1 | //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Insert wait instructions for memory reads and writes. |
11 | /// |
12 | /// Memory reads and writes are issued asynchronously, so we need to insert |
13 | /// S_WAITCNT instructions when we want to access any of their results or |
14 | /// overwrite any register that's used asynchronously. |
15 | /// |
16 | /// TODO: This pass currently keeps one timeline per hardware counter. A more |
17 | /// finely-grained approach that keeps one timeline per event type could |
18 | /// sometimes get away with generating weaker s_waitcnt instructions. For |
19 | /// example, when both SMEM and LDS are in flight and we need to wait for |
20 | /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, |
21 | /// but the pass will currently generate a conservative lgkmcnt(0) because |
22 | /// multiple event types are in flight. |
23 | // |
24 | //===----------------------------------------------------------------------===// |
25 | |
26 | #include "AMDGPU.h" |
27 | #include "GCNSubtarget.h" |
28 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
29 | #include "SIMachineFunctionInfo.h" |
30 | #include "Utils/AMDGPUBaseInfo.h" |
31 | #include "llvm/ADT/MapVector.h" |
32 | #include "llvm/ADT/PostOrderIterator.h" |
33 | #include "llvm/ADT/Sequence.h" |
34 | #include "llvm/Analysis/AliasAnalysis.h" |
35 | #include "llvm/CodeGen/MachineLoopInfo.h" |
36 | #include "llvm/CodeGen/MachinePassManager.h" |
37 | #include "llvm/CodeGen/MachinePostDominators.h" |
38 | #include "llvm/Support/DebugCounter.h" |
39 | #include "llvm/TargetParser/TargetParser.h" |
40 | using namespace llvm; |
41 | |
42 | #define DEBUG_TYPE "si-insert-waitcnts" |
43 | |
44 | DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE "-forceexp" , |
45 | "Force emit s_waitcnt expcnt(0) instrs" ); |
46 | DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE "-forcelgkm" , |
47 | "Force emit s_waitcnt lgkmcnt(0) instrs" ); |
48 | DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE "-forcevm" , |
49 | "Force emit s_waitcnt vmcnt(0) instrs" ); |
50 | |
51 | static cl::opt<bool> |
52 | ForceEmitZeroFlag("amdgpu-waitcnt-forcezero" , |
53 | cl::desc("Force all waitcnt instrs to be emitted as " |
54 | "s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)" ), |
55 | cl::init(Val: false), cl::Hidden); |
56 | |
57 | static cl::opt<bool> ForceEmitZeroLoadFlag( |
58 | "amdgpu-waitcnt-load-forcezero" , |
59 | cl::desc("Force all waitcnt load counters to wait until 0" ), |
60 | cl::init(Val: false), cl::Hidden); |
61 | |
62 | namespace { |
63 | // Class of object that encapsulates latest instruction counter score |
64 | // associated with the operand. Used for determining whether |
65 | // s_waitcnt instruction needs to be emitted. |
66 | |
67 | enum InstCounterType { |
68 | LOAD_CNT = 0, // VMcnt prior to gfx12. |
69 | DS_CNT, // LKGMcnt prior to gfx12. |
70 | EXP_CNT, // |
71 | STORE_CNT, // VScnt in gfx10/gfx11. |
72 | NUM_NORMAL_INST_CNTS, |
73 | SAMPLE_CNT = NUM_NORMAL_INST_CNTS, // gfx12+ only. |
74 | BVH_CNT, // gfx12+ only. |
75 | KM_CNT, // gfx12+ only. |
76 | X_CNT, // gfx1250. |
77 | NUM_EXTENDED_INST_CNTS, |
78 | NUM_INST_CNTS = NUM_EXTENDED_INST_CNTS |
79 | }; |
80 | } // namespace |
81 | |
82 | namespace llvm { |
83 | template <> struct enum_iteration_traits<InstCounterType> { |
84 | static constexpr bool is_iterable = true; |
85 | }; |
86 | } // namespace llvm |
87 | |
88 | namespace { |
89 | // Return an iterator over all counters between LOAD_CNT (the first counter) |
90 | // and \c MaxCounter (exclusive, default value yields an enumeration over |
91 | // all counters). |
92 | auto inst_counter_types(InstCounterType MaxCounter = NUM_INST_CNTS) { |
93 | return enum_seq(Begin: LOAD_CNT, End: MaxCounter); |
94 | } |
95 | |
96 | using RegInterval = std::pair<int, int>; |
97 | |
98 | struct HardwareLimits { |
99 | unsigned LoadcntMax; // Corresponds to VMcnt prior to gfx12. |
100 | unsigned ExpcntMax; |
101 | unsigned DscntMax; // Corresponds to LGKMcnt prior to gfx12. |
102 | unsigned StorecntMax; // Corresponds to VScnt in gfx10/gfx11. |
103 | unsigned SamplecntMax; // gfx12+ only. |
104 | unsigned BvhcntMax; // gfx12+ only. |
105 | unsigned KmcntMax; // gfx12+ only. |
106 | unsigned XcntMax; // gfx1250. |
107 | }; |
108 | |
109 | #define AMDGPU_DECLARE_WAIT_EVENTS(DECL) \ |
110 | DECL(VMEM_ACCESS) /* vmem read & write */ \ |
111 | DECL(VMEM_READ_ACCESS) /* vmem read */ \ |
112 | DECL(VMEM_SAMPLER_READ_ACCESS) /* vmem SAMPLER read (gfx12+ only) */ \ |
113 | DECL(VMEM_BVH_READ_ACCESS) /* vmem BVH read (gfx12+ only) */ \ |
114 | DECL(VMEM_WRITE_ACCESS) /* vmem write that is not scratch */ \ |
115 | DECL(SCRATCH_WRITE_ACCESS) /* vmem write that may be scratch */ \ |
116 | DECL(VMEM_GROUP) /* vmem group */ \ |
117 | DECL(LDS_ACCESS) /* lds read & write */ \ |
118 | DECL(GDS_ACCESS) /* gds read & write */ \ |
119 | DECL(SQ_MESSAGE) /* send message */ \ |
120 | DECL(SMEM_ACCESS) /* scalar-memory read & write */ \ |
121 | DECL(SMEM_GROUP) /* scalar-memory group */ \ |
122 | DECL(EXP_GPR_LOCK) /* export holding on its data src */ \ |
123 | DECL(GDS_GPR_LOCK) /* GDS holding on its data and addr src */ \ |
124 | DECL(EXP_POS_ACCESS) /* write to export position */ \ |
125 | DECL(EXP_PARAM_ACCESS) /* write to export parameter */ \ |
126 | DECL(VMW_GPR_LOCK) /* vmem write holding on its data src */ \ |
127 | DECL(EXP_LDS_ACCESS) /* read by ldsdir counting as export */ |
128 | |
129 | // clang-format off |
130 | #define AMDGPU_EVENT_ENUM(Name) Name, |
131 | enum WaitEventType { |
132 | AMDGPU_DECLARE_WAIT_EVENTS(AMDGPU_EVENT_ENUM) |
133 | NUM_WAIT_EVENTS |
134 | }; |
135 | #undef AMDGPU_EVENT_ENUM |
136 | |
137 | #define AMDGPU_EVENT_NAME(Name) #Name, |
138 | static constexpr StringLiteral WaitEventTypeName[] = { |
139 | AMDGPU_DECLARE_WAIT_EVENTS(AMDGPU_EVENT_NAME) |
140 | }; |
141 | #undef AMDGPU_EVENT_NAME |
142 | // clang-format on |
143 | |
144 | // The mapping is: |
145 | // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs |
146 | // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots |
147 | // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs |
148 | // We reserve a fixed number of VGPR slots in the scoring tables for |
149 | // special tokens like SCMEM_LDS (needed for buffer load to LDS). |
150 | enum RegisterMapping { |
151 | SQ_MAX_PGM_VGPRS = 1024, // Maximum programmable VGPRs across all targets. |
152 | AGPR_OFFSET = 512, // Maximum programmable ArchVGPRs across all targets. |
153 | SQ_MAX_PGM_SGPRS = 128, // Maximum programmable SGPRs across all targets. |
154 | // Artificial register slots to track LDS writes into specific LDS locations |
155 | // if a location is known. When slots are exhausted or location is |
156 | // unknown use the first slot. The first slot is also always updated in |
157 | // addition to known location's slot to properly generate waits if dependent |
158 | // instruction's location is unknown. |
159 | FIRST_LDS_VGPR = SQ_MAX_PGM_VGPRS, // Extra slots for LDS stores. |
160 | NUM_LDS_VGPRS = 9, // One more than the stores we track. |
161 | NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_LDS_VGPRS, // Where SGPRs start. |
162 | }; |
163 | |
164 | // Enumerate different types of result-returning VMEM operations. Although |
165 | // s_waitcnt orders them all with a single vmcnt counter, in the absence of |
166 | // s_waitcnt only instructions of the same VmemType are guaranteed to write |
167 | // their results in order -- so there is no need to insert an s_waitcnt between |
168 | // two instructions of the same type that write the same vgpr. |
169 | enum VmemType { |
170 | // BUF instructions and MIMG instructions without a sampler. |
171 | VMEM_NOSAMPLER, |
172 | // MIMG instructions with a sampler. |
173 | VMEM_SAMPLER, |
174 | // BVH instructions |
175 | VMEM_BVH, |
176 | NUM_VMEM_TYPES |
177 | }; |
178 | |
179 | // Maps values of InstCounterType to the instruction that waits on that |
180 | // counter. Only used if GCNSubtarget::hasExtendedWaitCounts() |
181 | // returns true. |
182 | static const unsigned instrsForExtendedCounterTypes[NUM_EXTENDED_INST_CNTS] = { |
183 | AMDGPU::S_WAIT_LOADCNT, AMDGPU::S_WAIT_DSCNT, AMDGPU::S_WAIT_EXPCNT, |
184 | AMDGPU::S_WAIT_STORECNT, AMDGPU::S_WAIT_SAMPLECNT, AMDGPU::S_WAIT_BVHCNT, |
185 | AMDGPU::S_WAIT_KMCNT, AMDGPU::S_WAIT_XCNT}; |
186 | |
187 | static bool updateVMCntOnly(const MachineInstr &Inst) { |
188 | return (SIInstrInfo::isVMEM(MI: Inst) && !SIInstrInfo::isFLAT(MI: Inst)) || |
189 | SIInstrInfo::isFLATGlobal(MI: Inst) || SIInstrInfo::isFLATScratch(MI: Inst); |
190 | } |
191 | |
192 | #ifndef NDEBUG |
193 | static bool isNormalMode(InstCounterType MaxCounter) { |
194 | return MaxCounter == NUM_NORMAL_INST_CNTS; |
195 | } |
196 | #endif // NDEBUG |
197 | |
198 | VmemType getVmemType(const MachineInstr &Inst) { |
199 | assert(updateVMCntOnly(Inst)); |
200 | if (!SIInstrInfo::isImage(MI: Inst)) |
201 | return VMEM_NOSAMPLER; |
202 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: Inst.getOpcode()); |
203 | const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = |
204 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode); |
205 | |
206 | if (BaseInfo->BVH) |
207 | return VMEM_BVH; |
208 | |
209 | // We have to make an additional check for isVSAMPLE here since some |
210 | // instructions don't have a sampler, but are still classified as sampler |
211 | // instructions for the purposes of e.g. waitcnt. |
212 | if (BaseInfo->Sampler || BaseInfo->MSAA || SIInstrInfo::isVSAMPLE(MI: Inst)) |
213 | return VMEM_SAMPLER; |
214 | |
215 | return VMEM_NOSAMPLER; |
216 | } |
217 | |
218 | unsigned &getCounterRef(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
219 | switch (T) { |
220 | case LOAD_CNT: |
221 | return Wait.LoadCnt; |
222 | case EXP_CNT: |
223 | return Wait.ExpCnt; |
224 | case DS_CNT: |
225 | return Wait.DsCnt; |
226 | case STORE_CNT: |
227 | return Wait.StoreCnt; |
228 | case SAMPLE_CNT: |
229 | return Wait.SampleCnt; |
230 | case BVH_CNT: |
231 | return Wait.BvhCnt; |
232 | case KM_CNT: |
233 | return Wait.KmCnt; |
234 | case X_CNT: |
235 | return Wait.XCnt; |
236 | default: |
237 | llvm_unreachable("bad InstCounterType" ); |
238 | } |
239 | } |
240 | |
241 | void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { |
242 | unsigned &WC = getCounterRef(Wait, T); |
243 | WC = std::min(a: WC, b: Count); |
244 | } |
245 | |
246 | void setNoWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
247 | getCounterRef(Wait, T) = ~0u; |
248 | } |
249 | |
250 | unsigned getWait(AMDGPU::Waitcnt &Wait, InstCounterType T) { |
251 | return getCounterRef(Wait, T); |
252 | } |
253 | |
254 | // Mapping from event to counter according to the table masks. |
255 | InstCounterType eventCounter(const unsigned *masks, WaitEventType E) { |
256 | for (auto T : inst_counter_types()) { |
257 | if (masks[T] & (1 << E)) |
258 | return T; |
259 | } |
260 | llvm_unreachable("event type has no associated counter" ); |
261 | } |
262 | |
263 | // This objects maintains the current score brackets of each wait counter, and |
264 | // a per-register scoreboard for each wait counter. |
265 | // |
266 | // We also maintain the latest score for every event type that can change the |
267 | // waitcnt in order to know if there are multiple types of events within |
268 | // the brackets. When multiple types of event happen in the bracket, |
269 | // wait count may get decreased out of order, therefore we need to put in |
270 | // "s_waitcnt 0" before use. |
271 | class WaitcntBrackets { |
272 | public: |
273 | WaitcntBrackets(const GCNSubtarget *SubTarget, InstCounterType MaxCounter, |
274 | HardwareLimits Limits, const unsigned *WaitEventMaskForInst, |
275 | InstCounterType SmemAccessCounter) |
276 | : ST(SubTarget), MaxCounter(MaxCounter), Limits(Limits), |
277 | WaitEventMaskForInst(WaitEventMaskForInst), |
278 | SmemAccessCounter(SmemAccessCounter) {} |
279 | |
280 | unsigned getWaitCountMax(InstCounterType T) const { |
281 | switch (T) { |
282 | case LOAD_CNT: |
283 | return Limits.LoadcntMax; |
284 | case DS_CNT: |
285 | return Limits.DscntMax; |
286 | case EXP_CNT: |
287 | return Limits.ExpcntMax; |
288 | case STORE_CNT: |
289 | return Limits.StorecntMax; |
290 | case SAMPLE_CNT: |
291 | return Limits.SamplecntMax; |
292 | case BVH_CNT: |
293 | return Limits.BvhcntMax; |
294 | case KM_CNT: |
295 | return Limits.KmcntMax; |
296 | case X_CNT: |
297 | return Limits.XcntMax; |
298 | default: |
299 | break; |
300 | } |
301 | return 0; |
302 | } |
303 | |
304 | bool isSmemCounter(InstCounterType T) const { |
305 | return T == SmemAccessCounter || T == X_CNT; |
306 | } |
307 | |
308 | unsigned getSgprScoresIdx(InstCounterType T) const { |
309 | assert(isSmemCounter(T) && "Invalid SMEM counter" ); |
310 | return T == X_CNT ? 1 : 0; |
311 | } |
312 | |
313 | unsigned getScoreLB(InstCounterType T) const { |
314 | assert(T < NUM_INST_CNTS); |
315 | return ScoreLBs[T]; |
316 | } |
317 | |
318 | unsigned getScoreUB(InstCounterType T) const { |
319 | assert(T < NUM_INST_CNTS); |
320 | return ScoreUBs[T]; |
321 | } |
322 | |
323 | unsigned getScoreRange(InstCounterType T) const { |
324 | return getScoreUB(T) - getScoreLB(T); |
325 | } |
326 | |
327 | unsigned getRegScore(int GprNo, InstCounterType T) const { |
328 | if (GprNo < NUM_ALL_VGPRS) |
329 | return VgprScores[T][GprNo]; |
330 | return SgprScores[getSgprScoresIdx(T)][GprNo - NUM_ALL_VGPRS]; |
331 | } |
332 | |
333 | bool merge(const WaitcntBrackets &Other); |
334 | |
335 | RegInterval getRegInterval(const MachineInstr *MI, |
336 | const MachineRegisterInfo *MRI, |
337 | const SIRegisterInfo *TRI, |
338 | const MachineOperand &Op) const; |
339 | |
340 | bool counterOutOfOrder(InstCounterType T) const; |
341 | void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; |
342 | void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; |
343 | |
344 | void determineWait(InstCounterType T, RegInterval Interval, |
345 | AMDGPU::Waitcnt &Wait) const; |
346 | void determineWait(InstCounterType T, int RegNo, |
347 | AMDGPU::Waitcnt &Wait) const { |
348 | determineWait(T, Interval: {RegNo, RegNo + 1}, Wait); |
349 | } |
350 | |
351 | void applyWaitcnt(const AMDGPU::Waitcnt &Wait); |
352 | void applyWaitcnt(InstCounterType T, unsigned Count); |
353 | void applyXcnt(const AMDGPU::Waitcnt &Wait); |
354 | void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, |
355 | const MachineRegisterInfo *MRI, WaitEventType E, |
356 | MachineInstr &MI); |
357 | |
358 | unsigned hasPendingEvent() const { return PendingEvents; } |
359 | unsigned hasPendingEvent(WaitEventType E) const { |
360 | return PendingEvents & (1 << E); |
361 | } |
362 | unsigned hasPendingEvent(InstCounterType T) const { |
363 | unsigned HasPending = PendingEvents & WaitEventMaskForInst[T]; |
364 | assert((HasPending != 0) == (getScoreRange(T) != 0)); |
365 | return HasPending; |
366 | } |
367 | |
368 | bool hasMixedPendingEvents(InstCounterType T) const { |
369 | unsigned Events = hasPendingEvent(T); |
370 | // Return true if more than one bit is set in Events. |
371 | return Events & (Events - 1); |
372 | } |
373 | |
374 | bool hasPendingFlat() const { |
375 | return ((LastFlat[DS_CNT] > ScoreLBs[DS_CNT] && |
376 | LastFlat[DS_CNT] <= ScoreUBs[DS_CNT]) || |
377 | (LastFlat[LOAD_CNT] > ScoreLBs[LOAD_CNT] && |
378 | LastFlat[LOAD_CNT] <= ScoreUBs[LOAD_CNT])); |
379 | } |
380 | |
381 | void setPendingFlat() { |
382 | LastFlat[LOAD_CNT] = ScoreUBs[LOAD_CNT]; |
383 | LastFlat[DS_CNT] = ScoreUBs[DS_CNT]; |
384 | } |
385 | |
386 | bool hasPendingGDS() const { |
387 | return LastGDS > ScoreLBs[DS_CNT] && LastGDS <= ScoreUBs[DS_CNT]; |
388 | } |
389 | |
390 | unsigned getPendingGDSWait() const { |
391 | return std::min(a: getScoreUB(T: DS_CNT) - LastGDS, b: getWaitCountMax(T: DS_CNT) - 1); |
392 | } |
393 | |
394 | void setPendingGDS() { LastGDS = ScoreUBs[DS_CNT]; } |
395 | |
396 | // Return true if there might be pending writes to the vgpr-interval by VMEM |
397 | // instructions with types different from V. |
398 | bool hasOtherPendingVmemTypes(RegInterval Interval, VmemType V) const { |
399 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
400 | assert(RegNo < NUM_ALL_VGPRS); |
401 | if (VgprVmemTypes[RegNo] & ~(1 << V)) |
402 | return true; |
403 | } |
404 | return false; |
405 | } |
406 | |
407 | void clearVgprVmemTypes(RegInterval Interval) { |
408 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
409 | assert(RegNo < NUM_ALL_VGPRS); |
410 | VgprVmemTypes[RegNo] = 0; |
411 | } |
412 | } |
413 | |
414 | void setStateOnFunctionEntryOrReturn() { |
415 | setScoreUB(T: STORE_CNT, Val: getScoreUB(T: STORE_CNT) + getWaitCountMax(T: STORE_CNT)); |
416 | PendingEvents |= WaitEventMaskForInst[STORE_CNT]; |
417 | } |
418 | |
419 | ArrayRef<const MachineInstr *> getLDSDMAStores() const { |
420 | return LDSDMAStores; |
421 | } |
422 | |
423 | bool hasPointSampleAccel(const MachineInstr &MI) const; |
424 | bool hasPointSamplePendingVmemTypes(const MachineInstr &MI, |
425 | RegInterval Interval) const; |
426 | |
427 | void print(raw_ostream &) const; |
428 | void dump() const { print(dbgs()); } |
429 | |
430 | private: |
431 | struct MergeInfo { |
432 | unsigned OldLB; |
433 | unsigned OtherLB; |
434 | unsigned MyShift; |
435 | unsigned OtherShift; |
436 | }; |
437 | static bool mergeScore(const MergeInfo &M, unsigned &Score, |
438 | unsigned OtherScore); |
439 | |
440 | void setScoreLB(InstCounterType T, unsigned Val) { |
441 | assert(T < NUM_INST_CNTS); |
442 | ScoreLBs[T] = Val; |
443 | } |
444 | |
445 | void setScoreUB(InstCounterType T, unsigned Val) { |
446 | assert(T < NUM_INST_CNTS); |
447 | ScoreUBs[T] = Val; |
448 | |
449 | if (T != EXP_CNT) |
450 | return; |
451 | |
452 | if (getScoreRange(T: EXP_CNT) > getWaitCountMax(T: EXP_CNT)) |
453 | ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(T: EXP_CNT); |
454 | } |
455 | |
456 | void setRegScore(int GprNo, InstCounterType T, unsigned Val) { |
457 | setScoreByInterval(Interval: {GprNo, GprNo + 1}, CntTy: T, Score: Val); |
458 | } |
459 | |
460 | void setScoreByInterval(RegInterval Interval, InstCounterType CntTy, |
461 | unsigned Score); |
462 | |
463 | void setScoreByOperand(const MachineInstr *MI, const SIRegisterInfo *TRI, |
464 | const MachineRegisterInfo *MRI, |
465 | const MachineOperand &Op, InstCounterType CntTy, |
466 | unsigned Val); |
467 | |
468 | const GCNSubtarget *ST = nullptr; |
469 | InstCounterType MaxCounter = NUM_EXTENDED_INST_CNTS; |
470 | HardwareLimits Limits = {}; |
471 | const unsigned *WaitEventMaskForInst; |
472 | InstCounterType SmemAccessCounter; |
473 | unsigned ScoreLBs[NUM_INST_CNTS] = {0}; |
474 | unsigned ScoreUBs[NUM_INST_CNTS] = {0}; |
475 | unsigned PendingEvents = 0; |
476 | // Remember the last flat memory operation. |
477 | unsigned LastFlat[NUM_INST_CNTS] = {0}; |
478 | // Remember the last GDS operation. |
479 | unsigned LastGDS = 0; |
480 | // wait_cnt scores for every vgpr. |
481 | // Keep track of the VgprUB and SgprUB to make merge at join efficient. |
482 | int VgprUB = -1; |
483 | int SgprUB = -1; |
484 | unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; |
485 | // Wait cnt scores for every sgpr, the DS_CNT (corresponding to LGKMcnt |
486 | // pre-gfx12) or KM_CNT (gfx12+ only), and X_CNT (gfx1250) are relevant. |
487 | // Row 0 represents the score for either DS_CNT or KM_CNT and row 1 keeps the |
488 | // X_CNT score. |
489 | unsigned SgprScores[2][SQ_MAX_PGM_SGPRS] = {{0}}; |
490 | // Bitmask of the VmemTypes of VMEM instructions that might have a pending |
491 | // write to each vgpr. |
492 | unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; |
493 | // Store representative LDS DMA operations. The only useful info here is |
494 | // alias info. One store is kept per unique AAInfo. |
495 | SmallVector<const MachineInstr *, NUM_LDS_VGPRS - 1> LDSDMAStores; |
496 | }; |
497 | |
498 | // This abstracts the logic for generating and updating S_WAIT* instructions |
499 | // away from the analysis that determines where they are needed. This was |
500 | // done because the set of counters and instructions for waiting on them |
501 | // underwent a major shift with gfx12, sufficiently so that having this |
502 | // abstraction allows the main analysis logic to be simpler than it would |
503 | // otherwise have had to become. |
504 | class WaitcntGenerator { |
505 | protected: |
506 | const GCNSubtarget *ST = nullptr; |
507 | const SIInstrInfo *TII = nullptr; |
508 | AMDGPU::IsaVersion IV; |
509 | InstCounterType MaxCounter; |
510 | bool OptNone; |
511 | |
512 | public: |
513 | WaitcntGenerator() = default; |
514 | WaitcntGenerator(const MachineFunction &MF, InstCounterType MaxCounter) |
515 | : ST(&MF.getSubtarget<GCNSubtarget>()), TII(ST->getInstrInfo()), |
516 | IV(AMDGPU::getIsaVersion(GPU: ST->getCPU())), MaxCounter(MaxCounter), |
517 | OptNone(MF.getFunction().hasOptNone() || |
518 | MF.getTarget().getOptLevel() == CodeGenOptLevel::None) {} |
519 | |
520 | // Return true if the current function should be compiled with no |
521 | // optimization. |
522 | bool isOptNone() const { return OptNone; } |
523 | |
524 | // Edits an existing sequence of wait count instructions according |
525 | // to an incoming Waitcnt value, which is itself updated to reflect |
526 | // any new wait count instructions which may need to be generated by |
527 | // WaitcntGenerator::createNewWaitcnt(). It will return true if any edits |
528 | // were made. |
529 | // |
530 | // This editing will usually be merely updated operands, but it may also |
531 | // delete instructions if the incoming Wait value indicates they are not |
532 | // needed. It may also remove existing instructions for which a wait |
533 | // is needed if it can be determined that it is better to generate new |
534 | // instructions later, as can happen on gfx12. |
535 | virtual bool |
536 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
537 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
538 | MachineBasicBlock::instr_iterator It) const = 0; |
539 | |
540 | // Transform a soft waitcnt into a normal one. |
541 | bool promoteSoftWaitCnt(MachineInstr *Waitcnt) const; |
542 | |
543 | // Generates new wait count instructions according to the value of |
544 | // Wait, returning true if any new instructions were created. |
545 | virtual bool createNewWaitcnt(MachineBasicBlock &Block, |
546 | MachineBasicBlock::instr_iterator It, |
547 | AMDGPU::Waitcnt Wait) = 0; |
548 | |
549 | // Returns an array of bit masks which can be used to map values in |
550 | // WaitEventType to corresponding counter values in InstCounterType. |
551 | virtual const unsigned *getWaitEventMask() const = 0; |
552 | |
553 | // Returns a new waitcnt with all counters except VScnt set to 0. If |
554 | // IncludeVSCnt is true, VScnt is set to 0, otherwise it is set to ~0u. |
555 | virtual AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const = 0; |
556 | |
557 | virtual ~WaitcntGenerator() = default; |
558 | |
559 | // Create a mask value from the initializer list of wait event types. |
560 | static constexpr unsigned |
561 | eventMask(std::initializer_list<WaitEventType> Events) { |
562 | unsigned Mask = 0; |
563 | for (auto &E : Events) |
564 | Mask |= 1 << E; |
565 | |
566 | return Mask; |
567 | } |
568 | }; |
569 | |
570 | class WaitcntGeneratorPreGFX12 : public WaitcntGenerator { |
571 | public: |
572 | WaitcntGeneratorPreGFX12() = default; |
573 | WaitcntGeneratorPreGFX12(const MachineFunction &MF) |
574 | : WaitcntGenerator(MF, NUM_NORMAL_INST_CNTS) {} |
575 | |
576 | bool |
577 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
578 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
579 | MachineBasicBlock::instr_iterator It) const override; |
580 | |
581 | bool createNewWaitcnt(MachineBasicBlock &Block, |
582 | MachineBasicBlock::instr_iterator It, |
583 | AMDGPU::Waitcnt Wait) override; |
584 | |
585 | const unsigned *getWaitEventMask() const override { |
586 | assert(ST); |
587 | |
588 | static const unsigned WaitEventMaskForInstPreGFX12[NUM_INST_CNTS] = { |
589 | eventMask(Events: {VMEM_ACCESS, VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, |
590 | VMEM_BVH_READ_ACCESS}), |
591 | eventMask(Events: {SMEM_ACCESS, LDS_ACCESS, GDS_ACCESS, SQ_MESSAGE}), |
592 | eventMask(Events: {EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, |
593 | EXP_POS_ACCESS, EXP_LDS_ACCESS}), |
594 | eventMask(Events: {VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), |
595 | 0, |
596 | 0, |
597 | 0, |
598 | 0}; |
599 | |
600 | return WaitEventMaskForInstPreGFX12; |
601 | } |
602 | |
603 | AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; |
604 | }; |
605 | |
606 | class WaitcntGeneratorGFX12Plus : public WaitcntGenerator { |
607 | public: |
608 | WaitcntGeneratorGFX12Plus() = default; |
609 | WaitcntGeneratorGFX12Plus(const MachineFunction &MF, |
610 | InstCounterType MaxCounter) |
611 | : WaitcntGenerator(MF, MaxCounter) {} |
612 | |
613 | bool |
614 | applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, |
615 | MachineInstr &OldWaitcntInstr, AMDGPU::Waitcnt &Wait, |
616 | MachineBasicBlock::instr_iterator It) const override; |
617 | |
618 | bool createNewWaitcnt(MachineBasicBlock &Block, |
619 | MachineBasicBlock::instr_iterator It, |
620 | AMDGPU::Waitcnt Wait) override; |
621 | |
622 | const unsigned *getWaitEventMask() const override { |
623 | assert(ST); |
624 | |
625 | static const unsigned WaitEventMaskForInstGFX12Plus[NUM_INST_CNTS] = { |
626 | eventMask(Events: {VMEM_ACCESS, VMEM_READ_ACCESS}), |
627 | eventMask(Events: {LDS_ACCESS, GDS_ACCESS}), |
628 | eventMask(Events: {EXP_GPR_LOCK, GDS_GPR_LOCK, VMW_GPR_LOCK, EXP_PARAM_ACCESS, |
629 | EXP_POS_ACCESS, EXP_LDS_ACCESS}), |
630 | eventMask(Events: {VMEM_WRITE_ACCESS, SCRATCH_WRITE_ACCESS}), |
631 | eventMask(Events: {VMEM_SAMPLER_READ_ACCESS}), |
632 | eventMask(Events: {VMEM_BVH_READ_ACCESS}), |
633 | eventMask(Events: {SMEM_ACCESS, SQ_MESSAGE}), |
634 | eventMask(Events: {VMEM_GROUP, SMEM_GROUP})}; |
635 | |
636 | return WaitEventMaskForInstGFX12Plus; |
637 | } |
638 | |
639 | AMDGPU::Waitcnt getAllZeroWaitcnt(bool IncludeVSCnt) const override; |
640 | }; |
641 | |
642 | class SIInsertWaitcnts { |
643 | private: |
644 | const GCNSubtarget *ST = nullptr; |
645 | const SIInstrInfo *TII = nullptr; |
646 | const SIRegisterInfo *TRI = nullptr; |
647 | const MachineRegisterInfo *MRI = nullptr; |
648 | |
649 | DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; |
650 | DenseMap<MachineBasicBlock *, bool> ; |
651 | MachineLoopInfo *MLI; |
652 | MachinePostDominatorTree *PDT; |
653 | AliasAnalysis *AA = nullptr; |
654 | |
655 | struct BlockInfo { |
656 | std::unique_ptr<WaitcntBrackets> Incoming; |
657 | bool Dirty = true; |
658 | }; |
659 | |
660 | InstCounterType SmemAccessCounter; |
661 | |
662 | MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; |
663 | |
664 | bool ForceEmitWaitcnt[NUM_INST_CNTS]; |
665 | |
666 | // In any given run of this pass, WCG will point to one of these two |
667 | // generator objects, which must have been re-initialised before use |
668 | // from a value made using a subtarget constructor. |
669 | WaitcntGeneratorPreGFX12 WCGPreGFX12; |
670 | WaitcntGeneratorGFX12Plus WCGGFX12Plus; |
671 | |
672 | WaitcntGenerator *WCG = nullptr; |
673 | |
674 | // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS |
675 | // message. |
676 | DenseSet<MachineInstr *> ReleaseVGPRInsts; |
677 | |
678 | InstCounterType MaxCounter = NUM_NORMAL_INST_CNTS; |
679 | |
680 | public: |
681 | SIInsertWaitcnts(MachineLoopInfo *MLI, MachinePostDominatorTree *PDT, |
682 | AliasAnalysis *AA) |
683 | : MLI(MLI), PDT(PDT), AA(AA) { |
684 | (void)ForceExpCounter; |
685 | (void)ForceLgkmCounter; |
686 | (void)ForceVMCounter; |
687 | } |
688 | |
689 | bool shouldFlushVmCnt(MachineLoop *ML, const WaitcntBrackets &Brackets); |
690 | bool isPreheaderToFlush(MachineBasicBlock &MBB, |
691 | const WaitcntBrackets &ScoreBrackets); |
692 | bool isVMEMOrFlatVMEM(const MachineInstr &MI) const; |
693 | bool run(MachineFunction &MF); |
694 | |
695 | bool isForceEmitWaitcnt() const { |
696 | for (auto T : inst_counter_types()) |
697 | if (ForceEmitWaitcnt[T]) |
698 | return true; |
699 | return false; |
700 | } |
701 | |
702 | void setForceEmitWaitcnt() { |
703 | // For non-debug builds, ForceEmitWaitcnt has been initialized to false; |
704 | // For debug builds, get the debug counter info and adjust if need be |
705 | #ifndef NDEBUG |
706 | if (DebugCounter::isCounterSet(ForceExpCounter) && |
707 | DebugCounter::shouldExecute(ForceExpCounter)) { |
708 | ForceEmitWaitcnt[EXP_CNT] = true; |
709 | } else { |
710 | ForceEmitWaitcnt[EXP_CNT] = false; |
711 | } |
712 | |
713 | if (DebugCounter::isCounterSet(ForceLgkmCounter) && |
714 | DebugCounter::shouldExecute(ForceLgkmCounter)) { |
715 | ForceEmitWaitcnt[DS_CNT] = true; |
716 | ForceEmitWaitcnt[KM_CNT] = true; |
717 | } else { |
718 | ForceEmitWaitcnt[DS_CNT] = false; |
719 | ForceEmitWaitcnt[KM_CNT] = false; |
720 | } |
721 | |
722 | if (DebugCounter::isCounterSet(ForceVMCounter) && |
723 | DebugCounter::shouldExecute(ForceVMCounter)) { |
724 | ForceEmitWaitcnt[LOAD_CNT] = true; |
725 | ForceEmitWaitcnt[SAMPLE_CNT] = true; |
726 | ForceEmitWaitcnt[BVH_CNT] = true; |
727 | } else { |
728 | ForceEmitWaitcnt[LOAD_CNT] = false; |
729 | ForceEmitWaitcnt[SAMPLE_CNT] = false; |
730 | ForceEmitWaitcnt[BVH_CNT] = false; |
731 | } |
732 | #endif // NDEBUG |
733 | } |
734 | |
735 | // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM |
736 | // instruction. |
737 | WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const { |
738 | switch (Inst.getOpcode()) { |
739 | case AMDGPU::GLOBAL_INV: |
740 | return VMEM_READ_ACCESS; // tracked using loadcnt |
741 | case AMDGPU::GLOBAL_WB: |
742 | case AMDGPU::GLOBAL_WBINV: |
743 | return VMEM_WRITE_ACCESS; // tracked using storecnt |
744 | default: |
745 | break; |
746 | } |
747 | |
748 | // Maps VMEM access types to their corresponding WaitEventType. |
749 | static const WaitEventType VmemReadMapping[NUM_VMEM_TYPES] = { |
750 | VMEM_READ_ACCESS, VMEM_SAMPLER_READ_ACCESS, VMEM_BVH_READ_ACCESS}; |
751 | |
752 | assert(SIInstrInfo::isVMEM(Inst)); |
753 | // LDS DMA loads are also stores, but on the LDS side. On the VMEM side |
754 | // these should use VM_CNT. |
755 | if (!ST->hasVscnt() || SIInstrInfo::mayWriteLDSThroughDMA(MI: Inst)) |
756 | return VMEM_ACCESS; |
757 | if (Inst.mayStore() && |
758 | (!Inst.mayLoad() || SIInstrInfo::isAtomicNoRet(MI: Inst))) { |
759 | // FLAT and SCRATCH instructions may access scratch. Other VMEM |
760 | // instructions do not. |
761 | if (SIInstrInfo::isFLAT(MI: Inst) && mayAccessScratchThroughFlat(MI: Inst)) |
762 | return SCRATCH_WRITE_ACCESS; |
763 | return VMEM_WRITE_ACCESS; |
764 | } |
765 | if (!ST->hasExtendedWaitCounts() || SIInstrInfo::isFLAT(MI: Inst)) |
766 | return VMEM_READ_ACCESS; |
767 | return VmemReadMapping[getVmemType(Inst)]; |
768 | } |
769 | |
770 | bool hasXcnt() const { return ST->hasWaitXCnt(); } |
771 | |
772 | bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; |
773 | bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; |
774 | bool mayAccessScratchThroughFlat(const MachineInstr &MI) const; |
775 | bool isVmemAccess(const MachineInstr &MI) const; |
776 | bool generateWaitcntInstBefore(MachineInstr &MI, |
777 | WaitcntBrackets &ScoreBrackets, |
778 | MachineInstr *OldWaitcntInstr, |
779 | bool FlushVmCnt); |
780 | bool generateWaitcnt(AMDGPU::Waitcnt Wait, |
781 | MachineBasicBlock::instr_iterator It, |
782 | MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets, |
783 | MachineInstr *OldWaitcntInstr); |
784 | void updateEventWaitcntAfter(MachineInstr &Inst, |
785 | WaitcntBrackets *ScoreBrackets); |
786 | bool isNextENDPGM(MachineBasicBlock::instr_iterator It, |
787 | MachineBasicBlock *Block) const; |
788 | bool insertForcedWaitAfter(MachineInstr &Inst, MachineBasicBlock &Block, |
789 | WaitcntBrackets &ScoreBrackets); |
790 | bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, |
791 | WaitcntBrackets &ScoreBrackets); |
792 | }; |
793 | |
794 | class SIInsertWaitcntsLegacy : public MachineFunctionPass { |
795 | public: |
796 | static char ID; |
797 | SIInsertWaitcntsLegacy() : MachineFunctionPass(ID) {} |
798 | |
799 | bool runOnMachineFunction(MachineFunction &MF) override; |
800 | |
801 | StringRef getPassName() const override { |
802 | return "SI insert wait instructions" ; |
803 | } |
804 | |
805 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
806 | AU.setPreservesCFG(); |
807 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
808 | AU.addRequired<MachinePostDominatorTreeWrapperPass>(); |
809 | AU.addUsedIfAvailable<AAResultsWrapperPass>(); |
810 | AU.addPreserved<AAResultsWrapperPass>(); |
811 | MachineFunctionPass::getAnalysisUsage(AU); |
812 | } |
813 | }; |
814 | |
815 | } // end anonymous namespace |
816 | |
817 | RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, |
818 | const MachineRegisterInfo *MRI, |
819 | const SIRegisterInfo *TRI, |
820 | const MachineOperand &Op) const { |
821 | if (!TRI->isInAllocatableClass(RegNo: Op.getReg())) |
822 | return {-1, -1}; |
823 | |
824 | // A use via a PW operand does not need a waitcnt. |
825 | // A partial write is not a WAW. |
826 | assert(!Op.getSubReg() || !Op.isUndef()); |
827 | |
828 | RegInterval Result; |
829 | |
830 | MCRegister MCReg = AMDGPU::getMCReg(Reg: Op.getReg(), STI: *ST); |
831 | unsigned RegIdx = TRI->getHWRegIndex(Reg: MCReg); |
832 | assert(isUInt<8>(RegIdx)); |
833 | |
834 | const TargetRegisterClass *RC = TRI->getPhysRegBaseClass(Reg: Op.getReg()); |
835 | unsigned Size = TRI->getRegSizeInBits(RC: *RC); |
836 | |
837 | // AGPRs/VGPRs are tracked every 16 bits, SGPRs by 32 bits |
838 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) { |
839 | unsigned Reg = RegIdx << 1 | (AMDGPU::isHi16Reg(Reg: MCReg, MRI: *TRI) ? 1 : 0); |
840 | assert(Reg < AGPR_OFFSET); |
841 | Result.first = Reg; |
842 | if (TRI->isAGPR(MRI: *MRI, Reg: Op.getReg())) |
843 | Result.first += AGPR_OFFSET; |
844 | assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); |
845 | assert(Size % 16 == 0); |
846 | Result.second = Result.first + (Size / 16); |
847 | } else if (TRI->isSGPRReg(MRI: *MRI, Reg: Op.getReg()) && RegIdx < SQ_MAX_PGM_SGPRS) { |
848 | // SGPRs including VCC, TTMPs and EXEC but excluding read-only scalar |
849 | // sources like SRC_PRIVATE_BASE. |
850 | Result.first = RegIdx + NUM_ALL_VGPRS; |
851 | Result.second = Result.first + divideCeil(Numerator: Size, Denominator: 32); |
852 | } else { |
853 | return {-1, -1}; |
854 | } |
855 | |
856 | return Result; |
857 | } |
858 | |
859 | void WaitcntBrackets::setScoreByInterval(RegInterval Interval, |
860 | InstCounterType CntTy, |
861 | unsigned Score) { |
862 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
863 | if (RegNo < NUM_ALL_VGPRS) { |
864 | VgprUB = std::max(a: VgprUB, b: RegNo); |
865 | VgprScores[CntTy][RegNo] = Score; |
866 | } else { |
867 | SgprUB = std::max(a: SgprUB, b: RegNo - NUM_ALL_VGPRS); |
868 | SgprScores[getSgprScoresIdx(T: CntTy)][RegNo - NUM_ALL_VGPRS] = Score; |
869 | } |
870 | } |
871 | } |
872 | |
873 | void WaitcntBrackets::setScoreByOperand(const MachineInstr *MI, |
874 | const SIRegisterInfo *TRI, |
875 | const MachineRegisterInfo *MRI, |
876 | const MachineOperand &Op, |
877 | InstCounterType CntTy, unsigned Score) { |
878 | RegInterval Interval = getRegInterval(MI, MRI, TRI, Op); |
879 | setScoreByInterval(Interval, CntTy, Score); |
880 | } |
881 | |
882 | // Return true if the subtarget is one that enables Point Sample Acceleration |
883 | // and the MachineInstr passed in is one to which it might be applied (the |
884 | // hardware makes this decision based on several factors, but we can't determine |
885 | // this at compile time, so we have to assume it might be applied if the |
886 | // instruction supports it). |
887 | bool WaitcntBrackets::hasPointSampleAccel(const MachineInstr &MI) const { |
888 | if (!ST->hasPointSampleAccel() || !SIInstrInfo::isMIMG(MI)) |
889 | return false; |
890 | |
891 | const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: MI.getOpcode()); |
892 | const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = |
893 | AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode); |
894 | return BaseInfo->PointSampleAccel; |
895 | } |
896 | |
897 | // Return true if the subtarget enables Point Sample Acceleration, the supplied |
898 | // MachineInstr is one to which it might be applied and the supplied interval is |
899 | // one that has outstanding writes to vmem-types different than VMEM_NOSAMPLER |
900 | // (this is the type that a point sample accelerated instruction effectively |
901 | // becomes) |
902 | bool WaitcntBrackets::hasPointSamplePendingVmemTypes( |
903 | const MachineInstr &MI, RegInterval Interval) const { |
904 | if (!hasPointSampleAccel(MI)) |
905 | return false; |
906 | |
907 | return hasOtherPendingVmemTypes(Interval, V: VMEM_NOSAMPLER); |
908 | } |
909 | |
910 | void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, |
911 | const SIRegisterInfo *TRI, |
912 | const MachineRegisterInfo *MRI, |
913 | WaitEventType E, MachineInstr &Inst) { |
914 | InstCounterType T = eventCounter(masks: WaitEventMaskForInst, E); |
915 | |
916 | unsigned UB = getScoreUB(T); |
917 | unsigned CurrScore = UB + 1; |
918 | if (CurrScore == 0) |
919 | report_fatal_error(reason: "InsertWaitcnt score wraparound" ); |
920 | // PendingEvents and ScoreUB need to be update regardless if this event |
921 | // changes the score of a register or not. |
922 | // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. |
923 | PendingEvents |= 1 << E; |
924 | setScoreUB(T, Val: CurrScore); |
925 | |
926 | if (T == EXP_CNT) { |
927 | // Put score on the source vgprs. If this is a store, just use those |
928 | // specific register(s). |
929 | if (TII->isDS(MI: Inst) && Inst.mayLoadOrStore()) { |
930 | // All GDS operations must protect their address register (same as |
931 | // export.) |
932 | if (const auto *AddrOp = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::addr)) |
933 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *AddrOp, CntTy: EXP_CNT, Score: CurrScore); |
934 | |
935 | if (Inst.mayStore()) { |
936 | if (const auto *Data0 = |
937 | TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data0)) |
938 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *Data0, CntTy: EXP_CNT, Score: CurrScore); |
939 | if (const auto *Data1 = |
940 | TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data1)) |
941 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: *Data1, CntTy: EXP_CNT, Score: CurrScore); |
942 | } else if (SIInstrInfo::isAtomicRet(MI: Inst) && !SIInstrInfo::isGWS(MI: Inst) && |
943 | Inst.getOpcode() != AMDGPU::DS_APPEND && |
944 | Inst.getOpcode() != AMDGPU::DS_CONSUME && |
945 | Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { |
946 | for (const MachineOperand &Op : Inst.all_uses()) { |
947 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
948 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: EXP_CNT, Score: CurrScore); |
949 | } |
950 | } |
951 | } else if (TII->isFLAT(MI: Inst)) { |
952 | if (Inst.mayStore()) { |
953 | setScoreByOperand(MI: &Inst, TRI, MRI, |
954 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
955 | CntTy: EXP_CNT, Score: CurrScore); |
956 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
957 | setScoreByOperand(MI: &Inst, TRI, MRI, |
958 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
959 | CntTy: EXP_CNT, Score: CurrScore); |
960 | } |
961 | } else if (TII->isMIMG(MI: Inst)) { |
962 | if (Inst.mayStore()) { |
963 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
964 | Score: CurrScore); |
965 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
966 | setScoreByOperand(MI: &Inst, TRI, MRI, |
967 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
968 | CntTy: EXP_CNT, Score: CurrScore); |
969 | } |
970 | } else if (TII->isMTBUF(MI: Inst)) { |
971 | if (Inst.mayStore()) |
972 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
973 | Score: CurrScore); |
974 | } else if (TII->isMUBUF(MI: Inst)) { |
975 | if (Inst.mayStore()) { |
976 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: Inst.getOperand(i: 0), CntTy: EXP_CNT, |
977 | Score: CurrScore); |
978 | } else if (SIInstrInfo::isAtomicRet(MI: Inst)) { |
979 | setScoreByOperand(MI: &Inst, TRI, MRI, |
980 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::data), |
981 | CntTy: EXP_CNT, Score: CurrScore); |
982 | } |
983 | } else if (TII->isLDSDIR(MI: Inst)) { |
984 | // LDSDIR instructions attach the score to the destination. |
985 | setScoreByOperand(MI: &Inst, TRI, MRI, |
986 | Op: *TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::vdst), |
987 | CntTy: EXP_CNT, Score: CurrScore); |
988 | } else { |
989 | if (TII->isEXP(MI: Inst)) { |
990 | // For export the destination registers are really temps that |
991 | // can be used as the actual source after export patching, so |
992 | // we need to treat them like sources and set the EXP_CNT |
993 | // score. |
994 | for (MachineOperand &DefMO : Inst.all_defs()) { |
995 | if (TRI->isVGPR(MRI: *MRI, Reg: DefMO.getReg())) { |
996 | setScoreByOperand(MI: &Inst, TRI, MRI, Op: DefMO, CntTy: EXP_CNT, Score: CurrScore); |
997 | } |
998 | } |
999 | } |
1000 | for (const MachineOperand &Op : Inst.all_uses()) { |
1001 | if (TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
1002 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: EXP_CNT, Score: CurrScore); |
1003 | } |
1004 | } |
1005 | } else if (T == X_CNT) { |
1006 | for (const MachineOperand &Op : Inst.all_uses()) |
1007 | setScoreByOperand(MI: &Inst, TRI, MRI, Op, CntTy: T, Score: CurrScore); |
1008 | } else /* LGKM_CNT || EXP_CNT || VS_CNT || NUM_INST_CNTS */ { |
1009 | // Match the score to the destination registers. |
1010 | // |
1011 | // Check only explicit operands. Stores, especially spill stores, include |
1012 | // implicit uses and defs of their super registers which would create an |
1013 | // artificial dependency, while these are there only for register liveness |
1014 | // accounting purposes. |
1015 | // |
1016 | // Special cases where implicit register defs exists, such as M0 or VCC, |
1017 | // but none with memory instructions. |
1018 | for (const MachineOperand &Op : Inst.defs()) { |
1019 | RegInterval Interval = getRegInterval(MI: &Inst, MRI, TRI, Op); |
1020 | if (T == LOAD_CNT || T == SAMPLE_CNT || T == BVH_CNT) { |
1021 | if (Interval.first >= NUM_ALL_VGPRS) |
1022 | continue; |
1023 | if (updateVMCntOnly(Inst)) { |
1024 | // updateVMCntOnly should only leave us with VGPRs |
1025 | // MUBUF, MTBUF, MIMG, FlatGlobal, and FlatScratch only have VGPR/AGPR |
1026 | // defs. That's required for a sane index into `VgprMemTypes` below |
1027 | assert(TRI->isVectorRegister(*MRI, Op.getReg())); |
1028 | VmemType V = getVmemType(Inst); |
1029 | unsigned char TypesMask = 1 << V; |
1030 | // If instruction can have Point Sample Accel applied, we have to flag |
1031 | // this with another potential dependency |
1032 | if (hasPointSampleAccel(MI: Inst)) |
1033 | TypesMask |= 1 << VMEM_NOSAMPLER; |
1034 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) |
1035 | VgprVmemTypes[RegNo] |= TypesMask; |
1036 | } |
1037 | } |
1038 | setScoreByInterval(Interval, CntTy: T, Score: CurrScore); |
1039 | } |
1040 | if (Inst.mayStore() && |
1041 | (TII->isDS(MI: Inst) || TII->mayWriteLDSThroughDMA(MI: Inst))) { |
1042 | // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS |
1043 | // written can be accessed. A load from LDS to VMEM does not need a wait. |
1044 | unsigned Slot = 0; |
1045 | for (const auto *MemOp : Inst.memoperands()) { |
1046 | if (!MemOp->isStore() || |
1047 | MemOp->getAddrSpace() != AMDGPUAS::LOCAL_ADDRESS) |
1048 | continue; |
1049 | // Comparing just AA info does not guarantee memoperands are equal |
1050 | // in general, but this is so for LDS DMA in practice. |
1051 | auto AAI = MemOp->getAAInfo(); |
1052 | // Alias scope information gives a way to definitely identify an |
1053 | // original memory object and practically produced in the module LDS |
1054 | // lowering pass. If there is no scope available we will not be able |
1055 | // to disambiguate LDS aliasing as after the module lowering all LDS |
1056 | // is squashed into a single big object. Do not attempt to use one of |
1057 | // the limited LDSDMAStores for something we will not be able to use |
1058 | // anyway. |
1059 | if (!AAI || !AAI.Scope) |
1060 | break; |
1061 | for (unsigned I = 0, E = LDSDMAStores.size(); I != E && !Slot; ++I) { |
1062 | for (const auto *MemOp : LDSDMAStores[I]->memoperands()) { |
1063 | if (MemOp->isStore() && AAI == MemOp->getAAInfo()) { |
1064 | Slot = I + 1; |
1065 | break; |
1066 | } |
1067 | } |
1068 | } |
1069 | if (Slot || LDSDMAStores.size() == NUM_LDS_VGPRS - 1) |
1070 | break; |
1071 | LDSDMAStores.push_back(Elt: &Inst); |
1072 | Slot = LDSDMAStores.size(); |
1073 | break; |
1074 | } |
1075 | setRegScore(GprNo: FIRST_LDS_VGPR + Slot, T, Val: CurrScore); |
1076 | if (Slot) |
1077 | setRegScore(GprNo: FIRST_LDS_VGPR, T, Val: CurrScore); |
1078 | } |
1079 | } |
1080 | } |
1081 | |
1082 | void WaitcntBrackets::print(raw_ostream &OS) const { |
1083 | OS << '\n'; |
1084 | for (auto T : inst_counter_types(MaxCounter)) { |
1085 | unsigned SR = getScoreRange(T); |
1086 | |
1087 | switch (T) { |
1088 | case LOAD_CNT: |
1089 | OS << " " << (ST->hasExtendedWaitCounts() ? "LOAD" : "VM" ) << "_CNT(" |
1090 | << SR << "): " ; |
1091 | break; |
1092 | case DS_CNT: |
1093 | OS << " " << (ST->hasExtendedWaitCounts() ? "DS" : "LGKM" ) << "_CNT(" |
1094 | << SR << "): " ; |
1095 | break; |
1096 | case EXP_CNT: |
1097 | OS << " EXP_CNT(" << SR << "): " ; |
1098 | break; |
1099 | case STORE_CNT: |
1100 | OS << " " << (ST->hasExtendedWaitCounts() ? "STORE" : "VS" ) << "_CNT(" |
1101 | << SR << "): " ; |
1102 | break; |
1103 | case SAMPLE_CNT: |
1104 | OS << " SAMPLE_CNT(" << SR << "): " ; |
1105 | break; |
1106 | case BVH_CNT: |
1107 | OS << " BVH_CNT(" << SR << "): " ; |
1108 | break; |
1109 | case KM_CNT: |
1110 | OS << " KM_CNT(" << SR << "): " ; |
1111 | break; |
1112 | case X_CNT: |
1113 | OS << " X_CNT(" << SR << "): " ; |
1114 | break; |
1115 | default: |
1116 | OS << " UNKNOWN(" << SR << "): " ; |
1117 | break; |
1118 | } |
1119 | |
1120 | if (SR != 0) { |
1121 | // Print vgpr scores. |
1122 | unsigned LB = getScoreLB(T); |
1123 | |
1124 | for (int J = 0; J <= VgprUB; J++) { |
1125 | unsigned RegScore = getRegScore(GprNo: J, T); |
1126 | if (RegScore <= LB) |
1127 | continue; |
1128 | unsigned RelScore = RegScore - LB - 1; |
1129 | if (J < FIRST_LDS_VGPR) { |
1130 | OS << RelScore << ":v" << J << " " ; |
1131 | } else { |
1132 | OS << RelScore << ":ds " ; |
1133 | } |
1134 | } |
1135 | // Also need to print sgpr scores for lgkm_cnt or xcnt. |
1136 | if (isSmemCounter(T)) { |
1137 | for (int J = 0; J <= SgprUB; J++) { |
1138 | unsigned RegScore = getRegScore(GprNo: J + NUM_ALL_VGPRS, T); |
1139 | if (RegScore <= LB) |
1140 | continue; |
1141 | unsigned RelScore = RegScore - LB - 1; |
1142 | OS << RelScore << ":s" << J << " " ; |
1143 | } |
1144 | } |
1145 | } |
1146 | OS << '\n'; |
1147 | } |
1148 | |
1149 | OS << "Pending Events: " ; |
1150 | if (hasPendingEvent()) { |
1151 | ListSeparator LS; |
1152 | for (unsigned I = 0; I != NUM_WAIT_EVENTS; ++I) { |
1153 | if (hasPendingEvent(E: (WaitEventType)I)) { |
1154 | OS << LS << WaitEventTypeName[I]; |
1155 | } |
1156 | } |
1157 | } else { |
1158 | OS << "none" ; |
1159 | } |
1160 | OS << '\n'; |
1161 | |
1162 | OS << '\n'; |
1163 | } |
1164 | |
1165 | /// Simplify the waitcnt, in the sense of removing redundant counts, and return |
1166 | /// whether a waitcnt instruction is needed at all. |
1167 | void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { |
1168 | simplifyWaitcnt(T: LOAD_CNT, Count&: Wait.LoadCnt); |
1169 | simplifyWaitcnt(T: EXP_CNT, Count&: Wait.ExpCnt); |
1170 | simplifyWaitcnt(T: DS_CNT, Count&: Wait.DsCnt); |
1171 | simplifyWaitcnt(T: STORE_CNT, Count&: Wait.StoreCnt); |
1172 | simplifyWaitcnt(T: SAMPLE_CNT, Count&: Wait.SampleCnt); |
1173 | simplifyWaitcnt(T: BVH_CNT, Count&: Wait.BvhCnt); |
1174 | simplifyWaitcnt(T: KM_CNT, Count&: Wait.KmCnt); |
1175 | simplifyWaitcnt(T: X_CNT, Count&: Wait.XCnt); |
1176 | } |
1177 | |
1178 | void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, |
1179 | unsigned &Count) const { |
1180 | // The number of outstanding events for this type, T, can be calculated |
1181 | // as (UB - LB). If the current Count is greater than or equal to the number |
1182 | // of outstanding events, then the wait for this counter is redundant. |
1183 | if (Count >= getScoreRange(T)) |
1184 | Count = ~0u; |
1185 | } |
1186 | |
1187 | void WaitcntBrackets::determineWait(InstCounterType T, RegInterval Interval, |
1188 | AMDGPU::Waitcnt &Wait) const { |
1189 | const unsigned LB = getScoreLB(T); |
1190 | const unsigned UB = getScoreUB(T); |
1191 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
1192 | unsigned ScoreToWait = getRegScore(GprNo: RegNo, T); |
1193 | |
1194 | // If the score of src_operand falls within the bracket, we need an |
1195 | // s_waitcnt instruction. |
1196 | if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { |
1197 | if ((T == LOAD_CNT || T == DS_CNT) && hasPendingFlat() && |
1198 | !ST->hasFlatLgkmVMemCountInOrder()) { |
1199 | // If there is a pending FLAT operation, and this is a VMem or LGKM |
1200 | // waitcnt and the target can report early completion, then we need |
1201 | // to force a waitcnt 0. |
1202 | addWait(Wait, T, Count: 0); |
1203 | } else if (counterOutOfOrder(T)) { |
1204 | // Counter can get decremented out-of-order when there |
1205 | // are multiple types event in the bracket. Also emit an s_wait counter |
1206 | // with a conservative value of 0 for the counter. |
1207 | addWait(Wait, T, Count: 0); |
1208 | } else { |
1209 | // If a counter has been maxed out avoid overflow by waiting for |
1210 | // MAX(CounterType) - 1 instead. |
1211 | unsigned NeededWait = |
1212 | std::min(a: UB - ScoreToWait, b: getWaitCountMax(T) - 1); |
1213 | addWait(Wait, T, Count: NeededWait); |
1214 | } |
1215 | } |
1216 | } |
1217 | } |
1218 | |
1219 | void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { |
1220 | applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
1221 | applyWaitcnt(T: EXP_CNT, Count: Wait.ExpCnt); |
1222 | applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
1223 | applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
1224 | applyWaitcnt(T: SAMPLE_CNT, Count: Wait.SampleCnt); |
1225 | applyWaitcnt(T: BVH_CNT, Count: Wait.BvhCnt); |
1226 | applyWaitcnt(T: KM_CNT, Count: Wait.KmCnt); |
1227 | applyXcnt(Wait); |
1228 | } |
1229 | |
1230 | void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { |
1231 | const unsigned UB = getScoreUB(T); |
1232 | if (Count >= UB) |
1233 | return; |
1234 | if (Count != 0) { |
1235 | if (counterOutOfOrder(T)) |
1236 | return; |
1237 | setScoreLB(T, Val: std::max(a: getScoreLB(T), b: UB - Count)); |
1238 | } else { |
1239 | setScoreLB(T, Val: UB); |
1240 | PendingEvents &= ~WaitEventMaskForInst[T]; |
1241 | } |
1242 | } |
1243 | |
1244 | void WaitcntBrackets::applyXcnt(const AMDGPU::Waitcnt &Wait) { |
1245 | // Wait on XCNT is redundant if we are already waiting for a load to complete. |
1246 | // SMEM can return out of order, so only omit XCNT wait if we are waiting till |
1247 | // zero. |
1248 | if (Wait.KmCnt == 0 && hasPendingEvent(E: SMEM_GROUP)) |
1249 | return applyWaitcnt(T: X_CNT, Count: 0); |
1250 | |
1251 | // If we have pending store we cannot optimize XCnt because we do not wait for |
1252 | // stores. VMEM loads retun in order, so if we only have loads XCnt is |
1253 | // decremented to the same number as LOADCnt. |
1254 | if (Wait.LoadCnt != ~0u && hasPendingEvent(E: VMEM_GROUP) && |
1255 | !hasPendingEvent(T: STORE_CNT)) |
1256 | return applyWaitcnt(T: X_CNT, Count: std::min(a: Wait.XCnt, b: Wait.LoadCnt)); |
1257 | |
1258 | applyWaitcnt(T: X_CNT, Count: Wait.XCnt); |
1259 | } |
1260 | |
1261 | // Where there are multiple types of event in the bracket of a counter, |
1262 | // the decrement may go out of order. |
1263 | bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { |
1264 | // Scalar memory read always can go out of order. |
1265 | if ((T == SmemAccessCounter && hasPendingEvent(E: SMEM_ACCESS)) || |
1266 | (T == X_CNT && hasPendingEvent(E: SMEM_GROUP))) |
1267 | return true; |
1268 | return hasMixedPendingEvents(T); |
1269 | } |
1270 | |
1271 | INITIALIZE_PASS_BEGIN(SIInsertWaitcntsLegacy, DEBUG_TYPE, "SI Insert Waitcnts" , |
1272 | false, false) |
1273 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
1274 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) |
1275 | INITIALIZE_PASS_END(SIInsertWaitcntsLegacy, DEBUG_TYPE, "SI Insert Waitcnts" , |
1276 | false, false) |
1277 | |
1278 | char SIInsertWaitcntsLegacy::ID = 0; |
1279 | |
1280 | char &llvm::SIInsertWaitcntsID = SIInsertWaitcntsLegacy::ID; |
1281 | |
1282 | FunctionPass *llvm::createSIInsertWaitcntsPass() { |
1283 | return new SIInsertWaitcntsLegacy(); |
1284 | } |
1285 | |
1286 | static bool updateOperandIfDifferent(MachineInstr &MI, AMDGPU::OpName OpName, |
1287 | unsigned NewEnc) { |
1288 | int OpIdx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), Name: OpName); |
1289 | assert(OpIdx >= 0); |
1290 | |
1291 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
1292 | |
1293 | if (NewEnc == MO.getImm()) |
1294 | return false; |
1295 | |
1296 | MO.setImm(NewEnc); |
1297 | return true; |
1298 | } |
1299 | |
1300 | /// Determine if \p MI is a gfx12+ single-counter S_WAIT_*CNT instruction, |
1301 | /// and if so, which counter it is waiting on. |
1302 | static std::optional<InstCounterType> counterTypeForInstr(unsigned Opcode) { |
1303 | switch (Opcode) { |
1304 | case AMDGPU::S_WAIT_LOADCNT: |
1305 | return LOAD_CNT; |
1306 | case AMDGPU::S_WAIT_EXPCNT: |
1307 | return EXP_CNT; |
1308 | case AMDGPU::S_WAIT_STORECNT: |
1309 | return STORE_CNT; |
1310 | case AMDGPU::S_WAIT_SAMPLECNT: |
1311 | return SAMPLE_CNT; |
1312 | case AMDGPU::S_WAIT_BVHCNT: |
1313 | return BVH_CNT; |
1314 | case AMDGPU::S_WAIT_DSCNT: |
1315 | return DS_CNT; |
1316 | case AMDGPU::S_WAIT_KMCNT: |
1317 | return KM_CNT; |
1318 | case AMDGPU::S_WAIT_XCNT: |
1319 | return X_CNT; |
1320 | default: |
1321 | return {}; |
1322 | } |
1323 | } |
1324 | |
1325 | bool WaitcntGenerator::promoteSoftWaitCnt(MachineInstr *Waitcnt) const { |
1326 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: Waitcnt->getOpcode()); |
1327 | if (Opcode == Waitcnt->getOpcode()) |
1328 | return false; |
1329 | |
1330 | Waitcnt->setDesc(TII->get(Opcode)); |
1331 | return true; |
1332 | } |
1333 | |
1334 | /// Combine consecutive S_WAITCNT and S_WAITCNT_VSCNT instructions that |
1335 | /// precede \p It and follow \p OldWaitcntInstr and apply any extra waits |
1336 | /// from \p Wait that were added by previous passes. Currently this pass |
1337 | /// conservatively assumes that these preexisting waits are required for |
1338 | /// correctness. |
1339 | bool WaitcntGeneratorPreGFX12::applyPreexistingWaitcnt( |
1340 | WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, |
1341 | AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { |
1342 | assert(ST); |
1343 | assert(isNormalMode(MaxCounter)); |
1344 | |
1345 | bool Modified = false; |
1346 | MachineInstr *WaitcntInstr = nullptr; |
1347 | MachineInstr *WaitcntVsCntInstr = nullptr; |
1348 | |
1349 | LLVM_DEBUG({ |
1350 | dbgs() << "PreGFX12::applyPreexistingWaitcnt at: " ; |
1351 | if (It == OldWaitcntInstr.getParent()->instr_end()) |
1352 | dbgs() << "end of block\n" ; |
1353 | else |
1354 | dbgs() << *It; |
1355 | }); |
1356 | |
1357 | for (auto &II : |
1358 | make_early_inc_range(Range: make_range(x: OldWaitcntInstr.getIterator(), y: It))) { |
1359 | LLVM_DEBUG(dbgs() << "pre-existing iter: " << II); |
1360 | if (II.isMetaInstruction()) { |
1361 | LLVM_DEBUG(dbgs() << "skipped meta instruction\n" ); |
1362 | continue; |
1363 | } |
1364 | |
1365 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: II.getOpcode()); |
1366 | bool TrySimplify = Opcode != II.getOpcode() && !OptNone; |
1367 | |
1368 | // Update required wait count. If this is a soft waitcnt (= it was added |
1369 | // by an earlier pass), it may be entirely removed. |
1370 | if (Opcode == AMDGPU::S_WAITCNT) { |
1371 | unsigned IEnc = II.getOperand(i: 0).getImm(); |
1372 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(Version: IV, Encoded: IEnc); |
1373 | if (TrySimplify) |
1374 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
1375 | Wait = Wait.combined(Other: OldWait); |
1376 | |
1377 | // Merge consecutive waitcnt of the same type by erasing multiples. |
1378 | if (WaitcntInstr || (!Wait.hasWaitExceptStoreCnt() && TrySimplify)) { |
1379 | II.eraseFromParent(); |
1380 | Modified = true; |
1381 | } else |
1382 | WaitcntInstr = &II; |
1383 | } else { |
1384 | assert(Opcode == AMDGPU::S_WAITCNT_VSCNT); |
1385 | assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL); |
1386 | |
1387 | unsigned OldVSCnt = |
1388 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
1389 | if (TrySimplify) |
1390 | ScoreBrackets.simplifyWaitcnt(T: InstCounterType::STORE_CNT, Count&: OldVSCnt); |
1391 | Wait.StoreCnt = std::min(a: Wait.StoreCnt, b: OldVSCnt); |
1392 | |
1393 | if (WaitcntVsCntInstr || (!Wait.hasWaitStoreCnt() && TrySimplify)) { |
1394 | II.eraseFromParent(); |
1395 | Modified = true; |
1396 | } else |
1397 | WaitcntVsCntInstr = &II; |
1398 | } |
1399 | } |
1400 | |
1401 | if (WaitcntInstr) { |
1402 | Modified |= updateOperandIfDifferent(MI&: *WaitcntInstr, OpName: AMDGPU::OpName::simm16, |
1403 | NewEnc: AMDGPU::encodeWaitcnt(Version: IV, Decoded: Wait)); |
1404 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitcntInstr); |
1405 | |
1406 | ScoreBrackets.applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
1407 | ScoreBrackets.applyWaitcnt(T: EXP_CNT, Count: Wait.ExpCnt); |
1408 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
1409 | Wait.LoadCnt = ~0u; |
1410 | Wait.ExpCnt = ~0u; |
1411 | Wait.DsCnt = ~0u; |
1412 | |
1413 | LLVM_DEBUG(It == WaitcntInstr->getParent()->end() |
1414 | ? dbgs() |
1415 | << "applied pre-existing waitcnt\n" |
1416 | << "New Instr at block end: " << *WaitcntInstr << '\n' |
1417 | : dbgs() << "applied pre-existing waitcnt\n" |
1418 | << "Old Instr: " << *It |
1419 | << "New Instr: " << *WaitcntInstr << '\n'); |
1420 | } |
1421 | |
1422 | if (WaitcntVsCntInstr) { |
1423 | Modified |= updateOperandIfDifferent(MI&: *WaitcntVsCntInstr, |
1424 | OpName: AMDGPU::OpName::simm16, NewEnc: Wait.StoreCnt); |
1425 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitcntVsCntInstr); |
1426 | |
1427 | ScoreBrackets.applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
1428 | Wait.StoreCnt = ~0u; |
1429 | |
1430 | LLVM_DEBUG(It == WaitcntVsCntInstr->getParent()->end() |
1431 | ? dbgs() << "applied pre-existing waitcnt\n" |
1432 | << "New Instr at block end: " << *WaitcntVsCntInstr |
1433 | << '\n' |
1434 | : dbgs() << "applied pre-existing waitcnt\n" |
1435 | << "Old Instr: " << *It |
1436 | << "New Instr: " << *WaitcntVsCntInstr << '\n'); |
1437 | } |
1438 | |
1439 | return Modified; |
1440 | } |
1441 | |
1442 | /// Generate S_WAITCNT and/or S_WAITCNT_VSCNT instructions for any |
1443 | /// required counters in \p Wait |
1444 | bool WaitcntGeneratorPreGFX12::createNewWaitcnt( |
1445 | MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, |
1446 | AMDGPU::Waitcnt Wait) { |
1447 | assert(ST); |
1448 | assert(isNormalMode(MaxCounter)); |
1449 | |
1450 | bool Modified = false; |
1451 | const DebugLoc &DL = Block.findDebugLoc(MBBI: It); |
1452 | |
1453 | // Waits for VMcnt, LKGMcnt and/or EXPcnt are encoded together into a |
1454 | // single instruction while VScnt has its own instruction. |
1455 | if (Wait.hasWaitExceptStoreCnt()) { |
1456 | unsigned Enc = AMDGPU::encodeWaitcnt(Version: IV, Decoded: Wait); |
1457 | [[maybe_unused]] auto SWaitInst = |
1458 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT)).addImm(Val: Enc); |
1459 | Modified = true; |
1460 | |
1461 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
1462 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
1463 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
1464 | } |
1465 | |
1466 | if (Wait.hasWaitStoreCnt()) { |
1467 | assert(ST->hasVscnt()); |
1468 | |
1469 | [[maybe_unused]] auto SWaitInst = |
1470 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_VSCNT)) |
1471 | .addReg(RegNo: AMDGPU::SGPR_NULL, flags: RegState::Undef) |
1472 | .addImm(Val: Wait.StoreCnt); |
1473 | Modified = true; |
1474 | |
1475 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
1476 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
1477 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
1478 | } |
1479 | |
1480 | return Modified; |
1481 | } |
1482 | |
1483 | AMDGPU::Waitcnt |
1484 | WaitcntGeneratorPreGFX12::getAllZeroWaitcnt(bool IncludeVSCnt) const { |
1485 | return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt && ST->hasVscnt() ? 0 : ~0u); |
1486 | } |
1487 | |
1488 | AMDGPU::Waitcnt |
1489 | WaitcntGeneratorGFX12Plus::getAllZeroWaitcnt(bool IncludeVSCnt) const { |
1490 | return AMDGPU::Waitcnt(0, 0, 0, IncludeVSCnt ? 0 : ~0u, 0, 0, 0, |
1491 | ~0u /* XCNT */); |
1492 | } |
1493 | |
1494 | /// Combine consecutive S_WAIT_*CNT instructions that precede \p It and |
1495 | /// follow \p OldWaitcntInstr and apply any extra waits from \p Wait that |
1496 | /// were added by previous passes. Currently this pass conservatively |
1497 | /// assumes that these preexisting waits are required for correctness. |
1498 | bool WaitcntGeneratorGFX12Plus::applyPreexistingWaitcnt( |
1499 | WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr, |
1500 | AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const { |
1501 | assert(ST); |
1502 | assert(!isNormalMode(MaxCounter)); |
1503 | |
1504 | bool Modified = false; |
1505 | MachineInstr *CombinedLoadDsCntInstr = nullptr; |
1506 | MachineInstr *CombinedStoreDsCntInstr = nullptr; |
1507 | MachineInstr *WaitInstrs[NUM_EXTENDED_INST_CNTS] = {}; |
1508 | |
1509 | LLVM_DEBUG({ |
1510 | dbgs() << "GFX12Plus::applyPreexistingWaitcnt at: " ; |
1511 | if (It == OldWaitcntInstr.getParent()->instr_end()) |
1512 | dbgs() << "end of block\n" ; |
1513 | else |
1514 | dbgs() << *It; |
1515 | }); |
1516 | |
1517 | for (auto &II : |
1518 | make_early_inc_range(Range: make_range(x: OldWaitcntInstr.getIterator(), y: It))) { |
1519 | LLVM_DEBUG(dbgs() << "pre-existing iter: " << II); |
1520 | if (II.isMetaInstruction()) { |
1521 | LLVM_DEBUG(dbgs() << "skipped meta instruction\n" ); |
1522 | continue; |
1523 | } |
1524 | |
1525 | MachineInstr **UpdatableInstr; |
1526 | |
1527 | // Update required wait count. If this is a soft waitcnt (= it was added |
1528 | // by an earlier pass), it may be entirely removed. |
1529 | |
1530 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: II.getOpcode()); |
1531 | bool TrySimplify = Opcode != II.getOpcode() && !OptNone; |
1532 | |
1533 | // Don't crash if the programmer used legacy waitcnt intrinsics, but don't |
1534 | // attempt to do more than that either. |
1535 | if (Opcode == AMDGPU::S_WAITCNT) |
1536 | continue; |
1537 | |
1538 | if (Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT) { |
1539 | unsigned OldEnc = |
1540 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
1541 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeLoadcntDscnt(Version: IV, LoadcntDscnt: OldEnc); |
1542 | if (TrySimplify) |
1543 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
1544 | Wait = Wait.combined(Other: OldWait); |
1545 | UpdatableInstr = &CombinedLoadDsCntInstr; |
1546 | } else if (Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT) { |
1547 | unsigned OldEnc = |
1548 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
1549 | AMDGPU::Waitcnt OldWait = AMDGPU::decodeStorecntDscnt(Version: IV, StorecntDscnt: OldEnc); |
1550 | if (TrySimplify) |
1551 | ScoreBrackets.simplifyWaitcnt(Wait&: OldWait); |
1552 | Wait = Wait.combined(Other: OldWait); |
1553 | UpdatableInstr = &CombinedStoreDsCntInstr; |
1554 | } else { |
1555 | std::optional<InstCounterType> CT = counterTypeForInstr(Opcode); |
1556 | assert(CT.has_value()); |
1557 | unsigned OldCnt = |
1558 | TII->getNamedOperand(MI&: II, OperandName: AMDGPU::OpName::simm16)->getImm(); |
1559 | if (TrySimplify) |
1560 | ScoreBrackets.simplifyWaitcnt(T: CT.value(), Count&: OldCnt); |
1561 | addWait(Wait, T: CT.value(), Count: OldCnt); |
1562 | UpdatableInstr = &WaitInstrs[CT.value()]; |
1563 | } |
1564 | |
1565 | // Merge consecutive waitcnt of the same type by erasing multiples. |
1566 | if (!*UpdatableInstr) { |
1567 | *UpdatableInstr = &II; |
1568 | } else { |
1569 | II.eraseFromParent(); |
1570 | Modified = true; |
1571 | } |
1572 | } |
1573 | |
1574 | if (CombinedLoadDsCntInstr) { |
1575 | // Only keep an S_WAIT_LOADCNT_DSCNT if both counters actually need |
1576 | // to be waited for. Otherwise, let the instruction be deleted so |
1577 | // the appropriate single counter wait instruction can be inserted |
1578 | // instead, when new S_WAIT_*CNT instructions are inserted by |
1579 | // createNewWaitcnt(). As a side effect, resetting the wait counts will |
1580 | // cause any redundant S_WAIT_LOADCNT or S_WAIT_DSCNT to be removed by |
1581 | // the loop below that deals with single counter instructions. |
1582 | if (Wait.LoadCnt != ~0u && Wait.DsCnt != ~0u) { |
1583 | unsigned NewEnc = AMDGPU::encodeLoadcntDscnt(Version: IV, Decoded: Wait); |
1584 | Modified |= updateOperandIfDifferent(MI&: *CombinedLoadDsCntInstr, |
1585 | OpName: AMDGPU::OpName::simm16, NewEnc); |
1586 | Modified |= promoteSoftWaitCnt(Waitcnt: CombinedLoadDsCntInstr); |
1587 | ScoreBrackets.applyWaitcnt(T: LOAD_CNT, Count: Wait.LoadCnt); |
1588 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
1589 | Wait.LoadCnt = ~0u; |
1590 | Wait.DsCnt = ~0u; |
1591 | |
1592 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
1593 | ? dbgs() << "applied pre-existing waitcnt\n" |
1594 | << "New Instr at block end: " |
1595 | << *CombinedLoadDsCntInstr << '\n' |
1596 | : dbgs() << "applied pre-existing waitcnt\n" |
1597 | << "Old Instr: " << *It << "New Instr: " |
1598 | << *CombinedLoadDsCntInstr << '\n'); |
1599 | } else { |
1600 | CombinedLoadDsCntInstr->eraseFromParent(); |
1601 | Modified = true; |
1602 | } |
1603 | } |
1604 | |
1605 | if (CombinedStoreDsCntInstr) { |
1606 | // Similarly for S_WAIT_STORECNT_DSCNT. |
1607 | if (Wait.StoreCnt != ~0u && Wait.DsCnt != ~0u) { |
1608 | unsigned NewEnc = AMDGPU::encodeStorecntDscnt(Version: IV, Decoded: Wait); |
1609 | Modified |= updateOperandIfDifferent(MI&: *CombinedStoreDsCntInstr, |
1610 | OpName: AMDGPU::OpName::simm16, NewEnc); |
1611 | Modified |= promoteSoftWaitCnt(Waitcnt: CombinedStoreDsCntInstr); |
1612 | ScoreBrackets.applyWaitcnt(T: STORE_CNT, Count: Wait.StoreCnt); |
1613 | ScoreBrackets.applyWaitcnt(T: DS_CNT, Count: Wait.DsCnt); |
1614 | Wait.StoreCnt = ~0u; |
1615 | Wait.DsCnt = ~0u; |
1616 | |
1617 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
1618 | ? dbgs() << "applied pre-existing waitcnt\n" |
1619 | << "New Instr at block end: " |
1620 | << *CombinedStoreDsCntInstr << '\n' |
1621 | : dbgs() << "applied pre-existing waitcnt\n" |
1622 | << "Old Instr: " << *It << "New Instr: " |
1623 | << *CombinedStoreDsCntInstr << '\n'); |
1624 | } else { |
1625 | CombinedStoreDsCntInstr->eraseFromParent(); |
1626 | Modified = true; |
1627 | } |
1628 | } |
1629 | |
1630 | // Look for an opportunity to convert existing S_WAIT_LOADCNT, |
1631 | // S_WAIT_STORECNT and S_WAIT_DSCNT into new S_WAIT_LOADCNT_DSCNT |
1632 | // or S_WAIT_STORECNT_DSCNT. This is achieved by selectively removing |
1633 | // instructions so that createNewWaitcnt() will create new combined |
1634 | // instructions to replace them. |
1635 | |
1636 | if (Wait.DsCnt != ~0u) { |
1637 | // This is a vector of addresses in WaitInstrs pointing to instructions |
1638 | // that should be removed if they are present. |
1639 | SmallVector<MachineInstr **, 2> WaitsToErase; |
1640 | |
1641 | // If it's known that both DScnt and either LOADcnt or STOREcnt (but not |
1642 | // both) need to be waited for, ensure that there are no existing |
1643 | // individual wait count instructions for these. |
1644 | |
1645 | if (Wait.LoadCnt != ~0u) { |
1646 | WaitsToErase.push_back(Elt: &WaitInstrs[LOAD_CNT]); |
1647 | WaitsToErase.push_back(Elt: &WaitInstrs[DS_CNT]); |
1648 | } else if (Wait.StoreCnt != ~0u) { |
1649 | WaitsToErase.push_back(Elt: &WaitInstrs[STORE_CNT]); |
1650 | WaitsToErase.push_back(Elt: &WaitInstrs[DS_CNT]); |
1651 | } |
1652 | |
1653 | for (MachineInstr **WI : WaitsToErase) { |
1654 | if (!*WI) |
1655 | continue; |
1656 | |
1657 | (*WI)->eraseFromParent(); |
1658 | *WI = nullptr; |
1659 | Modified = true; |
1660 | } |
1661 | } |
1662 | |
1663 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
1664 | if (!WaitInstrs[CT]) |
1665 | continue; |
1666 | |
1667 | unsigned NewCnt = getWait(Wait, T: CT); |
1668 | if (NewCnt != ~0u) { |
1669 | Modified |= updateOperandIfDifferent(MI&: *WaitInstrs[CT], |
1670 | OpName: AMDGPU::OpName::simm16, NewEnc: NewCnt); |
1671 | Modified |= promoteSoftWaitCnt(Waitcnt: WaitInstrs[CT]); |
1672 | |
1673 | ScoreBrackets.applyWaitcnt(T: CT, Count: NewCnt); |
1674 | setNoWait(Wait, T: CT); |
1675 | |
1676 | LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end() |
1677 | ? dbgs() << "applied pre-existing waitcnt\n" |
1678 | << "New Instr at block end: " << *WaitInstrs[CT] |
1679 | << '\n' |
1680 | : dbgs() << "applied pre-existing waitcnt\n" |
1681 | << "Old Instr: " << *It |
1682 | << "New Instr: " << *WaitInstrs[CT] << '\n'); |
1683 | } else { |
1684 | WaitInstrs[CT]->eraseFromParent(); |
1685 | Modified = true; |
1686 | } |
1687 | } |
1688 | |
1689 | return Modified; |
1690 | } |
1691 | |
1692 | /// Generate S_WAIT_*CNT instructions for any required counters in \p Wait |
1693 | bool WaitcntGeneratorGFX12Plus::createNewWaitcnt( |
1694 | MachineBasicBlock &Block, MachineBasicBlock::instr_iterator It, |
1695 | AMDGPU::Waitcnt Wait) { |
1696 | assert(ST); |
1697 | assert(!isNormalMode(MaxCounter)); |
1698 | |
1699 | bool Modified = false; |
1700 | const DebugLoc &DL = Block.findDebugLoc(MBBI: It); |
1701 | |
1702 | // Check for opportunities to use combined wait instructions. |
1703 | if (Wait.DsCnt != ~0u) { |
1704 | MachineInstr *SWaitInst = nullptr; |
1705 | |
1706 | if (Wait.LoadCnt != ~0u) { |
1707 | unsigned Enc = AMDGPU::encodeLoadcntDscnt(Version: IV, Decoded: Wait); |
1708 | |
1709 | SWaitInst = BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_LOADCNT_DSCNT)) |
1710 | .addImm(Val: Enc); |
1711 | |
1712 | Wait.LoadCnt = ~0u; |
1713 | Wait.DsCnt = ~0u; |
1714 | } else if (Wait.StoreCnt != ~0u) { |
1715 | unsigned Enc = AMDGPU::encodeStorecntDscnt(Version: IV, Decoded: Wait); |
1716 | |
1717 | SWaitInst = |
1718 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_STORECNT_DSCNT)) |
1719 | .addImm(Val: Enc); |
1720 | |
1721 | Wait.StoreCnt = ~0u; |
1722 | Wait.DsCnt = ~0u; |
1723 | } |
1724 | |
1725 | if (SWaitInst) { |
1726 | Modified = true; |
1727 | |
1728 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
1729 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
1730 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
1731 | } |
1732 | } |
1733 | |
1734 | // Generate an instruction for any remaining counter that needs |
1735 | // waiting for. |
1736 | |
1737 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
1738 | unsigned Count = getWait(Wait, T: CT); |
1739 | if (Count == ~0u) |
1740 | continue; |
1741 | |
1742 | [[maybe_unused]] auto SWaitInst = |
1743 | BuildMI(BB&: Block, I: It, MIMD: DL, MCID: TII->get(Opcode: instrsForExtendedCounterTypes[CT])) |
1744 | .addImm(Val: Count); |
1745 | |
1746 | Modified = true; |
1747 | |
1748 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" ; |
1749 | if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It; |
1750 | dbgs() << "New Instr: " << *SWaitInst << '\n'); |
1751 | } |
1752 | |
1753 | return Modified; |
1754 | } |
1755 | |
1756 | static bool readsVCCZ(const MachineInstr &MI) { |
1757 | unsigned Opc = MI.getOpcode(); |
1758 | return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && |
1759 | !MI.getOperand(i: 1).isUndef(); |
1760 | } |
1761 | |
1762 | /// \returns true if the callee inserts an s_waitcnt 0 on function entry. |
1763 | static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { |
1764 | // Currently all conventions wait, but this may not always be the case. |
1765 | // |
1766 | // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make |
1767 | // senses to omit the wait and do it in the caller. |
1768 | return true; |
1769 | } |
1770 | |
1771 | /// \returns true if the callee is expected to wait for any outstanding waits |
1772 | /// before returning. |
1773 | static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { return true; } |
1774 | |
1775 | /// Generate s_waitcnt instruction to be placed before cur_Inst. |
1776 | /// Instructions of a given type are returned in order, |
1777 | /// but instructions of different types can complete out of order. |
1778 | /// We rely on this in-order completion |
1779 | /// and simply assign a score to the memory access instructions. |
1780 | /// We keep track of the active "score bracket" to determine |
1781 | /// if an access of a memory read requires an s_waitcnt |
1782 | /// and if so what the value of each counter is. |
1783 | /// The "score bracket" is bound by the lower bound and upper bound |
1784 | /// scores (*_score_LB and *_score_ub respectively). |
1785 | /// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to |
1786 | /// flush the vmcnt counter here. |
1787 | bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI, |
1788 | WaitcntBrackets &ScoreBrackets, |
1789 | MachineInstr *OldWaitcntInstr, |
1790 | bool FlushVmCnt) { |
1791 | setForceEmitWaitcnt(); |
1792 | |
1793 | assert(!MI.isMetaInstruction()); |
1794 | |
1795 | AMDGPU::Waitcnt Wait; |
1796 | |
1797 | // FIXME: This should have already been handled by the memory legalizer. |
1798 | // Removing this currently doesn't affect any lit tests, but we need to |
1799 | // verify that nothing was relying on this. The number of buffer invalidates |
1800 | // being handled here should not be expanded. |
1801 | if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || |
1802 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || |
1803 | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || |
1804 | MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || |
1805 | MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { |
1806 | Wait.LoadCnt = 0; |
1807 | } |
1808 | |
1809 | // All waits must be resolved at call return. |
1810 | // NOTE: this could be improved with knowledge of all call sites or |
1811 | // with knowledge of the called routines. |
1812 | if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || |
1813 | MI.getOpcode() == AMDGPU::SI_RETURN || |
1814 | MI.getOpcode() == AMDGPU::S_SETPC_B64_return || |
1815 | (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { |
1816 | Wait = Wait.combined(Other: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); |
1817 | } |
1818 | // In dynamic VGPR mode, we want to release the VGPRs before the wave exits. |
1819 | // Technically the hardware will do this on its own if we don't, but that |
1820 | // might cost extra cycles compared to doing it explicitly. |
1821 | // When not in dynamic VGPR mode, identify S_ENDPGM instructions which may |
1822 | // have to wait for outstanding VMEM stores. In this case it can be useful to |
1823 | // send a message to explicitly release all VGPRs before the stores have |
1824 | // completed, but it is only safe to do this if there are no outstanding |
1825 | // scratch stores. |
1826 | else if (MI.getOpcode() == AMDGPU::S_ENDPGM || |
1827 | MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) { |
1828 | if (!WCG->isOptNone() && |
1829 | (MI.getMF()->getInfo<SIMachineFunctionInfo>()->isDynamicVGPREnabled() || |
1830 | (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && |
1831 | ScoreBrackets.getScoreRange(T: STORE_CNT) != 0 && |
1832 | !ScoreBrackets.hasPendingEvent(E: SCRATCH_WRITE_ACCESS)))) |
1833 | ReleaseVGPRInsts.insert(V: &MI); |
1834 | } |
1835 | // Resolve vm waits before gs-done. |
1836 | else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || |
1837 | MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && |
1838 | ST->hasLegacyGeometry() && |
1839 | ((MI.getOperand(i: 0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) == |
1840 | AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) { |
1841 | Wait.LoadCnt = 0; |
1842 | } |
1843 | |
1844 | // Export & GDS instructions do not read the EXEC mask until after the export |
1845 | // is granted (which can occur well after the instruction is issued). |
1846 | // The shader program must flush all EXP operations on the export-count |
1847 | // before overwriting the EXEC mask. |
1848 | else { |
1849 | if (MI.modifiesRegister(Reg: AMDGPU::EXEC, TRI)) { |
1850 | // Export and GDS are tracked individually, either may trigger a waitcnt |
1851 | // for EXEC. |
1852 | if (ScoreBrackets.hasPendingEvent(E: EXP_GPR_LOCK) || |
1853 | ScoreBrackets.hasPendingEvent(E: EXP_PARAM_ACCESS) || |
1854 | ScoreBrackets.hasPendingEvent(E: EXP_POS_ACCESS) || |
1855 | ScoreBrackets.hasPendingEvent(E: GDS_GPR_LOCK)) { |
1856 | Wait.ExpCnt = 0; |
1857 | } |
1858 | } |
1859 | |
1860 | // Wait for any pending GDS instruction to complete before any |
1861 | // "Always GDS" instruction. |
1862 | if (TII->isAlwaysGDS(Opcode: MI.getOpcode()) && ScoreBrackets.hasPendingGDS()) |
1863 | addWait(Wait, T: DS_CNT, Count: ScoreBrackets.getPendingGDSWait()); |
1864 | |
1865 | if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { |
1866 | // The function is going to insert a wait on everything in its prolog. |
1867 | // This still needs to be careful if the call target is a load (e.g. a GOT |
1868 | // load). We also need to check WAW dependency with saved PC. |
1869 | Wait = AMDGPU::Waitcnt(); |
1870 | |
1871 | const auto &CallAddrOp = *TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
1872 | if (CallAddrOp.isReg()) { |
1873 | RegInterval CallAddrOpInterval = |
1874 | ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op: CallAddrOp); |
1875 | |
1876 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval: CallAddrOpInterval, |
1877 | Wait); |
1878 | |
1879 | if (const auto *RtnAddrOp = |
1880 | TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::dst)) { |
1881 | RegInterval RtnAddrOpInterval = |
1882 | ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op: *RtnAddrOp); |
1883 | |
1884 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval: RtnAddrOpInterval, |
1885 | Wait); |
1886 | } |
1887 | } |
1888 | } else { |
1889 | // FIXME: Should not be relying on memoperands. |
1890 | // Look at the source operands of every instruction to see if |
1891 | // any of them results from a previous memory operation that affects |
1892 | // its current usage. If so, an s_waitcnt instruction needs to be |
1893 | // emitted. |
1894 | // If the source operand was defined by a load, add the s_waitcnt |
1895 | // instruction. |
1896 | // |
1897 | // Two cases are handled for destination operands: |
1898 | // 1) If the destination operand was defined by a load, add the s_waitcnt |
1899 | // instruction to guarantee the right WAW order. |
1900 | // 2) If a destination operand that was used by a recent export/store ins, |
1901 | // add s_waitcnt on exp_cnt to guarantee the WAR order. |
1902 | |
1903 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
1904 | const Value *Ptr = Memop->getValue(); |
1905 | if (Memop->isStore()) { |
1906 | if (auto It = SLoadAddresses.find(Val: Ptr); It != SLoadAddresses.end()) { |
1907 | addWait(Wait, T: SmemAccessCounter, Count: 0); |
1908 | if (PDT->dominates(A: MI.getParent(), B: It->second)) |
1909 | SLoadAddresses.erase(I: It); |
1910 | } |
1911 | } |
1912 | unsigned AS = Memop->getAddrSpace(); |
1913 | if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) |
1914 | continue; |
1915 | // No need to wait before load from VMEM to LDS. |
1916 | if (TII->mayWriteLDSThroughDMA(MI)) |
1917 | continue; |
1918 | |
1919 | // LOAD_CNT is only relevant to vgpr or LDS. |
1920 | unsigned RegNo = FIRST_LDS_VGPR; |
1921 | // Only objects with alias scope info were added to LDSDMAScopes array. |
1922 | // In the absense of the scope info we will not be able to disambiguate |
1923 | // aliasing here. There is no need to try searching for a corresponding |
1924 | // store slot. This is conservatively correct because in that case we |
1925 | // will produce a wait using the first (general) LDS DMA wait slot which |
1926 | // will wait on all of them anyway. |
1927 | if (Ptr && Memop->getAAInfo() && Memop->getAAInfo().Scope) { |
1928 | const auto &LDSDMAStores = ScoreBrackets.getLDSDMAStores(); |
1929 | for (unsigned I = 0, E = LDSDMAStores.size(); I != E; ++I) { |
1930 | if (MI.mayAlias(AA, Other: *LDSDMAStores[I], UseTBAA: true)) |
1931 | ScoreBrackets.determineWait(T: LOAD_CNT, RegNo: RegNo + I + 1, Wait); |
1932 | } |
1933 | } else { |
1934 | ScoreBrackets.determineWait(T: LOAD_CNT, RegNo, Wait); |
1935 | } |
1936 | if (Memop->isStore()) { |
1937 | ScoreBrackets.determineWait(T: EXP_CNT, RegNo, Wait); |
1938 | } |
1939 | } |
1940 | |
1941 | // Loop over use and def operands. |
1942 | for (const MachineOperand &Op : MI.operands()) { |
1943 | if (!Op.isReg()) |
1944 | continue; |
1945 | |
1946 | // If the instruction does not read tied source, skip the operand. |
1947 | if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI)) |
1948 | continue; |
1949 | |
1950 | RegInterval Interval = ScoreBrackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
1951 | |
1952 | const bool IsVGPR = TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg()); |
1953 | if (IsVGPR) { |
1954 | // Implicit VGPR defs and uses are never a part of the memory |
1955 | // instructions description and usually present to account for |
1956 | // super-register liveness. |
1957 | // TODO: Most of the other instructions also have implicit uses |
1958 | // for the liveness accounting only. |
1959 | if (Op.isImplicit() && MI.mayLoadOrStore()) |
1960 | continue; |
1961 | |
1962 | // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the |
1963 | // previous write and this write are the same type of VMEM |
1964 | // instruction, in which case they are (in some architectures) |
1965 | // guaranteed to write their results in order anyway. |
1966 | // Additionally check instructions where Point Sample Acceleration |
1967 | // might be applied. |
1968 | if (Op.isUse() || !updateVMCntOnly(Inst: MI) || |
1969 | ScoreBrackets.hasOtherPendingVmemTypes(Interval, |
1970 | V: getVmemType(Inst: MI)) || |
1971 | ScoreBrackets.hasPointSamplePendingVmemTypes(MI, Interval) || |
1972 | !ST->hasVmemWriteVgprInOrder()) { |
1973 | ScoreBrackets.determineWait(T: LOAD_CNT, Interval, Wait); |
1974 | ScoreBrackets.determineWait(T: SAMPLE_CNT, Interval, Wait); |
1975 | ScoreBrackets.determineWait(T: BVH_CNT, Interval, Wait); |
1976 | ScoreBrackets.clearVgprVmemTypes(Interval); |
1977 | } |
1978 | |
1979 | if (Op.isDef() || ScoreBrackets.hasPendingEvent(E: EXP_LDS_ACCESS)) { |
1980 | ScoreBrackets.determineWait(T: EXP_CNT, Interval, Wait); |
1981 | } |
1982 | ScoreBrackets.determineWait(T: DS_CNT, Interval, Wait); |
1983 | } else { |
1984 | ScoreBrackets.determineWait(T: SmemAccessCounter, Interval, Wait); |
1985 | } |
1986 | |
1987 | if (hasXcnt() && Op.isDef()) |
1988 | ScoreBrackets.determineWait(T: X_CNT, Interval, Wait); |
1989 | } |
1990 | } |
1991 | } |
1992 | |
1993 | // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does |
1994 | // not, we need to ensure the subtarget is capable of backing off barrier |
1995 | // instructions in case there are any outstanding memory operations that may |
1996 | // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here. |
1997 | if (TII->isBarrierStart(Opcode: MI.getOpcode()) && |
1998 | !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) { |
1999 | Wait = Wait.combined(Other: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/true)); |
2000 | } |
2001 | |
2002 | // TODO: Remove this work-around, enable the assert for Bug 457939 |
2003 | // after fixing the scheduler. Also, the Shader Compiler code is |
2004 | // independent of target. |
2005 | if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { |
2006 | if (ScoreBrackets.hasPendingEvent(E: SMEM_ACCESS)) { |
2007 | Wait.DsCnt = 0; |
2008 | } |
2009 | } |
2010 | |
2011 | // Verify that the wait is actually needed. |
2012 | ScoreBrackets.simplifyWaitcnt(Wait); |
2013 | |
2014 | // When forcing emit, we need to skip terminators because that would break the |
2015 | // terminators of the MBB if we emit a waitcnt between terminators. |
2016 | if (ForceEmitZeroFlag && !MI.isTerminator()) |
2017 | Wait = WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false); |
2018 | |
2019 | if (ForceEmitWaitcnt[LOAD_CNT]) |
2020 | Wait.LoadCnt = 0; |
2021 | if (ForceEmitWaitcnt[EXP_CNT]) |
2022 | Wait.ExpCnt = 0; |
2023 | if (ForceEmitWaitcnt[DS_CNT]) |
2024 | Wait.DsCnt = 0; |
2025 | if (ForceEmitWaitcnt[SAMPLE_CNT]) |
2026 | Wait.SampleCnt = 0; |
2027 | if (ForceEmitWaitcnt[BVH_CNT]) |
2028 | Wait.BvhCnt = 0; |
2029 | if (ForceEmitWaitcnt[KM_CNT]) |
2030 | Wait.KmCnt = 0; |
2031 | if (ForceEmitWaitcnt[X_CNT]) |
2032 | Wait.XCnt = 0; |
2033 | |
2034 | if (FlushVmCnt) { |
2035 | if (ScoreBrackets.hasPendingEvent(T: LOAD_CNT)) |
2036 | Wait.LoadCnt = 0; |
2037 | if (ScoreBrackets.hasPendingEvent(T: SAMPLE_CNT)) |
2038 | Wait.SampleCnt = 0; |
2039 | if (ScoreBrackets.hasPendingEvent(T: BVH_CNT)) |
2040 | Wait.BvhCnt = 0; |
2041 | } |
2042 | |
2043 | if (ForceEmitZeroLoadFlag && Wait.LoadCnt != ~0u) |
2044 | Wait.LoadCnt = 0; |
2045 | |
2046 | return generateWaitcnt(Wait, It: MI.getIterator(), Block&: *MI.getParent(), ScoreBrackets, |
2047 | OldWaitcntInstr); |
2048 | } |
2049 | |
2050 | bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait, |
2051 | MachineBasicBlock::instr_iterator It, |
2052 | MachineBasicBlock &Block, |
2053 | WaitcntBrackets &ScoreBrackets, |
2054 | MachineInstr *OldWaitcntInstr) { |
2055 | bool Modified = false; |
2056 | |
2057 | if (OldWaitcntInstr) |
2058 | // Try to merge the required wait with preexisting waitcnt instructions. |
2059 | // Also erase redundant waitcnt. |
2060 | Modified = |
2061 | WCG->applyPreexistingWaitcnt(ScoreBrackets, OldWaitcntInstr&: *OldWaitcntInstr, Wait, It); |
2062 | |
2063 | // Any counts that could have been applied to any existing waitcnt |
2064 | // instructions will have been done so, now deal with any remaining. |
2065 | ScoreBrackets.applyWaitcnt(Wait); |
2066 | |
2067 | // ExpCnt can be merged into VINTERP. |
2068 | if (Wait.ExpCnt != ~0u && It != Block.instr_end() && |
2069 | SIInstrInfo::isVINTERP(MI: *It)) { |
2070 | MachineOperand *WaitExp = |
2071 | TII->getNamedOperand(MI&: *It, OperandName: AMDGPU::OpName::waitexp); |
2072 | if (Wait.ExpCnt < WaitExp->getImm()) { |
2073 | WaitExp->setImm(Wait.ExpCnt); |
2074 | Modified = true; |
2075 | } |
2076 | Wait.ExpCnt = ~0u; |
2077 | |
2078 | LLVM_DEBUG(dbgs() << "generateWaitcnt\n" |
2079 | << "Update Instr: " << *It); |
2080 | } |
2081 | |
2082 | // XCnt may be already consumed by a load wait. |
2083 | if (Wait.KmCnt == 0 && Wait.XCnt != ~0u && |
2084 | !ScoreBrackets.hasPendingEvent(E: SMEM_GROUP)) |
2085 | Wait.XCnt = ~0u; |
2086 | |
2087 | if (Wait.LoadCnt == 0 && Wait.XCnt != ~0u && |
2088 | !ScoreBrackets.hasPendingEvent(E: VMEM_GROUP)) |
2089 | Wait.XCnt = ~0u; |
2090 | |
2091 | // Since the translation for VMEM addresses occur in-order, we can skip the |
2092 | // XCnt if the current instruction is of VMEM type and has a memory dependency |
2093 | // with another VMEM instruction in flight. |
2094 | if (Wait.XCnt != ~0u && isVmemAccess(MI: *It)) |
2095 | Wait.XCnt = ~0u; |
2096 | |
2097 | if (WCG->createNewWaitcnt(Block, It, Wait)) |
2098 | Modified = true; |
2099 | |
2100 | return Modified; |
2101 | } |
2102 | |
2103 | // This is a flat memory operation. Check to see if it has memory tokens other |
2104 | // than LDS. Other address spaces supported by flat memory operations involve |
2105 | // global memory. |
2106 | bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { |
2107 | assert(TII->isFLAT(MI)); |
2108 | |
2109 | // All flat instructions use the VMEM counter. |
2110 | assert(TII->usesVM_CNT(MI)); |
2111 | |
2112 | // If there are no memory operands then conservatively assume the flat |
2113 | // operation may access VMEM. |
2114 | if (MI.memoperands_empty()) |
2115 | return true; |
2116 | |
2117 | // See if any memory operand specifies an address space that involves VMEM. |
2118 | // Flat operations only supported FLAT, LOCAL (LDS), or address spaces |
2119 | // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION |
2120 | // (GDS) address space is not supported by flat operations. Therefore, simply |
2121 | // return true unless only the LDS address space is found. |
2122 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
2123 | unsigned AS = Memop->getAddrSpace(); |
2124 | assert(AS != AMDGPUAS::REGION_ADDRESS); |
2125 | if (AS != AMDGPUAS::LOCAL_ADDRESS) |
2126 | return true; |
2127 | } |
2128 | |
2129 | return false; |
2130 | } |
2131 | |
2132 | // This is a flat memory operation. Check to see if it has memory tokens for |
2133 | // either LDS or FLAT. |
2134 | bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { |
2135 | assert(TII->isFLAT(MI)); |
2136 | |
2137 | // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. |
2138 | if (!TII->usesLGKM_CNT(MI)) |
2139 | return false; |
2140 | |
2141 | // If in tgsplit mode then there can be no use of LDS. |
2142 | if (ST->isTgSplitEnabled()) |
2143 | return false; |
2144 | |
2145 | // If there are no memory operands then conservatively assume the flat |
2146 | // operation may access LDS. |
2147 | if (MI.memoperands_empty()) |
2148 | return true; |
2149 | |
2150 | // See if any memory operand specifies an address space that involves LDS. |
2151 | for (const MachineMemOperand *Memop : MI.memoperands()) { |
2152 | unsigned AS = Memop->getAddrSpace(); |
2153 | if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) |
2154 | return true; |
2155 | } |
2156 | |
2157 | return false; |
2158 | } |
2159 | |
2160 | // This is a flat memory operation. Check to see if it has memory tokens for |
2161 | // either scratch or FLAT. |
2162 | bool SIInsertWaitcnts::mayAccessScratchThroughFlat( |
2163 | const MachineInstr &MI) const { |
2164 | assert(TII->isFLAT(MI)); |
2165 | |
2166 | // SCRATCH instructions always access scratch. |
2167 | if (TII->isFLATScratch(MI)) |
2168 | return true; |
2169 | |
2170 | // GLOBAL instructions never access scratch. |
2171 | if (TII->isFLATGlobal(MI)) |
2172 | return false; |
2173 | |
2174 | // If there are no memory operands then conservatively assume the flat |
2175 | // operation may access scratch. |
2176 | if (MI.memoperands_empty()) |
2177 | return true; |
2178 | |
2179 | // See if any memory operand specifies an address space that involves scratch. |
2180 | return any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *Memop) { |
2181 | unsigned AS = Memop->getAddrSpace(); |
2182 | return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; |
2183 | }); |
2184 | } |
2185 | |
2186 | bool SIInsertWaitcnts::isVmemAccess(const MachineInstr &MI) const { |
2187 | return (TII->isFLAT(MI) && mayAccessVMEMThroughFlat(MI)) || |
2188 | (TII->isVMEM(MI) && !AMDGPU::getMUBUFIsBufferInv(Opc: MI.getOpcode())); |
2189 | } |
2190 | |
2191 | static bool isGFX12CacheInvOrWBInst(MachineInstr &Inst) { |
2192 | auto Opc = Inst.getOpcode(); |
2193 | return Opc == AMDGPU::GLOBAL_INV || Opc == AMDGPU::GLOBAL_WB || |
2194 | Opc == AMDGPU::GLOBAL_WBINV; |
2195 | } |
2196 | |
2197 | // Return true if the next instruction is S_ENDPGM, following fallthrough |
2198 | // blocks if necessary. |
2199 | bool SIInsertWaitcnts::isNextENDPGM(MachineBasicBlock::instr_iterator It, |
2200 | MachineBasicBlock *Block) const { |
2201 | auto BlockEnd = Block->getParent()->end(); |
2202 | auto BlockIter = Block->getIterator(); |
2203 | |
2204 | while (true) { |
2205 | if (It.isEnd()) { |
2206 | if (++BlockIter != BlockEnd) { |
2207 | It = BlockIter->instr_begin(); |
2208 | continue; |
2209 | } |
2210 | |
2211 | return false; |
2212 | } |
2213 | |
2214 | if (!It->isMetaInstruction()) |
2215 | break; |
2216 | |
2217 | It++; |
2218 | } |
2219 | |
2220 | assert(!It.isEnd()); |
2221 | |
2222 | return It->getOpcode() == AMDGPU::S_ENDPGM; |
2223 | } |
2224 | |
2225 | // Add a wait after an instruction if architecture requirements mandate one. |
2226 | bool SIInsertWaitcnts::insertForcedWaitAfter(MachineInstr &Inst, |
2227 | MachineBasicBlock &Block, |
2228 | WaitcntBrackets &ScoreBrackets) { |
2229 | AMDGPU::Waitcnt Wait; |
2230 | bool NeedsEndPGMCheck = false; |
2231 | |
2232 | if (ST->isPreciseMemoryEnabled() && Inst.mayLoadOrStore()) |
2233 | Wait = WCG->getAllZeroWaitcnt(IncludeVSCnt: Inst.mayStore() && |
2234 | !SIInstrInfo::isAtomicRet(MI: Inst)); |
2235 | |
2236 | if (TII->isAlwaysGDS(Opcode: Inst.getOpcode())) { |
2237 | Wait.DsCnt = 0; |
2238 | NeedsEndPGMCheck = true; |
2239 | } |
2240 | |
2241 | ScoreBrackets.simplifyWaitcnt(Wait); |
2242 | |
2243 | auto SuccessorIt = std::next(x: Inst.getIterator()); |
2244 | bool Result = generateWaitcnt(Wait, It: SuccessorIt, Block, ScoreBrackets, |
2245 | /*OldWaitcntInstr=*/nullptr); |
2246 | |
2247 | if (Result && NeedsEndPGMCheck && isNextENDPGM(It: SuccessorIt, Block: &Block)) { |
2248 | BuildMI(BB&: Block, I: SuccessorIt, MIMD: Inst.getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_NOP)) |
2249 | .addImm(Val: 0); |
2250 | } |
2251 | |
2252 | return Result; |
2253 | } |
2254 | |
2255 | void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, |
2256 | WaitcntBrackets *ScoreBrackets) { |
2257 | // Now look at the instruction opcode. If it is a memory access |
2258 | // instruction, update the upper-bound of the appropriate counter's |
2259 | // bracket and the destination operand scores. |
2260 | // TODO: Use the (TSFlags & SIInstrFlags::DS_CNT) property everywhere. |
2261 | |
2262 | bool IsVMEMAccess = false; |
2263 | bool IsSMEMAccess = false; |
2264 | if (TII->isDS(MI: Inst) && TII->usesLGKM_CNT(MI: Inst)) { |
2265 | if (TII->isAlwaysGDS(Opcode: Inst.getOpcode()) || |
2266 | TII->hasModifiersSet(MI: Inst, OpName: AMDGPU::OpName::gds)) { |
2267 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: GDS_ACCESS, Inst); |
2268 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: GDS_GPR_LOCK, Inst); |
2269 | ScoreBrackets->setPendingGDS(); |
2270 | } else { |
2271 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: LDS_ACCESS, Inst); |
2272 | } |
2273 | } else if (TII->isFLAT(MI: Inst)) { |
2274 | if (isGFX12CacheInvOrWBInst(Inst)) { |
2275 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
2276 | Inst); |
2277 | return; |
2278 | } |
2279 | |
2280 | assert(Inst.mayLoadOrStore()); |
2281 | |
2282 | int FlatASCount = 0; |
2283 | |
2284 | if (mayAccessVMEMThroughFlat(MI: Inst)) { |
2285 | ++FlatASCount; |
2286 | IsVMEMAccess = true; |
2287 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
2288 | Inst); |
2289 | } |
2290 | |
2291 | if (mayAccessLDSThroughFlat(MI: Inst)) { |
2292 | ++FlatASCount; |
2293 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: LDS_ACCESS, Inst); |
2294 | } |
2295 | |
2296 | // A Flat memory operation must access at least one address space. |
2297 | assert(FlatASCount); |
2298 | |
2299 | // This is a flat memory operation that access both VMEM and LDS, so note it |
2300 | // - it will require that both the VM and LGKM be flushed to zero if it is |
2301 | // pending when a VM or LGKM dependency occurs. |
2302 | if (FlatASCount > 1) |
2303 | ScoreBrackets->setPendingFlat(); |
2304 | } else if (SIInstrInfo::isVMEM(MI: Inst) && |
2305 | !llvm::AMDGPU::getMUBUFIsBufferInv(Opc: Inst.getOpcode())) { |
2306 | IsVMEMAccess = true; |
2307 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: getVmemWaitEventType(Inst), |
2308 | Inst); |
2309 | |
2310 | if (ST->vmemWriteNeedsExpWaitcnt() && |
2311 | (Inst.mayStore() || SIInstrInfo::isAtomicRet(MI: Inst))) { |
2312 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: VMW_GPR_LOCK, Inst); |
2313 | } |
2314 | } else if (TII->isSMRD(MI: Inst)) { |
2315 | IsSMEMAccess = true; |
2316 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_ACCESS, Inst); |
2317 | } else if (Inst.isCall()) { |
2318 | if (callWaitsOnFunctionReturn(MI: Inst)) { |
2319 | // Act as a wait on everything |
2320 | ScoreBrackets->applyWaitcnt( |
2321 | Wait: WCG->getAllZeroWaitcnt(/*IncludeVSCnt=*/false)); |
2322 | ScoreBrackets->setStateOnFunctionEntryOrReturn(); |
2323 | } else { |
2324 | // May need to way wait for anything. |
2325 | ScoreBrackets->applyWaitcnt(Wait: AMDGPU::Waitcnt()); |
2326 | } |
2327 | } else if (SIInstrInfo::isLDSDIR(MI: Inst)) { |
2328 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_LDS_ACCESS, Inst); |
2329 | } else if (TII->isVINTERP(MI: Inst)) { |
2330 | int64_t Imm = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::waitexp)->getImm(); |
2331 | ScoreBrackets->applyWaitcnt(T: EXP_CNT, Count: Imm); |
2332 | } else if (SIInstrInfo::isEXP(MI: Inst)) { |
2333 | unsigned Imm = TII->getNamedOperand(MI&: Inst, OperandName: AMDGPU::OpName::tgt)->getImm(); |
2334 | if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) |
2335 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_PARAM_ACCESS, Inst); |
2336 | else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) |
2337 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_POS_ACCESS, Inst); |
2338 | else |
2339 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: EXP_GPR_LOCK, Inst); |
2340 | } else { |
2341 | switch (Inst.getOpcode()) { |
2342 | case AMDGPU::S_SENDMSG: |
2343 | case AMDGPU::S_SENDMSG_RTN_B32: |
2344 | case AMDGPU::S_SENDMSG_RTN_B64: |
2345 | case AMDGPU::S_SENDMSGHALT: |
2346 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SQ_MESSAGE, Inst); |
2347 | break; |
2348 | case AMDGPU::S_MEMTIME: |
2349 | case AMDGPU::S_MEMREALTIME: |
2350 | case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0: |
2351 | case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: |
2352 | case AMDGPU::S_GET_BARRIER_STATE_M0: |
2353 | case AMDGPU::S_GET_BARRIER_STATE_IMM: |
2354 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_ACCESS, Inst); |
2355 | break; |
2356 | } |
2357 | } |
2358 | |
2359 | if (!hasXcnt()) |
2360 | return; |
2361 | |
2362 | if (IsVMEMAccess) |
2363 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: VMEM_GROUP, Inst); |
2364 | |
2365 | if (IsSMEMAccess) |
2366 | ScoreBrackets->updateByEvent(TII, TRI, MRI, E: SMEM_GROUP, Inst); |
2367 | } |
2368 | |
2369 | bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, |
2370 | unsigned OtherScore) { |
2371 | unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; |
2372 | unsigned OtherShifted = |
2373 | OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; |
2374 | Score = std::max(a: MyShifted, b: OtherShifted); |
2375 | return OtherShifted > MyShifted; |
2376 | } |
2377 | |
2378 | /// Merge the pending events and associater score brackets of \p Other into |
2379 | /// this brackets status. |
2380 | /// |
2381 | /// Returns whether the merge resulted in a change that requires tighter waits |
2382 | /// (i.e. the merged brackets strictly dominate the original brackets). |
2383 | bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { |
2384 | bool StrictDom = false; |
2385 | |
2386 | VgprUB = std::max(a: VgprUB, b: Other.VgprUB); |
2387 | SgprUB = std::max(a: SgprUB, b: Other.SgprUB); |
2388 | |
2389 | for (auto T : inst_counter_types(MaxCounter)) { |
2390 | // Merge event flags for this counter |
2391 | const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; |
2392 | const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; |
2393 | if (OtherEvents & ~OldEvents) |
2394 | StrictDom = true; |
2395 | PendingEvents |= OtherEvents; |
2396 | |
2397 | // Merge scores for this counter |
2398 | const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; |
2399 | const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; |
2400 | const unsigned NewUB = ScoreLBs[T] + std::max(a: MyPending, b: OtherPending); |
2401 | if (NewUB < ScoreLBs[T]) |
2402 | report_fatal_error(reason: "waitcnt score overflow" ); |
2403 | |
2404 | MergeInfo M; |
2405 | M.OldLB = ScoreLBs[T]; |
2406 | M.OtherLB = Other.ScoreLBs[T]; |
2407 | M.MyShift = NewUB - ScoreUBs[T]; |
2408 | M.OtherShift = NewUB - Other.ScoreUBs[T]; |
2409 | |
2410 | ScoreUBs[T] = NewUB; |
2411 | |
2412 | StrictDom |= mergeScore(M, Score&: LastFlat[T], OtherScore: Other.LastFlat[T]); |
2413 | |
2414 | if (T == DS_CNT) |
2415 | StrictDom |= mergeScore(M, Score&: LastGDS, OtherScore: Other.LastGDS); |
2416 | |
2417 | for (int J = 0; J <= VgprUB; J++) |
2418 | StrictDom |= mergeScore(M, Score&: VgprScores[T][J], OtherScore: Other.VgprScores[T][J]); |
2419 | |
2420 | if (isSmemCounter(T)) { |
2421 | unsigned Idx = getSgprScoresIdx(T); |
2422 | for (int J = 0; J <= SgprUB; J++) |
2423 | StrictDom |= |
2424 | mergeScore(M, Score&: SgprScores[Idx][J], OtherScore: Other.SgprScores[Idx][J]); |
2425 | } |
2426 | } |
2427 | |
2428 | for (int J = 0; J <= VgprUB; J++) { |
2429 | unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; |
2430 | StrictDom |= NewVmemTypes != VgprVmemTypes[J]; |
2431 | VgprVmemTypes[J] = NewVmemTypes; |
2432 | } |
2433 | |
2434 | return StrictDom; |
2435 | } |
2436 | |
2437 | static bool isWaitInstr(MachineInstr &Inst) { |
2438 | unsigned Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode: Inst.getOpcode()); |
2439 | return Opcode == AMDGPU::S_WAITCNT || |
2440 | (Opcode == AMDGPU::S_WAITCNT_VSCNT && Inst.getOperand(i: 0).isReg() && |
2441 | Inst.getOperand(i: 0).getReg() == AMDGPU::SGPR_NULL) || |
2442 | Opcode == AMDGPU::S_WAIT_LOADCNT_DSCNT || |
2443 | Opcode == AMDGPU::S_WAIT_STORECNT_DSCNT || |
2444 | counterTypeForInstr(Opcode).has_value(); |
2445 | } |
2446 | |
2447 | // Generate s_waitcnt instructions where needed. |
2448 | bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, |
2449 | MachineBasicBlock &Block, |
2450 | WaitcntBrackets &ScoreBrackets) { |
2451 | bool Modified = false; |
2452 | |
2453 | LLVM_DEBUG({ |
2454 | dbgs() << "*** Begin Block: " ; |
2455 | Block.printName(dbgs()); |
2456 | ScoreBrackets.dump(); |
2457 | }); |
2458 | |
2459 | // Track the correctness of vccz through this basic block. There are two |
2460 | // reasons why it might be incorrect; see ST->hasReadVCCZBug() and |
2461 | // ST->partialVCCWritesUpdateVCCZ(). |
2462 | bool VCCZCorrect = true; |
2463 | if (ST->hasReadVCCZBug()) { |
2464 | // vccz could be incorrect at a basic block boundary if a predecessor wrote |
2465 | // to vcc and then issued an smem load. |
2466 | VCCZCorrect = false; |
2467 | } else if (!ST->partialVCCWritesUpdateVCCZ()) { |
2468 | // vccz could be incorrect at a basic block boundary if a predecessor wrote |
2469 | // to vcc_lo or vcc_hi. |
2470 | VCCZCorrect = false; |
2471 | } |
2472 | |
2473 | // Walk over the instructions. |
2474 | MachineInstr *OldWaitcntInstr = nullptr; |
2475 | |
2476 | for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), |
2477 | E = Block.instr_end(); |
2478 | Iter != E;) { |
2479 | MachineInstr &Inst = *Iter; |
2480 | if (Inst.isMetaInstruction()) { |
2481 | ++Iter; |
2482 | continue; |
2483 | } |
2484 | |
2485 | // Track pre-existing waitcnts that were added in earlier iterations or by |
2486 | // the memory legalizer. |
2487 | if (isWaitInstr(Inst)) { |
2488 | if (!OldWaitcntInstr) |
2489 | OldWaitcntInstr = &Inst; |
2490 | ++Iter; |
2491 | continue; |
2492 | } |
2493 | |
2494 | bool FlushVmCnt = Block.getFirstTerminator() == Inst && |
2495 | isPreheaderToFlush(MBB&: Block, ScoreBrackets); |
2496 | |
2497 | // Generate an s_waitcnt instruction to be placed before Inst, if needed. |
2498 | Modified |= generateWaitcntInstBefore(MI&: Inst, ScoreBrackets, OldWaitcntInstr, |
2499 | FlushVmCnt); |
2500 | OldWaitcntInstr = nullptr; |
2501 | |
2502 | // Restore vccz if it's not known to be correct already. |
2503 | bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(MI: Inst); |
2504 | |
2505 | // Don't examine operands unless we need to track vccz correctness. |
2506 | if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { |
2507 | if (Inst.definesRegister(Reg: AMDGPU::VCC_LO, /*TRI=*/nullptr) || |
2508 | Inst.definesRegister(Reg: AMDGPU::VCC_HI, /*TRI=*/nullptr)) { |
2509 | // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. |
2510 | if (!ST->partialVCCWritesUpdateVCCZ()) |
2511 | VCCZCorrect = false; |
2512 | } else if (Inst.definesRegister(Reg: AMDGPU::VCC, /*TRI=*/nullptr)) { |
2513 | // There is a hardware bug on CI/SI where SMRD instruction may corrupt |
2514 | // vccz bit, so when we detect that an instruction may read from a |
2515 | // corrupt vccz bit, we need to: |
2516 | // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD |
2517 | // operations to complete. |
2518 | // 2. Restore the correct value of vccz by writing the current value |
2519 | // of vcc back to vcc. |
2520 | if (ST->hasReadVCCZBug() && |
2521 | ScoreBrackets.hasPendingEvent(E: SMEM_ACCESS)) { |
2522 | // Writes to vcc while there's an outstanding smem read may get |
2523 | // clobbered as soon as any read completes. |
2524 | VCCZCorrect = false; |
2525 | } else { |
2526 | // Writes to vcc will fix any incorrect value in vccz. |
2527 | VCCZCorrect = true; |
2528 | } |
2529 | } |
2530 | } |
2531 | |
2532 | if (TII->isSMRD(MI: Inst)) { |
2533 | for (const MachineMemOperand *Memop : Inst.memoperands()) { |
2534 | // No need to handle invariant loads when avoiding WAR conflicts, as |
2535 | // there cannot be a vector store to the same memory location. |
2536 | if (!Memop->isInvariant()) { |
2537 | const Value *Ptr = Memop->getValue(); |
2538 | SLoadAddresses.insert(KV: std::pair(Ptr, Inst.getParent())); |
2539 | } |
2540 | } |
2541 | if (ST->hasReadVCCZBug()) { |
2542 | // This smem read could complete and clobber vccz at any time. |
2543 | VCCZCorrect = false; |
2544 | } |
2545 | } |
2546 | |
2547 | updateEventWaitcntAfter(Inst, ScoreBrackets: &ScoreBrackets); |
2548 | |
2549 | Modified |= insertForcedWaitAfter(Inst, Block, ScoreBrackets); |
2550 | |
2551 | LLVM_DEBUG({ |
2552 | Inst.print(dbgs()); |
2553 | ScoreBrackets.dump(); |
2554 | }); |
2555 | |
2556 | // TODO: Remove this work-around after fixing the scheduler and enable the |
2557 | // assert above. |
2558 | if (RestoreVCCZ) { |
2559 | // Restore the vccz bit. Any time a value is written to vcc, the vcc |
2560 | // bit is updated, so we can restore the bit by reading the value of |
2561 | // vcc and then writing it back to the register. |
2562 | BuildMI(BB&: Block, I&: Inst, MIMD: Inst.getDebugLoc(), |
2563 | MCID: TII->get(Opcode: ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), |
2564 | DestReg: TRI->getVCC()) |
2565 | .addReg(RegNo: TRI->getVCC()); |
2566 | VCCZCorrect = true; |
2567 | Modified = true; |
2568 | } |
2569 | |
2570 | ++Iter; |
2571 | } |
2572 | |
2573 | // Flush the LOADcnt, SAMPLEcnt and BVHcnt counters at the end of the block if |
2574 | // needed. |
2575 | AMDGPU::Waitcnt Wait; |
2576 | if (Block.getFirstTerminator() == Block.end() && |
2577 | isPreheaderToFlush(MBB&: Block, ScoreBrackets)) { |
2578 | if (ScoreBrackets.hasPendingEvent(T: LOAD_CNT)) |
2579 | Wait.LoadCnt = 0; |
2580 | if (ScoreBrackets.hasPendingEvent(T: SAMPLE_CNT)) |
2581 | Wait.SampleCnt = 0; |
2582 | if (ScoreBrackets.hasPendingEvent(T: BVH_CNT)) |
2583 | Wait.BvhCnt = 0; |
2584 | } |
2585 | |
2586 | // Combine or remove any redundant waitcnts at the end of the block. |
2587 | Modified |= generateWaitcnt(Wait, It: Block.instr_end(), Block, ScoreBrackets, |
2588 | OldWaitcntInstr); |
2589 | |
2590 | LLVM_DEBUG({ |
2591 | dbgs() << "*** End Block: " ; |
2592 | Block.printName(dbgs()); |
2593 | ScoreBrackets.dump(); |
2594 | }); |
2595 | |
2596 | return Modified; |
2597 | } |
2598 | |
2599 | // Return true if the given machine basic block is a preheader of a loop in |
2600 | // which we want to flush the vmcnt counter, and false otherwise. |
2601 | bool SIInsertWaitcnts::( |
2602 | MachineBasicBlock &MBB, const WaitcntBrackets &ScoreBrackets) { |
2603 | auto [Iterator, IsInserted] = PreheadersToFlush.try_emplace(Key: &MBB, Args: false); |
2604 | if (!IsInserted) |
2605 | return Iterator->second; |
2606 | |
2607 | MachineBasicBlock *Succ = MBB.getSingleSuccessor(); |
2608 | if (!Succ) |
2609 | return false; |
2610 | |
2611 | MachineLoop *Loop = MLI->getLoopFor(BB: Succ); |
2612 | if (!Loop) |
2613 | return false; |
2614 | |
2615 | if (Loop->getLoopPreheader() == &MBB && |
2616 | shouldFlushVmCnt(ML: Loop, Brackets: ScoreBrackets)) { |
2617 | Iterator->second = true; |
2618 | return true; |
2619 | } |
2620 | |
2621 | return false; |
2622 | } |
2623 | |
2624 | bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const { |
2625 | if (SIInstrInfo::isFLAT(MI)) |
2626 | return mayAccessVMEMThroughFlat(MI); |
2627 | return SIInstrInfo::isVMEM(MI); |
2628 | } |
2629 | |
2630 | // Return true if it is better to flush the vmcnt counter in the preheader of |
2631 | // the given loop. We currently decide to flush in two situations: |
2632 | // 1. The loop contains vmem store(s), no vmem load and at least one use of a |
2633 | // vgpr containing a value that is loaded outside of the loop. (Only on |
2634 | // targets with no vscnt counter). |
2635 | // 2. The loop contains vmem load(s), but the loaded values are not used in the |
2636 | // loop, and at least one use of a vgpr containing a value that is loaded |
2637 | // outside of the loop. |
2638 | bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML, |
2639 | const WaitcntBrackets &Brackets) { |
2640 | bool HasVMemLoad = false; |
2641 | bool HasVMemStore = false; |
2642 | bool UsesVgprLoadedOutside = false; |
2643 | DenseSet<Register> VgprUse; |
2644 | DenseSet<Register> VgprDef; |
2645 | |
2646 | for (MachineBasicBlock *MBB : ML->blocks()) { |
2647 | for (MachineInstr &MI : *MBB) { |
2648 | if (isVMEMOrFlatVMEM(MI)) { |
2649 | if (MI.mayLoad()) |
2650 | HasVMemLoad = true; |
2651 | if (MI.mayStore()) |
2652 | HasVMemStore = true; |
2653 | } |
2654 | for (const MachineOperand &Op : MI.all_uses()) { |
2655 | if (!TRI->isVectorRegister(MRI: *MRI, Reg: Op.getReg())) |
2656 | continue; |
2657 | RegInterval Interval = Brackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
2658 | // Vgpr use |
2659 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
2660 | // If we find a register that is loaded inside the loop, 1. and 2. |
2661 | // are invalidated and we can exit. |
2662 | if (VgprDef.contains(V: RegNo)) |
2663 | return false; |
2664 | VgprUse.insert(V: RegNo); |
2665 | // If at least one of Op's registers is in the score brackets, the |
2666 | // value is likely loaded outside of the loop. |
2667 | if (Brackets.getRegScore(GprNo: RegNo, T: LOAD_CNT) > |
2668 | Brackets.getScoreLB(T: LOAD_CNT) || |
2669 | Brackets.getRegScore(GprNo: RegNo, T: SAMPLE_CNT) > |
2670 | Brackets.getScoreLB(T: SAMPLE_CNT) || |
2671 | Brackets.getRegScore(GprNo: RegNo, T: BVH_CNT) > |
2672 | Brackets.getScoreLB(T: BVH_CNT)) { |
2673 | UsesVgprLoadedOutside = true; |
2674 | break; |
2675 | } |
2676 | } |
2677 | } |
2678 | |
2679 | // VMem load vgpr def |
2680 | if (isVMEMOrFlatVMEM(MI) && MI.mayLoad()) { |
2681 | for (const MachineOperand &Op : MI.all_defs()) { |
2682 | RegInterval Interval = Brackets.getRegInterval(MI: &MI, MRI, TRI, Op); |
2683 | for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { |
2684 | // If we find a register that is loaded inside the loop, 1. and 2. |
2685 | // are invalidated and we can exit. |
2686 | if (VgprUse.contains(V: RegNo)) |
2687 | return false; |
2688 | VgprDef.insert(V: RegNo); |
2689 | } |
2690 | } |
2691 | } |
2692 | } |
2693 | } |
2694 | if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside) |
2695 | return true; |
2696 | return HasVMemLoad && UsesVgprLoadedOutside && ST->hasVmemWriteVgprInOrder(); |
2697 | } |
2698 | |
2699 | bool SIInsertWaitcntsLegacy::runOnMachineFunction(MachineFunction &MF) { |
2700 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
2701 | auto *PDT = |
2702 | &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); |
2703 | AliasAnalysis *AA = nullptr; |
2704 | if (auto *AAR = getAnalysisIfAvailable<AAResultsWrapperPass>()) |
2705 | AA = &AAR->getAAResults(); |
2706 | |
2707 | return SIInsertWaitcnts(MLI, PDT, AA).run(MF); |
2708 | } |
2709 | |
2710 | PreservedAnalyses |
2711 | SIInsertWaitcntsPass::run(MachineFunction &MF, |
2712 | MachineFunctionAnalysisManager &MFAM) { |
2713 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
2714 | auto *PDT = &MFAM.getResult<MachinePostDominatorTreeAnalysis>(IR&: MF); |
2715 | auto *AA = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: MF) |
2716 | .getManager() |
2717 | .getCachedResult<AAManager>(IR&: MF.getFunction()); |
2718 | |
2719 | if (!SIInsertWaitcnts(MLI, PDT, AA).run(MF)) |
2720 | return PreservedAnalyses::all(); |
2721 | |
2722 | return getMachineFunctionPassPreservedAnalyses() |
2723 | .preserveSet<CFGAnalyses>() |
2724 | .preserve<AAManager>(); |
2725 | } |
2726 | |
2727 | bool SIInsertWaitcnts::run(MachineFunction &MF) { |
2728 | ST = &MF.getSubtarget<GCNSubtarget>(); |
2729 | TII = ST->getInstrInfo(); |
2730 | TRI = &TII->getRegisterInfo(); |
2731 | MRI = &MF.getRegInfo(); |
2732 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
2733 | |
2734 | AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(GPU: ST->getCPU()); |
2735 | |
2736 | if (ST->hasExtendedWaitCounts()) { |
2737 | MaxCounter = NUM_EXTENDED_INST_CNTS; |
2738 | WCGGFX12Plus = WaitcntGeneratorGFX12Plus(MF, MaxCounter); |
2739 | WCG = &WCGGFX12Plus; |
2740 | } else { |
2741 | MaxCounter = NUM_NORMAL_INST_CNTS; |
2742 | WCGPreGFX12 = WaitcntGeneratorPreGFX12(MF); |
2743 | WCG = &WCGPreGFX12; |
2744 | } |
2745 | |
2746 | for (auto T : inst_counter_types()) |
2747 | ForceEmitWaitcnt[T] = false; |
2748 | |
2749 | const unsigned *WaitEventMaskForInst = WCG->getWaitEventMask(); |
2750 | |
2751 | SmemAccessCounter = eventCounter(masks: WaitEventMaskForInst, E: SMEM_ACCESS); |
2752 | |
2753 | HardwareLimits Limits = {}; |
2754 | if (ST->hasExtendedWaitCounts()) { |
2755 | Limits.LoadcntMax = AMDGPU::getLoadcntBitMask(Version: IV); |
2756 | Limits.DscntMax = AMDGPU::getDscntBitMask(Version: IV); |
2757 | } else { |
2758 | Limits.LoadcntMax = AMDGPU::getVmcntBitMask(Version: IV); |
2759 | Limits.DscntMax = AMDGPU::getLgkmcntBitMask(Version: IV); |
2760 | } |
2761 | Limits.ExpcntMax = AMDGPU::getExpcntBitMask(Version: IV); |
2762 | Limits.StorecntMax = AMDGPU::getStorecntBitMask(Version: IV); |
2763 | Limits.SamplecntMax = AMDGPU::getSamplecntBitMask(Version: IV); |
2764 | Limits.BvhcntMax = AMDGPU::getBvhcntBitMask(Version: IV); |
2765 | Limits.KmcntMax = AMDGPU::getKmcntBitMask(Version: IV); |
2766 | Limits.XcntMax = AMDGPU::getXcntBitMask(Version: IV); |
2767 | |
2768 | [[maybe_unused]] unsigned NumVGPRsMax = |
2769 | ST->getAddressableNumVGPRs(DynamicVGPRBlockSize: MFI->getDynamicVGPRBlockSize()); |
2770 | [[maybe_unused]] unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); |
2771 | assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); |
2772 | assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); |
2773 | |
2774 | BlockInfos.clear(); |
2775 | bool Modified = false; |
2776 | |
2777 | MachineBasicBlock &EntryBB = MF.front(); |
2778 | MachineBasicBlock::iterator I = EntryBB.begin(); |
2779 | |
2780 | if (!MFI->isEntryFunction()) { |
2781 | // Wait for any outstanding memory operations that the input registers may |
2782 | // depend on. We can't track them and it's better to do the wait after the |
2783 | // costly call sequence. |
2784 | |
2785 | // TODO: Could insert earlier and schedule more liberally with operations |
2786 | // that only use caller preserved registers. |
2787 | for (MachineBasicBlock::iterator E = EntryBB.end(); |
2788 | I != E && (I->isPHI() || I->isMetaInstruction()); ++I) |
2789 | ; |
2790 | |
2791 | if (ST->hasExtendedWaitCounts()) { |
2792 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_WAIT_LOADCNT_DSCNT)) |
2793 | .addImm(Val: 0); |
2794 | for (auto CT : inst_counter_types(MaxCounter: NUM_EXTENDED_INST_CNTS)) { |
2795 | if (CT == LOAD_CNT || CT == DS_CNT || CT == STORE_CNT || CT == X_CNT) |
2796 | continue; |
2797 | |
2798 | if (!ST->hasImageInsts() && |
2799 | (CT == EXP_CNT || CT == SAMPLE_CNT || CT == BVH_CNT)) |
2800 | continue; |
2801 | |
2802 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), |
2803 | MCID: TII->get(Opcode: instrsForExtendedCounterTypes[CT])) |
2804 | .addImm(Val: 0); |
2805 | } |
2806 | } else { |
2807 | BuildMI(BB&: EntryBB, I, MIMD: DebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_WAITCNT)).addImm(Val: 0); |
2808 | } |
2809 | |
2810 | auto NonKernelInitialState = std::make_unique<WaitcntBrackets>( |
2811 | args&: ST, args&: MaxCounter, args&: Limits, args&: WaitEventMaskForInst, args&: SmemAccessCounter); |
2812 | NonKernelInitialState->setStateOnFunctionEntryOrReturn(); |
2813 | BlockInfos[&EntryBB].Incoming = std::move(NonKernelInitialState); |
2814 | |
2815 | Modified = true; |
2816 | } |
2817 | |
2818 | // Keep iterating over the blocks in reverse post order, inserting and |
2819 | // updating s_waitcnt where needed, until a fix point is reached. |
2820 | for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) |
2821 | BlockInfos.try_emplace(Key: MBB); |
2822 | |
2823 | std::unique_ptr<WaitcntBrackets> Brackets; |
2824 | bool Repeat; |
2825 | do { |
2826 | Repeat = false; |
2827 | |
2828 | for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; |
2829 | ++BII) { |
2830 | MachineBasicBlock *MBB = BII->first; |
2831 | BlockInfo &BI = BII->second; |
2832 | if (!BI.Dirty) |
2833 | continue; |
2834 | |
2835 | if (BI.Incoming) { |
2836 | if (!Brackets) |
2837 | Brackets = std::make_unique<WaitcntBrackets>(args&: *BI.Incoming); |
2838 | else |
2839 | *Brackets = *BI.Incoming; |
2840 | } else { |
2841 | if (!Brackets) { |
2842 | Brackets = std::make_unique<WaitcntBrackets>( |
2843 | args&: ST, args&: MaxCounter, args&: Limits, args&: WaitEventMaskForInst, args&: SmemAccessCounter); |
2844 | } else { |
2845 | // Reinitialize in-place. N.B. do not do this by assigning from a |
2846 | // temporary because the WaitcntBrackets class is large and it could |
2847 | // cause this function to use an unreasonable amount of stack space. |
2848 | Brackets->~WaitcntBrackets(); |
2849 | new (Brackets.get()) WaitcntBrackets( |
2850 | ST, MaxCounter, Limits, WaitEventMaskForInst, SmemAccessCounter); |
2851 | } |
2852 | } |
2853 | |
2854 | Modified |= insertWaitcntInBlock(MF, Block&: *MBB, ScoreBrackets&: *Brackets); |
2855 | BI.Dirty = false; |
2856 | |
2857 | if (Brackets->hasPendingEvent()) { |
2858 | BlockInfo *MoveBracketsToSucc = nullptr; |
2859 | for (MachineBasicBlock *Succ : MBB->successors()) { |
2860 | auto *SuccBII = BlockInfos.find(Key: Succ); |
2861 | BlockInfo &SuccBI = SuccBII->second; |
2862 | if (!SuccBI.Incoming) { |
2863 | SuccBI.Dirty = true; |
2864 | if (SuccBII <= BII) { |
2865 | LLVM_DEBUG(dbgs() << "repeat on backedge\n" ); |
2866 | Repeat = true; |
2867 | } |
2868 | if (!MoveBracketsToSucc) { |
2869 | MoveBracketsToSucc = &SuccBI; |
2870 | } else { |
2871 | SuccBI.Incoming = std::make_unique<WaitcntBrackets>(args&: *Brackets); |
2872 | } |
2873 | } else if (SuccBI.Incoming->merge(Other: *Brackets)) { |
2874 | SuccBI.Dirty = true; |
2875 | if (SuccBII <= BII) { |
2876 | LLVM_DEBUG(dbgs() << "repeat on backedge\n" ); |
2877 | Repeat = true; |
2878 | } |
2879 | } |
2880 | } |
2881 | if (MoveBracketsToSucc) |
2882 | MoveBracketsToSucc->Incoming = std::move(Brackets); |
2883 | } |
2884 | } |
2885 | } while (Repeat); |
2886 | |
2887 | if (ST->hasScalarStores()) { |
2888 | SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; |
2889 | bool HaveScalarStores = false; |
2890 | |
2891 | for (MachineBasicBlock &MBB : MF) { |
2892 | for (MachineInstr &MI : MBB) { |
2893 | if (!HaveScalarStores && TII->isScalarStore(MI)) |
2894 | HaveScalarStores = true; |
2895 | |
2896 | if (MI.getOpcode() == AMDGPU::S_ENDPGM || |
2897 | MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) |
2898 | EndPgmBlocks.push_back(Elt: &MBB); |
2899 | } |
2900 | } |
2901 | |
2902 | if (HaveScalarStores) { |
2903 | // If scalar writes are used, the cache must be flushed or else the next |
2904 | // wave to reuse the same scratch memory can be clobbered. |
2905 | // |
2906 | // Insert s_dcache_wb at wave termination points if there were any scalar |
2907 | // stores, and only if the cache hasn't already been flushed. This could |
2908 | // be improved by looking across blocks for flushes in postdominating |
2909 | // blocks from the stores but an explicitly requested flush is probably |
2910 | // very rare. |
2911 | for (MachineBasicBlock *MBB : EndPgmBlocks) { |
2912 | bool SeenDCacheWB = false; |
2913 | |
2914 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
2915 | I != E; ++I) { |
2916 | if (I->getOpcode() == AMDGPU::S_DCACHE_WB) |
2917 | SeenDCacheWB = true; |
2918 | else if (TII->isScalarStore(MI: *I)) |
2919 | SeenDCacheWB = false; |
2920 | |
2921 | // FIXME: It would be better to insert this before a waitcnt if any. |
2922 | if ((I->getOpcode() == AMDGPU::S_ENDPGM || |
2923 | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && |
2924 | !SeenDCacheWB) { |
2925 | Modified = true; |
2926 | BuildMI(BB&: *MBB, I, MIMD: I->getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::S_DCACHE_WB)); |
2927 | } |
2928 | } |
2929 | } |
2930 | } |
2931 | } |
2932 | |
2933 | // Deallocate the VGPRs before previously identified S_ENDPGM instructions. |
2934 | // This is done in different ways depending on how the VGPRs were allocated |
2935 | // (i.e. whether we're in dynamic VGPR mode or not). |
2936 | // Skip deallocation if kernel is waveslot limited vs VGPR limited. A short |
2937 | // waveslot limited kernel runs slower with the deallocation. |
2938 | if (MFI->isDynamicVGPREnabled()) { |
2939 | for (MachineInstr *MI : ReleaseVGPRInsts) { |
2940 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
2941 | MCID: TII->get(Opcode: AMDGPU::S_ALLOC_VGPR)) |
2942 | .addImm(Val: 0); |
2943 | Modified = true; |
2944 | } |
2945 | } else { |
2946 | if (!ReleaseVGPRInsts.empty() && |
2947 | (MF.getFrameInfo().hasCalls() || |
2948 | ST->getOccupancyWithNumVGPRs( |
2949 | VGPRs: TRI->getNumUsedPhysRegs(MRI: *MRI, RC: AMDGPU::VGPR_32RegClass), |
2950 | /*IsDynamicVGPR=*/DynamicVGPRBlockSize: false) < |
2951 | AMDGPU::IsaInfo::getMaxWavesPerEU(STI: ST))) { |
2952 | for (MachineInstr *MI : ReleaseVGPRInsts) { |
2953 | if (ST->requiresNopBeforeDeallocVGPRs()) { |
2954 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
2955 | MCID: TII->get(Opcode: AMDGPU::S_NOP)) |
2956 | .addImm(Val: 0); |
2957 | } |
2958 | BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
2959 | MCID: TII->get(Opcode: AMDGPU::S_SENDMSG)) |
2960 | .addImm(Val: AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus); |
2961 | Modified = true; |
2962 | } |
2963 | } |
2964 | } |
2965 | ReleaseVGPRInsts.clear(); |
2966 | PreheadersToFlush.clear(); |
2967 | SLoadAddresses.clear(); |
2968 | |
2969 | return Modified; |
2970 | } |
2971 | |