1 | //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-function state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenFunction.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCUDARuntime.h" |
16 | #include "CGCXXABI.h" |
17 | #include "CGCleanup.h" |
18 | #include "CGDebugInfo.h" |
19 | #include "CGHLSLRuntime.h" |
20 | #include "CGOpenMPRuntime.h" |
21 | #include "CodeGenModule.h" |
22 | #include "CodeGenPGO.h" |
23 | #include "TargetInfo.h" |
24 | #include "clang/AST/ASTContext.h" |
25 | #include "clang/AST/ASTLambda.h" |
26 | #include "clang/AST/Attr.h" |
27 | #include "clang/AST/Decl.h" |
28 | #include "clang/AST/DeclCXX.h" |
29 | #include "clang/AST/Expr.h" |
30 | #include "clang/AST/StmtCXX.h" |
31 | #include "clang/AST/StmtObjC.h" |
32 | #include "clang/Basic/Builtins.h" |
33 | #include "clang/Basic/CodeGenOptions.h" |
34 | #include "clang/Basic/TargetBuiltins.h" |
35 | #include "clang/Basic/TargetInfo.h" |
36 | #include "clang/CodeGen/CGFunctionInfo.h" |
37 | #include "clang/Frontend/FrontendDiagnostic.h" |
38 | #include "llvm/ADT/ArrayRef.h" |
39 | #include "llvm/ADT/ScopeExit.h" |
40 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
41 | #include "llvm/IR/DataLayout.h" |
42 | #include "llvm/IR/Dominators.h" |
43 | #include "llvm/IR/FPEnv.h" |
44 | #include "llvm/IR/Instruction.h" |
45 | #include "llvm/IR/IntrinsicInst.h" |
46 | #include "llvm/IR/Intrinsics.h" |
47 | #include "llvm/IR/MDBuilder.h" |
48 | #include "llvm/Support/CRC.h" |
49 | #include "llvm/Support/xxhash.h" |
50 | #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
51 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
52 | #include <optional> |
53 | |
54 | using namespace clang; |
55 | using namespace CodeGen; |
56 | |
57 | namespace llvm { |
58 | extern cl::opt<bool> EnableSingleByteCoverage; |
59 | } // namespace llvm |
60 | |
61 | /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time |
62 | /// markers. |
63 | static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, |
64 | const LangOptions &LangOpts) { |
65 | if (CGOpts.DisableLifetimeMarkers) |
66 | return false; |
67 | |
68 | // Sanitizers may use markers. |
69 | if (CGOpts.SanitizeAddressUseAfterScope || |
70 | LangOpts.Sanitize.has(K: SanitizerKind::HWAddress) || |
71 | LangOpts.Sanitize.has(K: SanitizerKind::Memory)) |
72 | return true; |
73 | |
74 | // For now, only in optimized builds. |
75 | return CGOpts.OptimizationLevel != 0; |
76 | } |
77 | |
78 | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) |
79 | : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), |
80 | Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), |
81 | CGBuilderInserterTy(this)), |
82 | SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), |
83 | DebugInfo(CGM.getModuleDebugInfo()), |
84 | PGO(std::make_unique<CodeGenPGO>(args&: cgm)), |
85 | ShouldEmitLifetimeMarkers( |
86 | shouldEmitLifetimeMarkers(CGOpts: CGM.getCodeGenOpts(), LangOpts: CGM.getLangOpts())) { |
87 | if (!suppressNewContext) |
88 | CGM.getCXXABI().getMangleContext().startNewFunction(); |
89 | EHStack.setCGF(this); |
90 | |
91 | SetFastMathFlags(CurFPFeatures); |
92 | } |
93 | |
94 | CodeGenFunction::~CodeGenFunction() { |
95 | assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup" ); |
96 | assert(DeferredDeactivationCleanupStack.empty() && |
97 | "missed to deactivate a cleanup" ); |
98 | |
99 | if (getLangOpts().OpenMP && CurFn) |
100 | CGM.getOpenMPRuntime().functionFinished(CGF&: *this); |
101 | |
102 | // If we have an OpenMPIRBuilder we want to finalize functions (incl. |
103 | // outlining etc) at some point. Doing it once the function codegen is done |
104 | // seems to be a reasonable spot. We do it here, as opposed to the deletion |
105 | // time of the CodeGenModule, because we have to ensure the IR has not yet |
106 | // been "emitted" to the outside, thus, modifications are still sensible. |
107 | if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) |
108 | CGM.getOpenMPRuntime().getOMPBuilder().finalize(Fn: CurFn); |
109 | } |
110 | |
111 | // Map the LangOption for exception behavior into |
112 | // the corresponding enum in the IR. |
113 | llvm::fp::ExceptionBehavior |
114 | clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { |
115 | |
116 | switch (Kind) { |
117 | case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; |
118 | case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; |
119 | case LangOptions::FPE_Strict: return llvm::fp::ebStrict; |
120 | default: |
121 | llvm_unreachable("Unsupported FP Exception Behavior" ); |
122 | } |
123 | } |
124 | |
125 | void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { |
126 | llvm::FastMathFlags FMF; |
127 | FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); |
128 | FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); |
129 | FMF.setNoInfs(FPFeatures.getNoHonorInfs()); |
130 | FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); |
131 | FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); |
132 | FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); |
133 | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
134 | Builder.setFastMathFlags(FMF); |
135 | } |
136 | |
137 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
138 | const Expr *E) |
139 | : CGF(CGF) { |
140 | ConstructorHelper(FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
141 | } |
142 | |
143 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
144 | FPOptions FPFeatures) |
145 | : CGF(CGF) { |
146 | ConstructorHelper(FPFeatures); |
147 | } |
148 | |
149 | void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { |
150 | OldFPFeatures = CGF.CurFPFeatures; |
151 | CGF.CurFPFeatures = FPFeatures; |
152 | |
153 | OldExcept = CGF.Builder.getDefaultConstrainedExcept(); |
154 | OldRounding = CGF.Builder.getDefaultConstrainedRounding(); |
155 | |
156 | if (OldFPFeatures == FPFeatures) |
157 | return; |
158 | |
159 | FMFGuard.emplace(args&: CGF.Builder); |
160 | |
161 | llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); |
162 | CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); |
163 | auto NewExceptionBehavior = |
164 | ToConstrainedExceptMD(Kind: static_cast<LangOptions::FPExceptionModeKind>( |
165 | FPFeatures.getExceptionMode())); |
166 | CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); |
167 | |
168 | CGF.SetFastMathFlags(FPFeatures); |
169 | |
170 | assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || |
171 | isa<CXXConstructorDecl>(CGF.CurFuncDecl) || |
172 | isa<CXXDestructorDecl>(CGF.CurFuncDecl) || |
173 | (NewExceptionBehavior == llvm::fp::ebIgnore && |
174 | NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && |
175 | "FPConstrained should be enabled on entire function" ); |
176 | |
177 | auto mergeFnAttrValue = [&](StringRef Name, bool Value) { |
178 | auto OldValue = |
179 | CGF.CurFn->getFnAttribute(Kind: Name).getValueAsBool(); |
180 | auto NewValue = OldValue & Value; |
181 | if (OldValue != NewValue) |
182 | CGF.CurFn->addFnAttr(Kind: Name, Val: llvm::toStringRef(B: NewValue)); |
183 | }; |
184 | mergeFnAttrValue("no-infs-fp-math" , FPFeatures.getNoHonorInfs()); |
185 | mergeFnAttrValue("no-nans-fp-math" , FPFeatures.getNoHonorNaNs()); |
186 | mergeFnAttrValue("no-signed-zeros-fp-math" , FPFeatures.getNoSignedZero()); |
187 | mergeFnAttrValue( |
188 | "unsafe-fp-math" , |
189 | FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && |
190 | FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && |
191 | FPFeatures.allowFPContractAcrossStatement()); |
192 | } |
193 | |
194 | CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { |
195 | CGF.CurFPFeatures = OldFPFeatures; |
196 | CGF.Builder.setDefaultConstrainedExcept(OldExcept); |
197 | CGF.Builder.setDefaultConstrainedRounding(OldRounding); |
198 | } |
199 | |
200 | static LValue |
201 | makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, |
202 | bool MightBeSigned, CodeGenFunction &CGF, |
203 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
204 | LValueBaseInfo BaseInfo; |
205 | TBAAAccessInfo TBAAInfo; |
206 | CharUnits Alignment = |
207 | CGF.CGM.getNaturalTypeAlignment(T, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo, forPointeeType: ForPointeeType); |
208 | Address Addr = |
209 | MightBeSigned |
210 | ? CGF.makeNaturalAddressForPointer(Ptr: V, T, Alignment, ForPointeeType: false, BaseInfo: nullptr, |
211 | TBAAInfo: nullptr, IsKnownNonNull) |
212 | : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull); |
213 | return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); |
214 | } |
215 | |
216 | LValue |
217 | CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
218 | KnownNonNull_t IsKnownNonNull) { |
219 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, |
220 | /*MightBeSigned*/ true, CGF&: *this, |
221 | IsKnownNonNull); |
222 | } |
223 | |
224 | LValue |
225 | CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { |
226 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, |
227 | /*MightBeSigned*/ true, CGF&: *this); |
228 | } |
229 | |
230 | LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, |
231 | QualType T) { |
232 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, |
233 | /*MightBeSigned*/ false, CGF&: *this); |
234 | } |
235 | |
236 | LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, |
237 | QualType T) { |
238 | return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, |
239 | /*MightBeSigned*/ false, CGF&: *this); |
240 | } |
241 | |
242 | llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { |
243 | return CGM.getTypes().ConvertTypeForMem(T); |
244 | } |
245 | |
246 | llvm::Type *CodeGenFunction::ConvertType(QualType T) { |
247 | return CGM.getTypes().ConvertType(T); |
248 | } |
249 | |
250 | llvm::Type *CodeGenFunction::convertTypeForLoadStore(QualType ASTTy, |
251 | llvm::Type *LLVMTy) { |
252 | return CGM.getTypes().convertTypeForLoadStore(T: ASTTy, LLVMTy); |
253 | } |
254 | |
255 | TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { |
256 | type = type.getCanonicalType(); |
257 | while (true) { |
258 | switch (type->getTypeClass()) { |
259 | #define TYPE(name, parent) |
260 | #define ABSTRACT_TYPE(name, parent) |
261 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
262 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
263 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
264 | #include "clang/AST/TypeNodes.inc" |
265 | llvm_unreachable("non-canonical or dependent type in IR-generation" ); |
266 | |
267 | case Type::Auto: |
268 | case Type::DeducedTemplateSpecialization: |
269 | llvm_unreachable("undeduced type in IR-generation" ); |
270 | |
271 | // Various scalar types. |
272 | case Type::Builtin: |
273 | case Type::Pointer: |
274 | case Type::BlockPointer: |
275 | case Type::LValueReference: |
276 | case Type::RValueReference: |
277 | case Type::MemberPointer: |
278 | case Type::Vector: |
279 | case Type::ExtVector: |
280 | case Type::ConstantMatrix: |
281 | case Type::FunctionProto: |
282 | case Type::FunctionNoProto: |
283 | case Type::Enum: |
284 | case Type::ObjCObjectPointer: |
285 | case Type::Pipe: |
286 | case Type::BitInt: |
287 | case Type::HLSLAttributedResource: |
288 | case Type::HLSLInlineSpirv: |
289 | return TEK_Scalar; |
290 | |
291 | // Complexes. |
292 | case Type::Complex: |
293 | return TEK_Complex; |
294 | |
295 | // Arrays, records, and Objective-C objects. |
296 | case Type::ConstantArray: |
297 | case Type::IncompleteArray: |
298 | case Type::VariableArray: |
299 | case Type::Record: |
300 | case Type::ObjCObject: |
301 | case Type::ObjCInterface: |
302 | case Type::ArrayParameter: |
303 | return TEK_Aggregate; |
304 | |
305 | // We operate on atomic values according to their underlying type. |
306 | case Type::Atomic: |
307 | type = cast<AtomicType>(Val&: type)->getValueType(); |
308 | continue; |
309 | } |
310 | llvm_unreachable("unknown type kind!" ); |
311 | } |
312 | } |
313 | |
314 | llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { |
315 | // For cleanliness, we try to avoid emitting the return block for |
316 | // simple cases. |
317 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
318 | |
319 | if (CurBB) { |
320 | assert(!CurBB->getTerminator() && "Unexpected terminated block." ); |
321 | |
322 | // We have a valid insert point, reuse it if it is empty or there are no |
323 | // explicit jumps to the return block. |
324 | if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { |
325 | ReturnBlock.getBlock()->replaceAllUsesWith(V: CurBB); |
326 | delete ReturnBlock.getBlock(); |
327 | ReturnBlock = JumpDest(); |
328 | } else |
329 | EmitBlock(BB: ReturnBlock.getBlock()); |
330 | return llvm::DebugLoc(); |
331 | } |
332 | |
333 | // Otherwise, if the return block is the target of a single direct |
334 | // branch then we can just put the code in that block instead. This |
335 | // cleans up functions which started with a unified return block. |
336 | if (ReturnBlock.getBlock()->hasOneUse()) { |
337 | llvm::BranchInst *BI = |
338 | dyn_cast<llvm::BranchInst>(Val: *ReturnBlock.getBlock()->user_begin()); |
339 | if (BI && BI->isUnconditional() && |
340 | BI->getSuccessor(i: 0) == ReturnBlock.getBlock()) { |
341 | // Record/return the DebugLoc of the simple 'return' expression to be used |
342 | // later by the actual 'ret' instruction. |
343 | llvm::DebugLoc Loc = BI->getDebugLoc(); |
344 | Builder.SetInsertPoint(BI->getParent()); |
345 | BI->eraseFromParent(); |
346 | delete ReturnBlock.getBlock(); |
347 | ReturnBlock = JumpDest(); |
348 | return Loc; |
349 | } |
350 | } |
351 | |
352 | // FIXME: We are at an unreachable point, there is no reason to emit the block |
353 | // unless it has uses. However, we still need a place to put the debug |
354 | // region.end for now. |
355 | |
356 | EmitBlock(BB: ReturnBlock.getBlock()); |
357 | return llvm::DebugLoc(); |
358 | } |
359 | |
360 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { |
361 | if (!BB) return; |
362 | if (!BB->use_empty()) { |
363 | CGF.CurFn->insert(Position: CGF.CurFn->end(), BB); |
364 | return; |
365 | } |
366 | delete BB; |
367 | } |
368 | |
369 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { |
370 | assert(BreakContinueStack.empty() && |
371 | "mismatched push/pop in break/continue stack!" ); |
372 | assert(LifetimeExtendedCleanupStack.empty() && |
373 | "mismatched push/pop of cleanups in EHStack!" ); |
374 | assert(DeferredDeactivationCleanupStack.empty() && |
375 | "mismatched activate/deactivate of cleanups!" ); |
376 | |
377 | if (CGM.shouldEmitConvergenceTokens()) { |
378 | ConvergenceTokenStack.pop_back(); |
379 | assert(ConvergenceTokenStack.empty() && |
380 | "mismatched push/pop in convergence stack!" ); |
381 | } |
382 | |
383 | bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 |
384 | && NumSimpleReturnExprs == NumReturnExprs |
385 | && ReturnBlock.getBlock()->use_empty(); |
386 | // Usually the return expression is evaluated before the cleanup |
387 | // code. If the function contains only a simple return statement, |
388 | // such as a constant, the location before the cleanup code becomes |
389 | // the last useful breakpoint in the function, because the simple |
390 | // return expression will be evaluated after the cleanup code. To be |
391 | // safe, set the debug location for cleanup code to the location of |
392 | // the return statement. Otherwise the cleanup code should be at the |
393 | // end of the function's lexical scope. |
394 | // |
395 | // If there are multiple branches to the return block, the branch |
396 | // instructions will get the location of the return statements and |
397 | // all will be fine. |
398 | if (CGDebugInfo *DI = getDebugInfo()) { |
399 | if (OnlySimpleReturnStmts) |
400 | DI->EmitLocation(Builder, Loc: LastStopPoint); |
401 | else |
402 | DI->EmitLocation(Builder, Loc: EndLoc); |
403 | } |
404 | |
405 | // Pop any cleanups that might have been associated with the |
406 | // parameters. Do this in whatever block we're currently in; it's |
407 | // important to do this before we enter the return block or return |
408 | // edges will be *really* confused. |
409 | bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; |
410 | bool HasOnlyNoopCleanups = |
411 | HasCleanups && EHStack.containsOnlyNoopCleanups(Old: PrologueCleanupDepth); |
412 | bool EmitRetDbgLoc = !HasCleanups || HasOnlyNoopCleanups; |
413 | |
414 | std::optional<ApplyDebugLocation> OAL; |
415 | if (HasCleanups) { |
416 | // Make sure the line table doesn't jump back into the body for |
417 | // the ret after it's been at EndLoc. |
418 | if (CGDebugInfo *DI = getDebugInfo()) { |
419 | if (OnlySimpleReturnStmts) |
420 | DI->EmitLocation(Builder, Loc: EndLoc); |
421 | else |
422 | // We may not have a valid end location. Try to apply it anyway, and |
423 | // fall back to an artificial location if needed. |
424 | OAL = ApplyDebugLocation::CreateDefaultArtificial(CGF&: *this, TemporaryLocation: EndLoc); |
425 | } |
426 | |
427 | PopCleanupBlocks(OldCleanupStackSize: PrologueCleanupDepth); |
428 | } |
429 | |
430 | // Emit function epilog (to return). |
431 | llvm::DebugLoc Loc = EmitReturnBlock(); |
432 | |
433 | if (ShouldInstrumentFunction()) { |
434 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
435 | CurFn->addFnAttr(Kind: "instrument-function-exit" , Val: "__cyg_profile_func_exit" ); |
436 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
437 | CurFn->addFnAttr(Kind: "instrument-function-exit-inlined" , |
438 | Val: "__cyg_profile_func_exit" ); |
439 | } |
440 | |
441 | // Emit debug descriptor for function end. |
442 | if (CGDebugInfo *DI = getDebugInfo()) |
443 | DI->EmitFunctionEnd(Builder, Fn: CurFn); |
444 | |
445 | // Reset the debug location to that of the simple 'return' expression, if any |
446 | // rather than that of the end of the function's scope '}'. |
447 | uint64_t RetKeyInstructionsAtomGroup = Loc ? Loc->getAtomGroup() : 0; |
448 | ApplyDebugLocation AL(*this, Loc); |
449 | EmitFunctionEpilog(FI: *CurFnInfo, EmitRetDbgLoc, EndLoc, |
450 | RetKeyInstructionsSourceAtom: RetKeyInstructionsAtomGroup); |
451 | EmitEndEHSpec(D: CurCodeDecl); |
452 | |
453 | assert(EHStack.empty() && |
454 | "did not remove all scopes from cleanup stack!" ); |
455 | |
456 | // If someone did an indirect goto, emit the indirect goto block at the end of |
457 | // the function. |
458 | if (IndirectBranch) { |
459 | EmitBlock(BB: IndirectBranch->getParent()); |
460 | Builder.ClearInsertionPoint(); |
461 | } |
462 | |
463 | // If some of our locals escaped, insert a call to llvm.localescape in the |
464 | // entry block. |
465 | if (!EscapedLocals.empty()) { |
466 | // Invert the map from local to index into a simple vector. There should be |
467 | // no holes. |
468 | SmallVector<llvm::Value *, 4> EscapeArgs; |
469 | EscapeArgs.resize(N: EscapedLocals.size()); |
470 | for (auto &Pair : EscapedLocals) |
471 | EscapeArgs[Pair.second] = Pair.first; |
472 | llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration( |
473 | M: &CGM.getModule(), id: llvm::Intrinsic::localescape); |
474 | CGBuilderTy(*this, AllocaInsertPt).CreateCall(Callee: FrameEscapeFn, Args: EscapeArgs); |
475 | } |
476 | |
477 | // Remove the AllocaInsertPt instruction, which is just a convenience for us. |
478 | llvm::Instruction *Ptr = AllocaInsertPt; |
479 | AllocaInsertPt = nullptr; |
480 | Ptr->eraseFromParent(); |
481 | |
482 | // PostAllocaInsertPt, if created, was lazily created when it was required, |
483 | // remove it now since it was just created for our own convenience. |
484 | if (PostAllocaInsertPt) { |
485 | llvm::Instruction *PostPtr = PostAllocaInsertPt; |
486 | PostAllocaInsertPt = nullptr; |
487 | PostPtr->eraseFromParent(); |
488 | } |
489 | |
490 | // If someone took the address of a label but never did an indirect goto, we |
491 | // made a zero entry PHI node, which is illegal, zap it now. |
492 | if (IndirectBranch) { |
493 | llvm::PHINode *PN = cast<llvm::PHINode>(Val: IndirectBranch->getAddress()); |
494 | if (PN->getNumIncomingValues() == 0) { |
495 | PN->replaceAllUsesWith(V: llvm::PoisonValue::get(T: PN->getType())); |
496 | PN->eraseFromParent(); |
497 | } |
498 | } |
499 | |
500 | EmitIfUsed(CGF&: *this, BB: EHResumeBlock); |
501 | EmitIfUsed(CGF&: *this, BB: TerminateLandingPad); |
502 | EmitIfUsed(CGF&: *this, BB: TerminateHandler); |
503 | EmitIfUsed(CGF&: *this, BB: UnreachableBlock); |
504 | |
505 | for (const auto &FuncletAndParent : TerminateFunclets) |
506 | EmitIfUsed(CGF&: *this, BB: FuncletAndParent.second); |
507 | |
508 | if (CGM.getCodeGenOpts().EmitDeclMetadata) |
509 | EmitDeclMetadata(); |
510 | |
511 | for (const auto &R : DeferredReplacements) { |
512 | if (llvm::Value *Old = R.first) { |
513 | Old->replaceAllUsesWith(V: R.second); |
514 | cast<llvm::Instruction>(Val: Old)->eraseFromParent(); |
515 | } |
516 | } |
517 | DeferredReplacements.clear(); |
518 | |
519 | // Eliminate CleanupDestSlot alloca by replacing it with SSA values and |
520 | // PHIs if the current function is a coroutine. We don't do it for all |
521 | // functions as it may result in slight increase in numbers of instructions |
522 | // if compiled with no optimizations. We do it for coroutine as the lifetime |
523 | // of CleanupDestSlot alloca make correct coroutine frame building very |
524 | // difficult. |
525 | if (NormalCleanupDest.isValid() && isCoroutine()) { |
526 | llvm::DominatorTree DT(*CurFn); |
527 | llvm::PromoteMemToReg( |
528 | Allocas: cast<llvm::AllocaInst>(Val: NormalCleanupDest.getPointer()), DT); |
529 | NormalCleanupDest = Address::invalid(); |
530 | } |
531 | |
532 | // Scan function arguments for vector width. |
533 | for (llvm::Argument &A : CurFn->args()) |
534 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: A.getType())) |
535 | LargestVectorWidth = |
536 | std::max(a: (uint64_t)LargestVectorWidth, |
537 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
538 | |
539 | // Update vector width based on return type. |
540 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: CurFn->getReturnType())) |
541 | LargestVectorWidth = |
542 | std::max(a: (uint64_t)LargestVectorWidth, |
543 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
544 | |
545 | if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) |
546 | LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); |
547 | |
548 | // Add the min-legal-vector-width attribute. This contains the max width from: |
549 | // 1. min-vector-width attribute used in the source program. |
550 | // 2. Any builtins used that have a vector width specified. |
551 | // 3. Values passed in and out of inline assembly. |
552 | // 4. Width of vector arguments and return types for this function. |
553 | // 5. Width of vector arguments and return types for functions called by this |
554 | // function. |
555 | if (getContext().getTargetInfo().getTriple().isX86()) |
556 | CurFn->addFnAttr(Kind: "min-legal-vector-width" , |
557 | Val: llvm::utostr(X: LargestVectorWidth)); |
558 | |
559 | // If we generated an unreachable return block, delete it now. |
560 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { |
561 | Builder.ClearInsertionPoint(); |
562 | ReturnBlock.getBlock()->eraseFromParent(); |
563 | } |
564 | if (ReturnValue.isValid()) { |
565 | auto *RetAlloca = |
566 | dyn_cast<llvm::AllocaInst>(Val: ReturnValue.emitRawPointer(CGF&: *this)); |
567 | if (RetAlloca && RetAlloca->use_empty()) { |
568 | RetAlloca->eraseFromParent(); |
569 | ReturnValue = Address::invalid(); |
570 | } |
571 | } |
572 | } |
573 | |
574 | /// ShouldInstrumentFunction - Return true if the current function should be |
575 | /// instrumented with __cyg_profile_func_* calls |
576 | bool CodeGenFunction::ShouldInstrumentFunction() { |
577 | if (!CGM.getCodeGenOpts().InstrumentFunctions && |
578 | !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && |
579 | !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
580 | return false; |
581 | if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) |
582 | return false; |
583 | return true; |
584 | } |
585 | |
586 | bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { |
587 | if (!CurFuncDecl) |
588 | return false; |
589 | return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); |
590 | } |
591 | |
592 | /// ShouldXRayInstrument - Return true if the current function should be |
593 | /// instrumented with XRay nop sleds. |
594 | bool CodeGenFunction::ShouldXRayInstrumentFunction() const { |
595 | return CGM.getCodeGenOpts().XRayInstrumentFunctions; |
596 | } |
597 | |
598 | /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to |
599 | /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. |
600 | bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { |
601 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
602 | (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || |
603 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
604 | XRayInstrKind::Custom); |
605 | } |
606 | |
607 | bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { |
608 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
609 | (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || |
610 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
611 | XRayInstrKind::Typed); |
612 | } |
613 | |
614 | llvm::ConstantInt * |
615 | CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { |
616 | // Remove any (C++17) exception specifications, to allow calling e.g. a |
617 | // noexcept function through a non-noexcept pointer. |
618 | if (!Ty->isFunctionNoProtoType()) |
619 | Ty = getContext().getFunctionTypeWithExceptionSpec(Orig: Ty, ESI: EST_None); |
620 | std::string Mangled; |
621 | llvm::raw_string_ostream Out(Mangled); |
622 | CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(T: Ty, Out, NormalizeIntegers: false); |
623 | return llvm::ConstantInt::get( |
624 | Ty: CGM.Int32Ty, V: static_cast<uint32_t>(llvm::xxh3_64bits(data: Mangled))); |
625 | } |
626 | |
627 | void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, |
628 | llvm::Function *Fn) { |
629 | if (!FD->hasAttr<DeviceKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) |
630 | return; |
631 | |
632 | llvm::LLVMContext &Context = getLLVMContext(); |
633 | |
634 | CGM.GenKernelArgMetadata(FN: Fn, FD, CGF: this); |
635 | |
636 | if (!(getLangOpts().OpenCL || |
637 | (getLangOpts().CUDA && |
638 | getContext().getTargetInfo().getTriple().isSPIRV()))) |
639 | return; |
640 | |
641 | if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { |
642 | QualType HintQTy = A->getTypeHint(); |
643 | const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); |
644 | bool IsSignedInteger = |
645 | HintQTy->isSignedIntegerType() || |
646 | (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); |
647 | llvm::Metadata *AttrMDArgs[] = { |
648 | llvm::ConstantAsMetadata::get(C: llvm::PoisonValue::get( |
649 | T: CGM.getTypes().ConvertType(T: A->getTypeHint()))), |
650 | llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get( |
651 | Ty: llvm::IntegerType::get(C&: Context, NumBits: 32), |
652 | V: llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; |
653 | Fn->setMetadata(Kind: "vec_type_hint" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
654 | } |
655 | |
656 | if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { |
657 | auto Eval = [&](Expr *E) { |
658 | return E->EvaluateKnownConstInt(Ctx: FD->getASTContext()).getExtValue(); |
659 | }; |
660 | llvm::Metadata *AttrMDArgs[] = { |
661 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getXDim()))), |
662 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getYDim()))), |
663 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getZDim())))}; |
664 | Fn->setMetadata(Kind: "work_group_size_hint" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
665 | } |
666 | |
667 | if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { |
668 | auto Eval = [&](Expr *E) { |
669 | return E->EvaluateKnownConstInt(Ctx: FD->getASTContext()).getExtValue(); |
670 | }; |
671 | llvm::Metadata *AttrMDArgs[] = { |
672 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getXDim()))), |
673 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getYDim()))), |
674 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: Eval(A->getZDim())))}; |
675 | Fn->setMetadata(Kind: "reqd_work_group_size" , Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
676 | } |
677 | |
678 | if (const OpenCLIntelReqdSubGroupSizeAttr *A = |
679 | FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
680 | llvm::Metadata *AttrMDArgs[] = { |
681 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getSubGroupSize()))}; |
682 | Fn->setMetadata(Kind: "intel_reqd_sub_group_size" , |
683 | Node: llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
684 | } |
685 | } |
686 | |
687 | /// Determine whether the function F ends with a return stmt. |
688 | static bool endsWithReturn(const Decl* F) { |
689 | const Stmt *Body = nullptr; |
690 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: F)) |
691 | Body = FD->getBody(); |
692 | else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: F)) |
693 | Body = OMD->getBody(); |
694 | |
695 | if (auto *CS = dyn_cast_or_null<CompoundStmt>(Val: Body)) { |
696 | auto LastStmt = CS->body_rbegin(); |
697 | if (LastStmt != CS->body_rend()) |
698 | return isa<ReturnStmt>(Val: *LastStmt); |
699 | } |
700 | return false; |
701 | } |
702 | |
703 | void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { |
704 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
705 | Fn->addFnAttr(Kind: "sanitize_thread_no_checking_at_run_time" ); |
706 | Fn->removeFnAttr(Kind: llvm::Attribute::SanitizeThread); |
707 | } |
708 | } |
709 | |
710 | /// Check if the return value of this function requires sanitization. |
711 | bool CodeGenFunction::requiresReturnValueCheck() const { |
712 | return requiresReturnValueNullabilityCheck() || |
713 | (SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && |
714 | CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
715 | } |
716 | |
717 | static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { |
718 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D); |
719 | if (!MD || !MD->getDeclName().getAsIdentifierInfo() || |
720 | !MD->getDeclName().getAsIdentifierInfo()->isStr(Str: "allocate" ) || |
721 | (MD->getNumParams() != 1 && MD->getNumParams() != 2)) |
722 | return false; |
723 | |
724 | if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) |
725 | return false; |
726 | |
727 | if (MD->getNumParams() == 2) { |
728 | auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); |
729 | if (!PT || !PT->isVoidPointerType() || |
730 | !PT->getPointeeType().isConstQualified()) |
731 | return false; |
732 | } |
733 | |
734 | return true; |
735 | } |
736 | |
737 | bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { |
738 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
739 | return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
740 | } |
741 | |
742 | bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { |
743 | return getTarget().getTriple().getArch() == llvm::Triple::x86 && |
744 | getTarget().getCXXABI().isMicrosoft() && |
745 | llvm::any_of(Range: MD->parameters(), P: [&](ParmVarDecl *P) { |
746 | return isInAllocaArgument(ABI&: CGM.getCXXABI(), Ty: P->getType()); |
747 | }); |
748 | } |
749 | |
750 | /// Return the UBSan prologue signature for \p FD if one is available. |
751 | static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, |
752 | const FunctionDecl *FD) { |
753 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
754 | if (!MD->isStatic()) |
755 | return nullptr; |
756 | return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); |
757 | } |
758 | |
759 | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, |
760 | llvm::Function *Fn, |
761 | const CGFunctionInfo &FnInfo, |
762 | const FunctionArgList &Args, |
763 | SourceLocation Loc, |
764 | SourceLocation StartLoc) { |
765 | assert(!CurFn && |
766 | "Do not use a CodeGenFunction object for more than one function" ); |
767 | |
768 | const Decl *D = GD.getDecl(); |
769 | |
770 | DidCallStackSave = false; |
771 | CurCodeDecl = D; |
772 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
773 | if (FD && FD->usesSEHTry()) |
774 | CurSEHParent = GD; |
775 | CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); |
776 | FnRetTy = RetTy; |
777 | CurFn = Fn; |
778 | CurFnInfo = &FnInfo; |
779 | assert(CurFn->isDeclaration() && "Function already has body?" ); |
780 | |
781 | // If this function is ignored for any of the enabled sanitizers, |
782 | // disable the sanitizer for the function. |
783 | do { |
784 | #define SANITIZER(NAME, ID) \ |
785 | if (SanOpts.empty()) \ |
786 | break; \ |
787 | if (SanOpts.has(SanitizerKind::ID)) \ |
788 | if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ |
789 | SanOpts.set(SanitizerKind::ID, false); |
790 | |
791 | #include "clang/Basic/Sanitizers.def" |
792 | #undef SANITIZER |
793 | } while (false); |
794 | |
795 | if (D) { |
796 | const bool SanitizeBounds = SanOpts.hasOneOf(K: SanitizerKind::Bounds); |
797 | SanitizerMask no_sanitize_mask; |
798 | bool NoSanitizeCoverage = false; |
799 | |
800 | for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { |
801 | no_sanitize_mask |= Attr->getMask(); |
802 | // SanitizeCoverage is not handled by SanOpts. |
803 | if (Attr->hasCoverage()) |
804 | NoSanitizeCoverage = true; |
805 | } |
806 | |
807 | // Apply the no_sanitize* attributes to SanOpts. |
808 | SanOpts.Mask &= ~no_sanitize_mask; |
809 | if (no_sanitize_mask & SanitizerKind::Address) |
810 | SanOpts.set(K: SanitizerKind::KernelAddress, Value: false); |
811 | if (no_sanitize_mask & SanitizerKind::KernelAddress) |
812 | SanOpts.set(K: SanitizerKind::Address, Value: false); |
813 | if (no_sanitize_mask & SanitizerKind::HWAddress) |
814 | SanOpts.set(K: SanitizerKind::KernelHWAddress, Value: false); |
815 | if (no_sanitize_mask & SanitizerKind::KernelHWAddress) |
816 | SanOpts.set(K: SanitizerKind::HWAddress, Value: false); |
817 | |
818 | if (SanitizeBounds && !SanOpts.hasOneOf(K: SanitizerKind::Bounds)) |
819 | Fn->addFnAttr(Kind: llvm::Attribute::NoSanitizeBounds); |
820 | |
821 | if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) |
822 | Fn->addFnAttr(Kind: llvm::Attribute::NoSanitizeCoverage); |
823 | |
824 | // Some passes need the non-negated no_sanitize attribute. Pass them on. |
825 | if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { |
826 | if (no_sanitize_mask & SanitizerKind::Thread) |
827 | Fn->addFnAttr(Kind: "no_sanitize_thread" ); |
828 | } |
829 | } |
830 | |
831 | if (ShouldSkipSanitizerInstrumentation()) { |
832 | CurFn->addFnAttr(Kind: llvm::Attribute::DisableSanitizerInstrumentation); |
833 | } else { |
834 | // Apply sanitizer attributes to the function. |
835 | if (SanOpts.hasOneOf(K: SanitizerKind::Address | SanitizerKind::KernelAddress)) |
836 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeAddress); |
837 | if (SanOpts.hasOneOf(K: SanitizerKind::HWAddress | |
838 | SanitizerKind::KernelHWAddress)) |
839 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeHWAddress); |
840 | if (SanOpts.has(K: SanitizerKind::MemtagStack)) |
841 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeMemTag); |
842 | if (SanOpts.has(K: SanitizerKind::Thread)) |
843 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeThread); |
844 | if (SanOpts.has(K: SanitizerKind::Type)) |
845 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeType); |
846 | if (SanOpts.has(K: SanitizerKind::NumericalStability)) |
847 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeNumericalStability); |
848 | if (SanOpts.hasOneOf(K: SanitizerKind::Memory | SanitizerKind::KernelMemory)) |
849 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeMemory); |
850 | } |
851 | if (SanOpts.has(K: SanitizerKind::SafeStack)) |
852 | Fn->addFnAttr(Kind: llvm::Attribute::SafeStack); |
853 | if (SanOpts.has(K: SanitizerKind::ShadowCallStack)) |
854 | Fn->addFnAttr(Kind: llvm::Attribute::ShadowCallStack); |
855 | |
856 | if (SanOpts.has(K: SanitizerKind::Realtime)) |
857 | if (FD && FD->getASTContext().hasAnyFunctionEffects()) |
858 | for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) { |
859 | if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking) |
860 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeRealtime); |
861 | else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking) |
862 | Fn->addFnAttr(Kind: llvm::Attribute::SanitizeRealtimeBlocking); |
863 | } |
864 | |
865 | // Apply fuzzing attribute to the function. |
866 | if (SanOpts.hasOneOf(K: SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) |
867 | Fn->addFnAttr(Kind: llvm::Attribute::OptForFuzzing); |
868 | |
869 | // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, |
870 | // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. |
871 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
872 | if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: D)) { |
873 | const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(argIndex: 0); |
874 | if (OMD->getMethodFamily() == OMF_dealloc || |
875 | OMD->getMethodFamily() == OMF_initialize || |
876 | (OMD->getSelector().isUnarySelector() && II->isStr(Str: ".cxx_destruct" ))) { |
877 | markAsIgnoreThreadCheckingAtRuntime(Fn); |
878 | } |
879 | } |
880 | } |
881 | |
882 | // Ignore unrelated casts in STL allocate() since the allocator must cast |
883 | // from void* to T* before object initialization completes. Don't match on the |
884 | // namespace because not all allocators are in std:: |
885 | if (D && SanOpts.has(K: SanitizerKind::CFIUnrelatedCast)) { |
886 | if (matchesStlAllocatorFn(D, Ctx: getContext())) |
887 | SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; |
888 | } |
889 | |
890 | // Ignore null checks in coroutine functions since the coroutines passes |
891 | // are not aware of how to move the extra UBSan instructions across the split |
892 | // coroutine boundaries. |
893 | if (D && SanOpts.has(K: SanitizerKind::Null)) |
894 | if (FD && FD->getBody() && |
895 | FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) |
896 | SanOpts.Mask &= ~SanitizerKind::Null; |
897 | |
898 | // Apply xray attributes to the function (as a string, for now) |
899 | bool AlwaysXRayAttr = false; |
900 | if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { |
901 | if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
902 | K: XRayInstrKind::FunctionEntry) || |
903 | CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
904 | K: XRayInstrKind::FunctionExit)) { |
905 | if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { |
906 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-always" ); |
907 | AlwaysXRayAttr = true; |
908 | } |
909 | if (XRayAttr->neverXRayInstrument()) |
910 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
911 | if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) |
912 | if (ShouldXRayInstrumentFunction()) |
913 | Fn->addFnAttr(Kind: "xray-log-args" , |
914 | Val: llvm::utostr(X: LogArgs->getArgumentCount())); |
915 | } |
916 | } else { |
917 | if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) |
918 | Fn->addFnAttr( |
919 | Kind: "xray-instruction-threshold" , |
920 | Val: llvm::itostr(X: CGM.getCodeGenOpts().XRayInstructionThreshold)); |
921 | } |
922 | |
923 | if (ShouldXRayInstrumentFunction()) { |
924 | if (CGM.getCodeGenOpts().XRayIgnoreLoops) |
925 | Fn->addFnAttr(Kind: "xray-ignore-loops" ); |
926 | |
927 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
928 | K: XRayInstrKind::FunctionExit)) |
929 | Fn->addFnAttr(Kind: "xray-skip-exit" ); |
930 | |
931 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
932 | K: XRayInstrKind::FunctionEntry)) |
933 | Fn->addFnAttr(Kind: "xray-skip-entry" ); |
934 | |
935 | auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; |
936 | if (FuncGroups > 1) { |
937 | auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), |
938 | CurFn->getName().bytes_end()); |
939 | auto Group = crc32(Data: FuncName) % FuncGroups; |
940 | if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && |
941 | !AlwaysXRayAttr) |
942 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
943 | } |
944 | } |
945 | |
946 | if (CGM.getCodeGenOpts().getProfileInstr() != |
947 | llvm::driver::ProfileInstrKind::ProfileNone) { |
948 | switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { |
949 | case ProfileList::Skip: |
950 | Fn->addFnAttr(Kind: llvm::Attribute::SkipProfile); |
951 | break; |
952 | case ProfileList::Forbid: |
953 | Fn->addFnAttr(Kind: llvm::Attribute::NoProfile); |
954 | break; |
955 | case ProfileList::Allow: |
956 | break; |
957 | } |
958 | } |
959 | |
960 | unsigned Count, Offset; |
961 | StringRef Section; |
962 | if (const auto *Attr = |
963 | D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { |
964 | Count = Attr->getCount(); |
965 | Offset = Attr->getOffset(); |
966 | Section = Attr->getSection(); |
967 | } else { |
968 | Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; |
969 | Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; |
970 | } |
971 | if (Section.empty()) |
972 | Section = CGM.getCodeGenOpts().PatchableFunctionEntrySection; |
973 | if (Count && Offset <= Count) { |
974 | Fn->addFnAttr(Kind: "patchable-function-entry" , Val: std::to_string(val: Count - Offset)); |
975 | if (Offset) |
976 | Fn->addFnAttr(Kind: "patchable-function-prefix" , Val: std::to_string(val: Offset)); |
977 | if (!Section.empty()) |
978 | Fn->addFnAttr(Kind: "patchable-function-entry-section" , Val: Section); |
979 | } |
980 | // Instruct that functions for COFF/CodeView targets should start with a |
981 | // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 |
982 | // backends as they don't need it -- instructions on these architectures are |
983 | // always atomically patchable at runtime. |
984 | if (CGM.getCodeGenOpts().HotPatch && |
985 | getContext().getTargetInfo().getTriple().isX86() && |
986 | getContext().getTargetInfo().getTriple().getEnvironment() != |
987 | llvm::Triple::CODE16) |
988 | Fn->addFnAttr(Kind: "patchable-function" , Val: "prologue-short-redirect" ); |
989 | |
990 | // Add no-jump-tables value. |
991 | if (CGM.getCodeGenOpts().NoUseJumpTables) |
992 | Fn->addFnAttr(Kind: "no-jump-tables" , Val: "true" ); |
993 | |
994 | // Add no-inline-line-tables value. |
995 | if (CGM.getCodeGenOpts().NoInlineLineTables) |
996 | Fn->addFnAttr(Kind: "no-inline-line-tables" ); |
997 | |
998 | // Add profile-sample-accurate value. |
999 | if (CGM.getCodeGenOpts().ProfileSampleAccurate) |
1000 | Fn->addFnAttr(Kind: "profile-sample-accurate" ); |
1001 | |
1002 | if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) |
1003 | Fn->addFnAttr(Kind: "use-sample-profile" ); |
1004 | |
1005 | if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) |
1006 | Fn->addFnAttr(Kind: "cfi-canonical-jump-table" ); |
1007 | |
1008 | if (D && D->hasAttr<NoProfileFunctionAttr>()) |
1009 | Fn->addFnAttr(Kind: llvm::Attribute::NoProfile); |
1010 | |
1011 | if (D && D->hasAttr<HybridPatchableAttr>()) |
1012 | Fn->addFnAttr(Kind: llvm::Attribute::HybridPatchable); |
1013 | |
1014 | if (D) { |
1015 | // Function attributes take precedence over command line flags. |
1016 | if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { |
1017 | switch (A->getThunkType()) { |
1018 | case FunctionReturnThunksAttr::Kind::Keep: |
1019 | break; |
1020 | case FunctionReturnThunksAttr::Kind::Extern: |
1021 | Fn->addFnAttr(Kind: llvm::Attribute::FnRetThunkExtern); |
1022 | break; |
1023 | } |
1024 | } else if (CGM.getCodeGenOpts().FunctionReturnThunks) |
1025 | Fn->addFnAttr(Kind: llvm::Attribute::FnRetThunkExtern); |
1026 | } |
1027 | |
1028 | if (FD && (getLangOpts().OpenCL || |
1029 | (getLangOpts().CUDA && |
1030 | getContext().getTargetInfo().getTriple().isSPIRV()) || |
1031 | ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) && |
1032 | getLangOpts().CUDAIsDevice))) { |
1033 | // Add metadata for a kernel function. |
1034 | EmitKernelMetadata(FD, Fn); |
1035 | } |
1036 | |
1037 | if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) { |
1038 | Fn->setMetadata(Kind: "clspv_libclc_builtin" , |
1039 | Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: {})); |
1040 | } |
1041 | |
1042 | // If we are checking function types, emit a function type signature as |
1043 | // prologue data. |
1044 | if (FD && SanOpts.has(K: SanitizerKind::Function)) { |
1045 | if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { |
1046 | llvm::LLVMContext &Ctx = Fn->getContext(); |
1047 | llvm::MDBuilder MDB(Ctx); |
1048 | Fn->setMetadata( |
1049 | KindID: llvm::LLVMContext::MD_func_sanitize, |
1050 | Node: MDB.createRTTIPointerPrologue( |
1051 | PrologueSig, RTTI: getUBSanFunctionTypeHash(Ty: FD->getType()))); |
1052 | } |
1053 | } |
1054 | |
1055 | // If we're checking nullability, we need to know whether we can check the |
1056 | // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. |
1057 | if (SanOpts.has(K: SanitizerKind::NullabilityReturn)) { |
1058 | auto Nullability = FnRetTy->getNullability(); |
1059 | if (Nullability && *Nullability == NullabilityKind::NonNull && |
1060 | !FnRetTy->isRecordType()) { |
1061 | if (!(SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute) && |
1062 | CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) |
1063 | RetValNullabilityPrecondition = |
1064 | llvm::ConstantInt::getTrue(Context&: getLLVMContext()); |
1065 | } |
1066 | } |
1067 | |
1068 | // If we're in C++ mode and the function name is "main", it is guaranteed |
1069 | // to be norecurse by the standard (3.6.1.3 "The function main shall not be |
1070 | // used within a program"). |
1071 | // |
1072 | // OpenCL C 2.0 v2.2-11 s6.9.i: |
1073 | // Recursion is not supported. |
1074 | // |
1075 | // HLSL |
1076 | // Recursion is not supported. |
1077 | // |
1078 | // SYCL v1.2.1 s3.10: |
1079 | // kernels cannot include RTTI information, exception classes, |
1080 | // recursive code, virtual functions or make use of C++ libraries that |
1081 | // are not compiled for the device. |
1082 | if (FD && |
1083 | ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || |
1084 | getLangOpts().HLSL || getLangOpts().SYCLIsDevice || |
1085 | (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) |
1086 | Fn->addFnAttr(Kind: llvm::Attribute::NoRecurse); |
1087 | |
1088 | llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); |
1089 | llvm::fp::ExceptionBehavior FPExceptionBehavior = |
1090 | ToConstrainedExceptMD(Kind: getLangOpts().getDefaultExceptionMode()); |
1091 | Builder.setDefaultConstrainedRounding(RM); |
1092 | Builder.setDefaultConstrainedExcept(FPExceptionBehavior); |
1093 | if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || |
1094 | (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || |
1095 | RM != llvm::RoundingMode::NearestTiesToEven))) { |
1096 | Builder.setIsFPConstrained(true); |
1097 | Fn->addFnAttr(Kind: llvm::Attribute::StrictFP); |
1098 | } |
1099 | |
1100 | // If a custom alignment is used, force realigning to this alignment on |
1101 | // any main function which certainly will need it. |
1102 | if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && |
1103 | CGM.getCodeGenOpts().StackAlignment)) |
1104 | Fn->addFnAttr(Kind: "stackrealign" ); |
1105 | |
1106 | // "main" doesn't need to zero out call-used registers. |
1107 | if (FD && FD->isMain()) |
1108 | Fn->removeFnAttr(Kind: "zero-call-used-regs" ); |
1109 | |
1110 | // Add vscale_range attribute if appropriate. |
1111 | llvm::StringMap<bool> FeatureMap; |
1112 | auto IsArmStreaming = TargetInfo::ArmStreamingKind::NotStreaming; |
1113 | if (FD) { |
1114 | getContext().getFunctionFeatureMap(FeatureMap, FD); |
1115 | if (const auto *T = FD->getType()->getAs<FunctionProtoType>()) |
1116 | if (T->getAArch64SMEAttributes() & |
1117 | FunctionType::SME_PStateSMCompatibleMask) |
1118 | IsArmStreaming = TargetInfo::ArmStreamingKind::StreamingCompatible; |
1119 | |
1120 | if (IsArmStreamingFunction(FD, IncludeLocallyStreaming: true)) |
1121 | IsArmStreaming = TargetInfo::ArmStreamingKind::Streaming; |
1122 | } |
1123 | std::optional<std::pair<unsigned, unsigned>> VScaleRange = |
1124 | getContext().getTargetInfo().getVScaleRange(LangOpts: getLangOpts(), Mode: IsArmStreaming, |
1125 | FeatureMap: &FeatureMap); |
1126 | if (VScaleRange) { |
1127 | CurFn->addFnAttr(Attr: llvm::Attribute::getWithVScaleRangeArgs( |
1128 | Context&: getLLVMContext(), MinValue: VScaleRange->first, MaxValue: VScaleRange->second)); |
1129 | } |
1130 | |
1131 | llvm::BasicBlock *EntryBB = createBasicBlock(name: "entry" , parent: CurFn); |
1132 | |
1133 | // Create a marker to make it easy to insert allocas into the entryblock |
1134 | // later. Don't create this with the builder, because we don't want it |
1135 | // folded. |
1136 | llvm::Value *Poison = llvm::PoisonValue::get(T: Int32Ty); |
1137 | AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt" , EntryBB); |
1138 | |
1139 | ReturnBlock = getJumpDestInCurrentScope(Name: "return" ); |
1140 | |
1141 | Builder.SetInsertPoint(EntryBB); |
1142 | |
1143 | // If we're checking the return value, allocate space for a pointer to a |
1144 | // precise source location of the checked return statement. |
1145 | if (requiresReturnValueCheck()) { |
1146 | ReturnLocation = CreateDefaultAlignTempAlloca(Ty: Int8PtrTy, Name: "return.sloc.ptr" ); |
1147 | Builder.CreateStore(Val: llvm::ConstantPointerNull::get(T: Int8PtrTy), |
1148 | Addr: ReturnLocation); |
1149 | } |
1150 | |
1151 | // Emit subprogram debug descriptor. |
1152 | if (CGDebugInfo *DI = getDebugInfo()) { |
1153 | // Reconstruct the type from the argument list so that implicit parameters, |
1154 | // such as 'this' and 'vtt', show up in the debug info. Preserve the calling |
1155 | // convention. |
1156 | DI->emitFunctionStart(GD, Loc, ScopeLoc: StartLoc, |
1157 | FnType: DI->getFunctionType(FD, RetTy, Args), Fn: CurFn, |
1158 | CurFnIsThunk: CurFuncIsThunk); |
1159 | } |
1160 | |
1161 | if (ShouldInstrumentFunction()) { |
1162 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
1163 | CurFn->addFnAttr(Kind: "instrument-function-entry" , Val: "__cyg_profile_func_enter" ); |
1164 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
1165 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1166 | Val: "__cyg_profile_func_enter" ); |
1167 | if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
1168 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1169 | Val: "__cyg_profile_func_enter_bare" ); |
1170 | } |
1171 | |
1172 | // Since emitting the mcount call here impacts optimizations such as function |
1173 | // inlining, we just add an attribute to insert a mcount call in backend. |
1174 | // The attribute "counting-function" is set to mcount function name which is |
1175 | // architecture dependent. |
1176 | if (CGM.getCodeGenOpts().InstrumentForProfiling) { |
1177 | // Calls to fentry/mcount should not be generated if function has |
1178 | // the no_instrument_function attribute. |
1179 | if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { |
1180 | if (CGM.getCodeGenOpts().CallFEntry) |
1181 | Fn->addFnAttr(Kind: "fentry-call" , Val: "true" ); |
1182 | else { |
1183 | Fn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1184 | Val: getTarget().getMCountName()); |
1185 | } |
1186 | if (CGM.getCodeGenOpts().MNopMCount) { |
1187 | if (!CGM.getCodeGenOpts().CallFEntry) |
1188 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_without_opt) |
1189 | << "-mnop-mcount" << "-mfentry" ; |
1190 | Fn->addFnAttr(Kind: "mnop-mcount" ); |
1191 | } |
1192 | |
1193 | if (CGM.getCodeGenOpts().RecordMCount) { |
1194 | if (!CGM.getCodeGenOpts().CallFEntry) |
1195 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_without_opt) |
1196 | << "-mrecord-mcount" << "-mfentry" ; |
1197 | Fn->addFnAttr(Kind: "mrecord-mcount" ); |
1198 | } |
1199 | } |
1200 | } |
1201 | |
1202 | if (CGM.getCodeGenOpts().PackedStack) { |
1203 | if (getContext().getTargetInfo().getTriple().getArch() != |
1204 | llvm::Triple::systemz) |
1205 | CGM.getDiags().Report(DiagID: diag::err_opt_not_valid_on_target) |
1206 | << "-mpacked-stack" ; |
1207 | Fn->addFnAttr(Kind: "packed-stack" ); |
1208 | } |
1209 | |
1210 | if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && |
1211 | !CGM.getDiags().isIgnored(DiagID: diag::warn_fe_backend_frame_larger_than, Loc)) |
1212 | Fn->addFnAttr(Kind: "warn-stack-size" , |
1213 | Val: std::to_string(val: CGM.getCodeGenOpts().WarnStackSize)); |
1214 | |
1215 | if (RetTy->isVoidType()) { |
1216 | // Void type; nothing to return. |
1217 | ReturnValue = Address::invalid(); |
1218 | |
1219 | // Count the implicit return. |
1220 | if (!endsWithReturn(F: D)) |
1221 | ++NumReturnExprs; |
1222 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { |
1223 | // Indirect return; emit returned value directly into sret slot. |
1224 | // This reduces code size, and affects correctness in C++. |
1225 | auto AI = CurFn->arg_begin(); |
1226 | if (CurFnInfo->getReturnInfo().isSRetAfterThis()) |
1227 | ++AI; |
1228 | ReturnValue = makeNaturalAddressForPointer( |
1229 | Ptr: &*AI, T: RetTy, Alignment: CurFnInfo->getReturnInfo().getIndirectAlign(), ForPointeeType: false, |
1230 | BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull); |
1231 | if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { |
1232 | ReturnValuePointer = |
1233 | CreateDefaultAlignTempAlloca(Ty: ReturnValue.getType(), Name: "result.ptr" ); |
1234 | Builder.CreateStore(Val: ReturnValue.emitRawPointer(CGF&: *this), |
1235 | Addr: ReturnValuePointer); |
1236 | } |
1237 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && |
1238 | !hasScalarEvaluationKind(T: CurFnInfo->getReturnType())) { |
1239 | // Load the sret pointer from the argument struct and return into that. |
1240 | unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); |
1241 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
1242 | --EI; |
1243 | llvm::Value *Addr = Builder.CreateStructGEP( |
1244 | Ty: CurFnInfo->getArgStruct(), Ptr: &*EI, Idx); |
1245 | llvm::Type *Ty = |
1246 | cast<llvm::GetElementPtrInst>(Val: Addr)->getResultElementType(); |
1247 | ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); |
1248 | Addr = Builder.CreateAlignedLoad(Ty, Addr, Align: getPointerAlign(), Name: "agg.result" ); |
1249 | ReturnValue = Address(Addr, ConvertType(T: RetTy), |
1250 | CGM.getNaturalTypeAlignment(T: RetTy), KnownNonNull); |
1251 | } else { |
1252 | ReturnValue = CreateIRTemp(T: RetTy, Name: "retval" ); |
1253 | |
1254 | // Tell the epilog emitter to autorelease the result. We do this |
1255 | // now so that various specialized functions can suppress it |
1256 | // during their IR-generation. |
1257 | if (getLangOpts().ObjCAutoRefCount && |
1258 | !CurFnInfo->isReturnsRetained() && |
1259 | RetTy->isObjCRetainableType()) |
1260 | AutoreleaseResult = true; |
1261 | } |
1262 | |
1263 | EmitStartEHSpec(D: CurCodeDecl); |
1264 | |
1265 | PrologueCleanupDepth = EHStack.stable_begin(); |
1266 | |
1267 | // Emit OpenMP specific initialization of the device functions. |
1268 | if (getLangOpts().OpenMP && CurCodeDecl) |
1269 | CGM.getOpenMPRuntime().emitFunctionProlog(CGF&: *this, D: CurCodeDecl); |
1270 | |
1271 | if (FD && getLangOpts().HLSL) { |
1272 | // Handle emitting HLSL entry functions. |
1273 | if (FD->hasAttr<HLSLShaderAttr>()) { |
1274 | CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); |
1275 | } |
1276 | } |
1277 | |
1278 | EmitFunctionProlog(FI: *CurFnInfo, Fn: CurFn, Args); |
1279 | |
1280 | if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(Val: D); |
1281 | MD && !MD->isStatic()) { |
1282 | bool IsInLambda = |
1283 | MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; |
1284 | if (MD->isImplicitObjectMemberFunction()) |
1285 | CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this); |
1286 | if (IsInLambda) { |
1287 | // We're in a lambda; figure out the captures. |
1288 | MD->getParent()->getCaptureFields(Captures&: LambdaCaptureFields, |
1289 | ThisCapture&: LambdaThisCaptureField); |
1290 | if (LambdaThisCaptureField) { |
1291 | // If the lambda captures the object referred to by '*this' - either by |
1292 | // value or by reference, make sure CXXThisValue points to the correct |
1293 | // object. |
1294 | |
1295 | // Get the lvalue for the field (which is a copy of the enclosing object |
1296 | // or contains the address of the enclosing object). |
1297 | LValue ThisFieldLValue = EmitLValueForLambdaField(Field: LambdaThisCaptureField); |
1298 | if (!LambdaThisCaptureField->getType()->isPointerType()) { |
1299 | // If the enclosing object was captured by value, just use its |
1300 | // address. Sign this pointer. |
1301 | CXXThisValue = ThisFieldLValue.getPointer(CGF&: *this); |
1302 | } else { |
1303 | // Load the lvalue pointed to by the field, since '*this' was captured |
1304 | // by reference. |
1305 | CXXThisValue = |
1306 | EmitLoadOfLValue(V: ThisFieldLValue, Loc: SourceLocation()).getScalarVal(); |
1307 | } |
1308 | } |
1309 | for (auto *FD : MD->getParent()->fields()) { |
1310 | if (FD->hasCapturedVLAType()) { |
1311 | auto *ExprArg = EmitLoadOfLValue(V: EmitLValueForLambdaField(Field: FD), |
1312 | Loc: SourceLocation()).getScalarVal(); |
1313 | auto VAT = FD->getCapturedVLAType(); |
1314 | VLASizeMap[VAT->getSizeExpr()] = ExprArg; |
1315 | } |
1316 | } |
1317 | } else if (MD->isImplicitObjectMemberFunction()) { |
1318 | // Not in a lambda; just use 'this' from the method. |
1319 | // FIXME: Should we generate a new load for each use of 'this'? The |
1320 | // fast register allocator would be happier... |
1321 | CXXThisValue = CXXABIThisValue; |
1322 | } |
1323 | |
1324 | // Check the 'this' pointer once per function, if it's available. |
1325 | if (CXXABIThisValue) { |
1326 | SanitizerSet SkippedChecks; |
1327 | SkippedChecks.set(K: SanitizerKind::ObjectSize, Value: true); |
1328 | QualType ThisTy = MD->getThisType(); |
1329 | |
1330 | // If this is the call operator of a lambda with no captures, it |
1331 | // may have a static invoker function, which may call this operator with |
1332 | // a null 'this' pointer. |
1333 | if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) |
1334 | SkippedChecks.set(K: SanitizerKind::Null, Value: true); |
1335 | |
1336 | EmitTypeCheck( |
1337 | TCK: isa<CXXConstructorDecl>(Val: MD) ? TCK_ConstructorCall : TCK_MemberCall, |
1338 | Loc, V: CXXABIThisValue, Type: ThisTy, Alignment: CXXABIThisAlignment, SkippedChecks); |
1339 | } |
1340 | } |
1341 | |
1342 | // If any of the arguments have a variably modified type, make sure to |
1343 | // emit the type size, but only if the function is not naked. Naked functions |
1344 | // have no prolog to run this evaluation. |
1345 | if (!FD || !FD->hasAttr<NakedAttr>()) { |
1346 | for (const VarDecl *VD : Args) { |
1347 | // Dig out the type as written from ParmVarDecls; it's unclear whether |
1348 | // the standard (C99 6.9.1p10) requires this, but we're following the |
1349 | // precedent set by gcc. |
1350 | QualType Ty; |
1351 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: VD)) |
1352 | Ty = PVD->getOriginalType(); |
1353 | else |
1354 | Ty = VD->getType(); |
1355 | |
1356 | if (Ty->isVariablyModifiedType()) |
1357 | EmitVariablyModifiedType(Ty); |
1358 | } |
1359 | } |
1360 | // Emit a location at the end of the prologue. |
1361 | if (CGDebugInfo *DI = getDebugInfo()) |
1362 | DI->EmitLocation(Builder, Loc: StartLoc); |
1363 | // TODO: Do we need to handle this in two places like we do with |
1364 | // target-features/target-cpu? |
1365 | if (CurFuncDecl) |
1366 | if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) |
1367 | LargestVectorWidth = VecWidth->getVectorWidth(); |
1368 | |
1369 | if (CGM.shouldEmitConvergenceTokens()) |
1370 | ConvergenceTokenStack.push_back(Elt: getOrEmitConvergenceEntryToken(F: CurFn)); |
1371 | } |
1372 | |
1373 | void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { |
1374 | incrementProfileCounter(S: Body); |
1375 | maybeCreateMCDCCondBitmap(); |
1376 | if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Val: Body)) |
1377 | EmitCompoundStmtWithoutScope(S: *S); |
1378 | else |
1379 | EmitStmt(S: Body); |
1380 | } |
1381 | |
1382 | /// When instrumenting to collect profile data, the counts for some blocks |
1383 | /// such as switch cases need to not include the fall-through counts, so |
1384 | /// emit a branch around the instrumentation code. When not instrumenting, |
1385 | /// this just calls EmitBlock(). |
1386 | void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, |
1387 | const Stmt *S) { |
1388 | llvm::BasicBlock *SkipCountBB = nullptr; |
1389 | // Do not skip over the instrumentation when single byte coverage mode is |
1390 | // enabled. |
1391 | if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1392 | !llvm::EnableSingleByteCoverage) { |
1393 | // When instrumenting for profiling, the fallthrough to certain |
1394 | // statements needs to skip over the instrumentation code so that we |
1395 | // get an accurate count. |
1396 | SkipCountBB = createBasicBlock(name: "skipcount" ); |
1397 | EmitBranch(Block: SkipCountBB); |
1398 | } |
1399 | EmitBlock(BB); |
1400 | uint64_t CurrentCount = getCurrentProfileCount(); |
1401 | incrementProfileCounter(S); |
1402 | setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); |
1403 | if (SkipCountBB) |
1404 | EmitBlock(BB: SkipCountBB); |
1405 | } |
1406 | |
1407 | /// Tries to mark the given function nounwind based on the |
1408 | /// non-existence of any throwing calls within it. We believe this is |
1409 | /// lightweight enough to do at -O0. |
1410 | static void TryMarkNoThrow(llvm::Function *F) { |
1411 | // LLVM treats 'nounwind' on a function as part of the type, so we |
1412 | // can't do this on functions that can be overwritten. |
1413 | if (F->isInterposable()) return; |
1414 | |
1415 | for (llvm::BasicBlock &BB : *F) |
1416 | for (llvm::Instruction &I : BB) |
1417 | if (I.mayThrow()) |
1418 | return; |
1419 | |
1420 | F->setDoesNotThrow(); |
1421 | } |
1422 | |
1423 | QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, |
1424 | FunctionArgList &Args) { |
1425 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1426 | QualType ResTy = FD->getReturnType(); |
1427 | |
1428 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
1429 | if (MD && MD->isImplicitObjectMemberFunction()) { |
1430 | if (CGM.getCXXABI().HasThisReturn(GD)) |
1431 | ResTy = MD->getThisType(); |
1432 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
1433 | ResTy = CGM.getContext().VoidPtrTy; |
1434 | CGM.getCXXABI().buildThisParam(CGF&: *this, Params&: Args); |
1435 | } |
1436 | |
1437 | // The base version of an inheriting constructor whose constructed base is a |
1438 | // virtual base is not passed any arguments (because it doesn't actually call |
1439 | // the inherited constructor). |
1440 | bool PassedParams = true; |
1441 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
1442 | if (auto Inherited = CD->getInheritedConstructor()) |
1443 | PassedParams = |
1444 | getTypes().inheritingCtorHasParams(Inherited, Type: GD.getCtorType()); |
1445 | |
1446 | if (PassedParams) { |
1447 | for (auto *Param : FD->parameters()) { |
1448 | Args.push_back(Elt: Param); |
1449 | if (!Param->hasAttr<PassObjectSizeAttr>()) |
1450 | continue; |
1451 | |
1452 | auto *Implicit = ImplicitParamDecl::Create( |
1453 | C&: getContext(), DC: Param->getDeclContext(), IdLoc: Param->getLocation(), |
1454 | /*Id=*/nullptr, T: getContext().getSizeType(), ParamKind: ImplicitParamKind::Other); |
1455 | SizeArguments[Param] = Implicit; |
1456 | Args.push_back(Elt: Implicit); |
1457 | } |
1458 | } |
1459 | |
1460 | if (MD && (isa<CXXConstructorDecl>(Val: MD) || isa<CXXDestructorDecl>(Val: MD))) |
1461 | CGM.getCXXABI().addImplicitStructorParams(CGF&: *this, ResTy, Params&: Args); |
1462 | |
1463 | return ResTy; |
1464 | } |
1465 | |
1466 | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
1467 | const CGFunctionInfo &FnInfo) { |
1468 | assert(Fn && "generating code for null Function" ); |
1469 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1470 | CurGD = GD; |
1471 | |
1472 | FunctionArgList Args; |
1473 | QualType ResTy = BuildFunctionArgList(GD, Args); |
1474 | |
1475 | CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, Decl: FD); |
1476 | |
1477 | if (FD->isInlineBuiltinDeclaration()) { |
1478 | // When generating code for a builtin with an inline declaration, use a |
1479 | // mangled name to hold the actual body, while keeping an external |
1480 | // definition in case the function pointer is referenced somewhere. |
1481 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1482 | llvm::Module *M = Fn->getParent(); |
1483 | llvm::Function *Clone = M->getFunction(Name: FDInlineName); |
1484 | if (!Clone) { |
1485 | Clone = llvm::Function::Create(Ty: Fn->getFunctionType(), |
1486 | Linkage: llvm::GlobalValue::InternalLinkage, |
1487 | AddrSpace: Fn->getAddressSpace(), N: FDInlineName, M); |
1488 | Clone->addFnAttr(Kind: llvm::Attribute::AlwaysInline); |
1489 | } |
1490 | Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); |
1491 | Fn = Clone; |
1492 | } else { |
1493 | // Detect the unusual situation where an inline version is shadowed by a |
1494 | // non-inline version. In that case we should pick the external one |
1495 | // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way |
1496 | // to detect that situation before we reach codegen, so do some late |
1497 | // replacement. |
1498 | for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; |
1499 | PD = PD->getPreviousDecl()) { |
1500 | if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { |
1501 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1502 | llvm::Module *M = Fn->getParent(); |
1503 | if (llvm::Function *Clone = M->getFunction(Name: FDInlineName)) { |
1504 | Clone->replaceAllUsesWith(V: Fn); |
1505 | Clone->eraseFromParent(); |
1506 | } |
1507 | break; |
1508 | } |
1509 | } |
1510 | } |
1511 | |
1512 | // Check if we should generate debug info for this function. |
1513 | if (FD->hasAttr<NoDebugAttr>()) { |
1514 | // Clear non-distinct debug info that was possibly attached to the function |
1515 | // due to an earlier declaration without the nodebug attribute |
1516 | Fn->setSubprogram(nullptr); |
1517 | // Disable debug info indefinitely for this function |
1518 | DebugInfo = nullptr; |
1519 | } |
1520 | // Finalize function debug info on exit. |
1521 | auto Cleanup = llvm::make_scope_exit(F: [this] { |
1522 | if (CGDebugInfo *DI = getDebugInfo()) |
1523 | DI->completeFunction(); |
1524 | }); |
1525 | |
1526 | // The function might not have a body if we're generating thunks for a |
1527 | // function declaration. |
1528 | SourceRange BodyRange; |
1529 | if (Stmt *Body = FD->getBody()) |
1530 | BodyRange = Body->getSourceRange(); |
1531 | else |
1532 | BodyRange = FD->getLocation(); |
1533 | CurEHLocation = BodyRange.getEnd(); |
1534 | |
1535 | // Use the location of the start of the function to determine where |
1536 | // the function definition is located. By default use the location |
1537 | // of the declaration as the location for the subprogram. A function |
1538 | // may lack a declaration in the source code if it is created by code |
1539 | // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). |
1540 | SourceLocation Loc = FD->getLocation(); |
1541 | |
1542 | // If this is a function specialization then use the pattern body |
1543 | // as the location for the function. |
1544 | if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) |
1545 | if (SpecDecl->hasBody(Definition&: SpecDecl)) |
1546 | Loc = SpecDecl->getLocation(); |
1547 | |
1548 | Stmt *Body = FD->getBody(); |
1549 | |
1550 | if (Body) { |
1551 | // Coroutines always emit lifetime markers. |
1552 | if (isa<CoroutineBodyStmt>(Val: Body)) |
1553 | ShouldEmitLifetimeMarkers = true; |
1554 | |
1555 | // Initialize helper which will detect jumps which can cause invalid |
1556 | // lifetime markers. |
1557 | if (ShouldEmitLifetimeMarkers) |
1558 | Bypasses.Init(CGM, Body); |
1559 | } |
1560 | |
1561 | // Emit the standard function prologue. |
1562 | StartFunction(GD, RetTy: ResTy, Fn, FnInfo, Args, Loc, StartLoc: BodyRange.getBegin()); |
1563 | |
1564 | // Save parameters for coroutine function. |
1565 | if (Body && isa_and_nonnull<CoroutineBodyStmt>(Val: Body)) |
1566 | llvm::append_range(C&: FnArgs, R: FD->parameters()); |
1567 | |
1568 | // Ensure that the function adheres to the forward progress guarantee, which |
1569 | // is required by certain optimizations. |
1570 | // In C++11 and up, the attribute will be removed if the body contains a |
1571 | // trivial empty loop. |
1572 | if (checkIfFunctionMustProgress()) |
1573 | CurFn->addFnAttr(Kind: llvm::Attribute::MustProgress); |
1574 | |
1575 | // Generate the body of the function. |
1576 | PGO->assignRegionCounters(GD, Fn: CurFn); |
1577 | if (isa<CXXDestructorDecl>(Val: FD)) |
1578 | EmitDestructorBody(Args); |
1579 | else if (isa<CXXConstructorDecl>(Val: FD)) |
1580 | EmitConstructorBody(Args); |
1581 | else if (getLangOpts().CUDA && |
1582 | !getLangOpts().CUDAIsDevice && |
1583 | FD->hasAttr<CUDAGlobalAttr>()) |
1584 | CGM.getCUDARuntime().emitDeviceStub(CGF&: *this, Args); |
1585 | else if (isa<CXXMethodDecl>(Val: FD) && |
1586 | cast<CXXMethodDecl>(Val: FD)->isLambdaStaticInvoker()) { |
1587 | // The lambda static invoker function is special, because it forwards or |
1588 | // clones the body of the function call operator (but is actually static). |
1589 | EmitLambdaStaticInvokeBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1590 | } else if (isa<CXXMethodDecl>(Val: FD) && |
1591 | isLambdaCallOperator(MD: cast<CXXMethodDecl>(Val: FD)) && |
1592 | !FnInfo.isDelegateCall() && |
1593 | cast<CXXMethodDecl>(Val: FD)->getParent()->getLambdaStaticInvoker() && |
1594 | hasInAllocaArg(MD: cast<CXXMethodDecl>(Val: FD))) { |
1595 | // If emitting a lambda with static invoker on X86 Windows, change |
1596 | // the call operator body. |
1597 | // Make sure that this is a call operator with an inalloca arg and check |
1598 | // for delegate call to make sure this is the original call op and not the |
1599 | // new forwarding function for the static invoker. |
1600 | EmitLambdaInAllocaCallOpBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1601 | } else if (FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD) && |
1602 | (cast<CXXMethodDecl>(Val: FD)->isCopyAssignmentOperator() || |
1603 | cast<CXXMethodDecl>(Val: FD)->isMoveAssignmentOperator())) { |
1604 | // Implicit copy-assignment gets the same special treatment as implicit |
1605 | // copy-constructors. |
1606 | emitImplicitAssignmentOperatorBody(Args); |
1607 | } else if (DeviceKernelAttr::isOpenCLSpelling( |
1608 | A: FD->getAttr<DeviceKernelAttr>()) && |
1609 | GD.getKernelReferenceKind() == KernelReferenceKind::Kernel) { |
1610 | CallArgList CallArgs; |
1611 | for (unsigned i = 0; i < Args.size(); ++i) { |
1612 | Address ArgAddr = GetAddrOfLocalVar(VD: Args[i]); |
1613 | QualType ArgQualType = Args[i]->getType(); |
1614 | RValue ArgRValue = convertTempToRValue(addr: ArgAddr, type: ArgQualType, Loc); |
1615 | CallArgs.add(rvalue: ArgRValue, type: ArgQualType); |
1616 | } |
1617 | GlobalDecl GDStub = GlobalDecl(FD, KernelReferenceKind::Stub); |
1618 | const FunctionType *FT = cast<FunctionType>(Val: FD->getType()); |
1619 | CGM.getTargetCodeGenInfo().setOCLKernelStubCallingConvention(FT); |
1620 | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( |
1621 | Args: CallArgs, Ty: FT, /*ChainCall=*/false); |
1622 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
1623 | llvm::Constant *GDStubFunctionPointer = |
1624 | CGM.getRawFunctionPointer(GD: GDStub, Ty: FTy); |
1625 | CGCallee GDStubCallee = CGCallee::forDirect(functionPtr: GDStubFunctionPointer, abstractInfo: GDStub); |
1626 | EmitCall(CallInfo: FnInfo, Callee: GDStubCallee, ReturnValue: ReturnValueSlot(), Args: CallArgs, CallOrInvoke: nullptr, IsMustTail: false, |
1627 | Loc); |
1628 | } else if (Body) { |
1629 | EmitFunctionBody(Body); |
1630 | } else |
1631 | llvm_unreachable("no definition for emitted function" ); |
1632 | |
1633 | // C++11 [stmt.return]p2: |
1634 | // Flowing off the end of a function [...] results in undefined behavior in |
1635 | // a value-returning function. |
1636 | // C11 6.9.1p12: |
1637 | // If the '}' that terminates a function is reached, and the value of the |
1638 | // function call is used by the caller, the behavior is undefined. |
1639 | if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && |
1640 | !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { |
1641 | bool ShouldEmitUnreachable = |
1642 | CGM.getCodeGenOpts().StrictReturn || |
1643 | !CGM.MayDropFunctionReturn(Context: FD->getASTContext(), ReturnType: FD->getReturnType()); |
1644 | if (SanOpts.has(K: SanitizerKind::Return)) { |
1645 | auto CheckOrdinal = SanitizerKind::SO_Return; |
1646 | auto CheckHandler = SanitizerHandler::MissingReturn; |
1647 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
1648 | llvm::Value *IsFalse = Builder.getFalse(); |
1649 | EmitCheck(Checked: std::make_pair(x&: IsFalse, y&: CheckOrdinal), Check: CheckHandler, |
1650 | StaticArgs: EmitCheckSourceLocation(Loc: FD->getLocation()), DynamicArgs: {}); |
1651 | } else if (ShouldEmitUnreachable) { |
1652 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
1653 | EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
1654 | } |
1655 | if (SanOpts.has(K: SanitizerKind::Return) || ShouldEmitUnreachable) { |
1656 | Builder.CreateUnreachable(); |
1657 | Builder.ClearInsertionPoint(); |
1658 | } |
1659 | } |
1660 | |
1661 | // Emit the standard function epilogue. |
1662 | FinishFunction(EndLoc: BodyRange.getEnd()); |
1663 | |
1664 | PGO->verifyCounterMap(); |
1665 | |
1666 | // If we haven't marked the function nothrow through other means, do |
1667 | // a quick pass now to see if we can. |
1668 | if (!CurFn->doesNotThrow()) |
1669 | TryMarkNoThrow(F: CurFn); |
1670 | } |
1671 | |
1672 | /// ContainsLabel - Return true if the statement contains a label in it. If |
1673 | /// this statement is not executed normally, it not containing a label means |
1674 | /// that we can just remove the code. |
1675 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { |
1676 | // Null statement, not a label! |
1677 | if (!S) return false; |
1678 | |
1679 | // If this is a label, we have to emit the code, consider something like: |
1680 | // if (0) { ... foo: bar(); } goto foo; |
1681 | // |
1682 | // TODO: If anyone cared, we could track __label__'s, since we know that you |
1683 | // can't jump to one from outside their declared region. |
1684 | if (isa<LabelStmt>(Val: S)) |
1685 | return true; |
1686 | |
1687 | // If this is a case/default statement, and we haven't seen a switch, we have |
1688 | // to emit the code. |
1689 | if (isa<SwitchCase>(Val: S) && !IgnoreCaseStmts) |
1690 | return true; |
1691 | |
1692 | // If this is a switch statement, we want to ignore cases below it. |
1693 | if (isa<SwitchStmt>(Val: S)) |
1694 | IgnoreCaseStmts = true; |
1695 | |
1696 | // Scan subexpressions for verboten labels. |
1697 | for (const Stmt *SubStmt : S->children()) |
1698 | if (ContainsLabel(S: SubStmt, IgnoreCaseStmts)) |
1699 | return true; |
1700 | |
1701 | return false; |
1702 | } |
1703 | |
1704 | /// containsBreak - Return true if the statement contains a break out of it. |
1705 | /// If the statement (recursively) contains a switch or loop with a break |
1706 | /// inside of it, this is fine. |
1707 | bool CodeGenFunction::containsBreak(const Stmt *S) { |
1708 | // Null statement, not a label! |
1709 | if (!S) return false; |
1710 | |
1711 | // If this is a switch or loop that defines its own break scope, then we can |
1712 | // include it and anything inside of it. |
1713 | if (isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || isa<DoStmt>(Val: S) || |
1714 | isa<ForStmt>(Val: S)) |
1715 | return false; |
1716 | |
1717 | if (isa<BreakStmt>(Val: S)) |
1718 | return true; |
1719 | |
1720 | // Scan subexpressions for verboten breaks. |
1721 | for (const Stmt *SubStmt : S->children()) |
1722 | if (containsBreak(S: SubStmt)) |
1723 | return true; |
1724 | |
1725 | return false; |
1726 | } |
1727 | |
1728 | bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { |
1729 | if (!S) return false; |
1730 | |
1731 | // Some statement kinds add a scope and thus never add a decl to the current |
1732 | // scope. Note, this list is longer than the list of statements that might |
1733 | // have an unscoped decl nested within them, but this way is conservatively |
1734 | // correct even if more statement kinds are added. |
1735 | if (isa<IfStmt>(Val: S) || isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || |
1736 | isa<DoStmt>(Val: S) || isa<ForStmt>(Val: S) || isa<CompoundStmt>(Val: S) || |
1737 | isa<CXXForRangeStmt>(Val: S) || isa<CXXTryStmt>(Val: S) || |
1738 | isa<ObjCForCollectionStmt>(Val: S) || isa<ObjCAtTryStmt>(Val: S)) |
1739 | return false; |
1740 | |
1741 | if (isa<DeclStmt>(Val: S)) |
1742 | return true; |
1743 | |
1744 | for (const Stmt *SubStmt : S->children()) |
1745 | if (mightAddDeclToScope(S: SubStmt)) |
1746 | return true; |
1747 | |
1748 | return false; |
1749 | } |
1750 | |
1751 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1752 | /// to a constant, or if it does but contains a label, return false. If it |
1753 | /// constant folds return true and set the boolean result in Result. |
1754 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1755 | bool &ResultBool, |
1756 | bool AllowLabels) { |
1757 | // If MC/DC is enabled, disable folding so that we can instrument all |
1758 | // conditions to yield complete test vectors. We still keep track of |
1759 | // folded conditions during region mapping and visualization. |
1760 | if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1761 | CGM.getCodeGenOpts().MCDCCoverage) |
1762 | return false; |
1763 | |
1764 | llvm::APSInt ResultInt; |
1765 | if (!ConstantFoldsToSimpleInteger(Cond, Result&: ResultInt, AllowLabels)) |
1766 | return false; |
1767 | |
1768 | ResultBool = ResultInt.getBoolValue(); |
1769 | return true; |
1770 | } |
1771 | |
1772 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1773 | /// to a constant, or if it does but contains a label, return false. If it |
1774 | /// constant folds return true and set the folded value. |
1775 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1776 | llvm::APSInt &ResultInt, |
1777 | bool AllowLabels) { |
1778 | // FIXME: Rename and handle conversion of other evaluatable things |
1779 | // to bool. |
1780 | Expr::EvalResult Result; |
1781 | if (!Cond->EvaluateAsInt(Result, Ctx: getContext())) |
1782 | return false; // Not foldable, not integer or not fully evaluatable. |
1783 | |
1784 | llvm::APSInt Int = Result.Val.getInt(); |
1785 | if (!AllowLabels && CodeGenFunction::ContainsLabel(S: Cond)) |
1786 | return false; // Contains a label. |
1787 | |
1788 | PGO->markStmtMaybeUsed(S: Cond); |
1789 | ResultInt = Int; |
1790 | return true; |
1791 | } |
1792 | |
1793 | /// Strip parentheses and simplistic logical-NOT operators. |
1794 | const Expr *CodeGenFunction::stripCond(const Expr *C) { |
1795 | while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(Val: C->IgnoreParens())) { |
1796 | if (Op->getOpcode() != UO_LNot) |
1797 | break; |
1798 | C = Op->getSubExpr(); |
1799 | } |
1800 | return C->IgnoreParens(); |
1801 | } |
1802 | |
1803 | /// Determine whether the given condition is an instrumentable condition |
1804 | /// (i.e. no "&&" or "||"). |
1805 | bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { |
1806 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: stripCond(C)); |
1807 | return (!BOp || !BOp->isLogicalOp()); |
1808 | } |
1809 | |
1810 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
1811 | /// increments a profile counter based on the semantics of the given logical |
1812 | /// operator opcode. This is used to instrument branch condition coverage for |
1813 | /// logical operators. |
1814 | void CodeGenFunction::EmitBranchToCounterBlock( |
1815 | const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, |
1816 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, |
1817 | Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { |
1818 | // If not instrumenting, just emit a branch. |
1819 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1820 | if (!InstrumentRegions || !isInstrumentedCondition(C: Cond)) |
1821 | return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); |
1822 | |
1823 | const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond); |
1824 | |
1825 | llvm::BasicBlock *ThenBlock = nullptr; |
1826 | llvm::BasicBlock *ElseBlock = nullptr; |
1827 | llvm::BasicBlock *NextBlock = nullptr; |
1828 | |
1829 | // Create the block we'll use to increment the appropriate counter. |
1830 | llvm::BasicBlock *CounterIncrBlock = createBasicBlock(name: "lop.rhscnt" ); |
1831 | |
1832 | // Set block pointers according to Logical-AND (BO_LAnd) semantics. This |
1833 | // means we need to evaluate the condition and increment the counter on TRUE: |
1834 | // |
1835 | // if (Cond) |
1836 | // goto CounterIncrBlock; |
1837 | // else |
1838 | // goto FalseBlock; |
1839 | // |
1840 | // CounterIncrBlock: |
1841 | // Counter++; |
1842 | // goto TrueBlock; |
1843 | |
1844 | if (LOp == BO_LAnd) { |
1845 | ThenBlock = CounterIncrBlock; |
1846 | ElseBlock = FalseBlock; |
1847 | NextBlock = TrueBlock; |
1848 | } |
1849 | |
1850 | // Set block pointers according to Logical-OR (BO_LOr) semantics. This means |
1851 | // we need to evaluate the condition and increment the counter on FALSE: |
1852 | // |
1853 | // if (Cond) |
1854 | // goto TrueBlock; |
1855 | // else |
1856 | // goto CounterIncrBlock; |
1857 | // |
1858 | // CounterIncrBlock: |
1859 | // Counter++; |
1860 | // goto FalseBlock; |
1861 | |
1862 | else if (LOp == BO_LOr) { |
1863 | ThenBlock = TrueBlock; |
1864 | ElseBlock = CounterIncrBlock; |
1865 | NextBlock = FalseBlock; |
1866 | } else { |
1867 | llvm_unreachable("Expected Opcode must be that of a Logical Operator" ); |
1868 | } |
1869 | |
1870 | // Emit Branch based on condition. |
1871 | EmitBranchOnBoolExpr(Cond, TrueBlock: ThenBlock, FalseBlock: ElseBlock, TrueCount, LH); |
1872 | |
1873 | // Emit the block containing the counter increment(s). |
1874 | EmitBlock(BB: CounterIncrBlock); |
1875 | |
1876 | // Increment corresponding counter; if index not provided, use Cond as index. |
1877 | incrementProfileCounter(S: CntrStmt); |
1878 | |
1879 | // Go to the next block. |
1880 | EmitBranch(Block: NextBlock); |
1881 | } |
1882 | |
1883 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if |
1884 | /// statement) to the specified blocks. Based on the condition, this might try |
1885 | /// to simplify the codegen of the conditional based on the branch. |
1886 | /// \param LH The value of the likelihood attribute on the True branch. |
1887 | /// \param ConditionalOp Used by MC/DC code coverage to track the result of the |
1888 | /// ConditionalOperator (ternary) through a recursive call for the operator's |
1889 | /// LHS and RHS nodes. |
1890 | void CodeGenFunction::EmitBranchOnBoolExpr( |
1891 | const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, |
1892 | uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp, |
1893 | const VarDecl *ConditionalDecl) { |
1894 | Cond = Cond->IgnoreParens(); |
1895 | |
1896 | if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Val: Cond)) { |
1897 | // Handle X && Y in a condition. |
1898 | if (CondBOp->getOpcode() == BO_LAnd) { |
1899 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1900 | |
1901 | // If we have "1 && X", simplify the code. "0 && X" would have constant |
1902 | // folded if the case was simple enough. |
1903 | bool ConstantBool = false; |
1904 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1905 | ConstantBool) { |
1906 | // br(1 && X) -> br(X). |
1907 | incrementProfileCounter(S: CondBOp); |
1908 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1909 | FalseBlock, TrueCount, LH); |
1910 | MCDCLogOpStack.pop_back(); |
1911 | return; |
1912 | } |
1913 | |
1914 | // If we have "X && 1", simplify the code to use an uncond branch. |
1915 | // "X && 0" would have been constant folded to 0. |
1916 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1917 | ConstantBool) { |
1918 | // br(X && 1) -> br(X). |
1919 | EmitBranchToCounterBlock(Cond: CondBOp->getLHS(), LOp: BO_LAnd, TrueBlock, |
1920 | FalseBlock, TrueCount, LH, CntrIdx: CondBOp); |
1921 | MCDCLogOpStack.pop_back(); |
1922 | return; |
1923 | } |
1924 | |
1925 | // Emit the LHS as a conditional. If the LHS conditional is false, we |
1926 | // want to jump to the FalseBlock. |
1927 | llvm::BasicBlock *LHSTrue = createBasicBlock(name: "land.lhs.true" ); |
1928 | // The counter tells us how often we evaluate RHS, and all of TrueCount |
1929 | // can be propagated to that branch. |
1930 | uint64_t RHSCount = getProfileCount(S: CondBOp->getRHS()); |
1931 | |
1932 | ConditionalEvaluation eval(*this); |
1933 | { |
1934 | ApplyDebugLocation DL(*this, Cond); |
1935 | // Propagate the likelihood attribute like __builtin_expect |
1936 | // __builtin_expect(X && Y, 1) -> X and Y are likely |
1937 | // __builtin_expect(X && Y, 0) -> only Y is unlikely |
1938 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock: LHSTrue, FalseBlock, TrueCount: RHSCount, |
1939 | LH: LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); |
1940 | EmitBlock(BB: LHSTrue); |
1941 | } |
1942 | |
1943 | incrementProfileCounter(S: CondBOp); |
1944 | setCurrentProfileCount(getProfileCount(S: CondBOp->getRHS())); |
1945 | |
1946 | // Any temporaries created here are conditional. |
1947 | eval.begin(CGF&: *this); |
1948 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1949 | FalseBlock, TrueCount, LH); |
1950 | eval.end(CGF&: *this); |
1951 | MCDCLogOpStack.pop_back(); |
1952 | return; |
1953 | } |
1954 | |
1955 | if (CondBOp->getOpcode() == BO_LOr) { |
1956 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1957 | |
1958 | // If we have "0 || X", simplify the code. "1 || X" would have constant |
1959 | // folded if the case was simple enough. |
1960 | bool ConstantBool = false; |
1961 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1962 | !ConstantBool) { |
1963 | // br(0 || X) -> br(X). |
1964 | incrementProfileCounter(S: CondBOp); |
1965 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, |
1966 | FalseBlock, TrueCount, LH); |
1967 | MCDCLogOpStack.pop_back(); |
1968 | return; |
1969 | } |
1970 | |
1971 | // If we have "X || 0", simplify the code to use an uncond branch. |
1972 | // "X || 1" would have been constant folded to 1. |
1973 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1974 | !ConstantBool) { |
1975 | // br(X || 0) -> br(X). |
1976 | EmitBranchToCounterBlock(Cond: CondBOp->getLHS(), LOp: BO_LOr, TrueBlock, |
1977 | FalseBlock, TrueCount, LH, CntrIdx: CondBOp); |
1978 | MCDCLogOpStack.pop_back(); |
1979 | return; |
1980 | } |
1981 | // Emit the LHS as a conditional. If the LHS conditional is true, we |
1982 | // want to jump to the TrueBlock. |
1983 | llvm::BasicBlock *LHSFalse = createBasicBlock(name: "lor.lhs.false" ); |
1984 | // We have the count for entry to the RHS and for the whole expression |
1985 | // being true, so we can divy up True count between the short circuit and |
1986 | // the RHS. |
1987 | uint64_t LHSCount = |
1988 | getCurrentProfileCount() - getProfileCount(S: CondBOp->getRHS()); |
1989 | uint64_t RHSCount = TrueCount - LHSCount; |
1990 | |
1991 | ConditionalEvaluation eval(*this); |
1992 | { |
1993 | // Propagate the likelihood attribute like __builtin_expect |
1994 | // __builtin_expect(X || Y, 1) -> only Y is likely |
1995 | // __builtin_expect(X || Y, 0) -> both X and Y are unlikely |
1996 | ApplyDebugLocation DL(*this, Cond); |
1997 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock, FalseBlock: LHSFalse, TrueCount: LHSCount, |
1998 | LH: LH == Stmt::LH_Likely ? Stmt::LH_None : LH); |
1999 | EmitBlock(BB: LHSFalse); |
2000 | } |
2001 | |
2002 | incrementProfileCounter(S: CondBOp); |
2003 | setCurrentProfileCount(getProfileCount(S: CondBOp->getRHS())); |
2004 | |
2005 | // Any temporaries created here are conditional. |
2006 | eval.begin(CGF&: *this); |
2007 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, FalseBlock, |
2008 | TrueCount: RHSCount, LH); |
2009 | |
2010 | eval.end(CGF&: *this); |
2011 | MCDCLogOpStack.pop_back(); |
2012 | return; |
2013 | } |
2014 | } |
2015 | |
2016 | if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Val: Cond)) { |
2017 | // br(!x, t, f) -> br(x, f, t) |
2018 | // Avoid doing this optimization when instrumenting a condition for MC/DC. |
2019 | // LNot is taken as part of the condition for simplicity, and changing its |
2020 | // sense negatively impacts test vector tracking. |
2021 | bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && |
2022 | CGM.getCodeGenOpts().MCDCCoverage && |
2023 | isInstrumentedCondition(C: Cond); |
2024 | if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { |
2025 | // Negate the count. |
2026 | uint64_t FalseCount = getCurrentProfileCount() - TrueCount; |
2027 | // The values of the enum are chosen to make this negation possible. |
2028 | LH = static_cast<Stmt::Likelihood>(-LH); |
2029 | // Negate the condition and swap the destination blocks. |
2030 | return EmitBranchOnBoolExpr(Cond: CondUOp->getSubExpr(), TrueBlock: FalseBlock, FalseBlock: TrueBlock, |
2031 | TrueCount: FalseCount, LH); |
2032 | } |
2033 | } |
2034 | |
2035 | if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Val: Cond)) { |
2036 | // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) |
2037 | llvm::BasicBlock *LHSBlock = createBasicBlock(name: "cond.true" ); |
2038 | llvm::BasicBlock *RHSBlock = createBasicBlock(name: "cond.false" ); |
2039 | |
2040 | // The ConditionalOperator itself has no likelihood information for its |
2041 | // true and false branches. This matches the behavior of __builtin_expect. |
2042 | ConditionalEvaluation cond(*this); |
2043 | EmitBranchOnBoolExpr(Cond: CondOp->getCond(), TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
2044 | TrueCount: getProfileCount(S: CondOp), LH: Stmt::LH_None); |
2045 | |
2046 | // When computing PGO branch weights, we only know the overall count for |
2047 | // the true block. This code is essentially doing tail duplication of the |
2048 | // naive code-gen, introducing new edges for which counts are not |
2049 | // available. Divide the counts proportionally between the LHS and RHS of |
2050 | // the conditional operator. |
2051 | uint64_t LHSScaledTrueCount = 0; |
2052 | if (TrueCount) { |
2053 | double LHSRatio = |
2054 | getProfileCount(S: CondOp) / (double)getCurrentProfileCount(); |
2055 | LHSScaledTrueCount = TrueCount * LHSRatio; |
2056 | } |
2057 | |
2058 | cond.begin(CGF&: *this); |
2059 | EmitBlock(BB: LHSBlock); |
2060 | incrementProfileCounter(S: CondOp); |
2061 | { |
2062 | ApplyDebugLocation DL(*this, Cond); |
2063 | EmitBranchOnBoolExpr(Cond: CondOp->getLHS(), TrueBlock, FalseBlock, |
2064 | TrueCount: LHSScaledTrueCount, LH, ConditionalOp: CondOp); |
2065 | } |
2066 | cond.end(CGF&: *this); |
2067 | |
2068 | cond.begin(CGF&: *this); |
2069 | EmitBlock(BB: RHSBlock); |
2070 | EmitBranchOnBoolExpr(Cond: CondOp->getRHS(), TrueBlock, FalseBlock, |
2071 | TrueCount: TrueCount - LHSScaledTrueCount, LH, ConditionalOp: CondOp); |
2072 | cond.end(CGF&: *this); |
2073 | |
2074 | return; |
2075 | } |
2076 | |
2077 | if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Val: Cond)) { |
2078 | // Conditional operator handling can give us a throw expression as a |
2079 | // condition for a case like: |
2080 | // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) |
2081 | // Fold this to: |
2082 | // br(c, throw x, br(y, t, f)) |
2083 | EmitCXXThrowExpr(E: Throw, /*KeepInsertionPoint*/false); |
2084 | return; |
2085 | } |
2086 | |
2087 | // Emit the code with the fully general case. |
2088 | llvm::Value *CondV; |
2089 | { |
2090 | ApplyDebugLocation DL(*this, Cond); |
2091 | CondV = EvaluateExprAsBool(E: Cond); |
2092 | } |
2093 | |
2094 | MaybeEmitDeferredVarDeclInit(var: ConditionalDecl); |
2095 | |
2096 | // If not at the top of the logical operator nest, update MCDC temp with the |
2097 | // boolean result of the evaluated condition. |
2098 | if (!MCDCLogOpStack.empty()) { |
2099 | const Expr *MCDCBaseExpr = Cond; |
2100 | // When a nested ConditionalOperator (ternary) is encountered in a boolean |
2101 | // expression, MC/DC tracks the result of the ternary, and this is tied to |
2102 | // the ConditionalOperator expression and not the ternary's LHS or RHS. If |
2103 | // this is the case, the ConditionalOperator expression is passed through |
2104 | // the ConditionalOp parameter and then used as the MCDC base expression. |
2105 | if (ConditionalOp) |
2106 | MCDCBaseExpr = ConditionalOp; |
2107 | |
2108 | maybeUpdateMCDCCondBitmap(E: MCDCBaseExpr, Val: CondV); |
2109 | } |
2110 | |
2111 | llvm::MDNode *Weights = nullptr; |
2112 | llvm::MDNode *Unpredictable = nullptr; |
2113 | |
2114 | // If the branch has a condition wrapped by __builtin_unpredictable, |
2115 | // create metadata that specifies that the branch is unpredictable. |
2116 | // Don't bother if not optimizing because that metadata would not be used. |
2117 | auto *Call = dyn_cast<CallExpr>(Val: Cond->IgnoreImpCasts()); |
2118 | if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { |
2119 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: Call->getCalleeDecl()); |
2120 | if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { |
2121 | llvm::MDBuilder MDHelper(getLLVMContext()); |
2122 | Unpredictable = MDHelper.createUnpredictable(); |
2123 | } |
2124 | } |
2125 | |
2126 | // If there is a Likelihood knowledge for the cond, lower it. |
2127 | // Note that if not optimizing this won't emit anything. |
2128 | llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(Cond: CondV, LH); |
2129 | if (CondV != NewCondV) |
2130 | CondV = NewCondV; |
2131 | else { |
2132 | // Otherwise, lower profile counts. Note that we do this even at -O0. |
2133 | uint64_t CurrentCount = std::max(a: getCurrentProfileCount(), b: TrueCount); |
2134 | Weights = createProfileWeights(TrueCount, FalseCount: CurrentCount - TrueCount); |
2135 | } |
2136 | |
2137 | llvm::Instruction *BrInst = Builder.CreateCondBr(Cond: CondV, True: TrueBlock, False: FalseBlock, |
2138 | BranchWeights: Weights, Unpredictable); |
2139 | addInstToNewSourceAtom(KeyInstruction: BrInst, Backup: CondV); |
2140 | |
2141 | switch (HLSLControlFlowAttr) { |
2142 | case HLSLControlFlowHintAttr::Microsoft_branch: |
2143 | case HLSLControlFlowHintAttr::Microsoft_flatten: { |
2144 | llvm::MDBuilder MDHelper(CGM.getLLVMContext()); |
2145 | |
2146 | llvm::ConstantInt *BranchHintConstant = |
2147 | HLSLControlFlowAttr == |
2148 | HLSLControlFlowHintAttr::Spelling::Microsoft_branch |
2149 | ? llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 1) |
2150 | : llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 2); |
2151 | |
2152 | SmallVector<llvm::Metadata *, 2> Vals( |
2153 | {MDHelper.createString(Str: "hlsl.controlflow.hint" ), |
2154 | MDHelper.createConstant(C: BranchHintConstant)}); |
2155 | BrInst->setMetadata(Kind: "hlsl.controlflow.hint" , |
2156 | Node: llvm::MDNode::get(Context&: CGM.getLLVMContext(), MDs: Vals)); |
2157 | break; |
2158 | } |
2159 | // This is required to avoid warnings during compilation |
2160 | case HLSLControlFlowHintAttr::SpellingNotCalculated: |
2161 | break; |
2162 | } |
2163 | } |
2164 | |
2165 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2166 | /// specified stmt yet. |
2167 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { |
2168 | CGM.ErrorUnsupported(S, Type); |
2169 | } |
2170 | |
2171 | /// emitNonZeroVLAInit - Emit the "zero" initialization of a |
2172 | /// variable-length array whose elements have a non-zero bit-pattern. |
2173 | /// |
2174 | /// \param baseType the inner-most element type of the array |
2175 | /// \param src - a char* pointing to the bit-pattern for a single |
2176 | /// base element of the array |
2177 | /// \param sizeInChars - the total size of the VLA, in chars |
2178 | static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, |
2179 | Address dest, Address src, |
2180 | llvm::Value *sizeInChars) { |
2181 | CGBuilderTy &Builder = CGF.Builder; |
2182 | |
2183 | CharUnits baseSize = CGF.getContext().getTypeSizeInChars(T: baseType); |
2184 | llvm::Value *baseSizeInChars |
2185 | = llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: baseSize.getQuantity()); |
2186 | |
2187 | Address begin = dest.withElementType(ElemTy: CGF.Int8Ty); |
2188 | llvm::Value *end = Builder.CreateInBoundsGEP(Ty: begin.getElementType(), |
2189 | Ptr: begin.emitRawPointer(CGF), |
2190 | IdxList: sizeInChars, Name: "vla.end" ); |
2191 | |
2192 | llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); |
2193 | llvm::BasicBlock *loopBB = CGF.createBasicBlock(name: "vla-init.loop" ); |
2194 | llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "vla-init.cont" ); |
2195 | |
2196 | // Make a loop over the VLA. C99 guarantees that the VLA element |
2197 | // count must be nonzero. |
2198 | CGF.EmitBlock(BB: loopBB); |
2199 | |
2200 | llvm::PHINode *cur = Builder.CreatePHI(Ty: begin.getType(), NumReservedValues: 2, Name: "vla.cur" ); |
2201 | cur->addIncoming(V: begin.emitRawPointer(CGF), BB: originBB); |
2202 | |
2203 | CharUnits curAlign = |
2204 | dest.getAlignment().alignmentOfArrayElement(elementSize: baseSize); |
2205 | |
2206 | // memcpy the individual element bit-pattern. |
2207 | Builder.CreateMemCpy(Dest: Address(cur, CGF.Int8Ty, curAlign), Src: src, Size: baseSizeInChars, |
2208 | /*volatile*/ IsVolatile: false); |
2209 | |
2210 | // Go to the next element. |
2211 | llvm::Value *next = |
2212 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: cur, IdxList: baseSizeInChars, Name: "vla.next" ); |
2213 | |
2214 | // Leave if that's the end of the VLA. |
2215 | llvm::Value *done = Builder.CreateICmpEQ(LHS: next, RHS: end, Name: "vla-init.isdone" ); |
2216 | Builder.CreateCondBr(Cond: done, True: contBB, False: loopBB); |
2217 | cur->addIncoming(V: next, BB: loopBB); |
2218 | |
2219 | CGF.EmitBlock(BB: contBB); |
2220 | } |
2221 | |
2222 | void |
2223 | CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { |
2224 | // Ignore empty classes in C++. |
2225 | if (getLangOpts().CPlusPlus) { |
2226 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2227 | if (cast<CXXRecordDecl>(Val: RT->getDecl())->isEmpty()) |
2228 | return; |
2229 | } |
2230 | } |
2231 | |
2232 | if (DestPtr.getElementType() != Int8Ty) |
2233 | DestPtr = DestPtr.withElementType(ElemTy: Int8Ty); |
2234 | |
2235 | // Get size and alignment info for this aggregate. |
2236 | CharUnits size = getContext().getTypeSizeInChars(T: Ty); |
2237 | |
2238 | llvm::Value *SizeVal; |
2239 | const VariableArrayType *vla; |
2240 | |
2241 | // Don't bother emitting a zero-byte memset. |
2242 | if (size.isZero()) { |
2243 | // But note that getTypeInfo returns 0 for a VLA. |
2244 | if (const VariableArrayType *vlaType = |
2245 | dyn_cast_or_null<VariableArrayType>( |
2246 | Val: getContext().getAsArrayType(T: Ty))) { |
2247 | auto VlaSize = getVLASize(vla: vlaType); |
2248 | SizeVal = VlaSize.NumElts; |
2249 | CharUnits eltSize = getContext().getTypeSizeInChars(T: VlaSize.Type); |
2250 | if (!eltSize.isOne()) |
2251 | SizeVal = Builder.CreateNUWMul(LHS: SizeVal, RHS: CGM.getSize(numChars: eltSize)); |
2252 | vla = vlaType; |
2253 | } else { |
2254 | return; |
2255 | } |
2256 | } else { |
2257 | SizeVal = CGM.getSize(numChars: size); |
2258 | vla = nullptr; |
2259 | } |
2260 | |
2261 | // If the type contains a pointer to data member we can't memset it to zero. |
2262 | // Instead, create a null constant and copy it to the destination. |
2263 | // TODO: there are other patterns besides zero that we can usefully memset, |
2264 | // like -1, which happens to be the pattern used by member-pointers. |
2265 | if (!CGM.getTypes().isZeroInitializable(T: Ty)) { |
2266 | // For a VLA, emit a single element, then splat that over the VLA. |
2267 | if (vla) Ty = getContext().getBaseElementType(VAT: vla); |
2268 | |
2269 | llvm::Constant *NullConstant = CGM.EmitNullConstant(T: Ty); |
2270 | |
2271 | llvm::GlobalVariable *NullVariable = |
2272 | new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), |
2273 | /*isConstant=*/true, |
2274 | llvm::GlobalVariable::PrivateLinkage, |
2275 | NullConstant, Twine()); |
2276 | CharUnits NullAlign = DestPtr.getAlignment(); |
2277 | NullVariable->setAlignment(NullAlign.getAsAlign()); |
2278 | Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); |
2279 | |
2280 | if (vla) return emitNonZeroVLAInit(CGF&: *this, baseType: Ty, dest: DestPtr, src: SrcPtr, sizeInChars: SizeVal); |
2281 | |
2282 | // Get and call the appropriate llvm.memcpy overload. |
2283 | Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: SizeVal, IsVolatile: false); |
2284 | return; |
2285 | } |
2286 | |
2287 | // Otherwise, just memset the whole thing to zero. This is legal |
2288 | // because in LLVM, all default initializers (other than the ones we just |
2289 | // handled above) are guaranteed to have a bit pattern of all zeros. |
2290 | Builder.CreateMemSet(Dest: DestPtr, Value: Builder.getInt8(C: 0), Size: SizeVal, IsVolatile: false); |
2291 | } |
2292 | |
2293 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { |
2294 | // Make sure that there is a block for the indirect goto. |
2295 | if (!IndirectBranch) |
2296 | GetIndirectGotoBlock(); |
2297 | |
2298 | llvm::BasicBlock *BB = getJumpDestForLabel(S: L).getBlock(); |
2299 | |
2300 | // Make sure the indirect branch includes all of the address-taken blocks. |
2301 | IndirectBranch->addDestination(Dest: BB); |
2302 | return llvm::BlockAddress::get(Ty: CurFn->getType(), BB); |
2303 | } |
2304 | |
2305 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { |
2306 | // If we already made the indirect branch for indirect goto, return its block. |
2307 | if (IndirectBranch) return IndirectBranch->getParent(); |
2308 | |
2309 | CGBuilderTy TmpBuilder(*this, createBasicBlock(name: "indirectgoto" )); |
2310 | |
2311 | // Create the PHI node that indirect gotos will add entries to. |
2312 | llvm::Value *DestVal = TmpBuilder.CreatePHI(Ty: Int8PtrTy, NumReservedValues: 0, |
2313 | Name: "indirect.goto.dest" ); |
2314 | |
2315 | // Create the indirect branch instruction. |
2316 | IndirectBranch = TmpBuilder.CreateIndirectBr(Addr: DestVal); |
2317 | return IndirectBranch->getParent(); |
2318 | } |
2319 | |
2320 | /// Computes the length of an array in elements, as well as the base |
2321 | /// element type and a properly-typed first element pointer. |
2322 | llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, |
2323 | QualType &baseType, |
2324 | Address &addr) { |
2325 | const ArrayType *arrayType = origArrayType; |
2326 | |
2327 | // If it's a VLA, we have to load the stored size. Note that |
2328 | // this is the size of the VLA in bytes, not its size in elements. |
2329 | llvm::Value *numVLAElements = nullptr; |
2330 | if (isa<VariableArrayType>(Val: arrayType)) { |
2331 | numVLAElements = getVLASize(vla: cast<VariableArrayType>(Val: arrayType)).NumElts; |
2332 | |
2333 | // Walk into all VLAs. This doesn't require changes to addr, |
2334 | // which has type T* where T is the first non-VLA element type. |
2335 | do { |
2336 | QualType elementType = arrayType->getElementType(); |
2337 | arrayType = getContext().getAsArrayType(T: elementType); |
2338 | |
2339 | // If we only have VLA components, 'addr' requires no adjustment. |
2340 | if (!arrayType) { |
2341 | baseType = elementType; |
2342 | return numVLAElements; |
2343 | } |
2344 | } while (isa<VariableArrayType>(Val: arrayType)); |
2345 | |
2346 | // We get out here only if we find a constant array type |
2347 | // inside the VLA. |
2348 | } |
2349 | |
2350 | // We have some number of constant-length arrays, so addr should |
2351 | // have LLVM type [M x [N x [...]]]*. Build a GEP that walks |
2352 | // down to the first element of addr. |
2353 | SmallVector<llvm::Value*, 8> gepIndices; |
2354 | |
2355 | // GEP down to the array type. |
2356 | llvm::ConstantInt *zero = Builder.getInt32(C: 0); |
2357 | gepIndices.push_back(Elt: zero); |
2358 | |
2359 | uint64_t countFromCLAs = 1; |
2360 | QualType eltType; |
2361 | |
2362 | llvm::ArrayType *llvmArrayType = |
2363 | dyn_cast<llvm::ArrayType>(Val: addr.getElementType()); |
2364 | while (llvmArrayType) { |
2365 | assert(isa<ConstantArrayType>(arrayType)); |
2366 | assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == |
2367 | llvmArrayType->getNumElements()); |
2368 | |
2369 | gepIndices.push_back(Elt: zero); |
2370 | countFromCLAs *= llvmArrayType->getNumElements(); |
2371 | eltType = arrayType->getElementType(); |
2372 | |
2373 | llvmArrayType = |
2374 | dyn_cast<llvm::ArrayType>(Val: llvmArrayType->getElementType()); |
2375 | arrayType = getContext().getAsArrayType(T: arrayType->getElementType()); |
2376 | assert((!llvmArrayType || arrayType) && |
2377 | "LLVM and Clang types are out-of-synch" ); |
2378 | } |
2379 | |
2380 | if (arrayType) { |
2381 | // From this point onwards, the Clang array type has been emitted |
2382 | // as some other type (probably a packed struct). Compute the array |
2383 | // size, and just emit the 'begin' expression as a bitcast. |
2384 | while (arrayType) { |
2385 | countFromCLAs *= cast<ConstantArrayType>(Val: arrayType)->getZExtSize(); |
2386 | eltType = arrayType->getElementType(); |
2387 | arrayType = getContext().getAsArrayType(T: eltType); |
2388 | } |
2389 | |
2390 | llvm::Type *baseType = ConvertType(T: eltType); |
2391 | addr = addr.withElementType(ElemTy: baseType); |
2392 | } else { |
2393 | // Create the actual GEP. |
2394 | addr = Address(Builder.CreateInBoundsGEP(Ty: addr.getElementType(), |
2395 | Ptr: addr.emitRawPointer(CGF&: *this), |
2396 | IdxList: gepIndices, Name: "array.begin" ), |
2397 | ConvertTypeForMem(T: eltType), addr.getAlignment()); |
2398 | } |
2399 | |
2400 | baseType = eltType; |
2401 | |
2402 | llvm::Value *numElements |
2403 | = llvm::ConstantInt::get(Ty: SizeTy, V: countFromCLAs); |
2404 | |
2405 | // If we had any VLA dimensions, factor them in. |
2406 | if (numVLAElements) |
2407 | numElements = Builder.CreateNUWMul(LHS: numVLAElements, RHS: numElements); |
2408 | |
2409 | return numElements; |
2410 | } |
2411 | |
2412 | CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { |
2413 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2414 | assert(vla && "type was not a variable array type!" ); |
2415 | return getVLASize(vla); |
2416 | } |
2417 | |
2418 | CodeGenFunction::VlaSizePair |
2419 | CodeGenFunction::getVLASize(const VariableArrayType *type) { |
2420 | // The number of elements so far; always size_t. |
2421 | llvm::Value *numElements = nullptr; |
2422 | |
2423 | QualType elementType; |
2424 | do { |
2425 | elementType = type->getElementType(); |
2426 | llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; |
2427 | assert(vlaSize && "no size for VLA!" ); |
2428 | assert(vlaSize->getType() == SizeTy); |
2429 | |
2430 | if (!numElements) { |
2431 | numElements = vlaSize; |
2432 | } else { |
2433 | // It's undefined behavior if this wraps around, so mark it that way. |
2434 | // FIXME: Teach -fsanitize=undefined to trap this. |
2435 | numElements = Builder.CreateNUWMul(LHS: numElements, RHS: vlaSize); |
2436 | } |
2437 | } while ((type = getContext().getAsVariableArrayType(T: elementType))); |
2438 | |
2439 | return { numElements, elementType }; |
2440 | } |
2441 | |
2442 | CodeGenFunction::VlaSizePair |
2443 | CodeGenFunction::getVLAElements1D(QualType type) { |
2444 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2445 | assert(vla && "type was not a variable array type!" ); |
2446 | return getVLAElements1D(vla); |
2447 | } |
2448 | |
2449 | CodeGenFunction::VlaSizePair |
2450 | CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { |
2451 | llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; |
2452 | assert(VlaSize && "no size for VLA!" ); |
2453 | assert(VlaSize->getType() == SizeTy); |
2454 | return { VlaSize, Vla->getElementType() }; |
2455 | } |
2456 | |
2457 | void CodeGenFunction::EmitVariablyModifiedType(QualType type) { |
2458 | assert(type->isVariablyModifiedType() && |
2459 | "Must pass variably modified type to EmitVLASizes!" ); |
2460 | |
2461 | EnsureInsertPoint(); |
2462 | |
2463 | // We're going to walk down into the type and look for VLA |
2464 | // expressions. |
2465 | do { |
2466 | assert(type->isVariablyModifiedType()); |
2467 | |
2468 | const Type *ty = type.getTypePtr(); |
2469 | switch (ty->getTypeClass()) { |
2470 | |
2471 | #define TYPE(Class, Base) |
2472 | #define ABSTRACT_TYPE(Class, Base) |
2473 | #define NON_CANONICAL_TYPE(Class, Base) |
2474 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2475 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
2476 | #include "clang/AST/TypeNodes.inc" |
2477 | llvm_unreachable("unexpected dependent type!" ); |
2478 | |
2479 | // These types are never variably-modified. |
2480 | case Type::Builtin: |
2481 | case Type::Complex: |
2482 | case Type::Vector: |
2483 | case Type::ExtVector: |
2484 | case Type::ConstantMatrix: |
2485 | case Type::Record: |
2486 | case Type::Enum: |
2487 | case Type::Using: |
2488 | case Type::TemplateSpecialization: |
2489 | case Type::ObjCTypeParam: |
2490 | case Type::ObjCObject: |
2491 | case Type::ObjCInterface: |
2492 | case Type::ObjCObjectPointer: |
2493 | case Type::BitInt: |
2494 | case Type::HLSLInlineSpirv: |
2495 | llvm_unreachable("type class is never variably-modified!" ); |
2496 | |
2497 | case Type::Elaborated: |
2498 | type = cast<ElaboratedType>(Val: ty)->getNamedType(); |
2499 | break; |
2500 | |
2501 | case Type::Adjusted: |
2502 | type = cast<AdjustedType>(Val: ty)->getAdjustedType(); |
2503 | break; |
2504 | |
2505 | case Type::Decayed: |
2506 | type = cast<DecayedType>(Val: ty)->getPointeeType(); |
2507 | break; |
2508 | |
2509 | case Type::Pointer: |
2510 | type = cast<PointerType>(Val: ty)->getPointeeType(); |
2511 | break; |
2512 | |
2513 | case Type::BlockPointer: |
2514 | type = cast<BlockPointerType>(Val: ty)->getPointeeType(); |
2515 | break; |
2516 | |
2517 | case Type::LValueReference: |
2518 | case Type::RValueReference: |
2519 | type = cast<ReferenceType>(Val: ty)->getPointeeType(); |
2520 | break; |
2521 | |
2522 | case Type::MemberPointer: |
2523 | type = cast<MemberPointerType>(Val: ty)->getPointeeType(); |
2524 | break; |
2525 | |
2526 | case Type::ArrayParameter: |
2527 | case Type::ConstantArray: |
2528 | case Type::IncompleteArray: |
2529 | // Losing element qualification here is fine. |
2530 | type = cast<ArrayType>(Val: ty)->getElementType(); |
2531 | break; |
2532 | |
2533 | case Type::VariableArray: { |
2534 | // Losing element qualification here is fine. |
2535 | const VariableArrayType *vat = cast<VariableArrayType>(Val: ty); |
2536 | |
2537 | // Unknown size indication requires no size computation. |
2538 | // Otherwise, evaluate and record it. |
2539 | if (const Expr *sizeExpr = vat->getSizeExpr()) { |
2540 | // It's possible that we might have emitted this already, |
2541 | // e.g. with a typedef and a pointer to it. |
2542 | llvm::Value *&entry = VLASizeMap[sizeExpr]; |
2543 | if (!entry) { |
2544 | llvm::Value *size = EmitScalarExpr(E: sizeExpr); |
2545 | |
2546 | // C11 6.7.6.2p5: |
2547 | // If the size is an expression that is not an integer constant |
2548 | // expression [...] each time it is evaluated it shall have a value |
2549 | // greater than zero. |
2550 | if (SanOpts.has(K: SanitizerKind::VLABound)) { |
2551 | auto CheckOrdinal = SanitizerKind::SO_VLABound; |
2552 | auto CheckHandler = SanitizerHandler::VLABoundNotPositive; |
2553 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
2554 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: size->getType()); |
2555 | clang::QualType SEType = sizeExpr->getType(); |
2556 | llvm::Value *CheckCondition = |
2557 | SEType->isSignedIntegerType() |
2558 | ? Builder.CreateICmpSGT(LHS: size, RHS: Zero) |
2559 | : Builder.CreateICmpUGT(LHS: size, RHS: Zero); |
2560 | llvm::Constant *StaticArgs[] = { |
2561 | EmitCheckSourceLocation(Loc: sizeExpr->getBeginLoc()), |
2562 | EmitCheckTypeDescriptor(T: SEType)}; |
2563 | EmitCheck(Checked: std::make_pair(x&: CheckCondition, y&: CheckOrdinal), |
2564 | Check: CheckHandler, StaticArgs, DynamicArgs: size); |
2565 | } |
2566 | |
2567 | // Always zexting here would be wrong if it weren't |
2568 | // undefined behavior to have a negative bound. |
2569 | // FIXME: What about when size's type is larger than size_t? |
2570 | entry = Builder.CreateIntCast(V: size, DestTy: SizeTy, /*signed*/ isSigned: false); |
2571 | } |
2572 | } |
2573 | type = vat->getElementType(); |
2574 | break; |
2575 | } |
2576 | |
2577 | case Type::FunctionProto: |
2578 | case Type::FunctionNoProto: |
2579 | type = cast<FunctionType>(Val: ty)->getReturnType(); |
2580 | break; |
2581 | |
2582 | case Type::Paren: |
2583 | case Type::TypeOf: |
2584 | case Type::UnaryTransform: |
2585 | case Type::Attributed: |
2586 | case Type::BTFTagAttributed: |
2587 | case Type::HLSLAttributedResource: |
2588 | case Type::SubstTemplateTypeParm: |
2589 | case Type::MacroQualified: |
2590 | case Type::CountAttributed: |
2591 | // Keep walking after single level desugaring. |
2592 | type = type.getSingleStepDesugaredType(Context: getContext()); |
2593 | break; |
2594 | |
2595 | case Type::Typedef: |
2596 | case Type::Decltype: |
2597 | case Type::Auto: |
2598 | case Type::DeducedTemplateSpecialization: |
2599 | case Type::PackIndexing: |
2600 | // Stop walking: nothing to do. |
2601 | return; |
2602 | |
2603 | case Type::TypeOfExpr: |
2604 | // Stop walking: emit typeof expression. |
2605 | EmitIgnoredExpr(E: cast<TypeOfExprType>(Val: ty)->getUnderlyingExpr()); |
2606 | return; |
2607 | |
2608 | case Type::Atomic: |
2609 | type = cast<AtomicType>(Val: ty)->getValueType(); |
2610 | break; |
2611 | |
2612 | case Type::Pipe: |
2613 | type = cast<PipeType>(Val: ty)->getElementType(); |
2614 | break; |
2615 | } |
2616 | } while (type->isVariablyModifiedType()); |
2617 | } |
2618 | |
2619 | Address CodeGenFunction::EmitVAListRef(const Expr* E) { |
2620 | if (getContext().getBuiltinVaListType()->isArrayType()) |
2621 | return EmitPointerWithAlignment(Addr: E); |
2622 | return EmitLValue(E).getAddress(); |
2623 | } |
2624 | |
2625 | Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { |
2626 | return EmitLValue(E).getAddress(); |
2627 | } |
2628 | |
2629 | void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, |
2630 | const APValue &Init) { |
2631 | assert(Init.hasValue() && "Invalid DeclRefExpr initializer!" ); |
2632 | if (CGDebugInfo *Dbg = getDebugInfo()) |
2633 | if (CGM.getCodeGenOpts().hasReducedDebugInfo()) |
2634 | Dbg->EmitGlobalVariable(VD: E->getDecl(), Init); |
2635 | } |
2636 | |
2637 | CodeGenFunction::PeepholeProtection |
2638 | CodeGenFunction::protectFromPeepholes(RValue rvalue) { |
2639 | // At the moment, the only aggressive peephole we do in IR gen |
2640 | // is trunc(zext) folding, but if we add more, we can easily |
2641 | // extend this protection. |
2642 | |
2643 | if (!rvalue.isScalar()) return PeepholeProtection(); |
2644 | llvm::Value *value = rvalue.getScalarVal(); |
2645 | if (!isa<llvm::ZExtInst>(Val: value)) return PeepholeProtection(); |
2646 | |
2647 | // Just make an extra bitcast. |
2648 | assert(HaveInsertPoint()); |
2649 | llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "" , |
2650 | Builder.GetInsertBlock()); |
2651 | |
2652 | PeepholeProtection protection; |
2653 | protection.Inst = inst; |
2654 | return protection; |
2655 | } |
2656 | |
2657 | void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { |
2658 | if (!protection.Inst) return; |
2659 | |
2660 | // In theory, we could try to duplicate the peepholes now, but whatever. |
2661 | protection.Inst->eraseFromParent(); |
2662 | } |
2663 | |
2664 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2665 | QualType Ty, SourceLocation Loc, |
2666 | SourceLocation AssumptionLoc, |
2667 | llvm::Value *Alignment, |
2668 | llvm::Value *OffsetValue) { |
2669 | if (Alignment->getType() != IntPtrTy) |
2670 | Alignment = |
2671 | Builder.CreateIntCast(V: Alignment, DestTy: IntPtrTy, isSigned: false, Name: "casted.align" ); |
2672 | if (OffsetValue && OffsetValue->getType() != IntPtrTy) |
2673 | OffsetValue = |
2674 | Builder.CreateIntCast(V: OffsetValue, DestTy: IntPtrTy, isSigned: true, Name: "casted.offset" ); |
2675 | llvm::Value *TheCheck = nullptr; |
2676 | if (SanOpts.has(K: SanitizerKind::Alignment)) { |
2677 | llvm::Value *PtrIntValue = |
2678 | Builder.CreatePtrToInt(V: PtrValue, DestTy: IntPtrTy, Name: "ptrint" ); |
2679 | |
2680 | if (OffsetValue) { |
2681 | bool IsOffsetZero = false; |
2682 | if (const auto *CI = dyn_cast<llvm::ConstantInt>(Val: OffsetValue)) |
2683 | IsOffsetZero = CI->isZero(); |
2684 | |
2685 | if (!IsOffsetZero) |
2686 | PtrIntValue = Builder.CreateSub(LHS: PtrIntValue, RHS: OffsetValue, Name: "offsetptr" ); |
2687 | } |
2688 | |
2689 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: IntPtrTy, V: 0); |
2690 | llvm::Value *Mask = |
2691 | Builder.CreateSub(LHS: Alignment, RHS: llvm::ConstantInt::get(Ty: IntPtrTy, V: 1)); |
2692 | llvm::Value *MaskedPtr = Builder.CreateAnd(LHS: PtrIntValue, RHS: Mask, Name: "maskedptr" ); |
2693 | TheCheck = Builder.CreateICmpEQ(LHS: MaskedPtr, RHS: Zero, Name: "maskcond" ); |
2694 | } |
2695 | llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( |
2696 | DL: CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); |
2697 | |
2698 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
2699 | return; |
2700 | emitAlignmentAssumptionCheck(Ptr: PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2701 | OffsetValue, TheCheck, Assumption); |
2702 | } |
2703 | |
2704 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2705 | const Expr *E, |
2706 | SourceLocation AssumptionLoc, |
2707 | llvm::Value *Alignment, |
2708 | llvm::Value *OffsetValue) { |
2709 | QualType Ty = E->getType(); |
2710 | SourceLocation Loc = E->getExprLoc(); |
2711 | |
2712 | emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2713 | OffsetValue); |
2714 | } |
2715 | |
2716 | llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, |
2717 | llvm::Value *AnnotatedVal, |
2718 | StringRef AnnotationStr, |
2719 | SourceLocation Location, |
2720 | const AnnotateAttr *Attr) { |
2721 | SmallVector<llvm::Value *, 5> Args = { |
2722 | AnnotatedVal, |
2723 | CGM.EmitAnnotationString(Str: AnnotationStr), |
2724 | CGM.EmitAnnotationUnit(Loc: Location), |
2725 | CGM.EmitAnnotationLineNo(L: Location), |
2726 | }; |
2727 | if (Attr) |
2728 | Args.push_back(Elt: CGM.EmitAnnotationArgs(Attr)); |
2729 | return Builder.CreateCall(Callee: AnnotationFn, Args); |
2730 | } |
2731 | |
2732 | void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { |
2733 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2734 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
2735 | EmitAnnotationCall(AnnotationFn: CGM.getIntrinsic(IID: llvm::Intrinsic::var_annotation, |
2736 | Tys: {V->getType(), CGM.ConstGlobalsPtrTy}), |
2737 | AnnotatedVal: V, AnnotationStr: I->getAnnotation(), Location: D->getLocation(), Attr: I); |
2738 | } |
2739 | |
2740 | Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, |
2741 | Address Addr) { |
2742 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2743 | llvm::Value *V = Addr.emitRawPointer(CGF&: *this); |
2744 | llvm::Type *VTy = V->getType(); |
2745 | auto *PTy = dyn_cast<llvm::PointerType>(Val: VTy); |
2746 | unsigned AS = PTy ? PTy->getAddressSpace() : 0; |
2747 | llvm::PointerType *IntrinTy = |
2748 | llvm::PointerType::get(C&: CGM.getLLVMContext(), AddressSpace: AS); |
2749 | llvm::Function *F = CGM.getIntrinsic(IID: llvm::Intrinsic::ptr_annotation, |
2750 | Tys: {IntrinTy, CGM.ConstGlobalsPtrTy}); |
2751 | |
2752 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) { |
2753 | // FIXME Always emit the cast inst so we can differentiate between |
2754 | // annotation on the first field of a struct and annotation on the struct |
2755 | // itself. |
2756 | if (VTy != IntrinTy) |
2757 | V = Builder.CreateBitCast(V, DestTy: IntrinTy); |
2758 | V = EmitAnnotationCall(AnnotationFn: F, AnnotatedVal: V, AnnotationStr: I->getAnnotation(), Location: D->getLocation(), Attr: I); |
2759 | V = Builder.CreateBitCast(V, DestTy: VTy); |
2760 | } |
2761 | |
2762 | return Address(V, Addr.getElementType(), Addr.getAlignment()); |
2763 | } |
2764 | |
2765 | CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } |
2766 | |
2767 | CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) |
2768 | : CGF(CGF) { |
2769 | assert(!CGF->IsSanitizerScope); |
2770 | CGF->IsSanitizerScope = true; |
2771 | } |
2772 | |
2773 | CodeGenFunction::SanitizerScope::~SanitizerScope() { |
2774 | CGF->IsSanitizerScope = false; |
2775 | } |
2776 | |
2777 | void CodeGenFunction::InsertHelper(llvm::Instruction *I, |
2778 | const llvm::Twine &Name, |
2779 | llvm::BasicBlock::iterator InsertPt) const { |
2780 | LoopStack.InsertHelper(I); |
2781 | if (IsSanitizerScope) |
2782 | I->setNoSanitizeMetadata(); |
2783 | } |
2784 | |
2785 | void CGBuilderInserter::InsertHelper( |
2786 | llvm::Instruction *I, const llvm::Twine &Name, |
2787 | llvm::BasicBlock::iterator InsertPt) const { |
2788 | llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt); |
2789 | if (CGF) |
2790 | CGF->InsertHelper(I, Name, InsertPt); |
2791 | } |
2792 | |
2793 | // Emits an error if we don't have a valid set of target features for the |
2794 | // called function. |
2795 | void CodeGenFunction::checkTargetFeatures(const CallExpr *E, |
2796 | const FunctionDecl *TargetDecl) { |
2797 | // SemaChecking cannot handle below x86 builtins because they have different |
2798 | // parameter ranges with different TargetAttribute of caller. |
2799 | if (CGM.getContext().getTargetInfo().getTriple().isX86()) { |
2800 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2801 | if (BuiltinID == X86::BI__builtin_ia32_cmpps || |
2802 | BuiltinID == X86::BI__builtin_ia32_cmpss || |
2803 | BuiltinID == X86::BI__builtin_ia32_cmppd || |
2804 | BuiltinID == X86::BI__builtin_ia32_cmpsd) { |
2805 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2806 | llvm::StringMap<bool> TargetFetureMap; |
2807 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: TargetFetureMap, FD); |
2808 | llvm::APSInt Result = |
2809 | *(E->getArg(Arg: 2)->getIntegerConstantExpr(Ctx: CGM.getContext())); |
2810 | if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup(Key: "avx" )) |
2811 | CGM.getDiags().Report(Loc: E->getBeginLoc(), DiagID: diag::err_builtin_needs_feature) |
2812 | << TargetDecl->getDeclName() << "avx" ; |
2813 | } |
2814 | } |
2815 | return checkTargetFeatures(Loc: E->getBeginLoc(), TargetDecl); |
2816 | } |
2817 | |
2818 | // Emits an error if we don't have a valid set of target features for the |
2819 | // called function. |
2820 | void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, |
2821 | const FunctionDecl *TargetDecl) { |
2822 | // Early exit if this is an indirect call. |
2823 | if (!TargetDecl) |
2824 | return; |
2825 | |
2826 | // Get the current enclosing function if it exists. If it doesn't |
2827 | // we can't check the target features anyhow. |
2828 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2829 | if (!FD) |
2830 | return; |
2831 | |
2832 | // Grab the required features for the call. For a builtin this is listed in |
2833 | // the td file with the default cpu, for an always_inline function this is any |
2834 | // listed cpu and any listed features. |
2835 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2836 | std::string MissingFeature; |
2837 | llvm::StringMap<bool> CallerFeatureMap; |
2838 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, FD); |
2839 | // When compiling in HipStdPar mode we have to be conservative in rejecting |
2840 | // target specific features in the FE, and defer the possible error to the |
2841 | // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
2842 | // referenced by an accelerator executable function, we emit an error. |
2843 | bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; |
2844 | if (BuiltinID) { |
2845 | StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(ID: BuiltinID)); |
2846 | if (!Builtin::evaluateRequiredTargetFeatures( |
2847 | RequiredFatures: FeatureList, TargetFetureMap: CallerFeatureMap) && !IsHipStdPar) { |
2848 | CGM.getDiags().Report(Loc, DiagID: diag::err_builtin_needs_feature) |
2849 | << TargetDecl->getDeclName() |
2850 | << FeatureList; |
2851 | } |
2852 | } else if (!TargetDecl->isMultiVersion() && |
2853 | TargetDecl->hasAttr<TargetAttr>()) { |
2854 | // Get the required features for the callee. |
2855 | |
2856 | const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); |
2857 | ParsedTargetAttr ParsedAttr = |
2858 | CGM.getContext().filterFunctionTargetAttrs(TD); |
2859 | |
2860 | SmallVector<StringRef, 1> ReqFeatures; |
2861 | llvm::StringMap<bool> CalleeFeatureMap; |
2862 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2863 | |
2864 | for (const auto &F : ParsedAttr.Features) { |
2865 | if (F[0] == '+' && CalleeFeatureMap.lookup(Key: F.substr(pos: 1))) |
2866 | ReqFeatures.push_back(Elt: StringRef(F).substr(Start: 1)); |
2867 | } |
2868 | |
2869 | for (const auto &F : CalleeFeatureMap) { |
2870 | // Only positive features are "required". |
2871 | if (F.getValue()) |
2872 | ReqFeatures.push_back(Elt: F.getKey()); |
2873 | } |
2874 | if (!llvm::all_of(Range&: ReqFeatures, P: [&](StringRef Feature) { |
2875 | if (!CallerFeatureMap.lookup(Key: Feature)) { |
2876 | MissingFeature = Feature.str(); |
2877 | return false; |
2878 | } |
2879 | return true; |
2880 | }) && !IsHipStdPar) |
2881 | CGM.getDiags().Report(Loc, DiagID: diag::err_function_needs_feature) |
2882 | << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; |
2883 | } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { |
2884 | llvm::StringMap<bool> CalleeFeatureMap; |
2885 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2886 | |
2887 | for (const auto &F : CalleeFeatureMap) { |
2888 | if (F.getValue() && (!CallerFeatureMap.lookup(Key: F.getKey()) || |
2889 | !CallerFeatureMap.find(Key: F.getKey())->getValue()) && |
2890 | !IsHipStdPar) |
2891 | CGM.getDiags().Report(Loc, DiagID: diag::err_function_needs_feature) |
2892 | << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); |
2893 | } |
2894 | } |
2895 | } |
2896 | |
2897 | void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { |
2898 | if (!CGM.getCodeGenOpts().SanitizeStats) |
2899 | return; |
2900 | |
2901 | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
2902 | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
2903 | CGM.getSanStats().create(B&: IRB, SK: SSK); |
2904 | } |
2905 | |
2906 | void CodeGenFunction::EmitKCFIOperandBundle( |
2907 | const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
2908 | const FunctionProtoType *FP = |
2909 | Callee.getAbstractInfo().getCalleeFunctionProtoType(); |
2910 | if (FP) |
2911 | Bundles.emplace_back(Args: "kcfi" , Args: CGM.CreateKCFITypeId(T: FP->desugar())); |
2912 | } |
2913 | |
2914 | llvm::Value * |
2915 | CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) { |
2916 | return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(FeatureStrs: RO.Features); |
2917 | } |
2918 | |
2919 | llvm::Value * |
2920 | CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) { |
2921 | llvm::Value *Condition = nullptr; |
2922 | |
2923 | if (RO.Architecture) { |
2924 | StringRef Arch = *RO.Architecture; |
2925 | // If arch= specifies an x86-64 micro-architecture level, test the feature |
2926 | // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. |
2927 | if (Arch.starts_with(Prefix: "x86-64" )) |
2928 | Condition = EmitX86CpuSupports(FeatureStrs: {Arch}); |
2929 | else |
2930 | Condition = EmitX86CpuIs(CPUStr: Arch); |
2931 | } |
2932 | |
2933 | if (!RO.Features.empty()) { |
2934 | llvm::Value *FeatureCond = EmitX86CpuSupports(FeatureStrs: RO.Features); |
2935 | Condition = |
2936 | Condition ? Builder.CreateAnd(LHS: Condition, RHS: FeatureCond) : FeatureCond; |
2937 | } |
2938 | return Condition; |
2939 | } |
2940 | |
2941 | static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, |
2942 | llvm::Function *Resolver, |
2943 | CGBuilderTy &Builder, |
2944 | llvm::Function *FuncToReturn, |
2945 | bool SupportsIFunc) { |
2946 | if (SupportsIFunc) { |
2947 | Builder.CreateRet(V: FuncToReturn); |
2948 | return; |
2949 | } |
2950 | |
2951 | llvm::SmallVector<llvm::Value *, 10> Args( |
2952 | llvm::make_pointer_range(Range: Resolver->args())); |
2953 | |
2954 | llvm::CallInst *Result = Builder.CreateCall(Callee: FuncToReturn, Args); |
2955 | Result->setTailCallKind(llvm::CallInst::TCK_MustTail); |
2956 | |
2957 | if (Resolver->getReturnType()->isVoidTy()) |
2958 | Builder.CreateRetVoid(); |
2959 | else |
2960 | Builder.CreateRet(V: Result); |
2961 | } |
2962 | |
2963 | void CodeGenFunction::EmitMultiVersionResolver( |
2964 | llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { |
2965 | |
2966 | llvm::Triple::ArchType ArchType = |
2967 | getContext().getTargetInfo().getTriple().getArch(); |
2968 | |
2969 | switch (ArchType) { |
2970 | case llvm::Triple::x86: |
2971 | case llvm::Triple::x86_64: |
2972 | EmitX86MultiVersionResolver(Resolver, Options); |
2973 | return; |
2974 | case llvm::Triple::aarch64: |
2975 | EmitAArch64MultiVersionResolver(Resolver, Options); |
2976 | return; |
2977 | case llvm::Triple::riscv32: |
2978 | case llvm::Triple::riscv64: |
2979 | EmitRISCVMultiVersionResolver(Resolver, Options); |
2980 | return; |
2981 | |
2982 | default: |
2983 | assert(false && "Only implemented for x86, AArch64 and RISC-V targets" ); |
2984 | } |
2985 | } |
2986 | |
2987 | void CodeGenFunction::EmitRISCVMultiVersionResolver( |
2988 | llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { |
2989 | |
2990 | if (getContext().getTargetInfo().getTriple().getOS() != |
2991 | llvm::Triple::OSType::Linux) { |
2992 | CGM.getDiags().Report(DiagID: diag::err_os_unsupport_riscv_fmv); |
2993 | return; |
2994 | } |
2995 | |
2996 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
2997 | Builder.SetInsertPoint(CurBlock); |
2998 | EmitRISCVCpuInit(); |
2999 | |
3000 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
3001 | bool HasDefault = false; |
3002 | unsigned DefaultIndex = 0; |
3003 | |
3004 | // Check the each candidate function. |
3005 | for (unsigned Index = 0; Index < Options.size(); Index++) { |
3006 | |
3007 | if (Options[Index].Features.empty()) { |
3008 | HasDefault = true; |
3009 | DefaultIndex = Index; |
3010 | continue; |
3011 | } |
3012 | |
3013 | Builder.SetInsertPoint(CurBlock); |
3014 | |
3015 | // FeaturesCondition: The bitmask of the required extension has been |
3016 | // enabled by the runtime object. |
3017 | // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) == |
3018 | // REQUIRED_BITMASK |
3019 | // |
3020 | // When condition is met, return this version of the function. |
3021 | // Otherwise, try the next version. |
3022 | // |
3023 | // if (FeaturesConditionVersion1) |
3024 | // return Version1; |
3025 | // else if (FeaturesConditionVersion2) |
3026 | // return Version2; |
3027 | // else if (FeaturesConditionVersion3) |
3028 | // return Version3; |
3029 | // ... |
3030 | // else |
3031 | // return DefaultVersion; |
3032 | |
3033 | // TODO: Add a condition to check the length before accessing elements. |
3034 | // Without checking the length first, we may access an incorrect memory |
3035 | // address when using different versions. |
3036 | llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats; |
3037 | llvm::SmallVector<std::string, 8> TargetAttrFeats; |
3038 | |
3039 | for (StringRef Feat : Options[Index].Features) { |
3040 | std::vector<std::string> FeatStr = |
3041 | getContext().getTargetInfo().parseTargetAttr(Str: Feat).Features; |
3042 | |
3043 | assert(FeatStr.size() == 1 && "Feature string not delimited" ); |
3044 | |
3045 | std::string &CurrFeat = FeatStr.front(); |
3046 | if (CurrFeat[0] == '+') |
3047 | TargetAttrFeats.push_back(Elt: CurrFeat.substr(pos: 1)); |
3048 | } |
3049 | |
3050 | if (TargetAttrFeats.empty()) |
3051 | continue; |
3052 | |
3053 | for (std::string &Feat : TargetAttrFeats) |
3054 | CurrTargetAttrFeats.push_back(Elt: Feat); |
3055 | |
3056 | Builder.SetInsertPoint(CurBlock); |
3057 | llvm::Value *FeatsCondition = EmitRISCVCpuSupports(FeaturesStrs: CurrTargetAttrFeats); |
3058 | |
3059 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
3060 | CGBuilderTy RetBuilder(*this, RetBlock); |
3061 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, |
3062 | FuncToReturn: Options[Index].Function, SupportsIFunc); |
3063 | llvm::BasicBlock *ElseBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
3064 | |
3065 | Builder.SetInsertPoint(CurBlock); |
3066 | Builder.CreateCondBr(Cond: FeatsCondition, True: RetBlock, False: ElseBlock); |
3067 | |
3068 | CurBlock = ElseBlock; |
3069 | } |
3070 | |
3071 | // Finally, emit the default one. |
3072 | if (HasDefault) { |
3073 | Builder.SetInsertPoint(CurBlock); |
3074 | CreateMultiVersionResolverReturn( |
3075 | CGM, Resolver, Builder, FuncToReturn: Options[DefaultIndex].Function, SupportsIFunc); |
3076 | return; |
3077 | } |
3078 | |
3079 | // If no generic/default, emit an unreachable. |
3080 | Builder.SetInsertPoint(CurBlock); |
3081 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
3082 | TrapCall->setDoesNotReturn(); |
3083 | TrapCall->setDoesNotThrow(); |
3084 | Builder.CreateUnreachable(); |
3085 | Builder.ClearInsertionPoint(); |
3086 | } |
3087 | |
3088 | void CodeGenFunction::EmitAArch64MultiVersionResolver( |
3089 | llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { |
3090 | assert(!Options.empty() && "No multiversion resolver options found" ); |
3091 | assert(Options.back().Features.size() == 0 && "Default case must be last" ); |
3092 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
3093 | assert(SupportsIFunc && |
3094 | "Multiversion resolver requires target IFUNC support" ); |
3095 | bool AArch64CpuInitialized = false; |
3096 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
3097 | |
3098 | for (const FMVResolverOption &RO : Options) { |
3099 | Builder.SetInsertPoint(CurBlock); |
3100 | llvm::Value *Condition = FormAArch64ResolverCondition(RO); |
3101 | |
3102 | // The 'default' or 'all features enabled' case. |
3103 | if (!Condition) { |
3104 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
3105 | SupportsIFunc); |
3106 | return; |
3107 | } |
3108 | |
3109 | if (!AArch64CpuInitialized) { |
3110 | Builder.SetInsertPoint(TheBB: CurBlock, IP: CurBlock->begin()); |
3111 | EmitAArch64CpuInit(); |
3112 | AArch64CpuInitialized = true; |
3113 | Builder.SetInsertPoint(CurBlock); |
3114 | } |
3115 | |
3116 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
3117 | CGBuilderTy RetBuilder(*this, RetBlock); |
3118 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
3119 | SupportsIFunc); |
3120 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
3121 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
3122 | } |
3123 | |
3124 | // If no default, emit an unreachable. |
3125 | Builder.SetInsertPoint(CurBlock); |
3126 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
3127 | TrapCall->setDoesNotReturn(); |
3128 | TrapCall->setDoesNotThrow(); |
3129 | Builder.CreateUnreachable(); |
3130 | Builder.ClearInsertionPoint(); |
3131 | } |
3132 | |
3133 | void CodeGenFunction::EmitX86MultiVersionResolver( |
3134 | llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) { |
3135 | |
3136 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
3137 | |
3138 | // Main function's basic block. |
3139 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
3140 | Builder.SetInsertPoint(CurBlock); |
3141 | EmitX86CpuInit(); |
3142 | |
3143 | for (const FMVResolverOption &RO : Options) { |
3144 | Builder.SetInsertPoint(CurBlock); |
3145 | llvm::Value *Condition = FormX86ResolverCondition(RO); |
3146 | |
3147 | // The 'default' or 'generic' case. |
3148 | if (!Condition) { |
3149 | assert(&RO == Options.end() - 1 && |
3150 | "Default or Generic case must be last" ); |
3151 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
3152 | SupportsIFunc); |
3153 | return; |
3154 | } |
3155 | |
3156 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
3157 | CGBuilderTy RetBuilder(*this, RetBlock); |
3158 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
3159 | SupportsIFunc); |
3160 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
3161 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
3162 | } |
3163 | |
3164 | // If no generic/default, emit an unreachable. |
3165 | Builder.SetInsertPoint(CurBlock); |
3166 | llvm::CallInst *TrapCall = EmitTrapCall(IntrID: llvm::Intrinsic::trap); |
3167 | TrapCall->setDoesNotReturn(); |
3168 | TrapCall->setDoesNotThrow(); |
3169 | Builder.CreateUnreachable(); |
3170 | Builder.ClearInsertionPoint(); |
3171 | } |
3172 | |
3173 | // Loc - where the diagnostic will point, where in the source code this |
3174 | // alignment has failed. |
3175 | // SecondaryLoc - if present (will be present if sufficiently different from |
3176 | // Loc), the diagnostic will additionally point a "Note:" to this location. |
3177 | // It should be the location where the __attribute__((assume_aligned)) |
3178 | // was written e.g. |
3179 | void CodeGenFunction::emitAlignmentAssumptionCheck( |
3180 | llvm::Value *Ptr, QualType Ty, SourceLocation Loc, |
3181 | SourceLocation SecondaryLoc, llvm::Value *Alignment, |
3182 | llvm::Value *OffsetValue, llvm::Value *TheCheck, |
3183 | llvm::Instruction *Assumption) { |
3184 | assert(isa_and_nonnull<llvm::CallInst>(Assumption) && |
3185 | cast<llvm::CallInst>(Assumption)->getCalledOperand() == |
3186 | llvm::Intrinsic::getOrInsertDeclaration( |
3187 | Builder.GetInsertBlock()->getParent()->getParent(), |
3188 | llvm::Intrinsic::assume) && |
3189 | "Assumption should be a call to llvm.assume()." ); |
3190 | assert(&(Builder.GetInsertBlock()->back()) == Assumption && |
3191 | "Assumption should be the last instruction of the basic block, " |
3192 | "since the basic block is still being generated." ); |
3193 | |
3194 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
3195 | return; |
3196 | |
3197 | // Don't check pointers to volatile data. The behavior here is implementation- |
3198 | // defined. |
3199 | if (Ty->getPointeeType().isVolatileQualified()) |
3200 | return; |
3201 | |
3202 | // We need to temorairly remove the assumption so we can insert the |
3203 | // sanitizer check before it, else the check will be dropped by optimizations. |
3204 | Assumption->removeFromParent(); |
3205 | |
3206 | { |
3207 | auto CheckOrdinal = SanitizerKind::SO_Alignment; |
3208 | auto CheckHandler = SanitizerHandler::AlignmentAssumption; |
3209 | SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler); |
3210 | |
3211 | if (!OffsetValue) |
3212 | OffsetValue = Builder.getInt1(V: false); // no offset. |
3213 | |
3214 | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), |
3215 | EmitCheckSourceLocation(Loc: SecondaryLoc), |
3216 | EmitCheckTypeDescriptor(T: Ty)}; |
3217 | llvm::Value *DynamicData[] = {Ptr, Alignment, OffsetValue}; |
3218 | EmitCheck(Checked: {std::make_pair(x&: TheCheck, y&: CheckOrdinal)}, Check: CheckHandler, |
3219 | StaticArgs: StaticData, DynamicArgs: DynamicData); |
3220 | } |
3221 | |
3222 | // We are now in the (new, empty) "cont" basic block. |
3223 | // Reintroduce the assumption. |
3224 | Builder.Insert(I: Assumption); |
3225 | // FIXME: Assumption still has it's original basic block as it's Parent. |
3226 | } |
3227 | |
3228 | llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { |
3229 | if (CGDebugInfo *DI = getDebugInfo()) |
3230 | return DI->SourceLocToDebugLoc(Loc: Location); |
3231 | |
3232 | return llvm::DebugLoc(); |
3233 | } |
3234 | |
3235 | llvm::Value * |
3236 | CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
3237 | Stmt::Likelihood LH) { |
3238 | switch (LH) { |
3239 | case Stmt::LH_None: |
3240 | return Cond; |
3241 | case Stmt::LH_Likely: |
3242 | case Stmt::LH_Unlikely: |
3243 | // Don't generate llvm.expect on -O0 as the backend won't use it for |
3244 | // anything. |
3245 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
3246 | return Cond; |
3247 | llvm::Type *CondTy = Cond->getType(); |
3248 | assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean" ); |
3249 | llvm::Function *FnExpect = |
3250 | CGM.getIntrinsic(IID: llvm::Intrinsic::expect, Tys: CondTy); |
3251 | llvm::Value *ExpectedValueOfCond = |
3252 | llvm::ConstantInt::getBool(Ty: CondTy, V: LH == Stmt::LH_Likely); |
3253 | return Builder.CreateCall(Callee: FnExpect, Args: {Cond, ExpectedValueOfCond}, |
3254 | Name: Cond->getName() + ".expval" ); |
3255 | } |
3256 | llvm_unreachable("Unknown Likelihood" ); |
3257 | } |
3258 | |
3259 | llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, |
3260 | unsigned NumElementsDst, |
3261 | const llvm::Twine &Name) { |
3262 | auto *SrcTy = cast<llvm::FixedVectorType>(Val: SrcVec->getType()); |
3263 | unsigned NumElementsSrc = SrcTy->getNumElements(); |
3264 | if (NumElementsSrc == NumElementsDst) |
3265 | return SrcVec; |
3266 | |
3267 | std::vector<int> ShuffleMask(NumElementsDst, -1); |
3268 | for (unsigned MaskIdx = 0; |
3269 | MaskIdx < std::min<>(a: NumElementsDst, b: NumElementsSrc); ++MaskIdx) |
3270 | ShuffleMask[MaskIdx] = MaskIdx; |
3271 | |
3272 | return Builder.CreateShuffleVector(V: SrcVec, Mask: ShuffleMask, Name); |
3273 | } |
3274 | |
3275 | void CodeGenFunction::EmitPointerAuthOperandBundle( |
3276 | const CGPointerAuthInfo &PointerAuth, |
3277 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
3278 | if (!PointerAuth.isSigned()) |
3279 | return; |
3280 | |
3281 | auto *Key = Builder.getInt32(C: PointerAuth.getKey()); |
3282 | |
3283 | llvm::Value *Discriminator = PointerAuth.getDiscriminator(); |
3284 | if (!Discriminator) |
3285 | Discriminator = Builder.getSize(N: 0); |
3286 | |
3287 | llvm::Value *Args[] = {Key, Discriminator}; |
3288 | Bundles.emplace_back(Args: "ptrauth" , Args); |
3289 | } |
3290 | |
3291 | static llvm::Value *EmitPointerAuthCommon(CodeGenFunction &CGF, |
3292 | const CGPointerAuthInfo &PointerAuth, |
3293 | llvm::Value *Pointer, |
3294 | unsigned IntrinsicID) { |
3295 | if (!PointerAuth) |
3296 | return Pointer; |
3297 | |
3298 | auto Key = CGF.Builder.getInt32(C: PointerAuth.getKey()); |
3299 | |
3300 | llvm::Value *Discriminator = PointerAuth.getDiscriminator(); |
3301 | if (!Discriminator) { |
3302 | Discriminator = CGF.Builder.getSize(N: 0); |
3303 | } |
3304 | |
3305 | // Convert the pointer to intptr_t before signing it. |
3306 | auto OrigType = Pointer->getType(); |
3307 | Pointer = CGF.Builder.CreatePtrToInt(V: Pointer, DestTy: CGF.IntPtrTy); |
3308 | |
3309 | // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator) |
3310 | auto Intrinsic = CGF.CGM.getIntrinsic(IID: IntrinsicID); |
3311 | Pointer = CGF.EmitRuntimeCall(callee: Intrinsic, args: {Pointer, Key, Discriminator}); |
3312 | |
3313 | // Convert back to the original type. |
3314 | Pointer = CGF.Builder.CreateIntToPtr(V: Pointer, DestTy: OrigType); |
3315 | return Pointer; |
3316 | } |
3317 | |
3318 | llvm::Value * |
3319 | CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo &PointerAuth, |
3320 | llvm::Value *Pointer) { |
3321 | if (!PointerAuth.shouldSign()) |
3322 | return Pointer; |
3323 | return EmitPointerAuthCommon(CGF&: *this, PointerAuth, Pointer, |
3324 | IntrinsicID: llvm::Intrinsic::ptrauth_sign); |
3325 | } |
3326 | |
3327 | static llvm::Value *EmitStrip(CodeGenFunction &CGF, |
3328 | const CGPointerAuthInfo &PointerAuth, |
3329 | llvm::Value *Pointer) { |
3330 | auto StripIntrinsic = CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::ptrauth_strip); |
3331 | |
3332 | auto Key = CGF.Builder.getInt32(C: PointerAuth.getKey()); |
3333 | // Convert the pointer to intptr_t before signing it. |
3334 | auto OrigType = Pointer->getType(); |
3335 | Pointer = CGF.EmitRuntimeCall( |
3336 | callee: StripIntrinsic, args: {CGF.Builder.CreatePtrToInt(V: Pointer, DestTy: CGF.IntPtrTy), Key}); |
3337 | return CGF.Builder.CreateIntToPtr(V: Pointer, DestTy: OrigType); |
3338 | } |
3339 | |
3340 | llvm::Value * |
3341 | CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo &PointerAuth, |
3342 | llvm::Value *Pointer) { |
3343 | if (PointerAuth.shouldStrip()) { |
3344 | return EmitStrip(CGF&: *this, PointerAuth, Pointer); |
3345 | } |
3346 | if (!PointerAuth.shouldAuth()) { |
3347 | return Pointer; |
3348 | } |
3349 | |
3350 | return EmitPointerAuthCommon(CGF&: *this, PointerAuth, Pointer, |
3351 | IntrinsicID: llvm::Intrinsic::ptrauth_auth); |
3352 | } |
3353 | |
3354 | void CodeGenFunction::addInstToCurrentSourceAtom( |
3355 | llvm::Instruction *KeyInstruction, llvm::Value *Backup) { |
3356 | if (CGDebugInfo *DI = getDebugInfo()) |
3357 | DI->addInstToCurrentSourceAtom(KeyInstruction, Backup); |
3358 | } |
3359 | |
3360 | void CodeGenFunction::addInstToSpecificSourceAtom( |
3361 | llvm::Instruction *KeyInstruction, llvm::Value *Backup, uint64_t Atom) { |
3362 | if (CGDebugInfo *DI = getDebugInfo()) |
3363 | DI->addInstToSpecificSourceAtom(KeyInstruction, Backup, Atom); |
3364 | } |
3365 | |
3366 | void CodeGenFunction::addInstToNewSourceAtom(llvm::Instruction *KeyInstruction, |
3367 | llvm::Value *Backup) { |
3368 | if (CGDebugInfo *DI = getDebugInfo()) { |
3369 | ApplyAtomGroup Grp(getDebugInfo()); |
3370 | DI->addInstToCurrentSourceAtom(KeyInstruction, Backup); |
3371 | } |
3372 | } |
3373 | |