| 1 | //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Builtin calls as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGBuiltin.h" |
| 14 | #include "ABIInfo.h" |
| 15 | #include "CGCUDARuntime.h" |
| 16 | #include "CGCXXABI.h" |
| 17 | #include "CGDebugInfo.h" |
| 18 | #include "CGObjCRuntime.h" |
| 19 | #include "CGOpenCLRuntime.h" |
| 20 | #include "CGRecordLayout.h" |
| 21 | #include "CGValue.h" |
| 22 | #include "CodeGenFunction.h" |
| 23 | #include "CodeGenModule.h" |
| 24 | #include "ConstantEmitter.h" |
| 25 | #include "PatternInit.h" |
| 26 | #include "TargetInfo.h" |
| 27 | #include "clang/AST/OSLog.h" |
| 28 | #include "clang/AST/StmtVisitor.h" |
| 29 | #include "clang/Basic/TargetInfo.h" |
| 30 | #include "clang/Frontend/FrontendDiagnostic.h" |
| 31 | #include "llvm/IR/InlineAsm.h" |
| 32 | #include "llvm/IR/Instruction.h" |
| 33 | #include "llvm/IR/Intrinsics.h" |
| 34 | #include "llvm/IR/IntrinsicsX86.h" |
| 35 | #include "llvm/IR/MatrixBuilder.h" |
| 36 | #include "llvm/Support/ConvertUTF.h" |
| 37 | #include "llvm/Support/ScopedPrinter.h" |
| 38 | #include <optional> |
| 39 | #include <utility> |
| 40 | |
| 41 | using namespace clang; |
| 42 | using namespace CodeGen; |
| 43 | using namespace llvm; |
| 44 | |
| 45 | /// Some builtins do not have library implementation on some targets and |
| 46 | /// are instead emitted as LLVM IRs by some target builtin emitters. |
| 47 | /// FIXME: Remove this when library support is added |
| 48 | static bool shouldEmitBuiltinAsIR(unsigned BuiltinID, |
| 49 | const Builtin::Context &BI, |
| 50 | const CodeGenFunction &CGF) { |
| 51 | if (!CGF.CGM.getLangOpts().MathErrno && |
| 52 | CGF.CurFPFeatures.getExceptionMode() == |
| 53 | LangOptions::FPExceptionModeKind::FPE_Ignore && |
| 54 | !CGF.CGM.getTargetCodeGenInfo().supportsLibCall()) { |
| 55 | switch (BuiltinID) { |
| 56 | default: |
| 57 | return false; |
| 58 | case Builtin::BIlogbf: |
| 59 | case Builtin::BI__builtin_logbf: |
| 60 | case Builtin::BIlogb: |
| 61 | case Builtin::BI__builtin_logb: |
| 62 | case Builtin::BIscalbnf: |
| 63 | case Builtin::BI__builtin_scalbnf: |
| 64 | case Builtin::BIscalbn: |
| 65 | case Builtin::BI__builtin_scalbn: |
| 66 | return true; |
| 67 | } |
| 68 | } |
| 69 | return false; |
| 70 | } |
| 71 | |
| 72 | static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, |
| 73 | unsigned BuiltinID, const CallExpr *E, |
| 74 | ReturnValueSlot ReturnValue, |
| 75 | llvm::Triple::ArchType Arch) { |
| 76 | // When compiling in HipStdPar mode we have to be conservative in rejecting |
| 77 | // target specific features in the FE, and defer the possible error to the |
| 78 | // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
| 79 | // referenced by an accelerator executable function, we emit an error. |
| 80 | // Returning nullptr here leads to the builtin being handled in |
| 81 | // EmitStdParUnsupportedBuiltin. |
| 82 | if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice && |
| 83 | Arch != CGF->getTarget().getTriple().getArch()) |
| 84 | return nullptr; |
| 85 | |
| 86 | switch (Arch) { |
| 87 | case llvm::Triple::arm: |
| 88 | case llvm::Triple::armeb: |
| 89 | case llvm::Triple::thumb: |
| 90 | case llvm::Triple::thumbeb: |
| 91 | return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); |
| 92 | case llvm::Triple::aarch64: |
| 93 | case llvm::Triple::aarch64_32: |
| 94 | case llvm::Triple::aarch64_be: |
| 95 | return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); |
| 96 | case llvm::Triple::bpfeb: |
| 97 | case llvm::Triple::bpfel: |
| 98 | return CGF->EmitBPFBuiltinExpr(BuiltinID, E); |
| 99 | case llvm::Triple::dxil: |
| 100 | return CGF->EmitDirectXBuiltinExpr(BuiltinID, E); |
| 101 | case llvm::Triple::x86: |
| 102 | case llvm::Triple::x86_64: |
| 103 | return CGF->EmitX86BuiltinExpr(BuiltinID, E); |
| 104 | case llvm::Triple::ppc: |
| 105 | case llvm::Triple::ppcle: |
| 106 | case llvm::Triple::ppc64: |
| 107 | case llvm::Triple::ppc64le: |
| 108 | return CGF->EmitPPCBuiltinExpr(BuiltinID, E); |
| 109 | case llvm::Triple::r600: |
| 110 | case llvm::Triple::amdgcn: |
| 111 | return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| 112 | case llvm::Triple::systemz: |
| 113 | return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); |
| 114 | case llvm::Triple::nvptx: |
| 115 | case llvm::Triple::nvptx64: |
| 116 | return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); |
| 117 | case llvm::Triple::wasm32: |
| 118 | case llvm::Triple::wasm64: |
| 119 | return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); |
| 120 | case llvm::Triple::hexagon: |
| 121 | return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); |
| 122 | case llvm::Triple::riscv32: |
| 123 | case llvm::Triple::riscv64: |
| 124 | return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); |
| 125 | case llvm::Triple::spirv32: |
| 126 | case llvm::Triple::spirv64: |
| 127 | if (CGF->getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA) |
| 128 | return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| 129 | [[fallthrough]]; |
| 130 | case llvm::Triple::spirv: |
| 131 | return CGF->EmitSPIRVBuiltinExpr(BuiltinID, E); |
| 132 | default: |
| 133 | return nullptr; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| 138 | const CallExpr *E, |
| 139 | ReturnValueSlot ReturnValue) { |
| 140 | if (getContext().BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) { |
| 141 | assert(getContext().getAuxTargetInfo() && "Missing aux target info" ); |
| 142 | return EmitTargetArchBuiltinExpr( |
| 143 | CGF: this, BuiltinID: getContext().BuiltinInfo.getAuxBuiltinID(ID: BuiltinID), E, |
| 144 | ReturnValue, Arch: getContext().getAuxTargetInfo()->getTriple().getArch()); |
| 145 | } |
| 146 | |
| 147 | return EmitTargetArchBuiltinExpr(CGF: this, BuiltinID, E, ReturnValue, |
| 148 | Arch: getTarget().getTriple().getArch()); |
| 149 | } |
| 150 | |
| 151 | static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, |
| 152 | Align AlignmentInBytes) { |
| 153 | ConstantInt *Byte; |
| 154 | switch (CGF.getLangOpts().getTrivialAutoVarInit()) { |
| 155 | case LangOptions::TrivialAutoVarInitKind::Uninitialized: |
| 156 | // Nothing to initialize. |
| 157 | return; |
| 158 | case LangOptions::TrivialAutoVarInitKind::Zero: |
| 159 | Byte = CGF.Builder.getInt8(C: 0x00); |
| 160 | break; |
| 161 | case LangOptions::TrivialAutoVarInitKind::Pattern: { |
| 162 | llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(C&: CGF.CGM.getLLVMContext()); |
| 163 | Byte = llvm::dyn_cast<llvm::ConstantInt>( |
| 164 | Val: initializationPatternFor(CGF.CGM, Int8)); |
| 165 | break; |
| 166 | } |
| 167 | } |
| 168 | if (CGF.CGM.stopAutoInit()) |
| 169 | return; |
| 170 | auto *I = CGF.Builder.CreateMemSet(Ptr: AI, Val: Byte, Size, Align: AlignmentInBytes); |
| 171 | I->addAnnotationMetadata(Annotation: "auto-init" ); |
| 172 | } |
| 173 | |
| 174 | /// getBuiltinLibFunction - Given a builtin id for a function like |
| 175 | /// "__builtin_fabsf", return a Function* for "fabsf". |
| 176 | llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| 177 | unsigned BuiltinID) { |
| 178 | assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| 179 | |
| 180 | // Get the name, skip over the __builtin_ prefix (if necessary). We may have |
| 181 | // to build this up so provide a small stack buffer to handle the vast |
| 182 | // majority of names. |
| 183 | llvm::SmallString<64> Name; |
| 184 | GlobalDecl D(FD); |
| 185 | |
| 186 | // TODO: This list should be expanded or refactored after all GCC-compatible |
| 187 | // std libcall builtins are implemented. |
| 188 | static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{ |
| 189 | {Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128" }, |
| 190 | {Builtin::BI__builtin___printf_chk, "__printf_chkieee128" }, |
| 191 | {Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128" }, |
| 192 | {Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128" }, |
| 193 | {Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128" }, |
| 194 | {Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128" }, |
| 195 | {Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128" }, |
| 196 | {Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128" }, |
| 197 | {Builtin::BI__builtin_fprintf, "__fprintfieee128" }, |
| 198 | {Builtin::BI__builtin_printf, "__printfieee128" }, |
| 199 | {Builtin::BI__builtin_snprintf, "__snprintfieee128" }, |
| 200 | {Builtin::BI__builtin_sprintf, "__sprintfieee128" }, |
| 201 | {Builtin::BI__builtin_vfprintf, "__vfprintfieee128" }, |
| 202 | {Builtin::BI__builtin_vprintf, "__vprintfieee128" }, |
| 203 | {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128" }, |
| 204 | {Builtin::BI__builtin_vsprintf, "__vsprintfieee128" }, |
| 205 | {Builtin::BI__builtin_fscanf, "__fscanfieee128" }, |
| 206 | {Builtin::BI__builtin_scanf, "__scanfieee128" }, |
| 207 | {Builtin::BI__builtin_sscanf, "__sscanfieee128" }, |
| 208 | {Builtin::BI__builtin_vfscanf, "__vfscanfieee128" }, |
| 209 | {Builtin::BI__builtin_vscanf, "__vscanfieee128" }, |
| 210 | {Builtin::BI__builtin_vsscanf, "__vsscanfieee128" }, |
| 211 | {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128" }, |
| 212 | }; |
| 213 | |
| 214 | // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit |
| 215 | // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions |
| 216 | // if it is 64-bit 'long double' mode. |
| 217 | static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{ |
| 218 | {Builtin::BI__builtin_frexpl, "frexp" }, |
| 219 | {Builtin::BI__builtin_ldexpl, "ldexp" }, |
| 220 | {Builtin::BI__builtin_modfl, "modf" }, |
| 221 | }; |
| 222 | |
| 223 | // If the builtin has been declared explicitly with an assembler label, |
| 224 | // use the mangled name. This differs from the plain label on platforms |
| 225 | // that prefix labels. |
| 226 | if (FD->hasAttr<AsmLabelAttr>()) |
| 227 | Name = getMangledName(GD: D); |
| 228 | else { |
| 229 | // TODO: This mutation should also be applied to other targets other than |
| 230 | // PPC, after backend supports IEEE 128-bit style libcalls. |
| 231 | if (getTriple().isPPC64() && |
| 232 | &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() && |
| 233 | F128Builtins.contains(Val: BuiltinID)) |
| 234 | Name = F128Builtins[BuiltinID]; |
| 235 | else if (getTriple().isOSAIX() && |
| 236 | &getTarget().getLongDoubleFormat() == |
| 237 | &llvm::APFloat::IEEEdouble() && |
| 238 | AIXLongDouble64Builtins.contains(Val: BuiltinID)) |
| 239 | Name = AIXLongDouble64Builtins[BuiltinID]; |
| 240 | else |
| 241 | Name = Context.BuiltinInfo.getName(ID: BuiltinID).substr(pos: 10); |
| 242 | } |
| 243 | |
| 244 | llvm::FunctionType *Ty = |
| 245 | cast<llvm::FunctionType>(Val: getTypes().ConvertType(T: FD->getType())); |
| 246 | |
| 247 | return GetOrCreateLLVMFunction(MangledName: Name, Ty, D, /*ForVTable=*/false); |
| 248 | } |
| 249 | |
| 250 | /// Emit the conversions required to turn the given value into an |
| 251 | /// integer of the given size. |
| 252 | Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| 253 | QualType T, llvm::IntegerType *IntType) { |
| 254 | V = CGF.EmitToMemory(Value: V, Ty: T); |
| 255 | |
| 256 | if (V->getType()->isPointerTy()) |
| 257 | return CGF.Builder.CreatePtrToInt(V, DestTy: IntType); |
| 258 | |
| 259 | assert(V->getType() == IntType); |
| 260 | return V; |
| 261 | } |
| 262 | |
| 263 | Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| 264 | QualType T, llvm::Type *ResultType) { |
| 265 | V = CGF.EmitFromMemory(Value: V, Ty: T); |
| 266 | |
| 267 | if (ResultType->isPointerTy()) |
| 268 | return CGF.Builder.CreateIntToPtr(V, DestTy: ResultType); |
| 269 | |
| 270 | assert(V->getType() == ResultType); |
| 271 | return V; |
| 272 | } |
| 273 | |
| 274 | Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) { |
| 275 | ASTContext &Ctx = CGF.getContext(); |
| 276 | Address Ptr = CGF.EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 277 | const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); |
| 278 | unsigned Bytes = Ptr.getElementType()->isPointerTy() |
| 279 | ? Ctx.getTypeSizeInChars(T: Ctx.VoidPtrTy).getQuantity() |
| 280 | : DL.getTypeStoreSize(Ty: Ptr.getElementType()); |
| 281 | unsigned Align = Ptr.getAlignment().getQuantity(); |
| 282 | if (Align % Bytes != 0) { |
| 283 | DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
| 284 | Diags.Report(Loc: E->getBeginLoc(), DiagID: diag::warn_sync_op_misaligned); |
| 285 | // Force address to be at least naturally-aligned. |
| 286 | return Ptr.withAlignment(NewAlignment: CharUnits::fromQuantity(Quantity: Bytes)); |
| 287 | } |
| 288 | return Ptr; |
| 289 | } |
| 290 | |
| 291 | /// Utility to insert an atomic instruction based on Intrinsic::ID |
| 292 | /// and the expression node. |
| 293 | Value *MakeBinaryAtomicValue( |
| 294 | CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, |
| 295 | AtomicOrdering Ordering) { |
| 296 | |
| 297 | QualType T = E->getType(); |
| 298 | assert(E->getArg(0)->getType()->isPointerType()); |
| 299 | assert(CGF.getContext().hasSameUnqualifiedType(T, |
| 300 | E->getArg(0)->getType()->getPointeeType())); |
| 301 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| 302 | |
| 303 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 304 | |
| 305 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
| 306 | C&: CGF.getLLVMContext(), NumBits: CGF.getContext().getTypeSize(T)); |
| 307 | |
| 308 | llvm::Value *Val = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 309 | llvm::Type *ValueType = Val->getType(); |
| 310 | Val = EmitToInt(CGF, V: Val, T, IntType); |
| 311 | |
| 312 | llvm::Value *Result = |
| 313 | CGF.Builder.CreateAtomicRMW(Op: Kind, Addr: DestAddr, Val, Ordering); |
| 314 | return EmitFromInt(CGF, V: Result, T, ResultType: ValueType); |
| 315 | } |
| 316 | |
| 317 | static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
| 318 | Value *Val = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 319 | Address Addr = CGF.EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 320 | |
| 321 | Val = CGF.EmitToMemory(Value: Val, Ty: E->getArg(Arg: 0)->getType()); |
| 322 | LValue LV = CGF.MakeAddrLValue(Addr, T: E->getArg(Arg: 0)->getType()); |
| 323 | LV.setNontemporal(true); |
| 324 | CGF.EmitStoreOfScalar(value: Val, lvalue: LV, isInit: false); |
| 325 | return nullptr; |
| 326 | } |
| 327 | |
| 328 | static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| 329 | Address Addr = CGF.EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 330 | |
| 331 | LValue LV = CGF.MakeAddrLValue(Addr, T: E->getType()); |
| 332 | LV.setNontemporal(true); |
| 333 | return CGF.EmitLoadOfScalar(lvalue: LV, Loc: E->getExprLoc()); |
| 334 | } |
| 335 | |
| 336 | static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| 337 | llvm::AtomicRMWInst::BinOp Kind, |
| 338 | const CallExpr *E) { |
| 339 | return RValue::get(V: MakeBinaryAtomicValue(CGF, Kind, E)); |
| 340 | } |
| 341 | |
| 342 | /// Utility to insert an atomic instruction based Intrinsic::ID and |
| 343 | /// the expression node, where the return value is the result of the |
| 344 | /// operation. |
| 345 | static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| 346 | llvm::AtomicRMWInst::BinOp Kind, |
| 347 | const CallExpr *E, |
| 348 | Instruction::BinaryOps Op, |
| 349 | bool Invert = false) { |
| 350 | QualType T = E->getType(); |
| 351 | assert(E->getArg(0)->getType()->isPointerType()); |
| 352 | assert(CGF.getContext().hasSameUnqualifiedType(T, |
| 353 | E->getArg(0)->getType()->getPointeeType())); |
| 354 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| 355 | |
| 356 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 357 | |
| 358 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
| 359 | C&: CGF.getLLVMContext(), NumBits: CGF.getContext().getTypeSize(T)); |
| 360 | |
| 361 | llvm::Value *Val = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 362 | llvm::Type *ValueType = Val->getType(); |
| 363 | Val = EmitToInt(CGF, V: Val, T, IntType); |
| 364 | |
| 365 | llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| 366 | Op: Kind, Addr: DestAddr, Val, Ordering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 367 | Result = CGF.Builder.CreateBinOp(Opc: Op, LHS: Result, RHS: Val); |
| 368 | if (Invert) |
| 369 | Result = |
| 370 | CGF.Builder.CreateBinOp(Opc: llvm::Instruction::Xor, LHS: Result, |
| 371 | RHS: llvm::ConstantInt::getAllOnesValue(Ty: IntType)); |
| 372 | Result = EmitFromInt(CGF, V: Result, T, ResultType: ValueType); |
| 373 | return RValue::get(V: Result); |
| 374 | } |
| 375 | |
| 376 | /// Utility to insert an atomic cmpxchg instruction. |
| 377 | /// |
| 378 | /// @param CGF The current codegen function. |
| 379 | /// @param E Builtin call expression to convert to cmpxchg. |
| 380 | /// arg0 - address to operate on |
| 381 | /// arg1 - value to compare with |
| 382 | /// arg2 - new value |
| 383 | /// @param ReturnBool Specifies whether to return success flag of |
| 384 | /// cmpxchg result or the old value. |
| 385 | /// |
| 386 | /// @returns result of cmpxchg, according to ReturnBool |
| 387 | /// |
| 388 | /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics |
| 389 | /// invoke the function EmitAtomicCmpXchgForMSIntrin. |
| 390 | Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
| 391 | bool ReturnBool) { |
| 392 | QualType T = ReturnBool ? E->getArg(Arg: 1)->getType() : E->getType(); |
| 393 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 394 | |
| 395 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
| 396 | C&: CGF.getLLVMContext(), NumBits: CGF.getContext().getTypeSize(T)); |
| 397 | |
| 398 | Value *Cmp = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 399 | llvm::Type *ValueType = Cmp->getType(); |
| 400 | Cmp = EmitToInt(CGF, V: Cmp, T, IntType); |
| 401 | Value *New = EmitToInt(CGF, V: CGF.EmitScalarExpr(E: E->getArg(Arg: 2)), T, IntType); |
| 402 | |
| 403 | Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
| 404 | Addr: DestAddr, Cmp, New, SuccessOrdering: llvm::AtomicOrdering::SequentiallyConsistent, |
| 405 | FailureOrdering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 406 | if (ReturnBool) |
| 407 | // Extract boolean success flag and zext it to int. |
| 408 | return CGF.Builder.CreateZExt(V: CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 1), |
| 409 | DestTy: CGF.ConvertType(T: E->getType())); |
| 410 | else |
| 411 | // Extract old value and emit it using the same type as compare value. |
| 412 | return EmitFromInt(CGF, V: CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 0), T, |
| 413 | ResultType: ValueType); |
| 414 | } |
| 415 | |
| 416 | /// This function should be invoked to emit atomic cmpxchg for Microsoft's |
| 417 | /// _InterlockedCompareExchange* intrinsics which have the following signature: |
| 418 | /// T _InterlockedCompareExchange(T volatile *Destination, |
| 419 | /// T Exchange, |
| 420 | /// T Comparand); |
| 421 | /// |
| 422 | /// Whereas the llvm 'cmpxchg' instruction has the following syntax: |
| 423 | /// cmpxchg *Destination, Comparand, Exchange. |
| 424 | /// So we need to swap Comparand and Exchange when invoking |
| 425 | /// CreateAtomicCmpXchg. That is the reason we could not use the above utility |
| 426 | /// function MakeAtomicCmpXchgValue since it expects the arguments to be |
| 427 | /// already swapped. |
| 428 | |
| 429 | static |
| 430 | Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, |
| 431 | AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { |
| 432 | assert(E->getArg(0)->getType()->isPointerType()); |
| 433 | assert(CGF.getContext().hasSameUnqualifiedType( |
| 434 | E->getType(), E->getArg(0)->getType()->getPointeeType())); |
| 435 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| 436 | E->getArg(1)->getType())); |
| 437 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| 438 | E->getArg(2)->getType())); |
| 439 | |
| 440 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 441 | |
| 442 | auto *Exchange = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 443 | auto *RTy = Exchange->getType(); |
| 444 | |
| 445 | auto *Comparand = CGF.EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 446 | |
| 447 | if (RTy->isPointerTy()) { |
| 448 | Exchange = CGF.Builder.CreatePtrToInt(V: Exchange, DestTy: CGF.IntPtrTy); |
| 449 | Comparand = CGF.Builder.CreatePtrToInt(V: Comparand, DestTy: CGF.IntPtrTy); |
| 450 | } |
| 451 | |
| 452 | // For Release ordering, the failure ordering should be Monotonic. |
| 453 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? |
| 454 | AtomicOrdering::Monotonic : |
| 455 | SuccessOrdering; |
| 456 | |
| 457 | // The atomic instruction is marked volatile for consistency with MSVC. This |
| 458 | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| 459 | // _Interlocked* operations in the future, we will have to remove the volatile |
| 460 | // marker. |
| 461 | auto *CmpXchg = CGF.Builder.CreateAtomicCmpXchg( |
| 462 | Addr: DestAddr, Cmp: Comparand, New: Exchange, SuccessOrdering, FailureOrdering); |
| 463 | CmpXchg->setVolatile(true); |
| 464 | |
| 465 | auto *Result = CGF.Builder.CreateExtractValue(Agg: CmpXchg, Idxs: 0); |
| 466 | if (RTy->isPointerTy()) { |
| 467 | Result = CGF.Builder.CreateIntToPtr(V: Result, DestTy: RTy); |
| 468 | } |
| 469 | |
| 470 | return Result; |
| 471 | } |
| 472 | |
| 473 | // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are |
| 474 | // prototyped like this: |
| 475 | // |
| 476 | // unsigned char _InterlockedCompareExchange128...( |
| 477 | // __int64 volatile * _Destination, |
| 478 | // __int64 _ExchangeHigh, |
| 479 | // __int64 _ExchangeLow, |
| 480 | // __int64 * _ComparandResult); |
| 481 | // |
| 482 | // Note that Destination is assumed to be at least 16-byte aligned, despite |
| 483 | // being typed int64. |
| 484 | |
| 485 | static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, |
| 486 | const CallExpr *E, |
| 487 | AtomicOrdering SuccessOrdering) { |
| 488 | assert(E->getNumArgs() == 4); |
| 489 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 490 | llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 491 | llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 492 | Address ComparandAddr = CGF.EmitPointerWithAlignment(Addr: E->getArg(Arg: 3)); |
| 493 | |
| 494 | assert(DestPtr->getType()->isPointerTy()); |
| 495 | assert(!ExchangeHigh->getType()->isPointerTy()); |
| 496 | assert(!ExchangeLow->getType()->isPointerTy()); |
| 497 | |
| 498 | // For Release ordering, the failure ordering should be Monotonic. |
| 499 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release |
| 500 | ? AtomicOrdering::Monotonic |
| 501 | : SuccessOrdering; |
| 502 | |
| 503 | // Convert to i128 pointers and values. Alignment is also overridden for |
| 504 | // destination pointer. |
| 505 | llvm::Type *Int128Ty = llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: 128); |
| 506 | Address DestAddr(DestPtr, Int128Ty, |
| 507 | CGF.getContext().toCharUnitsFromBits(BitSize: 128)); |
| 508 | ComparandAddr = ComparandAddr.withElementType(ElemTy: Int128Ty); |
| 509 | |
| 510 | // (((i128)hi) << 64) | ((i128)lo) |
| 511 | ExchangeHigh = CGF.Builder.CreateZExt(V: ExchangeHigh, DestTy: Int128Ty); |
| 512 | ExchangeLow = CGF.Builder.CreateZExt(V: ExchangeLow, DestTy: Int128Ty); |
| 513 | ExchangeHigh = |
| 514 | CGF.Builder.CreateShl(LHS: ExchangeHigh, RHS: llvm::ConstantInt::get(Ty: Int128Ty, V: 64)); |
| 515 | llvm::Value *Exchange = CGF.Builder.CreateOr(LHS: ExchangeHigh, RHS: ExchangeLow); |
| 516 | |
| 517 | // Load the comparand for the instruction. |
| 518 | llvm::Value *Comparand = CGF.Builder.CreateLoad(Addr: ComparandAddr); |
| 519 | |
| 520 | auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Addr: DestAddr, Cmp: Comparand, New: Exchange, |
| 521 | SuccessOrdering, FailureOrdering); |
| 522 | |
| 523 | // The atomic instruction is marked volatile for consistency with MSVC. This |
| 524 | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| 525 | // _Interlocked* operations in the future, we will have to remove the volatile |
| 526 | // marker. |
| 527 | CXI->setVolatile(true); |
| 528 | |
| 529 | // Store the result as an outparameter. |
| 530 | CGF.Builder.CreateStore(Val: CGF.Builder.CreateExtractValue(Agg: CXI, Idxs: 0), |
| 531 | Addr: ComparandAddr); |
| 532 | |
| 533 | // Get the success boolean and zero extend it to i8. |
| 534 | Value *Success = CGF.Builder.CreateExtractValue(Agg: CXI, Idxs: 1); |
| 535 | return CGF.Builder.CreateZExt(V: Success, DestTy: CGF.Int8Ty); |
| 536 | } |
| 537 | |
| 538 | static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, |
| 539 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| 540 | assert(E->getArg(0)->getType()->isPointerType()); |
| 541 | |
| 542 | auto *IntTy = CGF.ConvertType(T: E->getType()); |
| 543 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 544 | auto *Result = CGF.Builder.CreateAtomicRMW( |
| 545 | Op: AtomicRMWInst::Add, Addr: DestAddr, Val: ConstantInt::get(Ty: IntTy, V: 1), Ordering); |
| 546 | return CGF.Builder.CreateAdd(LHS: Result, RHS: ConstantInt::get(Ty: IntTy, V: 1)); |
| 547 | } |
| 548 | |
| 549 | static Value *EmitAtomicDecrementValue( |
| 550 | CodeGenFunction &CGF, const CallExpr *E, |
| 551 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| 552 | assert(E->getArg(0)->getType()->isPointerType()); |
| 553 | |
| 554 | auto *IntTy = CGF.ConvertType(T: E->getType()); |
| 555 | Address DestAddr = CheckAtomicAlignment(CGF, E); |
| 556 | auto *Result = CGF.Builder.CreateAtomicRMW( |
| 557 | Op: AtomicRMWInst::Sub, Addr: DestAddr, Val: ConstantInt::get(Ty: IntTy, V: 1), Ordering); |
| 558 | return CGF.Builder.CreateSub(LHS: Result, RHS: ConstantInt::get(Ty: IntTy, V: 1)); |
| 559 | } |
| 560 | |
| 561 | // Build a plain volatile load. |
| 562 | static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| 563 | Value *Ptr = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 564 | QualType ElTy = E->getArg(Arg: 0)->getType()->getPointeeType(); |
| 565 | CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(T: ElTy); |
| 566 | llvm::Type *ITy = |
| 567 | llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: LoadSize.getQuantity() * 8); |
| 568 | llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ty: ITy, Addr: Ptr, Align: LoadSize); |
| 569 | Load->setVolatile(true); |
| 570 | return Load; |
| 571 | } |
| 572 | |
| 573 | // Build a plain volatile store. |
| 574 | static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { |
| 575 | Value *Ptr = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 576 | Value *Value = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 577 | QualType ElTy = E->getArg(Arg: 0)->getType()->getPointeeType(); |
| 578 | CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(T: ElTy); |
| 579 | llvm::StoreInst *Store = |
| 580 | CGF.Builder.CreateAlignedStore(Val: Value, Addr: Ptr, Align: StoreSize); |
| 581 | Store->setVolatile(true); |
| 582 | return Store; |
| 583 | } |
| 584 | |
| 585 | // Emit a simple mangled intrinsic that has 1 argument and a return type |
| 586 | // matching the argument type. Depending on mode, this may be a constrained |
| 587 | // floating-point intrinsic. |
| 588 | Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| 589 | const CallExpr *E, unsigned IntrinsicID, |
| 590 | unsigned ConstrainedIntrinsicID) { |
| 591 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 592 | |
| 593 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 594 | if (CGF.Builder.getIsFPConstrained()) { |
| 595 | Function *F = CGF.CGM.getIntrinsic(IID: ConstrainedIntrinsicID, Tys: Src0->getType()); |
| 596 | return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0 }); |
| 597 | } else { |
| 598 | Function *F = CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: Src0->getType()); |
| 599 | return CGF.Builder.CreateCall(Callee: F, Args: Src0); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | // Emit an intrinsic that has 2 operands of the same type as its result. |
| 604 | // Depending on mode, this may be a constrained floating-point intrinsic. |
| 605 | static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| 606 | const CallExpr *E, unsigned IntrinsicID, |
| 607 | unsigned ConstrainedIntrinsicID) { |
| 608 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 609 | llvm::Value *Src1 = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 610 | |
| 611 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 612 | if (CGF.Builder.getIsFPConstrained()) { |
| 613 | Function *F = CGF.CGM.getIntrinsic(IID: ConstrainedIntrinsicID, Tys: Src0->getType()); |
| 614 | return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0, Src1 }); |
| 615 | } else { |
| 616 | Function *F = CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: Src0->getType()); |
| 617 | return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1 }); |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | // Has second type mangled argument. |
| 622 | static Value * |
| 623 | emitBinaryExpMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| 624 | Intrinsic::ID IntrinsicID, |
| 625 | Intrinsic::ID ConstrainedIntrinsicID) { |
| 626 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 627 | llvm::Value *Src1 = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 628 | |
| 629 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 630 | if (CGF.Builder.getIsFPConstrained()) { |
| 631 | Function *F = CGF.CGM.getIntrinsic(IID: ConstrainedIntrinsicID, |
| 632 | Tys: {Src0->getType(), Src1->getType()}); |
| 633 | return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: {Src0, Src1}); |
| 634 | } |
| 635 | |
| 636 | Function *F = |
| 637 | CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: {Src0->getType(), Src1->getType()}); |
| 638 | return CGF.Builder.CreateCall(Callee: F, Args: {Src0, Src1}); |
| 639 | } |
| 640 | |
| 641 | // Emit an intrinsic that has 3 operands of the same type as its result. |
| 642 | // Depending on mode, this may be a constrained floating-point intrinsic. |
| 643 | static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| 644 | const CallExpr *E, unsigned IntrinsicID, |
| 645 | unsigned ConstrainedIntrinsicID) { |
| 646 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 647 | llvm::Value *Src1 = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 648 | llvm::Value *Src2 = CGF.EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 649 | |
| 650 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 651 | if (CGF.Builder.getIsFPConstrained()) { |
| 652 | Function *F = CGF.CGM.getIntrinsic(IID: ConstrainedIntrinsicID, Tys: Src0->getType()); |
| 653 | return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0, Src1, Src2 }); |
| 654 | } else { |
| 655 | Function *F = CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: Src0->getType()); |
| 656 | return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1, Src2 }); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | // Emit an intrinsic that has overloaded integer result and fp operand. |
| 661 | static Value * |
| 662 | emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| 663 | unsigned IntrinsicID, |
| 664 | unsigned ConstrainedIntrinsicID) { |
| 665 | llvm::Type *ResultType = CGF.ConvertType(T: E->getType()); |
| 666 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 667 | |
| 668 | if (CGF.Builder.getIsFPConstrained()) { |
| 669 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 670 | Function *F = CGF.CGM.getIntrinsic(IID: ConstrainedIntrinsicID, |
| 671 | Tys: {ResultType, Src0->getType()}); |
| 672 | return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: {Src0}); |
| 673 | } else { |
| 674 | Function *F = |
| 675 | CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: {ResultType, Src0->getType()}); |
| 676 | return CGF.Builder.CreateCall(Callee: F, Args: Src0); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| 681 | Intrinsic::ID IntrinsicID) { |
| 682 | llvm::Value *Src0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 683 | llvm::Value *Src1 = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 684 | |
| 685 | QualType IntPtrTy = E->getArg(Arg: 1)->getType()->getPointeeType(); |
| 686 | llvm::Type *IntTy = CGF.ConvertType(T: IntPtrTy); |
| 687 | llvm::Function *F = |
| 688 | CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: {Src0->getType(), IntTy}); |
| 689 | llvm::Value *Call = CGF.Builder.CreateCall(Callee: F, Args: Src0); |
| 690 | |
| 691 | llvm::Value *Exp = CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 1); |
| 692 | LValue LV = CGF.MakeNaturalAlignAddrLValue(V: Src1, T: IntPtrTy); |
| 693 | CGF.EmitStoreOfScalar(value: Exp, lvalue: LV); |
| 694 | |
| 695 | return CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 0); |
| 696 | } |
| 697 | |
| 698 | static void emitSincosBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| 699 | Intrinsic::ID IntrinsicID) { |
| 700 | llvm::Value *Val = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 701 | llvm::Value *Dest0 = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 702 | llvm::Value *Dest1 = CGF.EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 703 | |
| 704 | llvm::Function *F = CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: {Val->getType()}); |
| 705 | llvm::Value *Call = CGF.Builder.CreateCall(Callee: F, Args: Val); |
| 706 | |
| 707 | llvm::Value *SinResult = CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 0); |
| 708 | llvm::Value *CosResult = CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 1); |
| 709 | |
| 710 | QualType DestPtrType = E->getArg(Arg: 1)->getType()->getPointeeType(); |
| 711 | LValue SinLV = CGF.MakeNaturalAlignAddrLValue(V: Dest0, T: DestPtrType); |
| 712 | LValue CosLV = CGF.MakeNaturalAlignAddrLValue(V: Dest1, T: DestPtrType); |
| 713 | |
| 714 | llvm::StoreInst *StoreSin = |
| 715 | CGF.Builder.CreateStore(Val: SinResult, Addr: SinLV.getAddress()); |
| 716 | llvm::StoreInst *StoreCos = |
| 717 | CGF.Builder.CreateStore(Val: CosResult, Addr: CosLV.getAddress()); |
| 718 | |
| 719 | // Mark the two stores as non-aliasing with each other. The order of stores |
| 720 | // emitted by this builtin is arbitrary, enforcing a particular order will |
| 721 | // prevent optimizations later on. |
| 722 | llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| 723 | MDNode *Domain = MDHelper.createAnonymousAliasScopeDomain(); |
| 724 | MDNode *AliasScope = MDHelper.createAnonymousAliasScope(Domain); |
| 725 | MDNode *AliasScopeList = MDNode::get(Context&: Call->getContext(), MDs: AliasScope); |
| 726 | StoreSin->setMetadata(KindID: LLVMContext::MD_alias_scope, Node: AliasScopeList); |
| 727 | StoreCos->setMetadata(KindID: LLVMContext::MD_noalias, Node: AliasScopeList); |
| 728 | } |
| 729 | |
| 730 | static llvm::Value *emitModfBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| 731 | Intrinsic::ID IntrinsicID) { |
| 732 | llvm::Value *Val = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 733 | llvm::Value *IntPartDest = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 734 | |
| 735 | llvm::Value *Call = |
| 736 | CGF.Builder.CreateIntrinsic(ID: IntrinsicID, Types: {Val->getType()}, Args: Val); |
| 737 | |
| 738 | llvm::Value *FractionalResult = CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 0); |
| 739 | llvm::Value *IntegralResult = CGF.Builder.CreateExtractValue(Agg: Call, Idxs: 1); |
| 740 | |
| 741 | QualType DestPtrType = E->getArg(Arg: 1)->getType()->getPointeeType(); |
| 742 | LValue IntegralLV = CGF.MakeNaturalAlignAddrLValue(V: IntPartDest, T: DestPtrType); |
| 743 | CGF.EmitStoreOfScalar(value: IntegralResult, lvalue: IntegralLV); |
| 744 | |
| 745 | return FractionalResult; |
| 746 | } |
| 747 | |
| 748 | /// EmitFAbs - Emit a call to @llvm.fabs(). |
| 749 | static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
| 750 | Function *F = CGF.CGM.getIntrinsic(IID: Intrinsic::fabs, Tys: V->getType()); |
| 751 | llvm::CallInst *Call = CGF.Builder.CreateCall(Callee: F, Args: V); |
| 752 | Call->setDoesNotAccessMemory(); |
| 753 | return Call; |
| 754 | } |
| 755 | |
| 756 | /// Emit the computation of the sign bit for a floating point value. Returns |
| 757 | /// the i1 sign bit value. |
| 758 | static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
| 759 | LLVMContext &C = CGF.CGM.getLLVMContext(); |
| 760 | |
| 761 | llvm::Type *Ty = V->getType(); |
| 762 | int Width = Ty->getPrimitiveSizeInBits(); |
| 763 | llvm::Type *IntTy = llvm::IntegerType::get(C, NumBits: Width); |
| 764 | V = CGF.Builder.CreateBitCast(V, DestTy: IntTy); |
| 765 | if (Ty->isPPC_FP128Ty()) { |
| 766 | // We want the sign bit of the higher-order double. The bitcast we just |
| 767 | // did works as if the double-double was stored to memory and then |
| 768 | // read as an i128. The "store" will put the higher-order double in the |
| 769 | // lower address in both little- and big-Endian modes, but the "load" |
| 770 | // will treat those bits as a different part of the i128: the low bits in |
| 771 | // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
| 772 | // we need to shift the high bits down to the low before truncating. |
| 773 | Width >>= 1; |
| 774 | if (CGF.getTarget().isBigEndian()) { |
| 775 | Value *ShiftCst = llvm::ConstantInt::get(Ty: IntTy, V: Width); |
| 776 | V = CGF.Builder.CreateLShr(LHS: V, RHS: ShiftCst); |
| 777 | } |
| 778 | // We are truncating value in order to extract the higher-order |
| 779 | // double, which we will be using to extract the sign from. |
| 780 | IntTy = llvm::IntegerType::get(C, NumBits: Width); |
| 781 | V = CGF.Builder.CreateTrunc(V, DestTy: IntTy); |
| 782 | } |
| 783 | Value *Zero = llvm::Constant::getNullValue(Ty: IntTy); |
| 784 | return CGF.Builder.CreateICmpSLT(LHS: V, RHS: Zero); |
| 785 | } |
| 786 | |
| 787 | /// Checks no arguments or results are passed indirectly in the ABI (i.e. via a |
| 788 | /// hidden pointer). This is used to check annotating FP libcalls (that could |
| 789 | /// set `errno`) with "int" TBAA metadata is safe. If any floating-point |
| 790 | /// arguments are passed indirectly, setup for the call could be incorrectly |
| 791 | /// optimized out. |
| 792 | static bool HasNoIndirectArgumentsOrResults(CGFunctionInfo const &FnInfo) { |
| 793 | auto IsIndirect = [&](ABIArgInfo const &info) { |
| 794 | return info.isIndirect() || info.isIndirectAliased() || info.isInAlloca(); |
| 795 | }; |
| 796 | return !IsIndirect(FnInfo.getReturnInfo()) && |
| 797 | llvm::none_of(Range: FnInfo.arguments(), |
| 798 | P: [&](CGFunctionInfoArgInfo const &ArgInfo) { |
| 799 | return IsIndirect(ArgInfo.info); |
| 800 | }); |
| 801 | } |
| 802 | |
| 803 | static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
| 804 | const CallExpr *E, llvm::Constant *calleeValue) { |
| 805 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| 806 | CGCallee callee = CGCallee::forDirect(functionPtr: calleeValue, abstractInfo: GlobalDecl(FD)); |
| 807 | llvm::CallBase *callOrInvoke = nullptr; |
| 808 | CGFunctionInfo const *FnInfo = nullptr; |
| 809 | RValue Call = |
| 810 | CGF.EmitCall(FnType: E->getCallee()->getType(), Callee: callee, E, ReturnValue: ReturnValueSlot(), |
| 811 | /*Chain=*/nullptr, CallOrInvoke: &callOrInvoke, ResolvedFnInfo: &FnInfo); |
| 812 | |
| 813 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
| 814 | // Check whether a FP math builtin function, such as BI__builtin_expf |
| 815 | ASTContext &Context = CGF.getContext(); |
| 816 | bool ConstWithoutErrnoAndExceptions = |
| 817 | Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(ID: BuiltinID); |
| 818 | // Restrict to target with errno, for example, MacOS doesn't set errno. |
| 819 | // TODO: Support builtin function with complex type returned, eg: cacosh |
| 820 | if (ConstWithoutErrnoAndExceptions && CGF.CGM.getLangOpts().MathErrno && |
| 821 | !CGF.Builder.getIsFPConstrained() && Call.isScalar() && |
| 822 | HasNoIndirectArgumentsOrResults(FnInfo: *FnInfo)) { |
| 823 | // Emit "int" TBAA metadata on FP math libcalls. |
| 824 | clang::QualType IntTy = Context.IntTy; |
| 825 | TBAAAccessInfo TBAAInfo = CGF.CGM.getTBAAAccessInfo(AccessType: IntTy); |
| 826 | CGF.CGM.DecorateInstructionWithTBAA(Inst: callOrInvoke, TBAAInfo); |
| 827 | } |
| 828 | } |
| 829 | return Call; |
| 830 | } |
| 831 | |
| 832 | /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
| 833 | /// depending on IntrinsicID. |
| 834 | /// |
| 835 | /// \arg CGF The current codegen function. |
| 836 | /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
| 837 | /// \arg X The first argument to the llvm.*.with.overflow.*. |
| 838 | /// \arg Y The second argument to the llvm.*.with.overflow.*. |
| 839 | /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
| 840 | /// \returns The result (i.e. sum/product) returned by the intrinsic. |
| 841 | llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
| 842 | const Intrinsic::ID IntrinsicID, |
| 843 | llvm::Value *X, llvm::Value *Y, |
| 844 | llvm::Value *&Carry) { |
| 845 | // Make sure we have integers of the same width. |
| 846 | assert(X->getType() == Y->getType() && |
| 847 | "Arguments must be the same type. (Did you forget to make sure both " |
| 848 | "arguments have the same integer width?)" ); |
| 849 | |
| 850 | Function *Callee = CGF.CGM.getIntrinsic(IID: IntrinsicID, Tys: X->getType()); |
| 851 | llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, Args: {X, Y}); |
| 852 | Carry = CGF.Builder.CreateExtractValue(Agg: Tmp, Idxs: 1); |
| 853 | return CGF.Builder.CreateExtractValue(Agg: Tmp, Idxs: 0); |
| 854 | } |
| 855 | |
| 856 | namespace { |
| 857 | struct WidthAndSignedness { |
| 858 | unsigned Width; |
| 859 | bool Signed; |
| 860 | }; |
| 861 | } |
| 862 | |
| 863 | static WidthAndSignedness |
| 864 | getIntegerWidthAndSignedness(const clang::ASTContext &context, |
| 865 | const clang::QualType Type) { |
| 866 | assert(Type->isIntegerType() && "Given type is not an integer." ); |
| 867 | unsigned Width = context.getIntWidth(T: Type); |
| 868 | bool Signed = Type->isSignedIntegerType(); |
| 869 | return {.Width: Width, .Signed: Signed}; |
| 870 | } |
| 871 | |
| 872 | // Given one or more integer types, this function produces an integer type that |
| 873 | // encompasses them: any value in one of the given types could be expressed in |
| 874 | // the encompassing type. |
| 875 | static struct WidthAndSignedness |
| 876 | EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
| 877 | assert(Types.size() > 0 && "Empty list of types." ); |
| 878 | |
| 879 | // If any of the given types is signed, we must return a signed type. |
| 880 | bool Signed = false; |
| 881 | for (const auto &Type : Types) { |
| 882 | Signed |= Type.Signed; |
| 883 | } |
| 884 | |
| 885 | // The encompassing type must have a width greater than or equal to the width |
| 886 | // of the specified types. Additionally, if the encompassing type is signed, |
| 887 | // its width must be strictly greater than the width of any unsigned types |
| 888 | // given. |
| 889 | unsigned Width = 0; |
| 890 | for (const auto &Type : Types) { |
| 891 | unsigned MinWidth = Type.Width + (Signed && !Type.Signed); |
| 892 | if (Width < MinWidth) { |
| 893 | Width = MinWidth; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | return {.Width: Width, .Signed: Signed}; |
| 898 | } |
| 899 | |
| 900 | Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
| 901 | Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; |
| 902 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: inst, Tys: {ArgValue->getType()}), |
| 903 | Args: ArgValue); |
| 904 | } |
| 905 | |
| 906 | /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
| 907 | /// __builtin_object_size(p, @p To) is correct |
| 908 | static bool areBOSTypesCompatible(int From, int To) { |
| 909 | // Note: Our __builtin_object_size implementation currently treats Type=0 and |
| 910 | // Type=2 identically. Encoding this implementation detail here may make |
| 911 | // improving __builtin_object_size difficult in the future, so it's omitted. |
| 912 | return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); |
| 913 | } |
| 914 | |
| 915 | static llvm::Value * |
| 916 | getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
| 917 | return ConstantInt::get(Ty: ResType, V: (Type & 2) ? 0 : -1, /*isSigned=*/IsSigned: true); |
| 918 | } |
| 919 | |
| 920 | llvm::Value * |
| 921 | CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
| 922 | llvm::IntegerType *ResType, |
| 923 | llvm::Value *EmittedE, |
| 924 | bool IsDynamic) { |
| 925 | uint64_t ObjectSize; |
| 926 | if (!E->tryEvaluateObjectSize(Result&: ObjectSize, Ctx&: getContext(), Type)) |
| 927 | return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); |
| 928 | return ConstantInt::get(Ty: ResType, V: ObjectSize, /*isSigned=*/IsSigned: true); |
| 929 | } |
| 930 | |
| 931 | namespace { |
| 932 | |
| 933 | /// StructFieldAccess is a simple visitor class to grab the first MemberExpr |
| 934 | /// from an Expr. It records any ArraySubscriptExpr we meet along the way. |
| 935 | class StructFieldAccess |
| 936 | : public ConstStmtVisitor<StructFieldAccess, const Expr *> { |
| 937 | bool AddrOfSeen = false; |
| 938 | |
| 939 | public: |
| 940 | const Expr *ArrayIndex = nullptr; |
| 941 | QualType ArrayElementTy; |
| 942 | |
| 943 | const Expr *VisitMemberExpr(const MemberExpr *E) { |
| 944 | if (AddrOfSeen && E->getType()->isArrayType()) |
| 945 | // Avoid forms like '&ptr->array'. |
| 946 | return nullptr; |
| 947 | return E; |
| 948 | } |
| 949 | |
| 950 | const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| 951 | if (ArrayIndex) |
| 952 | // We don't support multiple subscripts. |
| 953 | return nullptr; |
| 954 | |
| 955 | AddrOfSeen = false; // '&ptr->array[idx]' is okay. |
| 956 | ArrayIndex = E->getIdx(); |
| 957 | ArrayElementTy = E->getBase()->getType(); |
| 958 | return Visit(S: E->getBase()); |
| 959 | } |
| 960 | const Expr *VisitCastExpr(const CastExpr *E) { |
| 961 | if (E->getCastKind() == CK_LValueToRValue) |
| 962 | return E; |
| 963 | return Visit(S: E->getSubExpr()); |
| 964 | } |
| 965 | const Expr *VisitParenExpr(const ParenExpr *E) { |
| 966 | return Visit(S: E->getSubExpr()); |
| 967 | } |
| 968 | const Expr *VisitUnaryAddrOf(const clang::UnaryOperator *E) { |
| 969 | AddrOfSeen = true; |
| 970 | return Visit(S: E->getSubExpr()); |
| 971 | } |
| 972 | const Expr *VisitUnaryDeref(const clang::UnaryOperator *E) { |
| 973 | AddrOfSeen = false; |
| 974 | return Visit(S: E->getSubExpr()); |
| 975 | } |
| 976 | }; |
| 977 | |
| 978 | } // end anonymous namespace |
| 979 | |
| 980 | /// Find a struct's flexible array member. It may be embedded inside multiple |
| 981 | /// sub-structs, but must still be the last field. |
| 982 | static const FieldDecl *FindFlexibleArrayMemberField(CodeGenFunction &CGF, |
| 983 | ASTContext &Ctx, |
| 984 | const RecordDecl *RD) { |
| 985 | const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = |
| 986 | CGF.getLangOpts().getStrictFlexArraysLevel(); |
| 987 | |
| 988 | if (RD->isImplicit()) |
| 989 | return nullptr; |
| 990 | |
| 991 | for (const FieldDecl *FD : RD->fields()) { |
| 992 | if (Decl::isFlexibleArrayMemberLike( |
| 993 | Context: Ctx, D: FD, Ty: FD->getType(), StrictFlexArraysLevel, |
| 994 | /*IgnoreTemplateOrMacroSubstitution=*/true)) |
| 995 | return FD; |
| 996 | |
| 997 | if (auto RT = FD->getType()->getAs<RecordType>()) |
| 998 | if (const FieldDecl *FD = |
| 999 | FindFlexibleArrayMemberField(CGF, Ctx, RD: RT->getAsRecordDecl())) |
| 1000 | return FD; |
| 1001 | } |
| 1002 | |
| 1003 | return nullptr; |
| 1004 | } |
| 1005 | |
| 1006 | /// Calculate the offset of a struct field. It may be embedded inside multiple |
| 1007 | /// sub-structs. |
| 1008 | static bool GetFieldOffset(ASTContext &Ctx, const RecordDecl *RD, |
| 1009 | const FieldDecl *FD, int64_t &Offset) { |
| 1010 | if (RD->isImplicit()) |
| 1011 | return false; |
| 1012 | |
| 1013 | // Keep track of the field number ourselves, because the other methods |
| 1014 | // (CGRecordLayout::getLLVMFieldNo) aren't always equivalent to how the AST |
| 1015 | // is laid out. |
| 1016 | uint32_t FieldNo = 0; |
| 1017 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: RD); |
| 1018 | |
| 1019 | for (const FieldDecl *Field : RD->fields()) { |
| 1020 | if (Field == FD) { |
| 1021 | Offset += Layout.getFieldOffset(FieldNo); |
| 1022 | return true; |
| 1023 | } |
| 1024 | |
| 1025 | if (auto RT = Field->getType()->getAs<RecordType>()) { |
| 1026 | if (GetFieldOffset(Ctx, RD: RT->getAsRecordDecl(), FD, Offset)) { |
| 1027 | Offset += Layout.getFieldOffset(FieldNo); |
| 1028 | return true; |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | if (!RD->isUnion()) |
| 1033 | ++FieldNo; |
| 1034 | } |
| 1035 | |
| 1036 | return false; |
| 1037 | } |
| 1038 | |
| 1039 | static std::optional<int64_t> |
| 1040 | GetFieldOffset(ASTContext &Ctx, const RecordDecl *RD, const FieldDecl *FD) { |
| 1041 | int64_t Offset = 0; |
| 1042 | |
| 1043 | if (GetFieldOffset(Ctx, RD, FD, Offset)) |
| 1044 | return std::optional<int64_t>(Offset); |
| 1045 | |
| 1046 | return std::nullopt; |
| 1047 | } |
| 1048 | |
| 1049 | llvm::Value *CodeGenFunction::emitCountedBySize(const Expr *E, |
| 1050 | llvm::Value *EmittedE, |
| 1051 | unsigned Type, |
| 1052 | llvm::IntegerType *ResType) { |
| 1053 | // Note: If the whole struct is specificed in the __bdos (i.e. Visitor |
| 1054 | // returns a DeclRefExpr). The calculation of the whole size of the structure |
| 1055 | // with a flexible array member can be done in two ways: |
| 1056 | // |
| 1057 | // 1) sizeof(struct S) + count * sizeof(typeof(fam)) |
| 1058 | // 2) offsetof(struct S, fam) + count * sizeof(typeof(fam)) |
| 1059 | // |
| 1060 | // The first will add additional padding after the end of the array |
| 1061 | // allocation while the second method is more precise, but not quite expected |
| 1062 | // from programmers. See |
| 1063 | // https://lore.kernel.org/lkml/ZvV6X5FPBBW7CO1f@archlinux/ for a discussion |
| 1064 | // of the topic. |
| 1065 | // |
| 1066 | // GCC isn't (currently) able to calculate __bdos on a pointer to the whole |
| 1067 | // structure. Therefore, because of the above issue, we choose to match what |
| 1068 | // GCC does for consistency's sake. |
| 1069 | |
| 1070 | StructFieldAccess Visitor; |
| 1071 | E = Visitor.Visit(S: E); |
| 1072 | if (!E) |
| 1073 | return nullptr; |
| 1074 | |
| 1075 | const Expr *Idx = Visitor.ArrayIndex; |
| 1076 | if (Idx) { |
| 1077 | if (Idx->HasSideEffects(Ctx: getContext())) |
| 1078 | // We can't have side-effects. |
| 1079 | return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| 1080 | |
| 1081 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: Idx)) { |
| 1082 | int64_t Val = IL->getValue().getSExtValue(); |
| 1083 | if (Val < 0) |
| 1084 | return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| 1085 | |
| 1086 | // The index is 0, so we don't need to take it into account. |
| 1087 | if (Val == 0) |
| 1088 | Idx = nullptr; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | // __counted_by on either a flexible array member or a pointer into a struct |
| 1093 | // with a flexible array member. |
| 1094 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 1095 | return emitCountedByMemberSize(E: ME, Idx, EmittedE, CastedArrayElementTy: Visitor.ArrayElementTy, |
| 1096 | Type, ResType); |
| 1097 | |
| 1098 | // __counted_by on a pointer in a struct. |
| 1099 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E); |
| 1100 | ICE && ICE->getCastKind() == CK_LValueToRValue) |
| 1101 | return emitCountedByPointerSize(E: ICE, Idx, EmittedE, CastedArrayElementTy: Visitor.ArrayElementTy, |
| 1102 | Type, ResType); |
| 1103 | |
| 1104 | return nullptr; |
| 1105 | } |
| 1106 | |
| 1107 | static llvm::Value *EmitPositiveResultOrZero(CodeGenFunction &CGF, |
| 1108 | llvm::Value *Res, |
| 1109 | llvm::Value *Index, |
| 1110 | llvm::IntegerType *ResType, |
| 1111 | bool IsSigned) { |
| 1112 | // cmp = (array_size >= 0) |
| 1113 | Value *Cmp = CGF.Builder.CreateIsNotNeg(Arg: Res); |
| 1114 | if (Index) |
| 1115 | // cmp = (cmp && index >= 0) |
| 1116 | Cmp = CGF.Builder.CreateAnd(LHS: CGF.Builder.CreateIsNotNeg(Arg: Index), RHS: Cmp); |
| 1117 | |
| 1118 | // return cmp ? result : 0 |
| 1119 | return CGF.Builder.CreateSelect(C: Cmp, True: Res, |
| 1120 | False: ConstantInt::get(Ty: ResType, V: 0, IsSigned)); |
| 1121 | } |
| 1122 | |
| 1123 | static std::pair<llvm::Value *, llvm::Value *> |
| 1124 | GetCountFieldAndIndex(CodeGenFunction &CGF, const MemberExpr *ME, |
| 1125 | const FieldDecl *ArrayFD, const FieldDecl *CountFD, |
| 1126 | const Expr *Idx, llvm::IntegerType *ResType, |
| 1127 | bool IsSigned) { |
| 1128 | // count = ptr->count; |
| 1129 | Value *Count = CGF.EmitLoadOfCountedByField(Base: ME, FD: ArrayFD, CountDecl: CountFD); |
| 1130 | if (!Count) |
| 1131 | return std::make_pair<Value *>(x: nullptr, y: nullptr); |
| 1132 | Count = CGF.Builder.CreateIntCast(V: Count, DestTy: ResType, isSigned: IsSigned, Name: "count" ); |
| 1133 | |
| 1134 | // index = ptr->index; |
| 1135 | Value *Index = nullptr; |
| 1136 | if (Idx) { |
| 1137 | bool IdxSigned = Idx->getType()->isSignedIntegerType(); |
| 1138 | Index = CGF.EmitScalarExpr(E: Idx); |
| 1139 | Index = CGF.Builder.CreateIntCast(V: Index, DestTy: ResType, isSigned: IdxSigned, Name: "index" ); |
| 1140 | } |
| 1141 | |
| 1142 | return std::make_pair(x&: Count, y&: Index); |
| 1143 | } |
| 1144 | |
| 1145 | llvm::Value *CodeGenFunction::emitCountedByPointerSize( |
| 1146 | const ImplicitCastExpr *E, const Expr *Idx, llvm::Value *EmittedE, |
| 1147 | QualType CastedArrayElementTy, unsigned Type, llvm::IntegerType *ResType) { |
| 1148 | assert(E->getCastKind() == CK_LValueToRValue && |
| 1149 | "must be an LValue to RValue cast" ); |
| 1150 | |
| 1151 | const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getSubExpr()); |
| 1152 | if (!ME) |
| 1153 | return nullptr; |
| 1154 | |
| 1155 | const auto *ArrayBaseFD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 1156 | if (!ArrayBaseFD || !ArrayBaseFD->getType()->isPointerType() || |
| 1157 | !ArrayBaseFD->getType()->isCountAttributedType()) |
| 1158 | return nullptr; |
| 1159 | |
| 1160 | // Get the 'count' FieldDecl. |
| 1161 | const FieldDecl *CountFD = ArrayBaseFD->findCountedByField(); |
| 1162 | if (!CountFD) |
| 1163 | // Can't find the field referenced by the "counted_by" attribute. |
| 1164 | return nullptr; |
| 1165 | |
| 1166 | // Calculate the array's object size using these formulae. (Note: if the |
| 1167 | // calculation is negative, we return 0.): |
| 1168 | // |
| 1169 | // struct p; |
| 1170 | // struct s { |
| 1171 | // /* ... */ |
| 1172 | // struct p **array __attribute__((counted_by(count))); |
| 1173 | // int count; |
| 1174 | // }; |
| 1175 | // |
| 1176 | // 1) 'ptr->array': |
| 1177 | // |
| 1178 | // count = ptr->count; |
| 1179 | // |
| 1180 | // array_element_size = sizeof (*ptr->array); |
| 1181 | // array_size = count * array_element_size; |
| 1182 | // |
| 1183 | // result = array_size; |
| 1184 | // |
| 1185 | // cmp = (result >= 0) |
| 1186 | // return cmp ? result : 0; |
| 1187 | // |
| 1188 | // 2) '&((cast) ptr->array)[idx]': |
| 1189 | // |
| 1190 | // count = ptr->count; |
| 1191 | // index = idx; |
| 1192 | // |
| 1193 | // array_element_size = sizeof (*ptr->array); |
| 1194 | // array_size = count * array_element_size; |
| 1195 | // |
| 1196 | // casted_array_element_size = sizeof (*((cast) ptr->array)); |
| 1197 | // |
| 1198 | // index_size = index * casted_array_element_size; |
| 1199 | // result = array_size - index_size; |
| 1200 | // |
| 1201 | // cmp = (result >= 0) |
| 1202 | // if (index) |
| 1203 | // cmp = (cmp && index > 0) |
| 1204 | // return cmp ? result : 0; |
| 1205 | |
| 1206 | auto GetElementBaseSize = [&](QualType ElementTy) { |
| 1207 | CharUnits ElementSize = |
| 1208 | getContext().getTypeSizeInChars(T: ElementTy->getPointeeType()); |
| 1209 | |
| 1210 | if (ElementSize.isZero()) { |
| 1211 | // This might be a __sized_by on a 'void *', which counts bytes, not |
| 1212 | // elements. |
| 1213 | auto *CAT = ElementTy->getAs<CountAttributedType>(); |
| 1214 | if (!CAT || (CAT->getKind() != CountAttributedType::SizedBy && |
| 1215 | CAT->getKind() != CountAttributedType::SizedByOrNull)) |
| 1216 | // Okay, not sure what it is now. |
| 1217 | // FIXME: Should this be an assert? |
| 1218 | return std::optional<CharUnits>(); |
| 1219 | |
| 1220 | ElementSize = CharUnits::One(); |
| 1221 | } |
| 1222 | |
| 1223 | return std::optional<CharUnits>(ElementSize); |
| 1224 | }; |
| 1225 | |
| 1226 | // Get the sizes of the original array element and the casted array element, |
| 1227 | // if different. |
| 1228 | std::optional<CharUnits> ArrayElementBaseSize = |
| 1229 | GetElementBaseSize(ArrayBaseFD->getType()); |
| 1230 | if (!ArrayElementBaseSize) |
| 1231 | return nullptr; |
| 1232 | |
| 1233 | std::optional<CharUnits> CastedArrayElementBaseSize = ArrayElementBaseSize; |
| 1234 | if (!CastedArrayElementTy.isNull() && CastedArrayElementTy->isPointerType()) { |
| 1235 | CastedArrayElementBaseSize = GetElementBaseSize(CastedArrayElementTy); |
| 1236 | if (!CastedArrayElementBaseSize) |
| 1237 | return nullptr; |
| 1238 | } |
| 1239 | |
| 1240 | bool IsSigned = CountFD->getType()->isSignedIntegerType(); |
| 1241 | |
| 1242 | // count = ptr->count; |
| 1243 | // index = ptr->index; |
| 1244 | Value *Count, *Index; |
| 1245 | std::tie(args&: Count, args&: Index) = GetCountFieldAndIndex( |
| 1246 | CGF&: *this, ME, ArrayFD: ArrayBaseFD, CountFD, Idx, ResType, IsSigned); |
| 1247 | if (!Count) |
| 1248 | return nullptr; |
| 1249 | |
| 1250 | // array_element_size = sizeof (*ptr->array) |
| 1251 | auto *ArrayElementSize = llvm::ConstantInt::get( |
| 1252 | Ty: ResType, V: ArrayElementBaseSize->getQuantity(), IsSigned); |
| 1253 | |
| 1254 | // casted_array_element_size = sizeof (*((cast) ptr->array)); |
| 1255 | auto *CastedArrayElementSize = llvm::ConstantInt::get( |
| 1256 | Ty: ResType, V: CastedArrayElementBaseSize->getQuantity(), IsSigned); |
| 1257 | |
| 1258 | // array_size = count * array_element_size; |
| 1259 | Value *ArraySize = Builder.CreateMul(LHS: Count, RHS: ArrayElementSize, Name: "array_size" , |
| 1260 | HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1261 | |
| 1262 | // Option (1) 'ptr->array' |
| 1263 | // result = array_size |
| 1264 | Value *Result = ArraySize; |
| 1265 | |
| 1266 | if (Idx) { // Option (2) '&((cast) ptr->array)[idx]' |
| 1267 | // index_size = index * casted_array_element_size; |
| 1268 | Value *IndexSize = Builder.CreateMul(LHS: Index, RHS: CastedArrayElementSize, |
| 1269 | Name: "index_size" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1270 | |
| 1271 | // result = result - index_size; |
| 1272 | Result = |
| 1273 | Builder.CreateSub(LHS: Result, RHS: IndexSize, Name: "result" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1274 | } |
| 1275 | |
| 1276 | return EmitPositiveResultOrZero(CGF&: *this, Res: Result, Index, ResType, IsSigned); |
| 1277 | } |
| 1278 | |
| 1279 | llvm::Value *CodeGenFunction::emitCountedByMemberSize( |
| 1280 | const MemberExpr *ME, const Expr *Idx, llvm::Value *EmittedE, |
| 1281 | QualType CastedArrayElementTy, unsigned Type, llvm::IntegerType *ResType) { |
| 1282 | const auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 1283 | if (!FD) |
| 1284 | return nullptr; |
| 1285 | |
| 1286 | // Find the flexible array member and check that it has the __counted_by |
| 1287 | // attribute. |
| 1288 | ASTContext &Ctx = getContext(); |
| 1289 | const RecordDecl *RD = FD->getDeclContext()->getOuterLexicalRecordContext(); |
| 1290 | const FieldDecl *FlexibleArrayMemberFD = nullptr; |
| 1291 | |
| 1292 | if (Decl::isFlexibleArrayMemberLike( |
| 1293 | Context: Ctx, D: FD, Ty: FD->getType(), StrictFlexArraysLevel: getLangOpts().getStrictFlexArraysLevel(), |
| 1294 | /*IgnoreTemplateOrMacroSubstitution=*/true)) |
| 1295 | FlexibleArrayMemberFD = FD; |
| 1296 | else |
| 1297 | FlexibleArrayMemberFD = FindFlexibleArrayMemberField(CGF&: *this, Ctx, RD); |
| 1298 | |
| 1299 | if (!FlexibleArrayMemberFD || |
| 1300 | !FlexibleArrayMemberFD->getType()->isCountAttributedType()) |
| 1301 | return nullptr; |
| 1302 | |
| 1303 | // Get the 'count' FieldDecl. |
| 1304 | const FieldDecl *CountFD = FlexibleArrayMemberFD->findCountedByField(); |
| 1305 | if (!CountFD) |
| 1306 | // Can't find the field referenced by the "counted_by" attribute. |
| 1307 | return nullptr; |
| 1308 | |
| 1309 | // Calculate the flexible array member's object size using these formulae. |
| 1310 | // (Note: if the calculation is negative, we return 0.): |
| 1311 | // |
| 1312 | // struct p; |
| 1313 | // struct s { |
| 1314 | // /* ... */ |
| 1315 | // int count; |
| 1316 | // struct p *array[] __attribute__((counted_by(count))); |
| 1317 | // }; |
| 1318 | // |
| 1319 | // 1) 'ptr->array': |
| 1320 | // |
| 1321 | // count = ptr->count; |
| 1322 | // |
| 1323 | // flexible_array_member_element_size = sizeof (*ptr->array); |
| 1324 | // flexible_array_member_size = |
| 1325 | // count * flexible_array_member_element_size; |
| 1326 | // |
| 1327 | // result = flexible_array_member_size; |
| 1328 | // |
| 1329 | // cmp = (result >= 0) |
| 1330 | // return cmp ? result : 0; |
| 1331 | // |
| 1332 | // 2) '&((cast) ptr->array)[idx]': |
| 1333 | // |
| 1334 | // count = ptr->count; |
| 1335 | // index = idx; |
| 1336 | // |
| 1337 | // flexible_array_member_element_size = sizeof (*ptr->array); |
| 1338 | // flexible_array_member_size = |
| 1339 | // count * flexible_array_member_element_size; |
| 1340 | // |
| 1341 | // casted_flexible_array_member_element_size = |
| 1342 | // sizeof (*((cast) ptr->array)); |
| 1343 | // index_size = index * casted_flexible_array_member_element_size; |
| 1344 | // |
| 1345 | // result = flexible_array_member_size - index_size; |
| 1346 | // |
| 1347 | // cmp = (result >= 0) |
| 1348 | // if (index != 0) |
| 1349 | // cmp = (cmp && index >= 0) |
| 1350 | // return cmp ? result : 0; |
| 1351 | // |
| 1352 | // 3) '&ptr->field': |
| 1353 | // |
| 1354 | // count = ptr->count; |
| 1355 | // sizeof_struct = sizeof (struct s); |
| 1356 | // |
| 1357 | // flexible_array_member_element_size = sizeof (*ptr->array); |
| 1358 | // flexible_array_member_size = |
| 1359 | // count * flexible_array_member_element_size; |
| 1360 | // |
| 1361 | // field_offset = offsetof (struct s, field); |
| 1362 | // offset_diff = sizeof_struct - field_offset; |
| 1363 | // |
| 1364 | // result = offset_diff + flexible_array_member_size; |
| 1365 | // |
| 1366 | // cmp = (result >= 0) |
| 1367 | // return cmp ? result : 0; |
| 1368 | // |
| 1369 | // 4) '&((cast) ptr->field_array)[idx]': |
| 1370 | // |
| 1371 | // count = ptr->count; |
| 1372 | // index = idx; |
| 1373 | // sizeof_struct = sizeof (struct s); |
| 1374 | // |
| 1375 | // flexible_array_member_element_size = sizeof (*ptr->array); |
| 1376 | // flexible_array_member_size = |
| 1377 | // count * flexible_array_member_element_size; |
| 1378 | // |
| 1379 | // casted_field_element_size = sizeof (*((cast) ptr->field_array)); |
| 1380 | // field_offset = offsetof (struct s, field) |
| 1381 | // field_offset += index * casted_field_element_size; |
| 1382 | // |
| 1383 | // offset_diff = sizeof_struct - field_offset; |
| 1384 | // |
| 1385 | // result = offset_diff + flexible_array_member_size; |
| 1386 | // |
| 1387 | // cmp = (result >= 0) |
| 1388 | // if (index != 0) |
| 1389 | // cmp = (cmp && index >= 0) |
| 1390 | // return cmp ? result : 0; |
| 1391 | |
| 1392 | bool IsSigned = CountFD->getType()->isSignedIntegerType(); |
| 1393 | |
| 1394 | QualType FlexibleArrayMemberTy = FlexibleArrayMemberFD->getType(); |
| 1395 | |
| 1396 | // Explicit cast because otherwise the CharWidth will promote an i32's into |
| 1397 | // u64's leading to overflows. |
| 1398 | int64_t CharWidth = static_cast<int64_t>(CGM.getContext().getCharWidth()); |
| 1399 | |
| 1400 | // field_offset = offsetof (struct s, field); |
| 1401 | Value *FieldOffset = nullptr; |
| 1402 | if (FlexibleArrayMemberFD != FD) { |
| 1403 | std::optional<int64_t> Offset = GetFieldOffset(Ctx, RD, FD); |
| 1404 | if (!Offset) |
| 1405 | return nullptr; |
| 1406 | FieldOffset = |
| 1407 | llvm::ConstantInt::get(Ty: ResType, V: *Offset / CharWidth, IsSigned); |
| 1408 | } |
| 1409 | |
| 1410 | // count = ptr->count; |
| 1411 | // index = ptr->index; |
| 1412 | Value *Count, *Index; |
| 1413 | std::tie(args&: Count, args&: Index) = GetCountFieldAndIndex( |
| 1414 | CGF&: *this, ME, ArrayFD: FlexibleArrayMemberFD, CountFD, Idx, ResType, IsSigned); |
| 1415 | if (!Count) |
| 1416 | return nullptr; |
| 1417 | |
| 1418 | // flexible_array_member_element_size = sizeof (*ptr->array); |
| 1419 | const ArrayType *ArrayTy = Ctx.getAsArrayType(T: FlexibleArrayMemberTy); |
| 1420 | CharUnits BaseSize = Ctx.getTypeSizeInChars(T: ArrayTy->getElementType()); |
| 1421 | auto *FlexibleArrayMemberElementSize = |
| 1422 | llvm::ConstantInt::get(Ty: ResType, V: BaseSize.getQuantity(), IsSigned); |
| 1423 | |
| 1424 | // flexible_array_member_size = count * flexible_array_member_element_size; |
| 1425 | Value *FlexibleArrayMemberSize = |
| 1426 | Builder.CreateMul(LHS: Count, RHS: FlexibleArrayMemberElementSize, |
| 1427 | Name: "flexible_array_member_size" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1428 | |
| 1429 | Value *Result = nullptr; |
| 1430 | if (FlexibleArrayMemberFD == FD) { |
| 1431 | if (Idx) { // Option (2) '&((cast) ptr->array)[idx]' |
| 1432 | // casted_flexible_array_member_element_size = |
| 1433 | // sizeof (*((cast) ptr->array)); |
| 1434 | llvm::ConstantInt *CastedFlexibleArrayMemberElementSize = |
| 1435 | FlexibleArrayMemberElementSize; |
| 1436 | if (!CastedArrayElementTy.isNull() && |
| 1437 | CastedArrayElementTy->isPointerType()) { |
| 1438 | CharUnits BaseSize = |
| 1439 | Ctx.getTypeSizeInChars(T: CastedArrayElementTy->getPointeeType()); |
| 1440 | CastedFlexibleArrayMemberElementSize = |
| 1441 | llvm::ConstantInt::get(Ty: ResType, V: BaseSize.getQuantity(), IsSigned); |
| 1442 | } |
| 1443 | |
| 1444 | // index_size = index * casted_flexible_array_member_element_size; |
| 1445 | Value *IndexSize = |
| 1446 | Builder.CreateMul(LHS: Index, RHS: CastedFlexibleArrayMemberElementSize, |
| 1447 | Name: "index_size" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1448 | |
| 1449 | // result = flexible_array_member_size - index_size; |
| 1450 | Result = Builder.CreateSub(LHS: FlexibleArrayMemberSize, RHS: IndexSize, Name: "result" , |
| 1451 | HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1452 | } else { // Option (1) 'ptr->array' |
| 1453 | // result = flexible_array_member_size; |
| 1454 | Result = FlexibleArrayMemberSize; |
| 1455 | } |
| 1456 | } else { |
| 1457 | // sizeof_struct = sizeof (struct s); |
| 1458 | llvm::StructType *StructTy = getTypes().getCGRecordLayout(RD).getLLVMType(); |
| 1459 | const llvm::DataLayout &Layout = CGM.getDataLayout(); |
| 1460 | TypeSize Size = Layout.getTypeSizeInBits(Ty: StructTy); |
| 1461 | Value *SizeofStruct = |
| 1462 | llvm::ConstantInt::get(Ty: ResType, V: Size.getKnownMinValue() / CharWidth); |
| 1463 | |
| 1464 | if (Idx) { // Option (4) '&((cast) ptr->field_array)[idx]' |
| 1465 | // casted_field_element_size = sizeof (*((cast) ptr->field_array)); |
| 1466 | CharUnits BaseSize; |
| 1467 | if (!CastedArrayElementTy.isNull() && |
| 1468 | CastedArrayElementTy->isPointerType()) { |
| 1469 | BaseSize = |
| 1470 | Ctx.getTypeSizeInChars(T: CastedArrayElementTy->getPointeeType()); |
| 1471 | } else { |
| 1472 | const ArrayType *ArrayTy = Ctx.getAsArrayType(T: FD->getType()); |
| 1473 | BaseSize = Ctx.getTypeSizeInChars(T: ArrayTy->getElementType()); |
| 1474 | } |
| 1475 | |
| 1476 | llvm::ConstantInt *CastedFieldElementSize = |
| 1477 | llvm::ConstantInt::get(Ty: ResType, V: BaseSize.getQuantity(), IsSigned); |
| 1478 | |
| 1479 | // field_offset += index * casted_field_element_size; |
| 1480 | Value *Mul = Builder.CreateMul(LHS: Index, RHS: CastedFieldElementSize, |
| 1481 | Name: "field_offset" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1482 | FieldOffset = Builder.CreateAdd(LHS: FieldOffset, RHS: Mul); |
| 1483 | } |
| 1484 | // Option (3) '&ptr->field', and Option (4) continuation. |
| 1485 | // offset_diff = flexible_array_member_offset - field_offset; |
| 1486 | Value *OffsetDiff = Builder.CreateSub(LHS: SizeofStruct, RHS: FieldOffset, |
| 1487 | Name: "offset_diff" , HasNUW: !IsSigned, HasNSW: IsSigned); |
| 1488 | |
| 1489 | // result = offset_diff + flexible_array_member_size; |
| 1490 | Result = Builder.CreateAdd(LHS: FlexibleArrayMemberSize, RHS: OffsetDiff, Name: "result" ); |
| 1491 | } |
| 1492 | |
| 1493 | return EmitPositiveResultOrZero(CGF&: *this, Res: Result, Index, ResType, IsSigned); |
| 1494 | } |
| 1495 | |
| 1496 | /// Returns a Value corresponding to the size of the given expression. |
| 1497 | /// This Value may be either of the following: |
| 1498 | /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
| 1499 | /// it) |
| 1500 | /// - A call to the @llvm.objectsize intrinsic |
| 1501 | /// |
| 1502 | /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
| 1503 | /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
| 1504 | /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
| 1505 | llvm::Value * |
| 1506 | CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
| 1507 | llvm::IntegerType *ResType, |
| 1508 | llvm::Value *EmittedE, bool IsDynamic) { |
| 1509 | // We need to reference an argument if the pointer is a parameter with the |
| 1510 | // pass_object_size attribute. |
| 1511 | if (auto *D = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) { |
| 1512 | auto *Param = dyn_cast<ParmVarDecl>(Val: D->getDecl()); |
| 1513 | auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
| 1514 | if (Param != nullptr && PS != nullptr && |
| 1515 | areBOSTypesCompatible(From: PS->getType(), To: Type)) { |
| 1516 | auto Iter = SizeArguments.find(Val: Param); |
| 1517 | assert(Iter != SizeArguments.end()); |
| 1518 | |
| 1519 | const ImplicitParamDecl *D = Iter->second; |
| 1520 | auto DIter = LocalDeclMap.find(Val: D); |
| 1521 | assert(DIter != LocalDeclMap.end()); |
| 1522 | |
| 1523 | return EmitLoadOfScalar(Addr: DIter->second, /*Volatile=*/false, |
| 1524 | Ty: getContext().getSizeType(), Loc: E->getBeginLoc()); |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
| 1529 | // evaluate E for side-effects. In either case, we shouldn't lower to |
| 1530 | // @llvm.objectsize. |
| 1531 | if (Type == 3 || (!EmittedE && E->HasSideEffects(Ctx: getContext()))) |
| 1532 | return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| 1533 | |
| 1534 | Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); |
| 1535 | assert(Ptr->getType()->isPointerTy() && |
| 1536 | "Non-pointer passed to __builtin_object_size?" ); |
| 1537 | |
| 1538 | if (IsDynamic) |
| 1539 | // Emit special code for a flexible array member with the "counted_by" |
| 1540 | // attribute. |
| 1541 | if (Value *V = emitCountedBySize(E, EmittedE: Ptr, Type, ResType)) |
| 1542 | return V; |
| 1543 | |
| 1544 | Function *F = |
| 1545 | CGM.getIntrinsic(IID: Intrinsic::objectsize, Tys: {ResType, Ptr->getType()}); |
| 1546 | |
| 1547 | // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
| 1548 | Value *Min = Builder.getInt1(V: (Type & 2) != 0); |
| 1549 | // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
| 1550 | Value *NullIsUnknown = Builder.getTrue(); |
| 1551 | Value *Dynamic = Builder.getInt1(V: IsDynamic); |
| 1552 | return Builder.CreateCall(Callee: F, Args: {Ptr, Min, NullIsUnknown, Dynamic}); |
| 1553 | } |
| 1554 | |
| 1555 | namespace { |
| 1556 | /// A struct to generically describe a bit test intrinsic. |
| 1557 | struct BitTest { |
| 1558 | enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
| 1559 | enum InterlockingKind : uint8_t { |
| 1560 | Unlocked, |
| 1561 | Sequential, |
| 1562 | Acquire, |
| 1563 | Release, |
| 1564 | NoFence |
| 1565 | }; |
| 1566 | |
| 1567 | ActionKind Action; |
| 1568 | InterlockingKind Interlocking; |
| 1569 | bool Is64Bit; |
| 1570 | |
| 1571 | static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
| 1572 | }; |
| 1573 | |
| 1574 | } // namespace |
| 1575 | |
| 1576 | BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
| 1577 | switch (BuiltinID) { |
| 1578 | // Main portable variants. |
| 1579 | case Builtin::BI_bittest: |
| 1580 | return {.Action: TestOnly, .Interlocking: Unlocked, .Is64Bit: false}; |
| 1581 | case Builtin::BI_bittestandcomplement: |
| 1582 | return {.Action: Complement, .Interlocking: Unlocked, .Is64Bit: false}; |
| 1583 | case Builtin::BI_bittestandreset: |
| 1584 | return {.Action: Reset, .Interlocking: Unlocked, .Is64Bit: false}; |
| 1585 | case Builtin::BI_bittestandset: |
| 1586 | return {.Action: Set, .Interlocking: Unlocked, .Is64Bit: false}; |
| 1587 | case Builtin::BI_interlockedbittestandreset: |
| 1588 | return {.Action: Reset, .Interlocking: Sequential, .Is64Bit: false}; |
| 1589 | case Builtin::BI_interlockedbittestandset: |
| 1590 | return {.Action: Set, .Interlocking: Sequential, .Is64Bit: false}; |
| 1591 | |
| 1592 | // 64-bit variants. |
| 1593 | case Builtin::BI_bittest64: |
| 1594 | return {.Action: TestOnly, .Interlocking: Unlocked, .Is64Bit: true}; |
| 1595 | case Builtin::BI_bittestandcomplement64: |
| 1596 | return {.Action: Complement, .Interlocking: Unlocked, .Is64Bit: true}; |
| 1597 | case Builtin::BI_bittestandreset64: |
| 1598 | return {.Action: Reset, .Interlocking: Unlocked, .Is64Bit: true}; |
| 1599 | case Builtin::BI_bittestandset64: |
| 1600 | return {.Action: Set, .Interlocking: Unlocked, .Is64Bit: true}; |
| 1601 | case Builtin::BI_interlockedbittestandreset64: |
| 1602 | return {.Action: Reset, .Interlocking: Sequential, .Is64Bit: true}; |
| 1603 | case Builtin::BI_interlockedbittestandset64: |
| 1604 | return {.Action: Set, .Interlocking: Sequential, .Is64Bit: true}; |
| 1605 | |
| 1606 | // ARM/AArch64-specific ordering variants. |
| 1607 | case Builtin::BI_interlockedbittestandset_acq: |
| 1608 | return {.Action: Set, .Interlocking: Acquire, .Is64Bit: false}; |
| 1609 | case Builtin::BI_interlockedbittestandset_rel: |
| 1610 | return {.Action: Set, .Interlocking: Release, .Is64Bit: false}; |
| 1611 | case Builtin::BI_interlockedbittestandset_nf: |
| 1612 | return {.Action: Set, .Interlocking: NoFence, .Is64Bit: false}; |
| 1613 | case Builtin::BI_interlockedbittestandreset_acq: |
| 1614 | return {.Action: Reset, .Interlocking: Acquire, .Is64Bit: false}; |
| 1615 | case Builtin::BI_interlockedbittestandreset_rel: |
| 1616 | return {.Action: Reset, .Interlocking: Release, .Is64Bit: false}; |
| 1617 | case Builtin::BI_interlockedbittestandreset_nf: |
| 1618 | return {.Action: Reset, .Interlocking: NoFence, .Is64Bit: false}; |
| 1619 | case Builtin::BI_interlockedbittestandreset64_acq: |
| 1620 | return {.Action: Reset, .Interlocking: Acquire, .Is64Bit: false}; |
| 1621 | case Builtin::BI_interlockedbittestandreset64_rel: |
| 1622 | return {.Action: Reset, .Interlocking: Release, .Is64Bit: false}; |
| 1623 | case Builtin::BI_interlockedbittestandreset64_nf: |
| 1624 | return {.Action: Reset, .Interlocking: NoFence, .Is64Bit: false}; |
| 1625 | case Builtin::BI_interlockedbittestandset64_acq: |
| 1626 | return {.Action: Set, .Interlocking: Acquire, .Is64Bit: false}; |
| 1627 | case Builtin::BI_interlockedbittestandset64_rel: |
| 1628 | return {.Action: Set, .Interlocking: Release, .Is64Bit: false}; |
| 1629 | case Builtin::BI_interlockedbittestandset64_nf: |
| 1630 | return {.Action: Set, .Interlocking: NoFence, .Is64Bit: false}; |
| 1631 | } |
| 1632 | llvm_unreachable("expected only bittest intrinsics" ); |
| 1633 | } |
| 1634 | |
| 1635 | static char bitActionToX86BTCode(BitTest::ActionKind A) { |
| 1636 | switch (A) { |
| 1637 | case BitTest::TestOnly: return '\0'; |
| 1638 | case BitTest::Complement: return 'c'; |
| 1639 | case BitTest::Reset: return 'r'; |
| 1640 | case BitTest::Set: return 's'; |
| 1641 | } |
| 1642 | llvm_unreachable("invalid action" ); |
| 1643 | } |
| 1644 | |
| 1645 | static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
| 1646 | BitTest BT, |
| 1647 | const CallExpr *E, Value *BitBase, |
| 1648 | Value *BitPos) { |
| 1649 | char Action = bitActionToX86BTCode(A: BT.Action); |
| 1650 | char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; |
| 1651 | |
| 1652 | // Build the assembly. |
| 1653 | SmallString<64> Asm; |
| 1654 | raw_svector_ostream AsmOS(Asm); |
| 1655 | if (BT.Interlocking != BitTest::Unlocked) |
| 1656 | AsmOS << "lock " ; |
| 1657 | AsmOS << "bt" ; |
| 1658 | if (Action) |
| 1659 | AsmOS << Action; |
| 1660 | AsmOS << SizeSuffix << " $2, ($1)" ; |
| 1661 | |
| 1662 | // Build the constraints. FIXME: We should support immediates when possible. |
| 1663 | std::string Constraints = "={@ccc},r,r,~{cc},~{memory}" ; |
| 1664 | std::string_view MachineClobbers = CGF.getTarget().getClobbers(); |
| 1665 | if (!MachineClobbers.empty()) { |
| 1666 | Constraints += ','; |
| 1667 | Constraints += MachineClobbers; |
| 1668 | } |
| 1669 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
| 1670 | C&: CGF.getLLVMContext(), |
| 1671 | NumBits: CGF.getContext().getTypeSize(T: E->getArg(Arg: 1)->getType())); |
| 1672 | llvm::FunctionType *FTy = |
| 1673 | llvm::FunctionType::get(Result: CGF.Int8Ty, Params: {CGF.UnqualPtrTy, IntType}, isVarArg: false); |
| 1674 | |
| 1675 | llvm::InlineAsm *IA = |
| 1676 | llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true); |
| 1677 | return CGF.Builder.CreateCall(Callee: IA, Args: {BitBase, BitPos}); |
| 1678 | } |
| 1679 | |
| 1680 | static llvm::AtomicOrdering |
| 1681 | getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
| 1682 | switch (I) { |
| 1683 | case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
| 1684 | case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
| 1685 | case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
| 1686 | case BitTest::Release: return llvm::AtomicOrdering::Release; |
| 1687 | case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
| 1688 | } |
| 1689 | llvm_unreachable("invalid interlocking" ); |
| 1690 | } |
| 1691 | |
| 1692 | /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
| 1693 | /// bits and a bit position and read and optionally modify the bit at that |
| 1694 | /// position. The position index can be arbitrarily large, i.e. it can be larger |
| 1695 | /// than 31 or 63, so we need an indexed load in the general case. |
| 1696 | static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
| 1697 | unsigned BuiltinID, |
| 1698 | const CallExpr *E) { |
| 1699 | Value *BitBase = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1700 | Value *BitPos = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1701 | |
| 1702 | BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
| 1703 | |
| 1704 | // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
| 1705 | // indexing operation internally. Use them if possible. |
| 1706 | if (CGF.getTarget().getTriple().isX86()) |
| 1707 | return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
| 1708 | |
| 1709 | // Otherwise, use generic code to load one byte and test the bit. Use all but |
| 1710 | // the bottom three bits as the array index, and the bottom three bits to form |
| 1711 | // a mask. |
| 1712 | // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
| 1713 | Value *ByteIndex = CGF.Builder.CreateAShr( |
| 1714 | LHS: BitPos, RHS: llvm::ConstantInt::get(Ty: BitPos->getType(), V: 3), Name: "bittest.byteidx" ); |
| 1715 | Address ByteAddr(CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: BitBase, IdxList: ByteIndex, |
| 1716 | Name: "bittest.byteaddr" ), |
| 1717 | CGF.Int8Ty, CharUnits::One()); |
| 1718 | Value *PosLow = |
| 1719 | CGF.Builder.CreateAnd(LHS: CGF.Builder.CreateTrunc(V: BitPos, DestTy: CGF.Int8Ty), |
| 1720 | RHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 0x7)); |
| 1721 | |
| 1722 | // The updating instructions will need a mask. |
| 1723 | Value *Mask = nullptr; |
| 1724 | if (BT.Action != BitTest::TestOnly) { |
| 1725 | Mask = CGF.Builder.CreateShl(LHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 1), RHS: PosLow, |
| 1726 | Name: "bittest.mask" ); |
| 1727 | } |
| 1728 | |
| 1729 | // Check the action and ordering of the interlocked intrinsics. |
| 1730 | llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(I: BT.Interlocking); |
| 1731 | |
| 1732 | Value *OldByte = nullptr; |
| 1733 | if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
| 1734 | // Emit a combined atomicrmw load/store operation for the interlocked |
| 1735 | // intrinsics. |
| 1736 | llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
| 1737 | if (BT.Action == BitTest::Reset) { |
| 1738 | Mask = CGF.Builder.CreateNot(V: Mask); |
| 1739 | RMWOp = llvm::AtomicRMWInst::And; |
| 1740 | } |
| 1741 | OldByte = CGF.Builder.CreateAtomicRMW(Op: RMWOp, Addr: ByteAddr, Val: Mask, Ordering); |
| 1742 | } else { |
| 1743 | // Emit a plain load for the non-interlocked intrinsics. |
| 1744 | OldByte = CGF.Builder.CreateLoad(Addr: ByteAddr, Name: "bittest.byte" ); |
| 1745 | Value *NewByte = nullptr; |
| 1746 | switch (BT.Action) { |
| 1747 | case BitTest::TestOnly: |
| 1748 | // Don't store anything. |
| 1749 | break; |
| 1750 | case BitTest::Complement: |
| 1751 | NewByte = CGF.Builder.CreateXor(LHS: OldByte, RHS: Mask); |
| 1752 | break; |
| 1753 | case BitTest::Reset: |
| 1754 | NewByte = CGF.Builder.CreateAnd(LHS: OldByte, RHS: CGF.Builder.CreateNot(V: Mask)); |
| 1755 | break; |
| 1756 | case BitTest::Set: |
| 1757 | NewByte = CGF.Builder.CreateOr(LHS: OldByte, RHS: Mask); |
| 1758 | break; |
| 1759 | } |
| 1760 | if (NewByte) |
| 1761 | CGF.Builder.CreateStore(Val: NewByte, Addr: ByteAddr); |
| 1762 | } |
| 1763 | |
| 1764 | // However we loaded the old byte, either by plain load or atomicrmw, shift |
| 1765 | // the bit into the low position and mask it to 0 or 1. |
| 1766 | Value *ShiftedByte = CGF.Builder.CreateLShr(LHS: OldByte, RHS: PosLow, Name: "bittest.shr" ); |
| 1767 | return CGF.Builder.CreateAnd( |
| 1768 | LHS: ShiftedByte, RHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 1), Name: "bittest.res" ); |
| 1769 | } |
| 1770 | |
| 1771 | namespace { |
| 1772 | enum class MSVCSetJmpKind { |
| 1773 | _setjmpex, |
| 1774 | _setjmp3, |
| 1775 | _setjmp |
| 1776 | }; |
| 1777 | } |
| 1778 | |
| 1779 | /// MSVC handles setjmp a bit differently on different platforms. On every |
| 1780 | /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
| 1781 | /// parameters can be passed as variadic arguments, but we always pass none. |
| 1782 | static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
| 1783 | const CallExpr *E) { |
| 1784 | llvm::Value *Arg1 = nullptr; |
| 1785 | llvm::Type *Arg1Ty = nullptr; |
| 1786 | StringRef Name; |
| 1787 | bool IsVarArg = false; |
| 1788 | if (SJKind == MSVCSetJmpKind::_setjmp3) { |
| 1789 | Name = "_setjmp3" ; |
| 1790 | Arg1Ty = CGF.Int32Ty; |
| 1791 | Arg1 = llvm::ConstantInt::get(Ty: CGF.IntTy, V: 0); |
| 1792 | IsVarArg = true; |
| 1793 | } else { |
| 1794 | Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex" ; |
| 1795 | Arg1Ty = CGF.Int8PtrTy; |
| 1796 | if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { |
| 1797 | Arg1 = CGF.Builder.CreateCall( |
| 1798 | Callee: CGF.CGM.getIntrinsic(IID: Intrinsic::sponentry, Tys: CGF.AllocaInt8PtrTy)); |
| 1799 | } else |
| 1800 | Arg1 = CGF.Builder.CreateCall( |
| 1801 | Callee: CGF.CGM.getIntrinsic(IID: Intrinsic::frameaddress, Tys: CGF.AllocaInt8PtrTy), |
| 1802 | Args: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0)); |
| 1803 | } |
| 1804 | |
| 1805 | // Mark the call site and declaration with ReturnsTwice. |
| 1806 | llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
| 1807 | llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
| 1808 | C&: CGF.getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, |
| 1809 | Kinds: llvm::Attribute::ReturnsTwice); |
| 1810 | llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
| 1811 | Ty: llvm::FunctionType::get(Result: CGF.IntTy, Params: ArgTypes, isVarArg: IsVarArg), Name, |
| 1812 | ExtraAttrs: ReturnsTwiceAttr, /*Local=*/true); |
| 1813 | |
| 1814 | llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
| 1815 | V: CGF.EmitScalarExpr(E: E->getArg(Arg: 0)), DestTy: CGF.Int8PtrTy); |
| 1816 | llvm::Value *Args[] = {Buf, Arg1}; |
| 1817 | llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(callee: SetJmpFn, args: Args); |
| 1818 | CB->setAttributes(ReturnsTwiceAttr); |
| 1819 | return RValue::get(V: CB); |
| 1820 | } |
| 1821 | |
| 1822 | // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. |
| 1823 | Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
| 1824 | const CallExpr *E) { |
| 1825 | switch (BuiltinID) { |
| 1826 | case MSVCIntrin::_BitScanForward: |
| 1827 | case MSVCIntrin::_BitScanReverse: { |
| 1828 | Address IndexAddress(EmitPointerWithAlignment(Addr: E->getArg(Arg: 0))); |
| 1829 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1830 | |
| 1831 | llvm::Type *ArgType = ArgValue->getType(); |
| 1832 | llvm::Type *IndexType = IndexAddress.getElementType(); |
| 1833 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 1834 | |
| 1835 | Value *ArgZero = llvm::Constant::getNullValue(Ty: ArgType); |
| 1836 | Value *ResZero = llvm::Constant::getNullValue(Ty: ResultType); |
| 1837 | Value *ResOne = llvm::ConstantInt::get(Ty: ResultType, V: 1); |
| 1838 | |
| 1839 | BasicBlock *Begin = Builder.GetInsertBlock(); |
| 1840 | BasicBlock *End = createBasicBlock(name: "bitscan_end" , parent: this->CurFn); |
| 1841 | Builder.SetInsertPoint(End); |
| 1842 | PHINode *Result = Builder.CreatePHI(Ty: ResultType, NumReservedValues: 2, Name: "bitscan_result" ); |
| 1843 | |
| 1844 | Builder.SetInsertPoint(Begin); |
| 1845 | Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: ArgZero); |
| 1846 | BasicBlock *NotZero = createBasicBlock(name: "bitscan_not_zero" , parent: this->CurFn); |
| 1847 | Builder.CreateCondBr(Cond: IsZero, True: End, False: NotZero); |
| 1848 | Result->addIncoming(V: ResZero, BB: Begin); |
| 1849 | |
| 1850 | Builder.SetInsertPoint(NotZero); |
| 1851 | |
| 1852 | if (BuiltinID == MSVCIntrin::_BitScanForward) { |
| 1853 | Function *F = CGM.getIntrinsic(IID: Intrinsic::cttz, Tys: ArgType); |
| 1854 | Value *ZeroCount = Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()}); |
| 1855 | ZeroCount = Builder.CreateIntCast(V: ZeroCount, DestTy: IndexType, isSigned: false); |
| 1856 | Builder.CreateStore(Val: ZeroCount, Addr: IndexAddress, IsVolatile: false); |
| 1857 | } else { |
| 1858 | unsigned ArgWidth = cast<llvm::IntegerType>(Val: ArgType)->getBitWidth(); |
| 1859 | Value *ArgTypeLastIndex = llvm::ConstantInt::get(Ty: IndexType, V: ArgWidth - 1); |
| 1860 | |
| 1861 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: ArgType); |
| 1862 | Value *ZeroCount = Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()}); |
| 1863 | ZeroCount = Builder.CreateIntCast(V: ZeroCount, DestTy: IndexType, isSigned: false); |
| 1864 | Value *Index = Builder.CreateNSWSub(LHS: ArgTypeLastIndex, RHS: ZeroCount); |
| 1865 | Builder.CreateStore(Val: Index, Addr: IndexAddress, IsVolatile: false); |
| 1866 | } |
| 1867 | Builder.CreateBr(Dest: End); |
| 1868 | Result->addIncoming(V: ResOne, BB: NotZero); |
| 1869 | |
| 1870 | Builder.SetInsertPoint(End); |
| 1871 | return Result; |
| 1872 | } |
| 1873 | case MSVCIntrin::_InterlockedAnd: |
| 1874 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::And, E); |
| 1875 | case MSVCIntrin::_InterlockedExchange: |
| 1876 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xchg, E); |
| 1877 | case MSVCIntrin::_InterlockedExchangeAdd: |
| 1878 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Add, E); |
| 1879 | case MSVCIntrin::_InterlockedExchangeSub: |
| 1880 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Sub, E); |
| 1881 | case MSVCIntrin::_InterlockedOr: |
| 1882 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Or, E); |
| 1883 | case MSVCIntrin::_InterlockedXor: |
| 1884 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xor, E); |
| 1885 | case MSVCIntrin::_InterlockedExchangeAdd_acq: |
| 1886 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Add, E, |
| 1887 | Ordering: AtomicOrdering::Acquire); |
| 1888 | case MSVCIntrin::_InterlockedExchangeAdd_rel: |
| 1889 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Add, E, |
| 1890 | Ordering: AtomicOrdering::Release); |
| 1891 | case MSVCIntrin::_InterlockedExchangeAdd_nf: |
| 1892 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Add, E, |
| 1893 | Ordering: AtomicOrdering::Monotonic); |
| 1894 | case MSVCIntrin::_InterlockedExchange_acq: |
| 1895 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xchg, E, |
| 1896 | Ordering: AtomicOrdering::Acquire); |
| 1897 | case MSVCIntrin::_InterlockedExchange_rel: |
| 1898 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xchg, E, |
| 1899 | Ordering: AtomicOrdering::Release); |
| 1900 | case MSVCIntrin::_InterlockedExchange_nf: |
| 1901 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xchg, E, |
| 1902 | Ordering: AtomicOrdering::Monotonic); |
| 1903 | case MSVCIntrin::_InterlockedCompareExchange: |
| 1904 | return EmitAtomicCmpXchgForMSIntrin(CGF&: *this, E); |
| 1905 | case MSVCIntrin::_InterlockedCompareExchange_acq: |
| 1906 | return EmitAtomicCmpXchgForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Acquire); |
| 1907 | case MSVCIntrin::_InterlockedCompareExchange_rel: |
| 1908 | return EmitAtomicCmpXchgForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Release); |
| 1909 | case MSVCIntrin::_InterlockedCompareExchange_nf: |
| 1910 | return EmitAtomicCmpXchgForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Monotonic); |
| 1911 | case MSVCIntrin::_InterlockedCompareExchange128: |
| 1912 | return EmitAtomicCmpXchg128ForMSIntrin( |
| 1913 | CGF&: *this, E, SuccessOrdering: AtomicOrdering::SequentiallyConsistent); |
| 1914 | case MSVCIntrin::_InterlockedCompareExchange128_acq: |
| 1915 | return EmitAtomicCmpXchg128ForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Acquire); |
| 1916 | case MSVCIntrin::_InterlockedCompareExchange128_rel: |
| 1917 | return EmitAtomicCmpXchg128ForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Release); |
| 1918 | case MSVCIntrin::_InterlockedCompareExchange128_nf: |
| 1919 | return EmitAtomicCmpXchg128ForMSIntrin(CGF&: *this, E, SuccessOrdering: AtomicOrdering::Monotonic); |
| 1920 | case MSVCIntrin::_InterlockedOr_acq: |
| 1921 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Or, E, |
| 1922 | Ordering: AtomicOrdering::Acquire); |
| 1923 | case MSVCIntrin::_InterlockedOr_rel: |
| 1924 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Or, E, |
| 1925 | Ordering: AtomicOrdering::Release); |
| 1926 | case MSVCIntrin::_InterlockedOr_nf: |
| 1927 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Or, E, |
| 1928 | Ordering: AtomicOrdering::Monotonic); |
| 1929 | case MSVCIntrin::_InterlockedXor_acq: |
| 1930 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xor, E, |
| 1931 | Ordering: AtomicOrdering::Acquire); |
| 1932 | case MSVCIntrin::_InterlockedXor_rel: |
| 1933 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xor, E, |
| 1934 | Ordering: AtomicOrdering::Release); |
| 1935 | case MSVCIntrin::_InterlockedXor_nf: |
| 1936 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xor, E, |
| 1937 | Ordering: AtomicOrdering::Monotonic); |
| 1938 | case MSVCIntrin::_InterlockedAnd_acq: |
| 1939 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::And, E, |
| 1940 | Ordering: AtomicOrdering::Acquire); |
| 1941 | case MSVCIntrin::_InterlockedAnd_rel: |
| 1942 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::And, E, |
| 1943 | Ordering: AtomicOrdering::Release); |
| 1944 | case MSVCIntrin::_InterlockedAnd_nf: |
| 1945 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::And, E, |
| 1946 | Ordering: AtomicOrdering::Monotonic); |
| 1947 | case MSVCIntrin::_InterlockedIncrement_acq: |
| 1948 | return EmitAtomicIncrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Acquire); |
| 1949 | case MSVCIntrin::_InterlockedIncrement_rel: |
| 1950 | return EmitAtomicIncrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Release); |
| 1951 | case MSVCIntrin::_InterlockedIncrement_nf: |
| 1952 | return EmitAtomicIncrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Monotonic); |
| 1953 | case MSVCIntrin::_InterlockedDecrement_acq: |
| 1954 | return EmitAtomicDecrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Acquire); |
| 1955 | case MSVCIntrin::_InterlockedDecrement_rel: |
| 1956 | return EmitAtomicDecrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Release); |
| 1957 | case MSVCIntrin::_InterlockedDecrement_nf: |
| 1958 | return EmitAtomicDecrementValue(CGF&: *this, E, Ordering: AtomicOrdering::Monotonic); |
| 1959 | |
| 1960 | case MSVCIntrin::_InterlockedDecrement: |
| 1961 | return EmitAtomicDecrementValue(CGF&: *this, E); |
| 1962 | case MSVCIntrin::_InterlockedIncrement: |
| 1963 | return EmitAtomicIncrementValue(CGF&: *this, E); |
| 1964 | |
| 1965 | case MSVCIntrin::__fastfail: { |
| 1966 | // Request immediate process termination from the kernel. The instruction |
| 1967 | // sequences to do this are documented on MSDN: |
| 1968 | // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
| 1969 | llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
| 1970 | StringRef Asm, Constraints; |
| 1971 | switch (ISA) { |
| 1972 | default: |
| 1973 | ErrorUnsupported(S: E, Type: "__fastfail call for this architecture" ); |
| 1974 | break; |
| 1975 | case llvm::Triple::x86: |
| 1976 | case llvm::Triple::x86_64: |
| 1977 | Asm = "int $$0x29" ; |
| 1978 | Constraints = "{cx}" ; |
| 1979 | break; |
| 1980 | case llvm::Triple::thumb: |
| 1981 | Asm = "udf #251" ; |
| 1982 | Constraints = "{r0}" ; |
| 1983 | break; |
| 1984 | case llvm::Triple::aarch64: |
| 1985 | Asm = "brk #0xF003" ; |
| 1986 | Constraints = "{w0}" ; |
| 1987 | } |
| 1988 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: VoidTy, Params: {Int32Ty}, isVarArg: false); |
| 1989 | llvm::InlineAsm *IA = |
| 1990 | llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true); |
| 1991 | llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| 1992 | C&: getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, |
| 1993 | Kinds: llvm::Attribute::NoReturn); |
| 1994 | llvm::CallInst *CI = Builder.CreateCall(Callee: IA, Args: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 1995 | CI->setAttributes(NoReturnAttr); |
| 1996 | return CI; |
| 1997 | } |
| 1998 | } |
| 1999 | llvm_unreachable("Incorrect MSVC intrinsic!" ); |
| 2000 | } |
| 2001 | |
| 2002 | namespace { |
| 2003 | // ARC cleanup for __builtin_os_log_format |
| 2004 | struct CallObjCArcUse final : EHScopeStack::Cleanup { |
| 2005 | CallObjCArcUse(llvm::Value *object) : object(object) {} |
| 2006 | llvm::Value *object; |
| 2007 | |
| 2008 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2009 | CGF.EmitARCIntrinsicUse(values: object); |
| 2010 | } |
| 2011 | }; |
| 2012 | } |
| 2013 | |
| 2014 | Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
| 2015 | BuiltinCheckKind Kind) { |
| 2016 | assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && |
| 2017 | "Unsupported builtin check kind" ); |
| 2018 | |
| 2019 | Value *ArgValue = EmitScalarExpr(E); |
| 2020 | if (!SanOpts.has(K: SanitizerKind::Builtin)) |
| 2021 | return ArgValue; |
| 2022 | |
| 2023 | auto CheckOrdinal = SanitizerKind::SO_Builtin; |
| 2024 | auto CheckHandler = SanitizerHandler::InvalidBuiltin; |
| 2025 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
| 2026 | Value *Cond = Builder.CreateICmpNE( |
| 2027 | LHS: ArgValue, RHS: llvm::Constant::getNullValue(Ty: ArgValue->getType())); |
| 2028 | EmitCheck(Checked: std::make_pair(x&: Cond, y&: CheckOrdinal), Check: CheckHandler, |
| 2029 | StaticArgs: {EmitCheckSourceLocation(Loc: E->getExprLoc()), |
| 2030 | llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: Kind)}, |
| 2031 | DynamicArgs: {}); |
| 2032 | return ArgValue; |
| 2033 | } |
| 2034 | |
| 2035 | Value *CodeGenFunction::EmitCheckedArgForAssume(const Expr *E) { |
| 2036 | Value *ArgValue = EvaluateExprAsBool(E); |
| 2037 | if (!SanOpts.has(K: SanitizerKind::Builtin)) |
| 2038 | return ArgValue; |
| 2039 | |
| 2040 | auto CheckOrdinal = SanitizerKind::SO_Builtin; |
| 2041 | auto CheckHandler = SanitizerHandler::InvalidBuiltin; |
| 2042 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
| 2043 | EmitCheck( |
| 2044 | Checked: std::make_pair(x&: ArgValue, y&: CheckOrdinal), Check: CheckHandler, |
| 2045 | StaticArgs: {EmitCheckSourceLocation(Loc: E->getExprLoc()), |
| 2046 | llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: BCK_AssumePassedFalse)}, |
| 2047 | DynamicArgs: {}); |
| 2048 | return ArgValue; |
| 2049 | } |
| 2050 | |
| 2051 | static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) { |
| 2052 | return CGF.Builder.CreateBinaryIntrinsic( |
| 2053 | ID: Intrinsic::abs, LHS: ArgValue, |
| 2054 | RHS: ConstantInt::get(Ty: CGF.Builder.getInt1Ty(), V: HasNSW)); |
| 2055 | } |
| 2056 | |
| 2057 | static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E, |
| 2058 | bool SanitizeOverflow) { |
| 2059 | Value *ArgValue = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 2060 | |
| 2061 | // Try to eliminate overflow check. |
| 2062 | if (const auto *VCI = dyn_cast<llvm::ConstantInt>(Val: ArgValue)) { |
| 2063 | if (!VCI->isMinSignedValue()) |
| 2064 | return EmitAbs(CGF, ArgValue, HasNSW: true); |
| 2065 | } |
| 2066 | |
| 2067 | SmallVector<SanitizerKind::SanitizerOrdinal, 1> Ordinals; |
| 2068 | SanitizerHandler CheckHandler; |
| 2069 | if (SanitizeOverflow) { |
| 2070 | Ordinals.push_back(Elt: SanitizerKind::SO_SignedIntegerOverflow); |
| 2071 | CheckHandler = SanitizerHandler::NegateOverflow; |
| 2072 | } else |
| 2073 | CheckHandler = SanitizerHandler::SubOverflow; |
| 2074 | |
| 2075 | SanitizerDebugLocation SanScope(&CGF, Ordinals, CheckHandler); |
| 2076 | |
| 2077 | Constant *Zero = Constant::getNullValue(Ty: ArgValue->getType()); |
| 2078 | Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic( |
| 2079 | ID: Intrinsic::ssub_with_overflow, LHS: Zero, RHS: ArgValue); |
| 2080 | Value *Result = CGF.Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 0); |
| 2081 | Value *NotOverflow = CGF.Builder.CreateNot( |
| 2082 | V: CGF.Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 1)); |
| 2083 | |
| 2084 | // TODO: support -ftrapv-handler. |
| 2085 | if (SanitizeOverflow) { |
| 2086 | CGF.EmitCheck(Checked: {{NotOverflow, SanitizerKind::SO_SignedIntegerOverflow}}, |
| 2087 | Check: CheckHandler, |
| 2088 | StaticArgs: {CGF.EmitCheckSourceLocation(Loc: E->getArg(Arg: 0)->getExprLoc()), |
| 2089 | CGF.EmitCheckTypeDescriptor(T: E->getType())}, |
| 2090 | DynamicArgs: {ArgValue}); |
| 2091 | } else |
| 2092 | CGF.EmitTrapCheck(Checked: NotOverflow, CheckHandlerID: CheckHandler); |
| 2093 | |
| 2094 | Value *CmpResult = CGF.Builder.CreateICmpSLT(LHS: ArgValue, RHS: Zero, Name: "abscond" ); |
| 2095 | return CGF.Builder.CreateSelect(C: CmpResult, True: Result, False: ArgValue, Name: "abs" ); |
| 2096 | } |
| 2097 | |
| 2098 | /// Get the argument type for arguments to os_log_helper. |
| 2099 | static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
| 2100 | QualType UnsignedTy = C.getIntTypeForBitwidth(DestWidth: Size * 8, /*Signed=*/false); |
| 2101 | return C.getCanonicalType(T: UnsignedTy); |
| 2102 | } |
| 2103 | |
| 2104 | llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
| 2105 | const analyze_os_log::OSLogBufferLayout &Layout, |
| 2106 | CharUnits BufferAlignment) { |
| 2107 | ASTContext &Ctx = getContext(); |
| 2108 | |
| 2109 | llvm::SmallString<64> Name; |
| 2110 | { |
| 2111 | raw_svector_ostream OS(Name); |
| 2112 | OS << "__os_log_helper" ; |
| 2113 | OS << "_" << BufferAlignment.getQuantity(); |
| 2114 | OS << "_" << int(Layout.getSummaryByte()); |
| 2115 | OS << "_" << int(Layout.getNumArgsByte()); |
| 2116 | for (const auto &Item : Layout.Items) |
| 2117 | OS << "_" << int(Item.getSizeByte()) << "_" |
| 2118 | << int(Item.getDescriptorByte()); |
| 2119 | } |
| 2120 | |
| 2121 | if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
| 2122 | return F; |
| 2123 | |
| 2124 | llvm::SmallVector<QualType, 4> ArgTys; |
| 2125 | FunctionArgList Args; |
| 2126 | Args.push_back(Elt: ImplicitParamDecl::Create( |
| 2127 | C&: Ctx, DC: nullptr, IdLoc: SourceLocation(), Id: &Ctx.Idents.get(Name: "buffer" ), T: Ctx.VoidPtrTy, |
| 2128 | ParamKind: ImplicitParamKind::Other)); |
| 2129 | ArgTys.emplace_back(Args&: Ctx.VoidPtrTy); |
| 2130 | |
| 2131 | for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { |
| 2132 | char Size = Layout.Items[I].getSizeByte(); |
| 2133 | if (!Size) |
| 2134 | continue; |
| 2135 | |
| 2136 | QualType ArgTy = getOSLogArgType(C&: Ctx, Size); |
| 2137 | Args.push_back(Elt: ImplicitParamDecl::Create( |
| 2138 | C&: Ctx, DC: nullptr, IdLoc: SourceLocation(), |
| 2139 | Id: &Ctx.Idents.get(Name: std::string("arg" ) + llvm::to_string(Value: I)), T: ArgTy, |
| 2140 | ParamKind: ImplicitParamKind::Other)); |
| 2141 | ArgTys.emplace_back(Args&: ArgTy); |
| 2142 | } |
| 2143 | |
| 2144 | QualType ReturnTy = Ctx.VoidTy; |
| 2145 | |
| 2146 | // The helper function has linkonce_odr linkage to enable the linker to merge |
| 2147 | // identical functions. To ensure the merging always happens, 'noinline' is |
| 2148 | // attached to the function when compiling with -Oz. |
| 2149 | const CGFunctionInfo &FI = |
| 2150 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(resultType: ReturnTy, args: Args); |
| 2151 | llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(Info: FI); |
| 2152 | llvm::Function *Fn = llvm::Function::Create( |
| 2153 | Ty: FuncTy, Linkage: llvm::GlobalValue::LinkOnceODRLinkage, N: Name, M: &CGM.getModule()); |
| 2154 | Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 2155 | CGM.SetLLVMFunctionAttributes(GD: GlobalDecl(), Info: FI, F: Fn, /*IsThunk=*/false); |
| 2156 | CGM.SetLLVMFunctionAttributesForDefinition(D: nullptr, F: Fn); |
| 2157 | Fn->setDoesNotThrow(); |
| 2158 | |
| 2159 | // Attach 'noinline' at -Oz. |
| 2160 | if (CGM.getCodeGenOpts().OptimizeSize == 2) |
| 2161 | Fn->addFnAttr(Kind: llvm::Attribute::NoInline); |
| 2162 | |
| 2163 | auto NL = ApplyDebugLocation::CreateEmpty(CGF&: *this); |
| 2164 | StartFunction(GD: GlobalDecl(), RetTy: ReturnTy, Fn, FnInfo: FI, Args); |
| 2165 | |
| 2166 | // Create a scope with an artificial location for the body of this function. |
| 2167 | auto AL = ApplyDebugLocation::CreateArtificial(CGF&: *this); |
| 2168 | |
| 2169 | CharUnits Offset; |
| 2170 | Address BufAddr = makeNaturalAddressForPointer( |
| 2171 | Ptr: Builder.CreateLoad(Addr: GetAddrOfLocalVar(VD: Args[0]), Name: "buf" ), T: Ctx.VoidTy, |
| 2172 | Alignment: BufferAlignment); |
| 2173 | Builder.CreateStore(Val: Builder.getInt8(C: Layout.getSummaryByte()), |
| 2174 | Addr: Builder.CreateConstByteGEP(Addr: BufAddr, Offset: Offset++, Name: "summary" )); |
| 2175 | Builder.CreateStore(Val: Builder.getInt8(C: Layout.getNumArgsByte()), |
| 2176 | Addr: Builder.CreateConstByteGEP(Addr: BufAddr, Offset: Offset++, Name: "numArgs" )); |
| 2177 | |
| 2178 | unsigned I = 1; |
| 2179 | for (const auto &Item : Layout.Items) { |
| 2180 | Builder.CreateStore( |
| 2181 | Val: Builder.getInt8(C: Item.getDescriptorByte()), |
| 2182 | Addr: Builder.CreateConstByteGEP(Addr: BufAddr, Offset: Offset++, Name: "argDescriptor" )); |
| 2183 | Builder.CreateStore( |
| 2184 | Val: Builder.getInt8(C: Item.getSizeByte()), |
| 2185 | Addr: Builder.CreateConstByteGEP(Addr: BufAddr, Offset: Offset++, Name: "argSize" )); |
| 2186 | |
| 2187 | CharUnits Size = Item.size(); |
| 2188 | if (!Size.getQuantity()) |
| 2189 | continue; |
| 2190 | |
| 2191 | Address Arg = GetAddrOfLocalVar(VD: Args[I]); |
| 2192 | Address Addr = Builder.CreateConstByteGEP(Addr: BufAddr, Offset, Name: "argData" ); |
| 2193 | Addr = Addr.withElementType(ElemTy: Arg.getElementType()); |
| 2194 | Builder.CreateStore(Val: Builder.CreateLoad(Addr: Arg), Addr); |
| 2195 | Offset += Size; |
| 2196 | ++I; |
| 2197 | } |
| 2198 | |
| 2199 | FinishFunction(); |
| 2200 | |
| 2201 | return Fn; |
| 2202 | } |
| 2203 | |
| 2204 | RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
| 2205 | assert(E.getNumArgs() >= 2 && |
| 2206 | "__builtin_os_log_format takes at least 2 arguments" ); |
| 2207 | ASTContext &Ctx = getContext(); |
| 2208 | analyze_os_log::OSLogBufferLayout Layout; |
| 2209 | analyze_os_log::computeOSLogBufferLayout(Ctx, E: &E, layout&: Layout); |
| 2210 | Address BufAddr = EmitPointerWithAlignment(Addr: E.getArg(Arg: 0)); |
| 2211 | |
| 2212 | // Ignore argument 1, the format string. It is not currently used. |
| 2213 | CallArgList Args; |
| 2214 | Args.add(rvalue: RValue::get(V: BufAddr.emitRawPointer(CGF&: *this)), type: Ctx.VoidPtrTy); |
| 2215 | |
| 2216 | for (const auto &Item : Layout.Items) { |
| 2217 | int Size = Item.getSizeByte(); |
| 2218 | if (!Size) |
| 2219 | continue; |
| 2220 | |
| 2221 | llvm::Value *ArgVal; |
| 2222 | |
| 2223 | if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { |
| 2224 | uint64_t Val = 0; |
| 2225 | for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) |
| 2226 | Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; |
| 2227 | ArgVal = llvm::Constant::getIntegerValue(Ty: Int64Ty, V: llvm::APInt(64, Val)); |
| 2228 | } else if (const Expr *TheExpr = Item.getExpr()) { |
| 2229 | ArgVal = EmitScalarExpr(E: TheExpr, /*Ignore*/ IgnoreResultAssign: false); |
| 2230 | |
| 2231 | // If a temporary object that requires destruction after the full |
| 2232 | // expression is passed, push a lifetime-extended cleanup to extend its |
| 2233 | // lifetime to the end of the enclosing block scope. |
| 2234 | auto LifetimeExtendObject = [&](const Expr *E) { |
| 2235 | E = E->IgnoreParenCasts(); |
| 2236 | // Extend lifetimes of objects returned by function calls and message |
| 2237 | // sends. |
| 2238 | |
| 2239 | // FIXME: We should do this in other cases in which temporaries are |
| 2240 | // created including arguments of non-ARC types (e.g., C++ |
| 2241 | // temporaries). |
| 2242 | if (isa<CallExpr>(Val: E) || isa<ObjCMessageExpr>(Val: E)) |
| 2243 | return true; |
| 2244 | return false; |
| 2245 | }; |
| 2246 | |
| 2247 | if (TheExpr->getType()->isObjCRetainableType() && |
| 2248 | getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { |
| 2249 | assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && |
| 2250 | "Only scalar can be a ObjC retainable type" ); |
| 2251 | if (!isa<Constant>(Val: ArgVal)) { |
| 2252 | CleanupKind Cleanup = getARCCleanupKind(); |
| 2253 | QualType Ty = TheExpr->getType(); |
| 2254 | RawAddress Alloca = RawAddress::invalid(); |
| 2255 | RawAddress Addr = CreateMemTemp(T: Ty, Name: "os.log.arg" , Alloca: &Alloca); |
| 2256 | ArgVal = EmitARCRetain(type: Ty, value: ArgVal); |
| 2257 | Builder.CreateStore(Val: ArgVal, Addr); |
| 2258 | pushLifetimeExtendedDestroy(kind: Cleanup, addr: Alloca, type: Ty, |
| 2259 | destroyer: CodeGenFunction::destroyARCStrongPrecise, |
| 2260 | useEHCleanupForArray: Cleanup & EHCleanup); |
| 2261 | |
| 2262 | // Push a clang.arc.use call to ensure ARC optimizer knows that the |
| 2263 | // argument has to be alive. |
| 2264 | if (CGM.getCodeGenOpts().OptimizationLevel != 0) |
| 2265 | pushCleanupAfterFullExpr<CallObjCArcUse>(Kind: Cleanup, A: ArgVal); |
| 2266 | } |
| 2267 | } |
| 2268 | } else { |
| 2269 | ArgVal = Builder.getInt32(C: Item.getConstValue().getQuantity()); |
| 2270 | } |
| 2271 | |
| 2272 | unsigned ArgValSize = |
| 2273 | CGM.getDataLayout().getTypeSizeInBits(Ty: ArgVal->getType()); |
| 2274 | llvm::IntegerType *IntTy = llvm::Type::getIntNTy(C&: getLLVMContext(), |
| 2275 | N: ArgValSize); |
| 2276 | ArgVal = Builder.CreateBitOrPointerCast(V: ArgVal, DestTy: IntTy); |
| 2277 | CanQualType ArgTy = getOSLogArgType(C&: Ctx, Size); |
| 2278 | // If ArgVal has type x86_fp80, zero-extend ArgVal. |
| 2279 | ArgVal = Builder.CreateZExtOrBitCast(V: ArgVal, DestTy: ConvertType(T: ArgTy)); |
| 2280 | Args.add(rvalue: RValue::get(V: ArgVal), type: ArgTy); |
| 2281 | } |
| 2282 | |
| 2283 | const CGFunctionInfo &FI = |
| 2284 | CGM.getTypes().arrangeBuiltinFunctionCall(resultType: Ctx.VoidTy, args: Args); |
| 2285 | llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
| 2286 | Layout, BufferAlignment: BufAddr.getAlignment()); |
| 2287 | EmitCall(CallInfo: FI, Callee: CGCallee::forDirect(functionPtr: F), ReturnValue: ReturnValueSlot(), Args); |
| 2288 | return RValue::get(Addr: BufAddr, CGF&: *this); |
| 2289 | } |
| 2290 | |
| 2291 | static bool isSpecialUnsignedMultiplySignedResult( |
| 2292 | unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, |
| 2293 | WidthAndSignedness ResultInfo) { |
| 2294 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| 2295 | Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && |
| 2296 | !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; |
| 2297 | } |
| 2298 | |
| 2299 | static RValue EmitCheckedUnsignedMultiplySignedResult( |
| 2300 | CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, |
| 2301 | const clang::Expr *Op2, WidthAndSignedness Op2Info, |
| 2302 | const clang::Expr *ResultArg, QualType ResultQTy, |
| 2303 | WidthAndSignedness ResultInfo) { |
| 2304 | assert(isSpecialUnsignedMultiplySignedResult( |
| 2305 | Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && |
| 2306 | "Cannot specialize this multiply" ); |
| 2307 | |
| 2308 | llvm::Value *V1 = CGF.EmitScalarExpr(E: Op1); |
| 2309 | llvm::Value *V2 = CGF.EmitScalarExpr(E: Op2); |
| 2310 | |
| 2311 | llvm::Value *HasOverflow; |
| 2312 | llvm::Value *Result = EmitOverflowIntrinsic( |
| 2313 | CGF, IntrinsicID: Intrinsic::umul_with_overflow, X: V1, Y: V2, Carry&: HasOverflow); |
| 2314 | |
| 2315 | // The intrinsic call will detect overflow when the value is > UINT_MAX, |
| 2316 | // however, since the original builtin had a signed result, we need to report |
| 2317 | // an overflow when the result is greater than INT_MAX. |
| 2318 | auto IntMax = llvm::APInt::getSignedMaxValue(numBits: ResultInfo.Width); |
| 2319 | llvm::Value *IntMaxValue = llvm::ConstantInt::get(Ty: Result->getType(), V: IntMax); |
| 2320 | |
| 2321 | llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(LHS: Result, RHS: IntMaxValue); |
| 2322 | HasOverflow = CGF.Builder.CreateOr(LHS: HasOverflow, RHS: IntMaxOverflow); |
| 2323 | |
| 2324 | bool isVolatile = |
| 2325 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| 2326 | Address ResultPtr = CGF.EmitPointerWithAlignment(Addr: ResultArg); |
| 2327 | CGF.Builder.CreateStore(Val: CGF.EmitToMemory(Value: Result, Ty: ResultQTy), Addr: ResultPtr, |
| 2328 | IsVolatile: isVolatile); |
| 2329 | return RValue::get(V: HasOverflow); |
| 2330 | } |
| 2331 | |
| 2332 | /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
| 2333 | static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
| 2334 | WidthAndSignedness Op1Info, |
| 2335 | WidthAndSignedness Op2Info, |
| 2336 | WidthAndSignedness ResultInfo) { |
| 2337 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| 2338 | std::max(a: Op1Info.Width, b: Op2Info.Width) >= ResultInfo.Width && |
| 2339 | Op1Info.Signed != Op2Info.Signed; |
| 2340 | } |
| 2341 | |
| 2342 | /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
| 2343 | /// the generic checked-binop irgen. |
| 2344 | static RValue |
| 2345 | EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
| 2346 | WidthAndSignedness Op1Info, const clang::Expr *Op2, |
| 2347 | WidthAndSignedness Op2Info, |
| 2348 | const clang::Expr *ResultArg, QualType ResultQTy, |
| 2349 | WidthAndSignedness ResultInfo) { |
| 2350 | assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, |
| 2351 | Op2Info, ResultInfo) && |
| 2352 | "Not a mixed-sign multipliction we can specialize" ); |
| 2353 | |
| 2354 | // Emit the signed and unsigned operands. |
| 2355 | const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; |
| 2356 | const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; |
| 2357 | llvm::Value *Signed = CGF.EmitScalarExpr(E: SignedOp); |
| 2358 | llvm::Value *Unsigned = CGF.EmitScalarExpr(E: UnsignedOp); |
| 2359 | unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; |
| 2360 | unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; |
| 2361 | |
| 2362 | // One of the operands may be smaller than the other. If so, [s|z]ext it. |
| 2363 | if (SignedOpWidth < UnsignedOpWidth) |
| 2364 | Signed = CGF.Builder.CreateSExt(V: Signed, DestTy: Unsigned->getType(), Name: "op.sext" ); |
| 2365 | if (UnsignedOpWidth < SignedOpWidth) |
| 2366 | Unsigned = CGF.Builder.CreateZExt(V: Unsigned, DestTy: Signed->getType(), Name: "op.zext" ); |
| 2367 | |
| 2368 | llvm::Type *OpTy = Signed->getType(); |
| 2369 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: OpTy); |
| 2370 | Address ResultPtr = CGF.EmitPointerWithAlignment(Addr: ResultArg); |
| 2371 | llvm::Type *ResTy = CGF.getTypes().ConvertType(T: ResultQTy); |
| 2372 | unsigned OpWidth = std::max(a: Op1Info.Width, b: Op2Info.Width); |
| 2373 | |
| 2374 | // Take the absolute value of the signed operand. |
| 2375 | llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(LHS: Signed, RHS: Zero); |
| 2376 | llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(LHS: Zero, RHS: Signed); |
| 2377 | llvm::Value *AbsSigned = |
| 2378 | CGF.Builder.CreateSelect(C: IsNegative, True: AbsOfNegative, False: Signed); |
| 2379 | |
| 2380 | // Perform a checked unsigned multiplication. |
| 2381 | llvm::Value *UnsignedOverflow; |
| 2382 | llvm::Value *UnsignedResult = |
| 2383 | EmitOverflowIntrinsic(CGF, IntrinsicID: Intrinsic::umul_with_overflow, X: AbsSigned, |
| 2384 | Y: Unsigned, Carry&: UnsignedOverflow); |
| 2385 | |
| 2386 | llvm::Value *Overflow, *Result; |
| 2387 | if (ResultInfo.Signed) { |
| 2388 | // Signed overflow occurs if the result is greater than INT_MAX or lesser |
| 2389 | // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
| 2390 | auto IntMax = |
| 2391 | llvm::APInt::getSignedMaxValue(numBits: ResultInfo.Width).zext(width: OpWidth); |
| 2392 | llvm::Value *MaxResult = |
| 2393 | CGF.Builder.CreateAdd(LHS: llvm::ConstantInt::get(Ty: OpTy, V: IntMax), |
| 2394 | RHS: CGF.Builder.CreateZExt(V: IsNegative, DestTy: OpTy)); |
| 2395 | llvm::Value *SignedOverflow = |
| 2396 | CGF.Builder.CreateICmpUGT(LHS: UnsignedResult, RHS: MaxResult); |
| 2397 | Overflow = CGF.Builder.CreateOr(LHS: UnsignedOverflow, RHS: SignedOverflow); |
| 2398 | |
| 2399 | // Prepare the signed result (possibly by negating it). |
| 2400 | llvm::Value *NegativeResult = CGF.Builder.CreateNeg(V: UnsignedResult); |
| 2401 | llvm::Value *SignedResult = |
| 2402 | CGF.Builder.CreateSelect(C: IsNegative, True: NegativeResult, False: UnsignedResult); |
| 2403 | Result = CGF.Builder.CreateTrunc(V: SignedResult, DestTy: ResTy); |
| 2404 | } else { |
| 2405 | // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
| 2406 | llvm::Value *Underflow = CGF.Builder.CreateAnd( |
| 2407 | LHS: IsNegative, RHS: CGF.Builder.CreateIsNotNull(Arg: UnsignedResult)); |
| 2408 | Overflow = CGF.Builder.CreateOr(LHS: UnsignedOverflow, RHS: Underflow); |
| 2409 | if (ResultInfo.Width < OpWidth) { |
| 2410 | auto IntMax = |
| 2411 | llvm::APInt::getMaxValue(numBits: ResultInfo.Width).zext(width: OpWidth); |
| 2412 | llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
| 2413 | LHS: UnsignedResult, RHS: llvm::ConstantInt::get(Ty: OpTy, V: IntMax)); |
| 2414 | Overflow = CGF.Builder.CreateOr(LHS: Overflow, RHS: TruncOverflow); |
| 2415 | } |
| 2416 | |
| 2417 | // Negate the product if it would be negative in infinite precision. |
| 2418 | Result = CGF.Builder.CreateSelect( |
| 2419 | C: IsNegative, True: CGF.Builder.CreateNeg(V: UnsignedResult), False: UnsignedResult); |
| 2420 | |
| 2421 | Result = CGF.Builder.CreateTrunc(V: Result, DestTy: ResTy); |
| 2422 | } |
| 2423 | assert(Overflow && Result && "Missing overflow or result" ); |
| 2424 | |
| 2425 | bool isVolatile = |
| 2426 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| 2427 | CGF.Builder.CreateStore(Val: CGF.EmitToMemory(Value: Result, Ty: ResultQTy), Addr: ResultPtr, |
| 2428 | IsVolatile: isVolatile); |
| 2429 | return RValue::get(V: Overflow); |
| 2430 | } |
| 2431 | |
| 2432 | static bool |
| 2433 | TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, |
| 2434 | llvm::SmallPtrSetImpl<const Decl *> &Seen) { |
| 2435 | if (const auto *Arr = Ctx.getAsArrayType(T: Ty)) |
| 2436 | Ty = Ctx.getBaseElementType(VAT: Arr); |
| 2437 | |
| 2438 | const auto *Record = Ty->getAsCXXRecordDecl(); |
| 2439 | if (!Record) |
| 2440 | return false; |
| 2441 | |
| 2442 | // We've already checked this type, or are in the process of checking it. |
| 2443 | if (!Seen.insert(Ptr: Record).second) |
| 2444 | return false; |
| 2445 | |
| 2446 | assert(Record->hasDefinition() && |
| 2447 | "Incomplete types should already be diagnosed" ); |
| 2448 | |
| 2449 | if (Record->isDynamicClass()) |
| 2450 | return true; |
| 2451 | |
| 2452 | for (FieldDecl *F : Record->fields()) { |
| 2453 | if (TypeRequiresBuiltinLaunderImp(Ctx, Ty: F->getType(), Seen)) |
| 2454 | return true; |
| 2455 | } |
| 2456 | return false; |
| 2457 | } |
| 2458 | |
| 2459 | /// Determine if the specified type requires laundering by checking if it is a |
| 2460 | /// dynamic class type or contains a subobject which is a dynamic class type. |
| 2461 | static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { |
| 2462 | if (!CGM.getCodeGenOpts().StrictVTablePointers) |
| 2463 | return false; |
| 2464 | llvm::SmallPtrSet<const Decl *, 16> Seen; |
| 2465 | return TypeRequiresBuiltinLaunderImp(Ctx: CGM.getContext(), Ty, Seen); |
| 2466 | } |
| 2467 | |
| 2468 | RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { |
| 2469 | llvm::Value *Src = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 2470 | llvm::Value *ShiftAmt = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 2471 | |
| 2472 | // The builtin's shift arg may have a different type than the source arg and |
| 2473 | // result, but the LLVM intrinsic uses the same type for all values. |
| 2474 | llvm::Type *Ty = Src->getType(); |
| 2475 | ShiftAmt = Builder.CreateIntCast(V: ShiftAmt, DestTy: Ty, isSigned: false); |
| 2476 | |
| 2477 | // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. |
| 2478 | unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; |
| 2479 | Function *F = CGM.getIntrinsic(IID, Tys: Ty); |
| 2480 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: { Src, Src, ShiftAmt })); |
| 2481 | } |
| 2482 | |
| 2483 | // Map math builtins for long-double to f128 version. |
| 2484 | static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { |
| 2485 | switch (BuiltinID) { |
| 2486 | #define MUTATE_LDBL(func) \ |
| 2487 | case Builtin::BI__builtin_##func##l: \ |
| 2488 | return Builtin::BI__builtin_##func##f128; |
| 2489 | MUTATE_LDBL(sqrt) |
| 2490 | MUTATE_LDBL(cbrt) |
| 2491 | MUTATE_LDBL(fabs) |
| 2492 | MUTATE_LDBL(log) |
| 2493 | MUTATE_LDBL(log2) |
| 2494 | MUTATE_LDBL(log10) |
| 2495 | MUTATE_LDBL(log1p) |
| 2496 | MUTATE_LDBL(logb) |
| 2497 | MUTATE_LDBL(exp) |
| 2498 | MUTATE_LDBL(exp2) |
| 2499 | MUTATE_LDBL(expm1) |
| 2500 | MUTATE_LDBL(fdim) |
| 2501 | MUTATE_LDBL(hypot) |
| 2502 | MUTATE_LDBL(ilogb) |
| 2503 | MUTATE_LDBL(pow) |
| 2504 | MUTATE_LDBL(fmin) |
| 2505 | MUTATE_LDBL(fmax) |
| 2506 | MUTATE_LDBL(ceil) |
| 2507 | MUTATE_LDBL(trunc) |
| 2508 | MUTATE_LDBL(rint) |
| 2509 | MUTATE_LDBL(nearbyint) |
| 2510 | MUTATE_LDBL(round) |
| 2511 | MUTATE_LDBL(floor) |
| 2512 | MUTATE_LDBL(lround) |
| 2513 | MUTATE_LDBL(llround) |
| 2514 | MUTATE_LDBL(lrint) |
| 2515 | MUTATE_LDBL(llrint) |
| 2516 | MUTATE_LDBL(fmod) |
| 2517 | MUTATE_LDBL(modf) |
| 2518 | MUTATE_LDBL(nan) |
| 2519 | MUTATE_LDBL(nans) |
| 2520 | MUTATE_LDBL(inf) |
| 2521 | MUTATE_LDBL(fma) |
| 2522 | MUTATE_LDBL(sin) |
| 2523 | MUTATE_LDBL(cos) |
| 2524 | MUTATE_LDBL(tan) |
| 2525 | MUTATE_LDBL(sinh) |
| 2526 | MUTATE_LDBL(cosh) |
| 2527 | MUTATE_LDBL(tanh) |
| 2528 | MUTATE_LDBL(asin) |
| 2529 | MUTATE_LDBL(acos) |
| 2530 | MUTATE_LDBL(atan) |
| 2531 | MUTATE_LDBL(asinh) |
| 2532 | MUTATE_LDBL(acosh) |
| 2533 | MUTATE_LDBL(atanh) |
| 2534 | MUTATE_LDBL(atan2) |
| 2535 | MUTATE_LDBL(erf) |
| 2536 | MUTATE_LDBL(erfc) |
| 2537 | MUTATE_LDBL(ldexp) |
| 2538 | MUTATE_LDBL(frexp) |
| 2539 | MUTATE_LDBL(huge_val) |
| 2540 | MUTATE_LDBL(copysign) |
| 2541 | MUTATE_LDBL(nextafter) |
| 2542 | MUTATE_LDBL(nexttoward) |
| 2543 | MUTATE_LDBL(remainder) |
| 2544 | MUTATE_LDBL(remquo) |
| 2545 | MUTATE_LDBL(scalbln) |
| 2546 | MUTATE_LDBL(scalbn) |
| 2547 | MUTATE_LDBL(tgamma) |
| 2548 | MUTATE_LDBL(lgamma) |
| 2549 | #undef MUTATE_LDBL |
| 2550 | default: |
| 2551 | return BuiltinID; |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID, |
| 2556 | Value *V) { |
| 2557 | if (CGF.Builder.getIsFPConstrained() && |
| 2558 | CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) { |
| 2559 | if (Value *Result = |
| 2560 | CGF.getTargetHooks().testFPKind(V, BuiltinID, Builder&: CGF.Builder, CGM&: CGF.CGM)) |
| 2561 | return Result; |
| 2562 | } |
| 2563 | return nullptr; |
| 2564 | } |
| 2565 | |
| 2566 | static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF, |
| 2567 | const FunctionDecl *FD) { |
| 2568 | auto Name = FD->getNameAsString() + "__hipstdpar_unsupported" ; |
| 2569 | auto FnTy = CGF->CGM.getTypes().GetFunctionType(GD: FD); |
| 2570 | auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, T: FnTy); |
| 2571 | |
| 2572 | SmallVector<Value *, 16> Args; |
| 2573 | for (auto &&FormalTy : FnTy->params()) |
| 2574 | Args.push_back(Elt: llvm::PoisonValue::get(T: FormalTy)); |
| 2575 | |
| 2576 | return RValue::get(V: CGF->Builder.CreateCall(Callee: UBF, Args)); |
| 2577 | } |
| 2578 | |
| 2579 | RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
| 2580 | const CallExpr *E, |
| 2581 | ReturnValueSlot ReturnValue) { |
| 2582 | assert(!getContext().BuiltinInfo.isImmediate(BuiltinID) && |
| 2583 | "Should not codegen for consteval builtins" ); |
| 2584 | |
| 2585 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
| 2586 | // See if we can constant fold this builtin. If so, don't emit it at all. |
| 2587 | // TODO: Extend this handling to all builtin calls that we can constant-fold. |
| 2588 | Expr::EvalResult Result; |
| 2589 | if (E->isPRValue() && E->EvaluateAsRValue(Result, Ctx: CGM.getContext()) && |
| 2590 | !Result.hasSideEffects()) { |
| 2591 | if (Result.Val.isInt()) |
| 2592 | return RValue::get(V: llvm::ConstantInt::get(Context&: getLLVMContext(), |
| 2593 | V: Result.Val.getInt())); |
| 2594 | if (Result.Val.isFloat()) |
| 2595 | return RValue::get(V: llvm::ConstantFP::get(Context&: getLLVMContext(), |
| 2596 | V: Result.Val.getFloat())); |
| 2597 | } |
| 2598 | |
| 2599 | // If current long-double semantics is IEEE 128-bit, replace math builtins |
| 2600 | // of long-double with f128 equivalent. |
| 2601 | // TODO: This mutation should also be applied to other targets other than PPC, |
| 2602 | // after backend supports IEEE 128-bit style libcalls. |
| 2603 | if (getTarget().getTriple().isPPC64() && |
| 2604 | &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
| 2605 | BuiltinID = mutateLongDoubleBuiltin(BuiltinID); |
| 2606 | |
| 2607 | // If the builtin has been declared explicitly with an assembler label, |
| 2608 | // disable the specialized emitting below. Ideally we should communicate the |
| 2609 | // rename in IR, or at least avoid generating the intrinsic calls that are |
| 2610 | // likely to get lowered to the renamed library functions. |
| 2611 | const unsigned BuiltinIDIfNoAsmLabel = |
| 2612 | FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; |
| 2613 | |
| 2614 | std::optional<bool> ErrnoOverriden; |
| 2615 | // ErrnoOverriden is true if math-errno is overriden via the |
| 2616 | // '#pragma float_control(precise, on)'. This pragma disables fast-math, |
| 2617 | // which implies math-errno. |
| 2618 | if (E->hasStoredFPFeatures()) { |
| 2619 | FPOptionsOverride OP = E->getFPFeatures(); |
| 2620 | if (OP.hasMathErrnoOverride()) |
| 2621 | ErrnoOverriden = OP.getMathErrnoOverride(); |
| 2622 | } |
| 2623 | // True if 'attribute__((optnone))' is used. This attribute overrides |
| 2624 | // fast-math which implies math-errno. |
| 2625 | bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>(); |
| 2626 | |
| 2627 | // True if we are compiling at -O2 and errno has been disabled |
| 2628 | // using the '#pragma float_control(precise, off)', and |
| 2629 | // attribute opt-none hasn't been seen. |
| 2630 | bool ErrnoOverridenToFalseWithOpt = |
| 2631 | ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone && |
| 2632 | CGM.getCodeGenOpts().OptimizationLevel != 0; |
| 2633 | |
| 2634 | // There are LLVM math intrinsics/instructions corresponding to math library |
| 2635 | // functions except the LLVM op will never set errno while the math library |
| 2636 | // might. Also, math builtins have the same semantics as their math library |
| 2637 | // twins. Thus, we can transform math library and builtin calls to their |
| 2638 | // LLVM counterparts if the call is marked 'const' (known to never set errno). |
| 2639 | // In case FP exceptions are enabled, the experimental versions of the |
| 2640 | // intrinsics model those. |
| 2641 | bool ConstAlways = |
| 2642 | getContext().BuiltinInfo.isConst(ID: BuiltinID); |
| 2643 | |
| 2644 | // There's a special case with the fma builtins where they are always const |
| 2645 | // if the target environment is GNU or the target is OS is Windows and we're |
| 2646 | // targeting the MSVCRT.dll environment. |
| 2647 | // FIXME: This list can be become outdated. Need to find a way to get it some |
| 2648 | // other way. |
| 2649 | switch (BuiltinID) { |
| 2650 | case Builtin::BI__builtin_fma: |
| 2651 | case Builtin::BI__builtin_fmaf: |
| 2652 | case Builtin::BI__builtin_fmal: |
| 2653 | case Builtin::BI__builtin_fmaf16: |
| 2654 | case Builtin::BIfma: |
| 2655 | case Builtin::BIfmaf: |
| 2656 | case Builtin::BIfmal: { |
| 2657 | auto &Trip = CGM.getTriple(); |
| 2658 | if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) |
| 2659 | ConstAlways = true; |
| 2660 | break; |
| 2661 | } |
| 2662 | default: |
| 2663 | break; |
| 2664 | } |
| 2665 | |
| 2666 | bool ConstWithoutErrnoAndExceptions = |
| 2667 | getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(ID: BuiltinID); |
| 2668 | bool ConstWithoutExceptions = |
| 2669 | getContext().BuiltinInfo.isConstWithoutExceptions(ID: BuiltinID); |
| 2670 | |
| 2671 | // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is |
| 2672 | // disabled. |
| 2673 | // Math intrinsics are generated only when math-errno is disabled. Any pragmas |
| 2674 | // or attributes that affect math-errno should prevent or allow math |
| 2675 | // intrinsics to be generated. Intrinsics are generated: |
| 2676 | // 1- In fast math mode, unless math-errno is overriden |
| 2677 | // via '#pragma float_control(precise, on)', or via an |
| 2678 | // 'attribute__((optnone))'. |
| 2679 | // 2- If math-errno was enabled on command line but overriden |
| 2680 | // to false via '#pragma float_control(precise, off))' and |
| 2681 | // 'attribute__((optnone))' hasn't been used. |
| 2682 | // 3- If we are compiling with optimization and errno has been disabled |
| 2683 | // via '#pragma float_control(precise, off)', and |
| 2684 | // 'attribute__((optnone))' hasn't been used. |
| 2685 | |
| 2686 | bool ConstWithoutErrnoOrExceptions = |
| 2687 | ConstWithoutErrnoAndExceptions || ConstWithoutExceptions; |
| 2688 | bool GenerateIntrinsics = |
| 2689 | (ConstAlways && !OptNone) || |
| 2690 | (!getLangOpts().MathErrno && |
| 2691 | !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone); |
| 2692 | if (!GenerateIntrinsics) { |
| 2693 | GenerateIntrinsics = |
| 2694 | ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions; |
| 2695 | if (!GenerateIntrinsics) |
| 2696 | GenerateIntrinsics = |
| 2697 | ConstWithoutErrnoOrExceptions && |
| 2698 | (!getLangOpts().MathErrno && |
| 2699 | !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone); |
| 2700 | if (!GenerateIntrinsics) |
| 2701 | GenerateIntrinsics = |
| 2702 | ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt; |
| 2703 | } |
| 2704 | if (GenerateIntrinsics) { |
| 2705 | switch (BuiltinIDIfNoAsmLabel) { |
| 2706 | case Builtin::BIacos: |
| 2707 | case Builtin::BIacosf: |
| 2708 | case Builtin::BIacosl: |
| 2709 | case Builtin::BI__builtin_acos: |
| 2710 | case Builtin::BI__builtin_acosf: |
| 2711 | case Builtin::BI__builtin_acosf16: |
| 2712 | case Builtin::BI__builtin_acosl: |
| 2713 | case Builtin::BI__builtin_acosf128: |
| 2714 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 2715 | CGF&: *this, E, IntrinsicID: Intrinsic::acos, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_acos)); |
| 2716 | |
| 2717 | case Builtin::BIasin: |
| 2718 | case Builtin::BIasinf: |
| 2719 | case Builtin::BIasinl: |
| 2720 | case Builtin::BI__builtin_asin: |
| 2721 | case Builtin::BI__builtin_asinf: |
| 2722 | case Builtin::BI__builtin_asinf16: |
| 2723 | case Builtin::BI__builtin_asinl: |
| 2724 | case Builtin::BI__builtin_asinf128: |
| 2725 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 2726 | CGF&: *this, E, IntrinsicID: Intrinsic::asin, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_asin)); |
| 2727 | |
| 2728 | case Builtin::BIatan: |
| 2729 | case Builtin::BIatanf: |
| 2730 | case Builtin::BIatanl: |
| 2731 | case Builtin::BI__builtin_atan: |
| 2732 | case Builtin::BI__builtin_atanf: |
| 2733 | case Builtin::BI__builtin_atanf16: |
| 2734 | case Builtin::BI__builtin_atanl: |
| 2735 | case Builtin::BI__builtin_atanf128: |
| 2736 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 2737 | CGF&: *this, E, IntrinsicID: Intrinsic::atan, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_atan)); |
| 2738 | |
| 2739 | case Builtin::BIatan2: |
| 2740 | case Builtin::BIatan2f: |
| 2741 | case Builtin::BIatan2l: |
| 2742 | case Builtin::BI__builtin_atan2: |
| 2743 | case Builtin::BI__builtin_atan2f: |
| 2744 | case Builtin::BI__builtin_atan2f16: |
| 2745 | case Builtin::BI__builtin_atan2l: |
| 2746 | case Builtin::BI__builtin_atan2f128: |
| 2747 | return RValue::get(V: emitBinaryMaybeConstrainedFPBuiltin( |
| 2748 | CGF&: *this, E, IntrinsicID: Intrinsic::atan2, |
| 2749 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_atan2)); |
| 2750 | |
| 2751 | case Builtin::BIceil: |
| 2752 | case Builtin::BIceilf: |
| 2753 | case Builtin::BIceill: |
| 2754 | case Builtin::BI__builtin_ceil: |
| 2755 | case Builtin::BI__builtin_ceilf: |
| 2756 | case Builtin::BI__builtin_ceilf16: |
| 2757 | case Builtin::BI__builtin_ceill: |
| 2758 | case Builtin::BI__builtin_ceilf128: |
| 2759 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2760 | IntrinsicID: Intrinsic::ceil, |
| 2761 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_ceil)); |
| 2762 | |
| 2763 | case Builtin::BIcopysign: |
| 2764 | case Builtin::BIcopysignf: |
| 2765 | case Builtin::BIcopysignl: |
| 2766 | case Builtin::BI__builtin_copysign: |
| 2767 | case Builtin::BI__builtin_copysignf: |
| 2768 | case Builtin::BI__builtin_copysignf16: |
| 2769 | case Builtin::BI__builtin_copysignl: |
| 2770 | case Builtin::BI__builtin_copysignf128: |
| 2771 | return RValue::get( |
| 2772 | V: emitBuiltinWithOneOverloadedType<2>(CGF&: *this, E, IntrinsicID: Intrinsic::copysign)); |
| 2773 | |
| 2774 | case Builtin::BIcos: |
| 2775 | case Builtin::BIcosf: |
| 2776 | case Builtin::BIcosl: |
| 2777 | case Builtin::BI__builtin_cos: |
| 2778 | case Builtin::BI__builtin_cosf: |
| 2779 | case Builtin::BI__builtin_cosf16: |
| 2780 | case Builtin::BI__builtin_cosl: |
| 2781 | case Builtin::BI__builtin_cosf128: |
| 2782 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2783 | IntrinsicID: Intrinsic::cos, |
| 2784 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_cos)); |
| 2785 | |
| 2786 | case Builtin::BIcosh: |
| 2787 | case Builtin::BIcoshf: |
| 2788 | case Builtin::BIcoshl: |
| 2789 | case Builtin::BI__builtin_cosh: |
| 2790 | case Builtin::BI__builtin_coshf: |
| 2791 | case Builtin::BI__builtin_coshf16: |
| 2792 | case Builtin::BI__builtin_coshl: |
| 2793 | case Builtin::BI__builtin_coshf128: |
| 2794 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 2795 | CGF&: *this, E, IntrinsicID: Intrinsic::cosh, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_cosh)); |
| 2796 | |
| 2797 | case Builtin::BIexp: |
| 2798 | case Builtin::BIexpf: |
| 2799 | case Builtin::BIexpl: |
| 2800 | case Builtin::BI__builtin_exp: |
| 2801 | case Builtin::BI__builtin_expf: |
| 2802 | case Builtin::BI__builtin_expf16: |
| 2803 | case Builtin::BI__builtin_expl: |
| 2804 | case Builtin::BI__builtin_expf128: |
| 2805 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2806 | IntrinsicID: Intrinsic::exp, |
| 2807 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_exp)); |
| 2808 | |
| 2809 | case Builtin::BIexp2: |
| 2810 | case Builtin::BIexp2f: |
| 2811 | case Builtin::BIexp2l: |
| 2812 | case Builtin::BI__builtin_exp2: |
| 2813 | case Builtin::BI__builtin_exp2f: |
| 2814 | case Builtin::BI__builtin_exp2f16: |
| 2815 | case Builtin::BI__builtin_exp2l: |
| 2816 | case Builtin::BI__builtin_exp2f128: |
| 2817 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2818 | IntrinsicID: Intrinsic::exp2, |
| 2819 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_exp2)); |
| 2820 | case Builtin::BI__builtin_exp10: |
| 2821 | case Builtin::BI__builtin_exp10f: |
| 2822 | case Builtin::BI__builtin_exp10f16: |
| 2823 | case Builtin::BI__builtin_exp10l: |
| 2824 | case Builtin::BI__builtin_exp10f128: { |
| 2825 | // TODO: strictfp support |
| 2826 | if (Builder.getIsFPConstrained()) |
| 2827 | break; |
| 2828 | return RValue::get( |
| 2829 | V: emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::exp10)); |
| 2830 | } |
| 2831 | case Builtin::BIfabs: |
| 2832 | case Builtin::BIfabsf: |
| 2833 | case Builtin::BIfabsl: |
| 2834 | case Builtin::BI__builtin_fabs: |
| 2835 | case Builtin::BI__builtin_fabsf: |
| 2836 | case Builtin::BI__builtin_fabsf16: |
| 2837 | case Builtin::BI__builtin_fabsl: |
| 2838 | case Builtin::BI__builtin_fabsf128: |
| 2839 | return RValue::get( |
| 2840 | V: emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::fabs)); |
| 2841 | |
| 2842 | case Builtin::BIfloor: |
| 2843 | case Builtin::BIfloorf: |
| 2844 | case Builtin::BIfloorl: |
| 2845 | case Builtin::BI__builtin_floor: |
| 2846 | case Builtin::BI__builtin_floorf: |
| 2847 | case Builtin::BI__builtin_floorf16: |
| 2848 | case Builtin::BI__builtin_floorl: |
| 2849 | case Builtin::BI__builtin_floorf128: |
| 2850 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2851 | IntrinsicID: Intrinsic::floor, |
| 2852 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_floor)); |
| 2853 | |
| 2854 | case Builtin::BIfma: |
| 2855 | case Builtin::BIfmaf: |
| 2856 | case Builtin::BIfmal: |
| 2857 | case Builtin::BI__builtin_fma: |
| 2858 | case Builtin::BI__builtin_fmaf: |
| 2859 | case Builtin::BI__builtin_fmaf16: |
| 2860 | case Builtin::BI__builtin_fmal: |
| 2861 | case Builtin::BI__builtin_fmaf128: |
| 2862 | return RValue::get(V: emitTernaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2863 | IntrinsicID: Intrinsic::fma, |
| 2864 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_fma)); |
| 2865 | |
| 2866 | case Builtin::BIfmax: |
| 2867 | case Builtin::BIfmaxf: |
| 2868 | case Builtin::BIfmaxl: |
| 2869 | case Builtin::BI__builtin_fmax: |
| 2870 | case Builtin::BI__builtin_fmaxf: |
| 2871 | case Builtin::BI__builtin_fmaxf16: |
| 2872 | case Builtin::BI__builtin_fmaxl: |
| 2873 | case Builtin::BI__builtin_fmaxf128: |
| 2874 | return RValue::get(V: emitBinaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2875 | IntrinsicID: Intrinsic::maxnum, |
| 2876 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_maxnum)); |
| 2877 | |
| 2878 | case Builtin::BIfmin: |
| 2879 | case Builtin::BIfminf: |
| 2880 | case Builtin::BIfminl: |
| 2881 | case Builtin::BI__builtin_fmin: |
| 2882 | case Builtin::BI__builtin_fminf: |
| 2883 | case Builtin::BI__builtin_fminf16: |
| 2884 | case Builtin::BI__builtin_fminl: |
| 2885 | case Builtin::BI__builtin_fminf128: |
| 2886 | return RValue::get(V: emitBinaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2887 | IntrinsicID: Intrinsic::minnum, |
| 2888 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_minnum)); |
| 2889 | |
| 2890 | case Builtin::BIfmaximum_num: |
| 2891 | case Builtin::BIfmaximum_numf: |
| 2892 | case Builtin::BIfmaximum_numl: |
| 2893 | case Builtin::BI__builtin_fmaximum_num: |
| 2894 | case Builtin::BI__builtin_fmaximum_numf: |
| 2895 | case Builtin::BI__builtin_fmaximum_numf16: |
| 2896 | case Builtin::BI__builtin_fmaximum_numl: |
| 2897 | case Builtin::BI__builtin_fmaximum_numf128: |
| 2898 | return RValue::get( |
| 2899 | V: emitBuiltinWithOneOverloadedType<2>(CGF&: *this, E, IntrinsicID: Intrinsic::maximumnum)); |
| 2900 | |
| 2901 | case Builtin::BIfminimum_num: |
| 2902 | case Builtin::BIfminimum_numf: |
| 2903 | case Builtin::BIfminimum_numl: |
| 2904 | case Builtin::BI__builtin_fminimum_num: |
| 2905 | case Builtin::BI__builtin_fminimum_numf: |
| 2906 | case Builtin::BI__builtin_fminimum_numf16: |
| 2907 | case Builtin::BI__builtin_fminimum_numl: |
| 2908 | case Builtin::BI__builtin_fminimum_numf128: |
| 2909 | return RValue::get( |
| 2910 | V: emitBuiltinWithOneOverloadedType<2>(CGF&: *this, E, IntrinsicID: Intrinsic::minimumnum)); |
| 2911 | |
| 2912 | // fmod() is a special-case. It maps to the frem instruction rather than an |
| 2913 | // LLVM intrinsic. |
| 2914 | case Builtin::BIfmod: |
| 2915 | case Builtin::BIfmodf: |
| 2916 | case Builtin::BIfmodl: |
| 2917 | case Builtin::BI__builtin_fmod: |
| 2918 | case Builtin::BI__builtin_fmodf: |
| 2919 | case Builtin::BI__builtin_fmodf16: |
| 2920 | case Builtin::BI__builtin_fmodl: |
| 2921 | case Builtin::BI__builtin_fmodf128: |
| 2922 | case Builtin::BI__builtin_elementwise_fmod: { |
| 2923 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 2924 | Value *Arg1 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 2925 | Value *Arg2 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 2926 | return RValue::get(V: Builder.CreateFRem(L: Arg1, R: Arg2, Name: "fmod" )); |
| 2927 | } |
| 2928 | |
| 2929 | case Builtin::BIlog: |
| 2930 | case Builtin::BIlogf: |
| 2931 | case Builtin::BIlogl: |
| 2932 | case Builtin::BI__builtin_log: |
| 2933 | case Builtin::BI__builtin_logf: |
| 2934 | case Builtin::BI__builtin_logf16: |
| 2935 | case Builtin::BI__builtin_logl: |
| 2936 | case Builtin::BI__builtin_logf128: |
| 2937 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2938 | IntrinsicID: Intrinsic::log, |
| 2939 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_log)); |
| 2940 | |
| 2941 | case Builtin::BIlog10: |
| 2942 | case Builtin::BIlog10f: |
| 2943 | case Builtin::BIlog10l: |
| 2944 | case Builtin::BI__builtin_log10: |
| 2945 | case Builtin::BI__builtin_log10f: |
| 2946 | case Builtin::BI__builtin_log10f16: |
| 2947 | case Builtin::BI__builtin_log10l: |
| 2948 | case Builtin::BI__builtin_log10f128: |
| 2949 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2950 | IntrinsicID: Intrinsic::log10, |
| 2951 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_log10)); |
| 2952 | |
| 2953 | case Builtin::BIlog2: |
| 2954 | case Builtin::BIlog2f: |
| 2955 | case Builtin::BIlog2l: |
| 2956 | case Builtin::BI__builtin_log2: |
| 2957 | case Builtin::BI__builtin_log2f: |
| 2958 | case Builtin::BI__builtin_log2f16: |
| 2959 | case Builtin::BI__builtin_log2l: |
| 2960 | case Builtin::BI__builtin_log2f128: |
| 2961 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2962 | IntrinsicID: Intrinsic::log2, |
| 2963 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_log2)); |
| 2964 | |
| 2965 | case Builtin::BInearbyint: |
| 2966 | case Builtin::BInearbyintf: |
| 2967 | case Builtin::BInearbyintl: |
| 2968 | case Builtin::BI__builtin_nearbyint: |
| 2969 | case Builtin::BI__builtin_nearbyintf: |
| 2970 | case Builtin::BI__builtin_nearbyintl: |
| 2971 | case Builtin::BI__builtin_nearbyintf128: |
| 2972 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2973 | IntrinsicID: Intrinsic::nearbyint, |
| 2974 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_nearbyint)); |
| 2975 | |
| 2976 | case Builtin::BIpow: |
| 2977 | case Builtin::BIpowf: |
| 2978 | case Builtin::BIpowl: |
| 2979 | case Builtin::BI__builtin_pow: |
| 2980 | case Builtin::BI__builtin_powf: |
| 2981 | case Builtin::BI__builtin_powf16: |
| 2982 | case Builtin::BI__builtin_powl: |
| 2983 | case Builtin::BI__builtin_powf128: |
| 2984 | return RValue::get(V: emitBinaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2985 | IntrinsicID: Intrinsic::pow, |
| 2986 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_pow)); |
| 2987 | |
| 2988 | case Builtin::BIrint: |
| 2989 | case Builtin::BIrintf: |
| 2990 | case Builtin::BIrintl: |
| 2991 | case Builtin::BI__builtin_rint: |
| 2992 | case Builtin::BI__builtin_rintf: |
| 2993 | case Builtin::BI__builtin_rintf16: |
| 2994 | case Builtin::BI__builtin_rintl: |
| 2995 | case Builtin::BI__builtin_rintf128: |
| 2996 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 2997 | IntrinsicID: Intrinsic::rint, |
| 2998 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_rint)); |
| 2999 | |
| 3000 | case Builtin::BIround: |
| 3001 | case Builtin::BIroundf: |
| 3002 | case Builtin::BIroundl: |
| 3003 | case Builtin::BI__builtin_round: |
| 3004 | case Builtin::BI__builtin_roundf: |
| 3005 | case Builtin::BI__builtin_roundf16: |
| 3006 | case Builtin::BI__builtin_roundl: |
| 3007 | case Builtin::BI__builtin_roundf128: |
| 3008 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 3009 | IntrinsicID: Intrinsic::round, |
| 3010 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_round)); |
| 3011 | |
| 3012 | case Builtin::BIroundeven: |
| 3013 | case Builtin::BIroundevenf: |
| 3014 | case Builtin::BIroundevenl: |
| 3015 | case Builtin::BI__builtin_roundeven: |
| 3016 | case Builtin::BI__builtin_roundevenf: |
| 3017 | case Builtin::BI__builtin_roundevenf16: |
| 3018 | case Builtin::BI__builtin_roundevenl: |
| 3019 | case Builtin::BI__builtin_roundevenf128: |
| 3020 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 3021 | IntrinsicID: Intrinsic::roundeven, |
| 3022 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_roundeven)); |
| 3023 | |
| 3024 | case Builtin::BIsin: |
| 3025 | case Builtin::BIsinf: |
| 3026 | case Builtin::BIsinl: |
| 3027 | case Builtin::BI__builtin_sin: |
| 3028 | case Builtin::BI__builtin_sinf: |
| 3029 | case Builtin::BI__builtin_sinf16: |
| 3030 | case Builtin::BI__builtin_sinl: |
| 3031 | case Builtin::BI__builtin_sinf128: |
| 3032 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 3033 | IntrinsicID: Intrinsic::sin, |
| 3034 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_sin)); |
| 3035 | |
| 3036 | case Builtin::BIsinh: |
| 3037 | case Builtin::BIsinhf: |
| 3038 | case Builtin::BIsinhl: |
| 3039 | case Builtin::BI__builtin_sinh: |
| 3040 | case Builtin::BI__builtin_sinhf: |
| 3041 | case Builtin::BI__builtin_sinhf16: |
| 3042 | case Builtin::BI__builtin_sinhl: |
| 3043 | case Builtin::BI__builtin_sinhf128: |
| 3044 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 3045 | CGF&: *this, E, IntrinsicID: Intrinsic::sinh, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_sinh)); |
| 3046 | |
| 3047 | case Builtin::BI__builtin_sincospi: |
| 3048 | case Builtin::BI__builtin_sincospif: |
| 3049 | case Builtin::BI__builtin_sincospil: |
| 3050 | if (Builder.getIsFPConstrained()) |
| 3051 | break; // TODO: Emit constrained sincospi intrinsic once one exists. |
| 3052 | emitSincosBuiltin(CGF&: *this, E, IntrinsicID: Intrinsic::sincospi); |
| 3053 | return RValue::get(V: nullptr); |
| 3054 | |
| 3055 | case Builtin::BIsincos: |
| 3056 | case Builtin::BIsincosf: |
| 3057 | case Builtin::BIsincosl: |
| 3058 | case Builtin::BI__builtin_sincos: |
| 3059 | case Builtin::BI__builtin_sincosf: |
| 3060 | case Builtin::BI__builtin_sincosf16: |
| 3061 | case Builtin::BI__builtin_sincosl: |
| 3062 | case Builtin::BI__builtin_sincosf128: |
| 3063 | if (Builder.getIsFPConstrained()) |
| 3064 | break; // TODO: Emit constrained sincos intrinsic once one exists. |
| 3065 | emitSincosBuiltin(CGF&: *this, E, IntrinsicID: Intrinsic::sincos); |
| 3066 | return RValue::get(V: nullptr); |
| 3067 | |
| 3068 | case Builtin::BIsqrt: |
| 3069 | case Builtin::BIsqrtf: |
| 3070 | case Builtin::BIsqrtl: |
| 3071 | case Builtin::BI__builtin_sqrt: |
| 3072 | case Builtin::BI__builtin_sqrtf: |
| 3073 | case Builtin::BI__builtin_sqrtf16: |
| 3074 | case Builtin::BI__builtin_sqrtl: |
| 3075 | case Builtin::BI__builtin_sqrtf128: |
| 3076 | case Builtin::BI__builtin_elementwise_sqrt: { |
| 3077 | llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin( |
| 3078 | CGF&: *this, E, IntrinsicID: Intrinsic::sqrt, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_sqrt); |
| 3079 | SetSqrtFPAccuracy(Call); |
| 3080 | return RValue::get(V: Call); |
| 3081 | } |
| 3082 | |
| 3083 | case Builtin::BItan: |
| 3084 | case Builtin::BItanf: |
| 3085 | case Builtin::BItanl: |
| 3086 | case Builtin::BI__builtin_tan: |
| 3087 | case Builtin::BI__builtin_tanf: |
| 3088 | case Builtin::BI__builtin_tanf16: |
| 3089 | case Builtin::BI__builtin_tanl: |
| 3090 | case Builtin::BI__builtin_tanf128: |
| 3091 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 3092 | CGF&: *this, E, IntrinsicID: Intrinsic::tan, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_tan)); |
| 3093 | |
| 3094 | case Builtin::BItanh: |
| 3095 | case Builtin::BItanhf: |
| 3096 | case Builtin::BItanhl: |
| 3097 | case Builtin::BI__builtin_tanh: |
| 3098 | case Builtin::BI__builtin_tanhf: |
| 3099 | case Builtin::BI__builtin_tanhf16: |
| 3100 | case Builtin::BI__builtin_tanhl: |
| 3101 | case Builtin::BI__builtin_tanhf128: |
| 3102 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 3103 | CGF&: *this, E, IntrinsicID: Intrinsic::tanh, ConstrainedIntrinsicID: Intrinsic::experimental_constrained_tanh)); |
| 3104 | |
| 3105 | case Builtin::BItrunc: |
| 3106 | case Builtin::BItruncf: |
| 3107 | case Builtin::BItruncl: |
| 3108 | case Builtin::BI__builtin_trunc: |
| 3109 | case Builtin::BI__builtin_truncf: |
| 3110 | case Builtin::BI__builtin_truncf16: |
| 3111 | case Builtin::BI__builtin_truncl: |
| 3112 | case Builtin::BI__builtin_truncf128: |
| 3113 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin(CGF&: *this, E, |
| 3114 | IntrinsicID: Intrinsic::trunc, |
| 3115 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_trunc)); |
| 3116 | |
| 3117 | case Builtin::BIlround: |
| 3118 | case Builtin::BIlroundf: |
| 3119 | case Builtin::BIlroundl: |
| 3120 | case Builtin::BI__builtin_lround: |
| 3121 | case Builtin::BI__builtin_lroundf: |
| 3122 | case Builtin::BI__builtin_lroundl: |
| 3123 | case Builtin::BI__builtin_lroundf128: |
| 3124 | return RValue::get(V: emitMaybeConstrainedFPToIntRoundBuiltin( |
| 3125 | CGF&: *this, E, IntrinsicID: Intrinsic::lround, |
| 3126 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_lround)); |
| 3127 | |
| 3128 | case Builtin::BIllround: |
| 3129 | case Builtin::BIllroundf: |
| 3130 | case Builtin::BIllroundl: |
| 3131 | case Builtin::BI__builtin_llround: |
| 3132 | case Builtin::BI__builtin_llroundf: |
| 3133 | case Builtin::BI__builtin_llroundl: |
| 3134 | case Builtin::BI__builtin_llroundf128: |
| 3135 | return RValue::get(V: emitMaybeConstrainedFPToIntRoundBuiltin( |
| 3136 | CGF&: *this, E, IntrinsicID: Intrinsic::llround, |
| 3137 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_llround)); |
| 3138 | |
| 3139 | case Builtin::BIlrint: |
| 3140 | case Builtin::BIlrintf: |
| 3141 | case Builtin::BIlrintl: |
| 3142 | case Builtin::BI__builtin_lrint: |
| 3143 | case Builtin::BI__builtin_lrintf: |
| 3144 | case Builtin::BI__builtin_lrintl: |
| 3145 | case Builtin::BI__builtin_lrintf128: |
| 3146 | return RValue::get(V: emitMaybeConstrainedFPToIntRoundBuiltin( |
| 3147 | CGF&: *this, E, IntrinsicID: Intrinsic::lrint, |
| 3148 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_lrint)); |
| 3149 | |
| 3150 | case Builtin::BIllrint: |
| 3151 | case Builtin::BIllrintf: |
| 3152 | case Builtin::BIllrintl: |
| 3153 | case Builtin::BI__builtin_llrint: |
| 3154 | case Builtin::BI__builtin_llrintf: |
| 3155 | case Builtin::BI__builtin_llrintl: |
| 3156 | case Builtin::BI__builtin_llrintf128: |
| 3157 | return RValue::get(V: emitMaybeConstrainedFPToIntRoundBuiltin( |
| 3158 | CGF&: *this, E, IntrinsicID: Intrinsic::llrint, |
| 3159 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_llrint)); |
| 3160 | case Builtin::BI__builtin_ldexp: |
| 3161 | case Builtin::BI__builtin_ldexpf: |
| 3162 | case Builtin::BI__builtin_ldexpl: |
| 3163 | case Builtin::BI__builtin_ldexpf16: |
| 3164 | case Builtin::BI__builtin_ldexpf128: { |
| 3165 | return RValue::get(V: emitBinaryExpMaybeConstrainedFPBuiltin( |
| 3166 | CGF&: *this, E, IntrinsicID: Intrinsic::ldexp, |
| 3167 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_ldexp)); |
| 3168 | } |
| 3169 | default: |
| 3170 | break; |
| 3171 | } |
| 3172 | } |
| 3173 | |
| 3174 | // Check NonnullAttribute/NullabilityArg and Alignment. |
| 3175 | auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg, |
| 3176 | unsigned ParmNum) { |
| 3177 | Value *Val = A.emitRawPointer(CGF&: *this); |
| 3178 | EmitNonNullArgCheck(RV: RValue::get(V: Val), ArgType: Arg->getType(), ArgLoc: Arg->getExprLoc(), AC: FD, |
| 3179 | ParmNum); |
| 3180 | |
| 3181 | if (SanOpts.has(K: SanitizerKind::Alignment)) { |
| 3182 | SanitizerSet SkippedChecks; |
| 3183 | SkippedChecks.set(SanitizerKind::All); |
| 3184 | SkippedChecks.clear(K: SanitizerKind::Alignment); |
| 3185 | SourceLocation Loc = Arg->getExprLoc(); |
| 3186 | // Strip an implicit cast. |
| 3187 | if (auto *CE = dyn_cast<ImplicitCastExpr>(Val: Arg)) |
| 3188 | if (CE->getCastKind() == CK_BitCast) |
| 3189 | Arg = CE->getSubExpr(); |
| 3190 | EmitTypeCheck(TCK: Kind, Loc, V: Val, Type: Arg->getType(), Alignment: A.getAlignment(), |
| 3191 | SkippedChecks); |
| 3192 | } |
| 3193 | }; |
| 3194 | |
| 3195 | switch (BuiltinIDIfNoAsmLabel) { |
| 3196 | default: break; |
| 3197 | case Builtin::BI__builtin___CFStringMakeConstantString: |
| 3198 | case Builtin::BI__builtin___NSStringMakeConstantString: |
| 3199 | return RValue::get(V: ConstantEmitter(*this).emitAbstract(E, T: E->getType())); |
| 3200 | case Builtin::BI__builtin_stdarg_start: |
| 3201 | case Builtin::BI__builtin_va_start: |
| 3202 | case Builtin::BI__va_start: |
| 3203 | case Builtin::BI__builtin_c23_va_start: |
| 3204 | case Builtin::BI__builtin_va_end: |
| 3205 | EmitVAStartEnd(ArgValue: BuiltinID == Builtin::BI__va_start |
| 3206 | ? EmitScalarExpr(E: E->getArg(Arg: 0)) |
| 3207 | : EmitVAListRef(E: E->getArg(Arg: 0)).emitRawPointer(CGF&: *this), |
| 3208 | IsStart: BuiltinID != Builtin::BI__builtin_va_end); |
| 3209 | return RValue::get(V: nullptr); |
| 3210 | case Builtin::BI__builtin_va_copy: { |
| 3211 | Value *DstPtr = EmitVAListRef(E: E->getArg(Arg: 0)).emitRawPointer(CGF&: *this); |
| 3212 | Value *SrcPtr = EmitVAListRef(E: E->getArg(Arg: 1)).emitRawPointer(CGF&: *this); |
| 3213 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::vacopy, Tys: {DstPtr->getType()}), |
| 3214 | Args: {DstPtr, SrcPtr}); |
| 3215 | return RValue::get(V: nullptr); |
| 3216 | } |
| 3217 | case Builtin::BIabs: |
| 3218 | case Builtin::BIlabs: |
| 3219 | case Builtin::BIllabs: |
| 3220 | case Builtin::BI__builtin_abs: |
| 3221 | case Builtin::BI__builtin_labs: |
| 3222 | case Builtin::BI__builtin_llabs: { |
| 3223 | bool SanitizeOverflow = SanOpts.has(K: SanitizerKind::SignedIntegerOverflow); |
| 3224 | |
| 3225 | Value *Result; |
| 3226 | switch (getLangOpts().getSignedOverflowBehavior()) { |
| 3227 | case LangOptions::SOB_Defined: |
| 3228 | Result = EmitAbs(CGF&: *this, ArgValue: EmitScalarExpr(E: E->getArg(Arg: 0)), HasNSW: false); |
| 3229 | break; |
| 3230 | case LangOptions::SOB_Undefined: |
| 3231 | if (!SanitizeOverflow) { |
| 3232 | Result = EmitAbs(CGF&: *this, ArgValue: EmitScalarExpr(E: E->getArg(Arg: 0)), HasNSW: true); |
| 3233 | break; |
| 3234 | } |
| 3235 | [[fallthrough]]; |
| 3236 | case LangOptions::SOB_Trapping: |
| 3237 | // TODO: Somehow handle the corner case when the address of abs is taken. |
| 3238 | Result = EmitOverflowCheckedAbs(CGF&: *this, E, SanitizeOverflow); |
| 3239 | break; |
| 3240 | } |
| 3241 | return RValue::get(V: Result); |
| 3242 | } |
| 3243 | case Builtin::BI__builtin_complex: { |
| 3244 | Value *Real = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3245 | Value *Imag = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3246 | return RValue::getComplex(C: {Real, Imag}); |
| 3247 | } |
| 3248 | case Builtin::BI__builtin_conj: |
| 3249 | case Builtin::BI__builtin_conjf: |
| 3250 | case Builtin::BI__builtin_conjl: |
| 3251 | case Builtin::BIconj: |
| 3252 | case Builtin::BIconjf: |
| 3253 | case Builtin::BIconjl: { |
| 3254 | ComplexPairTy ComplexVal = EmitComplexExpr(E: E->getArg(Arg: 0)); |
| 3255 | Value *Real = ComplexVal.first; |
| 3256 | Value *Imag = ComplexVal.second; |
| 3257 | Imag = Builder.CreateFNeg(V: Imag, Name: "neg" ); |
| 3258 | return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag)); |
| 3259 | } |
| 3260 | case Builtin::BI__builtin_creal: |
| 3261 | case Builtin::BI__builtin_crealf: |
| 3262 | case Builtin::BI__builtin_creall: |
| 3263 | case Builtin::BIcreal: |
| 3264 | case Builtin::BIcrealf: |
| 3265 | case Builtin::BIcreall: { |
| 3266 | ComplexPairTy ComplexVal = EmitComplexExpr(E: E->getArg(Arg: 0)); |
| 3267 | return RValue::get(V: ComplexVal.first); |
| 3268 | } |
| 3269 | |
| 3270 | case Builtin::BI__builtin_preserve_access_index: { |
| 3271 | // Only enabled preserved access index region when debuginfo |
| 3272 | // is available as debuginfo is needed to preserve user-level |
| 3273 | // access pattern. |
| 3274 | if (!getDebugInfo()) { |
| 3275 | CGM.Error(loc: E->getExprLoc(), error: "using builtin_preserve_access_index() without -g" ); |
| 3276 | return RValue::get(V: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 3277 | } |
| 3278 | |
| 3279 | // Nested builtin_preserve_access_index() not supported |
| 3280 | if (IsInPreservedAIRegion) { |
| 3281 | CGM.Error(loc: E->getExprLoc(), error: "nested builtin_preserve_access_index() not supported" ); |
| 3282 | return RValue::get(V: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 3283 | } |
| 3284 | |
| 3285 | IsInPreservedAIRegion = true; |
| 3286 | Value *Res = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3287 | IsInPreservedAIRegion = false; |
| 3288 | return RValue::get(V: Res); |
| 3289 | } |
| 3290 | |
| 3291 | case Builtin::BI__builtin_cimag: |
| 3292 | case Builtin::BI__builtin_cimagf: |
| 3293 | case Builtin::BI__builtin_cimagl: |
| 3294 | case Builtin::BIcimag: |
| 3295 | case Builtin::BIcimagf: |
| 3296 | case Builtin::BIcimagl: { |
| 3297 | ComplexPairTy ComplexVal = EmitComplexExpr(E: E->getArg(Arg: 0)); |
| 3298 | return RValue::get(V: ComplexVal.second); |
| 3299 | } |
| 3300 | |
| 3301 | case Builtin::BI__builtin_clrsb: |
| 3302 | case Builtin::BI__builtin_clrsbl: |
| 3303 | case Builtin::BI__builtin_clrsbll: { |
| 3304 | // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or |
| 3305 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3306 | |
| 3307 | llvm::Type *ArgType = ArgValue->getType(); |
| 3308 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: ArgType); |
| 3309 | |
| 3310 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3311 | Value *Zero = llvm::Constant::getNullValue(Ty: ArgType); |
| 3312 | Value *IsNeg = Builder.CreateICmpSLT(LHS: ArgValue, RHS: Zero, Name: "isneg" ); |
| 3313 | Value *Inverse = Builder.CreateNot(V: ArgValue, Name: "not" ); |
| 3314 | Value *Tmp = Builder.CreateSelect(C: IsNeg, True: Inverse, False: ArgValue); |
| 3315 | Value *Ctlz = Builder.CreateCall(Callee: F, Args: {Tmp, Builder.getFalse()}); |
| 3316 | Value *Result = Builder.CreateSub(LHS: Ctlz, RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1)); |
| 3317 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 3318 | Name: "cast" ); |
| 3319 | return RValue::get(V: Result); |
| 3320 | } |
| 3321 | case Builtin::BI__builtin_ctzs: |
| 3322 | case Builtin::BI__builtin_ctz: |
| 3323 | case Builtin::BI__builtin_ctzl: |
| 3324 | case Builtin::BI__builtin_ctzll: |
| 3325 | case Builtin::BI__builtin_ctzg: { |
| 3326 | bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_ctzg && |
| 3327 | E->getNumArgs() > 1; |
| 3328 | |
| 3329 | Value *ArgValue = |
| 3330 | HasFallback ? EmitScalarExpr(E: E->getArg(Arg: 0)) |
| 3331 | : EmitCheckedArgForBuiltin(E: E->getArg(Arg: 0), Kind: BCK_CTZPassedZero); |
| 3332 | |
| 3333 | llvm::Type *ArgType = ArgValue->getType(); |
| 3334 | Function *F = CGM.getIntrinsic(IID: Intrinsic::cttz, Tys: ArgType); |
| 3335 | |
| 3336 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3337 | Value *ZeroUndef = |
| 3338 | Builder.getInt1(V: HasFallback || getTarget().isCLZForZeroUndef()); |
| 3339 | Value *Result = Builder.CreateCall(Callee: F, Args: {ArgValue, ZeroUndef}); |
| 3340 | if (Result->getType() != ResultType) |
| 3341 | Result = |
| 3342 | Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/ false, Name: "cast" ); |
| 3343 | if (!HasFallback) |
| 3344 | return RValue::get(V: Result); |
| 3345 | |
| 3346 | Value *Zero = Constant::getNullValue(Ty: ArgType); |
| 3347 | Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: Zero, Name: "iszero" ); |
| 3348 | Value *FallbackValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3349 | Value *ResultOrFallback = |
| 3350 | Builder.CreateSelect(C: IsZero, True: FallbackValue, False: Result, Name: "ctzg" ); |
| 3351 | return RValue::get(V: ResultOrFallback); |
| 3352 | } |
| 3353 | case Builtin::BI__builtin_clzs: |
| 3354 | case Builtin::BI__builtin_clz: |
| 3355 | case Builtin::BI__builtin_clzl: |
| 3356 | case Builtin::BI__builtin_clzll: |
| 3357 | case Builtin::BI__builtin_clzg: { |
| 3358 | bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_clzg && |
| 3359 | E->getNumArgs() > 1; |
| 3360 | |
| 3361 | Value *ArgValue = |
| 3362 | HasFallback ? EmitScalarExpr(E: E->getArg(Arg: 0)) |
| 3363 | : EmitCheckedArgForBuiltin(E: E->getArg(Arg: 0), Kind: BCK_CLZPassedZero); |
| 3364 | |
| 3365 | llvm::Type *ArgType = ArgValue->getType(); |
| 3366 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: ArgType); |
| 3367 | |
| 3368 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3369 | Value *ZeroUndef = |
| 3370 | Builder.getInt1(V: HasFallback || getTarget().isCLZForZeroUndef()); |
| 3371 | Value *Result = Builder.CreateCall(Callee: F, Args: {ArgValue, ZeroUndef}); |
| 3372 | if (Result->getType() != ResultType) |
| 3373 | Result = |
| 3374 | Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/ false, Name: "cast" ); |
| 3375 | if (!HasFallback) |
| 3376 | return RValue::get(V: Result); |
| 3377 | |
| 3378 | Value *Zero = Constant::getNullValue(Ty: ArgType); |
| 3379 | Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: Zero, Name: "iszero" ); |
| 3380 | Value *FallbackValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3381 | Value *ResultOrFallback = |
| 3382 | Builder.CreateSelect(C: IsZero, True: FallbackValue, False: Result, Name: "clzg" ); |
| 3383 | return RValue::get(V: ResultOrFallback); |
| 3384 | } |
| 3385 | case Builtin::BI__builtin_ffs: |
| 3386 | case Builtin::BI__builtin_ffsl: |
| 3387 | case Builtin::BI__builtin_ffsll: { |
| 3388 | // ffs(x) -> x ? cttz(x) + 1 : 0 |
| 3389 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3390 | |
| 3391 | llvm::Type *ArgType = ArgValue->getType(); |
| 3392 | Function *F = CGM.getIntrinsic(IID: Intrinsic::cttz, Tys: ArgType); |
| 3393 | |
| 3394 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3395 | Value *Tmp = |
| 3396 | Builder.CreateAdd(LHS: Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()}), |
| 3397 | RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1)); |
| 3398 | Value *Zero = llvm::Constant::getNullValue(Ty: ArgType); |
| 3399 | Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: Zero, Name: "iszero" ); |
| 3400 | Value *Result = Builder.CreateSelect(C: IsZero, True: Zero, False: Tmp, Name: "ffs" ); |
| 3401 | if (Result->getType() != ResultType) |
| 3402 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 3403 | Name: "cast" ); |
| 3404 | return RValue::get(V: Result); |
| 3405 | } |
| 3406 | case Builtin::BI__builtin_parity: |
| 3407 | case Builtin::BI__builtin_parityl: |
| 3408 | case Builtin::BI__builtin_parityll: { |
| 3409 | // parity(x) -> ctpop(x) & 1 |
| 3410 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3411 | |
| 3412 | llvm::Type *ArgType = ArgValue->getType(); |
| 3413 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctpop, Tys: ArgType); |
| 3414 | |
| 3415 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3416 | Value *Tmp = Builder.CreateCall(Callee: F, Args: ArgValue); |
| 3417 | Value *Result = Builder.CreateAnd(LHS: Tmp, RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1)); |
| 3418 | if (Result->getType() != ResultType) |
| 3419 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 3420 | Name: "cast" ); |
| 3421 | return RValue::get(V: Result); |
| 3422 | } |
| 3423 | case Builtin::BI__lzcnt16: |
| 3424 | case Builtin::BI__lzcnt: |
| 3425 | case Builtin::BI__lzcnt64: { |
| 3426 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3427 | |
| 3428 | llvm::Type *ArgType = ArgValue->getType(); |
| 3429 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: ArgType); |
| 3430 | |
| 3431 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3432 | Value *Result = Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getFalse()}); |
| 3433 | if (Result->getType() != ResultType) |
| 3434 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 3435 | Name: "cast" ); |
| 3436 | return RValue::get(V: Result); |
| 3437 | } |
| 3438 | case Builtin::BI__popcnt16: |
| 3439 | case Builtin::BI__popcnt: |
| 3440 | case Builtin::BI__popcnt64: |
| 3441 | case Builtin::BI__builtin_popcount: |
| 3442 | case Builtin::BI__builtin_popcountl: |
| 3443 | case Builtin::BI__builtin_popcountll: |
| 3444 | case Builtin::BI__builtin_popcountg: { |
| 3445 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3446 | |
| 3447 | llvm::Type *ArgType = ArgValue->getType(); |
| 3448 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctpop, Tys: ArgType); |
| 3449 | |
| 3450 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3451 | Value *Result = Builder.CreateCall(Callee: F, Args: ArgValue); |
| 3452 | if (Result->getType() != ResultType) |
| 3453 | Result = |
| 3454 | Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/ false, Name: "cast" ); |
| 3455 | return RValue::get(V: Result); |
| 3456 | } |
| 3457 | case Builtin::BI__builtin_unpredictable: { |
| 3458 | // Always return the argument of __builtin_unpredictable. LLVM does not |
| 3459 | // handle this builtin. Metadata for this builtin should be added directly |
| 3460 | // to instructions such as branches or switches that use it. |
| 3461 | return RValue::get(V: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 3462 | } |
| 3463 | case Builtin::BI__builtin_expect: { |
| 3464 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3465 | llvm::Type *ArgType = ArgValue->getType(); |
| 3466 | |
| 3467 | Value *ExpectedValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3468 | // Don't generate llvm.expect on -O0 as the backend won't use it for |
| 3469 | // anything. |
| 3470 | // Note, we still IRGen ExpectedValue because it could have side-effects. |
| 3471 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| 3472 | return RValue::get(V: ArgValue); |
| 3473 | |
| 3474 | Function *FnExpect = CGM.getIntrinsic(IID: Intrinsic::expect, Tys: ArgType); |
| 3475 | Value *Result = |
| 3476 | Builder.CreateCall(Callee: FnExpect, Args: {ArgValue, ExpectedValue}, Name: "expval" ); |
| 3477 | return RValue::get(V: Result); |
| 3478 | } |
| 3479 | case Builtin::BI__builtin_expect_with_probability: { |
| 3480 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3481 | llvm::Type *ArgType = ArgValue->getType(); |
| 3482 | |
| 3483 | Value *ExpectedValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3484 | llvm::APFloat Probability(0.0); |
| 3485 | const Expr *ProbArg = E->getArg(Arg: 2); |
| 3486 | bool EvalSucceed = ProbArg->EvaluateAsFloat(Result&: Probability, Ctx: CGM.getContext()); |
| 3487 | assert(EvalSucceed && "probability should be able to evaluate as float" ); |
| 3488 | (void)EvalSucceed; |
| 3489 | bool LoseInfo = false; |
| 3490 | Probability.convert(ToSemantics: llvm::APFloat::IEEEdouble(), |
| 3491 | RM: llvm::RoundingMode::Dynamic, losesInfo: &LoseInfo); |
| 3492 | llvm::Type *Ty = ConvertType(T: ProbArg->getType()); |
| 3493 | Constant *Confidence = ConstantFP::get(Ty, V: Probability); |
| 3494 | // Don't generate llvm.expect.with.probability on -O0 as the backend |
| 3495 | // won't use it for anything. |
| 3496 | // Note, we still IRGen ExpectedValue because it could have side-effects. |
| 3497 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| 3498 | return RValue::get(V: ArgValue); |
| 3499 | |
| 3500 | Function *FnExpect = |
| 3501 | CGM.getIntrinsic(IID: Intrinsic::expect_with_probability, Tys: ArgType); |
| 3502 | Value *Result = Builder.CreateCall( |
| 3503 | Callee: FnExpect, Args: {ArgValue, ExpectedValue, Confidence}, Name: "expval" ); |
| 3504 | return RValue::get(V: Result); |
| 3505 | } |
| 3506 | case Builtin::BI__builtin_assume_aligned: { |
| 3507 | const Expr *Ptr = E->getArg(Arg: 0); |
| 3508 | Value *PtrValue = EmitScalarExpr(E: Ptr); |
| 3509 | Value *OffsetValue = |
| 3510 | (E->getNumArgs() > 2) ? EmitScalarExpr(E: E->getArg(Arg: 2)) : nullptr; |
| 3511 | |
| 3512 | Value *AlignmentValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3513 | ConstantInt *AlignmentCI = cast<ConstantInt>(Val: AlignmentValue); |
| 3514 | if (AlignmentCI->getValue().ugt(RHS: llvm::Value::MaximumAlignment)) |
| 3515 | AlignmentCI = ConstantInt::get(Ty: AlignmentCI->getIntegerType(), |
| 3516 | V: llvm::Value::MaximumAlignment); |
| 3517 | |
| 3518 | emitAlignmentAssumption(PtrValue, E: Ptr, |
| 3519 | /*The expr loc is sufficient.*/ AssumptionLoc: SourceLocation(), |
| 3520 | Alignment: AlignmentCI, OffsetValue); |
| 3521 | return RValue::get(V: PtrValue); |
| 3522 | } |
| 3523 | case Builtin::BI__builtin_assume_dereferenceable: { |
| 3524 | const Expr *Ptr = E->getArg(Arg: 0); |
| 3525 | const Expr *Size = E->getArg(Arg: 1); |
| 3526 | Value *PtrValue = EmitScalarExpr(E: Ptr); |
| 3527 | Value *SizeValue = EmitScalarExpr(E: Size); |
| 3528 | if (SizeValue->getType() != IntPtrTy) |
| 3529 | SizeValue = |
| 3530 | Builder.CreateIntCast(V: SizeValue, DestTy: IntPtrTy, isSigned: false, Name: "casted.size" ); |
| 3531 | Builder.CreateDereferenceableAssumption(PtrValue, SizeValue); |
| 3532 | return RValue::get(V: nullptr); |
| 3533 | } |
| 3534 | case Builtin::BI__assume: |
| 3535 | case Builtin::BI__builtin_assume: { |
| 3536 | if (E->getArg(Arg: 0)->HasSideEffects(Ctx: getContext())) |
| 3537 | return RValue::get(V: nullptr); |
| 3538 | |
| 3539 | Value *ArgValue = EmitCheckedArgForAssume(E: E->getArg(Arg: 0)); |
| 3540 | Function *FnAssume = CGM.getIntrinsic(IID: Intrinsic::assume); |
| 3541 | Builder.CreateCall(Callee: FnAssume, Args: ArgValue); |
| 3542 | return RValue::get(V: nullptr); |
| 3543 | } |
| 3544 | case Builtin::BI__builtin_assume_separate_storage: { |
| 3545 | const Expr *Arg0 = E->getArg(Arg: 0); |
| 3546 | const Expr *Arg1 = E->getArg(Arg: 1); |
| 3547 | |
| 3548 | Value *Value0 = EmitScalarExpr(E: Arg0); |
| 3549 | Value *Value1 = EmitScalarExpr(E: Arg1); |
| 3550 | |
| 3551 | Value *Values[] = {Value0, Value1}; |
| 3552 | OperandBundleDefT<Value *> OBD("separate_storage" , Values); |
| 3553 | Builder.CreateAssumption(Cond: ConstantInt::getTrue(Context&: getLLVMContext()), OpBundles: {OBD}); |
| 3554 | return RValue::get(V: nullptr); |
| 3555 | } |
| 3556 | case Builtin::BI__builtin_allow_runtime_check: { |
| 3557 | StringRef Kind = |
| 3558 | cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenCasts())->getString(); |
| 3559 | LLVMContext &Ctx = CGM.getLLVMContext(); |
| 3560 | llvm::Value *Allow = Builder.CreateCall( |
| 3561 | Callee: CGM.getIntrinsic(IID: Intrinsic::allow_runtime_check), |
| 3562 | Args: llvm::MetadataAsValue::get(Context&: Ctx, MD: llvm::MDString::get(Context&: Ctx, Str: Kind))); |
| 3563 | return RValue::get(V: Allow); |
| 3564 | } |
| 3565 | case Builtin::BI__arithmetic_fence: { |
| 3566 | // Create the builtin call if FastMath is selected, and the target |
| 3567 | // supports the builtin, otherwise just return the argument. |
| 3568 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3569 | llvm::FastMathFlags FMF = Builder.getFastMathFlags(); |
| 3570 | bool isArithmeticFenceEnabled = |
| 3571 | FMF.allowReassoc() && |
| 3572 | getContext().getTargetInfo().checkArithmeticFenceSupported(); |
| 3573 | QualType ArgType = E->getArg(Arg: 0)->getType(); |
| 3574 | if (ArgType->isComplexType()) { |
| 3575 | if (isArithmeticFenceEnabled) { |
| 3576 | QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); |
| 3577 | ComplexPairTy ComplexVal = EmitComplexExpr(E: E->getArg(Arg: 0)); |
| 3578 | Value *Real = Builder.CreateArithmeticFence(Val: ComplexVal.first, |
| 3579 | DstType: ConvertType(T: ElementType)); |
| 3580 | Value *Imag = Builder.CreateArithmeticFence(Val: ComplexVal.second, |
| 3581 | DstType: ConvertType(T: ElementType)); |
| 3582 | return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag)); |
| 3583 | } |
| 3584 | ComplexPairTy ComplexVal = EmitComplexExpr(E: E->getArg(Arg: 0)); |
| 3585 | Value *Real = ComplexVal.first; |
| 3586 | Value *Imag = ComplexVal.second; |
| 3587 | return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag)); |
| 3588 | } |
| 3589 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3590 | if (isArithmeticFenceEnabled) |
| 3591 | return RValue::get( |
| 3592 | V: Builder.CreateArithmeticFence(Val: ArgValue, DstType: ConvertType(T: ArgType))); |
| 3593 | return RValue::get(V: ArgValue); |
| 3594 | } |
| 3595 | case Builtin::BI__builtin_bswap16: |
| 3596 | case Builtin::BI__builtin_bswap32: |
| 3597 | case Builtin::BI__builtin_bswap64: |
| 3598 | case Builtin::BI_byteswap_ushort: |
| 3599 | case Builtin::BI_byteswap_ulong: |
| 3600 | case Builtin::BI_byteswap_uint64: { |
| 3601 | return RValue::get( |
| 3602 | V: emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::bswap)); |
| 3603 | } |
| 3604 | case Builtin::BI__builtin_bitreverse8: |
| 3605 | case Builtin::BI__builtin_bitreverse16: |
| 3606 | case Builtin::BI__builtin_bitreverse32: |
| 3607 | case Builtin::BI__builtin_bitreverse64: { |
| 3608 | return RValue::get( |
| 3609 | V: emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::bitreverse)); |
| 3610 | } |
| 3611 | case Builtin::BI__builtin_rotateleft8: |
| 3612 | case Builtin::BI__builtin_rotateleft16: |
| 3613 | case Builtin::BI__builtin_rotateleft32: |
| 3614 | case Builtin::BI__builtin_rotateleft64: |
| 3615 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
| 3616 | case Builtin::BI_rotl16: |
| 3617 | case Builtin::BI_rotl: |
| 3618 | case Builtin::BI_lrotl: |
| 3619 | case Builtin::BI_rotl64: |
| 3620 | return emitRotate(E, IsRotateRight: false); |
| 3621 | |
| 3622 | case Builtin::BI__builtin_rotateright8: |
| 3623 | case Builtin::BI__builtin_rotateright16: |
| 3624 | case Builtin::BI__builtin_rotateright32: |
| 3625 | case Builtin::BI__builtin_rotateright64: |
| 3626 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| 3627 | case Builtin::BI_rotr16: |
| 3628 | case Builtin::BI_rotr: |
| 3629 | case Builtin::BI_lrotr: |
| 3630 | case Builtin::BI_rotr64: |
| 3631 | return emitRotate(E, IsRotateRight: true); |
| 3632 | |
| 3633 | case Builtin::BI__builtin_constant_p: { |
| 3634 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 3635 | |
| 3636 | const Expr *Arg = E->getArg(Arg: 0); |
| 3637 | QualType ArgType = Arg->getType(); |
| 3638 | // FIXME: The allowance for Obj-C pointers and block pointers is historical |
| 3639 | // and likely a mistake. |
| 3640 | if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && |
| 3641 | !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) |
| 3642 | // Per the GCC documentation, only numeric constants are recognized after |
| 3643 | // inlining. |
| 3644 | return RValue::get(V: ConstantInt::get(Ty: ResultType, V: 0)); |
| 3645 | |
| 3646 | if (Arg->HasSideEffects(Ctx: getContext())) |
| 3647 | // The argument is unevaluated, so be conservative if it might have |
| 3648 | // side-effects. |
| 3649 | return RValue::get(V: ConstantInt::get(Ty: ResultType, V: 0)); |
| 3650 | |
| 3651 | Value *ArgValue = EmitScalarExpr(E: Arg); |
| 3652 | if (ArgType->isObjCObjectPointerType()) { |
| 3653 | // Convert Objective-C objects to id because we cannot distinguish between |
| 3654 | // LLVM types for Obj-C classes as they are opaque. |
| 3655 | ArgType = CGM.getContext().getObjCIdType(); |
| 3656 | ArgValue = Builder.CreateBitCast(V: ArgValue, DestTy: ConvertType(T: ArgType)); |
| 3657 | } |
| 3658 | Function *F = |
| 3659 | CGM.getIntrinsic(IID: Intrinsic::is_constant, Tys: ConvertType(T: ArgType)); |
| 3660 | Value *Result = Builder.CreateCall(Callee: F, Args: ArgValue); |
| 3661 | if (Result->getType() != ResultType) |
| 3662 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/false); |
| 3663 | return RValue::get(V: Result); |
| 3664 | } |
| 3665 | case Builtin::BI__builtin_dynamic_object_size: |
| 3666 | case Builtin::BI__builtin_object_size: { |
| 3667 | unsigned Type = |
| 3668 | E->getArg(Arg: 1)->EvaluateKnownConstInt(Ctx: getContext()).getZExtValue(); |
| 3669 | auto *ResType = cast<llvm::IntegerType>(Val: ConvertType(T: E->getType())); |
| 3670 | |
| 3671 | // We pass this builtin onto the optimizer so that it can figure out the |
| 3672 | // object size in more complex cases. |
| 3673 | bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; |
| 3674 | return RValue::get(V: emitBuiltinObjectSize(E: E->getArg(Arg: 0), Type, ResType, |
| 3675 | /*EmittedE=*/nullptr, IsDynamic)); |
| 3676 | } |
| 3677 | case Builtin::BI__builtin_counted_by_ref: { |
| 3678 | // Default to returning '(void *) 0'. |
| 3679 | llvm::Value *Result = llvm::ConstantPointerNull::get( |
| 3680 | T: llvm::PointerType::getUnqual(C&: getLLVMContext())); |
| 3681 | |
| 3682 | const Expr *Arg = E->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 3683 | |
| 3684 | if (auto *UO = dyn_cast<UnaryOperator>(Val: Arg); |
| 3685 | UO && UO->getOpcode() == UO_AddrOf) { |
| 3686 | Arg = UO->getSubExpr()->IgnoreParenImpCasts(); |
| 3687 | |
| 3688 | if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: Arg)) |
| 3689 | Arg = ASE->getBase()->IgnoreParenImpCasts(); |
| 3690 | } |
| 3691 | |
| 3692 | if (const MemberExpr *ME = dyn_cast_if_present<MemberExpr>(Val: Arg)) { |
| 3693 | if (auto *CATy = |
| 3694 | ME->getMemberDecl()->getType()->getAs<CountAttributedType>(); |
| 3695 | CATy && CATy->getKind() == CountAttributedType::CountedBy) { |
| 3696 | const auto *FAMDecl = cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 3697 | if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) |
| 3698 | Result = GetCountedByFieldExprGEP(Base: Arg, FD: FAMDecl, CountDecl: CountFD); |
| 3699 | else |
| 3700 | llvm::report_fatal_error(reason: "Cannot find the counted_by 'count' field" ); |
| 3701 | } |
| 3702 | } |
| 3703 | |
| 3704 | return RValue::get(V: Result); |
| 3705 | } |
| 3706 | case Builtin::BI__builtin_prefetch: { |
| 3707 | Value *Locality, *RW, *Address = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3708 | // FIXME: Technically these constants should of type 'int', yes? |
| 3709 | RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E: E->getArg(Arg: 1)) : |
| 3710 | llvm::ConstantInt::get(Ty: Int32Ty, V: 0); |
| 3711 | Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E: E->getArg(Arg: 2)) : |
| 3712 | llvm::ConstantInt::get(Ty: Int32Ty, V: 3); |
| 3713 | Value *Data = llvm::ConstantInt::get(Ty: Int32Ty, V: 1); |
| 3714 | Function *F = CGM.getIntrinsic(IID: Intrinsic::prefetch, Tys: Address->getType()); |
| 3715 | Builder.CreateCall(Callee: F, Args: {Address, RW, Locality, Data}); |
| 3716 | return RValue::get(V: nullptr); |
| 3717 | } |
| 3718 | case Builtin::BI__builtin_readcyclecounter: { |
| 3719 | Function *F = CGM.getIntrinsic(IID: Intrinsic::readcyclecounter); |
| 3720 | return RValue::get(V: Builder.CreateCall(Callee: F)); |
| 3721 | } |
| 3722 | case Builtin::BI__builtin_readsteadycounter: { |
| 3723 | Function *F = CGM.getIntrinsic(IID: Intrinsic::readsteadycounter); |
| 3724 | return RValue::get(V: Builder.CreateCall(Callee: F)); |
| 3725 | } |
| 3726 | case Builtin::BI__builtin___clear_cache: { |
| 3727 | Value *Begin = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3728 | Value *End = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3729 | Function *F = CGM.getIntrinsic(IID: Intrinsic::clear_cache); |
| 3730 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: {Begin, End})); |
| 3731 | } |
| 3732 | case Builtin::BI__builtin_trap: |
| 3733 | EmitTrapCall(IntrID: Intrinsic::trap); |
| 3734 | return RValue::get(V: nullptr); |
| 3735 | case Builtin::BI__builtin_verbose_trap: { |
| 3736 | llvm::DILocation *TrapLocation = Builder.getCurrentDebugLocation(); |
| 3737 | if (getDebugInfo()) { |
| 3738 | TrapLocation = getDebugInfo()->CreateTrapFailureMessageFor( |
| 3739 | TrapLocation, Category: *E->getArg(Arg: 0)->tryEvaluateString(Ctx&: getContext()), |
| 3740 | FailureMsg: *E->getArg(Arg: 1)->tryEvaluateString(Ctx&: getContext())); |
| 3741 | } |
| 3742 | ApplyDebugLocation ApplyTrapDI(*this, TrapLocation); |
| 3743 | // Currently no attempt is made to prevent traps from being merged. |
| 3744 | EmitTrapCall(IntrID: Intrinsic::trap); |
| 3745 | return RValue::get(V: nullptr); |
| 3746 | } |
| 3747 | case Builtin::BI__debugbreak: |
| 3748 | EmitTrapCall(IntrID: Intrinsic::debugtrap); |
| 3749 | return RValue::get(V: nullptr); |
| 3750 | case Builtin::BI__builtin_unreachable: { |
| 3751 | EmitUnreachable(Loc: E->getExprLoc()); |
| 3752 | |
| 3753 | // We do need to preserve an insertion point. |
| 3754 | EmitBlock(BB: createBasicBlock(name: "unreachable.cont" )); |
| 3755 | |
| 3756 | return RValue::get(V: nullptr); |
| 3757 | } |
| 3758 | |
| 3759 | case Builtin::BI__builtin_powi: |
| 3760 | case Builtin::BI__builtin_powif: |
| 3761 | case Builtin::BI__builtin_powil: { |
| 3762 | llvm::Value *Src0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3763 | llvm::Value *Src1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3764 | |
| 3765 | if (Builder.getIsFPConstrained()) { |
| 3766 | // FIXME: llvm.powi has 2 mangling types, |
| 3767 | // llvm.experimental.constrained.powi has one. |
| 3768 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3769 | Function *F = CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_powi, |
| 3770 | Tys: Src0->getType()); |
| 3771 | return RValue::get(V: Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0, Src1 })); |
| 3772 | } |
| 3773 | |
| 3774 | Function *F = CGM.getIntrinsic(IID: Intrinsic::powi, |
| 3775 | Tys: { Src0->getType(), Src1->getType() }); |
| 3776 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: { Src0, Src1 })); |
| 3777 | } |
| 3778 | case Builtin::BI__builtin_frexpl: { |
| 3779 | // Linux PPC will not be adding additional PPCDoubleDouble support. |
| 3780 | // WIP to switch default to IEEE long double. Will emit libcall for |
| 3781 | // frexpl instead of legalizing this type in the BE. |
| 3782 | if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble()) |
| 3783 | break; |
| 3784 | [[fallthrough]]; |
| 3785 | } |
| 3786 | case Builtin::BI__builtin_frexp: |
| 3787 | case Builtin::BI__builtin_frexpf: |
| 3788 | case Builtin::BI__builtin_frexpf128: |
| 3789 | case Builtin::BI__builtin_frexpf16: |
| 3790 | return RValue::get(V: emitFrexpBuiltin(CGF&: *this, E, IntrinsicID: Intrinsic::frexp)); |
| 3791 | case Builtin::BImodf: |
| 3792 | case Builtin::BImodff: |
| 3793 | case Builtin::BImodfl: |
| 3794 | case Builtin::BI__builtin_modf: |
| 3795 | case Builtin::BI__builtin_modff: |
| 3796 | case Builtin::BI__builtin_modfl: |
| 3797 | if (Builder.getIsFPConstrained()) |
| 3798 | break; // TODO: Emit constrained modf intrinsic once one exists. |
| 3799 | return RValue::get(V: emitModfBuiltin(CGF&: *this, E, IntrinsicID: Intrinsic::modf)); |
| 3800 | case Builtin::BI__builtin_isgreater: |
| 3801 | case Builtin::BI__builtin_isgreaterequal: |
| 3802 | case Builtin::BI__builtin_isless: |
| 3803 | case Builtin::BI__builtin_islessequal: |
| 3804 | case Builtin::BI__builtin_islessgreater: |
| 3805 | case Builtin::BI__builtin_isunordered: { |
| 3806 | // Ordered comparisons: we know the arguments to these are matching scalar |
| 3807 | // floating point values. |
| 3808 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3809 | Value *LHS = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3810 | Value *RHS = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 3811 | |
| 3812 | switch (BuiltinID) { |
| 3813 | default: llvm_unreachable("Unknown ordered comparison" ); |
| 3814 | case Builtin::BI__builtin_isgreater: |
| 3815 | LHS = Builder.CreateFCmpOGT(LHS, RHS, Name: "cmp" ); |
| 3816 | break; |
| 3817 | case Builtin::BI__builtin_isgreaterequal: |
| 3818 | LHS = Builder.CreateFCmpOGE(LHS, RHS, Name: "cmp" ); |
| 3819 | break; |
| 3820 | case Builtin::BI__builtin_isless: |
| 3821 | LHS = Builder.CreateFCmpOLT(LHS, RHS, Name: "cmp" ); |
| 3822 | break; |
| 3823 | case Builtin::BI__builtin_islessequal: |
| 3824 | LHS = Builder.CreateFCmpOLE(LHS, RHS, Name: "cmp" ); |
| 3825 | break; |
| 3826 | case Builtin::BI__builtin_islessgreater: |
| 3827 | LHS = Builder.CreateFCmpONE(LHS, RHS, Name: "cmp" ); |
| 3828 | break; |
| 3829 | case Builtin::BI__builtin_isunordered: |
| 3830 | LHS = Builder.CreateFCmpUNO(LHS, RHS, Name: "cmp" ); |
| 3831 | break; |
| 3832 | } |
| 3833 | // ZExt bool to int type. |
| 3834 | return RValue::get(V: Builder.CreateZExt(V: LHS, DestTy: ConvertType(T: E->getType()))); |
| 3835 | } |
| 3836 | |
| 3837 | case Builtin::BI__builtin_isnan: { |
| 3838 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3839 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3840 | if (Value *Result = tryUseTestFPKind(CGF&: *this, BuiltinID, V)) |
| 3841 | return RValue::get(V: Result); |
| 3842 | return RValue::get( |
| 3843 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcNan), |
| 3844 | DestTy: ConvertType(T: E->getType()))); |
| 3845 | } |
| 3846 | |
| 3847 | case Builtin::BI__builtin_issignaling: { |
| 3848 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3849 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3850 | return RValue::get( |
| 3851 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcSNan), |
| 3852 | DestTy: ConvertType(T: E->getType()))); |
| 3853 | } |
| 3854 | |
| 3855 | case Builtin::BI__builtin_isinf: { |
| 3856 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3857 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3858 | if (Value *Result = tryUseTestFPKind(CGF&: *this, BuiltinID, V)) |
| 3859 | return RValue::get(V: Result); |
| 3860 | return RValue::get( |
| 3861 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcInf), |
| 3862 | DestTy: ConvertType(T: E->getType()))); |
| 3863 | } |
| 3864 | |
| 3865 | case Builtin::BIfinite: |
| 3866 | case Builtin::BI__finite: |
| 3867 | case Builtin::BIfinitef: |
| 3868 | case Builtin::BI__finitef: |
| 3869 | case Builtin::BIfinitel: |
| 3870 | case Builtin::BI__finitel: |
| 3871 | case Builtin::BI__builtin_isfinite: { |
| 3872 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3873 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3874 | if (Value *Result = tryUseTestFPKind(CGF&: *this, BuiltinID, V)) |
| 3875 | return RValue::get(V: Result); |
| 3876 | return RValue::get( |
| 3877 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcFinite), |
| 3878 | DestTy: ConvertType(T: E->getType()))); |
| 3879 | } |
| 3880 | |
| 3881 | case Builtin::BI__builtin_isnormal: { |
| 3882 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3883 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3884 | return RValue::get( |
| 3885 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcNormal), |
| 3886 | DestTy: ConvertType(T: E->getType()))); |
| 3887 | } |
| 3888 | |
| 3889 | case Builtin::BI__builtin_issubnormal: { |
| 3890 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3891 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3892 | return RValue::get( |
| 3893 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcSubnormal), |
| 3894 | DestTy: ConvertType(T: E->getType()))); |
| 3895 | } |
| 3896 | |
| 3897 | case Builtin::BI__builtin_iszero: { |
| 3898 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3899 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3900 | return RValue::get( |
| 3901 | V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test: FPClassTest::fcZero), |
| 3902 | DestTy: ConvertType(T: E->getType()))); |
| 3903 | } |
| 3904 | |
| 3905 | case Builtin::BI__builtin_isfpclass: { |
| 3906 | Expr::EvalResult Result; |
| 3907 | if (!E->getArg(Arg: 1)->EvaluateAsInt(Result, Ctx: CGM.getContext())) |
| 3908 | break; |
| 3909 | uint64_t Test = Result.Val.getInt().getLimitedValue(); |
| 3910 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 3911 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 3912 | return RValue::get(V: Builder.CreateZExt(V: Builder.createIsFPClass(FPNum: V, Test), |
| 3913 | DestTy: ConvertType(T: E->getType()))); |
| 3914 | } |
| 3915 | |
| 3916 | case Builtin::BI__builtin_nondeterministic_value: { |
| 3917 | llvm::Type *Ty = ConvertType(T: E->getArg(Arg: 0)->getType()); |
| 3918 | |
| 3919 | Value *Result = PoisonValue::get(T: Ty); |
| 3920 | Result = Builder.CreateFreeze(V: Result); |
| 3921 | |
| 3922 | return RValue::get(V: Result); |
| 3923 | } |
| 3924 | |
| 3925 | case Builtin::BI__builtin_elementwise_abs: { |
| 3926 | Value *Result; |
| 3927 | QualType QT = E->getArg(Arg: 0)->getType(); |
| 3928 | |
| 3929 | if (auto *VecTy = QT->getAs<VectorType>()) |
| 3930 | QT = VecTy->getElementType(); |
| 3931 | if (QT->isIntegerType()) |
| 3932 | Result = Builder.CreateBinaryIntrinsic( |
| 3933 | ID: Intrinsic::abs, LHS: EmitScalarExpr(E: E->getArg(Arg: 0)), RHS: Builder.getFalse(), |
| 3934 | FMFSource: nullptr, Name: "elt.abs" ); |
| 3935 | else |
| 3936 | Result = emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::fabs, |
| 3937 | Name: "elt.abs" ); |
| 3938 | |
| 3939 | return RValue::get(V: Result); |
| 3940 | } |
| 3941 | case Builtin::BI__builtin_elementwise_acos: |
| 3942 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3943 | CGF&: *this, E, IntrinsicID: Intrinsic::acos, Name: "elt.acos" )); |
| 3944 | case Builtin::BI__builtin_elementwise_asin: |
| 3945 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3946 | CGF&: *this, E, IntrinsicID: Intrinsic::asin, Name: "elt.asin" )); |
| 3947 | case Builtin::BI__builtin_elementwise_atan: |
| 3948 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3949 | CGF&: *this, E, IntrinsicID: Intrinsic::atan, Name: "elt.atan" )); |
| 3950 | case Builtin::BI__builtin_elementwise_atan2: |
| 3951 | return RValue::get(V: emitBuiltinWithOneOverloadedType<2>( |
| 3952 | CGF&: *this, E, IntrinsicID: Intrinsic::atan2, Name: "elt.atan2" )); |
| 3953 | case Builtin::BI__builtin_elementwise_ceil: |
| 3954 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3955 | CGF&: *this, E, IntrinsicID: Intrinsic::ceil, Name: "elt.ceil" )); |
| 3956 | case Builtin::BI__builtin_elementwise_exp: |
| 3957 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3958 | CGF&: *this, E, IntrinsicID: Intrinsic::exp, Name: "elt.exp" )); |
| 3959 | case Builtin::BI__builtin_elementwise_exp2: |
| 3960 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3961 | CGF&: *this, E, IntrinsicID: Intrinsic::exp2, Name: "elt.exp2" )); |
| 3962 | case Builtin::BI__builtin_elementwise_exp10: |
| 3963 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3964 | CGF&: *this, E, IntrinsicID: Intrinsic::exp10, Name: "elt.exp10" )); |
| 3965 | case Builtin::BI__builtin_elementwise_log: |
| 3966 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3967 | CGF&: *this, E, IntrinsicID: Intrinsic::log, Name: "elt.log" )); |
| 3968 | case Builtin::BI__builtin_elementwise_log2: |
| 3969 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3970 | CGF&: *this, E, IntrinsicID: Intrinsic::log2, Name: "elt.log2" )); |
| 3971 | case Builtin::BI__builtin_elementwise_log10: |
| 3972 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3973 | CGF&: *this, E, IntrinsicID: Intrinsic::log10, Name: "elt.log10" )); |
| 3974 | case Builtin::BI__builtin_elementwise_pow: { |
| 3975 | return RValue::get( |
| 3976 | V: emitBuiltinWithOneOverloadedType<2>(CGF&: *this, E, IntrinsicID: Intrinsic::pow)); |
| 3977 | } |
| 3978 | case Builtin::BI__builtin_elementwise_bitreverse: |
| 3979 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3980 | CGF&: *this, E, IntrinsicID: Intrinsic::bitreverse, Name: "elt.bitreverse" )); |
| 3981 | case Builtin::BI__builtin_elementwise_cos: |
| 3982 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3983 | CGF&: *this, E, IntrinsicID: Intrinsic::cos, Name: "elt.cos" )); |
| 3984 | case Builtin::BI__builtin_elementwise_cosh: |
| 3985 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3986 | CGF&: *this, E, IntrinsicID: Intrinsic::cosh, Name: "elt.cosh" )); |
| 3987 | case Builtin::BI__builtin_elementwise_floor: |
| 3988 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3989 | CGF&: *this, E, IntrinsicID: Intrinsic::floor, Name: "elt.floor" )); |
| 3990 | case Builtin::BI__builtin_elementwise_popcount: |
| 3991 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3992 | CGF&: *this, E, IntrinsicID: Intrinsic::ctpop, Name: "elt.ctpop" )); |
| 3993 | case Builtin::BI__builtin_elementwise_roundeven: |
| 3994 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3995 | CGF&: *this, E, IntrinsicID: Intrinsic::roundeven, Name: "elt.roundeven" )); |
| 3996 | case Builtin::BI__builtin_elementwise_round: |
| 3997 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 3998 | CGF&: *this, E, IntrinsicID: Intrinsic::round, Name: "elt.round" )); |
| 3999 | case Builtin::BI__builtin_elementwise_rint: |
| 4000 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4001 | CGF&: *this, E, IntrinsicID: Intrinsic::rint, Name: "elt.rint" )); |
| 4002 | case Builtin::BI__builtin_elementwise_nearbyint: |
| 4003 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4004 | CGF&: *this, E, IntrinsicID: Intrinsic::nearbyint, Name: "elt.nearbyint" )); |
| 4005 | case Builtin::BI__builtin_elementwise_sin: |
| 4006 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4007 | CGF&: *this, E, IntrinsicID: Intrinsic::sin, Name: "elt.sin" )); |
| 4008 | case Builtin::BI__builtin_elementwise_sinh: |
| 4009 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4010 | CGF&: *this, E, IntrinsicID: Intrinsic::sinh, Name: "elt.sinh" )); |
| 4011 | case Builtin::BI__builtin_elementwise_tan: |
| 4012 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4013 | CGF&: *this, E, IntrinsicID: Intrinsic::tan, Name: "elt.tan" )); |
| 4014 | case Builtin::BI__builtin_elementwise_tanh: |
| 4015 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4016 | CGF&: *this, E, IntrinsicID: Intrinsic::tanh, Name: "elt.tanh" )); |
| 4017 | case Builtin::BI__builtin_elementwise_trunc: |
| 4018 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4019 | CGF&: *this, E, IntrinsicID: Intrinsic::trunc, Name: "elt.trunc" )); |
| 4020 | case Builtin::BI__builtin_elementwise_canonicalize: |
| 4021 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4022 | CGF&: *this, E, IntrinsicID: Intrinsic::canonicalize, Name: "elt.canonicalize" )); |
| 4023 | case Builtin::BI__builtin_elementwise_copysign: |
| 4024 | return RValue::get( |
| 4025 | V: emitBuiltinWithOneOverloadedType<2>(CGF&: *this, E, IntrinsicID: Intrinsic::copysign)); |
| 4026 | case Builtin::BI__builtin_elementwise_fma: |
| 4027 | return RValue::get( |
| 4028 | V: emitBuiltinWithOneOverloadedType<3>(CGF&: *this, E, IntrinsicID: Intrinsic::fma)); |
| 4029 | case Builtin::BI__builtin_elementwise_add_sat: |
| 4030 | case Builtin::BI__builtin_elementwise_sub_sat: { |
| 4031 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4032 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4033 | Value *Result; |
| 4034 | assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected" ); |
| 4035 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 4036 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 4037 | Ty = VecTy->getElementType(); |
| 4038 | bool IsSigned = Ty->isSignedIntegerType(); |
| 4039 | unsigned Opc; |
| 4040 | if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat) |
| 4041 | Opc = IsSigned ? Intrinsic::sadd_sat : Intrinsic::uadd_sat; |
| 4042 | else |
| 4043 | Opc = IsSigned ? Intrinsic::ssub_sat : Intrinsic::usub_sat; |
| 4044 | Result = Builder.CreateBinaryIntrinsic(ID: Opc, LHS: Op0, RHS: Op1, FMFSource: nullptr, Name: "elt.sat" ); |
| 4045 | return RValue::get(V: Result); |
| 4046 | } |
| 4047 | |
| 4048 | case Builtin::BI__builtin_elementwise_max: { |
| 4049 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4050 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4051 | Value *Result; |
| 4052 | if (Op0->getType()->isIntOrIntVectorTy()) { |
| 4053 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 4054 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 4055 | Ty = VecTy->getElementType(); |
| 4056 | Result = Builder.CreateBinaryIntrinsic( |
| 4057 | ID: Ty->isSignedIntegerType() ? Intrinsic::smax : Intrinsic::umax, LHS: Op0, |
| 4058 | RHS: Op1, FMFSource: nullptr, Name: "elt.max" ); |
| 4059 | } else |
| 4060 | Result = Builder.CreateMaxNum(LHS: Op0, RHS: Op1, /*FMFSource=*/nullptr, Name: "elt.max" ); |
| 4061 | return RValue::get(V: Result); |
| 4062 | } |
| 4063 | case Builtin::BI__builtin_elementwise_min: { |
| 4064 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4065 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4066 | Value *Result; |
| 4067 | if (Op0->getType()->isIntOrIntVectorTy()) { |
| 4068 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 4069 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 4070 | Ty = VecTy->getElementType(); |
| 4071 | Result = Builder.CreateBinaryIntrinsic( |
| 4072 | ID: Ty->isSignedIntegerType() ? Intrinsic::smin : Intrinsic::umin, LHS: Op0, |
| 4073 | RHS: Op1, FMFSource: nullptr, Name: "elt.min" ); |
| 4074 | } else |
| 4075 | Result = Builder.CreateMinNum(LHS: Op0, RHS: Op1, /*FMFSource=*/nullptr, Name: "elt.min" ); |
| 4076 | return RValue::get(V: Result); |
| 4077 | } |
| 4078 | |
| 4079 | case Builtin::BI__builtin_elementwise_maxnum: { |
| 4080 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4081 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4082 | Value *Result = Builder.CreateBinaryIntrinsic(ID: llvm::Intrinsic::maxnum, LHS: Op0, |
| 4083 | RHS: Op1, FMFSource: nullptr, Name: "elt.maxnum" ); |
| 4084 | return RValue::get(V: Result); |
| 4085 | } |
| 4086 | |
| 4087 | case Builtin::BI__builtin_elementwise_minnum: { |
| 4088 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4089 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4090 | Value *Result = Builder.CreateBinaryIntrinsic(ID: llvm::Intrinsic::minnum, LHS: Op0, |
| 4091 | RHS: Op1, FMFSource: nullptr, Name: "elt.minnum" ); |
| 4092 | return RValue::get(V: Result); |
| 4093 | } |
| 4094 | |
| 4095 | case Builtin::BI__builtin_elementwise_maximum: { |
| 4096 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4097 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4098 | Value *Result = Builder.CreateBinaryIntrinsic(ID: Intrinsic::maximum, LHS: Op0, RHS: Op1, |
| 4099 | FMFSource: nullptr, Name: "elt.maximum" ); |
| 4100 | return RValue::get(V: Result); |
| 4101 | } |
| 4102 | |
| 4103 | case Builtin::BI__builtin_elementwise_minimum: { |
| 4104 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4105 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4106 | Value *Result = Builder.CreateBinaryIntrinsic(ID: Intrinsic::minimum, LHS: Op0, RHS: Op1, |
| 4107 | FMFSource: nullptr, Name: "elt.minimum" ); |
| 4108 | return RValue::get(V: Result); |
| 4109 | } |
| 4110 | |
| 4111 | case Builtin::BI__builtin_reduce_max: { |
| 4112 | auto GetIntrinsicID = [this](QualType QT) { |
| 4113 | if (auto *VecTy = QT->getAs<VectorType>()) |
| 4114 | QT = VecTy->getElementType(); |
| 4115 | else if (QT->isSizelessVectorType()) |
| 4116 | QT = QT->getSizelessVectorEltType(Ctx: CGM.getContext()); |
| 4117 | |
| 4118 | if (QT->isSignedIntegerType()) |
| 4119 | return Intrinsic::vector_reduce_smax; |
| 4120 | if (QT->isUnsignedIntegerType()) |
| 4121 | return Intrinsic::vector_reduce_umax; |
| 4122 | assert(QT->isFloatingType() && "must have a float here" ); |
| 4123 | return Intrinsic::vector_reduce_fmax; |
| 4124 | }; |
| 4125 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4126 | CGF&: *this, E, IntrinsicID: GetIntrinsicID(E->getArg(Arg: 0)->getType()), Name: "rdx.min" )); |
| 4127 | } |
| 4128 | |
| 4129 | case Builtin::BI__builtin_reduce_min: { |
| 4130 | auto GetIntrinsicID = [this](QualType QT) { |
| 4131 | if (auto *VecTy = QT->getAs<VectorType>()) |
| 4132 | QT = VecTy->getElementType(); |
| 4133 | else if (QT->isSizelessVectorType()) |
| 4134 | QT = QT->getSizelessVectorEltType(Ctx: CGM.getContext()); |
| 4135 | |
| 4136 | if (QT->isSignedIntegerType()) |
| 4137 | return Intrinsic::vector_reduce_smin; |
| 4138 | if (QT->isUnsignedIntegerType()) |
| 4139 | return Intrinsic::vector_reduce_umin; |
| 4140 | assert(QT->isFloatingType() && "must have a float here" ); |
| 4141 | return Intrinsic::vector_reduce_fmin; |
| 4142 | }; |
| 4143 | |
| 4144 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4145 | CGF&: *this, E, IntrinsicID: GetIntrinsicID(E->getArg(Arg: 0)->getType()), Name: "rdx.min" )); |
| 4146 | } |
| 4147 | |
| 4148 | case Builtin::BI__builtin_reduce_add: |
| 4149 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4150 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_add, Name: "rdx.add" )); |
| 4151 | case Builtin::BI__builtin_reduce_mul: |
| 4152 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4153 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_mul, Name: "rdx.mul" )); |
| 4154 | case Builtin::BI__builtin_reduce_xor: |
| 4155 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4156 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_xor, Name: "rdx.xor" )); |
| 4157 | case Builtin::BI__builtin_reduce_or: |
| 4158 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4159 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_or, Name: "rdx.or" )); |
| 4160 | case Builtin::BI__builtin_reduce_and: |
| 4161 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4162 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_and, Name: "rdx.and" )); |
| 4163 | case Builtin::BI__builtin_reduce_maximum: |
| 4164 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4165 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_fmaximum, Name: "rdx.maximum" )); |
| 4166 | case Builtin::BI__builtin_reduce_minimum: |
| 4167 | return RValue::get(V: emitBuiltinWithOneOverloadedType<1>( |
| 4168 | CGF&: *this, E, IntrinsicID: Intrinsic::vector_reduce_fminimum, Name: "rdx.minimum" )); |
| 4169 | |
| 4170 | case Builtin::BI__builtin_matrix_transpose: { |
| 4171 | auto *MatrixTy = E->getArg(Arg: 0)->getType()->castAs<ConstantMatrixType>(); |
| 4172 | Value *MatValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4173 | MatrixBuilder MB(Builder); |
| 4174 | Value *Result = MB.CreateMatrixTranspose(Matrix: MatValue, Rows: MatrixTy->getNumRows(), |
| 4175 | Columns: MatrixTy->getNumColumns()); |
| 4176 | return RValue::get(V: Result); |
| 4177 | } |
| 4178 | |
| 4179 | case Builtin::BI__builtin_matrix_column_major_load: { |
| 4180 | MatrixBuilder MB(Builder); |
| 4181 | // Emit everything that isn't dependent on the first parameter type |
| 4182 | Value *Stride = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 4183 | const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); |
| 4184 | auto *PtrTy = E->getArg(Arg: 0)->getType()->getAs<PointerType>(); |
| 4185 | assert(PtrTy && "arg0 must be of pointer type" ); |
| 4186 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| 4187 | |
| 4188 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4189 | EmitNonNullArgCheck(RV: RValue::get(V: Src.emitRawPointer(CGF&: *this)), |
| 4190 | ArgType: E->getArg(Arg: 0)->getType(), ArgLoc: E->getArg(Arg: 0)->getExprLoc(), AC: FD, |
| 4191 | ParmNum: 0); |
| 4192 | Value *Result = MB.CreateColumnMajorLoad( |
| 4193 | EltTy: Src.getElementType(), DataPtr: Src.emitRawPointer(CGF&: *this), |
| 4194 | Alignment: Align(Src.getAlignment().getQuantity()), Stride, IsVolatile, |
| 4195 | Rows: ResultTy->getNumRows(), Columns: ResultTy->getNumColumns(), Name: "matrix" ); |
| 4196 | return RValue::get(V: Result); |
| 4197 | } |
| 4198 | |
| 4199 | case Builtin::BI__builtin_matrix_column_major_store: { |
| 4200 | MatrixBuilder MB(Builder); |
| 4201 | Value *Matrix = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4202 | Address Dst = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4203 | Value *Stride = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4204 | |
| 4205 | const auto *MatrixTy = E->getArg(Arg: 0)->getType()->getAs<ConstantMatrixType>(); |
| 4206 | auto *PtrTy = E->getArg(Arg: 1)->getType()->getAs<PointerType>(); |
| 4207 | assert(PtrTy && "arg1 must be of pointer type" ); |
| 4208 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| 4209 | |
| 4210 | EmitNonNullArgCheck(RV: RValue::get(V: Dst.emitRawPointer(CGF&: *this)), |
| 4211 | ArgType: E->getArg(Arg: 1)->getType(), ArgLoc: E->getArg(Arg: 1)->getExprLoc(), AC: FD, |
| 4212 | ParmNum: 0); |
| 4213 | Value *Result = MB.CreateColumnMajorStore( |
| 4214 | Matrix, Ptr: Dst.emitRawPointer(CGF&: *this), |
| 4215 | Alignment: Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile, |
| 4216 | Rows: MatrixTy->getNumRows(), Columns: MatrixTy->getNumColumns()); |
| 4217 | addInstToNewSourceAtom(KeyInstruction: cast<Instruction>(Val: Result), Backup: Matrix); |
| 4218 | return RValue::get(V: Result); |
| 4219 | } |
| 4220 | |
| 4221 | case Builtin::BI__builtin_isinf_sign: { |
| 4222 | // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
| 4223 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 4224 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| 4225 | Value *Arg = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4226 | Value *AbsArg = EmitFAbs(CGF&: *this, V: Arg); |
| 4227 | Value *IsInf = Builder.CreateFCmpOEQ( |
| 4228 | LHS: AbsArg, RHS: ConstantFP::getInfinity(Ty: Arg->getType()), Name: "isinf" ); |
| 4229 | Value *IsNeg = EmitSignBit(CGF&: *this, V: Arg); |
| 4230 | |
| 4231 | llvm::Type *IntTy = ConvertType(T: E->getType()); |
| 4232 | Value *Zero = Constant::getNullValue(Ty: IntTy); |
| 4233 | Value *One = ConstantInt::get(Ty: IntTy, V: 1); |
| 4234 | Value *NegativeOne = ConstantInt::get(Ty: IntTy, V: -1); |
| 4235 | Value *SignResult = Builder.CreateSelect(C: IsNeg, True: NegativeOne, False: One); |
| 4236 | Value *Result = Builder.CreateSelect(C: IsInf, True: SignResult, False: Zero); |
| 4237 | return RValue::get(V: Result); |
| 4238 | } |
| 4239 | |
| 4240 | case Builtin::BI__builtin_flt_rounds: { |
| 4241 | Function *F = CGM.getIntrinsic(IID: Intrinsic::get_rounding); |
| 4242 | |
| 4243 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 4244 | Value *Result = Builder.CreateCall(Callee: F); |
| 4245 | if (Result->getType() != ResultType) |
| 4246 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 4247 | Name: "cast" ); |
| 4248 | return RValue::get(V: Result); |
| 4249 | } |
| 4250 | |
| 4251 | case Builtin::BI__builtin_set_flt_rounds: { |
| 4252 | Function *F = CGM.getIntrinsic(IID: Intrinsic::set_rounding); |
| 4253 | |
| 4254 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4255 | Builder.CreateCall(Callee: F, Args: V); |
| 4256 | return RValue::get(V: nullptr); |
| 4257 | } |
| 4258 | |
| 4259 | case Builtin::BI__builtin_fpclassify: { |
| 4260 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| 4261 | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| 4262 | Value *V = EmitScalarExpr(E: E->getArg(Arg: 5)); |
| 4263 | llvm::Type *Ty = ConvertType(T: E->getArg(Arg: 5)->getType()); |
| 4264 | |
| 4265 | // Create Result |
| 4266 | BasicBlock *Begin = Builder.GetInsertBlock(); |
| 4267 | BasicBlock *End = createBasicBlock(name: "fpclassify_end" , parent: this->CurFn); |
| 4268 | Builder.SetInsertPoint(End); |
| 4269 | PHINode *Result = |
| 4270 | Builder.CreatePHI(Ty: ConvertType(T: E->getArg(Arg: 0)->getType()), NumReservedValues: 4, |
| 4271 | Name: "fpclassify_result" ); |
| 4272 | |
| 4273 | // if (V==0) return FP_ZERO |
| 4274 | Builder.SetInsertPoint(Begin); |
| 4275 | Value *IsZero = Builder.CreateFCmpOEQ(LHS: V, RHS: Constant::getNullValue(Ty), |
| 4276 | Name: "iszero" ); |
| 4277 | Value *ZeroLiteral = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 4278 | BasicBlock *NotZero = createBasicBlock(name: "fpclassify_not_zero" , parent: this->CurFn); |
| 4279 | Builder.CreateCondBr(Cond: IsZero, True: End, False: NotZero); |
| 4280 | Result->addIncoming(V: ZeroLiteral, BB: Begin); |
| 4281 | |
| 4282 | // if (V != V) return FP_NAN |
| 4283 | Builder.SetInsertPoint(NotZero); |
| 4284 | Value *IsNan = Builder.CreateFCmpUNO(LHS: V, RHS: V, Name: "cmp" ); |
| 4285 | Value *NanLiteral = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4286 | BasicBlock *NotNan = createBasicBlock(name: "fpclassify_not_nan" , parent: this->CurFn); |
| 4287 | Builder.CreateCondBr(Cond: IsNan, True: End, False: NotNan); |
| 4288 | Result->addIncoming(V: NanLiteral, BB: NotZero); |
| 4289 | |
| 4290 | // if (fabs(V) == infinity) return FP_INFINITY |
| 4291 | Builder.SetInsertPoint(NotNan); |
| 4292 | Value *VAbs = EmitFAbs(CGF&: *this, V); |
| 4293 | Value *IsInf = |
| 4294 | Builder.CreateFCmpOEQ(LHS: VAbs, RHS: ConstantFP::getInfinity(Ty: V->getType()), |
| 4295 | Name: "isinf" ); |
| 4296 | Value *InfLiteral = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4297 | BasicBlock *NotInf = createBasicBlock(name: "fpclassify_not_inf" , parent: this->CurFn); |
| 4298 | Builder.CreateCondBr(Cond: IsInf, True: End, False: NotInf); |
| 4299 | Result->addIncoming(V: InfLiteral, BB: NotNan); |
| 4300 | |
| 4301 | // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| 4302 | Builder.SetInsertPoint(NotInf); |
| 4303 | APFloat Smallest = APFloat::getSmallestNormalized( |
| 4304 | Sem: getContext().getFloatTypeSemantics(T: E->getArg(Arg: 5)->getType())); |
| 4305 | Value *IsNormal = |
| 4306 | Builder.CreateFCmpUGE(LHS: VAbs, RHS: ConstantFP::get(Context&: V->getContext(), V: Smallest), |
| 4307 | Name: "isnormal" ); |
| 4308 | Value *NormalResult = |
| 4309 | Builder.CreateSelect(C: IsNormal, True: EmitScalarExpr(E: E->getArg(Arg: 2)), |
| 4310 | False: EmitScalarExpr(E: E->getArg(Arg: 3))); |
| 4311 | Builder.CreateBr(Dest: End); |
| 4312 | Result->addIncoming(V: NormalResult, BB: NotInf); |
| 4313 | |
| 4314 | // return Result |
| 4315 | Builder.SetInsertPoint(End); |
| 4316 | return RValue::get(V: Result); |
| 4317 | } |
| 4318 | |
| 4319 | // An alloca will always return a pointer to the alloca (stack) address |
| 4320 | // space. This address space need not be the same as the AST / Language |
| 4321 | // default (e.g. in C / C++ auto vars are in the generic address space). At |
| 4322 | // the AST level this is handled within CreateTempAlloca et al., but for the |
| 4323 | // builtin / dynamic alloca we have to handle it here. We use an explicit cast |
| 4324 | // instead of passing an AS to CreateAlloca so as to not inhibit optimisation. |
| 4325 | case Builtin::BIalloca: |
| 4326 | case Builtin::BI_alloca: |
| 4327 | case Builtin::BI__builtin_alloca_uninitialized: |
| 4328 | case Builtin::BI__builtin_alloca: { |
| 4329 | Value *Size = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4330 | const TargetInfo &TI = getContext().getTargetInfo(); |
| 4331 | // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
| 4332 | const Align SuitableAlignmentInBytes = |
| 4333 | CGM.getContext() |
| 4334 | .toCharUnitsFromBits(BitSize: TI.getSuitableAlign()) |
| 4335 | .getAsAlign(); |
| 4336 | AllocaInst *AI = Builder.CreateAlloca(Ty: Builder.getInt8Ty(), ArraySize: Size); |
| 4337 | AI->setAlignment(SuitableAlignmentInBytes); |
| 4338 | if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized) |
| 4339 | initializeAlloca(CGF&: *this, AI, Size, AlignmentInBytes: SuitableAlignmentInBytes); |
| 4340 | LangAS AAS = getASTAllocaAddressSpace(); |
| 4341 | LangAS EAS = E->getType()->getPointeeType().getAddressSpace(); |
| 4342 | if (AAS != EAS) { |
| 4343 | llvm::Type *Ty = CGM.getTypes().ConvertType(T: E->getType()); |
| 4344 | return RValue::get( |
| 4345 | V: getTargetHooks().performAddrSpaceCast(CGF&: *this, V: AI, SrcAddr: AAS, DestTy: Ty)); |
| 4346 | } |
| 4347 | return RValue::get(V: AI); |
| 4348 | } |
| 4349 | |
| 4350 | case Builtin::BI__builtin_alloca_with_align_uninitialized: |
| 4351 | case Builtin::BI__builtin_alloca_with_align: { |
| 4352 | Value *Size = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4353 | Value *AlignmentInBitsValue = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4354 | auto *AlignmentInBitsCI = cast<ConstantInt>(Val: AlignmentInBitsValue); |
| 4355 | unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
| 4356 | const Align AlignmentInBytes = |
| 4357 | CGM.getContext().toCharUnitsFromBits(BitSize: AlignmentInBits).getAsAlign(); |
| 4358 | AllocaInst *AI = Builder.CreateAlloca(Ty: Builder.getInt8Ty(), ArraySize: Size); |
| 4359 | AI->setAlignment(AlignmentInBytes); |
| 4360 | if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized) |
| 4361 | initializeAlloca(CGF&: *this, AI, Size, AlignmentInBytes); |
| 4362 | LangAS AAS = getASTAllocaAddressSpace(); |
| 4363 | LangAS EAS = E->getType()->getPointeeType().getAddressSpace(); |
| 4364 | if (AAS != EAS) { |
| 4365 | llvm::Type *Ty = CGM.getTypes().ConvertType(T: E->getType()); |
| 4366 | return RValue::get( |
| 4367 | V: getTargetHooks().performAddrSpaceCast(CGF&: *this, V: AI, SrcAddr: AAS, DestTy: Ty)); |
| 4368 | } |
| 4369 | return RValue::get(V: AI); |
| 4370 | } |
| 4371 | |
| 4372 | case Builtin::BIbzero: |
| 4373 | case Builtin::BI__builtin_bzero: { |
| 4374 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4375 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4376 | EmitNonNullArgCheck(Addr: Dest, ArgType: E->getArg(Arg: 0)->getType(), |
| 4377 | ArgLoc: E->getArg(Arg: 0)->getExprLoc(), AC: FD, ParmNum: 0); |
| 4378 | auto *I = Builder.CreateMemSet(Dest, Value: Builder.getInt8(C: 0), Size: SizeVal, IsVolatile: false); |
| 4379 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4380 | return RValue::get(V: nullptr); |
| 4381 | } |
| 4382 | |
| 4383 | case Builtin::BIbcopy: |
| 4384 | case Builtin::BI__builtin_bcopy: { |
| 4385 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4386 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4387 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4388 | EmitNonNullArgCheck(RV: RValue::get(V: Src.emitRawPointer(CGF&: *this)), |
| 4389 | ArgType: E->getArg(Arg: 0)->getType(), ArgLoc: E->getArg(Arg: 0)->getExprLoc(), AC: FD, |
| 4390 | ParmNum: 0); |
| 4391 | EmitNonNullArgCheck(RV: RValue::get(V: Dest.emitRawPointer(CGF&: *this)), |
| 4392 | ArgType: E->getArg(Arg: 1)->getType(), ArgLoc: E->getArg(Arg: 1)->getExprLoc(), AC: FD, |
| 4393 | ParmNum: 0); |
| 4394 | auto *I = Builder.CreateMemMove(Dest, Src, Size: SizeVal, IsVolatile: false); |
| 4395 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4396 | return RValue::get(V: nullptr); |
| 4397 | } |
| 4398 | |
| 4399 | case Builtin::BImemcpy: |
| 4400 | case Builtin::BI__builtin_memcpy: |
| 4401 | case Builtin::BImempcpy: |
| 4402 | case Builtin::BI__builtin_mempcpy: { |
| 4403 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4404 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4405 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4406 | EmitArgCheck(TCK_Store, Dest, E->getArg(Arg: 0), 0); |
| 4407 | EmitArgCheck(TCK_Load, Src, E->getArg(Arg: 1), 1); |
| 4408 | auto *I = Builder.CreateMemCpy(Dest, Src, Size: SizeVal, IsVolatile: false); |
| 4409 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4410 | if (BuiltinID == Builtin::BImempcpy || |
| 4411 | BuiltinID == Builtin::BI__builtin_mempcpy) |
| 4412 | return RValue::get(V: Builder.CreateInBoundsGEP( |
| 4413 | Ty: Dest.getElementType(), Ptr: Dest.emitRawPointer(CGF&: *this), IdxList: SizeVal)); |
| 4414 | else |
| 4415 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4416 | } |
| 4417 | |
| 4418 | case Builtin::BI__builtin_memcpy_inline: { |
| 4419 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4420 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4421 | uint64_t Size = |
| 4422 | E->getArg(Arg: 2)->EvaluateKnownConstInt(Ctx: getContext()).getZExtValue(); |
| 4423 | EmitArgCheck(TCK_Store, Dest, E->getArg(Arg: 0), 0); |
| 4424 | EmitArgCheck(TCK_Load, Src, E->getArg(Arg: 1), 1); |
| 4425 | auto *I = Builder.CreateMemCpyInline(Dest, Src, Size); |
| 4426 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4427 | return RValue::get(V: nullptr); |
| 4428 | } |
| 4429 | |
| 4430 | case Builtin::BI__builtin_char_memchr: |
| 4431 | BuiltinID = Builtin::BI__builtin_memchr; |
| 4432 | break; |
| 4433 | |
| 4434 | case Builtin::BI__builtin___memcpy_chk: { |
| 4435 | // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
| 4436 | Expr::EvalResult SizeResult, DstSizeResult; |
| 4437 | if (!E->getArg(Arg: 2)->EvaluateAsInt(Result&: SizeResult, Ctx: CGM.getContext()) || |
| 4438 | !E->getArg(Arg: 3)->EvaluateAsInt(Result&: DstSizeResult, Ctx: CGM.getContext())) |
| 4439 | break; |
| 4440 | llvm::APSInt Size = SizeResult.Val.getInt(); |
| 4441 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| 4442 | if (Size.ugt(RHS: DstSize)) |
| 4443 | break; |
| 4444 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4445 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4446 | Value *SizeVal = llvm::ConstantInt::get(Context&: Builder.getContext(), V: Size); |
| 4447 | auto *I = Builder.CreateMemCpy(Dest, Src, Size: SizeVal, IsVolatile: false); |
| 4448 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4449 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4450 | } |
| 4451 | |
| 4452 | case Builtin::BI__builtin_objc_memmove_collectable: { |
| 4453 | Address DestAddr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4454 | Address SrcAddr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4455 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4456 | CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF&: *this, |
| 4457 | DestPtr: DestAddr, SrcPtr: SrcAddr, Size: SizeVal); |
| 4458 | return RValue::get(Addr: DestAddr, CGF&: *this); |
| 4459 | } |
| 4460 | |
| 4461 | case Builtin::BI__builtin___memmove_chk: { |
| 4462 | // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
| 4463 | Expr::EvalResult SizeResult, DstSizeResult; |
| 4464 | if (!E->getArg(Arg: 2)->EvaluateAsInt(Result&: SizeResult, Ctx: CGM.getContext()) || |
| 4465 | !E->getArg(Arg: 3)->EvaluateAsInt(Result&: DstSizeResult, Ctx: CGM.getContext())) |
| 4466 | break; |
| 4467 | llvm::APSInt Size = SizeResult.Val.getInt(); |
| 4468 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| 4469 | if (Size.ugt(RHS: DstSize)) |
| 4470 | break; |
| 4471 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4472 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4473 | Value *SizeVal = llvm::ConstantInt::get(Context&: Builder.getContext(), V: Size); |
| 4474 | auto *I = Builder.CreateMemMove(Dest, Src, Size: SizeVal, IsVolatile: false); |
| 4475 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4476 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4477 | } |
| 4478 | |
| 4479 | case Builtin::BI__builtin_trivially_relocate: |
| 4480 | case Builtin::BImemmove: |
| 4481 | case Builtin::BI__builtin_memmove: { |
| 4482 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4483 | Address Src = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 4484 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4485 | if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_trivially_relocate) |
| 4486 | SizeVal = Builder.CreateMul( |
| 4487 | LHS: SizeVal, |
| 4488 | RHS: ConstantInt::get( |
| 4489 | Ty: SizeVal->getType(), |
| 4490 | V: getContext() |
| 4491 | .getTypeSizeInChars(T: E->getArg(Arg: 0)->getType()->getPointeeType()) |
| 4492 | .getQuantity())); |
| 4493 | EmitArgCheck(TCK_Store, Dest, E->getArg(Arg: 0), 0); |
| 4494 | EmitArgCheck(TCK_Load, Src, E->getArg(Arg: 1), 1); |
| 4495 | auto *I = Builder.CreateMemMove(Dest, Src, Size: SizeVal, IsVolatile: false); |
| 4496 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4497 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4498 | } |
| 4499 | case Builtin::BImemset: |
| 4500 | case Builtin::BI__builtin_memset: { |
| 4501 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4502 | Value *ByteVal = Builder.CreateTrunc(V: EmitScalarExpr(E: E->getArg(Arg: 1)), |
| 4503 | DestTy: Builder.getInt8Ty()); |
| 4504 | Value *SizeVal = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4505 | EmitNonNullArgCheck(Addr: Dest, ArgType: E->getArg(Arg: 0)->getType(), |
| 4506 | ArgLoc: E->getArg(Arg: 0)->getExprLoc(), AC: FD, ParmNum: 0); |
| 4507 | auto *I = Builder.CreateMemSet(Dest, Value: ByteVal, Size: SizeVal, IsVolatile: false); |
| 4508 | addInstToNewSourceAtom(KeyInstruction: I, Backup: ByteVal); |
| 4509 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4510 | } |
| 4511 | case Builtin::BI__builtin_memset_inline: { |
| 4512 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4513 | Value *ByteVal = |
| 4514 | Builder.CreateTrunc(V: EmitScalarExpr(E: E->getArg(Arg: 1)), DestTy: Builder.getInt8Ty()); |
| 4515 | uint64_t Size = |
| 4516 | E->getArg(Arg: 2)->EvaluateKnownConstInt(Ctx: getContext()).getZExtValue(); |
| 4517 | EmitNonNullArgCheck(RV: RValue::get(V: Dest.emitRawPointer(CGF&: *this)), |
| 4518 | ArgType: E->getArg(Arg: 0)->getType(), ArgLoc: E->getArg(Arg: 0)->getExprLoc(), AC: FD, |
| 4519 | ParmNum: 0); |
| 4520 | auto *I = Builder.CreateMemSetInline(Dest, Value: ByteVal, Size); |
| 4521 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4522 | return RValue::get(V: nullptr); |
| 4523 | } |
| 4524 | case Builtin::BI__builtin___memset_chk: { |
| 4525 | // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| 4526 | Expr::EvalResult SizeResult, DstSizeResult; |
| 4527 | if (!E->getArg(Arg: 2)->EvaluateAsInt(Result&: SizeResult, Ctx: CGM.getContext()) || |
| 4528 | !E->getArg(Arg: 3)->EvaluateAsInt(Result&: DstSizeResult, Ctx: CGM.getContext())) |
| 4529 | break; |
| 4530 | llvm::APSInt Size = SizeResult.Val.getInt(); |
| 4531 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| 4532 | if (Size.ugt(RHS: DstSize)) |
| 4533 | break; |
| 4534 | Address Dest = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4535 | Value *ByteVal = Builder.CreateTrunc(V: EmitScalarExpr(E: E->getArg(Arg: 1)), |
| 4536 | DestTy: Builder.getInt8Ty()); |
| 4537 | Value *SizeVal = llvm::ConstantInt::get(Context&: Builder.getContext(), V: Size); |
| 4538 | auto *I = Builder.CreateMemSet(Dest, Value: ByteVal, Size: SizeVal, IsVolatile: false); |
| 4539 | addInstToNewSourceAtom(KeyInstruction: I, Backup: nullptr); |
| 4540 | return RValue::get(Addr: Dest, CGF&: *this); |
| 4541 | } |
| 4542 | case Builtin::BI__builtin_wmemchr: { |
| 4543 | // The MSVC runtime library does not provide a definition of wmemchr, so we |
| 4544 | // need an inline implementation. |
| 4545 | if (!getTarget().getTriple().isOSMSVCRT()) |
| 4546 | break; |
| 4547 | |
| 4548 | llvm::Type *WCharTy = ConvertType(T: getContext().WCharTy); |
| 4549 | Value *Str = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4550 | Value *Chr = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4551 | Value *Size = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4552 | |
| 4553 | BasicBlock *Entry = Builder.GetInsertBlock(); |
| 4554 | BasicBlock *CmpEq = createBasicBlock(name: "wmemchr.eq" ); |
| 4555 | BasicBlock *Next = createBasicBlock(name: "wmemchr.next" ); |
| 4556 | BasicBlock *Exit = createBasicBlock(name: "wmemchr.exit" ); |
| 4557 | Value *SizeEq0 = Builder.CreateICmpEQ(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
| 4558 | Builder.CreateCondBr(Cond: SizeEq0, True: Exit, False: CmpEq); |
| 4559 | |
| 4560 | EmitBlock(BB: CmpEq); |
| 4561 | PHINode *StrPhi = Builder.CreatePHI(Ty: Str->getType(), NumReservedValues: 2); |
| 4562 | StrPhi->addIncoming(V: Str, BB: Entry); |
| 4563 | PHINode *SizePhi = Builder.CreatePHI(Ty: SizeTy, NumReservedValues: 2); |
| 4564 | SizePhi->addIncoming(V: Size, BB: Entry); |
| 4565 | CharUnits WCharAlign = |
| 4566 | getContext().getTypeAlignInChars(T: getContext().WCharTy); |
| 4567 | Value *StrCh = Builder.CreateAlignedLoad(Ty: WCharTy, Addr: StrPhi, Align: WCharAlign); |
| 4568 | Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(Ty: WCharTy, Ptr: StrPhi, Idx0: 0); |
| 4569 | Value *StrEqChr = Builder.CreateICmpEQ(LHS: StrCh, RHS: Chr); |
| 4570 | Builder.CreateCondBr(Cond: StrEqChr, True: Exit, False: Next); |
| 4571 | |
| 4572 | EmitBlock(BB: Next); |
| 4573 | Value *NextStr = Builder.CreateConstInBoundsGEP1_32(Ty: WCharTy, Ptr: StrPhi, Idx0: 1); |
| 4574 | Value *NextSize = Builder.CreateSub(LHS: SizePhi, RHS: ConstantInt::get(Ty: SizeTy, V: 1)); |
| 4575 | Value *NextSizeEq0 = |
| 4576 | Builder.CreateICmpEQ(LHS: NextSize, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
| 4577 | Builder.CreateCondBr(Cond: NextSizeEq0, True: Exit, False: CmpEq); |
| 4578 | StrPhi->addIncoming(V: NextStr, BB: Next); |
| 4579 | SizePhi->addIncoming(V: NextSize, BB: Next); |
| 4580 | |
| 4581 | EmitBlock(BB: Exit); |
| 4582 | PHINode *Ret = Builder.CreatePHI(Ty: Str->getType(), NumReservedValues: 3); |
| 4583 | Ret->addIncoming(V: llvm::Constant::getNullValue(Ty: Str->getType()), BB: Entry); |
| 4584 | Ret->addIncoming(V: llvm::Constant::getNullValue(Ty: Str->getType()), BB: Next); |
| 4585 | Ret->addIncoming(V: FoundChr, BB: CmpEq); |
| 4586 | return RValue::get(V: Ret); |
| 4587 | } |
| 4588 | case Builtin::BI__builtin_wmemcmp: { |
| 4589 | // The MSVC runtime library does not provide a definition of wmemcmp, so we |
| 4590 | // need an inline implementation. |
| 4591 | if (!getTarget().getTriple().isOSMSVCRT()) |
| 4592 | break; |
| 4593 | |
| 4594 | llvm::Type *WCharTy = ConvertType(T: getContext().WCharTy); |
| 4595 | |
| 4596 | Value *Dst = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4597 | Value *Src = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4598 | Value *Size = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 4599 | |
| 4600 | BasicBlock *Entry = Builder.GetInsertBlock(); |
| 4601 | BasicBlock *CmpGT = createBasicBlock(name: "wmemcmp.gt" ); |
| 4602 | BasicBlock *CmpLT = createBasicBlock(name: "wmemcmp.lt" ); |
| 4603 | BasicBlock *Next = createBasicBlock(name: "wmemcmp.next" ); |
| 4604 | BasicBlock *Exit = createBasicBlock(name: "wmemcmp.exit" ); |
| 4605 | Value *SizeEq0 = Builder.CreateICmpEQ(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
| 4606 | Builder.CreateCondBr(Cond: SizeEq0, True: Exit, False: CmpGT); |
| 4607 | |
| 4608 | EmitBlock(BB: CmpGT); |
| 4609 | PHINode *DstPhi = Builder.CreatePHI(Ty: Dst->getType(), NumReservedValues: 2); |
| 4610 | DstPhi->addIncoming(V: Dst, BB: Entry); |
| 4611 | PHINode *SrcPhi = Builder.CreatePHI(Ty: Src->getType(), NumReservedValues: 2); |
| 4612 | SrcPhi->addIncoming(V: Src, BB: Entry); |
| 4613 | PHINode *SizePhi = Builder.CreatePHI(Ty: SizeTy, NumReservedValues: 2); |
| 4614 | SizePhi->addIncoming(V: Size, BB: Entry); |
| 4615 | CharUnits WCharAlign = |
| 4616 | getContext().getTypeAlignInChars(T: getContext().WCharTy); |
| 4617 | Value *DstCh = Builder.CreateAlignedLoad(Ty: WCharTy, Addr: DstPhi, Align: WCharAlign); |
| 4618 | Value *SrcCh = Builder.CreateAlignedLoad(Ty: WCharTy, Addr: SrcPhi, Align: WCharAlign); |
| 4619 | Value *DstGtSrc = Builder.CreateICmpUGT(LHS: DstCh, RHS: SrcCh); |
| 4620 | Builder.CreateCondBr(Cond: DstGtSrc, True: Exit, False: CmpLT); |
| 4621 | |
| 4622 | EmitBlock(BB: CmpLT); |
| 4623 | Value *DstLtSrc = Builder.CreateICmpULT(LHS: DstCh, RHS: SrcCh); |
| 4624 | Builder.CreateCondBr(Cond: DstLtSrc, True: Exit, False: Next); |
| 4625 | |
| 4626 | EmitBlock(BB: Next); |
| 4627 | Value *NextDst = Builder.CreateConstInBoundsGEP1_32(Ty: WCharTy, Ptr: DstPhi, Idx0: 1); |
| 4628 | Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(Ty: WCharTy, Ptr: SrcPhi, Idx0: 1); |
| 4629 | Value *NextSize = Builder.CreateSub(LHS: SizePhi, RHS: ConstantInt::get(Ty: SizeTy, V: 1)); |
| 4630 | Value *NextSizeEq0 = |
| 4631 | Builder.CreateICmpEQ(LHS: NextSize, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
| 4632 | Builder.CreateCondBr(Cond: NextSizeEq0, True: Exit, False: CmpGT); |
| 4633 | DstPhi->addIncoming(V: NextDst, BB: Next); |
| 4634 | SrcPhi->addIncoming(V: NextSrc, BB: Next); |
| 4635 | SizePhi->addIncoming(V: NextSize, BB: Next); |
| 4636 | |
| 4637 | EmitBlock(BB: Exit); |
| 4638 | PHINode *Ret = Builder.CreatePHI(Ty: IntTy, NumReservedValues: 4); |
| 4639 | Ret->addIncoming(V: ConstantInt::get(Ty: IntTy, V: 0), BB: Entry); |
| 4640 | Ret->addIncoming(V: ConstantInt::get(Ty: IntTy, V: 1), BB: CmpGT); |
| 4641 | Ret->addIncoming(V: ConstantInt::get(Ty: IntTy, V: -1), BB: CmpLT); |
| 4642 | Ret->addIncoming(V: ConstantInt::get(Ty: IntTy, V: 0), BB: Next); |
| 4643 | return RValue::get(V: Ret); |
| 4644 | } |
| 4645 | case Builtin::BI__builtin_dwarf_cfa: { |
| 4646 | // The offset in bytes from the first argument to the CFA. |
| 4647 | // |
| 4648 | // Why on earth is this in the frontend? Is there any reason at |
| 4649 | // all that the backend can't reasonably determine this while |
| 4650 | // lowering llvm.eh.dwarf.cfa()? |
| 4651 | // |
| 4652 | // TODO: If there's a satisfactory reason, add a target hook for |
| 4653 | // this instead of hard-coding 0, which is correct for most targets. |
| 4654 | int32_t Offset = 0; |
| 4655 | |
| 4656 | Function *F = CGM.getIntrinsic(IID: Intrinsic::eh_dwarf_cfa); |
| 4657 | return RValue::get(V: Builder.CreateCall(Callee: F, |
| 4658 | Args: llvm::ConstantInt::get(Ty: Int32Ty, V: Offset))); |
| 4659 | } |
| 4660 | case Builtin::BI__builtin_return_address: { |
| 4661 | Value *Depth = ConstantEmitter(*this).emitAbstract(E: E->getArg(Arg: 0), |
| 4662 | T: getContext().UnsignedIntTy); |
| 4663 | Function *F = CGM.getIntrinsic(IID: Intrinsic::returnaddress); |
| 4664 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: Depth)); |
| 4665 | } |
| 4666 | case Builtin::BI_ReturnAddress: { |
| 4667 | Function *F = CGM.getIntrinsic(IID: Intrinsic::returnaddress); |
| 4668 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: Builder.getInt32(C: 0))); |
| 4669 | } |
| 4670 | case Builtin::BI__builtin_frame_address: { |
| 4671 | Value *Depth = ConstantEmitter(*this).emitAbstract(E: E->getArg(Arg: 0), |
| 4672 | T: getContext().UnsignedIntTy); |
| 4673 | Function *F = CGM.getIntrinsic(IID: Intrinsic::frameaddress, Tys: AllocaInt8PtrTy); |
| 4674 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: Depth)); |
| 4675 | } |
| 4676 | case Builtin::BI__builtin_extract_return_addr: { |
| 4677 | Value *Address = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4678 | Value *Result = getTargetHooks().decodeReturnAddress(CGF&: *this, Address); |
| 4679 | return RValue::get(V: Result); |
| 4680 | } |
| 4681 | case Builtin::BI__builtin_frob_return_addr: { |
| 4682 | Value *Address = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4683 | Value *Result = getTargetHooks().encodeReturnAddress(CGF&: *this, Address); |
| 4684 | return RValue::get(V: Result); |
| 4685 | } |
| 4686 | case Builtin::BI__builtin_dwarf_sp_column: { |
| 4687 | llvm::IntegerType *Ty |
| 4688 | = cast<llvm::IntegerType>(Val: ConvertType(T: E->getType())); |
| 4689 | int Column = getTargetHooks().getDwarfEHStackPointer(M&: CGM); |
| 4690 | if (Column == -1) { |
| 4691 | CGM.ErrorUnsupported(S: E, Type: "__builtin_dwarf_sp_column" ); |
| 4692 | return RValue::get(V: llvm::UndefValue::get(T: Ty)); |
| 4693 | } |
| 4694 | return RValue::get(V: llvm::ConstantInt::get(Ty, V: Column, IsSigned: true)); |
| 4695 | } |
| 4696 | case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| 4697 | Value *Address = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4698 | if (getTargetHooks().initDwarfEHRegSizeTable(CGF&: *this, Address)) |
| 4699 | CGM.ErrorUnsupported(S: E, Type: "__builtin_init_dwarf_reg_size_table" ); |
| 4700 | return RValue::get(V: llvm::UndefValue::get(T: ConvertType(T: E->getType()))); |
| 4701 | } |
| 4702 | case Builtin::BI__builtin_eh_return: { |
| 4703 | Value *Int = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4704 | Value *Ptr = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 4705 | |
| 4706 | llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Val: Int->getType()); |
| 4707 | assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| 4708 | "LLVM's __builtin_eh_return only supports 32- and 64-bit variants" ); |
| 4709 | Function *F = |
| 4710 | CGM.getIntrinsic(IID: IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 |
| 4711 | : Intrinsic::eh_return_i64); |
| 4712 | Builder.CreateCall(Callee: F, Args: {Int, Ptr}); |
| 4713 | Builder.CreateUnreachable(); |
| 4714 | |
| 4715 | // We do need to preserve an insertion point. |
| 4716 | EmitBlock(BB: createBasicBlock(name: "builtin_eh_return.cont" )); |
| 4717 | |
| 4718 | return RValue::get(V: nullptr); |
| 4719 | } |
| 4720 | case Builtin::BI__builtin_unwind_init: { |
| 4721 | Function *F = CGM.getIntrinsic(IID: Intrinsic::eh_unwind_init); |
| 4722 | Builder.CreateCall(Callee: F); |
| 4723 | return RValue::get(V: nullptr); |
| 4724 | } |
| 4725 | case Builtin::BI__builtin_extend_pointer: { |
| 4726 | // Extends a pointer to the size of an _Unwind_Word, which is |
| 4727 | // uint64_t on all platforms. Generally this gets poked into a |
| 4728 | // register and eventually used as an address, so if the |
| 4729 | // addressing registers are wider than pointers and the platform |
| 4730 | // doesn't implicitly ignore high-order bits when doing |
| 4731 | // addressing, we need to make sure we zext / sext based on |
| 4732 | // the platform's expectations. |
| 4733 | // |
| 4734 | // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| 4735 | |
| 4736 | // Cast the pointer to intptr_t. |
| 4737 | Value *Ptr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4738 | Value *Result = Builder.CreatePtrToInt(V: Ptr, DestTy: IntPtrTy, Name: "extend.cast" ); |
| 4739 | |
| 4740 | // If that's 64 bits, we're done. |
| 4741 | if (IntPtrTy->getBitWidth() == 64) |
| 4742 | return RValue::get(V: Result); |
| 4743 | |
| 4744 | // Otherwise, ask the codegen data what to do. |
| 4745 | if (getTargetHooks().extendPointerWithSExt()) |
| 4746 | return RValue::get(V: Builder.CreateSExt(V: Result, DestTy: Int64Ty, Name: "extend.sext" )); |
| 4747 | else |
| 4748 | return RValue::get(V: Builder.CreateZExt(V: Result, DestTy: Int64Ty, Name: "extend.zext" )); |
| 4749 | } |
| 4750 | case Builtin::BI__builtin_setjmp: { |
| 4751 | // Buffer is a void**. |
| 4752 | Address Buf = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 4753 | |
| 4754 | if (getTarget().getTriple().getArch() == llvm::Triple::systemz) { |
| 4755 | // On this target, the back end fills in the context buffer completely. |
| 4756 | // It doesn't really matter if the frontend stores to the buffer before |
| 4757 | // calling setjmp, the back-end is going to overwrite them anyway. |
| 4758 | Function *F = CGM.getIntrinsic(IID: Intrinsic::eh_sjlj_setjmp); |
| 4759 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: Buf.emitRawPointer(CGF&: *this))); |
| 4760 | } |
| 4761 | |
| 4762 | // Store the frame pointer to the setjmp buffer. |
| 4763 | Value *FrameAddr = Builder.CreateCall( |
| 4764 | Callee: CGM.getIntrinsic(IID: Intrinsic::frameaddress, Tys: AllocaInt8PtrTy), |
| 4765 | Args: ConstantInt::get(Ty: Int32Ty, V: 0)); |
| 4766 | Builder.CreateStore(Val: FrameAddr, Addr: Buf); |
| 4767 | |
| 4768 | // Store the stack pointer to the setjmp buffer. |
| 4769 | Value *StackAddr = Builder.CreateStackSave(); |
| 4770 | assert(Buf.emitRawPointer(*this)->getType() == StackAddr->getType()); |
| 4771 | |
| 4772 | Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Addr: Buf, Index: 2); |
| 4773 | Builder.CreateStore(Val: StackAddr, Addr: StackSaveSlot); |
| 4774 | |
| 4775 | // Call LLVM's EH setjmp, which is lightweight. |
| 4776 | Function *F = CGM.getIntrinsic(IID: Intrinsic::eh_sjlj_setjmp); |
| 4777 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: Buf.emitRawPointer(CGF&: *this))); |
| 4778 | } |
| 4779 | case Builtin::BI__builtin_longjmp: { |
| 4780 | Value *Buf = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 4781 | |
| 4782 | // Call LLVM's EH longjmp, which is lightweight. |
| 4783 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::eh_sjlj_longjmp), Args: Buf); |
| 4784 | |
| 4785 | // longjmp doesn't return; mark this as unreachable. |
| 4786 | Builder.CreateUnreachable(); |
| 4787 | |
| 4788 | // We do need to preserve an insertion point. |
| 4789 | EmitBlock(BB: createBasicBlock(name: "longjmp.cont" )); |
| 4790 | |
| 4791 | return RValue::get(V: nullptr); |
| 4792 | } |
| 4793 | case Builtin::BI__builtin_launder: { |
| 4794 | const Expr *Arg = E->getArg(Arg: 0); |
| 4795 | QualType ArgTy = Arg->getType()->getPointeeType(); |
| 4796 | Value *Ptr = EmitScalarExpr(E: Arg); |
| 4797 | if (TypeRequiresBuiltinLaunder(CGM, Ty: ArgTy)) |
| 4798 | Ptr = Builder.CreateLaunderInvariantGroup(Ptr); |
| 4799 | |
| 4800 | return RValue::get(V: Ptr); |
| 4801 | } |
| 4802 | case Builtin::BI__sync_fetch_and_add: |
| 4803 | case Builtin::BI__sync_fetch_and_sub: |
| 4804 | case Builtin::BI__sync_fetch_and_or: |
| 4805 | case Builtin::BI__sync_fetch_and_and: |
| 4806 | case Builtin::BI__sync_fetch_and_xor: |
| 4807 | case Builtin::BI__sync_fetch_and_nand: |
| 4808 | case Builtin::BI__sync_add_and_fetch: |
| 4809 | case Builtin::BI__sync_sub_and_fetch: |
| 4810 | case Builtin::BI__sync_and_and_fetch: |
| 4811 | case Builtin::BI__sync_or_and_fetch: |
| 4812 | case Builtin::BI__sync_xor_and_fetch: |
| 4813 | case Builtin::BI__sync_nand_and_fetch: |
| 4814 | case Builtin::BI__sync_val_compare_and_swap: |
| 4815 | case Builtin::BI__sync_bool_compare_and_swap: |
| 4816 | case Builtin::BI__sync_lock_test_and_set: |
| 4817 | case Builtin::BI__sync_lock_release: |
| 4818 | case Builtin::BI__sync_swap: |
| 4819 | llvm_unreachable("Shouldn't make it through sema" ); |
| 4820 | case Builtin::BI__sync_fetch_and_add_1: |
| 4821 | case Builtin::BI__sync_fetch_and_add_2: |
| 4822 | case Builtin::BI__sync_fetch_and_add_4: |
| 4823 | case Builtin::BI__sync_fetch_and_add_8: |
| 4824 | case Builtin::BI__sync_fetch_and_add_16: |
| 4825 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Add, E); |
| 4826 | case Builtin::BI__sync_fetch_and_sub_1: |
| 4827 | case Builtin::BI__sync_fetch_and_sub_2: |
| 4828 | case Builtin::BI__sync_fetch_and_sub_4: |
| 4829 | case Builtin::BI__sync_fetch_and_sub_8: |
| 4830 | case Builtin::BI__sync_fetch_and_sub_16: |
| 4831 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Sub, E); |
| 4832 | case Builtin::BI__sync_fetch_and_or_1: |
| 4833 | case Builtin::BI__sync_fetch_and_or_2: |
| 4834 | case Builtin::BI__sync_fetch_and_or_4: |
| 4835 | case Builtin::BI__sync_fetch_and_or_8: |
| 4836 | case Builtin::BI__sync_fetch_and_or_16: |
| 4837 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Or, E); |
| 4838 | case Builtin::BI__sync_fetch_and_and_1: |
| 4839 | case Builtin::BI__sync_fetch_and_and_2: |
| 4840 | case Builtin::BI__sync_fetch_and_and_4: |
| 4841 | case Builtin::BI__sync_fetch_and_and_8: |
| 4842 | case Builtin::BI__sync_fetch_and_and_16: |
| 4843 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::And, E); |
| 4844 | case Builtin::BI__sync_fetch_and_xor_1: |
| 4845 | case Builtin::BI__sync_fetch_and_xor_2: |
| 4846 | case Builtin::BI__sync_fetch_and_xor_4: |
| 4847 | case Builtin::BI__sync_fetch_and_xor_8: |
| 4848 | case Builtin::BI__sync_fetch_and_xor_16: |
| 4849 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Xor, E); |
| 4850 | case Builtin::BI__sync_fetch_and_nand_1: |
| 4851 | case Builtin::BI__sync_fetch_and_nand_2: |
| 4852 | case Builtin::BI__sync_fetch_and_nand_4: |
| 4853 | case Builtin::BI__sync_fetch_and_nand_8: |
| 4854 | case Builtin::BI__sync_fetch_and_nand_16: |
| 4855 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Nand, E); |
| 4856 | |
| 4857 | // Clang extensions: not overloaded yet. |
| 4858 | case Builtin::BI__sync_fetch_and_min: |
| 4859 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Min, E); |
| 4860 | case Builtin::BI__sync_fetch_and_max: |
| 4861 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Max, E); |
| 4862 | case Builtin::BI__sync_fetch_and_umin: |
| 4863 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::UMin, E); |
| 4864 | case Builtin::BI__sync_fetch_and_umax: |
| 4865 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::UMax, E); |
| 4866 | |
| 4867 | case Builtin::BI__sync_add_and_fetch_1: |
| 4868 | case Builtin::BI__sync_add_and_fetch_2: |
| 4869 | case Builtin::BI__sync_add_and_fetch_4: |
| 4870 | case Builtin::BI__sync_add_and_fetch_8: |
| 4871 | case Builtin::BI__sync_add_and_fetch_16: |
| 4872 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::Add, E, |
| 4873 | Op: llvm::Instruction::Add); |
| 4874 | case Builtin::BI__sync_sub_and_fetch_1: |
| 4875 | case Builtin::BI__sync_sub_and_fetch_2: |
| 4876 | case Builtin::BI__sync_sub_and_fetch_4: |
| 4877 | case Builtin::BI__sync_sub_and_fetch_8: |
| 4878 | case Builtin::BI__sync_sub_and_fetch_16: |
| 4879 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::Sub, E, |
| 4880 | Op: llvm::Instruction::Sub); |
| 4881 | case Builtin::BI__sync_and_and_fetch_1: |
| 4882 | case Builtin::BI__sync_and_and_fetch_2: |
| 4883 | case Builtin::BI__sync_and_and_fetch_4: |
| 4884 | case Builtin::BI__sync_and_and_fetch_8: |
| 4885 | case Builtin::BI__sync_and_and_fetch_16: |
| 4886 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::And, E, |
| 4887 | Op: llvm::Instruction::And); |
| 4888 | case Builtin::BI__sync_or_and_fetch_1: |
| 4889 | case Builtin::BI__sync_or_and_fetch_2: |
| 4890 | case Builtin::BI__sync_or_and_fetch_4: |
| 4891 | case Builtin::BI__sync_or_and_fetch_8: |
| 4892 | case Builtin::BI__sync_or_and_fetch_16: |
| 4893 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::Or, E, |
| 4894 | Op: llvm::Instruction::Or); |
| 4895 | case Builtin::BI__sync_xor_and_fetch_1: |
| 4896 | case Builtin::BI__sync_xor_and_fetch_2: |
| 4897 | case Builtin::BI__sync_xor_and_fetch_4: |
| 4898 | case Builtin::BI__sync_xor_and_fetch_8: |
| 4899 | case Builtin::BI__sync_xor_and_fetch_16: |
| 4900 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::Xor, E, |
| 4901 | Op: llvm::Instruction::Xor); |
| 4902 | case Builtin::BI__sync_nand_and_fetch_1: |
| 4903 | case Builtin::BI__sync_nand_and_fetch_2: |
| 4904 | case Builtin::BI__sync_nand_and_fetch_4: |
| 4905 | case Builtin::BI__sync_nand_and_fetch_8: |
| 4906 | case Builtin::BI__sync_nand_and_fetch_16: |
| 4907 | return EmitBinaryAtomicPost(CGF&: *this, Kind: llvm::AtomicRMWInst::Nand, E, |
| 4908 | Op: llvm::Instruction::And, Invert: true); |
| 4909 | |
| 4910 | case Builtin::BI__sync_val_compare_and_swap_1: |
| 4911 | case Builtin::BI__sync_val_compare_and_swap_2: |
| 4912 | case Builtin::BI__sync_val_compare_and_swap_4: |
| 4913 | case Builtin::BI__sync_val_compare_and_swap_8: |
| 4914 | case Builtin::BI__sync_val_compare_and_swap_16: |
| 4915 | return RValue::get(V: MakeAtomicCmpXchgValue(CGF&: *this, E, ReturnBool: false)); |
| 4916 | |
| 4917 | case Builtin::BI__sync_bool_compare_and_swap_1: |
| 4918 | case Builtin::BI__sync_bool_compare_and_swap_2: |
| 4919 | case Builtin::BI__sync_bool_compare_and_swap_4: |
| 4920 | case Builtin::BI__sync_bool_compare_and_swap_8: |
| 4921 | case Builtin::BI__sync_bool_compare_and_swap_16: |
| 4922 | return RValue::get(V: MakeAtomicCmpXchgValue(CGF&: *this, E, ReturnBool: true)); |
| 4923 | |
| 4924 | case Builtin::BI__sync_swap_1: |
| 4925 | case Builtin::BI__sync_swap_2: |
| 4926 | case Builtin::BI__sync_swap_4: |
| 4927 | case Builtin::BI__sync_swap_8: |
| 4928 | case Builtin::BI__sync_swap_16: |
| 4929 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Xchg, E); |
| 4930 | |
| 4931 | case Builtin::BI__sync_lock_test_and_set_1: |
| 4932 | case Builtin::BI__sync_lock_test_and_set_2: |
| 4933 | case Builtin::BI__sync_lock_test_and_set_4: |
| 4934 | case Builtin::BI__sync_lock_test_and_set_8: |
| 4935 | case Builtin::BI__sync_lock_test_and_set_16: |
| 4936 | return EmitBinaryAtomic(CGF&: *this, Kind: llvm::AtomicRMWInst::Xchg, E); |
| 4937 | |
| 4938 | case Builtin::BI__sync_lock_release_1: |
| 4939 | case Builtin::BI__sync_lock_release_2: |
| 4940 | case Builtin::BI__sync_lock_release_4: |
| 4941 | case Builtin::BI__sync_lock_release_8: |
| 4942 | case Builtin::BI__sync_lock_release_16: { |
| 4943 | Address Ptr = CheckAtomicAlignment(CGF&: *this, E); |
| 4944 | QualType ElTy = E->getArg(Arg: 0)->getType()->getPointeeType(); |
| 4945 | |
| 4946 | llvm::Type *ITy = llvm::IntegerType::get(C&: getLLVMContext(), |
| 4947 | NumBits: getContext().getTypeSize(T: ElTy)); |
| 4948 | llvm::StoreInst *Store = |
| 4949 | Builder.CreateStore(Val: llvm::Constant::getNullValue(Ty: ITy), Addr: Ptr); |
| 4950 | Store->setAtomic(Ordering: llvm::AtomicOrdering::Release); |
| 4951 | return RValue::get(V: nullptr); |
| 4952 | } |
| 4953 | |
| 4954 | case Builtin::BI__sync_synchronize: { |
| 4955 | // We assume this is supposed to correspond to a C++0x-style |
| 4956 | // sequentially-consistent fence (i.e. this is only usable for |
| 4957 | // synchronization, not device I/O or anything like that). This intrinsic |
| 4958 | // is really badly designed in the sense that in theory, there isn't |
| 4959 | // any way to safely use it... but in practice, it mostly works |
| 4960 | // to use it with non-atomic loads and stores to get acquire/release |
| 4961 | // semantics. |
| 4962 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent); |
| 4963 | return RValue::get(V: nullptr); |
| 4964 | } |
| 4965 | |
| 4966 | case Builtin::BI__builtin_nontemporal_load: |
| 4967 | return RValue::get(V: EmitNontemporalLoad(CGF&: *this, E)); |
| 4968 | case Builtin::BI__builtin_nontemporal_store: |
| 4969 | return RValue::get(V: EmitNontemporalStore(CGF&: *this, E)); |
| 4970 | case Builtin::BI__c11_atomic_is_lock_free: |
| 4971 | case Builtin::BI__atomic_is_lock_free: { |
| 4972 | // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| 4973 | // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| 4974 | // _Atomic(T) is always properly-aligned. |
| 4975 | const char *LibCallName = "__atomic_is_lock_free" ; |
| 4976 | CallArgList Args; |
| 4977 | Args.add(rvalue: RValue::get(V: EmitScalarExpr(E: E->getArg(Arg: 0))), |
| 4978 | type: getContext().getSizeType()); |
| 4979 | if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| 4980 | Args.add(rvalue: RValue::get(V: EmitScalarExpr(E: E->getArg(Arg: 1))), |
| 4981 | type: getContext().VoidPtrTy); |
| 4982 | else |
| 4983 | Args.add(rvalue: RValue::get(V: llvm::Constant::getNullValue(Ty: VoidPtrTy)), |
| 4984 | type: getContext().VoidPtrTy); |
| 4985 | const CGFunctionInfo &FuncInfo = |
| 4986 | CGM.getTypes().arrangeBuiltinFunctionCall(resultType: E->getType(), args: Args); |
| 4987 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(Info: FuncInfo); |
| 4988 | llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(Ty: FTy, Name: LibCallName); |
| 4989 | return EmitCall(CallInfo: FuncInfo, Callee: CGCallee::forDirect(functionPtr: Func), |
| 4990 | ReturnValue: ReturnValueSlot(), Args); |
| 4991 | } |
| 4992 | |
| 4993 | case Builtin::BI__atomic_thread_fence: |
| 4994 | case Builtin::BI__atomic_signal_fence: |
| 4995 | case Builtin::BI__c11_atomic_thread_fence: |
| 4996 | case Builtin::BI__c11_atomic_signal_fence: { |
| 4997 | llvm::SyncScope::ID SSID; |
| 4998 | if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| 4999 | BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| 5000 | SSID = llvm::SyncScope::SingleThread; |
| 5001 | else |
| 5002 | SSID = llvm::SyncScope::System; |
| 5003 | Value *Order = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5004 | if (isa<llvm::ConstantInt>(Val: Order)) { |
| 5005 | int ord = cast<llvm::ConstantInt>(Val: Order)->getZExtValue(); |
| 5006 | switch (ord) { |
| 5007 | case 0: // memory_order_relaxed |
| 5008 | default: // invalid order |
| 5009 | break; |
| 5010 | case 1: // memory_order_consume |
| 5011 | case 2: // memory_order_acquire |
| 5012 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::Acquire, SSID); |
| 5013 | break; |
| 5014 | case 3: // memory_order_release |
| 5015 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::Release, SSID); |
| 5016 | break; |
| 5017 | case 4: // memory_order_acq_rel |
| 5018 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::AcquireRelease, SSID); |
| 5019 | break; |
| 5020 | case 5: // memory_order_seq_cst |
| 5021 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| 5022 | break; |
| 5023 | } |
| 5024 | return RValue::get(V: nullptr); |
| 5025 | } |
| 5026 | |
| 5027 | llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| 5028 | AcquireBB = createBasicBlock(name: "acquire" , parent: CurFn); |
| 5029 | ReleaseBB = createBasicBlock(name: "release" , parent: CurFn); |
| 5030 | AcqRelBB = createBasicBlock(name: "acqrel" , parent: CurFn); |
| 5031 | SeqCstBB = createBasicBlock(name: "seqcst" , parent: CurFn); |
| 5032 | llvm::BasicBlock *ContBB = createBasicBlock(name: "atomic.continue" , parent: CurFn); |
| 5033 | |
| 5034 | Order = Builder.CreateIntCast(V: Order, DestTy: Builder.getInt32Ty(), isSigned: false); |
| 5035 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: Order, Dest: ContBB); |
| 5036 | |
| 5037 | Builder.SetInsertPoint(AcquireBB); |
| 5038 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::Acquire, SSID); |
| 5039 | Builder.CreateBr(Dest: ContBB); |
| 5040 | SI->addCase(OnVal: Builder.getInt32(C: 1), Dest: AcquireBB); |
| 5041 | SI->addCase(OnVal: Builder.getInt32(C: 2), Dest: AcquireBB); |
| 5042 | |
| 5043 | Builder.SetInsertPoint(ReleaseBB); |
| 5044 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::Release, SSID); |
| 5045 | Builder.CreateBr(Dest: ContBB); |
| 5046 | SI->addCase(OnVal: Builder.getInt32(C: 3), Dest: ReleaseBB); |
| 5047 | |
| 5048 | Builder.SetInsertPoint(AcqRelBB); |
| 5049 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::AcquireRelease, SSID); |
| 5050 | Builder.CreateBr(Dest: ContBB); |
| 5051 | SI->addCase(OnVal: Builder.getInt32(C: 4), Dest: AcqRelBB); |
| 5052 | |
| 5053 | Builder.SetInsertPoint(SeqCstBB); |
| 5054 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| 5055 | Builder.CreateBr(Dest: ContBB); |
| 5056 | SI->addCase(OnVal: Builder.getInt32(C: 5), Dest: SeqCstBB); |
| 5057 | |
| 5058 | Builder.SetInsertPoint(ContBB); |
| 5059 | return RValue::get(V: nullptr); |
| 5060 | } |
| 5061 | case Builtin::BI__scoped_atomic_thread_fence: { |
| 5062 | auto ScopeModel = AtomicScopeModel::create(K: AtomicScopeModelKind::Generic); |
| 5063 | |
| 5064 | Value *Order = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5065 | Value *Scope = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5066 | auto Ord = dyn_cast<llvm::ConstantInt>(Val: Order); |
| 5067 | auto Scp = dyn_cast<llvm::ConstantInt>(Val: Scope); |
| 5068 | if (Ord && Scp) { |
| 5069 | SyncScope SS = ScopeModel->isValid(S: Scp->getZExtValue()) |
| 5070 | ? ScopeModel->map(S: Scp->getZExtValue()) |
| 5071 | : ScopeModel->map(S: ScopeModel->getFallBackValue()); |
| 5072 | switch (Ord->getZExtValue()) { |
| 5073 | case 0: // memory_order_relaxed |
| 5074 | default: // invalid order |
| 5075 | break; |
| 5076 | case 1: // memory_order_consume |
| 5077 | case 2: // memory_order_acquire |
| 5078 | Builder.CreateFence( |
| 5079 | Ordering: llvm::AtomicOrdering::Acquire, |
| 5080 | SSID: getTargetHooks().getLLVMSyncScopeID(LangOpts: getLangOpts(), Scope: SS, |
| 5081 | Ordering: llvm::AtomicOrdering::Acquire, |
| 5082 | Ctx&: getLLVMContext())); |
| 5083 | break; |
| 5084 | case 3: // memory_order_release |
| 5085 | Builder.CreateFence( |
| 5086 | Ordering: llvm::AtomicOrdering::Release, |
| 5087 | SSID: getTargetHooks().getLLVMSyncScopeID(LangOpts: getLangOpts(), Scope: SS, |
| 5088 | Ordering: llvm::AtomicOrdering::Release, |
| 5089 | Ctx&: getLLVMContext())); |
| 5090 | break; |
| 5091 | case 4: // memory_order_acq_rel |
| 5092 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::AcquireRelease, |
| 5093 | SSID: getTargetHooks().getLLVMSyncScopeID( |
| 5094 | LangOpts: getLangOpts(), Scope: SS, |
| 5095 | Ordering: llvm::AtomicOrdering::AcquireRelease, |
| 5096 | Ctx&: getLLVMContext())); |
| 5097 | break; |
| 5098 | case 5: // memory_order_seq_cst |
| 5099 | Builder.CreateFence(Ordering: llvm::AtomicOrdering::SequentiallyConsistent, |
| 5100 | SSID: getTargetHooks().getLLVMSyncScopeID( |
| 5101 | LangOpts: getLangOpts(), Scope: SS, |
| 5102 | Ordering: llvm::AtomicOrdering::SequentiallyConsistent, |
| 5103 | Ctx&: getLLVMContext())); |
| 5104 | break; |
| 5105 | } |
| 5106 | return RValue::get(V: nullptr); |
| 5107 | } |
| 5108 | |
| 5109 | llvm::BasicBlock *ContBB = createBasicBlock(name: "atomic.scope.continue" , parent: CurFn); |
| 5110 | |
| 5111 | llvm::SmallVector<std::pair<llvm::BasicBlock *, llvm::AtomicOrdering>> |
| 5112 | OrderBBs; |
| 5113 | if (Ord) { |
| 5114 | switch (Ord->getZExtValue()) { |
| 5115 | case 0: // memory_order_relaxed |
| 5116 | default: // invalid order |
| 5117 | ContBB->eraseFromParent(); |
| 5118 | return RValue::get(V: nullptr); |
| 5119 | case 1: // memory_order_consume |
| 5120 | case 2: // memory_order_acquire |
| 5121 | OrderBBs.emplace_back(Args: Builder.GetInsertBlock(), |
| 5122 | Args: llvm::AtomicOrdering::Acquire); |
| 5123 | break; |
| 5124 | case 3: // memory_order_release |
| 5125 | OrderBBs.emplace_back(Args: Builder.GetInsertBlock(), |
| 5126 | Args: llvm::AtomicOrdering::Release); |
| 5127 | break; |
| 5128 | case 4: // memory_order_acq_rel |
| 5129 | OrderBBs.emplace_back(Args: Builder.GetInsertBlock(), |
| 5130 | Args: llvm::AtomicOrdering::AcquireRelease); |
| 5131 | break; |
| 5132 | case 5: // memory_order_seq_cst |
| 5133 | OrderBBs.emplace_back(Args: Builder.GetInsertBlock(), |
| 5134 | Args: llvm::AtomicOrdering::SequentiallyConsistent); |
| 5135 | break; |
| 5136 | } |
| 5137 | } else { |
| 5138 | llvm::BasicBlock *AcquireBB = createBasicBlock(name: "acquire" , parent: CurFn); |
| 5139 | llvm::BasicBlock *ReleaseBB = createBasicBlock(name: "release" , parent: CurFn); |
| 5140 | llvm::BasicBlock *AcqRelBB = createBasicBlock(name: "acqrel" , parent: CurFn); |
| 5141 | llvm::BasicBlock *SeqCstBB = createBasicBlock(name: "seqcst" , parent: CurFn); |
| 5142 | |
| 5143 | Order = Builder.CreateIntCast(V: Order, DestTy: Builder.getInt32Ty(), isSigned: false); |
| 5144 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: Order, Dest: ContBB); |
| 5145 | SI->addCase(OnVal: Builder.getInt32(C: 1), Dest: AcquireBB); |
| 5146 | SI->addCase(OnVal: Builder.getInt32(C: 2), Dest: AcquireBB); |
| 5147 | SI->addCase(OnVal: Builder.getInt32(C: 3), Dest: ReleaseBB); |
| 5148 | SI->addCase(OnVal: Builder.getInt32(C: 4), Dest: AcqRelBB); |
| 5149 | SI->addCase(OnVal: Builder.getInt32(C: 5), Dest: SeqCstBB); |
| 5150 | |
| 5151 | OrderBBs.emplace_back(Args&: AcquireBB, Args: llvm::AtomicOrdering::Acquire); |
| 5152 | OrderBBs.emplace_back(Args&: ReleaseBB, Args: llvm::AtomicOrdering::Release); |
| 5153 | OrderBBs.emplace_back(Args&: AcqRelBB, Args: llvm::AtomicOrdering::AcquireRelease); |
| 5154 | OrderBBs.emplace_back(Args&: SeqCstBB, |
| 5155 | Args: llvm::AtomicOrdering::SequentiallyConsistent); |
| 5156 | } |
| 5157 | |
| 5158 | for (auto &[OrderBB, Ordering] : OrderBBs) { |
| 5159 | Builder.SetInsertPoint(OrderBB); |
| 5160 | if (Scp) { |
| 5161 | SyncScope SS = ScopeModel->isValid(S: Scp->getZExtValue()) |
| 5162 | ? ScopeModel->map(S: Scp->getZExtValue()) |
| 5163 | : ScopeModel->map(S: ScopeModel->getFallBackValue()); |
| 5164 | Builder.CreateFence(Ordering, |
| 5165 | SSID: getTargetHooks().getLLVMSyncScopeID( |
| 5166 | LangOpts: getLangOpts(), Scope: SS, Ordering, Ctx&: getLLVMContext())); |
| 5167 | Builder.CreateBr(Dest: ContBB); |
| 5168 | } else { |
| 5169 | llvm::DenseMap<unsigned, llvm::BasicBlock *> BBs; |
| 5170 | for (unsigned Scp : ScopeModel->getRuntimeValues()) |
| 5171 | BBs[Scp] = createBasicBlock(name: getAsString(S: ScopeModel->map(S: Scp)), parent: CurFn); |
| 5172 | |
| 5173 | auto *SC = Builder.CreateIntCast(V: Scope, DestTy: Builder.getInt32Ty(), isSigned: false); |
| 5174 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: SC, Dest: ContBB); |
| 5175 | for (unsigned Scp : ScopeModel->getRuntimeValues()) { |
| 5176 | auto *B = BBs[Scp]; |
| 5177 | SI->addCase(OnVal: Builder.getInt32(C: Scp), Dest: B); |
| 5178 | |
| 5179 | Builder.SetInsertPoint(B); |
| 5180 | Builder.CreateFence(Ordering, SSID: getTargetHooks().getLLVMSyncScopeID( |
| 5181 | LangOpts: getLangOpts(), Scope: ScopeModel->map(S: Scp), |
| 5182 | Ordering, Ctx&: getLLVMContext())); |
| 5183 | Builder.CreateBr(Dest: ContBB); |
| 5184 | } |
| 5185 | } |
| 5186 | } |
| 5187 | |
| 5188 | Builder.SetInsertPoint(ContBB); |
| 5189 | return RValue::get(V: nullptr); |
| 5190 | } |
| 5191 | |
| 5192 | case Builtin::BI__builtin_signbit: |
| 5193 | case Builtin::BI__builtin_signbitf: |
| 5194 | case Builtin::BI__builtin_signbitl: { |
| 5195 | return RValue::get( |
| 5196 | V: Builder.CreateZExt(V: EmitSignBit(CGF&: *this, V: EmitScalarExpr(E: E->getArg(Arg: 0))), |
| 5197 | DestTy: ConvertType(T: E->getType()))); |
| 5198 | } |
| 5199 | case Builtin::BI__warn_memset_zero_len: |
| 5200 | return RValue::getIgnored(); |
| 5201 | case Builtin::BI__annotation: { |
| 5202 | // Re-encode each wide string to UTF8 and make an MDString. |
| 5203 | SmallVector<Metadata *, 1> Strings; |
| 5204 | for (const Expr *Arg : E->arguments()) { |
| 5205 | const auto *Str = cast<StringLiteral>(Val: Arg->IgnoreParenCasts()); |
| 5206 | assert(Str->getCharByteWidth() == 2); |
| 5207 | StringRef WideBytes = Str->getBytes(); |
| 5208 | std::string StrUtf8; |
| 5209 | if (!convertUTF16ToUTF8String( |
| 5210 | SrcBytes: ArrayRef(WideBytes.data(), WideBytes.size()), Out&: StrUtf8)) { |
| 5211 | CGM.ErrorUnsupported(S: E, Type: "non-UTF16 __annotation argument" ); |
| 5212 | continue; |
| 5213 | } |
| 5214 | Strings.push_back(Elt: llvm::MDString::get(Context&: getLLVMContext(), Str: StrUtf8)); |
| 5215 | } |
| 5216 | |
| 5217 | // Build and MDTuple of MDStrings and emit the intrinsic call. |
| 5218 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::codeview_annotation, Tys: {}); |
| 5219 | MDTuple *StrTuple = MDTuple::get(Context&: getLLVMContext(), MDs: Strings); |
| 5220 | Builder.CreateCall(Callee: F, Args: MetadataAsValue::get(Context&: getLLVMContext(), MD: StrTuple)); |
| 5221 | return RValue::getIgnored(); |
| 5222 | } |
| 5223 | case Builtin::BI__builtin_annotation: { |
| 5224 | llvm::Value *AnnVal = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5225 | llvm::Function *F = CGM.getIntrinsic( |
| 5226 | IID: Intrinsic::annotation, Tys: {AnnVal->getType(), CGM.ConstGlobalsPtrTy}); |
| 5227 | |
| 5228 | // Get the annotation string, go through casts. Sema requires this to be a |
| 5229 | // non-wide string literal, potentially casted, so the cast<> is safe. |
| 5230 | const Expr *AnnotationStrExpr = E->getArg(Arg: 1)->IgnoreParenCasts(); |
| 5231 | StringRef Str = cast<StringLiteral>(Val: AnnotationStrExpr)->getString(); |
| 5232 | return RValue::get( |
| 5233 | V: EmitAnnotationCall(AnnotationFn: F, AnnotatedVal: AnnVal, AnnotationStr: Str, Location: E->getExprLoc(), Attr: nullptr)); |
| 5234 | } |
| 5235 | case Builtin::BI__builtin_addcb: |
| 5236 | case Builtin::BI__builtin_addcs: |
| 5237 | case Builtin::BI__builtin_addc: |
| 5238 | case Builtin::BI__builtin_addcl: |
| 5239 | case Builtin::BI__builtin_addcll: |
| 5240 | case Builtin::BI__builtin_subcb: |
| 5241 | case Builtin::BI__builtin_subcs: |
| 5242 | case Builtin::BI__builtin_subc: |
| 5243 | case Builtin::BI__builtin_subcl: |
| 5244 | case Builtin::BI__builtin_subcll: { |
| 5245 | |
| 5246 | // We translate all of these builtins from expressions of the form: |
| 5247 | // int x = ..., y = ..., carryin = ..., carryout, result; |
| 5248 | // result = __builtin_addc(x, y, carryin, &carryout); |
| 5249 | // |
| 5250 | // to LLVM IR of the form: |
| 5251 | // |
| 5252 | // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
| 5253 | // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
| 5254 | // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
| 5255 | // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
| 5256 | // i32 %carryin) |
| 5257 | // %result = extractvalue {i32, i1} %tmp2, 0 |
| 5258 | // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
| 5259 | // %tmp3 = or i1 %carry1, %carry2 |
| 5260 | // %tmp4 = zext i1 %tmp3 to i32 |
| 5261 | // store i32 %tmp4, i32* %carryout |
| 5262 | |
| 5263 | // Scalarize our inputs. |
| 5264 | llvm::Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5265 | llvm::Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5266 | llvm::Value *Carryin = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 5267 | Address CarryOutPtr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 3)); |
| 5268 | |
| 5269 | // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
| 5270 | Intrinsic::ID IntrinsicId; |
| 5271 | switch (BuiltinID) { |
| 5272 | default: llvm_unreachable("Unknown multiprecision builtin id." ); |
| 5273 | case Builtin::BI__builtin_addcb: |
| 5274 | case Builtin::BI__builtin_addcs: |
| 5275 | case Builtin::BI__builtin_addc: |
| 5276 | case Builtin::BI__builtin_addcl: |
| 5277 | case Builtin::BI__builtin_addcll: |
| 5278 | IntrinsicId = Intrinsic::uadd_with_overflow; |
| 5279 | break; |
| 5280 | case Builtin::BI__builtin_subcb: |
| 5281 | case Builtin::BI__builtin_subcs: |
| 5282 | case Builtin::BI__builtin_subc: |
| 5283 | case Builtin::BI__builtin_subcl: |
| 5284 | case Builtin::BI__builtin_subcll: |
| 5285 | IntrinsicId = Intrinsic::usub_with_overflow; |
| 5286 | break; |
| 5287 | } |
| 5288 | |
| 5289 | // Construct our resulting LLVM IR expression. |
| 5290 | llvm::Value *Carry1; |
| 5291 | llvm::Value *Sum1 = EmitOverflowIntrinsic(CGF&: *this, IntrinsicID: IntrinsicId, |
| 5292 | X, Y, Carry&: Carry1); |
| 5293 | llvm::Value *Carry2; |
| 5294 | llvm::Value *Sum2 = EmitOverflowIntrinsic(CGF&: *this, IntrinsicID: IntrinsicId, |
| 5295 | X: Sum1, Y: Carryin, Carry&: Carry2); |
| 5296 | llvm::Value *CarryOut = Builder.CreateZExt(V: Builder.CreateOr(LHS: Carry1, RHS: Carry2), |
| 5297 | DestTy: X->getType()); |
| 5298 | Builder.CreateStore(Val: CarryOut, Addr: CarryOutPtr); |
| 5299 | return RValue::get(V: Sum2); |
| 5300 | } |
| 5301 | |
| 5302 | case Builtin::BI__builtin_add_overflow: |
| 5303 | case Builtin::BI__builtin_sub_overflow: |
| 5304 | case Builtin::BI__builtin_mul_overflow: { |
| 5305 | const clang::Expr *LeftArg = E->getArg(Arg: 0); |
| 5306 | const clang::Expr *RightArg = E->getArg(Arg: 1); |
| 5307 | const clang::Expr *ResultArg = E->getArg(Arg: 2); |
| 5308 | |
| 5309 | clang::QualType ResultQTy = |
| 5310 | ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
| 5311 | |
| 5312 | WidthAndSignedness LeftInfo = |
| 5313 | getIntegerWidthAndSignedness(context: CGM.getContext(), Type: LeftArg->getType()); |
| 5314 | WidthAndSignedness RightInfo = |
| 5315 | getIntegerWidthAndSignedness(context: CGM.getContext(), Type: RightArg->getType()); |
| 5316 | WidthAndSignedness ResultInfo = |
| 5317 | getIntegerWidthAndSignedness(context: CGM.getContext(), Type: ResultQTy); |
| 5318 | |
| 5319 | // Handle mixed-sign multiplication as a special case, because adding |
| 5320 | // runtime or backend support for our generic irgen would be too expensive. |
| 5321 | if (isSpecialMixedSignMultiply(BuiltinID, Op1Info: LeftInfo, Op2Info: RightInfo, ResultInfo)) |
| 5322 | return EmitCheckedMixedSignMultiply(CGF&: *this, Op1: LeftArg, Op1Info: LeftInfo, Op2: RightArg, |
| 5323 | Op2Info: RightInfo, ResultArg, ResultQTy, |
| 5324 | ResultInfo); |
| 5325 | |
| 5326 | if (isSpecialUnsignedMultiplySignedResult(BuiltinID, Op1Info: LeftInfo, Op2Info: RightInfo, |
| 5327 | ResultInfo)) |
| 5328 | return EmitCheckedUnsignedMultiplySignedResult( |
| 5329 | CGF&: *this, Op1: LeftArg, Op1Info: LeftInfo, Op2: RightArg, Op2Info: RightInfo, ResultArg, ResultQTy, |
| 5330 | ResultInfo); |
| 5331 | |
| 5332 | WidthAndSignedness EncompassingInfo = |
| 5333 | EncompassingIntegerType(Types: {LeftInfo, RightInfo, ResultInfo}); |
| 5334 | |
| 5335 | llvm::Type *EncompassingLLVMTy = |
| 5336 | llvm::IntegerType::get(C&: CGM.getLLVMContext(), NumBits: EncompassingInfo.Width); |
| 5337 | |
| 5338 | llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(T: ResultQTy); |
| 5339 | |
| 5340 | Intrinsic::ID IntrinsicId; |
| 5341 | switch (BuiltinID) { |
| 5342 | default: |
| 5343 | llvm_unreachable("Unknown overflow builtin id." ); |
| 5344 | case Builtin::BI__builtin_add_overflow: |
| 5345 | IntrinsicId = EncompassingInfo.Signed ? Intrinsic::sadd_with_overflow |
| 5346 | : Intrinsic::uadd_with_overflow; |
| 5347 | break; |
| 5348 | case Builtin::BI__builtin_sub_overflow: |
| 5349 | IntrinsicId = EncompassingInfo.Signed ? Intrinsic::ssub_with_overflow |
| 5350 | : Intrinsic::usub_with_overflow; |
| 5351 | break; |
| 5352 | case Builtin::BI__builtin_mul_overflow: |
| 5353 | IntrinsicId = EncompassingInfo.Signed ? Intrinsic::smul_with_overflow |
| 5354 | : Intrinsic::umul_with_overflow; |
| 5355 | break; |
| 5356 | } |
| 5357 | |
| 5358 | llvm::Value *Left = EmitScalarExpr(E: LeftArg); |
| 5359 | llvm::Value *Right = EmitScalarExpr(E: RightArg); |
| 5360 | Address ResultPtr = EmitPointerWithAlignment(Addr: ResultArg); |
| 5361 | |
| 5362 | // Extend each operand to the encompassing type. |
| 5363 | Left = Builder.CreateIntCast(V: Left, DestTy: EncompassingLLVMTy, isSigned: LeftInfo.Signed); |
| 5364 | Right = Builder.CreateIntCast(V: Right, DestTy: EncompassingLLVMTy, isSigned: RightInfo.Signed); |
| 5365 | |
| 5366 | // Perform the operation on the extended values. |
| 5367 | llvm::Value *Overflow, *Result; |
| 5368 | Result = EmitOverflowIntrinsic(CGF&: *this, IntrinsicID: IntrinsicId, X: Left, Y: Right, Carry&: Overflow); |
| 5369 | |
| 5370 | if (EncompassingInfo.Width > ResultInfo.Width) { |
| 5371 | // The encompassing type is wider than the result type, so we need to |
| 5372 | // truncate it. |
| 5373 | llvm::Value *ResultTrunc = Builder.CreateTrunc(V: Result, DestTy: ResultLLVMTy); |
| 5374 | |
| 5375 | // To see if the truncation caused an overflow, we will extend |
| 5376 | // the result and then compare it to the original result. |
| 5377 | llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
| 5378 | V: ResultTrunc, DestTy: EncompassingLLVMTy, isSigned: ResultInfo.Signed); |
| 5379 | llvm::Value *TruncationOverflow = |
| 5380 | Builder.CreateICmpNE(LHS: Result, RHS: ResultTruncExt); |
| 5381 | |
| 5382 | Overflow = Builder.CreateOr(LHS: Overflow, RHS: TruncationOverflow); |
| 5383 | Result = ResultTrunc; |
| 5384 | } |
| 5385 | |
| 5386 | // Finally, store the result using the pointer. |
| 5387 | bool isVolatile = |
| 5388 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| 5389 | Builder.CreateStore(Val: EmitToMemory(Value: Result, Ty: ResultQTy), Addr: ResultPtr, IsVolatile: isVolatile); |
| 5390 | |
| 5391 | return RValue::get(V: Overflow); |
| 5392 | } |
| 5393 | |
| 5394 | case Builtin::BI__builtin_uadd_overflow: |
| 5395 | case Builtin::BI__builtin_uaddl_overflow: |
| 5396 | case Builtin::BI__builtin_uaddll_overflow: |
| 5397 | case Builtin::BI__builtin_usub_overflow: |
| 5398 | case Builtin::BI__builtin_usubl_overflow: |
| 5399 | case Builtin::BI__builtin_usubll_overflow: |
| 5400 | case Builtin::BI__builtin_umul_overflow: |
| 5401 | case Builtin::BI__builtin_umull_overflow: |
| 5402 | case Builtin::BI__builtin_umulll_overflow: |
| 5403 | case Builtin::BI__builtin_sadd_overflow: |
| 5404 | case Builtin::BI__builtin_saddl_overflow: |
| 5405 | case Builtin::BI__builtin_saddll_overflow: |
| 5406 | case Builtin::BI__builtin_ssub_overflow: |
| 5407 | case Builtin::BI__builtin_ssubl_overflow: |
| 5408 | case Builtin::BI__builtin_ssubll_overflow: |
| 5409 | case Builtin::BI__builtin_smul_overflow: |
| 5410 | case Builtin::BI__builtin_smull_overflow: |
| 5411 | case Builtin::BI__builtin_smulll_overflow: { |
| 5412 | |
| 5413 | // We translate all of these builtins directly to the relevant llvm IR node. |
| 5414 | |
| 5415 | // Scalarize our inputs. |
| 5416 | llvm::Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5417 | llvm::Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5418 | Address SumOutPtr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 2)); |
| 5419 | |
| 5420 | // Decide which of the overflow intrinsics we are lowering to: |
| 5421 | Intrinsic::ID IntrinsicId; |
| 5422 | switch (BuiltinID) { |
| 5423 | default: llvm_unreachable("Unknown overflow builtin id." ); |
| 5424 | case Builtin::BI__builtin_uadd_overflow: |
| 5425 | case Builtin::BI__builtin_uaddl_overflow: |
| 5426 | case Builtin::BI__builtin_uaddll_overflow: |
| 5427 | IntrinsicId = Intrinsic::uadd_with_overflow; |
| 5428 | break; |
| 5429 | case Builtin::BI__builtin_usub_overflow: |
| 5430 | case Builtin::BI__builtin_usubl_overflow: |
| 5431 | case Builtin::BI__builtin_usubll_overflow: |
| 5432 | IntrinsicId = Intrinsic::usub_with_overflow; |
| 5433 | break; |
| 5434 | case Builtin::BI__builtin_umul_overflow: |
| 5435 | case Builtin::BI__builtin_umull_overflow: |
| 5436 | case Builtin::BI__builtin_umulll_overflow: |
| 5437 | IntrinsicId = Intrinsic::umul_with_overflow; |
| 5438 | break; |
| 5439 | case Builtin::BI__builtin_sadd_overflow: |
| 5440 | case Builtin::BI__builtin_saddl_overflow: |
| 5441 | case Builtin::BI__builtin_saddll_overflow: |
| 5442 | IntrinsicId = Intrinsic::sadd_with_overflow; |
| 5443 | break; |
| 5444 | case Builtin::BI__builtin_ssub_overflow: |
| 5445 | case Builtin::BI__builtin_ssubl_overflow: |
| 5446 | case Builtin::BI__builtin_ssubll_overflow: |
| 5447 | IntrinsicId = Intrinsic::ssub_with_overflow; |
| 5448 | break; |
| 5449 | case Builtin::BI__builtin_smul_overflow: |
| 5450 | case Builtin::BI__builtin_smull_overflow: |
| 5451 | case Builtin::BI__builtin_smulll_overflow: |
| 5452 | IntrinsicId = Intrinsic::smul_with_overflow; |
| 5453 | break; |
| 5454 | } |
| 5455 | |
| 5456 | |
| 5457 | llvm::Value *Carry; |
| 5458 | llvm::Value *Sum = EmitOverflowIntrinsic(CGF&: *this, IntrinsicID: IntrinsicId, X, Y, Carry); |
| 5459 | Builder.CreateStore(Val: Sum, Addr: SumOutPtr); |
| 5460 | |
| 5461 | return RValue::get(V: Carry); |
| 5462 | } |
| 5463 | case Builtin::BIaddressof: |
| 5464 | case Builtin::BI__addressof: |
| 5465 | case Builtin::BI__builtin_addressof: |
| 5466 | return RValue::get(V: EmitLValue(E: E->getArg(Arg: 0)).getPointer(CGF&: *this)); |
| 5467 | case Builtin::BI__builtin_function_start: |
| 5468 | return RValue::get(V: CGM.GetFunctionStart( |
| 5469 | Decl: E->getArg(Arg: 0)->getAsBuiltinConstantDeclRef(Context: CGM.getContext()))); |
| 5470 | case Builtin::BI__builtin_operator_new: |
| 5471 | return EmitBuiltinNewDeleteCall( |
| 5472 | Type: E->getCallee()->getType()->castAs<FunctionProtoType>(), TheCallExpr: E, IsDelete: false); |
| 5473 | case Builtin::BI__builtin_operator_delete: |
| 5474 | EmitBuiltinNewDeleteCall( |
| 5475 | Type: E->getCallee()->getType()->castAs<FunctionProtoType>(), TheCallExpr: E, IsDelete: true); |
| 5476 | return RValue::get(V: nullptr); |
| 5477 | |
| 5478 | case Builtin::BI__builtin_is_aligned: |
| 5479 | return EmitBuiltinIsAligned(E); |
| 5480 | case Builtin::BI__builtin_align_up: |
| 5481 | return EmitBuiltinAlignTo(E, AlignUp: true); |
| 5482 | case Builtin::BI__builtin_align_down: |
| 5483 | return EmitBuiltinAlignTo(E, AlignUp: false); |
| 5484 | |
| 5485 | case Builtin::BI__noop: |
| 5486 | // __noop always evaluates to an integer literal zero. |
| 5487 | return RValue::get(V: ConstantInt::get(Ty: IntTy, V: 0)); |
| 5488 | case Builtin::BI__builtin_call_with_static_chain: { |
| 5489 | const CallExpr *Call = cast<CallExpr>(Val: E->getArg(Arg: 0)); |
| 5490 | const Expr *Chain = E->getArg(Arg: 1); |
| 5491 | return EmitCall(FnType: Call->getCallee()->getType(), |
| 5492 | Callee: EmitCallee(E: Call->getCallee()), E: Call, ReturnValue, |
| 5493 | Chain: EmitScalarExpr(E: Chain)); |
| 5494 | } |
| 5495 | case Builtin::BI_InterlockedExchange8: |
| 5496 | case Builtin::BI_InterlockedExchange16: |
| 5497 | case Builtin::BI_InterlockedExchange: |
| 5498 | case Builtin::BI_InterlockedExchangePointer: |
| 5499 | return RValue::get( |
| 5500 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedExchange, E)); |
| 5501 | case Builtin::BI_InterlockedCompareExchangePointer: |
| 5502 | return RValue::get( |
| 5503 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedCompareExchange, E)); |
| 5504 | case Builtin::BI_InterlockedCompareExchangePointer_nf: |
| 5505 | return RValue::get( |
| 5506 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedCompareExchange_nf, E)); |
| 5507 | case Builtin::BI_InterlockedCompareExchange8: |
| 5508 | case Builtin::BI_InterlockedCompareExchange16: |
| 5509 | case Builtin::BI_InterlockedCompareExchange: |
| 5510 | case Builtin::BI_InterlockedCompareExchange64: |
| 5511 | return RValue::get(V: EmitAtomicCmpXchgForMSIntrin(CGF&: *this, E)); |
| 5512 | case Builtin::BI_InterlockedIncrement16: |
| 5513 | case Builtin::BI_InterlockedIncrement: |
| 5514 | return RValue::get( |
| 5515 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedIncrement, E)); |
| 5516 | case Builtin::BI_InterlockedDecrement16: |
| 5517 | case Builtin::BI_InterlockedDecrement: |
| 5518 | return RValue::get( |
| 5519 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedDecrement, E)); |
| 5520 | case Builtin::BI_InterlockedAnd8: |
| 5521 | case Builtin::BI_InterlockedAnd16: |
| 5522 | case Builtin::BI_InterlockedAnd: |
| 5523 | return RValue::get(V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedAnd, E)); |
| 5524 | case Builtin::BI_InterlockedExchangeAdd8: |
| 5525 | case Builtin::BI_InterlockedExchangeAdd16: |
| 5526 | case Builtin::BI_InterlockedExchangeAdd: |
| 5527 | return RValue::get( |
| 5528 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedExchangeAdd, E)); |
| 5529 | case Builtin::BI_InterlockedExchangeSub8: |
| 5530 | case Builtin::BI_InterlockedExchangeSub16: |
| 5531 | case Builtin::BI_InterlockedExchangeSub: |
| 5532 | return RValue::get( |
| 5533 | V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedExchangeSub, E)); |
| 5534 | case Builtin::BI_InterlockedOr8: |
| 5535 | case Builtin::BI_InterlockedOr16: |
| 5536 | case Builtin::BI_InterlockedOr: |
| 5537 | return RValue::get(V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedOr, E)); |
| 5538 | case Builtin::BI_InterlockedXor8: |
| 5539 | case Builtin::BI_InterlockedXor16: |
| 5540 | case Builtin::BI_InterlockedXor: |
| 5541 | return RValue::get(V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::_InterlockedXor, E)); |
| 5542 | |
| 5543 | case Builtin::BI_bittest64: |
| 5544 | case Builtin::BI_bittest: |
| 5545 | case Builtin::BI_bittestandcomplement64: |
| 5546 | case Builtin::BI_bittestandcomplement: |
| 5547 | case Builtin::BI_bittestandreset64: |
| 5548 | case Builtin::BI_bittestandreset: |
| 5549 | case Builtin::BI_bittestandset64: |
| 5550 | case Builtin::BI_bittestandset: |
| 5551 | case Builtin::BI_interlockedbittestandreset: |
| 5552 | case Builtin::BI_interlockedbittestandreset64: |
| 5553 | case Builtin::BI_interlockedbittestandreset64_acq: |
| 5554 | case Builtin::BI_interlockedbittestandreset64_rel: |
| 5555 | case Builtin::BI_interlockedbittestandreset64_nf: |
| 5556 | case Builtin::BI_interlockedbittestandset64: |
| 5557 | case Builtin::BI_interlockedbittestandset64_acq: |
| 5558 | case Builtin::BI_interlockedbittestandset64_rel: |
| 5559 | case Builtin::BI_interlockedbittestandset64_nf: |
| 5560 | case Builtin::BI_interlockedbittestandset: |
| 5561 | case Builtin::BI_interlockedbittestandset_acq: |
| 5562 | case Builtin::BI_interlockedbittestandset_rel: |
| 5563 | case Builtin::BI_interlockedbittestandset_nf: |
| 5564 | case Builtin::BI_interlockedbittestandreset_acq: |
| 5565 | case Builtin::BI_interlockedbittestandreset_rel: |
| 5566 | case Builtin::BI_interlockedbittestandreset_nf: |
| 5567 | return RValue::get(V: EmitBitTestIntrinsic(CGF&: *this, BuiltinID, E)); |
| 5568 | |
| 5569 | // These builtins exist to emit regular volatile loads and stores not |
| 5570 | // affected by the -fms-volatile setting. |
| 5571 | case Builtin::BI__iso_volatile_load8: |
| 5572 | case Builtin::BI__iso_volatile_load16: |
| 5573 | case Builtin::BI__iso_volatile_load32: |
| 5574 | case Builtin::BI__iso_volatile_load64: |
| 5575 | return RValue::get(V: EmitISOVolatileLoad(CGF&: *this, E)); |
| 5576 | case Builtin::BI__iso_volatile_store8: |
| 5577 | case Builtin::BI__iso_volatile_store16: |
| 5578 | case Builtin::BI__iso_volatile_store32: |
| 5579 | case Builtin::BI__iso_volatile_store64: |
| 5580 | return RValue::get(V: EmitISOVolatileStore(CGF&: *this, E)); |
| 5581 | |
| 5582 | case Builtin::BI__builtin_ptrauth_sign_constant: |
| 5583 | return RValue::get(V: ConstantEmitter(*this).emitAbstract(E, T: E->getType())); |
| 5584 | |
| 5585 | case Builtin::BI__builtin_ptrauth_auth: |
| 5586 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| 5587 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| 5588 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| 5589 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| 5590 | case Builtin::BI__builtin_ptrauth_strip: { |
| 5591 | // Emit the arguments. |
| 5592 | SmallVector<llvm::Value *, 5> Args; |
| 5593 | for (auto argExpr : E->arguments()) |
| 5594 | Args.push_back(Elt: EmitScalarExpr(E: argExpr)); |
| 5595 | |
| 5596 | // Cast the value to intptr_t, saving its original type. |
| 5597 | llvm::Type *OrigValueType = Args[0]->getType(); |
| 5598 | if (OrigValueType->isPointerTy()) |
| 5599 | Args[0] = Builder.CreatePtrToInt(V: Args[0], DestTy: IntPtrTy); |
| 5600 | |
| 5601 | switch (BuiltinID) { |
| 5602 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| 5603 | if (Args[4]->getType()->isPointerTy()) |
| 5604 | Args[4] = Builder.CreatePtrToInt(V: Args[4], DestTy: IntPtrTy); |
| 5605 | [[fallthrough]]; |
| 5606 | |
| 5607 | case Builtin::BI__builtin_ptrauth_auth: |
| 5608 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| 5609 | if (Args[2]->getType()->isPointerTy()) |
| 5610 | Args[2] = Builder.CreatePtrToInt(V: Args[2], DestTy: IntPtrTy); |
| 5611 | break; |
| 5612 | |
| 5613 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| 5614 | if (Args[1]->getType()->isPointerTy()) |
| 5615 | Args[1] = Builder.CreatePtrToInt(V: Args[1], DestTy: IntPtrTy); |
| 5616 | break; |
| 5617 | |
| 5618 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| 5619 | case Builtin::BI__builtin_ptrauth_strip: |
| 5620 | break; |
| 5621 | } |
| 5622 | |
| 5623 | // Call the intrinsic. |
| 5624 | auto IntrinsicID = [&]() -> unsigned { |
| 5625 | switch (BuiltinID) { |
| 5626 | case Builtin::BI__builtin_ptrauth_auth: |
| 5627 | return Intrinsic::ptrauth_auth; |
| 5628 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| 5629 | return Intrinsic::ptrauth_resign; |
| 5630 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| 5631 | return Intrinsic::ptrauth_blend; |
| 5632 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| 5633 | return Intrinsic::ptrauth_sign_generic; |
| 5634 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| 5635 | return Intrinsic::ptrauth_sign; |
| 5636 | case Builtin::BI__builtin_ptrauth_strip: |
| 5637 | return Intrinsic::ptrauth_strip; |
| 5638 | } |
| 5639 | llvm_unreachable("bad ptrauth intrinsic" ); |
| 5640 | }(); |
| 5641 | auto Intrinsic = CGM.getIntrinsic(IID: IntrinsicID); |
| 5642 | llvm::Value *Result = EmitRuntimeCall(callee: Intrinsic, args: Args); |
| 5643 | |
| 5644 | if (BuiltinID != Builtin::BI__builtin_ptrauth_sign_generic_data && |
| 5645 | BuiltinID != Builtin::BI__builtin_ptrauth_blend_discriminator && |
| 5646 | OrigValueType->isPointerTy()) { |
| 5647 | Result = Builder.CreateIntToPtr(V: Result, DestTy: OrigValueType); |
| 5648 | } |
| 5649 | return RValue::get(V: Result); |
| 5650 | } |
| 5651 | |
| 5652 | case Builtin::BI__builtin_get_vtable_pointer: { |
| 5653 | const Expr *Target = E->getArg(Arg: 0); |
| 5654 | QualType TargetType = Target->getType(); |
| 5655 | const CXXRecordDecl *Decl = TargetType->getPointeeCXXRecordDecl(); |
| 5656 | assert(Decl); |
| 5657 | auto ThisAddress = EmitPointerWithAlignment(Addr: Target); |
| 5658 | assert(ThisAddress.isValid()); |
| 5659 | llvm::Value *VTablePointer = |
| 5660 | GetVTablePtr(This: ThisAddress, VTableTy: Int8PtrTy, VTableClass: Decl, AuthMode: VTableAuthMode::MustTrap); |
| 5661 | return RValue::get(V: VTablePointer); |
| 5662 | } |
| 5663 | |
| 5664 | case Builtin::BI__exception_code: |
| 5665 | case Builtin::BI_exception_code: |
| 5666 | return RValue::get(V: EmitSEHExceptionCode()); |
| 5667 | case Builtin::BI__exception_info: |
| 5668 | case Builtin::BI_exception_info: |
| 5669 | return RValue::get(V: EmitSEHExceptionInfo()); |
| 5670 | case Builtin::BI__abnormal_termination: |
| 5671 | case Builtin::BI_abnormal_termination: |
| 5672 | return RValue::get(V: EmitSEHAbnormalTermination()); |
| 5673 | case Builtin::BI_setjmpex: |
| 5674 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| 5675 | E->getArg(Arg: 0)->getType()->isPointerType()) |
| 5676 | return EmitMSVCRTSetJmp(CGF&: *this, SJKind: MSVCSetJmpKind::_setjmpex, E); |
| 5677 | break; |
| 5678 | case Builtin::BI_setjmp: |
| 5679 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| 5680 | E->getArg(Arg: 0)->getType()->isPointerType()) { |
| 5681 | if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
| 5682 | return EmitMSVCRTSetJmp(CGF&: *this, SJKind: MSVCSetJmpKind::_setjmp3, E); |
| 5683 | else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
| 5684 | return EmitMSVCRTSetJmp(CGF&: *this, SJKind: MSVCSetJmpKind::_setjmpex, E); |
| 5685 | return EmitMSVCRTSetJmp(CGF&: *this, SJKind: MSVCSetJmpKind::_setjmp, E); |
| 5686 | } |
| 5687 | break; |
| 5688 | |
| 5689 | // C++ std:: builtins. |
| 5690 | case Builtin::BImove: |
| 5691 | case Builtin::BImove_if_noexcept: |
| 5692 | case Builtin::BIforward: |
| 5693 | case Builtin::BIforward_like: |
| 5694 | case Builtin::BIas_const: |
| 5695 | return RValue::get(V: EmitLValue(E: E->getArg(Arg: 0)).getPointer(CGF&: *this)); |
| 5696 | case Builtin::BI__GetExceptionInfo: { |
| 5697 | if (llvm::GlobalVariable *GV = |
| 5698 | CGM.getCXXABI().getThrowInfo(T: FD->getParamDecl(i: 0)->getType())) |
| 5699 | return RValue::get(V: GV); |
| 5700 | break; |
| 5701 | } |
| 5702 | |
| 5703 | case Builtin::BI__fastfail: |
| 5704 | return RValue::get(V: EmitMSVCBuiltinExpr(BuiltinID: MSVCIntrin::__fastfail, E)); |
| 5705 | |
| 5706 | case Builtin::BI__builtin_coro_id: |
| 5707 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_id); |
| 5708 | case Builtin::BI__builtin_coro_promise: |
| 5709 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_promise); |
| 5710 | case Builtin::BI__builtin_coro_resume: |
| 5711 | EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_resume); |
| 5712 | return RValue::get(V: nullptr); |
| 5713 | case Builtin::BI__builtin_coro_frame: |
| 5714 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_frame); |
| 5715 | case Builtin::BI__builtin_coro_noop: |
| 5716 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_noop); |
| 5717 | case Builtin::BI__builtin_coro_free: |
| 5718 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_free); |
| 5719 | case Builtin::BI__builtin_coro_destroy: |
| 5720 | EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_destroy); |
| 5721 | return RValue::get(V: nullptr); |
| 5722 | case Builtin::BI__builtin_coro_done: |
| 5723 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_done); |
| 5724 | case Builtin::BI__builtin_coro_alloc: |
| 5725 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_alloc); |
| 5726 | case Builtin::BI__builtin_coro_begin: |
| 5727 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_begin); |
| 5728 | case Builtin::BI__builtin_coro_end: |
| 5729 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_end); |
| 5730 | case Builtin::BI__builtin_coro_suspend: |
| 5731 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_suspend); |
| 5732 | case Builtin::BI__builtin_coro_size: |
| 5733 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_size); |
| 5734 | case Builtin::BI__builtin_coro_align: |
| 5735 | return EmitCoroutineIntrinsic(E, IID: Intrinsic::coro_align); |
| 5736 | |
| 5737 | // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
| 5738 | case Builtin::BIread_pipe: |
| 5739 | case Builtin::BIwrite_pipe: { |
| 5740 | Value *Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)), |
| 5741 | *Arg1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5742 | CGOpenCLRuntime OpenCLRT(CGM); |
| 5743 | Value *PacketSize = OpenCLRT.getPipeElemSize(PipeArg: E->getArg(Arg: 0)); |
| 5744 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(PipeArg: E->getArg(Arg: 0)); |
| 5745 | |
| 5746 | // Type of the generic packet parameter. |
| 5747 | unsigned GenericAS = |
| 5748 | getContext().getTargetAddressSpace(AS: LangAS::opencl_generic); |
| 5749 | llvm::Type *I8PTy = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: GenericAS); |
| 5750 | |
| 5751 | // Testing which overloaded version we should generate the call for. |
| 5752 | if (2U == E->getNumArgs()) { |
| 5753 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" |
| 5754 | : "__write_pipe_2" ; |
| 5755 | // Creating a generic function type to be able to call with any builtin or |
| 5756 | // user defined type. |
| 5757 | llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
| 5758 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 5759 | Value *ACast = Builder.CreateAddrSpaceCast(V: Arg1, DestTy: I8PTy); |
| 5760 | return RValue::get( |
| 5761 | V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5762 | args: {Arg0, ACast, PacketSize, PacketAlign})); |
| 5763 | } else { |
| 5764 | assert(4 == E->getNumArgs() && |
| 5765 | "Illegal number of parameters to pipe function" ); |
| 5766 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" |
| 5767 | : "__write_pipe_4" ; |
| 5768 | |
| 5769 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
| 5770 | Int32Ty, Int32Ty}; |
| 5771 | Value *Arg2 = EmitScalarExpr(E: E->getArg(Arg: 2)), |
| 5772 | *Arg3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 5773 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 5774 | Value *ACast = Builder.CreateAddrSpaceCast(V: Arg3, DestTy: I8PTy); |
| 5775 | // We know the third argument is an integer type, but we may need to cast |
| 5776 | // it to i32. |
| 5777 | if (Arg2->getType() != Int32Ty) |
| 5778 | Arg2 = Builder.CreateZExtOrTrunc(V: Arg2, DestTy: Int32Ty); |
| 5779 | return RValue::get( |
| 5780 | V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5781 | args: {Arg0, Arg1, Arg2, ACast, PacketSize, PacketAlign})); |
| 5782 | } |
| 5783 | } |
| 5784 | // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
| 5785 | // functions |
| 5786 | case Builtin::BIreserve_read_pipe: |
| 5787 | case Builtin::BIreserve_write_pipe: |
| 5788 | case Builtin::BIwork_group_reserve_read_pipe: |
| 5789 | case Builtin::BIwork_group_reserve_write_pipe: |
| 5790 | case Builtin::BIsub_group_reserve_read_pipe: |
| 5791 | case Builtin::BIsub_group_reserve_write_pipe: { |
| 5792 | // Composing the mangled name for the function. |
| 5793 | const char *Name; |
| 5794 | if (BuiltinID == Builtin::BIreserve_read_pipe) |
| 5795 | Name = "__reserve_read_pipe" ; |
| 5796 | else if (BuiltinID == Builtin::BIreserve_write_pipe) |
| 5797 | Name = "__reserve_write_pipe" ; |
| 5798 | else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
| 5799 | Name = "__work_group_reserve_read_pipe" ; |
| 5800 | else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
| 5801 | Name = "__work_group_reserve_write_pipe" ; |
| 5802 | else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
| 5803 | Name = "__sub_group_reserve_read_pipe" ; |
| 5804 | else |
| 5805 | Name = "__sub_group_reserve_write_pipe" ; |
| 5806 | |
| 5807 | Value *Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)), |
| 5808 | *Arg1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5809 | llvm::Type *ReservedIDTy = ConvertType(T: getContext().OCLReserveIDTy); |
| 5810 | CGOpenCLRuntime OpenCLRT(CGM); |
| 5811 | Value *PacketSize = OpenCLRT.getPipeElemSize(PipeArg: E->getArg(Arg: 0)); |
| 5812 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(PipeArg: E->getArg(Arg: 0)); |
| 5813 | |
| 5814 | // Building the generic function prototype. |
| 5815 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
| 5816 | llvm::FunctionType *FTy = |
| 5817 | llvm::FunctionType::get(Result: ReservedIDTy, Params: ArgTys, isVarArg: false); |
| 5818 | // We know the second argument is an integer type, but we may need to cast |
| 5819 | // it to i32. |
| 5820 | if (Arg1->getType() != Int32Ty) |
| 5821 | Arg1 = Builder.CreateZExtOrTrunc(V: Arg1, DestTy: Int32Ty); |
| 5822 | return RValue::get(V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5823 | args: {Arg0, Arg1, PacketSize, PacketAlign})); |
| 5824 | } |
| 5825 | // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
| 5826 | // functions |
| 5827 | case Builtin::BIcommit_read_pipe: |
| 5828 | case Builtin::BIcommit_write_pipe: |
| 5829 | case Builtin::BIwork_group_commit_read_pipe: |
| 5830 | case Builtin::BIwork_group_commit_write_pipe: |
| 5831 | case Builtin::BIsub_group_commit_read_pipe: |
| 5832 | case Builtin::BIsub_group_commit_write_pipe: { |
| 5833 | const char *Name; |
| 5834 | if (BuiltinID == Builtin::BIcommit_read_pipe) |
| 5835 | Name = "__commit_read_pipe" ; |
| 5836 | else if (BuiltinID == Builtin::BIcommit_write_pipe) |
| 5837 | Name = "__commit_write_pipe" ; |
| 5838 | else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
| 5839 | Name = "__work_group_commit_read_pipe" ; |
| 5840 | else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
| 5841 | Name = "__work_group_commit_write_pipe" ; |
| 5842 | else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
| 5843 | Name = "__sub_group_commit_read_pipe" ; |
| 5844 | else |
| 5845 | Name = "__sub_group_commit_write_pipe" ; |
| 5846 | |
| 5847 | Value *Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)), |
| 5848 | *Arg1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5849 | CGOpenCLRuntime OpenCLRT(CGM); |
| 5850 | Value *PacketSize = OpenCLRT.getPipeElemSize(PipeArg: E->getArg(Arg: 0)); |
| 5851 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(PipeArg: E->getArg(Arg: 0)); |
| 5852 | |
| 5853 | // Building the generic function prototype. |
| 5854 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
| 5855 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
| 5856 | Result: llvm::Type::getVoidTy(C&: getLLVMContext()), Params: ArgTys, isVarArg: false); |
| 5857 | |
| 5858 | return RValue::get(V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5859 | args: {Arg0, Arg1, PacketSize, PacketAlign})); |
| 5860 | } |
| 5861 | // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
| 5862 | case Builtin::BIget_pipe_num_packets: |
| 5863 | case Builtin::BIget_pipe_max_packets: { |
| 5864 | const char *BaseName; |
| 5865 | const auto *PipeTy = E->getArg(Arg: 0)->getType()->castAs<PipeType>(); |
| 5866 | if (BuiltinID == Builtin::BIget_pipe_num_packets) |
| 5867 | BaseName = "__get_pipe_num_packets" ; |
| 5868 | else |
| 5869 | BaseName = "__get_pipe_max_packets" ; |
| 5870 | std::string Name = std::string(BaseName) + |
| 5871 | std::string(PipeTy->isReadOnly() ? "_ro" : "_wo" ); |
| 5872 | |
| 5873 | // Building the generic function prototype. |
| 5874 | Value *Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5875 | CGOpenCLRuntime OpenCLRT(CGM); |
| 5876 | Value *PacketSize = OpenCLRT.getPipeElemSize(PipeArg: E->getArg(Arg: 0)); |
| 5877 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(PipeArg: E->getArg(Arg: 0)); |
| 5878 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
| 5879 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 5880 | |
| 5881 | return RValue::get(V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5882 | args: {Arg0, PacketSize, PacketAlign})); |
| 5883 | } |
| 5884 | |
| 5885 | // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
| 5886 | case Builtin::BIto_global: |
| 5887 | case Builtin::BIto_local: |
| 5888 | case Builtin::BIto_private: { |
| 5889 | auto Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5890 | auto NewArgT = llvm::PointerType::get( |
| 5891 | C&: getLLVMContext(), |
| 5892 | AddressSpace: CGM.getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 5893 | auto NewRetT = llvm::PointerType::get( |
| 5894 | C&: getLLVMContext(), |
| 5895 | AddressSpace: CGM.getContext().getTargetAddressSpace( |
| 5896 | AS: E->getType()->getPointeeType().getAddressSpace())); |
| 5897 | auto FTy = llvm::FunctionType::get(Result: NewRetT, Params: {NewArgT}, isVarArg: false); |
| 5898 | llvm::Value *NewArg; |
| 5899 | if (Arg0->getType()->getPointerAddressSpace() != |
| 5900 | NewArgT->getPointerAddressSpace()) |
| 5901 | NewArg = Builder.CreateAddrSpaceCast(V: Arg0, DestTy: NewArgT); |
| 5902 | else |
| 5903 | NewArg = Builder.CreateBitOrPointerCast(V: Arg0, DestTy: NewArgT); |
| 5904 | auto NewName = std::string("__" ) + E->getDirectCallee()->getName().str(); |
| 5905 | auto NewCall = |
| 5906 | EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name: NewName), args: {NewArg}); |
| 5907 | return RValue::get(V: Builder.CreateBitOrPointerCast(V: NewCall, |
| 5908 | DestTy: ConvertType(T: E->getType()))); |
| 5909 | } |
| 5910 | |
| 5911 | // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
| 5912 | // Table 6.13.17.1 specifies four overload forms of enqueue_kernel. |
| 5913 | // The code below expands the builtin call to a call to one of the following |
| 5914 | // functions that an OpenCL runtime library will have to provide: |
| 5915 | // __enqueue_kernel_basic |
| 5916 | // __enqueue_kernel_varargs |
| 5917 | // __enqueue_kernel_basic_events |
| 5918 | // __enqueue_kernel_events_varargs |
| 5919 | case Builtin::BIenqueue_kernel: { |
| 5920 | StringRef Name; // Generated function call name |
| 5921 | unsigned NumArgs = E->getNumArgs(); |
| 5922 | |
| 5923 | llvm::Type *QueueTy = ConvertType(T: getContext().OCLQueueTy); |
| 5924 | llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| 5925 | AddrSpace: getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 5926 | |
| 5927 | llvm::Value *Queue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 5928 | llvm::Value *Flags = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 5929 | LValue NDRangeL = EmitAggExprToLValue(E: E->getArg(Arg: 2)); |
| 5930 | llvm::Value *Range = NDRangeL.getAddress().emitRawPointer(CGF&: *this); |
| 5931 | |
| 5932 | // FIXME: Look through the addrspacecast which may exist to the stack |
| 5933 | // temporary as a hack. |
| 5934 | // |
| 5935 | // This is hardcoding the assumed ABI of the target function. This assumes |
| 5936 | // direct passing for every argument except NDRange, which is assumed to be |
| 5937 | // byval or byref indirect passed. |
| 5938 | // |
| 5939 | // This should be fixed to query a signature from CGOpenCLRuntime, and go |
| 5940 | // through EmitCallArgs to get the correct target ABI. |
| 5941 | Range = Range->stripPointerCasts(); |
| 5942 | |
| 5943 | llvm::Type *RangePtrTy = Range->getType(); |
| 5944 | |
| 5945 | if (NumArgs == 4) { |
| 5946 | // The most basic form of the call with parameters: |
| 5947 | // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
| 5948 | Name = "__enqueue_kernel_basic" ; |
| 5949 | llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangePtrTy, GenericVoidPtrTy, |
| 5950 | GenericVoidPtrTy}; |
| 5951 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 5952 | |
| 5953 | auto Info = |
| 5954 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 3)); |
| 5955 | llvm::Value *Kernel = |
| 5956 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 5957 | llvm::Value *Block = |
| 5958 | Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 5959 | |
| 5960 | auto RTCall = EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), |
| 5961 | args: {Queue, Flags, Range, Kernel, Block}); |
| 5962 | return RValue::get(V: RTCall); |
| 5963 | } |
| 5964 | assert(NumArgs >= 5 && "Invalid enqueue_kernel signature" ); |
| 5965 | |
| 5966 | // Create a temporary array to hold the sizes of local pointer arguments |
| 5967 | // for the block. \p First is the position of the first size argument. |
| 5968 | auto CreateArrayForSizeVar = [=](unsigned First) |
| 5969 | -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { |
| 5970 | llvm::APInt ArraySize(32, NumArgs - First); |
| 5971 | QualType SizeArrayTy = getContext().getConstantArrayType( |
| 5972 | EltTy: getContext().getSizeType(), ArySize: ArraySize, SizeExpr: nullptr, |
| 5973 | ASM: ArraySizeModifier::Normal, |
| 5974 | /*IndexTypeQuals=*/0); |
| 5975 | auto Tmp = CreateMemTemp(T: SizeArrayTy, Name: "block_sizes" ); |
| 5976 | llvm::Value *TmpPtr = Tmp.getPointer(); |
| 5977 | // The EmitLifetime* pair expect a naked Alloca as their last argument, |
| 5978 | // however for cases where the default AS is not the Alloca AS, Tmp is |
| 5979 | // actually the Alloca ascasted to the default AS, hence the |
| 5980 | // stripPointerCasts() |
| 5981 | llvm::Value *Alloca = TmpPtr->stripPointerCasts(); |
| 5982 | llvm::Value *TmpSize = EmitLifetimeStart( |
| 5983 | Size: CGM.getDataLayout().getTypeAllocSize(Ty: Tmp.getElementType()), Addr: Alloca); |
| 5984 | llvm::Value *ElemPtr; |
| 5985 | // Each of the following arguments specifies the size of the corresponding |
| 5986 | // argument passed to the enqueued block. |
| 5987 | auto *Zero = llvm::ConstantInt::get(Ty: IntTy, V: 0); |
| 5988 | for (unsigned I = First; I < NumArgs; ++I) { |
| 5989 | auto *Index = llvm::ConstantInt::get(Ty: IntTy, V: I - First); |
| 5990 | auto *GEP = Builder.CreateGEP(Ty: Tmp.getElementType(), Ptr: TmpPtr, |
| 5991 | IdxList: {Zero, Index}); |
| 5992 | if (I == First) |
| 5993 | ElemPtr = GEP; |
| 5994 | auto *V = |
| 5995 | Builder.CreateZExtOrTrunc(V: EmitScalarExpr(E: E->getArg(Arg: I)), DestTy: SizeTy); |
| 5996 | Builder.CreateAlignedStore( |
| 5997 | Val: V, Ptr: GEP, Align: CGM.getDataLayout().getPrefTypeAlign(Ty: SizeTy)); |
| 5998 | } |
| 5999 | // Return the Alloca itself rather than a potential ascast as this is only |
| 6000 | // used by the paired EmitLifetimeEnd. |
| 6001 | return {ElemPtr, TmpSize, Alloca}; |
| 6002 | }; |
| 6003 | |
| 6004 | // Could have events and/or varargs. |
| 6005 | if (E->getArg(Arg: 3)->getType()->isBlockPointerType()) { |
| 6006 | // No events passed, but has variadic arguments. |
| 6007 | Name = "__enqueue_kernel_varargs" ; |
| 6008 | auto Info = |
| 6009 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 3)); |
| 6010 | llvm::Value *Kernel = |
| 6011 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 6012 | auto *Block = Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 6013 | auto [ElemPtr, TmpSize, TmpPtr] = CreateArrayForSizeVar(4); |
| 6014 | |
| 6015 | // Create a vector of the arguments, as well as a constant value to |
| 6016 | // express to the runtime the number of variadic arguments. |
| 6017 | llvm::Value *const Args[] = {Queue, Flags, |
| 6018 | Range, Kernel, |
| 6019 | Block, ConstantInt::get(Ty: IntTy, V: NumArgs - 4), |
| 6020 | ElemPtr}; |
| 6021 | llvm::Type *const ArgTys[] = { |
| 6022 | QueueTy, IntTy, RangePtrTy, GenericVoidPtrTy, |
| 6023 | GenericVoidPtrTy, IntTy, ElemPtr->getType()}; |
| 6024 | |
| 6025 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 6026 | auto Call = RValue::get( |
| 6027 | V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), args: Args)); |
| 6028 | if (TmpSize) |
| 6029 | EmitLifetimeEnd(Size: TmpSize, Addr: TmpPtr); |
| 6030 | return Call; |
| 6031 | } |
| 6032 | // Any calls now have event arguments passed. |
| 6033 | if (NumArgs >= 7) { |
| 6034 | llvm::PointerType *PtrTy = llvm::PointerType::get( |
| 6035 | C&: CGM.getLLVMContext(), |
| 6036 | AddressSpace: CGM.getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 6037 | |
| 6038 | llvm::Value *NumEvents = |
| 6039 | Builder.CreateZExtOrTrunc(V: EmitScalarExpr(E: E->getArg(Arg: 3)), DestTy: Int32Ty); |
| 6040 | |
| 6041 | // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments |
| 6042 | // to be a null pointer constant (including `0` literal), we can take it |
| 6043 | // into account and emit null pointer directly. |
| 6044 | llvm::Value *EventWaitList = nullptr; |
| 6045 | if (E->getArg(Arg: 4)->isNullPointerConstant( |
| 6046 | Ctx&: getContext(), NPC: Expr::NPC_ValueDependentIsNotNull)) { |
| 6047 | EventWaitList = llvm::ConstantPointerNull::get(T: PtrTy); |
| 6048 | } else { |
| 6049 | EventWaitList = |
| 6050 | E->getArg(Arg: 4)->getType()->isArrayType() |
| 6051 | ? EmitArrayToPointerDecay(Array: E->getArg(Arg: 4)).emitRawPointer(CGF&: *this) |
| 6052 | : EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 6053 | // Convert to generic address space. |
| 6054 | EventWaitList = Builder.CreatePointerCast(V: EventWaitList, DestTy: PtrTy); |
| 6055 | } |
| 6056 | llvm::Value *EventRet = nullptr; |
| 6057 | if (E->getArg(Arg: 5)->isNullPointerConstant( |
| 6058 | Ctx&: getContext(), NPC: Expr::NPC_ValueDependentIsNotNull)) { |
| 6059 | EventRet = llvm::ConstantPointerNull::get(T: PtrTy); |
| 6060 | } else { |
| 6061 | EventRet = |
| 6062 | Builder.CreatePointerCast(V: EmitScalarExpr(E: E->getArg(Arg: 5)), DestTy: PtrTy); |
| 6063 | } |
| 6064 | |
| 6065 | auto Info = |
| 6066 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 6)); |
| 6067 | llvm::Value *Kernel = |
| 6068 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 6069 | llvm::Value *Block = |
| 6070 | Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 6071 | |
| 6072 | std::vector<llvm::Type *> ArgTys = { |
| 6073 | QueueTy, Int32Ty, RangePtrTy, Int32Ty, |
| 6074 | PtrTy, PtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
| 6075 | |
| 6076 | std::vector<llvm::Value *> Args = {Queue, Flags, Range, |
| 6077 | NumEvents, EventWaitList, EventRet, |
| 6078 | Kernel, Block}; |
| 6079 | |
| 6080 | if (NumArgs == 7) { |
| 6081 | // Has events but no variadics. |
| 6082 | Name = "__enqueue_kernel_basic_events" ; |
| 6083 | llvm::FunctionType *FTy = |
| 6084 | llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 6085 | return RValue::get( |
| 6086 | V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), args: Args)); |
| 6087 | } |
| 6088 | // Has event info and variadics |
| 6089 | // Pass the number of variadics to the runtime function too. |
| 6090 | Args.push_back(x: ConstantInt::get(Ty: Int32Ty, V: NumArgs - 7)); |
| 6091 | ArgTys.push_back(x: Int32Ty); |
| 6092 | Name = "__enqueue_kernel_events_varargs" ; |
| 6093 | |
| 6094 | auto [ElemPtr, TmpSize, TmpPtr] = CreateArrayForSizeVar(7); |
| 6095 | Args.push_back(x: ElemPtr); |
| 6096 | ArgTys.push_back(x: ElemPtr->getType()); |
| 6097 | |
| 6098 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int32Ty, Params: ArgTys, isVarArg: false); |
| 6099 | auto Call = RValue::get( |
| 6100 | V: EmitRuntimeCall(callee: CGM.CreateRuntimeFunction(Ty: FTy, Name), args: Args)); |
| 6101 | if (TmpSize) |
| 6102 | EmitLifetimeEnd(Size: TmpSize, Addr: TmpPtr); |
| 6103 | return Call; |
| 6104 | } |
| 6105 | llvm_unreachable("Unexpected enqueue_kernel signature" ); |
| 6106 | } |
| 6107 | // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
| 6108 | // parameter. |
| 6109 | case Builtin::BIget_kernel_work_group_size: { |
| 6110 | llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| 6111 | AddrSpace: getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 6112 | auto Info = |
| 6113 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 0)); |
| 6114 | Value *Kernel = |
| 6115 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 6116 | Value *Arg = Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 6117 | return RValue::get(V: EmitRuntimeCall( |
| 6118 | callee: CGM.CreateRuntimeFunction( |
| 6119 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {GenericVoidPtrTy, GenericVoidPtrTy}, |
| 6120 | isVarArg: false), |
| 6121 | Name: "__get_kernel_work_group_size_impl" ), |
| 6122 | args: {Kernel, Arg})); |
| 6123 | } |
| 6124 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
| 6125 | llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| 6126 | AddrSpace: getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 6127 | auto Info = |
| 6128 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 0)); |
| 6129 | Value *Kernel = |
| 6130 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 6131 | Value *Arg = Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 6132 | return RValue::get(V: EmitRuntimeCall( |
| 6133 | callee: CGM.CreateRuntimeFunction( |
| 6134 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {GenericVoidPtrTy, GenericVoidPtrTy}, |
| 6135 | isVarArg: false), |
| 6136 | Name: "__get_kernel_preferred_work_group_size_multiple_impl" ), |
| 6137 | args: {Kernel, Arg})); |
| 6138 | } |
| 6139 | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| 6140 | case Builtin::BIget_kernel_sub_group_count_for_ndrange: { |
| 6141 | llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| 6142 | AddrSpace: getContext().getTargetAddressSpace(AS: LangAS::opencl_generic)); |
| 6143 | LValue NDRangeL = EmitAggExprToLValue(E: E->getArg(Arg: 0)); |
| 6144 | llvm::Value *NDRange = NDRangeL.getAddress().emitRawPointer(CGF&: *this); |
| 6145 | auto Info = |
| 6146 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(CGF&: *this, E: E->getArg(Arg: 1)); |
| 6147 | Value *Kernel = |
| 6148 | Builder.CreatePointerCast(V: Info.KernelHandle, DestTy: GenericVoidPtrTy); |
| 6149 | Value *Block = Builder.CreatePointerCast(V: Info.BlockArg, DestTy: GenericVoidPtrTy); |
| 6150 | const char *Name = |
| 6151 | BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange |
| 6152 | ? "__get_kernel_max_sub_group_size_for_ndrange_impl" |
| 6153 | : "__get_kernel_sub_group_count_for_ndrange_impl" ; |
| 6154 | return RValue::get(V: EmitRuntimeCall( |
| 6155 | callee: CGM.CreateRuntimeFunction( |
| 6156 | Ty: llvm::FunctionType::get( |
| 6157 | Result: IntTy, Params: {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, |
| 6158 | isVarArg: false), |
| 6159 | Name), |
| 6160 | args: {NDRange, Kernel, Block})); |
| 6161 | } |
| 6162 | case Builtin::BI__builtin_store_half: |
| 6163 | case Builtin::BI__builtin_store_halff: { |
| 6164 | Value *Val = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 6165 | Address Address = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 6166 | Value *HalfVal = Builder.CreateFPTrunc(V: Val, DestTy: Builder.getHalfTy()); |
| 6167 | Builder.CreateStore(Val: HalfVal, Addr: Address); |
| 6168 | return RValue::get(V: nullptr); |
| 6169 | } |
| 6170 | case Builtin::BI__builtin_load_half: { |
| 6171 | Address Address = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 6172 | Value *HalfVal = Builder.CreateLoad(Addr: Address); |
| 6173 | return RValue::get(V: Builder.CreateFPExt(V: HalfVal, DestTy: Builder.getDoubleTy())); |
| 6174 | } |
| 6175 | case Builtin::BI__builtin_load_halff: { |
| 6176 | Address Address = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 6177 | Value *HalfVal = Builder.CreateLoad(Addr: Address); |
| 6178 | return RValue::get(V: Builder.CreateFPExt(V: HalfVal, DestTy: Builder.getFloatTy())); |
| 6179 | } |
| 6180 | case Builtin::BI__builtin_printf: |
| 6181 | case Builtin::BIprintf: |
| 6182 | if (getTarget().getTriple().isNVPTX() || |
| 6183 | getTarget().getTriple().isAMDGCN() || |
| 6184 | (getTarget().getTriple().isSPIRV() && |
| 6185 | getTarget().getTriple().getVendor() == Triple::VendorType::AMD)) { |
| 6186 | if (getTarget().getTriple().isNVPTX()) |
| 6187 | return EmitNVPTXDevicePrintfCallExpr(E); |
| 6188 | if ((getTarget().getTriple().isAMDGCN() || |
| 6189 | getTarget().getTriple().isSPIRV()) && |
| 6190 | getLangOpts().HIP) |
| 6191 | return EmitAMDGPUDevicePrintfCallExpr(E); |
| 6192 | } |
| 6193 | |
| 6194 | break; |
| 6195 | case Builtin::BI__builtin_canonicalize: |
| 6196 | case Builtin::BI__builtin_canonicalizef: |
| 6197 | case Builtin::BI__builtin_canonicalizef16: |
| 6198 | case Builtin::BI__builtin_canonicalizel: |
| 6199 | return RValue::get( |
| 6200 | V: emitBuiltinWithOneOverloadedType<1>(CGF&: *this, E, IntrinsicID: Intrinsic::canonicalize)); |
| 6201 | |
| 6202 | case Builtin::BI__builtin_thread_pointer: { |
| 6203 | if (!getContext().getTargetInfo().isTLSSupported()) |
| 6204 | CGM.ErrorUnsupported(S: E, Type: "__builtin_thread_pointer" ); |
| 6205 | |
| 6206 | return RValue::get(V: Builder.CreateIntrinsic(ID: llvm::Intrinsic::thread_pointer, |
| 6207 | Types: {GlobalsInt8PtrTy}, Args: {})); |
| 6208 | } |
| 6209 | case Builtin::BI__builtin_os_log_format: |
| 6210 | return emitBuiltinOSLogFormat(E: *E); |
| 6211 | |
| 6212 | case Builtin::BI__xray_customevent: { |
| 6213 | if (!ShouldXRayInstrumentFunction()) |
| 6214 | return RValue::getIgnored(); |
| 6215 | |
| 6216 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| 6217 | K: XRayInstrKind::Custom)) |
| 6218 | return RValue::getIgnored(); |
| 6219 | |
| 6220 | if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| 6221 | if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) |
| 6222 | return RValue::getIgnored(); |
| 6223 | |
| 6224 | Function *F = CGM.getIntrinsic(IID: Intrinsic::xray_customevent); |
| 6225 | auto FTy = F->getFunctionType(); |
| 6226 | auto Arg0 = E->getArg(Arg: 0); |
| 6227 | auto Arg0Val = EmitScalarExpr(E: Arg0); |
| 6228 | auto Arg0Ty = Arg0->getType(); |
| 6229 | auto PTy0 = FTy->getParamType(i: 0); |
| 6230 | if (PTy0 != Arg0Val->getType()) { |
| 6231 | if (Arg0Ty->isArrayType()) |
| 6232 | Arg0Val = EmitArrayToPointerDecay(Array: Arg0).emitRawPointer(CGF&: *this); |
| 6233 | else |
| 6234 | Arg0Val = Builder.CreatePointerCast(V: Arg0Val, DestTy: PTy0); |
| 6235 | } |
| 6236 | auto Arg1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 6237 | auto PTy1 = FTy->getParamType(i: 1); |
| 6238 | if (PTy1 != Arg1->getType()) |
| 6239 | Arg1 = Builder.CreateTruncOrBitCast(V: Arg1, DestTy: PTy1); |
| 6240 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: {Arg0Val, Arg1})); |
| 6241 | } |
| 6242 | |
| 6243 | case Builtin::BI__xray_typedevent: { |
| 6244 | // TODO: There should be a way to always emit events even if the current |
| 6245 | // function is not instrumented. Losing events in a stream can cripple |
| 6246 | // a trace. |
| 6247 | if (!ShouldXRayInstrumentFunction()) |
| 6248 | return RValue::getIgnored(); |
| 6249 | |
| 6250 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| 6251 | K: XRayInstrKind::Typed)) |
| 6252 | return RValue::getIgnored(); |
| 6253 | |
| 6254 | if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| 6255 | if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) |
| 6256 | return RValue::getIgnored(); |
| 6257 | |
| 6258 | Function *F = CGM.getIntrinsic(IID: Intrinsic::xray_typedevent); |
| 6259 | auto FTy = F->getFunctionType(); |
| 6260 | auto Arg0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 6261 | auto PTy0 = FTy->getParamType(i: 0); |
| 6262 | if (PTy0 != Arg0->getType()) |
| 6263 | Arg0 = Builder.CreateTruncOrBitCast(V: Arg0, DestTy: PTy0); |
| 6264 | auto Arg1 = E->getArg(Arg: 1); |
| 6265 | auto Arg1Val = EmitScalarExpr(E: Arg1); |
| 6266 | auto Arg1Ty = Arg1->getType(); |
| 6267 | auto PTy1 = FTy->getParamType(i: 1); |
| 6268 | if (PTy1 != Arg1Val->getType()) { |
| 6269 | if (Arg1Ty->isArrayType()) |
| 6270 | Arg1Val = EmitArrayToPointerDecay(Array: Arg1).emitRawPointer(CGF&: *this); |
| 6271 | else |
| 6272 | Arg1Val = Builder.CreatePointerCast(V: Arg1Val, DestTy: PTy1); |
| 6273 | } |
| 6274 | auto Arg2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 6275 | auto PTy2 = FTy->getParamType(i: 2); |
| 6276 | if (PTy2 != Arg2->getType()) |
| 6277 | Arg2 = Builder.CreateTruncOrBitCast(V: Arg2, DestTy: PTy2); |
| 6278 | return RValue::get(V: Builder.CreateCall(Callee: F, Args: {Arg0, Arg1Val, Arg2})); |
| 6279 | } |
| 6280 | |
| 6281 | case Builtin::BI__builtin_ms_va_start: |
| 6282 | case Builtin::BI__builtin_ms_va_end: |
| 6283 | return RValue::get( |
| 6284 | V: EmitVAStartEnd(ArgValue: EmitMSVAListRef(E: E->getArg(Arg: 0)).emitRawPointer(CGF&: *this), |
| 6285 | IsStart: BuiltinID == Builtin::BI__builtin_ms_va_start)); |
| 6286 | |
| 6287 | case Builtin::BI__builtin_ms_va_copy: { |
| 6288 | // Lower this manually. We can't reliably determine whether or not any |
| 6289 | // given va_copy() is for a Win64 va_list from the calling convention |
| 6290 | // alone, because it's legal to do this from a System V ABI function. |
| 6291 | // With opaque pointer types, we won't have enough information in LLVM |
| 6292 | // IR to determine this from the argument types, either. Best to do it |
| 6293 | // now, while we have enough information. |
| 6294 | Address DestAddr = EmitMSVAListRef(E: E->getArg(Arg: 0)); |
| 6295 | Address SrcAddr = EmitMSVAListRef(E: E->getArg(Arg: 1)); |
| 6296 | |
| 6297 | DestAddr = DestAddr.withElementType(ElemTy: Int8PtrTy); |
| 6298 | SrcAddr = SrcAddr.withElementType(ElemTy: Int8PtrTy); |
| 6299 | |
| 6300 | Value *ArgPtr = Builder.CreateLoad(Addr: SrcAddr, Name: "ap.val" ); |
| 6301 | return RValue::get(V: Builder.CreateStore(Val: ArgPtr, Addr: DestAddr)); |
| 6302 | } |
| 6303 | |
| 6304 | case Builtin::BI__builtin_get_device_side_mangled_name: { |
| 6305 | auto Name = CGM.getCUDARuntime().getDeviceSideName( |
| 6306 | ND: cast<DeclRefExpr>(Val: E->getArg(Arg: 0)->IgnoreImpCasts())->getDecl()); |
| 6307 | auto Str = CGM.GetAddrOfConstantCString(Str: Name, GlobalName: "" ); |
| 6308 | return RValue::get(V: Str.getPointer()); |
| 6309 | } |
| 6310 | } |
| 6311 | |
| 6312 | // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| 6313 | // the call using the normal call path, but using the unmangled |
| 6314 | // version of the function name. |
| 6315 | const auto &BI = getContext().BuiltinInfo; |
| 6316 | if (!shouldEmitBuiltinAsIR(BuiltinID, BI, CGF: *this) && |
| 6317 | BI.isLibFunction(ID: BuiltinID)) |
| 6318 | return emitLibraryCall(CGF&: *this, FD, E, |
| 6319 | calleeValue: CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| 6320 | |
| 6321 | // If this is a predefined lib function (e.g. malloc), emit the call |
| 6322 | // using exactly the normal call path. |
| 6323 | if (BI.isPredefinedLibFunction(ID: BuiltinID)) |
| 6324 | return emitLibraryCall(CGF&: *this, FD, E, calleeValue: CGM.getRawFunctionPointer(GD: FD)); |
| 6325 | |
| 6326 | // Check that a call to a target specific builtin has the correct target |
| 6327 | // features. |
| 6328 | // This is down here to avoid non-target specific builtins, however, if |
| 6329 | // generic builtins start to require generic target features then we |
| 6330 | // can move this up to the beginning of the function. |
| 6331 | checkTargetFeatures(E, TargetDecl: FD); |
| 6332 | |
| 6333 | if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(ID: BuiltinID)) |
| 6334 | LargestVectorWidth = std::max(a: LargestVectorWidth, b: VectorWidth); |
| 6335 | |
| 6336 | // See if we have a target specific intrinsic. |
| 6337 | std::string Name = getContext().BuiltinInfo.getName(ID: BuiltinID); |
| 6338 | Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| 6339 | StringRef Prefix = |
| 6340 | llvm::Triple::getArchTypePrefix(Kind: getTarget().getTriple().getArch()); |
| 6341 | if (!Prefix.empty()) { |
| 6342 | IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(TargetPrefix: Prefix.data(), BuiltinName: Name); |
| 6343 | if (IntrinsicID == Intrinsic::not_intrinsic && Prefix == "spv" && |
| 6344 | getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA) |
| 6345 | IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(TargetPrefix: "amdgcn" , BuiltinName: Name); |
| 6346 | // NOTE we don't need to perform a compatibility flag check here since the |
| 6347 | // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the |
| 6348 | // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. |
| 6349 | if (IntrinsicID == Intrinsic::not_intrinsic) |
| 6350 | IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(TargetPrefix: Prefix.data(), BuiltinName: Name); |
| 6351 | } |
| 6352 | |
| 6353 | if (IntrinsicID != Intrinsic::not_intrinsic) { |
| 6354 | SmallVector<Value*, 16> Args; |
| 6355 | |
| 6356 | // Find out if any arguments are required to be integer constant |
| 6357 | // expressions. |
| 6358 | unsigned ICEArguments = 0; |
| 6359 | ASTContext::GetBuiltinTypeError Error; |
| 6360 | getContext().GetBuiltinType(ID: BuiltinID, Error, IntegerConstantArgs: &ICEArguments); |
| 6361 | assert(Error == ASTContext::GE_None && "Should not codegen an error" ); |
| 6362 | |
| 6363 | Function *F = CGM.getIntrinsic(IID: IntrinsicID); |
| 6364 | llvm::FunctionType *FTy = F->getFunctionType(); |
| 6365 | |
| 6366 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| 6367 | Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, Idx: i, E); |
| 6368 | // If the intrinsic arg type is different from the builtin arg type |
| 6369 | // we need to do a bit cast. |
| 6370 | llvm::Type *PTy = FTy->getParamType(i); |
| 6371 | if (PTy != ArgValue->getType()) { |
| 6372 | // XXX - vector of pointers? |
| 6373 | if (auto *PtrTy = dyn_cast<llvm::PointerType>(Val: PTy)) { |
| 6374 | if (PtrTy->getAddressSpace() != |
| 6375 | ArgValue->getType()->getPointerAddressSpace()) { |
| 6376 | ArgValue = Builder.CreateAddrSpaceCast( |
| 6377 | V: ArgValue, DestTy: llvm::PointerType::get(C&: getLLVMContext(), |
| 6378 | AddressSpace: PtrTy->getAddressSpace())); |
| 6379 | } |
| 6380 | } |
| 6381 | |
| 6382 | // Cast vector type (e.g., v256i32) to x86_amx, this only happen |
| 6383 | // in amx intrinsics. |
| 6384 | if (PTy->isX86_AMXTy()) |
| 6385 | ArgValue = Builder.CreateIntrinsic(ID: Intrinsic::x86_cast_vector_to_tile, |
| 6386 | Types: {ArgValue->getType()}, Args: {ArgValue}); |
| 6387 | else |
| 6388 | ArgValue = Builder.CreateBitCast(V: ArgValue, DestTy: PTy); |
| 6389 | } |
| 6390 | |
| 6391 | Args.push_back(Elt: ArgValue); |
| 6392 | } |
| 6393 | |
| 6394 | Value *V = Builder.CreateCall(Callee: F, Args); |
| 6395 | QualType BuiltinRetType = E->getType(); |
| 6396 | |
| 6397 | llvm::Type *RetTy = VoidTy; |
| 6398 | if (!BuiltinRetType->isVoidType()) |
| 6399 | RetTy = ConvertType(T: BuiltinRetType); |
| 6400 | |
| 6401 | if (RetTy != V->getType()) { |
| 6402 | // XXX - vector of pointers? |
| 6403 | if (auto *PtrTy = dyn_cast<llvm::PointerType>(Val: RetTy)) { |
| 6404 | if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { |
| 6405 | V = Builder.CreateAddrSpaceCast( |
| 6406 | V, DestTy: llvm::PointerType::get(C&: getLLVMContext(), |
| 6407 | AddressSpace: PtrTy->getAddressSpace())); |
| 6408 | } |
| 6409 | } |
| 6410 | |
| 6411 | // Cast x86_amx to vector type (e.g., v256i32), this only happen |
| 6412 | // in amx intrinsics. |
| 6413 | if (V->getType()->isX86_AMXTy()) |
| 6414 | V = Builder.CreateIntrinsic(ID: Intrinsic::x86_cast_tile_to_vector, Types: {RetTy}, |
| 6415 | Args: {V}); |
| 6416 | else |
| 6417 | V = Builder.CreateBitCast(V, DestTy: RetTy); |
| 6418 | } |
| 6419 | |
| 6420 | if (RetTy->isVoidTy()) |
| 6421 | return RValue::get(V: nullptr); |
| 6422 | |
| 6423 | return RValue::get(V); |
| 6424 | } |
| 6425 | |
| 6426 | // Some target-specific builtins can have aggregate return values, e.g. |
| 6427 | // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force |
| 6428 | // ReturnValue to be non-null, so that the target-specific emission code can |
| 6429 | // always just emit into it. |
| 6430 | TypeEvaluationKind EvalKind = getEvaluationKind(T: E->getType()); |
| 6431 | if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { |
| 6432 | Address DestPtr = CreateMemTemp(T: E->getType(), Name: "agg.tmp" ); |
| 6433 | ReturnValue = ReturnValueSlot(DestPtr, false); |
| 6434 | } |
| 6435 | |
| 6436 | // Now see if we can emit a target-specific builtin. |
| 6437 | if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { |
| 6438 | switch (EvalKind) { |
| 6439 | case TEK_Scalar: |
| 6440 | if (V->getType()->isVoidTy()) |
| 6441 | return RValue::get(V: nullptr); |
| 6442 | return RValue::get(V); |
| 6443 | case TEK_Aggregate: |
| 6444 | return RValue::getAggregate(addr: ReturnValue.getAddress(), |
| 6445 | isVolatile: ReturnValue.isVolatile()); |
| 6446 | case TEK_Complex: |
| 6447 | llvm_unreachable("No current target builtin returns complex" ); |
| 6448 | } |
| 6449 | llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr" ); |
| 6450 | } |
| 6451 | |
| 6452 | // EmitHLSLBuiltinExpr will check getLangOpts().HLSL |
| 6453 | if (Value *V = EmitHLSLBuiltinExpr(BuiltinID, E, ReturnValue)) { |
| 6454 | switch (EvalKind) { |
| 6455 | case TEK_Scalar: |
| 6456 | if (V->getType()->isVoidTy()) |
| 6457 | return RValue::get(V: nullptr); |
| 6458 | return RValue::get(V); |
| 6459 | case TEK_Aggregate: |
| 6460 | return RValue::getAggregate(addr: ReturnValue.getAddress(), |
| 6461 | isVolatile: ReturnValue.isVolatile()); |
| 6462 | case TEK_Complex: |
| 6463 | llvm_unreachable("No current hlsl builtin returns complex" ); |
| 6464 | } |
| 6465 | llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr" ); |
| 6466 | } |
| 6467 | |
| 6468 | if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice) |
| 6469 | return EmitHipStdParUnsupportedBuiltin(CGF: this, FD); |
| 6470 | |
| 6471 | ErrorUnsupported(S: E, Type: "builtin function" ); |
| 6472 | |
| 6473 | // Unknown builtin, for now just dump it out and return undef. |
| 6474 | return GetUndefRValue(Ty: E->getType()); |
| 6475 | } |
| 6476 | |
| 6477 | namespace { |
| 6478 | struct BuiltinAlignArgs { |
| 6479 | llvm::Value *Src = nullptr; |
| 6480 | llvm::Type *SrcType = nullptr; |
| 6481 | llvm::Value *Alignment = nullptr; |
| 6482 | llvm::Value *Mask = nullptr; |
| 6483 | llvm::IntegerType *IntType = nullptr; |
| 6484 | |
| 6485 | BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { |
| 6486 | QualType AstType = E->getArg(Arg: 0)->getType(); |
| 6487 | if (AstType->isArrayType()) |
| 6488 | Src = CGF.EmitArrayToPointerDecay(Array: E->getArg(Arg: 0)).emitRawPointer(CGF); |
| 6489 | else |
| 6490 | Src = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 6491 | SrcType = Src->getType(); |
| 6492 | if (SrcType->isPointerTy()) { |
| 6493 | IntType = IntegerType::get( |
| 6494 | C&: CGF.getLLVMContext(), |
| 6495 | NumBits: CGF.CGM.getDataLayout().getIndexTypeSizeInBits(Ty: SrcType)); |
| 6496 | } else { |
| 6497 | assert(SrcType->isIntegerTy()); |
| 6498 | IntType = cast<llvm::IntegerType>(Val: SrcType); |
| 6499 | } |
| 6500 | Alignment = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 6501 | Alignment = CGF.Builder.CreateZExtOrTrunc(V: Alignment, DestTy: IntType, Name: "alignment" ); |
| 6502 | auto *One = llvm::ConstantInt::get(Ty: IntType, V: 1); |
| 6503 | Mask = CGF.Builder.CreateSub(LHS: Alignment, RHS: One, Name: "mask" ); |
| 6504 | } |
| 6505 | }; |
| 6506 | } // namespace |
| 6507 | |
| 6508 | /// Generate (x & (y-1)) == 0. |
| 6509 | RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { |
| 6510 | BuiltinAlignArgs Args(E, *this); |
| 6511 | llvm::Value *SrcAddress = Args.Src; |
| 6512 | if (Args.SrcType->isPointerTy()) |
| 6513 | SrcAddress = |
| 6514 | Builder.CreateBitOrPointerCast(V: Args.Src, DestTy: Args.IntType, Name: "src_addr" ); |
| 6515 | return RValue::get(V: Builder.CreateICmpEQ( |
| 6516 | LHS: Builder.CreateAnd(LHS: SrcAddress, RHS: Args.Mask, Name: "set_bits" ), |
| 6517 | RHS: llvm::Constant::getNullValue(Ty: Args.IntType), Name: "is_aligned" )); |
| 6518 | } |
| 6519 | |
| 6520 | /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. |
| 6521 | /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the |
| 6522 | /// llvm.ptrmask intrinsic (with a GEP before in the align_up case). |
| 6523 | RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { |
| 6524 | BuiltinAlignArgs Args(E, *this); |
| 6525 | llvm::Value *SrcForMask = Args.Src; |
| 6526 | if (AlignUp) { |
| 6527 | // When aligning up we have to first add the mask to ensure we go over the |
| 6528 | // next alignment value and then align down to the next valid multiple. |
| 6529 | // By adding the mask, we ensure that align_up on an already aligned |
| 6530 | // value will not change the value. |
| 6531 | if (Args.Src->getType()->isPointerTy()) { |
| 6532 | if (getLangOpts().PointerOverflowDefined) |
| 6533 | SrcForMask = |
| 6534 | Builder.CreateGEP(Ty: Int8Ty, Ptr: SrcForMask, IdxList: Args.Mask, Name: "over_boundary" ); |
| 6535 | else |
| 6536 | SrcForMask = EmitCheckedInBoundsGEP(ElemTy: Int8Ty, Ptr: SrcForMask, IdxList: Args.Mask, |
| 6537 | /*SignedIndices=*/true, |
| 6538 | /*isSubtraction=*/IsSubtraction: false, |
| 6539 | Loc: E->getExprLoc(), Name: "over_boundary" ); |
| 6540 | } else { |
| 6541 | SrcForMask = Builder.CreateAdd(LHS: SrcForMask, RHS: Args.Mask, Name: "over_boundary" ); |
| 6542 | } |
| 6543 | } |
| 6544 | // Invert the mask to only clear the lower bits. |
| 6545 | llvm::Value *InvertedMask = Builder.CreateNot(V: Args.Mask, Name: "inverted_mask" ); |
| 6546 | llvm::Value *Result = nullptr; |
| 6547 | if (Args.Src->getType()->isPointerTy()) { |
| 6548 | Result = Builder.CreateIntrinsic( |
| 6549 | ID: Intrinsic::ptrmask, Types: {Args.SrcType, Args.IntType}, |
| 6550 | Args: {SrcForMask, InvertedMask}, FMFSource: nullptr, Name: "aligned_result" ); |
| 6551 | } else { |
| 6552 | Result = Builder.CreateAnd(LHS: SrcForMask, RHS: InvertedMask, Name: "aligned_result" ); |
| 6553 | } |
| 6554 | assert(Result->getType() == Args.SrcType); |
| 6555 | return RValue::get(V: Result); |
| 6556 | } |
| 6557 | |