| 1 | //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains code to lower X86 MachineInstrs to their corresponding |
| 10 | // MCInst records. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "MCTargetDesc/X86ATTInstPrinter.h" |
| 15 | #include "MCTargetDesc/X86BaseInfo.h" |
| 16 | #include "MCTargetDesc/X86EncodingOptimization.h" |
| 17 | #include "MCTargetDesc/X86InstComments.h" |
| 18 | #include "MCTargetDesc/X86MCAsmInfo.h" |
| 19 | #include "MCTargetDesc/X86ShuffleDecode.h" |
| 20 | #include "MCTargetDesc/X86TargetStreamer.h" |
| 21 | #include "X86AsmPrinter.h" |
| 22 | #include "X86MachineFunctionInfo.h" |
| 23 | #include "X86RegisterInfo.h" |
| 24 | #include "X86ShuffleDecodeConstantPool.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SmallString.h" |
| 28 | #include "llvm/ADT/StringExtras.h" |
| 29 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 30 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 31 | #include "llvm/CodeGen/MachineFunction.h" |
| 32 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| 33 | #include "llvm/CodeGen/MachineOperand.h" |
| 34 | #include "llvm/CodeGen/StackMaps.h" |
| 35 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 36 | #include "llvm/IR/DataLayout.h" |
| 37 | #include "llvm/IR/GlobalValue.h" |
| 38 | #include "llvm/IR/Mangler.h" |
| 39 | #include "llvm/MC/MCAsmInfo.h" |
| 40 | #include "llvm/MC/MCCodeEmitter.h" |
| 41 | #include "llvm/MC/MCContext.h" |
| 42 | #include "llvm/MC/MCExpr.h" |
| 43 | #include "llvm/MC/MCFixup.h" |
| 44 | #include "llvm/MC/MCInst.h" |
| 45 | #include "llvm/MC/MCInstBuilder.h" |
| 46 | #include "llvm/MC/MCSection.h" |
| 47 | #include "llvm/MC/MCStreamer.h" |
| 48 | #include "llvm/MC/MCSymbol.h" |
| 49 | #include "llvm/MC/TargetRegistry.h" |
| 50 | #include "llvm/Target/TargetLoweringObjectFile.h" |
| 51 | #include "llvm/Target/TargetMachine.h" |
| 52 | #include "llvm/Transforms/CFGuard.h" |
| 53 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
| 54 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" |
| 55 | #include <string> |
| 56 | |
| 57 | using namespace llvm; |
| 58 | |
| 59 | static cl::opt<bool> EnableBranchHint("enable-branch-hint" , |
| 60 | cl::desc("Enable branch hint." ), |
| 61 | cl::init(Val: false), cl::Hidden); |
| 62 | static cl::opt<unsigned> BranchHintProbabilityThreshold( |
| 63 | "branch-hint-probability-threshold" , |
| 64 | cl::desc("The probability threshold of enabling branch hint." ), |
| 65 | cl::init(Val: 50), cl::Hidden); |
| 66 | |
| 67 | namespace { |
| 68 | |
| 69 | /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. |
| 70 | class X86MCInstLower { |
| 71 | MCContext &Ctx; |
| 72 | const MachineFunction &MF; |
| 73 | const TargetMachine &TM; |
| 74 | const MCAsmInfo &MAI; |
| 75 | X86AsmPrinter &AsmPrinter; |
| 76 | |
| 77 | public: |
| 78 | X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); |
| 79 | |
| 80 | MCOperand LowerMachineOperand(const MachineInstr *MI, |
| 81 | const MachineOperand &MO) const; |
| 82 | void Lower(const MachineInstr *MI, MCInst &OutMI) const; |
| 83 | |
| 84 | MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; |
| 85 | MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; |
| 86 | |
| 87 | private: |
| 88 | MachineModuleInfoMachO &getMachOMMI() const; |
| 89 | }; |
| 90 | |
| 91 | } // end anonymous namespace |
| 92 | |
| 93 | /// A RAII helper which defines a region of instructions which can't have |
| 94 | /// padding added between them for correctness. |
| 95 | struct NoAutoPaddingScope { |
| 96 | MCStreamer &OS; |
| 97 | const bool OldAllowAutoPadding; |
| 98 | NoAutoPaddingScope(MCStreamer &OS) |
| 99 | : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) { |
| 100 | changeAndComment(b: false); |
| 101 | } |
| 102 | ~NoAutoPaddingScope() { changeAndComment(b: OldAllowAutoPadding); } |
| 103 | void changeAndComment(bool b) { |
| 104 | if (b == OS.getAllowAutoPadding()) |
| 105 | return; |
| 106 | OS.setAllowAutoPadding(b); |
| 107 | if (b) |
| 108 | OS.emitRawComment(T: "autopadding" ); |
| 109 | else |
| 110 | OS.emitRawComment(T: "noautopadding" ); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | // Emit a minimal sequence of nops spanning NumBytes bytes. |
| 115 | static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, |
| 116 | const X86Subtarget *Subtarget); |
| 117 | |
| 118 | void X86AsmPrinter::StackMapShadowTracker::count(const MCInst &Inst, |
| 119 | const MCSubtargetInfo &STI, |
| 120 | MCCodeEmitter *CodeEmitter) { |
| 121 | if (InShadow) { |
| 122 | SmallString<256> Code; |
| 123 | SmallVector<MCFixup, 4> Fixups; |
| 124 | CodeEmitter->encodeInstruction(Inst, CB&: Code, Fixups, STI); |
| 125 | CurrentShadowSize += Code.size(); |
| 126 | if (CurrentShadowSize >= RequiredShadowSize) |
| 127 | InShadow = false; // The shadow is big enough. Stop counting. |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( |
| 132 | MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { |
| 133 | if (InShadow && CurrentShadowSize < RequiredShadowSize) { |
| 134 | InShadow = false; |
| 135 | emitX86Nops(OS&: OutStreamer, NumBytes: RequiredShadowSize - CurrentShadowSize, |
| 136 | Subtarget: &MF->getSubtarget<X86Subtarget>()); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { |
| 141 | OutStreamer->emitInstruction(Inst, STI: getSubtargetInfo()); |
| 142 | SMShadowTracker.count(Inst, STI: getSubtargetInfo(), CodeEmitter: CodeEmitter.get()); |
| 143 | } |
| 144 | |
| 145 | X86MCInstLower::X86MCInstLower(const MachineFunction &mf, |
| 146 | X86AsmPrinter &asmprinter) |
| 147 | : Ctx(asmprinter.OutContext), MF(mf), TM(mf.getTarget()), |
| 148 | MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {} |
| 149 | |
| 150 | MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { |
| 151 | return AsmPrinter.MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
| 152 | } |
| 153 | |
| 154 | /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol |
| 155 | /// operand to an MCSymbol. |
| 156 | MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { |
| 157 | const Triple &TT = TM.getTargetTriple(); |
| 158 | if (MO.isGlobal() && TT.isOSBinFormatELF()) |
| 159 | return AsmPrinter.getSymbolPreferLocal(GV: *MO.getGlobal()); |
| 160 | |
| 161 | const DataLayout &DL = MF.getDataLayout(); |
| 162 | assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && |
| 163 | "Isn't a symbol reference" ); |
| 164 | |
| 165 | MCSymbol *Sym = nullptr; |
| 166 | SmallString<128> Name; |
| 167 | StringRef Suffix; |
| 168 | |
| 169 | switch (MO.getTargetFlags()) { |
| 170 | case X86II::MO_DLLIMPORT: |
| 171 | // Handle dllimport linkage. |
| 172 | Name += "__imp_" ; |
| 173 | break; |
| 174 | case X86II::MO_COFFSTUB: |
| 175 | Name += ".refptr." ; |
| 176 | break; |
| 177 | case X86II::MO_DARWIN_NONLAZY: |
| 178 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: |
| 179 | Suffix = "$non_lazy_ptr" ; |
| 180 | break; |
| 181 | } |
| 182 | |
| 183 | if (!Suffix.empty()) |
| 184 | Name += DL.getPrivateGlobalPrefix(); |
| 185 | |
| 186 | if (MO.isGlobal()) { |
| 187 | const GlobalValue *GV = MO.getGlobal(); |
| 188 | AsmPrinter.getNameWithPrefix(Name, GV); |
| 189 | } else if (MO.isSymbol()) { |
| 190 | Mangler::getNameWithPrefix(OutName&: Name, GVName: MO.getSymbolName(), DL); |
| 191 | } else if (MO.isMBB()) { |
| 192 | assert(Suffix.empty()); |
| 193 | Sym = MO.getMBB()->getSymbol(); |
| 194 | } |
| 195 | |
| 196 | Name += Suffix; |
| 197 | if (!Sym) |
| 198 | Sym = Ctx.getOrCreateSymbol(Name); |
| 199 | |
| 200 | // If the target flags on the operand changes the name of the symbol, do that |
| 201 | // before we return the symbol. |
| 202 | switch (MO.getTargetFlags()) { |
| 203 | default: |
| 204 | break; |
| 205 | case X86II::MO_COFFSTUB: { |
| 206 | MachineModuleInfoCOFF &MMICOFF = |
| 207 | AsmPrinter.MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
| 208 | MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym); |
| 209 | if (!StubSym.getPointer()) { |
| 210 | assert(MO.isGlobal() && "Extern symbol not handled yet" ); |
| 211 | StubSym = MachineModuleInfoImpl::StubValueTy( |
| 212 | AsmPrinter.getSymbol(GV: MO.getGlobal()), true); |
| 213 | } |
| 214 | break; |
| 215 | } |
| 216 | case X86II::MO_DARWIN_NONLAZY: |
| 217 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { |
| 218 | MachineModuleInfoImpl::StubValueTy &StubSym = |
| 219 | getMachOMMI().getGVStubEntry(Sym); |
| 220 | if (!StubSym.getPointer()) { |
| 221 | assert(MO.isGlobal() && "Extern symbol not handled yet" ); |
| 222 | StubSym = MachineModuleInfoImpl::StubValueTy( |
| 223 | AsmPrinter.getSymbol(GV: MO.getGlobal()), |
| 224 | !MO.getGlobal()->hasInternalLinkage()); |
| 225 | } |
| 226 | break; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | return Sym; |
| 231 | } |
| 232 | |
| 233 | MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, |
| 234 | MCSymbol *Sym) const { |
| 235 | // FIXME: We would like an efficient form for this, so we don't have to do a |
| 236 | // lot of extra uniquing. |
| 237 | const MCExpr *Expr = nullptr; |
| 238 | uint16_t Specifier = X86::S_None; |
| 239 | |
| 240 | switch (MO.getTargetFlags()) { |
| 241 | default: |
| 242 | llvm_unreachable("Unknown target flag on GV operand" ); |
| 243 | case X86II::MO_NO_FLAG: // No flag. |
| 244 | // These affect the name of the symbol, not any suffix. |
| 245 | case X86II::MO_DARWIN_NONLAZY: |
| 246 | case X86II::MO_DLLIMPORT: |
| 247 | case X86II::MO_COFFSTUB: |
| 248 | break; |
| 249 | |
| 250 | case X86II::MO_TLVP: |
| 251 | Specifier = X86::S_TLVP; |
| 252 | break; |
| 253 | case X86II::MO_TLVP_PIC_BASE: |
| 254 | Expr = MCSymbolRefExpr::create(Symbol: Sym, specifier: X86::S_TLVP, Ctx); |
| 255 | // Subtract the pic base. |
| 256 | Expr = MCBinaryExpr::createSub( |
| 257 | LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: MF.getPICBaseSymbol(), Ctx), Ctx); |
| 258 | break; |
| 259 | case X86II::MO_SECREL: |
| 260 | Specifier = uint16_t(X86::S_COFF_SECREL); |
| 261 | break; |
| 262 | case X86II::MO_TLSGD: |
| 263 | Specifier = X86::S_TLSGD; |
| 264 | break; |
| 265 | case X86II::MO_TLSLD: |
| 266 | Specifier = X86::S_TLSLD; |
| 267 | break; |
| 268 | case X86II::MO_TLSLDM: |
| 269 | Specifier = X86::S_TLSLDM; |
| 270 | break; |
| 271 | case X86II::MO_GOTTPOFF: |
| 272 | Specifier = X86::S_GOTTPOFF; |
| 273 | break; |
| 274 | case X86II::MO_INDNTPOFF: |
| 275 | Specifier = X86::S_INDNTPOFF; |
| 276 | break; |
| 277 | case X86II::MO_TPOFF: |
| 278 | Specifier = X86::S_TPOFF; |
| 279 | break; |
| 280 | case X86II::MO_DTPOFF: |
| 281 | Specifier = X86::S_DTPOFF; |
| 282 | break; |
| 283 | case X86II::MO_NTPOFF: |
| 284 | Specifier = X86::S_NTPOFF; |
| 285 | break; |
| 286 | case X86II::MO_GOTNTPOFF: |
| 287 | Specifier = X86::S_GOTNTPOFF; |
| 288 | break; |
| 289 | case X86II::MO_GOTPCREL: |
| 290 | Specifier = X86::S_GOTPCREL; |
| 291 | break; |
| 292 | case X86II::MO_GOTPCREL_NORELAX: |
| 293 | Specifier = X86::S_GOTPCREL_NORELAX; |
| 294 | break; |
| 295 | case X86II::MO_GOT: |
| 296 | Specifier = X86::S_GOT; |
| 297 | break; |
| 298 | case X86II::MO_GOTOFF: |
| 299 | Specifier = X86::S_GOTOFF; |
| 300 | break; |
| 301 | case X86II::MO_PLT: |
| 302 | Specifier = X86::S_PLT; |
| 303 | break; |
| 304 | case X86II::MO_ABS8: |
| 305 | Specifier = X86::S_ABS8; |
| 306 | break; |
| 307 | case X86II::MO_PIC_BASE_OFFSET: |
| 308 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: |
| 309 | Expr = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
| 310 | // Subtract the pic base. |
| 311 | Expr = MCBinaryExpr::createSub( |
| 312 | LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: MF.getPICBaseSymbol(), Ctx), Ctx); |
| 313 | if (MO.isJTI()) { |
| 314 | assert(MAI.doesSetDirectiveSuppressReloc()); |
| 315 | // If .set directive is supported, use it to reduce the number of |
| 316 | // relocations the assembler will generate for differences between |
| 317 | // local labels. This is only safe when the symbols are in the same |
| 318 | // section so we are restricting it to jumptable references. |
| 319 | MCSymbol *Label = Ctx.createTempSymbol(); |
| 320 | AsmPrinter.OutStreamer->emitAssignment(Symbol: Label, Value: Expr); |
| 321 | Expr = MCSymbolRefExpr::create(Symbol: Label, Ctx); |
| 322 | } |
| 323 | break; |
| 324 | } |
| 325 | |
| 326 | if (!Expr) |
| 327 | Expr = MCSymbolRefExpr::create(Symbol: Sym, specifier: Specifier, Ctx); |
| 328 | |
| 329 | if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) |
| 330 | Expr = MCBinaryExpr::createAdd( |
| 331 | LHS: Expr, RHS: MCConstantExpr::create(Value: MO.getOffset(), Ctx), Ctx); |
| 332 | return MCOperand::createExpr(Val: Expr); |
| 333 | } |
| 334 | |
| 335 | static unsigned getRetOpcode(const X86Subtarget &Subtarget) { |
| 336 | return Subtarget.is64Bit() ? X86::RET64 : X86::RET32; |
| 337 | } |
| 338 | |
| 339 | MCOperand X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, |
| 340 | const MachineOperand &MO) const { |
| 341 | switch (MO.getType()) { |
| 342 | default: |
| 343 | MI->print(OS&: errs()); |
| 344 | llvm_unreachable("unknown operand type" ); |
| 345 | case MachineOperand::MO_Register: |
| 346 | // Ignore all implicit register operands. |
| 347 | if (MO.isImplicit()) |
| 348 | return MCOperand(); |
| 349 | return MCOperand::createReg(Reg: MO.getReg()); |
| 350 | case MachineOperand::MO_Immediate: |
| 351 | return MCOperand::createImm(Val: MO.getImm()); |
| 352 | case MachineOperand::MO_MachineBasicBlock: |
| 353 | case MachineOperand::MO_GlobalAddress: |
| 354 | case MachineOperand::MO_ExternalSymbol: |
| 355 | return LowerSymbolOperand(MO, Sym: GetSymbolFromOperand(MO)); |
| 356 | case MachineOperand::MO_MCSymbol: |
| 357 | return LowerSymbolOperand(MO, Sym: MO.getMCSymbol()); |
| 358 | case MachineOperand::MO_JumpTableIndex: |
| 359 | return LowerSymbolOperand(MO, Sym: AsmPrinter.GetJTISymbol(JTID: MO.getIndex())); |
| 360 | case MachineOperand::MO_ConstantPoolIndex: |
| 361 | return LowerSymbolOperand(MO, Sym: AsmPrinter.GetCPISymbol(CPID: MO.getIndex())); |
| 362 | case MachineOperand::MO_BlockAddress: |
| 363 | return LowerSymbolOperand( |
| 364 | MO, Sym: AsmPrinter.GetBlockAddressSymbol(BA: MO.getBlockAddress())); |
| 365 | case MachineOperand::MO_RegisterMask: |
| 366 | // Ignore call clobbers. |
| 367 | return MCOperand(); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | // Replace TAILJMP opcodes with their equivalent opcodes that have encoding |
| 372 | // information. |
| 373 | static unsigned convertTailJumpOpcode(unsigned Opcode) { |
| 374 | switch (Opcode) { |
| 375 | case X86::TAILJMPr: |
| 376 | Opcode = X86::JMP32r; |
| 377 | break; |
| 378 | case X86::TAILJMPm: |
| 379 | Opcode = X86::JMP32m; |
| 380 | break; |
| 381 | case X86::TAILJMPr64: |
| 382 | Opcode = X86::JMP64r; |
| 383 | break; |
| 384 | case X86::TAILJMPm64: |
| 385 | Opcode = X86::JMP64m; |
| 386 | break; |
| 387 | case X86::TAILJMPr64_REX: |
| 388 | Opcode = X86::JMP64r_REX; |
| 389 | break; |
| 390 | case X86::TAILJMPm64_REX: |
| 391 | Opcode = X86::JMP64m_REX; |
| 392 | break; |
| 393 | case X86::TAILJMPd: |
| 394 | case X86::TAILJMPd64: |
| 395 | Opcode = X86::JMP_1; |
| 396 | break; |
| 397 | case X86::TAILJMPd_CC: |
| 398 | case X86::TAILJMPd64_CC: |
| 399 | Opcode = X86::JCC_1; |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | return Opcode; |
| 404 | } |
| 405 | |
| 406 | void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { |
| 407 | OutMI.setOpcode(MI->getOpcode()); |
| 408 | |
| 409 | for (const MachineOperand &MO : MI->operands()) |
| 410 | if (auto Op = LowerMachineOperand(MI, MO); Op.isValid()) |
| 411 | OutMI.addOperand(Op); |
| 412 | |
| 413 | bool In64BitMode = AsmPrinter.getSubtarget().is64Bit(); |
| 414 | if (X86::optimizeInstFromVEX3ToVEX2(MI&: OutMI, Desc: MI->getDesc()) || |
| 415 | X86::optimizeShiftRotateWithImmediateOne(MI&: OutMI) || |
| 416 | X86::optimizeVPCMPWithImmediateOneOrSix(MI&: OutMI) || |
| 417 | X86::optimizeMOVSX(MI&: OutMI) || X86::optimizeINCDEC(MI&: OutMI, In64BitMode) || |
| 418 | X86::optimizeMOV(MI&: OutMI, In64BitMode) || |
| 419 | X86::optimizeToFixedRegisterOrShortImmediateForm(MI&: OutMI)) |
| 420 | return; |
| 421 | |
| 422 | // Handle a few special cases to eliminate operand modifiers. |
| 423 | switch (OutMI.getOpcode()) { |
| 424 | case X86::LEA64_32r: |
| 425 | case X86::LEA64r: |
| 426 | case X86::LEA16r: |
| 427 | case X86::LEA32r: |
| 428 | // LEA should have a segment register, but it must be empty. |
| 429 | assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && |
| 430 | "Unexpected # of LEA operands" ); |
| 431 | assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && |
| 432 | "LEA has segment specified!" ); |
| 433 | break; |
| 434 | case X86::MULX32Hrr: |
| 435 | case X86::MULX32Hrm: |
| 436 | case X86::MULX64Hrr: |
| 437 | case X86::MULX64Hrm: { |
| 438 | // Turn into regular MULX by duplicating the destination. |
| 439 | unsigned NewOpc; |
| 440 | switch (OutMI.getOpcode()) { |
| 441 | default: llvm_unreachable("Invalid opcode" ); |
| 442 | case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break; |
| 443 | case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break; |
| 444 | case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break; |
| 445 | case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break; |
| 446 | } |
| 447 | OutMI.setOpcode(NewOpc); |
| 448 | // Duplicate the destination. |
| 449 | MCRegister DestReg = OutMI.getOperand(i: 0).getReg(); |
| 450 | OutMI.insert(I: OutMI.begin(), Op: MCOperand::createReg(Reg: DestReg)); |
| 451 | break; |
| 452 | } |
| 453 | // CALL64r, CALL64pcrel32 - These instructions used to have |
| 454 | // register inputs modeled as normal uses instead of implicit uses. As such, |
| 455 | // they we used to truncate off all but the first operand (the callee). This |
| 456 | // issue seems to have been fixed at some point. This assert verifies that. |
| 457 | case X86::CALL64r: |
| 458 | case X86::CALL64pcrel32: |
| 459 | assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!" ); |
| 460 | break; |
| 461 | case X86::EH_RETURN: |
| 462 | case X86::EH_RETURN64: { |
| 463 | OutMI = MCInst(); |
| 464 | OutMI.setOpcode(getRetOpcode(Subtarget: AsmPrinter.getSubtarget())); |
| 465 | break; |
| 466 | } |
| 467 | case X86::CLEANUPRET: { |
| 468 | // Replace CLEANUPRET with the appropriate RET. |
| 469 | OutMI = MCInst(); |
| 470 | OutMI.setOpcode(getRetOpcode(Subtarget: AsmPrinter.getSubtarget())); |
| 471 | break; |
| 472 | } |
| 473 | case X86::CATCHRET: { |
| 474 | // Replace CATCHRET with the appropriate RET. |
| 475 | const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); |
| 476 | unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX; |
| 477 | OutMI = MCInst(); |
| 478 | OutMI.setOpcode(getRetOpcode(Subtarget)); |
| 479 | OutMI.addOperand(Op: MCOperand::createReg(Reg: ReturnReg)); |
| 480 | break; |
| 481 | } |
| 482 | // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump |
| 483 | // instruction. |
| 484 | case X86::TAILJMPr: |
| 485 | case X86::TAILJMPr64: |
| 486 | case X86::TAILJMPr64_REX: |
| 487 | case X86::TAILJMPd: |
| 488 | case X86::TAILJMPd64: |
| 489 | assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!" ); |
| 490 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 491 | break; |
| 492 | case X86::TAILJMPd_CC: |
| 493 | case X86::TAILJMPd64_CC: |
| 494 | assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!" ); |
| 495 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 496 | break; |
| 497 | case X86::TAILJMPm: |
| 498 | case X86::TAILJMPm64: |
| 499 | case X86::TAILJMPm64_REX: |
| 500 | assert(OutMI.getNumOperands() == X86::AddrNumOperands && |
| 501 | "Unexpected number of operands!" ); |
| 502 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 503 | break; |
| 504 | case X86::MASKMOVDQU: |
| 505 | case X86::VMASKMOVDQU: |
| 506 | if (In64BitMode) |
| 507 | OutMI.setFlags(X86::IP_HAS_AD_SIZE); |
| 508 | break; |
| 509 | case X86::BSF16rm: |
| 510 | case X86::BSF16rr: |
| 511 | case X86::BSF32rm: |
| 512 | case X86::BSF32rr: |
| 513 | case X86::BSF64rm: |
| 514 | case X86::BSF64rr: { |
| 515 | // Add an REP prefix to BSF instructions so that new processors can |
| 516 | // recognize as TZCNT, which has better performance than BSF. |
| 517 | // BSF and TZCNT have different interpretations on ZF bit. So make sure |
| 518 | // it won't be used later. |
| 519 | const MachineOperand *FlagDef = |
| 520 | MI->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 521 | if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead()) |
| 522 | OutMI.setFlags(X86::IP_HAS_REPEAT); |
| 523 | break; |
| 524 | } |
| 525 | default: |
| 526 | break; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, |
| 531 | const MachineInstr &MI) { |
| 532 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 533 | bool Is64Bits = getSubtarget().is64Bit(); |
| 534 | bool Is64BitsLP64 = getSubtarget().isTarget64BitLP64(); |
| 535 | MCContext &Ctx = OutStreamer->getContext(); |
| 536 | |
| 537 | X86::Specifier Specifier; |
| 538 | switch (MI.getOpcode()) { |
| 539 | case X86::TLS_addr32: |
| 540 | case X86::TLS_addr64: |
| 541 | case X86::TLS_addrX32: |
| 542 | Specifier = X86::S_TLSGD; |
| 543 | break; |
| 544 | case X86::TLS_base_addr32: |
| 545 | Specifier = X86::S_TLSLDM; |
| 546 | break; |
| 547 | case X86::TLS_base_addr64: |
| 548 | case X86::TLS_base_addrX32: |
| 549 | Specifier = X86::S_TLSLD; |
| 550 | break; |
| 551 | case X86::TLS_desc32: |
| 552 | case X86::TLS_desc64: |
| 553 | Specifier = X86::S_TLSDESC; |
| 554 | break; |
| 555 | default: |
| 556 | llvm_unreachable("unexpected opcode" ); |
| 557 | } |
| 558 | |
| 559 | const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create( |
| 560 | Symbol: MCInstLowering.GetSymbolFromOperand(MO: MI.getOperand(i: 3)), specifier: Specifier, Ctx); |
| 561 | |
| 562 | // Before binutils 2.41, ld has a bogus TLS relaxation error when the GD/LD |
| 563 | // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is |
| 564 | // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by |
| 565 | // only using GOT when GOTPCRELX is enabled. |
| 566 | // TODO Delete the workaround when rustc no longer relies on the hack |
| 567 | bool UseGot = MMI->getModule()->getRtLibUseGOT() && |
| 568 | Ctx.getTargetOptions()->X86RelaxRelocations; |
| 569 | |
| 570 | if (Specifier == X86::S_TLSDESC) { |
| 571 | const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create( |
| 572 | Symbol: MCInstLowering.GetSymbolFromOperand(MO: MI.getOperand(i: 3)), specifier: X86::S_TLSCALL, |
| 573 | Ctx); |
| 574 | EmitAndCountInstruction( |
| 575 | Inst&: MCInstBuilder(Is64BitsLP64 ? X86::LEA64r : X86::LEA32r) |
| 576 | .addReg(Reg: Is64BitsLP64 ? X86::RAX : X86::EAX) |
| 577 | .addReg(Reg: Is64Bits ? X86::RIP : X86::EBX) |
| 578 | .addImm(Val: 1) |
| 579 | .addReg(Reg: 0) |
| 580 | .addExpr(Val: Sym) |
| 581 | .addReg(Reg: 0)); |
| 582 | EmitAndCountInstruction( |
| 583 | Inst&: MCInstBuilder(Is64Bits ? X86::CALL64m : X86::CALL32m) |
| 584 | .addReg(Reg: Is64BitsLP64 ? X86::RAX : X86::EAX) |
| 585 | .addImm(Val: 1) |
| 586 | .addReg(Reg: 0) |
| 587 | .addExpr(Val: Expr) |
| 588 | .addReg(Reg: 0)); |
| 589 | } else if (Is64Bits) { |
| 590 | bool NeedsPadding = Specifier == X86::S_TLSGD; |
| 591 | if (NeedsPadding && Is64BitsLP64) |
| 592 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 593 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA64r) |
| 594 | .addReg(Reg: X86::RDI) |
| 595 | .addReg(Reg: X86::RIP) |
| 596 | .addImm(Val: 1) |
| 597 | .addReg(Reg: 0) |
| 598 | .addExpr(Val: Sym) |
| 599 | .addReg(Reg: 0)); |
| 600 | const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol(Name: "__tls_get_addr" ); |
| 601 | if (NeedsPadding) { |
| 602 | if (!UseGot) |
| 603 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 604 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 605 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::REX64_PREFIX)); |
| 606 | } |
| 607 | if (UseGot) { |
| 608 | const MCExpr *Expr = |
| 609 | MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_GOTPCREL, Ctx); |
| 610 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64m) |
| 611 | .addReg(Reg: X86::RIP) |
| 612 | .addImm(Val: 1) |
| 613 | .addReg(Reg: 0) |
| 614 | .addExpr(Val: Expr) |
| 615 | .addReg(Reg: 0)); |
| 616 | } else { |
| 617 | EmitAndCountInstruction( |
| 618 | Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 619 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_PLT, Ctx))); |
| 620 | } |
| 621 | } else { |
| 622 | if (Specifier == X86::S_TLSGD && !UseGot) { |
| 623 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA32r) |
| 624 | .addReg(Reg: X86::EAX) |
| 625 | .addReg(Reg: 0) |
| 626 | .addImm(Val: 1) |
| 627 | .addReg(Reg: X86::EBX) |
| 628 | .addExpr(Val: Sym) |
| 629 | .addReg(Reg: 0)); |
| 630 | } else { |
| 631 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA32r) |
| 632 | .addReg(Reg: X86::EAX) |
| 633 | .addReg(Reg: X86::EBX) |
| 634 | .addImm(Val: 1) |
| 635 | .addReg(Reg: 0) |
| 636 | .addExpr(Val: Sym) |
| 637 | .addReg(Reg: 0)); |
| 638 | } |
| 639 | |
| 640 | const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol(Name: "___tls_get_addr" ); |
| 641 | if (UseGot) { |
| 642 | const MCExpr *Expr = MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_GOT, Ctx); |
| 643 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL32m) |
| 644 | .addReg(Reg: X86::EBX) |
| 645 | .addImm(Val: 1) |
| 646 | .addReg(Reg: 0) |
| 647 | .addExpr(Val: Expr) |
| 648 | .addReg(Reg: 0)); |
| 649 | } else { |
| 650 | EmitAndCountInstruction( |
| 651 | Inst&: MCInstBuilder(X86::CALLpcrel32) |
| 652 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_PLT, Ctx))); |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | /// Emit the largest nop instruction smaller than or equal to \p NumBytes |
| 658 | /// bytes. Return the size of nop emitted. |
| 659 | static unsigned emitNop(MCStreamer &OS, unsigned NumBytes, |
| 660 | const X86Subtarget *Subtarget) { |
| 661 | // Determine the longest nop which can be efficiently decoded for the given |
| 662 | // target cpu. 15-bytes is the longest single NOP instruction, but some |
| 663 | // platforms can't decode the longest forms efficiently. |
| 664 | unsigned MaxNopLength = 1; |
| 665 | if (Subtarget->is64Bit()) { |
| 666 | // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the |
| 667 | // IndexReg/BaseReg below need to be updated. |
| 668 | if (Subtarget->hasFeature(Feature: X86::TuningFast7ByteNOP)) |
| 669 | MaxNopLength = 7; |
| 670 | else if (Subtarget->hasFeature(Feature: X86::TuningFast15ByteNOP)) |
| 671 | MaxNopLength = 15; |
| 672 | else if (Subtarget->hasFeature(Feature: X86::TuningFast11ByteNOP)) |
| 673 | MaxNopLength = 11; |
| 674 | else |
| 675 | MaxNopLength = 10; |
| 676 | } if (Subtarget->is32Bit()) |
| 677 | MaxNopLength = 2; |
| 678 | |
| 679 | // Cap a single nop emission at the profitable value for the target |
| 680 | NumBytes = std::min(a: NumBytes, b: MaxNopLength); |
| 681 | |
| 682 | unsigned NopSize; |
| 683 | unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; |
| 684 | IndexReg = Displacement = SegmentReg = 0; |
| 685 | BaseReg = X86::RAX; |
| 686 | ScaleVal = 1; |
| 687 | switch (NumBytes) { |
| 688 | case 0: |
| 689 | llvm_unreachable("Zero nops?" ); |
| 690 | break; |
| 691 | case 1: |
| 692 | NopSize = 1; |
| 693 | Opc = X86::NOOP; |
| 694 | break; |
| 695 | case 2: |
| 696 | NopSize = 2; |
| 697 | Opc = X86::XCHG16ar; |
| 698 | break; |
| 699 | case 3: |
| 700 | NopSize = 3; |
| 701 | Opc = X86::NOOPL; |
| 702 | break; |
| 703 | case 4: |
| 704 | NopSize = 4; |
| 705 | Opc = X86::NOOPL; |
| 706 | Displacement = 8; |
| 707 | break; |
| 708 | case 5: |
| 709 | NopSize = 5; |
| 710 | Opc = X86::NOOPL; |
| 711 | Displacement = 8; |
| 712 | IndexReg = X86::RAX; |
| 713 | break; |
| 714 | case 6: |
| 715 | NopSize = 6; |
| 716 | Opc = X86::NOOPW; |
| 717 | Displacement = 8; |
| 718 | IndexReg = X86::RAX; |
| 719 | break; |
| 720 | case 7: |
| 721 | NopSize = 7; |
| 722 | Opc = X86::NOOPL; |
| 723 | Displacement = 512; |
| 724 | break; |
| 725 | case 8: |
| 726 | NopSize = 8; |
| 727 | Opc = X86::NOOPL; |
| 728 | Displacement = 512; |
| 729 | IndexReg = X86::RAX; |
| 730 | break; |
| 731 | case 9: |
| 732 | NopSize = 9; |
| 733 | Opc = X86::NOOPW; |
| 734 | Displacement = 512; |
| 735 | IndexReg = X86::RAX; |
| 736 | break; |
| 737 | default: |
| 738 | NopSize = 10; |
| 739 | Opc = X86::NOOPW; |
| 740 | Displacement = 512; |
| 741 | IndexReg = X86::RAX; |
| 742 | SegmentReg = X86::CS; |
| 743 | break; |
| 744 | } |
| 745 | |
| 746 | unsigned NumPrefixes = std::min(a: NumBytes - NopSize, b: 5U); |
| 747 | NopSize += NumPrefixes; |
| 748 | for (unsigned i = 0; i != NumPrefixes; ++i) |
| 749 | OS.emitBytes(Data: "\x66" ); |
| 750 | |
| 751 | switch (Opc) { |
| 752 | default: llvm_unreachable("Unexpected opcode" ); |
| 753 | case X86::NOOP: |
| 754 | OS.emitInstruction(Inst: MCInstBuilder(Opc), STI: *Subtarget); |
| 755 | break; |
| 756 | case X86::XCHG16ar: |
| 757 | OS.emitInstruction(Inst: MCInstBuilder(Opc).addReg(Reg: X86::AX).addReg(Reg: X86::AX), |
| 758 | STI: *Subtarget); |
| 759 | break; |
| 760 | case X86::NOOPL: |
| 761 | case X86::NOOPW: |
| 762 | OS.emitInstruction(Inst: MCInstBuilder(Opc) |
| 763 | .addReg(Reg: BaseReg) |
| 764 | .addImm(Val: ScaleVal) |
| 765 | .addReg(Reg: IndexReg) |
| 766 | .addImm(Val: Displacement) |
| 767 | .addReg(Reg: SegmentReg), |
| 768 | STI: *Subtarget); |
| 769 | break; |
| 770 | } |
| 771 | assert(NopSize <= NumBytes && "We overemitted?" ); |
| 772 | return NopSize; |
| 773 | } |
| 774 | |
| 775 | /// Emit the optimal amount of multi-byte nops on X86. |
| 776 | static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, |
| 777 | const X86Subtarget *Subtarget) { |
| 778 | unsigned NopsToEmit = NumBytes; |
| 779 | (void)NopsToEmit; |
| 780 | while (NumBytes) { |
| 781 | NumBytes -= emitNop(OS, NumBytes, Subtarget); |
| 782 | assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!" ); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, |
| 787 | X86MCInstLower &MCIL) { |
| 788 | assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64" ); |
| 789 | |
| 790 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 791 | |
| 792 | StatepointOpers SOpers(&MI); |
| 793 | if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { |
| 794 | emitX86Nops(OS&: *OutStreamer, NumBytes: PatchBytes, Subtarget); |
| 795 | } else { |
| 796 | // Lower call target and choose correct opcode |
| 797 | const MachineOperand &CallTarget = SOpers.getCallTarget(); |
| 798 | MCOperand CallTargetMCOp; |
| 799 | unsigned CallOpcode; |
| 800 | switch (CallTarget.getType()) { |
| 801 | case MachineOperand::MO_GlobalAddress: |
| 802 | case MachineOperand::MO_ExternalSymbol: |
| 803 | CallTargetMCOp = MCIL.LowerSymbolOperand( |
| 804 | MO: CallTarget, Sym: MCIL.GetSymbolFromOperand(MO: CallTarget)); |
| 805 | CallOpcode = X86::CALL64pcrel32; |
| 806 | // Currently, we only support relative addressing with statepoints. |
| 807 | // Otherwise, we'll need a scratch register to hold the target |
| 808 | // address. You'll fail asserts during load & relocation if this |
| 809 | // symbol is to far away. (TODO: support non-relative addressing) |
| 810 | break; |
| 811 | case MachineOperand::MO_Immediate: |
| 812 | CallTargetMCOp = MCOperand::createImm(Val: CallTarget.getImm()); |
| 813 | CallOpcode = X86::CALL64pcrel32; |
| 814 | // Currently, we only support relative addressing with statepoints. |
| 815 | // Otherwise, we'll need a scratch register to hold the target |
| 816 | // immediate. You'll fail asserts during load & relocation if this |
| 817 | // address is to far away. (TODO: support non-relative addressing) |
| 818 | break; |
| 819 | case MachineOperand::MO_Register: |
| 820 | // FIXME: Add retpoline support and remove this. |
| 821 | if (Subtarget->useIndirectThunkCalls()) |
| 822 | report_fatal_error(reason: "Lowering register statepoints with thunks not " |
| 823 | "yet implemented." ); |
| 824 | CallTargetMCOp = MCOperand::createReg(Reg: CallTarget.getReg()); |
| 825 | CallOpcode = X86::CALL64r; |
| 826 | break; |
| 827 | default: |
| 828 | llvm_unreachable("Unsupported operand type in statepoint call target" ); |
| 829 | break; |
| 830 | } |
| 831 | |
| 832 | // Emit call |
| 833 | MCInst CallInst; |
| 834 | CallInst.setOpcode(CallOpcode); |
| 835 | CallInst.addOperand(Op: CallTargetMCOp); |
| 836 | OutStreamer->emitInstruction(Inst: CallInst, STI: getSubtargetInfo()); |
| 837 | maybeEmitNopAfterCallForWindowsEH(MI: &MI); |
| 838 | } |
| 839 | |
| 840 | // Record our statepoint node in the same section used by STACKMAP |
| 841 | // and PATCHPOINT |
| 842 | auto &Ctx = OutStreamer->getContext(); |
| 843 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 844 | OutStreamer->emitLabel(Symbol: MILabel); |
| 845 | SM.recordStatepoint(L: *MILabel, MI); |
| 846 | } |
| 847 | |
| 848 | void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, |
| 849 | X86MCInstLower &MCIL) { |
| 850 | // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, |
| 851 | // <opcode>, <operands> |
| 852 | |
| 853 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 854 | |
| 855 | Register DefRegister = FaultingMI.getOperand(i: 0).getReg(); |
| 856 | FaultMaps::FaultKind FK = |
| 857 | static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(i: 1).getImm()); |
| 858 | MCSymbol *HandlerLabel = FaultingMI.getOperand(i: 2).getMBB()->getSymbol(); |
| 859 | unsigned Opcode = FaultingMI.getOperand(i: 3).getImm(); |
| 860 | unsigned OperandsBeginIdx = 4; |
| 861 | |
| 862 | auto &Ctx = OutStreamer->getContext(); |
| 863 | MCSymbol *FaultingLabel = Ctx.createTempSymbol(); |
| 864 | OutStreamer->emitLabel(Symbol: FaultingLabel); |
| 865 | |
| 866 | assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!" ); |
| 867 | FM.recordFaultingOp(FaultTy: FK, FaultingLabel, HandlerLabel); |
| 868 | |
| 869 | MCInst MI; |
| 870 | MI.setOpcode(Opcode); |
| 871 | |
| 872 | if (DefRegister != X86::NoRegister) |
| 873 | MI.addOperand(Op: MCOperand::createReg(Reg: DefRegister)); |
| 874 | |
| 875 | for (const MachineOperand &MO : |
| 876 | llvm::drop_begin(RangeOrContainer: FaultingMI.operands(), N: OperandsBeginIdx)) |
| 877 | if (auto Op = MCIL.LowerMachineOperand(MI: &FaultingMI, MO); Op.isValid()) |
| 878 | MI.addOperand(Op); |
| 879 | |
| 880 | OutStreamer->AddComment(T: "on-fault: " + HandlerLabel->getName()); |
| 881 | OutStreamer->emitInstruction(Inst: MI, STI: getSubtargetInfo()); |
| 882 | } |
| 883 | |
| 884 | void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, |
| 885 | X86MCInstLower &MCIL) { |
| 886 | bool Is64Bits = Subtarget->is64Bit(); |
| 887 | MCContext &Ctx = OutStreamer->getContext(); |
| 888 | MCSymbol *fentry = Ctx.getOrCreateSymbol(Name: "__fentry__" ); |
| 889 | const MCSymbolRefExpr *Op = MCSymbolRefExpr::create(Symbol: fentry, Ctx); |
| 890 | |
| 891 | EmitAndCountInstruction( |
| 892 | Inst&: MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) |
| 893 | .addExpr(Val: Op)); |
| 894 | } |
| 895 | |
| 896 | void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) { |
| 897 | assert(std::next(MI.getIterator())->isCall() && |
| 898 | "KCFI_CHECK not followed by a call instruction" ); |
| 899 | |
| 900 | // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop() |
| 901 | // returns a 1-byte X86::NOOP, which means the offset is the same in |
| 902 | // bytes. This assumes that patchable-function-prefix is the same for all |
| 903 | // functions. |
| 904 | const MachineFunction &MF = *MI.getMF(); |
| 905 | int64_t PrefixNops = 0; |
| 906 | (void)MF.getFunction() |
| 907 | .getFnAttribute(Kind: "patchable-function-prefix" ) |
| 908 | .getValueAsString() |
| 909 | .getAsInteger(Radix: 10, Result&: PrefixNops); |
| 910 | |
| 911 | // KCFI allows indirect calls to any location that's preceded by a valid |
| 912 | // type identifier. To avoid encoding the full constant into an instruction, |
| 913 | // and thus emitting potential call target gadgets at each indirect call |
| 914 | // site, load a negated constant to a register and compare that to the |
| 915 | // expected value at the call target. |
| 916 | const Register AddrReg = MI.getOperand(i: 0).getReg(); |
| 917 | const uint32_t Type = MI.getOperand(i: 1).getImm(); |
| 918 | // The check is immediately before the call. If the call target is in R10, |
| 919 | // we can clobber R11 for the check instead. |
| 920 | unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D; |
| 921 | EmitAndCountInstruction( |
| 922 | Inst&: MCInstBuilder(X86::MOV32ri).addReg(Reg: TempReg).addImm(Val: -MaskKCFIType(Value: Type))); |
| 923 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::ADD32rm) |
| 924 | .addReg(Reg: X86::NoRegister) |
| 925 | .addReg(Reg: TempReg) |
| 926 | .addReg(Reg: AddrReg) |
| 927 | .addImm(Val: 1) |
| 928 | .addReg(Reg: X86::NoRegister) |
| 929 | .addImm(Val: -(PrefixNops + 4)) |
| 930 | .addReg(Reg: X86::NoRegister)); |
| 931 | |
| 932 | MCSymbol *Pass = OutContext.createTempSymbol(); |
| 933 | EmitAndCountInstruction( |
| 934 | Inst&: MCInstBuilder(X86::JCC_1) |
| 935 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: Pass, Ctx&: OutContext)) |
| 936 | .addImm(Val: X86::COND_E)); |
| 937 | |
| 938 | MCSymbol *Trap = OutContext.createTempSymbol(); |
| 939 | OutStreamer->emitLabel(Symbol: Trap); |
| 940 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::TRAP)); |
| 941 | emitKCFITrapEntry(MF, Symbol: Trap); |
| 942 | OutStreamer->emitLabel(Symbol: Pass); |
| 943 | } |
| 944 | |
| 945 | void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) { |
| 946 | // FIXME: Make this work on non-ELF. |
| 947 | if (!TM.getTargetTriple().isOSBinFormatELF()) { |
| 948 | report_fatal_error(reason: "llvm.asan.check.memaccess only supported on ELF" ); |
| 949 | return; |
| 950 | } |
| 951 | |
| 952 | const auto &Reg = MI.getOperand(i: 0).getReg(); |
| 953 | ASanAccessInfo AccessInfo(MI.getOperand(i: 1).getImm()); |
| 954 | |
| 955 | uint64_t ShadowBase; |
| 956 | int MappingScale; |
| 957 | bool OrShadowOffset; |
| 958 | getAddressSanitizerParams(TargetTriple: TM.getTargetTriple(), LongSize: 64, IsKasan: AccessInfo.CompileKernel, |
| 959 | ShadowBase: &ShadowBase, MappingScale: &MappingScale, OrShadowOffset: &OrShadowOffset); |
| 960 | |
| 961 | StringRef Name = AccessInfo.IsWrite ? "store" : "load" ; |
| 962 | StringRef Op = OrShadowOffset ? "or" : "add" ; |
| 963 | std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" + |
| 964 | Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" + |
| 965 | TM.getMCRegisterInfo()->getName(RegNo: Reg.asMCReg())) |
| 966 | .str(); |
| 967 | if (OrShadowOffset) |
| 968 | report_fatal_error( |
| 969 | reason: "OrShadowOffset is not supported with optimized callbacks" ); |
| 970 | |
| 971 | EmitAndCountInstruction( |
| 972 | Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 973 | .addExpr(Val: MCSymbolRefExpr::create( |
| 974 | Symbol: OutContext.getOrCreateSymbol(Name: SymName), Ctx&: OutContext))); |
| 975 | } |
| 976 | |
| 977 | void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, |
| 978 | X86MCInstLower &MCIL) { |
| 979 | // PATCHABLE_OP minsize |
| 980 | |
| 981 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 982 | |
| 983 | auto NextMI = std::find_if(first: std::next(x: MI.getIterator()), |
| 984 | last: MI.getParent()->end().getInstrIterator(), |
| 985 | pred: [](auto &II) { return !II.isMetaInstruction(); }); |
| 986 | |
| 987 | SmallString<256> Code; |
| 988 | unsigned MinSize = MI.getOperand(i: 0).getImm(); |
| 989 | |
| 990 | if (NextMI != MI.getParent()->end() && !NextMI->isInlineAsm()) { |
| 991 | // Lower the next MachineInstr to find its byte size. |
| 992 | // If the next instruction is inline assembly, we skip lowering it for now, |
| 993 | // and assume we should always generate NOPs. |
| 994 | MCInst MCI; |
| 995 | MCIL.Lower(MI: &*NextMI, OutMI&: MCI); |
| 996 | |
| 997 | SmallVector<MCFixup, 4> Fixups; |
| 998 | CodeEmitter->encodeInstruction(Inst: MCI, CB&: Code, Fixups, STI: getSubtargetInfo()); |
| 999 | } |
| 1000 | |
| 1001 | if (Code.size() < MinSize) { |
| 1002 | if (MinSize == 2 && Subtarget->is32Bit() && |
| 1003 | Subtarget->isTargetWindowsMSVC() && |
| 1004 | (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3" )) { |
| 1005 | // For compatibility reasons, when targetting MSVC, it is important to |
| 1006 | // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools |
| 1007 | // rely specifically on this pattern to be able to patch a function. |
| 1008 | // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE. |
| 1009 | OutStreamer->emitInstruction( |
| 1010 | Inst: MCInstBuilder(X86::MOV32rr_REV).addReg(Reg: X86::EDI).addReg(Reg: X86::EDI), |
| 1011 | STI: *Subtarget); |
| 1012 | } else { |
| 1013 | unsigned NopSize = emitNop(OS&: *OutStreamer, NumBytes: MinSize, Subtarget); |
| 1014 | assert(NopSize == MinSize && "Could not implement MinSize!" ); |
| 1015 | (void)NopSize; |
| 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | // Lower a stackmap of the form: |
| 1021 | // <id>, <shadowBytes>, ... |
| 1022 | void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { |
| 1023 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 1024 | |
| 1025 | auto &Ctx = OutStreamer->getContext(); |
| 1026 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 1027 | OutStreamer->emitLabel(Symbol: MILabel); |
| 1028 | |
| 1029 | SM.recordStackMap(L: *MILabel, MI); |
| 1030 | unsigned NumShadowBytes = MI.getOperand(i: 1).getImm(); |
| 1031 | SMShadowTracker.reset(RequiredSize: NumShadowBytes); |
| 1032 | } |
| 1033 | |
| 1034 | // Lower a patchpoint of the form: |
| 1035 | // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... |
| 1036 | void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, |
| 1037 | X86MCInstLower &MCIL) { |
| 1038 | assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64" ); |
| 1039 | |
| 1040 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 1041 | |
| 1042 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1043 | |
| 1044 | auto &Ctx = OutStreamer->getContext(); |
| 1045 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 1046 | OutStreamer->emitLabel(Symbol: MILabel); |
| 1047 | SM.recordPatchPoint(L: *MILabel, MI); |
| 1048 | |
| 1049 | PatchPointOpers opers(&MI); |
| 1050 | unsigned ScratchIdx = opers.getNextScratchIdx(); |
| 1051 | unsigned EncodedBytes = 0; |
| 1052 | const MachineOperand &CalleeMO = opers.getCallTarget(); |
| 1053 | |
| 1054 | // Check for null target. If target is non-null (i.e. is non-zero or is |
| 1055 | // symbolic) then emit a call. |
| 1056 | if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { |
| 1057 | MCOperand CalleeMCOp; |
| 1058 | switch (CalleeMO.getType()) { |
| 1059 | default: |
| 1060 | /// FIXME: Add a verifier check for bad callee types. |
| 1061 | llvm_unreachable("Unrecognized callee operand type." ); |
| 1062 | case MachineOperand::MO_Immediate: |
| 1063 | if (CalleeMO.getImm()) |
| 1064 | CalleeMCOp = MCOperand::createImm(Val: CalleeMO.getImm()); |
| 1065 | break; |
| 1066 | case MachineOperand::MO_ExternalSymbol: |
| 1067 | case MachineOperand::MO_GlobalAddress: |
| 1068 | CalleeMCOp = MCIL.LowerSymbolOperand(MO: CalleeMO, |
| 1069 | Sym: MCIL.GetSymbolFromOperand(MO: CalleeMO)); |
| 1070 | break; |
| 1071 | } |
| 1072 | |
| 1073 | // Emit MOV to materialize the target address and the CALL to target. |
| 1074 | // This is encoded with 12-13 bytes, depending on which register is used. |
| 1075 | Register ScratchReg = MI.getOperand(i: ScratchIdx).getReg(); |
| 1076 | if (X86II::isX86_64ExtendedReg(Reg: ScratchReg)) |
| 1077 | EncodedBytes = 13; |
| 1078 | else |
| 1079 | EncodedBytes = 12; |
| 1080 | |
| 1081 | EmitAndCountInstruction( |
| 1082 | Inst&: MCInstBuilder(X86::MOV64ri).addReg(Reg: ScratchReg).addOperand(Op: CalleeMCOp)); |
| 1083 | // FIXME: Add retpoline support and remove this. |
| 1084 | if (Subtarget->useIndirectThunkCalls()) |
| 1085 | report_fatal_error( |
| 1086 | reason: "Lowering patchpoint with thunks not yet implemented." ); |
| 1087 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64r).addReg(Reg: ScratchReg)); |
| 1088 | } |
| 1089 | |
| 1090 | // Emit padding. |
| 1091 | unsigned NumBytes = opers.getNumPatchBytes(); |
| 1092 | assert(NumBytes >= EncodedBytes && |
| 1093 | "Patchpoint can't request size less than the length of a call." ); |
| 1094 | |
| 1095 | emitX86Nops(OS&: *OutStreamer, NumBytes: NumBytes - EncodedBytes, Subtarget); |
| 1096 | } |
| 1097 | |
| 1098 | void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, |
| 1099 | X86MCInstLower &MCIL) { |
| 1100 | assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64" ); |
| 1101 | |
| 1102 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1103 | |
| 1104 | // We want to emit the following pattern, which follows the x86 calling |
| 1105 | // convention to prepare for the trampoline call to be patched in. |
| 1106 | // |
| 1107 | // .p2align 1, ... |
| 1108 | // .Lxray_event_sled_N: |
| 1109 | // jmp +N // jump across the instrumentation sled |
| 1110 | // ... // set up arguments in register |
| 1111 | // callq __xray_CustomEvent@plt // force dependency to symbol |
| 1112 | // ... |
| 1113 | // <jump here> |
| 1114 | // |
| 1115 | // After patching, it would look something like: |
| 1116 | // |
| 1117 | // nopw (2-byte nop) |
| 1118 | // ... |
| 1119 | // callq __xrayCustomEvent // already lowered |
| 1120 | // ... |
| 1121 | // |
| 1122 | // --- |
| 1123 | // First we emit the label and the jump. |
| 1124 | auto CurSled = OutContext.createTempSymbol(Name: "xray_event_sled_" , AlwaysAddSuffix: true); |
| 1125 | OutStreamer->AddComment(T: "# XRay Custom Event Log" ); |
| 1126 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1127 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1128 | |
| 1129 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1130 | // an operand (computed as an offset from the jmp instruction). |
| 1131 | // FIXME: Find another less hacky way do force the relative jump. |
| 1132 | OutStreamer->emitBinaryData(Data: "\xeb\x0f" ); |
| 1133 | |
| 1134 | // The default C calling convention will place two arguments into %rcx and |
| 1135 | // %rdx -- so we only work with those. |
| 1136 | const Register DestRegs[] = {X86::RDI, X86::RSI}; |
| 1137 | bool UsedMask[] = {false, false}; |
| 1138 | // Filled out in loop. |
| 1139 | Register SrcRegs[] = {0, 0}; |
| 1140 | |
| 1141 | // Then we put the operands in the %rdi and %rsi registers. We spill the |
| 1142 | // values in the register before we clobber them, and mark them as used in |
| 1143 | // UsedMask. In case the arguments are already in the correct register, we use |
| 1144 | // emit nops appropriately sized to keep the sled the same size in every |
| 1145 | // situation. |
| 1146 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1147 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO: MI.getOperand(i: I)); |
| 1148 | Op.isValid()) { |
| 1149 | assert(Op.isReg() && "Only support arguments in registers" ); |
| 1150 | SrcRegs[I] = getX86SubSuperRegister(Reg: Op.getReg(), Size: 64); |
| 1151 | assert(SrcRegs[I].isValid() && "Invalid operand" ); |
| 1152 | if (SrcRegs[I] != DestRegs[I]) { |
| 1153 | UsedMask[I] = true; |
| 1154 | EmitAndCountInstruction( |
| 1155 | Inst&: MCInstBuilder(X86::PUSH64r).addReg(Reg: DestRegs[I])); |
| 1156 | } else { |
| 1157 | emitX86Nops(OS&: *OutStreamer, NumBytes: 4, Subtarget); |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | // Now that the register values are stashed, mov arguments into place. |
| 1162 | // FIXME: This doesn't work if one of the later SrcRegs is equal to an |
| 1163 | // earlier DestReg. We will have already overwritten over the register before |
| 1164 | // we can copy from it. |
| 1165 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1166 | if (SrcRegs[I] != DestRegs[I]) |
| 1167 | EmitAndCountInstruction( |
| 1168 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: DestRegs[I]).addReg(Reg: SrcRegs[I])); |
| 1169 | |
| 1170 | // We emit a hard dependency on the __xray_CustomEvent symbol, which is the |
| 1171 | // name of the trampoline to be implemented by the XRay runtime. |
| 1172 | auto TSym = OutContext.getOrCreateSymbol(Name: "__xray_CustomEvent" ); |
| 1173 | MachineOperand TOp = MachineOperand::CreateMCSymbol(Sym: TSym); |
| 1174 | if (isPositionIndependent()) |
| 1175 | TOp.setTargetFlags(X86II::MO_PLT); |
| 1176 | |
| 1177 | // Emit the call instruction. |
| 1178 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 1179 | .addOperand(Op: MCIL.LowerSymbolOperand(MO: TOp, Sym: TSym))); |
| 1180 | |
| 1181 | // Restore caller-saved and used registers. |
| 1182 | for (unsigned I = sizeof UsedMask; I-- > 0;) |
| 1183 | if (UsedMask[I]) |
| 1184 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::POP64r).addReg(Reg: DestRegs[I])); |
| 1185 | else |
| 1186 | emitX86Nops(OS&: *OutStreamer, NumBytes: 1, Subtarget); |
| 1187 | |
| 1188 | OutStreamer->AddComment(T: "xray custom event end." ); |
| 1189 | |
| 1190 | // Record the sled version. Version 0 of this sled was spelled differently, so |
| 1191 | // we let the runtime handle the different offsets we're using. Version 2 |
| 1192 | // changed the absolute address to a PC-relative address. |
| 1193 | recordSled(Sled: CurSled, MI, Kind: SledKind::CUSTOM_EVENT, Version: 2); |
| 1194 | } |
| 1195 | |
| 1196 | void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, |
| 1197 | X86MCInstLower &MCIL) { |
| 1198 | assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64" ); |
| 1199 | |
| 1200 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1201 | |
| 1202 | // We want to emit the following pattern, which follows the x86 calling |
| 1203 | // convention to prepare for the trampoline call to be patched in. |
| 1204 | // |
| 1205 | // .p2align 1, ... |
| 1206 | // .Lxray_event_sled_N: |
| 1207 | // jmp +N // jump across the instrumentation sled |
| 1208 | // ... // set up arguments in register |
| 1209 | // callq __xray_TypedEvent@plt // force dependency to symbol |
| 1210 | // ... |
| 1211 | // <jump here> |
| 1212 | // |
| 1213 | // After patching, it would look something like: |
| 1214 | // |
| 1215 | // nopw (2-byte nop) |
| 1216 | // ... |
| 1217 | // callq __xrayTypedEvent // already lowered |
| 1218 | // ... |
| 1219 | // |
| 1220 | // --- |
| 1221 | // First we emit the label and the jump. |
| 1222 | auto CurSled = OutContext.createTempSymbol(Name: "xray_typed_event_sled_" , AlwaysAddSuffix: true); |
| 1223 | OutStreamer->AddComment(T: "# XRay Typed Event Log" ); |
| 1224 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1225 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1226 | |
| 1227 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1228 | // an operand (computed as an offset from the jmp instruction). |
| 1229 | // FIXME: Find another less hacky way do force the relative jump. |
| 1230 | OutStreamer->emitBinaryData(Data: "\xeb\x14" ); |
| 1231 | |
| 1232 | // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, |
| 1233 | // so we'll work with those. Or we may be called via SystemV, in which case |
| 1234 | // we don't have to do any translation. |
| 1235 | const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; |
| 1236 | bool UsedMask[] = {false, false, false}; |
| 1237 | |
| 1238 | // Will fill out src regs in the loop. |
| 1239 | Register SrcRegs[] = {0, 0, 0}; |
| 1240 | |
| 1241 | // Then we put the operands in the SystemV registers. We spill the values in |
| 1242 | // the registers before we clobber them, and mark them as used in UsedMask. |
| 1243 | // In case the arguments are already in the correct register, we emit nops |
| 1244 | // appropriately sized to keep the sled the same size in every situation. |
| 1245 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1246 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO: MI.getOperand(i: I)); |
| 1247 | Op.isValid()) { |
| 1248 | // TODO: Is register only support adequate? |
| 1249 | assert(Op.isReg() && "Only supports arguments in registers" ); |
| 1250 | SrcRegs[I] = getX86SubSuperRegister(Reg: Op.getReg(), Size: 64); |
| 1251 | assert(SrcRegs[I].isValid() && "Invalid operand" ); |
| 1252 | if (SrcRegs[I] != DestRegs[I]) { |
| 1253 | UsedMask[I] = true; |
| 1254 | EmitAndCountInstruction( |
| 1255 | Inst&: MCInstBuilder(X86::PUSH64r).addReg(Reg: DestRegs[I])); |
| 1256 | } else { |
| 1257 | emitX86Nops(OS&: *OutStreamer, NumBytes: 4, Subtarget); |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | // In the above loop we only stash all of the destination registers or emit |
| 1262 | // nops if the arguments are already in the right place. Doing the actually |
| 1263 | // moving is postponed until after all the registers are stashed so nothing |
| 1264 | // is clobbers. We've already added nops to account for the size of mov and |
| 1265 | // push if the register is in the right place, so we only have to worry about |
| 1266 | // emitting movs. |
| 1267 | // FIXME: This doesn't work if one of the later SrcRegs is equal to an |
| 1268 | // earlier DestReg. We will have already overwritten over the register before |
| 1269 | // we can copy from it. |
| 1270 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1271 | if (UsedMask[I]) |
| 1272 | EmitAndCountInstruction( |
| 1273 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: DestRegs[I]).addReg(Reg: SrcRegs[I])); |
| 1274 | |
| 1275 | // We emit a hard dependency on the __xray_TypedEvent symbol, which is the |
| 1276 | // name of the trampoline to be implemented by the XRay runtime. |
| 1277 | auto TSym = OutContext.getOrCreateSymbol(Name: "__xray_TypedEvent" ); |
| 1278 | MachineOperand TOp = MachineOperand::CreateMCSymbol(Sym: TSym); |
| 1279 | if (isPositionIndependent()) |
| 1280 | TOp.setTargetFlags(X86II::MO_PLT); |
| 1281 | |
| 1282 | // Emit the call instruction. |
| 1283 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 1284 | .addOperand(Op: MCIL.LowerSymbolOperand(MO: TOp, Sym: TSym))); |
| 1285 | |
| 1286 | // Restore caller-saved and used registers. |
| 1287 | for (unsigned I = sizeof UsedMask; I-- > 0;) |
| 1288 | if (UsedMask[I]) |
| 1289 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::POP64r).addReg(Reg: DestRegs[I])); |
| 1290 | else |
| 1291 | emitX86Nops(OS&: *OutStreamer, NumBytes: 1, Subtarget); |
| 1292 | |
| 1293 | OutStreamer->AddComment(T: "xray typed event end." ); |
| 1294 | |
| 1295 | // Record the sled version. |
| 1296 | recordSled(Sled: CurSled, MI, Kind: SledKind::TYPED_EVENT, Version: 2); |
| 1297 | } |
| 1298 | |
| 1299 | void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, |
| 1300 | X86MCInstLower &MCIL) { |
| 1301 | |
| 1302 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1303 | |
| 1304 | const Function &F = MF->getFunction(); |
| 1305 | if (F.hasFnAttribute(Kind: "patchable-function-entry" )) { |
| 1306 | unsigned Num; |
| 1307 | if (F.getFnAttribute(Kind: "patchable-function-entry" ) |
| 1308 | .getValueAsString() |
| 1309 | .getAsInteger(Radix: 10, Result&: Num)) |
| 1310 | return; |
| 1311 | emitX86Nops(OS&: *OutStreamer, NumBytes: Num, Subtarget); |
| 1312 | return; |
| 1313 | } |
| 1314 | // We want to emit the following pattern: |
| 1315 | // |
| 1316 | // .p2align 1, ... |
| 1317 | // .Lxray_sled_N: |
| 1318 | // jmp .tmpN |
| 1319 | // # 9 bytes worth of noops |
| 1320 | // |
| 1321 | // We need the 9 bytes because at runtime, we'd be patching over the full 11 |
| 1322 | // bytes with the following pattern: |
| 1323 | // |
| 1324 | // mov %r10, <function id, 32-bit> // 6 bytes |
| 1325 | // call <relative offset, 32-bits> // 5 bytes |
| 1326 | // |
| 1327 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1328 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1329 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1330 | |
| 1331 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1332 | // an operand (computed as an offset from the jmp instruction). |
| 1333 | // FIXME: Find another less hacky way do force the relative jump. |
| 1334 | OutStreamer->emitBytes(Data: "\xeb\x09" ); |
| 1335 | emitX86Nops(OS&: *OutStreamer, NumBytes: 9, Subtarget); |
| 1336 | recordSled(Sled: CurSled, MI, Kind: SledKind::FUNCTION_ENTER, Version: 2); |
| 1337 | } |
| 1338 | |
| 1339 | void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, |
| 1340 | X86MCInstLower &MCIL) { |
| 1341 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1342 | |
| 1343 | // Since PATCHABLE_RET takes the opcode of the return statement as an |
| 1344 | // argument, we use that to emit the correct form of the RET that we want. |
| 1345 | // i.e. when we see this: |
| 1346 | // |
| 1347 | // PATCHABLE_RET X86::RET ... |
| 1348 | // |
| 1349 | // We should emit the RET followed by sleds. |
| 1350 | // |
| 1351 | // .p2align 1, ... |
| 1352 | // .Lxray_sled_N: |
| 1353 | // ret # or equivalent instruction |
| 1354 | // # 10 bytes worth of noops |
| 1355 | // |
| 1356 | // This just makes sure that the alignment for the next instruction is 2. |
| 1357 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1358 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1359 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1360 | unsigned OpCode = MI.getOperand(i: 0).getImm(); |
| 1361 | MCInst Ret; |
| 1362 | Ret.setOpcode(OpCode); |
| 1363 | for (auto &MO : drop_begin(RangeOrContainer: MI.operands())) |
| 1364 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO); Op.isValid()) |
| 1365 | Ret.addOperand(Op); |
| 1366 | OutStreamer->emitInstruction(Inst: Ret, STI: getSubtargetInfo()); |
| 1367 | emitX86Nops(OS&: *OutStreamer, NumBytes: 10, Subtarget); |
| 1368 | recordSled(Sled: CurSled, MI, Kind: SledKind::FUNCTION_EXIT, Version: 2); |
| 1369 | } |
| 1370 | |
| 1371 | void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, |
| 1372 | X86MCInstLower &MCIL) { |
| 1373 | MCInst TC; |
| 1374 | TC.setOpcode(convertTailJumpOpcode(Opcode: MI.getOperand(i: 0).getImm())); |
| 1375 | // Drop the tail jump opcode. |
| 1376 | auto TCOperands = drop_begin(RangeOrContainer: MI.operands()); |
| 1377 | bool IsConditional = TC.getOpcode() == X86::JCC_1; |
| 1378 | MCSymbol *FallthroughLabel; |
| 1379 | if (IsConditional) { |
| 1380 | // Rewrite: |
| 1381 | // je target |
| 1382 | // |
| 1383 | // To: |
| 1384 | // jne .fallthrough |
| 1385 | // .p2align 1, ... |
| 1386 | // .Lxray_sled_N: |
| 1387 | // SLED_CODE |
| 1388 | // jmp target |
| 1389 | // .fallthrough: |
| 1390 | FallthroughLabel = OutContext.createTempSymbol(); |
| 1391 | EmitToStreamer( |
| 1392 | S&: *OutStreamer, |
| 1393 | Inst: MCInstBuilder(X86::JCC_1) |
| 1394 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: FallthroughLabel, Ctx&: OutContext)) |
| 1395 | .addImm(Val: X86::GetOppositeBranchCondition( |
| 1396 | CC: static_cast<X86::CondCode>(MI.getOperand(i: 2).getImm())))); |
| 1397 | TC.setOpcode(X86::JMP_1); |
| 1398 | // Drop the condition code. |
| 1399 | TCOperands = drop_end(RangeOrContainer&: TCOperands); |
| 1400 | } |
| 1401 | |
| 1402 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1403 | |
| 1404 | // Like PATCHABLE_RET, we have the actual instruction in the operands to this |
| 1405 | // instruction so we lower that particular instruction and its operands. |
| 1406 | // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how |
| 1407 | // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to |
| 1408 | // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual |
| 1409 | // tail call much like how we have it in PATCHABLE_RET. |
| 1410 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1411 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1412 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1413 | auto Target = OutContext.createTempSymbol(); |
| 1414 | |
| 1415 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1416 | // an operand (computed as an offset from the jmp instruction). |
| 1417 | // FIXME: Find another less hacky way do force the relative jump. |
| 1418 | OutStreamer->emitBytes(Data: "\xeb\x09" ); |
| 1419 | emitX86Nops(OS&: *OutStreamer, NumBytes: 9, Subtarget); |
| 1420 | OutStreamer->emitLabel(Symbol: Target); |
| 1421 | recordSled(Sled: CurSled, MI, Kind: SledKind::TAIL_CALL, Version: 2); |
| 1422 | |
| 1423 | // Before emitting the instruction, add a comment to indicate that this is |
| 1424 | // indeed a tail call. |
| 1425 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 1426 | for (auto &MO : TCOperands) |
| 1427 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO); Op.isValid()) |
| 1428 | TC.addOperand(Op); |
| 1429 | OutStreamer->emitInstruction(Inst: TC, STI: getSubtargetInfo()); |
| 1430 | |
| 1431 | if (IsConditional) |
| 1432 | OutStreamer->emitLabel(Symbol: FallthroughLabel); |
| 1433 | } |
| 1434 | |
| 1435 | static unsigned getSrcIdx(const MachineInstr* MI, unsigned SrcIdx) { |
| 1436 | if (X86II::isKMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1437 | // Skip mask operand. |
| 1438 | ++SrcIdx; |
| 1439 | if (X86II::isKMergeMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1440 | // Skip passthru operand. |
| 1441 | ++SrcIdx; |
| 1442 | } |
| 1443 | } |
| 1444 | return SrcIdx; |
| 1445 | } |
| 1446 | |
| 1447 | static void printDstRegisterName(raw_ostream &CS, const MachineInstr *MI, |
| 1448 | unsigned SrcOpIdx) { |
| 1449 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 1450 | CS << X86ATTInstPrinter::getRegisterName(Reg: DstOp.getReg()); |
| 1451 | |
| 1452 | // Handle AVX512 MASK/MASXZ write mask comments. |
| 1453 | // MASK: zmmX {%kY} |
| 1454 | // MASKZ: zmmX {%kY} {z} |
| 1455 | if (X86II::isKMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1456 | const MachineOperand &WriteMaskOp = MI->getOperand(i: SrcOpIdx - 1); |
| 1457 | StringRef Mask = X86ATTInstPrinter::getRegisterName(Reg: WriteMaskOp.getReg()); |
| 1458 | CS << " {%" << Mask << "}" ; |
| 1459 | if (!X86II::isKMergeMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1460 | CS << " {z}" ; |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | static void printShuffleMask(raw_ostream &CS, StringRef Src1Name, |
| 1466 | StringRef Src2Name, ArrayRef<int> Mask) { |
| 1467 | // One source operand, fix the mask to print all elements in one span. |
| 1468 | SmallVector<int, 8> ShuffleMask(Mask); |
| 1469 | if (Src1Name == Src2Name) |
| 1470 | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) |
| 1471 | if (ShuffleMask[i] >= e) |
| 1472 | ShuffleMask[i] -= e; |
| 1473 | |
| 1474 | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { |
| 1475 | if (i != 0) |
| 1476 | CS << "," ; |
| 1477 | if (ShuffleMask[i] == SM_SentinelZero) { |
| 1478 | CS << "zero" ; |
| 1479 | continue; |
| 1480 | } |
| 1481 | |
| 1482 | // Otherwise, it must come from src1 or src2. Print the span of elements |
| 1483 | // that comes from this src. |
| 1484 | bool isSrc1 = ShuffleMask[i] < (int)e; |
| 1485 | CS << (isSrc1 ? Src1Name : Src2Name) << '['; |
| 1486 | |
| 1487 | bool IsFirst = true; |
| 1488 | while (i != e && ShuffleMask[i] != SM_SentinelZero && |
| 1489 | (ShuffleMask[i] < (int)e) == isSrc1) { |
| 1490 | if (!IsFirst) |
| 1491 | CS << ','; |
| 1492 | else |
| 1493 | IsFirst = false; |
| 1494 | if (ShuffleMask[i] == SM_SentinelUndef) |
| 1495 | CS << "u" ; |
| 1496 | else |
| 1497 | CS << ShuffleMask[i] % (int)e; |
| 1498 | ++i; |
| 1499 | } |
| 1500 | CS << ']'; |
| 1501 | --i; // For loop increments element #. |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | static std::string (const MachineInstr *MI, unsigned SrcOp1Idx, |
| 1506 | unsigned SrcOp2Idx, ArrayRef<int> Mask) { |
| 1507 | std::string ; |
| 1508 | |
| 1509 | const MachineOperand &SrcOp1 = MI->getOperand(i: SrcOp1Idx); |
| 1510 | const MachineOperand &SrcOp2 = MI->getOperand(i: SrcOp2Idx); |
| 1511 | StringRef Src1Name = SrcOp1.isReg() |
| 1512 | ? X86ATTInstPrinter::getRegisterName(Reg: SrcOp1.getReg()) |
| 1513 | : "mem" ; |
| 1514 | StringRef Src2Name = SrcOp2.isReg() |
| 1515 | ? X86ATTInstPrinter::getRegisterName(Reg: SrcOp2.getReg()) |
| 1516 | : "mem" ; |
| 1517 | |
| 1518 | raw_string_ostream CS(Comment); |
| 1519 | printDstRegisterName(CS, MI, SrcOpIdx: SrcOp1Idx); |
| 1520 | CS << " = " ; |
| 1521 | printShuffleMask(CS, Src1Name, Src2Name, Mask); |
| 1522 | |
| 1523 | return Comment; |
| 1524 | } |
| 1525 | |
| 1526 | static void printConstant(const APInt &Val, raw_ostream &CS, |
| 1527 | bool PrintZero = false) { |
| 1528 | if (Val.getBitWidth() <= 64) { |
| 1529 | CS << (PrintZero ? 0ULL : Val.getZExtValue()); |
| 1530 | } else { |
| 1531 | // print multi-word constant as (w0,w1) |
| 1532 | CS << "(" ; |
| 1533 | for (int i = 0, N = Val.getNumWords(); i < N; ++i) { |
| 1534 | if (i > 0) |
| 1535 | CS << "," ; |
| 1536 | CS << (PrintZero ? 0ULL : Val.getRawData()[i]); |
| 1537 | } |
| 1538 | CS << ")" ; |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | static void printConstant(const APFloat &Flt, raw_ostream &CS, |
| 1543 | bool PrintZero = false) { |
| 1544 | SmallString<32> Str; |
| 1545 | // Force scientific notation to distinguish from integers. |
| 1546 | if (PrintZero) |
| 1547 | APFloat::getZero(Sem: Flt.getSemantics()).toString(Str, FormatPrecision: 0, FormatMaxPadding: 0); |
| 1548 | else |
| 1549 | Flt.toString(Str, FormatPrecision: 0, FormatMaxPadding: 0); |
| 1550 | CS << Str; |
| 1551 | } |
| 1552 | |
| 1553 | static void printConstant(const Constant *COp, unsigned BitWidth, |
| 1554 | raw_ostream &CS, bool PrintZero = false) { |
| 1555 | if (isa<UndefValue>(Val: COp)) { |
| 1556 | CS << "u" ; |
| 1557 | } else if (auto *CI = dyn_cast<ConstantInt>(Val: COp)) { |
| 1558 | if (auto VTy = dyn_cast<FixedVectorType>(Val: CI->getType())) { |
| 1559 | for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| 1560 | if (I != 0) |
| 1561 | CS << ','; |
| 1562 | printConstant(Val: CI->getValue(), CS, PrintZero); |
| 1563 | } |
| 1564 | } else |
| 1565 | printConstant(Val: CI->getValue(), CS, PrintZero); |
| 1566 | } else if (auto *CF = dyn_cast<ConstantFP>(Val: COp)) { |
| 1567 | if (auto VTy = dyn_cast<FixedVectorType>(Val: CF->getType())) { |
| 1568 | unsigned EltBits = VTy->getScalarSizeInBits(); |
| 1569 | unsigned E = std::min(a: BitWidth / EltBits, b: VTy->getNumElements()); |
| 1570 | if ((BitWidth % EltBits) == 0) { |
| 1571 | for (unsigned I = 0; I != E; ++I) { |
| 1572 | if (I != 0) |
| 1573 | CS << "," ; |
| 1574 | printConstant(Flt: CF->getValueAPF(), CS, PrintZero); |
| 1575 | } |
| 1576 | } else { |
| 1577 | CS << "?" ; |
| 1578 | } |
| 1579 | } else |
| 1580 | printConstant(Flt: CF->getValueAPF(), CS, PrintZero); |
| 1581 | } else if (auto *CDS = dyn_cast<ConstantDataSequential>(Val: COp)) { |
| 1582 | Type *EltTy = CDS->getElementType(); |
| 1583 | bool IsInteger = EltTy->isIntegerTy(); |
| 1584 | bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy(); |
| 1585 | unsigned EltBits = EltTy->getPrimitiveSizeInBits(); |
| 1586 | unsigned E = std::min(a: BitWidth / EltBits, b: (unsigned)CDS->getNumElements()); |
| 1587 | if ((BitWidth % EltBits) == 0) { |
| 1588 | for (unsigned I = 0; I != E; ++I) { |
| 1589 | if (I != 0) |
| 1590 | CS << "," ; |
| 1591 | if (IsInteger) |
| 1592 | printConstant(Val: CDS->getElementAsAPInt(i: I), CS, PrintZero); |
| 1593 | else if (IsFP) |
| 1594 | printConstant(Flt: CDS->getElementAsAPFloat(i: I), CS, PrintZero); |
| 1595 | else |
| 1596 | CS << "?" ; |
| 1597 | } |
| 1598 | } else { |
| 1599 | CS << "?" ; |
| 1600 | } |
| 1601 | } else if (auto *CV = dyn_cast<ConstantVector>(Val: COp)) { |
| 1602 | unsigned EltBits = CV->getType()->getScalarSizeInBits(); |
| 1603 | unsigned E = std::min(a: BitWidth / EltBits, b: CV->getNumOperands()); |
| 1604 | if ((BitWidth % EltBits) == 0) { |
| 1605 | for (unsigned I = 0; I != E; ++I) { |
| 1606 | if (I != 0) |
| 1607 | CS << "," ; |
| 1608 | printConstant(COp: CV->getOperand(i_nocapture: I), BitWidth: EltBits, CS, PrintZero); |
| 1609 | } |
| 1610 | } else { |
| 1611 | CS << "?" ; |
| 1612 | } |
| 1613 | } else { |
| 1614 | CS << "?" ; |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1619 | int SclWidth, int VecWidth, |
| 1620 | const char *) { |
| 1621 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1622 | |
| 1623 | std::string ; |
| 1624 | raw_string_ostream CS(Comment); |
| 1625 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1626 | CS << " = " ; |
| 1627 | |
| 1628 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx)) { |
| 1629 | CS << "[" ; |
| 1630 | printConstant(COp: C, BitWidth: SclWidth, CS); |
| 1631 | for (int I = 1, E = VecWidth / SclWidth; I < E; ++I) { |
| 1632 | CS << "," ; |
| 1633 | printConstant(COp: C, BitWidth: SclWidth, CS, PrintZero: true); |
| 1634 | } |
| 1635 | CS << "]" ; |
| 1636 | OutStreamer.AddComment(T: CS.str()); |
| 1637 | return; // early-out |
| 1638 | } |
| 1639 | |
| 1640 | // We didn't find a constant load, fallback to a shuffle mask decode. |
| 1641 | CS << ShuffleComment; |
| 1642 | OutStreamer.AddComment(T: CS.str()); |
| 1643 | } |
| 1644 | |
| 1645 | static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1646 | int Repeats, int BitWidth) { |
| 1647 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1648 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx)) { |
| 1649 | std::string ; |
| 1650 | raw_string_ostream CS(Comment); |
| 1651 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1652 | CS << " = [" ; |
| 1653 | for (int l = 0; l != Repeats; ++l) { |
| 1654 | if (l != 0) |
| 1655 | CS << "," ; |
| 1656 | printConstant(COp: C, BitWidth, CS); |
| 1657 | } |
| 1658 | CS << "]" ; |
| 1659 | OutStreamer.AddComment(T: CS.str()); |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | static bool printExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1664 | int SrcEltBits, int DstEltBits, bool IsSext) { |
| 1665 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1666 | auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx); |
| 1667 | if (C && C->getType()->getScalarSizeInBits() == unsigned(SrcEltBits)) { |
| 1668 | if (auto *CDS = dyn_cast<ConstantDataSequential>(Val: C)) { |
| 1669 | int NumElts = CDS->getNumElements(); |
| 1670 | std::string ; |
| 1671 | raw_string_ostream CS(Comment); |
| 1672 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1673 | CS << " = [" ; |
| 1674 | for (int i = 0; i != NumElts; ++i) { |
| 1675 | if (i != 0) |
| 1676 | CS << "," ; |
| 1677 | if (CDS->getElementType()->isIntegerTy()) { |
| 1678 | APInt Elt = CDS->getElementAsAPInt(i); |
| 1679 | Elt = IsSext ? Elt.sext(width: DstEltBits) : Elt.zext(width: DstEltBits); |
| 1680 | printConstant(Val: Elt, CS); |
| 1681 | } else |
| 1682 | CS << "?" ; |
| 1683 | } |
| 1684 | CS << "]" ; |
| 1685 | OutStreamer.AddComment(T: CS.str()); |
| 1686 | return true; |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | return false; |
| 1691 | } |
| 1692 | static void printSignExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1693 | int SrcEltBits, int DstEltBits) { |
| 1694 | printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, IsSext: true); |
| 1695 | } |
| 1696 | static void printZeroExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1697 | int SrcEltBits, int DstEltBits) { |
| 1698 | if (printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, IsSext: false)) |
| 1699 | return; |
| 1700 | |
| 1701 | // We didn't find a constant load, fallback to a shuffle mask decode. |
| 1702 | std::string ; |
| 1703 | raw_string_ostream CS(Comment); |
| 1704 | printDstRegisterName(CS, MI, SrcOpIdx: getSrcIdx(MI, SrcIdx: 1)); |
| 1705 | CS << " = " ; |
| 1706 | |
| 1707 | SmallVector<int> Mask; |
| 1708 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1709 | assert((Width % DstEltBits) == 0 && (DstEltBits % SrcEltBits) == 0 && |
| 1710 | "Illegal extension ratio" ); |
| 1711 | DecodeZeroExtendMask(SrcScalarBits: SrcEltBits, DstScalarBits: DstEltBits, NumDstElts: Width / DstEltBits, IsAnyExtend: false, ShuffleMask&: Mask); |
| 1712 | printShuffleMask(CS, Src1Name: "mem" , Src2Name: "" , Mask); |
| 1713 | |
| 1714 | OutStreamer.AddComment(T: CS.str()); |
| 1715 | } |
| 1716 | |
| 1717 | void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { |
| 1718 | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?" ); |
| 1719 | assert((getSubtarget().isOSWindows() || getSubtarget().isUEFI()) && |
| 1720 | "SEH_ instruction Windows and UEFI only" ); |
| 1721 | |
| 1722 | // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. |
| 1723 | if (EmitFPOData) { |
| 1724 | X86TargetStreamer *XTS = |
| 1725 | static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); |
| 1726 | switch (MI->getOpcode()) { |
| 1727 | case X86::SEH_PushReg: |
| 1728 | XTS->emitFPOPushReg(Reg: MI->getOperand(i: 0).getImm()); |
| 1729 | break; |
| 1730 | case X86::SEH_StackAlloc: |
| 1731 | XTS->emitFPOStackAlloc(StackAlloc: MI->getOperand(i: 0).getImm()); |
| 1732 | break; |
| 1733 | case X86::SEH_StackAlign: |
| 1734 | XTS->emitFPOStackAlign(Align: MI->getOperand(i: 0).getImm()); |
| 1735 | break; |
| 1736 | case X86::SEH_SetFrame: |
| 1737 | assert(MI->getOperand(1).getImm() == 0 && |
| 1738 | ".cv_fpo_setframe takes no offset" ); |
| 1739 | XTS->emitFPOSetFrame(Reg: MI->getOperand(i: 0).getImm()); |
| 1740 | break; |
| 1741 | case X86::SEH_EndPrologue: |
| 1742 | XTS->emitFPOEndPrologue(); |
| 1743 | break; |
| 1744 | case X86::SEH_SaveReg: |
| 1745 | case X86::SEH_SaveXMM: |
| 1746 | case X86::SEH_PushFrame: |
| 1747 | llvm_unreachable("SEH_ directive incompatible with FPO" ); |
| 1748 | break; |
| 1749 | default: |
| 1750 | llvm_unreachable("expected SEH_ instruction" ); |
| 1751 | } |
| 1752 | return; |
| 1753 | } |
| 1754 | |
| 1755 | // Otherwise, use the .seh_ directives for all other Windows platforms. |
| 1756 | switch (MI->getOpcode()) { |
| 1757 | case X86::SEH_PushReg: |
| 1758 | OutStreamer->emitWinCFIPushReg(Register: MI->getOperand(i: 0).getImm()); |
| 1759 | break; |
| 1760 | |
| 1761 | case X86::SEH_SaveReg: |
| 1762 | OutStreamer->emitWinCFISaveReg(Register: MI->getOperand(i: 0).getImm(), |
| 1763 | Offset: MI->getOperand(i: 1).getImm()); |
| 1764 | break; |
| 1765 | |
| 1766 | case X86::SEH_SaveXMM: |
| 1767 | OutStreamer->emitWinCFISaveXMM(Register: MI->getOperand(i: 0).getImm(), |
| 1768 | Offset: MI->getOperand(i: 1).getImm()); |
| 1769 | break; |
| 1770 | |
| 1771 | case X86::SEH_StackAlloc: |
| 1772 | OutStreamer->emitWinCFIAllocStack(Size: MI->getOperand(i: 0).getImm()); |
| 1773 | break; |
| 1774 | |
| 1775 | case X86::SEH_SetFrame: |
| 1776 | OutStreamer->emitWinCFISetFrame(Register: MI->getOperand(i: 0).getImm(), |
| 1777 | Offset: MI->getOperand(i: 1).getImm()); |
| 1778 | break; |
| 1779 | |
| 1780 | case X86::SEH_PushFrame: |
| 1781 | OutStreamer->emitWinCFIPushFrame(Code: MI->getOperand(i: 0).getImm()); |
| 1782 | break; |
| 1783 | |
| 1784 | case X86::SEH_EndPrologue: |
| 1785 | OutStreamer->emitWinCFIEndProlog(); |
| 1786 | break; |
| 1787 | |
| 1788 | case X86::SEH_BeginEpilogue: |
| 1789 | OutStreamer->emitWinCFIBeginEpilogue(); |
| 1790 | break; |
| 1791 | |
| 1792 | case X86::SEH_EndEpilogue: |
| 1793 | OutStreamer->emitWinCFIEndEpilogue(); |
| 1794 | break; |
| 1795 | |
| 1796 | case X86::SEH_UnwindV2Start: |
| 1797 | OutStreamer->emitWinCFIUnwindV2Start(); |
| 1798 | break; |
| 1799 | |
| 1800 | case X86::SEH_UnwindVersion: |
| 1801 | OutStreamer->emitWinCFIUnwindVersion(Version: MI->getOperand(i: 0).getImm()); |
| 1802 | break; |
| 1803 | |
| 1804 | default: |
| 1805 | llvm_unreachable("expected SEH_ instruction" ); |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | static void (const MachineInstr *MI, |
| 1810 | MCStreamer &OutStreamer) { |
| 1811 | switch (MI->getOpcode()) { |
| 1812 | // Lower PSHUFB and VPERMILP normally but add a comment if we can find |
| 1813 | // a constant shuffle mask. We won't be able to do this at the MC layer |
| 1814 | // because the mask isn't an immediate. |
| 1815 | case X86::PSHUFBrm: |
| 1816 | case X86::VPSHUFBrm: |
| 1817 | case X86::VPSHUFBYrm: |
| 1818 | case X86::VPSHUFBZ128rm: |
| 1819 | case X86::VPSHUFBZ128rmk: |
| 1820 | case X86::VPSHUFBZ128rmkz: |
| 1821 | case X86::VPSHUFBZ256rm: |
| 1822 | case X86::VPSHUFBZ256rmk: |
| 1823 | case X86::VPSHUFBZ256rmkz: |
| 1824 | case X86::VPSHUFBZrm: |
| 1825 | case X86::VPSHUFBZrmk: |
| 1826 | case X86::VPSHUFBZrmkz: { |
| 1827 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1828 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1829 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1830 | SmallVector<int, 64> Mask; |
| 1831 | DecodePSHUFBMask(C, Width, ShuffleMask&: Mask); |
| 1832 | if (!Mask.empty()) |
| 1833 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1834 | } |
| 1835 | break; |
| 1836 | } |
| 1837 | |
| 1838 | case X86::VPERMILPSrm: |
| 1839 | case X86::VPERMILPSYrm: |
| 1840 | case X86::VPERMILPSZ128rm: |
| 1841 | case X86::VPERMILPSZ128rmk: |
| 1842 | case X86::VPERMILPSZ128rmkz: |
| 1843 | case X86::VPERMILPSZ256rm: |
| 1844 | case X86::VPERMILPSZ256rmk: |
| 1845 | case X86::VPERMILPSZ256rmkz: |
| 1846 | case X86::VPERMILPSZrm: |
| 1847 | case X86::VPERMILPSZrmk: |
| 1848 | case X86::VPERMILPSZrmkz: { |
| 1849 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1850 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1851 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1852 | SmallVector<int, 16> Mask; |
| 1853 | DecodeVPERMILPMask(C, ElSize: 32, Width, ShuffleMask&: Mask); |
| 1854 | if (!Mask.empty()) |
| 1855 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1856 | } |
| 1857 | break; |
| 1858 | } |
| 1859 | case X86::VPERMILPDrm: |
| 1860 | case X86::VPERMILPDYrm: |
| 1861 | case X86::VPERMILPDZ128rm: |
| 1862 | case X86::VPERMILPDZ128rmk: |
| 1863 | case X86::VPERMILPDZ128rmkz: |
| 1864 | case X86::VPERMILPDZ256rm: |
| 1865 | case X86::VPERMILPDZ256rmk: |
| 1866 | case X86::VPERMILPDZ256rmkz: |
| 1867 | case X86::VPERMILPDZrm: |
| 1868 | case X86::VPERMILPDZrmk: |
| 1869 | case X86::VPERMILPDZrmkz: { |
| 1870 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1871 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1872 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1873 | SmallVector<int, 16> Mask; |
| 1874 | DecodeVPERMILPMask(C, ElSize: 64, Width, ShuffleMask&: Mask); |
| 1875 | if (!Mask.empty()) |
| 1876 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1877 | } |
| 1878 | break; |
| 1879 | } |
| 1880 | |
| 1881 | case X86::VPERMIL2PDrm: |
| 1882 | case X86::VPERMIL2PSrm: |
| 1883 | case X86::VPERMIL2PDYrm: |
| 1884 | case X86::VPERMIL2PSYrm: { |
| 1885 | assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) && |
| 1886 | "Unexpected number of operands!" ); |
| 1887 | |
| 1888 | const MachineOperand &CtrlOp = MI->getOperand(i: MI->getNumOperands() - 1); |
| 1889 | if (!CtrlOp.isImm()) |
| 1890 | break; |
| 1891 | |
| 1892 | unsigned ElSize; |
| 1893 | switch (MI->getOpcode()) { |
| 1894 | default: llvm_unreachable("Invalid opcode" ); |
| 1895 | case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; |
| 1896 | case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; |
| 1897 | } |
| 1898 | |
| 1899 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 3)) { |
| 1900 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1901 | SmallVector<int, 16> Mask; |
| 1902 | DecodeVPERMIL2PMask(C, M2Z: (unsigned)CtrlOp.getImm(), ElSize, Width, ShuffleMask&: Mask); |
| 1903 | if (!Mask.empty()) |
| 1904 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: 1, SrcOp2Idx: 2, Mask)); |
| 1905 | } |
| 1906 | break; |
| 1907 | } |
| 1908 | |
| 1909 | case X86::VPPERMrrm: { |
| 1910 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 3)) { |
| 1911 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1912 | SmallVector<int, 16> Mask; |
| 1913 | DecodeVPPERMMask(C, Width, ShuffleMask&: Mask); |
| 1914 | if (!Mask.empty()) |
| 1915 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: 1, SrcOp2Idx: 2, Mask)); |
| 1916 | } |
| 1917 | break; |
| 1918 | } |
| 1919 | |
| 1920 | case X86::MMX_MOVQ64rm: { |
| 1921 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 1)) { |
| 1922 | std::string ; |
| 1923 | raw_string_ostream CS(Comment); |
| 1924 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 1925 | CS << X86ATTInstPrinter::getRegisterName(Reg: DstOp.getReg()) << " = " ; |
| 1926 | if (auto *CF = dyn_cast<ConstantFP>(Val: C)) { |
| 1927 | CS << "0x" << toString(I: CF->getValueAPF().bitcastToAPInt(), Radix: 16, Signed: false); |
| 1928 | OutStreamer.AddComment(T: CS.str()); |
| 1929 | } |
| 1930 | } |
| 1931 | break; |
| 1932 | } |
| 1933 | |
| 1934 | #define INSTR_CASE(Prefix, Instr, Suffix, Postfix) \ |
| 1935 | case X86::Prefix##Instr##Suffix##rm##Postfix: |
| 1936 | |
| 1937 | #define CASE_AVX512_ARITH_RM(Instr) \ |
| 1938 | INSTR_CASE(V, Instr, Z128, ) \ |
| 1939 | INSTR_CASE(V, Instr, Z128, k) \ |
| 1940 | INSTR_CASE(V, Instr, Z128, kz) \ |
| 1941 | INSTR_CASE(V, Instr, Z256, ) \ |
| 1942 | INSTR_CASE(V, Instr, Z256, k) \ |
| 1943 | INSTR_CASE(V, Instr, Z256, kz) \ |
| 1944 | INSTR_CASE(V, Instr, Z, ) \ |
| 1945 | INSTR_CASE(V, Instr, Z, k) \ |
| 1946 | INSTR_CASE(V, Instr, Z, kz) |
| 1947 | |
| 1948 | #define CASE_ARITH_RM(Instr) \ |
| 1949 | INSTR_CASE(, Instr, , ) /* SSE */ \ |
| 1950 | INSTR_CASE(V, Instr, , ) /* AVX-128 */ \ |
| 1951 | INSTR_CASE(V, Instr, Y, ) /* AVX-256 */ \ |
| 1952 | INSTR_CASE(V, Instr, Z128, ) \ |
| 1953 | INSTR_CASE(V, Instr, Z128, k) \ |
| 1954 | INSTR_CASE(V, Instr, Z128, kz) \ |
| 1955 | INSTR_CASE(V, Instr, Z256, ) \ |
| 1956 | INSTR_CASE(V, Instr, Z256, k) \ |
| 1957 | INSTR_CASE(V, Instr, Z256, kz) \ |
| 1958 | INSTR_CASE(V, Instr, Z, ) \ |
| 1959 | INSTR_CASE(V, Instr, Z, k) \ |
| 1960 | INSTR_CASE(V, Instr, Z, kz) |
| 1961 | |
| 1962 | // TODO: Add additional instructions when useful. |
| 1963 | CASE_ARITH_RM(PMADDUBSW) |
| 1964 | CASE_ARITH_RM(PMADDWD) |
| 1965 | CASE_ARITH_RM(PMULDQ) |
| 1966 | CASE_ARITH_RM(PMULUDQ) |
| 1967 | CASE_ARITH_RM(PMULLD) |
| 1968 | CASE_AVX512_ARITH_RM(PMULLQ) |
| 1969 | CASE_ARITH_RM(PMULLW) |
| 1970 | CASE_ARITH_RM(PMULHW) |
| 1971 | CASE_ARITH_RM(PMULHUW) |
| 1972 | CASE_ARITH_RM(PMULHRSW) { |
| 1973 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1974 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1975 | std::string ; |
| 1976 | raw_string_ostream CS(Comment); |
| 1977 | unsigned VectorWidth = |
| 1978 | X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1979 | CS << "[" ; |
| 1980 | printConstant(COp: C, BitWidth: VectorWidth, CS); |
| 1981 | CS << "]" ; |
| 1982 | OutStreamer.AddComment(T: CS.str()); |
| 1983 | } |
| 1984 | break; |
| 1985 | } |
| 1986 | |
| 1987 | #define MASK_AVX512_CASE(Instr) \ |
| 1988 | case Instr: \ |
| 1989 | case Instr##k: \ |
| 1990 | case Instr##kz: |
| 1991 | |
| 1992 | case X86::MOVSDrm: |
| 1993 | case X86::VMOVSDrm: |
| 1994 | MASK_AVX512_CASE(X86::VMOVSDZrm) |
| 1995 | case X86::MOVSDrm_alt: |
| 1996 | case X86::VMOVSDrm_alt: |
| 1997 | case X86::VMOVSDZrm_alt: |
| 1998 | case X86::MOVQI2PQIrm: |
| 1999 | case X86::VMOVQI2PQIrm: |
| 2000 | case X86::VMOVQI2PQIZrm: |
| 2001 | printZeroUpperMove(MI, OutStreamer, SclWidth: 64, VecWidth: 128, ShuffleComment: "mem[0],zero" ); |
| 2002 | break; |
| 2003 | |
| 2004 | MASK_AVX512_CASE(X86::VMOVSHZrm) |
| 2005 | case X86::VMOVSHZrm_alt: |
| 2006 | printZeroUpperMove(MI, OutStreamer, SclWidth: 16, VecWidth: 128, |
| 2007 | ShuffleComment: "mem[0],zero,zero,zero,zero,zero,zero,zero" ); |
| 2008 | break; |
| 2009 | |
| 2010 | case X86::MOVSSrm: |
| 2011 | case X86::VMOVSSrm: |
| 2012 | MASK_AVX512_CASE(X86::VMOVSSZrm) |
| 2013 | case X86::MOVSSrm_alt: |
| 2014 | case X86::VMOVSSrm_alt: |
| 2015 | case X86::VMOVSSZrm_alt: |
| 2016 | case X86::MOVDI2PDIrm: |
| 2017 | case X86::VMOVDI2PDIrm: |
| 2018 | case X86::VMOVDI2PDIZrm: |
| 2019 | printZeroUpperMove(MI, OutStreamer, SclWidth: 32, VecWidth: 128, ShuffleComment: "mem[0],zero,zero,zero" ); |
| 2020 | break; |
| 2021 | |
| 2022 | #define MOV_CASE(Prefix, Suffix) \ |
| 2023 | case X86::Prefix##MOVAPD##Suffix##rm: \ |
| 2024 | case X86::Prefix##MOVAPS##Suffix##rm: \ |
| 2025 | case X86::Prefix##MOVUPD##Suffix##rm: \ |
| 2026 | case X86::Prefix##MOVUPS##Suffix##rm: \ |
| 2027 | case X86::Prefix##MOVDQA##Suffix##rm: \ |
| 2028 | case X86::Prefix##MOVDQU##Suffix##rm: |
| 2029 | |
| 2030 | #define MOV_AVX512_CASE(Suffix, Postfix) \ |
| 2031 | case X86::VMOVDQA64##Suffix##rm##Postfix: \ |
| 2032 | case X86::VMOVDQA32##Suffix##rm##Postfix: \ |
| 2033 | case X86::VMOVDQU64##Suffix##rm##Postfix: \ |
| 2034 | case X86::VMOVDQU32##Suffix##rm##Postfix: \ |
| 2035 | case X86::VMOVDQU16##Suffix##rm##Postfix: \ |
| 2036 | case X86::VMOVDQU8##Suffix##rm##Postfix: \ |
| 2037 | case X86::VMOVAPS##Suffix##rm##Postfix: \ |
| 2038 | case X86::VMOVAPD##Suffix##rm##Postfix: \ |
| 2039 | case X86::VMOVUPS##Suffix##rm##Postfix: \ |
| 2040 | case X86::VMOVUPD##Suffix##rm##Postfix: |
| 2041 | |
| 2042 | #define CASE_128_MOV_RM() \ |
| 2043 | MOV_CASE(, ) /* SSE */ \ |
| 2044 | MOV_CASE(V, ) /* AVX-128 */ \ |
| 2045 | MOV_AVX512_CASE(Z128, ) \ |
| 2046 | MOV_AVX512_CASE(Z128, k) \ |
| 2047 | MOV_AVX512_CASE(Z128, kz) |
| 2048 | |
| 2049 | #define CASE_256_MOV_RM() \ |
| 2050 | MOV_CASE(V, Y) /* AVX-256 */ \ |
| 2051 | MOV_AVX512_CASE(Z256, ) \ |
| 2052 | MOV_AVX512_CASE(Z256, k) \ |
| 2053 | MOV_AVX512_CASE(Z256, kz) \ |
| 2054 | |
| 2055 | #define CASE_512_MOV_RM() \ |
| 2056 | MOV_AVX512_CASE(Z, ) \ |
| 2057 | MOV_AVX512_CASE(Z, k) \ |
| 2058 | MOV_AVX512_CASE(Z, kz) \ |
| 2059 | |
| 2060 | // For loads from a constant pool to a vector register, print the constant |
| 2061 | // loaded. |
| 2062 | CASE_128_MOV_RM() |
| 2063 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 128); |
| 2064 | break; |
| 2065 | CASE_256_MOV_RM() |
| 2066 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 256); |
| 2067 | break; |
| 2068 | CASE_512_MOV_RM() |
| 2069 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 512); |
| 2070 | break; |
| 2071 | case X86::VBROADCASTF128rm: |
| 2072 | case X86::VBROADCASTI128rm: |
| 2073 | MASK_AVX512_CASE(X86::VBROADCASTF32X4Z256rm) |
| 2074 | MASK_AVX512_CASE(X86::VBROADCASTF64X2Z256rm) |
| 2075 | MASK_AVX512_CASE(X86::VBROADCASTI32X4Z256rm) |
| 2076 | MASK_AVX512_CASE(X86::VBROADCASTI64X2Z256rm) |
| 2077 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 128); |
| 2078 | break; |
| 2079 | MASK_AVX512_CASE(X86::VBROADCASTF32X4Zrm) |
| 2080 | MASK_AVX512_CASE(X86::VBROADCASTF64X2Zrm) |
| 2081 | MASK_AVX512_CASE(X86::VBROADCASTI32X4Zrm) |
| 2082 | MASK_AVX512_CASE(X86::VBROADCASTI64X2Zrm) |
| 2083 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 128); |
| 2084 | break; |
| 2085 | MASK_AVX512_CASE(X86::VBROADCASTF32X8Zrm) |
| 2086 | MASK_AVX512_CASE(X86::VBROADCASTF64X4Zrm) |
| 2087 | MASK_AVX512_CASE(X86::VBROADCASTI32X8Zrm) |
| 2088 | MASK_AVX512_CASE(X86::VBROADCASTI64X4Zrm) |
| 2089 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 256); |
| 2090 | break; |
| 2091 | |
| 2092 | // For broadcast loads from a constant pool to a vector register, repeatedly |
| 2093 | // print the constant loaded. |
| 2094 | case X86::MOVDDUPrm: |
| 2095 | case X86::VMOVDDUPrm: |
| 2096 | MASK_AVX512_CASE(X86::VMOVDDUPZ128rm) |
| 2097 | case X86::VPBROADCASTQrm: |
| 2098 | MASK_AVX512_CASE(X86::VPBROADCASTQZ128rm) |
| 2099 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 64); |
| 2100 | break; |
| 2101 | case X86::VBROADCASTSDYrm: |
| 2102 | MASK_AVX512_CASE(X86::VBROADCASTSDZ256rm) |
| 2103 | case X86::VPBROADCASTQYrm: |
| 2104 | MASK_AVX512_CASE(X86::VPBROADCASTQZ256rm) |
| 2105 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 64); |
| 2106 | break; |
| 2107 | MASK_AVX512_CASE(X86::VBROADCASTSDZrm) |
| 2108 | MASK_AVX512_CASE(X86::VPBROADCASTQZrm) |
| 2109 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 64); |
| 2110 | break; |
| 2111 | case X86::VBROADCASTSSrm: |
| 2112 | MASK_AVX512_CASE(X86::VBROADCASTSSZ128rm) |
| 2113 | case X86::VPBROADCASTDrm: |
| 2114 | MASK_AVX512_CASE(X86::VPBROADCASTDZ128rm) |
| 2115 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 32); |
| 2116 | break; |
| 2117 | case X86::VBROADCASTSSYrm: |
| 2118 | MASK_AVX512_CASE(X86::VBROADCASTSSZ256rm) |
| 2119 | case X86::VPBROADCASTDYrm: |
| 2120 | MASK_AVX512_CASE(X86::VPBROADCASTDZ256rm) |
| 2121 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 32); |
| 2122 | break; |
| 2123 | MASK_AVX512_CASE(X86::VBROADCASTSSZrm) |
| 2124 | MASK_AVX512_CASE(X86::VPBROADCASTDZrm) |
| 2125 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 32); |
| 2126 | break; |
| 2127 | case X86::VPBROADCASTWrm: |
| 2128 | MASK_AVX512_CASE(X86::VPBROADCASTWZ128rm) |
| 2129 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 16); |
| 2130 | break; |
| 2131 | case X86::VPBROADCASTWYrm: |
| 2132 | MASK_AVX512_CASE(X86::VPBROADCASTWZ256rm) |
| 2133 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 16); |
| 2134 | break; |
| 2135 | MASK_AVX512_CASE(X86::VPBROADCASTWZrm) |
| 2136 | printBroadcast(MI, OutStreamer, Repeats: 32, BitWidth: 16); |
| 2137 | break; |
| 2138 | case X86::VPBROADCASTBrm: |
| 2139 | MASK_AVX512_CASE(X86::VPBROADCASTBZ128rm) |
| 2140 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 8); |
| 2141 | break; |
| 2142 | case X86::VPBROADCASTBYrm: |
| 2143 | MASK_AVX512_CASE(X86::VPBROADCASTBZ256rm) |
| 2144 | printBroadcast(MI, OutStreamer, Repeats: 32, BitWidth: 8); |
| 2145 | break; |
| 2146 | MASK_AVX512_CASE(X86::VPBROADCASTBZrm) |
| 2147 | printBroadcast(MI, OutStreamer, Repeats: 64, BitWidth: 8); |
| 2148 | break; |
| 2149 | |
| 2150 | #define MOVX_CASE(Prefix, Ext, Type, Suffix, Postfix) \ |
| 2151 | case X86::Prefix##PMOV##Ext##Type##Suffix##rm##Postfix: |
| 2152 | |
| 2153 | #define CASE_MOVX_RM(Ext, Type) \ |
| 2154 | MOVX_CASE(, Ext, Type, , ) \ |
| 2155 | MOVX_CASE(V, Ext, Type, , ) \ |
| 2156 | MOVX_CASE(V, Ext, Type, Y, ) \ |
| 2157 | MOVX_CASE(V, Ext, Type, Z128, ) \ |
| 2158 | MOVX_CASE(V, Ext, Type, Z128, k ) \ |
| 2159 | MOVX_CASE(V, Ext, Type, Z128, kz ) \ |
| 2160 | MOVX_CASE(V, Ext, Type, Z256, ) \ |
| 2161 | MOVX_CASE(V, Ext, Type, Z256, k ) \ |
| 2162 | MOVX_CASE(V, Ext, Type, Z256, kz ) \ |
| 2163 | MOVX_CASE(V, Ext, Type, Z, ) \ |
| 2164 | MOVX_CASE(V, Ext, Type, Z, k ) \ |
| 2165 | MOVX_CASE(V, Ext, Type, Z, kz ) |
| 2166 | |
| 2167 | CASE_MOVX_RM(SX, BD) |
| 2168 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 32); |
| 2169 | break; |
| 2170 | CASE_MOVX_RM(SX, BQ) |
| 2171 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 64); |
| 2172 | break; |
| 2173 | CASE_MOVX_RM(SX, BW) |
| 2174 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 16); |
| 2175 | break; |
| 2176 | CASE_MOVX_RM(SX, DQ) |
| 2177 | printSignExtend(MI, OutStreamer, SrcEltBits: 32, DstEltBits: 64); |
| 2178 | break; |
| 2179 | CASE_MOVX_RM(SX, WD) |
| 2180 | printSignExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 32); |
| 2181 | break; |
| 2182 | CASE_MOVX_RM(SX, WQ) |
| 2183 | printSignExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 64); |
| 2184 | break; |
| 2185 | |
| 2186 | CASE_MOVX_RM(ZX, BD) |
| 2187 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 32); |
| 2188 | break; |
| 2189 | CASE_MOVX_RM(ZX, BQ) |
| 2190 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 64); |
| 2191 | break; |
| 2192 | CASE_MOVX_RM(ZX, BW) |
| 2193 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 16); |
| 2194 | break; |
| 2195 | CASE_MOVX_RM(ZX, DQ) |
| 2196 | printZeroExtend(MI, OutStreamer, SrcEltBits: 32, DstEltBits: 64); |
| 2197 | break; |
| 2198 | CASE_MOVX_RM(ZX, WD) |
| 2199 | printZeroExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 32); |
| 2200 | break; |
| 2201 | CASE_MOVX_RM(ZX, WQ) |
| 2202 | printZeroExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 64); |
| 2203 | break; |
| 2204 | } |
| 2205 | } |
| 2206 | |
| 2207 | // Does the given operand refer to a DLLIMPORT function? |
| 2208 | bool isImportedFunction(const MachineOperand &MO) { |
| 2209 | return MO.isGlobal() && (MO.getTargetFlags() == X86II::MO_DLLIMPORT); |
| 2210 | } |
| 2211 | |
| 2212 | // Is the given instruction a call to a CFGuard function? |
| 2213 | bool isCallToCFGuardFunction(const MachineInstr *MI) { |
| 2214 | assert(MI->getOpcode() == X86::TAILJMPm64_REX || |
| 2215 | MI->getOpcode() == X86::CALL64m); |
| 2216 | const MachineOperand &MO = MI->getOperand(i: 3); |
| 2217 | return MO.isGlobal() && (MO.getTargetFlags() == X86II::MO_NO_FLAG) && |
| 2218 | isCFGuardFunction(GV: MO.getGlobal()); |
| 2219 | } |
| 2220 | |
| 2221 | // Does the containing block for the given instruction contain any jump table |
| 2222 | // info (indicating that the block is a dispatch for a jump table)? |
| 2223 | bool hasJumpTableInfoInBlock(const llvm::MachineInstr *MI) { |
| 2224 | const MachineBasicBlock &MBB = *MI->getParent(); |
| 2225 | for (auto I = MBB.instr_rbegin(), E = MBB.instr_rend(); I != E; ++I) |
| 2226 | if (I->isJumpTableDebugInfo()) |
| 2227 | return true; |
| 2228 | |
| 2229 | return false; |
| 2230 | } |
| 2231 | |
| 2232 | void X86AsmPrinter::emitInstruction(const MachineInstr *MI) { |
| 2233 | // FIXME: Enable feature predicate checks once all the test pass. |
| 2234 | // X86_MC::verifyInstructionPredicates(MI->getOpcode(), |
| 2235 | // Subtarget->getFeatureBits()); |
| 2236 | |
| 2237 | X86MCInstLower MCInstLowering(*MF, *this); |
| 2238 | const X86RegisterInfo *RI = |
| 2239 | MF->getSubtarget<X86Subtarget>().getRegisterInfo(); |
| 2240 | |
| 2241 | if (MI->getOpcode() == X86::OR64rm) { |
| 2242 | for (auto &Opd : MI->operands()) { |
| 2243 | if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) == |
| 2244 | "swift_async_extendedFramePointerFlags" ) { |
| 2245 | ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true; |
| 2246 | } |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | // Add comments for values loaded from constant pool. |
| 2251 | if (OutStreamer->isVerboseAsm()) |
| 2252 | addConstantComments(MI, OutStreamer&: *OutStreamer); |
| 2253 | |
| 2254 | // Add a comment about EVEX compression |
| 2255 | if (TM.Options.MCOptions.ShowMCEncoding) { |
| 2256 | if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_LEGACY) |
| 2257 | OutStreamer->AddComment(T: "EVEX TO LEGACY Compression " , EOL: false); |
| 2258 | else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) |
| 2259 | OutStreamer->AddComment(T: "EVEX TO VEX Compression " , EOL: false); |
| 2260 | else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_EVEX) |
| 2261 | OutStreamer->AddComment(T: "EVEX TO EVEX Compression " , EOL: false); |
| 2262 | } |
| 2263 | |
| 2264 | // We use this to suppress NOP padding for Windows EH. |
| 2265 | bool IsTailJump = false; |
| 2266 | |
| 2267 | switch (MI->getOpcode()) { |
| 2268 | case TargetOpcode::DBG_VALUE: |
| 2269 | llvm_unreachable("Should be handled target independently" ); |
| 2270 | |
| 2271 | case X86::EH_RETURN: |
| 2272 | case X86::EH_RETURN64: { |
| 2273 | // Lower these as normal, but add some comments. |
| 2274 | Register Reg = MI->getOperand(i: 0).getReg(); |
| 2275 | OutStreamer->AddComment(T: StringRef("eh_return, addr: %" ) + |
| 2276 | X86ATTInstPrinter::getRegisterName(Reg)); |
| 2277 | break; |
| 2278 | } |
| 2279 | case X86::CLEANUPRET: { |
| 2280 | // Lower these as normal, but add some comments. |
| 2281 | OutStreamer->AddComment(T: "CLEANUPRET" ); |
| 2282 | break; |
| 2283 | } |
| 2284 | |
| 2285 | case X86::CATCHRET: { |
| 2286 | // Lower these as normal, but add some comments. |
| 2287 | OutStreamer->AddComment(T: "CATCHRET" ); |
| 2288 | break; |
| 2289 | } |
| 2290 | |
| 2291 | case X86::ENDBR32: |
| 2292 | case X86::ENDBR64: { |
| 2293 | // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for |
| 2294 | // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be |
| 2295 | // non-empty. If MI is the initial ENDBR, place the |
| 2296 | // __patchable_function_entries label after ENDBR. |
| 2297 | if (CurrentPatchableFunctionEntrySym && |
| 2298 | CurrentPatchableFunctionEntrySym == CurrentFnBegin && |
| 2299 | MI == &MF->front().front()) { |
| 2300 | MCInst Inst; |
| 2301 | MCInstLowering.Lower(MI, OutMI&: Inst); |
| 2302 | EmitAndCountInstruction(Inst); |
| 2303 | CurrentPatchableFunctionEntrySym = createTempSymbol(Name: "patch" ); |
| 2304 | OutStreamer->emitLabel(Symbol: CurrentPatchableFunctionEntrySym); |
| 2305 | return; |
| 2306 | } |
| 2307 | break; |
| 2308 | } |
| 2309 | |
| 2310 | case X86::TAILJMPd64: |
| 2311 | if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(Reg: X86::R11)) |
| 2312 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CS_PREFIX)); |
| 2313 | |
| 2314 | if (EnableImportCallOptimization && isImportedFunction(MO: MI->getOperand(i: 0))) { |
| 2315 | emitLabelAndRecordForImportCallOptimization( |
| 2316 | Kind: IMAGE_RETPOLINE_AMD64_IMPORT_BR); |
| 2317 | } |
| 2318 | |
| 2319 | // Lower this as normal, but add a comment. |
| 2320 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2321 | IsTailJump = true; |
| 2322 | break; |
| 2323 | |
| 2324 | case X86::TAILJMPr: |
| 2325 | case X86::TAILJMPm: |
| 2326 | case X86::TAILJMPd: |
| 2327 | case X86::TAILJMPd_CC: |
| 2328 | case X86::TAILJMPr64: |
| 2329 | case X86::TAILJMPm64: |
| 2330 | case X86::TAILJMPd64_CC: |
| 2331 | if (EnableImportCallOptimization) |
| 2332 | report_fatal_error(reason: "Unexpected TAILJMP instruction was emitted when " |
| 2333 | "import call optimization was enabled" ); |
| 2334 | |
| 2335 | // Lower these as normal, but add some comments. |
| 2336 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2337 | IsTailJump = true; |
| 2338 | break; |
| 2339 | |
| 2340 | case X86::TAILJMPm64_REX: |
| 2341 | if (EnableImportCallOptimization && isCallToCFGuardFunction(MI)) { |
| 2342 | emitLabelAndRecordForImportCallOptimization( |
| 2343 | Kind: IMAGE_RETPOLINE_AMD64_CFG_BR_REX); |
| 2344 | } |
| 2345 | |
| 2346 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2347 | IsTailJump = true; |
| 2348 | break; |
| 2349 | |
| 2350 | case X86::TAILJMPr64_REX: { |
| 2351 | if (EnableImportCallOptimization) { |
| 2352 | assert(MI->getOperand(0).getReg() == X86::RAX && |
| 2353 | "Indirect tail calls with impcall enabled must go through RAX (as " |
| 2354 | "enforced by TCRETURNImpCallri64)" ); |
| 2355 | emitLabelAndRecordForImportCallOptimization( |
| 2356 | Kind: IMAGE_RETPOLINE_AMD64_INDIR_BR); |
| 2357 | } |
| 2358 | |
| 2359 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2360 | IsTailJump = true; |
| 2361 | break; |
| 2362 | } |
| 2363 | |
| 2364 | case X86::JMP64r: |
| 2365 | if (EnableImportCallOptimization && hasJumpTableInfoInBlock(MI)) { |
| 2366 | uint16_t EncodedReg = |
| 2367 | this->getSubtarget().getRegisterInfo()->getEncodingValue( |
| 2368 | Reg: MI->getOperand(i: 0).getReg().asMCReg()); |
| 2369 | emitLabelAndRecordForImportCallOptimization( |
| 2370 | Kind: (ImportCallKind)(IMAGE_RETPOLINE_AMD64_SWITCHTABLE_FIRST + |
| 2371 | EncodedReg)); |
| 2372 | } |
| 2373 | break; |
| 2374 | |
| 2375 | case X86::JMP16r: |
| 2376 | case X86::JMP16m: |
| 2377 | case X86::JMP32r: |
| 2378 | case X86::JMP32m: |
| 2379 | case X86::JMP64m: |
| 2380 | if (EnableImportCallOptimization && hasJumpTableInfoInBlock(MI)) |
| 2381 | report_fatal_error( |
| 2382 | reason: "Unexpected JMP instruction was emitted for a jump-table when import " |
| 2383 | "call optimization was enabled" ); |
| 2384 | break; |
| 2385 | |
| 2386 | case X86::TLS_addr32: |
| 2387 | case X86::TLS_addr64: |
| 2388 | case X86::TLS_addrX32: |
| 2389 | case X86::TLS_base_addr32: |
| 2390 | case X86::TLS_base_addr64: |
| 2391 | case X86::TLS_base_addrX32: |
| 2392 | case X86::TLS_desc32: |
| 2393 | case X86::TLS_desc64: |
| 2394 | return LowerTlsAddr(MCInstLowering, MI: *MI); |
| 2395 | |
| 2396 | case X86::MOVPC32r: { |
| 2397 | // This is a pseudo op for a two instruction sequence with a label, which |
| 2398 | // looks like: |
| 2399 | // call "L1$pb" |
| 2400 | // "L1$pb": |
| 2401 | // popl %esi |
| 2402 | |
| 2403 | // Emit the call. |
| 2404 | MCSymbol *PICBase = MF->getPICBaseSymbol(); |
| 2405 | // FIXME: We would like an efficient form for this, so we don't have to do a |
| 2406 | // lot of extra uniquing. |
| 2407 | EmitAndCountInstruction( |
| 2408 | Inst&: MCInstBuilder(X86::CALLpcrel32) |
| 2409 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: PICBase, Ctx&: OutContext))); |
| 2410 | |
| 2411 | const X86FrameLowering *FrameLowering = |
| 2412 | MF->getSubtarget<X86Subtarget>().getFrameLowering(); |
| 2413 | bool hasFP = FrameLowering->hasFP(MF: *MF); |
| 2414 | |
| 2415 | // TODO: This is needed only if we require precise CFA. |
| 2416 | bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && |
| 2417 | !OutStreamer->getDwarfFrameInfos().back().End; |
| 2418 | |
| 2419 | int stackGrowth = -RI->getSlotSize(); |
| 2420 | |
| 2421 | if (HasActiveDwarfFrame && !hasFP) { |
| 2422 | OutStreamer->emitCFIAdjustCfaOffset(Adjustment: -stackGrowth); |
| 2423 | MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); |
| 2424 | } |
| 2425 | |
| 2426 | // Emit the label. |
| 2427 | OutStreamer->emitLabel(Symbol: PICBase); |
| 2428 | |
| 2429 | // popl $reg |
| 2430 | EmitAndCountInstruction( |
| 2431 | Inst&: MCInstBuilder(X86::POP32r).addReg(Reg: MI->getOperand(i: 0).getReg())); |
| 2432 | |
| 2433 | if (HasActiveDwarfFrame && !hasFP) { |
| 2434 | OutStreamer->emitCFIAdjustCfaOffset(Adjustment: stackGrowth); |
| 2435 | } |
| 2436 | return; |
| 2437 | } |
| 2438 | |
| 2439 | case X86::ADD32ri: { |
| 2440 | // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. |
| 2441 | if (MI->getOperand(i: 2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| 2442 | break; |
| 2443 | |
| 2444 | // Okay, we have something like: |
| 2445 | // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) |
| 2446 | |
| 2447 | // For this, we want to print something like: |
| 2448 | // MYGLOBAL + (. - PICBASE) |
| 2449 | // However, we can't generate a ".", so just emit a new label here and refer |
| 2450 | // to it. |
| 2451 | MCSymbol *DotSym = OutContext.createTempSymbol(); |
| 2452 | OutStreamer->emitLabel(Symbol: DotSym); |
| 2453 | |
| 2454 | // Now that we have emitted the label, lower the complex operand expression. |
| 2455 | MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MO: MI->getOperand(i: 2)); |
| 2456 | |
| 2457 | const MCExpr *DotExpr = MCSymbolRefExpr::create(Symbol: DotSym, Ctx&: OutContext); |
| 2458 | const MCExpr *PICBase = |
| 2459 | MCSymbolRefExpr::create(Symbol: MF->getPICBaseSymbol(), Ctx&: OutContext); |
| 2460 | DotExpr = MCBinaryExpr::createSub(LHS: DotExpr, RHS: PICBase, Ctx&: OutContext); |
| 2461 | |
| 2462 | DotExpr = MCBinaryExpr::createAdd( |
| 2463 | LHS: MCSymbolRefExpr::create(Symbol: OpSym, Ctx&: OutContext), RHS: DotExpr, Ctx&: OutContext); |
| 2464 | |
| 2465 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::ADD32ri) |
| 2466 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
| 2467 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
| 2468 | .addExpr(Val: DotExpr)); |
| 2469 | return; |
| 2470 | } |
| 2471 | case TargetOpcode::STATEPOINT: |
| 2472 | return LowerSTATEPOINT(MI: *MI, MCIL&: MCInstLowering); |
| 2473 | |
| 2474 | case TargetOpcode::FAULTING_OP: |
| 2475 | return LowerFAULTING_OP(FaultingMI: *MI, MCIL&: MCInstLowering); |
| 2476 | |
| 2477 | case TargetOpcode::FENTRY_CALL: |
| 2478 | return LowerFENTRY_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2479 | |
| 2480 | case TargetOpcode::PATCHABLE_OP: |
| 2481 | return LowerPATCHABLE_OP(MI: *MI, MCIL&: MCInstLowering); |
| 2482 | |
| 2483 | case TargetOpcode::STACKMAP: |
| 2484 | return LowerSTACKMAP(MI: *MI); |
| 2485 | |
| 2486 | case TargetOpcode::PATCHPOINT: |
| 2487 | return LowerPATCHPOINT(MI: *MI, MCIL&: MCInstLowering); |
| 2488 | |
| 2489 | case TargetOpcode::PATCHABLE_FUNCTION_ENTER: |
| 2490 | return LowerPATCHABLE_FUNCTION_ENTER(MI: *MI, MCIL&: MCInstLowering); |
| 2491 | |
| 2492 | case TargetOpcode::PATCHABLE_RET: |
| 2493 | return LowerPATCHABLE_RET(MI: *MI, MCIL&: MCInstLowering); |
| 2494 | |
| 2495 | case TargetOpcode::PATCHABLE_TAIL_CALL: |
| 2496 | return LowerPATCHABLE_TAIL_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2497 | |
| 2498 | case TargetOpcode::PATCHABLE_EVENT_CALL: |
| 2499 | return LowerPATCHABLE_EVENT_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2500 | |
| 2501 | case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: |
| 2502 | return LowerPATCHABLE_TYPED_EVENT_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2503 | |
| 2504 | case X86::MORESTACK_RET: |
| 2505 | EmitAndCountInstruction(Inst&: MCInstBuilder(getRetOpcode(Subtarget: *Subtarget))); |
| 2506 | return; |
| 2507 | |
| 2508 | case X86::KCFI_CHECK: |
| 2509 | return LowerKCFI_CHECK(MI: *MI); |
| 2510 | |
| 2511 | case X86::ASAN_CHECK_MEMACCESS: |
| 2512 | return LowerASAN_CHECK_MEMACCESS(MI: *MI); |
| 2513 | |
| 2514 | case X86::MORESTACK_RET_RESTORE_R10: |
| 2515 | // Return, then restore R10. |
| 2516 | EmitAndCountInstruction(Inst&: MCInstBuilder(getRetOpcode(Subtarget: *Subtarget))); |
| 2517 | EmitAndCountInstruction( |
| 2518 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: X86::R10).addReg(Reg: X86::RAX)); |
| 2519 | return; |
| 2520 | |
| 2521 | case X86::SEH_PushReg: |
| 2522 | case X86::SEH_SaveReg: |
| 2523 | case X86::SEH_SaveXMM: |
| 2524 | case X86::SEH_StackAlloc: |
| 2525 | case X86::SEH_StackAlign: |
| 2526 | case X86::SEH_SetFrame: |
| 2527 | case X86::SEH_PushFrame: |
| 2528 | case X86::SEH_EndPrologue: |
| 2529 | case X86::SEH_EndEpilogue: |
| 2530 | case X86::SEH_UnwindV2Start: |
| 2531 | case X86::SEH_UnwindVersion: |
| 2532 | EmitSEHInstruction(MI); |
| 2533 | return; |
| 2534 | |
| 2535 | case X86::SEH_SplitChainedAtEndOfBlock: |
| 2536 | assert(!SplitChainedAtEndOfBlock && |
| 2537 | "Duplicate SEH_SplitChainedAtEndOfBlock in a current block" ); |
| 2538 | SplitChainedAtEndOfBlock = true; |
| 2539 | return; |
| 2540 | |
| 2541 | case X86::SEH_BeginEpilogue: { |
| 2542 | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?" ); |
| 2543 | EmitSEHInstruction(MI); |
| 2544 | return; |
| 2545 | } |
| 2546 | case X86::UBSAN_UD1: |
| 2547 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::UD1Lm) |
| 2548 | .addReg(Reg: X86::EAX) |
| 2549 | .addReg(Reg: X86::EAX) |
| 2550 | .addImm(Val: 1) |
| 2551 | .addReg(Reg: X86::NoRegister) |
| 2552 | .addImm(Val: MI->getOperand(i: 0).getImm()) |
| 2553 | .addReg(Reg: X86::NoRegister)); |
| 2554 | return; |
| 2555 | case X86::CALL64pcrel32: |
| 2556 | if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(Reg: X86::R11)) |
| 2557 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CS_PREFIX)); |
| 2558 | |
| 2559 | if (EnableImportCallOptimization && isImportedFunction(MO: MI->getOperand(i: 0))) { |
| 2560 | emitLabelAndRecordForImportCallOptimization( |
| 2561 | Kind: IMAGE_RETPOLINE_AMD64_IMPORT_CALL); |
| 2562 | |
| 2563 | MCInst TmpInst; |
| 2564 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2565 | |
| 2566 | // For Import Call Optimization to work, we need a the call instruction |
| 2567 | // with a rex prefix, and a 5-byte nop after the call instruction. |
| 2568 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::REX64_PREFIX)); |
| 2569 | emitCallInstruction(MCI: TmpInst); |
| 2570 | emitNop(OS&: *OutStreamer, NumBytes: 5, Subtarget); |
| 2571 | maybeEmitNopAfterCallForWindowsEH(MI); |
| 2572 | return; |
| 2573 | } |
| 2574 | |
| 2575 | break; |
| 2576 | |
| 2577 | case X86::CALL64r: |
| 2578 | if (EnableImportCallOptimization) { |
| 2579 | assert(MI->getOperand(0).getReg() == X86::RAX && |
| 2580 | "Indirect calls with impcall enabled must go through RAX (as " |
| 2581 | "enforced by CALL64r_ImpCall)" ); |
| 2582 | |
| 2583 | emitLabelAndRecordForImportCallOptimization( |
| 2584 | Kind: IMAGE_RETPOLINE_AMD64_INDIR_CALL); |
| 2585 | MCInst TmpInst; |
| 2586 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2587 | emitCallInstruction(MCI: TmpInst); |
| 2588 | |
| 2589 | // For Import Call Optimization to work, we need a 3-byte nop after the |
| 2590 | // call instruction. |
| 2591 | emitNop(OS&: *OutStreamer, NumBytes: 3, Subtarget); |
| 2592 | maybeEmitNopAfterCallForWindowsEH(MI); |
| 2593 | return; |
| 2594 | } |
| 2595 | break; |
| 2596 | |
| 2597 | case X86::CALL64m: |
| 2598 | if (EnableImportCallOptimization && isCallToCFGuardFunction(MI)) { |
| 2599 | emitLabelAndRecordForImportCallOptimization( |
| 2600 | Kind: IMAGE_RETPOLINE_AMD64_CFG_CALL); |
| 2601 | } |
| 2602 | break; |
| 2603 | |
| 2604 | case X86::JCC_1: |
| 2605 | // Two instruction prefixes (2EH for branch not-taken and 3EH for branch |
| 2606 | // taken) are used as branch hints. Here we add branch taken prefix for |
| 2607 | // jump instruction with higher probability than threshold. |
| 2608 | if (getSubtarget().hasBranchHint() && EnableBranchHint) { |
| 2609 | const MachineBranchProbabilityInfo *MBPI = |
| 2610 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 2611 | MachineBasicBlock *DestBB = MI->getOperand(i: 0).getMBB(); |
| 2612 | BranchProbability EdgeProb = |
| 2613 | MBPI->getEdgeProbability(Src: MI->getParent(), Dst: DestBB); |
| 2614 | BranchProbability Threshold(BranchHintProbabilityThreshold, 100); |
| 2615 | if (EdgeProb > Threshold) |
| 2616 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DS_PREFIX)); |
| 2617 | } |
| 2618 | break; |
| 2619 | } |
| 2620 | |
| 2621 | MCInst TmpInst; |
| 2622 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2623 | |
| 2624 | if (MI->isCall()) { |
| 2625 | emitCallInstruction(MCI: TmpInst); |
| 2626 | // Since tail calls transfer control without leaving a stack frame, there is |
| 2627 | // never a need for NOP padding tail calls. |
| 2628 | if (!IsTailJump) |
| 2629 | maybeEmitNopAfterCallForWindowsEH(MI); |
| 2630 | return; |
| 2631 | } |
| 2632 | |
| 2633 | EmitAndCountInstruction(Inst&: TmpInst); |
| 2634 | } |
| 2635 | |
| 2636 | void X86AsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, |
| 2637 | const MCSubtargetInfo *EndInfo, |
| 2638 | const MachineInstr *MI) { |
| 2639 | if (MI) { |
| 2640 | // If unwinding inline asm ends on a call, wineh may require insertion of |
| 2641 | // a nop. |
| 2642 | unsigned = MI->getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
| 2643 | if (ExtraInfo & InlineAsm::Extra_MayUnwind) |
| 2644 | maybeEmitNopAfterCallForWindowsEH(MI); |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | void X86AsmPrinter::emitCallInstruction(const llvm::MCInst &MCI) { |
| 2649 | // Stackmap shadows cannot include branch targets, so we can count the bytes |
| 2650 | // in a call towards the shadow, but must ensure that the no thread returns |
| 2651 | // in to the stackmap shadow. The only way to achieve this is if the call |
| 2652 | // is at the end of the shadow. |
| 2653 | |
| 2654 | // Count then size of the call towards the shadow |
| 2655 | SMShadowTracker.count(Inst: MCI, STI: getSubtargetInfo(), CodeEmitter: CodeEmitter.get()); |
| 2656 | // Then flush the shadow so that we fill with nops before the call, not |
| 2657 | // after it. |
| 2658 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 2659 | // Then emit the call |
| 2660 | OutStreamer->emitInstruction(Inst: MCI, STI: getSubtargetInfo()); |
| 2661 | } |
| 2662 | |
| 2663 | // Determines whether a NOP is required after a CALL, so that Windows EH |
| 2664 | // IP2State tables have the correct information. |
| 2665 | // |
| 2666 | // On most Windows platforms (AMD64, ARM64, ARM32, IA64, but *not* x86-32), |
| 2667 | // exception handling works by looking up instruction pointers in lookup |
| 2668 | // tables. These lookup tables are stored in .xdata sections in executables. |
| 2669 | // One element of the lookup tables are the "IP2State" tables (Instruction |
| 2670 | // Pointer to State). |
| 2671 | // |
| 2672 | // If a function has any instructions that require cleanup during exception |
| 2673 | // unwinding, then it will have an IP2State table. Each entry in the IP2State |
| 2674 | // table describes a range of bytes in the function's instruction stream, and |
| 2675 | // associates an "EH state number" with that range of instructions. A value of |
| 2676 | // -1 means "the null state", which does not require any code to execute. |
| 2677 | // A value other than -1 is an index into the State table. |
| 2678 | // |
| 2679 | // The entries in the IP2State table contain byte offsets within the instruction |
| 2680 | // stream of the function. The Windows ABI requires that these offsets are |
| 2681 | // aligned to instruction boundaries; they are not permitted to point to a byte |
| 2682 | // that is not the first byte of an instruction. |
| 2683 | // |
| 2684 | // Unfortunately, CALL instructions present a problem during unwinding. CALL |
| 2685 | // instructions push the address of the instruction after the CALL instruction, |
| 2686 | // so that execution can resume after the CALL. If the CALL is the last |
| 2687 | // instruction within an IP2State region, then the return address (on the stack) |
| 2688 | // points to the *next* IP2State region. This means that the unwinder will |
| 2689 | // use the wrong cleanup funclet during unwinding. |
| 2690 | // |
| 2691 | // To fix this problem, the Windows AMD64 ABI requires that CALL instructions |
| 2692 | // are never placed at the end of an IP2State region. Stated equivalently, the |
| 2693 | // end of a CALL instruction cannot be aligned to an IP2State boundary. If a |
| 2694 | // CALL instruction would occur at the end of an IP2State region, then the |
| 2695 | // compiler must insert a NOP instruction after the CALL. The NOP instruction |
| 2696 | // is placed in the same EH region as the CALL instruction, so that the return |
| 2697 | // address points to the NOP and the unwinder will locate the correct region. |
| 2698 | // |
| 2699 | // NOP padding is only necessary on Windows AMD64 targets. On ARM64 and ARM32, |
| 2700 | // instructions have a fixed size so the unwinder knows how to "back up" by |
| 2701 | // one instruction. |
| 2702 | // |
| 2703 | // Interaction with Import Call Optimization (ICO): |
| 2704 | // |
| 2705 | // Import Call Optimization (ICO) is a compiler + OS feature on Windows which |
| 2706 | // improves the performance and security of DLL imports. ICO relies on using a |
| 2707 | // specific CALL idiom that can be replaced by the OS DLL loader. This removes |
| 2708 | // a load and indirect CALL and replaces it with a single direct CALL. |
| 2709 | // |
| 2710 | // To achieve this, ICO also inserts NOPs after the CALL instruction. If the |
| 2711 | // end of the CALL is aligned with an EH state transition, we *also* insert |
| 2712 | // a single-byte NOP. **Both forms of NOPs must be preserved.** They cannot |
| 2713 | // be combined into a single larger NOP; nor can the second NOP be removed. |
| 2714 | // |
| 2715 | // This is necessary because, if ICO is active and the call site is modified |
| 2716 | // by the loader, the loader will end up overwriting the NOPs that were inserted |
| 2717 | // for ICO. That means that those NOPs cannot be used for the correct |
| 2718 | // termination of the exception handling region (the IP2State transition), |
| 2719 | // so we still need an additional NOP instruction. The NOPs cannot be combined |
| 2720 | // into a longer NOP (which is ordinarily desirable) because then ICO would |
| 2721 | // split one instruction, producing a malformed instruction after the ICO call. |
| 2722 | void X86AsmPrinter::maybeEmitNopAfterCallForWindowsEH(const MachineInstr *MI) { |
| 2723 | // We only need to insert NOPs after CALLs when targeting Windows on AMD64. |
| 2724 | // (Don't let the name fool you: Itanium refers to table-based exception |
| 2725 | // handling, not the Itanium architecture.) |
| 2726 | if (MAI->getExceptionHandlingType() != ExceptionHandling::WinEH || |
| 2727 | MAI->getWinEHEncodingType() != WinEH::EncodingType::Itanium) { |
| 2728 | return; |
| 2729 | } |
| 2730 | |
| 2731 | bool HasEHPersonality = MF->getWinEHFuncInfo() != nullptr; |
| 2732 | |
| 2733 | // Set up MBB iterator, initially positioned on the same MBB as MI. |
| 2734 | MachineFunction::const_iterator MFI(MI->getParent()); |
| 2735 | MachineFunction::const_iterator MFE(MF->end()); |
| 2736 | |
| 2737 | // Set up instruction iterator, positioned immediately *after* MI. |
| 2738 | MachineBasicBlock::const_iterator MBBI(MI); |
| 2739 | MachineBasicBlock::const_iterator MBBE = MI->getParent()->end(); |
| 2740 | ++MBBI; // Step over MI |
| 2741 | |
| 2742 | // This loop iterates MBBs |
| 2743 | for (;;) { |
| 2744 | // This loop iterates instructions |
| 2745 | for (; MBBI != MBBE; ++MBBI) { |
| 2746 | // Check the instruction that follows this CALL. |
| 2747 | const MachineInstr &NextMI = *MBBI; |
| 2748 | |
| 2749 | // If there is an EH_LABEL after this CALL, then there is an EH state |
| 2750 | // transition after this CALL. This is exactly the situation which |
| 2751 | // requires NOP padding. |
| 2752 | if (NextMI.isEHLabel()) { |
| 2753 | if (HasEHPersonality) { |
| 2754 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::NOOP)); |
| 2755 | return; |
| 2756 | } |
| 2757 | // We actually want to continue, in case there is an SEH_BeginEpilogue |
| 2758 | // instruction after the EH_LABEL. In some situations, IR is produced |
| 2759 | // that contains EH_LABEL pseudo-instructions, even when we are not |
| 2760 | // generating IP2State tables. We still need to insert a NOP before |
| 2761 | // SEH_BeginEpilogue in that case. |
| 2762 | continue; |
| 2763 | } |
| 2764 | |
| 2765 | // Somewhat similarly, if the CALL is the last instruction before the |
| 2766 | // SEH prologue, then we also need a NOP. This is necessary because the |
| 2767 | // Windows stack unwinder will not invoke a function's exception handler |
| 2768 | // if the instruction pointer is in the function prologue or epilogue. |
| 2769 | // |
| 2770 | // We always emit a NOP before SEH_BeginEpilogue, even if there is no |
| 2771 | // personality function (unwind info) for this frame. This is the same |
| 2772 | // behavior as MSVC. |
| 2773 | if (NextMI.getOpcode() == X86::SEH_BeginEpilogue) { |
| 2774 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::NOOP)); |
| 2775 | return; |
| 2776 | } |
| 2777 | |
| 2778 | if (!NextMI.isPseudo() && !NextMI.isMetaInstruction()) { |
| 2779 | // We found a real instruction. During the CALL, the return IP will |
| 2780 | // point to this instruction. Since this instruction has the same EH |
| 2781 | // state as the call itself (because there is no intervening EH_LABEL), |
| 2782 | // the IP2State table will be accurate; there is no need to insert a |
| 2783 | // NOP. |
| 2784 | return; |
| 2785 | } |
| 2786 | |
| 2787 | // The next instruction is a pseudo-op. Ignore it and keep searching. |
| 2788 | // Because these instructions do not generate any machine code, they |
| 2789 | // cannot prevent the IP2State table from pointing at the wrong |
| 2790 | // instruction during a CALL. |
| 2791 | } |
| 2792 | |
| 2793 | // We've reached the end of this MBB. Find the next MBB in program order. |
| 2794 | // MBB order should be finalized by this point, so falling across MBBs is |
| 2795 | // expected. |
| 2796 | ++MFI; |
| 2797 | if (MFI == MFE) { |
| 2798 | // No more blocks; we've reached the end of the function. This should |
| 2799 | // only happen with no-return functions, but double-check to be sure. |
| 2800 | if (HasEHPersonality) { |
| 2801 | // If the CALL has no successors, then it is a noreturn function. |
| 2802 | // Insert an INT3 instead of a NOP. This accomplishes the same purpose, |
| 2803 | // but is more clear to read. Also, analysis tools will understand |
| 2804 | // that they should not continue disassembling after the CALL (unless |
| 2805 | // there are other branches to that label). |
| 2806 | if (MI->getParent()->succ_empty()) |
| 2807 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::INT3)); |
| 2808 | else |
| 2809 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::NOOP)); |
| 2810 | } |
| 2811 | return; |
| 2812 | } |
| 2813 | |
| 2814 | // Set up iterator to scan the next basic block. |
| 2815 | const MachineBasicBlock *NextMBB = &*MFI; |
| 2816 | MBBI = NextMBB->instr_begin(); |
| 2817 | MBBE = NextMBB->instr_end(); |
| 2818 | } |
| 2819 | } |
| 2820 | |
| 2821 | void X86AsmPrinter::emitLabelAndRecordForImportCallOptimization( |
| 2822 | ImportCallKind Kind) { |
| 2823 | assert(EnableImportCallOptimization); |
| 2824 | |
| 2825 | MCSymbol *CallSiteSymbol = MMI->getContext().createNamedTempSymbol(Name: "impcall" ); |
| 2826 | OutStreamer->emitLabel(Symbol: CallSiteSymbol); |
| 2827 | |
| 2828 | SectionToImportedFunctionCalls[OutStreamer->getCurrentSectionOnly()] |
| 2829 | .push_back(x: {.CalleeSymbol: CallSiteSymbol, .Kind: Kind}); |
| 2830 | } |
| 2831 | |