| 1 | //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Insert wait instructions for memory reads and writes. |
| 11 | /// |
| 12 | /// Memory reads and writes are issued asynchronously, so we need to insert |
| 13 | /// S_WAITCNT instructions when we want to access any of their results or |
| 14 | /// overwrite any register that's used asynchronously. |
| 15 | /// |
| 16 | /// TODO: This pass currently keeps one timeline per hardware counter. A more |
| 17 | /// finely-grained approach that keeps one timeline per event type could |
| 18 | /// sometimes get away with generating weaker s_waitcnt instructions. For |
| 19 | /// example, when both SMEM and LDS are in flight and we need to wait for |
| 20 | /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, |
| 21 | /// but the pass will currently generate a conservative lgkmcnt(0) because |
| 22 | /// multiple event types are in flight. |
| 23 | // |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #include "AMDGPU.h" |
| 27 | #include "GCNSubtarget.h" |
| 28 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 29 | #include "SIMachineFunctionInfo.h" |
| 30 | #include "Utils/AMDGPUBaseInfo.h" |
| 31 | #include "llvm/ADT/MapVector.h" |
| 32 | #include "llvm/ADT/PostOrderIterator.h" |
| 33 | #include "llvm/ADT/Sequence.h" |
| 34 | #include "llvm/Analysis/AliasAnalysis.h" |
| 35 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 36 | #include "llvm/CodeGen/MachinePassManager.h" |
| 37 | #include "llvm/CodeGen/MachinePostDominators.h" |
| 38 | #include "llvm/Support/DebugCounter.h" |
| 39 | #include "llvm/TargetParser/TargetParser.h" |
| 40 | using namespace llvm; |
| 41 | |
| 42 | #define DEBUG_TYPE "si-insert-waitcnts" |
| 43 | |
| 44 | DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE "-forceexp" , |
| 45 | "Force emit s_waitcnt expcnt(0) instrs" ); |
| 46 | DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE "-forcelgkm" , |
| 47 | "Force emit s_waitcnt lgkmcnt(0) instrs" ); |
| 48 | DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE "-forcevm" , |
| 49 | "Force emit s_waitcnt vmcnt(0) instrs" ); |
| 50 | |
| 51 | static cl::opt<bool> |
| 52 | ForceEmitZeroFlag("amdgpu-waitcnt-forcezero" , |
| 53 | cl::desc("Force all waitcnt instrs to be emitted as " |
| 54 | "s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)" ), |
| 55 | cl::init(Val: false), cl::Hidden); |
| 56 | |
| 57 | static cl::opt<bool> ForceEmitZeroLoadFlag( |
| 58 | "amdgpu-waitcnt-load-forcezero" , |
| 59 | cl::desc("Force all waitcnt load counters to wait until 0" ), |
| 60 | cl::init(Val: false), cl::Hidden); |
| 61 | |
| 62 | namespace { |
| 63 | // Class of object that encapsulates latest instruction counter score |
| 64 | // associated with the operand. Used for determining whether |
| 65 | // s_waitcnt instruction needs to be emitted. |
| 66 | |
| 67 | enum InstCounterType { |
| 68 | LOAD_CNT = 0, // VMcnt prior to gfx12. |
| 69 | DS_CNT, // LKGMcnt prior to gfx12. |
| 70 | EXP_CNT, // |
| 71 | STORE_CNT, // VScnt in gfx10/gfx11. |
| 72 | NUM_NORMAL_INST_CNTS, |
| 73 | SAMPLE_CNT = NUM_NORMAL_INST_CNTS, // gfx12+ only. |
| 74 | BVH_CNT, // gfx12+ only. |
| 75 | KM_CNT, // gfx12+ only. |
| 76 | X_CNT, // gfx1250. |
| 77 | NUM_EXTENDED_INST_CNTS, |
| 78 | NUM_INST_CNTS = NUM_EXTENDED_INST_CNTS |
| 79 | }; |
| 80 | } // namespace |
| 81 | |
| 82 | namespace llvm { |
| 83 | template <> struct enum_iteration_traits<InstCounterType> { |
| 84 | static constexpr bool is_iterable = true; |
| 85 | }; |
| 86 | } // namespace llvm |
| 87 | |
| 88 | namespace { |
| 89 | // Return an iterator over all counters between LOAD_CNT (the first counter) |
| 90 | // and \c MaxCounter (exclusive, default value yields an enumeration over |
| 91 | // all counters). |
| 92 | auto inst_counter_types(InstCounterType MaxCounter = NUM_INST_CNTS) { |
| 93 | return enum_seq(Begin: LOAD_CNT, End: MaxCounter); |
| 94 | } |
| 95 | |
| 96 | using RegInterval = std::pair<int, int>; |
| 97 | |
| 98 | struct HardwareLimits { |
| 99 | unsigned LoadcntMax; // Corresponds to VMcnt prior to gfx12. |
| 100 | unsigned ExpcntMax; |
| 101 | unsigned DscntMax; // Corresponds to LGKMcnt prior to gfx12. |
| 102 | unsigned StorecntMax; // Corresponds to VScnt in gfx10/gfx11. |
| 103 | unsigned SamplecntMax; // gfx12+ only. |
| 104 | unsigned BvhcntMax; // gfx12+ only. |
| 105 | unsigned KmcntMax; // gfx12+ only. |
| 106 | unsigned XcntMax; // gfx1250. |
| 107 | }; |
| 108 | |
| 109 | #define AMDGPU_DECLARE_WAIT_EVENTS(DECL) \ |
| 110 | DECL(VMEM_ACCESS) /* vmem read & write */ \ |
| 111 | DECL(VMEM_READ_ACCESS) /* vmem read */ \ |
| 112 | DECL(VMEM_SAMPLER_READ_ACCESS) /* vmem SAMPLER read (gfx12+ only) */ \ |
| 113 | DECL(VMEM_BVH_READ_ACCESS) /* vmem BVH read (gfx12+ only) */ \ |
| 114 | DECL(VMEM_WRITE_ACCESS) /* vmem write that is not scratch */ \ |
| 115 | DECL(SCRATCH_WRITE_ACCESS) /* vmem write that may be scratch */ \ |
| 116 | DECL(VMEM_GROUP) /* vmem group */ \ |
| 117 | DECL(LDS_ACCESS) /* lds read & write */ \ |
| 118 | DECL(GDS_ACCESS) /* gds read & write */ \ |
| 119 | DECL(SQ_MESSAGE) /* send message */ \ |
| 120 | DECL(SMEM_ACCESS) /* scalar-memory read & write */ \ |
| 121 | DECL(SMEM_GROUP) /* scalar-memory group */ \ |
| 122 | DECL(EXP_GPR_LOCK) /* export holding on its data src */ \ |
| 123 | DECL(GDS_GPR_LOCK) /* GDS holding on its data and addr src */ \ |
| 124 | DECL(EXP_POS_ACCESS) /* write to export position */ \ |
| 125 | DECL(EXP_PARAM_ACCESS) /* write to export parameter */ \ |
| 126 | DECL(VMW_GPR_LOCK) /* vmem write holding on its data src */ \ |
| 127 | DECL(EXP_LDS_ACCESS) /* read by ldsdir counting as export */ |
| 128 | |
| 129 | // clang-format off |
| 130 | #define AMDGPU_EVENT_ENUM(Name) Name, |
| 131 | enum WaitEventType { |
| 132 | AMDGPU_DECLARE_WAIT_EVENTS(AMDGPU_EVENT_ENUM) |
| 133 | NUM_WAIT_EVENTS |
| 134 | }; |
| 135 | #undef AMDGPU_EVENT_ENUM |
| 136 | |
| 137 | #define AMDGPU_EVENT_NAME(Name) #Name, |
| 138 | static constexpr StringLiteral WaitEventTypeName[] = { |
| 139 | AMDGPU_DECLARE_WAIT_EVENTS(AMDGPU_EVENT_NAME) |
| 140 | }; |
| 141 | #undef AMDGPU_EVENT_NAME |
| 142 | // clang-format on |
| 143 | |
| 144 | // The mapping is: |
| 145 | // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs |
| 146 | // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots |
| 147 | // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs |
| 148 | // We reserve a fixed number of VGPR slots in the scoring tables for |
| 149 | // special tokens like SCMEM_LDS (needed for buffer load to LDS). |
| 150 | enum RegisterMapping { |
| 151 | SQ_MAX_PGM_VGPRS = 1024, // Maximum programmable VGPRs across all targets. |
| 152 | AGPR_OFFSET = 512, // Maximum programmable ArchVGPRs across all targets. |
| 153 | SQ_MAX_PGM_SGPRS = 128, // Maximum programmable SGPRs across all targets. |
| 154 | // Artificial register slots to track LDS writes into specific LDS locations |
| 155 | // if a location is known. When slots are exhausted or location is |
| 156 | // unknown use the first slot. The first slot is also always updated in |
| 157 | // addition to known location's slot to properly generate waits if dependent |
| 158 | // instruction's location is unknown. |
| 159 | FIRST_LDS_VGPR = SQ_MAX_PGM_VGPRS, // Extra slots for LDS stores. |
| 160 | NUM_LDS_VGPRS = 9, // One more than the stores we track. |
| 161 | NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_LDS_VGPRS, // Where SGPRs start. |
| 162 | }; |
| 163 | |
| 164 | // Enumerate different types of result-returning VMEM operations. Although |
| 165 | // s_waitcnt orders them all with a single vmcnt counter, in the absence of |
| 166 | // s_waitcnt only instructions of the same VmemType are guaranteed to write |
| 167 | // their results in order -- so there is no need to insert an s_waitcnt between |
| 168 | // two instructions of the same type that write the same vgpr. |
| 169 | enum VmemType { |
| 170 | // BUF instructions and MIMG instructions without a sampler. |
| 171 | VMEM_NOSAMPLER, |
| 172 | // MIMG instructions with a sampler. |
| 173 | VMEM_SAMPLER, |
| 174 | // BVH instructions |
| 175 | VMEM_BVH, |
| 176 | NUM_VMEM_TYPES |
| 177 | }; |
| 178 | |
| 179 | // Maps values of InstCounterType to the instruction that waits on that |
| 180 | // counter. Only used if GCNSubtarget::hasExtendedWaitCounts() |
| 181 | // returns true. |
| 182 | static const unsigned instrsForExtendedCounterTypes[NUM_EXTENDED_INST_CNTS] = { |
| 183 | AMDGPU::S_WAIT_LOADCNT, AMDGPU::S_WAIT_DSCNT, AMDGPU::S_WAIT_EXPCNT, |
| 184 | AMDGPU::S_WAIT_STORECNT, AMDGPU::S_WAIT_SAMPLECNT, AMDGPU::S_WAIT_BVHCNT, |
| 185 | AMDGPU::S_WAIT_KMCNT, AMDGPU::S_WAIT_XCNT}; |
| 186 | |
| 187 | static bool updateVMCntOnly(const MachineInstr &Inst) { |
| 188 | return (SIInstrInfo::isVMEM(MI: Inst) && !SIInstrInfo::isFLAT(MI: Inst)) || |
| 189 | SIInstrInfo::isFLATGlobal(MI: Inst) || SIInstrInfo::isFLATScratch(MI: Inst); |
| 190 | } |
| 191 | |
| 192 | #ifndef NDEBUG |
| 193 | static bool isNormalMode(InstCounterType MaxCounter) { |
| 194 | return MaxCounter == NUM_NORMAL_INST_CNTS; |
| 195 | } |
| 196 | #endif // NDEBUG |
| 197 | |
| 198 | VmemType getVmemType(const MachineInstr &Inst) { |
| 199 | assert(updateVMCntOnly(Inst)); |
| 200 | if (!SIInstrInfo::isImage(MI: Inst)) |
| 201 | return VMEM_NOSAMPLER; |
| 202 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: Inst.getOpcode()); |
| 203 | const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = |
| 204 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode); |
| 205 | |
| 206 | if (BaseInfo->BVH) |
| 207 | return VMEM_BVH; |
| 208 | |
| 209 | // We have to make an additional check for isVSAMPLE here since some |
| 210 | // instructions don't have a sampler, but are still classified as sampler |
| 211 | // instructions for the purposes of e.g. waitcnt. |
| 212 | if (BaseInfo->Sampler || BaseInfo->MSAA || SIInstrInfo::isVSAMPLE(MI: Inst)) |
| 213 | return VMEM_SAMPLER; |
| 214 | |
| 215 | return VMEM_NOSAMPLER; |
| 216 | } |
| 217 | |
| 218 | unsigned &getCounterRef(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
| 219 | switch (T) { |
| 220 | case LOAD_CNT: |
| 221 | return Wait.LoadCnt; |
| 222 | case EXP_CNT: |
| 223 | return Wait.ExpCnt; |
| 224 | case DS_CNT: |
| 225 | return Wait.DsCnt; |
| 226 | case STORE_CNT: |
| 227 | return Wait.StoreCnt; |
| 228 | case SAMPLE_CNT: |
| 229 | return Wait.SampleCnt; |
| 230 | case BVH_CNT: |
| 231 | return Wait.BvhCnt; |
| 232 | case KM_CNT: |
| 233 | return Wait.KmCnt; |
| 234 | case X_CNT: |
| 235 | return Wait.XCnt; |
| 236 | default: |
| 237 | llvm_unreachable("bad InstCounterType" ); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { |
| 242 | unsigned &WC = getCounterRef(Wait, T); |
| 243 | WC = std::min(a: WC, b: Count); |
| 244 | } |
| 245 | |
| 246 | void setNoWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
| 247 | getCounterRef(Wait, T) = ~0u; |
| 248 | } |
| 249 | |
| 250 | unsigned getWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
| 251 | return getCounterRef(Wait, T); |
| 252 | } |
| 253 | |
| 254 | // Mapping from event to counter according to the table masks. |
| 255 | InstCounterType eventCounter(const unsigned *masks, WaitEventType E) { |
| 256 | for (auto T : inst_counter_types()) { |
| 257 | if (masks[T] & (1 << E)) |
| 258 | return T; |
| 259 | } |
| 260 | llvm_unreachable("event type has no associated counter" ); |
| 261 | } |
| 262 | |
| 263 | // This objects maintains the current score brackets of each wait counter, and |
| 264 | // a per-register scoreboard for each wait counter. |
| 265 | // |
| 266 | // We also maintain the latest score for every event type that can change the |
| 267 | // waitcnt in order to know if there are multiple types of events within |
| 268 | // the brackets. When multiple types of event happen in the bracket, |
| 269 | // wait count may get decreased out of order, therefore we need to put in |
| 270 | // "s_waitcnt 0" before use. |
| 271 | class WaitcntBrackets { |
| 272 | public: |
| 273 | WaitcntBrackets(const GCNSubtarget *SubTarget, InstCounterType MaxCounter, |
| 274 | HardwareLimits Limits, const unsigned *WaitEventMaskForInst, |
| 275 | InstCounterType SmemAccessCounter) |
| 276 | : ST(SubTarget), MaxCounter(MaxCounter), Limits(Limits), |
| 277 | WaitEventMaskForInst(WaitEventMaskForInst), |
| 278 | SmemAccessCounter(SmemAccessCounter) {} |
| 279 | |
| 280 | unsigned getWaitCountMax(InstCounterType T) const { |
| 281 | switch (T) { |
| 282 | case LOAD_CNT: |
| 283 | return Limits.LoadcntMax; |
| 284 | case DS_CNT: |
| 285 | return Limits.DscntMax; |
| 286 | case EXP_CNT: |
| 287 | return Limits.ExpcntMax; |
| 288 | case STORE_CNT: |
| 289 | return Limits.StorecntMax; |
| 290 | case SAMPLE_CNT: |
| 291 | return Limits.SamplecntMax; |
| 292 | case BVH_CNT: |
| 293 | return Limits.BvhcntMax; |
| 294 | case KM_CNT: |
| 295 | return Limits.KmcntMax; |
| 296 | case X_CNT: |
| 297 | return Limits.XcntMax; |
| 298 | default: |
| 299 | break; |
| 300 | } |
| 301 | return 0; |
| 302 | } |
| 303 | |
| 304 | bool isSmemCounter(InstCounterType T) const { |
| 305 | return T == SmemAccessCounter || T == X_CNT; |
| 306 | } |
| 307 | |
| 308 | unsigned getSgprScoresIdx(InstCounterType T) const { |
| 309 | assert(isSmemCounter(T) && "Invalid SMEM counter" ); |
| 310 | return T == X_CNT ? 1 : 0; |
| 311 | } |
| 312 | |
| 313 | unsigned getScoreLB(InstCounterType T) const { |
| 314 | assert(T < NUM_INST_CNTS); |
| 315 | return ScoreLBs[T]; |
| 316 | } |
| 317 | |
| 318 | unsigned getScoreUB(InstCounterType T) const { |
| 319 | assert(T < NUM_INST_CNTS); |
| 320 | return ScoreUBs[T]; |
| 321 | } |
| 322 | |
| 323 | unsigned getScoreRange(InstCounterType T) const { |
| 324 | return getScoreUB(T) - getScoreLB(T); |
| 325 | } |
| 326 | |
| 327 | unsigned getRegScore(int GprNo, InstCounterType T) const { |
| 328 | if (GprNo < NUM_ALL_VGPRS) |
| 329 | return VgprScores[T][GprNo]; |
| 330 | return SgprScores[getSgprScoresIdx(T)][GprNo - NUM_ALL_VGPRS]; |
| 331 | } |
| 332 | |
| 333 | bool merge(const WaitcntBrackets &Other); |
| 334 | |
| 335 | RegInterval getRegInterval(const MachineInstr *MI, |
| 336 | const MachineRegisterInfo *MRI, |
| 337 | const SIRegisterInfo *TRI, |
| 338 | const MachineOperand &Op) const; |
| 339 | |
| 340 | bool counterOutOfOrder(InstCounterType T) const; |
| 341 | void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; |
| 342 | void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; |
| 343 | |
| 344 | void determineWait(InstCounterType T, RegInterval Interval, |
| 345 | AMDGPU::Waitcnt &Wait) const; |
| 346 | void determineWait(InstCounterType T, int RegNo, |
| 347 | AMDGPU::Waitcnt &Wait) const { |
| 348 | determineWait(T, Interval: {RegNo, RegNo + 1}, Wait); |
| 349 | } |
| 350 | |
| 351 | void applyWaitcnt(const AMDGPU::Waitcnt &Wait); |
| 352 | void applyWaitcnt(InstCounterType T, unsigned Count); |
| 353 | void applyXcnt(const AMDGPU::Waitcnt &Wait); |
| 354 | void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, |
| 355 | const MachineRegisterInfo *MRI, WaitEventType E, |
| 356 | MachineInstr &MI); |
| 357 | |
| 358 | unsigned hasPendingEvent() const { return PendingEvents; } |
| 359 | unsigned hasPendingEvent(WaitEventType E) const { |
| 360 | return PendingEvents & (1 << E); |
| 361 | } |
| 362 | unsigned hasPendingEvent(InstCounterType T) const { |
| 363 | unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; |
| 364 | assert((HasPending != 0) == (getScoreRange(T) != 0)); |
| 365 | return HasPending; |
| 366 | } |
| 367 | |
| 368 | bool hasMixedPendingEvents(InstCounterType T) const { |
| 369 | unsigned Events = hasPendingEvent(T); |
| 370 | // Return true if more than one bit is set in Events. |
| 371 | return Events & (Events - 1); |
| 372 | } |
| 373 | |
| 374 | bool hasPendingFlat() const { |
| 375 | return ((LastFlat[DS_CNT] > ScoreLBs[DS_CNT] && |
| 376 | LastFlat[DS_CNT] <= ScoreUBs[DS_CNT]) || |
| 377 | (LastFlat[LOAD_CNT] > ScoreLBs[LOAD_CNT] && |
| 378 | LastFlat[LOAD_CNT] <= ScoreUBs[LOAD_CNT])); |
| 379 | } |
| 380 | |
| 381 | void setPendingFlat() { |
| 382 | LastFlat[LOAD_CNT] = ScoreUBs[LOAD_CNT]; |
| 383 | LastFlat[DS_CNT] = ScoreUBs[DS_CNT]; |
| 384 | } |
| 385 | |
| 386 | bool hasPendingGDS() const { |
| 387 | return LastGDS > ScoreLBs[DS_CNT] && LastGDS <= ScoreUBs[DS_CNT]; |
| 388 | } |
| 389 | |
| 390 | unsigned getPendingGDSWait() const { |
| 391 | return std::min(a: getScoreUB(T: DS_CNT) - LastGDS, b: getWaitCountMax(T: DS_CNT) - 1); |
| 392 | } |
| 393 | |
| 394 | void setPendingGDS() { LastGDS = ScoreUBs[DS_CNT]; } |
| 395 | |
| 396 | // Return true if there might be pending writes to the vgpr-interval by VMEM |
| 397 | // instructions with types different from V. |
| 398 | bool hasOtherPendingVmemTypes(RegInterval Interval, VmemType V) const { |
| 399 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 400 | assert(RegNo < NUM_ALL_VGPRS); |
| 401 | if (VgprVmemTypes[RegNo] & ~(1 << V)) |
| 402 | return true; |
| 403 | } |
| 404 | return false; |
| 405 | } |
| 406 | |
| 407 | void clearVgprVmemTypes(RegInterval Interval) { |
| 408 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 409 | assert(RegNo < NUM_ALL_VGPRS); |
| 410 | VgprVmemTypes[RegNo] = 0; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | void setStateOnFunctionEntryOrReturn() { |
| 415 | setScoreUB(T: STORE_CNT, Val: getScoreUB(T: STORE_CNT) + getWaitCountMax(T: STORE_CNT)); |
| 416 | PendingEvents |= WaitEventMaskForInst[STORE_CNT]; |
| 417 | } |
| 418 | |
| 419 | ArrayRef<const MachineInstr *> getLDSDMAStores() const { |
| 420 | return LDSDMAStores; |
| 421 | } |
| 422 | |
| 423 | bool hasPointSampleAccel(const MachineInstr &MI) const; |
| 424 | bool hasPointSamplePendingVmemTypes(const MachineInstr &MI, |
| 425 | RegInterval Interval) const; |
| 426 | |
| 427 | void print(raw_ostream &) const; |
| 428 | void dump() const { print(dbgs()); } |
| 429 | |
| 430 | private: |
| 431 | struct MergeInfo { |
| 432 | unsigned OldLB; |
| 433 | unsigned OtherLB; |
| 434 | unsigned MyShift; |
| 435 | unsigned OtherShift; |
| 436 | }; |
| 437 | static bool mergeScore(const MergeInfo &M, unsigned &Score, |
| 438 | unsigned OtherScore); |
| 439 | |
| 440 | void setScoreLB(InstCounterType T, unsigned Val) { |
| 441 | assert(T < NUM_INST_CNTS); |
| 442 | ScoreLBs[T] = Val; |
| 443 | } |
| 444 | |
| 445 | void setScoreUB(InstCounterType T, unsigned Val) { |
| 446 | assert(T < NUM_INST_CNTS); |
| 447 | ScoreUBs[T] = Val; |
| 448 | |
| 449 | if (T != EXP_CNT) |
| 450 | return; |
| 451 | |
| 452 | if (getScoreRange(T: EXP_CNT) > getWaitCountMax(T: EXP_CNT)) |
| 453 | ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(T: EXP_CNT); |
| 454 | } |
| 455 | |
| 456 | void setRegScore(int GprNo, InstCounterType T, unsigned Val) { |
| 457 | setScoreByInterval(Interval: {GprNo, GprNo + 1}, CntTy: T, Score: Val); |
| 458 | } |
| 459 | |
| 460 | void setScoreByInterval(RegInterval Interval, InstCounterType CntTy, |
| 461 | unsigned Score); |
| 462 | |
| 463 | void setScoreByOperand(const MachineInstr *MI, const SIRegisterInfo *TRI, |
| 464 | const MachineRegisterInfo *MRI, |
| 465 | const MachineOperand &Op, InstCounterType CntTy, |
| 466 | unsigned Val); |
| 467 | |
| 468 | const GCNSubtarget *ST = nullptr; |
| 469 | InstCounterType MaxCounter = NUM_EXTENDED_INST_CNTS; |
| 470 | HardwareLimits Limits = {}; |
| 471 | const unsigned *WaitEventMaskForInst; |
| 472 | InstCounterType SmemAccessCounter; |
| 473 | unsigned ScoreLBs[NUM_INST_CNTS] = {0}; |
| 474 | unsigned ScoreUBs[NUM_INST_CNTS] = {0}; |
| 475 | unsigned PendingEvents = 0; |
| 476 | // Remember the last flat memory operation. |
| 477 | unsigned LastFlat[NUM_INST_CNTS] = {0}; |
| 478 | // Remember the last GDS operation. |
| 479 | unsigned LastGDS = 0; |
| 480 | // wait_cnt scores for every vgpr. |
| 481 | // Keep track of the VgprUB and SgprUB to make merge at join efficient. |
| 482 | int VgprUB = -1; |
| 483 | int SgprUB = -1; |
| 484 | unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; |
| 485 | // Wait cnt scores for every sgpr, the DS_CNT (corresponding to LGKMcnt |
| 486 | // pre-gfx12) or KM_CNT (gfx12+ only), and X_CNT (gfx1250) are relevant. |
| 487 | // Row 0 represents the score for either DS_CNT or KM_CNT and row 1 keeps the |
| 488 | // X_CNT score. |
| 489 | unsigned SgprScores[2][SQ_MAX_PGM_SGPRS] = {{0}}; |
| 490 | // Bitmask of the VmemTypes of VMEM instructions that might have a pending |
| 491 | // write to each vgpr. |
| 492 | unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; |
| 493 | // Store representative LDS DMA operations. The only useful info here is |
| 494 | // alias info. One store is kept per unique AAInfo. |
| 495 | SmallVector<const MachineInstr *, NUM_LDS_VGPRS - 1> LDSDMAStores; |
| 496 | }; |
| 497 | |
| 498 | // This abstracts the logic for generating and updating S_WAIT* instructions |
| 499 | // away from the analysis that determines where they are needed. This was |
| 500 | // done because the set of counters and instructions for waiting on them |
| 501 | // underwent a major shift with gfx12, sufficiently so that having this |
| 502 | // abstraction allows the main analysis logic to be simpler than it would |
| 503 | // otherwise have had to become. |
| 504 | class WaitcntGenerator { |
| 505 | protected: |
| 506 | const GCNSubtarget *ST = nullptr; |
| 507 | const SIInstrInfo *TII = nullptr; |
| 508 | AMDGPU::IsaVersion IV; |
| 509 | InstCounterType MaxCounter; |
| 510 | bool OptNone; |
| 511 | |
| 512 | public: |
| 513 | WaitcntGenerator() = default; |
| 514 | WaitcntGenerator(const MachineFunction &MF, InstCounterType MaxCounter) |
| 515 | : ST(&MF.getSubtarget<GCNSubtarget>()), TII(ST->getInstrInfo()), |
| 516 | IV(AMDGPU::getIsaVersion(GPU: ST->getCPU())), MaxCounter(MaxCounter), |
| 517 | OptNone(MF.getFunction().hasOptNone() || |
| 518 | MF.getTarget().getOptLevel() == CodeGenOptLevel::None) {} |
| 519 | |
| 520 | // Return true if the current function should be compiled with no |
| 521 | // optimization. |
| 522 | bool isOptNone() const { return OptNone; } |
| 523 | |
| 524 | // Edits an existing sequence of wait count instructions according |
| 525 | // to an incoming Waitcnt value, which is itself updated to reflect |
| 526 | // any new wait count instructions which may need to be generated by |
| 527 | // WaitcntGenerator::createNewWaitcnt(). It will return true if any edits |
| 528 | // were made. |
| 529 | // |
| 530 | // This editing will usually be merely updated operands, but it may also |
| 531 | // delete instructions if the incoming Wait value indicates they are not |
| 532 | // needed. It may also remove existing instructions for which a wait |
| 533 | // is needed if it can be determined that it is better to generate new |
| 534 | // instructions later, as can happen on gfx12. |
| 535 | virtual bool |
| 536 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
| 537 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
| 538 | MachineBasicBlock::instr_iterator It) const = 0; |
| 539 | |
| 540 | // Transform a soft waitcnt into a normal one. |
| 541 | bool promoteSoftWaitCnt(MachineInstr *Waitcnt) const; |
| 542 | |
| 543 | // Generates new wait count instructions according to the value of |
| 544 | // Wait, returning true if any new instructions were created. |
| 545 | virtual bool createNewWaitcnt(MachineBasicBlock &Block, |
| 546 | MachineBasicBlock::instr_iterator It, |
| 547 | AMDGPU::Waitcnt Wait) = 0; |
| 548 | |
| 549 | // Returns an array of bit masks which can be used to map values in |
| 550 | // WaitEventType to corresponding counter values in InstCounterType. |
| 551 | virtual const unsigned *getWaitEventMask() const = 0; |
| 552 | |
| 553 | // Returns a new waitcnt with all counters except VScnt set to 0. If |
| 554 | // IncludeVSCnt is true, VScnt is set to 0, otherwise it is set to ~0u. |
| 555 | virtual AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const = 0; |
| 556 | |
| 557 | virtual ~WaitcntGenerator() = default; |
| 558 | |
| 559 | // Create a mask value from the initializer list of wait event types. |
| 560 | static constexpr unsigned |
| 561 | eventMask(std::initializer_list<WaitEventType> Events) { |
| 562 | unsigned Mask = 0; |
| 563 | for (auto &E : Events) |
| 564 | Mask |= 1 << E; |
| 565 | |
| 566 | return Mask; |
| 567 | } |
| 568 | }; |
| 569 | |
| 570 | class WaitcntGeneratorPreGFX12 : public WaitcntGenerator { |
| 571 | public: |
| 572 | WaitcntGeneratorPreGFX12() = default; |
| 573 | WaitcntGeneratorPreGFX12(const MachineFunction &MF) |
| 574 | : WaitcntGenerator(MF, NUM_NORMAL_INST_CNTS) {} |
| 575 | |
| 576 | bool |
| 577 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
| 578 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
| 579 | MachineBasicBlock::instr_iterator It) const override; |
| 580 | |
| 581 | bool createNewWaitcnt(MachineBasicBlock &Block, |
| 582 | MachineBasicBlock::instr_iterator It, |
| 583 | AMDGPU::Waitcnt Wait) override; |
| 584 | |
| 585 | const unsigned *getWaitEventMask() const override { |
| 586 | assert(ST); |
| 587 | |
| 588 | static const unsigned WaitEventMaskForInstPreGFX12[NUM_INST_CNTS] = { |
| 589 | eventMask(Events: {VMEM_ACCESS, VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, |
| 590 | VMEM_BVH_READ_ACCESS}), |
| 591 | eventMask(Events: {SMEM_ACCESS, LDS_ACCESS, GDS_ACCESS, SQ_MESSAGE}), |
| 592 | eventMask(Events: {EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, |
| 593 | EXP_POS_ACCESS, EXP_LDS_ACCESS}), |
| 594 | eventMask(Events: {VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), |
| 595 | 0, |
| 596 | 0, |
| 597 | 0, |
| 598 | 0}; |
| 599 | |
| 600 | return WaitEventMaskForInstPreGFX12; |
| 601 | } |
| 602 | |
| 603 | AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; |
| 604 | }; |
| 605 | |
| 606 | class WaitcntGeneratorGFX12Plus : public WaitcntGenerator { |
| 607 | public: |
| 608 | WaitcntGeneratorGFX12Plus() = default; |
| 609 | WaitcntGeneratorGFX12Plus(const MachineFunction &MF, |
| 610 | InstCounterType MaxCounter) |
| 611 | : WaitcntGenerator(MF, MaxCounter) {} |
| 612 | |
| 613 | bool |
| 614 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
| 615 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
| 616 | MachineBasicBlock::instr_iterator It) const override; |
| 617 | |
| 618 | bool createNewWaitcnt(MachineBasicBlock &Block, |
| 619 | MachineBasicBlock::instr_iterator It, |
| 620 | AMDGPU::Waitcnt Wait) override; |
| 621 | |
| 622 | const unsigned *getWaitEventMask() const override { |
| 623 | assert(ST); |
| 624 | |
| 625 | static const unsigned WaitEventMaskForInstGFX12Plus[NUM_INST_CNTS] = { |
| 626 | eventMask(Events: {VMEM_ACCESS, VMEM_READ_ACCESS}), |
| 627 | eventMask(Events: {LDS_ACCESS, GDS_ACCESS}), |
| 628 | eventMask(Events: {EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, |
| 629 | EXP_POS_ACCESS, EXP_LDS_ACCESS}), |
| 630 | eventMask(Events: {VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), |
| 631 | eventMask(Events: {VMEM_SAMPLER_READ_ACCESS}), |
| 632 | eventMask(Events: {VMEM_BVH_READ_ACCESS}), |
| 633 | eventMask(Events: {SMEM_ACCESS, SQ_MESSAGE}), |
| 634 | eventMask(Events: {VMEM_GROUP, SMEM_GROUP})}; |
| 635 | |
| 636 | return WaitEventMaskForInstGFX12Plus; |
| 637 | } |
| 638 | |
| 639 | AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; |
| 640 | }; |
| 641 | |
| 642 | class SIInsertWaitcnts { |
| 643 | private: |
| 644 | const GCNSubtarget *ST = nullptr; |
| 645 | const SIInstrInfo *TII = nullptr; |
| 646 | const SIRegisterInfo *TRI = nullptr; |
| 647 | const MachineRegisterInfo *MRI = nullptr; |
| 648 | |
| 649 | DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; |
| 650 | DenseMap<MachineBasicBlock *, bool> ; |
| 651 | MachineLoopInfo *MLI; |
| 652 | MachinePostDominatorTree *PDT; |
| 653 | AliasAnalysis *AA = nullptr; |
| 654 | |
| 655 | struct BlockInfo { |
| 656 | std::unique_ptr<WaitcntBrackets> Incoming; |
| 657 | bool Dirty = true; |
| 658 | }; |
| 659 | |
| 660 | InstCounterType SmemAccessCounter; |
| 661 | |
| 662 | MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; |
| 663 | |
| 664 | bool ForceEmitWaitcnt[NUM_INST_CNTS]; |
| 665 | |
| 666 | // In any given run of this pass, WCG will point to one of these two |
| 667 | // generator objects, which must have been re-initialised before use |
| 668 | // from a value made using a subtarget constructor. |
| 669 | WaitcntGeneratorPreGFX12 WCGPreGFX12; |
| 670 | WaitcntGeneratorGFX12Plus WCGGFX12Plus; |
| 671 | |
| 672 | WaitcntGenerator *WCG = nullptr; |
| 673 | |
| 674 | // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS |
| 675 | // message. |
| 676 | DenseSet<MachineInstr *> ReleaseVGPRInsts; |
| 677 | |
| 678 | InstCounterType MaxCounter = NUM_NORMAL_INST_CNTS; |
| 679 | |
| 680 | public: |
| 681 | SIInsertWaitcnts(MachineLoopInfo *MLI, MachinePostDominatorTree *PDT, |
| 682 | AliasAnalysis *AA) |
| 683 | : MLI(MLI), PDT(PDT), AA(AA) { |
| 684 | (void)ForceExpCounter; |
| 685 | (void)ForceLgkmCounter; |
| 686 | (void)ForceVMCounter; |
| 687 | } |
| 688 | |
| 689 | bool shouldFlushVmCnt(MachineLoop *ML, const WaitcntBrackets &Brackets); |
| 690 | bool isPreheaderToFlush(MachineBasicBlock &MBB, |
| 691 | const WaitcntBrackets &ScoreBrackets); |
| 692 | bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; |
| 693 | bool run(MachineFunction &MF); |
| 694 | |
| 695 | bool isForceEmitWaitcnt() const { |
| 696 | for (auto T : inst_counter_types()) |
| 697 | if (ForceEmitWaitcnt[T]) |
| 698 | return true; |
| 699 | return false; |
| 700 | } |
| 701 | |
| 702 | void setForceEmitWaitcnt() { |
| 703 | // For non-debug builds, ForceEmitWaitcnt has been initialized to false; |
| 704 | // For debug builds, get the debug counter info and adjust if need be |
| 705 | #ifndef NDEBUG |
| 706 | if (DebugCounter::isCounterSet(ForceExpCounter) && |
| 707 | DebugCounter::shouldExecute(ForceExpCounter)) { |
| 708 | ForceEmitWaitcnt[EXP_CNT] = true; |
| 709 | } else { |
| 710 | ForceEmitWaitcnt[EXP_CNT] = false; |
| 711 | } |
| 712 | |
| 713 | if (DebugCounter::isCounterSet(ForceLgkmCounter) && |
| 714 | DebugCounter::shouldExecute(ForceLgkmCounter)) { |
| 715 | ForceEmitWaitcnt[DS_CNT] = true; |
| 716 | ForceEmitWaitcnt[KM_CNT] = true; |
| 717 | } else { |
| 718 | ForceEmitWaitcnt[DS_CNT] = false; |
| 719 | ForceEmitWaitcnt[KM_CNT] = false; |
| 720 | } |
| 721 | |
| 722 | if (DebugCounter::isCounterSet(ForceVMCounter) && |
| 723 | DebugCounter::shouldExecute(ForceVMCounter)) { |
| 724 | ForceEmitWaitcnt[LOAD_CNT] = true; |
| 725 | ForceEmitWaitcnt[SAMPLE_CNT] = true; |
| 726 | ForceEmitWaitcnt[BVH_CNT] = true; |
| 727 | } else { |
| 728 | ForceEmitWaitcnt[LOAD_CNT] = false; |
| 729 | ForceEmitWaitcnt[SAMPLE_CNT] = false; |
| 730 | ForceEmitWaitcnt[BVH_CNT] = false; |
| 731 | } |
| 732 | #endif // NDEBUG |
| 733 | } |
| 734 | |
| 735 | // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM |
| 736 | // instruction. |
| 737 | WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { |
| 738 | switch (Inst.getOpcode()) { |
| 739 | case AMDGPU::GLOBAL_INV: |
| 740 | return VMEM_READ_ACCESS; // tracked using loadcnt |
| 741 | case AMDGPU::GLOBAL_WB: |
| 742 | case AMDGPU::GLOBAL_WBINV: |
| 743 | return VMEM_WRITE_ACCESS; // tracked using storecnt |
| 744 | default: |
| 745 | break; |
| 746 | } |
| 747 | |
| 748 | // Maps VMEM access types to their corresponding WaitEventType. |
| 749 | static const WaitEventType VmemReadMapping[NUM_VMEM_TYPES] = { |
| 750 | VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, VMEM_BVH_READ_ACCESS}; |
| 751 | |
| 752 | assert(SIInstrInfo::isVMEM(Inst)); |
| 753 | // LDS DMA loads are also stores, but on the LDS side. On the VMEM side |
| 754 | // these should use VM_CNT. |
| 755 | if (!ST->hasVscnt() || SIInstrInfo::mayWriteLDSThroughDMA(MI: Inst)) |
| 756 | return VMEM_ACCESS; |
| 757 | if (Inst.mayStore() && |
| 758 | (!Inst.mayLoad() || SIInstrInfo::isAtomicNoRet(MI: Inst))) { |
| 759 | // FLAT and SCRATCH instructions may access scratch. Other VMEM |
| 760 | // instructions do not. |
| 761 | if (SIInstrInfo::isFLAT(MI: Inst) && mayAccessScratchThroughFlat(MI: Inst)) |
| 762 | return SCRATCH_WRITE_ACCESS; |
| 763 | return VMEM_WRITE_ACCESS; |
| 764 | } |
| 765 | if (!ST->hasExtendedWaitCounts() || SIInstrInfo::isFLAT(MI: Inst)) |
| 766 | return VMEM_READ_ACCESS; |
| 767 | return VmemReadMapping[getVmemType(Inst)]; |
| 768 | } |
| 769 | |
| 770 | bool hasXcnt() const { return ST->hasWaitXCnt(); } |
| 771 | |
| 772 | bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; |
| 773 | bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; |
| 774 | bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; |
| 775 | bool isVmemAccess(const MachineInstr &MI) const; |
| 776 | bool generateWaitcntInstBefore(MachineInstr &MI, |
| 777 | WaitcntBrackets &ScoreBrackets, |
| 778 | MachineInstr *OldWaitcntInstr, |
| 779 | bool FlushVmCnt); |
| 780 | bool generateWaitcnt(AMDGPU::Waitcnt Wait, |
| 781 | MachineBasicBlock::instr_iterator It, |
| 782 | MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, |
| 783 | MachineInstr *OldWaitcntInstr); |
| 784 | void updateEventWaitcntAfter(MachineInstr &Inst, |
| 785 | WaitcntBrackets *ScoreBrackets); |
| 786 | bool isNextENDPGM(MachineBasicBlock::instr_iterator It, |
| 787 | MachineBasicBlock *Block) const; |
| 788 | bool insertForcedWaitAfter(MachineInstr &Inst, MachineBasicBlock &Block, |
| 789 | WaitcntBrackets &ScoreBrackets); |
| 790 | bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, |
| 791 | WaitcntBrackets &ScoreBrackets); |
| 792 | }; |
| 793 | |
| 794 | class SIInsertWaitcntsLegacy : public MachineFunctionPass { |
| 795 | public: |
| 796 | static char ID; |
| 797 | SIInsertWaitcntsLegacy() : MachineFunctionPass(ID) {} |
| 798 | |
| 799 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 800 | |
| 801 | StringRef getPassName() const override { |
| 802 | return "SI insert wait instructions" ; |
| 803 | } |
| 804 | |
| 805 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 806 | AU.setPreservesCFG(); |
| 807 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 808 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
| 809 | AU.addUsedIfAvailable<AAResultsWrapperPass>(); |
| 810 | AU.addPreserved<AAResultsWrapperPass>(); |
| 811 | MachineFunctionPass::getAnalysisUsage(AU); |
| 812 | } |
| 813 | }; |
| 814 | |
| 815 | } // end anonymous namespace |
| 816 | |
| 817 | RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, |
| 818 | const MachineRegisterInfo *MRI, |
| 819 | const SIRegisterInfo *TRI, |
| 820 | const MachineOperand &Op) const { |
| 821 | if (!TRI->isInAllocatableClass(RegNo: Op.getReg())) |
| 822 | return {-1, -1}; |
| 823 | |
| 824 | // A use via a PW operand does not need a waitcnt. |
| 825 | // A partial write is not a WAW. |
| 826 | assert(!Op.getSubReg() || !Op.isUndef()); |
| 827 | |
| 828 | RegInterval Result; |
| 829 | |
| 830 | MCRegister MCReg = AMDGPU::getMCReg(Reg: Op.getReg(), STI: *ST); |
| 831 | unsigned RegIdx = TRI->getHWRegIndex(Reg: MCReg); |
| 832 | assert(isUInt<8>(RegIdx)); |
| 833 | |
| 834 | const TargetRegisterClass *RC = TRI->getPhysRegBaseClass(Reg: Op.getReg()); |
| 835 | unsigned Size = TRI->getRegSizeInBits(RC: *RC); |
| 836 | |
| 837 | // AGPRs/VGPRs are tracked every 16 bits, SGPRs by 32 bits |
| 838 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) { |
| 839 | unsigned Reg = RegIdx << 1 | (AMDGPU::isHi16Reg(Reg: MCReg, MRI: *TRI) ? 1 : 0); |
| 840 | assert(Reg < AGPR_OFFSET); |
| 841 | Result.first = Reg; |
| 842 | if (TRI->isAGPR(MRI: *MRI, Reg: Op.getReg())) |
| 843 | Result.first += AGPR_OFFSET; |
| 844 | assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); |
| 845 | assert(Size % 16 == 0); |
| 846 | Result.second = Result.first + (Size / 16); |
| 847 | } else if (TRI->isSGPRReg(MRI: *MRI, Reg: Op.getReg()) && RegIdx < SQ_MAX_PGM_SGPRS) { |
| 848 | // SGPRs including VCC, TTMPs and EXEC but excluding read-only scalar |
| 849 | // sources like SRC_PRIVATE_BASE. |
| 850 | Result.first = RegIdx + NUM_ALL_VGPRS; |
| 851 | Result.second = Result.first + divideCeil(Numerator: Size, Denominator: 32); |
| 852 | } else { |
| 853 | return {-1, -1}; |
| 854 | } |
| 855 | |
| 856 | return Result; |
| 857 | } |
| 858 | |
| 859 | void WaitcntBrackets::setScoreByInterval(RegInterval Interval, |
| 860 | InstCounterType CntTy, |
| 861 | unsigned Score) { |
| 862 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 863 | if (RegNo < NUM_ALL_VGPRS) { |
| 864 | VgprUB = std::max(a: VgprUB, b: RegNo); |
| 865 | VgprScores[CntTy][RegNo] = Score; |
| 866 | } else { |
| 867 | SgprUB = std::max(a: SgprUB, b: RegNo - NUM_ALL_VGPRS); |
| 868 | SgprScores[getSgprScoresIdx(T: CntTy)][RegNo - NUM_ALL_VGPRS] = Score; |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | void WaitcntBrackets::setScoreByOperand(const MachineInstr *MI, |
| 874 | const SIRegisterInfo *TRI, |
| 875 | const MachineRegisterInfo *MRI, |
| 876 | const MachineOperand &Op, |
| 877 | InstCounterType CntTy, unsigned Score) { |
| 878 | RegInterval Interval = getRegInterval(MI, MRI, TRI, Op); |
| 879 | setScoreByInterval(Interval, CntTy, Score); |
| 880 | } |
| 881 | |
| 882 | // Return true if the subtarget is one that enables Point Sample Acceleration |
| 883 | // and the MachineInstr passed in is one to which it might be applied (the |
| 884 | // hardware makes this decision based on several factors, but we can't determine |
| 885 | // this at compile time, so we have to assume it might be applied if the |
| 886 | // instruction supports it). |
| 887 | bool WaitcntBrackets::hasPointSampleAccel(const MachineInstr &MI) const { |
| 888 | if (!ST->hasPointSampleAccel() || !SIInstrInfo::isMIMG(MI)) |
| 889 | return false; |
| 890 | |
| 891 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: MI.getOpcode()); |
| 892 | const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = |
| 893 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode); |
| 894 | return BaseInfo->PointSampleAccel; |
| 895 | } |
| 896 | |
| 897 | // Return true if the subtarget enables Point Sample Acceleration, the supplied |
| 898 | // MachineInstr is one to which it might be applied and the supplied interval is |
| 899 | // one that has outstanding writes to vmem-types different than VMEM_NOSAMPLER |
| 900 | // (this is the type that a point sample accelerated instruction effectively |
| 901 | // becomes) |
| 902 | bool WaitcntBrackets::hasPointSamplePendingVmemTypes( |
| 903 | const MachineInstr &MI, RegInterval Interval) const { |
| 904 | if (!hasPointSampleAccel(MI)) |
| 905 | return false; |
| 906 | |
| 907 | return hasOtherPendingVmemTypes(Interval, V: VMEM_NOSAMPLER); |
| 908 | } |
| 909 | |
| 910 | void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, |
| 911 | const SIRegisterInfo *TRI, |
| 912 | const MachineRegisterInfo *MRI, |
| 913 | WaitEventType E, MachineInstr &Inst) { |
| 914 | InstCounterType T = eventCounter(masks: WaitEventMaskForInst, E); |
| 915 | |
| 916 | unsigned UB = getScoreUB(T); |
| 917 | unsigned CurrScore = UB + 1; |
| 918 | if (CurrScore == 0) |
| 919 | report_fatal_error(reason: "InsertWaitcnt score wraparound" ); |
| 920 | // PendingEvents and ScoreUB need to be update regardless if this event |
| 921 | // changes the score of a register or not. |
| 922 | // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. |
| 923 | PendingEvents |= 1 << E; |
| 924 | setScoreUB(T, Val: CurrScore); |
| 925 | |
| 926 | if (T == EXP_CNT) { |
| 927 | // Put score on the source vgprs. If this is a store, just use those |
| 928 | // specific register(s). |
| 929 | if (TII->isDS(MI: Inst) && Inst.mayLoadOrStore()) { |
| 930 | // All GDS operations must protect their address register (same as |
| 931 | // export.) |
| 932 | if (const auto *AddrOp = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::addr)) |
| 933 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *AddrOp, CntTy: EXP_CNT, Score: CurrScore); |
| 934 | |
| 935 | if (Inst.mayStore()) { |
| 936 | if (const auto *Data0 = |
| 937 | TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data0)) |
| 938 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *Data0, CntTy: EXP_CNT, Score: CurrScore); |
| 939 | if (const auto *Data1 = |
| 940 | TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data1)) |
| 941 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *Data1, CntTy: EXP_CNT, Score: CurrScore); |
| 942 | } else if (SIInstrInfo::isAtomicRet(MI: Inst) && !SIInstrInfo::isGWS(MI: Inst) && |
| 943 | Inst.getOpcode() != AMDGPU::DS_APPEND && |
| 944 | Inst.getOpcode() != AMDGPU::DS_CONSUME && |
| 945 | Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { |
| 946 | for (const MachineOperand &Op : Inst.all_uses()) { |
| 947 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
| 948 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: EXP_CNT, Score: CurrScore); |
| 949 | } |
| 950 | } |
| 951 | } else if (TII->isFLAT(MI: Inst)) { |
| 952 | if (Inst.mayStore()) { |
| 953 | setScoreByOperand(MI: &Inst, TRI, MRI, |
| 954 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
| 955 | CntTy: EXP_CNT, Score: CurrScore); |
| 956 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
| 957 | setScoreByOperand(MI: &Inst, TRI, MRI, |
| 958 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
| 959 | CntTy: EXP_CNT, Score: CurrScore); |
| 960 | } |
| 961 | } else if (TII->isMIMG(MI: Inst)) { |
| 962 | if (Inst.mayStore()) { |
| 963 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
| 964 | Score: CurrScore); |
| 965 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
| 966 | setScoreByOperand(MI: &Inst, TRI, MRI, |
| 967 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
| 968 | CntTy: EXP_CNT, Score: CurrScore); |
| 969 | } |
| 970 | } else if (TII->isMTBUF(MI: Inst)) { |
| 971 | if (Inst.mayStore()) |
| 972 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
| 973 | Score: CurrScore); |
| 974 | } else if (TII->isMUBUF(MI: Inst)) { |
| 975 | if (Inst.mayStore()) { |
| 976 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
| 977 | Score: CurrScore); |
| 978 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
| 979 | setScoreByOperand(MI: &Inst, TRI, MRI, |
| 980 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
| 981 | CntTy: EXP_CNT, Score: CurrScore); |
| 982 | } |
| 983 | } else if (TII->isLDSDIR(MI: Inst)) { |
| 984 | // LDSDIR instructions attach the score to the destination. |
| 985 | setScoreByOperand(MI: &Inst, TRI, MRI, |
| 986 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::vdst), |
| 987 | CntTy: EXP_CNT, Score: CurrScore); |
| 988 | } else { |
| 989 | if (TII->isEXP(MI: Inst)) { |
| 990 | // For export the destination registers are really temps that |
| 991 | // can be used as the actual source after export patching, so |
| 992 | // we need to treat them like sources and set the EXP_CNT |
| 993 | // score. |
| 994 | for (MachineOperand &DefMO : Inst.all_defs()) { |
| 995 | if (TRI->isVGPR(MRI: *MRI, Reg: DefMO.getReg())) { |
| 996 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: DefMO, CntTy: EXP_CNT, Score: CurrScore); |
| 997 | } |
| 998 | } |
| 999 | } |
| 1000 | for (const MachineOperand &Op : Inst.all_uses()) { |
| 1001 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
| 1002 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: EXP_CNT, Score: CurrScore); |
| 1003 | } |
| 1004 | } |
| 1005 | } else if (T == X_CNT) { |
| 1006 | for (const MachineOperand &Op : Inst.all_uses()) |
| 1007 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: T, Score: CurrScore); |
| 1008 | } else /* LGKM_CNT || EXP_CNT || VS_CNT || NUM_INST_CNTS */ { |
| 1009 | // Match the score to the destination registers. |
| 1010 | // |
| 1011 | // Check only explicit operands. Stores, especially spill stores, include |
| 1012 | // implicit uses and defs of their super registers which would create an |
| 1013 | // artificial dependency, while these are there only for register liveness |
| 1014 | // accounting purposes. |
| 1015 | // |
| 1016 | // Special cases where implicit register defs exists, such as M0 or VCC, |
| 1017 | // but none with memory instructions. |
| 1018 | for (const MachineOperand &Op : Inst.defs()) { |
| 1019 | RegInterval Interval = getRegInterval(MI: &Inst, MRI, TRI, Op); |
| 1020 | if (T == LOAD_CNT || T == SAMPLE_CNT || T == BVH_CNT) { |
| 1021 | if (Interval.first >= NUM_ALL_VGPRS) |
| 1022 | continue; |
| 1023 | if (updateVMCntOnly(Inst)) { |
| 1024 | // updateVMCntOnly should only leave us with VGPRs |
| 1025 | // MUBUF, MTBUF, MIMG, FlatGlobal, and FlatScratch only have VGPR/AGPR |
| 1026 | // defs. That's required for a sane index into `VgprMemTypes` below |
| 1027 | assert(TRI->isVectorRegister(*MRI, Op.getReg())); |
| 1028 | VmemType V = getVmemType(Inst); |
| 1029 | unsigned char TypesMask = 1 << V; |
| 1030 | // If instruction can have Point Sample Accel applied, we have to flag |
| 1031 | // this with another potential dependency |
| 1032 | if (hasPointSampleAccel(MI: Inst)) |
| 1033 | TypesMask |= 1 << VMEM_NOSAMPLER; |
| 1034 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) |
| 1035 | VgprVmemTypes[RegNo] |= TypesMask; |
| 1036 | } |
| 1037 | } |
| 1038 | setScoreByInterval(Interval, CntTy: T, Score: CurrScore); |
| 1039 | } |
| 1040 | if (Inst.mayStore() && |
| 1041 | (TII->isDS(MI: Inst) || TII->mayWriteLDSThroughDMA(MI: Inst))) { |
| 1042 | // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS |
| 1043 | // written can be accessed. A load from LDS to VMEM does not need a wait. |
| 1044 | unsigned Slot = 0; |
| 1045 | for (const auto *MemOp : Inst.memoperands()) { |
| 1046 | if (!MemOp->isStore() || |
| 1047 | MemOp->getAddrSpace() != AMDGPUAS::LOCAL_ADDRESS) |
| 1048 | continue; |
| 1049 | // Comparing just AA info does not guarantee memoperands are equal |
| 1050 | // in general, but this is so for LDS DMA in practice. |
| 1051 | auto AAI = MemOp->getAAInfo(); |
| 1052 | // Alias scope information gives a way to definitely identify an |
| 1053 | // original memory object and practically produced in the module LDS |
| 1054 | // lowering pass. If there is no scope available we will not be able |
| 1055 | // to disambiguate LDS aliasing as after the module lowering all LDS |
| 1056 | // is squashed into a single big object. Do not attempt to use one of |
| 1057 | // the limited LDSDMAStores for something we will not be able to use |
| 1058 | // anyway. |
| 1059 | if (!AAI || !AAI.Scope) |
| 1060 | break; |
| 1061 | for (unsigned I = 0, E = LDSDMAStores.size(); I != E && !Slot; ++I) { |
| 1062 | for (const auto *MemOp : LDSDMAStores[I]->memoperands()) { |
| 1063 | if (MemOp->isStore() && AAI == MemOp->getAAInfo()) { |
| 1064 | Slot = I + 1; |
| 1065 | break; |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | if (Slot || LDSDMAStores.size() == NUM_LDS_VGPRS - 1) |
| 1070 | break; |
| 1071 | LDSDMAStores.push_back(Elt: &Inst); |
| 1072 | Slot = LDSDMAStores.size(); |
| 1073 | break; |
| 1074 | } |
| 1075 | setRegScore(GprNo: FIRST_LDS_VGPR + Slot, T, Val: CurrScore); |
| 1076 | if (Slot) |
| 1077 | setRegScore(GprNo: FIRST_LDS_VGPR, T, Val: CurrScore); |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | void WaitcntBrackets::print(raw_ostream &OS) const { |
| 1083 | OS << '\n'; |
| 1084 | for (auto T : inst_counter_types(MaxCounter)) { |
| 1085 | unsigned SR = getScoreRange(T); |
| 1086 | |
| 1087 | switch (T) { |
| 1088 | case LOAD_CNT: |
| 1089 | OS << " " << (ST->hasExtendedWaitCounts() ? "LOAD" : "VM" ) << "_CNT(" |
| 1090 | << SR << "): " ; |
| 1091 | break; |
| 1092 | case DS_CNT: |
| 1093 | OS << " " << (ST->hasExtendedWaitCounts() ? "DS" : "LGKM" ) << "_CNT(" |
| 1094 | << SR << "): " ; |
| 1095 | break; |
| 1096 | case EXP_CNT: |
| 1097 | OS << " EXP_CNT(" << SR << "): " ; |
| 1098 | break; |
| 1099 | case STORE_CNT: |
| 1100 | OS << " " << (ST->hasExtendedWaitCounts() ? "STORE" : "VS" ) << "_CNT(" |
| 1101 | << SR << "): " ; |
| 1102 | break; |
| 1103 | case SAMPLE_CNT: |
| 1104 | OS << " SAMPLE_CNT(" << SR << "): " ; |
| 1105 | break; |
| 1106 | case BVH_CNT: |
| 1107 | OS << " BVH_CNT(" << SR << "): " ; |
| 1108 | break; |
| 1109 | case KM_CNT: |
| 1110 | OS << " KM_CNT(" << SR << "): " ; |
| 1111 | break; |
| 1112 | case X_CNT: |
| 1113 | OS << " X_CNT(" << SR << "): " ; |
| 1114 | break; |
| 1115 | default: |
| 1116 | OS << " UNKNOWN(" << SR << "): " ; |
| 1117 | break; |
| 1118 | } |
| 1119 | |
| 1120 | if (SR != 0) { |
| 1121 | // Print vgpr scores. |
| 1122 | unsigned LB = getScoreLB(T); |
| 1123 | |
| 1124 | for (int J = 0; J <= VgprUB; J++) { |
| 1125 | unsigned RegScore = getRegScore(GprNo: J, T); |
| 1126 | if (RegScore <= LB) |
| 1127 | continue; |
| 1128 | unsigned RelScore = RegScore - LB - 1; |
| 1129 | if (J < FIRST_LDS_VGPR) { |
| 1130 | OS << RelScore << ":v" << J << " " ; |
| 1131 | } else { |
| 1132 | OS << RelScore << ":ds " ; |
| 1133 | } |
| 1134 | } |
| 1135 | // Also need to print sgpr scores for lgkm_cnt or xcnt. |
| 1136 | if (isSmemCounter(T)) { |
| 1137 | for (int J = 0; J <= SgprUB; J++) { |
| 1138 | unsigned RegScore = getRegScore(GprNo: J + NUM_ALL_VGPRS, T); |
| 1139 | if (RegScore <= LB) |
| 1140 | continue; |
| 1141 | unsigned RelScore = RegScore - LB - 1; |
| 1142 | OS << RelScore << ":s" << J << " " ; |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | OS << '\n'; |
| 1147 | } |
| 1148 | |
| 1149 | OS << "Pending Events: " ; |
| 1150 | if (hasPendingEvent()) { |
| 1151 | ListSeparator LS; |
| 1152 | for (unsigned I = 0; I != NUM_WAIT_EVENTS; ++I) { |
| 1153 | if (hasPendingEvent(E: (WaitEventType)I)) { |
| 1154 | OS << LS << WaitEventTypeName[I]; |
| 1155 | } |
| 1156 | } |
| 1157 | } else { |
| 1158 | OS << "none" ; |
| 1159 | } |
| 1160 | OS << '\n'; |
| 1161 | |
| 1162 | OS << '\n'; |
| 1163 | } |
| 1164 | |
| 1165 | /// Simplify the waitcnt, in the sense of removing redundant counts, and return |
| 1166 | /// whether a waitcnt instruction is needed at all. |
| 1167 | void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { |
| 1168 | simplifyWaitcnt(T: LOAD_CNT, Count&: Wait.LoadCnt); |
| 1169 | simplifyWaitcnt(T: EXP_CNT, Count&: Wait.ExpCnt); |
| 1170 | simplifyWaitcnt(T: DS_CNT, Count&: Wait.DsCnt); |
| 1171 | simplifyWaitcnt(T: STORE_CNT, Count&: Wait.StoreCnt); |
| 1172 | simplifyWaitcnt(T: SAMPLE_CNT, Count&: Wait.SampleCnt); |
| 1173 | simplifyWaitcnt(T: BVH_CNT, Count&: Wait.BvhCnt); |
| 1174 | simplifyWaitcnt(T: KM_CNT, Count&: Wait.KmCnt); |
| 1175 | simplifyWaitcnt(T: X_CNT, Count&: Wait.XCnt); |
| 1176 | } |
| 1177 | |
| 1178 | void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, |
| 1179 | unsigned &Count) const { |
| 1180 | // The number of outstanding events for this type, T, can be calculated |
| 1181 | // as (UB - LB). If the current Count is greater than or equal to the number |
| 1182 | // of outstanding events, then the wait for this counter is redundant. |
| 1183 | if (Count >= getScoreRange(T)) |
| 1184 | Count = ~0u; |
| 1185 | } |
| 1186 | |
| 1187 | void WaitcntBrackets::determineWait(InstCounterType T, RegInterval Interval, |
| 1188 | AMDGPU::Waitcnt &Wait) const { |
| 1189 | const unsigned LB = getScoreLB(T); |
| 1190 | const unsigned UB = getScoreUB(T); |
| 1191 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 1192 | unsigned ScoreToWait = getRegScore(GprNo: RegNo, T); |
| 1193 | |
| 1194 | // If the score of src_operand falls within the bracket, we need an |
| 1195 | // s_waitcnt instruction. |
| 1196 | if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { |
| 1197 | if ((T == LOAD_CNT || T == DS_CNT) && hasPendingFlat() && |
| 1198 | !ST->hasFlatLgkmVMemCountInOrder()) { |
| 1199 | // If there is a pending FLAT operation, and this is a VMem or LGKM |
| 1200 | // waitcnt and the target can report early completion, then we need |
| 1201 | // to force a waitcnt 0. |
| 1202 | addWait(Wait, T, Count: 0); |
| 1203 | } else if (counterOutOfOrder(T)) { |
| 1204 | // Counter can get decremented out-of-order when there |
| 1205 | // are multiple types event in the bracket. Also emit an s_wait counter |
| 1206 | // with a conservative value of 0 for the counter. |
| 1207 | addWait(Wait, T, Count: 0); |
| 1208 | } else { |
| 1209 | // If a counter has been maxed out avoid overflow by waiting for |
| 1210 | // MAX(CounterType) - 1 instead. |
| 1211 | unsigned NeededWait = |
| 1212 | std::min(a: UB - ScoreToWait, b: getWaitCountMax(T) - 1); |
| 1213 | addWait(Wait, T, Count: NeededWait); |
| 1214 | } |
| 1215 | } |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { |
| 1220 | applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
| 1221 | applyWaitcnt(T: EXP_CNT, Count: Wait.ExpCnt); |
| 1222 | applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
| 1223 | applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
| 1224 | applyWaitcnt(T: SAMPLE_CNT, Count: Wait.SampleCnt); |
| 1225 | applyWaitcnt(T: BVH_CNT, Count: Wait.BvhCnt); |
| 1226 | applyWaitcnt(T: KM_CNT, Count: Wait.KmCnt); |
| 1227 | applyXcnt(Wait); |
| 1228 | } |
| 1229 | |
| 1230 | void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { |
| 1231 | const unsigned UB = getScoreUB(T); |
| 1232 | if (Count >= UB) |
| 1233 | return; |
| 1234 | if (Count != 0) { |
| 1235 | if (counterOutOfOrder(T)) |
| 1236 | return; |
| 1237 | setScoreLB(T, Val: std::max(a: getScoreLB(T), b: UB - Count)); |
| 1238 | } else { |
| 1239 | setScoreLB(T, Val: UB); |
| 1240 | PendingEvents &= ~WaitEventMaskForInst[T]; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | void WaitcntBrackets::applyXcnt(const AMDGPU::Waitcnt &Wait) { |
| 1245 | // Wait on XCNT is redundant if we are already waiting for a load to complete. |
| 1246 | // SMEM can return out of order, so only omit XCNT wait if we are waiting till |
| 1247 | // zero. |
| 1248 | if (Wait.KmCnt == 0 && hasPendingEvent(E: SMEM_GROUP)) |
| 1249 | return applyWaitcnt(T: X_CNT, Count: 0); |
| 1250 | |
| 1251 | // If we have pending store we cannot optimize XCnt because we do not wait for |
| 1252 | // stores. VMEM loads retun in order, so if we only have loads XCnt is |
| 1253 | // decremented to the same number as LOADCnt. |
| 1254 | if (Wait.LoadCnt != ~0u && hasPendingEvent(E: VMEM_GROUP) && |
| 1255 | !hasPendingEvent(T: STORE_CNT)) |
| 1256 | return applyWaitcnt(T: X_CNT, Count: std::min(a: Wait.XCnt, b: Wait.LoadCnt)); |
| 1257 | |
| 1258 | applyWaitcnt(T: X_CNT, Count: Wait.XCnt); |
| 1259 | } |
| 1260 | |
| 1261 | // Where there are multiple types of event in the bracket of a counter, |
| 1262 | // the decrement may go out of order. |
| 1263 | bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { |
| 1264 | // Scalar memory read always can go out of order. |
| 1265 | if ((T == SmemAccessCounter && hasPendingEvent(E: SMEM_ACCESS)) || |
| 1266 | (T == X_CNT && hasPendingEvent(E: SMEM_GROUP))) |
| 1267 | return true; |
| 1268 | return hasMixedPendingEvents(T); |
| 1269 | } |
| 1270 | |
| 1271 | INITIALIZE_PASS_BEGIN(SIInsertWaitcntsLegacy, DEBUG_TYPE, "SI Insert Waitcnts" , |
| 1272 | false, false) |
| 1273 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 1274 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
| 1275 | INITIALIZE_PASS_END(SIInsertWaitcntsLegacy, DEBUG_TYPE, "SI Insert Waitcnts" , |
| 1276 | false, false) |
| 1277 | |
| 1278 | char SIInsertWaitcntsLegacy::ID = 0; |
| 1279 | |
| 1280 | char &llvm::SIInsertWaitcntsID = SIInsertWaitcntsLegacy::ID; |
| 1281 | |
| 1282 | FunctionPass *llvm::createSIInsertWaitcntsPass() { |
| 1283 | return new SIInsertWaitcntsLegacy(); |
| 1284 | } |
| 1285 | |
| 1286 | static bool updateOperandIfDifferent(MachineInstr &MI, AMDGPU::OpName OpName, |
| 1287 | unsigned NewEnc) { |
| 1288 | int OpIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), Name: OpName); |
| 1289 | assert(OpIdx >= 0); |
| 1290 | |
| 1291 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
| 1292 | |
| 1293 | if (NewEnc == MO.getImm()) |
| 1294 | return false; |
| 1295 | |
| 1296 | MO.setImm(NewEnc); |
| 1297 | return true; |
| 1298 | } |
| 1299 | |
| 1300 | /// Determine if \p MI is a gfx12+ single-counter S_WAIT_*CNT instruction, |
| 1301 | /// and if so, which counter it is waiting on. |
| 1302 | static std::optional<InstCounterType> counterTypeForInstr(unsigned Opcode) { |
| 1303 | switch (Opcode) { |
| 1304 | case AMDGPU::S_WAIT_LOADCNT: |
| 1305 | return LOAD_CNT; |
| 1306 | case AMDGPU::S_WAIT_EXPCNT: |
| 1307 | return EXP_CNT; |
| 1308 | case AMDGPU::S_WAIT_STORECNT: |
| 1309 | return STORE_CNT; |
| 1310 | case AMDGPU::S_WAIT_SAMPLECNT: |
| 1311 | return SAMPLE_CNT; |
| 1312 | case AMDGPU::S_WAIT_BVHCNT: |
| 1313 | return BVH_CNT; |
| 1314 | case AMDGPU::S_WAIT_DSCNT: |
| 1315 | return DS_CNT; |
| 1316 | case AMDGPU::S_WAIT_KMCNT: |
| 1317 | return KM_CNT; |
| 1318 | case AMDGPU::S_WAIT_XCNT: |
| 1319 | return X_CNT; |
| 1320 | default: |
| 1321 | return {}; |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | bool WaitcntGenerator::promoteSoftWaitCnt(MachineInstr *Waitcnt) const { |
| 1326 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: Waitcnt->getOpcode()); |
| 1327 | if (Opcode == Waitcnt->getOpcode()) |
| 1328 | return false; |
| 1329 | |
| 1330 | Waitcnt->setDesc(TII->get(Opcode)); |
| 1331 | return true; |
| 1332 | } |
| 1333 | |
| 1334 | /// Combine consecutive S_WAITCNT and S_WAITCNT_VSCNT instructions that |
| 1335 | /// precede \p It and follow \p OldWaitcntInstr and apply any extra waits |
| 1336 | /// from \p Wait that were added by previous passes. Currently this pass |
| 1337 | /// conservatively assumes that these preexisting waits are required for |
| 1338 | /// correctness. |
| 1339 | bool WaitcntGeneratorPreGFX12::applyPreexistingWaitcnt( |
| 1340 | WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, |
| 1341 | AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { |
| 1342 | assert(ST); |
| 1343 | assert(isNormalMode(MaxCounter)); |
| 1344 | |
| 1345 | bool Modified = false; |
| 1346 | MachineInstr *WaitcntInstr = nullptr; |
| 1347 | MachineInstr *WaitcntVsCntInstr = nullptr; |
| 1348 | |
| 1349 | LLVM_DEBUG({ |
| 1350 | dbgs() << "PreGFX12::applyPreexistingWaitcnt at: " ; |
| 1351 | if (It == OldWaitcntInstr.getParent()->instr_end()) |
| 1352 | dbgs() << "end of block\n" ; |
| 1353 | else |
| 1354 | dbgs() << *It; |
| 1355 | }); |
| 1356 | |
| 1357 | for (auto &II : |
| 1358 | make_early_inc_range(Range: make_range(x: OldWaitcntInstr.getIterator(), y: It))) { |
| 1359 | LLVM_DEBUG(dbgs() << "pre-existing iter: " << II); |
| 1360 | if (II.isMetaInstruction()) { |
| 1361 | LLVM_DEBUG(dbgs() << "skipped meta instruction\n" ); |
| 1362 | continue; |
| 1363 | } |
| 1364 | |
| 1365 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: II.getOpcode()); |
| 1366 | bool TrySimplify = Opcode != II.getOpcode() && !OptNone; |
| 1367 | |
| 1368 | // Update required wait count. If this is a soft waitcnt (= it was added |
| 1369 | // by an earlier pass), it may be entirely removed. |
| 1370 | if (Opcode == AMDGPU::S_WAITCNT) { |
| 1371 | unsigned IEnc = II.getOperand(i: 0).getImm(); |
| 1372 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(Version: IV, Encoded: IEnc); |
| 1373 | if (TrySimplify) |
| 1374 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
| 1375 | Wait = Wait.combined(Other: OldWait); |
| 1376 | |
| 1377 | // Merge consecutive waitcnt of the same type by erasing multiples. |
| 1378 | if (WaitcntInstr || (!Wait.hasWaitExceptStoreCnt() && TrySimplify)) { |
| 1379 | II.eraseFromParent(); |
| 1380 | Modified = true; |
| 1381 | } else |
| 1382 | WaitcntInstr = &II; |
| 1383 | } else { |
| 1384 | assert(Opcode == AMDGPU::S_WAITCNT_VSCNT); |
| 1385 | assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); |
| 1386 | |
| 1387 | unsigned OldVSCnt = |
| 1388 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
| 1389 | if (TrySimplify) |
| 1390 | ScoreBrackets.simplifyWaitcnt(T: InstCounterType::STORE_CNT, Count&: OldVSCnt); |
| 1391 | Wait.StoreCnt = std::min(a: Wait.StoreCnt, b: OldVSCnt); |
| 1392 | |
| 1393 | if (WaitcntVsCntInstr || (!Wait.hasWaitStoreCnt() && TrySimplify)) { |
| 1394 | II.eraseFromParent(); |
| 1395 | Modified = true; |
| 1396 | } else |
| 1397 | WaitcntVsCntInstr = &II; |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | if (WaitcntInstr) { |
| 1402 | Modified |= updateOperandIfDifferent(MI&: *WaitcntInstr, OpName: AMDGPU::OpName::simm16, |
| 1403 | NewEnc: AMDGPU::encodeWaitcnt(Version: IV, Decoded: Wait)); |
| 1404 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitcntInstr); |
| 1405 | |
| 1406 | ScoreBrackets.applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
| 1407 | ScoreBrackets.applyWaitcnt(T: EXP_CNT, Count: Wait.ExpCnt); |
| 1408 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
| 1409 | Wait.LoadCnt = ~0u; |
| 1410 | Wait.ExpCnt = ~0u; |
| 1411 | Wait.DsCnt = ~0u; |
| 1412 | |
| 1413 | LLVM_DEBUG(It == WaitcntInstr->getParent()->end() |
| 1414 | ? dbgs() |
| 1415 | << "applied pre-existing waitcnt\n" |
| 1416 | << "New Instr at block end: " << *WaitcntInstr << '\n' |
| 1417 | : dbgs() << "applied pre-existing waitcnt\n" |
| 1418 | << "Old Instr: " << *It |
| 1419 | << "New Instr: " << *WaitcntInstr << '\n'); |
| 1420 | } |
| 1421 | |
| 1422 | if (WaitcntVsCntInstr) { |
| 1423 | Modified |= updateOperandIfDifferent(MI&: *WaitcntVsCntInstr, |
| 1424 | OpName: AMDGPU::OpName::simm16, NewEnc: Wait.StoreCnt); |
| 1425 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitcntVsCntInstr); |
| 1426 | |
| 1427 | ScoreBrackets.applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
| 1428 | Wait.StoreCnt = ~0u; |
| 1429 | |
| 1430 | LLVM_DEBUG(It == WaitcntVsCntInstr->getParent()->end() |
| 1431 | ? dbgs() << "applied pre-existing waitcnt\n" |
| 1432 | << "New Instr at block end: " << *WaitcntVsCntInstr |
| 1433 | << '\n' |
| 1434 | : dbgs() << "applied pre-existing waitcnt\n" |
| 1435 | << "Old Instr: " << *It |
| 1436 | << "New Instr: " << *WaitcntVsCntInstr << '\n'); |
| 1437 | } |
| 1438 | |
| 1439 | return Modified; |
| 1440 | } |
| 1441 | |
| 1442 | /// Generate S_WAITCNT and/or S_WAITCNT_VSCNT instructions for any |
| 1443 | /// required counters in \p Wait |
| 1444 | bool WaitcntGeneratorPreGFX12::createNewWaitcnt( |
| 1445 | MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, |
| 1446 | AMDGPU::Waitcnt Wait) { |
| 1447 | assert(ST); |
| 1448 | assert(isNormalMode(MaxCounter)); |
| 1449 | |
| 1450 | bool Modified = false; |
| 1451 | const DebugLoc &DL = Block.findDebugLoc(MBBI: It); |
| 1452 | |
| 1453 | // Waits for VMcnt, LKGMcnt and/or EXPcnt are encoded together into a |
| 1454 | // single instruction while VScnt has its own instruction. |
| 1455 | if (Wait.hasWaitExceptStoreCnt()) { |
| 1456 | unsigned Enc = AMDGPU::encodeWaitcnt(Version: IV, Decoded: Wait); |
| 1457 | [[maybe_unused]] auto SWaitInst = |
| 1458 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT)).addImm(Val: Enc); |
| 1459 | Modified = true; |
| 1460 | |
| 1461 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
| 1462 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
| 1463 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
| 1464 | } |
| 1465 | |
| 1466 | if (Wait.hasWaitStoreCnt()) { |
| 1467 | assert(ST->hasVscnt()); |
| 1468 | |
| 1469 | [[maybe_unused]] auto SWaitInst = |
| 1470 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_VSCNT)) |
| 1471 | .addReg(RegNo: AMDGPU::SGPR_NULL, flags: RegState::Undef) |
| 1472 | .addImm(Val: Wait.StoreCnt); |
| 1473 | Modified = true; |
| 1474 | |
| 1475 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
| 1476 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
| 1477 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
| 1478 | } |
| 1479 | |
| 1480 | return Modified; |
| 1481 | } |
| 1482 | |
| 1483 | AMDGPU::Waitcnt |
| 1484 | WaitcntGeneratorPreGFX12::getAllZeroWaitcnt(bool IncludeVSCnt) const { |
| 1485 | return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt && ST->hasVscnt() ? 0 : ~0u); |
| 1486 | } |
| 1487 | |
| 1488 | AMDGPU::Waitcnt |
| 1489 | WaitcntGeneratorGFX12Plus::getAllZeroWaitcnt(bool IncludeVSCnt) const { |
| 1490 | return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt ? 0 : ~0u, 0, 0, 0, |
| 1491 | ~0u /* XCNT */); |
| 1492 | } |
| 1493 | |
| 1494 | /// Combine consecutive S_WAIT_*CNT instructions that precede \p It and |
| 1495 | /// follow \p OldWaitcntInstr and apply any extra waits from \p Wait that |
| 1496 | /// were added by previous passes. Currently this pass conservatively |
| 1497 | /// assumes that these preexisting waits are required for correctness. |
| 1498 | bool WaitcntGeneratorGFX12Plus::applyPreexistingWaitcnt( |
| 1499 | WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, |
| 1500 | AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { |
| 1501 | assert(ST); |
| 1502 | assert(!isNormalMode(MaxCounter)); |
| 1503 | |
| 1504 | bool Modified = false; |
| 1505 | MachineInstr *CombinedLoadDsCntInstr = nullptr; |
| 1506 | MachineInstr *CombinedStoreDsCntInstr = nullptr; |
| 1507 | MachineInstr *WaitInstrs[NUM_EXTENDED_INST_CNTS] = {}; |
| 1508 | |
| 1509 | LLVM_DEBUG({ |
| 1510 | dbgs() << "GFX12Plus::applyPreexistingWaitcnt at: " ; |
| 1511 | if (It == OldWaitcntInstr.getParent()->instr_end()) |
| 1512 | dbgs() << "end of block\n" ; |
| 1513 | else |
| 1514 | dbgs() << *It; |
| 1515 | }); |
| 1516 | |
| 1517 | for (auto &II : |
| 1518 | make_early_inc_range(Range: make_range(x: OldWaitcntInstr.getIterator(), y: It))) { |
| 1519 | LLVM_DEBUG(dbgs() << "pre-existing iter: " << II); |
| 1520 | if (II.isMetaInstruction()) { |
| 1521 | LLVM_DEBUG(dbgs() << "skipped meta instruction\n" ); |
| 1522 | continue; |
| 1523 | } |
| 1524 | |
| 1525 | MachineInstr **UpdatableInstr; |
| 1526 | |
| 1527 | // Update required wait count. If this is a soft waitcnt (= it was added |
| 1528 | // by an earlier pass), it may be entirely removed. |
| 1529 | |
| 1530 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: II.getOpcode()); |
| 1531 | bool TrySimplify = Opcode != II.getOpcode() && !OptNone; |
| 1532 | |
| 1533 | // Don't crash if the programmer used legacy waitcnt intrinsics, but don't |
| 1534 | // attempt to do more than that either. |
| 1535 | if (Opcode == AMDGPU::S_WAITCNT) |
| 1536 | continue; |
| 1537 | |
| 1538 | if (Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT) { |
| 1539 | unsigned OldEnc = |
| 1540 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
| 1541 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeLoadcntDscnt(Version: IV, LoadcntDscnt: OldEnc); |
| 1542 | if (TrySimplify) |
| 1543 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
| 1544 | Wait = Wait.combined(Other: OldWait); |
| 1545 | UpdatableInstr = &CombinedLoadDsCntInstr; |
| 1546 | } else if (Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT) { |
| 1547 | unsigned OldEnc = |
| 1548 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
| 1549 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeStorecntDscnt(Version: IV, StorecntDscnt: OldEnc); |
| 1550 | if (TrySimplify) |
| 1551 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
| 1552 | Wait = Wait.combined(Other: OldWait); |
| 1553 | UpdatableInstr = &CombinedStoreDsCntInstr; |
| 1554 | } else { |
| 1555 | std::optional<InstCounterType> CT = counterTypeForInstr(Opcode); |
| 1556 | assert(CT.has_value()); |
| 1557 | unsigned OldCnt = |
| 1558 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
| 1559 | if (TrySimplify) |
| 1560 | ScoreBrackets.simplifyWaitcnt(T: CT.value(), Count&: OldCnt); |
| 1561 | addWait(Wait, T: CT.value(), Count: OldCnt); |
| 1562 | UpdatableInstr = &WaitInstrs[CT.value()]; |
| 1563 | } |
| 1564 | |
| 1565 | // Merge consecutive waitcnt of the same type by erasing multiples. |
| 1566 | if (!*UpdatableInstr) { |
| 1567 | *UpdatableInstr = &II; |
| 1568 | } else { |
| 1569 | II.eraseFromParent(); |
| 1570 | Modified = true; |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | if (CombinedLoadDsCntInstr) { |
| 1575 | // Only keep an S_WAIT_LOADCNT_DSCNT if both counters actually need |
| 1576 | // to be waited for. Otherwise, let the instruction be deleted so |
| 1577 | // the appropriate single counter wait instruction can be inserted |
| 1578 | // instead, when new S_WAIT_*CNT instructions are inserted by |
| 1579 | // createNewWaitcnt(). As a side effect, resetting the wait counts will |
| 1580 | // cause any redundant S_WAIT_LOADCNT or S_WAIT_DSCNT to be removed by |
| 1581 | // the loop below that deals with single counter instructions. |
| 1582 | if (Wait.LoadCnt != ~0u && Wait.DsCnt != ~0u) { |
| 1583 | unsigned NewEnc = AMDGPU::encodeLoadcntDscnt(Version: IV, Decoded: Wait); |
| 1584 | Modified |= updateOperandIfDifferent(MI&: *CombinedLoadDsCntInstr, |
| 1585 | OpName: AMDGPU::OpName::simm16, NewEnc); |
| 1586 | Modified |= promoteSoftWaitCnt(Waitcnt: CombinedLoadDsCntInstr); |
| 1587 | ScoreBrackets.applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
| 1588 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
| 1589 | Wait.LoadCnt = ~0u; |
| 1590 | Wait.DsCnt = ~0u; |
| 1591 | |
| 1592 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
| 1593 | ? dbgs() << "applied pre-existing waitcnt\n" |
| 1594 | << "New Instr at block end: " |
| 1595 | << *CombinedLoadDsCntInstr << '\n' |
| 1596 | : dbgs() << "applied pre-existing waitcnt\n" |
| 1597 | << "Old Instr: " << *It << "New Instr: " |
| 1598 | << *CombinedLoadDsCntInstr << '\n'); |
| 1599 | } else { |
| 1600 | CombinedLoadDsCntInstr->eraseFromParent(); |
| 1601 | Modified = true; |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | if (CombinedStoreDsCntInstr) { |
| 1606 | // Similarly for S_WAIT_STORECNT_DSCNT. |
| 1607 | if (Wait.StoreCnt != ~0u && Wait.DsCnt != ~0u) { |
| 1608 | unsigned NewEnc = AMDGPU::encodeStorecntDscnt(Version: IV, Decoded: Wait); |
| 1609 | Modified |= updateOperandIfDifferent(MI&: *CombinedStoreDsCntInstr, |
| 1610 | OpName: AMDGPU::OpName::simm16, NewEnc); |
| 1611 | Modified |= promoteSoftWaitCnt(Waitcnt: CombinedStoreDsCntInstr); |
| 1612 | ScoreBrackets.applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
| 1613 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
| 1614 | Wait.StoreCnt = ~0u; |
| 1615 | Wait.DsCnt = ~0u; |
| 1616 | |
| 1617 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
| 1618 | ? dbgs() << "applied pre-existing waitcnt\n" |
| 1619 | << "New Instr at block end: " |
| 1620 | << *CombinedStoreDsCntInstr << '\n' |
| 1621 | : dbgs() << "applied pre-existing waitcnt\n" |
| 1622 | << "Old Instr: " << *It << "New Instr: " |
| 1623 | << *CombinedStoreDsCntInstr << '\n'); |
| 1624 | } else { |
| 1625 | CombinedStoreDsCntInstr->eraseFromParent(); |
| 1626 | Modified = true; |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | // Look for an opportunity to convert existing S_WAIT_LOADCNT, |
| 1631 | // S_WAIT_STORECNT and S_WAIT_DSCNT into new S_WAIT_LOADCNT_DSCNT |
| 1632 | // or S_WAIT_STORECNT_DSCNT. This is achieved by selectively removing |
| 1633 | // instructions so that createNewWaitcnt() will create new combined |
| 1634 | // instructions to replace them. |
| 1635 | |
| 1636 | if (Wait.DsCnt != ~0u) { |
| 1637 | // This is a vector of addresses in WaitInstrs pointing to instructions |
| 1638 | // that should be removed if they are present. |
| 1639 | SmallVector<MachineInstr **, 2> WaitsToErase; |
| 1640 | |
| 1641 | // If it's known that both DScnt and either LOADcnt or STOREcnt (but not |
| 1642 | // both) need to be waited for, ensure that there are no existing |
| 1643 | // individual wait count instructions for these. |
| 1644 | |
| 1645 | if (Wait.LoadCnt != ~0u) { |
| 1646 | WaitsToErase.push_back(Elt: &WaitInstrs[LOAD_CNT]); |
| 1647 | WaitsToErase.push_back(Elt: &WaitInstrs[DS_CNT]); |
| 1648 | } else if (Wait.StoreCnt != ~0u) { |
| 1649 | WaitsToErase.push_back(Elt: &WaitInstrs[STORE_CNT]); |
| 1650 | WaitsToErase.push_back(Elt: &WaitInstrs[DS_CNT]); |
| 1651 | } |
| 1652 | |
| 1653 | for (MachineInstr **WI : WaitsToErase) { |
| 1654 | if (!*WI) |
| 1655 | continue; |
| 1656 | |
| 1657 | (*WI)->eraseFromParent(); |
| 1658 | *WI = nullptr; |
| 1659 | Modified = true; |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
| 1664 | if (!WaitInstrs[CT]) |
| 1665 | continue; |
| 1666 | |
| 1667 | unsigned NewCnt = getWait(Wait, T: CT); |
| 1668 | if (NewCnt != ~0u) { |
| 1669 | Modified |= updateOperandIfDifferent(MI&: *WaitInstrs[CT], |
| 1670 | OpName: AMDGPU::OpName::simm16, NewEnc: NewCnt); |
| 1671 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitInstrs[CT]); |
| 1672 | |
| 1673 | ScoreBrackets.applyWaitcnt(T: CT, Count: NewCnt); |
| 1674 | setNoWait(Wait, T: CT); |
| 1675 | |
| 1676 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
| 1677 | ? dbgs() << "applied pre-existing waitcnt\n" |
| 1678 | << "New Instr at block end: " << *WaitInstrs[CT] |
| 1679 | << '\n' |
| 1680 | : dbgs() << "applied pre-existing waitcnt\n" |
| 1681 | << "Old Instr: " << *It |
| 1682 | << "New Instr: " << *WaitInstrs[CT] << '\n'); |
| 1683 | } else { |
| 1684 | WaitInstrs[CT]->eraseFromParent(); |
| 1685 | Modified = true; |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | return Modified; |
| 1690 | } |
| 1691 | |
| 1692 | /// Generate S_WAIT_*CNT instructions for any required counters in \p Wait |
| 1693 | bool WaitcntGeneratorGFX12Plus::createNewWaitcnt( |
| 1694 | MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, |
| 1695 | AMDGPU::Waitcnt Wait) { |
| 1696 | assert(ST); |
| 1697 | assert(!isNormalMode(MaxCounter)); |
| 1698 | |
| 1699 | bool Modified = false; |
| 1700 | const DebugLoc &DL = Block.findDebugLoc(MBBI: It); |
| 1701 | |
| 1702 | // Check for opportunities to use combined wait instructions. |
| 1703 | if (Wait.DsCnt != ~0u) { |
| 1704 | MachineInstr *SWaitInst = nullptr; |
| 1705 | |
| 1706 | if (Wait.LoadCnt != ~0u) { |
| 1707 | unsigned Enc = AMDGPU::encodeLoadcntDscnt(Version: IV, Decoded: Wait); |
| 1708 | |
| 1709 | SWaitInst = BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_LOADCNT_DSCNT)) |
| 1710 | .addImm(Val: Enc); |
| 1711 | |
| 1712 | Wait.LoadCnt = ~0u; |
| 1713 | Wait.DsCnt = ~0u; |
| 1714 | } else if (Wait.StoreCnt != ~0u) { |
| 1715 | unsigned Enc = AMDGPU::encodeStorecntDscnt(Version: IV, Decoded: Wait); |
| 1716 | |
| 1717 | SWaitInst = |
| 1718 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_STORECNT_DSCNT)) |
| 1719 | .addImm(Val: Enc); |
| 1720 | |
| 1721 | Wait.StoreCnt = ~0u; |
| 1722 | Wait.DsCnt = ~0u; |
| 1723 | } |
| 1724 | |
| 1725 | if (SWaitInst) { |
| 1726 | Modified = true; |
| 1727 | |
| 1728 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
| 1729 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
| 1730 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | // Generate an instruction for any remaining counter that needs |
| 1735 | // waiting for. |
| 1736 | |
| 1737 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
| 1738 | unsigned Count = getWait(Wait, T: CT); |
| 1739 | if (Count == ~0u) |
| 1740 | continue; |
| 1741 | |
| 1742 | [[maybe_unused]] auto SWaitInst = |
| 1743 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: instrsForExtendedCounterTypes[CT])) |
| 1744 | .addImm(Val: Count); |
| 1745 | |
| 1746 | Modified = true; |
| 1747 | |
| 1748 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
| 1749 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
| 1750 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
| 1751 | } |
| 1752 | |
| 1753 | return Modified; |
| 1754 | } |
| 1755 | |
| 1756 | static bool readsVCCZ(const MachineInstr &MI) { |
| 1757 | unsigned Opc = MI.getOpcode(); |
| 1758 | return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && |
| 1759 | !MI.getOperand(i: 1).isUndef(); |
| 1760 | } |
| 1761 | |
| 1762 | /// \returns true if the callee inserts an s_waitcnt 0 on function entry. |
| 1763 | static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { |
| 1764 | // Currently all conventions wait, but this may not always be the case. |
| 1765 | // |
| 1766 | // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make |
| 1767 | // senses to omit the wait and do it in the caller. |
| 1768 | return true; |
| 1769 | } |
| 1770 | |
| 1771 | /// \returns true if the callee is expected to wait for any outstanding waits |
| 1772 | /// before returning. |
| 1773 | static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { return true; } |
| 1774 | |
| 1775 | /// Generate s_waitcnt instruction to be placed before cur_Inst. |
| 1776 | /// Instructions of a given type are returned in order, |
| 1777 | /// but instructions of different types can complete out of order. |
| 1778 | /// We rely on this in-order completion |
| 1779 | /// and simply assign a score to the memory access instructions. |
| 1780 | /// We keep track of the active "score bracket" to determine |
| 1781 | /// if an access of a memory read requires an s_waitcnt |
| 1782 | /// and if so what the value of each counter is. |
| 1783 | /// The "score bracket" is bound by the lower bound and upper bound |
| 1784 | /// scores (*_score_LB and *_score_ub respectively). |
| 1785 | /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to |
| 1786 | /// flush the vmcnt counter here. |
| 1787 | bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, |
| 1788 | WaitcntBrackets &ScoreBrackets, |
| 1789 | MachineInstr *OldWaitcntInstr, |
| 1790 | bool FlushVmCnt) { |
| 1791 | setForceEmitWaitcnt(); |
| 1792 | |
| 1793 | assert(!MI.isMetaInstruction()); |
| 1794 | |
| 1795 | AMDGPU::Waitcnt Wait; |
| 1796 | |
| 1797 | // FIXME: This should have already been handled by the memory legalizer. |
| 1798 | // Removing this currently doesn't affect any lit tests, but we need to |
| 1799 | // verify that nothing was relying on this. The number of buffer invalidates |
| 1800 | // being handled here should not be expanded. |
| 1801 | if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || |
| 1802 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || |
| 1803 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || |
| 1804 | MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || |
| 1805 | MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { |
| 1806 | Wait.LoadCnt = 0; |
| 1807 | } |
| 1808 | |
| 1809 | // All waits must be resolved at call return. |
| 1810 | // NOTE: this could be improved with knowledge of all call sites or |
| 1811 | // with knowledge of the called routines. |
| 1812 | if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || |
| 1813 | MI.getOpcode() == AMDGPU::SI_RETURN || |
| 1814 | MI.getOpcode() == AMDGPU::S_SETPC_B64_return || |
| 1815 | (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { |
| 1816 | Wait = Wait.combined(Other: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); |
| 1817 | } |
| 1818 | // In dynamic VGPR mode, we want to release the VGPRs before the wave exits. |
| 1819 | // Technically the hardware will do this on its own if we don't, but that |
| 1820 | // might cost extra cycles compared to doing it explicitly. |
| 1821 | // When not in dynamic VGPR mode, identify S_ENDPGM instructions which may |
| 1822 | // have to wait for outstanding VMEM stores. In this case it can be useful to |
| 1823 | // send a message to explicitly release all VGPRs before the stores have |
| 1824 | // completed, but it is only safe to do this if there are no outstanding |
| 1825 | // scratch stores. |
| 1826 | else if (MI.getOpcode() == AMDGPU::S_ENDPGM || |
| 1827 | MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { |
| 1828 | if (!WCG->isOptNone() && |
| 1829 | (MI.getMF()->getInfo<SIMachineFunctionInfo>()->isDynamicVGPREnabled() || |
| 1830 | (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && |
| 1831 | ScoreBrackets.getScoreRange(T: STORE_CNT) != 0 && |
| 1832 | !ScoreBrackets.hasPendingEvent(E: SCRATCH_WRITE_ACCESS)))) |
| 1833 | ReleaseVGPRInsts.insert(V: &MI); |
| 1834 | } |
| 1835 | // Resolve vm waits before gs-done. |
| 1836 | else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || |
| 1837 | MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && |
| 1838 | ST->hasLegacyGeometry() && |
| 1839 | ((MI.getOperand(i: 0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == |
| 1840 | AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { |
| 1841 | Wait.LoadCnt = 0; |
| 1842 | } |
| 1843 | |
| 1844 | // Export & GDS instructions do not read the EXEC mask until after the export |
| 1845 | // is granted (which can occur well after the instruction is issued). |
| 1846 | // The shader program must flush all EXP operations on the export-count |
| 1847 | // before overwriting the EXEC mask. |
| 1848 | else { |
| 1849 | if (MI.modifiesRegister(Reg: AMDGPU::EXEC, TRI)) { |
| 1850 | // Export and GDS are tracked individually, either may trigger a waitcnt |
| 1851 | // for EXEC. |
| 1852 | if (ScoreBrackets.hasPendingEvent(E: EXP_GPR_LOCK) || |
| 1853 | ScoreBrackets.hasPendingEvent(E: EXP_PARAM_ACCESS) || |
| 1854 | ScoreBrackets.hasPendingEvent(E: EXP_POS_ACCESS) || |
| 1855 | ScoreBrackets.hasPendingEvent(E: GDS_GPR_LOCK)) { |
| 1856 | Wait.ExpCnt = 0; |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | // Wait for any pending GDS instruction to complete before any |
| 1861 | // "Always GDS" instruction. |
| 1862 | if (TII->isAlwaysGDS(Opcode: MI.getOpcode()) && ScoreBrackets.hasPendingGDS()) |
| 1863 | addWait(Wait, T: DS_CNT, Count: ScoreBrackets.getPendingGDSWait()); |
| 1864 | |
| 1865 | if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { |
| 1866 | // The function is going to insert a wait on everything in its prolog. |
| 1867 | // This still needs to be careful if the call target is a load (e.g. a GOT |
| 1868 | // load). We also need to check WAW dependency with saved PC. |
| 1869 | Wait = AMDGPU::Waitcnt(); |
| 1870 | |
| 1871 | const auto &CallAddrOp = *TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
| 1872 | if (CallAddrOp.isReg()) { |
| 1873 | RegInterval CallAddrOpInterval = |
| 1874 | ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op: CallAddrOp); |
| 1875 | |
| 1876 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval: CallAddrOpInterval, |
| 1877 | Wait); |
| 1878 | |
| 1879 | if (const auto *RtnAddrOp = |
| 1880 | TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::dst)) { |
| 1881 | RegInterval RtnAddrOpInterval = |
| 1882 | ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op: *RtnAddrOp); |
| 1883 | |
| 1884 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval: RtnAddrOpInterval, |
| 1885 | Wait); |
| 1886 | } |
| 1887 | } |
| 1888 | } else { |
| 1889 | // FIXME: Should not be relying on memoperands. |
| 1890 | // Look at the source operands of every instruction to see if |
| 1891 | // any of them results from a previous memory operation that affects |
| 1892 | // its current usage. If so, an s_waitcnt instruction needs to be |
| 1893 | // emitted. |
| 1894 | // If the source operand was defined by a load, add the s_waitcnt |
| 1895 | // instruction. |
| 1896 | // |
| 1897 | // Two cases are handled for destination operands: |
| 1898 | // 1) If the destination operand was defined by a load, add the s_waitcnt |
| 1899 | // instruction to guarantee the right WAW order. |
| 1900 | // 2) If a destination operand that was used by a recent export/store ins, |
| 1901 | // add s_waitcnt on exp_cnt to guarantee the WAR order. |
| 1902 | |
| 1903 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 1904 | const Value *Ptr = Memop->getValue(); |
| 1905 | if (Memop->isStore()) { |
| 1906 | if (auto It = SLoadAddresses.find(Val: Ptr); It != SLoadAddresses.end()) { |
| 1907 | addWait(Wait, T: SmemAccessCounter, Count: 0); |
| 1908 | if (PDT->dominates(A: MI.getParent(), B: It->second)) |
| 1909 | SLoadAddresses.erase(I: It); |
| 1910 | } |
| 1911 | } |
| 1912 | unsigned AS = Memop->getAddrSpace(); |
| 1913 | if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) |
| 1914 | continue; |
| 1915 | // No need to wait before load from VMEM to LDS. |
| 1916 | if (TII->mayWriteLDSThroughDMA(MI)) |
| 1917 | continue; |
| 1918 | |
| 1919 | // LOAD_CNT is only relevant to vgpr or LDS. |
| 1920 | unsigned RegNo = FIRST_LDS_VGPR; |
| 1921 | // Only objects with alias scope info were added to LDSDMAScopes array. |
| 1922 | // In the absense of the scope info we will not be able to disambiguate |
| 1923 | // aliasing here. There is no need to try searching for a corresponding |
| 1924 | // store slot. This is conservatively correct because in that case we |
| 1925 | // will produce a wait using the first (general) LDS DMA wait slot which |
| 1926 | // will wait on all of them anyway. |
| 1927 | if (Ptr && Memop->getAAInfo() && Memop->getAAInfo().Scope) { |
| 1928 | const auto &LDSDMAStores = ScoreBrackets.getLDSDMAStores(); |
| 1929 | for (unsigned I = 0, E = LDSDMAStores.size(); I != E; ++I) { |
| 1930 | if (MI.mayAlias(AA, Other: *LDSDMAStores[I], UseTBAA: true)) |
| 1931 | ScoreBrackets.determineWait(T: LOAD_CNT, RegNo: RegNo + I + 1, Wait); |
| 1932 | } |
| 1933 | } else { |
| 1934 | ScoreBrackets.determineWait(T: LOAD_CNT, RegNo, Wait); |
| 1935 | } |
| 1936 | if (Memop->isStore()) { |
| 1937 | ScoreBrackets.determineWait(T: EXP_CNT, RegNo, Wait); |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | // Loop over use and def operands. |
| 1942 | for (const MachineOperand &Op : MI.operands()) { |
| 1943 | if (!Op.isReg()) |
| 1944 | continue; |
| 1945 | |
| 1946 | // If the instruction does not read tied source, skip the operand. |
| 1947 | if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) |
| 1948 | continue; |
| 1949 | |
| 1950 | RegInterval Interval = ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
| 1951 | |
| 1952 | const bool IsVGPR = TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg()); |
| 1953 | if (IsVGPR) { |
| 1954 | // Implicit VGPR defs and uses are never a part of the memory |
| 1955 | // instructions description and usually present to account for |
| 1956 | // super-register liveness. |
| 1957 | // TODO: Most of the other instructions also have implicit uses |
| 1958 | // for the liveness accounting only. |
| 1959 | if (Op.isImplicit() && MI.mayLoadOrStore()) |
| 1960 | continue; |
| 1961 | |
| 1962 | // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the |
| 1963 | // previous write and this write are the same type of VMEM |
| 1964 | // instruction, in which case they are (in some architectures) |
| 1965 | // guaranteed to write their results in order anyway. |
| 1966 | // Additionally check instructions where Point Sample Acceleration |
| 1967 | // might be applied. |
| 1968 | if (Op.isUse() || !updateVMCntOnly(Inst: MI) || |
| 1969 | ScoreBrackets.hasOtherPendingVmemTypes(Interval, |
| 1970 | V: getVmemType(Inst: MI)) || |
| 1971 | ScoreBrackets.hasPointSamplePendingVmemTypes(MI, Interval) || |
| 1972 | !ST->hasVmemWriteVgprInOrder()) { |
| 1973 | ScoreBrackets.determineWait(T: LOAD_CNT, Interval, Wait); |
| 1974 | ScoreBrackets.determineWait(T: SAMPLE_CNT, Interval, Wait); |
| 1975 | ScoreBrackets.determineWait(T: BVH_CNT, Interval, Wait); |
| 1976 | ScoreBrackets.clearVgprVmemTypes(Interval); |
| 1977 | } |
| 1978 | |
| 1979 | if (Op.isDef() || ScoreBrackets.hasPendingEvent(E: EXP_LDS_ACCESS)) { |
| 1980 | ScoreBrackets.determineWait(T: EXP_CNT, Interval, Wait); |
| 1981 | } |
| 1982 | ScoreBrackets.determineWait(T: DS_CNT, Interval, Wait); |
| 1983 | } else { |
| 1984 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval, Wait); |
| 1985 | } |
| 1986 | |
| 1987 | if (hasXcnt() && Op.isDef()) |
| 1988 | ScoreBrackets.determineWait(T: X_CNT, Interval, Wait); |
| 1989 | } |
| 1990 | } |
| 1991 | } |
| 1992 | |
| 1993 | // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does |
| 1994 | // not, we need to ensure the subtarget is capable of backing off barrier |
| 1995 | // instructions in case there are any outstanding memory operations that may |
| 1996 | // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. |
| 1997 | if (TII->isBarrierStart(Opcode: MI.getOpcode()) && |
| 1998 | !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { |
| 1999 | Wait = Wait.combined(Other: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/true)); |
| 2000 | } |
| 2001 | |
| 2002 | // TODO: Remove this work-around, enable the assert for Bug 457939 |
| 2003 | // after fixing the scheduler. Also, the Shader Compiler code is |
| 2004 | // independent of target. |
| 2005 | if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { |
| 2006 | if (ScoreBrackets.hasPendingEvent(E: SMEM_ACCESS)) { |
| 2007 | Wait.DsCnt = 0; |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | // Verify that the wait is actually needed. |
| 2012 | ScoreBrackets.simplifyWaitcnt(Wait); |
| 2013 | |
| 2014 | // When forcing emit, we need to skip terminators because that would break the |
| 2015 | // terminators of the MBB if we emit a waitcnt between terminators. |
| 2016 | if (ForceEmitZeroFlag && !MI.isTerminator()) |
| 2017 | Wait = WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false); |
| 2018 | |
| 2019 | if (ForceEmitWaitcnt[LOAD_CNT]) |
| 2020 | Wait.LoadCnt = 0; |
| 2021 | if (ForceEmitWaitcnt[EXP_CNT]) |
| 2022 | Wait.ExpCnt = 0; |
| 2023 | if (ForceEmitWaitcnt[DS_CNT]) |
| 2024 | Wait.DsCnt = 0; |
| 2025 | if (ForceEmitWaitcnt[SAMPLE_CNT]) |
| 2026 | Wait.SampleCnt = 0; |
| 2027 | if (ForceEmitWaitcnt[BVH_CNT]) |
| 2028 | Wait.BvhCnt = 0; |
| 2029 | if (ForceEmitWaitcnt[KM_CNT]) |
| 2030 | Wait.KmCnt = 0; |
| 2031 | if (ForceEmitWaitcnt[X_CNT]) |
| 2032 | Wait.XCnt = 0; |
| 2033 | |
| 2034 | if (FlushVmCnt) { |
| 2035 | if (ScoreBrackets.hasPendingEvent(T: LOAD_CNT)) |
| 2036 | Wait.LoadCnt = 0; |
| 2037 | if (ScoreBrackets.hasPendingEvent(T: SAMPLE_CNT)) |
| 2038 | Wait.SampleCnt = 0; |
| 2039 | if (ScoreBrackets.hasPendingEvent(T: BVH_CNT)) |
| 2040 | Wait.BvhCnt = 0; |
| 2041 | } |
| 2042 | |
| 2043 | if (ForceEmitZeroLoadFlag && Wait.LoadCnt != ~0u) |
| 2044 | Wait.LoadCnt = 0; |
| 2045 | |
| 2046 | return generateWaitcnt(Wait, It: MI.getIterator(), Block&: *MI.getParent(), ScoreBrackets, |
| 2047 | OldWaitcntInstr); |
| 2048 | } |
| 2049 | |
| 2050 | bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, |
| 2051 | MachineBasicBlock::instr_iterator It, |
| 2052 | MachineBasicBlock &Block, |
| 2053 | WaitcntBrackets &ScoreBrackets, |
| 2054 | MachineInstr *OldWaitcntInstr) { |
| 2055 | bool Modified = false; |
| 2056 | |
| 2057 | if (OldWaitcntInstr) |
| 2058 | // Try to merge the required wait with preexisting waitcnt instructions. |
| 2059 | // Also erase redundant waitcnt. |
| 2060 | Modified = |
| 2061 | WCG->applyPreexistingWaitcnt(ScoreBrackets, OldWaitcntInstr&: *OldWaitcntInstr, Wait, It); |
| 2062 | |
| 2063 | // Any counts that could have been applied to any existing waitcnt |
| 2064 | // instructions will have been done so, now deal with any remaining. |
| 2065 | ScoreBrackets.applyWaitcnt(Wait); |
| 2066 | |
| 2067 | // ExpCnt can be merged into VINTERP. |
| 2068 | if (Wait.ExpCnt != ~0u && It != Block.instr_end() && |
| 2069 | SIInstrInfo::isVINTERP(MI: *It)) { |
| 2070 | MachineOperand *WaitExp = |
| 2071 | TII->getNamedOperand(MI&: *It, OperandName: AMDGPU::OpName::waitexp); |
| 2072 | if (Wait.ExpCnt < WaitExp->getImm()) { |
| 2073 | WaitExp->setImm(Wait.ExpCnt); |
| 2074 | Modified = true; |
| 2075 | } |
| 2076 | Wait.ExpCnt = ~0u; |
| 2077 | |
| 2078 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" |
| 2079 | << "Update Instr: " << *It); |
| 2080 | } |
| 2081 | |
| 2082 | // XCnt may be already consumed by a load wait. |
| 2083 | if (Wait.KmCnt == 0 && Wait.XCnt != ~0u && |
| 2084 | !ScoreBrackets.hasPendingEvent(E: SMEM_GROUP)) |
| 2085 | Wait.XCnt = ~0u; |
| 2086 | |
| 2087 | if (Wait.LoadCnt == 0 && Wait.XCnt != ~0u && |
| 2088 | !ScoreBrackets.hasPendingEvent(E: VMEM_GROUP)) |
| 2089 | Wait.XCnt = ~0u; |
| 2090 | |
| 2091 | // Since the translation for VMEM addresses occur in-order, we can skip the |
| 2092 | // XCnt if the current instruction is of VMEM type and has a memory dependency |
| 2093 | // with another VMEM instruction in flight. |
| 2094 | if (Wait.XCnt != ~0u && isVmemAccess(MI: *It)) |
| 2095 | Wait.XCnt = ~0u; |
| 2096 | |
| 2097 | if (WCG->createNewWaitcnt(Block, It, Wait)) |
| 2098 | Modified = true; |
| 2099 | |
| 2100 | return Modified; |
| 2101 | } |
| 2102 | |
| 2103 | // This is a flat memory operation. Check to see if it has memory tokens other |
| 2104 | // than LDS. Other address spaces supported by flat memory operations involve |
| 2105 | // global memory. |
| 2106 | bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { |
| 2107 | assert(TII->isFLAT(MI)); |
| 2108 | |
| 2109 | // All flat instructions use the VMEM counter. |
| 2110 | assert(TII->usesVM_CNT(MI)); |
| 2111 | |
| 2112 | // If there are no memory operands then conservatively assume the flat |
| 2113 | // operation may access VMEM. |
| 2114 | if (MI.memoperands_empty()) |
| 2115 | return true; |
| 2116 | |
| 2117 | // See if any memory operand specifies an address space that involves VMEM. |
| 2118 | // Flat operations only supported FLAT, LOCAL (LDS), or address spaces |
| 2119 | // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION |
| 2120 | // (GDS) address space is not supported by flat operations. Therefore, simply |
| 2121 | // return true unless only the LDS address space is found. |
| 2122 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 2123 | unsigned AS = Memop->getAddrSpace(); |
| 2124 | assert(AS != AMDGPUAS::REGION_ADDRESS); |
| 2125 | if (AS != AMDGPUAS::LOCAL_ADDRESS) |
| 2126 | return true; |
| 2127 | } |
| 2128 | |
| 2129 | return false; |
| 2130 | } |
| 2131 | |
| 2132 | // This is a flat memory operation. Check to see if it has memory tokens for |
| 2133 | // either LDS or FLAT. |
| 2134 | bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { |
| 2135 | assert(TII->isFLAT(MI)); |
| 2136 | |
| 2137 | // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. |
| 2138 | if (!TII->usesLGKM_CNT(MI)) |
| 2139 | return false; |
| 2140 | |
| 2141 | // If in tgsplit mode then there can be no use of LDS. |
| 2142 | if (ST->isTgSplitEnabled()) |
| 2143 | return false; |
| 2144 | |
| 2145 | // If there are no memory operands then conservatively assume the flat |
| 2146 | // operation may access LDS. |
| 2147 | if (MI.memoperands_empty()) |
| 2148 | return true; |
| 2149 | |
| 2150 | // See if any memory operand specifies an address space that involves LDS. |
| 2151 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
| 2152 | unsigned AS = Memop->getAddrSpace(); |
| 2153 | if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) |
| 2154 | return true; |
| 2155 | } |
| 2156 | |
| 2157 | return false; |
| 2158 | } |
| 2159 | |
| 2160 | // This is a flat memory operation. Check to see if it has memory tokens for |
| 2161 | // either scratch or FLAT. |
| 2162 | bool SIInsertWaitcnts::mayAccessScratchThroughFlat( |
| 2163 | const MachineInstr &MI) const { |
| 2164 | assert(TII->isFLAT(MI)); |
| 2165 | |
| 2166 | // SCRATCH instructions always access scratch. |
| 2167 | if (TII->isFLATScratch(MI)) |
| 2168 | return true; |
| 2169 | |
| 2170 | // GLOBAL instructions never access scratch. |
| 2171 | if (TII->isFLATGlobal(MI)) |
| 2172 | return false; |
| 2173 | |
| 2174 | // If there are no memory operands then conservatively assume the flat |
| 2175 | // operation may access scratch. |
| 2176 | if (MI.memoperands_empty()) |
| 2177 | return true; |
| 2178 | |
| 2179 | // See if any memory operand specifies an address space that involves scratch. |
| 2180 | return any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *Memop) { |
| 2181 | unsigned AS = Memop->getAddrSpace(); |
| 2182 | return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; |
| 2183 | }); |
| 2184 | } |
| 2185 | |
| 2186 | bool SIInsertWaitcnts::isVmemAccess(const MachineInstr &MI) const { |
| 2187 | return (TII->isFLAT(MI) && mayAccessVMEMThroughFlat(MI)) || |
| 2188 | (TII->isVMEM(MI) && !AMDGPU::getMUBUFIsBufferInv(Opc: MI.getOpcode())); |
| 2189 | } |
| 2190 | |
| 2191 | static bool isGFX12CacheInvOrWBInst(MachineInstr &Inst) { |
| 2192 | auto Opc = Inst.getOpcode(); |
| 2193 | return Opc == AMDGPU::GLOBAL_INV || Opc == AMDGPU::GLOBAL_WB || |
| 2194 | Opc == AMDGPU::GLOBAL_WBINV; |
| 2195 | } |
| 2196 | |
| 2197 | // Return true if the next instruction is S_ENDPGM, following fallthrough |
| 2198 | // blocks if necessary. |
| 2199 | bool SIInsertWaitcnts::isNextENDPGM(MachineBasicBlock::instr_iterator It, |
| 2200 | MachineBasicBlock *Block) const { |
| 2201 | auto BlockEnd = Block->getParent()->end(); |
| 2202 | auto BlockIter = Block->getIterator(); |
| 2203 | |
| 2204 | while (true) { |
| 2205 | if (It.isEnd()) { |
| 2206 | if (++BlockIter != BlockEnd) { |
| 2207 | It = BlockIter->instr_begin(); |
| 2208 | continue; |
| 2209 | } |
| 2210 | |
| 2211 | return false; |
| 2212 | } |
| 2213 | |
| 2214 | if (!It->isMetaInstruction()) |
| 2215 | break; |
| 2216 | |
| 2217 | It++; |
| 2218 | } |
| 2219 | |
| 2220 | assert(!It.isEnd()); |
| 2221 | |
| 2222 | return It->getOpcode() == AMDGPU::S_ENDPGM; |
| 2223 | } |
| 2224 | |
| 2225 | // Add a wait after an instruction if architecture requirements mandate one. |
| 2226 | bool SIInsertWaitcnts::insertForcedWaitAfter(MachineInstr &Inst, |
| 2227 | MachineBasicBlock &Block, |
| 2228 | WaitcntBrackets &ScoreBrackets) { |
| 2229 | AMDGPU::Waitcnt Wait; |
| 2230 | bool NeedsEndPGMCheck = false; |
| 2231 | |
| 2232 | if (ST->isPreciseMemoryEnabled() && Inst.mayLoadOrStore()) |
| 2233 | Wait = WCG->getAllZeroWaitcnt(IncludeVSCnt: Inst.mayStore() && |
| 2234 | !SIInstrInfo::isAtomicRet(MI: Inst)); |
| 2235 | |
| 2236 | if (TII->isAlwaysGDS(Opcode: Inst.getOpcode())) { |
| 2237 | Wait.DsCnt = 0; |
| 2238 | NeedsEndPGMCheck = true; |
| 2239 | } |
| 2240 | |
| 2241 | ScoreBrackets.simplifyWaitcnt(Wait); |
| 2242 | |
| 2243 | auto SuccessorIt = std::next(x: Inst.getIterator()); |
| 2244 | bool Result = generateWaitcnt(Wait, It: SuccessorIt, Block, ScoreBrackets, |
| 2245 | /*OldWaitcntInstr=*/nullptr); |
| 2246 | |
| 2247 | if (Result && NeedsEndPGMCheck && isNextENDPGM(It: SuccessorIt, Block: &Block)) { |
| 2248 | BuildMI(BB&: Block, I: SuccessorIt, MIMD: Inst.getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_NOP)) |
| 2249 | .addImm(Val: 0); |
| 2250 | } |
| 2251 | |
| 2252 | return Result; |
| 2253 | } |
| 2254 | |
| 2255 | void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, |
| 2256 | WaitcntBrackets *ScoreBrackets) { |
| 2257 | // Now look at the instruction opcode. If it is a memory access |
| 2258 | // instruction, update the upper-bound of the appropriate counter's |
| 2259 | // bracket and the destination operand scores. |
| 2260 | // TODO: Use the (TSFlags & SIInstrFlags::DS_CNT) property everywhere. |
| 2261 | |
| 2262 | bool IsVMEMAccess = false; |
| 2263 | bool IsSMEMAccess = false; |
| 2264 | if (TII->isDS(MI: Inst) && TII->usesLGKM_CNT(MI: Inst)) { |
| 2265 | if (TII->isAlwaysGDS(Opcode: Inst.getOpcode()) || |
| 2266 | TII->hasModifiersSet(MI: Inst, OpName: AMDGPU::OpName::gds)) { |
| 2267 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: GDS_ACCESS, Inst); |
| 2268 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: GDS_GPR_LOCK, Inst); |
| 2269 | ScoreBrackets->setPendingGDS(); |
| 2270 | } else { |
| 2271 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: LDS_ACCESS, Inst); |
| 2272 | } |
| 2273 | } else if (TII->isFLAT(MI: Inst)) { |
| 2274 | if (isGFX12CacheInvOrWBInst(Inst)) { |
| 2275 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
| 2276 | Inst); |
| 2277 | return; |
| 2278 | } |
| 2279 | |
| 2280 | assert(Inst.mayLoadOrStore()); |
| 2281 | |
| 2282 | int FlatASCount = 0; |
| 2283 | |
| 2284 | if (mayAccessVMEMThroughFlat(MI: Inst)) { |
| 2285 | ++FlatASCount; |
| 2286 | IsVMEMAccess = true; |
| 2287 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
| 2288 | Inst); |
| 2289 | } |
| 2290 | |
| 2291 | if (mayAccessLDSThroughFlat(MI: Inst)) { |
| 2292 | ++FlatASCount; |
| 2293 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: LDS_ACCESS, Inst); |
| 2294 | } |
| 2295 | |
| 2296 | // A Flat memory operation must access at least one address space. |
| 2297 | assert(FlatASCount); |
| 2298 | |
| 2299 | // This is a flat memory operation that access both VMEM and LDS, so note it |
| 2300 | // - it will require that both the VM and LGKM be flushed to zero if it is |
| 2301 | // pending when a VM or LGKM dependency occurs. |
| 2302 | if (FlatASCount > 1) |
| 2303 | ScoreBrackets->setPendingFlat(); |
| 2304 | } else if (SIInstrInfo::isVMEM(MI: Inst) && |
| 2305 | !llvm::AMDGPU::getMUBUFIsBufferInv(Opc: Inst.getOpcode())) { |
| 2306 | IsVMEMAccess = true; |
| 2307 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
| 2308 | Inst); |
| 2309 | |
| 2310 | if (ST->vmemWriteNeedsExpWaitcnt() && |
| 2311 | (Inst.mayStore() || SIInstrInfo::isAtomicRet(MI: Inst))) { |
| 2312 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: VMW_GPR_LOCK, Inst); |
| 2313 | } |
| 2314 | } else if (TII->isSMRD(MI: Inst)) { |
| 2315 | IsSMEMAccess = true; |
| 2316 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_ACCESS, Inst); |
| 2317 | } else if (Inst.isCall()) { |
| 2318 | if (callWaitsOnFunctionReturn(MI: Inst)) { |
| 2319 | // Act as a wait on everything |
| 2320 | ScoreBrackets->applyWaitcnt( |
| 2321 | Wait: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); |
| 2322 | ScoreBrackets->setStateOnFunctionEntryOrReturn(); |
| 2323 | } else { |
| 2324 | // May need to way wait for anything. |
| 2325 | ScoreBrackets->applyWaitcnt(Wait: AMDGPU::Waitcnt()); |
| 2326 | } |
| 2327 | } else if (SIInstrInfo::isLDSDIR(MI: Inst)) { |
| 2328 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_LDS_ACCESS, Inst); |
| 2329 | } else if (TII->isVINTERP(MI: Inst)) { |
| 2330 | int64_t Imm = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::waitexp)->getImm(); |
| 2331 | ScoreBrackets->applyWaitcnt(T: EXP_CNT, Count: Imm); |
| 2332 | } else if (SIInstrInfo::isEXP(MI: Inst)) { |
| 2333 | unsigned Imm = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::tgt)->getImm(); |
| 2334 | if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) |
| 2335 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_PARAM_ACCESS, Inst); |
| 2336 | else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) |
| 2337 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_POS_ACCESS, Inst); |
| 2338 | else |
| 2339 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_GPR_LOCK, Inst); |
| 2340 | } else { |
| 2341 | switch (Inst.getOpcode()) { |
| 2342 | case AMDGPU::S_SENDMSG: |
| 2343 | case AMDGPU::S_SENDMSG_RTN_B32: |
| 2344 | case AMDGPU::S_SENDMSG_RTN_B64: |
| 2345 | case AMDGPU::S_SENDMSGHALT: |
| 2346 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SQ_MESSAGE, Inst); |
| 2347 | break; |
| 2348 | case AMDGPU::S_MEMTIME: |
| 2349 | case AMDGPU::S_MEMREALTIME: |
| 2350 | case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0: |
| 2351 | case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: |
| 2352 | case AMDGPU::S_GET_BARRIER_STATE_M0: |
| 2353 | case AMDGPU::S_GET_BARRIER_STATE_IMM: |
| 2354 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_ACCESS, Inst); |
| 2355 | break; |
| 2356 | } |
| 2357 | } |
| 2358 | |
| 2359 | if (!hasXcnt()) |
| 2360 | return; |
| 2361 | |
| 2362 | if (IsVMEMAccess) |
| 2363 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: VMEM_GROUP, Inst); |
| 2364 | |
| 2365 | if (IsSMEMAccess) |
| 2366 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_GROUP, Inst); |
| 2367 | } |
| 2368 | |
| 2369 | bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, |
| 2370 | unsigned OtherScore) { |
| 2371 | unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; |
| 2372 | unsigned OtherShifted = |
| 2373 | OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; |
| 2374 | Score = std::max(a: MyShifted, b: OtherShifted); |
| 2375 | return OtherShifted > MyShifted; |
| 2376 | } |
| 2377 | |
| 2378 | /// Merge the pending events and associater score brackets of \p Other into |
| 2379 | /// this brackets status. |
| 2380 | /// |
| 2381 | /// Returns whether the merge resulted in a change that requires tighter waits |
| 2382 | /// (i.e. the merged brackets strictly dominate the original brackets). |
| 2383 | bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { |
| 2384 | bool StrictDom = false; |
| 2385 | |
| 2386 | VgprUB = std::max(a: VgprUB, b: Other.VgprUB); |
| 2387 | SgprUB = std::max(a: SgprUB, b: Other.SgprUB); |
| 2388 | |
| 2389 | for (auto T : inst_counter_types(MaxCounter)) { |
| 2390 | // Merge event flags for this counter |
| 2391 | const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; |
| 2392 | const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; |
| 2393 | if (OtherEvents & ~OldEvents) |
| 2394 | StrictDom = true; |
| 2395 | PendingEvents |= OtherEvents; |
| 2396 | |
| 2397 | // Merge scores for this counter |
| 2398 | const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; |
| 2399 | const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; |
| 2400 | const unsigned NewUB = ScoreLBs[T] + std::max(a: MyPending, b: OtherPending); |
| 2401 | if (NewUB < ScoreLBs[T]) |
| 2402 | report_fatal_error(reason: "waitcnt score overflow" ); |
| 2403 | |
| 2404 | MergeInfo M; |
| 2405 | M.OldLB = ScoreLBs[T]; |
| 2406 | M.OtherLB = Other.ScoreLBs[T]; |
| 2407 | M.MyShift = NewUB - ScoreUBs[T]; |
| 2408 | M.OtherShift = NewUB - Other.ScoreUBs[T]; |
| 2409 | |
| 2410 | ScoreUBs[T] = NewUB; |
| 2411 | |
| 2412 | StrictDom |= mergeScore(M, Score&: LastFlat[T], OtherScore: Other.LastFlat[T]); |
| 2413 | |
| 2414 | if (T == DS_CNT) |
| 2415 | StrictDom |= mergeScore(M, Score&: LastGDS, OtherScore: Other.LastGDS); |
| 2416 | |
| 2417 | for (int J = 0; J <= VgprUB; J++) |
| 2418 | StrictDom |= mergeScore(M, Score&: VgprScores[T][J], OtherScore: Other.VgprScores[T][J]); |
| 2419 | |
| 2420 | if (isSmemCounter(T)) { |
| 2421 | unsigned Idx = getSgprScoresIdx(T); |
| 2422 | for (int J = 0; J <= SgprUB; J++) |
| 2423 | StrictDom |= |
| 2424 | mergeScore(M, Score&: SgprScores[Idx][J], OtherScore: Other.SgprScores[Idx][J]); |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | for (int J = 0; J <= VgprUB; J++) { |
| 2429 | unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; |
| 2430 | StrictDom |= NewVmemTypes != VgprVmemTypes[J]; |
| 2431 | VgprVmemTypes[J] = NewVmemTypes; |
| 2432 | } |
| 2433 | |
| 2434 | return StrictDom; |
| 2435 | } |
| 2436 | |
| 2437 | static bool isWaitInstr(MachineInstr &Inst) { |
| 2438 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: Inst.getOpcode()); |
| 2439 | return Opcode == AMDGPU::S_WAITCNT || |
| 2440 | (Opcode == AMDGPU::S_WAITCNT_VSCNT && Inst.getOperand(i: 0).isReg() && |
| 2441 | Inst.getOperand(i: 0).getReg() == AMDGPU::SGPR_NULL) || |
| 2442 | Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT || |
| 2443 | Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT || |
| 2444 | counterTypeForInstr(Opcode).has_value(); |
| 2445 | } |
| 2446 | |
| 2447 | // Generate s_waitcnt instructions where needed. |
| 2448 | bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, |
| 2449 | MachineBasicBlock &Block, |
| 2450 | WaitcntBrackets &ScoreBrackets) { |
| 2451 | bool Modified = false; |
| 2452 | |
| 2453 | LLVM_DEBUG({ |
| 2454 | dbgs() << "*** Begin Block: " ; |
| 2455 | Block.printName(dbgs()); |
| 2456 | ScoreBrackets.dump(); |
| 2457 | }); |
| 2458 | |
| 2459 | // Track the correctness of vccz through this basic block. There are two |
| 2460 | // reasons why it might be incorrect; see ST->hasReadVCCZBug() and |
| 2461 | // ST->partialVCCWritesUpdateVCCZ(). |
| 2462 | bool VCCZCorrect = true; |
| 2463 | if (ST->hasReadVCCZBug()) { |
| 2464 | // vccz could be incorrect at a basic block boundary if a predecessor wrote |
| 2465 | // to vcc and then issued an smem load. |
| 2466 | VCCZCorrect = false; |
| 2467 | } else if (!ST->partialVCCWritesUpdateVCCZ()) { |
| 2468 | // vccz could be incorrect at a basic block boundary if a predecessor wrote |
| 2469 | // to vcc_lo or vcc_hi. |
| 2470 | VCCZCorrect = false; |
| 2471 | } |
| 2472 | |
| 2473 | // Walk over the instructions. |
| 2474 | MachineInstr *OldWaitcntInstr = nullptr; |
| 2475 | |
| 2476 | for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), |
| 2477 | E = Block.instr_end(); |
| 2478 | Iter != E;) { |
| 2479 | MachineInstr &Inst = *Iter; |
| 2480 | if (Inst.isMetaInstruction()) { |
| 2481 | ++Iter; |
| 2482 | continue; |
| 2483 | } |
| 2484 | |
| 2485 | // Track pre-existing waitcnts that were added in earlier iterations or by |
| 2486 | // the memory legalizer. |
| 2487 | if (isWaitInstr(Inst)) { |
| 2488 | if (!OldWaitcntInstr) |
| 2489 | OldWaitcntInstr = &Inst; |
| 2490 | ++Iter; |
| 2491 | continue; |
| 2492 | } |
| 2493 | |
| 2494 | bool FlushVmCnt = Block.getFirstTerminator() == Inst && |
| 2495 | isPreheaderToFlush(MBB&: Block, ScoreBrackets); |
| 2496 | |
| 2497 | // Generate an s_waitcnt instruction to be placed before Inst, if needed. |
| 2498 | Modified |= generateWaitcntInstBefore(MI&: Inst, ScoreBrackets, OldWaitcntInstr, |
| 2499 | FlushVmCnt); |
| 2500 | OldWaitcntInstr = nullptr; |
| 2501 | |
| 2502 | // Restore vccz if it's not known to be correct already. |
| 2503 | bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(MI: Inst); |
| 2504 | |
| 2505 | // Don't examine operands unless we need to track vccz correctness. |
| 2506 | if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { |
| 2507 | if (Inst.definesRegister(Reg: AMDGPU::VCC_LO, /*TRI=*/nullptr) || |
| 2508 | Inst.definesRegister(Reg: AMDGPU::VCC_HI, /*TRI=*/nullptr)) { |
| 2509 | // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. |
| 2510 | if (!ST->partialVCCWritesUpdateVCCZ()) |
| 2511 | VCCZCorrect = false; |
| 2512 | } else if (Inst.definesRegister(Reg: AMDGPU::VCC, /*TRI=*/nullptr)) { |
| 2513 | // There is a hardware bug on CI/SI where SMRD instruction may corrupt |
| 2514 | // vccz bit, so when we detect that an instruction may read from a |
| 2515 | // corrupt vccz bit, we need to: |
| 2516 | // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD |
| 2517 | // operations to complete. |
| 2518 | // 2. Restore the correct value of vccz by writing the current value |
| 2519 | // of vcc back to vcc. |
| 2520 | if (ST->hasReadVCCZBug() && |
| 2521 | ScoreBrackets.hasPendingEvent(E: SMEM_ACCESS)) { |
| 2522 | // Writes to vcc while there's an outstanding smem read may get |
| 2523 | // clobbered as soon as any read completes. |
| 2524 | VCCZCorrect = false; |
| 2525 | } else { |
| 2526 | // Writes to vcc will fix any incorrect value in vccz. |
| 2527 | VCCZCorrect = true; |
| 2528 | } |
| 2529 | } |
| 2530 | } |
| 2531 | |
| 2532 | if (TII->isSMRD(MI: Inst)) { |
| 2533 | for (const MachineMemOperand *Memop : Inst.memoperands()) { |
| 2534 | // No need to handle invariant loads when avoiding WAR conflicts, as |
| 2535 | // there cannot be a vector store to the same memory location. |
| 2536 | if (!Memop->isInvariant()) { |
| 2537 | const Value *Ptr = Memop->getValue(); |
| 2538 | SLoadAddresses.insert(KV: std::pair(Ptr, Inst.getParent())); |
| 2539 | } |
| 2540 | } |
| 2541 | if (ST->hasReadVCCZBug()) { |
| 2542 | // This smem read could complete and clobber vccz at any time. |
| 2543 | VCCZCorrect = false; |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | updateEventWaitcntAfter(Inst, ScoreBrackets: &ScoreBrackets); |
| 2548 | |
| 2549 | Modified |= insertForcedWaitAfter(Inst, Block, ScoreBrackets); |
| 2550 | |
| 2551 | LLVM_DEBUG({ |
| 2552 | Inst.print(dbgs()); |
| 2553 | ScoreBrackets.dump(); |
| 2554 | }); |
| 2555 | |
| 2556 | // TODO: Remove this work-around after fixing the scheduler and enable the |
| 2557 | // assert above. |
| 2558 | if (RestoreVCCZ) { |
| 2559 | // Restore the vccz bit. Any time a value is written to vcc, the vcc |
| 2560 | // bit is updated, so we can restore the bit by reading the value of |
| 2561 | // vcc and then writing it back to the register. |
| 2562 | BuildMI(BB&: Block, I&: Inst, MIMD: Inst.getDebugLoc(), |
| 2563 | MCID: TII->get(Opcode: ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), |
| 2564 | DestReg: TRI->getVCC()) |
| 2565 | .addReg(RegNo: TRI->getVCC()); |
| 2566 | VCCZCorrect = true; |
| 2567 | Modified = true; |
| 2568 | } |
| 2569 | |
| 2570 | ++Iter; |
| 2571 | } |
| 2572 | |
| 2573 | // Flush the LOADcnt, SAMPLEcnt and BVHcnt counters at the end of the block if |
| 2574 | // needed. |
| 2575 | AMDGPU::Waitcnt Wait; |
| 2576 | if (Block.getFirstTerminator() == Block.end() && |
| 2577 | isPreheaderToFlush(MBB&: Block, ScoreBrackets)) { |
| 2578 | if (ScoreBrackets.hasPendingEvent(T: LOAD_CNT)) |
| 2579 | Wait.LoadCnt = 0; |
| 2580 | if (ScoreBrackets.hasPendingEvent(T: SAMPLE_CNT)) |
| 2581 | Wait.SampleCnt = 0; |
| 2582 | if (ScoreBrackets.hasPendingEvent(T: BVH_CNT)) |
| 2583 | Wait.BvhCnt = 0; |
| 2584 | } |
| 2585 | |
| 2586 | // Combine or remove any redundant waitcnts at the end of the block. |
| 2587 | Modified |= generateWaitcnt(Wait, It: Block.instr_end(), Block, ScoreBrackets, |
| 2588 | OldWaitcntInstr); |
| 2589 | |
| 2590 | LLVM_DEBUG({ |
| 2591 | dbgs() << "*** End Block: " ; |
| 2592 | Block.printName(dbgs()); |
| 2593 | ScoreBrackets.dump(); |
| 2594 | }); |
| 2595 | |
| 2596 | return Modified; |
| 2597 | } |
| 2598 | |
| 2599 | // Return true if the given machine basic block is a preheader of a loop in |
| 2600 | // which we want to flush the vmcnt counter, and false otherwise. |
| 2601 | bool SIInsertWaitcnts::( |
| 2602 | MachineBasicBlock &MBB, const WaitcntBrackets &ScoreBrackets) { |
| 2603 | auto [Iterator, IsInserted] = PreheadersToFlush.try_emplace(Key: &MBB, Args: false); |
| 2604 | if (!IsInserted) |
| 2605 | return Iterator->second; |
| 2606 | |
| 2607 | MachineBasicBlock *Succ = MBB.getSingleSuccessor(); |
| 2608 | if (!Succ) |
| 2609 | return false; |
| 2610 | |
| 2611 | MachineLoop *Loop = MLI->getLoopFor(BB: Succ); |
| 2612 | if (!Loop) |
| 2613 | return false; |
| 2614 | |
| 2615 | if (Loop->getLoopPreheader() == &MBB && |
| 2616 | shouldFlushVmCnt(ML: Loop, Brackets: ScoreBrackets)) { |
| 2617 | Iterator->second = true; |
| 2618 | return true; |
| 2619 | } |
| 2620 | |
| 2621 | return false; |
| 2622 | } |
| 2623 | |
| 2624 | bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { |
| 2625 | if (SIInstrInfo::isFLAT(MI)) |
| 2626 | return mayAccessVMEMThroughFlat(MI); |
| 2627 | return SIInstrInfo::isVMEM(MI); |
| 2628 | } |
| 2629 | |
| 2630 | // Return true if it is better to flush the vmcnt counter in the preheader of |
| 2631 | // the given loop. We currently decide to flush in two situations: |
| 2632 | // 1. The loop contains vmem store(s), no vmem load and at least one use of a |
| 2633 | // vgpr containing a value that is loaded outside of the loop. (Only on |
| 2634 | // targets with no vscnt counter). |
| 2635 | // 2. The loop contains vmem load(s), but the loaded values are not used in the |
| 2636 | // loop, and at least one use of a vgpr containing a value that is loaded |
| 2637 | // outside of the loop. |
| 2638 | bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, |
| 2639 | const WaitcntBrackets &Brackets) { |
| 2640 | bool HasVMemLoad = false; |
| 2641 | bool HasVMemStore = false; |
| 2642 | bool UsesVgprLoadedOutside = false; |
| 2643 | DenseSet<Register> VgprUse; |
| 2644 | DenseSet<Register> VgprDef; |
| 2645 | |
| 2646 | for (MachineBasicBlock *MBB : ML->blocks()) { |
| 2647 | for (MachineInstr &MI : *MBB) { |
| 2648 | if (isVMEMOrFlatVMEM(MI)) { |
| 2649 | if (MI.mayLoad()) |
| 2650 | HasVMemLoad = true; |
| 2651 | if (MI.mayStore()) |
| 2652 | HasVMemStore = true; |
| 2653 | } |
| 2654 | for (const MachineOperand &Op : MI.all_uses()) { |
| 2655 | if (!TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
| 2656 | continue; |
| 2657 | RegInterval Interval = Brackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
| 2658 | // Vgpr use |
| 2659 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 2660 | // If we find a register that is loaded inside the loop, 1. and 2. |
| 2661 | // are invalidated and we can exit. |
| 2662 | if (VgprDef.contains(V: RegNo)) |
| 2663 | return false; |
| 2664 | VgprUse.insert(V: RegNo); |
| 2665 | // If at least one of Op's registers is in the score brackets, the |
| 2666 | // value is likely loaded outside of the loop. |
| 2667 | if (Brackets.getRegScore(GprNo: RegNo, T: LOAD_CNT) > |
| 2668 | Brackets.getScoreLB(T: LOAD_CNT) || |
| 2669 | Brackets.getRegScore(GprNo: RegNo, T: SAMPLE_CNT) > |
| 2670 | Brackets.getScoreLB(T: SAMPLE_CNT) || |
| 2671 | Brackets.getRegScore(GprNo: RegNo, T: BVH_CNT) > |
| 2672 | Brackets.getScoreLB(T: BVH_CNT)) { |
| 2673 | UsesVgprLoadedOutside = true; |
| 2674 | break; |
| 2675 | } |
| 2676 | } |
| 2677 | } |
| 2678 | |
| 2679 | // VMem load vgpr def |
| 2680 | if (isVMEMOrFlatVMEM(MI) && MI.mayLoad()) { |
| 2681 | for (const MachineOperand &Op : MI.all_defs()) { |
| 2682 | RegInterval Interval = Brackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
| 2683 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
| 2684 | // If we find a register that is loaded inside the loop, 1. and 2. |
| 2685 | // are invalidated and we can exit. |
| 2686 | if (VgprUse.contains(V: RegNo)) |
| 2687 | return false; |
| 2688 | VgprDef.insert(V: RegNo); |
| 2689 | } |
| 2690 | } |
| 2691 | } |
| 2692 | } |
| 2693 | } |
| 2694 | if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) |
| 2695 | return true; |
| 2696 | return HasVMemLoad && UsesVgprLoadedOutside && ST->hasVmemWriteVgprInOrder(); |
| 2697 | } |
| 2698 | |
| 2699 | bool SIInsertWaitcntsLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 2700 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 2701 | auto *PDT = |
| 2702 | &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); |
| 2703 | AliasAnalysis *AA = nullptr; |
| 2704 | if (auto *AAR = getAnalysisIfAvailable<AAResultsWrapperPass>()) |
| 2705 | AA = &AAR->getAAResults(); |
| 2706 | |
| 2707 | return SIInsertWaitcnts(MLI, PDT, AA).run(MF); |
| 2708 | } |
| 2709 | |
| 2710 | PreservedAnalyses |
| 2711 | SIInsertWaitcntsPass::run(MachineFunction &MF, |
| 2712 | MachineFunctionAnalysisManager &MFAM) { |
| 2713 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
| 2714 | auto *PDT = &MFAM.getResult<MachinePostDominatorTreeAnalysis>(IR&: MF); |
| 2715 | auto *AA = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: MF) |
| 2716 | .getManager() |
| 2717 | .getCachedResult<AAManager>(IR&: MF.getFunction()); |
| 2718 | |
| 2719 | if (!SIInsertWaitcnts(MLI, PDT, AA).run(MF)) |
| 2720 | return PreservedAnalyses::all(); |
| 2721 | |
| 2722 | return getMachineFunctionPassPreservedAnalyses() |
| 2723 | .preserveSet<CFGAnalyses>() |
| 2724 | .preserve<AAManager>(); |
| 2725 | } |
| 2726 | |
| 2727 | bool SIInsertWaitcnts::run(MachineFunction &MF) { |
| 2728 | ST = &MF.getSubtarget<GCNSubtarget>(); |
| 2729 | TII = ST->getInstrInfo(); |
| 2730 | TRI = &TII->getRegisterInfo(); |
| 2731 | MRI = &MF.getRegInfo(); |
| 2732 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2733 | |
| 2734 | AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(GPU: ST->getCPU()); |
| 2735 | |
| 2736 | if (ST->hasExtendedWaitCounts()) { |
| 2737 | MaxCounter = NUM_EXTENDED_INST_CNTS; |
| 2738 | WCGGFX12Plus = WaitcntGeneratorGFX12Plus(MF, MaxCounter); |
| 2739 | WCG = &WCGGFX12Plus; |
| 2740 | } else { |
| 2741 | MaxCounter = NUM_NORMAL_INST_CNTS; |
| 2742 | WCGPreGFX12 = WaitcntGeneratorPreGFX12(MF); |
| 2743 | WCG = &WCGPreGFX12; |
| 2744 | } |
| 2745 | |
| 2746 | for (auto T : inst_counter_types()) |
| 2747 | ForceEmitWaitcnt[T] = false; |
| 2748 | |
| 2749 | const unsigned *WaitEventMaskForInst = WCG->getWaitEventMask(); |
| 2750 | |
| 2751 | SmemAccessCounter = eventCounter(masks: WaitEventMaskForInst, E: SMEM_ACCESS); |
| 2752 | |
| 2753 | HardwareLimits Limits = {}; |
| 2754 | if (ST->hasExtendedWaitCounts()) { |
| 2755 | Limits.LoadcntMax = AMDGPU::getLoadcntBitMask(Version: IV); |
| 2756 | Limits.DscntMax = AMDGPU::getDscntBitMask(Version: IV); |
| 2757 | } else { |
| 2758 | Limits.LoadcntMax = AMDGPU::getVmcntBitMask(Version: IV); |
| 2759 | Limits.DscntMax = AMDGPU::getLgkmcntBitMask(Version: IV); |
| 2760 | } |
| 2761 | Limits.ExpcntMax = AMDGPU::getExpcntBitMask(Version: IV); |
| 2762 | Limits.StorecntMax = AMDGPU::getStorecntBitMask(Version: IV); |
| 2763 | Limits.SamplecntMax = AMDGPU::getSamplecntBitMask(Version: IV); |
| 2764 | Limits.BvhcntMax = AMDGPU::getBvhcntBitMask(Version: IV); |
| 2765 | Limits.KmcntMax = AMDGPU::getKmcntBitMask(Version: IV); |
| 2766 | Limits.XcntMax = AMDGPU::getXcntBitMask(Version: IV); |
| 2767 | |
| 2768 | [[maybe_unused]] unsigned NumVGPRsMax = |
| 2769 | ST->getAddressableNumVGPRs(DynamicVGPRBlockSize: MFI->getDynamicVGPRBlockSize()); |
| 2770 | [[maybe_unused]] unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); |
| 2771 | assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); |
| 2772 | assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); |
| 2773 | |
| 2774 | BlockInfos.clear(); |
| 2775 | bool Modified = false; |
| 2776 | |
| 2777 | MachineBasicBlock &EntryBB = MF.front(); |
| 2778 | MachineBasicBlock::iterator I = EntryBB.begin(); |
| 2779 | |
| 2780 | if (!MFI->isEntryFunction()) { |
| 2781 | // Wait for any outstanding memory operations that the input registers may |
| 2782 | // depend on. We can't track them and it's better to do the wait after the |
| 2783 | // costly call sequence. |
| 2784 | |
| 2785 | // TODO: Could insert earlier and schedule more liberally with operations |
| 2786 | // that only use caller preserved registers. |
| 2787 | for (MachineBasicBlock::iterator E = EntryBB.end(); |
| 2788 | I != E && (I->isPHI() || I->isMetaInstruction()); ++I) |
| 2789 | ; |
| 2790 | |
| 2791 | if (ST->hasExtendedWaitCounts()) { |
| 2792 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_WAIT_LOADCNT_DSCNT)) |
| 2793 | .addImm(Val: 0); |
| 2794 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
| 2795 | if (CT == LOAD_CNT || CT == DS_CNT || CT == STORE_CNT || CT == X_CNT) |
| 2796 | continue; |
| 2797 | |
| 2798 | if (!ST->hasImageInsts() && |
| 2799 | (CT == EXP_CNT || CT == SAMPLE_CNT || CT == BVH_CNT)) |
| 2800 | continue; |
| 2801 | |
| 2802 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), |
| 2803 | MCID: TII->get(Opcode: instrsForExtendedCounterTypes[CT])) |
| 2804 | .addImm(Val: 0); |
| 2805 | } |
| 2806 | } else { |
| 2807 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_WAITCNT)).addImm(Val: 0); |
| 2808 | } |
| 2809 | |
| 2810 | auto NonKernelInitialState = std::make_unique<WaitcntBrackets>( |
| 2811 | args&: ST, args&: MaxCounter, args&: Limits, args&: WaitEventMaskForInst, args&: SmemAccessCounter); |
| 2812 | NonKernelInitialState->setStateOnFunctionEntryOrReturn(); |
| 2813 | BlockInfos[&EntryBB].Incoming = std::move(NonKernelInitialState); |
| 2814 | |
| 2815 | Modified = true; |
| 2816 | } |
| 2817 | |
| 2818 | // Keep iterating over the blocks in reverse post order, inserting and |
| 2819 | // updating s_waitcnt where needed, until a fix point is reached. |
| 2820 | for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) |
| 2821 | BlockInfos.try_emplace(Key: MBB); |
| 2822 | |
| 2823 | std::unique_ptr<WaitcntBrackets> Brackets; |
| 2824 | bool Repeat; |
| 2825 | do { |
| 2826 | Repeat = false; |
| 2827 | |
| 2828 | for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; |
| 2829 | ++BII) { |
| 2830 | MachineBasicBlock *MBB = BII->first; |
| 2831 | BlockInfo &BI = BII->second; |
| 2832 | if (!BI.Dirty) |
| 2833 | continue; |
| 2834 | |
| 2835 | if (BI.Incoming) { |
| 2836 | if (!Brackets) |
| 2837 | Brackets = std::make_unique<WaitcntBrackets>(args&: *BI.Incoming); |
| 2838 | else |
| 2839 | *Brackets = *BI.Incoming; |
| 2840 | } else { |
| 2841 | if (!Brackets) { |
| 2842 | Brackets = std::make_unique<WaitcntBrackets>( |
| 2843 | args&: ST, args&: MaxCounter, args&: Limits, args&: WaitEventMaskForInst, args&: SmemAccessCounter); |
| 2844 | } else { |
| 2845 | // Reinitialize in-place. N.B. do not do this by assigning from a |
| 2846 | // temporary because the WaitcntBrackets class is large and it could |
| 2847 | // cause this function to use an unreasonable amount of stack space. |
| 2848 | Brackets->~WaitcntBrackets(); |
| 2849 | new (Brackets.get()) WaitcntBrackets( |
| 2850 | ST, MaxCounter, Limits, WaitEventMaskForInst, SmemAccessCounter); |
| 2851 | } |
| 2852 | } |
| 2853 | |
| 2854 | Modified |= insertWaitcntInBlock(MF, Block&: *MBB, ScoreBrackets&: *Brackets); |
| 2855 | BI.Dirty = false; |
| 2856 | |
| 2857 | if (Brackets->hasPendingEvent()) { |
| 2858 | BlockInfo *MoveBracketsToSucc = nullptr; |
| 2859 | for (MachineBasicBlock *Succ : MBB->successors()) { |
| 2860 | auto *SuccBII = BlockInfos.find(Key: Succ); |
| 2861 | BlockInfo &SuccBI = SuccBII->second; |
| 2862 | if (!SuccBI.Incoming) { |
| 2863 | SuccBI.Dirty = true; |
| 2864 | if (SuccBII <= BII) { |
| 2865 | LLVM_DEBUG(dbgs() << "repeat on backedge\n" ); |
| 2866 | Repeat = true; |
| 2867 | } |
| 2868 | if (!MoveBracketsToSucc) { |
| 2869 | MoveBracketsToSucc = &SuccBI; |
| 2870 | } else { |
| 2871 | SuccBI.Incoming = std::make_unique<WaitcntBrackets>(args&: *Brackets); |
| 2872 | } |
| 2873 | } else if (SuccBI.Incoming->merge(Other: *Brackets)) { |
| 2874 | SuccBI.Dirty = true; |
| 2875 | if (SuccBII <= BII) { |
| 2876 | LLVM_DEBUG(dbgs() << "repeat on backedge\n" ); |
| 2877 | Repeat = true; |
| 2878 | } |
| 2879 | } |
| 2880 | } |
| 2881 | if (MoveBracketsToSucc) |
| 2882 | MoveBracketsToSucc->Incoming = std::move(Brackets); |
| 2883 | } |
| 2884 | } |
| 2885 | } while (Repeat); |
| 2886 | |
| 2887 | if (ST->hasScalarStores()) { |
| 2888 | SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; |
| 2889 | bool HaveScalarStores = false; |
| 2890 | |
| 2891 | for (MachineBasicBlock &MBB : MF) { |
| 2892 | for (MachineInstr &MI : MBB) { |
| 2893 | if (!HaveScalarStores && TII->isScalarStore(MI)) |
| 2894 | HaveScalarStores = true; |
| 2895 | |
| 2896 | if (MI.getOpcode() == AMDGPU::S_ENDPGM || |
| 2897 | MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) |
| 2898 | EndPgmBlocks.push_back(Elt: &MBB); |
| 2899 | } |
| 2900 | } |
| 2901 | |
| 2902 | if (HaveScalarStores) { |
| 2903 | // If scalar writes are used, the cache must be flushed or else the next |
| 2904 | // wave to reuse the same scratch memory can be clobbered. |
| 2905 | // |
| 2906 | // Insert s_dcache_wb at wave termination points if there were any scalar |
| 2907 | // stores, and only if the cache hasn't already been flushed. This could |
| 2908 | // be improved by looking across blocks for flushes in postdominating |
| 2909 | // blocks from the stores but an explicitly requested flush is probably |
| 2910 | // very rare. |
| 2911 | for (MachineBasicBlock *MBB : EndPgmBlocks) { |
| 2912 | bool SeenDCacheWB = false; |
| 2913 | |
| 2914 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| 2915 | I != E; ++I) { |
| 2916 | if (I->getOpcode() == AMDGPU::S_DCACHE_WB) |
| 2917 | SeenDCacheWB = true; |
| 2918 | else if (TII->isScalarStore(MI: *I)) |
| 2919 | SeenDCacheWB = false; |
| 2920 | |
| 2921 | // FIXME: It would be better to insert this before a waitcnt if any. |
| 2922 | if ((I->getOpcode() == AMDGPU::S_ENDPGM || |
| 2923 | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && |
| 2924 | !SeenDCacheWB) { |
| 2925 | Modified = true; |
| 2926 | BuildMI(BB&: *MBB, I, MIMD: I->getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_DCACHE_WB)); |
| 2927 | } |
| 2928 | } |
| 2929 | } |
| 2930 | } |
| 2931 | } |
| 2932 | |
| 2933 | // Deallocate the VGPRs before previously identified S_ENDPGM instructions. |
| 2934 | // This is done in different ways depending on how the VGPRs were allocated |
| 2935 | // (i.e. whether we're in dynamic VGPR mode or not). |
| 2936 | // Skip deallocation if kernel is waveslot limited vs VGPR limited. A short |
| 2937 | // waveslot limited kernel runs slower with the deallocation. |
| 2938 | if (MFI->isDynamicVGPREnabled()) { |
| 2939 | for (MachineInstr *MI : ReleaseVGPRInsts) { |
| 2940 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 2941 | MCID: TII->get(Opcode: AMDGPU::S_ALLOC_VGPR)) |
| 2942 | .addImm(Val: 0); |
| 2943 | Modified = true; |
| 2944 | } |
| 2945 | } else { |
| 2946 | if (!ReleaseVGPRInsts.empty() && |
| 2947 | (MF.getFrameInfo().hasCalls() || |
| 2948 | ST->getOccupancyWithNumVGPRs( |
| 2949 | VGPRs: TRI->getNumUsedPhysRegs(MRI: *MRI, RC: AMDGPU::VGPR_32RegClass), |
| 2950 | /*IsDynamicVGPR=*/DynamicVGPRBlockSize: false) < |
| 2951 | AMDGPU::IsaInfo::getMaxWavesPerEU(STI: ST))) { |
| 2952 | for (MachineInstr *MI : ReleaseVGPRInsts) { |
| 2953 | if (ST->requiresNopBeforeDeallocVGPRs()) { |
| 2954 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 2955 | MCID: TII->get(Opcode: AMDGPU::S_NOP)) |
| 2956 | .addImm(Val: 0); |
| 2957 | } |
| 2958 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 2959 | MCID: TII->get(Opcode: AMDGPU::S_SENDMSG)) |
| 2960 | .addImm(Val: AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); |
| 2961 | Modified = true; |
| 2962 | } |
| 2963 | } |
| 2964 | } |
| 2965 | ReleaseVGPRInsts.clear(); |
| 2966 | PreheadersToFlush.clear(); |
| 2967 | SLoadAddresses.clear(); |
| 2968 | |
| 2969 | return Modified; |
| 2970 | } |
| 2971 | |