1 | //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | /// \file |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | |
11 | #include "SIFoldOperands.h" |
12 | #include "AMDGPU.h" |
13 | #include "GCNSubtarget.h" |
14 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
15 | #include "SIInstrInfo.h" |
16 | #include "SIMachineFunctionInfo.h" |
17 | #include "SIRegisterInfo.h" |
18 | #include "llvm/ADT/DepthFirstIterator.h" |
19 | #include "llvm/CodeGen/MachineFunction.h" |
20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
21 | #include "llvm/CodeGen/MachineOperand.h" |
22 | |
23 | #define DEBUG_TYPE "si-fold-operands" |
24 | using namespace llvm; |
25 | |
26 | namespace { |
27 | |
28 | /// Track a value we may want to fold into downstream users, applying |
29 | /// subregister extracts along the way. |
30 | struct FoldableDef { |
31 | union { |
32 | MachineOperand *OpToFold = nullptr; |
33 | uint64_t ImmToFold; |
34 | int FrameIndexToFold; |
35 | }; |
36 | |
37 | /// Register class of the originally defined value. |
38 | const TargetRegisterClass *DefRC = nullptr; |
39 | |
40 | /// Track the original defining instruction for the value. |
41 | const MachineInstr *DefMI = nullptr; |
42 | |
43 | /// Subregister to apply to the value at the use point. |
44 | unsigned DefSubReg = AMDGPU::NoSubRegister; |
45 | |
46 | /// Kind of value stored in the union. |
47 | MachineOperand::MachineOperandType Kind; |
48 | |
49 | FoldableDef() = delete; |
50 | FoldableDef(MachineOperand &FoldOp, const TargetRegisterClass *DefRC, |
51 | unsigned DefSubReg = AMDGPU::NoSubRegister) |
52 | : DefRC(DefRC), DefSubReg(DefSubReg), Kind(FoldOp.getType()) { |
53 | |
54 | if (FoldOp.isImm()) { |
55 | ImmToFold = FoldOp.getImm(); |
56 | } else if (FoldOp.isFI()) { |
57 | FrameIndexToFold = FoldOp.getIndex(); |
58 | } else { |
59 | assert(FoldOp.isReg() || FoldOp.isGlobal()); |
60 | OpToFold = &FoldOp; |
61 | } |
62 | |
63 | DefMI = FoldOp.getParent(); |
64 | } |
65 | |
66 | FoldableDef(int64_t FoldImm, const TargetRegisterClass *DefRC, |
67 | unsigned DefSubReg = AMDGPU::NoSubRegister) |
68 | : ImmToFold(FoldImm), DefRC(DefRC), DefSubReg(DefSubReg), |
69 | Kind(MachineOperand::MO_Immediate) {} |
70 | |
71 | /// Copy the current def and apply \p SubReg to the value. |
72 | FoldableDef getWithSubReg(const SIRegisterInfo &TRI, unsigned SubReg) const { |
73 | FoldableDef Copy(*this); |
74 | Copy.DefSubReg = TRI.composeSubRegIndices(a: DefSubReg, b: SubReg); |
75 | return Copy; |
76 | } |
77 | |
78 | bool isReg() const { return Kind == MachineOperand::MO_Register; } |
79 | |
80 | Register getReg() const { |
81 | assert(isReg()); |
82 | return OpToFold->getReg(); |
83 | } |
84 | |
85 | unsigned getSubReg() const { |
86 | assert(isReg()); |
87 | return OpToFold->getSubReg(); |
88 | } |
89 | |
90 | bool isImm() const { return Kind == MachineOperand::MO_Immediate; } |
91 | |
92 | bool isFI() const { |
93 | return Kind == MachineOperand::MO_FrameIndex; |
94 | } |
95 | |
96 | int getFI() const { |
97 | assert(isFI()); |
98 | return FrameIndexToFold; |
99 | } |
100 | |
101 | bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } |
102 | |
103 | /// Return the effective immediate value defined by this instruction, after |
104 | /// application of any subregister extracts which may exist between the use |
105 | /// and def instruction. |
106 | std::optional<int64_t> getEffectiveImmVal() const { |
107 | assert(isImm()); |
108 | return SIInstrInfo::extractSubregFromImm(ImmVal: ImmToFold, SubRegIndex: DefSubReg); |
109 | } |
110 | |
111 | /// Check if it is legal to fold this effective value into \p MI's \p OpNo |
112 | /// operand. |
113 | bool isOperandLegal(const SIInstrInfo &TII, const MachineInstr &MI, |
114 | unsigned OpIdx) const { |
115 | switch (Kind) { |
116 | case MachineOperand::MO_Immediate: { |
117 | std::optional<int64_t> ImmToFold = getEffectiveImmVal(); |
118 | if (!ImmToFold) |
119 | return false; |
120 | |
121 | // TODO: Should verify the subregister index is supported by the class |
122 | // TODO: Avoid the temporary MachineOperand |
123 | MachineOperand TmpOp = MachineOperand::CreateImm(Val: *ImmToFold); |
124 | return TII.isOperandLegal(MI, OpIdx, MO: &TmpOp); |
125 | } |
126 | case MachineOperand::MO_FrameIndex: { |
127 | if (DefSubReg != AMDGPU::NoSubRegister) |
128 | return false; |
129 | MachineOperand TmpOp = MachineOperand::CreateFI(Idx: FrameIndexToFold); |
130 | return TII.isOperandLegal(MI, OpIdx, MO: &TmpOp); |
131 | } |
132 | default: |
133 | // TODO: Try to apply DefSubReg, for global address we can extract |
134 | // low/high. |
135 | if (DefSubReg != AMDGPU::NoSubRegister) |
136 | return false; |
137 | return TII.isOperandLegal(MI, OpIdx, MO: OpToFold); |
138 | } |
139 | |
140 | llvm_unreachable("covered MachineOperand kind switch" ); |
141 | } |
142 | }; |
143 | |
144 | struct FoldCandidate { |
145 | MachineInstr *UseMI; |
146 | FoldableDef Def; |
147 | int ShrinkOpcode; |
148 | unsigned UseOpNo; |
149 | bool Commuted; |
150 | |
151 | FoldCandidate(MachineInstr *MI, unsigned OpNo, FoldableDef Def, |
152 | bool Commuted = false, int ShrinkOp = -1) |
153 | : UseMI(MI), Def(Def), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), |
154 | Commuted(Commuted) {} |
155 | |
156 | bool isFI() const { return Def.isFI(); } |
157 | |
158 | int getFI() const { |
159 | assert(isFI()); |
160 | return Def.FrameIndexToFold; |
161 | } |
162 | |
163 | bool isImm() const { return Def.isImm(); } |
164 | |
165 | bool isReg() const { return Def.isReg(); } |
166 | |
167 | Register getReg() const { return Def.getReg(); } |
168 | |
169 | bool isGlobal() const { return Def.isGlobal(); } |
170 | |
171 | bool needsShrink() const { return ShrinkOpcode != -1; } |
172 | }; |
173 | |
174 | class SIFoldOperandsImpl { |
175 | public: |
176 | MachineRegisterInfo *MRI; |
177 | const SIInstrInfo *TII; |
178 | const SIRegisterInfo *TRI; |
179 | const GCNSubtarget *ST; |
180 | const SIMachineFunctionInfo *MFI; |
181 | |
182 | bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, |
183 | const FoldableDef &OpToFold) const; |
184 | |
185 | // TODO: Just use TII::getVALUOp |
186 | unsigned convertToVALUOp(unsigned Opc, bool UseVOP3 = false) const { |
187 | switch (Opc) { |
188 | case AMDGPU::S_ADD_I32: { |
189 | if (ST->hasAddNoCarry()) |
190 | return UseVOP3 ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_U32_e32; |
191 | return UseVOP3 ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; |
192 | } |
193 | case AMDGPU::S_OR_B32: |
194 | return UseVOP3 ? AMDGPU::V_OR_B32_e64 : AMDGPU::V_OR_B32_e32; |
195 | case AMDGPU::S_AND_B32: |
196 | return UseVOP3 ? AMDGPU::V_AND_B32_e64 : AMDGPU::V_AND_B32_e32; |
197 | case AMDGPU::S_MUL_I32: |
198 | return AMDGPU::V_MUL_LO_U32_e64; |
199 | default: |
200 | return AMDGPU::INSTRUCTION_LIST_END; |
201 | } |
202 | } |
203 | |
204 | bool foldCopyToVGPROfScalarAddOfFrameIndex(Register DstReg, Register SrcReg, |
205 | MachineInstr &MI) const; |
206 | |
207 | bool updateOperand(FoldCandidate &Fold) const; |
208 | |
209 | bool canUseImmWithOpSel(const MachineInstr *MI, unsigned UseOpNo, |
210 | int64_t ImmVal) const; |
211 | |
212 | /// Try to fold immediate \p ImmVal into \p MI's operand at index \p UseOpNo. |
213 | bool tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, |
214 | int64_t ImmVal) const; |
215 | |
216 | bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, |
217 | MachineInstr *MI, unsigned OpNo, |
218 | const FoldableDef &OpToFold) const; |
219 | bool isUseSafeToFold(const MachineInstr &MI, |
220 | const MachineOperand &UseMO) const; |
221 | |
222 | const TargetRegisterClass *getRegSeqInit( |
223 | MachineInstr &RegSeq, |
224 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs) const; |
225 | |
226 | const TargetRegisterClass * |
227 | getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, |
228 | Register UseReg) const; |
229 | |
230 | std::pair<int64_t, const TargetRegisterClass *> |
231 | isRegSeqSplat(MachineInstr &RegSeg) const; |
232 | |
233 | bool tryFoldRegSeqSplat(MachineInstr *UseMI, unsigned UseOpIdx, |
234 | int64_t SplatVal, |
235 | const TargetRegisterClass *SplatRC) const; |
236 | |
237 | bool tryToFoldACImm(const FoldableDef &OpToFold, MachineInstr *UseMI, |
238 | unsigned UseOpIdx, |
239 | SmallVectorImpl<FoldCandidate> &FoldList) const; |
240 | void foldOperand(FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, |
241 | SmallVectorImpl<FoldCandidate> &FoldList, |
242 | SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; |
243 | |
244 | std::optional<int64_t> getImmOrMaterializedImm(MachineOperand &Op) const; |
245 | bool tryConstantFoldOp(MachineInstr *MI) const; |
246 | bool tryFoldCndMask(MachineInstr &MI) const; |
247 | bool tryFoldZeroHighBits(MachineInstr &MI) const; |
248 | bool foldInstOperand(MachineInstr &MI, const FoldableDef &OpToFold) const; |
249 | |
250 | bool foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const; |
251 | bool tryFoldFoldableCopy(MachineInstr &MI, |
252 | MachineOperand *&CurrentKnownM0Val) const; |
253 | |
254 | const MachineOperand *isClamp(const MachineInstr &MI) const; |
255 | bool tryFoldClamp(MachineInstr &MI); |
256 | |
257 | std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; |
258 | bool tryFoldOMod(MachineInstr &MI); |
259 | bool tryFoldRegSequence(MachineInstr &MI); |
260 | bool tryFoldPhiAGPR(MachineInstr &MI); |
261 | bool tryFoldLoad(MachineInstr &MI); |
262 | |
263 | bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); |
264 | |
265 | public: |
266 | SIFoldOperandsImpl() = default; |
267 | |
268 | bool run(MachineFunction &MF); |
269 | }; |
270 | |
271 | class SIFoldOperandsLegacy : public MachineFunctionPass { |
272 | public: |
273 | static char ID; |
274 | |
275 | SIFoldOperandsLegacy() : MachineFunctionPass(ID) {} |
276 | |
277 | bool runOnMachineFunction(MachineFunction &MF) override { |
278 | if (skipFunction(F: MF.getFunction())) |
279 | return false; |
280 | return SIFoldOperandsImpl().run(MF); |
281 | } |
282 | |
283 | StringRef getPassName() const override { return "SI Fold Operands" ; } |
284 | |
285 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
286 | AU.setPreservesCFG(); |
287 | MachineFunctionPass::getAnalysisUsage(AU); |
288 | } |
289 | |
290 | MachineFunctionProperties getRequiredProperties() const override { |
291 | return MachineFunctionProperties().setIsSSA(); |
292 | } |
293 | }; |
294 | |
295 | } // End anonymous namespace. |
296 | |
297 | INITIALIZE_PASS(SIFoldOperandsLegacy, DEBUG_TYPE, "SI Fold Operands" , false, |
298 | false) |
299 | |
300 | char SIFoldOperandsLegacy::ID = 0; |
301 | |
302 | char &llvm::SIFoldOperandsLegacyID = SIFoldOperandsLegacy::ID; |
303 | |
304 | static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, |
305 | const TargetRegisterInfo &TRI, |
306 | const MachineOperand &MO) { |
307 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: MO.getReg()); |
308 | if (const TargetRegisterClass *SubRC = |
309 | TRI.getSubRegisterClass(SuperRC: RC, SubRegIdx: MO.getSubReg())) |
310 | RC = SubRC; |
311 | return RC; |
312 | } |
313 | |
314 | // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. |
315 | static unsigned macToMad(unsigned Opc) { |
316 | switch (Opc) { |
317 | case AMDGPU::V_MAC_F32_e64: |
318 | return AMDGPU::V_MAD_F32_e64; |
319 | case AMDGPU::V_MAC_F16_e64: |
320 | return AMDGPU::V_MAD_F16_e64; |
321 | case AMDGPU::V_FMAC_F32_e64: |
322 | return AMDGPU::V_FMA_F32_e64; |
323 | case AMDGPU::V_FMAC_F16_e64: |
324 | return AMDGPU::V_FMA_F16_gfx9_e64; |
325 | case AMDGPU::V_FMAC_F16_t16_e64: |
326 | return AMDGPU::V_FMA_F16_gfx9_t16_e64; |
327 | case AMDGPU::V_FMAC_F16_fake16_e64: |
328 | return AMDGPU::V_FMA_F16_gfx9_fake16_e64; |
329 | case AMDGPU::V_FMAC_LEGACY_F32_e64: |
330 | return AMDGPU::V_FMA_LEGACY_F32_e64; |
331 | case AMDGPU::V_FMAC_F64_e64: |
332 | return AMDGPU::V_FMA_F64_e64; |
333 | } |
334 | return AMDGPU::INSTRUCTION_LIST_END; |
335 | } |
336 | |
337 | // TODO: Add heuristic that the frame index might not fit in the addressing mode |
338 | // immediate offset to avoid materializing in loops. |
339 | bool SIFoldOperandsImpl::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, |
340 | const FoldableDef &OpToFold) const { |
341 | if (!OpToFold.isFI()) |
342 | return false; |
343 | |
344 | const unsigned Opc = UseMI.getOpcode(); |
345 | switch (Opc) { |
346 | case AMDGPU::S_ADD_I32: |
347 | case AMDGPU::S_ADD_U32: |
348 | case AMDGPU::V_ADD_U32_e32: |
349 | case AMDGPU::V_ADD_CO_U32_e32: |
350 | // TODO: Possibly relax hasOneUse. It matters more for mubuf, since we have |
351 | // to insert the wave size shift at every point we use the index. |
352 | // TODO: Fix depending on visit order to fold immediates into the operand |
353 | return UseMI.getOperand(i: OpNo == 1 ? 2 : 1).isImm() && |
354 | MRI->hasOneNonDBGUse(RegNo: UseMI.getOperand(i: OpNo).getReg()); |
355 | case AMDGPU::V_ADD_U32_e64: |
356 | case AMDGPU::V_ADD_CO_U32_e64: |
357 | return UseMI.getOperand(i: OpNo == 2 ? 3 : 2).isImm() && |
358 | MRI->hasOneNonDBGUse(RegNo: UseMI.getOperand(i: OpNo).getReg()); |
359 | default: |
360 | break; |
361 | } |
362 | |
363 | if (TII->isMUBUF(MI: UseMI)) |
364 | return OpNo == AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::vaddr); |
365 | if (!TII->isFLATScratch(MI: UseMI)) |
366 | return false; |
367 | |
368 | int SIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::saddr); |
369 | if (OpNo == SIdx) |
370 | return true; |
371 | |
372 | int VIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::vaddr); |
373 | return OpNo == VIdx && SIdx == -1; |
374 | } |
375 | |
376 | /// Fold %vgpr = COPY (S_ADD_I32 x, frameindex) |
377 | /// |
378 | /// => %vgpr = V_ADD_U32 x, frameindex |
379 | bool SIFoldOperandsImpl::foldCopyToVGPROfScalarAddOfFrameIndex( |
380 | Register DstReg, Register SrcReg, MachineInstr &MI) const { |
381 | if (TRI->isVGPR(MRI: *MRI, Reg: DstReg) && TRI->isSGPRReg(MRI: *MRI, Reg: SrcReg) && |
382 | MRI->hasOneNonDBGUse(RegNo: SrcReg)) { |
383 | MachineInstr *Def = MRI->getVRegDef(Reg: SrcReg); |
384 | if (!Def || Def->getNumOperands() != 4) |
385 | return false; |
386 | |
387 | MachineOperand *Src0 = &Def->getOperand(i: 1); |
388 | MachineOperand *Src1 = &Def->getOperand(i: 2); |
389 | |
390 | // TODO: This is profitable with more operand types, and for more |
391 | // opcodes. But ultimately this is working around poor / nonexistent |
392 | // regbankselect. |
393 | if (!Src0->isFI() && !Src1->isFI()) |
394 | return false; |
395 | |
396 | if (Src0->isFI()) |
397 | std::swap(a&: Src0, b&: Src1); |
398 | |
399 | const bool UseVOP3 = !Src0->isImm() || TII->isInlineConstant(MO: *Src0); |
400 | unsigned NewOp = convertToVALUOp(Opc: Def->getOpcode(), UseVOP3); |
401 | if (NewOp == AMDGPU::INSTRUCTION_LIST_END || |
402 | !Def->getOperand(i: 3).isDead()) // Check if scc is dead |
403 | return false; |
404 | |
405 | MachineBasicBlock *MBB = Def->getParent(); |
406 | const DebugLoc &DL = Def->getDebugLoc(); |
407 | if (NewOp != AMDGPU::V_ADD_CO_U32_e32) { |
408 | MachineInstrBuilder Add = |
409 | BuildMI(BB&: *MBB, I&: *Def, MIMD: DL, MCID: TII->get(Opcode: NewOp), DestReg: DstReg); |
410 | |
411 | if (Add->getDesc().getNumDefs() == 2) { |
412 | Register CarryOutReg = MRI->createVirtualRegister(RegClass: TRI->getBoolRC()); |
413 | Add.addDef(RegNo: CarryOutReg, Flags: RegState::Dead); |
414 | MRI->setRegAllocationHint(VReg: CarryOutReg, Type: 0, PrefReg: TRI->getVCC()); |
415 | } |
416 | |
417 | Add.add(MO: *Src0).add(MO: *Src1).setMIFlags(Def->getFlags()); |
418 | if (AMDGPU::hasNamedOperand(Opcode: NewOp, NamedIdx: AMDGPU::OpName::clamp)) |
419 | Add.addImm(Val: 0); |
420 | |
421 | Def->eraseFromParent(); |
422 | MI.eraseFromParent(); |
423 | return true; |
424 | } |
425 | |
426 | assert(NewOp == AMDGPU::V_ADD_CO_U32_e32); |
427 | |
428 | MachineBasicBlock::LivenessQueryResult Liveness = |
429 | MBB->computeRegisterLiveness(TRI, Reg: AMDGPU::VCC, Before: *Def, Neighborhood: 16); |
430 | if (Liveness == MachineBasicBlock::LQR_Dead) { |
431 | // TODO: If src1 satisfies operand constraints, use vop3 version. |
432 | BuildMI(BB&: *MBB, I&: *Def, MIMD: DL, MCID: TII->get(Opcode: NewOp), DestReg: DstReg) |
433 | .add(MO: *Src0) |
434 | .add(MO: *Src1) |
435 | .setOperandDead(3) // implicit-def $vcc |
436 | .setMIFlags(Def->getFlags()); |
437 | Def->eraseFromParent(); |
438 | MI.eraseFromParent(); |
439 | return true; |
440 | } |
441 | } |
442 | |
443 | return false; |
444 | } |
445 | |
446 | FunctionPass *llvm::createSIFoldOperandsLegacyPass() { |
447 | return new SIFoldOperandsLegacy(); |
448 | } |
449 | |
450 | bool SIFoldOperandsImpl::canUseImmWithOpSel(const MachineInstr *MI, |
451 | unsigned UseOpNo, |
452 | int64_t ImmVal) const { |
453 | const uint64_t TSFlags = MI->getDesc().TSFlags; |
454 | |
455 | if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || |
456 | (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || |
457 | (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) |
458 | return false; |
459 | |
460 | const MachineOperand &Old = MI->getOperand(i: UseOpNo); |
461 | int OpNo = MI->getOperandNo(I: &Old); |
462 | |
463 | unsigned Opcode = MI->getOpcode(); |
464 | uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; |
465 | switch (OpType) { |
466 | default: |
467 | return false; |
468 | case AMDGPU::OPERAND_REG_IMM_V2FP16: |
469 | case AMDGPU::OPERAND_REG_IMM_V2BF16: |
470 | case AMDGPU::OPERAND_REG_IMM_V2INT16: |
471 | case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
472 | case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: |
473 | case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
474 | // VOP3 packed instructions ignore op_sel source modifiers, we cannot encode |
475 | // two different constants. |
476 | if ((TSFlags & SIInstrFlags::VOP3) && !(TSFlags & SIInstrFlags::VOP3P) && |
477 | static_cast<uint16_t>(ImmVal) != static_cast<uint16_t>(ImmVal >> 16)) |
478 | return false; |
479 | break; |
480 | } |
481 | |
482 | return true; |
483 | } |
484 | |
485 | bool SIFoldOperandsImpl::tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, |
486 | int64_t ImmVal) const { |
487 | MachineOperand &Old = MI->getOperand(i: UseOpNo); |
488 | unsigned Opcode = MI->getOpcode(); |
489 | int OpNo = MI->getOperandNo(I: &Old); |
490 | uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; |
491 | |
492 | // If the literal can be inlined as-is, apply it and short-circuit the |
493 | // tests below. The main motivation for this is to avoid unintuitive |
494 | // uses of opsel. |
495 | if (AMDGPU::isInlinableLiteralV216(Literal: ImmVal, OpType)) { |
496 | Old.ChangeToImmediate(ImmVal); |
497 | return true; |
498 | } |
499 | |
500 | // Refer to op_sel/op_sel_hi and check if we can change the immediate and |
501 | // op_sel in a way that allows an inline constant. |
502 | AMDGPU::OpName ModName = AMDGPU::OpName::NUM_OPERAND_NAMES; |
503 | unsigned SrcIdx = ~0; |
504 | if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src0)) { |
505 | ModName = AMDGPU::OpName::src0_modifiers; |
506 | SrcIdx = 0; |
507 | } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src1)) { |
508 | ModName = AMDGPU::OpName::src1_modifiers; |
509 | SrcIdx = 1; |
510 | } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src2)) { |
511 | ModName = AMDGPU::OpName::src2_modifiers; |
512 | SrcIdx = 2; |
513 | } |
514 | assert(ModName != AMDGPU::OpName::NUM_OPERAND_NAMES); |
515 | int ModIdx = AMDGPU::getNamedOperandIdx(Opcode, Name: ModName); |
516 | MachineOperand &Mod = MI->getOperand(i: ModIdx); |
517 | unsigned ModVal = Mod.getImm(); |
518 | |
519 | uint16_t ImmLo = |
520 | static_cast<uint16_t>(ImmVal >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); |
521 | uint16_t ImmHi = |
522 | static_cast<uint16_t>(ImmVal >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); |
523 | uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; |
524 | unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); |
525 | |
526 | // Helper function that attempts to inline the given value with a newly |
527 | // chosen opsel pattern. |
528 | auto tryFoldToInline = [&](uint32_t Imm) -> bool { |
529 | if (AMDGPU::isInlinableLiteralV216(Literal: Imm, OpType)) { |
530 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); |
531 | Old.ChangeToImmediate(ImmVal: Imm); |
532 | return true; |
533 | } |
534 | |
535 | // Try to shuffle the halves around and leverage opsel to get an inline |
536 | // constant. |
537 | uint16_t Lo = static_cast<uint16_t>(Imm); |
538 | uint16_t Hi = static_cast<uint16_t>(Imm >> 16); |
539 | if (Lo == Hi) { |
540 | if (AMDGPU::isInlinableLiteralV216(Literal: Lo, OpType)) { |
541 | Mod.setImm(NewModVal); |
542 | Old.ChangeToImmediate(ImmVal: Lo); |
543 | return true; |
544 | } |
545 | |
546 | if (static_cast<int16_t>(Lo) < 0) { |
547 | int32_t SExt = static_cast<int16_t>(Lo); |
548 | if (AMDGPU::isInlinableLiteralV216(Literal: SExt, OpType)) { |
549 | Mod.setImm(NewModVal); |
550 | Old.ChangeToImmediate(ImmVal: SExt); |
551 | return true; |
552 | } |
553 | } |
554 | |
555 | // This check is only useful for integer instructions |
556 | if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16) { |
557 | if (AMDGPU::isInlinableLiteralV216(Literal: Lo << 16, OpType)) { |
558 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); |
559 | Old.ChangeToImmediate(ImmVal: static_cast<uint32_t>(Lo) << 16); |
560 | return true; |
561 | } |
562 | } |
563 | } else { |
564 | uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; |
565 | if (AMDGPU::isInlinableLiteralV216(Literal: Swapped, OpType)) { |
566 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); |
567 | Old.ChangeToImmediate(ImmVal: Swapped); |
568 | return true; |
569 | } |
570 | } |
571 | |
572 | return false; |
573 | }; |
574 | |
575 | if (tryFoldToInline(Imm)) |
576 | return true; |
577 | |
578 | // Replace integer addition by subtraction and vice versa if it allows |
579 | // folding the immediate to an inline constant. |
580 | // |
581 | // We should only ever get here for SrcIdx == 1 due to canonicalization |
582 | // earlier in the pipeline, but we double-check here to be safe / fully |
583 | // general. |
584 | bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; |
585 | bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; |
586 | if (SrcIdx == 1 && (IsUAdd || IsUSub)) { |
587 | unsigned ClampIdx = |
588 | AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::clamp); |
589 | bool Clamp = MI->getOperand(i: ClampIdx).getImm() != 0; |
590 | |
591 | if (!Clamp) { |
592 | uint16_t NegLo = -static_cast<uint16_t>(Imm); |
593 | uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); |
594 | uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; |
595 | |
596 | if (tryFoldToInline(NegImm)) { |
597 | unsigned NegOpcode = |
598 | IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; |
599 | MI->setDesc(TII->get(Opcode: NegOpcode)); |
600 | return true; |
601 | } |
602 | } |
603 | } |
604 | |
605 | return false; |
606 | } |
607 | |
608 | bool SIFoldOperandsImpl::updateOperand(FoldCandidate &Fold) const { |
609 | MachineInstr *MI = Fold.UseMI; |
610 | MachineOperand &Old = MI->getOperand(i: Fold.UseOpNo); |
611 | assert(Old.isReg()); |
612 | |
613 | std::optional<int64_t> ImmVal; |
614 | if (Fold.isImm()) |
615 | ImmVal = Fold.Def.getEffectiveImmVal(); |
616 | |
617 | if (ImmVal && canUseImmWithOpSel(MI: Fold.UseMI, UseOpNo: Fold.UseOpNo, ImmVal: *ImmVal)) { |
618 | if (tryFoldImmWithOpSel(MI: Fold.UseMI, UseOpNo: Fold.UseOpNo, ImmVal: *ImmVal)) |
619 | return true; |
620 | |
621 | // We can't represent the candidate as an inline constant. Try as a literal |
622 | // with the original opsel, checking constant bus limitations. |
623 | MachineOperand New = MachineOperand::CreateImm(Val: *ImmVal); |
624 | int OpNo = MI->getOperandNo(I: &Old); |
625 | if (!TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: &New)) |
626 | return false; |
627 | Old.ChangeToImmediate(ImmVal: *ImmVal); |
628 | return true; |
629 | } |
630 | |
631 | if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { |
632 | MachineBasicBlock *MBB = MI->getParent(); |
633 | auto Liveness = MBB->computeRegisterLiveness(TRI, Reg: AMDGPU::VCC, Before: MI, Neighborhood: 16); |
634 | if (Liveness != MachineBasicBlock::LQR_Dead) { |
635 | LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n" ); |
636 | return false; |
637 | } |
638 | |
639 | int Op32 = Fold.ShrinkOpcode; |
640 | MachineOperand &Dst0 = MI->getOperand(i: 0); |
641 | MachineOperand &Dst1 = MI->getOperand(i: 1); |
642 | assert(Dst0.isDef() && Dst1.isDef()); |
643 | |
644 | bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(RegNo: Dst1.getReg()); |
645 | |
646 | const TargetRegisterClass *Dst0RC = MRI->getRegClass(Reg: Dst0.getReg()); |
647 | Register NewReg0 = MRI->createVirtualRegister(RegClass: Dst0RC); |
648 | |
649 | MachineInstr *Inst32 = TII->buildShrunkInst(MI&: *MI, NewOpcode: Op32); |
650 | |
651 | if (HaveNonDbgCarryUse) { |
652 | BuildMI(BB&: *MBB, I: MI, MIMD: MI->getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::COPY), |
653 | DestReg: Dst1.getReg()) |
654 | .addReg(RegNo: AMDGPU::VCC, flags: RegState::Kill); |
655 | } |
656 | |
657 | // Keep the old instruction around to avoid breaking iterators, but |
658 | // replace it with a dummy instruction to remove uses. |
659 | // |
660 | // FIXME: We should not invert how this pass looks at operands to avoid |
661 | // this. Should track set of foldable movs instead of looking for uses |
662 | // when looking at a use. |
663 | Dst0.setReg(NewReg0); |
664 | for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) |
665 | MI->removeOperand(OpNo: I); |
666 | MI->setDesc(TII->get(Opcode: AMDGPU::IMPLICIT_DEF)); |
667 | |
668 | if (Fold.Commuted) |
669 | TII->commuteInstruction(MI&: *Inst32, NewMI: false); |
670 | return true; |
671 | } |
672 | |
673 | assert(!Fold.needsShrink() && "not handled" ); |
674 | |
675 | if (ImmVal) { |
676 | if (Old.isTied()) { |
677 | int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opcode: MI->getOpcode()); |
678 | if (NewMFMAOpc == -1) |
679 | return false; |
680 | MI->setDesc(TII->get(Opcode: NewMFMAOpc)); |
681 | MI->untieRegOperand(OpIdx: 0); |
682 | } |
683 | |
684 | // TODO: Should we try to avoid adding this to the candidate list? |
685 | MachineOperand New = MachineOperand::CreateImm(Val: *ImmVal); |
686 | int OpNo = MI->getOperandNo(I: &Old); |
687 | if (!TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: &New)) |
688 | return false; |
689 | |
690 | Old.ChangeToImmediate(ImmVal: *ImmVal); |
691 | return true; |
692 | } |
693 | |
694 | if (Fold.isGlobal()) { |
695 | Old.ChangeToGA(GV: Fold.Def.OpToFold->getGlobal(), |
696 | Offset: Fold.Def.OpToFold->getOffset(), |
697 | TargetFlags: Fold.Def.OpToFold->getTargetFlags()); |
698 | return true; |
699 | } |
700 | |
701 | if (Fold.isFI()) { |
702 | Old.ChangeToFrameIndex(Idx: Fold.getFI()); |
703 | return true; |
704 | } |
705 | |
706 | MachineOperand *New = Fold.Def.OpToFold; |
707 | // Rework once the VS_16 register class is updated to include proper |
708 | // 16-bit SGPRs instead of 32-bit ones. |
709 | if (Old.getSubReg() == AMDGPU::lo16 && TRI->isSGPRReg(MRI: *MRI, Reg: New->getReg())) |
710 | Old.setSubReg(AMDGPU::NoSubRegister); |
711 | Old.substVirtReg(Reg: New->getReg(), SubIdx: New->getSubReg(), *TRI); |
712 | Old.setIsUndef(New->isUndef()); |
713 | return true; |
714 | } |
715 | |
716 | static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, |
717 | FoldCandidate &&Entry) { |
718 | // Skip additional folding on the same operand. |
719 | for (FoldCandidate &Fold : FoldList) |
720 | if (Fold.UseMI == Entry.UseMI && Fold.UseOpNo == Entry.UseOpNo) |
721 | return; |
722 | LLVM_DEBUG(dbgs() << "Append " << (Entry.Commuted ? "commuted" : "normal" ) |
723 | << " operand " << Entry.UseOpNo << "\n " << *Entry.UseMI); |
724 | FoldList.push_back(Elt: Entry); |
725 | } |
726 | |
727 | static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, |
728 | MachineInstr *MI, unsigned OpNo, |
729 | const FoldableDef &FoldOp, |
730 | bool Commuted = false, int ShrinkOp = -1) { |
731 | appendFoldCandidate(FoldList, |
732 | Entry: FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); |
733 | } |
734 | |
735 | bool SIFoldOperandsImpl::tryAddToFoldList( |
736 | SmallVectorImpl<FoldCandidate> &FoldList, MachineInstr *MI, unsigned OpNo, |
737 | const FoldableDef &OpToFold) const { |
738 | const unsigned Opc = MI->getOpcode(); |
739 | |
740 | auto tryToFoldAsFMAAKorMK = [&]() { |
741 | if (!OpToFold.isImm()) |
742 | return false; |
743 | |
744 | const bool TryAK = OpNo == 3; |
745 | const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; |
746 | MI->setDesc(TII->get(Opcode: NewOpc)); |
747 | |
748 | // We have to fold into operand which would be Imm not into OpNo. |
749 | bool FoldAsFMAAKorMK = |
750 | tryAddToFoldList(FoldList, MI, OpNo: TryAK ? 3 : 2, OpToFold); |
751 | if (FoldAsFMAAKorMK) { |
752 | // Untie Src2 of fmac. |
753 | MI->untieRegOperand(OpIdx: 3); |
754 | // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. |
755 | if (OpNo == 1) { |
756 | MachineOperand &Op1 = MI->getOperand(i: 1); |
757 | MachineOperand &Op2 = MI->getOperand(i: 2); |
758 | Register OldReg = Op1.getReg(); |
759 | // Operand 2 might be an inlinable constant |
760 | if (Op2.isImm()) { |
761 | Op1.ChangeToImmediate(ImmVal: Op2.getImm()); |
762 | Op2.ChangeToRegister(Reg: OldReg, isDef: false); |
763 | } else { |
764 | Op1.setReg(Op2.getReg()); |
765 | Op2.setReg(OldReg); |
766 | } |
767 | } |
768 | return true; |
769 | } |
770 | MI->setDesc(TII->get(Opcode: Opc)); |
771 | return false; |
772 | }; |
773 | |
774 | bool IsLegal = OpToFold.isOperandLegal(TII: *TII, MI: *MI, OpIdx: OpNo); |
775 | if (!IsLegal && OpToFold.isImm()) { |
776 | if (std::optional<int64_t> ImmVal = OpToFold.getEffectiveImmVal()) |
777 | IsLegal = canUseImmWithOpSel(MI, UseOpNo: OpNo, ImmVal: *ImmVal); |
778 | } |
779 | |
780 | if (!IsLegal) { |
781 | // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 |
782 | unsigned NewOpc = macToMad(Opc); |
783 | if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { |
784 | // Check if changing this to a v_mad_{f16, f32} instruction will allow us |
785 | // to fold the operand. |
786 | MI->setDesc(TII->get(Opcode: NewOpc)); |
787 | bool AddOpSel = !AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel) && |
788 | AMDGPU::hasNamedOperand(Opcode: NewOpc, NamedIdx: AMDGPU::OpName::op_sel); |
789 | if (AddOpSel) |
790 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
791 | bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); |
792 | if (FoldAsMAD) { |
793 | MI->untieRegOperand(OpIdx: OpNo); |
794 | return true; |
795 | } |
796 | if (AddOpSel) |
797 | MI->removeOperand(OpNo: MI->getNumExplicitOperands() - 1); |
798 | MI->setDesc(TII->get(Opcode: Opc)); |
799 | } |
800 | |
801 | // Special case for s_fmac_f32 if we are trying to fold into Src2. |
802 | // By transforming into fmaak we can untie Src2 and make folding legal. |
803 | if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { |
804 | if (tryToFoldAsFMAAKorMK()) |
805 | return true; |
806 | } |
807 | |
808 | // Special case for s_setreg_b32 |
809 | if (OpToFold.isImm()) { |
810 | unsigned ImmOpc = 0; |
811 | if (Opc == AMDGPU::S_SETREG_B32) |
812 | ImmOpc = AMDGPU::S_SETREG_IMM32_B32; |
813 | else if (Opc == AMDGPU::S_SETREG_B32_mode) |
814 | ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; |
815 | if (ImmOpc) { |
816 | MI->setDesc(TII->get(Opcode: ImmOpc)); |
817 | appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold); |
818 | return true; |
819 | } |
820 | } |
821 | |
822 | // Operand is not legal, so try to commute the instruction to |
823 | // see if this makes it possible to fold. |
824 | unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; |
825 | bool CanCommute = TII->findCommutedOpIndices(MI: *MI, SrcOpIdx0&: OpNo, SrcOpIdx1&: CommuteOpNo); |
826 | if (!CanCommute) |
827 | return false; |
828 | |
829 | MachineOperand &Op = MI->getOperand(i: OpNo); |
830 | MachineOperand &CommutedOp = MI->getOperand(i: CommuteOpNo); |
831 | |
832 | // One of operands might be an Imm operand, and OpNo may refer to it after |
833 | // the call of commuteInstruction() below. Such situations are avoided |
834 | // here explicitly as OpNo must be a register operand to be a candidate |
835 | // for memory folding. |
836 | if (!Op.isReg() || !CommutedOp.isReg()) |
837 | return false; |
838 | |
839 | // The same situation with an immediate could reproduce if both inputs are |
840 | // the same register. |
841 | if (Op.isReg() && CommutedOp.isReg() && |
842 | (Op.getReg() == CommutedOp.getReg() && |
843 | Op.getSubReg() == CommutedOp.getSubReg())) |
844 | return false; |
845 | |
846 | if (!TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: OpNo, OpIdx2: CommuteOpNo)) |
847 | return false; |
848 | |
849 | int Op32 = -1; |
850 | if (!OpToFold.isOperandLegal(TII: *TII, MI: *MI, OpIdx: CommuteOpNo)) { |
851 | if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && |
852 | Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME |
853 | (!OpToFold.isImm() && !OpToFold.isFI() && !OpToFold.isGlobal())) { |
854 | TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: OpNo, OpIdx2: CommuteOpNo); |
855 | return false; |
856 | } |
857 | |
858 | // Verify the other operand is a VGPR, otherwise we would violate the |
859 | // constant bus restriction. |
860 | MachineOperand &OtherOp = MI->getOperand(i: OpNo); |
861 | if (!OtherOp.isReg() || |
862 | !TII->getRegisterInfo().isVGPR(MRI: *MRI, Reg: OtherOp.getReg())) |
863 | return false; |
864 | |
865 | assert(MI->getOperand(1).isDef()); |
866 | |
867 | // Make sure to get the 32-bit version of the commuted opcode. |
868 | unsigned MaybeCommutedOpc = MI->getOpcode(); |
869 | Op32 = AMDGPU::getVOPe32(Opcode: MaybeCommutedOpc); |
870 | } |
871 | |
872 | appendFoldCandidate(FoldList, MI, OpNo: CommuteOpNo, FoldOp: OpToFold, /*Commuted=*/true, |
873 | ShrinkOp: Op32); |
874 | return true; |
875 | } |
876 | |
877 | // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. |
878 | // By changing into fmamk we can untie Src2. |
879 | // If folding for Src0 happens first and it is identical operand to Src1 we |
880 | // should avoid transforming into fmamk which requires commuting as it would |
881 | // cause folding into Src1 to fail later on due to wrong OpNo used. |
882 | if (Opc == AMDGPU::S_FMAC_F32 && |
883 | (OpNo != 1 || !MI->getOperand(i: 1).isIdenticalTo(Other: MI->getOperand(i: 2)))) { |
884 | if (tryToFoldAsFMAAKorMK()) |
885 | return true; |
886 | } |
887 | |
888 | appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold); |
889 | return true; |
890 | } |
891 | |
892 | bool SIFoldOperandsImpl::isUseSafeToFold(const MachineInstr &MI, |
893 | const MachineOperand &UseMO) const { |
894 | // Operands of SDWA instructions must be registers. |
895 | return !TII->isSDWA(MI); |
896 | } |
897 | |
898 | static MachineOperand *lookUpCopyChain(const SIInstrInfo &TII, |
899 | const MachineRegisterInfo &MRI, |
900 | Register SrcReg) { |
901 | MachineOperand *Sub = nullptr; |
902 | for (MachineInstr *SubDef = MRI.getVRegDef(Reg: SrcReg); |
903 | SubDef && TII.isFoldableCopy(MI: *SubDef); |
904 | SubDef = MRI.getVRegDef(Reg: Sub->getReg())) { |
905 | MachineOperand &SrcOp = SubDef->getOperand(i: 1); |
906 | if (SrcOp.isImm()) |
907 | return &SrcOp; |
908 | if (!SrcOp.isReg() || SrcOp.getReg().isPhysical()) |
909 | break; |
910 | Sub = &SrcOp; |
911 | // TODO: Support compose |
912 | if (SrcOp.getSubReg()) |
913 | break; |
914 | } |
915 | |
916 | return Sub; |
917 | } |
918 | |
919 | const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( |
920 | MachineInstr &RegSeq, |
921 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs) const { |
922 | |
923 | assert(RegSeq.isRegSequence()); |
924 | |
925 | const TargetRegisterClass *RC = nullptr; |
926 | |
927 | for (unsigned I = 1, E = RegSeq.getNumExplicitOperands(); I != E; I += 2) { |
928 | MachineOperand &SrcOp = RegSeq.getOperand(i: I); |
929 | unsigned SubRegIdx = RegSeq.getOperand(i: I + 1).getImm(); |
930 | |
931 | // Only accept reg_sequence with uniform reg class inputs for simplicity. |
932 | const TargetRegisterClass *OpRC = getRegOpRC(MRI: *MRI, TRI: *TRI, MO: SrcOp); |
933 | if (!RC) |
934 | RC = OpRC; |
935 | else if (!TRI->getCommonSubClass(A: RC, B: OpRC)) |
936 | return nullptr; |
937 | |
938 | if (SrcOp.getSubReg()) { |
939 | // TODO: Handle subregister compose |
940 | Defs.emplace_back(Args: &SrcOp, Args&: SubRegIdx); |
941 | continue; |
942 | } |
943 | |
944 | MachineOperand *DefSrc = lookUpCopyChain(TII: *TII, MRI: *MRI, SrcReg: SrcOp.getReg()); |
945 | if (DefSrc && (DefSrc->isReg() || DefSrc->isImm())) { |
946 | Defs.emplace_back(Args&: DefSrc, Args&: SubRegIdx); |
947 | continue; |
948 | } |
949 | |
950 | Defs.emplace_back(Args: &SrcOp, Args&: SubRegIdx); |
951 | } |
952 | |
953 | return RC; |
954 | } |
955 | |
956 | // Find a def of the UseReg, check if it is a reg_sequence and find initializers |
957 | // for each subreg, tracking it to an immediate if possible. Returns the |
958 | // register class of the inputs on success. |
959 | const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( |
960 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, |
961 | Register UseReg) const { |
962 | MachineInstr *Def = MRI->getVRegDef(Reg: UseReg); |
963 | if (!Def || !Def->isRegSequence()) |
964 | return nullptr; |
965 | |
966 | return getRegSeqInit(RegSeq&: *Def, Defs); |
967 | } |
968 | |
969 | std::pair<int64_t, const TargetRegisterClass *> |
970 | SIFoldOperandsImpl::isRegSeqSplat(MachineInstr &RegSeq) const { |
971 | SmallVector<std::pair<MachineOperand *, unsigned>, 32> Defs; |
972 | const TargetRegisterClass *SrcRC = getRegSeqInit(RegSeq, Defs); |
973 | if (!SrcRC) |
974 | return {}; |
975 | |
976 | bool TryToMatchSplat64 = false; |
977 | |
978 | int64_t Imm; |
979 | for (unsigned I = 0, E = Defs.size(); I != E; ++I) { |
980 | const MachineOperand *Op = Defs[I].first; |
981 | if (!Op->isImm()) |
982 | return {}; |
983 | |
984 | int64_t SubImm = Op->getImm(); |
985 | if (!I) { |
986 | Imm = SubImm; |
987 | continue; |
988 | } |
989 | |
990 | if (Imm != SubImm) { |
991 | if (I == 1 && (E & 1) == 0) { |
992 | // If we have an even number of inputs, there's a chance this is a |
993 | // 64-bit element splat broken into 32-bit pieces. |
994 | TryToMatchSplat64 = true; |
995 | break; |
996 | } |
997 | |
998 | return {}; // Can only fold splat constants |
999 | } |
1000 | } |
1001 | |
1002 | if (!TryToMatchSplat64) |
1003 | return {Defs[0].first->getImm(), SrcRC}; |
1004 | |
1005 | // Fallback to recognizing 64-bit splats broken into 32-bit pieces |
1006 | // (i.e. recognize every other other element is 0 for 64-bit immediates) |
1007 | int64_t SplatVal64; |
1008 | for (unsigned I = 0, E = Defs.size(); I != E; I += 2) { |
1009 | const MachineOperand *Op0 = Defs[I].first; |
1010 | const MachineOperand *Op1 = Defs[I + 1].first; |
1011 | |
1012 | if (!Op0->isImm() || !Op1->isImm()) |
1013 | return {}; |
1014 | |
1015 | unsigned SubReg0 = Defs[I].second; |
1016 | unsigned SubReg1 = Defs[I + 1].second; |
1017 | |
1018 | // Assume we're going to generally encounter reg_sequences with sorted |
1019 | // subreg indexes, so reject any that aren't consecutive. |
1020 | if (TRI->getChannelFromSubReg(SubReg: SubReg0) + 1 != |
1021 | TRI->getChannelFromSubReg(SubReg: SubReg1)) |
1022 | return {}; |
1023 | |
1024 | int64_t MergedVal = Make_64(High: Op1->getImm(), Low: Op0->getImm()); |
1025 | if (I == 0) |
1026 | SplatVal64 = MergedVal; |
1027 | else if (SplatVal64 != MergedVal) |
1028 | return {}; |
1029 | } |
1030 | |
1031 | const TargetRegisterClass *RC64 = TRI->getSubRegisterClass( |
1032 | MRI->getRegClass(Reg: RegSeq.getOperand(i: 0).getReg()), AMDGPU::sub0_sub1); |
1033 | |
1034 | return {SplatVal64, RC64}; |
1035 | } |
1036 | |
1037 | bool SIFoldOperandsImpl::tryFoldRegSeqSplat( |
1038 | MachineInstr *UseMI, unsigned UseOpIdx, int64_t SplatVal, |
1039 | const TargetRegisterClass *SplatRC) const { |
1040 | const MCInstrDesc &Desc = UseMI->getDesc(); |
1041 | if (UseOpIdx >= Desc.getNumOperands()) |
1042 | return false; |
1043 | |
1044 | // Filter out unhandled pseudos. |
1045 | if (!AMDGPU::isSISrcOperand(Desc, OpNo: UseOpIdx)) |
1046 | return false; |
1047 | |
1048 | int16_t RCID = Desc.operands()[UseOpIdx].RegClass; |
1049 | if (RCID == -1) |
1050 | return false; |
1051 | |
1052 | const TargetRegisterClass *OpRC = TRI->getRegClass(RCID); |
1053 | |
1054 | // Special case 0/-1, since when interpreted as a 64-bit element both halves |
1055 | // have the same bits. These are the only cases where a splat has the same |
1056 | // interpretation for 32-bit and 64-bit splats. |
1057 | if (SplatVal != 0 && SplatVal != -1) { |
1058 | // We need to figure out the scalar type read by the operand. e.g. the MFMA |
1059 | // operand will be AReg_128, and we want to check if it's compatible with an |
1060 | // AReg_32 constant. |
1061 | uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; |
1062 | switch (OpTy) { |
1063 | case AMDGPU::OPERAND_REG_INLINE_AC_INT32: |
1064 | case AMDGPU::OPERAND_REG_INLINE_AC_FP32: |
1065 | OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0); |
1066 | break; |
1067 | case AMDGPU::OPERAND_REG_INLINE_AC_FP64: |
1068 | OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0_sub1); |
1069 | break; |
1070 | default: |
1071 | return false; |
1072 | } |
1073 | |
1074 | if (!TRI->getCommonSubClass(A: OpRC, B: SplatRC)) |
1075 | return false; |
1076 | } |
1077 | |
1078 | MachineOperand TmpOp = MachineOperand::CreateImm(Val: SplatVal); |
1079 | if (!TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: &TmpOp)) |
1080 | return false; |
1081 | |
1082 | return true; |
1083 | } |
1084 | |
1085 | bool SIFoldOperandsImpl::tryToFoldACImm( |
1086 | const FoldableDef &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, |
1087 | SmallVectorImpl<FoldCandidate> &FoldList) const { |
1088 | const MCInstrDesc &Desc = UseMI->getDesc(); |
1089 | if (UseOpIdx >= Desc.getNumOperands()) |
1090 | return false; |
1091 | |
1092 | // Filter out unhandled pseudos. |
1093 | if (!AMDGPU::isSISrcOperand(Desc, OpNo: UseOpIdx)) |
1094 | return false; |
1095 | |
1096 | MachineOperand &UseOp = UseMI->getOperand(i: UseOpIdx); |
1097 | if (OpToFold.isImm() && OpToFold.isOperandLegal(TII: *TII, MI: *UseMI, OpIdx: UseOpIdx)) { |
1098 | appendFoldCandidate(FoldList, MI: UseMI, OpNo: UseOpIdx, FoldOp: OpToFold); |
1099 | return true; |
1100 | } |
1101 | |
1102 | // TODO: Verify the following code handles subregisters correctly. |
1103 | // TODO: Handle extract of global reference |
1104 | if (UseOp.getSubReg()) |
1105 | return false; |
1106 | |
1107 | if (!OpToFold.isReg()) |
1108 | return false; |
1109 | |
1110 | Register UseReg = OpToFold.getReg(); |
1111 | if (!UseReg.isVirtual()) |
1112 | return false; |
1113 | |
1114 | // Maybe it is just a COPY of an immediate itself. |
1115 | |
1116 | // FIXME: Remove this handling. There is already special case folding of |
1117 | // immediate into copy in foldOperand. This is looking for the def of the |
1118 | // value the folding started from in the first place. |
1119 | MachineInstr *Def = MRI->getVRegDef(Reg: UseReg); |
1120 | if (Def && TII->isFoldableCopy(MI: *Def)) { |
1121 | MachineOperand &DefOp = Def->getOperand(i: 1); |
1122 | if (DefOp.isImm() && TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: &DefOp)) { |
1123 | FoldableDef FoldableImm(DefOp.getImm(), OpToFold.DefRC, |
1124 | OpToFold.DefSubReg); |
1125 | appendFoldCandidate(FoldList, MI: UseMI, OpNo: UseOpIdx, FoldOp: FoldableImm); |
1126 | return true; |
1127 | } |
1128 | } |
1129 | |
1130 | return false; |
1131 | } |
1132 | |
1133 | void SIFoldOperandsImpl::foldOperand( |
1134 | FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, |
1135 | SmallVectorImpl<FoldCandidate> &FoldList, |
1136 | SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { |
1137 | const MachineOperand *UseOp = &UseMI->getOperand(i: UseOpIdx); |
1138 | |
1139 | if (!isUseSafeToFold(MI: *UseMI, UseMO: *UseOp)) |
1140 | return; |
1141 | |
1142 | // FIXME: Fold operands with subregs. |
1143 | if (UseOp->isReg() && OpToFold.isReg()) { |
1144 | if (UseOp->isImplicit()) |
1145 | return; |
1146 | // Allow folding from SGPRs to 16-bit VGPRs. |
1147 | if (UseOp->getSubReg() != AMDGPU::NoSubRegister && |
1148 | (UseOp->getSubReg() != AMDGPU::lo16 || |
1149 | !TRI->isSGPRReg(MRI: *MRI, Reg: OpToFold.getReg()))) |
1150 | return; |
1151 | } |
1152 | |
1153 | // Special case for REG_SEQUENCE: We can't fold literals into |
1154 | // REG_SEQUENCE instructions, so we have to fold them into the |
1155 | // uses of REG_SEQUENCE. |
1156 | if (UseMI->isRegSequence()) { |
1157 | Register RegSeqDstReg = UseMI->getOperand(i: 0).getReg(); |
1158 | unsigned RegSeqDstSubReg = UseMI->getOperand(i: UseOpIdx + 1).getImm(); |
1159 | |
1160 | int64_t SplatVal; |
1161 | const TargetRegisterClass *SplatRC; |
1162 | std::tie(args&: SplatVal, args&: SplatRC) = isRegSeqSplat(RegSeq&: *UseMI); |
1163 | |
1164 | // Grab the use operands first |
1165 | SmallVector<MachineOperand *, 4> UsesToProcess( |
1166 | llvm::make_pointer_range(Range: MRI->use_nodbg_operands(Reg: RegSeqDstReg))); |
1167 | for (auto *RSUse : UsesToProcess) { |
1168 | MachineInstr *RSUseMI = RSUse->getParent(); |
1169 | unsigned OpNo = RSUseMI->getOperandNo(I: RSUse); |
1170 | |
1171 | if (SplatRC) { |
1172 | if (tryFoldRegSeqSplat(UseMI: RSUseMI, UseOpIdx: OpNo, SplatVal, SplatRC)) { |
1173 | FoldableDef SplatDef(SplatVal, SplatRC); |
1174 | appendFoldCandidate(FoldList, MI: RSUseMI, OpNo, FoldOp: SplatDef); |
1175 | continue; |
1176 | } |
1177 | } |
1178 | |
1179 | // TODO: Handle general compose |
1180 | if (RSUse->getSubReg() != RegSeqDstSubReg) |
1181 | continue; |
1182 | |
1183 | // FIXME: We should avoid recursing here. There should be a cleaner split |
1184 | // between the in-place mutations and adding to the fold list. |
1185 | foldOperand(OpToFold, UseMI: RSUseMI, UseOpIdx: RSUseMI->getOperandNo(I: RSUse), FoldList, |
1186 | CopiesToReplace); |
1187 | } |
1188 | |
1189 | return; |
1190 | } |
1191 | |
1192 | if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) |
1193 | return; |
1194 | |
1195 | if (frameIndexMayFold(UseMI: *UseMI, OpNo: UseOpIdx, OpToFold)) { |
1196 | // Verify that this is a stack access. |
1197 | // FIXME: Should probably use stack pseudos before frame lowering. |
1198 | |
1199 | if (TII->isMUBUF(MI: *UseMI)) { |
1200 | if (TII->getNamedOperand(MI&: *UseMI, OperandName: AMDGPU::OpName::srsrc)->getReg() != |
1201 | MFI->getScratchRSrcReg()) |
1202 | return; |
1203 | |
1204 | // Ensure this is either relative to the current frame or the current |
1205 | // wave. |
1206 | MachineOperand &SOff = |
1207 | *TII->getNamedOperand(MI&: *UseMI, OperandName: AMDGPU::OpName::soffset); |
1208 | if (!SOff.isImm() || SOff.getImm() != 0) |
1209 | return; |
1210 | } |
1211 | |
1212 | // A frame index will resolve to a positive constant, so it should always be |
1213 | // safe to fold the addressing mode, even pre-GFX9. |
1214 | UseMI->getOperand(i: UseOpIdx).ChangeToFrameIndex(Idx: OpToFold.getFI()); |
1215 | |
1216 | const unsigned Opc = UseMI->getOpcode(); |
1217 | if (TII->isFLATScratch(MI: *UseMI) && |
1218 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::vaddr) && |
1219 | !AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::saddr)) { |
1220 | unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opcode: Opc); |
1221 | UseMI->setDesc(TII->get(Opcode: NewOpc)); |
1222 | } |
1223 | |
1224 | return; |
1225 | } |
1226 | |
1227 | bool FoldingImmLike = |
1228 | OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
1229 | |
1230 | if (FoldingImmLike && UseMI->isCopy()) { |
1231 | Register DestReg = UseMI->getOperand(i: 0).getReg(); |
1232 | Register SrcReg = UseMI->getOperand(i: 1).getReg(); |
1233 | assert(SrcReg.isVirtual()); |
1234 | |
1235 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: SrcReg); |
1236 | |
1237 | // Don't fold into a copy to a physical register with the same class. Doing |
1238 | // so would interfere with the register coalescer's logic which would avoid |
1239 | // redundant initializations. |
1240 | if (DestReg.isPhysical() && SrcRC->contains(Reg: DestReg)) |
1241 | return; |
1242 | |
1243 | const TargetRegisterClass *DestRC = TRI->getRegClassForReg(MRI: *MRI, Reg: DestReg); |
1244 | if (!DestReg.isPhysical() && DestRC == &AMDGPU::AGPR_32RegClass) { |
1245 | std::optional<int64_t> UseImmVal = OpToFold.getEffectiveImmVal(); |
1246 | if (UseImmVal && TII->isInlineConstant( |
1247 | ImmVal: *UseImmVal, OperandType: AMDGPU::OPERAND_REG_INLINE_C_INT32)) { |
1248 | UseMI->setDesc(TII->get(Opcode: AMDGPU::V_ACCVGPR_WRITE_B32_e64)); |
1249 | UseMI->getOperand(i: 1).ChangeToImmediate(ImmVal: *UseImmVal); |
1250 | CopiesToReplace.push_back(Elt: UseMI); |
1251 | return; |
1252 | } |
1253 | } |
1254 | |
1255 | // Allow immediates COPYd into sgpr_lo16 to be further folded while |
1256 | // still being legal if not further folded |
1257 | if (DestRC == &AMDGPU::SGPR_LO16RegClass) { |
1258 | assert(ST->useRealTrue16Insts()); |
1259 | MRI->setRegClass(Reg: DestReg, RC: &AMDGPU::SGPR_32RegClass); |
1260 | DestRC = &AMDGPU::SGPR_32RegClass; |
1261 | } |
1262 | |
1263 | // In order to fold immediates into copies, we need to change the |
1264 | // copy to a MOV. |
1265 | |
1266 | unsigned MovOp = TII->getMovOpcode(DstRC: DestRC); |
1267 | if (MovOp == AMDGPU::COPY) |
1268 | return; |
1269 | |
1270 | // Fold if the destination register class of the MOV instruction (ResRC) |
1271 | // is a superclass of (or equal to) the destination register class of the |
1272 | // COPY (DestRC). If this condition fails, folding would be illegal. |
1273 | const MCInstrDesc &MovDesc = TII->get(Opcode: MovOp); |
1274 | assert(MovDesc.getNumDefs() > 0 && MovDesc.operands()[0].RegClass != -1); |
1275 | const TargetRegisterClass *ResRC = |
1276 | TRI->getRegClass(RCID: MovDesc.operands()[0].RegClass); |
1277 | if (!DestRC->hasSuperClassEq(RC: ResRC)) |
1278 | return; |
1279 | |
1280 | MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); |
1281 | MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); |
1282 | while (ImpOpI != ImpOpE) { |
1283 | MachineInstr::mop_iterator Tmp = ImpOpI; |
1284 | ImpOpI++; |
1285 | UseMI->removeOperand(OpNo: UseMI->getOperandNo(I: Tmp)); |
1286 | } |
1287 | UseMI->setDesc(TII->get(Opcode: MovOp)); |
1288 | |
1289 | if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { |
1290 | const auto &SrcOp = UseMI->getOperand(i: UseOpIdx); |
1291 | MachineOperand NewSrcOp(SrcOp); |
1292 | MachineFunction *MF = UseMI->getParent()->getParent(); |
1293 | UseMI->removeOperand(OpNo: 1); |
1294 | UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // src0_modifiers |
1295 | UseMI->addOperand(Op: NewSrcOp); // src0 |
1296 | UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // op_sel |
1297 | UseOpIdx = 2; |
1298 | UseOp = &UseMI->getOperand(i: UseOpIdx); |
1299 | } |
1300 | CopiesToReplace.push_back(Elt: UseMI); |
1301 | } else { |
1302 | if (UseMI->isCopy() && OpToFold.isReg() && |
1303 | UseMI->getOperand(i: 0).getReg().isVirtual() && |
1304 | !UseMI->getOperand(i: 1).getSubReg() && |
1305 | OpToFold.DefMI->implicit_operands().empty()) { |
1306 | LLVM_DEBUG(dbgs() << "Folding " << OpToFold.OpToFold << "\n into " |
1307 | << *UseMI); |
1308 | unsigned Size = TII->getOpSize(MI: *UseMI, OpNo: 1); |
1309 | Register UseReg = OpToFold.getReg(); |
1310 | UseMI->getOperand(i: 1).setReg(UseReg); |
1311 | unsigned SubRegIdx = OpToFold.getSubReg(); |
1312 | // Hack to allow 32-bit SGPRs to be folded into True16 instructions |
1313 | // Remove this if 16-bit SGPRs (i.e. SGPR_LO16) are added to the |
1314 | // VS_16RegClass |
1315 | // |
1316 | // Excerpt from AMDGPUGenRegisterInfo.inc |
1317 | // NoSubRegister, //0 |
1318 | // hi16, // 1 |
1319 | // lo16, // 2 |
1320 | // sub0, // 3 |
1321 | // ... |
1322 | // sub1, // 11 |
1323 | // sub1_hi16, // 12 |
1324 | // sub1_lo16, // 13 |
1325 | static_assert(AMDGPU::sub1_hi16 == 12, "Subregister layout has changed" ); |
1326 | if (Size == 2 && TRI->isVGPR(MRI: *MRI, Reg: UseMI->getOperand(i: 0).getReg()) && |
1327 | TRI->isSGPRReg(MRI: *MRI, Reg: UseReg)) { |
1328 | // Produce the 32 bit subregister index to which the 16-bit subregister |
1329 | // is aligned. |
1330 | if (SubRegIdx > AMDGPU::sub1) { |
1331 | LaneBitmask M = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx); |
1332 | M |= M.getLane(Lane: M.getHighestLane() - 1); |
1333 | SmallVector<unsigned, 4> Indexes; |
1334 | TRI->getCoveringSubRegIndexes(RC: TRI->getRegClassForReg(MRI: *MRI, Reg: UseReg), LaneMask: M, |
1335 | Indexes); |
1336 | assert(Indexes.size() == 1 && "Expected one 32-bit subreg to cover" ); |
1337 | SubRegIdx = Indexes[0]; |
1338 | // 32-bit registers do not have a sub0 index |
1339 | } else if (TII->getOpSize(MI: *UseMI, OpNo: 1) == 4) |
1340 | SubRegIdx = 0; |
1341 | else |
1342 | SubRegIdx = AMDGPU::sub0; |
1343 | } |
1344 | UseMI->getOperand(i: 1).setSubReg(SubRegIdx); |
1345 | UseMI->getOperand(i: 1).setIsKill(false); |
1346 | CopiesToReplace.push_back(Elt: UseMI); |
1347 | OpToFold.OpToFold->setIsKill(false); |
1348 | |
1349 | // Remove kill flags as kills may now be out of order with uses. |
1350 | MRI->clearKillFlags(Reg: UseReg); |
1351 | if (foldCopyToAGPRRegSequence(CopyMI: UseMI)) |
1352 | return; |
1353 | } |
1354 | |
1355 | unsigned UseOpc = UseMI->getOpcode(); |
1356 | if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || |
1357 | (UseOpc == AMDGPU::V_READLANE_B32 && |
1358 | (int)UseOpIdx == |
1359 | AMDGPU::getNamedOperandIdx(Opcode: UseOpc, Name: AMDGPU::OpName::src0))) { |
1360 | // %vgpr = V_MOV_B32 imm |
1361 | // %sgpr = V_READFIRSTLANE_B32 %vgpr |
1362 | // => |
1363 | // %sgpr = S_MOV_B32 imm |
1364 | if (FoldingImmLike) { |
1365 | if (execMayBeModifiedBeforeUse(MRI: *MRI, |
1366 | VReg: UseMI->getOperand(i: UseOpIdx).getReg(), |
1367 | DefMI: *OpToFold.DefMI, UseMI: *UseMI)) |
1368 | return; |
1369 | |
1370 | UseMI->setDesc(TII->get(Opcode: AMDGPU::S_MOV_B32)); |
1371 | |
1372 | if (OpToFold.isImm()) { |
1373 | UseMI->getOperand(i: 1).ChangeToImmediate( |
1374 | ImmVal: *OpToFold.getEffectiveImmVal()); |
1375 | } else if (OpToFold.isFI()) |
1376 | UseMI->getOperand(i: 1).ChangeToFrameIndex(Idx: OpToFold.getFI()); |
1377 | else { |
1378 | assert(OpToFold.isGlobal()); |
1379 | UseMI->getOperand(i: 1).ChangeToGA(GV: OpToFold.OpToFold->getGlobal(), |
1380 | Offset: OpToFold.OpToFold->getOffset(), |
1381 | TargetFlags: OpToFold.OpToFold->getTargetFlags()); |
1382 | } |
1383 | UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane) |
1384 | return; |
1385 | } |
1386 | |
1387 | if (OpToFold.isReg() && TRI->isSGPRReg(MRI: *MRI, Reg: OpToFold.getReg())) { |
1388 | if (execMayBeModifiedBeforeUse(MRI: *MRI, |
1389 | VReg: UseMI->getOperand(i: UseOpIdx).getReg(), |
1390 | DefMI: *OpToFold.DefMI, UseMI: *UseMI)) |
1391 | return; |
1392 | |
1393 | // %vgpr = COPY %sgpr0 |
1394 | // %sgpr1 = V_READFIRSTLANE_B32 %vgpr |
1395 | // => |
1396 | // %sgpr1 = COPY %sgpr0 |
1397 | UseMI->setDesc(TII->get(Opcode: AMDGPU::COPY)); |
1398 | UseMI->getOperand(i: 1).setReg(OpToFold.getReg()); |
1399 | UseMI->getOperand(i: 1).setSubReg(OpToFold.getSubReg()); |
1400 | UseMI->getOperand(i: 1).setIsKill(false); |
1401 | UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane) |
1402 | return; |
1403 | } |
1404 | } |
1405 | |
1406 | const MCInstrDesc &UseDesc = UseMI->getDesc(); |
1407 | |
1408 | // Don't fold into target independent nodes. Target independent opcodes |
1409 | // don't have defined register classes. |
1410 | if (UseDesc.isVariadic() || UseOp->isImplicit() || |
1411 | UseDesc.operands()[UseOpIdx].RegClass == -1) |
1412 | return; |
1413 | } |
1414 | |
1415 | if (!FoldingImmLike) { |
1416 | if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { |
1417 | // Don't fold if OpToFold doesn't hold an aligned register. |
1418 | const TargetRegisterClass *RC = |
1419 | TRI->getRegClassForReg(MRI: *MRI, Reg: OpToFold.getReg()); |
1420 | assert(RC); |
1421 | if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { |
1422 | unsigned SubReg = OpToFold.getSubReg(); |
1423 | if (const TargetRegisterClass *SubRC = |
1424 | TRI->getSubRegisterClass(RC, SubReg)) |
1425 | RC = SubRC; |
1426 | } |
1427 | |
1428 | if (!RC || !TRI->isProperlyAlignedRC(RC: *RC)) |
1429 | return; |
1430 | } |
1431 | |
1432 | tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold); |
1433 | |
1434 | // FIXME: We could try to change the instruction from 64-bit to 32-bit |
1435 | // to enable more folding opportunities. The shrink operands pass |
1436 | // already does this. |
1437 | return; |
1438 | } |
1439 | |
1440 | tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold); |
1441 | } |
1442 | |
1443 | static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, |
1444 | uint32_t LHS, uint32_t RHS) { |
1445 | switch (Opcode) { |
1446 | case AMDGPU::V_AND_B32_e64: |
1447 | case AMDGPU::V_AND_B32_e32: |
1448 | case AMDGPU::S_AND_B32: |
1449 | Result = LHS & RHS; |
1450 | return true; |
1451 | case AMDGPU::V_OR_B32_e64: |
1452 | case AMDGPU::V_OR_B32_e32: |
1453 | case AMDGPU::S_OR_B32: |
1454 | Result = LHS | RHS; |
1455 | return true; |
1456 | case AMDGPU::V_XOR_B32_e64: |
1457 | case AMDGPU::V_XOR_B32_e32: |
1458 | case AMDGPU::S_XOR_B32: |
1459 | Result = LHS ^ RHS; |
1460 | return true; |
1461 | case AMDGPU::S_XNOR_B32: |
1462 | Result = ~(LHS ^ RHS); |
1463 | return true; |
1464 | case AMDGPU::S_NAND_B32: |
1465 | Result = ~(LHS & RHS); |
1466 | return true; |
1467 | case AMDGPU::S_NOR_B32: |
1468 | Result = ~(LHS | RHS); |
1469 | return true; |
1470 | case AMDGPU::S_ANDN2_B32: |
1471 | Result = LHS & ~RHS; |
1472 | return true; |
1473 | case AMDGPU::S_ORN2_B32: |
1474 | Result = LHS | ~RHS; |
1475 | return true; |
1476 | case AMDGPU::V_LSHL_B32_e64: |
1477 | case AMDGPU::V_LSHL_B32_e32: |
1478 | case AMDGPU::S_LSHL_B32: |
1479 | // The instruction ignores the high bits for out of bounds shifts. |
1480 | Result = LHS << (RHS & 31); |
1481 | return true; |
1482 | case AMDGPU::V_LSHLREV_B32_e64: |
1483 | case AMDGPU::V_LSHLREV_B32_e32: |
1484 | Result = RHS << (LHS & 31); |
1485 | return true; |
1486 | case AMDGPU::V_LSHR_B32_e64: |
1487 | case AMDGPU::V_LSHR_B32_e32: |
1488 | case AMDGPU::S_LSHR_B32: |
1489 | Result = LHS >> (RHS & 31); |
1490 | return true; |
1491 | case AMDGPU::V_LSHRREV_B32_e64: |
1492 | case AMDGPU::V_LSHRREV_B32_e32: |
1493 | Result = RHS >> (LHS & 31); |
1494 | return true; |
1495 | case AMDGPU::V_ASHR_I32_e64: |
1496 | case AMDGPU::V_ASHR_I32_e32: |
1497 | case AMDGPU::S_ASHR_I32: |
1498 | Result = static_cast<int32_t>(LHS) >> (RHS & 31); |
1499 | return true; |
1500 | case AMDGPU::V_ASHRREV_I32_e64: |
1501 | case AMDGPU::V_ASHRREV_I32_e32: |
1502 | Result = static_cast<int32_t>(RHS) >> (LHS & 31); |
1503 | return true; |
1504 | default: |
1505 | return false; |
1506 | } |
1507 | } |
1508 | |
1509 | static unsigned getMovOpc(bool IsScalar) { |
1510 | return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; |
1511 | } |
1512 | |
1513 | static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { |
1514 | MI.setDesc(NewDesc); |
1515 | |
1516 | // Remove any leftover implicit operands from mutating the instruction. e.g. |
1517 | // if we replace an s_and_b32 with a copy, we don't need the implicit scc def |
1518 | // anymore. |
1519 | const MCInstrDesc &Desc = MI.getDesc(); |
1520 | unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + |
1521 | Desc.implicit_defs().size(); |
1522 | |
1523 | for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) |
1524 | MI.removeOperand(OpNo: I); |
1525 | } |
1526 | |
1527 | std::optional<int64_t> |
1528 | SIFoldOperandsImpl::getImmOrMaterializedImm(MachineOperand &Op) const { |
1529 | if (Op.isImm()) |
1530 | return Op.getImm(); |
1531 | |
1532 | if (!Op.isReg() || !Op.getReg().isVirtual()) |
1533 | return std::nullopt; |
1534 | |
1535 | const MachineInstr *Def = MRI->getVRegDef(Reg: Op.getReg()); |
1536 | if (Def && Def->isMoveImmediate()) { |
1537 | const MachineOperand &ImmSrc = Def->getOperand(i: 1); |
1538 | if (ImmSrc.isImm()) |
1539 | return TII->extractSubregFromImm(ImmVal: ImmSrc.getImm(), SubRegIndex: Op.getSubReg()); |
1540 | } |
1541 | |
1542 | return std::nullopt; |
1543 | } |
1544 | |
1545 | // Try to simplify operations with a constant that may appear after instruction |
1546 | // selection. |
1547 | // TODO: See if a frame index with a fixed offset can fold. |
1548 | bool SIFoldOperandsImpl::tryConstantFoldOp(MachineInstr *MI) const { |
1549 | if (!MI->allImplicitDefsAreDead()) |
1550 | return false; |
1551 | |
1552 | unsigned Opc = MI->getOpcode(); |
1553 | |
1554 | int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src0); |
1555 | if (Src0Idx == -1) |
1556 | return false; |
1557 | |
1558 | MachineOperand *Src0 = &MI->getOperand(i: Src0Idx); |
1559 | std::optional<int64_t> Src0Imm = getImmOrMaterializedImm(Op&: *Src0); |
1560 | |
1561 | if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || |
1562 | Opc == AMDGPU::S_NOT_B32) && |
1563 | Src0Imm) { |
1564 | MI->getOperand(i: 1).ChangeToImmediate(ImmVal: ~*Src0Imm); |
1565 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_NOT_B32))); |
1566 | return true; |
1567 | } |
1568 | |
1569 | int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1); |
1570 | if (Src1Idx == -1) |
1571 | return false; |
1572 | |
1573 | MachineOperand *Src1 = &MI->getOperand(i: Src1Idx); |
1574 | std::optional<int64_t> Src1Imm = getImmOrMaterializedImm(Op&: *Src1); |
1575 | |
1576 | if (!Src0Imm && !Src1Imm) |
1577 | return false; |
1578 | |
1579 | // and k0, k1 -> v_mov_b32 (k0 & k1) |
1580 | // or k0, k1 -> v_mov_b32 (k0 | k1) |
1581 | // xor k0, k1 -> v_mov_b32 (k0 ^ k1) |
1582 | if (Src0Imm && Src1Imm) { |
1583 | int32_t NewImm; |
1584 | if (!evalBinaryInstruction(Opcode: Opc, Result&: NewImm, LHS: *Src0Imm, RHS: *Src1Imm)) |
1585 | return false; |
1586 | |
1587 | bool IsSGPR = TRI->isSGPRReg(MRI: *MRI, Reg: MI->getOperand(i: 0).getReg()); |
1588 | |
1589 | // Be careful to change the right operand, src0 may belong to a different |
1590 | // instruction. |
1591 | MI->getOperand(i: Src0Idx).ChangeToImmediate(ImmVal: NewImm); |
1592 | MI->removeOperand(OpNo: Src1Idx); |
1593 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: IsSGPR))); |
1594 | return true; |
1595 | } |
1596 | |
1597 | if (!MI->isCommutable()) |
1598 | return false; |
1599 | |
1600 | if (Src0Imm && !Src1Imm) { |
1601 | std::swap(a&: Src0, b&: Src1); |
1602 | std::swap(a&: Src0Idx, b&: Src1Idx); |
1603 | std::swap(lhs&: Src0Imm, rhs&: Src1Imm); |
1604 | } |
1605 | |
1606 | int32_t Src1Val = static_cast<int32_t>(*Src1Imm); |
1607 | if (Opc == AMDGPU::V_OR_B32_e64 || |
1608 | Opc == AMDGPU::V_OR_B32_e32 || |
1609 | Opc == AMDGPU::S_OR_B32) { |
1610 | if (Src1Val == 0) { |
1611 | // y = or x, 0 => y = copy x |
1612 | MI->removeOperand(OpNo: Src1Idx); |
1613 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
1614 | } else if (Src1Val == -1) { |
1615 | // y = or x, -1 => y = v_mov_b32 -1 |
1616 | MI->removeOperand(OpNo: Src1Idx); |
1617 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_OR_B32))); |
1618 | } else |
1619 | return false; |
1620 | |
1621 | return true; |
1622 | } |
1623 | |
1624 | if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || |
1625 | Opc == AMDGPU::S_AND_B32) { |
1626 | if (Src1Val == 0) { |
1627 | // y = and x, 0 => y = v_mov_b32 0 |
1628 | MI->removeOperand(OpNo: Src0Idx); |
1629 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_AND_B32))); |
1630 | } else if (Src1Val == -1) { |
1631 | // y = and x, -1 => y = copy x |
1632 | MI->removeOperand(OpNo: Src1Idx); |
1633 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
1634 | } else |
1635 | return false; |
1636 | |
1637 | return true; |
1638 | } |
1639 | |
1640 | if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || |
1641 | Opc == AMDGPU::S_XOR_B32) { |
1642 | if (Src1Val == 0) { |
1643 | // y = xor x, 0 => y = copy x |
1644 | MI->removeOperand(OpNo: Src1Idx); |
1645 | mutateCopyOp(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
1646 | return true; |
1647 | } |
1648 | } |
1649 | |
1650 | return false; |
1651 | } |
1652 | |
1653 | // Try to fold an instruction into a simpler one |
1654 | bool SIFoldOperandsImpl::tryFoldCndMask(MachineInstr &MI) const { |
1655 | unsigned Opc = MI.getOpcode(); |
1656 | if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && |
1657 | Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) |
1658 | return false; |
1659 | |
1660 | MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
1661 | MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
1662 | if (!Src1->isIdenticalTo(Other: *Src0)) { |
1663 | std::optional<int64_t> Src1Imm = getImmOrMaterializedImm(Op&: *Src1); |
1664 | if (!Src1Imm) |
1665 | return false; |
1666 | |
1667 | std::optional<int64_t> Src0Imm = getImmOrMaterializedImm(Op&: *Src0); |
1668 | if (!Src0Imm || *Src0Imm != *Src1Imm) |
1669 | return false; |
1670 | } |
1671 | |
1672 | int Src1ModIdx = |
1673 | AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1_modifiers); |
1674 | int Src0ModIdx = |
1675 | AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src0_modifiers); |
1676 | if ((Src1ModIdx != -1 && MI.getOperand(i: Src1ModIdx).getImm() != 0) || |
1677 | (Src0ModIdx != -1 && MI.getOperand(i: Src0ModIdx).getImm() != 0)) |
1678 | return false; |
1679 | |
1680 | LLVM_DEBUG(dbgs() << "Folded " << MI << " into " ); |
1681 | auto &NewDesc = |
1682 | TII->get(Opcode: Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(IsScalar: false)); |
1683 | int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src2); |
1684 | if (Src2Idx != -1) |
1685 | MI.removeOperand(OpNo: Src2Idx); |
1686 | MI.removeOperand(OpNo: AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1)); |
1687 | if (Src1ModIdx != -1) |
1688 | MI.removeOperand(OpNo: Src1ModIdx); |
1689 | if (Src0ModIdx != -1) |
1690 | MI.removeOperand(OpNo: Src0ModIdx); |
1691 | mutateCopyOp(MI, NewDesc); |
1692 | LLVM_DEBUG(dbgs() << MI); |
1693 | return true; |
1694 | } |
1695 | |
1696 | bool SIFoldOperandsImpl::tryFoldZeroHighBits(MachineInstr &MI) const { |
1697 | if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && |
1698 | MI.getOpcode() != AMDGPU::V_AND_B32_e32) |
1699 | return false; |
1700 | |
1701 | std::optional<int64_t> Src0Imm = getImmOrMaterializedImm(Op&: MI.getOperand(i: 1)); |
1702 | if (!Src0Imm || *Src0Imm != 0xffff || !MI.getOperand(i: 2).isReg()) |
1703 | return false; |
1704 | |
1705 | Register Src1 = MI.getOperand(i: 2).getReg(); |
1706 | MachineInstr *SrcDef = MRI->getVRegDef(Reg: Src1); |
1707 | if (!ST->zeroesHigh16BitsOfDest(Opcode: SrcDef->getOpcode())) |
1708 | return false; |
1709 | |
1710 | Register Dst = MI.getOperand(i: 0).getReg(); |
1711 | MRI->replaceRegWith(FromReg: Dst, ToReg: Src1); |
1712 | if (!MI.getOperand(i: 2).isKill()) |
1713 | MRI->clearKillFlags(Reg: Src1); |
1714 | MI.eraseFromParent(); |
1715 | return true; |
1716 | } |
1717 | |
1718 | bool SIFoldOperandsImpl::foldInstOperand(MachineInstr &MI, |
1719 | const FoldableDef &OpToFold) const { |
1720 | // We need mutate the operands of new mov instructions to add implicit |
1721 | // uses of EXEC, but adding them invalidates the use_iterator, so defer |
1722 | // this. |
1723 | SmallVector<MachineInstr *, 4> CopiesToReplace; |
1724 | SmallVector<FoldCandidate, 4> FoldList; |
1725 | MachineOperand &Dst = MI.getOperand(i: 0); |
1726 | bool Changed = false; |
1727 | |
1728 | if (OpToFold.isImm()) { |
1729 | for (auto &UseMI : |
1730 | make_early_inc_range(Range: MRI->use_nodbg_instructions(Reg: Dst.getReg()))) { |
1731 | // Folding the immediate may reveal operations that can be constant |
1732 | // folded or replaced with a copy. This can happen for example after |
1733 | // frame indices are lowered to constants or from splitting 64-bit |
1734 | // constants. |
1735 | // |
1736 | // We may also encounter cases where one or both operands are |
1737 | // immediates materialized into a register, which would ordinarily not |
1738 | // be folded due to multiple uses or operand constraints. |
1739 | if (tryConstantFoldOp(MI: &UseMI)) { |
1740 | LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); |
1741 | Changed = true; |
1742 | } |
1743 | } |
1744 | } |
1745 | |
1746 | SmallVector<MachineOperand *, 4> UsesToProcess( |
1747 | llvm::make_pointer_range(Range: MRI->use_nodbg_operands(Reg: Dst.getReg()))); |
1748 | for (auto *U : UsesToProcess) { |
1749 | MachineInstr *UseMI = U->getParent(); |
1750 | |
1751 | FoldableDef SubOpToFold = OpToFold.getWithSubReg(TRI: *TRI, SubReg: U->getSubReg()); |
1752 | foldOperand(OpToFold: SubOpToFold, UseMI, UseOpIdx: UseMI->getOperandNo(I: U), FoldList, |
1753 | CopiesToReplace); |
1754 | } |
1755 | |
1756 | if (CopiesToReplace.empty() && FoldList.empty()) |
1757 | return Changed; |
1758 | |
1759 | MachineFunction *MF = MI.getParent()->getParent(); |
1760 | // Make sure we add EXEC uses to any new v_mov instructions created. |
1761 | for (MachineInstr *Copy : CopiesToReplace) |
1762 | Copy->addImplicitDefUseOperands(MF&: *MF); |
1763 | |
1764 | for (FoldCandidate &Fold : FoldList) { |
1765 | assert(!Fold.isReg() || Fold.Def.OpToFold); |
1766 | if (Fold.isReg() && Fold.getReg().isVirtual()) { |
1767 | Register Reg = Fold.getReg(); |
1768 | const MachineInstr *DefMI = Fold.Def.DefMI; |
1769 | if (DefMI->readsRegister(Reg: AMDGPU::EXEC, TRI) && |
1770 | execMayBeModifiedBeforeUse(MRI: *MRI, VReg: Reg, DefMI: *DefMI, UseMI: *Fold.UseMI)) |
1771 | continue; |
1772 | } |
1773 | if (updateOperand(Fold)) { |
1774 | // Clear kill flags. |
1775 | if (Fold.isReg()) { |
1776 | assert(Fold.Def.OpToFold && Fold.isReg()); |
1777 | // FIXME: Probably shouldn't bother trying to fold if not an |
1778 | // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR |
1779 | // copies. |
1780 | MRI->clearKillFlags(Reg: Fold.getReg()); |
1781 | } |
1782 | LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " |
1783 | << static_cast<int>(Fold.UseOpNo) << " of " |
1784 | << *Fold.UseMI); |
1785 | |
1786 | if (Fold.isImm() && tryConstantFoldOp(MI: Fold.UseMI)) { |
1787 | LLVM_DEBUG(dbgs() << "Constant folded " << *Fold.UseMI); |
1788 | Changed = true; |
1789 | } |
1790 | |
1791 | } else if (Fold.Commuted) { |
1792 | // Restoring instruction's original operand order if fold has failed. |
1793 | TII->commuteInstruction(MI&: *Fold.UseMI, NewMI: false); |
1794 | } |
1795 | } |
1796 | return true; |
1797 | } |
1798 | |
1799 | /// Fold %agpr = COPY (REG_SEQUENCE x_MOV_B32, ...) into REG_SEQUENCE |
1800 | /// (V_ACCVGPR_WRITE_B32_e64) ... depending on the reg_sequence input values. |
1801 | bool SIFoldOperandsImpl::foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const { |
1802 | // It is very tricky to store a value into an AGPR. v_accvgpr_write_b32 can |
1803 | // only accept VGPR or inline immediate. Recreate a reg_sequence with its |
1804 | // initializers right here, so we will rematerialize immediates and avoid |
1805 | // copies via different reg classes. |
1806 | const TargetRegisterClass *DefRC = |
1807 | MRI->getRegClass(Reg: CopyMI->getOperand(i: 0).getReg()); |
1808 | if (!TRI->isAGPRClass(RC: DefRC)) |
1809 | return false; |
1810 | |
1811 | Register UseReg = CopyMI->getOperand(i: 1).getReg(); |
1812 | MachineInstr *RegSeq = MRI->getVRegDef(Reg: UseReg); |
1813 | if (!RegSeq || !RegSeq->isRegSequence()) |
1814 | return false; |
1815 | |
1816 | const DebugLoc &DL = CopyMI->getDebugLoc(); |
1817 | MachineBasicBlock &MBB = *CopyMI->getParent(); |
1818 | |
1819 | MachineInstrBuilder B(*MBB.getParent(), CopyMI); |
1820 | DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; |
1821 | |
1822 | const TargetRegisterClass *UseRC = |
1823 | MRI->getRegClass(Reg: CopyMI->getOperand(i: 1).getReg()); |
1824 | |
1825 | // Value, subregindex for new REG_SEQUENCE |
1826 | SmallVector<std::pair<MachineOperand *, unsigned>, 32> NewDefs; |
1827 | |
1828 | unsigned NumRegSeqOperands = RegSeq->getNumOperands(); |
1829 | unsigned NumFoldable = 0; |
1830 | |
1831 | for (unsigned I = 1; I != NumRegSeqOperands; I += 2) { |
1832 | MachineOperand &RegOp = RegSeq->getOperand(i: I); |
1833 | unsigned SubRegIdx = RegSeq->getOperand(i: I + 1).getImm(); |
1834 | |
1835 | if (RegOp.getSubReg()) { |
1836 | // TODO: Handle subregister compose |
1837 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
1838 | continue; |
1839 | } |
1840 | |
1841 | MachineOperand *Lookup = lookUpCopyChain(TII: *TII, MRI: *MRI, SrcReg: RegOp.getReg()); |
1842 | if (!Lookup) |
1843 | Lookup = &RegOp; |
1844 | |
1845 | if (Lookup->isImm()) { |
1846 | // Check if this is an agpr_32 subregister. |
1847 | const TargetRegisterClass *DestSuperRC = TRI->getMatchingSuperRegClass( |
1848 | A: DefRC, B: &AMDGPU::AGPR_32RegClass, Idx: SubRegIdx); |
1849 | if (DestSuperRC && |
1850 | TII->isInlineConstant(MO: *Lookup, OperandType: AMDGPU::OPERAND_REG_INLINE_C_INT32)) { |
1851 | ++NumFoldable; |
1852 | NewDefs.emplace_back(Args&: Lookup, Args&: SubRegIdx); |
1853 | continue; |
1854 | } |
1855 | } |
1856 | |
1857 | const TargetRegisterClass *InputRC = |
1858 | Lookup->isReg() ? MRI->getRegClass(Reg: Lookup->getReg()) |
1859 | : MRI->getRegClass(Reg: RegOp.getReg()); |
1860 | |
1861 | // TODO: Account for Lookup->getSubReg() |
1862 | |
1863 | // If we can't find a matching super class, this is an SGPR->AGPR or |
1864 | // VGPR->AGPR subreg copy (or something constant-like we have to materialize |
1865 | // in the AGPR). We can't directly copy from SGPR to AGPR on gfx908, so we |
1866 | // want to rewrite to copy to an intermediate VGPR class. |
1867 | const TargetRegisterClass *MatchRC = |
1868 | TRI->getMatchingSuperRegClass(A: DefRC, B: InputRC, Idx: SubRegIdx); |
1869 | if (!MatchRC) { |
1870 | ++NumFoldable; |
1871 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
1872 | continue; |
1873 | } |
1874 | |
1875 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
1876 | } |
1877 | |
1878 | // Do not clone a reg_sequence and merely change the result register class. |
1879 | if (NumFoldable == 0) |
1880 | return false; |
1881 | |
1882 | CopyMI->setDesc(TII->get(Opcode: AMDGPU::REG_SEQUENCE)); |
1883 | for (unsigned I = CopyMI->getNumOperands() - 1; I > 0; --I) |
1884 | CopyMI->removeOperand(OpNo: I); |
1885 | |
1886 | for (auto [Def, DestSubIdx] : NewDefs) { |
1887 | if (!Def->isReg()) { |
1888 | // TODO: Should we use single write for each repeated value like in |
1889 | // register case? |
1890 | Register Tmp = MRI->createVirtualRegister(RegClass: &AMDGPU::AGPR_32RegClass); |
1891 | BuildMI(BB&: MBB, I: CopyMI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg: Tmp) |
1892 | .add(MO: *Def); |
1893 | B.addReg(RegNo: Tmp); |
1894 | } else { |
1895 | TargetInstrInfo::RegSubRegPair Src = getRegSubRegPair(O: *Def); |
1896 | Def->setIsKill(false); |
1897 | |
1898 | Register &VGPRCopy = VGPRCopies[Src]; |
1899 | if (!VGPRCopy) { |
1900 | const TargetRegisterClass *VGPRUseSubRC = |
1901 | TRI->getSubRegisterClass(UseRC, DestSubIdx); |
1902 | |
1903 | // We cannot build a reg_sequence out of the same registers, they |
1904 | // must be copied. Better do it here before copyPhysReg() created |
1905 | // several reads to do the AGPR->VGPR->AGPR copy. |
1906 | |
1907 | // Direct copy from SGPR to AGPR is not possible on gfx908. To avoid |
1908 | // creation of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() |
1909 | // later, create a copy here and track if we already have such a copy. |
1910 | if (TRI->getSubRegisterClass(MRI->getRegClass(Reg: Src.Reg), Src.SubReg) != |
1911 | VGPRUseSubRC) { |
1912 | VGPRCopy = MRI->createVirtualRegister(RegClass: VGPRUseSubRC); |
1913 | BuildMI(BB&: MBB, I: CopyMI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: VGPRCopy).add(MO: *Def); |
1914 | B.addReg(RegNo: VGPRCopy); |
1915 | } else { |
1916 | // If it is already a VGPR, do not copy the register. |
1917 | B.add(MO: *Def); |
1918 | } |
1919 | } else { |
1920 | B.addReg(RegNo: VGPRCopy); |
1921 | } |
1922 | } |
1923 | |
1924 | B.addImm(Val: DestSubIdx); |
1925 | } |
1926 | |
1927 | LLVM_DEBUG(dbgs() << "Folded " << *CopyMI); |
1928 | return true; |
1929 | } |
1930 | |
1931 | bool SIFoldOperandsImpl::tryFoldFoldableCopy( |
1932 | MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { |
1933 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1934 | // Specially track simple redefs of m0 to the same value in a block, so we |
1935 | // can erase the later ones. |
1936 | if (DstReg == AMDGPU::M0) { |
1937 | MachineOperand &NewM0Val = MI.getOperand(i: 1); |
1938 | if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(Other: NewM0Val)) { |
1939 | MI.eraseFromParent(); |
1940 | return true; |
1941 | } |
1942 | |
1943 | // We aren't tracking other physical registers |
1944 | CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) |
1945 | ? nullptr |
1946 | : &NewM0Val; |
1947 | return false; |
1948 | } |
1949 | |
1950 | MachineOperand *OpToFoldPtr; |
1951 | if (MI.getOpcode() == AMDGPU::V_MOV_B16_t16_e64) { |
1952 | // Folding when any src_modifiers are non-zero is unsupported |
1953 | if (TII->hasAnyModifiersSet(MI)) |
1954 | return false; |
1955 | OpToFoldPtr = &MI.getOperand(i: 2); |
1956 | } else |
1957 | OpToFoldPtr = &MI.getOperand(i: 1); |
1958 | MachineOperand &OpToFold = *OpToFoldPtr; |
1959 | bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
1960 | |
1961 | // FIXME: We could also be folding things like TargetIndexes. |
1962 | if (!FoldingImm && !OpToFold.isReg()) |
1963 | return false; |
1964 | |
1965 | if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) |
1966 | return false; |
1967 | |
1968 | // Prevent folding operands backwards in the function. For example, |
1969 | // the COPY opcode must not be replaced by 1 in this example: |
1970 | // |
1971 | // %3 = COPY %vgpr0; VGPR_32:%3 |
1972 | // ... |
1973 | // %vgpr0 = V_MOV_B32_e32 1, implicit %exec |
1974 | if (!DstReg.isVirtual()) |
1975 | return false; |
1976 | |
1977 | const TargetRegisterClass *DstRC = |
1978 | MRI->getRegClass(Reg: MI.getOperand(i: 0).getReg()); |
1979 | |
1980 | // True16: Fix malformed 16-bit sgpr COPY produced by peephole-opt |
1981 | // Can remove this code if proper 16-bit SGPRs are implemented |
1982 | // Example: Pre-peephole-opt |
1983 | // %29:sgpr_lo16 = COPY %16.lo16:sreg_32 |
1984 | // %32:sreg_32 = COPY %29:sgpr_lo16 |
1985 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
1986 | // Post-peephole-opt and DCE |
1987 | // %32:sreg_32 = COPY %16.lo16:sreg_32 |
1988 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
1989 | // After this transform |
1990 | // %32:sreg_32 = COPY %16:sreg_32 |
1991 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
1992 | // After the fold operands pass |
1993 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %16:sreg_32 |
1994 | if (MI.getOpcode() == AMDGPU::COPY && OpToFold.isReg() && |
1995 | OpToFold.getSubReg()) { |
1996 | if (DstRC == &AMDGPU::SReg_32RegClass && |
1997 | DstRC == MRI->getRegClass(Reg: OpToFold.getReg())) { |
1998 | assert(OpToFold.getSubReg() == AMDGPU::lo16); |
1999 | OpToFold.setSubReg(0); |
2000 | } |
2001 | } |
2002 | |
2003 | // Fold copy to AGPR through reg_sequence |
2004 | // TODO: Handle with subregister extract |
2005 | if (OpToFold.isReg() && MI.isCopy() && !MI.getOperand(i: 1).getSubReg()) { |
2006 | if (foldCopyToAGPRRegSequence(CopyMI: &MI)) |
2007 | return true; |
2008 | } |
2009 | |
2010 | FoldableDef Def(OpToFold, DstRC); |
2011 | bool Changed = foldInstOperand(MI, OpToFold: Def); |
2012 | |
2013 | // If we managed to fold all uses of this copy then we might as well |
2014 | // delete it now. |
2015 | // The only reason we need to follow chains of copies here is that |
2016 | // tryFoldRegSequence looks forward through copies before folding a |
2017 | // REG_SEQUENCE into its eventual users. |
2018 | auto *InstToErase = &MI; |
2019 | while (MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) { |
2020 | auto &SrcOp = InstToErase->getOperand(i: 1); |
2021 | auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); |
2022 | InstToErase->eraseFromParent(); |
2023 | Changed = true; |
2024 | InstToErase = nullptr; |
2025 | if (!SrcReg || SrcReg.isPhysical()) |
2026 | break; |
2027 | InstToErase = MRI->getVRegDef(Reg: SrcReg); |
2028 | if (!InstToErase || !TII->isFoldableCopy(MI: *InstToErase)) |
2029 | break; |
2030 | } |
2031 | |
2032 | if (InstToErase && InstToErase->isRegSequence() && |
2033 | MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) { |
2034 | InstToErase->eraseFromParent(); |
2035 | Changed = true; |
2036 | } |
2037 | |
2038 | if (Changed) |
2039 | return true; |
2040 | |
2041 | // Run this after foldInstOperand to avoid turning scalar additions into |
2042 | // vector additions when the result scalar result could just be folded into |
2043 | // the user(s). |
2044 | return OpToFold.isReg() && |
2045 | foldCopyToVGPROfScalarAddOfFrameIndex(DstReg, SrcReg: OpToFold.getReg(), MI); |
2046 | } |
2047 | |
2048 | // Clamp patterns are canonically selected to v_max_* instructions, so only |
2049 | // handle them. |
2050 | const MachineOperand * |
2051 | SIFoldOperandsImpl::isClamp(const MachineInstr &MI) const { |
2052 | unsigned Op = MI.getOpcode(); |
2053 | switch (Op) { |
2054 | case AMDGPU::V_MAX_F32_e64: |
2055 | case AMDGPU::V_MAX_F16_e64: |
2056 | case AMDGPU::V_MAX_F16_t16_e64: |
2057 | case AMDGPU::V_MAX_F16_fake16_e64: |
2058 | case AMDGPU::V_MAX_F64_e64: |
2059 | case AMDGPU::V_MAX_NUM_F64_e64: |
2060 | case AMDGPU::V_PK_MAX_F16: { |
2061 | if (MI.mayRaiseFPException()) |
2062 | return nullptr; |
2063 | |
2064 | if (!TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::clamp)->getImm()) |
2065 | return nullptr; |
2066 | |
2067 | // Make sure sources are identical. |
2068 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
2069 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
2070 | if (!Src0->isReg() || !Src1->isReg() || |
2071 | Src0->getReg() != Src1->getReg() || |
2072 | Src0->getSubReg() != Src1->getSubReg() || |
2073 | Src0->getSubReg() != AMDGPU::NoSubRegister) |
2074 | return nullptr; |
2075 | |
2076 | // Can't fold up if we have modifiers. |
2077 | if (TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod)) |
2078 | return nullptr; |
2079 | |
2080 | unsigned Src0Mods |
2081 | = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0_modifiers)->getImm(); |
2082 | unsigned Src1Mods |
2083 | = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1_modifiers)->getImm(); |
2084 | |
2085 | // Having a 0 op_sel_hi would require swizzling the output in the source |
2086 | // instruction, which we can't do. |
2087 | unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 |
2088 | : 0u; |
2089 | if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) |
2090 | return nullptr; |
2091 | return Src0; |
2092 | } |
2093 | default: |
2094 | return nullptr; |
2095 | } |
2096 | } |
2097 | |
2098 | // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. |
2099 | bool SIFoldOperandsImpl::tryFoldClamp(MachineInstr &MI) { |
2100 | const MachineOperand *ClampSrc = isClamp(MI); |
2101 | if (!ClampSrc || !MRI->hasOneNonDBGUser(RegNo: ClampSrc->getReg())) |
2102 | return false; |
2103 | |
2104 | if (!ClampSrc->getReg().isVirtual()) |
2105 | return false; |
2106 | |
2107 | // Look through COPY. COPY only observed with True16. |
2108 | Register DefSrcReg = TRI->lookThruCopyLike(SrcReg: ClampSrc->getReg(), MRI); |
2109 | MachineInstr *Def = |
2110 | MRI->getVRegDef(Reg: DefSrcReg.isVirtual() ? DefSrcReg : ClampSrc->getReg()); |
2111 | |
2112 | // The type of clamp must be compatible. |
2113 | if (TII->getClampMask(MI: *Def) != TII->getClampMask(MI)) |
2114 | return false; |
2115 | |
2116 | if (Def->mayRaiseFPException()) |
2117 | return false; |
2118 | |
2119 | MachineOperand *DefClamp = TII->getNamedOperand(MI&: *Def, OperandName: AMDGPU::OpName::clamp); |
2120 | if (!DefClamp) |
2121 | return false; |
2122 | |
2123 | LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); |
2124 | |
2125 | // Clamp is applied after omod, so it is OK if omod is set. |
2126 | DefClamp->setImm(1); |
2127 | |
2128 | Register DefReg = Def->getOperand(i: 0).getReg(); |
2129 | Register MIDstReg = MI.getOperand(i: 0).getReg(); |
2130 | if (TRI->isSGPRReg(MRI: *MRI, Reg: DefReg)) { |
2131 | // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* |
2132 | // instruction with a VGPR dst. |
2133 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::COPY), |
2134 | DestReg: MIDstReg) |
2135 | .addReg(RegNo: DefReg); |
2136 | } else { |
2137 | MRI->replaceRegWith(FromReg: MIDstReg, ToReg: DefReg); |
2138 | } |
2139 | MI.eraseFromParent(); |
2140 | |
2141 | // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac |
2142 | // instruction, so we might as well convert it to the more flexible VOP3-only |
2143 | // mad/fma form. |
2144 | if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr)) |
2145 | Def->eraseFromParent(); |
2146 | |
2147 | return true; |
2148 | } |
2149 | |
2150 | static int getOModValue(unsigned Opc, int64_t Val) { |
2151 | switch (Opc) { |
2152 | case AMDGPU::V_MUL_F64_e64: |
2153 | case AMDGPU::V_MUL_F64_pseudo_e64: { |
2154 | switch (Val) { |
2155 | case 0x3fe0000000000000: // 0.5 |
2156 | return SIOutMods::DIV2; |
2157 | case 0x4000000000000000: // 2.0 |
2158 | return SIOutMods::MUL2; |
2159 | case 0x4010000000000000: // 4.0 |
2160 | return SIOutMods::MUL4; |
2161 | default: |
2162 | return SIOutMods::NONE; |
2163 | } |
2164 | } |
2165 | case AMDGPU::V_MUL_F32_e64: { |
2166 | switch (static_cast<uint32_t>(Val)) { |
2167 | case 0x3f000000: // 0.5 |
2168 | return SIOutMods::DIV2; |
2169 | case 0x40000000: // 2.0 |
2170 | return SIOutMods::MUL2; |
2171 | case 0x40800000: // 4.0 |
2172 | return SIOutMods::MUL4; |
2173 | default: |
2174 | return SIOutMods::NONE; |
2175 | } |
2176 | } |
2177 | case AMDGPU::V_MUL_F16_e64: |
2178 | case AMDGPU::V_MUL_F16_t16_e64: |
2179 | case AMDGPU::V_MUL_F16_fake16_e64: { |
2180 | switch (static_cast<uint16_t>(Val)) { |
2181 | case 0x3800: // 0.5 |
2182 | return SIOutMods::DIV2; |
2183 | case 0x4000: // 2.0 |
2184 | return SIOutMods::MUL2; |
2185 | case 0x4400: // 4.0 |
2186 | return SIOutMods::MUL4; |
2187 | default: |
2188 | return SIOutMods::NONE; |
2189 | } |
2190 | } |
2191 | default: |
2192 | llvm_unreachable("invalid mul opcode" ); |
2193 | } |
2194 | } |
2195 | |
2196 | // FIXME: Does this really not support denormals with f16? |
2197 | // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not |
2198 | // handled, so will anything other than that break? |
2199 | std::pair<const MachineOperand *, int> |
2200 | SIFoldOperandsImpl::isOMod(const MachineInstr &MI) const { |
2201 | unsigned Op = MI.getOpcode(); |
2202 | switch (Op) { |
2203 | case AMDGPU::V_MUL_F64_e64: |
2204 | case AMDGPU::V_MUL_F64_pseudo_e64: |
2205 | case AMDGPU::V_MUL_F32_e64: |
2206 | case AMDGPU::V_MUL_F16_t16_e64: |
2207 | case AMDGPU::V_MUL_F16_fake16_e64: |
2208 | case AMDGPU::V_MUL_F16_e64: { |
2209 | // If output denormals are enabled, omod is ignored. |
2210 | if ((Op == AMDGPU::V_MUL_F32_e64 && |
2211 | MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || |
2212 | ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || |
2213 | Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || |
2214 | Op == AMDGPU::V_MUL_F16_fake16_e64) && |
2215 | MFI->getMode().FP64FP16Denormals.Output != |
2216 | DenormalMode::PreserveSign) || |
2217 | MI.mayRaiseFPException()) |
2218 | return std::pair(nullptr, SIOutMods::NONE); |
2219 | |
2220 | const MachineOperand *RegOp = nullptr; |
2221 | const MachineOperand *ImmOp = nullptr; |
2222 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
2223 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
2224 | if (Src0->isImm()) { |
2225 | ImmOp = Src0; |
2226 | RegOp = Src1; |
2227 | } else if (Src1->isImm()) { |
2228 | ImmOp = Src1; |
2229 | RegOp = Src0; |
2230 | } else |
2231 | return std::pair(nullptr, SIOutMods::NONE); |
2232 | |
2233 | int OMod = getOModValue(Opc: Op, Val: ImmOp->getImm()); |
2234 | if (OMod == SIOutMods::NONE || |
2235 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src0_modifiers) || |
2236 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src1_modifiers) || |
2237 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod) || |
2238 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::clamp)) |
2239 | return std::pair(nullptr, SIOutMods::NONE); |
2240 | |
2241 | return std::pair(RegOp, OMod); |
2242 | } |
2243 | case AMDGPU::V_ADD_F64_e64: |
2244 | case AMDGPU::V_ADD_F64_pseudo_e64: |
2245 | case AMDGPU::V_ADD_F32_e64: |
2246 | case AMDGPU::V_ADD_F16_e64: |
2247 | case AMDGPU::V_ADD_F16_t16_e64: |
2248 | case AMDGPU::V_ADD_F16_fake16_e64: { |
2249 | // If output denormals are enabled, omod is ignored. |
2250 | if ((Op == AMDGPU::V_ADD_F32_e64 && |
2251 | MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || |
2252 | ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || |
2253 | Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || |
2254 | Op == AMDGPU::V_ADD_F16_fake16_e64) && |
2255 | MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) |
2256 | return std::pair(nullptr, SIOutMods::NONE); |
2257 | |
2258 | // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x |
2259 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
2260 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
2261 | |
2262 | if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && |
2263 | Src0->getSubReg() == Src1->getSubReg() && |
2264 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src0_modifiers) && |
2265 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src1_modifiers) && |
2266 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::clamp) && |
2267 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod)) |
2268 | return std::pair(Src0, SIOutMods::MUL2); |
2269 | |
2270 | return std::pair(nullptr, SIOutMods::NONE); |
2271 | } |
2272 | default: |
2273 | return std::pair(nullptr, SIOutMods::NONE); |
2274 | } |
2275 | } |
2276 | |
2277 | // FIXME: Does this need to check IEEE bit on function? |
2278 | bool SIFoldOperandsImpl::tryFoldOMod(MachineInstr &MI) { |
2279 | const MachineOperand *RegOp; |
2280 | int OMod; |
2281 | std::tie(args&: RegOp, args&: OMod) = isOMod(MI); |
2282 | if (OMod == SIOutMods::NONE || !RegOp->isReg() || |
2283 | RegOp->getSubReg() != AMDGPU::NoSubRegister || |
2284 | !MRI->hasOneNonDBGUser(RegNo: RegOp->getReg())) |
2285 | return false; |
2286 | |
2287 | MachineInstr *Def = MRI->getVRegDef(Reg: RegOp->getReg()); |
2288 | MachineOperand *DefOMod = TII->getNamedOperand(MI&: *Def, OperandName: AMDGPU::OpName::omod); |
2289 | if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) |
2290 | return false; |
2291 | |
2292 | if (Def->mayRaiseFPException()) |
2293 | return false; |
2294 | |
2295 | // Clamp is applied after omod. If the source already has clamp set, don't |
2296 | // fold it. |
2297 | if (TII->hasModifiersSet(MI: *Def, OpName: AMDGPU::OpName::clamp)) |
2298 | return false; |
2299 | |
2300 | LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); |
2301 | |
2302 | DefOMod->setImm(OMod); |
2303 | MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), ToReg: Def->getOperand(i: 0).getReg()); |
2304 | // Kill flags can be wrong if we replaced a def inside a loop with a def |
2305 | // outside the loop. |
2306 | MRI->clearKillFlags(Reg: Def->getOperand(i: 0).getReg()); |
2307 | MI.eraseFromParent(); |
2308 | |
2309 | // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac |
2310 | // instruction, so we might as well convert it to the more flexible VOP3-only |
2311 | // mad/fma form. |
2312 | if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr)) |
2313 | Def->eraseFromParent(); |
2314 | |
2315 | return true; |
2316 | } |
2317 | |
2318 | // Try to fold a reg_sequence with vgpr output and agpr inputs into an |
2319 | // instruction which can take an agpr. So far that means a store. |
2320 | bool SIFoldOperandsImpl::tryFoldRegSequence(MachineInstr &MI) { |
2321 | assert(MI.isRegSequence()); |
2322 | auto Reg = MI.getOperand(i: 0).getReg(); |
2323 | |
2324 | if (!ST->hasGFX90AInsts() || !TRI->isVGPR(MRI: *MRI, Reg) || |
2325 | !MRI->hasOneNonDBGUse(RegNo: Reg)) |
2326 | return false; |
2327 | |
2328 | SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; |
2329 | if (!getRegSeqInit(Defs, UseReg: Reg)) |
2330 | return false; |
2331 | |
2332 | for (auto &[Op, SubIdx] : Defs) { |
2333 | if (!Op->isReg()) |
2334 | return false; |
2335 | if (TRI->isAGPR(MRI: *MRI, Reg: Op->getReg())) |
2336 | continue; |
2337 | // Maybe this is a COPY from AREG |
2338 | const MachineInstr *SubDef = MRI->getVRegDef(Reg: Op->getReg()); |
2339 | if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(i: 1).getSubReg()) |
2340 | return false; |
2341 | if (!TRI->isAGPR(MRI: *MRI, Reg: SubDef->getOperand(i: 1).getReg())) |
2342 | return false; |
2343 | } |
2344 | |
2345 | MachineOperand *Op = &*MRI->use_nodbg_begin(RegNo: Reg); |
2346 | MachineInstr *UseMI = Op->getParent(); |
2347 | while (UseMI->isCopy() && !Op->getSubReg()) { |
2348 | Reg = UseMI->getOperand(i: 0).getReg(); |
2349 | if (!TRI->isVGPR(MRI: *MRI, Reg) || !MRI->hasOneNonDBGUse(RegNo: Reg)) |
2350 | return false; |
2351 | Op = &*MRI->use_nodbg_begin(RegNo: Reg); |
2352 | UseMI = Op->getParent(); |
2353 | } |
2354 | |
2355 | if (Op->getSubReg()) |
2356 | return false; |
2357 | |
2358 | unsigned OpIdx = Op - &UseMI->getOperand(i: 0); |
2359 | const MCInstrDesc &InstDesc = UseMI->getDesc(); |
2360 | const TargetRegisterClass *OpRC = |
2361 | TII->getRegClass(TID: InstDesc, OpNum: OpIdx, TRI, MF: *MI.getMF()); |
2362 | if (!OpRC || !TRI->isVectorSuperClass(RC: OpRC)) |
2363 | return false; |
2364 | |
2365 | const auto *NewDstRC = TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg)); |
2366 | auto Dst = MRI->createVirtualRegister(RegClass: NewDstRC); |
2367 | auto RS = BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
2368 | MCID: TII->get(Opcode: AMDGPU::REG_SEQUENCE), DestReg: Dst); |
2369 | |
2370 | for (auto &[Def, SubIdx] : Defs) { |
2371 | Def->setIsKill(false); |
2372 | if (TRI->isAGPR(MRI: *MRI, Reg: Def->getReg())) { |
2373 | RS.add(MO: *Def); |
2374 | } else { // This is a copy |
2375 | MachineInstr *SubDef = MRI->getVRegDef(Reg: Def->getReg()); |
2376 | SubDef->getOperand(i: 1).setIsKill(false); |
2377 | RS.addReg(RegNo: SubDef->getOperand(i: 1).getReg(), flags: 0, SubReg: Def->getSubReg()); |
2378 | } |
2379 | RS.addImm(Val: SubIdx); |
2380 | } |
2381 | |
2382 | Op->setReg(Dst); |
2383 | if (!TII->isOperandLegal(MI: *UseMI, OpIdx, MO: Op)) { |
2384 | Op->setReg(Reg); |
2385 | RS->eraseFromParent(); |
2386 | return false; |
2387 | } |
2388 | |
2389 | LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); |
2390 | |
2391 | // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, |
2392 | // in which case we can erase them all later in runOnMachineFunction. |
2393 | if (MRI->use_nodbg_empty(RegNo: MI.getOperand(i: 0).getReg())) |
2394 | MI.eraseFromParent(); |
2395 | return true; |
2396 | } |
2397 | |
2398 | /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and |
2399 | /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg |
2400 | static bool isAGPRCopy(const SIRegisterInfo &TRI, |
2401 | const MachineRegisterInfo &MRI, const MachineInstr &Copy, |
2402 | Register &OutReg, unsigned &OutSubReg) { |
2403 | assert(Copy.isCopy()); |
2404 | |
2405 | const MachineOperand &CopySrc = Copy.getOperand(i: 1); |
2406 | Register CopySrcReg = CopySrc.getReg(); |
2407 | if (!CopySrcReg.isVirtual()) |
2408 | return false; |
2409 | |
2410 | // Common case: copy from AGPR directly, e.g. |
2411 | // %1:vgpr_32 = COPY %0:agpr_32 |
2412 | if (TRI.isAGPR(MRI, Reg: CopySrcReg)) { |
2413 | OutReg = CopySrcReg; |
2414 | OutSubReg = CopySrc.getSubReg(); |
2415 | return true; |
2416 | } |
2417 | |
2418 | // Sometimes it can also involve two copies, e.g. |
2419 | // %1:vgpr_256 = COPY %0:agpr_256 |
2420 | // %2:vgpr_32 = COPY %1:vgpr_256.sub0 |
2421 | const MachineInstr *CopySrcDef = MRI.getVRegDef(Reg: CopySrcReg); |
2422 | if (!CopySrcDef || !CopySrcDef->isCopy()) |
2423 | return false; |
2424 | |
2425 | const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(i: 1); |
2426 | Register OtherCopySrcReg = OtherCopySrc.getReg(); |
2427 | if (!OtherCopySrcReg.isVirtual() || |
2428 | CopySrcDef->getOperand(i: 0).getSubReg() != AMDGPU::NoSubRegister || |
2429 | OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || |
2430 | !TRI.isAGPR(MRI, Reg: OtherCopySrcReg)) |
2431 | return false; |
2432 | |
2433 | OutReg = OtherCopySrcReg; |
2434 | OutSubReg = CopySrc.getSubReg(); |
2435 | return true; |
2436 | } |
2437 | |
2438 | // Try to hoist an AGPR to VGPR copy across a PHI. |
2439 | // This should allow folding of an AGPR into a consumer which may support it. |
2440 | // |
2441 | // Example 1: LCSSA PHI |
2442 | // loop: |
2443 | // %1:vreg = COPY %0:areg |
2444 | // exit: |
2445 | // %2:vreg = PHI %1:vreg, %loop |
2446 | // => |
2447 | // loop: |
2448 | // exit: |
2449 | // %1:areg = PHI %0:areg, %loop |
2450 | // %2:vreg = COPY %1:areg |
2451 | // |
2452 | // Example 2: PHI with multiple incoming values: |
2453 | // entry: |
2454 | // %1:vreg = GLOBAL_LOAD(..) |
2455 | // loop: |
2456 | // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop |
2457 | // %3:areg = COPY %2:vreg |
2458 | // %4:areg = (instr using %3:areg) |
2459 | // %5:vreg = COPY %4:areg |
2460 | // => |
2461 | // entry: |
2462 | // %1:vreg = GLOBAL_LOAD(..) |
2463 | // %2:areg = COPY %1:vreg |
2464 | // loop: |
2465 | // %3:areg = PHI %2:areg, %entry, %X:areg, |
2466 | // %4:areg = (instr using %3:areg) |
2467 | bool SIFoldOperandsImpl::tryFoldPhiAGPR(MachineInstr &PHI) { |
2468 | assert(PHI.isPHI()); |
2469 | |
2470 | Register PhiOut = PHI.getOperand(i: 0).getReg(); |
2471 | if (!TRI->isVGPR(MRI: *MRI, Reg: PhiOut)) |
2472 | return false; |
2473 | |
2474 | // Iterate once over all incoming values of the PHI to check if this PHI is |
2475 | // eligible, and determine the exact AGPR RC we'll target. |
2476 | const TargetRegisterClass *ARC = nullptr; |
2477 | for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { |
2478 | MachineOperand &MO = PHI.getOperand(i: K); |
2479 | MachineInstr *Copy = MRI->getVRegDef(Reg: MO.getReg()); |
2480 | if (!Copy || !Copy->isCopy()) |
2481 | continue; |
2482 | |
2483 | Register AGPRSrc; |
2484 | unsigned AGPRRegMask = AMDGPU::NoSubRegister; |
2485 | if (!isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Copy, OutReg&: AGPRSrc, OutSubReg&: AGPRRegMask)) |
2486 | continue; |
2487 | |
2488 | const TargetRegisterClass *CopyInRC = MRI->getRegClass(Reg: AGPRSrc); |
2489 | if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) |
2490 | CopyInRC = SubRC; |
2491 | |
2492 | if (ARC && !ARC->hasSubClassEq(RC: CopyInRC)) |
2493 | return false; |
2494 | ARC = CopyInRC; |
2495 | } |
2496 | |
2497 | if (!ARC) |
2498 | return false; |
2499 | |
2500 | bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); |
2501 | |
2502 | // Rewrite the PHI's incoming values to ARC. |
2503 | LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); |
2504 | for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { |
2505 | MachineOperand &MO = PHI.getOperand(i: K); |
2506 | Register Reg = MO.getReg(); |
2507 | |
2508 | MachineBasicBlock::iterator InsertPt; |
2509 | MachineBasicBlock *InsertMBB = nullptr; |
2510 | |
2511 | // Look at the def of Reg, ignoring all copies. |
2512 | unsigned CopyOpc = AMDGPU::COPY; |
2513 | if (MachineInstr *Def = MRI->getVRegDef(Reg)) { |
2514 | |
2515 | // Look at pre-existing COPY instructions from ARC: Steal the operand. If |
2516 | // the copy was single-use, it will be removed by DCE later. |
2517 | if (Def->isCopy()) { |
2518 | Register AGPRSrc; |
2519 | unsigned AGPRSubReg = AMDGPU::NoSubRegister; |
2520 | if (isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Def, OutReg&: AGPRSrc, OutSubReg&: AGPRSubReg)) { |
2521 | MO.setReg(AGPRSrc); |
2522 | MO.setSubReg(AGPRSubReg); |
2523 | continue; |
2524 | } |
2525 | |
2526 | // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on |
2527 | // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try |
2528 | // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which |
2529 | // is unlikely to be profitable. |
2530 | // |
2531 | // Note that V_ACCVGPR_WRITE is only used for AGPR_32. |
2532 | MachineOperand &CopyIn = Def->getOperand(i: 1); |
2533 | if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(RegNo: Reg) && |
2534 | TRI->isSGPRReg(MRI: *MRI, Reg: CopyIn.getReg())) |
2535 | CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; |
2536 | } |
2537 | |
2538 | InsertMBB = Def->getParent(); |
2539 | InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(I: ++Def->getIterator()); |
2540 | } else { |
2541 | InsertMBB = PHI.getOperand(i: MO.getOperandNo() + 1).getMBB(); |
2542 | InsertPt = InsertMBB->getFirstTerminator(); |
2543 | } |
2544 | |
2545 | Register NewReg = MRI->createVirtualRegister(RegClass: ARC); |
2546 | MachineInstr *MI = BuildMI(BB&: *InsertMBB, I: InsertPt, MIMD: PHI.getDebugLoc(), |
2547 | MCID: TII->get(Opcode: CopyOpc), DestReg: NewReg) |
2548 | .addReg(RegNo: Reg); |
2549 | MO.setReg(NewReg); |
2550 | |
2551 | (void)MI; |
2552 | LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); |
2553 | } |
2554 | |
2555 | // Replace the PHI's result with a new register. |
2556 | Register NewReg = MRI->createVirtualRegister(RegClass: ARC); |
2557 | PHI.getOperand(i: 0).setReg(NewReg); |
2558 | |
2559 | // COPY that new register back to the original PhiOut register. This COPY will |
2560 | // usually be folded out later. |
2561 | MachineBasicBlock *MBB = PHI.getParent(); |
2562 | BuildMI(BB&: *MBB, I: MBB->getFirstNonPHI(), MIMD: PHI.getDebugLoc(), |
2563 | MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: PhiOut) |
2564 | .addReg(RegNo: NewReg); |
2565 | |
2566 | LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); |
2567 | return true; |
2568 | } |
2569 | |
2570 | // Attempt to convert VGPR load to an AGPR load. |
2571 | bool SIFoldOperandsImpl::tryFoldLoad(MachineInstr &MI) { |
2572 | assert(MI.mayLoad()); |
2573 | if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) |
2574 | return false; |
2575 | |
2576 | MachineOperand &Def = MI.getOperand(i: 0); |
2577 | if (!Def.isDef()) |
2578 | return false; |
2579 | |
2580 | Register DefReg = Def.getReg(); |
2581 | |
2582 | if (DefReg.isPhysical() || !TRI->isVGPR(MRI: *MRI, Reg: DefReg)) |
2583 | return false; |
2584 | |
2585 | SmallVector<const MachineInstr *, 8> Users( |
2586 | llvm::make_pointer_range(Range: MRI->use_nodbg_instructions(Reg: DefReg))); |
2587 | SmallVector<Register, 8> MoveRegs; |
2588 | |
2589 | if (Users.empty()) |
2590 | return false; |
2591 | |
2592 | // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. |
2593 | while (!Users.empty()) { |
2594 | const MachineInstr *I = Users.pop_back_val(); |
2595 | if (!I->isCopy() && !I->isRegSequence()) |
2596 | return false; |
2597 | Register DstReg = I->getOperand(i: 0).getReg(); |
2598 | // Physical registers may have more than one instruction definitions |
2599 | if (DstReg.isPhysical()) |
2600 | return false; |
2601 | if (TRI->isAGPR(MRI: *MRI, Reg: DstReg)) |
2602 | continue; |
2603 | MoveRegs.push_back(Elt: DstReg); |
2604 | for (const MachineInstr &U : MRI->use_nodbg_instructions(Reg: DstReg)) |
2605 | Users.push_back(Elt: &U); |
2606 | } |
2607 | |
2608 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DefReg); |
2609 | MRI->setRegClass(Reg: DefReg, RC: TRI->getEquivalentAGPRClass(SRC: RC)); |
2610 | if (!TII->isOperandLegal(MI, OpIdx: 0, MO: &Def)) { |
2611 | MRI->setRegClass(Reg: DefReg, RC); |
2612 | return false; |
2613 | } |
2614 | |
2615 | while (!MoveRegs.empty()) { |
2616 | Register Reg = MoveRegs.pop_back_val(); |
2617 | MRI->setRegClass(Reg, RC: TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg))); |
2618 | } |
2619 | |
2620 | LLVM_DEBUG(dbgs() << "Folded " << MI); |
2621 | |
2622 | return true; |
2623 | } |
2624 | |
2625 | // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. |
2626 | // For GFX90A and later, this is pretty much always a good thing, but for GFX908 |
2627 | // there's cases where it can create a lot more AGPR-AGPR copies, which are |
2628 | // expensive on this architecture due to the lack of V_ACCVGPR_MOV. |
2629 | // |
2630 | // This function looks at all AGPR PHIs in a basic block and collects their |
2631 | // operands. Then, it checks for register that are used more than once across |
2632 | // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from |
2633 | // having to create one VGPR temporary per use, which can get very messy if |
2634 | // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector |
2635 | // element). |
2636 | // |
2637 | // Example |
2638 | // a: |
2639 | // %in:agpr_256 = COPY %foo:vgpr_256 |
2640 | // c: |
2641 | // %x:agpr_32 = .. |
2642 | // b: |
2643 | // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c |
2644 | // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c |
2645 | // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c |
2646 | // => |
2647 | // a: |
2648 | // %in:agpr_256 = COPY %foo:vgpr_256 |
2649 | // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 |
2650 | // %tmp_agpr:agpr_32 = COPY %tmp |
2651 | // c: |
2652 | // %x:agpr_32 = .. |
2653 | // b: |
2654 | // %0:areg = PHI %tmp_agpr, %a, %x, %c |
2655 | // %1:areg = PHI %tmp_agpr, %a, %y, %c |
2656 | // %2:areg = PHI %tmp_agpr, %a, %z, %c |
2657 | bool SIFoldOperandsImpl::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { |
2658 | // This is only really needed on GFX908 where AGPR-AGPR copies are |
2659 | // unreasonably difficult. |
2660 | if (ST->hasGFX90AInsts()) |
2661 | return false; |
2662 | |
2663 | // Look at all AGPR Phis and collect the register + subregister used. |
2664 | DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> |
2665 | RegToMO; |
2666 | |
2667 | for (auto &MI : MBB) { |
2668 | if (!MI.isPHI()) |
2669 | break; |
2670 | |
2671 | if (!TRI->isAGPR(MRI: *MRI, Reg: MI.getOperand(i: 0).getReg())) |
2672 | continue; |
2673 | |
2674 | for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { |
2675 | MachineOperand &PhiMO = MI.getOperand(i: K); |
2676 | if (!PhiMO.getSubReg()) |
2677 | continue; |
2678 | RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(x: &PhiMO); |
2679 | } |
2680 | } |
2681 | |
2682 | // For all (Reg, SubReg) pair that are used more than once, cache the value in |
2683 | // a VGPR. |
2684 | bool Changed = false; |
2685 | for (const auto &[Entry, MOs] : RegToMO) { |
2686 | if (MOs.size() == 1) |
2687 | continue; |
2688 | |
2689 | const auto [Reg, SubReg] = Entry; |
2690 | MachineInstr *Def = MRI->getVRegDef(Reg); |
2691 | MachineBasicBlock *DefMBB = Def->getParent(); |
2692 | |
2693 | // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded |
2694 | // out. |
2695 | const TargetRegisterClass *ARC = getRegOpRC(MRI: *MRI, TRI: *TRI, MO: *MOs.front()); |
2696 | Register TempVGPR = |
2697 | MRI->createVirtualRegister(RegClass: TRI->getEquivalentVGPRClass(SRC: ARC)); |
2698 | MachineInstr *VGPRCopy = |
2699 | BuildMI(BB&: *DefMBB, I: ++Def->getIterator(), MIMD: Def->getDebugLoc(), |
2700 | MCID: TII->get(Opcode: AMDGPU::V_ACCVGPR_READ_B32_e64), DestReg: TempVGPR) |
2701 | .addReg(RegNo: Reg, /* flags */ 0, SubReg); |
2702 | |
2703 | // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. |
2704 | Register TempAGPR = MRI->createVirtualRegister(RegClass: ARC); |
2705 | BuildMI(BB&: *DefMBB, I: ++VGPRCopy->getIterator(), MIMD: Def->getDebugLoc(), |
2706 | MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: TempAGPR) |
2707 | .addReg(RegNo: TempVGPR); |
2708 | |
2709 | LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); |
2710 | for (MachineOperand *MO : MOs) { |
2711 | MO->setReg(TempAGPR); |
2712 | MO->setSubReg(AMDGPU::NoSubRegister); |
2713 | LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n" ); |
2714 | } |
2715 | |
2716 | Changed = true; |
2717 | } |
2718 | |
2719 | return Changed; |
2720 | } |
2721 | |
2722 | bool SIFoldOperandsImpl::run(MachineFunction &MF) { |
2723 | MRI = &MF.getRegInfo(); |
2724 | ST = &MF.getSubtarget<GCNSubtarget>(); |
2725 | TII = ST->getInstrInfo(); |
2726 | TRI = &TII->getRegisterInfo(); |
2727 | MFI = MF.getInfo<SIMachineFunctionInfo>(); |
2728 | |
2729 | // omod is ignored by hardware if IEEE bit is enabled. omod also does not |
2730 | // correctly handle signed zeros. |
2731 | // |
2732 | // FIXME: Also need to check strictfp |
2733 | bool IsIEEEMode = MFI->getMode().IEEE; |
2734 | bool HasNSZ = MFI->hasNoSignedZerosFPMath(); |
2735 | |
2736 | bool Changed = false; |
2737 | for (MachineBasicBlock *MBB : depth_first(G: &MF)) { |
2738 | MachineOperand *CurrentKnownM0Val = nullptr; |
2739 | for (auto &MI : make_early_inc_range(Range&: *MBB)) { |
2740 | Changed |= tryFoldCndMask(MI); |
2741 | |
2742 | if (tryFoldZeroHighBits(MI)) { |
2743 | Changed = true; |
2744 | continue; |
2745 | } |
2746 | |
2747 | if (MI.isRegSequence() && tryFoldRegSequence(MI)) { |
2748 | Changed = true; |
2749 | continue; |
2750 | } |
2751 | |
2752 | if (MI.isPHI() && tryFoldPhiAGPR(PHI&: MI)) { |
2753 | Changed = true; |
2754 | continue; |
2755 | } |
2756 | |
2757 | if (MI.mayLoad() && tryFoldLoad(MI)) { |
2758 | Changed = true; |
2759 | continue; |
2760 | } |
2761 | |
2762 | if (TII->isFoldableCopy(MI)) { |
2763 | Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); |
2764 | continue; |
2765 | } |
2766 | |
2767 | // Saw an unknown clobber of m0, so we no longer know what it is. |
2768 | if (CurrentKnownM0Val && MI.modifiesRegister(Reg: AMDGPU::M0, TRI)) |
2769 | CurrentKnownM0Val = nullptr; |
2770 | |
2771 | // TODO: Omod might be OK if there is NSZ only on the source |
2772 | // instruction, and not the omod multiply. |
2773 | if (IsIEEEMode || (!HasNSZ && !MI.getFlag(Flag: MachineInstr::FmNsz)) || |
2774 | !tryFoldOMod(MI)) |
2775 | Changed |= tryFoldClamp(MI); |
2776 | } |
2777 | |
2778 | Changed |= tryOptimizeAGPRPhis(MBB&: *MBB); |
2779 | } |
2780 | |
2781 | return Changed; |
2782 | } |
2783 | |
2784 | PreservedAnalyses SIFoldOperandsPass::run(MachineFunction &MF, |
2785 | MachineFunctionAnalysisManager &) { |
2786 | MFPropsModifier _(*this, MF); |
2787 | |
2788 | bool Changed = SIFoldOperandsImpl().run(MF); |
2789 | if (!Changed) { |
2790 | return PreservedAnalyses::all(); |
2791 | } |
2792 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
2793 | PA.preserveSet<CFGAnalyses>(); |
2794 | return PA; |
2795 | } |
2796 | |