1 | //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains a printer that converts from our internal representation |
10 | // of machine-dependent LLVM code to GAS-format ARM assembly language. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "ARMAsmPrinter.h" |
15 | #include "ARM.h" |
16 | #include "ARMConstantPoolValue.h" |
17 | #include "ARMMachineFunctionInfo.h" |
18 | #include "ARMTargetMachine.h" |
19 | #include "ARMTargetObjectFile.h" |
20 | #include "MCTargetDesc/ARMInstPrinter.h" |
21 | #include "MCTargetDesc/ARMMCAsmInfo.h" |
22 | #include "TargetInfo/ARMTargetInfo.h" |
23 | #include "llvm/ADT/SmallString.h" |
24 | #include "llvm/BinaryFormat/COFF.h" |
25 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
26 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
27 | #include "llvm/IR/Constants.h" |
28 | #include "llvm/IR/DataLayout.h" |
29 | #include "llvm/IR/Mangler.h" |
30 | #include "llvm/IR/Module.h" |
31 | #include "llvm/IR/Type.h" |
32 | #include "llvm/MC/MCAsmInfo.h" |
33 | #include "llvm/MC/MCAssembler.h" |
34 | #include "llvm/MC/MCContext.h" |
35 | #include "llvm/MC/MCELFStreamer.h" |
36 | #include "llvm/MC/MCInst.h" |
37 | #include "llvm/MC/MCInstBuilder.h" |
38 | #include "llvm/MC/MCObjectStreamer.h" |
39 | #include "llvm/MC/MCStreamer.h" |
40 | #include "llvm/MC/MCSymbol.h" |
41 | #include "llvm/MC/TargetRegistry.h" |
42 | #include "llvm/Support/ARMBuildAttributes.h" |
43 | #include "llvm/Support/Compiler.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/Support/raw_ostream.h" |
47 | #include "llvm/Target/TargetMachine.h" |
48 | using namespace llvm; |
49 | |
50 | #define DEBUG_TYPE "asm-printer" |
51 | |
52 | ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, |
53 | std::unique_ptr<MCStreamer> Streamer) |
54 | : AsmPrinter(TM, std::move(Streamer), ID), Subtarget(nullptr), AFI(nullptr), |
55 | MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} |
56 | |
57 | const ARMBaseTargetMachine &ARMAsmPrinter::getTM() const { |
58 | return static_cast<const ARMBaseTargetMachine &>(TM); |
59 | } |
60 | |
61 | void ARMAsmPrinter::emitFunctionBodyEnd() { |
62 | // Make sure to terminate any constant pools that were at the end |
63 | // of the function. |
64 | if (!InConstantPool) |
65 | return; |
66 | InConstantPool = false; |
67 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
68 | } |
69 | |
70 | void ARMAsmPrinter::emitFunctionEntryLabel() { |
71 | auto &TS = |
72 | static_cast<ARMTargetStreamer &>(*OutStreamer->getTargetStreamer()); |
73 | if (AFI->isThumbFunction()) { |
74 | TS.emitCode16(); |
75 | TS.emitThumbFunc(Symbol: CurrentFnSym); |
76 | } else { |
77 | TS.emitCode32(); |
78 | } |
79 | |
80 | // Emit symbol for CMSE non-secure entry point |
81 | if (AFI->isCmseNSEntryFunction()) { |
82 | MCSymbol *S = |
83 | OutContext.getOrCreateSymbol(Name: "__acle_se_" + CurrentFnSym->getName()); |
84 | emitLinkage(GV: &MF->getFunction(), GVSym: S); |
85 | OutStreamer->emitSymbolAttribute(Symbol: S, Attribute: MCSA_ELF_TypeFunction); |
86 | OutStreamer->emitLabel(Symbol: S); |
87 | } |
88 | AsmPrinter::emitFunctionEntryLabel(); |
89 | } |
90 | |
91 | void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { |
92 | uint64_t Size = getDataLayout().getTypeAllocSize(Ty: CV->getType()); |
93 | assert(Size && "C++ constructor pointer had zero size!" ); |
94 | |
95 | const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CV->stripPointerCasts()); |
96 | assert(GV && "C++ constructor pointer was not a GlobalValue!" ); |
97 | |
98 | const MCExpr *E = MCSymbolRefExpr::create( |
99 | Symbol: GetARMGVSymbol(GV, TargetFlags: ARMII::MO_NO_FLAG), |
100 | specifier: (Subtarget->isTargetELF() ? ARM::S_TARGET1 : ARM::S_None), Ctx&: OutContext); |
101 | |
102 | OutStreamer->emitValue(Value: E, Size); |
103 | } |
104 | |
105 | void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { |
106 | if (PromotedGlobals.count(Ptr: GV)) |
107 | // The global was promoted into a constant pool. It should not be emitted. |
108 | return; |
109 | AsmPrinter::emitGlobalVariable(GV); |
110 | } |
111 | |
112 | /// runOnMachineFunction - This uses the emitInstruction() |
113 | /// method to print assembly for each instruction. |
114 | /// |
115 | bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
116 | AFI = MF.getInfo<ARMFunctionInfo>(); |
117 | MCP = MF.getConstantPool(); |
118 | Subtarget = &MF.getSubtarget<ARMSubtarget>(); |
119 | |
120 | SetupMachineFunction(MF); |
121 | const Function &F = MF.getFunction(); |
122 | const TargetMachine& TM = MF.getTarget(); |
123 | |
124 | // Collect all globals that had their storage promoted to a constant pool. |
125 | // Functions are emitted before variables, so this accumulates promoted |
126 | // globals from all functions in PromotedGlobals. |
127 | PromotedGlobals.insert_range(R&: AFI->getGlobalsPromotedToConstantPool()); |
128 | |
129 | // Calculate this function's optimization goal. |
130 | unsigned OptimizationGoal; |
131 | if (F.hasOptNone()) |
132 | // For best debugging illusion, speed and small size sacrificed |
133 | OptimizationGoal = 6; |
134 | else if (F.hasMinSize()) |
135 | // Aggressively for small size, speed and debug illusion sacrificed |
136 | OptimizationGoal = 4; |
137 | else if (F.hasOptSize()) |
138 | // For small size, but speed and debugging illusion preserved |
139 | OptimizationGoal = 3; |
140 | else if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) |
141 | // Aggressively for speed, small size and debug illusion sacrificed |
142 | OptimizationGoal = 2; |
143 | else if (TM.getOptLevel() > CodeGenOptLevel::None) |
144 | // For speed, but small size and good debug illusion preserved |
145 | OptimizationGoal = 1; |
146 | else // TM.getOptLevel() == CodeGenOptLevel::None |
147 | // For good debugging, but speed and small size preserved |
148 | OptimizationGoal = 5; |
149 | |
150 | // Combine a new optimization goal with existing ones. |
151 | if (OptimizationGoals == -1) // uninitialized goals |
152 | OptimizationGoals = OptimizationGoal; |
153 | else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals |
154 | OptimizationGoals = 0; |
155 | |
156 | if (Subtarget->isTargetCOFF()) { |
157 | bool Local = F.hasLocalLinkage(); |
158 | COFF::SymbolStorageClass Scl = |
159 | Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL; |
160 | int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; |
161 | |
162 | OutStreamer->beginCOFFSymbolDef(Symbol: CurrentFnSym); |
163 | OutStreamer->emitCOFFSymbolStorageClass(StorageClass: Scl); |
164 | OutStreamer->emitCOFFSymbolType(Type); |
165 | OutStreamer->endCOFFSymbolDef(); |
166 | } |
167 | |
168 | // Emit the rest of the function body. |
169 | emitFunctionBody(); |
170 | |
171 | // Emit the XRay table for this function. |
172 | emitXRayTable(); |
173 | |
174 | // If we need V4T thumb mode Register Indirect Jump pads, emit them. |
175 | // These are created per function, rather than per TU, since it's |
176 | // relatively easy to exceed the thumb branch range within a TU. |
177 | if (! ThumbIndirectPads.empty()) { |
178 | auto &TS = |
179 | static_cast<ARMTargetStreamer &>(*OutStreamer->getTargetStreamer()); |
180 | TS.emitCode16(); |
181 | emitAlignment(Alignment: Align(2)); |
182 | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { |
183 | OutStreamer->emitLabel(Symbol: TIP.second); |
184 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBX) |
185 | .addReg(Reg: TIP.first) |
186 | // Add predicate operands. |
187 | .addImm(Val: ARMCC::AL) |
188 | .addReg(Reg: 0)); |
189 | } |
190 | ThumbIndirectPads.clear(); |
191 | } |
192 | |
193 | // We didn't modify anything. |
194 | return false; |
195 | } |
196 | |
197 | void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, |
198 | raw_ostream &O) { |
199 | assert(MO.isGlobal() && "caller should check MO.isGlobal" ); |
200 | unsigned TF = MO.getTargetFlags(); |
201 | if (TF & ARMII::MO_LO16) |
202 | O << ":lower16:" ; |
203 | else if (TF & ARMII::MO_HI16) |
204 | O << ":upper16:" ; |
205 | else if (TF & ARMII::MO_LO_0_7) |
206 | O << ":lower0_7:" ; |
207 | else if (TF & ARMII::MO_LO_8_15) |
208 | O << ":lower8_15:" ; |
209 | else if (TF & ARMII::MO_HI_0_7) |
210 | O << ":upper0_7:" ; |
211 | else if (TF & ARMII::MO_HI_8_15) |
212 | O << ":upper8_15:" ; |
213 | |
214 | GetARMGVSymbol(GV: MO.getGlobal(), TargetFlags: TF)->print(OS&: O, MAI); |
215 | printOffset(Offset: MO.getOffset(), OS&: O); |
216 | } |
217 | |
218 | void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, |
219 | raw_ostream &O) { |
220 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
221 | |
222 | switch (MO.getType()) { |
223 | default: llvm_unreachable("<unknown operand type>" ); |
224 | case MachineOperand::MO_Register: { |
225 | Register Reg = MO.getReg(); |
226 | assert(Reg.isPhysical()); |
227 | assert(!MO.getSubReg() && "Subregs should be eliminated!" ); |
228 | if(ARM::GPRPairRegClass.contains(Reg)) { |
229 | const MachineFunction &MF = *MI->getParent()->getParent(); |
230 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
231 | Reg = TRI->getSubReg(Reg, Idx: ARM::gsub_0); |
232 | } |
233 | O << ARMInstPrinter::getRegisterName(Reg); |
234 | break; |
235 | } |
236 | case MachineOperand::MO_Immediate: { |
237 | O << '#'; |
238 | unsigned TF = MO.getTargetFlags(); |
239 | if (TF == ARMII::MO_LO16) |
240 | O << ":lower16:" ; |
241 | else if (TF == ARMII::MO_HI16) |
242 | O << ":upper16:" ; |
243 | else if (TF == ARMII::MO_LO_0_7) |
244 | O << ":lower0_7:" ; |
245 | else if (TF == ARMII::MO_LO_8_15) |
246 | O << ":lower8_15:" ; |
247 | else if (TF == ARMII::MO_HI_0_7) |
248 | O << ":upper0_7:" ; |
249 | else if (TF == ARMII::MO_HI_8_15) |
250 | O << ":upper8_15:" ; |
251 | O << MO.getImm(); |
252 | break; |
253 | } |
254 | case MachineOperand::MO_MachineBasicBlock: |
255 | MO.getMBB()->getSymbol()->print(OS&: O, MAI); |
256 | return; |
257 | case MachineOperand::MO_GlobalAddress: { |
258 | PrintSymbolOperand(MO, O); |
259 | break; |
260 | } |
261 | case MachineOperand::MO_ConstantPoolIndex: |
262 | if (Subtarget->genExecuteOnly()) |
263 | llvm_unreachable("execute-only should not generate constant pools" ); |
264 | GetCPISymbol(CPID: MO.getIndex())->print(OS&: O, MAI); |
265 | break; |
266 | } |
267 | } |
268 | |
269 | MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { |
270 | // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as |
271 | // indexes in MachineConstantPool, which isn't in sync with indexes used here. |
272 | const DataLayout &DL = getDataLayout(); |
273 | return OutContext.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) + |
274 | "CPI" + Twine(getFunctionNumber()) + "_" + |
275 | Twine(CPID)); |
276 | } |
277 | |
278 | //===--------------------------------------------------------------------===// |
279 | |
280 | MCSymbol *ARMAsmPrinter:: |
281 | GetARMJTIPICJumpTableLabel(unsigned uid) const { |
282 | const DataLayout &DL = getDataLayout(); |
283 | SmallString<60> Name; |
284 | raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" |
285 | << getFunctionNumber() << '_' << uid; |
286 | return OutContext.getOrCreateSymbol(Name); |
287 | } |
288 | |
289 | bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, |
290 | const char *, raw_ostream &O) { |
291 | // Does this asm operand have a single letter operand modifier? |
292 | if (ExtraCode && ExtraCode[0]) { |
293 | if (ExtraCode[1] != 0) return true; // Unknown modifier. |
294 | |
295 | switch (ExtraCode[0]) { |
296 | default: |
297 | // See if this is a generic print operand |
298 | return AsmPrinter::PrintAsmOperand(MI, OpNo: OpNum, ExtraCode, OS&: O); |
299 | case 'P': // Print a VFP double precision register. |
300 | case 'q': // Print a NEON quad precision register. |
301 | printOperand(MI, OpNum, O); |
302 | return false; |
303 | case 'y': // Print a VFP single precision register as indexed double. |
304 | if (MI->getOperand(i: OpNum).isReg()) { |
305 | MCRegister Reg = MI->getOperand(i: OpNum).getReg().asMCReg(); |
306 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
307 | // Find the 'd' register that has this 's' register as a sub-register, |
308 | // and determine the lane number. |
309 | for (MCPhysReg SR : TRI->superregs(Reg)) { |
310 | if (!ARM::DPRRegClass.contains(Reg: SR)) |
311 | continue; |
312 | bool Lane0 = TRI->getSubReg(Reg: SR, Idx: ARM::ssub_0) == Reg; |
313 | O << ARMInstPrinter::getRegisterName(Reg: SR) << (Lane0 ? "[0]" : "[1]" ); |
314 | return false; |
315 | } |
316 | } |
317 | return true; |
318 | case 'B': // Bitwise inverse of integer or symbol without a preceding #. |
319 | if (!MI->getOperand(i: OpNum).isImm()) |
320 | return true; |
321 | O << ~(MI->getOperand(i: OpNum).getImm()); |
322 | return false; |
323 | case 'L': // The low 16 bits of an immediate constant. |
324 | if (!MI->getOperand(i: OpNum).isImm()) |
325 | return true; |
326 | O << (MI->getOperand(i: OpNum).getImm() & 0xffff); |
327 | return false; |
328 | case 'M': { // A register range suitable for LDM/STM. |
329 | if (!MI->getOperand(i: OpNum).isReg()) |
330 | return true; |
331 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
332 | Register RegBegin = MO.getReg(); |
333 | // This takes advantage of the 2 operand-ness of ldm/stm and that we've |
334 | // already got the operands in registers that are operands to the |
335 | // inline asm statement. |
336 | O << "{" ; |
337 | if (ARM::GPRPairRegClass.contains(Reg: RegBegin)) { |
338 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
339 | Register Reg0 = TRI->getSubReg(Reg: RegBegin, Idx: ARM::gsub_0); |
340 | O << ARMInstPrinter::getRegisterName(Reg: Reg0) << ", " ; |
341 | RegBegin = TRI->getSubReg(Reg: RegBegin, Idx: ARM::gsub_1); |
342 | } |
343 | O << ARMInstPrinter::getRegisterName(Reg: RegBegin); |
344 | |
345 | // FIXME: The register allocator not only may not have given us the |
346 | // registers in sequence, but may not be in ascending registers. This |
347 | // will require changes in the register allocator that'll need to be |
348 | // propagated down here if the operands change. |
349 | unsigned RegOps = OpNum + 1; |
350 | while (MI->getOperand(i: RegOps).isReg()) { |
351 | O << ", " |
352 | << ARMInstPrinter::getRegisterName(Reg: MI->getOperand(i: RegOps).getReg()); |
353 | RegOps++; |
354 | } |
355 | |
356 | O << "}" ; |
357 | |
358 | return false; |
359 | } |
360 | case 'R': // The most significant register of a pair. |
361 | case 'Q': { // The least significant register of a pair. |
362 | if (OpNum == 0) |
363 | return true; |
364 | const MachineOperand &FlagsOP = MI->getOperand(i: OpNum - 1); |
365 | if (!FlagsOP.isImm()) |
366 | return true; |
367 | InlineAsm::Flag F(FlagsOP.getImm()); |
368 | |
369 | // This operand may not be the one that actually provides the register. If |
370 | // it's tied to a previous one then we should refer instead to that one |
371 | // for registers and their classes. |
372 | unsigned TiedIdx; |
373 | if (F.isUseOperandTiedToDef(Idx&: TiedIdx)) { |
374 | for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { |
375 | unsigned OpFlags = MI->getOperand(i: OpNum).getImm(); |
376 | const InlineAsm::Flag F(OpFlags); |
377 | OpNum += F.getNumOperandRegisters() + 1; |
378 | } |
379 | F = InlineAsm::Flag(MI->getOperand(i: OpNum).getImm()); |
380 | |
381 | // Later code expects OpNum to be pointing at the register rather than |
382 | // the flags. |
383 | OpNum += 1; |
384 | } |
385 | |
386 | const unsigned NumVals = F.getNumOperandRegisters(); |
387 | unsigned RC; |
388 | bool FirstHalf; |
389 | const ARMBaseTargetMachine &ATM = |
390 | static_cast<const ARMBaseTargetMachine &>(TM); |
391 | |
392 | // 'Q' should correspond to the low order register and 'R' to the high |
393 | // order register. Whether this corresponds to the upper or lower half |
394 | // depends on the endianess mode. |
395 | if (ExtraCode[0] == 'Q') |
396 | FirstHalf = ATM.isLittleEndian(); |
397 | else |
398 | // ExtraCode[0] == 'R'. |
399 | FirstHalf = !ATM.isLittleEndian(); |
400 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
401 | if (F.hasRegClassConstraint(RC) && |
402 | ARM::GPRPairRegClass.hasSubClassEq(RC: TRI->getRegClass(i: RC))) { |
403 | if (NumVals != 1) |
404 | return true; |
405 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
406 | if (!MO.isReg()) |
407 | return true; |
408 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
409 | Register Reg = |
410 | TRI->getSubReg(Reg: MO.getReg(), Idx: FirstHalf ? ARM::gsub_0 : ARM::gsub_1); |
411 | O << ARMInstPrinter::getRegisterName(Reg); |
412 | return false; |
413 | } |
414 | if (NumVals != 2) |
415 | return true; |
416 | unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; |
417 | if (RegOp >= MI->getNumOperands()) |
418 | return true; |
419 | const MachineOperand &MO = MI->getOperand(i: RegOp); |
420 | if (!MO.isReg()) |
421 | return true; |
422 | Register Reg = MO.getReg(); |
423 | O << ARMInstPrinter::getRegisterName(Reg); |
424 | return false; |
425 | } |
426 | |
427 | case 'e': // The low doubleword register of a NEON quad register. |
428 | case 'f': { // The high doubleword register of a NEON quad register. |
429 | if (!MI->getOperand(i: OpNum).isReg()) |
430 | return true; |
431 | Register Reg = MI->getOperand(i: OpNum).getReg(); |
432 | if (!ARM::QPRRegClass.contains(Reg)) |
433 | return true; |
434 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
435 | Register SubReg = |
436 | TRI->getSubReg(Reg, Idx: ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); |
437 | O << ARMInstPrinter::getRegisterName(Reg: SubReg); |
438 | return false; |
439 | } |
440 | |
441 | // This modifier is not yet supported. |
442 | case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. |
443 | return true; |
444 | case 'H': { // The highest-numbered register of a pair. |
445 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
446 | if (!MO.isReg()) |
447 | return true; |
448 | const MachineFunction &MF = *MI->getParent()->getParent(); |
449 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
450 | Register Reg = MO.getReg(); |
451 | if(!ARM::GPRPairRegClass.contains(Reg)) |
452 | return false; |
453 | Reg = TRI->getSubReg(Reg, Idx: ARM::gsub_1); |
454 | O << ARMInstPrinter::getRegisterName(Reg); |
455 | return false; |
456 | } |
457 | } |
458 | } |
459 | |
460 | printOperand(MI, OpNum, O); |
461 | return false; |
462 | } |
463 | |
464 | bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
465 | unsigned OpNum, const char *, |
466 | raw_ostream &O) { |
467 | // Does this asm operand have a single letter operand modifier? |
468 | if (ExtraCode && ExtraCode[0]) { |
469 | if (ExtraCode[1] != 0) return true; // Unknown modifier. |
470 | |
471 | switch (ExtraCode[0]) { |
472 | case 'A': // A memory operand for a VLD1/VST1 instruction. |
473 | default: return true; // Unknown modifier. |
474 | case 'm': // The base register of a memory operand. |
475 | if (!MI->getOperand(i: OpNum).isReg()) |
476 | return true; |
477 | O << ARMInstPrinter::getRegisterName(Reg: MI->getOperand(i: OpNum).getReg()); |
478 | return false; |
479 | } |
480 | } |
481 | |
482 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
483 | assert(MO.isReg() && "unexpected inline asm memory operand" ); |
484 | O << "[" << ARMInstPrinter::getRegisterName(Reg: MO.getReg()) << "]" ; |
485 | return false; |
486 | } |
487 | |
488 | static bool isThumb(const MCSubtargetInfo& STI) { |
489 | return STI.hasFeature(Feature: ARM::ModeThumb); |
490 | } |
491 | |
492 | void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, |
493 | const MCSubtargetInfo *EndInfo) const { |
494 | // If either end mode is unknown (EndInfo == NULL) or different than |
495 | // the start mode, then restore the start mode. |
496 | const bool WasThumb = isThumb(STI: StartInfo); |
497 | if (!EndInfo || WasThumb != isThumb(STI: *EndInfo)) { |
498 | auto &TS = |
499 | static_cast<ARMTargetStreamer &>(*OutStreamer->getTargetStreamer()); |
500 | if (WasThumb) |
501 | TS.emitCode16(); |
502 | else |
503 | TS.emitCode32(); |
504 | } |
505 | } |
506 | |
507 | void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { |
508 | const Triple &TT = TM.getTargetTriple(); |
509 | auto &TS = |
510 | static_cast<ARMTargetStreamer &>(*OutStreamer->getTargetStreamer()); |
511 | // Use unified assembler syntax. |
512 | TS.emitSyntaxUnified(); |
513 | |
514 | // Emit ARM Build Attributes |
515 | if (TT.isOSBinFormatELF()) |
516 | emitAttributes(); |
517 | |
518 | // Use the triple's architecture and subarchitecture to determine |
519 | // if we're thumb for the purposes of the top level code16 state. |
520 | if (!M.getModuleInlineAsm().empty() && TT.isThumb()) |
521 | TS.emitCode16(); |
522 | } |
523 | |
524 | static void |
525 | emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, |
526 | MachineModuleInfoImpl::StubValueTy &MCSym) { |
527 | // L_foo$stub: |
528 | OutStreamer.emitLabel(Symbol: StubLabel); |
529 | // .indirect_symbol _foo |
530 | OutStreamer.emitSymbolAttribute(Symbol: MCSym.getPointer(), Attribute: MCSA_IndirectSymbol); |
531 | |
532 | if (MCSym.getInt()) |
533 | // External to current translation unit. |
534 | OutStreamer.emitIntValue(Value: 0, Size: 4/*size*/); |
535 | else |
536 | // Internal to current translation unit. |
537 | // |
538 | // When we place the LSDA into the TEXT section, the type info |
539 | // pointers need to be indirect and pc-rel. We accomplish this by |
540 | // using NLPs; however, sometimes the types are local to the file. |
541 | // We need to fill in the value for the NLP in those cases. |
542 | OutStreamer.emitValue( |
543 | Value: MCSymbolRefExpr::create(Symbol: MCSym.getPointer(), Ctx&: OutStreamer.getContext()), |
544 | Size: 4 /*size*/); |
545 | } |
546 | |
547 | |
548 | void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { |
549 | const Triple &TT = TM.getTargetTriple(); |
550 | if (TT.isOSBinFormatMachO()) { |
551 | // All darwin targets use mach-o. |
552 | const TargetLoweringObjectFileMachO &TLOFMacho = |
553 | static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); |
554 | MachineModuleInfoMachO &MMIMacho = |
555 | MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
556 | |
557 | // Output non-lazy-pointers for external and common global variables. |
558 | MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); |
559 | |
560 | if (!Stubs.empty()) { |
561 | // Switch with ".non_lazy_symbol_pointer" directive. |
562 | OutStreamer->switchSection(Section: TLOFMacho.getNonLazySymbolPointerSection()); |
563 | emitAlignment(Alignment: Align(4)); |
564 | |
565 | for (auto &Stub : Stubs) |
566 | emitNonLazySymbolPointer(OutStreamer&: *OutStreamer, StubLabel: Stub.first, MCSym&: Stub.second); |
567 | |
568 | Stubs.clear(); |
569 | OutStreamer->addBlankLine(); |
570 | } |
571 | |
572 | Stubs = MMIMacho.GetThreadLocalGVStubList(); |
573 | if (!Stubs.empty()) { |
574 | // Switch with ".non_lazy_symbol_pointer" directive. |
575 | OutStreamer->switchSection(Section: TLOFMacho.getThreadLocalPointerSection()); |
576 | emitAlignment(Alignment: Align(4)); |
577 | |
578 | for (auto &Stub : Stubs) |
579 | emitNonLazySymbolPointer(OutStreamer&: *OutStreamer, StubLabel: Stub.first, MCSym&: Stub.second); |
580 | |
581 | Stubs.clear(); |
582 | OutStreamer->addBlankLine(); |
583 | } |
584 | |
585 | // Funny Darwin hack: This flag tells the linker that no global symbols |
586 | // contain code that falls through to other global symbols (e.g. the obvious |
587 | // implementation of multiple entry points). If this doesn't occur, the |
588 | // linker can safely perform dead code stripping. Since LLVM never |
589 | // generates code that does this, it is always safe to set. |
590 | OutStreamer->emitSubsectionsViaSymbols(); |
591 | } |
592 | |
593 | // The last attribute to be emitted is ABI_optimization_goals |
594 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
595 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
596 | |
597 | if (OptimizationGoals > 0 && |
598 | (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || |
599 | Subtarget->isTargetMuslAEABI())) |
600 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_optimization_goals, Value: OptimizationGoals); |
601 | OptimizationGoals = -1; |
602 | |
603 | ATS.finishAttributeSection(); |
604 | } |
605 | |
606 | //===----------------------------------------------------------------------===// |
607 | // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() |
608 | // FIXME: |
609 | // The following seem like one-off assembler flags, but they actually need |
610 | // to appear in the .ARM.attributes section in ELF. |
611 | // Instead of subclassing the MCELFStreamer, we do the work here. |
612 | |
613 | // Returns true if all functions have the same function attribute value. |
614 | // It also returns true when the module has no functions. |
615 | static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, |
616 | StringRef Value) { |
617 | return !any_of(Range: M, P: [&](const Function &F) { |
618 | return F.getFnAttribute(Kind: Attr).getValueAsString() != Value; |
619 | }); |
620 | } |
621 | // Returns true if all functions have the same denormal mode. |
622 | // It also returns true when the module has no functions. |
623 | static bool checkDenormalAttributeConsistency(const Module &M, |
624 | StringRef Attr, |
625 | DenormalMode Value) { |
626 | return !any_of(Range: M, P: [&](const Function &F) { |
627 | StringRef AttrVal = F.getFnAttribute(Kind: Attr).getValueAsString(); |
628 | return parseDenormalFPAttribute(Str: AttrVal) != Value; |
629 | }); |
630 | } |
631 | |
632 | void ARMAsmPrinter::emitAttributes() { |
633 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
634 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
635 | |
636 | ATS.emitTextAttribute(Attribute: ARMBuildAttrs::conformance, String: "2.09" ); |
637 | |
638 | ATS.switchVendor(Vendor: "aeabi" ); |
639 | |
640 | // Compute ARM ELF Attributes based on the default subtarget that |
641 | // we'd have constructed. The existing ARM behavior isn't LTO clean |
642 | // anyhow. |
643 | // FIXME: For ifunc related functions we could iterate over and look |
644 | // for a feature string that doesn't match the default one. |
645 | const Triple &TT = TM.getTargetTriple(); |
646 | StringRef CPU = TM.getTargetCPU(); |
647 | StringRef FS = TM.getTargetFeatureString(); |
648 | std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); |
649 | if (!FS.empty()) { |
650 | if (!ArchFS.empty()) |
651 | ArchFS = (Twine(ArchFS) + "," + FS).str(); |
652 | else |
653 | ArchFS = std::string(FS); |
654 | } |
655 | const ARMBaseTargetMachine &ATM = |
656 | static_cast<const ARMBaseTargetMachine &>(TM); |
657 | const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, |
658 | ATM.isLittleEndian()); |
659 | |
660 | // Emit build attributes for the available hardware. |
661 | ATS.emitTargetAttributes(STI); |
662 | |
663 | // RW data addressing. |
664 | if (isPositionIndependent()) { |
665 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RW_data, |
666 | Value: ARMBuildAttrs::AddressRWPCRel); |
667 | } else if (STI.isRWPI()) { |
668 | // RWPI specific attributes. |
669 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RW_data, |
670 | Value: ARMBuildAttrs::AddressRWSBRel); |
671 | } |
672 | |
673 | // RO data addressing. |
674 | if (isPositionIndependent() || STI.isROPI()) { |
675 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_RO_data, |
676 | Value: ARMBuildAttrs::AddressROPCRel); |
677 | } |
678 | |
679 | // GOT use. |
680 | if (isPositionIndependent()) { |
681 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_GOT_use, |
682 | Value: ARMBuildAttrs::AddressGOT); |
683 | } else { |
684 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_GOT_use, |
685 | Value: ARMBuildAttrs::AddressDirect); |
686 | } |
687 | |
688 | // Set FP Denormals. |
689 | if (checkDenormalAttributeConsistency(M: *MMI->getModule(), Attr: "denormal-fp-math" , |
690 | Value: DenormalMode::getPreserveSign())) |
691 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
692 | Value: ARMBuildAttrs::PreserveFPSign); |
693 | else if (checkDenormalAttributeConsistency(M: *MMI->getModule(), |
694 | Attr: "denormal-fp-math" , |
695 | Value: DenormalMode::getPositiveZero())) |
696 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
697 | Value: ARMBuildAttrs::PositiveZero); |
698 | else if (!TM.Options.UnsafeFPMath) |
699 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
700 | Value: ARMBuildAttrs::IEEEDenormals); |
701 | else { |
702 | if (!STI.hasVFP2Base()) { |
703 | // When the target doesn't have an FPU (by design or |
704 | // intention), the assumptions made on the software support |
705 | // mirror that of the equivalent hardware support *if it |
706 | // existed*. For v7 and better we indicate that denormals are |
707 | // flushed preserving sign, and for V6 we indicate that |
708 | // denormals are flushed to positive zero. |
709 | if (STI.hasV7Ops()) |
710 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
711 | Value: ARMBuildAttrs::PreserveFPSign); |
712 | } else if (STI.hasVFP3Base()) { |
713 | // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, |
714 | // the sign bit of the zero matches the sign bit of the input or |
715 | // result that is being flushed to zero. |
716 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_denormal, |
717 | Value: ARMBuildAttrs::PreserveFPSign); |
718 | } |
719 | // For VFPv2 implementations it is implementation defined as |
720 | // to whether denormals are flushed to positive zero or to |
721 | // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically |
722 | // LLVM has chosen to flush this to positive zero (most likely for |
723 | // GCC compatibility), so that's the chosen value here (the |
724 | // absence of its emission implies zero). |
725 | } |
726 | |
727 | // Set FP exceptions and rounding |
728 | if (checkFunctionsAttributeConsistency(M: *MMI->getModule(), |
729 | Attr: "no-trapping-math" , Value: "true" ) || |
730 | TM.Options.NoTrappingFPMath) |
731 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_exceptions, |
732 | Value: ARMBuildAttrs::Not_Allowed); |
733 | else if (!TM.Options.UnsafeFPMath) { |
734 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_exceptions, Value: ARMBuildAttrs::Allowed); |
735 | |
736 | // If the user has permitted this code to choose the IEEE 754 |
737 | // rounding at run-time, emit the rounding attribute. |
738 | if (TM.Options.HonorSignDependentRoundingFPMathOption) |
739 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_rounding, Value: ARMBuildAttrs::Allowed); |
740 | } |
741 | |
742 | // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the |
743 | // equivalent of GCC's -ffinite-math-only flag. |
744 | if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) |
745 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_number_model, |
746 | Value: ARMBuildAttrs::Allowed); |
747 | else |
748 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_number_model, |
749 | Value: ARMBuildAttrs::AllowIEEE754); |
750 | |
751 | // FIXME: add more flags to ARMBuildAttributes.h |
752 | // 8-bytes alignment stuff. |
753 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_align_needed, Value: 1); |
754 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_align_preserved, Value: 1); |
755 | |
756 | // Hard float. Use both S and D registers and conform to AAPCS-VFP. |
757 | if (getTM().isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) |
758 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_VFP_args, Value: ARMBuildAttrs::HardFPAAPCS); |
759 | |
760 | // FIXME: To support emitting this build attribute as GCC does, the |
761 | // -mfp16-format option and associated plumbing must be |
762 | // supported. For now the __fp16 type is exposed by default, so this |
763 | // attribute should be emitted with value 1. |
764 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_FP_16bit_format, |
765 | Value: ARMBuildAttrs::FP16FormatIEEE); |
766 | |
767 | if (const Module *SourceModule = MMI->getModule()) { |
768 | // ABI_PCS_wchar_t to indicate wchar_t width |
769 | // FIXME: There is no way to emit value 0 (wchar_t prohibited). |
770 | if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( |
771 | MD: SourceModule->getModuleFlag(Key: "wchar_size" ))) { |
772 | int WCharWidth = WCharWidthValue->getZExtValue(); |
773 | assert((WCharWidth == 2 || WCharWidth == 4) && |
774 | "wchar_t width must be 2 or 4 bytes" ); |
775 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_wchar_t, Value: WCharWidth); |
776 | } |
777 | |
778 | // ABI_enum_size to indicate enum width |
779 | // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 |
780 | // (all enums contain a value needing 32 bits to encode). |
781 | if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( |
782 | MD: SourceModule->getModuleFlag(Key: "min_enum_size" ))) { |
783 | int EnumWidth = EnumWidthValue->getZExtValue(); |
784 | assert((EnumWidth == 1 || EnumWidth == 4) && |
785 | "Minimum enum width must be 1 or 4 bytes" ); |
786 | int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; |
787 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_enum_size, Value: EnumBuildAttr); |
788 | } |
789 | |
790 | auto *PACValue = mdconst::extract_or_null<ConstantInt>( |
791 | MD: SourceModule->getModuleFlag(Key: "sign-return-address" )); |
792 | if (PACValue && PACValue->isOne()) { |
793 | // If "+pacbti" is used as an architecture extension, |
794 | // Tag_PAC_extension is emitted in |
795 | // ARMTargetStreamer::emitTargetAttributes(). |
796 | if (!STI.hasPACBTI()) { |
797 | ATS.emitAttribute(Attribute: ARMBuildAttrs::PAC_extension, |
798 | Value: ARMBuildAttrs::AllowPACInNOPSpace); |
799 | } |
800 | ATS.emitAttribute(Attribute: ARMBuildAttrs::PACRET_use, Value: ARMBuildAttrs::PACRETUsed); |
801 | } |
802 | |
803 | auto *BTIValue = mdconst::extract_or_null<ConstantInt>( |
804 | MD: SourceModule->getModuleFlag(Key: "branch-target-enforcement" )); |
805 | if (BTIValue && BTIValue->isOne()) { |
806 | // If "+pacbti" is used as an architecture extension, |
807 | // Tag_BTI_extension is emitted in |
808 | // ARMTargetStreamer::emitTargetAttributes(). |
809 | if (!STI.hasPACBTI()) { |
810 | ATS.emitAttribute(Attribute: ARMBuildAttrs::BTI_extension, |
811 | Value: ARMBuildAttrs::AllowBTIInNOPSpace); |
812 | } |
813 | ATS.emitAttribute(Attribute: ARMBuildAttrs::BTI_use, Value: ARMBuildAttrs::BTIUsed); |
814 | } |
815 | } |
816 | |
817 | // We currently do not support using R9 as the TLS pointer. |
818 | if (STI.isRWPI()) |
819 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
820 | Value: ARMBuildAttrs::R9IsSB); |
821 | else if (STI.isR9Reserved()) |
822 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
823 | Value: ARMBuildAttrs::R9Reserved); |
824 | else |
825 | ATS.emitAttribute(Attribute: ARMBuildAttrs::ABI_PCS_R9_use, |
826 | Value: ARMBuildAttrs::R9IsGPR); |
827 | } |
828 | |
829 | //===----------------------------------------------------------------------===// |
830 | |
831 | static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, |
832 | unsigned LabelId, MCContext &Ctx) { |
833 | |
834 | MCSymbol *Label = Ctx.getOrCreateSymbol(Name: Twine(Prefix) |
835 | + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); |
836 | return Label; |
837 | } |
838 | |
839 | static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, |
840 | unsigned LabelId, MCContext &Ctx) { |
841 | |
842 | MCSymbol *Label = Ctx.getOrCreateSymbol(Name: Twine(Prefix) |
843 | + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); |
844 | return Label; |
845 | } |
846 | |
847 | static uint8_t getModifierSpecifier(ARMCP::ARMCPModifier Modifier) { |
848 | switch (Modifier) { |
849 | case ARMCP::no_modifier: |
850 | return ARM::S_None; |
851 | case ARMCP::TLSGD: |
852 | return ARM::S_TLSGD; |
853 | case ARMCP::TPOFF: |
854 | return ARM::S_TPOFF; |
855 | case ARMCP::GOTTPOFF: |
856 | return ARM::S_GOTTPOFF; |
857 | case ARMCP::SBREL: |
858 | return ARM::S_SBREL; |
859 | case ARMCP::GOT_PREL: |
860 | return ARM::S_GOT_PREL; |
861 | case ARMCP::SECREL: |
862 | return ARM::S_COFF_SECREL; |
863 | } |
864 | llvm_unreachable("Invalid ARMCPModifier!" ); |
865 | } |
866 | |
867 | MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, |
868 | unsigned char TargetFlags) { |
869 | if (Subtarget->isTargetMachO()) { |
870 | bool IsIndirect = |
871 | (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); |
872 | |
873 | if (!IsIndirect) |
874 | return getSymbol(GV); |
875 | |
876 | // FIXME: Remove this when Darwin transition to @GOT like syntax. |
877 | MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, Suffix: "$non_lazy_ptr" ); |
878 | MachineModuleInfoMachO &MMIMachO = |
879 | MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
880 | MachineModuleInfoImpl::StubValueTy &StubSym = |
881 | GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(Sym: MCSym) |
882 | : MMIMachO.getGVStubEntry(Sym: MCSym); |
883 | |
884 | if (!StubSym.getPointer()) |
885 | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), |
886 | !GV->hasInternalLinkage()); |
887 | return MCSym; |
888 | } else if (Subtarget->isTargetCOFF()) { |
889 | assert(Subtarget->isTargetWindows() && |
890 | "Windows is the only supported COFF target" ); |
891 | |
892 | bool IsIndirect = |
893 | (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); |
894 | if (!IsIndirect) |
895 | return getSymbol(GV); |
896 | |
897 | SmallString<128> Name; |
898 | if (TargetFlags & ARMII::MO_DLLIMPORT) |
899 | Name = "__imp_" ; |
900 | else if (TargetFlags & ARMII::MO_COFFSTUB) |
901 | Name = ".refptr." ; |
902 | getNameWithPrefix(Name, GV); |
903 | |
904 | MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); |
905 | |
906 | if (TargetFlags & ARMII::MO_COFFSTUB) { |
907 | MachineModuleInfoCOFF &MMICOFF = |
908 | MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
909 | MachineModuleInfoImpl::StubValueTy &StubSym = |
910 | MMICOFF.getGVStubEntry(Sym: MCSym); |
911 | |
912 | if (!StubSym.getPointer()) |
913 | StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); |
914 | } |
915 | |
916 | return MCSym; |
917 | } else if (Subtarget->isTargetELF()) { |
918 | return getSymbolPreferLocal(GV: *GV); |
919 | } |
920 | llvm_unreachable("unexpected target" ); |
921 | } |
922 | |
923 | void ARMAsmPrinter::emitMachineConstantPoolValue( |
924 | MachineConstantPoolValue *MCPV) { |
925 | const DataLayout &DL = getDataLayout(); |
926 | int Size = DL.getTypeAllocSize(Ty: MCPV->getType()); |
927 | |
928 | ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); |
929 | |
930 | if (ACPV->isPromotedGlobal()) { |
931 | // This constant pool entry is actually a global whose storage has been |
932 | // promoted into the constant pool. This global may be referenced still |
933 | // by debug information, and due to the way AsmPrinter is set up, the debug |
934 | // info is immutable by the time we decide to promote globals to constant |
935 | // pools. Because of this, we need to ensure we emit a symbol for the global |
936 | // with private linkage (the default) so debug info can refer to it. |
937 | // |
938 | // However, if this global is promoted into several functions we must ensure |
939 | // we don't try and emit duplicate symbols! |
940 | auto *ACPC = cast<ARMConstantPoolConstant>(Val: ACPV); |
941 | for (const auto *GV : ACPC->promotedGlobals()) { |
942 | if (!EmittedPromotedGlobalLabels.count(Ptr: GV)) { |
943 | MCSymbol *GVSym = getSymbol(GV); |
944 | OutStreamer->emitLabel(Symbol: GVSym); |
945 | EmittedPromotedGlobalLabels.insert(Ptr: GV); |
946 | } |
947 | } |
948 | return emitGlobalConstant(DL, CV: ACPC->getPromotedGlobalInit()); |
949 | } |
950 | |
951 | MCSymbol *MCSym; |
952 | if (ACPV->isLSDA()) { |
953 | MCSym = getMBBExceptionSym(MBB: MF->front()); |
954 | } else if (ACPV->isBlockAddress()) { |
955 | const BlockAddress *BA = |
956 | cast<ARMConstantPoolConstant>(Val: ACPV)->getBlockAddress(); |
957 | MCSym = GetBlockAddressSymbol(BA); |
958 | } else if (ACPV->isGlobalValue()) { |
959 | const GlobalValue *GV = cast<ARMConstantPoolConstant>(Val: ACPV)->getGV(); |
960 | |
961 | // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so |
962 | // flag the global as MO_NONLAZY. |
963 | unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; |
964 | MCSym = GetARMGVSymbol(GV, TargetFlags: TF); |
965 | } else if (ACPV->isMachineBasicBlock()) { |
966 | const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(Val: ACPV)->getMBB(); |
967 | MCSym = MBB->getSymbol(); |
968 | } else { |
969 | assert(ACPV->isExtSymbol() && "unrecognized constant pool value" ); |
970 | auto Sym = cast<ARMConstantPoolSymbol>(Val: ACPV)->getSymbol(); |
971 | MCSym = GetExternalSymbolSymbol(Sym); |
972 | } |
973 | |
974 | // Create an MCSymbol for the reference. |
975 | const MCExpr *Expr = MCSymbolRefExpr::create( |
976 | Symbol: MCSym, specifier: getModifierSpecifier(Modifier: ACPV->getModifier()), Ctx&: OutContext); |
977 | |
978 | if (ACPV->getPCAdjustment()) { |
979 | MCSymbol *PCLabel = |
980 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
981 | LabelId: ACPV->getLabelId(), Ctx&: OutContext); |
982 | const MCExpr *PCRelExpr = MCSymbolRefExpr::create(Symbol: PCLabel, Ctx&: OutContext); |
983 | PCRelExpr = |
984 | MCBinaryExpr::createAdd(LHS: PCRelExpr, |
985 | RHS: MCConstantExpr::create(Value: ACPV->getPCAdjustment(), |
986 | Ctx&: OutContext), |
987 | Ctx&: OutContext); |
988 | if (ACPV->mustAddCurrentAddress()) { |
989 | // We want "(<expr> - .)", but MC doesn't have a concept of the '.' |
990 | // label, so just emit a local label end reference that instead. |
991 | MCSymbol *DotSym = OutContext.createTempSymbol(); |
992 | OutStreamer->emitLabel(Symbol: DotSym); |
993 | const MCExpr *DotExpr = MCSymbolRefExpr::create(Symbol: DotSym, Ctx&: OutContext); |
994 | PCRelExpr = MCBinaryExpr::createSub(LHS: PCRelExpr, RHS: DotExpr, Ctx&: OutContext); |
995 | } |
996 | Expr = MCBinaryExpr::createSub(LHS: Expr, RHS: PCRelExpr, Ctx&: OutContext); |
997 | } |
998 | OutStreamer->emitValue(Value: Expr, Size); |
999 | } |
1000 | |
1001 | void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { |
1002 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
1003 | unsigned JTI = MO1.getIndex(); |
1004 | |
1005 | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for |
1006 | // ARM mode tables. |
1007 | emitAlignment(Alignment: Align(4)); |
1008 | |
1009 | // Emit a label for the jump table. |
1010 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1011 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1012 | |
1013 | // Mark the jump table as data-in-code. |
1014 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionJT32); |
1015 | |
1016 | // Emit each entry of the table. |
1017 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1018 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1019 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1020 | |
1021 | for (MachineBasicBlock *MBB : JTBBs) { |
1022 | // Construct an MCExpr for the entry. We want a value of the form: |
1023 | // (BasicBlockAddr - TableBeginAddr) |
1024 | // |
1025 | // For example, a table with entries jumping to basic blocks BB0 and BB1 |
1026 | // would look like: |
1027 | // LJTI_0_0: |
1028 | // .word (LBB0 - LJTI_0_0) |
1029 | // .word (LBB1 - LJTI_0_0) |
1030 | const MCExpr *Expr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx&: OutContext); |
1031 | |
1032 | if (isPositionIndependent() || Subtarget->isROPI()) |
1033 | Expr = MCBinaryExpr::createSub(LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: JTISymbol, |
1034 | Ctx&: OutContext), |
1035 | Ctx&: OutContext); |
1036 | // If we're generating a table of Thumb addresses in static relocation |
1037 | // model, we need to add one to keep interworking correctly. |
1038 | else if (AFI->isThumbFunction()) |
1039 | Expr = MCBinaryExpr::createAdd(LHS: Expr, RHS: MCConstantExpr::create(Value: 1,Ctx&: OutContext), |
1040 | Ctx&: OutContext); |
1041 | OutStreamer->emitValue(Value: Expr, Size: 4); |
1042 | } |
1043 | // Mark the end of jump table data-in-code region. |
1044 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1045 | } |
1046 | |
1047 | void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { |
1048 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
1049 | unsigned JTI = MO1.getIndex(); |
1050 | |
1051 | // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for |
1052 | // ARM mode tables. |
1053 | emitAlignment(Alignment: Align(4)); |
1054 | |
1055 | // Emit a label for the jump table. |
1056 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1057 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1058 | |
1059 | // Emit each entry of the table. |
1060 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1061 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1062 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1063 | |
1064 | for (MachineBasicBlock *MBB : JTBBs) { |
1065 | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), |
1066 | Ctx&: OutContext); |
1067 | // If this isn't a TBB or TBH, the entries are direct branch instructions. |
1068 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2B) |
1069 | .addExpr(Val: MBBSymbolExpr) |
1070 | .addImm(Val: ARMCC::AL) |
1071 | .addReg(Reg: 0)); |
1072 | } |
1073 | } |
1074 | |
1075 | void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, |
1076 | unsigned OffsetWidth) { |
1077 | assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width" ); |
1078 | const MachineOperand &MO1 = MI->getOperand(i: 1); |
1079 | unsigned JTI = MO1.getIndex(); |
1080 | |
1081 | if (Subtarget->isThumb1Only()) |
1082 | emitAlignment(Alignment: Align(4)); |
1083 | |
1084 | MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(uid: JTI); |
1085 | OutStreamer->emitLabel(Symbol: JTISymbol); |
1086 | |
1087 | // Emit each entry of the table. |
1088 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
1089 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
1090 | const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
1091 | |
1092 | // Mark the jump table as data-in-code. |
1093 | OutStreamer->emitDataRegion(Kind: OffsetWidth == 1 ? MCDR_DataRegionJT8 |
1094 | : MCDR_DataRegionJT16); |
1095 | |
1096 | for (auto *MBB : JTBBs) { |
1097 | const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), |
1098 | Ctx&: OutContext); |
1099 | // Otherwise it's an offset from the dispatch instruction. Construct an |
1100 | // MCExpr for the entry. We want a value of the form: |
1101 | // (BasicBlockAddr - TBBInstAddr + 4) / 2 |
1102 | // |
1103 | // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 |
1104 | // would look like: |
1105 | // LJTI_0_0: |
1106 | // .byte (LBB0 - (LCPI0_0 + 4)) / 2 |
1107 | // .byte (LBB1 - (LCPI0_0 + 4)) / 2 |
1108 | // where LCPI0_0 is a label defined just before the TBB instruction using |
1109 | // this table. |
1110 | MCSymbol *TBInstPC = GetCPISymbol(CPID: MI->getOperand(i: 0).getImm()); |
1111 | const MCExpr *Expr = MCBinaryExpr::createAdd( |
1112 | LHS: MCSymbolRefExpr::create(Symbol: TBInstPC, Ctx&: OutContext), |
1113 | RHS: MCConstantExpr::create(Value: 4, Ctx&: OutContext), Ctx&: OutContext); |
1114 | Expr = MCBinaryExpr::createSub(LHS: MBBSymbolExpr, RHS: Expr, Ctx&: OutContext); |
1115 | Expr = MCBinaryExpr::createDiv(LHS: Expr, RHS: MCConstantExpr::create(Value: 2, Ctx&: OutContext), |
1116 | Ctx&: OutContext); |
1117 | OutStreamer->emitValue(Value: Expr, Size: OffsetWidth); |
1118 | } |
1119 | // Mark the end of jump table data-in-code region. 32-bit offsets use |
1120 | // actual branch instructions here, so we don't mark those as a data-region |
1121 | // at all. |
1122 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1123 | |
1124 | // Make sure the next instruction is 2-byte aligned. |
1125 | emitAlignment(Alignment: Align(2)); |
1126 | } |
1127 | |
1128 | std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, |
1129 | codeview::JumpTableEntrySize> |
1130 | ARMAsmPrinter::getCodeViewJumpTableInfo(int JTI, |
1131 | const MachineInstr *BranchInstr, |
1132 | const MCSymbol *BranchLabel) const { |
1133 | codeview::JumpTableEntrySize EntrySize; |
1134 | const MCSymbol *BaseLabel; |
1135 | uint64_t BaseOffset = 0; |
1136 | switch (BranchInstr->getOpcode()) { |
1137 | case ARM::BR_JTadd: |
1138 | case ARM::BR_JTr: |
1139 | case ARM::tBR_JTr: |
1140 | // Word relative to the jump table address. |
1141 | EntrySize = codeview::JumpTableEntrySize::UInt32; |
1142 | BaseLabel = GetARMJTIPICJumpTableLabel(uid: JTI); |
1143 | break; |
1144 | case ARM::tTBH_JT: |
1145 | case ARM::t2TBH_JT: |
1146 | // half-word shifted left, relative to *after* the branch instruction. |
1147 | EntrySize = codeview::JumpTableEntrySize::UInt16ShiftLeft; |
1148 | BranchLabel = GetCPISymbol(CPID: BranchInstr->getOperand(i: 3).getImm()); |
1149 | BaseLabel = BranchLabel; |
1150 | BaseOffset = 4; |
1151 | break; |
1152 | case ARM::tTBB_JT: |
1153 | case ARM::t2TBB_JT: |
1154 | // byte shifted left, relative to *after* the branch instruction. |
1155 | EntrySize = codeview::JumpTableEntrySize::UInt8ShiftLeft; |
1156 | BranchLabel = GetCPISymbol(CPID: BranchInstr->getOperand(i: 3).getImm()); |
1157 | BaseLabel = BranchLabel; |
1158 | BaseOffset = 4; |
1159 | break; |
1160 | case ARM::t2BR_JT: |
1161 | // Direct jump. |
1162 | BaseLabel = nullptr; |
1163 | EntrySize = codeview::JumpTableEntrySize::Pointer; |
1164 | break; |
1165 | default: |
1166 | llvm_unreachable("Unknown jump table instruction" ); |
1167 | } |
1168 | |
1169 | return std::make_tuple(args&: BaseLabel, args&: BaseOffset, args&: BranchLabel, args&: EntrySize); |
1170 | } |
1171 | |
1172 | void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { |
1173 | assert(MI->getFlag(MachineInstr::FrameSetup) && |
1174 | "Only instruction which are involved into frame setup code are allowed" ); |
1175 | |
1176 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
1177 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
1178 | const MachineFunction &MF = *MI->getParent()->getParent(); |
1179 | const TargetRegisterInfo *TargetRegInfo = |
1180 | MF.getSubtarget().getRegisterInfo(); |
1181 | const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); |
1182 | |
1183 | Register FramePtr = TargetRegInfo->getFrameRegister(MF); |
1184 | unsigned Opc = MI->getOpcode(); |
1185 | unsigned SrcReg, DstReg; |
1186 | |
1187 | switch (Opc) { |
1188 | case ARM::tPUSH: |
1189 | // special case: tPUSH does not have src/dst regs. |
1190 | SrcReg = DstReg = ARM::SP; |
1191 | break; |
1192 | case ARM::tLDRpci: |
1193 | case ARM::t2MOVi16: |
1194 | case ARM::t2MOVTi16: |
1195 | case ARM::tMOVi8: |
1196 | case ARM::tADDi8: |
1197 | case ARM::tLSLri: |
1198 | // special cases: |
1199 | // 1) for Thumb1 code we sometimes materialize the constant via constpool |
1200 | // load. |
1201 | // 2) for Thumb1 execute only code we materialize the constant via the |
1202 | // following pattern: |
1203 | // movs r3, #:upper8_15:<const> |
1204 | // lsls r3, #8 |
1205 | // adds r3, #:upper0_7:<const> |
1206 | // lsls r3, #8 |
1207 | // adds r3, #:lower8_15:<const> |
1208 | // lsls r3, #8 |
1209 | // adds r3, #:lower0_7:<const> |
1210 | // So we need to special-case MOVS, ADDS and LSLS, and keep track of |
1211 | // where we are in the sequence with the simplest of state machines. |
1212 | // 3) for Thumb2 execute only code we materialize the constant via |
1213 | // immediate constants in 2 separate instructions (MOVW/MOVT). |
1214 | SrcReg = ~0U; |
1215 | DstReg = MI->getOperand(i: 0).getReg(); |
1216 | break; |
1217 | case ARM::VMRS: |
1218 | SrcReg = ARM::FPSCR; |
1219 | DstReg = MI->getOperand(i: 0).getReg(); |
1220 | break; |
1221 | case ARM::VMRS_FPEXC: |
1222 | SrcReg = ARM::FPEXC; |
1223 | DstReg = MI->getOperand(i: 0).getReg(); |
1224 | break; |
1225 | default: |
1226 | SrcReg = MI->getOperand(i: 1).getReg(); |
1227 | DstReg = MI->getOperand(i: 0).getReg(); |
1228 | break; |
1229 | } |
1230 | |
1231 | // Try to figure out the unwinding opcode out of src / dst regs. |
1232 | if (MI->mayStore()) { |
1233 | // Register saves. |
1234 | assert(DstReg == ARM::SP && |
1235 | "Only stack pointer as a destination reg is supported" ); |
1236 | |
1237 | SmallVector<MCRegister, 4> RegList; |
1238 | // Skip src & dst reg, and pred ops. |
1239 | unsigned StartOp = 2 + 2; |
1240 | // Use all the operands. |
1241 | unsigned NumOffset = 0; |
1242 | // Amount of SP adjustment folded into a push, before the |
1243 | // registers are stored (pad at higher addresses). |
1244 | unsigned PadBefore = 0; |
1245 | // Amount of SP adjustment folded into a push, after the |
1246 | // registers are stored (pad at lower addresses). |
1247 | unsigned PadAfter = 0; |
1248 | |
1249 | switch (Opc) { |
1250 | default: |
1251 | MI->print(OS&: errs()); |
1252 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1253 | case ARM::tPUSH: |
1254 | // Special case here: no src & dst reg, but two extra imp ops. |
1255 | StartOp = 2; NumOffset = 2; |
1256 | [[fallthrough]]; |
1257 | case ARM::STMDB_UPD: |
1258 | case ARM::t2STMDB_UPD: |
1259 | case ARM::VSTMDDB_UPD: |
1260 | assert(SrcReg == ARM::SP && |
1261 | "Only stack pointer as a source reg is supported" ); |
1262 | for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; |
1263 | i != NumOps; ++i) { |
1264 | const MachineOperand &MO = MI->getOperand(i); |
1265 | // Actually, there should never be any impdef stuff here. Skip it |
1266 | // temporary to workaround PR11902. |
1267 | if (MO.isImplicit()) |
1268 | continue; |
1269 | // Registers, pushed as a part of folding an SP update into the |
1270 | // push instruction are marked as undef and should not be |
1271 | // restored when unwinding, because the function can modify the |
1272 | // corresponding stack slots. |
1273 | if (MO.isUndef()) { |
1274 | assert(RegList.empty() && |
1275 | "Pad registers must come before restored ones" ); |
1276 | unsigned Width = |
1277 | TargetRegInfo->getRegSizeInBits(Reg: MO.getReg(), MRI: MachineRegInfo) / 8; |
1278 | PadAfter += Width; |
1279 | continue; |
1280 | } |
1281 | // Check for registers that are remapped (for a Thumb1 prologue that |
1282 | // saves high registers). |
1283 | Register Reg = MO.getReg(); |
1284 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: Reg)) |
1285 | Reg = RemappedReg; |
1286 | RegList.push_back(Elt: Reg); |
1287 | } |
1288 | break; |
1289 | case ARM::STR_PRE_IMM: |
1290 | case ARM::STR_PRE_REG: |
1291 | case ARM::t2STR_PRE: |
1292 | assert(MI->getOperand(2).getReg() == ARM::SP && |
1293 | "Only stack pointer as a source reg is supported" ); |
1294 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1295 | SrcReg = RemappedReg; |
1296 | |
1297 | RegList.push_back(Elt: SrcReg); |
1298 | break; |
1299 | case ARM::t2STRD_PRE: |
1300 | assert(MI->getOperand(3).getReg() == ARM::SP && |
1301 | "Only stack pointer as a source reg is supported" ); |
1302 | SrcReg = MI->getOperand(i: 1).getReg(); |
1303 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1304 | SrcReg = RemappedReg; |
1305 | RegList.push_back(Elt: SrcReg); |
1306 | SrcReg = MI->getOperand(i: 2).getReg(); |
1307 | if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Val: SrcReg)) |
1308 | SrcReg = RemappedReg; |
1309 | RegList.push_back(Elt: SrcReg); |
1310 | PadBefore = -MI->getOperand(i: 4).getImm() - 8; |
1311 | break; |
1312 | } |
1313 | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { |
1314 | if (PadBefore) |
1315 | ATS.emitPad(Offset: PadBefore); |
1316 | ATS.emitRegSave(RegList, isVector: Opc == ARM::VSTMDDB_UPD); |
1317 | // Account for the SP adjustment, folded into the push. |
1318 | if (PadAfter) |
1319 | ATS.emitPad(Offset: PadAfter); |
1320 | } |
1321 | } else { |
1322 | // Changes of stack / frame pointer. |
1323 | if (SrcReg == ARM::SP) { |
1324 | int64_t Offset = 0; |
1325 | switch (Opc) { |
1326 | default: |
1327 | MI->print(OS&: errs()); |
1328 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1329 | case ARM::tLDRspi: |
1330 | // Used to restore LR in a prologue which uses it as a temporary, has |
1331 | // no effect on unwind tables. |
1332 | return; |
1333 | case ARM::MOVr: |
1334 | case ARM::tMOVr: |
1335 | Offset = 0; |
1336 | break; |
1337 | case ARM::ADDri: |
1338 | case ARM::t2ADDri: |
1339 | case ARM::t2ADDri12: |
1340 | case ARM::t2ADDspImm: |
1341 | case ARM::t2ADDspImm12: |
1342 | Offset = -MI->getOperand(i: 2).getImm(); |
1343 | break; |
1344 | case ARM::SUBri: |
1345 | case ARM::t2SUBri: |
1346 | case ARM::t2SUBri12: |
1347 | case ARM::t2SUBspImm: |
1348 | case ARM::t2SUBspImm12: |
1349 | Offset = MI->getOperand(i: 2).getImm(); |
1350 | break; |
1351 | case ARM::tSUBspi: |
1352 | Offset = MI->getOperand(i: 2).getImm()*4; |
1353 | break; |
1354 | case ARM::tADDspi: |
1355 | case ARM::tADDrSPi: |
1356 | Offset = -MI->getOperand(i: 2).getImm()*4; |
1357 | break; |
1358 | case ARM::tADDhirr: |
1359 | Offset = |
1360 | -AFI->EHPrologueOffsetInRegs.lookup(Val: MI->getOperand(i: 2).getReg()); |
1361 | break; |
1362 | } |
1363 | |
1364 | if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { |
1365 | if (DstReg == FramePtr && FramePtr != ARM::SP) |
1366 | // Set-up of the frame pointer. Positive values correspond to "add" |
1367 | // instruction. |
1368 | ATS.emitSetFP(FpReg: FramePtr, SpReg: ARM::SP, Offset: -Offset); |
1369 | else if (DstReg == ARM::SP) { |
1370 | // Change of SP by an offset. Positive values correspond to "sub" |
1371 | // instruction. |
1372 | ATS.emitPad(Offset); |
1373 | } else { |
1374 | // Move of SP to a register. Positive values correspond to an "add" |
1375 | // instruction. |
1376 | ATS.emitMovSP(Reg: DstReg, Offset: -Offset); |
1377 | } |
1378 | } |
1379 | } else if (DstReg == ARM::SP) { |
1380 | MI->print(OS&: errs()); |
1381 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1382 | } else { |
1383 | int64_t Offset = 0; |
1384 | switch (Opc) { |
1385 | case ARM::tMOVr: |
1386 | // If a Thumb1 function spills r8-r11, we copy the values to low |
1387 | // registers before pushing them. Record the copy so we can emit the |
1388 | // correct ".save" later. |
1389 | AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; |
1390 | break; |
1391 | case ARM::VMRS: |
1392 | case ARM::VMRS_FPEXC: |
1393 | // If a function spills FPSCR or FPEXC, we copy the values to low |
1394 | // registers before pushing them. However, we can't issue annotations |
1395 | // for FP status registers because ".save" requires GPR registers, and |
1396 | // ".vsave" requires DPR registers, so don't record the copy and simply |
1397 | // emit annotations for the source registers used for the store. |
1398 | break; |
1399 | case ARM::tLDRpci: { |
1400 | // Grab the constpool index and check, whether it corresponds to |
1401 | // original or cloned constpool entry. |
1402 | unsigned CPI = MI->getOperand(i: 1).getIndex(); |
1403 | const MachineConstantPool *MCP = MF.getConstantPool(); |
1404 | if (CPI >= MCP->getConstants().size()) |
1405 | CPI = AFI->getOriginalCPIdx(CloneIdx: CPI); |
1406 | assert(CPI != -1U && "Invalid constpool index" ); |
1407 | |
1408 | // Derive the actual offset. |
1409 | const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; |
1410 | assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry" ); |
1411 | Offset = cast<ConstantInt>(Val: CPE.Val.ConstVal)->getSExtValue(); |
1412 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1413 | break; |
1414 | } |
1415 | case ARM::t2MOVi16: |
1416 | Offset = MI->getOperand(i: 1).getImm(); |
1417 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1418 | break; |
1419 | case ARM::t2MOVTi16: |
1420 | Offset = MI->getOperand(i: 2).getImm(); |
1421 | AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); |
1422 | break; |
1423 | case ARM::tMOVi8: |
1424 | Offset = MI->getOperand(i: 2).getImm(); |
1425 | AFI->EHPrologueOffsetInRegs[DstReg] = Offset; |
1426 | break; |
1427 | case ARM::tLSLri: |
1428 | assert(MI->getOperand(3).getImm() == 8 && |
1429 | "The shift amount is not equal to 8" ); |
1430 | assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && |
1431 | "The source register is not equal to the destination register" ); |
1432 | AFI->EHPrologueOffsetInRegs[DstReg] <<= 8; |
1433 | break; |
1434 | case ARM::tADDi8: |
1435 | assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && |
1436 | "The source register is not equal to the destination register" ); |
1437 | Offset = MI->getOperand(i: 3).getImm(); |
1438 | AFI->EHPrologueOffsetInRegs[DstReg] += Offset; |
1439 | break; |
1440 | case ARM::t2PAC: |
1441 | case ARM::t2PACBTI: |
1442 | AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; |
1443 | break; |
1444 | default: |
1445 | MI->print(OS&: errs()); |
1446 | llvm_unreachable("Unsupported opcode for unwinding information" ); |
1447 | } |
1448 | } |
1449 | } |
1450 | } |
1451 | |
1452 | // Simple pseudo-instructions have their lowering (with expansion to real |
1453 | // instructions) auto-generated. |
1454 | #include "ARMGenMCPseudoLowering.inc" |
1455 | |
1456 | void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { |
1457 | ARM_MC::verifyInstructionPredicates(Opcode: MI->getOpcode(), |
1458 | Features: getSubtargetInfo().getFeatureBits()); |
1459 | |
1460 | const DataLayout &DL = getDataLayout(); |
1461 | MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); |
1462 | ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
1463 | |
1464 | // If we just ended a constant pool, mark it as such. |
1465 | if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { |
1466 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
1467 | InConstantPool = false; |
1468 | } |
1469 | |
1470 | // Emit unwinding stuff for frame-related instructions |
1471 | if (Subtarget->isTargetEHABICompatible() && |
1472 | MI->getFlag(Flag: MachineInstr::FrameSetup)) |
1473 | EmitUnwindingInstruction(MI); |
1474 | |
1475 | // Do any auto-generated pseudo lowerings. |
1476 | if (MCInst OutInst; lowerPseudoInstExpansion(MI, Inst&: OutInst)) { |
1477 | EmitToStreamer(S&: *OutStreamer, Inst: OutInst); |
1478 | return; |
1479 | } |
1480 | |
1481 | assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && |
1482 | "Pseudo flag setting opcode should be expanded early" ); |
1483 | |
1484 | // Check for manual lowerings. |
1485 | unsigned Opc = MI->getOpcode(); |
1486 | switch (Opc) { |
1487 | case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass" ); |
1488 | case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing" ); |
1489 | case ARM::LEApcrel: |
1490 | case ARM::tLEApcrel: |
1491 | case ARM::t2LEApcrel: { |
1492 | // FIXME: Need to also handle globals and externals |
1493 | MCSymbol *CPISymbol = GetCPISymbol(CPID: MI->getOperand(i: 1).getIndex()); |
1494 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(MI->getOpcode() == |
1495 | ARM::t2LEApcrel ? ARM::t2ADR |
1496 | : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR |
1497 | : ARM::ADR)) |
1498 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1499 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: CPISymbol, Ctx&: OutContext)) |
1500 | // Add predicate operands. |
1501 | .addImm(Val: MI->getOperand(i: 2).getImm()) |
1502 | .addReg(Reg: MI->getOperand(i: 3).getReg())); |
1503 | return; |
1504 | } |
1505 | case ARM::LEApcrelJT: |
1506 | case ARM::tLEApcrelJT: |
1507 | case ARM::t2LEApcrelJT: { |
1508 | MCSymbol *JTIPICSymbol = |
1509 | GetARMJTIPICJumpTableLabel(uid: MI->getOperand(i: 1).getIndex()); |
1510 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(MI->getOpcode() == |
1511 | ARM::t2LEApcrelJT ? ARM::t2ADR |
1512 | : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR |
1513 | : ARM::ADR)) |
1514 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1515 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: JTIPICSymbol, Ctx&: OutContext)) |
1516 | // Add predicate operands. |
1517 | .addImm(Val: MI->getOperand(i: 2).getImm()) |
1518 | .addReg(Reg: MI->getOperand(i: 3).getReg())); |
1519 | return; |
1520 | } |
1521 | // Darwin call instructions are just normal call instructions with different |
1522 | // clobber semantics (they clobber R9). |
1523 | case ARM::BX_CALL: { |
1524 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1525 | .addReg(Reg: ARM::LR) |
1526 | .addReg(Reg: ARM::PC) |
1527 | // Add predicate operands. |
1528 | .addImm(Val: ARMCC::AL) |
1529 | .addReg(Reg: 0) |
1530 | // Add 's' bit operand (always reg0 for this) |
1531 | .addReg(Reg: 0)); |
1532 | |
1533 | assert(Subtarget->hasV4TOps()); |
1534 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::BX) |
1535 | .addReg(Reg: MI->getOperand(i: 0).getReg())); |
1536 | return; |
1537 | } |
1538 | case ARM::tBX_CALL: { |
1539 | if (Subtarget->hasV5TOps()) |
1540 | llvm_unreachable("Expected BLX to be selected for v5t+" ); |
1541 | |
1542 | // On ARM v4t, when doing a call from thumb mode, we need to ensure |
1543 | // that the saved lr has its LSB set correctly (the arch doesn't |
1544 | // have blx). |
1545 | // So here we generate a bl to a small jump pad that does bx rN. |
1546 | // The jump pads are emitted after the function body. |
1547 | |
1548 | Register TReg = MI->getOperand(i: 0).getReg(); |
1549 | MCSymbol *TRegSym = nullptr; |
1550 | for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { |
1551 | if (TIP.first == TReg) { |
1552 | TRegSym = TIP.second; |
1553 | break; |
1554 | } |
1555 | } |
1556 | |
1557 | if (!TRegSym) { |
1558 | TRegSym = OutContext.createTempSymbol(); |
1559 | ThumbIndirectPads.push_back(Elt: std::make_pair(x&: TReg, y&: TRegSym)); |
1560 | } |
1561 | |
1562 | // Create a link-saving branch to the Reg Indirect Jump Pad. |
1563 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBL) |
1564 | // Predicate comes first here. |
1565 | .addImm(Val: ARMCC::AL).addReg(Reg: 0) |
1566 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TRegSym, Ctx&: OutContext))); |
1567 | return; |
1568 | } |
1569 | case ARM::BMOVPCRX_CALL: { |
1570 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1571 | .addReg(Reg: ARM::LR) |
1572 | .addReg(Reg: ARM::PC) |
1573 | // Add predicate operands. |
1574 | .addImm(Val: ARMCC::AL) |
1575 | .addReg(Reg: 0) |
1576 | // Add 's' bit operand (always reg0 for this) |
1577 | .addReg(Reg: 0)); |
1578 | |
1579 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1580 | .addReg(Reg: ARM::PC) |
1581 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1582 | // Add predicate operands. |
1583 | .addImm(Val: ARMCC::AL) |
1584 | .addReg(Reg: 0) |
1585 | // Add 's' bit operand (always reg0 for this) |
1586 | .addReg(Reg: 0)); |
1587 | return; |
1588 | } |
1589 | case ARM::BMOVPCB_CALL: { |
1590 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVr) |
1591 | .addReg(Reg: ARM::LR) |
1592 | .addReg(Reg: ARM::PC) |
1593 | // Add predicate operands. |
1594 | .addImm(Val: ARMCC::AL) |
1595 | .addReg(Reg: 0) |
1596 | // Add 's' bit operand (always reg0 for this) |
1597 | .addReg(Reg: 0)); |
1598 | |
1599 | const MachineOperand &Op = MI->getOperand(i: 0); |
1600 | const GlobalValue *GV = Op.getGlobal(); |
1601 | const unsigned TF = Op.getTargetFlags(); |
1602 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1603 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1604 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::Bcc) |
1605 | .addExpr(Val: GVSymExpr) |
1606 | // Add predicate operands. |
1607 | .addImm(Val: ARMCC::AL) |
1608 | .addReg(Reg: 0)); |
1609 | return; |
1610 | } |
1611 | case ARM::MOVi16_ga_pcrel: |
1612 | case ARM::t2MOVi16_ga_pcrel: { |
1613 | MCInst TmpInst; |
1614 | TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); |
1615 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1616 | |
1617 | unsigned TF = MI->getOperand(i: 1).getTargetFlags(); |
1618 | const GlobalValue *GV = MI->getOperand(i: 1).getGlobal(); |
1619 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1620 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1621 | |
1622 | MCSymbol *LabelSym = |
1623 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1624 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext); |
1625 | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(Symbol: LabelSym, Ctx&: OutContext); |
1626 | unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; |
1627 | const MCExpr *PCRelExpr = ARM::createLower16( |
1628 | Expr: MCBinaryExpr::createSub( |
1629 | LHS: GVSymExpr, |
1630 | RHS: MCBinaryExpr::createAdd(LHS: LabelSymExpr, |
1631 | RHS: MCConstantExpr::create(Value: PCAdj, Ctx&: OutContext), |
1632 | Ctx&: OutContext), |
1633 | Ctx&: OutContext), |
1634 | Ctx&: OutContext); |
1635 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: PCRelExpr)); |
1636 | |
1637 | // Add predicate operands. |
1638 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1639 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1640 | // Add 's' bit operand (always reg0 for this) |
1641 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1642 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1643 | return; |
1644 | } |
1645 | case ARM::MOVTi16_ga_pcrel: |
1646 | case ARM::t2MOVTi16_ga_pcrel: { |
1647 | MCInst TmpInst; |
1648 | TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel |
1649 | ? ARM::MOVTi16 : ARM::t2MOVTi16); |
1650 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1651 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 1).getReg())); |
1652 | |
1653 | unsigned TF = MI->getOperand(i: 2).getTargetFlags(); |
1654 | const GlobalValue *GV = MI->getOperand(i: 2).getGlobal(); |
1655 | MCSymbol *GVSym = GetARMGVSymbol(GV, TargetFlags: TF); |
1656 | const MCExpr *GVSymExpr = MCSymbolRefExpr::create(Symbol: GVSym, Ctx&: OutContext); |
1657 | |
1658 | MCSymbol *LabelSym = |
1659 | getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1660 | LabelId: MI->getOperand(i: 3).getImm(), Ctx&: OutContext); |
1661 | const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(Symbol: LabelSym, Ctx&: OutContext); |
1662 | unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; |
1663 | const MCExpr *PCRelExpr = ARM::createUpper16( |
1664 | Expr: MCBinaryExpr::createSub( |
1665 | LHS: GVSymExpr, |
1666 | RHS: MCBinaryExpr::createAdd(LHS: LabelSymExpr, |
1667 | RHS: MCConstantExpr::create(Value: PCAdj, Ctx&: OutContext), |
1668 | Ctx&: OutContext), |
1669 | Ctx&: OutContext), |
1670 | Ctx&: OutContext); |
1671 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: PCRelExpr)); |
1672 | // Add predicate operands. |
1673 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1674 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1675 | // Add 's' bit operand (always reg0 for this) |
1676 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1677 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1678 | return; |
1679 | } |
1680 | case ARM::t2BFi: |
1681 | case ARM::t2BFic: |
1682 | case ARM::t2BFLi: |
1683 | case ARM::t2BFr: |
1684 | case ARM::t2BFLr: { |
1685 | // This is a Branch Future instruction. |
1686 | |
1687 | const MCExpr *BranchLabel = MCSymbolRefExpr::create( |
1688 | Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1689 | LabelId: MI->getOperand(i: 0).getIndex(), Ctx&: OutContext), |
1690 | Ctx&: OutContext); |
1691 | |
1692 | auto MCInst = MCInstBuilder(Opc).addExpr(Val: BranchLabel); |
1693 | if (MI->getOperand(i: 1).isReg()) { |
1694 | // For BFr/BFLr |
1695 | MCInst.addReg(Reg: MI->getOperand(i: 1).getReg()); |
1696 | } else { |
1697 | // For BFi/BFLi/BFic |
1698 | const MCExpr *BranchTarget; |
1699 | if (MI->getOperand(i: 1).isMBB()) |
1700 | BranchTarget = MCSymbolRefExpr::create( |
1701 | Symbol: MI->getOperand(i: 1).getMBB()->getSymbol(), Ctx&: OutContext); |
1702 | else if (MI->getOperand(i: 1).isGlobal()) { |
1703 | const GlobalValue *GV = MI->getOperand(i: 1).getGlobal(); |
1704 | BranchTarget = MCSymbolRefExpr::create( |
1705 | Symbol: GetARMGVSymbol(GV, TargetFlags: MI->getOperand(i: 1).getTargetFlags()), Ctx&: OutContext); |
1706 | } else if (MI->getOperand(i: 1).isSymbol()) { |
1707 | BranchTarget = MCSymbolRefExpr::create( |
1708 | Symbol: GetExternalSymbolSymbol(Sym: MI->getOperand(i: 1).getSymbolName()), |
1709 | Ctx&: OutContext); |
1710 | } else |
1711 | llvm_unreachable("Unhandled operand kind in Branch Future instruction" ); |
1712 | |
1713 | MCInst.addExpr(Val: BranchTarget); |
1714 | } |
1715 | |
1716 | if (Opc == ARM::t2BFic) { |
1717 | const MCExpr *ElseLabel = MCSymbolRefExpr::create( |
1718 | Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), FunctionNumber: getFunctionNumber(), |
1719 | LabelId: MI->getOperand(i: 2).getIndex(), Ctx&: OutContext), |
1720 | Ctx&: OutContext); |
1721 | MCInst.addExpr(Val: ElseLabel); |
1722 | MCInst.addImm(Val: MI->getOperand(i: 3).getImm()); |
1723 | } else { |
1724 | MCInst.addImm(Val: MI->getOperand(i: 2).getImm()) |
1725 | .addReg(Reg: MI->getOperand(i: 3).getReg()); |
1726 | } |
1727 | |
1728 | EmitToStreamer(S&: *OutStreamer, Inst: MCInst); |
1729 | return; |
1730 | } |
1731 | case ARM::t2BF_LabelPseudo: { |
1732 | // This is a pseudo op for a label used by a branch future instruction |
1733 | |
1734 | // Emit the label. |
1735 | OutStreamer->emitLabel(Symbol: getBFLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1736 | FunctionNumber: getFunctionNumber(), |
1737 | LabelId: MI->getOperand(i: 0).getIndex(), Ctx&: OutContext)); |
1738 | return; |
1739 | } |
1740 | case ARM::tPICADD: { |
1741 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1742 | // LPC0: |
1743 | // add r0, pc |
1744 | // This adds the address of LPC0 to r0. |
1745 | |
1746 | // Emit the label. |
1747 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1748 | FunctionNumber: getFunctionNumber(), |
1749 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1750 | |
1751 | // Form and emit the add. |
1752 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1753 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1754 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1755 | .addReg(Reg: ARM::PC) |
1756 | // Add predicate operands. |
1757 | .addImm(Val: ARMCC::AL) |
1758 | .addReg(Reg: 0)); |
1759 | return; |
1760 | } |
1761 | case ARM::PICADD: { |
1762 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1763 | // LPC0: |
1764 | // add r0, pc, r0 |
1765 | // This adds the address of LPC0 to r0. |
1766 | |
1767 | // Emit the label. |
1768 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1769 | FunctionNumber: getFunctionNumber(), |
1770 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1771 | |
1772 | // Form and emit the add. |
1773 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDrr) |
1774 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1775 | .addReg(Reg: ARM::PC) |
1776 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1777 | // Add predicate operands. |
1778 | .addImm(Val: MI->getOperand(i: 3).getImm()) |
1779 | .addReg(Reg: MI->getOperand(i: 4).getReg()) |
1780 | // Add 's' bit operand (always reg0 for this) |
1781 | .addReg(Reg: 0)); |
1782 | return; |
1783 | } |
1784 | case ARM::PICSTR: |
1785 | case ARM::PICSTRB: |
1786 | case ARM::PICSTRH: |
1787 | case ARM::PICLDR: |
1788 | case ARM::PICLDRB: |
1789 | case ARM::PICLDRH: |
1790 | case ARM::PICLDRSB: |
1791 | case ARM::PICLDRSH: { |
1792 | // This is a pseudo op for a label + instruction sequence, which looks like: |
1793 | // LPC0: |
1794 | // OP r0, [pc, r0] |
1795 | // The LCP0 label is referenced by a constant pool entry in order to get |
1796 | // a PC-relative address at the ldr instruction. |
1797 | |
1798 | // Emit the label. |
1799 | OutStreamer->emitLabel(Symbol: getPICLabel(Prefix: DL.getPrivateGlobalPrefix(), |
1800 | FunctionNumber: getFunctionNumber(), |
1801 | LabelId: MI->getOperand(i: 2).getImm(), Ctx&: OutContext)); |
1802 | |
1803 | // Form and emit the load |
1804 | unsigned Opcode; |
1805 | switch (MI->getOpcode()) { |
1806 | default: |
1807 | llvm_unreachable("Unexpected opcode!" ); |
1808 | case ARM::PICSTR: Opcode = ARM::STRrs; break; |
1809 | case ARM::PICSTRB: Opcode = ARM::STRBrs; break; |
1810 | case ARM::PICSTRH: Opcode = ARM::STRH; break; |
1811 | case ARM::PICLDR: Opcode = ARM::LDRrs; break; |
1812 | case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; |
1813 | case ARM::PICLDRH: Opcode = ARM::LDRH; break; |
1814 | case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; |
1815 | case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; |
1816 | } |
1817 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opcode) |
1818 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1819 | .addReg(Reg: ARM::PC) |
1820 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1821 | .addImm(Val: 0) |
1822 | // Add predicate operands. |
1823 | .addImm(Val: MI->getOperand(i: 3).getImm()) |
1824 | .addReg(Reg: MI->getOperand(i: 4).getReg())); |
1825 | |
1826 | return; |
1827 | } |
1828 | case ARM::CONSTPOOL_ENTRY: { |
1829 | if (Subtarget->genExecuteOnly()) |
1830 | llvm_unreachable("execute-only should not generate constant pools" ); |
1831 | |
1832 | /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool |
1833 | /// in the function. The first operand is the ID# for this instruction, the |
1834 | /// second is the index into the MachineConstantPool that this is, the third |
1835 | /// is the size in bytes of this constant pool entry. |
1836 | /// The required alignment is specified on the basic block holding this MI. |
1837 | unsigned LabelId = (unsigned)MI->getOperand(i: 0).getImm(); |
1838 | unsigned CPIdx = (unsigned)MI->getOperand(i: 1).getIndex(); |
1839 | |
1840 | // If this is the first entry of the pool, mark it. |
1841 | if (!InConstantPool) { |
1842 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegion); |
1843 | InConstantPool = true; |
1844 | } |
1845 | |
1846 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: LabelId)); |
1847 | |
1848 | const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; |
1849 | if (MCPE.isMachineConstantPoolEntry()) |
1850 | emitMachineConstantPoolValue(MCPV: MCPE.Val.MachineCPVal); |
1851 | else |
1852 | emitGlobalConstant(DL, CV: MCPE.Val.ConstVal); |
1853 | return; |
1854 | } |
1855 | case ARM::JUMPTABLE_ADDRS: |
1856 | emitJumpTableAddrs(MI); |
1857 | return; |
1858 | case ARM::JUMPTABLE_INSTS: |
1859 | emitJumpTableInsts(MI); |
1860 | return; |
1861 | case ARM::JUMPTABLE_TBB: |
1862 | case ARM::JUMPTABLE_TBH: |
1863 | emitJumpTableTBInst(MI, OffsetWidth: MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); |
1864 | return; |
1865 | case ARM::t2BR_JT: { |
1866 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
1867 | .addReg(Reg: ARM::PC) |
1868 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1869 | // Add predicate operands. |
1870 | .addImm(Val: ARMCC::AL) |
1871 | .addReg(Reg: 0)); |
1872 | return; |
1873 | } |
1874 | case ARM::t2TBB_JT: |
1875 | case ARM::t2TBH_JT: { |
1876 | unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; |
1877 | // Lower and emit the PC label, then the instruction itself. |
1878 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: MI->getOperand(i: 3).getImm())); |
1879 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1880 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
1881 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
1882 | // Add predicate operands. |
1883 | .addImm(Val: ARMCC::AL) |
1884 | .addReg(Reg: 0)); |
1885 | return; |
1886 | } |
1887 | case ARM::tTBB_JT: |
1888 | case ARM::tTBH_JT: { |
1889 | |
1890 | bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; |
1891 | Register Base = MI->getOperand(i: 0).getReg(); |
1892 | Register Idx = MI->getOperand(i: 1).getReg(); |
1893 | assert(MI->getOperand(1).isKill() && "We need the index register as scratch!" ); |
1894 | |
1895 | // Multiply up idx if necessary. |
1896 | if (!Is8Bit) |
1897 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLSLri) |
1898 | .addReg(Reg: Idx) |
1899 | .addReg(Reg: ARM::CPSR) |
1900 | .addReg(Reg: Idx) |
1901 | .addImm(Val: 1) |
1902 | // Add predicate operands. |
1903 | .addImm(Val: ARMCC::AL) |
1904 | .addReg(Reg: 0)); |
1905 | |
1906 | if (Base == ARM::PC) { |
1907 | // TBB [base, idx] = |
1908 | // ADDS idx, idx, base |
1909 | // LDRB idx, [idx, #4] ; or LDRH if TBH |
1910 | // LSLS idx, #1 |
1911 | // ADDS pc, pc, idx |
1912 | |
1913 | // When using PC as the base, it's important that there is no padding |
1914 | // between the last ADDS and the start of the jump table. The jump table |
1915 | // is 4-byte aligned, so we ensure we're 4 byte aligned here too. |
1916 | // |
1917 | // FIXME: Ideally we could vary the LDRB index based on the padding |
1918 | // between the sequence and jump table, however that relies on MCExprs |
1919 | // for load indexes which are currently not supported. |
1920 | OutStreamer->emitCodeAlignment(Alignment: Align(4), STI: &getSubtargetInfo()); |
1921 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1922 | .addReg(Reg: Idx) |
1923 | .addReg(Reg: Idx) |
1924 | .addReg(Reg: Base) |
1925 | // Add predicate operands. |
1926 | .addImm(Val: ARMCC::AL) |
1927 | .addReg(Reg: 0)); |
1928 | |
1929 | unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; |
1930 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1931 | .addReg(Reg: Idx) |
1932 | .addReg(Reg: Idx) |
1933 | .addImm(Val: Is8Bit ? 4 : 2) |
1934 | // Add predicate operands. |
1935 | .addImm(Val: ARMCC::AL) |
1936 | .addReg(Reg: 0)); |
1937 | } else { |
1938 | // TBB [base, idx] = |
1939 | // LDRB idx, [base, idx] ; or LDRH if TBH |
1940 | // LSLS idx, #1 |
1941 | // ADDS pc, pc, idx |
1942 | |
1943 | unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; |
1944 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(Opc) |
1945 | .addReg(Reg: Idx) |
1946 | .addReg(Reg: Base) |
1947 | .addReg(Reg: Idx) |
1948 | // Add predicate operands. |
1949 | .addImm(Val: ARMCC::AL) |
1950 | .addReg(Reg: 0)); |
1951 | } |
1952 | |
1953 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLSLri) |
1954 | .addReg(Reg: Idx) |
1955 | .addReg(Reg: ARM::CPSR) |
1956 | .addReg(Reg: Idx) |
1957 | .addImm(Val: 1) |
1958 | // Add predicate operands. |
1959 | .addImm(Val: ARMCC::AL) |
1960 | .addReg(Reg: 0)); |
1961 | |
1962 | OutStreamer->emitLabel(Symbol: GetCPISymbol(CPID: MI->getOperand(i: 3).getImm())); |
1963 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDhirr) |
1964 | .addReg(Reg: ARM::PC) |
1965 | .addReg(Reg: ARM::PC) |
1966 | .addReg(Reg: Idx) |
1967 | // Add predicate operands. |
1968 | .addImm(Val: ARMCC::AL) |
1969 | .addReg(Reg: 0)); |
1970 | return; |
1971 | } |
1972 | case ARM::tBR_JTr: |
1973 | case ARM::BR_JTr: { |
1974 | // mov pc, target |
1975 | MCInst TmpInst; |
1976 | unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? |
1977 | ARM::MOVr : ARM::tMOVr; |
1978 | TmpInst.setOpcode(Opc); |
1979 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
1980 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1981 | // Add predicate operands. |
1982 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1983 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1984 | // Add 's' bit operand (always reg0 for this) |
1985 | if (Opc == ARM::MOVr) |
1986 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
1987 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
1988 | return; |
1989 | } |
1990 | case ARM::BR_JTm_i12: { |
1991 | // ldr pc, target |
1992 | MCInst TmpInst; |
1993 | TmpInst.setOpcode(ARM::LDRi12); |
1994 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
1995 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
1996 | TmpInst.addOperand(Op: MCOperand::createImm(Val: MI->getOperand(i: 2).getImm())); |
1997 | // Add predicate operands. |
1998 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
1999 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2000 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
2001 | return; |
2002 | } |
2003 | case ARM::BR_JTm_rs: { |
2004 | // ldr pc, target |
2005 | MCInst TmpInst; |
2006 | TmpInst.setOpcode(ARM::LDRrs); |
2007 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::PC)); |
2008 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 0).getReg())); |
2009 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: MI->getOperand(i: 1).getReg())); |
2010 | TmpInst.addOperand(Op: MCOperand::createImm(Val: MI->getOperand(i: 2).getImm())); |
2011 | // Add predicate operands. |
2012 | TmpInst.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
2013 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2014 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
2015 | return; |
2016 | } |
2017 | case ARM::BR_JTadd: { |
2018 | // add pc, target, idx |
2019 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDrr) |
2020 | .addReg(Reg: ARM::PC) |
2021 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
2022 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
2023 | // Add predicate operands. |
2024 | .addImm(Val: ARMCC::AL) |
2025 | .addReg(Reg: 0) |
2026 | // Add 's' bit operand (always reg0 for this) |
2027 | .addReg(Reg: 0)); |
2028 | return; |
2029 | } |
2030 | case ARM::SPACE: |
2031 | OutStreamer->emitZeros(NumBytes: MI->getOperand(i: 1).getImm()); |
2032 | return; |
2033 | case ARM::TRAP: { |
2034 | // Non-Darwin binutils don't yet support the "trap" mnemonic. |
2035 | // FIXME: Remove this special case when they do. |
2036 | if (!Subtarget->isTargetMachO()) { |
2037 | uint32_t Val = 0xe7ffdefeUL; |
2038 | OutStreamer->AddComment(T: "trap" ); |
2039 | ATS.emitInst(Inst: Val); |
2040 | return; |
2041 | } |
2042 | break; |
2043 | } |
2044 | case ARM::TRAPNaCl: { |
2045 | uint32_t Val = 0xe7fedef0UL; |
2046 | OutStreamer->AddComment(T: "trap" ); |
2047 | ATS.emitInst(Inst: Val); |
2048 | return; |
2049 | } |
2050 | case ARM::tTRAP: { |
2051 | // Non-Darwin binutils don't yet support the "trap" mnemonic. |
2052 | // FIXME: Remove this special case when they do. |
2053 | if (!Subtarget->isTargetMachO()) { |
2054 | uint16_t Val = 0xdefe; |
2055 | OutStreamer->AddComment(T: "trap" ); |
2056 | ATS.emitInst(Inst: Val, Suffix: 'n'); |
2057 | return; |
2058 | } |
2059 | break; |
2060 | } |
2061 | case ARM::t2Int_eh_sjlj_setjmp: |
2062 | case ARM::t2Int_eh_sjlj_setjmp_nofp: |
2063 | case ARM::tInt_eh_sjlj_setjmp: { |
2064 | // Two incoming args: GPR:$src, GPR:$val |
2065 | // mov $val, pc |
2066 | // adds $val, #7 |
2067 | // str $val, [$src, #4] |
2068 | // movs r0, #0 |
2069 | // b LSJLJEH |
2070 | // movs r0, #1 |
2071 | // LSJLJEH: |
2072 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2073 | Register ValReg = MI->getOperand(i: 1).getReg(); |
2074 | MCSymbol *Label = OutContext.createTempSymbol(Name: "SJLJEH" ); |
2075 | OutStreamer->AddComment(T: "eh_setjmp begin" ); |
2076 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
2077 | .addReg(Reg: ValReg) |
2078 | .addReg(Reg: ARM::PC) |
2079 | // Predicate. |
2080 | .addImm(Val: ARMCC::AL) |
2081 | .addReg(Reg: 0)); |
2082 | |
2083 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tADDi3) |
2084 | .addReg(Reg: ValReg) |
2085 | // 's' bit operand |
2086 | .addReg(Reg: ARM::CPSR) |
2087 | .addReg(Reg: ValReg) |
2088 | .addImm(Val: 7) |
2089 | // Predicate. |
2090 | .addImm(Val: ARMCC::AL) |
2091 | .addReg(Reg: 0)); |
2092 | |
2093 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tSTRi) |
2094 | .addReg(Reg: ValReg) |
2095 | .addReg(Reg: SrcReg) |
2096 | // The offset immediate is #4. The operand value is scaled by 4 for the |
2097 | // tSTR instruction. |
2098 | .addImm(Val: 1) |
2099 | // Predicate. |
2100 | .addImm(Val: ARMCC::AL) |
2101 | .addReg(Reg: 0)); |
2102 | |
2103 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVi8) |
2104 | .addReg(Reg: ARM::R0) |
2105 | .addReg(Reg: ARM::CPSR) |
2106 | .addImm(Val: 0) |
2107 | // Predicate. |
2108 | .addImm(Val: ARMCC::AL) |
2109 | .addReg(Reg: 0)); |
2110 | |
2111 | const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Symbol: Label, Ctx&: OutContext); |
2112 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tB) |
2113 | .addExpr(Val: SymbolExpr) |
2114 | .addImm(Val: ARMCC::AL) |
2115 | .addReg(Reg: 0)); |
2116 | |
2117 | OutStreamer->AddComment(T: "eh_setjmp end" ); |
2118 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVi8) |
2119 | .addReg(Reg: ARM::R0) |
2120 | .addReg(Reg: ARM::CPSR) |
2121 | .addImm(Val: 1) |
2122 | // Predicate. |
2123 | .addImm(Val: ARMCC::AL) |
2124 | .addReg(Reg: 0)); |
2125 | |
2126 | OutStreamer->emitLabel(Symbol: Label); |
2127 | return; |
2128 | } |
2129 | |
2130 | case ARM::Int_eh_sjlj_setjmp_nofp: |
2131 | case ARM::Int_eh_sjlj_setjmp: { |
2132 | // Two incoming args: GPR:$src, GPR:$val |
2133 | // add $val, pc, #8 |
2134 | // str $val, [$src, #+4] |
2135 | // mov r0, #0 |
2136 | // add pc, pc, #0 |
2137 | // mov r0, #1 |
2138 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2139 | Register ValReg = MI->getOperand(i: 1).getReg(); |
2140 | |
2141 | OutStreamer->AddComment(T: "eh_setjmp begin" ); |
2142 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDri) |
2143 | .addReg(Reg: ValReg) |
2144 | .addReg(Reg: ARM::PC) |
2145 | .addImm(Val: 8) |
2146 | // Predicate. |
2147 | .addImm(Val: ARMCC::AL) |
2148 | .addReg(Reg: 0) |
2149 | // 's' bit operand (always reg0 for this). |
2150 | .addReg(Reg: 0)); |
2151 | |
2152 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::STRi12) |
2153 | .addReg(Reg: ValReg) |
2154 | .addReg(Reg: SrcReg) |
2155 | .addImm(Val: 4) |
2156 | // Predicate. |
2157 | .addImm(Val: ARMCC::AL) |
2158 | .addReg(Reg: 0)); |
2159 | |
2160 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVi) |
2161 | .addReg(Reg: ARM::R0) |
2162 | .addImm(Val: 0) |
2163 | // Predicate. |
2164 | .addImm(Val: ARMCC::AL) |
2165 | .addReg(Reg: 0) |
2166 | // 's' bit operand (always reg0 for this). |
2167 | .addReg(Reg: 0)); |
2168 | |
2169 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::ADDri) |
2170 | .addReg(Reg: ARM::PC) |
2171 | .addReg(Reg: ARM::PC) |
2172 | .addImm(Val: 0) |
2173 | // Predicate. |
2174 | .addImm(Val: ARMCC::AL) |
2175 | .addReg(Reg: 0) |
2176 | // 's' bit operand (always reg0 for this). |
2177 | .addReg(Reg: 0)); |
2178 | |
2179 | OutStreamer->AddComment(T: "eh_setjmp end" ); |
2180 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::MOVi) |
2181 | .addReg(Reg: ARM::R0) |
2182 | .addImm(Val: 1) |
2183 | // Predicate. |
2184 | .addImm(Val: ARMCC::AL) |
2185 | .addReg(Reg: 0) |
2186 | // 's' bit operand (always reg0 for this). |
2187 | .addReg(Reg: 0)); |
2188 | return; |
2189 | } |
2190 | case ARM::Int_eh_sjlj_longjmp: { |
2191 | // ldr sp, [$src, #8] |
2192 | // ldr $scratch, [$src, #4] |
2193 | // ldr r7, [$src] |
2194 | // bx $scratch |
2195 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2196 | Register ScratchReg = MI->getOperand(i: 1).getReg(); |
2197 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2198 | .addReg(Reg: ARM::SP) |
2199 | .addReg(Reg: SrcReg) |
2200 | .addImm(Val: 8) |
2201 | // Predicate. |
2202 | .addImm(Val: ARMCC::AL) |
2203 | .addReg(Reg: 0)); |
2204 | |
2205 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2206 | .addReg(Reg: ScratchReg) |
2207 | .addReg(Reg: SrcReg) |
2208 | .addImm(Val: 4) |
2209 | // Predicate. |
2210 | .addImm(Val: ARMCC::AL) |
2211 | .addReg(Reg: 0)); |
2212 | |
2213 | const MachineFunction &MF = *MI->getParent()->getParent(); |
2214 | const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
2215 | |
2216 | if (STI.isTargetDarwin() || STI.isTargetWindows()) { |
2217 | // These platforms always use the same frame register |
2218 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2219 | .addReg(Reg: STI.getFramePointerReg()) |
2220 | .addReg(Reg: SrcReg) |
2221 | .addImm(Val: 0) |
2222 | // Predicate. |
2223 | .addImm(Val: ARMCC::AL) |
2224 | .addReg(Reg: 0)); |
2225 | } else { |
2226 | // If the calling code might use either R7 or R11 as |
2227 | // frame pointer register, restore it into both. |
2228 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2229 | .addReg(Reg: ARM::R7) |
2230 | .addReg(Reg: SrcReg) |
2231 | .addImm(Val: 0) |
2232 | // Predicate. |
2233 | .addImm(Val: ARMCC::AL) |
2234 | .addReg(Reg: 0)); |
2235 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::LDRi12) |
2236 | .addReg(Reg: ARM::R11) |
2237 | .addReg(Reg: SrcReg) |
2238 | .addImm(Val: 0) |
2239 | // Predicate. |
2240 | .addImm(Val: ARMCC::AL) |
2241 | .addReg(Reg: 0)); |
2242 | } |
2243 | |
2244 | assert(Subtarget->hasV4TOps()); |
2245 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::BX) |
2246 | .addReg(Reg: ScratchReg) |
2247 | // Predicate. |
2248 | .addImm(Val: ARMCC::AL) |
2249 | .addReg(Reg: 0)); |
2250 | return; |
2251 | } |
2252 | case ARM::tInt_eh_sjlj_longjmp: { |
2253 | // ldr $scratch, [$src, #8] |
2254 | // mov sp, $scratch |
2255 | // ldr $scratch, [$src, #4] |
2256 | // ldr r7, [$src] |
2257 | // bx $scratch |
2258 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2259 | Register ScratchReg = MI->getOperand(i: 1).getReg(); |
2260 | |
2261 | const MachineFunction &MF = *MI->getParent()->getParent(); |
2262 | const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
2263 | |
2264 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2265 | .addReg(Reg: ScratchReg) |
2266 | .addReg(Reg: SrcReg) |
2267 | // The offset immediate is #8. The operand value is scaled by 4 for the |
2268 | // tLDR instruction. |
2269 | .addImm(Val: 2) |
2270 | // Predicate. |
2271 | .addImm(Val: ARMCC::AL) |
2272 | .addReg(Reg: 0)); |
2273 | |
2274 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tMOVr) |
2275 | .addReg(Reg: ARM::SP) |
2276 | .addReg(Reg: ScratchReg) |
2277 | // Predicate. |
2278 | .addImm(Val: ARMCC::AL) |
2279 | .addReg(Reg: 0)); |
2280 | |
2281 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2282 | .addReg(Reg: ScratchReg) |
2283 | .addReg(Reg: SrcReg) |
2284 | .addImm(Val: 1) |
2285 | // Predicate. |
2286 | .addImm(Val: ARMCC::AL) |
2287 | .addReg(Reg: 0)); |
2288 | |
2289 | if (STI.isTargetDarwin() || STI.isTargetWindows()) { |
2290 | // These platforms always use the same frame register |
2291 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2292 | .addReg(Reg: STI.getFramePointerReg()) |
2293 | .addReg(Reg: SrcReg) |
2294 | .addImm(Val: 0) |
2295 | // Predicate. |
2296 | .addImm(Val: ARMCC::AL) |
2297 | .addReg(Reg: 0)); |
2298 | } else { |
2299 | // If the calling code might use either R7 or R11 as |
2300 | // frame pointer register, restore it into both. |
2301 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2302 | .addReg(Reg: ARM::R7) |
2303 | .addReg(Reg: SrcReg) |
2304 | .addImm(Val: 0) |
2305 | // Predicate. |
2306 | .addImm(Val: ARMCC::AL) |
2307 | .addReg(Reg: 0)); |
2308 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tLDRi) |
2309 | .addReg(Reg: ARM::R11) |
2310 | .addReg(Reg: SrcReg) |
2311 | .addImm(Val: 0) |
2312 | // Predicate. |
2313 | .addImm(Val: ARMCC::AL) |
2314 | .addReg(Reg: 0)); |
2315 | } |
2316 | |
2317 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::tBX) |
2318 | .addReg(Reg: ScratchReg) |
2319 | // Predicate. |
2320 | .addImm(Val: ARMCC::AL) |
2321 | .addReg(Reg: 0)); |
2322 | return; |
2323 | } |
2324 | case ARM::tInt_WIN_eh_sjlj_longjmp: { |
2325 | // ldr.w r11, [$src, #0] |
2326 | // ldr.w sp, [$src, #8] |
2327 | // ldr.w pc, [$src, #4] |
2328 | |
2329 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
2330 | |
2331 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2332 | .addReg(Reg: ARM::R11) |
2333 | .addReg(Reg: SrcReg) |
2334 | .addImm(Val: 0) |
2335 | // Predicate |
2336 | .addImm(Val: ARMCC::AL) |
2337 | .addReg(Reg: 0)); |
2338 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2339 | .addReg(Reg: ARM::SP) |
2340 | .addReg(Reg: SrcReg) |
2341 | .addImm(Val: 8) |
2342 | // Predicate |
2343 | .addImm(Val: ARMCC::AL) |
2344 | .addReg(Reg: 0)); |
2345 | EmitToStreamer(S&: *OutStreamer, Inst: MCInstBuilder(ARM::t2LDRi12) |
2346 | .addReg(Reg: ARM::PC) |
2347 | .addReg(Reg: SrcReg) |
2348 | .addImm(Val: 4) |
2349 | // Predicate |
2350 | .addImm(Val: ARMCC::AL) |
2351 | .addReg(Reg: 0)); |
2352 | return; |
2353 | } |
2354 | case ARM::PATCHABLE_FUNCTION_ENTER: |
2355 | LowerPATCHABLE_FUNCTION_ENTER(MI: *MI); |
2356 | return; |
2357 | case ARM::PATCHABLE_FUNCTION_EXIT: |
2358 | LowerPATCHABLE_FUNCTION_EXIT(MI: *MI); |
2359 | return; |
2360 | case ARM::PATCHABLE_TAIL_CALL: |
2361 | LowerPATCHABLE_TAIL_CALL(MI: *MI); |
2362 | return; |
2363 | case ARM::SpeculationBarrierISBDSBEndBB: { |
2364 | // Print DSB SYS + ISB |
2365 | MCInst TmpInstDSB; |
2366 | TmpInstDSB.setOpcode(ARM::DSB); |
2367 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2368 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstDSB); |
2369 | MCInst TmpInstISB; |
2370 | TmpInstISB.setOpcode(ARM::ISB); |
2371 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2372 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstISB); |
2373 | return; |
2374 | } |
2375 | case ARM::t2SpeculationBarrierISBDSBEndBB: { |
2376 | // Print DSB SYS + ISB |
2377 | MCInst TmpInstDSB; |
2378 | TmpInstDSB.setOpcode(ARM::t2DSB); |
2379 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2380 | TmpInstDSB.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
2381 | TmpInstDSB.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2382 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstDSB); |
2383 | MCInst TmpInstISB; |
2384 | TmpInstISB.setOpcode(ARM::t2ISB); |
2385 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: 0xf)); |
2386 | TmpInstISB.addOperand(Op: MCOperand::createImm(Val: ARMCC::AL)); |
2387 | TmpInstISB.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2388 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstISB); |
2389 | return; |
2390 | } |
2391 | case ARM::SpeculationBarrierSBEndBB: { |
2392 | // Print SB |
2393 | MCInst TmpInstSB; |
2394 | TmpInstSB.setOpcode(ARM::SB); |
2395 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstSB); |
2396 | return; |
2397 | } |
2398 | case ARM::t2SpeculationBarrierSBEndBB: { |
2399 | // Print SB |
2400 | MCInst TmpInstSB; |
2401 | TmpInstSB.setOpcode(ARM::t2SB); |
2402 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInstSB); |
2403 | return; |
2404 | } |
2405 | |
2406 | case ARM::SEH_StackAlloc: |
2407 | ATS.emitARMWinCFIAllocStack(Size: MI->getOperand(i: 0).getImm(), |
2408 | Wide: MI->getOperand(i: 1).getImm()); |
2409 | return; |
2410 | |
2411 | case ARM::SEH_SaveRegs: |
2412 | case ARM::SEH_SaveRegs_Ret: |
2413 | ATS.emitARMWinCFISaveRegMask(Mask: MI->getOperand(i: 0).getImm(), |
2414 | Wide: MI->getOperand(i: 1).getImm()); |
2415 | return; |
2416 | |
2417 | case ARM::SEH_SaveSP: |
2418 | ATS.emitARMWinCFISaveSP(Reg: MI->getOperand(i: 0).getImm()); |
2419 | return; |
2420 | |
2421 | case ARM::SEH_SaveFRegs: |
2422 | ATS.emitARMWinCFISaveFRegs(First: MI->getOperand(i: 0).getImm(), |
2423 | Last: MI->getOperand(i: 1).getImm()); |
2424 | return; |
2425 | |
2426 | case ARM::SEH_SaveLR: |
2427 | ATS.emitARMWinCFISaveLR(Offset: MI->getOperand(i: 0).getImm()); |
2428 | return; |
2429 | |
2430 | case ARM::SEH_Nop: |
2431 | case ARM::SEH_Nop_Ret: |
2432 | ATS.emitARMWinCFINop(Wide: MI->getOperand(i: 0).getImm()); |
2433 | return; |
2434 | |
2435 | case ARM::SEH_PrologEnd: |
2436 | ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); |
2437 | return; |
2438 | |
2439 | case ARM::SEH_EpilogStart: |
2440 | ATS.emitARMWinCFIEpilogStart(Condition: ARMCC::AL); |
2441 | return; |
2442 | |
2443 | case ARM::SEH_EpilogEnd: |
2444 | ATS.emitARMWinCFIEpilogEnd(); |
2445 | return; |
2446 | } |
2447 | |
2448 | MCInst TmpInst; |
2449 | LowerARMMachineInstrToMCInst(MI, OutMI&: TmpInst, AP&: *this); |
2450 | |
2451 | EmitToStreamer(S&: *OutStreamer, Inst: TmpInst); |
2452 | } |
2453 | |
2454 | char ARMAsmPrinter::ID = 0; |
2455 | |
2456 | INITIALIZE_PASS(ARMAsmPrinter, "arm-asm-printer" , "ARM Assembly Printer" , false, |
2457 | false) |
2458 | |
2459 | //===----------------------------------------------------------------------===// |
2460 | // Target Registry Stuff |
2461 | //===----------------------------------------------------------------------===// |
2462 | |
2463 | // Force static initialization. |
2464 | extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void |
2465 | LLVMInitializeARMAsmPrinter() { |
2466 | RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); |
2467 | RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); |
2468 | RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); |
2469 | RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); |
2470 | } |
2471 | |