| 1 | //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Constant Expr nodes as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "ABIInfoImpl.h" |
| 14 | #include "CGCXXABI.h" |
| 15 | #include "CGObjCRuntime.h" |
| 16 | #include "CGRecordLayout.h" |
| 17 | #include "CodeGenFunction.h" |
| 18 | #include "CodeGenModule.h" |
| 19 | #include "ConstantEmitter.h" |
| 20 | #include "TargetInfo.h" |
| 21 | #include "clang/AST/APValue.h" |
| 22 | #include "clang/AST/ASTContext.h" |
| 23 | #include "clang/AST/Attr.h" |
| 24 | #include "clang/AST/RecordLayout.h" |
| 25 | #include "clang/AST/StmtVisitor.h" |
| 26 | #include "clang/Basic/Builtins.h" |
| 27 | #include "llvm/ADT/STLExtras.h" |
| 28 | #include "llvm/ADT/Sequence.h" |
| 29 | #include "llvm/Analysis/ConstantFolding.h" |
| 30 | #include "llvm/IR/Constants.h" |
| 31 | #include "llvm/IR/DataLayout.h" |
| 32 | #include "llvm/IR/Function.h" |
| 33 | #include "llvm/IR/GlobalVariable.h" |
| 34 | #include <optional> |
| 35 | using namespace clang; |
| 36 | using namespace CodeGen; |
| 37 | |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | // ConstantAggregateBuilder |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | namespace { |
| 43 | class ConstExprEmitter; |
| 44 | |
| 45 | llvm::Constant *getPadding(const CodeGenModule &CGM, CharUnits PadSize) { |
| 46 | llvm::Type *Ty = CGM.CharTy; |
| 47 | if (PadSize > CharUnits::One()) |
| 48 | Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: PadSize.getQuantity()); |
| 49 | if (CGM.shouldZeroInitPadding()) { |
| 50 | return llvm::Constant::getNullValue(Ty); |
| 51 | } |
| 52 | return llvm::UndefValue::get(T: Ty); |
| 53 | } |
| 54 | |
| 55 | struct ConstantAggregateBuilderUtils { |
| 56 | CodeGenModule &CGM; |
| 57 | |
| 58 | ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} |
| 59 | |
| 60 | CharUnits getAlignment(const llvm::Constant *C) const { |
| 61 | return CharUnits::fromQuantity( |
| 62 | Quantity: CGM.getDataLayout().getABITypeAlign(Ty: C->getType())); |
| 63 | } |
| 64 | |
| 65 | CharUnits getSize(llvm::Type *Ty) const { |
| 66 | return CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getTypeAllocSize(Ty)); |
| 67 | } |
| 68 | |
| 69 | CharUnits getSize(const llvm::Constant *C) const { |
| 70 | return getSize(Ty: C->getType()); |
| 71 | } |
| 72 | |
| 73 | llvm::Constant *getPadding(CharUnits PadSize) const { |
| 74 | return ::getPadding(CGM, PadSize); |
| 75 | } |
| 76 | |
| 77 | llvm::Constant *getZeroes(CharUnits ZeroSize) const { |
| 78 | llvm::Type *Ty = llvm::ArrayType::get(ElementType: CGM.CharTy, NumElements: ZeroSize.getQuantity()); |
| 79 | return llvm::ConstantAggregateZero::get(Ty); |
| 80 | } |
| 81 | }; |
| 82 | |
| 83 | /// Incremental builder for an llvm::Constant* holding a struct or array |
| 84 | /// constant. |
| 85 | class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { |
| 86 | /// The elements of the constant. These two arrays must have the same size; |
| 87 | /// Offsets[i] describes the offset of Elems[i] within the constant. The |
| 88 | /// elements are kept in increasing offset order, and we ensure that there |
| 89 | /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). |
| 90 | /// |
| 91 | /// This may contain explicit padding elements (in order to create a |
| 92 | /// natural layout), but need not. Gaps between elements are implicitly |
| 93 | /// considered to be filled with undef. |
| 94 | llvm::SmallVector<llvm::Constant*, 32> Elems; |
| 95 | llvm::SmallVector<CharUnits, 32> Offsets; |
| 96 | |
| 97 | /// The size of the constant (the maximum end offset of any added element). |
| 98 | /// May be larger than the end of Elems.back() if we split the last element |
| 99 | /// and removed some trailing undefs. |
| 100 | CharUnits Size = CharUnits::Zero(); |
| 101 | |
| 102 | /// This is true only if laying out Elems in order as the elements of a |
| 103 | /// non-packed LLVM struct will give the correct layout. |
| 104 | bool NaturalLayout = true; |
| 105 | |
| 106 | bool split(size_t Index, CharUnits Hint); |
| 107 | std::optional<size_t> splitAt(CharUnits Pos); |
| 108 | |
| 109 | static llvm::Constant *buildFrom(CodeGenModule &CGM, |
| 110 | ArrayRef<llvm::Constant *> Elems, |
| 111 | ArrayRef<CharUnits> Offsets, |
| 112 | CharUnits StartOffset, CharUnits Size, |
| 113 | bool NaturalLayout, llvm::Type *DesiredTy, |
| 114 | bool AllowOversized); |
| 115 | |
| 116 | public: |
| 117 | ConstantAggregateBuilder(CodeGenModule &CGM) |
| 118 | : ConstantAggregateBuilderUtils(CGM) {} |
| 119 | |
| 120 | /// Update or overwrite the value starting at \p Offset with \c C. |
| 121 | /// |
| 122 | /// \param AllowOverwrite If \c true, this constant might overwrite (part of) |
| 123 | /// a constant that has already been added. This flag is only used to |
| 124 | /// detect bugs. |
| 125 | bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); |
| 126 | |
| 127 | /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. |
| 128 | bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); |
| 129 | |
| 130 | /// Attempt to condense the value starting at \p Offset to a constant of type |
| 131 | /// \p DesiredTy. |
| 132 | void condense(CharUnits Offset, llvm::Type *DesiredTy); |
| 133 | |
| 134 | /// Produce a constant representing the entire accumulated value, ideally of |
| 135 | /// the specified type. If \p AllowOversized, the constant might be larger |
| 136 | /// than implied by \p DesiredTy (eg, if there is a flexible array member). |
| 137 | /// Otherwise, the constant will be of exactly the same size as \p DesiredTy |
| 138 | /// even if we can't represent it as that type. |
| 139 | llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { |
| 140 | return buildFrom(CGM, Elems, Offsets, StartOffset: CharUnits::Zero(), Size, |
| 141 | NaturalLayout, DesiredTy, AllowOversized); |
| 142 | } |
| 143 | }; |
| 144 | |
| 145 | template<typename Container, typename Range = std::initializer_list< |
| 146 | typename Container::value_type>> |
| 147 | static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { |
| 148 | assert(BeginOff <= EndOff && "invalid replacement range" ); |
| 149 | llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); |
| 150 | } |
| 151 | |
| 152 | bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, |
| 153 | bool AllowOverwrite) { |
| 154 | // Common case: appending to a layout. |
| 155 | if (Offset >= Size) { |
| 156 | CharUnits Align = getAlignment(C); |
| 157 | CharUnits AlignedSize = Size.alignTo(Align); |
| 158 | if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) |
| 159 | NaturalLayout = false; |
| 160 | else if (AlignedSize < Offset) { |
| 161 | Elems.push_back(Elt: getPadding(PadSize: Offset - Size)); |
| 162 | Offsets.push_back(Elt: Size); |
| 163 | } |
| 164 | Elems.push_back(Elt: C); |
| 165 | Offsets.push_back(Elt: Offset); |
| 166 | Size = Offset + getSize(C); |
| 167 | return true; |
| 168 | } |
| 169 | |
| 170 | // Uncommon case: constant overlaps what we've already created. |
| 171 | std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset); |
| 172 | if (!FirstElemToReplace) |
| 173 | return false; |
| 174 | |
| 175 | CharUnits CSize = getSize(C); |
| 176 | std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + CSize); |
| 177 | if (!LastElemToReplace) |
| 178 | return false; |
| 179 | |
| 180 | assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && |
| 181 | "unexpectedly overwriting field" ); |
| 182 | |
| 183 | replace(C&: Elems, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {C}); |
| 184 | replace(C&: Offsets, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {Offset}); |
| 185 | Size = std::max(a: Size, b: Offset + CSize); |
| 186 | NaturalLayout = false; |
| 187 | return true; |
| 188 | } |
| 189 | |
| 190 | bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, |
| 191 | bool AllowOverwrite) { |
| 192 | const ASTContext &Context = CGM.getContext(); |
| 193 | const uint64_t CharWidth = CGM.getContext().getCharWidth(); |
| 194 | |
| 195 | // Offset of where we want the first bit to go within the bits of the |
| 196 | // current char. |
| 197 | unsigned OffsetWithinChar = OffsetInBits % CharWidth; |
| 198 | |
| 199 | // We split bit-fields up into individual bytes. Walk over the bytes and |
| 200 | // update them. |
| 201 | for (CharUnits OffsetInChars = |
| 202 | Context.toCharUnitsFromBits(BitSize: OffsetInBits - OffsetWithinChar); |
| 203 | /**/; ++OffsetInChars) { |
| 204 | // Number of bits we want to fill in this char. |
| 205 | unsigned WantedBits = |
| 206 | std::min(a: (uint64_t)Bits.getBitWidth(), b: CharWidth - OffsetWithinChar); |
| 207 | |
| 208 | // Get a char containing the bits we want in the right places. The other |
| 209 | // bits have unspecified values. |
| 210 | llvm::APInt BitsThisChar = Bits; |
| 211 | if (BitsThisChar.getBitWidth() < CharWidth) |
| 212 | BitsThisChar = BitsThisChar.zext(width: CharWidth); |
| 213 | if (CGM.getDataLayout().isBigEndian()) { |
| 214 | // Figure out how much to shift by. We may need to left-shift if we have |
| 215 | // less than one byte of Bits left. |
| 216 | int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; |
| 217 | if (Shift > 0) |
| 218 | BitsThisChar.lshrInPlace(ShiftAmt: Shift); |
| 219 | else if (Shift < 0) |
| 220 | BitsThisChar = BitsThisChar.shl(shiftAmt: -Shift); |
| 221 | } else { |
| 222 | BitsThisChar = BitsThisChar.shl(shiftAmt: OffsetWithinChar); |
| 223 | } |
| 224 | if (BitsThisChar.getBitWidth() > CharWidth) |
| 225 | BitsThisChar = BitsThisChar.trunc(width: CharWidth); |
| 226 | |
| 227 | if (WantedBits == CharWidth) { |
| 228 | // Got a full byte: just add it directly. |
| 229 | add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar), |
| 230 | Offset: OffsetInChars, AllowOverwrite); |
| 231 | } else { |
| 232 | // Partial byte: update the existing integer if there is one. If we |
| 233 | // can't split out a 1-CharUnit range to update, then we can't add |
| 234 | // these bits and fail the entire constant emission. |
| 235 | std::optional<size_t> FirstElemToUpdate = splitAt(Pos: OffsetInChars); |
| 236 | if (!FirstElemToUpdate) |
| 237 | return false; |
| 238 | std::optional<size_t> LastElemToUpdate = |
| 239 | splitAt(Pos: OffsetInChars + CharUnits::One()); |
| 240 | if (!LastElemToUpdate) |
| 241 | return false; |
| 242 | assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && |
| 243 | "should have at most one element covering one byte" ); |
| 244 | |
| 245 | // Figure out which bits we want and discard the rest. |
| 246 | llvm::APInt UpdateMask(CharWidth, 0); |
| 247 | if (CGM.getDataLayout().isBigEndian()) |
| 248 | UpdateMask.setBits(loBit: CharWidth - OffsetWithinChar - WantedBits, |
| 249 | hiBit: CharWidth - OffsetWithinChar); |
| 250 | else |
| 251 | UpdateMask.setBits(loBit: OffsetWithinChar, hiBit: OffsetWithinChar + WantedBits); |
| 252 | BitsThisChar &= UpdateMask; |
| 253 | |
| 254 | if (*FirstElemToUpdate == *LastElemToUpdate || |
| 255 | Elems[*FirstElemToUpdate]->isNullValue() || |
| 256 | isa<llvm::UndefValue>(Val: Elems[*FirstElemToUpdate])) { |
| 257 | // All existing bits are either zero or undef. |
| 258 | add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar), |
| 259 | Offset: OffsetInChars, /*AllowOverwrite*/ true); |
| 260 | } else { |
| 261 | llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; |
| 262 | // In order to perform a partial update, we need the existing bitwise |
| 263 | // value, which we can only extract for a constant int. |
| 264 | auto *CI = dyn_cast<llvm::ConstantInt>(Val: ToUpdate); |
| 265 | if (!CI) |
| 266 | return false; |
| 267 | // Because this is a 1-CharUnit range, the constant occupying it must |
| 268 | // be exactly one CharUnit wide. |
| 269 | assert(CI->getBitWidth() == CharWidth && "splitAt failed" ); |
| 270 | assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && |
| 271 | "unexpectedly overwriting bitfield" ); |
| 272 | BitsThisChar |= (CI->getValue() & ~UpdateMask); |
| 273 | ToUpdate = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // Stop if we've added all the bits. |
| 278 | if (WantedBits == Bits.getBitWidth()) |
| 279 | break; |
| 280 | |
| 281 | // Remove the consumed bits from Bits. |
| 282 | if (!CGM.getDataLayout().isBigEndian()) |
| 283 | Bits.lshrInPlace(ShiftAmt: WantedBits); |
| 284 | Bits = Bits.trunc(width: Bits.getBitWidth() - WantedBits); |
| 285 | |
| 286 | // The remanining bits go at the start of the following bytes. |
| 287 | OffsetWithinChar = 0; |
| 288 | } |
| 289 | |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | /// Returns a position within Elems and Offsets such that all elements |
| 294 | /// before the returned index end before Pos and all elements at or after |
| 295 | /// the returned index begin at or after Pos. Splits elements as necessary |
| 296 | /// to ensure this. Returns std::nullopt if we find something we can't split. |
| 297 | std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { |
| 298 | if (Pos >= Size) |
| 299 | return Offsets.size(); |
| 300 | |
| 301 | while (true) { |
| 302 | auto FirstAfterPos = llvm::upper_bound(Range&: Offsets, Value&: Pos); |
| 303 | if (FirstAfterPos == Offsets.begin()) |
| 304 | return 0; |
| 305 | |
| 306 | // If we already have an element starting at Pos, we're done. |
| 307 | size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; |
| 308 | if (Offsets[LastAtOrBeforePosIndex] == Pos) |
| 309 | return LastAtOrBeforePosIndex; |
| 310 | |
| 311 | // We found an element starting before Pos. Check for overlap. |
| 312 | if (Offsets[LastAtOrBeforePosIndex] + |
| 313 | getSize(C: Elems[LastAtOrBeforePosIndex]) <= Pos) |
| 314 | return LastAtOrBeforePosIndex + 1; |
| 315 | |
| 316 | // Try to decompose it into smaller constants. |
| 317 | if (!split(Index: LastAtOrBeforePosIndex, Hint: Pos)) |
| 318 | return std::nullopt; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /// Split the constant at index Index, if possible. Return true if we did. |
| 323 | /// Hint indicates the location at which we'd like to split, but may be |
| 324 | /// ignored. |
| 325 | bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { |
| 326 | NaturalLayout = false; |
| 327 | llvm::Constant *C = Elems[Index]; |
| 328 | CharUnits Offset = Offsets[Index]; |
| 329 | |
| 330 | if (auto *CA = dyn_cast<llvm::ConstantAggregate>(Val: C)) { |
| 331 | // Expand the sequence into its contained elements. |
| 332 | // FIXME: This assumes vector elements are byte-sized. |
| 333 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
| 334 | Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), |
| 335 | F: [&](unsigned Op) { return CA->getOperand(i_nocapture: Op); })); |
| 336 | if (isa<llvm::ArrayType>(Val: CA->getType()) || |
| 337 | isa<llvm::VectorType>(Val: CA->getType())) { |
| 338 | // Array or vector. |
| 339 | llvm::Type *ElemTy = |
| 340 | llvm::GetElementPtrInst::getTypeAtIndex(Ty: CA->getType(), Idx: (uint64_t)0); |
| 341 | CharUnits ElemSize = getSize(Ty: ElemTy); |
| 342 | replace( |
| 343 | C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
| 344 | Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), |
| 345 | F: [&](unsigned Op) { return Offset + Op * ElemSize; })); |
| 346 | } else { |
| 347 | // Must be a struct. |
| 348 | auto *ST = cast<llvm::StructType>(Val: CA->getType()); |
| 349 | const llvm::StructLayout *Layout = |
| 350 | CGM.getDataLayout().getStructLayout(Ty: ST); |
| 351 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
| 352 | Vals: llvm::map_range( |
| 353 | C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), F: [&](unsigned Op) { |
| 354 | return Offset + CharUnits::fromQuantity( |
| 355 | Quantity: Layout->getElementOffset(Idx: Op)); |
| 356 | })); |
| 357 | } |
| 358 | return true; |
| 359 | } |
| 360 | |
| 361 | if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(Val: C)) { |
| 362 | // Expand the sequence into its contained elements. |
| 363 | // FIXME: This assumes vector elements are byte-sized. |
| 364 | // FIXME: If possible, split into two ConstantDataSequentials at Hint. |
| 365 | CharUnits ElemSize = getSize(Ty: CDS->getElementType()); |
| 366 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
| 367 | Vals: llvm::map_range(C: llvm::seq(Begin: uint64_t(0u), End: CDS->getNumElements()), |
| 368 | F: [&](uint64_t Elem) { |
| 369 | return CDS->getElementAsConstant(i: Elem); |
| 370 | })); |
| 371 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, |
| 372 | Vals: llvm::map_range( |
| 373 | C: llvm::seq(Begin: uint64_t(0u), End: CDS->getNumElements()), |
| 374 | F: [&](uint64_t Elem) { return Offset + Elem * ElemSize; })); |
| 375 | return true; |
| 376 | } |
| 377 | |
| 378 | if (isa<llvm::ConstantAggregateZero>(Val: C)) { |
| 379 | // Split into two zeros at the hinted offset. |
| 380 | CharUnits ElemSize = getSize(C); |
| 381 | assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split" ); |
| 382 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, |
| 383 | Vals: {getZeroes(ZeroSize: Hint - Offset), getZeroes(ZeroSize: Offset + ElemSize - Hint)}); |
| 384 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {Offset, Hint}); |
| 385 | return true; |
| 386 | } |
| 387 | |
| 388 | if (isa<llvm::UndefValue>(Val: C)) { |
| 389 | // Drop undef; it doesn't contribute to the final layout. |
| 390 | replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, Vals: {}); |
| 391 | replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {}); |
| 392 | return true; |
| 393 | } |
| 394 | |
| 395 | // FIXME: We could split a ConstantInt if the need ever arose. |
| 396 | // We don't need to do this to handle bit-fields because we always eagerly |
| 397 | // split them into 1-byte chunks. |
| 398 | |
| 399 | return false; |
| 400 | } |
| 401 | |
| 402 | static llvm::Constant * |
| 403 | EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, |
| 404 | llvm::Type *CommonElementType, uint64_t ArrayBound, |
| 405 | SmallVectorImpl<llvm::Constant *> &Elements, |
| 406 | llvm::Constant *Filler); |
| 407 | |
| 408 | llvm::Constant *ConstantAggregateBuilder::buildFrom( |
| 409 | CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, |
| 410 | ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, |
| 411 | bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { |
| 412 | ConstantAggregateBuilderUtils Utils(CGM); |
| 413 | |
| 414 | if (Elems.empty()) |
| 415 | return llvm::UndefValue::get(T: DesiredTy); |
| 416 | |
| 417 | auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; |
| 418 | |
| 419 | // If we want an array type, see if all the elements are the same type and |
| 420 | // appropriately spaced. |
| 421 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(Val: DesiredTy)) { |
| 422 | assert(!AllowOversized && "oversized array emission not supported" ); |
| 423 | |
| 424 | bool CanEmitArray = true; |
| 425 | llvm::Type *CommonType = Elems[0]->getType(); |
| 426 | llvm::Constant *Filler = llvm::Constant::getNullValue(Ty: CommonType); |
| 427 | CharUnits ElemSize = Utils.getSize(Ty: ATy->getElementType()); |
| 428 | SmallVector<llvm::Constant*, 32> ArrayElements; |
| 429 | for (size_t I = 0; I != Elems.size(); ++I) { |
| 430 | // Skip zeroes; we'll use a zero value as our array filler. |
| 431 | if (Elems[I]->isNullValue()) |
| 432 | continue; |
| 433 | |
| 434 | // All remaining elements must be the same type. |
| 435 | if (Elems[I]->getType() != CommonType || |
| 436 | Offset(I) % ElemSize != 0) { |
| 437 | CanEmitArray = false; |
| 438 | break; |
| 439 | } |
| 440 | ArrayElements.resize(N: Offset(I) / ElemSize + 1, NV: Filler); |
| 441 | ArrayElements.back() = Elems[I]; |
| 442 | } |
| 443 | |
| 444 | if (CanEmitArray) { |
| 445 | return EmitArrayConstant(CGM, DesiredType: ATy, CommonElementType: CommonType, ArrayBound: ATy->getNumElements(), |
| 446 | Elements&: ArrayElements, Filler); |
| 447 | } |
| 448 | |
| 449 | // Can't emit as an array, carry on to emit as a struct. |
| 450 | } |
| 451 | |
| 452 | // The size of the constant we plan to generate. This is usually just |
| 453 | // the size of the initialized type, but in AllowOversized mode (i.e. |
| 454 | // flexible array init), it can be larger. |
| 455 | CharUnits DesiredSize = Utils.getSize(Ty: DesiredTy); |
| 456 | if (Size > DesiredSize) { |
| 457 | assert(AllowOversized && "Elems are oversized" ); |
| 458 | DesiredSize = Size; |
| 459 | } |
| 460 | |
| 461 | // The natural alignment of an unpacked LLVM struct with the given elements. |
| 462 | CharUnits Align = CharUnits::One(); |
| 463 | for (llvm::Constant *C : Elems) |
| 464 | Align = std::max(a: Align, b: Utils.getAlignment(C)); |
| 465 | |
| 466 | // The natural size of an unpacked LLVM struct with the given elements. |
| 467 | CharUnits AlignedSize = Size.alignTo(Align); |
| 468 | |
| 469 | bool Packed = false; |
| 470 | ArrayRef<llvm::Constant*> UnpackedElems = Elems; |
| 471 | llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; |
| 472 | if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { |
| 473 | // The natural layout would be too big; force use of a packed layout. |
| 474 | NaturalLayout = false; |
| 475 | Packed = true; |
| 476 | } else if (DesiredSize > AlignedSize) { |
| 477 | // The natural layout would be too small. Add padding to fix it. (This |
| 478 | // is ignored if we choose a packed layout.) |
| 479 | UnpackedElemStorage.assign(in_start: Elems.begin(), in_end: Elems.end()); |
| 480 | UnpackedElemStorage.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - Size)); |
| 481 | UnpackedElems = UnpackedElemStorage; |
| 482 | } |
| 483 | |
| 484 | // If we don't have a natural layout, insert padding as necessary. |
| 485 | // As we go, double-check to see if we can actually just emit Elems |
| 486 | // as a non-packed struct and do so opportunistically if possible. |
| 487 | llvm::SmallVector<llvm::Constant*, 32> PackedElems; |
| 488 | if (!NaturalLayout) { |
| 489 | CharUnits SizeSoFar = CharUnits::Zero(); |
| 490 | for (size_t I = 0; I != Elems.size(); ++I) { |
| 491 | CharUnits Align = Utils.getAlignment(C: Elems[I]); |
| 492 | CharUnits NaturalOffset = SizeSoFar.alignTo(Align); |
| 493 | CharUnits DesiredOffset = Offset(I); |
| 494 | assert(DesiredOffset >= SizeSoFar && "elements out of order" ); |
| 495 | |
| 496 | if (DesiredOffset != NaturalOffset) |
| 497 | Packed = true; |
| 498 | if (DesiredOffset != SizeSoFar) |
| 499 | PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredOffset - SizeSoFar)); |
| 500 | PackedElems.push_back(Elt: Elems[I]); |
| 501 | SizeSoFar = DesiredOffset + Utils.getSize(C: Elems[I]); |
| 502 | } |
| 503 | // If we're using the packed layout, pad it out to the desired size if |
| 504 | // necessary. |
| 505 | if (Packed) { |
| 506 | assert(SizeSoFar <= DesiredSize && |
| 507 | "requested size is too small for contents" ); |
| 508 | if (SizeSoFar < DesiredSize) |
| 509 | PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - SizeSoFar)); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( |
| 514 | Ctx&: CGM.getLLVMContext(), V: Packed ? PackedElems : UnpackedElems, Packed); |
| 515 | |
| 516 | // Pick the type to use. If the type is layout identical to the desired |
| 517 | // type then use it, otherwise use whatever the builder produced for us. |
| 518 | if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(Val: DesiredTy)) { |
| 519 | if (DesiredSTy->isLayoutIdentical(Other: STy)) |
| 520 | STy = DesiredSTy; |
| 521 | } |
| 522 | |
| 523 | return llvm::ConstantStruct::get(T: STy, V: Packed ? PackedElems : UnpackedElems); |
| 524 | } |
| 525 | |
| 526 | void ConstantAggregateBuilder::condense(CharUnits Offset, |
| 527 | llvm::Type *DesiredTy) { |
| 528 | CharUnits Size = getSize(Ty: DesiredTy); |
| 529 | |
| 530 | std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset); |
| 531 | if (!FirstElemToReplace) |
| 532 | return; |
| 533 | size_t First = *FirstElemToReplace; |
| 534 | |
| 535 | std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + Size); |
| 536 | if (!LastElemToReplace) |
| 537 | return; |
| 538 | size_t Last = *LastElemToReplace; |
| 539 | |
| 540 | size_t Length = Last - First; |
| 541 | if (Length == 0) |
| 542 | return; |
| 543 | |
| 544 | if (Length == 1 && Offsets[First] == Offset && |
| 545 | getSize(C: Elems[First]) == Size) { |
| 546 | // Re-wrap single element structs if necessary. Otherwise, leave any single |
| 547 | // element constant of the right size alone even if it has the wrong type. |
| 548 | auto *STy = dyn_cast<llvm::StructType>(Val: DesiredTy); |
| 549 | if (STy && STy->getNumElements() == 1 && |
| 550 | STy->getElementType(N: 0) == Elems[First]->getType()) |
| 551 | Elems[First] = llvm::ConstantStruct::get(T: STy, Vs: Elems[First]); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | llvm::Constant *Replacement = buildFrom( |
| 556 | CGM, Elems: ArrayRef(Elems).slice(N: First, M: Length), |
| 557 | Offsets: ArrayRef(Offsets).slice(N: First, M: Length), StartOffset: Offset, Size: getSize(Ty: DesiredTy), |
| 558 | /*known to have natural layout=*/NaturalLayout: false, DesiredTy, AllowOversized: false); |
| 559 | replace(C&: Elems, BeginOff: First, EndOff: Last, Vals: {Replacement}); |
| 560 | replace(C&: Offsets, BeginOff: First, EndOff: Last, Vals: {Offset}); |
| 561 | } |
| 562 | |
| 563 | //===----------------------------------------------------------------------===// |
| 564 | // ConstStructBuilder |
| 565 | //===----------------------------------------------------------------------===// |
| 566 | |
| 567 | class ConstStructBuilder { |
| 568 | CodeGenModule &CGM; |
| 569 | ConstantEmitter &Emitter; |
| 570 | ConstantAggregateBuilder &Builder; |
| 571 | CharUnits StartOffset; |
| 572 | |
| 573 | public: |
| 574 | static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, |
| 575 | const InitListExpr *ILE, |
| 576 | QualType StructTy); |
| 577 | static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, |
| 578 | const APValue &Value, QualType ValTy); |
| 579 | static bool UpdateStruct(ConstantEmitter &Emitter, |
| 580 | ConstantAggregateBuilder &Const, CharUnits Offset, |
| 581 | const InitListExpr *Updater); |
| 582 | |
| 583 | private: |
| 584 | ConstStructBuilder(ConstantEmitter &Emitter, |
| 585 | ConstantAggregateBuilder &Builder, CharUnits StartOffset) |
| 586 | : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), |
| 587 | StartOffset(StartOffset) {} |
| 588 | |
| 589 | bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, |
| 590 | llvm::Constant *InitExpr, bool AllowOverwrite = false); |
| 591 | |
| 592 | bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, |
| 593 | bool AllowOverwrite = false); |
| 594 | |
| 595 | bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, |
| 596 | llvm::Constant *InitExpr, bool AllowOverwrite = false); |
| 597 | |
| 598 | bool Build(const InitListExpr *ILE, bool AllowOverwrite); |
| 599 | bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, |
| 600 | const CXXRecordDecl *VTableClass, CharUnits BaseOffset); |
| 601 | bool DoZeroInitPadding(const ASTRecordLayout &Layout, unsigned FieldNo, |
| 602 | const FieldDecl &Field, bool AllowOverwrite, |
| 603 | CharUnits &SizeSoFar, bool &ZeroFieldSize); |
| 604 | bool DoZeroInitPadding(const ASTRecordLayout &Layout, bool AllowOverwrite, |
| 605 | CharUnits SizeSoFar); |
| 606 | llvm::Constant *Finalize(QualType Ty); |
| 607 | }; |
| 608 | |
| 609 | bool ConstStructBuilder::AppendField( |
| 610 | const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, |
| 611 | bool AllowOverwrite) { |
| 612 | const ASTContext &Context = CGM.getContext(); |
| 613 | |
| 614 | CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(BitSize: FieldOffset); |
| 615 | |
| 616 | return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); |
| 617 | } |
| 618 | |
| 619 | bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, |
| 620 | llvm::Constant *InitCst, |
| 621 | bool AllowOverwrite) { |
| 622 | return Builder.add(C: InitCst, Offset: StartOffset + FieldOffsetInChars, AllowOverwrite); |
| 623 | } |
| 624 | |
| 625 | bool ConstStructBuilder::AppendBitField(const FieldDecl *Field, |
| 626 | uint64_t FieldOffset, llvm::Constant *C, |
| 627 | bool AllowOverwrite) { |
| 628 | |
| 629 | llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(Val: C); |
| 630 | if (!CI) { |
| 631 | // Constants for long _BitInt types are sometimes split into individual |
| 632 | // bytes. Try to fold these back into an integer constant. If that doesn't |
| 633 | // work out, then we are trying to initialize a bitfield with a non-trivial |
| 634 | // constant, this must require run-time code. |
| 635 | llvm::Type *LoadType = |
| 636 | CGM.getTypes().convertTypeForLoadStore(T: Field->getType(), LLVMTy: C->getType()); |
| 637 | llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst( |
| 638 | C, Ty: LoadType, Offset: llvm::APInt::getZero(numBits: 32), DL: CGM.getDataLayout()); |
| 639 | CI = dyn_cast_if_present<llvm::ConstantInt>(Val: FoldedConstant); |
| 640 | if (!CI) |
| 641 | return false; |
| 642 | } |
| 643 | |
| 644 | const CGRecordLayout &RL = |
| 645 | CGM.getTypes().getCGRecordLayout(Field->getParent()); |
| 646 | const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD: Field); |
| 647 | llvm::APInt FieldValue = CI->getValue(); |
| 648 | |
| 649 | // Promote the size of FieldValue if necessary |
| 650 | // FIXME: This should never occur, but currently it can because initializer |
| 651 | // constants are cast to bool, and because clang is not enforcing bitfield |
| 652 | // width limits. |
| 653 | if (Info.Size > FieldValue.getBitWidth()) |
| 654 | FieldValue = FieldValue.zext(width: Info.Size); |
| 655 | |
| 656 | // Truncate the size of FieldValue to the bit field size. |
| 657 | if (Info.Size < FieldValue.getBitWidth()) |
| 658 | FieldValue = FieldValue.trunc(width: Info.Size); |
| 659 | |
| 660 | return Builder.addBits(Bits: FieldValue, |
| 661 | OffsetInBits: CGM.getContext().toBits(CharSize: StartOffset) + FieldOffset, |
| 662 | AllowOverwrite); |
| 663 | } |
| 664 | |
| 665 | static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, |
| 666 | ConstantAggregateBuilder &Const, |
| 667 | CharUnits Offset, QualType Type, |
| 668 | const InitListExpr *Updater) { |
| 669 | if (Type->isRecordType()) |
| 670 | return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); |
| 671 | |
| 672 | auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(T: Type); |
| 673 | if (!CAT) |
| 674 | return false; |
| 675 | QualType ElemType = CAT->getElementType(); |
| 676 | CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(T: ElemType); |
| 677 | llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(T: ElemType); |
| 678 | |
| 679 | llvm::Constant *FillC = nullptr; |
| 680 | if (const Expr *Filler = Updater->getArrayFiller()) { |
| 681 | if (!isa<NoInitExpr>(Val: Filler)) { |
| 682 | FillC = Emitter.tryEmitAbstractForMemory(E: Filler, T: ElemType); |
| 683 | if (!FillC) |
| 684 | return false; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | unsigned NumElementsToUpdate = |
| 689 | FillC ? CAT->getZExtSize() : Updater->getNumInits(); |
| 690 | for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { |
| 691 | const Expr *Init = nullptr; |
| 692 | if (I < Updater->getNumInits()) |
| 693 | Init = Updater->getInit(Init: I); |
| 694 | |
| 695 | if (!Init && FillC) { |
| 696 | if (!Const.add(C: FillC, Offset, AllowOverwrite: true)) |
| 697 | return false; |
| 698 | } else if (!Init || isa<NoInitExpr>(Val: Init)) { |
| 699 | continue; |
| 700 | } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Val: Init)) { |
| 701 | if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, Type: ElemType, |
| 702 | Updater: ChildILE)) |
| 703 | return false; |
| 704 | // Attempt to reduce the array element to a single constant if necessary. |
| 705 | Const.condense(Offset, DesiredTy: ElemTy); |
| 706 | } else { |
| 707 | llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(E: Init, T: ElemType); |
| 708 | if (!Const.add(C: Val, Offset, AllowOverwrite: true)) |
| 709 | return false; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) { |
| 717 | RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); |
| 718 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD); |
| 719 | |
| 720 | unsigned FieldNo = -1; |
| 721 | unsigned ElementNo = 0; |
| 722 | |
| 723 | // Bail out if we have base classes. We could support these, but they only |
| 724 | // arise in C++1z where we will have already constant folded most interesting |
| 725 | // cases. FIXME: There are still a few more cases we can handle this way. |
| 726 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 727 | if (CXXRD->getNumBases()) |
| 728 | return false; |
| 729 | |
| 730 | const bool ZeroInitPadding = CGM.shouldZeroInitPadding(); |
| 731 | bool ZeroFieldSize = false; |
| 732 | CharUnits SizeSoFar = CharUnits::Zero(); |
| 733 | |
| 734 | for (FieldDecl *Field : RD->fields()) { |
| 735 | ++FieldNo; |
| 736 | |
| 737 | // If this is a union, skip all the fields that aren't being initialized. |
| 738 | if (RD->isUnion() && |
| 739 | !declaresSameEntity(D1: ILE->getInitializedFieldInUnion(), D2: Field)) |
| 740 | continue; |
| 741 | |
| 742 | // Don't emit anonymous bitfields. |
| 743 | if (Field->isUnnamedBitField()) |
| 744 | continue; |
| 745 | |
| 746 | // Get the initializer. A struct can include fields without initializers, |
| 747 | // we just use explicit null values for them. |
| 748 | const Expr *Init = nullptr; |
| 749 | if (ElementNo < ILE->getNumInits()) |
| 750 | Init = ILE->getInit(Init: ElementNo++); |
| 751 | if (isa_and_nonnull<NoInitExpr>(Val: Init)) { |
| 752 | if (ZeroInitPadding && |
| 753 | !DoZeroInitPadding(Layout, FieldNo, Field: *Field, AllowOverwrite, SizeSoFar, |
| 754 | ZeroFieldSize)) |
| 755 | return false; |
| 756 | continue; |
| 757 | } |
| 758 | |
| 759 | // Zero-sized fields are not emitted, but their initializers may still |
| 760 | // prevent emission of this struct as a constant. |
| 761 | if (isEmptyFieldForLayout(Context: CGM.getContext(), FD: Field)) { |
| 762 | if (Init && Init->HasSideEffects(Ctx: CGM.getContext())) |
| 763 | return false; |
| 764 | continue; |
| 765 | } |
| 766 | |
| 767 | if (ZeroInitPadding && |
| 768 | !DoZeroInitPadding(Layout, FieldNo, Field: *Field, AllowOverwrite, SizeSoFar, |
| 769 | ZeroFieldSize)) |
| 770 | return false; |
| 771 | |
| 772 | // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr |
| 773 | // represents additional overwriting of our current constant value, and not |
| 774 | // a new constant to emit independently. |
| 775 | if (AllowOverwrite && |
| 776 | (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { |
| 777 | if (auto *SubILE = dyn_cast<InitListExpr>(Val: Init)) { |
| 778 | CharUnits Offset = CGM.getContext().toCharUnitsFromBits( |
| 779 | BitSize: Layout.getFieldOffset(FieldNo)); |
| 780 | if (!EmitDesignatedInitUpdater(Emitter, Const&: Builder, Offset: StartOffset + Offset, |
| 781 | Type: Field->getType(), Updater: SubILE)) |
| 782 | return false; |
| 783 | // If we split apart the field's value, try to collapse it down to a |
| 784 | // single value now. |
| 785 | Builder.condense(Offset: StartOffset + Offset, |
| 786 | DesiredTy: CGM.getTypes().ConvertTypeForMem(T: Field->getType())); |
| 787 | continue; |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | llvm::Constant *EltInit = |
| 792 | Init ? Emitter.tryEmitPrivateForMemory(E: Init, T: Field->getType()) |
| 793 | : Emitter.emitNullForMemory(T: Field->getType()); |
| 794 | if (!EltInit) |
| 795 | return false; |
| 796 | |
| 797 | if (ZeroInitPadding && ZeroFieldSize) |
| 798 | SizeSoFar += CharUnits::fromQuantity( |
| 799 | Quantity: CGM.getDataLayout().getTypeAllocSize(Ty: EltInit->getType())); |
| 800 | |
| 801 | if (!Field->isBitField()) { |
| 802 | // Handle non-bitfield members. |
| 803 | if (!AppendField(Field, FieldOffset: Layout.getFieldOffset(FieldNo), InitCst: EltInit, |
| 804 | AllowOverwrite)) |
| 805 | return false; |
| 806 | // After emitting a non-empty field with [[no_unique_address]], we may |
| 807 | // need to overwrite its tail padding. |
| 808 | if (Field->hasAttr<NoUniqueAddressAttr>()) |
| 809 | AllowOverwrite = true; |
| 810 | } else { |
| 811 | // Otherwise we have a bitfield. |
| 812 | if (!AppendBitField(Field, FieldOffset: Layout.getFieldOffset(FieldNo), C: EltInit, |
| 813 | AllowOverwrite)) |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar)) |
| 819 | return false; |
| 820 | |
| 821 | return true; |
| 822 | } |
| 823 | |
| 824 | namespace { |
| 825 | struct BaseInfo { |
| 826 | BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) |
| 827 | : Decl(Decl), Offset(Offset), Index(Index) { |
| 828 | } |
| 829 | |
| 830 | const CXXRecordDecl *Decl; |
| 831 | CharUnits Offset; |
| 832 | unsigned Index; |
| 833 | |
| 834 | bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } |
| 835 | }; |
| 836 | } |
| 837 | |
| 838 | bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, |
| 839 | bool IsPrimaryBase, |
| 840 | const CXXRecordDecl *VTableClass, |
| 841 | CharUnits Offset) { |
| 842 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD); |
| 843 | |
| 844 | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 845 | // Add a vtable pointer, if we need one and it hasn't already been added. |
| 846 | if (Layout.hasOwnVFPtr()) { |
| 847 | llvm::Constant *VTableAddressPoint = |
| 848 | CGM.getCXXABI().getVTableAddressPoint(Base: BaseSubobject(CD, Offset), |
| 849 | VTableClass); |
| 850 | if (auto Authentication = CGM.getVTablePointerAuthentication(thisClass: CD)) { |
| 851 | VTableAddressPoint = Emitter.tryEmitConstantSignedPointer( |
| 852 | Ptr: VTableAddressPoint, Auth: *Authentication); |
| 853 | if (!VTableAddressPoint) |
| 854 | return false; |
| 855 | } |
| 856 | if (!AppendBytes(FieldOffsetInChars: Offset, InitCst: VTableAddressPoint)) |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | // Accumulate and sort bases, in order to visit them in address order, which |
| 861 | // may not be the same as declaration order. |
| 862 | SmallVector<BaseInfo, 8> Bases; |
| 863 | Bases.reserve(N: CD->getNumBases()); |
| 864 | unsigned BaseNo = 0; |
| 865 | for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), |
| 866 | BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { |
| 867 | assert(!Base->isVirtual() && "should not have virtual bases here" ); |
| 868 | const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); |
| 869 | CharUnits BaseOffset = Layout.getBaseClassOffset(Base: BD); |
| 870 | Bases.push_back(Elt: BaseInfo(BD, BaseOffset, BaseNo)); |
| 871 | } |
| 872 | llvm::stable_sort(Range&: Bases); |
| 873 | |
| 874 | for (const BaseInfo &Base : Bases) { |
| 875 | bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; |
| 876 | Build(Val: Val.getStructBase(i: Base.Index), RD: Base.Decl, IsPrimaryBase, |
| 877 | VTableClass, Offset: Offset + Base.Offset); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | unsigned FieldNo = 0; |
| 882 | uint64_t OffsetBits = CGM.getContext().toBits(CharSize: Offset); |
| 883 | const bool ZeroInitPadding = CGM.shouldZeroInitPadding(); |
| 884 | bool ZeroFieldSize = false; |
| 885 | CharUnits SizeSoFar = CharUnits::Zero(); |
| 886 | |
| 887 | bool AllowOverwrite = false; |
| 888 | for (RecordDecl::field_iterator Field = RD->field_begin(), |
| 889 | FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { |
| 890 | // If this is a union, skip all the fields that aren't being initialized. |
| 891 | if (RD->isUnion() && !declaresSameEntity(D1: Val.getUnionField(), D2: *Field)) |
| 892 | continue; |
| 893 | |
| 894 | // Don't emit anonymous bitfields or zero-sized fields. |
| 895 | if (Field->isUnnamedBitField() || |
| 896 | isEmptyFieldForLayout(Context: CGM.getContext(), FD: *Field)) |
| 897 | continue; |
| 898 | |
| 899 | // Emit the value of the initializer. |
| 900 | const APValue &FieldValue = |
| 901 | RD->isUnion() ? Val.getUnionValue() : Val.getStructField(i: FieldNo); |
| 902 | llvm::Constant *EltInit = |
| 903 | Emitter.tryEmitPrivateForMemory(value: FieldValue, T: Field->getType()); |
| 904 | if (!EltInit) |
| 905 | return false; |
| 906 | |
| 907 | if (ZeroInitPadding) { |
| 908 | if (!DoZeroInitPadding(Layout, FieldNo, Field: **Field, AllowOverwrite, |
| 909 | SizeSoFar, ZeroFieldSize)) |
| 910 | return false; |
| 911 | if (ZeroFieldSize) |
| 912 | SizeSoFar += CharUnits::fromQuantity( |
| 913 | Quantity: CGM.getDataLayout().getTypeAllocSize(Ty: EltInit->getType())); |
| 914 | } |
| 915 | |
| 916 | if (!Field->isBitField()) { |
| 917 | // Handle non-bitfield members. |
| 918 | if (!AppendField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits, |
| 919 | InitCst: EltInit, AllowOverwrite)) |
| 920 | return false; |
| 921 | // After emitting a non-empty field with [[no_unique_address]], we may |
| 922 | // need to overwrite its tail padding. |
| 923 | if (Field->hasAttr<NoUniqueAddressAttr>()) |
| 924 | AllowOverwrite = true; |
| 925 | } else { |
| 926 | // Otherwise we have a bitfield. |
| 927 | if (!AppendBitField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits, |
| 928 | C: EltInit, AllowOverwrite)) |
| 929 | return false; |
| 930 | } |
| 931 | } |
| 932 | if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar)) |
| 933 | return false; |
| 934 | |
| 935 | return true; |
| 936 | } |
| 937 | |
| 938 | bool ConstStructBuilder::DoZeroInitPadding( |
| 939 | const ASTRecordLayout &Layout, unsigned FieldNo, const FieldDecl &Field, |
| 940 | bool AllowOverwrite, CharUnits &SizeSoFar, bool &ZeroFieldSize) { |
| 941 | uint64_t StartBitOffset = Layout.getFieldOffset(FieldNo); |
| 942 | CharUnits StartOffset = CGM.getContext().toCharUnitsFromBits(BitSize: StartBitOffset); |
| 943 | if (SizeSoFar < StartOffset) |
| 944 | if (!AppendBytes(FieldOffsetInChars: SizeSoFar, InitCst: getPadding(CGM, PadSize: StartOffset - SizeSoFar), |
| 945 | AllowOverwrite)) |
| 946 | return false; |
| 947 | |
| 948 | if (!Field.isBitField()) { |
| 949 | CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(T: Field.getType()); |
| 950 | SizeSoFar = StartOffset + FieldSize; |
| 951 | ZeroFieldSize = FieldSize.isZero(); |
| 952 | } else { |
| 953 | const CGRecordLayout &RL = |
| 954 | CGM.getTypes().getCGRecordLayout(Field.getParent()); |
| 955 | const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD: &Field); |
| 956 | uint64_t EndBitOffset = StartBitOffset + Info.Size; |
| 957 | SizeSoFar = CGM.getContext().toCharUnitsFromBits(BitSize: EndBitOffset); |
| 958 | if (EndBitOffset % CGM.getContext().getCharWidth() != 0) { |
| 959 | SizeSoFar++; |
| 960 | } |
| 961 | ZeroFieldSize = Info.Size == 0; |
| 962 | } |
| 963 | return true; |
| 964 | } |
| 965 | |
| 966 | bool ConstStructBuilder::DoZeroInitPadding(const ASTRecordLayout &Layout, |
| 967 | bool AllowOverwrite, |
| 968 | CharUnits SizeSoFar) { |
| 969 | CharUnits TotalSize = Layout.getSize(); |
| 970 | if (SizeSoFar < TotalSize) |
| 971 | if (!AppendBytes(FieldOffsetInChars: SizeSoFar, InitCst: getPadding(CGM, PadSize: TotalSize - SizeSoFar), |
| 972 | AllowOverwrite)) |
| 973 | return false; |
| 974 | SizeSoFar = TotalSize; |
| 975 | return true; |
| 976 | } |
| 977 | |
| 978 | llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { |
| 979 | Type = Type.getNonReferenceType(); |
| 980 | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
| 981 | llvm::Type *ValTy = CGM.getTypes().ConvertType(T: Type); |
| 982 | return Builder.build(DesiredTy: ValTy, AllowOversized: RD->hasFlexibleArrayMember()); |
| 983 | } |
| 984 | |
| 985 | llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, |
| 986 | const InitListExpr *ILE, |
| 987 | QualType ValTy) { |
| 988 | ConstantAggregateBuilder Const(Emitter.CGM); |
| 989 | ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); |
| 990 | |
| 991 | if (!Builder.Build(ILE, /*AllowOverwrite*/false)) |
| 992 | return nullptr; |
| 993 | |
| 994 | return Builder.Finalize(Type: ValTy); |
| 995 | } |
| 996 | |
| 997 | llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, |
| 998 | const APValue &Val, |
| 999 | QualType ValTy) { |
| 1000 | ConstantAggregateBuilder Const(Emitter.CGM); |
| 1001 | ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); |
| 1002 | |
| 1003 | const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); |
| 1004 | const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD); |
| 1005 | if (!Builder.Build(Val, RD, IsPrimaryBase: false, VTableClass: CD, Offset: CharUnits::Zero())) |
| 1006 | return nullptr; |
| 1007 | |
| 1008 | return Builder.Finalize(Type: ValTy); |
| 1009 | } |
| 1010 | |
| 1011 | bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, |
| 1012 | ConstantAggregateBuilder &Const, |
| 1013 | CharUnits Offset, |
| 1014 | const InitListExpr *Updater) { |
| 1015 | return ConstStructBuilder(Emitter, Const, Offset) |
| 1016 | .Build(ILE: Updater, /*AllowOverwrite*/ true); |
| 1017 | } |
| 1018 | |
| 1019 | //===----------------------------------------------------------------------===// |
| 1020 | // ConstExprEmitter |
| 1021 | //===----------------------------------------------------------------------===// |
| 1022 | |
| 1023 | static ConstantAddress |
| 1024 | tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter, |
| 1025 | const CompoundLiteralExpr *E) { |
| 1026 | CodeGenModule &CGM = emitter.CGM; |
| 1027 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: E->getType()); |
| 1028 | if (llvm::GlobalVariable *Addr = |
| 1029 | CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) |
| 1030 | return ConstantAddress(Addr, Addr->getValueType(), Align); |
| 1031 | |
| 1032 | LangAS addressSpace = E->getType().getAddressSpace(); |
| 1033 | llvm::Constant *C = emitter.tryEmitForInitializer(E: E->getInitializer(), |
| 1034 | destAddrSpace: addressSpace, destType: E->getType()); |
| 1035 | if (!C) { |
| 1036 | assert(!E->isFileScope() && |
| 1037 | "file-scope compound literal did not have constant initializer!" ); |
| 1038 | return ConstantAddress::invalid(); |
| 1039 | } |
| 1040 | |
| 1041 | auto GV = new llvm::GlobalVariable( |
| 1042 | CGM.getModule(), C->getType(), |
| 1043 | E->getType().isConstantStorage(Ctx: CGM.getContext(), ExcludeCtor: true, ExcludeDtor: false), |
| 1044 | llvm::GlobalValue::InternalLinkage, C, ".compoundliteral" , nullptr, |
| 1045 | llvm::GlobalVariable::NotThreadLocal, |
| 1046 | CGM.getContext().getTargetAddressSpace(AS: addressSpace)); |
| 1047 | emitter.finalize(global: GV); |
| 1048 | GV->setAlignment(Align.getAsAlign()); |
| 1049 | CGM.setAddrOfConstantCompoundLiteral(CLE: E, GV); |
| 1050 | return ConstantAddress(GV, GV->getValueType(), Align); |
| 1051 | } |
| 1052 | |
| 1053 | static llvm::Constant * |
| 1054 | EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, |
| 1055 | llvm::Type *CommonElementType, uint64_t ArrayBound, |
| 1056 | SmallVectorImpl<llvm::Constant *> &Elements, |
| 1057 | llvm::Constant *Filler) { |
| 1058 | // Figure out how long the initial prefix of non-zero elements is. |
| 1059 | uint64_t NonzeroLength = ArrayBound; |
| 1060 | if (Elements.size() < NonzeroLength && Filler->isNullValue()) |
| 1061 | NonzeroLength = Elements.size(); |
| 1062 | if (NonzeroLength == Elements.size()) { |
| 1063 | while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) |
| 1064 | --NonzeroLength; |
| 1065 | } |
| 1066 | |
| 1067 | if (NonzeroLength == 0) |
| 1068 | return llvm::ConstantAggregateZero::get(Ty: DesiredType); |
| 1069 | |
| 1070 | // Add a zeroinitializer array filler if we have lots of trailing zeroes. |
| 1071 | uint64_t TrailingZeroes = ArrayBound - NonzeroLength; |
| 1072 | if (TrailingZeroes >= 8) { |
| 1073 | assert(Elements.size() >= NonzeroLength && |
| 1074 | "missing initializer for non-zero element" ); |
| 1075 | |
| 1076 | // If all the elements had the same type up to the trailing zeroes, emit a |
| 1077 | // struct of two arrays (the nonzero data and the zeroinitializer). |
| 1078 | if (CommonElementType && NonzeroLength >= 8) { |
| 1079 | llvm::Constant *Initial = llvm::ConstantArray::get( |
| 1080 | T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: NonzeroLength), |
| 1081 | V: ArrayRef(Elements).take_front(N: NonzeroLength)); |
| 1082 | Elements.resize(N: 2); |
| 1083 | Elements[0] = Initial; |
| 1084 | } else { |
| 1085 | Elements.resize(N: NonzeroLength + 1); |
| 1086 | } |
| 1087 | |
| 1088 | auto *FillerType = |
| 1089 | CommonElementType ? CommonElementType : DesiredType->getElementType(); |
| 1090 | FillerType = llvm::ArrayType::get(ElementType: FillerType, NumElements: TrailingZeroes); |
| 1091 | Elements.back() = llvm::ConstantAggregateZero::get(Ty: FillerType); |
| 1092 | CommonElementType = nullptr; |
| 1093 | } else if (Elements.size() != ArrayBound) { |
| 1094 | // Otherwise pad to the right size with the filler if necessary. |
| 1095 | Elements.resize(N: ArrayBound, NV: Filler); |
| 1096 | if (Filler->getType() != CommonElementType) |
| 1097 | CommonElementType = nullptr; |
| 1098 | } |
| 1099 | |
| 1100 | // If all elements have the same type, just emit an array constant. |
| 1101 | if (CommonElementType) |
| 1102 | return llvm::ConstantArray::get( |
| 1103 | T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: ArrayBound), V: Elements); |
| 1104 | |
| 1105 | // We have mixed types. Use a packed struct. |
| 1106 | llvm::SmallVector<llvm::Type *, 16> Types; |
| 1107 | Types.reserve(N: Elements.size()); |
| 1108 | for (llvm::Constant *Elt : Elements) |
| 1109 | Types.push_back(Elt: Elt->getType()); |
| 1110 | llvm::StructType *SType = |
| 1111 | llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: Types, isPacked: true); |
| 1112 | return llvm::ConstantStruct::get(T: SType, V: Elements); |
| 1113 | } |
| 1114 | |
| 1115 | // This class only needs to handle arrays, structs and unions. Outside C++11 |
| 1116 | // mode, we don't currently constant fold those types. All other types are |
| 1117 | // handled by constant folding. |
| 1118 | // |
| 1119 | // Constant folding is currently missing support for a few features supported |
| 1120 | // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. |
| 1121 | class ConstExprEmitter |
| 1122 | : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> { |
| 1123 | CodeGenModule &CGM; |
| 1124 | ConstantEmitter &Emitter; |
| 1125 | llvm::LLVMContext &VMContext; |
| 1126 | public: |
| 1127 | ConstExprEmitter(ConstantEmitter &emitter) |
| 1128 | : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { |
| 1129 | } |
| 1130 | |
| 1131 | //===--------------------------------------------------------------------===// |
| 1132 | // Visitor Methods |
| 1133 | //===--------------------------------------------------------------------===// |
| 1134 | |
| 1135 | llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; } |
| 1136 | |
| 1137 | llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) { |
| 1138 | if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) |
| 1139 | return Result; |
| 1140 | return Visit(S: CE->getSubExpr(), P: T); |
| 1141 | } |
| 1142 | |
| 1143 | llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) { |
| 1144 | return Visit(S: PE->getSubExpr(), P: T); |
| 1145 | } |
| 1146 | |
| 1147 | llvm::Constant * |
| 1148 | VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE, |
| 1149 | QualType T) { |
| 1150 | return Visit(S: PE->getReplacement(), P: T); |
| 1151 | } |
| 1152 | |
| 1153 | llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE, |
| 1154 | QualType T) { |
| 1155 | return Visit(S: GE->getResultExpr(), P: T); |
| 1156 | } |
| 1157 | |
| 1158 | llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) { |
| 1159 | return Visit(S: CE->getChosenSubExpr(), P: T); |
| 1160 | } |
| 1161 | |
| 1162 | llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E, |
| 1163 | QualType T) { |
| 1164 | return Visit(S: E->getInitializer(), P: T); |
| 1165 | } |
| 1166 | |
| 1167 | llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) { |
| 1168 | QualType FromType = E->getType(); |
| 1169 | // See also HandleIntToIntCast in ExprConstant.cpp |
| 1170 | if (FromType->isIntegerType()) |
| 1171 | if (llvm::Constant *C = Visit(S: E, P: FromType)) |
| 1172 | if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: C)) { |
| 1173 | unsigned SrcWidth = CGM.getContext().getIntWidth(T: FromType); |
| 1174 | unsigned DstWidth = CGM.getContext().getIntWidth(T: DestType); |
| 1175 | if (DstWidth == SrcWidth) |
| 1176 | return CI; |
| 1177 | llvm::APInt A = FromType->isSignedIntegerType() |
| 1178 | ? CI->getValue().sextOrTrunc(width: DstWidth) |
| 1179 | : CI->getValue().zextOrTrunc(width: DstWidth); |
| 1180 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: A); |
| 1181 | } |
| 1182 | return nullptr; |
| 1183 | } |
| 1184 | |
| 1185 | llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) { |
| 1186 | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Val: E)) |
| 1187 | CGM.EmitExplicitCastExprType(E: ECE, CGF: Emitter.CGF); |
| 1188 | const Expr *subExpr = E->getSubExpr(); |
| 1189 | |
| 1190 | switch (E->getCastKind()) { |
| 1191 | case CK_ToUnion: { |
| 1192 | // GCC cast to union extension |
| 1193 | assert(E->getType()->isUnionType() && |
| 1194 | "Destination type is not union type!" ); |
| 1195 | |
| 1196 | auto field = E->getTargetUnionField(); |
| 1197 | |
| 1198 | auto C = Emitter.tryEmitPrivateForMemory(E: subExpr, T: field->getType()); |
| 1199 | if (!C) return nullptr; |
| 1200 | |
| 1201 | auto destTy = ConvertType(T: destType); |
| 1202 | if (C->getType() == destTy) return C; |
| 1203 | |
| 1204 | // Build a struct with the union sub-element as the first member, |
| 1205 | // and padded to the appropriate size. |
| 1206 | SmallVector<llvm::Constant*, 2> Elts; |
| 1207 | SmallVector<llvm::Type*, 2> Types; |
| 1208 | Elts.push_back(Elt: C); |
| 1209 | Types.push_back(Elt: C->getType()); |
| 1210 | unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(Ty: C->getType()); |
| 1211 | unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(Ty: destTy); |
| 1212 | |
| 1213 | assert(CurSize <= TotalSize && "Union size mismatch!" ); |
| 1214 | if (unsigned NumPadBytes = TotalSize - CurSize) { |
| 1215 | llvm::Constant *Padding = |
| 1216 | getPadding(CGM, PadSize: CharUnits::fromQuantity(Quantity: NumPadBytes)); |
| 1217 | Elts.push_back(Elt: Padding); |
| 1218 | Types.push_back(Elt: Padding->getType()); |
| 1219 | } |
| 1220 | |
| 1221 | llvm::StructType *STy = llvm::StructType::get(Context&: VMContext, Elements: Types, isPacked: false); |
| 1222 | return llvm::ConstantStruct::get(T: STy, V: Elts); |
| 1223 | } |
| 1224 | |
| 1225 | case CK_AddressSpaceConversion: { |
| 1226 | auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType()); |
| 1227 | if (!C) |
| 1228 | return nullptr; |
| 1229 | LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); |
| 1230 | llvm::Type *destTy = ConvertType(T: E->getType()); |
| 1231 | return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, V: C, SrcAddr: srcAS, |
| 1232 | DestTy: destTy); |
| 1233 | } |
| 1234 | |
| 1235 | case CK_LValueToRValue: { |
| 1236 | // We don't really support doing lvalue-to-rvalue conversions here; any |
| 1237 | // interesting conversions should be done in Evaluate(). But as a |
| 1238 | // special case, allow compound literals to support the gcc extension |
| 1239 | // allowing "struct x {int x;} x = (struct x) {};". |
| 1240 | if (const auto *E = |
| 1241 | dyn_cast<CompoundLiteralExpr>(Val: subExpr->IgnoreParens())) |
| 1242 | return Visit(S: E->getInitializer(), P: destType); |
| 1243 | return nullptr; |
| 1244 | } |
| 1245 | |
| 1246 | case CK_AtomicToNonAtomic: |
| 1247 | case CK_NonAtomicToAtomic: |
| 1248 | case CK_NoOp: |
| 1249 | case CK_ConstructorConversion: |
| 1250 | return Visit(S: subExpr, P: destType); |
| 1251 | |
| 1252 | case CK_ArrayToPointerDecay: |
| 1253 | if (const auto *S = dyn_cast<StringLiteral>(Val: subExpr)) |
| 1254 | return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer(); |
| 1255 | return nullptr; |
| 1256 | case CK_NullToPointer: |
| 1257 | if (Visit(S: subExpr, P: destType)) |
| 1258 | return CGM.EmitNullConstant(T: destType); |
| 1259 | return nullptr; |
| 1260 | |
| 1261 | case CK_IntToOCLSampler: |
| 1262 | llvm_unreachable("global sampler variables are not generated" ); |
| 1263 | |
| 1264 | case CK_IntegralCast: |
| 1265 | return ProduceIntToIntCast(E: subExpr, DestType: destType); |
| 1266 | |
| 1267 | case CK_Dependent: llvm_unreachable("saw dependent cast!" ); |
| 1268 | |
| 1269 | case CK_BuiltinFnToFnPtr: |
| 1270 | llvm_unreachable("builtin functions are handled elsewhere" ); |
| 1271 | |
| 1272 | case CK_ReinterpretMemberPointer: |
| 1273 | case CK_DerivedToBaseMemberPointer: |
| 1274 | case CK_BaseToDerivedMemberPointer: { |
| 1275 | auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType()); |
| 1276 | if (!C) return nullptr; |
| 1277 | return CGM.getCXXABI().EmitMemberPointerConversion(E, Src: C); |
| 1278 | } |
| 1279 | |
| 1280 | // These will never be supported. |
| 1281 | case CK_ObjCObjectLValueCast: |
| 1282 | case CK_ARCProduceObject: |
| 1283 | case CK_ARCConsumeObject: |
| 1284 | case CK_ARCReclaimReturnedObject: |
| 1285 | case CK_ARCExtendBlockObject: |
| 1286 | case CK_CopyAndAutoreleaseBlockObject: |
| 1287 | return nullptr; |
| 1288 | |
| 1289 | // These don't need to be handled here because Evaluate knows how to |
| 1290 | // evaluate them in the cases where they can be folded. |
| 1291 | case CK_BitCast: |
| 1292 | case CK_ToVoid: |
| 1293 | case CK_Dynamic: |
| 1294 | case CK_LValueBitCast: |
| 1295 | case CK_LValueToRValueBitCast: |
| 1296 | case CK_NullToMemberPointer: |
| 1297 | case CK_UserDefinedConversion: |
| 1298 | case CK_CPointerToObjCPointerCast: |
| 1299 | case CK_BlockPointerToObjCPointerCast: |
| 1300 | case CK_AnyPointerToBlockPointerCast: |
| 1301 | case CK_FunctionToPointerDecay: |
| 1302 | case CK_BaseToDerived: |
| 1303 | case CK_DerivedToBase: |
| 1304 | case CK_UncheckedDerivedToBase: |
| 1305 | case CK_MemberPointerToBoolean: |
| 1306 | case CK_VectorSplat: |
| 1307 | case CK_FloatingRealToComplex: |
| 1308 | case CK_FloatingComplexToReal: |
| 1309 | case CK_FloatingComplexToBoolean: |
| 1310 | case CK_FloatingComplexCast: |
| 1311 | case CK_FloatingComplexToIntegralComplex: |
| 1312 | case CK_IntegralRealToComplex: |
| 1313 | case CK_IntegralComplexToReal: |
| 1314 | case CK_IntegralComplexToBoolean: |
| 1315 | case CK_IntegralComplexCast: |
| 1316 | case CK_IntegralComplexToFloatingComplex: |
| 1317 | case CK_PointerToIntegral: |
| 1318 | case CK_PointerToBoolean: |
| 1319 | case CK_BooleanToSignedIntegral: |
| 1320 | case CK_IntegralToPointer: |
| 1321 | case CK_IntegralToBoolean: |
| 1322 | case CK_IntegralToFloating: |
| 1323 | case CK_FloatingToIntegral: |
| 1324 | case CK_FloatingToBoolean: |
| 1325 | case CK_FloatingCast: |
| 1326 | case CK_FloatingToFixedPoint: |
| 1327 | case CK_FixedPointToFloating: |
| 1328 | case CK_FixedPointCast: |
| 1329 | case CK_FixedPointToBoolean: |
| 1330 | case CK_FixedPointToIntegral: |
| 1331 | case CK_IntegralToFixedPoint: |
| 1332 | case CK_ZeroToOCLOpaqueType: |
| 1333 | case CK_MatrixCast: |
| 1334 | case CK_HLSLVectorTruncation: |
| 1335 | case CK_HLSLArrayRValue: |
| 1336 | case CK_HLSLElementwiseCast: |
| 1337 | case CK_HLSLAggregateSplatCast: |
| 1338 | return nullptr; |
| 1339 | } |
| 1340 | llvm_unreachable("Invalid CastKind" ); |
| 1341 | } |
| 1342 | |
| 1343 | llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE, |
| 1344 | QualType T) { |
| 1345 | // No need for a DefaultInitExprScope: we don't handle 'this' in a |
| 1346 | // constant expression. |
| 1347 | return Visit(S: DIE->getExpr(), P: T); |
| 1348 | } |
| 1349 | |
| 1350 | llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) { |
| 1351 | return Visit(S: E->getSubExpr(), P: T); |
| 1352 | } |
| 1353 | |
| 1354 | llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) { |
| 1355 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: I->getValue()); |
| 1356 | } |
| 1357 | |
| 1358 | static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType, |
| 1359 | QualType DestType, const llvm::APSInt &Value) { |
| 1360 | if (!Ctx.hasSameType(T1: SrcType, T2: DestType)) { |
| 1361 | if (DestType->isFloatingType()) { |
| 1362 | llvm::APFloat Result = |
| 1363 | llvm::APFloat(Ctx.getFloatTypeSemantics(T: DestType), 1); |
| 1364 | llvm::RoundingMode RM = |
| 1365 | E->getFPFeaturesInEffect(LO: Ctx.getLangOpts()).getRoundingMode(); |
| 1366 | if (RM == llvm::RoundingMode::Dynamic) |
| 1367 | RM = llvm::RoundingMode::NearestTiesToEven; |
| 1368 | Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM); |
| 1369 | return APValue(Result); |
| 1370 | } |
| 1371 | } |
| 1372 | return APValue(Value); |
| 1373 | } |
| 1374 | |
| 1375 | llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) { |
| 1376 | auto *CAT = CGM.getContext().getAsConstantArrayType(T: ILE->getType()); |
| 1377 | assert(CAT && "can't emit array init for non-constant-bound array" ); |
| 1378 | uint64_t NumInitElements = ILE->getNumInits(); |
| 1379 | const uint64_t NumElements = CAT->getZExtSize(); |
| 1380 | for (const auto *Init : ILE->inits()) { |
| 1381 | if (const auto *Embed = |
| 1382 | dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
| 1383 | NumInitElements += Embed->getDataElementCount() - 1; |
| 1384 | if (NumInitElements > NumElements) { |
| 1385 | NumInitElements = NumElements; |
| 1386 | break; |
| 1387 | } |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | // Initialising an array requires us to automatically |
| 1392 | // initialise any elements that have not been initialised explicitly |
| 1393 | uint64_t NumInitableElts = std::min<uint64_t>(a: NumInitElements, b: NumElements); |
| 1394 | |
| 1395 | QualType EltType = CAT->getElementType(); |
| 1396 | |
| 1397 | // Initialize remaining array elements. |
| 1398 | llvm::Constant *fillC = nullptr; |
| 1399 | if (const Expr *filler = ILE->getArrayFiller()) { |
| 1400 | fillC = Emitter.tryEmitAbstractForMemory(E: filler, T: EltType); |
| 1401 | if (!fillC) |
| 1402 | return nullptr; |
| 1403 | } |
| 1404 | |
| 1405 | // Copy initializer elements. |
| 1406 | SmallVector<llvm::Constant *, 16> Elts; |
| 1407 | if (fillC && fillC->isNullValue()) |
| 1408 | Elts.reserve(N: NumInitableElts + 1); |
| 1409 | else |
| 1410 | Elts.reserve(N: NumElements); |
| 1411 | |
| 1412 | llvm::Type *CommonElementType = nullptr; |
| 1413 | auto Emit = [&](const Expr *Init, unsigned ArrayIndex) { |
| 1414 | llvm::Constant *C = nullptr; |
| 1415 | C = Emitter.tryEmitPrivateForMemory(E: Init, T: EltType); |
| 1416 | if (!C) |
| 1417 | return false; |
| 1418 | if (ArrayIndex == 0) |
| 1419 | CommonElementType = C->getType(); |
| 1420 | else if (C->getType() != CommonElementType) |
| 1421 | CommonElementType = nullptr; |
| 1422 | Elts.push_back(Elt: C); |
| 1423 | return true; |
| 1424 | }; |
| 1425 | |
| 1426 | unsigned ArrayIndex = 0; |
| 1427 | QualType DestTy = CAT->getElementType(); |
| 1428 | for (unsigned i = 0; i < ILE->getNumInits(); ++i) { |
| 1429 | const Expr *Init = ILE->getInit(Init: i); |
| 1430 | if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
| 1431 | StringLiteral *SL = EmbedS->getDataStringLiteral(); |
| 1432 | llvm::APSInt Value(CGM.getContext().getTypeSize(T: DestTy), |
| 1433 | DestTy->isUnsignedIntegerType()); |
| 1434 | llvm::Constant *C; |
| 1435 | for (unsigned I = EmbedS->getStartingElementPos(), |
| 1436 | N = EmbedS->getDataElementCount(); |
| 1437 | I != EmbedS->getStartingElementPos() + N; ++I) { |
| 1438 | Value = SL->getCodeUnit(i: I); |
| 1439 | if (DestTy->isIntegerType()) { |
| 1440 | C = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Value); |
| 1441 | } else { |
| 1442 | C = Emitter.tryEmitPrivateForMemory( |
| 1443 | value: withDestType(Ctx&: CGM.getContext(), E: Init, SrcType: EmbedS->getType(), DestType: DestTy, |
| 1444 | Value), |
| 1445 | T: EltType); |
| 1446 | } |
| 1447 | if (!C) |
| 1448 | return nullptr; |
| 1449 | Elts.push_back(Elt: C); |
| 1450 | ArrayIndex++; |
| 1451 | } |
| 1452 | if ((ArrayIndex - EmbedS->getDataElementCount()) == 0) |
| 1453 | CommonElementType = C->getType(); |
| 1454 | else if (C->getType() != CommonElementType) |
| 1455 | CommonElementType = nullptr; |
| 1456 | } else { |
| 1457 | if (!Emit(Init, ArrayIndex)) |
| 1458 | return nullptr; |
| 1459 | ArrayIndex++; |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | llvm::ArrayType *Desired = |
| 1464 | cast<llvm::ArrayType>(Val: CGM.getTypes().ConvertType(T: ILE->getType())); |
| 1465 | return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts, |
| 1466 | Filler: fillC); |
| 1467 | } |
| 1468 | |
| 1469 | llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE, |
| 1470 | QualType T) { |
| 1471 | return ConstStructBuilder::BuildStruct(Emitter, ILE, ValTy: T); |
| 1472 | } |
| 1473 | |
| 1474 | llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E, |
| 1475 | QualType T) { |
| 1476 | return CGM.EmitNullConstant(T); |
| 1477 | } |
| 1478 | |
| 1479 | llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) { |
| 1480 | if (ILE->isTransparent()) |
| 1481 | return Visit(S: ILE->getInit(Init: 0), P: T); |
| 1482 | |
| 1483 | if (ILE->getType()->isArrayType()) |
| 1484 | return EmitArrayInitialization(ILE, T); |
| 1485 | |
| 1486 | if (ILE->getType()->isRecordType()) |
| 1487 | return EmitRecordInitialization(ILE, T); |
| 1488 | |
| 1489 | return nullptr; |
| 1490 | } |
| 1491 | |
| 1492 | llvm::Constant * |
| 1493 | VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E, |
| 1494 | QualType destType) { |
| 1495 | auto C = Visit(S: E->getBase(), P: destType); |
| 1496 | if (!C) |
| 1497 | return nullptr; |
| 1498 | |
| 1499 | ConstantAggregateBuilder Const(CGM); |
| 1500 | Const.add(C, Offset: CharUnits::Zero(), AllowOverwrite: false); |
| 1501 | |
| 1502 | if (!EmitDesignatedInitUpdater(Emitter, Const, Offset: CharUnits::Zero(), Type: destType, |
| 1503 | Updater: E->getUpdater())) |
| 1504 | return nullptr; |
| 1505 | |
| 1506 | llvm::Type *ValTy = CGM.getTypes().ConvertType(T: destType); |
| 1507 | bool HasFlexibleArray = false; |
| 1508 | if (const auto *RT = destType->getAs<RecordType>()) |
| 1509 | HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); |
| 1510 | return Const.build(DesiredTy: ValTy, AllowOversized: HasFlexibleArray); |
| 1511 | } |
| 1512 | |
| 1513 | llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E, |
| 1514 | QualType Ty) { |
| 1515 | if (!E->getConstructor()->isTrivial()) |
| 1516 | return nullptr; |
| 1517 | |
| 1518 | // Only default and copy/move constructors can be trivial. |
| 1519 | if (E->getNumArgs()) { |
| 1520 | assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument" ); |
| 1521 | assert(E->getConstructor()->isCopyOrMoveConstructor() && |
| 1522 | "trivial ctor has argument but isn't a copy/move ctor" ); |
| 1523 | |
| 1524 | const Expr *Arg = E->getArg(Arg: 0); |
| 1525 | assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && |
| 1526 | "argument to copy ctor is of wrong type" ); |
| 1527 | |
| 1528 | // Look through the temporary; it's just converting the value to an |
| 1529 | // lvalue to pass it to the constructor. |
| 1530 | if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Arg)) |
| 1531 | return Visit(S: MTE->getSubExpr(), P: Ty); |
| 1532 | // Don't try to support arbitrary lvalue-to-rvalue conversions for now. |
| 1533 | return nullptr; |
| 1534 | } |
| 1535 | |
| 1536 | return CGM.EmitNullConstant(T: Ty); |
| 1537 | } |
| 1538 | |
| 1539 | llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) { |
| 1540 | // This is a string literal initializing an array in an initializer. |
| 1541 | return CGM.GetConstantArrayFromStringLiteral(E); |
| 1542 | } |
| 1543 | |
| 1544 | llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) { |
| 1545 | // This must be an @encode initializing an array in a static initializer. |
| 1546 | // Don't emit it as the address of the string, emit the string data itself |
| 1547 | // as an inline array. |
| 1548 | std::string Str; |
| 1549 | CGM.getContext().getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
| 1550 | const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); |
| 1551 | assert(CAT && "String data not of constant array type!" ); |
| 1552 | |
| 1553 | // Resize the string to the right size, adding zeros at the end, or |
| 1554 | // truncating as needed. |
| 1555 | Str.resize(n: CAT->getZExtSize(), c: '\0'); |
| 1556 | return llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Str, AddNull: false); |
| 1557 | } |
| 1558 | |
| 1559 | llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { |
| 1560 | return Visit(S: E->getSubExpr(), P: T); |
| 1561 | } |
| 1562 | |
| 1563 | llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) { |
| 1564 | if (llvm::Constant *C = Visit(S: U->getSubExpr(), P: T)) |
| 1565 | if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: C)) |
| 1566 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: -CI->getValue()); |
| 1567 | return nullptr; |
| 1568 | } |
| 1569 | |
| 1570 | llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) { |
| 1571 | return Visit(S: E->getSelectedExpr(), P: T); |
| 1572 | } |
| 1573 | |
| 1574 | // Utility methods |
| 1575 | llvm::Type *ConvertType(QualType T) { |
| 1576 | return CGM.getTypes().ConvertType(T); |
| 1577 | } |
| 1578 | }; |
| 1579 | |
| 1580 | } // end anonymous namespace. |
| 1581 | |
| 1582 | llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, |
| 1583 | AbstractState saved) { |
| 1584 | Abstract = saved.OldValue; |
| 1585 | |
| 1586 | assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && |
| 1587 | "created a placeholder while doing an abstract emission?" ); |
| 1588 | |
| 1589 | // No validation necessary for now. |
| 1590 | // No cleanup to do for now. |
| 1591 | return C; |
| 1592 | } |
| 1593 | |
| 1594 | llvm::Constant * |
| 1595 | ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { |
| 1596 | auto state = pushAbstract(); |
| 1597 | auto C = tryEmitPrivateForVarInit(D); |
| 1598 | return validateAndPopAbstract(C, saved: state); |
| 1599 | } |
| 1600 | |
| 1601 | llvm::Constant * |
| 1602 | ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { |
| 1603 | auto state = pushAbstract(); |
| 1604 | auto C = tryEmitPrivate(E, T: destType); |
| 1605 | return validateAndPopAbstract(C, saved: state); |
| 1606 | } |
| 1607 | |
| 1608 | llvm::Constant * |
| 1609 | ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { |
| 1610 | auto state = pushAbstract(); |
| 1611 | auto C = tryEmitPrivate(value, T: destType); |
| 1612 | return validateAndPopAbstract(C, saved: state); |
| 1613 | } |
| 1614 | |
| 1615 | llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { |
| 1616 | if (!CE->hasAPValueResult()) |
| 1617 | return nullptr; |
| 1618 | |
| 1619 | QualType RetType = CE->getType(); |
| 1620 | if (CE->isGLValue()) |
| 1621 | RetType = CGM.getContext().getLValueReferenceType(T: RetType); |
| 1622 | |
| 1623 | return emitAbstract(loc: CE->getBeginLoc(), value: CE->getAPValueResult(), T: RetType); |
| 1624 | } |
| 1625 | |
| 1626 | llvm::Constant * |
| 1627 | ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { |
| 1628 | auto state = pushAbstract(); |
| 1629 | auto C = tryEmitPrivate(E, T: destType); |
| 1630 | C = validateAndPopAbstract(C, saved: state); |
| 1631 | if (!C) { |
| 1632 | CGM.Error(loc: E->getExprLoc(), |
| 1633 | error: "internal error: could not emit constant value \"abstractly\"" ); |
| 1634 | C = CGM.EmitNullConstant(T: destType); |
| 1635 | } |
| 1636 | return C; |
| 1637 | } |
| 1638 | |
| 1639 | llvm::Constant * |
| 1640 | ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, |
| 1641 | QualType destType, |
| 1642 | bool EnablePtrAuthFunctionTypeDiscrimination) { |
| 1643 | auto state = pushAbstract(); |
| 1644 | auto C = |
| 1645 | tryEmitPrivate(value, T: destType, EnablePtrAuthFunctionTypeDiscrimination); |
| 1646 | C = validateAndPopAbstract(C, saved: state); |
| 1647 | if (!C) { |
| 1648 | CGM.Error(loc, |
| 1649 | error: "internal error: could not emit constant value \"abstractly\"" ); |
| 1650 | C = CGM.EmitNullConstant(T: destType); |
| 1651 | } |
| 1652 | return C; |
| 1653 | } |
| 1654 | |
| 1655 | llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { |
| 1656 | initializeNonAbstract(destAS: D.getType().getAddressSpace()); |
| 1657 | return markIfFailed(init: tryEmitPrivateForVarInit(D)); |
| 1658 | } |
| 1659 | |
| 1660 | llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, |
| 1661 | LangAS destAddrSpace, |
| 1662 | QualType destType) { |
| 1663 | initializeNonAbstract(destAS: destAddrSpace); |
| 1664 | return markIfFailed(init: tryEmitPrivateForMemory(E, T: destType)); |
| 1665 | } |
| 1666 | |
| 1667 | llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, |
| 1668 | LangAS destAddrSpace, |
| 1669 | QualType destType) { |
| 1670 | initializeNonAbstract(destAS: destAddrSpace); |
| 1671 | auto C = tryEmitPrivateForMemory(value, T: destType); |
| 1672 | assert(C && "couldn't emit constant value non-abstractly?" ); |
| 1673 | return C; |
| 1674 | } |
| 1675 | |
| 1676 | llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { |
| 1677 | assert(!Abstract && "cannot get current address for abstract constant" ); |
| 1678 | |
| 1679 | |
| 1680 | |
| 1681 | // Make an obviously ill-formed global that should blow up compilation |
| 1682 | // if it survives. |
| 1683 | auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, |
| 1684 | llvm::GlobalValue::PrivateLinkage, |
| 1685 | /*init*/ nullptr, |
| 1686 | /*name*/ "" , |
| 1687 | /*before*/ nullptr, |
| 1688 | llvm::GlobalVariable::NotThreadLocal, |
| 1689 | CGM.getContext().getTargetAddressSpace(AS: DestAddressSpace)); |
| 1690 | |
| 1691 | PlaceholderAddresses.push_back(Elt: std::make_pair(x: nullptr, y&: global)); |
| 1692 | |
| 1693 | return global; |
| 1694 | } |
| 1695 | |
| 1696 | void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, |
| 1697 | llvm::GlobalValue *placeholder) { |
| 1698 | assert(!PlaceholderAddresses.empty()); |
| 1699 | assert(PlaceholderAddresses.back().first == nullptr); |
| 1700 | assert(PlaceholderAddresses.back().second == placeholder); |
| 1701 | PlaceholderAddresses.back().first = signal; |
| 1702 | } |
| 1703 | |
| 1704 | namespace { |
| 1705 | struct ReplacePlaceholders { |
| 1706 | CodeGenModule &CGM; |
| 1707 | |
| 1708 | /// The base address of the global. |
| 1709 | llvm::Constant *Base; |
| 1710 | llvm::Type *BaseValueTy = nullptr; |
| 1711 | |
| 1712 | /// The placeholder addresses that were registered during emission. |
| 1713 | llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; |
| 1714 | |
| 1715 | /// The locations of the placeholder signals. |
| 1716 | llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; |
| 1717 | |
| 1718 | /// The current index stack. We use a simple unsigned stack because |
| 1719 | /// we assume that placeholders will be relatively sparse in the |
| 1720 | /// initializer, but we cache the index values we find just in case. |
| 1721 | llvm::SmallVector<unsigned, 8> Indices; |
| 1722 | llvm::SmallVector<llvm::Constant*, 8> IndexValues; |
| 1723 | |
| 1724 | ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, |
| 1725 | ArrayRef<std::pair<llvm::Constant*, |
| 1726 | llvm::GlobalVariable*>> addresses) |
| 1727 | : CGM(CGM), Base(base), |
| 1728 | PlaceholderAddresses(addresses.begin(), addresses.end()) { |
| 1729 | } |
| 1730 | |
| 1731 | void replaceInInitializer(llvm::Constant *init) { |
| 1732 | // Remember the type of the top-most initializer. |
| 1733 | BaseValueTy = init->getType(); |
| 1734 | |
| 1735 | // Initialize the stack. |
| 1736 | Indices.push_back(Elt: 0); |
| 1737 | IndexValues.push_back(Elt: nullptr); |
| 1738 | |
| 1739 | // Recurse into the initializer. |
| 1740 | findLocations(init); |
| 1741 | |
| 1742 | // Check invariants. |
| 1743 | assert(IndexValues.size() == Indices.size() && "mismatch" ); |
| 1744 | assert(Indices.size() == 1 && "didn't pop all indices" ); |
| 1745 | |
| 1746 | // Do the replacement; this basically invalidates 'init'. |
| 1747 | assert(Locations.size() == PlaceholderAddresses.size() && |
| 1748 | "missed a placeholder?" ); |
| 1749 | |
| 1750 | // We're iterating over a hashtable, so this would be a source of |
| 1751 | // non-determinism in compiler output *except* that we're just |
| 1752 | // messing around with llvm::Constant structures, which never itself |
| 1753 | // does anything that should be visible in compiler output. |
| 1754 | for (auto &entry : Locations) { |
| 1755 | assert(entry.first->getName() == "" && "not a placeholder!" ); |
| 1756 | entry.first->replaceAllUsesWith(V: entry.second); |
| 1757 | entry.first->eraseFromParent(); |
| 1758 | } |
| 1759 | } |
| 1760 | |
| 1761 | private: |
| 1762 | void findLocations(llvm::Constant *init) { |
| 1763 | // Recurse into aggregates. |
| 1764 | if (auto agg = dyn_cast<llvm::ConstantAggregate>(Val: init)) { |
| 1765 | for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { |
| 1766 | Indices.push_back(Elt: i); |
| 1767 | IndexValues.push_back(Elt: nullptr); |
| 1768 | |
| 1769 | findLocations(init: agg->getOperand(i_nocapture: i)); |
| 1770 | |
| 1771 | IndexValues.pop_back(); |
| 1772 | Indices.pop_back(); |
| 1773 | } |
| 1774 | return; |
| 1775 | } |
| 1776 | |
| 1777 | // Otherwise, check for registered constants. |
| 1778 | while (true) { |
| 1779 | auto it = PlaceholderAddresses.find(Val: init); |
| 1780 | if (it != PlaceholderAddresses.end()) { |
| 1781 | setLocation(it->second); |
| 1782 | break; |
| 1783 | } |
| 1784 | |
| 1785 | // Look through bitcasts or other expressions. |
| 1786 | if (auto expr = dyn_cast<llvm::ConstantExpr>(Val: init)) { |
| 1787 | init = expr->getOperand(i_nocapture: 0); |
| 1788 | } else { |
| 1789 | break; |
| 1790 | } |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | void setLocation(llvm::GlobalVariable *placeholder) { |
| 1795 | assert(!Locations.contains(placeholder) && |
| 1796 | "already found location for placeholder!" ); |
| 1797 | |
| 1798 | // Lazily fill in IndexValues with the values from Indices. |
| 1799 | // We do this in reverse because we should always have a strict |
| 1800 | // prefix of indices from the start. |
| 1801 | assert(Indices.size() == IndexValues.size()); |
| 1802 | for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { |
| 1803 | if (IndexValues[i]) { |
| 1804 | #ifndef NDEBUG |
| 1805 | for (size_t j = 0; j != i + 1; ++j) { |
| 1806 | assert(IndexValues[j] && |
| 1807 | isa<llvm::ConstantInt>(IndexValues[j]) && |
| 1808 | cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() |
| 1809 | == Indices[j]); |
| 1810 | } |
| 1811 | #endif |
| 1812 | break; |
| 1813 | } |
| 1814 | |
| 1815 | IndexValues[i] = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Indices[i]); |
| 1816 | } |
| 1817 | |
| 1818 | llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr( |
| 1819 | Ty: BaseValueTy, C: Base, IdxList: IndexValues); |
| 1820 | |
| 1821 | Locations.insert(KV: {placeholder, location}); |
| 1822 | } |
| 1823 | }; |
| 1824 | } |
| 1825 | |
| 1826 | void ConstantEmitter::finalize(llvm::GlobalVariable *global) { |
| 1827 | assert(InitializedNonAbstract && |
| 1828 | "finalizing emitter that was used for abstract emission?" ); |
| 1829 | assert(!Finalized && "finalizing emitter multiple times" ); |
| 1830 | assert(global->getInitializer()); |
| 1831 | |
| 1832 | // Note that we might also be Failed. |
| 1833 | Finalized = true; |
| 1834 | |
| 1835 | if (!PlaceholderAddresses.empty()) { |
| 1836 | ReplacePlaceholders(CGM, global, PlaceholderAddresses) |
| 1837 | .replaceInInitializer(init: global->getInitializer()); |
| 1838 | PlaceholderAddresses.clear(); // satisfy |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | ConstantEmitter::~ConstantEmitter() { |
| 1843 | assert((!InitializedNonAbstract || Finalized || Failed) && |
| 1844 | "not finalized after being initialized for non-abstract emission" ); |
| 1845 | assert(PlaceholderAddresses.empty() && "unhandled placeholders" ); |
| 1846 | } |
| 1847 | |
| 1848 | static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { |
| 1849 | if (auto AT = type->getAs<AtomicType>()) { |
| 1850 | return CGM.getContext().getQualifiedType(T: AT->getValueType(), |
| 1851 | Qs: type.getQualifiers()); |
| 1852 | } |
| 1853 | return type; |
| 1854 | } |
| 1855 | |
| 1856 | llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { |
| 1857 | // Make a quick check if variable can be default NULL initialized |
| 1858 | // and avoid going through rest of code which may do, for c++11, |
| 1859 | // initialization of memory to all NULLs. |
| 1860 | if (!D.hasLocalStorage()) { |
| 1861 | QualType Ty = CGM.getContext().getBaseElementType(QT: D.getType()); |
| 1862 | if (Ty->isRecordType()) |
| 1863 | if (const CXXConstructExpr *E = |
| 1864 | dyn_cast_or_null<CXXConstructExpr>(Val: D.getInit())) { |
| 1865 | const CXXConstructorDecl *CD = E->getConstructor(); |
| 1866 | if (CD->isTrivial() && CD->isDefaultConstructor()) |
| 1867 | return CGM.EmitNullConstant(T: D.getType()); |
| 1868 | } |
| 1869 | } |
| 1870 | InConstantContext = D.hasConstantInitialization(); |
| 1871 | |
| 1872 | QualType destType = D.getType(); |
| 1873 | const Expr *E = D.getInit(); |
| 1874 | assert(E && "No initializer to emit" ); |
| 1875 | |
| 1876 | if (!destType->isReferenceType()) { |
| 1877 | QualType nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
| 1878 | if (llvm::Constant *C = ConstExprEmitter(*this).Visit(S: E, P: nonMemoryDestType)) |
| 1879 | return emitForMemory(C, T: destType); |
| 1880 | } |
| 1881 | |
| 1882 | // Try to emit the initializer. Note that this can allow some things that |
| 1883 | // are not allowed by tryEmitPrivateForMemory alone. |
| 1884 | if (APValue *value = D.evaluateValue()) { |
| 1885 | assert(!value->allowConstexprUnknown() && |
| 1886 | "Constexpr unknown values are not allowed in CodeGen" ); |
| 1887 | return tryEmitPrivateForMemory(value: *value, T: destType); |
| 1888 | } |
| 1889 | |
| 1890 | return nullptr; |
| 1891 | } |
| 1892 | |
| 1893 | llvm::Constant * |
| 1894 | ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { |
| 1895 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
| 1896 | auto C = tryEmitAbstract(E, destType: nonMemoryDestType); |
| 1897 | return (C ? emitForMemory(C, T: destType) : nullptr); |
| 1898 | } |
| 1899 | |
| 1900 | llvm::Constant * |
| 1901 | ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, |
| 1902 | QualType destType) { |
| 1903 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
| 1904 | auto C = tryEmitAbstract(value, destType: nonMemoryDestType); |
| 1905 | return (C ? emitForMemory(C, T: destType) : nullptr); |
| 1906 | } |
| 1907 | |
| 1908 | llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, |
| 1909 | QualType destType) { |
| 1910 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
| 1911 | llvm::Constant *C = tryEmitPrivate(E, T: nonMemoryDestType); |
| 1912 | return (C ? emitForMemory(C, T: destType) : nullptr); |
| 1913 | } |
| 1914 | |
| 1915 | llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, |
| 1916 | QualType destType) { |
| 1917 | auto nonMemoryDestType = getNonMemoryType(CGM, type: destType); |
| 1918 | auto C = tryEmitPrivate(value, T: nonMemoryDestType); |
| 1919 | return (C ? emitForMemory(C, T: destType) : nullptr); |
| 1920 | } |
| 1921 | |
| 1922 | /// Try to emit a constant signed pointer, given a raw pointer and the |
| 1923 | /// destination ptrauth qualifier. |
| 1924 | /// |
| 1925 | /// This can fail if the qualifier needs address discrimination and the |
| 1926 | /// emitter is in an abstract mode. |
| 1927 | llvm::Constant * |
| 1928 | ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer, |
| 1929 | PointerAuthQualifier Schema) { |
| 1930 | assert(Schema && "applying trivial ptrauth schema" ); |
| 1931 | |
| 1932 | if (Schema.hasKeyNone()) |
| 1933 | return UnsignedPointer; |
| 1934 | |
| 1935 | unsigned Key = Schema.getKey(); |
| 1936 | |
| 1937 | // Create an address placeholder if we're using address discrimination. |
| 1938 | llvm::GlobalValue *StorageAddress = nullptr; |
| 1939 | if (Schema.isAddressDiscriminated()) { |
| 1940 | // We can't do this if the emitter is in an abstract state. |
| 1941 | if (isAbstract()) |
| 1942 | return nullptr; |
| 1943 | |
| 1944 | StorageAddress = getCurrentAddrPrivate(); |
| 1945 | } |
| 1946 | |
| 1947 | llvm::ConstantInt *Discriminator = |
| 1948 | llvm::ConstantInt::get(Ty: CGM.IntPtrTy, V: Schema.getExtraDiscriminator()); |
| 1949 | |
| 1950 | llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( |
| 1951 | Pointer: UnsignedPointer, Key, StorageAddress, OtherDiscriminator: Discriminator); |
| 1952 | |
| 1953 | if (Schema.isAddressDiscriminated()) |
| 1954 | registerCurrentAddrPrivate(signal: SignedPointer, placeholder: StorageAddress); |
| 1955 | |
| 1956 | return SignedPointer; |
| 1957 | } |
| 1958 | |
| 1959 | llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, |
| 1960 | llvm::Constant *C, |
| 1961 | QualType destType) { |
| 1962 | // For an _Atomic-qualified constant, we may need to add tail padding. |
| 1963 | if (auto AT = destType->getAs<AtomicType>()) { |
| 1964 | QualType destValueType = AT->getValueType(); |
| 1965 | C = emitForMemory(CGM, C, destType: destValueType); |
| 1966 | |
| 1967 | uint64_t innerSize = CGM.getContext().getTypeSize(T: destValueType); |
| 1968 | uint64_t outerSize = CGM.getContext().getTypeSize(T: destType); |
| 1969 | if (innerSize == outerSize) |
| 1970 | return C; |
| 1971 | |
| 1972 | assert(innerSize < outerSize && "emitted over-large constant for atomic" ); |
| 1973 | llvm::Constant *elts[] = { |
| 1974 | C, |
| 1975 | llvm::ConstantAggregateZero::get( |
| 1976 | Ty: llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: (outerSize - innerSize) / 8)) |
| 1977 | }; |
| 1978 | return llvm::ConstantStruct::getAnon(V: elts); |
| 1979 | } |
| 1980 | |
| 1981 | // Zero-extend bool. |
| 1982 | // In HLSL bool vectors are stored in memory as a vector of i32 |
| 1983 | if ((C->getType()->isIntegerTy(Bitwidth: 1) && !destType->isBitIntType()) || |
| 1984 | (destType->isExtVectorBoolType() && |
| 1985 | !destType->isPackedVectorBoolType(ctx: CGM.getContext()))) { |
| 1986 | llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(T: destType); |
| 1987 | llvm::Constant *Res = llvm::ConstantFoldCastOperand( |
| 1988 | Opcode: llvm::Instruction::ZExt, C, DestTy: boolTy, DL: CGM.getDataLayout()); |
| 1989 | assert(Res && "Constant folding must succeed" ); |
| 1990 | return Res; |
| 1991 | } |
| 1992 | |
| 1993 | if (destType->isBitIntType()) { |
| 1994 | ConstantAggregateBuilder Builder(CGM); |
| 1995 | llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(T: destType); |
| 1996 | // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so |
| 1997 | // casting to ConstantInt is safe here. |
| 1998 | auto *CI = cast<llvm::ConstantInt>(Val: C); |
| 1999 | llvm::Constant *Res = llvm::ConstantFoldCastOperand( |
| 2000 | Opcode: destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt |
| 2001 | : llvm::Instruction::ZExt, |
| 2002 | C: CI, DestTy: LoadStoreTy, DL: CGM.getDataLayout()); |
| 2003 | if (CGM.getTypes().typeRequiresSplitIntoByteArray(ASTTy: destType, LLVMTy: C->getType())) { |
| 2004 | // Long _BitInt has array of bytes as in-memory type. |
| 2005 | // So, split constant into individual bytes. |
| 2006 | llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(T: destType); |
| 2007 | llvm::APInt Value = cast<llvm::ConstantInt>(Val: Res)->getValue(); |
| 2008 | Builder.addBits(Bits: Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false); |
| 2009 | return Builder.build(DesiredTy, /*AllowOversized*/ false); |
| 2010 | } |
| 2011 | return Res; |
| 2012 | } |
| 2013 | |
| 2014 | return C; |
| 2015 | } |
| 2016 | |
| 2017 | llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, |
| 2018 | QualType destType) { |
| 2019 | assert(!destType->isVoidType() && "can't emit a void constant" ); |
| 2020 | |
| 2021 | if (!destType->isReferenceType()) |
| 2022 | if (llvm::Constant *C = ConstExprEmitter(*this).Visit(S: E, P: destType)) |
| 2023 | return C; |
| 2024 | |
| 2025 | Expr::EvalResult Result; |
| 2026 | |
| 2027 | bool Success = false; |
| 2028 | |
| 2029 | if (destType->isReferenceType()) |
| 2030 | Success = E->EvaluateAsLValue(Result, Ctx: CGM.getContext()); |
| 2031 | else |
| 2032 | Success = E->EvaluateAsRValue(Result, Ctx: CGM.getContext(), InConstantContext); |
| 2033 | |
| 2034 | if (Success && !Result.HasSideEffects) |
| 2035 | return tryEmitPrivate(value: Result.Val, T: destType); |
| 2036 | |
| 2037 | return nullptr; |
| 2038 | } |
| 2039 | |
| 2040 | llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { |
| 2041 | return getTargetCodeGenInfo().getNullPointer(CGM: *this, T, QT); |
| 2042 | } |
| 2043 | |
| 2044 | namespace { |
| 2045 | /// A struct which can be used to peephole certain kinds of finalization |
| 2046 | /// that normally happen during l-value emission. |
| 2047 | struct ConstantLValue { |
| 2048 | llvm::Constant *Value; |
| 2049 | bool HasOffsetApplied; |
| 2050 | bool HasDestPointerAuth; |
| 2051 | |
| 2052 | /*implicit*/ ConstantLValue(llvm::Constant *value, |
| 2053 | bool hasOffsetApplied = false, |
| 2054 | bool hasDestPointerAuth = false) |
| 2055 | : Value(value), HasOffsetApplied(hasOffsetApplied), |
| 2056 | HasDestPointerAuth(hasDestPointerAuth) {} |
| 2057 | |
| 2058 | /*implicit*/ ConstantLValue(ConstantAddress address) |
| 2059 | : ConstantLValue(address.getPointer()) {} |
| 2060 | }; |
| 2061 | |
| 2062 | /// A helper class for emitting constant l-values. |
| 2063 | class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, |
| 2064 | ConstantLValue> { |
| 2065 | CodeGenModule &CGM; |
| 2066 | ConstantEmitter &Emitter; |
| 2067 | const APValue &Value; |
| 2068 | QualType DestType; |
| 2069 | bool EnablePtrAuthFunctionTypeDiscrimination; |
| 2070 | |
| 2071 | // Befriend StmtVisitorBase so that we don't have to expose Visit*. |
| 2072 | friend StmtVisitorBase; |
| 2073 | |
| 2074 | public: |
| 2075 | ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, |
| 2076 | QualType destType, |
| 2077 | bool EnablePtrAuthFunctionTypeDiscrimination = true) |
| 2078 | : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType), |
| 2079 | EnablePtrAuthFunctionTypeDiscrimination( |
| 2080 | EnablePtrAuthFunctionTypeDiscrimination) {} |
| 2081 | |
| 2082 | llvm::Constant *tryEmit(); |
| 2083 | |
| 2084 | private: |
| 2085 | llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); |
| 2086 | ConstantLValue tryEmitBase(const APValue::LValueBase &base); |
| 2087 | |
| 2088 | ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } |
| 2089 | ConstantLValue VisitConstantExpr(const ConstantExpr *E); |
| 2090 | ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
| 2091 | ConstantLValue VisitStringLiteral(const StringLiteral *E); |
| 2092 | ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); |
| 2093 | ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); |
| 2094 | ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); |
| 2095 | ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); |
| 2096 | ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); |
| 2097 | ConstantLValue VisitCallExpr(const CallExpr *E); |
| 2098 | ConstantLValue VisitBlockExpr(const BlockExpr *E); |
| 2099 | ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
| 2100 | ConstantLValue VisitMaterializeTemporaryExpr( |
| 2101 | const MaterializeTemporaryExpr *E); |
| 2102 | |
| 2103 | ConstantLValue emitPointerAuthSignConstant(const CallExpr *E); |
| 2104 | llvm::Constant *emitPointerAuthPointer(const Expr *E); |
| 2105 | unsigned emitPointerAuthKey(const Expr *E); |
| 2106 | std::pair<llvm::Constant *, llvm::ConstantInt *> |
| 2107 | emitPointerAuthDiscriminator(const Expr *E); |
| 2108 | |
| 2109 | bool hasNonZeroOffset() const { |
| 2110 | return !Value.getLValueOffset().isZero(); |
| 2111 | } |
| 2112 | |
| 2113 | /// Return the value offset. |
| 2114 | llvm::Constant *getOffset() { |
| 2115 | return llvm::ConstantInt::get(Ty: CGM.Int64Ty, |
| 2116 | V: Value.getLValueOffset().getQuantity()); |
| 2117 | } |
| 2118 | |
| 2119 | /// Apply the value offset to the given constant. |
| 2120 | llvm::Constant *applyOffset(llvm::Constant *C) { |
| 2121 | if (!hasNonZeroOffset()) |
| 2122 | return C; |
| 2123 | |
| 2124 | return llvm::ConstantExpr::getGetElementPtr(Ty: CGM.Int8Ty, C, Idx: getOffset()); |
| 2125 | } |
| 2126 | }; |
| 2127 | |
| 2128 | } |
| 2129 | |
| 2130 | llvm::Constant *ConstantLValueEmitter::tryEmit() { |
| 2131 | const APValue::LValueBase &base = Value.getLValueBase(); |
| 2132 | |
| 2133 | // The destination type should be a pointer or reference |
| 2134 | // type, but it might also be a cast thereof. |
| 2135 | // |
| 2136 | // FIXME: the chain of casts required should be reflected in the APValue. |
| 2137 | // We need this in order to correctly handle things like a ptrtoint of a |
| 2138 | // non-zero null pointer and addrspace casts that aren't trivially |
| 2139 | // represented in LLVM IR. |
| 2140 | auto destTy = CGM.getTypes().ConvertTypeForMem(T: DestType); |
| 2141 | assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); |
| 2142 | |
| 2143 | // If there's no base at all, this is a null or absolute pointer, |
| 2144 | // possibly cast back to an integer type. |
| 2145 | if (!base) { |
| 2146 | return tryEmitAbsolute(destTy); |
| 2147 | } |
| 2148 | |
| 2149 | // Otherwise, try to emit the base. |
| 2150 | ConstantLValue result = tryEmitBase(base); |
| 2151 | |
| 2152 | // If that failed, we're done. |
| 2153 | llvm::Constant *value = result.Value; |
| 2154 | if (!value) return nullptr; |
| 2155 | |
| 2156 | // Apply the offset if necessary and not already done. |
| 2157 | if (!result.HasOffsetApplied) { |
| 2158 | value = applyOffset(C: value); |
| 2159 | } |
| 2160 | |
| 2161 | // Apply pointer-auth signing from the destination type. |
| 2162 | if (PointerAuthQualifier PointerAuth = DestType.getPointerAuth(); |
| 2163 | PointerAuth && !result.HasDestPointerAuth) { |
| 2164 | value = Emitter.tryEmitConstantSignedPointer(UnsignedPointer: value, Schema: PointerAuth); |
| 2165 | if (!value) |
| 2166 | return nullptr; |
| 2167 | } |
| 2168 | |
| 2169 | // Convert to the appropriate type; this could be an lvalue for |
| 2170 | // an integer. FIXME: performAddrSpaceCast |
| 2171 | if (isa<llvm::PointerType>(Val: destTy)) |
| 2172 | return llvm::ConstantExpr::getPointerCast(C: value, Ty: destTy); |
| 2173 | |
| 2174 | return llvm::ConstantExpr::getPtrToInt(C: value, Ty: destTy); |
| 2175 | } |
| 2176 | |
| 2177 | /// Try to emit an absolute l-value, such as a null pointer or an integer |
| 2178 | /// bitcast to pointer type. |
| 2179 | llvm::Constant * |
| 2180 | ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { |
| 2181 | // If we're producing a pointer, this is easy. |
| 2182 | auto destPtrTy = cast<llvm::PointerType>(Val: destTy); |
| 2183 | if (Value.isNullPointer()) { |
| 2184 | // FIXME: integer offsets from non-zero null pointers. |
| 2185 | return CGM.getNullPointer(T: destPtrTy, QT: DestType); |
| 2186 | } |
| 2187 | |
| 2188 | // Convert the integer to a pointer-sized integer before converting it |
| 2189 | // to a pointer. |
| 2190 | // FIXME: signedness depends on the original integer type. |
| 2191 | auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); |
| 2192 | llvm::Constant *C; |
| 2193 | C = llvm::ConstantFoldIntegerCast(C: getOffset(), DestTy: intptrTy, /*isSigned*/ IsSigned: false, |
| 2194 | DL: CGM.getDataLayout()); |
| 2195 | assert(C && "Must have folded, as Offset is a ConstantInt" ); |
| 2196 | C = llvm::ConstantExpr::getIntToPtr(C, Ty: destPtrTy); |
| 2197 | return C; |
| 2198 | } |
| 2199 | |
| 2200 | ConstantLValue |
| 2201 | ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { |
| 2202 | // Handle values. |
| 2203 | if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { |
| 2204 | // The constant always points to the canonical declaration. We want to look |
| 2205 | // at properties of the most recent declaration at the point of emission. |
| 2206 | D = cast<ValueDecl>(Val: D->getMostRecentDecl()); |
| 2207 | |
| 2208 | if (D->hasAttr<WeakRefAttr>()) |
| 2209 | return CGM.GetWeakRefReference(VD: D).getPointer(); |
| 2210 | |
| 2211 | auto PtrAuthSign = [&](llvm::Constant *C) { |
| 2212 | if (PointerAuthQualifier PointerAuth = DestType.getPointerAuth()) { |
| 2213 | C = applyOffset(C); |
| 2214 | C = Emitter.tryEmitConstantSignedPointer(UnsignedPointer: C, Schema: PointerAuth); |
| 2215 | return ConstantLValue(C, /*applied offset*/ true, /*signed*/ true); |
| 2216 | } |
| 2217 | |
| 2218 | CGPointerAuthInfo AuthInfo; |
| 2219 | |
| 2220 | if (EnablePtrAuthFunctionTypeDiscrimination) |
| 2221 | AuthInfo = CGM.getFunctionPointerAuthInfo(T: DestType); |
| 2222 | |
| 2223 | if (AuthInfo) { |
| 2224 | if (hasNonZeroOffset()) |
| 2225 | return ConstantLValue(nullptr); |
| 2226 | |
| 2227 | C = applyOffset(C); |
| 2228 | C = CGM.getConstantSignedPointer( |
| 2229 | Pointer: C, Key: AuthInfo.getKey(), StorageAddress: nullptr, |
| 2230 | OtherDiscriminator: cast_or_null<llvm::ConstantInt>(Val: AuthInfo.getDiscriminator())); |
| 2231 | return ConstantLValue(C, /*applied offset*/ true, /*signed*/ true); |
| 2232 | } |
| 2233 | |
| 2234 | return ConstantLValue(C); |
| 2235 | }; |
| 2236 | |
| 2237 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 2238 | llvm::Constant *C = CGM.getRawFunctionPointer(GD: FD); |
| 2239 | if (FD->getType()->isCFIUncheckedCalleeFunctionType()) |
| 2240 | C = llvm::NoCFIValue::get(GV: cast<llvm::GlobalValue>(Val: C)); |
| 2241 | return PtrAuthSign(C); |
| 2242 | } |
| 2243 | |
| 2244 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 2245 | // We can never refer to a variable with local storage. |
| 2246 | if (!VD->hasLocalStorage()) { |
| 2247 | if (VD->isFileVarDecl() || VD->hasExternalStorage()) |
| 2248 | return CGM.GetAddrOfGlobalVar(D: VD); |
| 2249 | |
| 2250 | if (VD->isLocalVarDecl()) { |
| 2251 | return CGM.getOrCreateStaticVarDecl( |
| 2252 | D: *VD, Linkage: CGM.getLLVMLinkageVarDefinition(VD)); |
| 2253 | } |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | if (const auto *GD = dyn_cast<MSGuidDecl>(Val: D)) |
| 2258 | return CGM.GetAddrOfMSGuidDecl(GD); |
| 2259 | |
| 2260 | if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) |
| 2261 | return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); |
| 2262 | |
| 2263 | if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) |
| 2264 | return CGM.GetAddrOfTemplateParamObject(TPO); |
| 2265 | |
| 2266 | return nullptr; |
| 2267 | } |
| 2268 | |
| 2269 | // Handle typeid(T). |
| 2270 | if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) |
| 2271 | return CGM.GetAddrOfRTTIDescriptor(Ty: QualType(TI.getType(), 0)); |
| 2272 | |
| 2273 | // Otherwise, it must be an expression. |
| 2274 | return Visit(S: base.get<const Expr*>()); |
| 2275 | } |
| 2276 | |
| 2277 | ConstantLValue |
| 2278 | ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { |
| 2279 | if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE: E)) |
| 2280 | return Result; |
| 2281 | return Visit(S: E->getSubExpr()); |
| 2282 | } |
| 2283 | |
| 2284 | ConstantLValue |
| 2285 | ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| 2286 | ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF); |
| 2287 | CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext()); |
| 2288 | return tryEmitGlobalCompoundLiteral(emitter&: CompoundLiteralEmitter, E); |
| 2289 | } |
| 2290 | |
| 2291 | ConstantLValue |
| 2292 | ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { |
| 2293 | return CGM.GetAddrOfConstantStringFromLiteral(S: E); |
| 2294 | } |
| 2295 | |
| 2296 | ConstantLValue |
| 2297 | ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
| 2298 | return CGM.GetAddrOfConstantStringFromObjCEncode(E); |
| 2299 | } |
| 2300 | |
| 2301 | static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, |
| 2302 | QualType T, |
| 2303 | CodeGenModule &CGM) { |
| 2304 | auto C = CGM.getObjCRuntime().GenerateConstantString(S); |
| 2305 | return C.withElementType(ElemTy: CGM.getTypes().ConvertTypeForMem(T)); |
| 2306 | } |
| 2307 | |
| 2308 | ConstantLValue |
| 2309 | ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| 2310 | return emitConstantObjCStringLiteral(S: E->getString(), T: E->getType(), CGM); |
| 2311 | } |
| 2312 | |
| 2313 | ConstantLValue |
| 2314 | ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| 2315 | assert(E->isExpressibleAsConstantInitializer() && |
| 2316 | "this boxed expression can't be emitted as a compile-time constant" ); |
| 2317 | const auto *SL = cast<StringLiteral>(Val: E->getSubExpr()->IgnoreParenCasts()); |
| 2318 | return emitConstantObjCStringLiteral(S: SL, T: E->getType(), CGM); |
| 2319 | } |
| 2320 | |
| 2321 | ConstantLValue |
| 2322 | ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { |
| 2323 | return CGM.GetAddrOfConstantStringFromLiteral(S: E->getFunctionName()); |
| 2324 | } |
| 2325 | |
| 2326 | ConstantLValue |
| 2327 | ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| 2328 | assert(Emitter.CGF && "Invalid address of label expression outside function" ); |
| 2329 | llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(L: E->getLabel()); |
| 2330 | return Ptr; |
| 2331 | } |
| 2332 | |
| 2333 | ConstantLValue |
| 2334 | ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { |
| 2335 | unsigned builtin = E->getBuiltinCallee(); |
| 2336 | if (builtin == Builtin::BI__builtin_function_start) |
| 2337 | return CGM.GetFunctionStart( |
| 2338 | Decl: E->getArg(Arg: 0)->getAsBuiltinConstantDeclRef(Context: CGM.getContext())); |
| 2339 | |
| 2340 | if (builtin == Builtin::BI__builtin_ptrauth_sign_constant) |
| 2341 | return emitPointerAuthSignConstant(E); |
| 2342 | |
| 2343 | if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && |
| 2344 | builtin != Builtin::BI__builtin___NSStringMakeConstantString) |
| 2345 | return nullptr; |
| 2346 | |
| 2347 | const auto *Literal = cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenCasts()); |
| 2348 | if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { |
| 2349 | return CGM.getObjCRuntime().GenerateConstantString(Literal); |
| 2350 | } else { |
| 2351 | // FIXME: need to deal with UCN conversion issues. |
| 2352 | return CGM.GetAddrOfConstantCFString(Literal); |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | ConstantLValue |
| 2357 | ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) { |
| 2358 | llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E: E->getArg(Arg: 0)); |
| 2359 | unsigned Key = emitPointerAuthKey(E: E->getArg(Arg: 1)); |
| 2360 | auto [StorageAddress, OtherDiscriminator] = |
| 2361 | emitPointerAuthDiscriminator(E: E->getArg(Arg: 2)); |
| 2362 | |
| 2363 | llvm::Constant *SignedPointer = CGM.getConstantSignedPointer( |
| 2364 | Pointer: UnsignedPointer, Key, StorageAddress, OtherDiscriminator); |
| 2365 | return SignedPointer; |
| 2366 | } |
| 2367 | |
| 2368 | llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) { |
| 2369 | Expr::EvalResult Result; |
| 2370 | bool Succeeded = E->EvaluateAsRValue(Result, Ctx: CGM.getContext()); |
| 2371 | assert(Succeeded); |
| 2372 | (void)Succeeded; |
| 2373 | |
| 2374 | // The assertions here are all checked by Sema. |
| 2375 | assert(Result.Val.isLValue()); |
| 2376 | if (isa<FunctionDecl>(Val: Result.Val.getLValueBase().get<const ValueDecl *>())) |
| 2377 | assert(Result.Val.getLValueOffset().isZero()); |
| 2378 | return ConstantEmitter(CGM, Emitter.CGF) |
| 2379 | .emitAbstract(loc: E->getExprLoc(), value: Result.Val, destType: E->getType(), EnablePtrAuthFunctionTypeDiscrimination: false); |
| 2380 | } |
| 2381 | |
| 2382 | unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) { |
| 2383 | return E->EvaluateKnownConstInt(Ctx: CGM.getContext()).getZExtValue(); |
| 2384 | } |
| 2385 | |
| 2386 | std::pair<llvm::Constant *, llvm::ConstantInt *> |
| 2387 | ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) { |
| 2388 | E = E->IgnoreParens(); |
| 2389 | |
| 2390 | if (const auto *Call = dyn_cast<CallExpr>(Val: E)) { |
| 2391 | if (Call->getBuiltinCallee() == |
| 2392 | Builtin::BI__builtin_ptrauth_blend_discriminator) { |
| 2393 | llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract( |
| 2394 | E: Call->getArg(Arg: 0), destType: Call->getArg(Arg: 0)->getType()); |
| 2395 | auto * = cast<llvm::ConstantInt>(Val: ConstantEmitter(CGM).emitAbstract( |
| 2396 | E: Call->getArg(Arg: 1), destType: Call->getArg(Arg: 1)->getType())); |
| 2397 | return {Pointer, Extra}; |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, destType: E->getType()); |
| 2402 | if (Result->getType()->isPointerTy()) |
| 2403 | return {Result, nullptr}; |
| 2404 | return {nullptr, cast<llvm::ConstantInt>(Val: Result)}; |
| 2405 | } |
| 2406 | |
| 2407 | ConstantLValue |
| 2408 | ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { |
| 2409 | StringRef functionName; |
| 2410 | if (auto CGF = Emitter.CGF) |
| 2411 | functionName = CGF->CurFn->getName(); |
| 2412 | else |
| 2413 | functionName = "global" ; |
| 2414 | |
| 2415 | return CGM.GetAddrOfGlobalBlock(BE: E, Name: functionName); |
| 2416 | } |
| 2417 | |
| 2418 | ConstantLValue |
| 2419 | ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
| 2420 | QualType T; |
| 2421 | if (E->isTypeOperand()) |
| 2422 | T = E->getTypeOperand(Context: CGM.getContext()); |
| 2423 | else |
| 2424 | T = E->getExprOperand()->getType(); |
| 2425 | return CGM.GetAddrOfRTTIDescriptor(Ty: T); |
| 2426 | } |
| 2427 | |
| 2428 | ConstantLValue |
| 2429 | ConstantLValueEmitter::VisitMaterializeTemporaryExpr( |
| 2430 | const MaterializeTemporaryExpr *E) { |
| 2431 | assert(E->getStorageDuration() == SD_Static); |
| 2432 | const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
| 2433 | return CGM.GetAddrOfGlobalTemporary(E, Inner); |
| 2434 | } |
| 2435 | |
| 2436 | llvm::Constant * |
| 2437 | ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType, |
| 2438 | bool EnablePtrAuthFunctionTypeDiscrimination) { |
| 2439 | switch (Value.getKind()) { |
| 2440 | case APValue::None: |
| 2441 | case APValue::Indeterminate: |
| 2442 | // Out-of-lifetime and indeterminate values can be modeled as 'undef'. |
| 2443 | return llvm::UndefValue::get(T: CGM.getTypes().ConvertType(T: DestType)); |
| 2444 | case APValue::LValue: |
| 2445 | return ConstantLValueEmitter(*this, Value, DestType, |
| 2446 | EnablePtrAuthFunctionTypeDiscrimination) |
| 2447 | .tryEmit(); |
| 2448 | case APValue::Int: |
| 2449 | if (PointerAuthQualifier PointerAuth = DestType.getPointerAuth(); |
| 2450 | PointerAuth && |
| 2451 | (PointerAuth.authenticatesNullValues() || Value.getInt() != 0)) |
| 2452 | return nullptr; |
| 2453 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Value.getInt()); |
| 2454 | case APValue::FixedPoint: |
| 2455 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
| 2456 | V: Value.getFixedPoint().getValue()); |
| 2457 | case APValue::ComplexInt: { |
| 2458 | llvm::Constant *Complex[2]; |
| 2459 | |
| 2460 | Complex[0] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
| 2461 | V: Value.getComplexIntReal()); |
| 2462 | Complex[1] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
| 2463 | V: Value.getComplexIntImag()); |
| 2464 | |
| 2465 | // FIXME: the target may want to specify that this is packed. |
| 2466 | llvm::StructType *STy = |
| 2467 | llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType()); |
| 2468 | return llvm::ConstantStruct::get(T: STy, V: Complex); |
| 2469 | } |
| 2470 | case APValue::Float: { |
| 2471 | const llvm::APFloat &Init = Value.getFloat(); |
| 2472 | if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && |
| 2473 | !CGM.getContext().getLangOpts().NativeHalfType && |
| 2474 | CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
| 2475 | return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), |
| 2476 | V: Init.bitcastToAPInt()); |
| 2477 | else |
| 2478 | return llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Init); |
| 2479 | } |
| 2480 | case APValue::ComplexFloat: { |
| 2481 | llvm::Constant *Complex[2]; |
| 2482 | |
| 2483 | Complex[0] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), |
| 2484 | V: Value.getComplexFloatReal()); |
| 2485 | Complex[1] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), |
| 2486 | V: Value.getComplexFloatImag()); |
| 2487 | |
| 2488 | // FIXME: the target may want to specify that this is packed. |
| 2489 | llvm::StructType *STy = |
| 2490 | llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType()); |
| 2491 | return llvm::ConstantStruct::get(T: STy, V: Complex); |
| 2492 | } |
| 2493 | case APValue::Vector: { |
| 2494 | unsigned NumElts = Value.getVectorLength(); |
| 2495 | SmallVector<llvm::Constant *, 4> Inits(NumElts); |
| 2496 | |
| 2497 | for (unsigned I = 0; I != NumElts; ++I) { |
| 2498 | const APValue &Elt = Value.getVectorElt(I); |
| 2499 | if (Elt.isInt()) |
| 2500 | Inits[I] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Elt.getInt()); |
| 2501 | else if (Elt.isFloat()) |
| 2502 | Inits[I] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Elt.getFloat()); |
| 2503 | else if (Elt.isIndeterminate()) |
| 2504 | Inits[I] = llvm::UndefValue::get(T: CGM.getTypes().ConvertType( |
| 2505 | T: DestType->castAs<VectorType>()->getElementType())); |
| 2506 | else |
| 2507 | llvm_unreachable("unsupported vector element type" ); |
| 2508 | } |
| 2509 | return llvm::ConstantVector::get(V: Inits); |
| 2510 | } |
| 2511 | case APValue::AddrLabelDiff: { |
| 2512 | const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); |
| 2513 | const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); |
| 2514 | llvm::Constant *LHS = tryEmitPrivate(E: LHSExpr, destType: LHSExpr->getType()); |
| 2515 | llvm::Constant *RHS = tryEmitPrivate(E: RHSExpr, destType: RHSExpr->getType()); |
| 2516 | if (!LHS || !RHS) return nullptr; |
| 2517 | |
| 2518 | // Compute difference |
| 2519 | llvm::Type *ResultType = CGM.getTypes().ConvertType(T: DestType); |
| 2520 | LHS = llvm::ConstantExpr::getPtrToInt(C: LHS, Ty: CGM.IntPtrTy); |
| 2521 | RHS = llvm::ConstantExpr::getPtrToInt(C: RHS, Ty: CGM.IntPtrTy); |
| 2522 | llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(C1: LHS, C2: RHS); |
| 2523 | |
| 2524 | // LLVM is a bit sensitive about the exact format of the |
| 2525 | // address-of-label difference; make sure to truncate after |
| 2526 | // the subtraction. |
| 2527 | return llvm::ConstantExpr::getTruncOrBitCast(C: AddrLabelDiff, Ty: ResultType); |
| 2528 | } |
| 2529 | case APValue::Struct: |
| 2530 | case APValue::Union: |
| 2531 | return ConstStructBuilder::BuildStruct(Emitter&: *this, Val: Value, ValTy: DestType); |
| 2532 | case APValue::Array: { |
| 2533 | const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(T: DestType); |
| 2534 | unsigned NumElements = Value.getArraySize(); |
| 2535 | unsigned NumInitElts = Value.getArrayInitializedElts(); |
| 2536 | |
| 2537 | // Emit array filler, if there is one. |
| 2538 | llvm::Constant *Filler = nullptr; |
| 2539 | if (Value.hasArrayFiller()) { |
| 2540 | Filler = tryEmitAbstractForMemory(value: Value.getArrayFiller(), |
| 2541 | destType: ArrayTy->getElementType()); |
| 2542 | if (!Filler) |
| 2543 | return nullptr; |
| 2544 | } |
| 2545 | |
| 2546 | // Emit initializer elements. |
| 2547 | SmallVector<llvm::Constant*, 16> Elts; |
| 2548 | if (Filler && Filler->isNullValue()) |
| 2549 | Elts.reserve(N: NumInitElts + 1); |
| 2550 | else |
| 2551 | Elts.reserve(N: NumElements); |
| 2552 | |
| 2553 | llvm::Type *CommonElementType = nullptr; |
| 2554 | for (unsigned I = 0; I < NumInitElts; ++I) { |
| 2555 | llvm::Constant *C = tryEmitPrivateForMemory( |
| 2556 | value: Value.getArrayInitializedElt(I), destType: ArrayTy->getElementType()); |
| 2557 | if (!C) return nullptr; |
| 2558 | |
| 2559 | if (I == 0) |
| 2560 | CommonElementType = C->getType(); |
| 2561 | else if (C->getType() != CommonElementType) |
| 2562 | CommonElementType = nullptr; |
| 2563 | Elts.push_back(Elt: C); |
| 2564 | } |
| 2565 | |
| 2566 | llvm::ArrayType *Desired = |
| 2567 | cast<llvm::ArrayType>(Val: CGM.getTypes().ConvertType(T: DestType)); |
| 2568 | |
| 2569 | // Fix the type of incomplete arrays if the initializer isn't empty. |
| 2570 | if (DestType->isIncompleteArrayType() && !Elts.empty()) |
| 2571 | Desired = llvm::ArrayType::get(ElementType: Desired->getElementType(), NumElements: Elts.size()); |
| 2572 | |
| 2573 | return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts, |
| 2574 | Filler); |
| 2575 | } |
| 2576 | case APValue::MemberPointer: |
| 2577 | return CGM.getCXXABI().EmitMemberPointer(MP: Value, MPT: DestType); |
| 2578 | } |
| 2579 | llvm_unreachable("Unknown APValue kind" ); |
| 2580 | } |
| 2581 | |
| 2582 | llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( |
| 2583 | const CompoundLiteralExpr *E) { |
| 2584 | return EmittedCompoundLiterals.lookup(Val: E); |
| 2585 | } |
| 2586 | |
| 2587 | void CodeGenModule::setAddrOfConstantCompoundLiteral( |
| 2588 | const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { |
| 2589 | bool Ok = EmittedCompoundLiterals.insert(KV: std::make_pair(x&: CLE, y&: GV)).second; |
| 2590 | (void)Ok; |
| 2591 | assert(Ok && "CLE has already been emitted!" ); |
| 2592 | } |
| 2593 | |
| 2594 | ConstantAddress |
| 2595 | CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { |
| 2596 | assert(E->isFileScope() && "not a file-scope compound literal expr" ); |
| 2597 | ConstantEmitter emitter(*this); |
| 2598 | return tryEmitGlobalCompoundLiteral(emitter, E); |
| 2599 | } |
| 2600 | |
| 2601 | llvm::Constant * |
| 2602 | CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { |
| 2603 | // Member pointer constants always have a very particular form. |
| 2604 | const MemberPointerType *type = cast<MemberPointerType>(Val: uo->getType()); |
| 2605 | const ValueDecl *decl = cast<DeclRefExpr>(Val: uo->getSubExpr())->getDecl(); |
| 2606 | |
| 2607 | // A member function pointer. |
| 2608 | if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(Val: decl)) |
| 2609 | return getCXXABI().EmitMemberFunctionPointer(MD: method); |
| 2610 | |
| 2611 | // Otherwise, a member data pointer. |
| 2612 | uint64_t fieldOffset = getContext().getFieldOffset(FD: decl); |
| 2613 | CharUnits chars = getContext().toCharUnitsFromBits(BitSize: (int64_t) fieldOffset); |
| 2614 | return getCXXABI().EmitMemberDataPointer(MPT: type, offset: chars); |
| 2615 | } |
| 2616 | |
| 2617 | static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, |
| 2618 | llvm::Type *baseType, |
| 2619 | const CXXRecordDecl *base); |
| 2620 | |
| 2621 | static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, |
| 2622 | const RecordDecl *record, |
| 2623 | bool asCompleteObject) { |
| 2624 | const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); |
| 2625 | llvm::StructType *structure = |
| 2626 | (asCompleteObject ? layout.getLLVMType() |
| 2627 | : layout.getBaseSubobjectLLVMType()); |
| 2628 | |
| 2629 | unsigned numElements = structure->getNumElements(); |
| 2630 | std::vector<llvm::Constant *> elements(numElements); |
| 2631 | |
| 2632 | auto CXXR = dyn_cast<CXXRecordDecl>(Val: record); |
| 2633 | // Fill in all the bases. |
| 2634 | if (CXXR) { |
| 2635 | for (const auto &I : CXXR->bases()) { |
| 2636 | if (I.isVirtual()) { |
| 2637 | // Ignore virtual bases; if we're laying out for a complete |
| 2638 | // object, we'll lay these out later. |
| 2639 | continue; |
| 2640 | } |
| 2641 | |
| 2642 | const CXXRecordDecl *base = |
| 2643 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
| 2644 | |
| 2645 | // Ignore empty bases. |
| 2646 | if (isEmptyRecordForLayout(Context: CGM.getContext(), T: I.getType()) || |
| 2647 | CGM.getContext() |
| 2648 | .getASTRecordLayout(D: base) |
| 2649 | .getNonVirtualSize() |
| 2650 | .isZero()) |
| 2651 | continue; |
| 2652 | |
| 2653 | unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(RD: base); |
| 2654 | llvm::Type *baseType = structure->getElementType(N: fieldIndex); |
| 2655 | elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | // Fill in all the fields. |
| 2660 | for (const auto *Field : record->fields()) { |
| 2661 | // Fill in non-bitfields. (Bitfields always use a zero pattern, which we |
| 2662 | // will fill in later.) |
| 2663 | if (!Field->isBitField() && |
| 2664 | !isEmptyFieldForLayout(Context: CGM.getContext(), FD: Field)) { |
| 2665 | unsigned fieldIndex = layout.getLLVMFieldNo(FD: Field); |
| 2666 | elements[fieldIndex] = CGM.EmitNullConstant(T: Field->getType()); |
| 2667 | } |
| 2668 | |
| 2669 | // For unions, stop after the first named field. |
| 2670 | if (record->isUnion()) { |
| 2671 | if (Field->getIdentifier()) |
| 2672 | break; |
| 2673 | if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) |
| 2674 | if (FieldRD->findFirstNamedDataMember()) |
| 2675 | break; |
| 2676 | } |
| 2677 | } |
| 2678 | |
| 2679 | // Fill in the virtual bases, if we're working with the complete object. |
| 2680 | if (CXXR && asCompleteObject) { |
| 2681 | for (const auto &I : CXXR->vbases()) { |
| 2682 | const CXXRecordDecl *base = |
| 2683 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
| 2684 | |
| 2685 | // Ignore empty bases. |
| 2686 | if (isEmptyRecordForLayout(Context: CGM.getContext(), T: I.getType())) |
| 2687 | continue; |
| 2688 | |
| 2689 | unsigned fieldIndex = layout.getVirtualBaseIndex(base); |
| 2690 | |
| 2691 | // We might have already laid this field out. |
| 2692 | if (elements[fieldIndex]) continue; |
| 2693 | |
| 2694 | llvm::Type *baseType = structure->getElementType(N: fieldIndex); |
| 2695 | elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); |
| 2696 | } |
| 2697 | } |
| 2698 | |
| 2699 | // Now go through all other fields and zero them out. |
| 2700 | for (unsigned i = 0; i != numElements; ++i) { |
| 2701 | if (!elements[i]) |
| 2702 | elements[i] = llvm::Constant::getNullValue(Ty: structure->getElementType(N: i)); |
| 2703 | } |
| 2704 | |
| 2705 | return llvm::ConstantStruct::get(T: structure, V: elements); |
| 2706 | } |
| 2707 | |
| 2708 | /// Emit the null constant for a base subobject. |
| 2709 | static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, |
| 2710 | llvm::Type *baseType, |
| 2711 | const CXXRecordDecl *base) { |
| 2712 | const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); |
| 2713 | |
| 2714 | // Just zero out bases that don't have any pointer to data members. |
| 2715 | if (baseLayout.isZeroInitializableAsBase()) |
| 2716 | return llvm::Constant::getNullValue(Ty: baseType); |
| 2717 | |
| 2718 | // Otherwise, we can just use its null constant. |
| 2719 | return EmitNullConstant(CGM, record: base, /*asCompleteObject=*/false); |
| 2720 | } |
| 2721 | |
| 2722 | llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, |
| 2723 | QualType T) { |
| 2724 | return emitForMemory(CGM, C: CGM.EmitNullConstant(T), destType: T); |
| 2725 | } |
| 2726 | |
| 2727 | llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { |
| 2728 | if (T->getAs<PointerType>()) |
| 2729 | return getNullPointer( |
| 2730 | T: cast<llvm::PointerType>(Val: getTypes().ConvertTypeForMem(T)), QT: T); |
| 2731 | |
| 2732 | if (getTypes().isZeroInitializable(T)) |
| 2733 | return llvm::Constant::getNullValue(Ty: getTypes().ConvertTypeForMem(T)); |
| 2734 | |
| 2735 | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { |
| 2736 | llvm::ArrayType *ATy = |
| 2737 | cast<llvm::ArrayType>(Val: getTypes().ConvertTypeForMem(T)); |
| 2738 | |
| 2739 | QualType ElementTy = CAT->getElementType(); |
| 2740 | |
| 2741 | llvm::Constant *Element = |
| 2742 | ConstantEmitter::emitNullForMemory(CGM&: *this, T: ElementTy); |
| 2743 | unsigned NumElements = CAT->getZExtSize(); |
| 2744 | SmallVector<llvm::Constant *, 8> Array(NumElements, Element); |
| 2745 | return llvm::ConstantArray::get(T: ATy, V: Array); |
| 2746 | } |
| 2747 | |
| 2748 | if (const RecordType *RT = T->getAs<RecordType>()) |
| 2749 | return ::EmitNullConstant(CGM&: *this, record: RT->getDecl(), /*complete object*/ asCompleteObject: true); |
| 2750 | |
| 2751 | assert(T->isMemberDataPointerType() && |
| 2752 | "Should only see pointers to data members here!" ); |
| 2753 | |
| 2754 | return getCXXABI().EmitNullMemberPointer(MPT: T->castAs<MemberPointerType>()); |
| 2755 | } |
| 2756 | |
| 2757 | llvm::Constant * |
| 2758 | CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { |
| 2759 | return ::EmitNullConstant(CGM&: *this, record: Record, asCompleteObject: false); |
| 2760 | } |
| 2761 | |