); |
| 498 | bool Changed = Impl.runOnMachineFunction(MF); |
| 499 | return Changed ? getMachineFunctionPassPreservedAnalyses() |
| 500 | .preserveSet<CFGAnalyses>() |
| 501 | : PreservedAnalyses::all(); |
| 502 | } |
| 503 | |