1 | //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ARMBaseInstrInfo.h" |
10 | #include "ARMFeatures.h" |
11 | #include "MCTargetDesc/ARMAddressingModes.h" |
12 | #include "MCTargetDesc/ARMBaseInfo.h" |
13 | #include "MCTargetDesc/ARMInstPrinter.h" |
14 | #include "MCTargetDesc/ARMMCAsmInfo.h" |
15 | #include "MCTargetDesc/ARMMCTargetDesc.h" |
16 | #include "TargetInfo/ARMTargetInfo.h" |
17 | #include "Utils/ARMBaseInfo.h" |
18 | #include "llvm/ADT/APFloat.h" |
19 | #include "llvm/ADT/APInt.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/SmallBitVector.h" |
22 | #include "llvm/ADT/SmallSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/StringMap.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include "llvm/ADT/StringSet.h" |
27 | #include "llvm/ADT/StringSwitch.h" |
28 | #include "llvm/ADT/Twine.h" |
29 | #include "llvm/MC/MCContext.h" |
30 | #include "llvm/MC/MCExpr.h" |
31 | #include "llvm/MC/MCInst.h" |
32 | #include "llvm/MC/MCInstrDesc.h" |
33 | #include "llvm/MC/MCInstrInfo.h" |
34 | #include "llvm/MC/MCParser/AsmLexer.h" |
35 | #include "llvm/MC/MCParser/MCAsmParser.h" |
36 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
37 | #include "llvm/MC/MCParser/MCAsmParserUtils.h" |
38 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
39 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
40 | #include "llvm/MC/MCRegisterInfo.h" |
41 | #include "llvm/MC/MCSection.h" |
42 | #include "llvm/MC/MCStreamer.h" |
43 | #include "llvm/MC/MCSubtargetInfo.h" |
44 | #include "llvm/MC/MCSymbol.h" |
45 | #include "llvm/MC/TargetRegistry.h" |
46 | #include "llvm/Support/ARMBuildAttributes.h" |
47 | #include "llvm/Support/ARMEHABI.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Compiler.h" |
51 | #include "llvm/Support/Debug.h" |
52 | #include "llvm/Support/ErrorHandling.h" |
53 | #include "llvm/Support/MathExtras.h" |
54 | #include "llvm/Support/SMLoc.h" |
55 | #include "llvm/Support/raw_ostream.h" |
56 | #include "llvm/TargetParser/SubtargetFeature.h" |
57 | #include "llvm/TargetParser/TargetParser.h" |
58 | #include <algorithm> |
59 | #include <cassert> |
60 | #include <cstddef> |
61 | #include <cstdint> |
62 | #include <iterator> |
63 | #include <limits> |
64 | #include <memory> |
65 | #include <optional> |
66 | #include <string> |
67 | #include <utility> |
68 | #include <vector> |
69 | |
70 | #define DEBUG_TYPE "asm-parser" |
71 | |
72 | using namespace llvm; |
73 | |
74 | namespace { |
75 | class ARMOperand; |
76 | |
77 | enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; |
78 | |
79 | static cl::opt<ImplicitItModeTy> ImplicitItMode( |
80 | "arm-implicit-it" , cl::init(Val: ImplicitItModeTy::ARMOnly), |
81 | cl::desc("Allow conditional instructions outside of an IT block" ), |
82 | cl::values(clEnumValN(ImplicitItModeTy::Always, "always" , |
83 | "Accept in both ISAs, emit implicit ITs in Thumb" ), |
84 | clEnumValN(ImplicitItModeTy::Never, "never" , |
85 | "Warn in ARM, reject in Thumb" ), |
86 | clEnumValN(ImplicitItModeTy::ARMOnly, "arm" , |
87 | "Accept in ARM, reject in Thumb" ), |
88 | clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb" , |
89 | "Warn in ARM, emit implicit ITs in Thumb" ))); |
90 | |
91 | static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes" , |
92 | cl::init(Val: false)); |
93 | |
94 | enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; |
95 | |
96 | static inline unsigned (unsigned Mask, unsigned Position) { |
97 | // Position==0 means we're not in an IT block at all. Position==1 |
98 | // means we want the first state bit, which is always 0 (Then). |
99 | // Position==2 means we want the second state bit, stored at bit 3 |
100 | // of Mask, and so on downwards. So (5 - Position) will shift the |
101 | // right bit down to bit 0, including the always-0 bit at bit 4 for |
102 | // the mandatory initial Then. |
103 | return (Mask >> (5 - Position) & 1); |
104 | } |
105 | |
106 | class UnwindContext { |
107 | using Locs = SmallVector<SMLoc, 4>; |
108 | |
109 | MCAsmParser &Parser; |
110 | Locs FnStartLocs; |
111 | Locs CantUnwindLocs; |
112 | Locs PersonalityLocs; |
113 | Locs PersonalityIndexLocs; |
114 | Locs HandlerDataLocs; |
115 | MCRegister FPReg; |
116 | |
117 | public: |
118 | UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} |
119 | |
120 | bool hasFnStart() const { return !FnStartLocs.empty(); } |
121 | bool cantUnwind() const { return !CantUnwindLocs.empty(); } |
122 | bool hasHandlerData() const { return !HandlerDataLocs.empty(); } |
123 | |
124 | bool hasPersonality() const { |
125 | return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); |
126 | } |
127 | |
128 | void recordFnStart(SMLoc L) { FnStartLocs.push_back(Elt: L); } |
129 | void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(Elt: L); } |
130 | void recordPersonality(SMLoc L) { PersonalityLocs.push_back(Elt: L); } |
131 | void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(Elt: L); } |
132 | void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(Elt: L); } |
133 | |
134 | void saveFPReg(MCRegister Reg) { FPReg = Reg; } |
135 | MCRegister getFPReg() const { return FPReg; } |
136 | |
137 | void emitFnStartLocNotes() const { |
138 | for (const SMLoc &Loc : FnStartLocs) |
139 | Parser.Note(L: Loc, Msg: ".fnstart was specified here" ); |
140 | } |
141 | |
142 | void emitCantUnwindLocNotes() const { |
143 | for (const SMLoc &Loc : CantUnwindLocs) |
144 | Parser.Note(L: Loc, Msg: ".cantunwind was specified here" ); |
145 | } |
146 | |
147 | void emitHandlerDataLocNotes() const { |
148 | for (const SMLoc &Loc : HandlerDataLocs) |
149 | Parser.Note(L: Loc, Msg: ".handlerdata was specified here" ); |
150 | } |
151 | |
152 | void emitPersonalityLocNotes() const { |
153 | for (Locs::const_iterator PI = PersonalityLocs.begin(), |
154 | PE = PersonalityLocs.end(), |
155 | PII = PersonalityIndexLocs.begin(), |
156 | PIE = PersonalityIndexLocs.end(); |
157 | PI != PE || PII != PIE;) { |
158 | if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) |
159 | Parser.Note(L: *PI++, Msg: ".personality was specified here" ); |
160 | else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) |
161 | Parser.Note(L: *PII++, Msg: ".personalityindex was specified here" ); |
162 | else |
163 | llvm_unreachable(".personality and .personalityindex cannot be " |
164 | "at the same location" ); |
165 | } |
166 | } |
167 | |
168 | void reset() { |
169 | FnStartLocs = Locs(); |
170 | CantUnwindLocs = Locs(); |
171 | PersonalityLocs = Locs(); |
172 | HandlerDataLocs = Locs(); |
173 | PersonalityIndexLocs = Locs(); |
174 | FPReg = ARM::SP; |
175 | } |
176 | }; |
177 | |
178 | // Various sets of ARM instruction mnemonics which are used by the asm parser |
179 | class ARMMnemonicSets { |
180 | StringSet<> CDE; |
181 | StringSet<> CDEWithVPTSuffix; |
182 | public: |
183 | ARMMnemonicSets(const MCSubtargetInfo &STI); |
184 | |
185 | /// Returns true iff a given mnemonic is a CDE instruction |
186 | bool isCDEInstr(StringRef Mnemonic) { |
187 | // Quick check before searching the set |
188 | if (!Mnemonic.starts_with(Prefix: "cx" ) && !Mnemonic.starts_with(Prefix: "vcx" )) |
189 | return false; |
190 | return CDE.count(Key: Mnemonic); |
191 | } |
192 | |
193 | /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction |
194 | /// (possibly with a predication suffix "e" or "t") |
195 | bool isVPTPredicableCDEInstr(StringRef Mnemonic) { |
196 | if (!Mnemonic.starts_with(Prefix: "vcx" )) |
197 | return false; |
198 | return CDEWithVPTSuffix.count(Key: Mnemonic); |
199 | } |
200 | |
201 | /// Returns true iff a given mnemonic is an IT-predicable CDE instruction |
202 | /// (possibly with a condition suffix) |
203 | bool isITPredicableCDEInstr(StringRef Mnemonic) { |
204 | if (!Mnemonic.starts_with(Prefix: "cx" )) |
205 | return false; |
206 | return Mnemonic.starts_with(Prefix: "cx1a" ) || Mnemonic.starts_with(Prefix: "cx1da" ) || |
207 | Mnemonic.starts_with(Prefix: "cx2a" ) || Mnemonic.starts_with(Prefix: "cx2da" ) || |
208 | Mnemonic.starts_with(Prefix: "cx3a" ) || Mnemonic.starts_with(Prefix: "cx3da" ); |
209 | } |
210 | |
211 | /// Return true iff a given mnemonic is an integer CDE instruction with |
212 | /// dual-register destination |
213 | bool isCDEDualRegInstr(StringRef Mnemonic) { |
214 | if (!Mnemonic.starts_with(Prefix: "cx" )) |
215 | return false; |
216 | return Mnemonic == "cx1d" || Mnemonic == "cx1da" || |
217 | Mnemonic == "cx2d" || Mnemonic == "cx2da" || |
218 | Mnemonic == "cx3d" || Mnemonic == "cx3da" ; |
219 | } |
220 | }; |
221 | |
222 | ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { |
223 | for (StringRef Mnemonic: { "cx1" , "cx1a" , "cx1d" , "cx1da" , |
224 | "cx2" , "cx2a" , "cx2d" , "cx2da" , |
225 | "cx3" , "cx3a" , "cx3d" , "cx3da" , }) |
226 | CDE.insert(key: Mnemonic); |
227 | for (StringRef Mnemonic : |
228 | {"vcx1" , "vcx1a" , "vcx2" , "vcx2a" , "vcx3" , "vcx3a" }) { |
229 | CDE.insert(key: Mnemonic); |
230 | CDEWithVPTSuffix.insert(key: Mnemonic); |
231 | CDEWithVPTSuffix.insert(key: std::string(Mnemonic) + "t" ); |
232 | CDEWithVPTSuffix.insert(key: std::string(Mnemonic) + "e" ); |
233 | } |
234 | } |
235 | |
236 | class ARMAsmParser : public MCTargetAsmParser { |
237 | const MCRegisterInfo *MRI; |
238 | UnwindContext UC; |
239 | ARMMnemonicSets MS; |
240 | |
241 | ARMTargetStreamer &getTargetStreamer() { |
242 | assert(getParser().getStreamer().getTargetStreamer() && |
243 | "do not have a target streamer" ); |
244 | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
245 | return static_cast<ARMTargetStreamer &>(TS); |
246 | } |
247 | |
248 | // Map of register aliases registers via the .req directive. |
249 | StringMap<MCRegister> RegisterReqs; |
250 | |
251 | bool NextSymbolIsThumb; |
252 | |
253 | bool useImplicitITThumb() const { |
254 | return ImplicitItMode == ImplicitItModeTy::Always || |
255 | ImplicitItMode == ImplicitItModeTy::ThumbOnly; |
256 | } |
257 | |
258 | bool useImplicitITARM() const { |
259 | return ImplicitItMode == ImplicitItModeTy::Always || |
260 | ImplicitItMode == ImplicitItModeTy::ARMOnly; |
261 | } |
262 | |
263 | struct { |
264 | ARMCC::CondCodes Cond; // Condition for IT block. |
265 | unsigned Mask:4; // Condition mask for instructions. |
266 | // Starting at first 1 (from lsb). |
267 | // '1' condition as indicated in IT. |
268 | // '0' inverse of condition (else). |
269 | // Count of instructions in IT block is |
270 | // 4 - trailingzeroes(mask) |
271 | // Note that this does not have the same encoding |
272 | // as in the IT instruction, which also depends |
273 | // on the low bit of the condition code. |
274 | |
275 | unsigned CurPosition; // Current position in parsing of IT |
276 | // block. In range [0,4], with 0 being the IT |
277 | // instruction itself. Initialized according to |
278 | // count of instructions in block. ~0U if no |
279 | // active IT block. |
280 | |
281 | bool IsExplicit; // true - The IT instruction was present in the |
282 | // input, we should not modify it. |
283 | // false - The IT instruction was added |
284 | // implicitly, we can extend it if that |
285 | // would be legal. |
286 | } ITState; |
287 | |
288 | SmallVector<MCInst, 4> PendingConditionalInsts; |
289 | |
290 | void onEndOfFile() override { |
291 | flushPendingInstructions(Out&: getParser().getStreamer()); |
292 | } |
293 | |
294 | void flushPendingInstructions(MCStreamer &Out) override { |
295 | if (!inImplicitITBlock()) { |
296 | assert(PendingConditionalInsts.size() == 0); |
297 | return; |
298 | } |
299 | |
300 | // Emit the IT instruction |
301 | MCInst ITInst; |
302 | ITInst.setOpcode(ARM::t2IT); |
303 | ITInst.addOperand(Op: MCOperand::createImm(Val: ITState.Cond)); |
304 | ITInst.addOperand(Op: MCOperand::createImm(Val: ITState.Mask)); |
305 | Out.emitInstruction(Inst: ITInst, STI: getSTI()); |
306 | |
307 | // Emit the conditional instructions |
308 | assert(PendingConditionalInsts.size() <= 4); |
309 | for (const MCInst &Inst : PendingConditionalInsts) { |
310 | Out.emitInstruction(Inst, STI: getSTI()); |
311 | } |
312 | PendingConditionalInsts.clear(); |
313 | |
314 | // Clear the IT state |
315 | ITState.Mask = 0; |
316 | ITState.CurPosition = ~0U; |
317 | } |
318 | |
319 | bool inITBlock() { return ITState.CurPosition != ~0U; } |
320 | bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } |
321 | bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } |
322 | |
323 | bool lastInITBlock() { |
324 | return ITState.CurPosition == 4 - (unsigned)llvm::countr_zero(Val: ITState.Mask); |
325 | } |
326 | |
327 | void forwardITPosition() { |
328 | if (!inITBlock()) return; |
329 | // Move to the next instruction in the IT block, if there is one. If not, |
330 | // mark the block as done, except for implicit IT blocks, which we leave |
331 | // open until we find an instruction that can't be added to it. |
332 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
333 | if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) |
334 | ITState.CurPosition = ~0U; // Done with the IT block after this. |
335 | } |
336 | |
337 | // Rewind the state of the current IT block, removing the last slot from it. |
338 | void rewindImplicitITPosition() { |
339 | assert(inImplicitITBlock()); |
340 | assert(ITState.CurPosition > 1); |
341 | ITState.CurPosition--; |
342 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
343 | unsigned NewMask = 0; |
344 | NewMask |= ITState.Mask & (0xC << TZ); |
345 | NewMask |= 0x2 << TZ; |
346 | ITState.Mask = NewMask; |
347 | } |
348 | |
349 | // Rewind the state of the current IT block, removing the last slot from it. |
350 | // If we were at the first slot, this closes the IT block. |
351 | void discardImplicitITBlock() { |
352 | assert(inImplicitITBlock()); |
353 | assert(ITState.CurPosition == 1); |
354 | ITState.CurPosition = ~0U; |
355 | } |
356 | |
357 | // Get the condition code corresponding to the current IT block slot. |
358 | ARMCC::CondCodes currentITCond() { |
359 | unsigned MaskBit = extractITMaskBit(Mask: ITState.Mask, Position: ITState.CurPosition); |
360 | return MaskBit ? ARMCC::getOppositeCondition(CC: ITState.Cond) : ITState.Cond; |
361 | } |
362 | |
363 | // Invert the condition of the current IT block slot without changing any |
364 | // other slots in the same block. |
365 | void invertCurrentITCondition() { |
366 | if (ITState.CurPosition == 1) { |
367 | ITState.Cond = ARMCC::getOppositeCondition(CC: ITState.Cond); |
368 | } else { |
369 | ITState.Mask ^= 1 << (5 - ITState.CurPosition); |
370 | } |
371 | } |
372 | |
373 | // Returns true if the current IT block is full (all 4 slots used). |
374 | bool isITBlockFull() { |
375 | return inITBlock() && (ITState.Mask & 1); |
376 | } |
377 | |
378 | // Extend the current implicit IT block to have one more slot with the given |
379 | // condition code. |
380 | void extendImplicitITBlock(ARMCC::CondCodes Cond) { |
381 | assert(inImplicitITBlock()); |
382 | assert(!isITBlockFull()); |
383 | assert(Cond == ITState.Cond || |
384 | Cond == ARMCC::getOppositeCondition(ITState.Cond)); |
385 | unsigned TZ = llvm::countr_zero(Val: ITState.Mask); |
386 | unsigned NewMask = 0; |
387 | // Keep any existing condition bits. |
388 | NewMask |= ITState.Mask & (0xE << TZ); |
389 | // Insert the new condition bit. |
390 | NewMask |= (Cond != ITState.Cond) << TZ; |
391 | // Move the trailing 1 down one bit. |
392 | NewMask |= 1 << (TZ - 1); |
393 | ITState.Mask = NewMask; |
394 | } |
395 | |
396 | // Create a new implicit IT block with a dummy condition code. |
397 | void startImplicitITBlock() { |
398 | assert(!inITBlock()); |
399 | ITState.Cond = ARMCC::AL; |
400 | ITState.Mask = 8; |
401 | ITState.CurPosition = 1; |
402 | ITState.IsExplicit = false; |
403 | } |
404 | |
405 | // Create a new explicit IT block with the given condition and mask. |
406 | // The mask should be in the format used in ARMOperand and |
407 | // MCOperand, with a 1 implying 'e', regardless of the low bit of |
408 | // the condition. |
409 | void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { |
410 | assert(!inITBlock()); |
411 | ITState.Cond = Cond; |
412 | ITState.Mask = Mask; |
413 | ITState.CurPosition = 0; |
414 | ITState.IsExplicit = true; |
415 | } |
416 | |
417 | struct { |
418 | unsigned Mask : 4; |
419 | unsigned CurPosition; |
420 | } VPTState; |
421 | bool inVPTBlock() { return VPTState.CurPosition != ~0U; } |
422 | void forwardVPTPosition() { |
423 | if (!inVPTBlock()) return; |
424 | unsigned TZ = llvm::countr_zero(Val: VPTState.Mask); |
425 | if (++VPTState.CurPosition == 5 - TZ) |
426 | VPTState.CurPosition = ~0U; |
427 | } |
428 | |
429 | void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
430 | return getParser().Note(L, Msg, Range); |
431 | } |
432 | |
433 | bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
434 | return getParser().Warning(L, Msg, Range); |
435 | } |
436 | |
437 | bool Error(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) { |
438 | return getParser().Error(L, Msg, Range); |
439 | } |
440 | |
441 | bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, |
442 | unsigned MnemonicOpsEndInd, unsigned ListIndex, |
443 | bool IsARPop = false); |
444 | bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, |
445 | unsigned MnemonicOpsEndInd, unsigned ListIndex); |
446 | |
447 | MCRegister tryParseRegister(bool AllowOutofBoundReg = false); |
448 | bool tryParseRegisterWithWriteBack(OperandVector &); |
449 | int tryParseShiftRegister(OperandVector &); |
450 | std::optional<ARM_AM::ShiftOpc> tryParseShiftToken(); |
451 | bool parseRegisterList(OperandVector &, bool EnforceOrder = true, |
452 | bool AllowRAAC = false, bool IsLazyLoadStore = false, |
453 | bool IsVSCCLRM = false); |
454 | bool parseMemory(OperandVector &); |
455 | bool parseOperand(OperandVector &, StringRef Mnemonic); |
456 | bool parseImmExpr(int64_t &Out); |
457 | bool parsePrefix(ARM::Specifier &); |
458 | bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, |
459 | unsigned &ShiftAmount); |
460 | bool parseLiteralValues(unsigned Size, SMLoc L); |
461 | bool parseDirectiveThumb(SMLoc L); |
462 | bool parseDirectiveARM(SMLoc L); |
463 | bool parseDirectiveThumbFunc(SMLoc L); |
464 | bool parseDirectiveCode(SMLoc L); |
465 | bool parseDirectiveSyntax(SMLoc L); |
466 | bool parseDirectiveReq(StringRef Name, SMLoc L); |
467 | bool parseDirectiveUnreq(SMLoc L); |
468 | bool parseDirectiveArch(SMLoc L); |
469 | bool parseDirectiveEabiAttr(SMLoc L); |
470 | bool parseDirectiveCPU(SMLoc L); |
471 | bool parseDirectiveFPU(SMLoc L); |
472 | bool parseDirectiveFnStart(SMLoc L); |
473 | bool parseDirectiveFnEnd(SMLoc L); |
474 | bool parseDirectiveCantUnwind(SMLoc L); |
475 | bool parseDirectivePersonality(SMLoc L); |
476 | bool parseDirectiveHandlerData(SMLoc L); |
477 | bool parseDirectiveSetFP(SMLoc L); |
478 | bool parseDirectivePad(SMLoc L); |
479 | bool parseDirectiveRegSave(SMLoc L, bool IsVector); |
480 | bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); |
481 | bool parseDirectiveLtorg(SMLoc L); |
482 | bool parseDirectiveEven(SMLoc L); |
483 | bool parseDirectivePersonalityIndex(SMLoc L); |
484 | bool parseDirectiveUnwindRaw(SMLoc L); |
485 | bool parseDirectiveTLSDescSeq(SMLoc L); |
486 | bool parseDirectiveMovSP(SMLoc L); |
487 | bool parseDirectiveObjectArch(SMLoc L); |
488 | bool parseDirectiveArchExtension(SMLoc L); |
489 | bool parseDirectiveAlign(SMLoc L); |
490 | bool parseDirectiveThumbSet(SMLoc L); |
491 | |
492 | bool parseDirectiveSEHAllocStack(SMLoc L, bool Wide); |
493 | bool parseDirectiveSEHSaveRegs(SMLoc L, bool Wide); |
494 | bool parseDirectiveSEHSaveSP(SMLoc L); |
495 | bool parseDirectiveSEHSaveFRegs(SMLoc L); |
496 | bool parseDirectiveSEHSaveLR(SMLoc L); |
497 | bool parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment); |
498 | bool parseDirectiveSEHNop(SMLoc L, bool Wide); |
499 | bool parseDirectiveSEHEpilogStart(SMLoc L, bool Condition); |
500 | bool parseDirectiveSEHEpilogEnd(SMLoc L); |
501 | bool parseDirectiveSEHCustom(SMLoc L); |
502 | |
503 | std::unique_ptr<ARMOperand> defaultCondCodeOp(); |
504 | std::unique_ptr<ARMOperand> defaultCCOutOp(); |
505 | std::unique_ptr<ARMOperand> defaultVPTPredOp(); |
506 | |
507 | bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ); |
508 | StringRef splitMnemonic(StringRef Mnemonic, StringRef , |
509 | ARMCC::CondCodes &PredicationCode, |
510 | ARMVCC::VPTCodes &VPTPredicationCode, |
511 | bool &CarrySetting, unsigned &ProcessorIMod, |
512 | StringRef &ITMask); |
513 | void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef , |
514 | StringRef FullInst, bool &CanAcceptCarrySet, |
515 | bool &CanAcceptPredicationCode, |
516 | bool &CanAcceptVPTPredicationCode); |
517 | bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc); |
518 | |
519 | void tryConvertingToTwoOperandForm(StringRef Mnemonic, |
520 | ARMCC::CondCodes PredicationCode, |
521 | bool CarrySetting, OperandVector &Operands, |
522 | unsigned MnemonicOpsEndInd); |
523 | |
524 | bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands, |
525 | unsigned MnemonicOpsEndInd); |
526 | |
527 | bool isThumb() const { |
528 | // FIXME: Can tablegen auto-generate this? |
529 | return getSTI().hasFeature(Feature: ARM::ModeThumb); |
530 | } |
531 | |
532 | bool isThumbOne() const { |
533 | return isThumb() && !getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
534 | } |
535 | |
536 | bool isThumbTwo() const { |
537 | return isThumb() && getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
538 | } |
539 | |
540 | bool hasThumb() const { |
541 | return getSTI().hasFeature(Feature: ARM::HasV4TOps); |
542 | } |
543 | |
544 | bool hasThumb2() const { |
545 | return getSTI().hasFeature(Feature: ARM::FeatureThumb2); |
546 | } |
547 | |
548 | bool hasV6Ops() const { |
549 | return getSTI().hasFeature(Feature: ARM::HasV6Ops); |
550 | } |
551 | |
552 | bool hasV6T2Ops() const { |
553 | return getSTI().hasFeature(Feature: ARM::HasV6T2Ops); |
554 | } |
555 | |
556 | bool hasV6MOps() const { |
557 | return getSTI().hasFeature(Feature: ARM::HasV6MOps); |
558 | } |
559 | |
560 | bool hasV7Ops() const { |
561 | return getSTI().hasFeature(Feature: ARM::HasV7Ops); |
562 | } |
563 | |
564 | bool hasV8Ops() const { |
565 | return getSTI().hasFeature(Feature: ARM::HasV8Ops); |
566 | } |
567 | |
568 | bool hasV8MBaseline() const { |
569 | return getSTI().hasFeature(Feature: ARM::HasV8MBaselineOps); |
570 | } |
571 | |
572 | bool hasV8MMainline() const { |
573 | return getSTI().hasFeature(Feature: ARM::HasV8MMainlineOps); |
574 | } |
575 | bool hasV8_1MMainline() const { |
576 | return getSTI().hasFeature(Feature: ARM::HasV8_1MMainlineOps); |
577 | } |
578 | bool hasMVEFloat() const { |
579 | return getSTI().hasFeature(Feature: ARM::HasMVEFloatOps); |
580 | } |
581 | bool hasCDE() const { |
582 | return getSTI().hasFeature(Feature: ARM::HasCDEOps); |
583 | } |
584 | bool has8MSecExt() const { |
585 | return getSTI().hasFeature(Feature: ARM::Feature8MSecExt); |
586 | } |
587 | |
588 | bool hasARM() const { |
589 | return !getSTI().hasFeature(Feature: ARM::FeatureNoARM); |
590 | } |
591 | |
592 | bool hasDSP() const { |
593 | return getSTI().hasFeature(Feature: ARM::FeatureDSP); |
594 | } |
595 | |
596 | bool hasD32() const { |
597 | return getSTI().hasFeature(Feature: ARM::FeatureD32); |
598 | } |
599 | |
600 | bool hasV8_1aOps() const { |
601 | return getSTI().hasFeature(Feature: ARM::HasV8_1aOps); |
602 | } |
603 | |
604 | bool hasRAS() const { |
605 | return getSTI().hasFeature(Feature: ARM::FeatureRAS); |
606 | } |
607 | |
608 | void SwitchMode() { |
609 | MCSubtargetInfo &STI = copySTI(); |
610 | auto FB = ComputeAvailableFeatures(FB: STI.ToggleFeature(FB: ARM::ModeThumb)); |
611 | setAvailableFeatures(FB); |
612 | } |
613 | |
614 | void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); |
615 | |
616 | bool isMClass() const { |
617 | return getSTI().hasFeature(Feature: ARM::FeatureMClass); |
618 | } |
619 | |
620 | /// @name Auto-generated Match Functions |
621 | /// { |
622 | |
623 | #define |
624 | #include "ARMGenAsmMatcher.inc" |
625 | |
626 | /// } |
627 | |
628 | ParseStatus parseITCondCode(OperandVector &); |
629 | ParseStatus parseCoprocNumOperand(OperandVector &); |
630 | ParseStatus parseCoprocRegOperand(OperandVector &); |
631 | ParseStatus parseCoprocOptionOperand(OperandVector &); |
632 | ParseStatus parseMemBarrierOptOperand(OperandVector &); |
633 | ParseStatus parseTraceSyncBarrierOptOperand(OperandVector &); |
634 | ParseStatus parseInstSyncBarrierOptOperand(OperandVector &); |
635 | ParseStatus parseProcIFlagsOperand(OperandVector &); |
636 | ParseStatus parseMSRMaskOperand(OperandVector &); |
637 | ParseStatus parseBankedRegOperand(OperandVector &); |
638 | ParseStatus parsePKHImm(OperandVector &O, ARM_AM::ShiftOpc, int Low, |
639 | int High); |
640 | ParseStatus parsePKHLSLImm(OperandVector &O) { |
641 | return parsePKHImm(O, ARM_AM::lsl, Low: 0, High: 31); |
642 | } |
643 | ParseStatus parsePKHASRImm(OperandVector &O) { |
644 | return parsePKHImm(O, ARM_AM::asr, Low: 1, High: 32); |
645 | } |
646 | ParseStatus parseSetEndImm(OperandVector &); |
647 | ParseStatus parseShifterImm(OperandVector &); |
648 | ParseStatus parseRotImm(OperandVector &); |
649 | ParseStatus parseModImm(OperandVector &); |
650 | ParseStatus parseBitfield(OperandVector &); |
651 | ParseStatus parsePostIdxReg(OperandVector &); |
652 | ParseStatus parseAM3Offset(OperandVector &); |
653 | ParseStatus parseFPImm(OperandVector &); |
654 | ParseStatus parseVectorList(OperandVector &); |
655 | ParseStatus parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, |
656 | SMLoc &EndLoc); |
657 | |
658 | // Asm Match Converter Methods |
659 | void cvtThumbMultiply(MCInst &Inst, const OperandVector &); |
660 | void cvtThumbBranches(MCInst &Inst, const OperandVector &); |
661 | void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); |
662 | |
663 | bool validateInstruction(MCInst &Inst, const OperandVector &Ops, |
664 | unsigned MnemonicOpsEndInd); |
665 | bool processInstruction(MCInst &Inst, const OperandVector &Ops, |
666 | unsigned MnemonicOpsEndInd, MCStreamer &Out); |
667 | bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, |
668 | OperandVector &Operands, |
669 | unsigned MnemonicOpsEndInd); |
670 | bool isITBlockTerminator(MCInst &Inst) const; |
671 | |
672 | void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands, |
673 | unsigned MnemonicOpsEndInd); |
674 | bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, bool Load, |
675 | bool ARMMode, bool Writeback, |
676 | unsigned MnemonicOpsEndInd); |
677 | |
678 | public: |
679 | enum ARMMatchResultTy { |
680 | Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, |
681 | Match_RequiresNotITBlock, |
682 | Match_RequiresV6, |
683 | Match_RequiresThumb2, |
684 | Match_RequiresV8, |
685 | Match_RequiresFlagSetting, |
686 | #define GET_OPERAND_DIAGNOSTIC_TYPES |
687 | #include "ARMGenAsmMatcher.inc" |
688 | |
689 | }; |
690 | |
691 | ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, |
692 | const MCInstrInfo &MII, const MCTargetOptions &Options) |
693 | : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { |
694 | MCAsmParserExtension::Initialize(Parser); |
695 | |
696 | // Cache the MCRegisterInfo. |
697 | MRI = getContext().getRegisterInfo(); |
698 | |
699 | // Initialize the set of available features. |
700 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
701 | |
702 | // Add build attributes based on the selected target. |
703 | if (AddBuildAttributes) |
704 | getTargetStreamer().emitTargetAttributes(STI); |
705 | |
706 | // Not in an ITBlock to start with. |
707 | ITState.CurPosition = ~0U; |
708 | |
709 | VPTState.CurPosition = ~0U; |
710 | |
711 | NextSymbolIsThumb = false; |
712 | } |
713 | |
714 | // Implementation of the MCTargetAsmParser interface: |
715 | bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; |
716 | ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
717 | SMLoc &EndLoc) override; |
718 | bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, |
719 | SMLoc NameLoc, OperandVector &Operands) override; |
720 | bool ParseDirective(AsmToken DirectiveID) override; |
721 | |
722 | unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, |
723 | unsigned Kind) override; |
724 | unsigned checkTargetMatchPredicate(MCInst &Inst) override; |
725 | unsigned |
726 | checkEarlyTargetMatchPredicate(MCInst &Inst, |
727 | const OperandVector &Operands) override; |
728 | |
729 | bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
730 | OperandVector &Operands, MCStreamer &Out, |
731 | uint64_t &ErrorInfo, |
732 | bool MatchingInlineAsm) override; |
733 | unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, |
734 | SmallVectorImpl<NearMissInfo> &NearMisses, |
735 | bool MatchingInlineAsm, bool &EmitInITBlock, |
736 | MCStreamer &Out); |
737 | |
738 | struct NearMissMessage { |
739 | SMLoc Loc; |
740 | SmallString<128> Message; |
741 | }; |
742 | |
743 | const char *getCustomOperandDiag(ARMMatchResultTy MatchError); |
744 | |
745 | void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
746 | SmallVectorImpl<NearMissMessage> &NearMissesOut, |
747 | SMLoc IDLoc, OperandVector &Operands); |
748 | void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, |
749 | OperandVector &Operands); |
750 | |
751 | void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) override; |
752 | |
753 | void onLabelParsed(MCSymbol *Symbol) override; |
754 | |
755 | const MCInstrDesc &getInstrDesc(unsigned int Opcode) const { |
756 | return MII.get(Opcode); |
757 | } |
758 | |
759 | bool hasMVE() const { return getSTI().hasFeature(Feature: ARM::HasMVEIntegerOps); } |
760 | |
761 | // Return the low-subreg of a given Q register. |
762 | MCRegister getDRegFromQReg(MCRegister QReg) const { |
763 | return MRI->getSubReg(Reg: QReg, Idx: ARM::dsub_0); |
764 | } |
765 | |
766 | const MCRegisterInfo *getMRI() const { return MRI; } |
767 | }; |
768 | |
769 | /// ARMOperand - Instances of this class represent a parsed ARM machine |
770 | /// operand. |
771 | class ARMOperand : public MCParsedAsmOperand { |
772 | enum KindTy { |
773 | k_CondCode, |
774 | k_VPTPred, |
775 | k_CCOut, |
776 | k_ITCondMask, |
777 | k_CoprocNum, |
778 | k_CoprocReg, |
779 | k_CoprocOption, |
780 | k_Immediate, |
781 | k_MemBarrierOpt, |
782 | k_InstSyncBarrierOpt, |
783 | k_TraceSyncBarrierOpt, |
784 | k_Memory, |
785 | k_PostIndexRegister, |
786 | k_MSRMask, |
787 | k_BankedReg, |
788 | k_ProcIFlags, |
789 | k_VectorIndex, |
790 | k_Register, |
791 | k_RegisterList, |
792 | k_RegisterListWithAPSR, |
793 | k_DPRRegisterList, |
794 | k_SPRRegisterList, |
795 | k_FPSRegisterListWithVPR, |
796 | k_FPDRegisterListWithVPR, |
797 | k_VectorList, |
798 | k_VectorListAllLanes, |
799 | k_VectorListIndexed, |
800 | k_ShiftedRegister, |
801 | k_ShiftedImmediate, |
802 | k_ShifterImmediate, |
803 | k_RotateImmediate, |
804 | k_ModifiedImmediate, |
805 | k_ConstantPoolImmediate, |
806 | k_BitfieldDescriptor, |
807 | k_Token, |
808 | } Kind; |
809 | |
810 | SMLoc StartLoc, EndLoc, AlignmentLoc; |
811 | SmallVector<MCRegister, 8> Registers; |
812 | |
813 | ARMAsmParser *Parser; |
814 | |
815 | struct CCOp { |
816 | ARMCC::CondCodes Val; |
817 | }; |
818 | |
819 | struct VCCOp { |
820 | ARMVCC::VPTCodes Val; |
821 | }; |
822 | |
823 | struct CopOp { |
824 | unsigned Val; |
825 | }; |
826 | |
827 | struct CoprocOptionOp { |
828 | unsigned Val; |
829 | }; |
830 | |
831 | struct ITMaskOp { |
832 | unsigned Mask:4; |
833 | }; |
834 | |
835 | struct MBOptOp { |
836 | ARM_MB::MemBOpt Val; |
837 | }; |
838 | |
839 | struct ISBOptOp { |
840 | ARM_ISB::InstSyncBOpt Val; |
841 | }; |
842 | |
843 | struct TSBOptOp { |
844 | ARM_TSB::TraceSyncBOpt Val; |
845 | }; |
846 | |
847 | struct IFlagsOp { |
848 | ARM_PROC::IFlags Val; |
849 | }; |
850 | |
851 | struct MMaskOp { |
852 | unsigned Val; |
853 | }; |
854 | |
855 | struct BankedRegOp { |
856 | unsigned Val; |
857 | }; |
858 | |
859 | struct TokOp { |
860 | const char *Data; |
861 | unsigned Length; |
862 | }; |
863 | |
864 | struct RegOp { |
865 | MCRegister RegNum; |
866 | }; |
867 | |
868 | // A vector register list is a sequential list of 1 to 4 registers. |
869 | struct VectorListOp { |
870 | MCRegister RegNum; |
871 | unsigned Count; |
872 | unsigned LaneIndex; |
873 | bool isDoubleSpaced; |
874 | }; |
875 | |
876 | struct VectorIndexOp { |
877 | unsigned Val; |
878 | }; |
879 | |
880 | struct ImmOp { |
881 | const MCExpr *Val; |
882 | }; |
883 | |
884 | /// Combined record for all forms of ARM address expressions. |
885 | struct MemoryOp { |
886 | MCRegister BaseRegNum; |
887 | // Offset is in OffsetReg or OffsetImm. If both are zero, no offset |
888 | // was specified. |
889 | const MCExpr *OffsetImm; // Offset immediate value |
890 | MCRegister OffsetRegNum; // Offset register num, when OffsetImm == NULL |
891 | ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg |
892 | unsigned ShiftImm; // shift for OffsetReg. |
893 | unsigned Alignment; // 0 = no alignment specified |
894 | // n = alignment in bytes (2, 4, 8, 16, or 32) |
895 | unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) |
896 | }; |
897 | |
898 | struct PostIdxRegOp { |
899 | MCRegister RegNum; |
900 | bool isAdd; |
901 | ARM_AM::ShiftOpc ShiftTy; |
902 | unsigned ShiftImm; |
903 | }; |
904 | |
905 | struct ShifterImmOp { |
906 | bool isASR; |
907 | unsigned Imm; |
908 | }; |
909 | |
910 | struct RegShiftedRegOp { |
911 | ARM_AM::ShiftOpc ShiftTy; |
912 | MCRegister SrcReg; |
913 | MCRegister ShiftReg; |
914 | unsigned ShiftImm; |
915 | }; |
916 | |
917 | struct RegShiftedImmOp { |
918 | ARM_AM::ShiftOpc ShiftTy; |
919 | MCRegister SrcReg; |
920 | unsigned ShiftImm; |
921 | }; |
922 | |
923 | struct RotImmOp { |
924 | unsigned Imm; |
925 | }; |
926 | |
927 | struct ModImmOp { |
928 | unsigned Bits; |
929 | unsigned Rot; |
930 | }; |
931 | |
932 | struct BitfieldOp { |
933 | unsigned LSB; |
934 | unsigned Width; |
935 | }; |
936 | |
937 | union { |
938 | struct CCOp CC; |
939 | struct VCCOp VCC; |
940 | struct CopOp Cop; |
941 | struct CoprocOptionOp CoprocOption; |
942 | struct MBOptOp MBOpt; |
943 | struct ISBOptOp ISBOpt; |
944 | struct TSBOptOp TSBOpt; |
945 | struct ITMaskOp ITMask; |
946 | struct IFlagsOp IFlags; |
947 | struct MMaskOp MMask; |
948 | struct BankedRegOp BankedReg; |
949 | struct TokOp Tok; |
950 | struct RegOp Reg; |
951 | struct VectorListOp VectorList; |
952 | struct VectorIndexOp VectorIndex; |
953 | struct ImmOp Imm; |
954 | struct MemoryOp Memory; |
955 | struct PostIdxRegOp PostIdxReg; |
956 | struct ShifterImmOp ShifterImm; |
957 | struct RegShiftedRegOp RegShiftedReg; |
958 | struct RegShiftedImmOp RegShiftedImm; |
959 | struct RotImmOp RotImm; |
960 | struct ModImmOp ModImm; |
961 | struct BitfieldOp Bitfield; |
962 | }; |
963 | |
964 | public: |
965 | ARMOperand(KindTy K, ARMAsmParser &Parser) : Kind(K), Parser(&Parser) {} |
966 | |
967 | /// getStartLoc - Get the location of the first token of this operand. |
968 | SMLoc getStartLoc() const override { return StartLoc; } |
969 | |
970 | /// getEndLoc - Get the location of the last token of this operand. |
971 | SMLoc getEndLoc() const override { return EndLoc; } |
972 | |
973 | /// getLocRange - Get the range between the first and last token of this |
974 | /// operand. |
975 | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
976 | |
977 | /// getAlignmentLoc - Get the location of the Alignment token of this operand. |
978 | SMLoc getAlignmentLoc() const { |
979 | assert(Kind == k_Memory && "Invalid access!" ); |
980 | return AlignmentLoc; |
981 | } |
982 | |
983 | ARMCC::CondCodes getCondCode() const { |
984 | assert(Kind == k_CondCode && "Invalid access!" ); |
985 | return CC.Val; |
986 | } |
987 | |
988 | ARMVCC::VPTCodes getVPTPred() const { |
989 | assert(isVPTPred() && "Invalid access!" ); |
990 | return VCC.Val; |
991 | } |
992 | |
993 | unsigned getCoproc() const { |
994 | assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!" ); |
995 | return Cop.Val; |
996 | } |
997 | |
998 | StringRef getToken() const { |
999 | assert(Kind == k_Token && "Invalid access!" ); |
1000 | return StringRef(Tok.Data, Tok.Length); |
1001 | } |
1002 | |
1003 | MCRegister getReg() const override { |
1004 | assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!" ); |
1005 | return Reg.RegNum; |
1006 | } |
1007 | |
1008 | const SmallVectorImpl<MCRegister> &getRegList() const { |
1009 | assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || |
1010 | Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || |
1011 | Kind == k_FPSRegisterListWithVPR || |
1012 | Kind == k_FPDRegisterListWithVPR) && |
1013 | "Invalid access!" ); |
1014 | return Registers; |
1015 | } |
1016 | |
1017 | const MCExpr *getImm() const { |
1018 | assert(isImm() && "Invalid access!" ); |
1019 | return Imm.Val; |
1020 | } |
1021 | |
1022 | const MCExpr *getConstantPoolImm() const { |
1023 | assert(isConstantPoolImm() && "Invalid access!" ); |
1024 | return Imm.Val; |
1025 | } |
1026 | |
1027 | unsigned getVectorIndex() const { |
1028 | assert(Kind == k_VectorIndex && "Invalid access!" ); |
1029 | return VectorIndex.Val; |
1030 | } |
1031 | |
1032 | ARM_MB::MemBOpt getMemBarrierOpt() const { |
1033 | assert(Kind == k_MemBarrierOpt && "Invalid access!" ); |
1034 | return MBOpt.Val; |
1035 | } |
1036 | |
1037 | ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { |
1038 | assert(Kind == k_InstSyncBarrierOpt && "Invalid access!" ); |
1039 | return ISBOpt.Val; |
1040 | } |
1041 | |
1042 | ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { |
1043 | assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!" ); |
1044 | return TSBOpt.Val; |
1045 | } |
1046 | |
1047 | ARM_PROC::IFlags getProcIFlags() const { |
1048 | assert(Kind == k_ProcIFlags && "Invalid access!" ); |
1049 | return IFlags.Val; |
1050 | } |
1051 | |
1052 | unsigned getMSRMask() const { |
1053 | assert(Kind == k_MSRMask && "Invalid access!" ); |
1054 | return MMask.Val; |
1055 | } |
1056 | |
1057 | unsigned getBankedReg() const { |
1058 | assert(Kind == k_BankedReg && "Invalid access!" ); |
1059 | return BankedReg.Val; |
1060 | } |
1061 | |
1062 | bool isCoprocNum() const { return Kind == k_CoprocNum; } |
1063 | bool isCoprocReg() const { return Kind == k_CoprocReg; } |
1064 | bool isCoprocOption() const { return Kind == k_CoprocOption; } |
1065 | bool isCondCode() const { return Kind == k_CondCode; } |
1066 | bool isVPTPred() const { return Kind == k_VPTPred; } |
1067 | bool isCCOut() const { return Kind == k_CCOut; } |
1068 | bool isITMask() const { return Kind == k_ITCondMask; } |
1069 | bool isITCondCode() const { return Kind == k_CondCode; } |
1070 | bool isImm() const override { |
1071 | return Kind == k_Immediate; |
1072 | } |
1073 | |
1074 | bool isARMBranchTarget() const { |
1075 | if (!isImm()) return false; |
1076 | |
1077 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) |
1078 | return CE->getValue() % 4 == 0; |
1079 | return true; |
1080 | } |
1081 | |
1082 | |
1083 | bool isThumbBranchTarget() const { |
1084 | if (!isImm()) return false; |
1085 | |
1086 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) |
1087 | return CE->getValue() % 2 == 0; |
1088 | return true; |
1089 | } |
1090 | |
1091 | // checks whether this operand is an unsigned offset which fits is a field |
1092 | // of specified width and scaled by a specific number of bits |
1093 | template<unsigned width, unsigned scale> |
1094 | bool isUnsignedOffset() const { |
1095 | if (!isImm()) return false; |
1096 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1097 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1098 | int64_t Val = CE->getValue(); |
1099 | int64_t Align = 1LL << scale; |
1100 | int64_t Max = Align * ((1LL << width) - 1); |
1101 | return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); |
1102 | } |
1103 | return false; |
1104 | } |
1105 | |
1106 | // checks whether this operand is an signed offset which fits is a field |
1107 | // of specified width and scaled by a specific number of bits |
1108 | template<unsigned width, unsigned scale> |
1109 | bool isSignedOffset() const { |
1110 | if (!isImm()) return false; |
1111 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1112 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1113 | int64_t Val = CE->getValue(); |
1114 | int64_t Align = 1LL << scale; |
1115 | int64_t Max = Align * ((1LL << (width-1)) - 1); |
1116 | int64_t Min = -Align * (1LL << (width-1)); |
1117 | return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); |
1118 | } |
1119 | return false; |
1120 | } |
1121 | |
1122 | // checks whether this operand is an offset suitable for the LE / |
1123 | // LETP instructions in Arm v8.1M |
1124 | bool isLEOffset() const { |
1125 | if (!isImm()) return false; |
1126 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1127 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val)) { |
1128 | int64_t Val = CE->getValue(); |
1129 | return Val < 0 && Val >= -4094 && (Val & 1) == 0; |
1130 | } |
1131 | return false; |
1132 | } |
1133 | |
1134 | // checks whether this operand is a memory operand computed as an offset |
1135 | // applied to PC. the offset may have 8 bits of magnitude and is represented |
1136 | // with two bits of shift. textually it may be either [pc, #imm], #imm or |
1137 | // relocable expression... |
1138 | bool isThumbMemPC() const { |
1139 | int64_t Val = 0; |
1140 | if (isImm()) { |
1141 | if (isa<MCSymbolRefExpr>(Val: Imm.Val)) return true; |
1142 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm.Val); |
1143 | if (!CE) return false; |
1144 | Val = CE->getValue(); |
1145 | } |
1146 | else if (isGPRMem()) { |
1147 | if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; |
1148 | if(Memory.BaseRegNum != ARM::PC) return false; |
1149 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
1150 | Val = CE->getValue(); |
1151 | else |
1152 | return false; |
1153 | } |
1154 | else return false; |
1155 | return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); |
1156 | } |
1157 | |
1158 | bool isFPImm() const { |
1159 | if (!isImm()) return false; |
1160 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1161 | if (!CE || !isUInt<32>(x: CE->getValue())) |
1162 | return false; |
1163 | int Val = ARM_AM::getFP32Imm(Imm: APInt(32, CE->getValue())); |
1164 | return Val != -1; |
1165 | } |
1166 | |
1167 | template<int64_t N, int64_t M> |
1168 | bool isImmediate() const { |
1169 | if (!isImm()) return false; |
1170 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1171 | if (!CE) return false; |
1172 | int64_t Value = CE->getValue(); |
1173 | return Value >= N && Value <= M; |
1174 | } |
1175 | |
1176 | template<int64_t N, int64_t M> |
1177 | bool isImmediateS4() const { |
1178 | if (!isImm()) return false; |
1179 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1180 | if (!CE) return false; |
1181 | int64_t Value = CE->getValue(); |
1182 | return ((Value & 3) == 0) && Value >= N && Value <= M; |
1183 | } |
1184 | template<int64_t N, int64_t M> |
1185 | bool isImmediateS2() const { |
1186 | if (!isImm()) return false; |
1187 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1188 | if (!CE) return false; |
1189 | int64_t Value = CE->getValue(); |
1190 | return ((Value & 1) == 0) && Value >= N && Value <= M; |
1191 | } |
1192 | bool isFBits16() const { |
1193 | return isImmediate<0, 17>(); |
1194 | } |
1195 | bool isFBits32() const { |
1196 | return isImmediate<1, 33>(); |
1197 | } |
1198 | bool isImm8s4() const { |
1199 | return isImmediateS4<-1020, 1020>(); |
1200 | } |
1201 | bool isImm7s4() const { |
1202 | return isImmediateS4<-508, 508>(); |
1203 | } |
1204 | bool isImm7Shift0() const { |
1205 | return isImmediate<-127, 127>(); |
1206 | } |
1207 | bool isImm7Shift1() const { |
1208 | return isImmediateS2<-255, 255>(); |
1209 | } |
1210 | bool isImm7Shift2() const { |
1211 | return isImmediateS4<-511, 511>(); |
1212 | } |
1213 | bool isImm7() const { |
1214 | return isImmediate<-127, 127>(); |
1215 | } |
1216 | bool isImm0_1020s4() const { |
1217 | return isImmediateS4<0, 1020>(); |
1218 | } |
1219 | bool isImm0_508s4() const { |
1220 | return isImmediateS4<0, 508>(); |
1221 | } |
1222 | bool isImm0_508s4Neg() const { |
1223 | if (!isImm()) return false; |
1224 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1225 | if (!CE) return false; |
1226 | int64_t Value = -CE->getValue(); |
1227 | // explicitly exclude zero. we want that to use the normal 0_508 version. |
1228 | return ((Value & 3) == 0) && Value > 0 && Value <= 508; |
1229 | } |
1230 | |
1231 | bool isImm0_4095Neg() const { |
1232 | if (!isImm()) return false; |
1233 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1234 | if (!CE) return false; |
1235 | // isImm0_4095Neg is used with 32-bit immediates only. |
1236 | // 32-bit immediates are zero extended to 64-bit when parsed, |
1237 | // thus simple -CE->getValue() results in a big negative number, |
1238 | // not a small positive number as intended |
1239 | if ((CE->getValue() >> 32) > 0) return false; |
1240 | uint32_t Value = -static_cast<uint32_t>(CE->getValue()); |
1241 | return Value > 0 && Value < 4096; |
1242 | } |
1243 | |
1244 | bool isImm0_7() const { |
1245 | return isImmediate<0, 7>(); |
1246 | } |
1247 | |
1248 | bool isImm1_16() const { |
1249 | return isImmediate<1, 16>(); |
1250 | } |
1251 | |
1252 | bool isImm1_32() const { |
1253 | return isImmediate<1, 32>(); |
1254 | } |
1255 | |
1256 | bool isImm8_255() const { |
1257 | return isImmediate<8, 255>(); |
1258 | } |
1259 | |
1260 | bool isImm0_255Expr() const { |
1261 | if (!isImm()) |
1262 | return false; |
1263 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1264 | // If it's not a constant expression, it'll generate a fixup and be |
1265 | // handled later. |
1266 | if (!CE) |
1267 | return true; |
1268 | int64_t Value = CE->getValue(); |
1269 | return isUInt<8>(x: Value); |
1270 | } |
1271 | |
1272 | bool isImm256_65535Expr() const { |
1273 | if (!isImm()) return false; |
1274 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1275 | // If it's not a constant expression, it'll generate a fixup and be |
1276 | // handled later. |
1277 | if (!CE) return true; |
1278 | int64_t Value = CE->getValue(); |
1279 | return Value >= 256 && Value < 65536; |
1280 | } |
1281 | |
1282 | bool isImm0_65535Expr() const { |
1283 | if (!isImm()) return false; |
1284 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1285 | // If it's not a constant expression, it'll generate a fixup and be |
1286 | // handled later. |
1287 | if (!CE) return true; |
1288 | int64_t Value = CE->getValue(); |
1289 | return Value >= 0 && Value < 65536; |
1290 | } |
1291 | |
1292 | bool isImm24bit() const { |
1293 | return isImmediate<0, 0xffffff + 1>(); |
1294 | } |
1295 | |
1296 | bool isImmThumbSR() const { |
1297 | return isImmediate<1, 33>(); |
1298 | } |
1299 | |
1300 | bool isPKHLSLImm() const { |
1301 | return isImmediate<0, 32>(); |
1302 | } |
1303 | |
1304 | bool isPKHASRImm() const { |
1305 | return isImmediate<0, 33>(); |
1306 | } |
1307 | |
1308 | bool isAdrLabel() const { |
1309 | // If we have an immediate that's not a constant, treat it as a label |
1310 | // reference needing a fixup. |
1311 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1312 | return true; |
1313 | |
1314 | // If it is a constant, it must fit into a modified immediate encoding. |
1315 | if (!isImm()) return false; |
1316 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1317 | if (!CE) return false; |
1318 | int64_t Value = CE->getValue(); |
1319 | return (ARM_AM::getSOImmVal(Arg: Value) != -1 || |
1320 | ARM_AM::getSOImmVal(Arg: -Value) != -1); |
1321 | } |
1322 | |
1323 | bool isT2SOImm() const { |
1324 | // If we have an immediate that's not a constant, treat it as an expression |
1325 | // needing a fixup. |
1326 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) { |
1327 | // We want to avoid matching :upper16: and :lower16: as we want these |
1328 | // expressions to match in isImm0_65535Expr() |
1329 | auto *ARM16Expr = dyn_cast<MCSpecifierExpr>(Val: getImm()); |
1330 | return (!ARM16Expr || (ARM16Expr->getSpecifier() != ARM::S_HI16 && |
1331 | ARM16Expr->getSpecifier() != ARM::S_LO16)); |
1332 | } |
1333 | if (!isImm()) return false; |
1334 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1335 | if (!CE) return false; |
1336 | int64_t Value = CE->getValue(); |
1337 | return ARM_AM::getT2SOImmVal(Arg: Value) != -1; |
1338 | } |
1339 | |
1340 | bool isT2SOImmNot() const { |
1341 | if (!isImm()) return false; |
1342 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1343 | if (!CE) return false; |
1344 | int64_t Value = CE->getValue(); |
1345 | return ARM_AM::getT2SOImmVal(Arg: Value) == -1 && |
1346 | ARM_AM::getT2SOImmVal(Arg: ~Value) != -1; |
1347 | } |
1348 | |
1349 | bool isT2SOImmNeg() const { |
1350 | if (!isImm()) return false; |
1351 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1352 | if (!CE) return false; |
1353 | int64_t Value = CE->getValue(); |
1354 | // Only use this when not representable as a plain so_imm. |
1355 | return ARM_AM::getT2SOImmVal(Arg: Value) == -1 && |
1356 | ARM_AM::getT2SOImmVal(Arg: -Value) != -1; |
1357 | } |
1358 | |
1359 | bool isSetEndImm() const { |
1360 | if (!isImm()) return false; |
1361 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1362 | if (!CE) return false; |
1363 | int64_t Value = CE->getValue(); |
1364 | return Value == 1 || Value == 0; |
1365 | } |
1366 | |
1367 | bool isReg() const override { return Kind == k_Register; } |
1368 | bool isRegList() const { return Kind == k_RegisterList; } |
1369 | bool isRegListWithAPSR() const { |
1370 | return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; |
1371 | } |
1372 | bool isDReg() const { |
1373 | return isReg() && |
1374 | ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg: Reg.RegNum); |
1375 | } |
1376 | bool isQReg() const { |
1377 | return isReg() && |
1378 | ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: Reg.RegNum); |
1379 | } |
1380 | bool isDPRRegList() const { return Kind == k_DPRRegisterList; } |
1381 | bool isSPRRegList() const { return Kind == k_SPRRegisterList; } |
1382 | bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } |
1383 | bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } |
1384 | bool isToken() const override { return Kind == k_Token; } |
1385 | bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } |
1386 | bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } |
1387 | bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } |
1388 | bool isMem() const override { |
1389 | return isGPRMem() || isMVEMem(); |
1390 | } |
1391 | bool isMVEMem() const { |
1392 | if (Kind != k_Memory) |
1393 | return false; |
1394 | if (Memory.BaseRegNum && |
1395 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.BaseRegNum) && |
1396 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg: Memory.BaseRegNum)) |
1397 | return false; |
1398 | if (Memory.OffsetRegNum && |
1399 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1400 | Reg: Memory.OffsetRegNum)) |
1401 | return false; |
1402 | return true; |
1403 | } |
1404 | bool isGPRMem() const { |
1405 | if (Kind != k_Memory) |
1406 | return false; |
1407 | if (Memory.BaseRegNum && |
1408 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.BaseRegNum)) |
1409 | return false; |
1410 | if (Memory.OffsetRegNum && |
1411 | !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: Memory.OffsetRegNum)) |
1412 | return false; |
1413 | return true; |
1414 | } |
1415 | bool isShifterImm() const { return Kind == k_ShifterImmediate; } |
1416 | bool isRegShiftedReg() const { |
1417 | return Kind == k_ShiftedRegister && |
1418 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1419 | Reg: RegShiftedReg.SrcReg) && |
1420 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1421 | Reg: RegShiftedReg.ShiftReg); |
1422 | } |
1423 | bool isRegShiftedImm() const { |
1424 | return Kind == k_ShiftedImmediate && |
1425 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
1426 | Reg: RegShiftedImm.SrcReg); |
1427 | } |
1428 | bool isRotImm() const { return Kind == k_RotateImmediate; } |
1429 | |
1430 | template<unsigned Min, unsigned Max> |
1431 | bool isPowerTwoInRange() const { |
1432 | if (!isImm()) return false; |
1433 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1434 | if (!CE) return false; |
1435 | int64_t Value = CE->getValue(); |
1436 | return Value > 0 && llvm::popcount(Value: (uint64_t)Value) == 1 && Value >= Min && |
1437 | Value <= Max; |
1438 | } |
1439 | bool isModImm() const { return Kind == k_ModifiedImmediate; } |
1440 | |
1441 | bool isModImmNot() const { |
1442 | if (!isImm()) return false; |
1443 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1444 | if (!CE) return false; |
1445 | int64_t Value = CE->getValue(); |
1446 | return ARM_AM::getSOImmVal(Arg: ~Value) != -1; |
1447 | } |
1448 | |
1449 | bool isModImmNeg() const { |
1450 | if (!isImm()) return false; |
1451 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1452 | if (!CE) return false; |
1453 | int64_t Value = CE->getValue(); |
1454 | return ARM_AM::getSOImmVal(Arg: Value) == -1 && |
1455 | ARM_AM::getSOImmVal(Arg: -Value) != -1; |
1456 | } |
1457 | |
1458 | bool isThumbModImmNeg1_7() const { |
1459 | if (!isImm()) return false; |
1460 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1461 | if (!CE) return false; |
1462 | int32_t Value = -(int32_t)CE->getValue(); |
1463 | return 0 < Value && Value < 8; |
1464 | } |
1465 | |
1466 | bool isThumbModImmNeg8_255() const { |
1467 | if (!isImm()) return false; |
1468 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1469 | if (!CE) return false; |
1470 | int32_t Value = -(int32_t)CE->getValue(); |
1471 | return 7 < Value && Value < 256; |
1472 | } |
1473 | |
1474 | bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } |
1475 | bool isBitfield() const { return Kind == k_BitfieldDescriptor; } |
1476 | bool isPostIdxRegShifted() const { |
1477 | return Kind == k_PostIndexRegister && |
1478 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg: PostIdxReg.RegNum); |
1479 | } |
1480 | bool isPostIdxReg() const { |
1481 | return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; |
1482 | } |
1483 | bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { |
1484 | if (!isGPRMem()) |
1485 | return false; |
1486 | // No offset of any kind. |
1487 | return !Memory.OffsetRegNum && Memory.OffsetImm == nullptr && |
1488 | (alignOK || Memory.Alignment == Alignment); |
1489 | } |
1490 | bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { |
1491 | if (!isGPRMem()) |
1492 | return false; |
1493 | |
1494 | if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1495 | Reg: Memory.BaseRegNum)) |
1496 | return false; |
1497 | |
1498 | // No offset of any kind. |
1499 | return !Memory.OffsetRegNum && Memory.OffsetImm == nullptr && |
1500 | (alignOK || Memory.Alignment == Alignment); |
1501 | } |
1502 | bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { |
1503 | if (!isGPRMem()) |
1504 | return false; |
1505 | |
1506 | if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( |
1507 | Reg: Memory.BaseRegNum)) |
1508 | return false; |
1509 | |
1510 | // No offset of any kind. |
1511 | return !Memory.OffsetRegNum && Memory.OffsetImm == nullptr && |
1512 | (alignOK || Memory.Alignment == Alignment); |
1513 | } |
1514 | bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { |
1515 | if (!isGPRMem()) |
1516 | return false; |
1517 | |
1518 | if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( |
1519 | Reg: Memory.BaseRegNum)) |
1520 | return false; |
1521 | |
1522 | // No offset of any kind. |
1523 | return !Memory.OffsetRegNum && Memory.OffsetImm == nullptr && |
1524 | (alignOK || Memory.Alignment == Alignment); |
1525 | } |
1526 | bool isMemPCRelImm12() const { |
1527 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1528 | return false; |
1529 | // Base register must be PC. |
1530 | if (Memory.BaseRegNum != ARM::PC) |
1531 | return false; |
1532 | // Immediate offset in range [-4095, 4095]. |
1533 | if (!Memory.OffsetImm) return true; |
1534 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1535 | int64_t Val = CE->getValue(); |
1536 | return (Val > -4096 && Val < 4096) || |
1537 | (Val == std::numeric_limits<int32_t>::min()); |
1538 | } |
1539 | return false; |
1540 | } |
1541 | |
1542 | bool isAlignedMemory() const { |
1543 | return isMemNoOffset(alignOK: true); |
1544 | } |
1545 | |
1546 | bool isAlignedMemoryNone() const { |
1547 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1548 | } |
1549 | |
1550 | bool isDupAlignedMemoryNone() const { |
1551 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1552 | } |
1553 | |
1554 | bool isAlignedMemory16() const { |
1555 | if (isMemNoOffset(alignOK: false, Alignment: 2)) // alignment in bytes for 16-bits is 2. |
1556 | return true; |
1557 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1558 | } |
1559 | |
1560 | bool isDupAlignedMemory16() const { |
1561 | if (isMemNoOffset(alignOK: false, Alignment: 2)) // alignment in bytes for 16-bits is 2. |
1562 | return true; |
1563 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1564 | } |
1565 | |
1566 | bool isAlignedMemory32() const { |
1567 | if (isMemNoOffset(alignOK: false, Alignment: 4)) // alignment in bytes for 32-bits is 4. |
1568 | return true; |
1569 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1570 | } |
1571 | |
1572 | bool isDupAlignedMemory32() const { |
1573 | if (isMemNoOffset(alignOK: false, Alignment: 4)) // alignment in bytes for 32-bits is 4. |
1574 | return true; |
1575 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1576 | } |
1577 | |
1578 | bool isAlignedMemory64() const { |
1579 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1580 | return true; |
1581 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1582 | } |
1583 | |
1584 | bool isDupAlignedMemory64() const { |
1585 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1586 | return true; |
1587 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1588 | } |
1589 | |
1590 | bool isAlignedMemory64or128() const { |
1591 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1592 | return true; |
1593 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1594 | return true; |
1595 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1596 | } |
1597 | |
1598 | bool isDupAlignedMemory64or128() const { |
1599 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1600 | return true; |
1601 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1602 | return true; |
1603 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1604 | } |
1605 | |
1606 | bool isAlignedMemory64or128or256() const { |
1607 | if (isMemNoOffset(alignOK: false, Alignment: 8)) // alignment in bytes for 64-bits is 8. |
1608 | return true; |
1609 | if (isMemNoOffset(alignOK: false, Alignment: 16)) // alignment in bytes for 128-bits is 16. |
1610 | return true; |
1611 | if (isMemNoOffset(alignOK: false, Alignment: 32)) // alignment in bytes for 256-bits is 32. |
1612 | return true; |
1613 | return isMemNoOffset(alignOK: false, Alignment: 0); |
1614 | } |
1615 | |
1616 | bool isAddrMode2() const { |
1617 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1618 | // Check for register offset. |
1619 | if (Memory.OffsetRegNum) return true; |
1620 | // Immediate offset in range [-4095, 4095]. |
1621 | if (!Memory.OffsetImm) return true; |
1622 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1623 | int64_t Val = CE->getValue(); |
1624 | return Val > -4096 && Val < 4096; |
1625 | } |
1626 | return false; |
1627 | } |
1628 | |
1629 | bool isAM2OffsetImm() const { |
1630 | if (!isImm()) return false; |
1631 | // Immediate offset in range [-4095, 4095]. |
1632 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1633 | if (!CE) return false; |
1634 | int64_t Val = CE->getValue(); |
1635 | return (Val == std::numeric_limits<int32_t>::min()) || |
1636 | (Val > -4096 && Val < 4096); |
1637 | } |
1638 | |
1639 | bool isAddrMode3() const { |
1640 | // If we have an immediate that's not a constant, treat it as a label |
1641 | // reference needing a fixup. If it is a constant, it's something else |
1642 | // and we reject it. |
1643 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1644 | return true; |
1645 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1646 | // No shifts are legal for AM3. |
1647 | if (Memory.ShiftType != ARM_AM::no_shift) return false; |
1648 | // Check for register offset. |
1649 | if (Memory.OffsetRegNum) return true; |
1650 | // Immediate offset in range [-255, 255]. |
1651 | if (!Memory.OffsetImm) return true; |
1652 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1653 | int64_t Val = CE->getValue(); |
1654 | // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and |
1655 | // we have to check for this too. |
1656 | return (Val > -256 && Val < 256) || |
1657 | Val == std::numeric_limits<int32_t>::min(); |
1658 | } |
1659 | return false; |
1660 | } |
1661 | |
1662 | bool isAM3Offset() const { |
1663 | if (isPostIdxReg()) |
1664 | return true; |
1665 | if (!isImm()) |
1666 | return false; |
1667 | // Immediate offset in range [-255, 255]. |
1668 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
1669 | if (!CE) return false; |
1670 | int64_t Val = CE->getValue(); |
1671 | // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
1672 | return (Val > -256 && Val < 256) || |
1673 | Val == std::numeric_limits<int32_t>::min(); |
1674 | } |
1675 | |
1676 | bool isAddrMode5() const { |
1677 | // If we have an immediate that's not a constant, treat it as a label |
1678 | // reference needing a fixup. If it is a constant, it's something else |
1679 | // and we reject it. |
1680 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1681 | return true; |
1682 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1683 | // Check for register offset. |
1684 | if (Memory.OffsetRegNum) return false; |
1685 | // Immediate offset in range [-1020, 1020] and a multiple of 4. |
1686 | if (!Memory.OffsetImm) return true; |
1687 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1688 | int64_t Val = CE->getValue(); |
1689 | return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || |
1690 | Val == std::numeric_limits<int32_t>::min(); |
1691 | } |
1692 | return false; |
1693 | } |
1694 | |
1695 | bool isAddrMode5FP16() const { |
1696 | // If we have an immediate that's not a constant, treat it as a label |
1697 | // reference needing a fixup. If it is a constant, it's something else |
1698 | // and we reject it. |
1699 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1700 | return true; |
1701 | if (!isGPRMem() || Memory.Alignment != 0) return false; |
1702 | // Check for register offset. |
1703 | if (Memory.OffsetRegNum) return false; |
1704 | // Immediate offset in range [-510, 510] and a multiple of 2. |
1705 | if (!Memory.OffsetImm) return true; |
1706 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1707 | int64_t Val = CE->getValue(); |
1708 | return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || |
1709 | Val == std::numeric_limits<int32_t>::min(); |
1710 | } |
1711 | return false; |
1712 | } |
1713 | |
1714 | bool isMemTBB() const { |
1715 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1716 | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
1717 | return false; |
1718 | return true; |
1719 | } |
1720 | |
1721 | bool isMemTBH() const { |
1722 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1723 | Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || |
1724 | Memory.Alignment != 0 ) |
1725 | return false; |
1726 | return true; |
1727 | } |
1728 | |
1729 | bool isMemRegOffset() const { |
1730 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) |
1731 | return false; |
1732 | return true; |
1733 | } |
1734 | |
1735 | bool isT2MemRegOffset() const { |
1736 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1737 | Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) |
1738 | return false; |
1739 | // Only lsl #{0, 1, 2, 3} allowed. |
1740 | if (Memory.ShiftType == ARM_AM::no_shift) |
1741 | return true; |
1742 | if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) |
1743 | return false; |
1744 | return true; |
1745 | } |
1746 | |
1747 | bool isMemThumbRR() const { |
1748 | // Thumb reg+reg addressing is simple. Just two registers, a base and |
1749 | // an offset. No shifts, negations or any other complicating factors. |
1750 | if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
1751 | Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
1752 | return false; |
1753 | return isARMLowRegister(Reg: Memory.BaseRegNum) && |
1754 | (!Memory.OffsetRegNum || isARMLowRegister(Reg: Memory.OffsetRegNum)); |
1755 | } |
1756 | |
1757 | bool isMemThumbRIs4() const { |
1758 | if (!isGPRMem() || Memory.OffsetRegNum || |
1759 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1760 | return false; |
1761 | // Immediate offset, multiple of 4 in range [0, 124]. |
1762 | if (!Memory.OffsetImm) return true; |
1763 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1764 | int64_t Val = CE->getValue(); |
1765 | return Val >= 0 && Val <= 124 && (Val % 4) == 0; |
1766 | } |
1767 | return false; |
1768 | } |
1769 | |
1770 | bool isMemThumbRIs2() const { |
1771 | if (!isGPRMem() || Memory.OffsetRegNum || |
1772 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1773 | return false; |
1774 | // Immediate offset, multiple of 4 in range [0, 62]. |
1775 | if (!Memory.OffsetImm) return true; |
1776 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1777 | int64_t Val = CE->getValue(); |
1778 | return Val >= 0 && Val <= 62 && (Val % 2) == 0; |
1779 | } |
1780 | return false; |
1781 | } |
1782 | |
1783 | bool isMemThumbRIs1() const { |
1784 | if (!isGPRMem() || Memory.OffsetRegNum || |
1785 | !isARMLowRegister(Reg: Memory.BaseRegNum) || Memory.Alignment != 0) |
1786 | return false; |
1787 | // Immediate offset in range [0, 31]. |
1788 | if (!Memory.OffsetImm) return true; |
1789 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1790 | int64_t Val = CE->getValue(); |
1791 | return Val >= 0 && Val <= 31; |
1792 | } |
1793 | return false; |
1794 | } |
1795 | |
1796 | bool isMemThumbSPI() const { |
1797 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.BaseRegNum != ARM::SP || |
1798 | Memory.Alignment != 0) |
1799 | return false; |
1800 | // Immediate offset, multiple of 4 in range [0, 1020]. |
1801 | if (!Memory.OffsetImm) return true; |
1802 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1803 | int64_t Val = CE->getValue(); |
1804 | return Val >= 0 && Val <= 1020 && (Val % 4) == 0; |
1805 | } |
1806 | return false; |
1807 | } |
1808 | |
1809 | bool isMemImm8s4Offset() const { |
1810 | // If we have an immediate that's not a constant, treat it as a label |
1811 | // reference needing a fixup. If it is a constant, it's something else |
1812 | // and we reject it. |
1813 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1814 | return true; |
1815 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1816 | return false; |
1817 | // Immediate offset a multiple of 4 in range [-1020, 1020]. |
1818 | if (!Memory.OffsetImm) return true; |
1819 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1820 | int64_t Val = CE->getValue(); |
1821 | // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
1822 | return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || |
1823 | Val == std::numeric_limits<int32_t>::min(); |
1824 | } |
1825 | return false; |
1826 | } |
1827 | |
1828 | bool isMemImm7s4Offset() const { |
1829 | // If we have an immediate that's not a constant, treat it as a label |
1830 | // reference needing a fixup. If it is a constant, it's something else |
1831 | // and we reject it. |
1832 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
1833 | return true; |
1834 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0 || |
1835 | !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1836 | Reg: Memory.BaseRegNum)) |
1837 | return false; |
1838 | // Immediate offset a multiple of 4 in range [-508, 508]. |
1839 | if (!Memory.OffsetImm) return true; |
1840 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1841 | int64_t Val = CE->getValue(); |
1842 | // Special case, #-0 is INT32_MIN. |
1843 | return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; |
1844 | } |
1845 | return false; |
1846 | } |
1847 | |
1848 | bool isMemImm0_1020s4Offset() const { |
1849 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1850 | return false; |
1851 | // Immediate offset a multiple of 4 in range [0, 1020]. |
1852 | if (!Memory.OffsetImm) return true; |
1853 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1854 | int64_t Val = CE->getValue(); |
1855 | return Val >= 0 && Val <= 1020 && (Val & 3) == 0; |
1856 | } |
1857 | return false; |
1858 | } |
1859 | |
1860 | bool isMemImm8Offset() const { |
1861 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1862 | return false; |
1863 | // Base reg of PC isn't allowed for these encodings. |
1864 | if (Memory.BaseRegNum == ARM::PC) return false; |
1865 | // Immediate offset in range [-255, 255]. |
1866 | if (!Memory.OffsetImm) return true; |
1867 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1868 | int64_t Val = CE->getValue(); |
1869 | return (Val == std::numeric_limits<int32_t>::min()) || |
1870 | (Val > -256 && Val < 256); |
1871 | } |
1872 | return false; |
1873 | } |
1874 | |
1875 | template<unsigned Bits, unsigned RegClassID> |
1876 | bool isMemImm7ShiftedOffset() const { |
1877 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0 || |
1878 | !ARMMCRegisterClasses[RegClassID].contains(Reg: Memory.BaseRegNum)) |
1879 | return false; |
1880 | |
1881 | // Expect an immediate offset equal to an element of the range |
1882 | // [-127, 127], shifted left by Bits. |
1883 | |
1884 | if (!Memory.OffsetImm) return true; |
1885 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1886 | int64_t Val = CE->getValue(); |
1887 | |
1888 | // INT32_MIN is a special-case value (indicating the encoding with |
1889 | // zero offset and the subtract bit set) |
1890 | if (Val == INT32_MIN) |
1891 | return true; |
1892 | |
1893 | unsigned Divisor = 1U << Bits; |
1894 | |
1895 | // Check that the low bits are zero |
1896 | if (Val % Divisor != 0) |
1897 | return false; |
1898 | |
1899 | // Check that the remaining offset is within range. |
1900 | Val /= Divisor; |
1901 | return (Val >= -127 && Val <= 127); |
1902 | } |
1903 | return false; |
1904 | } |
1905 | |
1906 | template <int shift> bool isMemRegRQOffset() const { |
1907 | if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0) |
1908 | return false; |
1909 | |
1910 | if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
1911 | Reg: Memory.BaseRegNum)) |
1912 | return false; |
1913 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1914 | Reg: Memory.OffsetRegNum)) |
1915 | return false; |
1916 | |
1917 | if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) |
1918 | return false; |
1919 | |
1920 | if (shift > 0 && |
1921 | (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) |
1922 | return false; |
1923 | |
1924 | return true; |
1925 | } |
1926 | |
1927 | template <int shift> bool isMemRegQOffset() const { |
1928 | if (!isMVEMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1929 | return false; |
1930 | |
1931 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
1932 | Reg: Memory.BaseRegNum)) |
1933 | return false; |
1934 | |
1935 | if (!Memory.OffsetImm) |
1936 | return true; |
1937 | static_assert(shift < 56, |
1938 | "Such that we dont shift by a value higher than 62" ); |
1939 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1940 | int64_t Val = CE->getValue(); |
1941 | |
1942 | // The value must be a multiple of (1 << shift) |
1943 | if ((Val & ((1U << shift) - 1)) != 0) |
1944 | return false; |
1945 | |
1946 | // And be in the right range, depending on the amount that it is shifted |
1947 | // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set |
1948 | // separately. |
1949 | int64_t Range = (1U << (7 + shift)) - 1; |
1950 | return (Val == INT32_MIN) || (Val > -Range && Val < Range); |
1951 | } |
1952 | return false; |
1953 | } |
1954 | |
1955 | bool isMemPosImm8Offset() const { |
1956 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1957 | return false; |
1958 | // Immediate offset in range [0, 255]. |
1959 | if (!Memory.OffsetImm) return true; |
1960 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1961 | int64_t Val = CE->getValue(); |
1962 | return Val >= 0 && Val < 256; |
1963 | } |
1964 | return false; |
1965 | } |
1966 | |
1967 | bool isMemNegImm8Offset() const { |
1968 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1969 | return false; |
1970 | // Base reg of PC isn't allowed for these encodings. |
1971 | if (Memory.BaseRegNum == ARM::PC) return false; |
1972 | // Immediate offset in range [-255, -1]. |
1973 | if (!Memory.OffsetImm) return false; |
1974 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1975 | int64_t Val = CE->getValue(); |
1976 | return (Val == std::numeric_limits<int32_t>::min()) || |
1977 | (Val > -256 && Val < 0); |
1978 | } |
1979 | return false; |
1980 | } |
1981 | |
1982 | bool isMemUImm12Offset() const { |
1983 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
1984 | return false; |
1985 | // Immediate offset in range [0, 4095]. |
1986 | if (!Memory.OffsetImm) return true; |
1987 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
1988 | int64_t Val = CE->getValue(); |
1989 | return (Val >= 0 && Val < 4096); |
1990 | } |
1991 | return false; |
1992 | } |
1993 | |
1994 | bool isMemImm12Offset() const { |
1995 | // If we have an immediate that's not a constant, treat it as a label |
1996 | // reference needing a fixup. If it is a constant, it's something else |
1997 | // and we reject it. |
1998 | |
1999 | if (isImm() && !isa<MCConstantExpr>(Val: getImm())) |
2000 | return true; |
2001 | |
2002 | if (!isGPRMem() || Memory.OffsetRegNum || Memory.Alignment != 0) |
2003 | return false; |
2004 | // Immediate offset in range [-4095, 4095]. |
2005 | if (!Memory.OffsetImm) return true; |
2006 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
2007 | int64_t Val = CE->getValue(); |
2008 | return (Val > -4096 && Val < 4096) || |
2009 | (Val == std::numeric_limits<int32_t>::min()); |
2010 | } |
2011 | // If we have an immediate that's not a constant, treat it as a |
2012 | // symbolic expression needing a fixup. |
2013 | return true; |
2014 | } |
2015 | |
2016 | bool isConstPoolAsmImm() const { |
2017 | // Delay processing of Constant Pool Immediate, this will turn into |
2018 | // a constant. Match no other operand |
2019 | return (isConstantPoolImm()); |
2020 | } |
2021 | |
2022 | bool isPostIdxImm8() const { |
2023 | if (!isImm()) return false; |
2024 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2025 | if (!CE) return false; |
2026 | int64_t Val = CE->getValue(); |
2027 | return (Val > -256 && Val < 256) || |
2028 | (Val == std::numeric_limits<int32_t>::min()); |
2029 | } |
2030 | |
2031 | bool isPostIdxImm8s4() const { |
2032 | if (!isImm()) return false; |
2033 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2034 | if (!CE) return false; |
2035 | int64_t Val = CE->getValue(); |
2036 | return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || |
2037 | (Val == std::numeric_limits<int32_t>::min()); |
2038 | } |
2039 | |
2040 | bool isMSRMask() const { return Kind == k_MSRMask; } |
2041 | bool isBankedReg() const { return Kind == k_BankedReg; } |
2042 | bool isProcIFlags() const { return Kind == k_ProcIFlags; } |
2043 | |
2044 | // NEON operands. |
2045 | bool isAnyVectorList() const { |
2046 | return Kind == k_VectorList || Kind == k_VectorListAllLanes || |
2047 | Kind == k_VectorListIndexed; |
2048 | } |
2049 | |
2050 | bool isVectorList() const { return Kind == k_VectorList; } |
2051 | |
2052 | bool isSingleSpacedVectorList() const { |
2053 | return Kind == k_VectorList && !VectorList.isDoubleSpaced; |
2054 | } |
2055 | |
2056 | bool isDoubleSpacedVectorList() const { |
2057 | return Kind == k_VectorList && VectorList.isDoubleSpaced; |
2058 | } |
2059 | |
2060 | bool isVecListOneD() const { |
2061 | // We convert a single D reg to a list containing a D reg |
2062 | if (isDReg() && !Parser->hasMVE()) |
2063 | return true; |
2064 | if (!isSingleSpacedVectorList()) return false; |
2065 | return VectorList.Count == 1; |
2066 | } |
2067 | |
2068 | bool isVecListTwoMQ() const { |
2069 | return isSingleSpacedVectorList() && VectorList.Count == 2 && |
2070 | ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
2071 | Reg: VectorList.RegNum); |
2072 | } |
2073 | |
2074 | bool isVecListDPair() const { |
2075 | // We convert a single Q reg to a list with the two corresponding D |
2076 | // registers |
2077 | if (isQReg() && !Parser->hasMVE()) |
2078 | return true; |
2079 | if (!isSingleSpacedVectorList()) return false; |
2080 | return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
2081 | .contains(Reg: VectorList.RegNum)); |
2082 | } |
2083 | |
2084 | bool isVecListThreeD() const { |
2085 | if (!isSingleSpacedVectorList()) return false; |
2086 | return VectorList.Count == 3; |
2087 | } |
2088 | |
2089 | bool isVecListFourD() const { |
2090 | if (!isSingleSpacedVectorList()) return false; |
2091 | return VectorList.Count == 4; |
2092 | } |
2093 | |
2094 | bool isVecListDPairSpaced() const { |
2095 | if (Kind != k_VectorList) return false; |
2096 | if (isSingleSpacedVectorList()) return false; |
2097 | return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] |
2098 | .contains(Reg: VectorList.RegNum)); |
2099 | } |
2100 | |
2101 | bool isVecListThreeQ() const { |
2102 | if (!isDoubleSpacedVectorList()) return false; |
2103 | return VectorList.Count == 3; |
2104 | } |
2105 | |
2106 | bool isVecListFourQ() const { |
2107 | if (!isDoubleSpacedVectorList()) return false; |
2108 | return VectorList.Count == 4; |
2109 | } |
2110 | |
2111 | bool isVecListFourMQ() const { |
2112 | return isSingleSpacedVectorList() && VectorList.Count == 4 && |
2113 | ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
2114 | Reg: VectorList.RegNum); |
2115 | } |
2116 | |
2117 | bool isSingleSpacedVectorAllLanes() const { |
2118 | return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; |
2119 | } |
2120 | |
2121 | bool isDoubleSpacedVectorAllLanes() const { |
2122 | return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; |
2123 | } |
2124 | |
2125 | bool isVecListOneDAllLanes() const { |
2126 | if (!isSingleSpacedVectorAllLanes()) return false; |
2127 | return VectorList.Count == 1; |
2128 | } |
2129 | |
2130 | bool isVecListDPairAllLanes() const { |
2131 | if (!isSingleSpacedVectorAllLanes()) return false; |
2132 | return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
2133 | .contains(Reg: VectorList.RegNum)); |
2134 | } |
2135 | |
2136 | bool isVecListDPairSpacedAllLanes() const { |
2137 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2138 | return VectorList.Count == 2; |
2139 | } |
2140 | |
2141 | bool isVecListThreeDAllLanes() const { |
2142 | if (!isSingleSpacedVectorAllLanes()) return false; |
2143 | return VectorList.Count == 3; |
2144 | } |
2145 | |
2146 | bool isVecListThreeQAllLanes() const { |
2147 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2148 | return VectorList.Count == 3; |
2149 | } |
2150 | |
2151 | bool isVecListFourDAllLanes() const { |
2152 | if (!isSingleSpacedVectorAllLanes()) return false; |
2153 | return VectorList.Count == 4; |
2154 | } |
2155 | |
2156 | bool isVecListFourQAllLanes() const { |
2157 | if (!isDoubleSpacedVectorAllLanes()) return false; |
2158 | return VectorList.Count == 4; |
2159 | } |
2160 | |
2161 | bool isSingleSpacedVectorIndexed() const { |
2162 | return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; |
2163 | } |
2164 | |
2165 | bool isDoubleSpacedVectorIndexed() const { |
2166 | return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; |
2167 | } |
2168 | |
2169 | bool isVecListOneDByteIndexed() const { |
2170 | if (!isSingleSpacedVectorIndexed()) return false; |
2171 | return VectorList.Count == 1 && VectorList.LaneIndex <= 7; |
2172 | } |
2173 | |
2174 | bool isVecListOneDHWordIndexed() const { |
2175 | if (!isSingleSpacedVectorIndexed()) return false; |
2176 | return VectorList.Count == 1 && VectorList.LaneIndex <= 3; |
2177 | } |
2178 | |
2179 | bool isVecListOneDWordIndexed() const { |
2180 | if (!isSingleSpacedVectorIndexed()) return false; |
2181 | return VectorList.Count == 1 && VectorList.LaneIndex <= 1; |
2182 | } |
2183 | |
2184 | bool isVecListTwoDByteIndexed() const { |
2185 | if (!isSingleSpacedVectorIndexed()) return false; |
2186 | return VectorList.Count == 2 && VectorList.LaneIndex <= 7; |
2187 | } |
2188 | |
2189 | bool isVecListTwoDHWordIndexed() const { |
2190 | if (!isSingleSpacedVectorIndexed()) return false; |
2191 | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
2192 | } |
2193 | |
2194 | bool isVecListTwoQWordIndexed() const { |
2195 | if (!isDoubleSpacedVectorIndexed()) return false; |
2196 | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
2197 | } |
2198 | |
2199 | bool isVecListTwoQHWordIndexed() const { |
2200 | if (!isDoubleSpacedVectorIndexed()) return false; |
2201 | return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
2202 | } |
2203 | |
2204 | bool isVecListTwoDWordIndexed() const { |
2205 | if (!isSingleSpacedVectorIndexed()) return false; |
2206 | return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
2207 | } |
2208 | |
2209 | bool isVecListThreeDByteIndexed() const { |
2210 | if (!isSingleSpacedVectorIndexed()) return false; |
2211 | return VectorList.Count == 3 && VectorList.LaneIndex <= 7; |
2212 | } |
2213 | |
2214 | bool isVecListThreeDHWordIndexed() const { |
2215 | if (!isSingleSpacedVectorIndexed()) return false; |
2216 | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
2217 | } |
2218 | |
2219 | bool isVecListThreeQWordIndexed() const { |
2220 | if (!isDoubleSpacedVectorIndexed()) return false; |
2221 | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
2222 | } |
2223 | |
2224 | bool isVecListThreeQHWordIndexed() const { |
2225 | if (!isDoubleSpacedVectorIndexed()) return false; |
2226 | return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
2227 | } |
2228 | |
2229 | bool isVecListThreeDWordIndexed() const { |
2230 | if (!isSingleSpacedVectorIndexed()) return false; |
2231 | return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
2232 | } |
2233 | |
2234 | bool isVecListFourDByteIndexed() const { |
2235 | if (!isSingleSpacedVectorIndexed()) return false; |
2236 | return VectorList.Count == 4 && VectorList.LaneIndex <= 7; |
2237 | } |
2238 | |
2239 | bool isVecListFourDHWordIndexed() const { |
2240 | if (!isSingleSpacedVectorIndexed()) return false; |
2241 | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
2242 | } |
2243 | |
2244 | bool isVecListFourQWordIndexed() const { |
2245 | if (!isDoubleSpacedVectorIndexed()) return false; |
2246 | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
2247 | } |
2248 | |
2249 | bool isVecListFourQHWordIndexed() const { |
2250 | if (!isDoubleSpacedVectorIndexed()) return false; |
2251 | return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
2252 | } |
2253 | |
2254 | bool isVecListFourDWordIndexed() const { |
2255 | if (!isSingleSpacedVectorIndexed()) return false; |
2256 | return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
2257 | } |
2258 | |
2259 | bool isVectorIndex() const { return Kind == k_VectorIndex; } |
2260 | |
2261 | template <unsigned NumLanes> |
2262 | bool isVectorIndexInRange() const { |
2263 | if (Kind != k_VectorIndex) return false; |
2264 | return VectorIndex.Val < NumLanes; |
2265 | } |
2266 | |
2267 | bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } |
2268 | bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } |
2269 | bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } |
2270 | bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } |
2271 | |
2272 | template<int PermittedValue, int OtherPermittedValue> |
2273 | bool isMVEPairVectorIndex() const { |
2274 | if (Kind != k_VectorIndex) return false; |
2275 | return VectorIndex.Val == PermittedValue || |
2276 | VectorIndex.Val == OtherPermittedValue; |
2277 | } |
2278 | |
2279 | bool isNEONi8splat() const { |
2280 | if (!isImm()) return false; |
2281 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2282 | // Must be a constant. |
2283 | if (!CE) return false; |
2284 | int64_t Value = CE->getValue(); |
2285 | // i8 value splatted across 8 bytes. The immediate is just the 8 byte |
2286 | // value. |
2287 | return Value >= 0 && Value < 256; |
2288 | } |
2289 | |
2290 | bool isNEONi16splat() const { |
2291 | if (isNEONByteReplicate(NumBytes: 2)) |
2292 | return false; // Leave that for bytes replication and forbid by default. |
2293 | if (!isImm()) |
2294 | return false; |
2295 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2296 | // Must be a constant. |
2297 | if (!CE) return false; |
2298 | unsigned Value = CE->getValue(); |
2299 | return ARM_AM::isNEONi16splat(Value); |
2300 | } |
2301 | |
2302 | bool isNEONi16splatNot() const { |
2303 | if (!isImm()) |
2304 | return false; |
2305 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2306 | // Must be a constant. |
2307 | if (!CE) return false; |
2308 | unsigned Value = CE->getValue(); |
2309 | return ARM_AM::isNEONi16splat(Value: ~Value & 0xffff); |
2310 | } |
2311 | |
2312 | bool isNEONi32splat() const { |
2313 | if (isNEONByteReplicate(NumBytes: 4)) |
2314 | return false; // Leave that for bytes replication and forbid by default. |
2315 | if (!isImm()) |
2316 | return false; |
2317 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2318 | // Must be a constant. |
2319 | if (!CE) return false; |
2320 | unsigned Value = CE->getValue(); |
2321 | return ARM_AM::isNEONi32splat(Value); |
2322 | } |
2323 | |
2324 | bool isNEONi32splatNot() const { |
2325 | if (!isImm()) |
2326 | return false; |
2327 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2328 | // Must be a constant. |
2329 | if (!CE) return false; |
2330 | unsigned Value = CE->getValue(); |
2331 | return ARM_AM::isNEONi32splat(Value: ~Value); |
2332 | } |
2333 | |
2334 | static bool isValidNEONi32vmovImm(int64_t Value) { |
2335 | // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, |
2336 | // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. |
2337 | return ((Value & 0xffffffffffffff00) == 0) || |
2338 | ((Value & 0xffffffffffff00ff) == 0) || |
2339 | ((Value & 0xffffffffff00ffff) == 0) || |
2340 | ((Value & 0xffffffff00ffffff) == 0) || |
2341 | ((Value & 0xffffffffffff00ff) == 0xff) || |
2342 | ((Value & 0xffffffffff00ffff) == 0xffff); |
2343 | } |
2344 | |
2345 | bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { |
2346 | assert((Width == 8 || Width == 16 || Width == 32) && |
2347 | "Invalid element width" ); |
2348 | assert(NumElems * Width <= 64 && "Invalid result width" ); |
2349 | |
2350 | if (!isImm()) |
2351 | return false; |
2352 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2353 | // Must be a constant. |
2354 | if (!CE) |
2355 | return false; |
2356 | int64_t Value = CE->getValue(); |
2357 | if (!Value) |
2358 | return false; // Don't bother with zero. |
2359 | if (Inv) |
2360 | Value = ~Value; |
2361 | |
2362 | uint64_t Mask = (1ull << Width) - 1; |
2363 | uint64_t Elem = Value & Mask; |
2364 | if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) |
2365 | return false; |
2366 | if (Width == 32 && !isValidNEONi32vmovImm(Value: Elem)) |
2367 | return false; |
2368 | |
2369 | for (unsigned i = 1; i < NumElems; ++i) { |
2370 | Value >>= Width; |
2371 | if ((Value & Mask) != Elem) |
2372 | return false; |
2373 | } |
2374 | return true; |
2375 | } |
2376 | |
2377 | bool isNEONByteReplicate(unsigned NumBytes) const { |
2378 | return isNEONReplicate(Width: 8, NumElems: NumBytes, Inv: false); |
2379 | } |
2380 | |
2381 | static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { |
2382 | assert((FromW == 8 || FromW == 16 || FromW == 32) && |
2383 | "Invalid source width" ); |
2384 | assert((ToW == 16 || ToW == 32 || ToW == 64) && |
2385 | "Invalid destination width" ); |
2386 | assert(FromW < ToW && "ToW is not less than FromW" ); |
2387 | } |
2388 | |
2389 | template<unsigned FromW, unsigned ToW> |
2390 | bool isNEONmovReplicate() const { |
2391 | checkNeonReplicateArgs(FromW, ToW); |
2392 | if (ToW == 64 && isNEONi64splat()) |
2393 | return false; |
2394 | return isNEONReplicate(Width: FromW, NumElems: ToW / FromW, Inv: false); |
2395 | } |
2396 | |
2397 | template<unsigned FromW, unsigned ToW> |
2398 | bool isNEONinvReplicate() const { |
2399 | checkNeonReplicateArgs(FromW, ToW); |
2400 | return isNEONReplicate(Width: FromW, NumElems: ToW / FromW, Inv: true); |
2401 | } |
2402 | |
2403 | bool isNEONi32vmov() const { |
2404 | if (isNEONByteReplicate(NumBytes: 4)) |
2405 | return false; // Let it to be classified as byte-replicate case. |
2406 | if (!isImm()) |
2407 | return false; |
2408 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2409 | // Must be a constant. |
2410 | if (!CE) |
2411 | return false; |
2412 | return isValidNEONi32vmovImm(Value: CE->getValue()); |
2413 | } |
2414 | |
2415 | bool isNEONi32vmovNeg() const { |
2416 | if (!isImm()) return false; |
2417 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2418 | // Must be a constant. |
2419 | if (!CE) return false; |
2420 | return isValidNEONi32vmovImm(Value: ~CE->getValue()); |
2421 | } |
2422 | |
2423 | bool isNEONi64splat() const { |
2424 | if (!isImm()) return false; |
2425 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2426 | // Must be a constant. |
2427 | if (!CE) return false; |
2428 | uint64_t Value = CE->getValue(); |
2429 | // i64 value with each byte being either 0 or 0xff. |
2430 | for (unsigned i = 0; i < 8; ++i, Value >>= 8) |
2431 | if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; |
2432 | return true; |
2433 | } |
2434 | |
2435 | template<int64_t Angle, int64_t Remainder> |
2436 | bool isComplexRotation() const { |
2437 | if (!isImm()) return false; |
2438 | |
2439 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2440 | if (!CE) return false; |
2441 | uint64_t Value = CE->getValue(); |
2442 | |
2443 | return (Value % Angle == Remainder && Value <= 270); |
2444 | } |
2445 | |
2446 | bool isMVELongShift() const { |
2447 | if (!isImm()) return false; |
2448 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2449 | // Must be a constant. |
2450 | if (!CE) return false; |
2451 | uint64_t Value = CE->getValue(); |
2452 | return Value >= 1 && Value <= 32; |
2453 | } |
2454 | |
2455 | bool isMveSaturateOp() const { |
2456 | if (!isImm()) return false; |
2457 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2458 | if (!CE) return false; |
2459 | uint64_t Value = CE->getValue(); |
2460 | return Value == 48 || Value == 64; |
2461 | } |
2462 | |
2463 | bool isITCondCodeNoAL() const { |
2464 | if (!isITCondCode()) return false; |
2465 | ARMCC::CondCodes CC = getCondCode(); |
2466 | return CC != ARMCC::AL; |
2467 | } |
2468 | |
2469 | bool isITCondCodeRestrictedI() const { |
2470 | if (!isITCondCode()) |
2471 | return false; |
2472 | ARMCC::CondCodes CC = getCondCode(); |
2473 | return CC == ARMCC::EQ || CC == ARMCC::NE; |
2474 | } |
2475 | |
2476 | bool isITCondCodeRestrictedS() const { |
2477 | if (!isITCondCode()) |
2478 | return false; |
2479 | ARMCC::CondCodes CC = getCondCode(); |
2480 | return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || |
2481 | CC == ARMCC::GE; |
2482 | } |
2483 | |
2484 | bool isITCondCodeRestrictedU() const { |
2485 | if (!isITCondCode()) |
2486 | return false; |
2487 | ARMCC::CondCodes CC = getCondCode(); |
2488 | return CC == ARMCC::HS || CC == ARMCC::HI; |
2489 | } |
2490 | |
2491 | bool isITCondCodeRestrictedFP() const { |
2492 | if (!isITCondCode()) |
2493 | return false; |
2494 | ARMCC::CondCodes CC = getCondCode(); |
2495 | return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || |
2496 | CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; |
2497 | } |
2498 | |
2499 | void setVecListDPair(unsigned int DPair) { |
2500 | Kind = k_VectorList; |
2501 | VectorList.RegNum = DPair; |
2502 | VectorList.Count = 2; |
2503 | VectorList.isDoubleSpaced = false; |
2504 | } |
2505 | |
2506 | void setVecListOneD(unsigned int DReg) { |
2507 | Kind = k_VectorList; |
2508 | VectorList.RegNum = DReg; |
2509 | VectorList.Count = 1; |
2510 | VectorList.isDoubleSpaced = false; |
2511 | } |
2512 | |
2513 | void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
2514 | // Add as immediates when possible. Null MCExpr = 0. |
2515 | if (!Expr) |
2516 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
2517 | else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr)) |
2518 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2519 | else |
2520 | Inst.addOperand(Op: MCOperand::createExpr(Val: Expr)); |
2521 | } |
2522 | |
2523 | void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { |
2524 | assert(N == 1 && "Invalid number of operands!" ); |
2525 | addExpr(Inst, Expr: getImm()); |
2526 | } |
2527 | |
2528 | void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { |
2529 | assert(N == 1 && "Invalid number of operands!" ); |
2530 | addExpr(Inst, Expr: getImm()); |
2531 | } |
2532 | |
2533 | void addCondCodeOperands(MCInst &Inst, unsigned N) const { |
2534 | assert(N == 2 && "Invalid number of operands!" ); |
2535 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getCondCode()))); |
2536 | unsigned RegNum = getCondCode() == ARMCC::AL ? ARM::NoRegister : ARM::CPSR; |
2537 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2538 | } |
2539 | |
2540 | void addVPTPredNOperands(MCInst &Inst, unsigned N) const { |
2541 | assert(N == 3 && "Invalid number of operands!" ); |
2542 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getVPTPred()))); |
2543 | unsigned RegNum = getVPTPred() == ARMVCC::None ? ARM::NoRegister : ARM::P0; |
2544 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2545 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
2546 | } |
2547 | |
2548 | void addVPTPredROperands(MCInst &Inst, unsigned N) const { |
2549 | assert(N == 4 && "Invalid number of operands!" ); |
2550 | addVPTPredNOperands(Inst, N: N-1); |
2551 | MCRegister RegNum; |
2552 | if (getVPTPred() == ARMVCC::None) { |
2553 | RegNum = ARM::NoRegister; |
2554 | } else { |
2555 | unsigned NextOpIndex = Inst.getNumOperands(); |
2556 | auto &MCID = Parser->getInstrDesc(Opcode: Inst.getOpcode()); |
2557 | int TiedOp = MCID.getOperandConstraint(OpNum: NextOpIndex, Constraint: MCOI::TIED_TO); |
2558 | assert(TiedOp >= 0 && |
2559 | "Inactive register in vpred_r is not tied to an output!" ); |
2560 | RegNum = Inst.getOperand(i: TiedOp).getReg(); |
2561 | } |
2562 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegNum)); |
2563 | } |
2564 | |
2565 | void addCoprocNumOperands(MCInst &Inst, unsigned N) const { |
2566 | assert(N == 1 && "Invalid number of operands!" ); |
2567 | Inst.addOperand(Op: MCOperand::createImm(Val: getCoproc())); |
2568 | } |
2569 | |
2570 | void addCoprocRegOperands(MCInst &Inst, unsigned N) const { |
2571 | assert(N == 1 && "Invalid number of operands!" ); |
2572 | Inst.addOperand(Op: MCOperand::createImm(Val: getCoproc())); |
2573 | } |
2574 | |
2575 | void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { |
2576 | assert(N == 1 && "Invalid number of operands!" ); |
2577 | Inst.addOperand(Op: MCOperand::createImm(Val: CoprocOption.Val)); |
2578 | } |
2579 | |
2580 | void addITMaskOperands(MCInst &Inst, unsigned N) const { |
2581 | assert(N == 1 && "Invalid number of operands!" ); |
2582 | Inst.addOperand(Op: MCOperand::createImm(Val: ITMask.Mask)); |
2583 | } |
2584 | |
2585 | void addITCondCodeOperands(MCInst &Inst, unsigned N) const { |
2586 | assert(N == 1 && "Invalid number of operands!" ); |
2587 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getCondCode()))); |
2588 | } |
2589 | |
2590 | void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { |
2591 | assert(N == 1 && "Invalid number of operands!" ); |
2592 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(ARMCC::getOppositeCondition(CC: getCondCode())))); |
2593 | } |
2594 | |
2595 | void addCCOutOperands(MCInst &Inst, unsigned N) const { |
2596 | assert(N == 1 && "Invalid number of operands!" ); |
2597 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
2598 | } |
2599 | |
2600 | void addRegOperands(MCInst &Inst, unsigned N) const { |
2601 | assert(N == 1 && "Invalid number of operands!" ); |
2602 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
2603 | } |
2604 | |
2605 | void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { |
2606 | assert(N == 3 && "Invalid number of operands!" ); |
2607 | assert(isRegShiftedReg() && |
2608 | "addRegShiftedRegOperands() on non-RegShiftedReg!" ); |
2609 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedReg.SrcReg)); |
2610 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedReg.ShiftReg)); |
2611 | Inst.addOperand(Op: MCOperand::createImm( |
2612 | Val: ARM_AM::getSORegOpc(ShOp: RegShiftedReg.ShiftTy, Imm: RegShiftedReg.ShiftImm))); |
2613 | } |
2614 | |
2615 | void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { |
2616 | assert(N == 2 && "Invalid number of operands!" ); |
2617 | assert(isRegShiftedImm() && |
2618 | "addRegShiftedImmOperands() on non-RegShiftedImm!" ); |
2619 | Inst.addOperand(Op: MCOperand::createReg(Reg: RegShiftedImm.SrcReg)); |
2620 | // Shift of #32 is encoded as 0 where permitted |
2621 | unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); |
2622 | Inst.addOperand(Op: MCOperand::createImm( |
2623 | Val: ARM_AM::getSORegOpc(ShOp: RegShiftedImm.ShiftTy, Imm))); |
2624 | } |
2625 | |
2626 | void addShifterImmOperands(MCInst &Inst, unsigned N) const { |
2627 | assert(N == 1 && "Invalid number of operands!" ); |
2628 | Inst.addOperand(Op: MCOperand::createImm(Val: (ShifterImm.isASR << 5) | |
2629 | ShifterImm.Imm)); |
2630 | } |
2631 | |
2632 | void addRegListOperands(MCInst &Inst, unsigned N) const { |
2633 | assert(N == 1 && "Invalid number of operands!" ); |
2634 | const SmallVectorImpl<MCRegister> &RegList = getRegList(); |
2635 | for (MCRegister Reg : RegList) |
2636 | Inst.addOperand(Op: MCOperand::createReg(Reg)); |
2637 | } |
2638 | |
2639 | void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { |
2640 | assert(N == 1 && "Invalid number of operands!" ); |
2641 | const SmallVectorImpl<MCRegister> &RegList = getRegList(); |
2642 | for (MCRegister Reg : RegList) |
2643 | Inst.addOperand(Op: MCOperand::createReg(Reg)); |
2644 | } |
2645 | |
2646 | void addDPRRegListOperands(MCInst &Inst, unsigned N) const { |
2647 | addRegListOperands(Inst, N); |
2648 | } |
2649 | |
2650 | void addSPRRegListOperands(MCInst &Inst, unsigned N) const { |
2651 | addRegListOperands(Inst, N); |
2652 | } |
2653 | |
2654 | void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
2655 | addRegListOperands(Inst, N); |
2656 | } |
2657 | |
2658 | void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
2659 | addRegListOperands(Inst, N); |
2660 | } |
2661 | |
2662 | void addRotImmOperands(MCInst &Inst, unsigned N) const { |
2663 | assert(N == 1 && "Invalid number of operands!" ); |
2664 | // Encoded as val>>3. The printer handles display as 8, 16, 24. |
2665 | Inst.addOperand(Op: MCOperand::createImm(Val: RotImm.Imm >> 3)); |
2666 | } |
2667 | |
2668 | void addModImmOperands(MCInst &Inst, unsigned N) const { |
2669 | assert(N == 1 && "Invalid number of operands!" ); |
2670 | |
2671 | // Support for fixups (MCFixup) |
2672 | if (isImm()) |
2673 | return addImmOperands(Inst, N); |
2674 | |
2675 | Inst.addOperand(Op: MCOperand::createImm(Val: ModImm.Bits | (ModImm.Rot << 7))); |
2676 | } |
2677 | |
2678 | void addModImmNotOperands(MCInst &Inst, unsigned N) const { |
2679 | assert(N == 1 && "Invalid number of operands!" ); |
2680 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2681 | uint32_t Enc = ARM_AM::getSOImmVal(Arg: ~CE->getValue()); |
2682 | Inst.addOperand(Op: MCOperand::createImm(Val: Enc)); |
2683 | } |
2684 | |
2685 | void addModImmNegOperands(MCInst &Inst, unsigned N) const { |
2686 | assert(N == 1 && "Invalid number of operands!" ); |
2687 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2688 | uint32_t Enc = ARM_AM::getSOImmVal(Arg: -CE->getValue()); |
2689 | Inst.addOperand(Op: MCOperand::createImm(Val: Enc)); |
2690 | } |
2691 | |
2692 | void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { |
2693 | assert(N == 1 && "Invalid number of operands!" ); |
2694 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2695 | uint32_t Val = -CE->getValue(); |
2696 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2697 | } |
2698 | |
2699 | void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { |
2700 | assert(N == 1 && "Invalid number of operands!" ); |
2701 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2702 | uint32_t Val = -CE->getValue(); |
2703 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2704 | } |
2705 | |
2706 | void addBitfieldOperands(MCInst &Inst, unsigned N) const { |
2707 | assert(N == 1 && "Invalid number of operands!" ); |
2708 | // Munge the lsb/width into a bitfield mask. |
2709 | unsigned lsb = Bitfield.LSB; |
2710 | unsigned width = Bitfield.Width; |
2711 | // Make a 32-bit mask w/ the referenced bits clear and all other bits set. |
2712 | uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> |
2713 | (32 - (lsb + width))); |
2714 | Inst.addOperand(Op: MCOperand::createImm(Val: Mask)); |
2715 | } |
2716 | |
2717 | void addImmOperands(MCInst &Inst, unsigned N) const { |
2718 | assert(N == 1 && "Invalid number of operands!" ); |
2719 | addExpr(Inst, Expr: getImm()); |
2720 | } |
2721 | |
2722 | void addFBits16Operands(MCInst &Inst, unsigned N) const { |
2723 | assert(N == 1 && "Invalid number of operands!" ); |
2724 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2725 | Inst.addOperand(Op: MCOperand::createImm(Val: 16 - CE->getValue())); |
2726 | } |
2727 | |
2728 | void addFBits32Operands(MCInst &Inst, unsigned N) const { |
2729 | assert(N == 1 && "Invalid number of operands!" ); |
2730 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2731 | Inst.addOperand(Op: MCOperand::createImm(Val: 32 - CE->getValue())); |
2732 | } |
2733 | |
2734 | void addFPImmOperands(MCInst &Inst, unsigned N) const { |
2735 | assert(N == 1 && "Invalid number of operands!" ); |
2736 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2737 | int Val = ARM_AM::getFP32Imm(Imm: APInt(32, CE->getValue())); |
2738 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2739 | } |
2740 | |
2741 | void addImm8s4Operands(MCInst &Inst, unsigned N) const { |
2742 | assert(N == 1 && "Invalid number of operands!" ); |
2743 | // FIXME: We really want to scale the value here, but the LDRD/STRD |
2744 | // instruction don't encode operands that way yet. |
2745 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2746 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2747 | } |
2748 | |
2749 | void addImm7s4Operands(MCInst &Inst, unsigned N) const { |
2750 | assert(N == 1 && "Invalid number of operands!" ); |
2751 | // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR |
2752 | // instruction don't encode operands that way yet. |
2753 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2754 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2755 | } |
2756 | |
2757 | void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { |
2758 | assert(N == 1 && "Invalid number of operands!" ); |
2759 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2760 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2761 | } |
2762 | |
2763 | void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { |
2764 | assert(N == 1 && "Invalid number of operands!" ); |
2765 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2766 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2767 | } |
2768 | |
2769 | void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { |
2770 | assert(N == 1 && "Invalid number of operands!" ); |
2771 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2772 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2773 | } |
2774 | |
2775 | void addImm7Operands(MCInst &Inst, unsigned N) const { |
2776 | assert(N == 1 && "Invalid number of operands!" ); |
2777 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2778 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2779 | } |
2780 | |
2781 | void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { |
2782 | assert(N == 1 && "Invalid number of operands!" ); |
2783 | // The immediate is scaled by four in the encoding and is stored |
2784 | // in the MCInst as such. Lop off the low two bits here. |
2785 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2786 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
2787 | } |
2788 | |
2789 | void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { |
2790 | assert(N == 1 && "Invalid number of operands!" ); |
2791 | // The immediate is scaled by four in the encoding and is stored |
2792 | // in the MCInst as such. Lop off the low two bits here. |
2793 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2794 | Inst.addOperand(Op: MCOperand::createImm(Val: -(CE->getValue() / 4))); |
2795 | } |
2796 | |
2797 | void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { |
2798 | assert(N == 1 && "Invalid number of operands!" ); |
2799 | // The immediate is scaled by four in the encoding and is stored |
2800 | // in the MCInst as such. Lop off the low two bits here. |
2801 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2802 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
2803 | } |
2804 | |
2805 | void addImm1_16Operands(MCInst &Inst, unsigned N) const { |
2806 | assert(N == 1 && "Invalid number of operands!" ); |
2807 | // The constant encodes as the immediate-1, and we store in the instruction |
2808 | // the bits as encoded, so subtract off one here. |
2809 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2810 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() - 1)); |
2811 | } |
2812 | |
2813 | void addImm1_32Operands(MCInst &Inst, unsigned N) const { |
2814 | assert(N == 1 && "Invalid number of operands!" ); |
2815 | // The constant encodes as the immediate-1, and we store in the instruction |
2816 | // the bits as encoded, so subtract off one here. |
2817 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2818 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() - 1)); |
2819 | } |
2820 | |
2821 | void addImmThumbSROperands(MCInst &Inst, unsigned N) const { |
2822 | assert(N == 1 && "Invalid number of operands!" ); |
2823 | // The constant encodes as the immediate, except for 32, which encodes as |
2824 | // zero. |
2825 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2826 | unsigned Imm = CE->getValue(); |
2827 | Inst.addOperand(Op: MCOperand::createImm(Val: (Imm == 32 ? 0 : Imm))); |
2828 | } |
2829 | |
2830 | void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { |
2831 | assert(N == 1 && "Invalid number of operands!" ); |
2832 | // An ASR value of 32 encodes as 0, so that's how we want to add it to |
2833 | // the instruction as well. |
2834 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2835 | int Val = CE->getValue(); |
2836 | Inst.addOperand(Op: MCOperand::createImm(Val: Val == 32 ? 0 : Val)); |
2837 | } |
2838 | |
2839 | void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { |
2840 | assert(N == 1 && "Invalid number of operands!" ); |
2841 | // The operand is actually a t2_so_imm, but we have its bitwise |
2842 | // negation in the assembly source, so twiddle it here. |
2843 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2844 | Inst.addOperand(Op: MCOperand::createImm(Val: ~(uint32_t)CE->getValue())); |
2845 | } |
2846 | |
2847 | void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { |
2848 | assert(N == 1 && "Invalid number of operands!" ); |
2849 | // The operand is actually a t2_so_imm, but we have its |
2850 | // negation in the assembly source, so twiddle it here. |
2851 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2852 | Inst.addOperand(Op: MCOperand::createImm(Val: -(uint32_t)CE->getValue())); |
2853 | } |
2854 | |
2855 | void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { |
2856 | assert(N == 1 && "Invalid number of operands!" ); |
2857 | // The operand is actually an imm0_4095, but we have its |
2858 | // negation in the assembly source, so twiddle it here. |
2859 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2860 | Inst.addOperand(Op: MCOperand::createImm(Val: -(uint32_t)CE->getValue())); |
2861 | } |
2862 | |
2863 | void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { |
2864 | if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm())) { |
2865 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() >> 2)); |
2866 | return; |
2867 | } |
2868 | const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Val: Imm.Val); |
2869 | Inst.addOperand(Op: MCOperand::createExpr(Val: SR)); |
2870 | } |
2871 | |
2872 | void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { |
2873 | assert(N == 1 && "Invalid number of operands!" ); |
2874 | if (isImm()) { |
2875 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
2876 | if (CE) { |
2877 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2878 | return; |
2879 | } |
2880 | const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Val: Imm.Val); |
2881 | Inst.addOperand(Op: MCOperand::createExpr(Val: SR)); |
2882 | return; |
2883 | } |
2884 | |
2885 | assert(isGPRMem() && "Unknown value type!" ); |
2886 | assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!" ); |
2887 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
2888 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2889 | else |
2890 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
2891 | } |
2892 | |
2893 | void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2894 | assert(N == 1 && "Invalid number of operands!" ); |
2895 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getMemBarrierOpt()))); |
2896 | } |
2897 | |
2898 | void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2899 | assert(N == 1 && "Invalid number of operands!" ); |
2900 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getInstSyncBarrierOpt()))); |
2901 | } |
2902 | |
2903 | void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
2904 | assert(N == 1 && "Invalid number of operands!" ); |
2905 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getTraceSyncBarrierOpt()))); |
2906 | } |
2907 | |
2908 | void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { |
2909 | assert(N == 1 && "Invalid number of operands!" ); |
2910 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2911 | } |
2912 | |
2913 | void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { |
2914 | assert(N == 1 && "Invalid number of operands!" ); |
2915 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2916 | } |
2917 | |
2918 | void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { |
2919 | assert(N == 1 && "Invalid number of operands!" ); |
2920 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2921 | } |
2922 | |
2923 | void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { |
2924 | assert(N == 1 && "Invalid number of operands!" ); |
2925 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2926 | } |
2927 | |
2928 | void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { |
2929 | assert(N == 1 && "Invalid number of operands!" ); |
2930 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
2931 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
2932 | else |
2933 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
2934 | } |
2935 | |
2936 | void addAdrLabelOperands(MCInst &Inst, unsigned N) const { |
2937 | assert(N == 1 && "Invalid number of operands!" ); |
2938 | assert(isImm() && "Not an immediate!" ); |
2939 | |
2940 | // If we have an immediate that's not a constant, treat it as a label |
2941 | // reference needing a fixup. |
2942 | if (!isa<MCConstantExpr>(Val: getImm())) { |
2943 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
2944 | return; |
2945 | } |
2946 | |
2947 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
2948 | int Val = CE->getValue(); |
2949 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
2950 | } |
2951 | |
2952 | void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { |
2953 | assert(N == 2 && "Invalid number of operands!" ); |
2954 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
2955 | Inst.addOperand(Op: MCOperand::createImm(Val: Memory.Alignment)); |
2956 | } |
2957 | |
2958 | void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
2959 | addAlignedMemoryOperands(Inst, N); |
2960 | } |
2961 | |
2962 | void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
2963 | addAlignedMemoryOperands(Inst, N); |
2964 | } |
2965 | |
2966 | void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
2967 | addAlignedMemoryOperands(Inst, N); |
2968 | } |
2969 | |
2970 | void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
2971 | addAlignedMemoryOperands(Inst, N); |
2972 | } |
2973 | |
2974 | void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
2975 | addAlignedMemoryOperands(Inst, N); |
2976 | } |
2977 | |
2978 | void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
2979 | addAlignedMemoryOperands(Inst, N); |
2980 | } |
2981 | |
2982 | void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
2983 | addAlignedMemoryOperands(Inst, N); |
2984 | } |
2985 | |
2986 | void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
2987 | addAlignedMemoryOperands(Inst, N); |
2988 | } |
2989 | |
2990 | void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
2991 | addAlignedMemoryOperands(Inst, N); |
2992 | } |
2993 | |
2994 | void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
2995 | addAlignedMemoryOperands(Inst, N); |
2996 | } |
2997 | |
2998 | void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { |
2999 | addAlignedMemoryOperands(Inst, N); |
3000 | } |
3001 | |
3002 | void addAddrMode2Operands(MCInst &Inst, unsigned N) const { |
3003 | assert(N == 3 && "Invalid number of operands!" ); |
3004 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3005 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3006 | if (!Memory.OffsetRegNum) { |
3007 | if (!Memory.OffsetImm) |
3008 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3009 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3010 | int32_t Val = CE->getValue(); |
3011 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3012 | // Special case for #-0 |
3013 | if (Val == std::numeric_limits<int32_t>::min()) |
3014 | Val = 0; |
3015 | if (Val < 0) |
3016 | Val = -Val; |
3017 | Val = ARM_AM::getAM2Opc(Opc: AddSub, Imm12: Val, SO: ARM_AM::no_shift); |
3018 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3019 | } else |
3020 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3021 | } else { |
3022 | // For register offset, we encode the shift type and negation flag |
3023 | // here. |
3024 | int32_t Val = |
3025 | ARM_AM::getAM2Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
3026 | Imm12: Memory.ShiftImm, SO: Memory.ShiftType); |
3027 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3028 | } |
3029 | } |
3030 | |
3031 | void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { |
3032 | assert(N == 2 && "Invalid number of operands!" ); |
3033 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3034 | assert(CE && "non-constant AM2OffsetImm operand!" ); |
3035 | int32_t Val = CE->getValue(); |
3036 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3037 | // Special case for #-0 |
3038 | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
3039 | if (Val < 0) Val = -Val; |
3040 | Val = ARM_AM::getAM2Opc(Opc: AddSub, Imm12: Val, SO: ARM_AM::no_shift); |
3041 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3042 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3043 | } |
3044 | |
3045 | void addAddrMode3Operands(MCInst &Inst, unsigned N) const { |
3046 | assert(N == 3 && "Invalid number of operands!" ); |
3047 | // If we have an immediate that's not a constant, treat it as a label |
3048 | // reference needing a fixup. If it is a constant, it's something else |
3049 | // and we reject it. |
3050 | if (isImm()) { |
3051 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3052 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3053 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3054 | return; |
3055 | } |
3056 | |
3057 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3058 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3059 | if (!Memory.OffsetRegNum) { |
3060 | if (!Memory.OffsetImm) |
3061 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3062 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3063 | int32_t Val = CE->getValue(); |
3064 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3065 | // Special case for #-0 |
3066 | if (Val == std::numeric_limits<int32_t>::min()) |
3067 | Val = 0; |
3068 | if (Val < 0) |
3069 | Val = -Val; |
3070 | Val = ARM_AM::getAM3Opc(Opc: AddSub, Offset: Val); |
3071 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3072 | } else |
3073 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3074 | } else { |
3075 | // For register offset, we encode the shift type and negation flag |
3076 | // here. |
3077 | int32_t Val = |
3078 | ARM_AM::getAM3Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, Offset: 0); |
3079 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3080 | } |
3081 | } |
3082 | |
3083 | void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { |
3084 | assert(N == 2 && "Invalid number of operands!" ); |
3085 | if (Kind == k_PostIndexRegister) { |
3086 | int32_t Val = |
3087 | ARM_AM::getAM3Opc(Opc: PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, Offset: 0); |
3088 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3089 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3090 | return; |
3091 | } |
3092 | |
3093 | // Constant offset. |
3094 | const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); |
3095 | int32_t Val = CE->getValue(); |
3096 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3097 | // Special case for #-0 |
3098 | if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
3099 | if (Val < 0) Val = -Val; |
3100 | Val = ARM_AM::getAM3Opc(Opc: AddSub, Offset: Val); |
3101 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
3102 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3103 | } |
3104 | |
3105 | void addAddrMode5Operands(MCInst &Inst, unsigned N) const { |
3106 | assert(N == 2 && "Invalid number of operands!" ); |
3107 | // If we have an immediate that's not a constant, treat it as a label |
3108 | // reference needing a fixup. If it is a constant, it's something else |
3109 | // and we reject it. |
3110 | if (isImm()) { |
3111 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3112 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3113 | return; |
3114 | } |
3115 | |
3116 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3117 | if (!Memory.OffsetImm) |
3118 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3119 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3120 | // The lower two bits are always zero and as such are not encoded. |
3121 | int32_t Val = CE->getValue() / 4; |
3122 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3123 | // Special case for #-0 |
3124 | if (Val == std::numeric_limits<int32_t>::min()) |
3125 | Val = 0; |
3126 | if (Val < 0) |
3127 | Val = -Val; |
3128 | Val = ARM_AM::getAM5Opc(Opc: AddSub, Offset: Val); |
3129 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3130 | } else |
3131 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3132 | } |
3133 | |
3134 | void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { |
3135 | assert(N == 2 && "Invalid number of operands!" ); |
3136 | // If we have an immediate that's not a constant, treat it as a label |
3137 | // reference needing a fixup. If it is a constant, it's something else |
3138 | // and we reject it. |
3139 | if (isImm()) { |
3140 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3141 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3142 | return; |
3143 | } |
3144 | |
3145 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3146 | // The lower bit is always zero and as such is not encoded. |
3147 | if (!Memory.OffsetImm) |
3148 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3149 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) { |
3150 | int32_t Val = CE->getValue() / 2; |
3151 | ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
3152 | // Special case for #-0 |
3153 | if (Val == std::numeric_limits<int32_t>::min()) |
3154 | Val = 0; |
3155 | if (Val < 0) |
3156 | Val = -Val; |
3157 | Val = ARM_AM::getAM5FP16Opc(Opc: AddSub, Offset: Val); |
3158 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3159 | } else |
3160 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3161 | } |
3162 | |
3163 | void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3164 | assert(N == 2 && "Invalid number of operands!" ); |
3165 | // If we have an immediate that's not a constant, treat it as a label |
3166 | // reference needing a fixup. If it is a constant, it's something else |
3167 | // and we reject it. |
3168 | if (isImm()) { |
3169 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3170 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3171 | return; |
3172 | } |
3173 | |
3174 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3175 | addExpr(Inst, Expr: Memory.OffsetImm); |
3176 | } |
3177 | |
3178 | void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3179 | assert(N == 2 && "Invalid number of operands!" ); |
3180 | // If we have an immediate that's not a constant, treat it as a label |
3181 | // reference needing a fixup. If it is a constant, it's something else |
3182 | // and we reject it. |
3183 | if (isImm()) { |
3184 | Inst.addOperand(Op: MCOperand::createExpr(Val: getImm())); |
3185 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3186 | return; |
3187 | } |
3188 | |
3189 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3190 | addExpr(Inst, Expr: Memory.OffsetImm); |
3191 | } |
3192 | |
3193 | void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { |
3194 | assert(N == 2 && "Invalid number of operands!" ); |
3195 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3196 | if (!Memory.OffsetImm) |
3197 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3198 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3199 | // The lower two bits are always zero and as such are not encoded. |
3200 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3201 | else |
3202 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3203 | } |
3204 | |
3205 | void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { |
3206 | assert(N == 2 && "Invalid number of operands!" ); |
3207 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3208 | addExpr(Inst, Expr: Memory.OffsetImm); |
3209 | } |
3210 | |
3211 | void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { |
3212 | assert(N == 2 && "Invalid number of operands!" ); |
3213 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3214 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3215 | } |
3216 | |
3217 | void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
3218 | assert(N == 2 && "Invalid number of operands!" ); |
3219 | // If this is an immediate, it's a label reference. |
3220 | if (isImm()) { |
3221 | addExpr(Inst, Expr: getImm()); |
3222 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3223 | return; |
3224 | } |
3225 | |
3226 | // Otherwise, it's a normal memory reg+offset. |
3227 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3228 | addExpr(Inst, Expr: Memory.OffsetImm); |
3229 | } |
3230 | |
3231 | void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
3232 | assert(N == 2 && "Invalid number of operands!" ); |
3233 | // If this is an immediate, it's a label reference. |
3234 | if (isImm()) { |
3235 | addExpr(Inst, Expr: getImm()); |
3236 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3237 | return; |
3238 | } |
3239 | |
3240 | // Otherwise, it's a normal memory reg+offset. |
3241 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3242 | addExpr(Inst, Expr: Memory.OffsetImm); |
3243 | } |
3244 | |
3245 | void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { |
3246 | assert(N == 1 && "Invalid number of operands!" ); |
3247 | // This is container for the immediate that we will create the constant |
3248 | // pool from |
3249 | addExpr(Inst, Expr: getConstantPoolImm()); |
3250 | } |
3251 | |
3252 | void addMemTBBOperands(MCInst &Inst, unsigned N) const { |
3253 | assert(N == 2 && "Invalid number of operands!" ); |
3254 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3255 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3256 | } |
3257 | |
3258 | void addMemTBHOperands(MCInst &Inst, unsigned N) const { |
3259 | assert(N == 2 && "Invalid number of operands!" ); |
3260 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3261 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3262 | } |
3263 | |
3264 | void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
3265 | assert(N == 3 && "Invalid number of operands!" ); |
3266 | unsigned Val = |
3267 | ARM_AM::getAM2Opc(Opc: Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
3268 | Imm12: Memory.ShiftImm, SO: Memory.ShiftType); |
3269 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3270 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3271 | Inst.addOperand(Op: MCOperand::createImm(Val)); |
3272 | } |
3273 | |
3274 | void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
3275 | assert(N == 3 && "Invalid number of operands!" ); |
3276 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3277 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3278 | Inst.addOperand(Op: MCOperand::createImm(Val: Memory.ShiftImm)); |
3279 | } |
3280 | |
3281 | void addMemThumbRROperands(MCInst &Inst, unsigned N) const { |
3282 | assert(N == 2 && "Invalid number of operands!" ); |
3283 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3284 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.OffsetRegNum)); |
3285 | } |
3286 | |
3287 | void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { |
3288 | assert(N == 2 && "Invalid number of operands!" ); |
3289 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3290 | if (!Memory.OffsetImm) |
3291 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3292 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3293 | // The lower two bits are always zero and as such are not encoded. |
3294 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3295 | else |
3296 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3297 | } |
3298 | |
3299 | void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { |
3300 | assert(N == 2 && "Invalid number of operands!" ); |
3301 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3302 | if (!Memory.OffsetImm) |
3303 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3304 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3305 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 2)); |
3306 | else |
3307 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3308 | } |
3309 | |
3310 | void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { |
3311 | assert(N == 2 && "Invalid number of operands!" ); |
3312 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3313 | addExpr(Inst, Expr: Memory.OffsetImm); |
3314 | } |
3315 | |
3316 | void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { |
3317 | assert(N == 2 && "Invalid number of operands!" ); |
3318 | Inst.addOperand(Op: MCOperand::createReg(Reg: Memory.BaseRegNum)); |
3319 | if (!Memory.OffsetImm) |
3320 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
3321 | else if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Memory.OffsetImm)) |
3322 | // The lower two bits are always zero and as such are not encoded. |
3323 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 4)); |
3324 | else |
3325 | Inst.addOperand(Op: MCOperand::createExpr(Val: Memory.OffsetImm)); |
3326 | } |
3327 | |
3328 | void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { |
3329 | assert(N == 1 && "Invalid number of operands!" ); |
3330 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3331 | assert(CE && "non-constant post-idx-imm8 operand!" ); |
3332 | int Imm = CE->getValue(); |
3333 | bool isAdd = Imm >= 0; |
3334 | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
3335 | Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; |
3336 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3337 | } |
3338 | |
3339 | void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { |
3340 | assert(N == 1 && "Invalid number of operands!" ); |
3341 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: getImm()); |
3342 | assert(CE && "non-constant post-idx-imm8s4 operand!" ); |
3343 | int Imm = CE->getValue(); |
3344 | bool isAdd = Imm >= 0; |
3345 | if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
3346 | // Immediate is scaled by 4. |
3347 | Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; |
3348 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3349 | } |
3350 | |
3351 | void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { |
3352 | assert(N == 2 && "Invalid number of operands!" ); |
3353 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3354 | Inst.addOperand(Op: MCOperand::createImm(Val: PostIdxReg.isAdd)); |
3355 | } |
3356 | |
3357 | void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { |
3358 | assert(N == 2 && "Invalid number of operands!" ); |
3359 | Inst.addOperand(Op: MCOperand::createReg(Reg: PostIdxReg.RegNum)); |
3360 | // The sign, shift type, and shift amount are encoded in a single operand |
3361 | // using the AM2 encoding helpers. |
3362 | ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; |
3363 | unsigned Imm = ARM_AM::getAM2Opc(Opc: opc, Imm12: PostIdxReg.ShiftImm, |
3364 | SO: PostIdxReg.ShiftTy); |
3365 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm)); |
3366 | } |
3367 | |
3368 | void addPowerTwoOperands(MCInst &Inst, unsigned N) const { |
3369 | assert(N == 1 && "Invalid number of operands!" ); |
3370 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3371 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
3372 | } |
3373 | |
3374 | void addMSRMaskOperands(MCInst &Inst, unsigned N) const { |
3375 | assert(N == 1 && "Invalid number of operands!" ); |
3376 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getMSRMask()))); |
3377 | } |
3378 | |
3379 | void addBankedRegOperands(MCInst &Inst, unsigned N) const { |
3380 | assert(N == 1 && "Invalid number of operands!" ); |
3381 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getBankedReg()))); |
3382 | } |
3383 | |
3384 | void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { |
3385 | assert(N == 1 && "Invalid number of operands!" ); |
3386 | Inst.addOperand(Op: MCOperand::createImm(Val: unsigned(getProcIFlags()))); |
3387 | } |
3388 | |
3389 | void addVecListOperands(MCInst &Inst, unsigned N) const { |
3390 | assert(N == 1 && "Invalid number of operands!" ); |
3391 | |
3392 | if (isAnyVectorList()) |
3393 | Inst.addOperand(Op: MCOperand::createReg(Reg: VectorList.RegNum)); |
3394 | else if (isDReg() && !Parser->hasMVE()) { |
3395 | Inst.addOperand(Op: MCOperand::createReg(Reg: Reg.RegNum)); |
3396 | } else if (isQReg() && !Parser->hasMVE()) { |
3397 | MCRegister DPair = Parser->getDRegFromQReg(QReg: Reg.RegNum); |
3398 | DPair = Parser->getMRI()->getMatchingSuperReg( |
3399 | Reg: DPair, SubIdx: ARM::dsub_0, RC: &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
3400 | Inst.addOperand(Op: MCOperand::createReg(Reg: DPair)); |
3401 | } else { |
3402 | LLVM_DEBUG(dbgs() << "TYPE: " << Kind << "\n" ); |
3403 | llvm_unreachable( |
3404 | "attempted to add a vector list register with wrong type!" ); |
3405 | } |
3406 | } |
3407 | |
3408 | void addMVEVecListOperands(MCInst &Inst, unsigned N) const { |
3409 | assert(N == 1 && "Invalid number of operands!" ); |
3410 | |
3411 | // When we come here, the VectorList field will identify a range |
3412 | // of q-registers by its base register and length, and it will |
3413 | // have already been error-checked to be the expected length of |
3414 | // range and contain only q-regs in the range q0-q7. So we can |
3415 | // count on the base register being in the range q0-q6 (for 2 |
3416 | // regs) or q0-q4 (for 4) |
3417 | // |
3418 | // The MVE instructions taking a register range of this kind will |
3419 | // need an operand in the MQQPR or MQQQQPR class, representing the |
3420 | // entire range as a unit. So we must translate into that class, |
3421 | // by finding the index of the base register in the MQPR reg |
3422 | // class, and returning the super-register at the corresponding |
3423 | // index in the target class. |
3424 | |
3425 | const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; |
3426 | const MCRegisterClass *RC_out = |
3427 | (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID] |
3428 | : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID]; |
3429 | |
3430 | unsigned I, E = RC_out->getNumRegs(); |
3431 | for (I = 0; I < E; I++) |
3432 | if (RC_in->getRegister(i: I) == VectorList.RegNum) |
3433 | break; |
3434 | assert(I < E && "Invalid vector list start register!" ); |
3435 | |
3436 | Inst.addOperand(Op: MCOperand::createReg(Reg: RC_out->getRegister(i: I))); |
3437 | } |
3438 | |
3439 | void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { |
3440 | assert(N == 2 && "Invalid number of operands!" ); |
3441 | Inst.addOperand(Op: MCOperand::createReg(Reg: VectorList.RegNum)); |
3442 | Inst.addOperand(Op: MCOperand::createImm(Val: VectorList.LaneIndex)); |
3443 | } |
3444 | |
3445 | void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { |
3446 | assert(N == 1 && "Invalid number of operands!" ); |
3447 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3448 | } |
3449 | |
3450 | void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { |
3451 | assert(N == 1 && "Invalid number of operands!" ); |
3452 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3453 | } |
3454 | |
3455 | void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { |
3456 | assert(N == 1 && "Invalid number of operands!" ); |
3457 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3458 | } |
3459 | |
3460 | void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { |
3461 | assert(N == 1 && "Invalid number of operands!" ); |
3462 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3463 | } |
3464 | |
3465 | void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { |
3466 | assert(N == 1 && "Invalid number of operands!" ); |
3467 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3468 | } |
3469 | |
3470 | void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { |
3471 | assert(N == 1 && "Invalid number of operands!" ); |
3472 | Inst.addOperand(Op: MCOperand::createImm(Val: getVectorIndex())); |
3473 | } |
3474 | |
3475 | void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { |
3476 | assert(N == 1 && "Invalid number of operands!" ); |
3477 | // The immediate encodes the type of constant as well as the value. |
3478 | // Mask in that this is an i8 splat. |
3479 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3480 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() | 0xe00)); |
3481 | } |
3482 | |
3483 | void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { |
3484 | assert(N == 1 && "Invalid number of operands!" ); |
3485 | // The immediate encodes the type of constant as well as the value. |
3486 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3487 | unsigned Value = CE->getValue(); |
3488 | Value = ARM_AM::encodeNEONi16splat(Value); |
3489 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3490 | } |
3491 | |
3492 | void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { |
3493 | assert(N == 1 && "Invalid number of operands!" ); |
3494 | // The immediate encodes the type of constant as well as the value. |
3495 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3496 | unsigned Value = CE->getValue(); |
3497 | Value = ARM_AM::encodeNEONi16splat(Value: ~Value & 0xffff); |
3498 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3499 | } |
3500 | |
3501 | void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { |
3502 | assert(N == 1 && "Invalid number of operands!" ); |
3503 | // The immediate encodes the type of constant as well as the value. |
3504 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3505 | unsigned Value = CE->getValue(); |
3506 | Value = ARM_AM::encodeNEONi32splat(Value); |
3507 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3508 | } |
3509 | |
3510 | void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { |
3511 | assert(N == 1 && "Invalid number of operands!" ); |
3512 | // The immediate encodes the type of constant as well as the value. |
3513 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3514 | unsigned Value = CE->getValue(); |
3515 | Value = ARM_AM::encodeNEONi32splat(Value: ~Value); |
3516 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3517 | } |
3518 | |
3519 | void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { |
3520 | // The immediate encodes the type of constant as well as the value. |
3521 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3522 | assert((Inst.getOpcode() == ARM::VMOVv8i8 || |
3523 | Inst.getOpcode() == ARM::VMOVv16i8) && |
3524 | "All instructions that wants to replicate non-zero byte " |
3525 | "always must be replaced with VMOVv8i8 or VMOVv16i8." ); |
3526 | unsigned Value = CE->getValue(); |
3527 | if (Inv) |
3528 | Value = ~Value; |
3529 | unsigned B = Value & 0xff; |
3530 | B |= 0xe00; // cmode = 0b1110 |
3531 | Inst.addOperand(Op: MCOperand::createImm(Val: B)); |
3532 | } |
3533 | |
3534 | void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
3535 | assert(N == 1 && "Invalid number of operands!" ); |
3536 | addNEONi8ReplicateOperands(Inst, Inv: true); |
3537 | } |
3538 | |
3539 | static unsigned encodeNeonVMOVImmediate(unsigned Value) { |
3540 | if (Value >= 256 && Value <= 0xffff) |
3541 | Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); |
3542 | else if (Value > 0xffff && Value <= 0xffffff) |
3543 | Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); |
3544 | else if (Value > 0xffffff) |
3545 | Value = (Value >> 24) | 0x600; |
3546 | return Value; |
3547 | } |
3548 | |
3549 | void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { |
3550 | assert(N == 1 && "Invalid number of operands!" ); |
3551 | // The immediate encodes the type of constant as well as the value. |
3552 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3553 | unsigned Value = encodeNeonVMOVImmediate(Value: CE->getValue()); |
3554 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3555 | } |
3556 | |
3557 | void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
3558 | assert(N == 1 && "Invalid number of operands!" ); |
3559 | addNEONi8ReplicateOperands(Inst, Inv: false); |
3560 | } |
3561 | |
3562 | void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { |
3563 | assert(N == 1 && "Invalid number of operands!" ); |
3564 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3565 | assert((Inst.getOpcode() == ARM::VMOVv4i16 || |
3566 | Inst.getOpcode() == ARM::VMOVv8i16 || |
3567 | Inst.getOpcode() == ARM::VMVNv4i16 || |
3568 | Inst.getOpcode() == ARM::VMVNv8i16) && |
3569 | "All instructions that want to replicate non-zero half-word " |
3570 | "always must be replaced with V{MOV,MVN}v{4,8}i16." ); |
3571 | uint64_t Value = CE->getValue(); |
3572 | unsigned Elem = Value & 0xffff; |
3573 | if (Elem >= 256) |
3574 | Elem = (Elem >> 8) | 0x200; |
3575 | Inst.addOperand(Op: MCOperand::createImm(Val: Elem)); |
3576 | } |
3577 | |
3578 | void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { |
3579 | assert(N == 1 && "Invalid number of operands!" ); |
3580 | // The immediate encodes the type of constant as well as the value. |
3581 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3582 | unsigned Value = encodeNeonVMOVImmediate(Value: ~CE->getValue()); |
3583 | Inst.addOperand(Op: MCOperand::createImm(Val: Value)); |
3584 | } |
3585 | |
3586 | void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { |
3587 | assert(N == 1 && "Invalid number of operands!" ); |
3588 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3589 | assert((Inst.getOpcode() == ARM::VMOVv2i32 || |
3590 | Inst.getOpcode() == ARM::VMOVv4i32 || |
3591 | Inst.getOpcode() == ARM::VMVNv2i32 || |
3592 | Inst.getOpcode() == ARM::VMVNv4i32) && |
3593 | "All instructions that want to replicate non-zero word " |
3594 | "always must be replaced with V{MOV,MVN}v{2,4}i32." ); |
3595 | uint64_t Value = CE->getValue(); |
3596 | unsigned Elem = encodeNeonVMOVImmediate(Value: Value & 0xffffffff); |
3597 | Inst.addOperand(Op: MCOperand::createImm(Val: Elem)); |
3598 | } |
3599 | |
3600 | void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { |
3601 | assert(N == 1 && "Invalid number of operands!" ); |
3602 | // The immediate encodes the type of constant as well as the value. |
3603 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3604 | uint64_t Value = CE->getValue(); |
3605 | unsigned Imm = 0; |
3606 | for (unsigned i = 0; i < 8; ++i, Value >>= 8) { |
3607 | Imm |= (Value & 1) << i; |
3608 | } |
3609 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm | 0x1e00)); |
3610 | } |
3611 | |
3612 | void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { |
3613 | assert(N == 1 && "Invalid number of operands!" ); |
3614 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3615 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue() / 90)); |
3616 | } |
3617 | |
3618 | void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { |
3619 | assert(N == 1 && "Invalid number of operands!" ); |
3620 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3621 | Inst.addOperand(Op: MCOperand::createImm(Val: (CE->getValue() - 90) / 180)); |
3622 | } |
3623 | |
3624 | void addMveSaturateOperands(MCInst &Inst, unsigned N) const { |
3625 | assert(N == 1 && "Invalid number of operands!" ); |
3626 | const MCConstantExpr *CE = cast<MCConstantExpr>(Val: getImm()); |
3627 | unsigned Imm = CE->getValue(); |
3628 | assert((Imm == 48 || Imm == 64) && "Invalid saturate operand" ); |
3629 | Inst.addOperand(Op: MCOperand::createImm(Val: Imm == 48 ? 1 : 0)); |
3630 | } |
3631 | |
3632 | void print(raw_ostream &OS, const MCAsmInfo &MAI) const override; |
3633 | |
3634 | static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S, |
3635 | ARMAsmParser &Parser) { |
3636 | auto Op = std::make_unique<ARMOperand>(args: k_ITCondMask, args&: Parser); |
3637 | Op->ITMask.Mask = Mask; |
3638 | Op->StartLoc = S; |
3639 | Op->EndLoc = S; |
3640 | return Op; |
3641 | } |
3642 | |
3643 | static std::unique_ptr<ARMOperand> |
3644 | CreateCondCode(ARMCC::CondCodes CC, SMLoc S, ARMAsmParser &Parser) { |
3645 | auto Op = std::make_unique<ARMOperand>(args: k_CondCode, args&: Parser); |
3646 | Op->CC.Val = CC; |
3647 | Op->StartLoc = S; |
3648 | Op->EndLoc = S; |
3649 | return Op; |
3650 | } |
3651 | |
3652 | static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, SMLoc S, |
3653 | ARMAsmParser &Parser) { |
3654 | auto Op = std::make_unique<ARMOperand>(args: k_VPTPred, args&: Parser); |
3655 | Op->VCC.Val = CC; |
3656 | Op->StartLoc = S; |
3657 | Op->EndLoc = S; |
3658 | return Op; |
3659 | } |
3660 | |
3661 | static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S, |
3662 | ARMAsmParser &Parser) { |
3663 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocNum, args&: Parser); |
3664 | Op->Cop.Val = CopVal; |
3665 | Op->StartLoc = S; |
3666 | Op->EndLoc = S; |
3667 | return Op; |
3668 | } |
3669 | |
3670 | static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S, |
3671 | ARMAsmParser &Parser) { |
3672 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocReg, args&: Parser); |
3673 | Op->Cop.Val = CopVal; |
3674 | Op->StartLoc = S; |
3675 | Op->EndLoc = S; |
3676 | return Op; |
3677 | } |
3678 | |
3679 | static std::unique_ptr<ARMOperand> |
3680 | CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3681 | auto Op = std::make_unique<ARMOperand>(args: k_CoprocOption, args&: Parser); |
3682 | Op->Cop.Val = Val; |
3683 | Op->StartLoc = S; |
3684 | Op->EndLoc = E; |
3685 | return Op; |
3686 | } |
3687 | |
3688 | static std::unique_ptr<ARMOperand> CreateCCOut(MCRegister Reg, SMLoc S, |
3689 | ARMAsmParser &Parser) { |
3690 | auto Op = std::make_unique<ARMOperand>(args: k_CCOut, args&: Parser); |
3691 | Op->Reg.RegNum = Reg; |
3692 | Op->StartLoc = S; |
3693 | Op->EndLoc = S; |
3694 | return Op; |
3695 | } |
3696 | |
3697 | static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S, |
3698 | ARMAsmParser &Parser) { |
3699 | auto Op = std::make_unique<ARMOperand>(args: k_Token, args&: Parser); |
3700 | Op->Tok.Data = Str.data(); |
3701 | Op->Tok.Length = Str.size(); |
3702 | Op->StartLoc = S; |
3703 | Op->EndLoc = S; |
3704 | return Op; |
3705 | } |
3706 | |
3707 | static std::unique_ptr<ARMOperand> CreateReg(MCRegister Reg, SMLoc S, SMLoc E, |
3708 | ARMAsmParser &Parser) { |
3709 | auto Op = std::make_unique<ARMOperand>(args: k_Register, args&: Parser); |
3710 | Op->Reg.RegNum = Reg; |
3711 | Op->StartLoc = S; |
3712 | Op->EndLoc = E; |
3713 | return Op; |
3714 | } |
3715 | |
3716 | static std::unique_ptr<ARMOperand> |
3717 | CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, MCRegister SrcReg, |
3718 | MCRegister ShiftReg, unsigned ShiftImm, SMLoc S, |
3719 | SMLoc E, ARMAsmParser &Parser) { |
3720 | auto Op = std::make_unique<ARMOperand>(args: k_ShiftedRegister, args&: Parser); |
3721 | Op->RegShiftedReg.ShiftTy = ShTy; |
3722 | Op->RegShiftedReg.SrcReg = SrcReg; |
3723 | Op->RegShiftedReg.ShiftReg = ShiftReg; |
3724 | Op->RegShiftedReg.ShiftImm = ShiftImm; |
3725 | Op->StartLoc = S; |
3726 | Op->EndLoc = E; |
3727 | return Op; |
3728 | } |
3729 | |
3730 | static std::unique_ptr<ARMOperand> |
3731 | CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, MCRegister SrcReg, |
3732 | unsigned ShiftImm, SMLoc S, SMLoc E, |
3733 | ARMAsmParser &Parser) { |
3734 | auto Op = std::make_unique<ARMOperand>(args: k_ShiftedImmediate, args&: Parser); |
3735 | Op->RegShiftedImm.ShiftTy = ShTy; |
3736 | Op->RegShiftedImm.SrcReg = SrcReg; |
3737 | Op->RegShiftedImm.ShiftImm = ShiftImm; |
3738 | Op->StartLoc = S; |
3739 | Op->EndLoc = E; |
3740 | return Op; |
3741 | } |
3742 | |
3743 | static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, |
3744 | SMLoc S, SMLoc E, |
3745 | ARMAsmParser &Parser) { |
3746 | auto Op = std::make_unique<ARMOperand>(args: k_ShifterImmediate, args&: Parser); |
3747 | Op->ShifterImm.isASR = isASR; |
3748 | Op->ShifterImm.Imm = Imm; |
3749 | Op->StartLoc = S; |
3750 | Op->EndLoc = E; |
3751 | return Op; |
3752 | } |
3753 | |
3754 | static std::unique_ptr<ARMOperand> |
3755 | CreateRotImm(unsigned Imm, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3756 | auto Op = std::make_unique<ARMOperand>(args: k_RotateImmediate, args&: Parser); |
3757 | Op->RotImm.Imm = Imm; |
3758 | Op->StartLoc = S; |
3759 | Op->EndLoc = E; |
3760 | return Op; |
3761 | } |
3762 | |
3763 | static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, |
3764 | SMLoc S, SMLoc E, |
3765 | ARMAsmParser &Parser) { |
3766 | auto Op = std::make_unique<ARMOperand>(args: k_ModifiedImmediate, args&: Parser); |
3767 | Op->ModImm.Bits = Bits; |
3768 | Op->ModImm.Rot = Rot; |
3769 | Op->StartLoc = S; |
3770 | Op->EndLoc = E; |
3771 | return Op; |
3772 | } |
3773 | |
3774 | static std::unique_ptr<ARMOperand> |
3775 | CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E, |
3776 | ARMAsmParser &Parser) { |
3777 | auto Op = std::make_unique<ARMOperand>(args: k_ConstantPoolImmediate, args&: Parser); |
3778 | Op->Imm.Val = Val; |
3779 | Op->StartLoc = S; |
3780 | Op->EndLoc = E; |
3781 | return Op; |
3782 | } |
3783 | |
3784 | static std::unique_ptr<ARMOperand> CreateBitfield(unsigned LSB, |
3785 | unsigned Width, SMLoc S, |
3786 | SMLoc E, |
3787 | ARMAsmParser &Parser) { |
3788 | auto Op = std::make_unique<ARMOperand>(args: k_BitfieldDescriptor, args&: Parser); |
3789 | Op->Bitfield.LSB = LSB; |
3790 | Op->Bitfield.Width = Width; |
3791 | Op->StartLoc = S; |
3792 | Op->EndLoc = E; |
3793 | return Op; |
3794 | } |
3795 | |
3796 | static std::unique_ptr<ARMOperand> |
3797 | CreateRegList(SmallVectorImpl<std::pair<unsigned, MCRegister>> &Regs, |
3798 | SMLoc StartLoc, SMLoc EndLoc, ARMAsmParser &Parser) { |
3799 | assert(Regs.size() > 0 && "RegList contains no registers?" ); |
3800 | KindTy Kind = k_RegisterList; |
3801 | |
3802 | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
3803 | Reg: Regs.front().second)) { |
3804 | if (Regs.back().second == ARM::VPR) |
3805 | Kind = k_FPDRegisterListWithVPR; |
3806 | else |
3807 | Kind = k_DPRRegisterList; |
3808 | } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
3809 | Reg: Regs.front().second)) { |
3810 | if (Regs.back().second == ARM::VPR) |
3811 | Kind = k_FPSRegisterListWithVPR; |
3812 | else |
3813 | Kind = k_SPRRegisterList; |
3814 | } else if (Regs.front().second == ARM::VPR) { |
3815 | assert(Regs.size() == 1 && |
3816 | "Register list starting with VPR expected to only contain VPR" ); |
3817 | Kind = k_FPSRegisterListWithVPR; |
3818 | } |
3819 | |
3820 | if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) |
3821 | Kind = k_RegisterListWithAPSR; |
3822 | |
3823 | assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding" ); |
3824 | |
3825 | auto Op = std::make_unique<ARMOperand>(args&: Kind, args&: Parser); |
3826 | for (const auto &P : Regs) |
3827 | Op->Registers.push_back(Elt: P.second); |
3828 | |
3829 | Op->StartLoc = StartLoc; |
3830 | Op->EndLoc = EndLoc; |
3831 | return Op; |
3832 | } |
3833 | |
3834 | static std::unique_ptr<ARMOperand> |
3835 | CreateVectorList(MCRegister Reg, unsigned Count, bool isDoubleSpaced, SMLoc S, |
3836 | SMLoc E, ARMAsmParser &Parser) { |
3837 | auto Op = std::make_unique<ARMOperand>(args: k_VectorList, args&: Parser); |
3838 | Op->VectorList.RegNum = Reg; |
3839 | Op->VectorList.Count = Count; |
3840 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3841 | Op->StartLoc = S; |
3842 | Op->EndLoc = E; |
3843 | return Op; |
3844 | } |
3845 | |
3846 | static std::unique_ptr<ARMOperand> |
3847 | CreateVectorListAllLanes(MCRegister Reg, unsigned Count, bool isDoubleSpaced, |
3848 | SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3849 | auto Op = std::make_unique<ARMOperand>(args: k_VectorListAllLanes, args&: Parser); |
3850 | Op->VectorList.RegNum = Reg; |
3851 | Op->VectorList.Count = Count; |
3852 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3853 | Op->StartLoc = S; |
3854 | Op->EndLoc = E; |
3855 | return Op; |
3856 | } |
3857 | |
3858 | static std::unique_ptr<ARMOperand> |
3859 | CreateVectorListIndexed(MCRegister Reg, unsigned Count, unsigned Index, |
3860 | bool isDoubleSpaced, SMLoc S, SMLoc E, |
3861 | ARMAsmParser &Parser) { |
3862 | auto Op = std::make_unique<ARMOperand>(args: k_VectorListIndexed, args&: Parser); |
3863 | Op->VectorList.RegNum = Reg; |
3864 | Op->VectorList.Count = Count; |
3865 | Op->VectorList.LaneIndex = Index; |
3866 | Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
3867 | Op->StartLoc = S; |
3868 | Op->EndLoc = E; |
3869 | return Op; |
3870 | } |
3871 | |
3872 | static std::unique_ptr<ARMOperand> CreateVectorIndex(unsigned Idx, SMLoc S, |
3873 | SMLoc E, MCContext &Ctx, |
3874 | ARMAsmParser &Parser) { |
3875 | auto Op = std::make_unique<ARMOperand>(args: k_VectorIndex, args&: Parser); |
3876 | Op->VectorIndex.Val = Idx; |
3877 | Op->StartLoc = S; |
3878 | Op->EndLoc = E; |
3879 | return Op; |
3880 | } |
3881 | |
3882 | static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, |
3883 | SMLoc E, ARMAsmParser &Parser) { |
3884 | auto Op = std::make_unique<ARMOperand>(args: k_Immediate, args&: Parser); |
3885 | Op->Imm.Val = Val; |
3886 | Op->StartLoc = S; |
3887 | Op->EndLoc = E; |
3888 | return Op; |
3889 | } |
3890 | |
3891 | static std::unique_ptr<ARMOperand> |
3892 | CreateMem(MCRegister BaseReg, const MCExpr *OffsetImm, MCRegister OffsetReg, |
3893 | ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment, |
3894 | bool isNegative, SMLoc S, SMLoc E, ARMAsmParser &Parser, |
3895 | SMLoc AlignmentLoc = SMLoc()) { |
3896 | auto Op = std::make_unique<ARMOperand>(args: k_Memory, args&: Parser); |
3897 | Op->Memory.BaseRegNum = BaseReg; |
3898 | Op->Memory.OffsetImm = OffsetImm; |
3899 | Op->Memory.OffsetRegNum = OffsetReg; |
3900 | Op->Memory.ShiftType = ShiftType; |
3901 | Op->Memory.ShiftImm = ShiftImm; |
3902 | Op->Memory.Alignment = Alignment; |
3903 | Op->Memory.isNegative = isNegative; |
3904 | Op->StartLoc = S; |
3905 | Op->EndLoc = E; |
3906 | Op->AlignmentLoc = AlignmentLoc; |
3907 | return Op; |
3908 | } |
3909 | |
3910 | static std::unique_ptr<ARMOperand> |
3911 | CreatePostIdxReg(MCRegister Reg, bool isAdd, ARM_AM::ShiftOpc ShiftTy, |
3912 | unsigned ShiftImm, SMLoc S, SMLoc E, ARMAsmParser &Parser) { |
3913 | auto Op = std::make_unique<ARMOperand>(args: k_PostIndexRegister, args&: Parser); |
3914 | Op->PostIdxReg.RegNum = Reg; |
3915 | Op->PostIdxReg.isAdd = isAdd; |
3916 | Op->PostIdxReg.ShiftTy = ShiftTy; |
3917 | Op->PostIdxReg.ShiftImm = ShiftImm; |
3918 | Op->StartLoc = S; |
3919 | Op->EndLoc = E; |
3920 | return Op; |
3921 | } |
3922 | |
3923 | static std::unique_ptr<ARMOperand> |
3924 | CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S, ARMAsmParser &Parser) { |
3925 | auto Op = std::make_unique<ARMOperand>(args: k_MemBarrierOpt, args&: Parser); |
3926 | Op->MBOpt.Val = Opt; |
3927 | Op->StartLoc = S; |
3928 | Op->EndLoc = S; |
3929 | return Op; |
3930 | } |
3931 | |
3932 | static std::unique_ptr<ARMOperand> |
3933 | CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S, |
3934 | ARMAsmParser &Parser) { |
3935 | auto Op = std::make_unique<ARMOperand>(args: k_InstSyncBarrierOpt, args&: Parser); |
3936 | Op->ISBOpt.Val = Opt; |
3937 | Op->StartLoc = S; |
3938 | Op->EndLoc = S; |
3939 | return Op; |
3940 | } |
3941 | |
3942 | static std::unique_ptr<ARMOperand> |
3943 | CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S, |
3944 | ARMAsmParser &Parser) { |
3945 | auto Op = std::make_unique<ARMOperand>(args: k_TraceSyncBarrierOpt, args&: Parser); |
3946 | Op->TSBOpt.Val = Opt; |
3947 | Op->StartLoc = S; |
3948 | Op->EndLoc = S; |
3949 | return Op; |
3950 | } |
3951 | |
3952 | static std::unique_ptr<ARMOperand> |
3953 | CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S, ARMAsmParser &Parser) { |
3954 | auto Op = std::make_unique<ARMOperand>(args: k_ProcIFlags, args&: Parser); |
3955 | Op->IFlags.Val = IFlags; |
3956 | Op->StartLoc = S; |
3957 | Op->EndLoc = S; |
3958 | return Op; |
3959 | } |
3960 | |
3961 | static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S, |
3962 | ARMAsmParser &Parser) { |
3963 | auto Op = std::make_unique<ARMOperand>(args: k_MSRMask, args&: Parser); |
3964 | Op->MMask.Val = MMask; |
3965 | Op->StartLoc = S; |
3966 | Op->EndLoc = S; |
3967 | return Op; |
3968 | } |
3969 | |
3970 | static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S, |
3971 | ARMAsmParser &Parser) { |
3972 | auto Op = std::make_unique<ARMOperand>(args: k_BankedReg, args&: Parser); |
3973 | Op->BankedReg.Val = Reg; |
3974 | Op->StartLoc = S; |
3975 | Op->EndLoc = S; |
3976 | return Op; |
3977 | } |
3978 | }; |
3979 | |
3980 | } // end anonymous namespace. |
3981 | |
3982 | void ARMOperand::print(raw_ostream &OS, const MCAsmInfo &MAI) const { |
3983 | auto RegName = [](MCRegister Reg) { |
3984 | if (Reg) |
3985 | return ARMInstPrinter::getRegisterName(Reg); |
3986 | else |
3987 | return "noreg" ; |
3988 | }; |
3989 | |
3990 | switch (Kind) { |
3991 | case k_CondCode: |
3992 | OS << "<ARMCC::" << ARMCondCodeToString(CC: getCondCode()) << ">" ; |
3993 | break; |
3994 | case k_VPTPred: |
3995 | OS << "<ARMVCC::" << ARMVPTPredToString(CC: getVPTPred()) << ">" ; |
3996 | break; |
3997 | case k_CCOut: |
3998 | OS << "<ccout " << RegName(getReg()) << ">" ; |
3999 | break; |
4000 | case k_ITCondMask: { |
4001 | static const char *const MaskStr[] = { |
4002 | "(invalid)" , "(tttt)" , "(ttt)" , "(ttte)" , |
4003 | "(tt)" , "(ttet)" , "(tte)" , "(ttee)" , |
4004 | "(t)" , "(tett)" , "(tet)" , "(tete)" , |
4005 | "(te)" , "(teet)" , "(tee)" , "(teee)" , |
4006 | }; |
4007 | assert((ITMask.Mask & 0xf) == ITMask.Mask); |
4008 | OS << "<it-mask " << MaskStr[ITMask.Mask] << ">" ; |
4009 | break; |
4010 | } |
4011 | case k_CoprocNum: |
4012 | OS << "<coprocessor number: " << getCoproc() << ">" ; |
4013 | break; |
4014 | case k_CoprocReg: |
4015 | OS << "<coprocessor register: " << getCoproc() << ">" ; |
4016 | break; |
4017 | case k_CoprocOption: |
4018 | OS << "<coprocessor option: " << CoprocOption.Val << ">" ; |
4019 | break; |
4020 | case k_MSRMask: |
4021 | OS << "<mask: " << getMSRMask() << ">" ; |
4022 | break; |
4023 | case k_BankedReg: |
4024 | OS << "<banked reg: " << getBankedReg() << ">" ; |
4025 | break; |
4026 | case k_Immediate: |
4027 | MAI.printExpr(OS, *getImm()); |
4028 | break; |
4029 | case k_MemBarrierOpt: |
4030 | OS << "<ARM_MB::" << MemBOptToString(val: getMemBarrierOpt(), HasV8: false) << ">" ; |
4031 | break; |
4032 | case k_InstSyncBarrierOpt: |
4033 | OS << "<ARM_ISB::" << InstSyncBOptToString(val: getInstSyncBarrierOpt()) << ">" ; |
4034 | break; |
4035 | case k_TraceSyncBarrierOpt: |
4036 | OS << "<ARM_TSB::" << TraceSyncBOptToString(val: getTraceSyncBarrierOpt()) << ">" ; |
4037 | break; |
4038 | case k_Memory: |
4039 | OS << "<memory" ; |
4040 | if (Memory.BaseRegNum) |
4041 | OS << " base:" << RegName(Memory.BaseRegNum); |
4042 | if (Memory.OffsetImm) { |
4043 | OS << " offset-imm:" ; |
4044 | MAI.printExpr(OS, *Memory.OffsetImm); |
4045 | } |
4046 | if (Memory.OffsetRegNum) |
4047 | OS << " offset-reg:" << (Memory.isNegative ? "-" : "" ) |
4048 | << RegName(Memory.OffsetRegNum); |
4049 | if (Memory.ShiftType != ARM_AM::no_shift) { |
4050 | OS << " shift-type:" << ARM_AM::getShiftOpcStr(Op: Memory.ShiftType); |
4051 | OS << " shift-imm:" << Memory.ShiftImm; |
4052 | } |
4053 | if (Memory.Alignment) |
4054 | OS << " alignment:" << Memory.Alignment; |
4055 | OS << ">" ; |
4056 | break; |
4057 | case k_PostIndexRegister: |
4058 | OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-" ) |
4059 | << RegName(PostIdxReg.RegNum); |
4060 | if (PostIdxReg.ShiftTy != ARM_AM::no_shift) |
4061 | OS << ARM_AM::getShiftOpcStr(Op: PostIdxReg.ShiftTy) << " " |
4062 | << PostIdxReg.ShiftImm; |
4063 | OS << ">" ; |
4064 | break; |
4065 | case k_ProcIFlags: { |
4066 | OS << "<ARM_PROC::" ; |
4067 | unsigned IFlags = getProcIFlags(); |
4068 | for (int i=2; i >= 0; --i) |
4069 | if (IFlags & (1 << i)) |
4070 | OS << ARM_PROC::IFlagsToString(val: 1 << i); |
4071 | OS << ">" ; |
4072 | break; |
4073 | } |
4074 | case k_Register: |
4075 | OS << "<register " << RegName(getReg()) << ">" ; |
4076 | break; |
4077 | case k_ShifterImmediate: |
4078 | OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl" ) |
4079 | << " #" << ShifterImm.Imm << ">" ; |
4080 | break; |
4081 | case k_ShiftedRegister: |
4082 | OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " |
4083 | << ARM_AM::getShiftOpcStr(Op: RegShiftedReg.ShiftTy) << " " |
4084 | << RegName(RegShiftedReg.ShiftReg) << ">" ; |
4085 | break; |
4086 | case k_ShiftedImmediate: |
4087 | OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " |
4088 | << ARM_AM::getShiftOpcStr(Op: RegShiftedImm.ShiftTy) << " #" |
4089 | << RegShiftedImm.ShiftImm << ">" ; |
4090 | break; |
4091 | case k_RotateImmediate: |
4092 | OS << "<ror " << " #" << (RotImm.Imm * 8) << ">" ; |
4093 | break; |
4094 | case k_ModifiedImmediate: |
4095 | OS << "<mod_imm #" << ModImm.Bits << ", #" |
4096 | << ModImm.Rot << ")>" ; |
4097 | break; |
4098 | case k_ConstantPoolImmediate: |
4099 | OS << "<constant_pool_imm #" ; |
4100 | MAI.printExpr(OS, *getConstantPoolImm()); |
4101 | break; |
4102 | case k_BitfieldDescriptor: |
4103 | OS << "<bitfield " << "lsb: " << Bitfield.LSB |
4104 | << ", width: " << Bitfield.Width << ">" ; |
4105 | break; |
4106 | case k_RegisterList: |
4107 | case k_RegisterListWithAPSR: |
4108 | case k_DPRRegisterList: |
4109 | case k_SPRRegisterList: |
4110 | case k_FPSRegisterListWithVPR: |
4111 | case k_FPDRegisterListWithVPR: { |
4112 | OS << "<register_list " ; |
4113 | |
4114 | const SmallVectorImpl<MCRegister> &RegList = getRegList(); |
4115 | for (auto I = RegList.begin(), E = RegList.end(); I != E;) { |
4116 | OS << RegName(*I); |
4117 | if (++I < E) OS << ", " ; |
4118 | } |
4119 | |
4120 | OS << ">" ; |
4121 | break; |
4122 | } |
4123 | case k_VectorList: |
4124 | OS << "<vector_list " << VectorList.Count << " * " |
4125 | << RegName(VectorList.RegNum) << ">" ; |
4126 | break; |
4127 | case k_VectorListAllLanes: |
4128 | OS << "<vector_list(all lanes) " << VectorList.Count << " * " |
4129 | << RegName(VectorList.RegNum) << ">" ; |
4130 | break; |
4131 | case k_VectorListIndexed: |
4132 | OS << "<vector_list(lane " << VectorList.LaneIndex << ") " |
4133 | << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">" ; |
4134 | break; |
4135 | case k_Token: |
4136 | OS << "'" << getToken() << "'" ; |
4137 | break; |
4138 | case k_VectorIndex: |
4139 | OS << "<vectorindex " << getVectorIndex() << ">" ; |
4140 | break; |
4141 | } |
4142 | } |
4143 | |
4144 | /// @name Auto-generated Match Functions |
4145 | /// { |
4146 | |
4147 | static MCRegister MatchRegisterName(StringRef Name); |
4148 | |
4149 | /// } |
4150 | |
4151 | static bool isDataTypeToken(StringRef Tok) { |
4152 | static const DenseSet<StringRef> DataTypes{ |
4153 | ".8" , ".16" , ".32" , ".64" , ".i8" , ".i16" , ".i32" , ".i64" , |
4154 | ".u8" , ".u16" , ".u32" , ".u64" , ".s8" , ".s16" , ".s32" , ".s64" , |
4155 | ".p8" , ".p16" , ".f32" , ".f64" , ".f" , ".d" }; |
4156 | return DataTypes.contains(V: Tok); |
4157 | } |
4158 | |
4159 | static unsigned getMnemonicOpsEndInd(const OperandVector &Operands) { |
4160 | unsigned MnemonicOpsEndInd = 1; |
4161 | // Special case for CPS which has a Mnemonic side token for possibly storing |
4162 | // ie/id variant |
4163 | if (Operands[0]->isToken() && |
4164 | static_cast<ARMOperand &>(*Operands[0]).getToken() == "cps" ) { |
4165 | if (Operands.size() > 1 && Operands[1]->isImm() && |
4166 | static_cast<ARMOperand &>(*Operands[1]).getImm()->getKind() == |
4167 | llvm::MCExpr::Constant && |
4168 | (dyn_cast<MCConstantExpr>( |
4169 | Val: static_cast<ARMOperand &>(*Operands[1]).getImm()) |
4170 | ->getValue() == ARM_PROC::IE || |
4171 | dyn_cast<MCConstantExpr>( |
4172 | Val: static_cast<ARMOperand &>(*Operands[1]).getImm()) |
4173 | ->getValue() == ARM_PROC::ID)) |
4174 | ++MnemonicOpsEndInd; |
4175 | } |
4176 | |
4177 | // In some circumstances the condition code moves to the right |
4178 | bool RHSCondCode = false; |
4179 | while (MnemonicOpsEndInd < Operands.size()) { |
4180 | auto Op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
4181 | // Special case for it instructions which have a condition code on the RHS |
4182 | if (Op.isITMask()) { |
4183 | RHSCondCode = true; |
4184 | MnemonicOpsEndInd++; |
4185 | } else if (Op.isToken() && |
4186 | ( |
4187 | // There are several special cases not covered by |
4188 | // isDataTypeToken |
4189 | Op.getToken() == ".w" || Op.getToken() == ".bf16" || |
4190 | Op.getToken() == ".p64" || Op.getToken() == ".f16" || |
4191 | isDataTypeToken(Tok: Op.getToken()))) { |
4192 | // In the mnemonic operators the cond code must always precede the data |
4193 | // type. So we can now safely assume any subsequent cond code is on the |
4194 | // RHS. As is the case for VCMP and VPT. |
4195 | RHSCondCode = true; |
4196 | MnemonicOpsEndInd++; |
4197 | } |
4198 | // Skip all mnemonic operator types |
4199 | else if (Op.isCCOut() || (Op.isCondCode() && !RHSCondCode) || |
4200 | Op.isVPTPred() || (Op.isToken() && Op.getToken() == ".w" )) |
4201 | MnemonicOpsEndInd++; |
4202 | else |
4203 | break; |
4204 | } |
4205 | return MnemonicOpsEndInd; |
4206 | } |
4207 | |
4208 | bool ARMAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, |
4209 | SMLoc &EndLoc) { |
4210 | const AsmToken &Tok = getParser().getTok(); |
4211 | StartLoc = Tok.getLoc(); |
4212 | EndLoc = Tok.getEndLoc(); |
4213 | Reg = tryParseRegister(); |
4214 | |
4215 | return !Reg; |
4216 | } |
4217 | |
4218 | ParseStatus ARMAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
4219 | SMLoc &EndLoc) { |
4220 | if (parseRegister(Reg, StartLoc, EndLoc)) |
4221 | return ParseStatus::NoMatch; |
4222 | return ParseStatus::Success; |
4223 | } |
4224 | |
4225 | /// Try to parse a register name. The token must be an Identifier when called, |
4226 | /// and if it is a register name the token is eaten and the register is |
4227 | /// returned. Otherwise return an invalid MCRegister. |
4228 | MCRegister ARMAsmParser::tryParseRegister(bool AllowOutOfBoundReg) { |
4229 | MCAsmParser &Parser = getParser(); |
4230 | const AsmToken &Tok = Parser.getTok(); |
4231 | if (Tok.isNot(K: AsmToken::Identifier)) |
4232 | return MCRegister(); |
4233 | |
4234 | std::string lowerCase = Tok.getString().lower(); |
4235 | MCRegister Reg = MatchRegisterName(Name: lowerCase); |
4236 | if (!Reg) { |
4237 | Reg = StringSwitch<MCRegister>(lowerCase) |
4238 | .Case(S: "r13" , Value: ARM::SP) |
4239 | .Case(S: "r14" , Value: ARM::LR) |
4240 | .Case(S: "r15" , Value: ARM::PC) |
4241 | .Case(S: "ip" , Value: ARM::R12) |
4242 | // Additional register name aliases for 'gas' compatibility. |
4243 | .Case(S: "a1" , Value: ARM::R0) |
4244 | .Case(S: "a2" , Value: ARM::R1) |
4245 | .Case(S: "a3" , Value: ARM::R2) |
4246 | .Case(S: "a4" , Value: ARM::R3) |
4247 | .Case(S: "v1" , Value: ARM::R4) |
4248 | .Case(S: "v2" , Value: ARM::R5) |
4249 | .Case(S: "v3" , Value: ARM::R6) |
4250 | .Case(S: "v4" , Value: ARM::R7) |
4251 | .Case(S: "v5" , Value: ARM::R8) |
4252 | .Case(S: "v6" , Value: ARM::R9) |
4253 | .Case(S: "v7" , Value: ARM::R10) |
4254 | .Case(S: "v8" , Value: ARM::R11) |
4255 | .Case(S: "sb" , Value: ARM::R9) |
4256 | .Case(S: "sl" , Value: ARM::R10) |
4257 | .Case(S: "fp" , Value: ARM::R11) |
4258 | .Default(Value: MCRegister()); |
4259 | } |
4260 | if (!Reg) { |
4261 | // Check for aliases registered via .req. Canonicalize to lower case. |
4262 | // That's more consistent since register names are case insensitive, and |
4263 | // it's how the original entry was passed in from MC/MCParser/AsmParser. |
4264 | auto Entry = RegisterReqs.find(Key: lowerCase); |
4265 | // If no match, return failure. |
4266 | if (Entry == RegisterReqs.end()) |
4267 | return MCRegister(); |
4268 | Parser.Lex(); // Eat identifier token. |
4269 | return Entry->getValue(); |
4270 | } |
4271 | |
4272 | // Some FPUs only have 16 D registers, so D16-D31 are invalid |
4273 | if (!AllowOutOfBoundReg && !hasD32() && Reg >= ARM::D16 && Reg <= ARM::D31) |
4274 | return MCRegister(); |
4275 | |
4276 | Parser.Lex(); // Eat identifier token. |
4277 | |
4278 | return Reg; |
4279 | } |
4280 | |
4281 | std::optional<ARM_AM::ShiftOpc> ARMAsmParser::tryParseShiftToken() { |
4282 | MCAsmParser &Parser = getParser(); |
4283 | const AsmToken &Tok = Parser.getTok(); |
4284 | if (Tok.isNot(K: AsmToken::Identifier)) |
4285 | return std::nullopt; |
4286 | |
4287 | std::string lowerCase = Tok.getString().lower(); |
4288 | return StringSwitch<std::optional<ARM_AM::ShiftOpc>>(lowerCase) |
4289 | .Case(S: "asl" , Value: ARM_AM::lsl) |
4290 | .Case(S: "lsl" , Value: ARM_AM::lsl) |
4291 | .Case(S: "lsr" , Value: ARM_AM::lsr) |
4292 | .Case(S: "asr" , Value: ARM_AM::asr) |
4293 | .Case(S: "ror" , Value: ARM_AM::ror) |
4294 | .Case(S: "rrx" , Value: ARM_AM::rrx) |
4295 | .Default(Value: std::nullopt); |
4296 | } |
4297 | |
4298 | // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. |
4299 | // If a recoverable error occurs, return 1. If an irrecoverable error |
4300 | // occurs, return -1. An irrecoverable error is one where tokens have been |
4301 | // consumed in the process of trying to parse the shifter (i.e., when it is |
4302 | // indeed a shifter operand, but malformed). |
4303 | int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { |
4304 | MCAsmParser &Parser = getParser(); |
4305 | SMLoc S = Parser.getTok().getLoc(); |
4306 | |
4307 | auto ShiftTyOpt = tryParseShiftToken(); |
4308 | if (ShiftTyOpt == std::nullopt) |
4309 | return 1; |
4310 | auto ShiftTy = ShiftTyOpt.value(); |
4311 | |
4312 | Parser.Lex(); // Eat the operator. |
4313 | |
4314 | // The source register for the shift has already been added to the |
4315 | // operand list, so we need to pop it off and combine it into the shifted |
4316 | // register operand instead. |
4317 | std::unique_ptr<ARMOperand> PrevOp( |
4318 | (ARMOperand *)Operands.pop_back_val().release()); |
4319 | if (!PrevOp->isReg()) |
4320 | return Error(L: PrevOp->getStartLoc(), Msg: "shift must be of a register" ); |
4321 | MCRegister SrcReg = PrevOp->getReg(); |
4322 | |
4323 | SMLoc EndLoc; |
4324 | int64_t Imm = 0; |
4325 | MCRegister ShiftReg; |
4326 | if (ShiftTy == ARM_AM::rrx) { |
4327 | // RRX Doesn't have an explicit shift amount. The encoder expects |
4328 | // the shift register to be the same as the source register. Seems odd, |
4329 | // but OK. |
4330 | ShiftReg = SrcReg; |
4331 | } else { |
4332 | // Figure out if this is shifted by a constant or a register (for non-RRX). |
4333 | if (Parser.getTok().is(K: AsmToken::Hash) || |
4334 | Parser.getTok().is(K: AsmToken::Dollar)) { |
4335 | Parser.Lex(); // Eat hash. |
4336 | SMLoc ImmLoc = Parser.getTok().getLoc(); |
4337 | const MCExpr *ShiftExpr = nullptr; |
4338 | if (getParser().parseExpression(Res&: ShiftExpr, EndLoc)) { |
4339 | Error(L: ImmLoc, Msg: "invalid immediate shift value" ); |
4340 | return -1; |
4341 | } |
4342 | // The expression must be evaluatable as an immediate. |
4343 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftExpr); |
4344 | if (!CE) { |
4345 | Error(L: ImmLoc, Msg: "invalid immediate shift value" ); |
4346 | return -1; |
4347 | } |
4348 | // Range check the immediate. |
4349 | // lsl, ror: 0 <= imm <= 31 |
4350 | // lsr, asr: 0 <= imm <= 32 |
4351 | Imm = CE->getValue(); |
4352 | if (Imm < 0 || |
4353 | ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || |
4354 | ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { |
4355 | Error(L: ImmLoc, Msg: "immediate shift value out of range" ); |
4356 | return -1; |
4357 | } |
4358 | // shift by zero is a nop. Always send it through as lsl. |
4359 | // ('as' compatibility) |
4360 | if (Imm == 0) |
4361 | ShiftTy = ARM_AM::lsl; |
4362 | } else if (Parser.getTok().is(K: AsmToken::Identifier)) { |
4363 | SMLoc L = Parser.getTok().getLoc(); |
4364 | EndLoc = Parser.getTok().getEndLoc(); |
4365 | ShiftReg = tryParseRegister(); |
4366 | if (!ShiftReg) { |
4367 | Error(L, Msg: "expected immediate or register in shift operand" ); |
4368 | return -1; |
4369 | } |
4370 | } else { |
4371 | Error(L: Parser.getTok().getLoc(), |
4372 | Msg: "expected immediate or register in shift operand" ); |
4373 | return -1; |
4374 | } |
4375 | } |
4376 | |
4377 | if (ShiftReg && ShiftTy != ARM_AM::rrx) |
4378 | Operands.push_back(Elt: ARMOperand::CreateShiftedRegister( |
4379 | ShTy: ShiftTy, SrcReg, ShiftReg, ShiftImm: Imm, S, E: EndLoc, Parser&: *this)); |
4380 | else |
4381 | Operands.push_back(Elt: ARMOperand::CreateShiftedImmediate(ShTy: ShiftTy, SrcReg, ShiftImm: Imm, |
4382 | S, E: EndLoc, Parser&: *this)); |
4383 | |
4384 | return 0; |
4385 | } |
4386 | |
4387 | /// Try to parse a register name. The token must be an Identifier when called. |
4388 | /// If it's a register, an AsmOperand is created. Another AsmOperand is created |
4389 | /// if there is a "writeback". 'true' if it's not a register. |
4390 | /// |
4391 | /// TODO this is likely to change to allow different register types and or to |
4392 | /// parse for a specific register type. |
4393 | bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { |
4394 | MCAsmParser &Parser = getParser(); |
4395 | SMLoc RegStartLoc = Parser.getTok().getLoc(); |
4396 | SMLoc RegEndLoc = Parser.getTok().getEndLoc(); |
4397 | MCRegister Reg = tryParseRegister(); |
4398 | if (!Reg) |
4399 | return true; |
4400 | |
4401 | Operands.push_back(Elt: ARMOperand::CreateReg(Reg, S: RegStartLoc, E: RegEndLoc, Parser&: *this)); |
4402 | |
4403 | const AsmToken &ExclaimTok = Parser.getTok(); |
4404 | if (ExclaimTok.is(K: AsmToken::Exclaim)) { |
4405 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: ExclaimTok.getString(), |
4406 | S: ExclaimTok.getLoc(), Parser&: *this)); |
4407 | Parser.Lex(); // Eat exclaim token |
4408 | return false; |
4409 | } |
4410 | |
4411 | // Also check for an index operand. This is only legal for vector registers, |
4412 | // but that'll get caught OK in operand matching, so we don't need to |
4413 | // explicitly filter everything else out here. |
4414 | if (Parser.getTok().is(K: AsmToken::LBrac)) { |
4415 | SMLoc SIdx = Parser.getTok().getLoc(); |
4416 | Parser.Lex(); // Eat left bracket token. |
4417 | |
4418 | const MCExpr *ImmVal; |
4419 | if (getParser().parseExpression(Res&: ImmVal)) |
4420 | return true; |
4421 | const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Val: ImmVal); |
4422 | if (!MCE) |
4423 | return TokError(Msg: "immediate value expected for vector index" ); |
4424 | |
4425 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
4426 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
4427 | |
4428 | SMLoc E = Parser.getTok().getEndLoc(); |
4429 | Parser.Lex(); // Eat right bracket token. |
4430 | |
4431 | Operands.push_back(Elt: ARMOperand::CreateVectorIndex(Idx: MCE->getValue(), S: SIdx, E, |
4432 | Ctx&: getContext(), Parser&: *this)); |
4433 | } |
4434 | |
4435 | return false; |
4436 | } |
4437 | |
4438 | /// MatchCoprocessorOperandName - Try to parse an coprocessor related |
4439 | /// instruction with a symbolic operand name. |
4440 | /// We accept "crN" syntax for GAS compatibility. |
4441 | /// <operand-name> ::= <prefix><number> |
4442 | /// If CoprocOp is 'c', then: |
4443 | /// <prefix> ::= c | cr |
4444 | /// If CoprocOp is 'p', then : |
4445 | /// <prefix> ::= p |
4446 | /// <number> ::= integer in range [0, 15] |
4447 | static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { |
4448 | // Use the same layout as the tablegen'erated register name matcher. Ugly, |
4449 | // but efficient. |
4450 | if (Name.size() < 2 || Name[0] != CoprocOp) |
4451 | return -1; |
4452 | Name = (Name[1] == 'r') ? Name.drop_front(N: 2) : Name.drop_front(); |
4453 | |
4454 | switch (Name.size()) { |
4455 | default: return -1; |
4456 | case 1: |
4457 | switch (Name[0]) { |
4458 | default: return -1; |
4459 | case '0': return 0; |
4460 | case '1': return 1; |
4461 | case '2': return 2; |
4462 | case '3': return 3; |
4463 | case '4': return 4; |
4464 | case '5': return 5; |
4465 | case '6': return 6; |
4466 | case '7': return 7; |
4467 | case '8': return 8; |
4468 | case '9': return 9; |
4469 | } |
4470 | case 2: |
4471 | if (Name[0] != '1') |
4472 | return -1; |
4473 | switch (Name[1]) { |
4474 | default: return -1; |
4475 | // CP10 and CP11 are VFP/NEON and so vector instructions should be used. |
4476 | // However, old cores (v5/v6) did use them in that way. |
4477 | case '0': return 10; |
4478 | case '1': return 11; |
4479 | case '2': return 12; |
4480 | case '3': return 13; |
4481 | case '4': return 14; |
4482 | case '5': return 15; |
4483 | } |
4484 | } |
4485 | } |
4486 | |
4487 | /// parseITCondCode - Try to parse a condition code for an IT instruction. |
4488 | ParseStatus ARMAsmParser::parseITCondCode(OperandVector &Operands) { |
4489 | MCAsmParser &Parser = getParser(); |
4490 | SMLoc S = Parser.getTok().getLoc(); |
4491 | const AsmToken &Tok = Parser.getTok(); |
4492 | if (!Tok.is(K: AsmToken::Identifier)) |
4493 | return ParseStatus::NoMatch; |
4494 | unsigned CC = ARMCondCodeFromString(CC: Tok.getString()); |
4495 | if (CC == ~0U) |
4496 | return ParseStatus::NoMatch; |
4497 | Parser.Lex(); // Eat the token. |
4498 | |
4499 | Operands.push_back( |
4500 | Elt: ARMOperand::CreateCondCode(CC: ARMCC::CondCodes(CC), S, Parser&: *this)); |
4501 | |
4502 | return ParseStatus::Success; |
4503 | } |
4504 | |
4505 | /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The |
4506 | /// token must be an Identifier when called, and if it is a coprocessor |
4507 | /// number, the token is eaten and the operand is added to the operand list. |
4508 | ParseStatus ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { |
4509 | MCAsmParser &Parser = getParser(); |
4510 | SMLoc S = Parser.getTok().getLoc(); |
4511 | const AsmToken &Tok = Parser.getTok(); |
4512 | if (Tok.isNot(K: AsmToken::Identifier)) |
4513 | return ParseStatus::NoMatch; |
4514 | |
4515 | int Num = MatchCoprocessorOperandName(Name: Tok.getString().lower(), CoprocOp: 'p'); |
4516 | if (Num == -1) |
4517 | return ParseStatus::NoMatch; |
4518 | if (!isValidCoprocessorNumber(Num, featureBits: getSTI().getFeatureBits())) |
4519 | return ParseStatus::NoMatch; |
4520 | |
4521 | Parser.Lex(); // Eat identifier token. |
4522 | Operands.push_back(Elt: ARMOperand::CreateCoprocNum(CopVal: Num, S, Parser&: *this)); |
4523 | return ParseStatus::Success; |
4524 | } |
4525 | |
4526 | /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The |
4527 | /// token must be an Identifier when called, and if it is a coprocessor |
4528 | /// number, the token is eaten and the operand is added to the operand list. |
4529 | ParseStatus ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { |
4530 | MCAsmParser &Parser = getParser(); |
4531 | SMLoc S = Parser.getTok().getLoc(); |
4532 | const AsmToken &Tok = Parser.getTok(); |
4533 | if (Tok.isNot(K: AsmToken::Identifier)) |
4534 | return ParseStatus::NoMatch; |
4535 | |
4536 | int Reg = MatchCoprocessorOperandName(Name: Tok.getString().lower(), CoprocOp: 'c'); |
4537 | if (Reg == -1) |
4538 | return ParseStatus::NoMatch; |
4539 | |
4540 | Parser.Lex(); // Eat identifier token. |
4541 | Operands.push_back(Elt: ARMOperand::CreateCoprocReg(CopVal: Reg, S, Parser&: *this)); |
4542 | return ParseStatus::Success; |
4543 | } |
4544 | |
4545 | /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. |
4546 | /// coproc_option : '{' imm0_255 '}' |
4547 | ParseStatus ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { |
4548 | MCAsmParser &Parser = getParser(); |
4549 | SMLoc S = Parser.getTok().getLoc(); |
4550 | |
4551 | // If this isn't a '{', this isn't a coprocessor immediate operand. |
4552 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4553 | return ParseStatus::NoMatch; |
4554 | Parser.Lex(); // Eat the '{' |
4555 | |
4556 | const MCExpr *Expr; |
4557 | SMLoc Loc = Parser.getTok().getLoc(); |
4558 | if (getParser().parseExpression(Res&: Expr)) |
4559 | return Error(L: Loc, Msg: "illegal expression" ); |
4560 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
4561 | if (!CE || CE->getValue() < 0 || CE->getValue() > 255) |
4562 | return Error(L: Loc, |
4563 | Msg: "coprocessor option must be an immediate in range [0, 255]" ); |
4564 | int Val = CE->getValue(); |
4565 | |
4566 | // Check for and consume the closing '}' |
4567 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
4568 | return ParseStatus::Failure; |
4569 | SMLoc E = Parser.getTok().getEndLoc(); |
4570 | Parser.Lex(); // Eat the '}' |
4571 | |
4572 | Operands.push_back(Elt: ARMOperand::CreateCoprocOption(Val, S, E, Parser&: *this)); |
4573 | return ParseStatus::Success; |
4574 | } |
4575 | |
4576 | // For register list parsing, we need to map from raw GPR register numbering |
4577 | // to the enumeration values. The enumeration values aren't sorted by |
4578 | // register number due to our using "sp", "lr" and "pc" as canonical names. |
4579 | static MCRegister getNextRegister(MCRegister Reg) { |
4580 | // If this is a GPR, we need to do it manually, otherwise we can rely |
4581 | // on the sort ordering of the enumeration since the other reg-classes |
4582 | // are sane. |
4583 | if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4584 | return Reg + 1; |
4585 | switch (Reg.id()) { |
4586 | default: llvm_unreachable("Invalid GPR number!" ); |
4587 | case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; |
4588 | case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; |
4589 | case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; |
4590 | case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; |
4591 | case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; |
4592 | case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; |
4593 | case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; |
4594 | case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; |
4595 | } |
4596 | } |
4597 | |
4598 | // Insert an <Encoding, Register> pair in an ordered vector. Return true on |
4599 | // success, or false, if duplicate encoding found. |
4600 | static bool |
4601 | insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, MCRegister>> &Regs, |
4602 | unsigned Enc, MCRegister Reg) { |
4603 | Regs.emplace_back(Args&: Enc, Args&: Reg); |
4604 | for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { |
4605 | if (J->first == Enc) { |
4606 | Regs.erase(CI: J.base()); |
4607 | return false; |
4608 | } |
4609 | if (J->first < Enc) |
4610 | break; |
4611 | std::swap(x&: *I, y&: *J); |
4612 | } |
4613 | return true; |
4614 | } |
4615 | |
4616 | /// Parse a register list. |
4617 | bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder, |
4618 | bool AllowRAAC, bool IsLazyLoadStore, |
4619 | bool IsVSCCLRM) { |
4620 | MCAsmParser &Parser = getParser(); |
4621 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4622 | return TokError(Msg: "Token is not a Left Curly Brace" ); |
4623 | SMLoc S = Parser.getTok().getLoc(); |
4624 | Parser.Lex(); // Eat '{' token. |
4625 | SMLoc RegLoc = Parser.getTok().getLoc(); |
4626 | |
4627 | // Check the first register in the list to see what register class |
4628 | // this is a list of. |
4629 | bool AllowOutOfBoundReg = IsLazyLoadStore || IsVSCCLRM; |
4630 | MCRegister Reg = tryParseRegister(AllowOutOfBoundReg); |
4631 | if (!Reg) |
4632 | return Error(L: RegLoc, Msg: "register expected" ); |
4633 | if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) |
4634 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4635 | // The reglist instructions have at most 32 registers, so reserve |
4636 | // space for that many. |
4637 | int EReg = 0; |
4638 | SmallVector<std::pair<unsigned, MCRegister>, 32> Registers; |
4639 | |
4640 | // Single-precision VSCCLRM can have double-precision registers in the |
4641 | // register list. When VSCCLRMAdjustEncoding is true then we've switched from |
4642 | // single-precision to double-precision and we pretend that these registers |
4643 | // are encoded as S32 onwards, which we can do by adding 16 to the encoding |
4644 | // value. |
4645 | bool VSCCLRMAdjustEncoding = false; |
4646 | |
4647 | // Allow Q regs and just interpret them as the two D sub-registers. |
4648 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4649 | Reg = getDRegFromQReg(QReg: Reg); |
4650 | EReg = MRI->getEncodingValue(Reg); |
4651 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4652 | Reg = Reg + 1; |
4653 | } |
4654 | const MCRegisterClass *RC; |
4655 | if (Reg == ARM::RA_AUTH_CODE || |
4656 | ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4657 | RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; |
4658 | else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) |
4659 | RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; |
4660 | else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) |
4661 | RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; |
4662 | else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
4663 | RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
4664 | else if (Reg == ARM::VPR) |
4665 | RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; |
4666 | else |
4667 | return Error(L: RegLoc, Msg: "invalid register in register list" ); |
4668 | |
4669 | // Store the register. |
4670 | EReg = MRI->getEncodingValue(Reg); |
4671 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4672 | |
4673 | // This starts immediately after the first register token in the list, |
4674 | // so we can see either a comma or a minus (range separator) as a legal |
4675 | // next token. |
4676 | while (Parser.getTok().is(K: AsmToken::Comma) || |
4677 | Parser.getTok().is(K: AsmToken::Minus)) { |
4678 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
4679 | if (Reg == ARM::RA_AUTH_CODE) |
4680 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4681 | Parser.Lex(); // Eat the minus. |
4682 | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
4683 | MCRegister EndReg = tryParseRegister(AllowOutOfBoundReg); |
4684 | if (!EndReg) |
4685 | return Error(L: AfterMinusLoc, Msg: "register expected" ); |
4686 | if (EndReg == ARM::RA_AUTH_CODE) |
4687 | return Error(L: AfterMinusLoc, Msg: "pseudo-register not allowed" ); |
4688 | // Allow Q regs and just interpret them as the two D sub-registers. |
4689 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: EndReg)) |
4690 | EndReg = getDRegFromQReg(QReg: EndReg) + 1; |
4691 | // If the register is the same as the start reg, there's nothing |
4692 | // more to do. |
4693 | if (Reg == EndReg) |
4694 | continue; |
4695 | // The register must be in the same register class as the first. |
4696 | if (!RC->contains(Reg)) |
4697 | return Error(L: AfterMinusLoc, Msg: "invalid register in register list" ); |
4698 | // Ranges must go from low to high. |
4699 | if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(Reg: EndReg)) |
4700 | return Error(L: AfterMinusLoc, Msg: "bad range in register list" ); |
4701 | |
4702 | // Add all the registers in the range to the register list. |
4703 | while (Reg != EndReg) { |
4704 | Reg = getNextRegister(Reg); |
4705 | EReg = MRI->getEncodingValue(Reg); |
4706 | if (VSCCLRMAdjustEncoding) |
4707 | EReg += 16; |
4708 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4709 | Warning(L: AfterMinusLoc, Msg: StringRef("duplicated register (" ) + |
4710 | ARMInstPrinter::getRegisterName(Reg) + |
4711 | ") in register list" ); |
4712 | } |
4713 | } |
4714 | continue; |
4715 | } |
4716 | Parser.Lex(); // Eat the comma. |
4717 | RegLoc = Parser.getTok().getLoc(); |
4718 | MCRegister OldReg = Reg; |
4719 | int EOldReg = EReg; |
4720 | const AsmToken RegTok = Parser.getTok(); |
4721 | Reg = tryParseRegister(AllowOutOfBoundReg); |
4722 | if (!Reg) |
4723 | return Error(L: RegLoc, Msg: "register expected" ); |
4724 | if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE) |
4725 | return Error(L: RegLoc, Msg: "pseudo-register not allowed" ); |
4726 | // Allow Q regs and just interpret them as the two D sub-registers. |
4727 | bool isQReg = false; |
4728 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4729 | Reg = getDRegFromQReg(QReg: Reg); |
4730 | isQReg = true; |
4731 | } |
4732 | if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) && |
4733 | RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && |
4734 | ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { |
4735 | // switch the register classes, as GPRwithAPSRnospRegClassID is a partial |
4736 | // subset of GPRRegClassId except it contains APSR as well. |
4737 | RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
4738 | } |
4739 | if (Reg == ARM::VPR && |
4740 | (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || |
4741 | RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || |
4742 | RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { |
4743 | RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; |
4744 | EReg = MRI->getEncodingValue(Reg); |
4745 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4746 | Warning(L: RegLoc, Msg: "duplicated register (" + RegTok.getString() + |
4747 | ") in register list" ); |
4748 | } |
4749 | continue; |
4750 | } |
4751 | // VSCCLRM can switch from single-precision to double-precision only when |
4752 | // S31 is followed by D16. |
4753 | if (IsVSCCLRM && OldReg == ARM::S31 && Reg == ARM::D16) { |
4754 | VSCCLRMAdjustEncoding = true; |
4755 | RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; |
4756 | } |
4757 | // The register must be in the same register class as the first. |
4758 | if ((Reg == ARM::RA_AUTH_CODE && |
4759 | RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) || |
4760 | (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg))) |
4761 | return Error(L: RegLoc, Msg: "invalid register in register list" ); |
4762 | // In most cases, the list must be monotonically increasing. An |
4763 | // exception is CLRM, which is order-independent anyway, so |
4764 | // there's no potential for confusion if you write clrm {r2,r1} |
4765 | // instead of clrm {r1,r2}. |
4766 | EReg = MRI->getEncodingValue(Reg); |
4767 | if (VSCCLRMAdjustEncoding) |
4768 | EReg += 16; |
4769 | if (EnforceOrder && EReg < EOldReg) { |
4770 | if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
4771 | Warning(L: RegLoc, Msg: "register list not in ascending order" ); |
4772 | else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
4773 | return Error(L: RegLoc, Msg: "register list not in ascending order" ); |
4774 | } |
4775 | // VFP register lists must also be contiguous. |
4776 | if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && |
4777 | RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && |
4778 | EReg != EOldReg + 1) |
4779 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
4780 | |
4781 | if (!insertNoDuplicates(Regs&: Registers, Enc: EReg, Reg)) { |
4782 | Warning(L: RegLoc, Msg: "duplicated register (" + RegTok.getString() + |
4783 | ") in register list" ); |
4784 | } |
4785 | if (isQReg) { |
4786 | Reg = Reg + 1; |
4787 | EReg = MRI->getEncodingValue(Reg); |
4788 | Registers.emplace_back(Args&: EReg, Args&: Reg); |
4789 | } |
4790 | } |
4791 | |
4792 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
4793 | return Error(L: Parser.getTok().getLoc(), Msg: "'}' expected" ); |
4794 | SMLoc E = Parser.getTok().getEndLoc(); |
4795 | Parser.Lex(); // Eat '}' token. |
4796 | |
4797 | // Push the register list operand. |
4798 | Operands.push_back(Elt: ARMOperand::CreateRegList(Regs&: Registers, StartLoc: S, EndLoc: E, Parser&: *this)); |
4799 | |
4800 | // The ARM system instruction variants for LDM/STM have a '^' token here. |
4801 | if (Parser.getTok().is(K: AsmToken::Caret)) { |
4802 | Operands.push_back( |
4803 | Elt: ARMOperand::CreateToken(Str: "^" , S: Parser.getTok().getLoc(), Parser&: *this)); |
4804 | Parser.Lex(); // Eat '^' token. |
4805 | } |
4806 | |
4807 | return false; |
4808 | } |
4809 | |
4810 | // Helper function to parse the lane index for vector lists. |
4811 | ParseStatus ARMAsmParser::parseVectorLane(VectorLaneTy &LaneKind, |
4812 | unsigned &Index, SMLoc &EndLoc) { |
4813 | MCAsmParser &Parser = getParser(); |
4814 | Index = 0; // Always return a defined index value. |
4815 | if (Parser.getTok().is(K: AsmToken::LBrac)) { |
4816 | Parser.Lex(); // Eat the '['. |
4817 | if (Parser.getTok().is(K: AsmToken::RBrac)) { |
4818 | // "Dn[]" is the 'all lanes' syntax. |
4819 | LaneKind = AllLanes; |
4820 | EndLoc = Parser.getTok().getEndLoc(); |
4821 | Parser.Lex(); // Eat the ']'. |
4822 | return ParseStatus::Success; |
4823 | } |
4824 | |
4825 | // There's an optional '#' token here. Normally there wouldn't be, but |
4826 | // inline assemble puts one in, and it's friendly to accept that. |
4827 | if (Parser.getTok().is(K: AsmToken::Hash)) |
4828 | Parser.Lex(); // Eat '#' or '$'. |
4829 | |
4830 | const MCExpr *LaneIndex; |
4831 | SMLoc Loc = Parser.getTok().getLoc(); |
4832 | if (getParser().parseExpression(Res&: LaneIndex)) |
4833 | return Error(L: Loc, Msg: "illegal expression" ); |
4834 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: LaneIndex); |
4835 | if (!CE) |
4836 | return Error(L: Loc, Msg: "lane index must be empty or an integer" ); |
4837 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
4838 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
4839 | EndLoc = Parser.getTok().getEndLoc(); |
4840 | Parser.Lex(); // Eat the ']'. |
4841 | int64_t Val = CE->getValue(); |
4842 | |
4843 | // FIXME: Make this range check context sensitive for .8, .16, .32. |
4844 | if (Val < 0 || Val > 7) |
4845 | return Error(L: Parser.getTok().getLoc(), Msg: "lane index out of range" ); |
4846 | Index = Val; |
4847 | LaneKind = IndexedLane; |
4848 | return ParseStatus::Success; |
4849 | } |
4850 | LaneKind = NoLanes; |
4851 | return ParseStatus::Success; |
4852 | } |
4853 | |
4854 | // parse a vector register list |
4855 | ParseStatus ARMAsmParser::parseVectorList(OperandVector &Operands) { |
4856 | MCAsmParser &Parser = getParser(); |
4857 | VectorLaneTy LaneKind; |
4858 | unsigned LaneIndex; |
4859 | SMLoc S = Parser.getTok().getLoc(); |
4860 | // As an extension (to match gas), support a plain D register or Q register |
4861 | // (without encosing curly braces) as a single or double entry list, |
4862 | // respectively. |
4863 | // If there is no lane supplied, just parse as a register and |
4864 | // use the custom matcher to convert to list if necessary |
4865 | if (!hasMVE() && Parser.getTok().is(K: AsmToken::Identifier)) { |
4866 | SMLoc E = Parser.getTok().getEndLoc(); |
4867 | MCRegister Reg = tryParseRegister(); |
4868 | if (!Reg) |
4869 | return ParseStatus::NoMatch; |
4870 | if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { |
4871 | ParseStatus Res = parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E); |
4872 | if (!Res.isSuccess()) |
4873 | return Res; |
4874 | switch (LaneKind) { |
4875 | case NoLanes: |
4876 | Operands.push_back(Elt: ARMOperand::CreateReg(Reg, S, E, Parser&: *this)); |
4877 | break; |
4878 | case AllLanes: |
4879 | Operands.push_back( |
4880 | Elt: ARMOperand::CreateVectorListAllLanes(Reg, Count: 1, isDoubleSpaced: false, S, E, Parser&: *this)); |
4881 | break; |
4882 | case IndexedLane: |
4883 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
4884 | Reg, Count: 1, Index: LaneIndex, isDoubleSpaced: false, S, E, Parser&: *this)); |
4885 | break; |
4886 | } |
4887 | return ParseStatus::Success; |
4888 | } |
4889 | if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4890 | Reg = getDRegFromQReg(QReg: Reg); |
4891 | ParseStatus Res = parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E); |
4892 | if (!Res.isSuccess()) |
4893 | return Res; |
4894 | switch (LaneKind) { |
4895 | case NoLanes: |
4896 | Operands.push_back(Elt: ARMOperand::CreateReg(Reg, S, E, Parser&: *this)); |
4897 | break; |
4898 | case AllLanes: |
4899 | Reg = MRI->getMatchingSuperReg(Reg, SubIdx: ARM::dsub_0, |
4900 | RC: &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
4901 | Operands.push_back( |
4902 | Elt: ARMOperand::CreateVectorListAllLanes(Reg, Count: 2, isDoubleSpaced: false, S, E, Parser&: *this)); |
4903 | break; |
4904 | case IndexedLane: |
4905 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
4906 | Reg, Count: 2, Index: LaneIndex, isDoubleSpaced: false, S, E, Parser&: *this)); |
4907 | break; |
4908 | } |
4909 | return ParseStatus::Success; |
4910 | } |
4911 | Operands.push_back(Elt: ARMOperand::CreateReg(Reg, S, E, Parser&: *this)); |
4912 | return ParseStatus::Success; |
4913 | } |
4914 | |
4915 | if (Parser.getTok().isNot(K: AsmToken::LCurly)) |
4916 | return ParseStatus::NoMatch; |
4917 | |
4918 | Parser.Lex(); // Eat '{' token. |
4919 | SMLoc RegLoc = Parser.getTok().getLoc(); |
4920 | |
4921 | MCRegister Reg = tryParseRegister(); |
4922 | if (!Reg) |
4923 | return Error(L: RegLoc, Msg: "register expected" ); |
4924 | unsigned Count = 1; |
4925 | int Spacing = 0; |
4926 | MCRegister FirstReg = Reg; |
4927 | |
4928 | if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) |
4929 | return Error(L: Parser.getTok().getLoc(), |
4930 | Msg: "vector register in range Q0-Q7 expected" ); |
4931 | // The list is of D registers, but we also allow Q regs and just interpret |
4932 | // them as the two D sub-registers. |
4933 | else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
4934 | FirstReg = Reg = getDRegFromQReg(QReg: Reg); |
4935 | Spacing = 1; // double-spacing requires explicit D registers, otherwise |
4936 | // it's ambiguous with four-register single spaced. |
4937 | Reg = Reg + 1; |
4938 | ++Count; |
4939 | } |
4940 | |
4941 | SMLoc E; |
4942 | if (!parseVectorLane(LaneKind, Index&: LaneIndex, EndLoc&: E).isSuccess()) |
4943 | return ParseStatus::Failure; |
4944 | |
4945 | while (Parser.getTok().is(K: AsmToken::Comma) || |
4946 | Parser.getTok().is(K: AsmToken::Minus)) { |
4947 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
4948 | if (!Spacing) |
4949 | Spacing = 1; // Register range implies a single spaced list. |
4950 | else if (Spacing == 2) |
4951 | return Error(L: Parser.getTok().getLoc(), |
4952 | Msg: "sequential registers in double spaced list" ); |
4953 | Parser.Lex(); // Eat the minus. |
4954 | SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
4955 | MCRegister EndReg = tryParseRegister(); |
4956 | if (!EndReg) |
4957 | return Error(L: AfterMinusLoc, Msg: "register expected" ); |
4958 | // Allow Q regs and just interpret them as the two D sub-registers. |
4959 | if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg: EndReg)) |
4960 | EndReg = getDRegFromQReg(QReg: EndReg) + 1; |
4961 | // If the register is the same as the start reg, there's nothing |
4962 | // more to do. |
4963 | if (Reg == EndReg) |
4964 | continue; |
4965 | // The register must be in the same register class as the first. |
4966 | if ((hasMVE() && |
4967 | !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg: EndReg)) || |
4968 | (!hasMVE() && |
4969 | !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg: EndReg))) |
4970 | return Error(L: AfterMinusLoc, Msg: "invalid register in register list" ); |
4971 | // Ranges must go from low to high. |
4972 | if (Reg > EndReg) |
4973 | return Error(L: AfterMinusLoc, Msg: "bad range in register list" ); |
4974 | // Parse the lane specifier if present. |
4975 | VectorLaneTy NextLaneKind; |
4976 | unsigned NextLaneIndex; |
4977 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
4978 | return ParseStatus::Failure; |
4979 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
4980 | return Error(L: AfterMinusLoc, Msg: "mismatched lane index in register list" ); |
4981 | |
4982 | // Add all the registers in the range to the register list. |
4983 | Count += EndReg - Reg; |
4984 | Reg = EndReg; |
4985 | continue; |
4986 | } |
4987 | Parser.Lex(); // Eat the comma. |
4988 | RegLoc = Parser.getTok().getLoc(); |
4989 | MCRegister OldReg = Reg; |
4990 | Reg = tryParseRegister(); |
4991 | if (!Reg) |
4992 | return Error(L: RegLoc, Msg: "register expected" ); |
4993 | |
4994 | if (hasMVE()) { |
4995 | if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) |
4996 | return Error(L: RegLoc, Msg: "vector register in range Q0-Q7 expected" ); |
4997 | Spacing = 1; |
4998 | } |
4999 | // vector register lists must be contiguous. |
5000 | // It's OK to use the enumeration values directly here rather, as the |
5001 | // VFP register classes have the enum sorted properly. |
5002 | // |
5003 | // The list is of D registers, but we also allow Q regs and just interpret |
5004 | // them as the two D sub-registers. |
5005 | else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
5006 | if (!Spacing) |
5007 | Spacing = 1; // Register range implies a single spaced list. |
5008 | else if (Spacing == 2) |
5009 | return Error( |
5010 | L: RegLoc, |
5011 | Msg: "invalid register in double-spaced list (must be 'D' register')" ); |
5012 | Reg = getDRegFromQReg(QReg: Reg); |
5013 | if (Reg != OldReg + 1) |
5014 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
5015 | Reg = Reg + 1; |
5016 | Count += 2; |
5017 | // Parse the lane specifier if present. |
5018 | VectorLaneTy NextLaneKind; |
5019 | unsigned NextLaneIndex; |
5020 | SMLoc LaneLoc = Parser.getTok().getLoc(); |
5021 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
5022 | return ParseStatus::Failure; |
5023 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
5024 | return Error(L: LaneLoc, Msg: "mismatched lane index in register list" ); |
5025 | continue; |
5026 | } |
5027 | // Normal D register. |
5028 | // Figure out the register spacing (single or double) of the list if |
5029 | // we don't know it already. |
5030 | if (!Spacing) |
5031 | Spacing = 1 + (Reg == OldReg + 2); |
5032 | |
5033 | // Just check that it's contiguous and keep going. |
5034 | if (Reg != OldReg + Spacing) |
5035 | return Error(L: RegLoc, Msg: "non-contiguous register range" ); |
5036 | ++Count; |
5037 | // Parse the lane specifier if present. |
5038 | VectorLaneTy NextLaneKind; |
5039 | unsigned NextLaneIndex; |
5040 | SMLoc EndLoc = Parser.getTok().getLoc(); |
5041 | if (!parseVectorLane(LaneKind&: NextLaneKind, Index&: NextLaneIndex, EndLoc&: E).isSuccess()) |
5042 | return ParseStatus::Failure; |
5043 | if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) |
5044 | return Error(L: EndLoc, Msg: "mismatched lane index in register list" ); |
5045 | } |
5046 | |
5047 | if (Parser.getTok().isNot(K: AsmToken::RCurly)) |
5048 | return Error(L: Parser.getTok().getLoc(), Msg: "'}' expected" ); |
5049 | E = Parser.getTok().getEndLoc(); |
5050 | Parser.Lex(); // Eat '}' token. |
5051 | |
5052 | switch (LaneKind) { |
5053 | case NoLanes: |
5054 | case AllLanes: { |
5055 | // Two-register operands have been converted to the |
5056 | // composite register classes. |
5057 | if (Count == 2 && !hasMVE()) { |
5058 | const MCRegisterClass *RC = (Spacing == 1) ? |
5059 | &ARMMCRegisterClasses[ARM::DPairRegClassID] : |
5060 | &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; |
5061 | FirstReg = MRI->getMatchingSuperReg(Reg: FirstReg, SubIdx: ARM::dsub_0, RC); |
5062 | } |
5063 | auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : |
5064 | ARMOperand::CreateVectorListAllLanes); |
5065 | Operands.push_back(Elt: Create(FirstReg, Count, (Spacing == 2), S, E, *this)); |
5066 | break; |
5067 | } |
5068 | case IndexedLane: |
5069 | Operands.push_back(Elt: ARMOperand::CreateVectorListIndexed( |
5070 | Reg: FirstReg, Count, Index: LaneIndex, isDoubleSpaced: (Spacing == 2), S, E, Parser&: *this)); |
5071 | break; |
5072 | } |
5073 | return ParseStatus::Success; |
5074 | } |
5075 | |
5076 | /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. |
5077 | ParseStatus ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { |
5078 | MCAsmParser &Parser = getParser(); |
5079 | SMLoc S = Parser.getTok().getLoc(); |
5080 | const AsmToken &Tok = Parser.getTok(); |
5081 | unsigned Opt; |
5082 | |
5083 | if (Tok.is(K: AsmToken::Identifier)) { |
5084 | StringRef OptStr = Tok.getString(); |
5085 | |
5086 | Opt = StringSwitch<unsigned>(OptStr.lower()) |
5087 | .Case(S: "sy" , Value: ARM_MB::SY) |
5088 | .Case(S: "st" , Value: ARM_MB::ST) |
5089 | .Case(S: "ld" , Value: ARM_MB::LD) |
5090 | .Case(S: "sh" , Value: ARM_MB::ISH) |
5091 | .Case(S: "ish" , Value: ARM_MB::ISH) |
5092 | .Case(S: "shst" , Value: ARM_MB::ISHST) |
5093 | .Case(S: "ishst" , Value: ARM_MB::ISHST) |
5094 | .Case(S: "ishld" , Value: ARM_MB::ISHLD) |
5095 | .Case(S: "nsh" , Value: ARM_MB::NSH) |
5096 | .Case(S: "un" , Value: ARM_MB::NSH) |
5097 | .Case(S: "nshst" , Value: ARM_MB::NSHST) |
5098 | .Case(S: "nshld" , Value: ARM_MB::NSHLD) |
5099 | .Case(S: "unst" , Value: ARM_MB::NSHST) |
5100 | .Case(S: "osh" , Value: ARM_MB::OSH) |
5101 | .Case(S: "oshst" , Value: ARM_MB::OSHST) |
5102 | .Case(S: "oshld" , Value: ARM_MB::OSHLD) |
5103 | .Default(Value: ~0U); |
5104 | |
5105 | // ishld, oshld, nshld and ld are only available from ARMv8. |
5106 | if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || |
5107 | Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) |
5108 | Opt = ~0U; |
5109 | |
5110 | if (Opt == ~0U) |
5111 | return ParseStatus::NoMatch; |
5112 | |
5113 | Parser.Lex(); // Eat identifier token. |
5114 | } else if (Tok.is(K: AsmToken::Hash) || |
5115 | Tok.is(K: AsmToken::Dollar) || |
5116 | Tok.is(K: AsmToken::Integer)) { |
5117 | if (Parser.getTok().isNot(K: AsmToken::Integer)) |
5118 | Parser.Lex(); // Eat '#' or '$'. |
5119 | SMLoc Loc = Parser.getTok().getLoc(); |
5120 | |
5121 | const MCExpr *MemBarrierID; |
5122 | if (getParser().parseExpression(Res&: MemBarrierID)) |
5123 | return Error(L: Loc, Msg: "illegal expression" ); |
5124 | |
5125 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: MemBarrierID); |
5126 | if (!CE) |
5127 | return Error(L: Loc, Msg: "constant expression expected" ); |
5128 | |
5129 | int Val = CE->getValue(); |
5130 | if (Val & ~0xf) |
5131 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5132 | |
5133 | Opt = ARM_MB::RESERVED_0 + Val; |
5134 | } else |
5135 | return Error(L: Parser.getTok().getLoc(), |
5136 | Msg: "expected an immediate or barrier type" ); |
5137 | |
5138 | Operands.push_back( |
5139 | Elt: ARMOperand::CreateMemBarrierOpt(Opt: (ARM_MB::MemBOpt)Opt, S, Parser&: *this)); |
5140 | return ParseStatus::Success; |
5141 | } |
5142 | |
5143 | ParseStatus |
5144 | ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { |
5145 | MCAsmParser &Parser = getParser(); |
5146 | SMLoc S = Parser.getTok().getLoc(); |
5147 | const AsmToken &Tok = Parser.getTok(); |
5148 | |
5149 | if (Tok.isNot(K: AsmToken::Identifier)) |
5150 | return ParseStatus::NoMatch; |
5151 | |
5152 | if (!Tok.getString().equals_insensitive(RHS: "csync" )) |
5153 | return ParseStatus::NoMatch; |
5154 | |
5155 | Parser.Lex(); // Eat identifier token. |
5156 | |
5157 | Operands.push_back( |
5158 | Elt: ARMOperand::CreateTraceSyncBarrierOpt(Opt: ARM_TSB::CSYNC, S, Parser&: *this)); |
5159 | return ParseStatus::Success; |
5160 | } |
5161 | |
5162 | /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. |
5163 | ParseStatus |
5164 | ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { |
5165 | MCAsmParser &Parser = getParser(); |
5166 | SMLoc S = Parser.getTok().getLoc(); |
5167 | const AsmToken &Tok = Parser.getTok(); |
5168 | unsigned Opt; |
5169 | |
5170 | if (Tok.is(K: AsmToken::Identifier)) { |
5171 | StringRef OptStr = Tok.getString(); |
5172 | |
5173 | if (OptStr.equals_insensitive(RHS: "sy" )) |
5174 | Opt = ARM_ISB::SY; |
5175 | else |
5176 | return ParseStatus::NoMatch; |
5177 | |
5178 | Parser.Lex(); // Eat identifier token. |
5179 | } else if (Tok.is(K: AsmToken::Hash) || |
5180 | Tok.is(K: AsmToken::Dollar) || |
5181 | Tok.is(K: AsmToken::Integer)) { |
5182 | if (Parser.getTok().isNot(K: AsmToken::Integer)) |
5183 | Parser.Lex(); // Eat '#' or '$'. |
5184 | SMLoc Loc = Parser.getTok().getLoc(); |
5185 | |
5186 | const MCExpr *ISBarrierID; |
5187 | if (getParser().parseExpression(Res&: ISBarrierID)) |
5188 | return Error(L: Loc, Msg: "illegal expression" ); |
5189 | |
5190 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ISBarrierID); |
5191 | if (!CE) |
5192 | return Error(L: Loc, Msg: "constant expression expected" ); |
5193 | |
5194 | int Val = CE->getValue(); |
5195 | if (Val & ~0xf) |
5196 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5197 | |
5198 | Opt = ARM_ISB::RESERVED_0 + Val; |
5199 | } else |
5200 | return Error(L: Parser.getTok().getLoc(), |
5201 | Msg: "expected an immediate or barrier type" ); |
5202 | |
5203 | Operands.push_back(Elt: ARMOperand::CreateInstSyncBarrierOpt( |
5204 | Opt: (ARM_ISB::InstSyncBOpt)Opt, S, Parser&: *this)); |
5205 | return ParseStatus::Success; |
5206 | } |
5207 | |
5208 | /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. |
5209 | ParseStatus ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { |
5210 | MCAsmParser &Parser = getParser(); |
5211 | SMLoc S = Parser.getTok().getLoc(); |
5212 | const AsmToken &Tok = Parser.getTok(); |
5213 | if (!Tok.is(K: AsmToken::Identifier)) |
5214 | return ParseStatus::NoMatch; |
5215 | StringRef IFlagsStr = Tok.getString(); |
5216 | |
5217 | // An iflags string of "none" is interpreted to mean that none of the AIF |
5218 | // bits are set. Not a terribly useful instruction, but a valid encoding. |
5219 | unsigned IFlags = 0; |
5220 | if (IFlagsStr != "none" ) { |
5221 | for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { |
5222 | unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(Start: i, N: 1).lower()) |
5223 | .Case(S: "a" , Value: ARM_PROC::A) |
5224 | .Case(S: "i" , Value: ARM_PROC::I) |
5225 | .Case(S: "f" , Value: ARM_PROC::F) |
5226 | .Default(Value: ~0U); |
5227 | |
5228 | // If some specific iflag is already set, it means that some letter is |
5229 | // present more than once, this is not acceptable. |
5230 | if (Flag == ~0U || (IFlags & Flag)) |
5231 | return ParseStatus::NoMatch; |
5232 | |
5233 | IFlags |= Flag; |
5234 | } |
5235 | } |
5236 | |
5237 | Parser.Lex(); // Eat identifier token. |
5238 | Operands.push_back( |
5239 | Elt: ARMOperand::CreateProcIFlags(IFlags: (ARM_PROC::IFlags)IFlags, S, Parser&: *this)); |
5240 | return ParseStatus::Success; |
5241 | } |
5242 | |
5243 | /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. |
5244 | ParseStatus ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { |
5245 | // Don't parse two MSR registers in a row |
5246 | if (static_cast<ARMOperand &>(*Operands.back()).isMSRMask() || |
5247 | static_cast<ARMOperand &>(*Operands.back()).isBankedReg()) |
5248 | return ParseStatus::NoMatch; |
5249 | MCAsmParser &Parser = getParser(); |
5250 | SMLoc S = Parser.getTok().getLoc(); |
5251 | const AsmToken &Tok = Parser.getTok(); |
5252 | |
5253 | if (Tok.is(K: AsmToken::Integer)) { |
5254 | int64_t Val = Tok.getIntVal(); |
5255 | if (Val > 255 || Val < 0) { |
5256 | return ParseStatus::NoMatch; |
5257 | } |
5258 | unsigned SYSmvalue = Val & 0xFF; |
5259 | Parser.Lex(); |
5260 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: SYSmvalue, S, Parser&: *this)); |
5261 | return ParseStatus::Success; |
5262 | } |
5263 | |
5264 | if (!Tok.is(K: AsmToken::Identifier)) |
5265 | return ParseStatus::NoMatch; |
5266 | StringRef Mask = Tok.getString(); |
5267 | |
5268 | if (isMClass()) { |
5269 | auto TheReg = ARMSysReg::lookupMClassSysRegByName(Name: Mask.lower()); |
5270 | if (!TheReg || !TheReg->hasRequiredFeatures(ActiveFeatures: getSTI().getFeatureBits())) |
5271 | return ParseStatus::NoMatch; |
5272 | |
5273 | unsigned SYSmvalue = TheReg->Encoding & 0xFFF; |
5274 | |
5275 | Parser.Lex(); // Eat identifier token. |
5276 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: SYSmvalue, S, Parser&: *this)); |
5277 | return ParseStatus::Success; |
5278 | } |
5279 | |
5280 | // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" |
5281 | size_t Start = 0, Next = Mask.find(C: '_'); |
5282 | StringRef Flags = "" ; |
5283 | std::string SpecReg = Mask.slice(Start, End: Next).lower(); |
5284 | if (Next != StringRef::npos) |
5285 | Flags = Mask.substr(Start: Next + 1); |
5286 | |
5287 | // FlagsVal contains the complete mask: |
5288 | // 3-0: Mask |
5289 | // 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
5290 | unsigned FlagsVal = 0; |
5291 | |
5292 | if (SpecReg == "apsr" ) { |
5293 | FlagsVal = StringSwitch<unsigned>(Flags) |
5294 | .Case(S: "nzcvq" , Value: 0x8) // same as CPSR_f |
5295 | .Case(S: "g" , Value: 0x4) // same as CPSR_s |
5296 | .Case(S: "nzcvqg" , Value: 0xc) // same as CPSR_fs |
5297 | .Default(Value: ~0U); |
5298 | |
5299 | if (FlagsVal == ~0U) { |
5300 | if (!Flags.empty()) |
5301 | return ParseStatus::NoMatch; |
5302 | else |
5303 | FlagsVal = 8; // No flag |
5304 | } |
5305 | } else if (SpecReg == "cpsr" || SpecReg == "spsr" ) { |
5306 | // cpsr_all is an alias for cpsr_fc, as is plain cpsr. |
5307 | if (Flags == "all" || Flags == "" ) |
5308 | Flags = "fc" ; |
5309 | for (int i = 0, e = Flags.size(); i != e; ++i) { |
5310 | unsigned Flag = StringSwitch<unsigned>(Flags.substr(Start: i, N: 1)) |
5311 | .Case(S: "c" , Value: 1) |
5312 | .Case(S: "x" , Value: 2) |
5313 | .Case(S: "s" , Value: 4) |
5314 | .Case(S: "f" , Value: 8) |
5315 | .Default(Value: ~0U); |
5316 | |
5317 | // If some specific flag is already set, it means that some letter is |
5318 | // present more than once, this is not acceptable. |
5319 | if (Flag == ~0U || (FlagsVal & Flag)) |
5320 | return ParseStatus::NoMatch; |
5321 | FlagsVal |= Flag; |
5322 | } |
5323 | } else // No match for special register. |
5324 | return ParseStatus::NoMatch; |
5325 | |
5326 | // Special register without flags is NOT equivalent to "fc" flags. |
5327 | // NOTE: This is a divergence from gas' behavior. Uncommenting the following |
5328 | // two lines would enable gas compatibility at the expense of breaking |
5329 | // round-tripping. |
5330 | // |
5331 | // if (!FlagsVal) |
5332 | // FlagsVal = 0x9; |
5333 | |
5334 | // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
5335 | if (SpecReg == "spsr" ) |
5336 | FlagsVal |= 16; |
5337 | |
5338 | Parser.Lex(); // Eat identifier token. |
5339 | Operands.push_back(Elt: ARMOperand::CreateMSRMask(MMask: FlagsVal, S, Parser&: *this)); |
5340 | return ParseStatus::Success; |
5341 | } |
5342 | |
5343 | /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for |
5344 | /// use in the MRS/MSR instructions added to support virtualization. |
5345 | ParseStatus ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { |
5346 | // Don't parse two Banked registers in a row |
5347 | if (static_cast<ARMOperand &>(*Operands.back()).isBankedReg() || |
5348 | static_cast<ARMOperand &>(*Operands.back()).isMSRMask()) |
5349 | return ParseStatus::NoMatch; |
5350 | MCAsmParser &Parser = getParser(); |
5351 | SMLoc S = Parser.getTok().getLoc(); |
5352 | const AsmToken &Tok = Parser.getTok(); |
5353 | if (!Tok.is(K: AsmToken::Identifier)) |
5354 | return ParseStatus::NoMatch; |
5355 | StringRef RegName = Tok.getString(); |
5356 | |
5357 | auto TheReg = ARMBankedReg::lookupBankedRegByName(Name: RegName.lower()); |
5358 | if (!TheReg) |
5359 | return ParseStatus::NoMatch; |
5360 | unsigned Encoding = TheReg->Encoding; |
5361 | |
5362 | Parser.Lex(); // Eat identifier token. |
5363 | Operands.push_back(Elt: ARMOperand::CreateBankedReg(Reg: Encoding, S, Parser&: *this)); |
5364 | return ParseStatus::Success; |
5365 | } |
5366 | |
5367 | // FIXME: Unify the different methods for handling shift operators |
5368 | // and use TableGen matching mechanisms to do the validation rather than |
5369 | // separate parsing paths. |
5370 | ParseStatus ARMAsmParser::parsePKHImm(OperandVector &Operands, |
5371 | ARM_AM::ShiftOpc Op, int Low, int High) { |
5372 | MCAsmParser &Parser = getParser(); |
5373 | auto ShiftCodeOpt = tryParseShiftToken(); |
5374 | |
5375 | if (!ShiftCodeOpt.has_value()) |
5376 | return ParseStatus::NoMatch; |
5377 | auto ShiftCode = ShiftCodeOpt.value(); |
5378 | |
5379 | // The wrong shift code has been provided. Can error here as has matched the |
5380 | // correct operand in this case. |
5381 | if (ShiftCode != Op) |
5382 | return Error(L: Parser.getTok().getLoc(), |
5383 | Msg: ARM_AM::getShiftOpcStr(Op) + " operand expected." ); |
5384 | |
5385 | Parser.Lex(); // Eat shift type token. |
5386 | |
5387 | // There must be a '#' and a shift amount. |
5388 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5389 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5390 | return ParseStatus::NoMatch; |
5391 | Parser.Lex(); // Eat hash token. |
5392 | |
5393 | const MCExpr *ShiftAmount; |
5394 | SMLoc Loc = Parser.getTok().getLoc(); |
5395 | SMLoc EndLoc; |
5396 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5397 | return Error(L: Loc, Msg: "illegal expression" ); |
5398 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5399 | if (!CE) |
5400 | return Error(L: Loc, Msg: "constant expression expected" ); |
5401 | int Val = CE->getValue(); |
5402 | if (Val < Low || Val > High) |
5403 | return Error(L: Loc, Msg: "immediate value out of range" ); |
5404 | |
5405 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: CE, S: Loc, E: EndLoc, Parser&: *this)); |
5406 | |
5407 | return ParseStatus::Success; |
5408 | } |
5409 | |
5410 | ParseStatus ARMAsmParser::parseSetEndImm(OperandVector &Operands) { |
5411 | MCAsmParser &Parser = getParser(); |
5412 | const AsmToken &Tok = Parser.getTok(); |
5413 | SMLoc S = Tok.getLoc(); |
5414 | if (Tok.isNot(K: AsmToken::Identifier)) |
5415 | return Error(L: S, Msg: "'be' or 'le' operand expected" ); |
5416 | int Val = StringSwitch<int>(Tok.getString().lower()) |
5417 | .Case(S: "be" , Value: 1) |
5418 | .Case(S: "le" , Value: 0) |
5419 | .Default(Value: -1); |
5420 | Parser.Lex(); // Eat the token. |
5421 | |
5422 | if (Val == -1) |
5423 | return Error(L: S, Msg: "'be' or 'le' operand expected" ); |
5424 | Operands.push_back(Elt: ARMOperand::CreateImm( |
5425 | Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, E: Tok.getEndLoc(), Parser&: *this)); |
5426 | return ParseStatus::Success; |
5427 | } |
5428 | |
5429 | /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT |
5430 | /// instructions. Legal values are: |
5431 | /// lsl #n 'n' in [0,31] |
5432 | /// asr #n 'n' in [1,32] |
5433 | /// n == 32 encoded as n == 0. |
5434 | ParseStatus ARMAsmParser::parseShifterImm(OperandVector &Operands) { |
5435 | MCAsmParser &Parser = getParser(); |
5436 | const AsmToken &Tok = Parser.getTok(); |
5437 | SMLoc S = Tok.getLoc(); |
5438 | if (Tok.isNot(K: AsmToken::Identifier)) |
5439 | return ParseStatus::NoMatch; |
5440 | StringRef ShiftName = Tok.getString(); |
5441 | bool isASR; |
5442 | if (ShiftName == "lsl" || ShiftName == "LSL" ) |
5443 | isASR = false; |
5444 | else if (ShiftName == "asr" || ShiftName == "ASR" ) |
5445 | isASR = true; |
5446 | else |
5447 | return ParseStatus::NoMatch; |
5448 | Parser.Lex(); // Eat the operator. |
5449 | |
5450 | // A '#' and a shift amount. |
5451 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5452 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5453 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5454 | Parser.Lex(); // Eat hash token. |
5455 | SMLoc ExLoc = Parser.getTok().getLoc(); |
5456 | |
5457 | const MCExpr *ShiftAmount; |
5458 | SMLoc EndLoc; |
5459 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5460 | return Error(L: ExLoc, Msg: "malformed shift expression" ); |
5461 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5462 | if (!CE) |
5463 | return Error(L: ExLoc, Msg: "shift amount must be an immediate" ); |
5464 | |
5465 | int64_t Val = CE->getValue(); |
5466 | if (isASR) { |
5467 | // Shift amount must be in [1,32] |
5468 | if (Val < 1 || Val > 32) |
5469 | return Error(L: ExLoc, Msg: "'asr' shift amount must be in range [1,32]" ); |
5470 | // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. |
5471 | if (isThumb() && Val == 32) |
5472 | return Error(L: ExLoc, Msg: "'asr #32' shift amount not allowed in Thumb mode" ); |
5473 | if (Val == 32) Val = 0; |
5474 | } else { |
5475 | // Shift amount must be in [1,32] |
5476 | if (Val < 0 || Val > 31) |
5477 | return Error(L: ExLoc, Msg: "'lsr' shift amount must be in range [0,31]" ); |
5478 | } |
5479 | |
5480 | Operands.push_back( |
5481 | Elt: ARMOperand::CreateShifterImm(isASR, Imm: Val, S, E: EndLoc, Parser&: *this)); |
5482 | |
5483 | return ParseStatus::Success; |
5484 | } |
5485 | |
5486 | /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family |
5487 | /// of instructions. Legal values are: |
5488 | /// ror #n 'n' in {0, 8, 16, 24} |
5489 | ParseStatus ARMAsmParser::parseRotImm(OperandVector &Operands) { |
5490 | MCAsmParser &Parser = getParser(); |
5491 | const AsmToken &Tok = Parser.getTok(); |
5492 | SMLoc S = Tok.getLoc(); |
5493 | if (Tok.isNot(K: AsmToken::Identifier)) |
5494 | return ParseStatus::NoMatch; |
5495 | StringRef ShiftName = Tok.getString(); |
5496 | if (ShiftName != "ror" && ShiftName != "ROR" ) |
5497 | return ParseStatus::NoMatch; |
5498 | Parser.Lex(); // Eat the operator. |
5499 | |
5500 | // A '#' and a rotate amount. |
5501 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5502 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5503 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5504 | Parser.Lex(); // Eat hash token. |
5505 | SMLoc ExLoc = Parser.getTok().getLoc(); |
5506 | |
5507 | const MCExpr *ShiftAmount; |
5508 | SMLoc EndLoc; |
5509 | if (getParser().parseExpression(Res&: ShiftAmount, EndLoc)) |
5510 | return Error(L: ExLoc, Msg: "malformed rotate expression" ); |
5511 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ShiftAmount); |
5512 | if (!CE) |
5513 | return Error(L: ExLoc, Msg: "rotate amount must be an immediate" ); |
5514 | |
5515 | int64_t Val = CE->getValue(); |
5516 | // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) |
5517 | // normally, zero is represented in asm by omitting the rotate operand |
5518 | // entirely. |
5519 | if (Val != 8 && Val != 16 && Val != 24 && Val != 0) |
5520 | return Error(L: ExLoc, Msg: "'ror' rotate amount must be 8, 16, or 24" ); |
5521 | |
5522 | Operands.push_back(Elt: ARMOperand::CreateRotImm(Imm: Val, S, E: EndLoc, Parser&: *this)); |
5523 | |
5524 | return ParseStatus::Success; |
5525 | } |
5526 | |
5527 | ParseStatus ARMAsmParser::parseModImm(OperandVector &Operands) { |
5528 | MCAsmParser &Parser = getParser(); |
5529 | AsmLexer &Lexer = getLexer(); |
5530 | int64_t Imm1, Imm2; |
5531 | |
5532 | SMLoc S = Parser.getTok().getLoc(); |
5533 | |
5534 | // 1) A mod_imm operand can appear in the place of a register name: |
5535 | // add r0, #mod_imm |
5536 | // add r0, r0, #mod_imm |
5537 | // to correctly handle the latter, we bail out as soon as we see an |
5538 | // identifier. |
5539 | // |
5540 | // 2) Similarly, we do not want to parse into complex operands: |
5541 | // mov r0, #mod_imm |
5542 | // mov r0, :lower16:(_foo) |
5543 | if (Parser.getTok().is(K: AsmToken::Identifier) || |
5544 | Parser.getTok().is(K: AsmToken::Colon)) |
5545 | return ParseStatus::NoMatch; |
5546 | |
5547 | // Hash (dollar) is optional as per the ARMARM |
5548 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5549 | Parser.getTok().is(K: AsmToken::Dollar)) { |
5550 | // Avoid parsing into complex operands (#:) |
5551 | if (Lexer.peekTok().is(K: AsmToken::Colon)) |
5552 | return ParseStatus::NoMatch; |
5553 | |
5554 | // Eat the hash (dollar) |
5555 | Parser.Lex(); |
5556 | } |
5557 | |
5558 | SMLoc Sx1, Ex1; |
5559 | Sx1 = Parser.getTok().getLoc(); |
5560 | const MCExpr *Imm1Exp; |
5561 | if (getParser().parseExpression(Res&: Imm1Exp, EndLoc&: Ex1)) |
5562 | return Error(L: Sx1, Msg: "malformed expression" ); |
5563 | |
5564 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Imm1Exp); |
5565 | |
5566 | if (CE) { |
5567 | // Immediate must fit within 32-bits |
5568 | Imm1 = CE->getValue(); |
5569 | int Enc = ARM_AM::getSOImmVal(Arg: Imm1); |
5570 | if (Enc != -1 && Parser.getTok().is(K: AsmToken::EndOfStatement)) { |
5571 | // We have a match! |
5572 | Operands.push_back(Elt: ARMOperand::CreateModImm( |
5573 | Bits: (Enc & 0xFF), Rot: (Enc & 0xF00) >> 7, S: Sx1, E: Ex1, Parser&: *this)); |
5574 | return ParseStatus::Success; |
5575 | } |
5576 | |
5577 | // We have parsed an immediate which is not for us, fallback to a plain |
5578 | // immediate. This can happen for instruction aliases. For an example, |
5579 | // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform |
5580 | // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite |
5581 | // instruction with a mod_imm operand. The alias is defined such that the |
5582 | // parser method is shared, that's why we have to do this here. |
5583 | if (Parser.getTok().is(K: AsmToken::EndOfStatement)) { |
5584 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: Imm1Exp, S: Sx1, E: Ex1, Parser&: *this)); |
5585 | return ParseStatus::Success; |
5586 | } |
5587 | } else { |
5588 | // Operands like #(l1 - l2) can only be evaluated at a later stage (via an |
5589 | // MCFixup). Fallback to a plain immediate. |
5590 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: Imm1Exp, S: Sx1, E: Ex1, Parser&: *this)); |
5591 | return ParseStatus::Success; |
5592 | } |
5593 | |
5594 | // From this point onward, we expect the input to be a (#bits, #rot) pair |
5595 | if (Parser.getTok().isNot(K: AsmToken::Comma)) |
5596 | return Error(L: Sx1, |
5597 | Msg: "expected modified immediate operand: #[0, 255], #even[0-30]" ); |
5598 | |
5599 | if (Imm1 & ~0xFF) |
5600 | return Error(L: Sx1, Msg: "immediate operand must a number in the range [0, 255]" ); |
5601 | |
5602 | // Eat the comma |
5603 | Parser.Lex(); |
5604 | |
5605 | // Repeat for #rot |
5606 | SMLoc Sx2, Ex2; |
5607 | Sx2 = Parser.getTok().getLoc(); |
5608 | |
5609 | // Eat the optional hash (dollar) |
5610 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5611 | Parser.getTok().is(K: AsmToken::Dollar)) |
5612 | Parser.Lex(); |
5613 | |
5614 | const MCExpr *Imm2Exp; |
5615 | if (getParser().parseExpression(Res&: Imm2Exp, EndLoc&: Ex2)) |
5616 | return Error(L: Sx2, Msg: "malformed expression" ); |
5617 | |
5618 | CE = dyn_cast<MCConstantExpr>(Val: Imm2Exp); |
5619 | |
5620 | if (CE) { |
5621 | Imm2 = CE->getValue(); |
5622 | if (!(Imm2 & ~0x1E)) { |
5623 | // We have a match! |
5624 | Operands.push_back(Elt: ARMOperand::CreateModImm(Bits: Imm1, Rot: Imm2, S, E: Ex2, Parser&: *this)); |
5625 | return ParseStatus::Success; |
5626 | } |
5627 | return Error(L: Sx2, |
5628 | Msg: "immediate operand must an even number in the range [0, 30]" ); |
5629 | } else { |
5630 | return Error(L: Sx2, Msg: "constant expression expected" ); |
5631 | } |
5632 | } |
5633 | |
5634 | ParseStatus ARMAsmParser::parseBitfield(OperandVector &Operands) { |
5635 | MCAsmParser &Parser = getParser(); |
5636 | SMLoc S = Parser.getTok().getLoc(); |
5637 | // The bitfield descriptor is really two operands, the LSB and the width. |
5638 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5639 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5640 | return ParseStatus::NoMatch; |
5641 | Parser.Lex(); // Eat hash token. |
5642 | |
5643 | const MCExpr *LSBExpr; |
5644 | SMLoc E = Parser.getTok().getLoc(); |
5645 | if (getParser().parseExpression(Res&: LSBExpr)) |
5646 | return Error(L: E, Msg: "malformed immediate expression" ); |
5647 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: LSBExpr); |
5648 | if (!CE) |
5649 | return Error(L: E, Msg: "'lsb' operand must be an immediate" ); |
5650 | |
5651 | int64_t LSB = CE->getValue(); |
5652 | // The LSB must be in the range [0,31] |
5653 | if (LSB < 0 || LSB > 31) |
5654 | return Error(L: E, Msg: "'lsb' operand must be in the range [0,31]" ); |
5655 | E = Parser.getTok().getLoc(); |
5656 | |
5657 | // Expect another immediate operand. |
5658 | if (Parser.getTok().isNot(K: AsmToken::Comma)) |
5659 | return Error(L: Parser.getTok().getLoc(), Msg: "too few operands" ); |
5660 | Parser.Lex(); // Eat hash token. |
5661 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
5662 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
5663 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
5664 | Parser.Lex(); // Eat hash token. |
5665 | |
5666 | const MCExpr *WidthExpr; |
5667 | SMLoc EndLoc; |
5668 | if (getParser().parseExpression(Res&: WidthExpr, EndLoc)) |
5669 | return Error(L: E, Msg: "malformed immediate expression" ); |
5670 | CE = dyn_cast<MCConstantExpr>(Val: WidthExpr); |
5671 | if (!CE) |
5672 | return Error(L: E, Msg: "'width' operand must be an immediate" ); |
5673 | |
5674 | int64_t Width = CE->getValue(); |
5675 | // The LSB must be in the range [1,32-lsb] |
5676 | if (Width < 1 || Width > 32 - LSB) |
5677 | return Error(L: E, Msg: "'width' operand must be in the range [1,32-lsb]" ); |
5678 | |
5679 | Operands.push_back(Elt: ARMOperand::CreateBitfield(LSB, Width, S, E: EndLoc, Parser&: *this)); |
5680 | |
5681 | return ParseStatus::Success; |
5682 | } |
5683 | |
5684 | ParseStatus ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { |
5685 | // Check for a post-index addressing register operand. Specifically: |
5686 | // postidx_reg := '+' register {, shift} |
5687 | // | '-' register {, shift} |
5688 | // | register {, shift} |
5689 | |
5690 | // This method must return ParseStatus::NoMatch without consuming any tokens |
5691 | // in the case where there is no match, as other alternatives take other |
5692 | // parse methods. |
5693 | MCAsmParser &Parser = getParser(); |
5694 | AsmToken Tok = Parser.getTok(); |
5695 | SMLoc S = Tok.getLoc(); |
5696 | bool haveEaten = false; |
5697 | bool isAdd = true; |
5698 | if (Tok.is(K: AsmToken::Plus)) { |
5699 | Parser.Lex(); // Eat the '+' token. |
5700 | haveEaten = true; |
5701 | } else if (Tok.is(K: AsmToken::Minus)) { |
5702 | Parser.Lex(); // Eat the '-' token. |
5703 | isAdd = false; |
5704 | haveEaten = true; |
5705 | } |
5706 | |
5707 | SMLoc E = Parser.getTok().getEndLoc(); |
5708 | MCRegister Reg = tryParseRegister(); |
5709 | if (!Reg) { |
5710 | if (!haveEaten) |
5711 | return ParseStatus::NoMatch; |
5712 | return Error(L: Parser.getTok().getLoc(), Msg: "register expected" ); |
5713 | } |
5714 | |
5715 | ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; |
5716 | unsigned ShiftImm = 0; |
5717 | if (Parser.getTok().is(K: AsmToken::Comma)) { |
5718 | Parser.Lex(); // Eat the ','. |
5719 | if (parseMemRegOffsetShift(ShiftType&: ShiftTy, ShiftAmount&: ShiftImm)) |
5720 | return ParseStatus::Failure; |
5721 | |
5722 | // FIXME: Only approximates end...may include intervening whitespace. |
5723 | E = Parser.getTok().getLoc(); |
5724 | } |
5725 | |
5726 | Operands.push_back( |
5727 | Elt: ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, ShiftImm, S, E, Parser&: *this)); |
5728 | |
5729 | return ParseStatus::Success; |
5730 | } |
5731 | |
5732 | ParseStatus ARMAsmParser::parseAM3Offset(OperandVector &Operands) { |
5733 | // Check for a post-index addressing register operand. Specifically: |
5734 | // am3offset := '+' register |
5735 | // | '-' register |
5736 | // | register |
5737 | // | # imm |
5738 | // | # + imm |
5739 | // | # - imm |
5740 | |
5741 | // This method must return ParseStatus::NoMatch without consuming any tokens |
5742 | // in the case where there is no match, as other alternatives take other |
5743 | // parse methods. |
5744 | MCAsmParser &Parser = getParser(); |
5745 | AsmToken Tok = Parser.getTok(); |
5746 | SMLoc S = Tok.getLoc(); |
5747 | |
5748 | // Do immediates first, as we always parse those if we have a '#'. |
5749 | if (Parser.getTok().is(K: AsmToken::Hash) || |
5750 | Parser.getTok().is(K: AsmToken::Dollar)) { |
5751 | Parser.Lex(); // Eat '#' or '$'. |
5752 | // Explicitly look for a '-', as we need to encode negative zero |
5753 | // differently. |
5754 | bool isNegative = Parser.getTok().is(K: AsmToken::Minus); |
5755 | const MCExpr *Offset; |
5756 | SMLoc E; |
5757 | if (getParser().parseExpression(Res&: Offset, EndLoc&: E)) |
5758 | return ParseStatus::Failure; |
5759 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Offset); |
5760 | if (!CE) |
5761 | return Error(L: S, Msg: "constant expression expected" ); |
5762 | // Negative zero is encoded as the flag value |
5763 | // std::numeric_limits<int32_t>::min(). |
5764 | int32_t Val = CE->getValue(); |
5765 | if (isNegative && Val == 0) |
5766 | Val = std::numeric_limits<int32_t>::min(); |
5767 | |
5768 | Operands.push_back(Elt: ARMOperand::CreateImm( |
5769 | Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, E, Parser&: *this)); |
5770 | |
5771 | return ParseStatus::Success; |
5772 | } |
5773 | |
5774 | bool haveEaten = false; |
5775 | bool isAdd = true; |
5776 | if (Tok.is(K: AsmToken::Plus)) { |
5777 | Parser.Lex(); // Eat the '+' token. |
5778 | haveEaten = true; |
5779 | } else if (Tok.is(K: AsmToken::Minus)) { |
5780 | Parser.Lex(); // Eat the '-' token. |
5781 | isAdd = false; |
5782 | haveEaten = true; |
5783 | } |
5784 | |
5785 | Tok = Parser.getTok(); |
5786 | MCRegister Reg = tryParseRegister(); |
5787 | if (!Reg) { |
5788 | if (!haveEaten) |
5789 | return ParseStatus::NoMatch; |
5790 | return Error(L: Tok.getLoc(), Msg: "register expected" ); |
5791 | } |
5792 | |
5793 | Operands.push_back(Elt: ARMOperand::CreatePostIdxReg( |
5794 | Reg, isAdd, ShiftTy: ARM_AM::no_shift, ShiftImm: 0, S, E: Tok.getEndLoc(), Parser&: *this)); |
5795 | |
5796 | return ParseStatus::Success; |
5797 | } |
5798 | |
5799 | // Finds the index of the first CondCode operator, if there is none returns 0 |
5800 | unsigned findCondCodeInd(const OperandVector &Operands, |
5801 | unsigned MnemonicOpsEndInd) { |
5802 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
5803 | auto Op = static_cast<ARMOperand &>(*Operands[I]); |
5804 | if (Op.isCondCode()) |
5805 | return I; |
5806 | } |
5807 | return 0; |
5808 | } |
5809 | |
5810 | unsigned findCCOutInd(const OperandVector &Operands, |
5811 | unsigned MnemonicOpsEndInd) { |
5812 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
5813 | auto Op = static_cast<ARMOperand &>(*Operands[I]); |
5814 | if (Op.isCCOut()) |
5815 | return I; |
5816 | } |
5817 | return 0; |
5818 | } |
5819 | |
5820 | /// Convert parsed operands to MCInst. Needed here because this instruction |
5821 | /// only has two register operands, but multiplication is commutative so |
5822 | /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". |
5823 | void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, |
5824 | const OperandVector &Operands) { |
5825 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5826 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5827 | unsigned CondOutI = findCCOutInd(Operands, MnemonicOpsEndInd); |
5828 | |
5829 | // 2 operand form |
5830 | unsigned RegRd = MnemonicOpsEndInd; |
5831 | unsigned RegRn = MnemonicOpsEndInd + 1; |
5832 | unsigned RegRm = MnemonicOpsEndInd; |
5833 | |
5834 | if (Operands.size() == MnemonicOpsEndInd + 3) { |
5835 | // If we have a three-operand form, make sure to set Rn to be the operand |
5836 | // that isn't the same as Rd. |
5837 | if (((ARMOperand &)*Operands[RegRd]).getReg() == |
5838 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 1]).getReg()) { |
5839 | RegRn = MnemonicOpsEndInd + 2; |
5840 | RegRm = MnemonicOpsEndInd + 1; |
5841 | } else { |
5842 | RegRn = MnemonicOpsEndInd + 1; |
5843 | RegRm = MnemonicOpsEndInd + 2; |
5844 | } |
5845 | } |
5846 | |
5847 | // Rd |
5848 | ((ARMOperand &)*Operands[RegRd]).addRegOperands(Inst, N: 1); |
5849 | // CCOut |
5850 | if (CondOutI != 0) { |
5851 | ((ARMOperand &)*Operands[CondOutI]).addCCOutOperands(Inst, N: 1); |
5852 | } else { |
5853 | ARMOperand Op = |
5854 | *ARMOperand::CreateCCOut(Reg: 0, S: Operands[0]->getEndLoc(), Parser&: *this); |
5855 | Op.addCCOutOperands(Inst, N: 1); |
5856 | } |
5857 | // Rn |
5858 | ((ARMOperand &)*Operands[RegRn]).addRegOperands(Inst, N: 1); |
5859 | // Rm |
5860 | ((ARMOperand &)*Operands[RegRm]).addRegOperands(Inst, N: 1); |
5861 | |
5862 | // Cond code |
5863 | if (CondI != 0) { |
5864 | ((ARMOperand &)*Operands[CondI]).addCondCodeOperands(Inst, N: 2); |
5865 | } else { |
5866 | ARMOperand Op = *ARMOperand::CreateCondCode( |
5867 | CC: llvm::ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5868 | Op.addCondCodeOperands(Inst, N: 2); |
5869 | } |
5870 | } |
5871 | |
5872 | void ARMAsmParser::cvtThumbBranches(MCInst &Inst, |
5873 | const OperandVector &Operands) { |
5874 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5875 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5876 | unsigned Cond = |
5877 | (CondI == 0 ? ARMCC::AL |
5878 | : static_cast<ARMOperand &>(*Operands[CondI]).getCondCode()); |
5879 | |
5880 | // first decide whether or not the branch should be conditional |
5881 | // by looking at it's location relative to an IT block |
5882 | if(inITBlock()) { |
5883 | // inside an IT block we cannot have any conditional branches. any |
5884 | // such instructions needs to be converted to unconditional form |
5885 | switch(Inst.getOpcode()) { |
5886 | case ARM::tBcc: Inst.setOpcode(ARM::tB); break; |
5887 | case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; |
5888 | } |
5889 | } else { |
5890 | switch(Inst.getOpcode()) { |
5891 | case ARM::tB: |
5892 | case ARM::tBcc: |
5893 | Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); |
5894 | break; |
5895 | case ARM::t2B: |
5896 | case ARM::t2Bcc: |
5897 | Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); |
5898 | break; |
5899 | } |
5900 | } |
5901 | |
5902 | // now decide on encoding size based on branch target range |
5903 | switch(Inst.getOpcode()) { |
5904 | // classify tB as either t2B or t1B based on range of immediate operand |
5905 | case ARM::tB: { |
5906 | ARMOperand &op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
5907 | if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) |
5908 | Inst.setOpcode(ARM::t2B); |
5909 | break; |
5910 | } |
5911 | // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand |
5912 | case ARM::tBcc: { |
5913 | ARMOperand &op = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
5914 | if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) |
5915 | Inst.setOpcode(ARM::t2Bcc); |
5916 | break; |
5917 | } |
5918 | } |
5919 | ((ARMOperand &)*Operands[MnemonicOpsEndInd]).addImmOperands(Inst, N: 1); |
5920 | if (CondI != 0) { |
5921 | ((ARMOperand &)*Operands[CondI]).addCondCodeOperands(Inst, N: 2); |
5922 | } else { |
5923 | ARMOperand Op = *ARMOperand::CreateCondCode( |
5924 | CC: llvm::ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5925 | Op.addCondCodeOperands(Inst, N: 2); |
5926 | } |
5927 | } |
5928 | |
5929 | void ARMAsmParser::cvtMVEVMOVQtoDReg( |
5930 | MCInst &Inst, const OperandVector &Operands) { |
5931 | |
5932 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
5933 | unsigned CondI = findCondCodeInd(Operands, MnemonicOpsEndInd); |
5934 | |
5935 | // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 |
5936 | assert(Operands.size() == MnemonicOpsEndInd + 6); |
5937 | |
5938 | ((ARMOperand &)*Operands[MnemonicOpsEndInd]).addRegOperands(Inst, N: 1); // Rt |
5939 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 1]) |
5940 | .addRegOperands(Inst, N: 1); // Rt2 |
5941 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 2]) |
5942 | .addRegOperands(Inst, N: 1); // Qd |
5943 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 3]) |
5944 | .addMVEPairVectorIndexOperands(Inst, N: 1); // idx |
5945 | // skip second copy of Qd in Operands[6] |
5946 | ((ARMOperand &)*Operands[MnemonicOpsEndInd + 5]) |
5947 | .addMVEPairVectorIndexOperands(Inst, N: 1); // idx2 |
5948 | if (CondI != 0) { |
5949 | ((ARMOperand &)*Operands[CondI]) |
5950 | .addCondCodeOperands(Inst, N: 2); // condition code |
5951 | } else { |
5952 | ARMOperand Op = |
5953 | *ARMOperand::CreateCondCode(CC: ARMCC::AL, S: Operands[0]->getEndLoc(), Parser&: *this); |
5954 | Op.addCondCodeOperands(Inst, N: 2); |
5955 | } |
5956 | } |
5957 | |
5958 | /// Parse an ARM memory expression, return false if successful else return true |
5959 | /// or an error. The first token must be a '[' when called. |
5960 | bool ARMAsmParser::parseMemory(OperandVector &Operands) { |
5961 | MCAsmParser &Parser = getParser(); |
5962 | SMLoc S, E; |
5963 | if (Parser.getTok().isNot(K: AsmToken::LBrac)) |
5964 | return TokError(Msg: "Token is not a Left Bracket" ); |
5965 | S = Parser.getTok().getLoc(); |
5966 | Parser.Lex(); // Eat left bracket token. |
5967 | |
5968 | const AsmToken &BaseRegTok = Parser.getTok(); |
5969 | MCRegister BaseReg = tryParseRegister(); |
5970 | if (!BaseReg) |
5971 | return Error(L: BaseRegTok.getLoc(), Msg: "register expected" ); |
5972 | |
5973 | // The next token must either be a comma, a colon or a closing bracket. |
5974 | const AsmToken &Tok = Parser.getTok(); |
5975 | if (!Tok.is(K: AsmToken::Colon) && !Tok.is(K: AsmToken::Comma) && |
5976 | !Tok.is(K: AsmToken::RBrac)) |
5977 | return Error(L: Tok.getLoc(), Msg: "malformed memory operand" ); |
5978 | |
5979 | if (Tok.is(K: AsmToken::RBrac)) { |
5980 | E = Tok.getEndLoc(); |
5981 | Parser.Lex(); // Eat right bracket token. |
5982 | |
5983 | Operands.push_back(Elt: ARMOperand::CreateMem( |
5984 | BaseReg, OffsetImm: nullptr, OffsetReg: 0, ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: 0, isNegative: false, S, E, Parser&: *this)); |
5985 | |
5986 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
5987 | // operand. It's rather odd, but syntactically valid. |
5988 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
5989 | Operands.push_back( |
5990 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
5991 | Parser.Lex(); // Eat the '!'. |
5992 | } |
5993 | |
5994 | return false; |
5995 | } |
5996 | |
5997 | assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && |
5998 | "Lost colon or comma in memory operand?!" ); |
5999 | if (Tok.is(K: AsmToken::Comma)) { |
6000 | Parser.Lex(); // Eat the comma. |
6001 | } |
6002 | |
6003 | // If we have a ':', it's an alignment specifier. |
6004 | if (Parser.getTok().is(K: AsmToken::Colon)) { |
6005 | Parser.Lex(); // Eat the ':'. |
6006 | E = Parser.getTok().getLoc(); |
6007 | SMLoc AlignmentLoc = Tok.getLoc(); |
6008 | |
6009 | const MCExpr *Expr; |
6010 | if (getParser().parseExpression(Res&: Expr)) |
6011 | return true; |
6012 | |
6013 | // The expression has to be a constant. Memory references with relocations |
6014 | // don't come through here, as they use the <label> forms of the relevant |
6015 | // instructions. |
6016 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
6017 | if (!CE) |
6018 | return Error (L: E, Msg: "constant expression expected" ); |
6019 | |
6020 | unsigned Align = 0; |
6021 | switch (CE->getValue()) { |
6022 | default: |
6023 | return Error(L: E, |
6024 | Msg: "alignment specifier must be 16, 32, 64, 128, or 256 bits" ); |
6025 | case 16: Align = 2; break; |
6026 | case 32: Align = 4; break; |
6027 | case 64: Align = 8; break; |
6028 | case 128: Align = 16; break; |
6029 | case 256: Align = 32; break; |
6030 | } |
6031 | |
6032 | // Now we should have the closing ']' |
6033 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6034 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6035 | E = Parser.getTok().getEndLoc(); |
6036 | Parser.Lex(); // Eat right bracket token. |
6037 | |
6038 | // Don't worry about range checking the value here. That's handled by |
6039 | // the is*() predicates. |
6040 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseReg, OffsetImm: nullptr, OffsetReg: 0, |
6041 | ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: Align, isNegative: false, |
6042 | S, E, Parser&: *this, AlignmentLoc)); |
6043 | |
6044 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6045 | // operand. |
6046 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6047 | Operands.push_back( |
6048 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6049 | Parser.Lex(); // Eat the '!'. |
6050 | } |
6051 | |
6052 | return false; |
6053 | } |
6054 | |
6055 | // If we have a '#' or '$', it's an immediate offset, else assume it's a |
6056 | // register offset. Be friendly and also accept a plain integer or expression |
6057 | // (without a leading hash) for gas compatibility. |
6058 | if (Parser.getTok().is(K: AsmToken::Hash) || |
6059 | Parser.getTok().is(K: AsmToken::Dollar) || |
6060 | Parser.getTok().is(K: AsmToken::LParen) || |
6061 | Parser.getTok().is(K: AsmToken::Integer)) { |
6062 | if (Parser.getTok().is(K: AsmToken::Hash) || |
6063 | Parser.getTok().is(K: AsmToken::Dollar)) |
6064 | Parser.Lex(); // Eat '#' or '$' |
6065 | E = Parser.getTok().getLoc(); |
6066 | |
6067 | bool isNegative = getParser().getTok().is(K: AsmToken::Minus); |
6068 | const MCExpr *Offset, *AdjustedOffset; |
6069 | if (getParser().parseExpression(Res&: Offset)) |
6070 | return true; |
6071 | |
6072 | if (const auto *CE = dyn_cast<MCConstantExpr>(Val: Offset)) { |
6073 | // If the constant was #-0, represent it as |
6074 | // std::numeric_limits<int32_t>::min(). |
6075 | int32_t Val = CE->getValue(); |
6076 | if (isNegative && Val == 0) |
6077 | CE = MCConstantExpr::create(Value: std::numeric_limits<int32_t>::min(), |
6078 | Ctx&: getContext()); |
6079 | // Don't worry about range checking the value here. That's handled by |
6080 | // the is*() predicates. |
6081 | AdjustedOffset = CE; |
6082 | } else |
6083 | AdjustedOffset = Offset; |
6084 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseReg, OffsetImm: AdjustedOffset, OffsetReg: 0, |
6085 | ShiftType: ARM_AM::no_shift, ShiftImm: 0, Alignment: 0, isNegative: false, S, |
6086 | E, Parser&: *this)); |
6087 | |
6088 | // Now we should have the closing ']' |
6089 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6090 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6091 | E = Parser.getTok().getEndLoc(); |
6092 | Parser.Lex(); // Eat right bracket token. |
6093 | |
6094 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6095 | // operand. |
6096 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6097 | Operands.push_back( |
6098 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6099 | Parser.Lex(); // Eat the '!'. |
6100 | } |
6101 | |
6102 | return false; |
6103 | } |
6104 | |
6105 | // The register offset is optionally preceded by a '+' or '-' |
6106 | bool isNegative = false; |
6107 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
6108 | isNegative = true; |
6109 | Parser.Lex(); // Eat the '-'. |
6110 | } else if (Parser.getTok().is(K: AsmToken::Plus)) { |
6111 | // Nothing to do. |
6112 | Parser.Lex(); // Eat the '+'. |
6113 | } |
6114 | |
6115 | E = Parser.getTok().getLoc(); |
6116 | MCRegister OffsetReg = tryParseRegister(); |
6117 | if (!OffsetReg) |
6118 | return Error(L: E, Msg: "register expected" ); |
6119 | |
6120 | // If there's a shift operator, handle it. |
6121 | ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; |
6122 | unsigned ShiftImm = 0; |
6123 | if (Parser.getTok().is(K: AsmToken::Comma)) { |
6124 | Parser.Lex(); // Eat the ','. |
6125 | if (parseMemRegOffsetShift(ShiftType, ShiftAmount&: ShiftImm)) |
6126 | return true; |
6127 | } |
6128 | |
6129 | // Now we should have the closing ']' |
6130 | if (Parser.getTok().isNot(K: AsmToken::RBrac)) |
6131 | return Error(L: Parser.getTok().getLoc(), Msg: "']' expected" ); |
6132 | E = Parser.getTok().getEndLoc(); |
6133 | Parser.Lex(); // Eat right bracket token. |
6134 | |
6135 | Operands.push_back(Elt: ARMOperand::CreateMem(BaseReg, OffsetImm: nullptr, OffsetReg, |
6136 | ShiftType, ShiftImm, Alignment: 0, isNegative, |
6137 | S, E, Parser&: *this)); |
6138 | |
6139 | // If there's a pre-indexing writeback marker, '!', just add it as a token |
6140 | // operand. |
6141 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6142 | Operands.push_back( |
6143 | Elt: ARMOperand::CreateToken(Str: "!" , S: Parser.getTok().getLoc(), Parser&: *this)); |
6144 | Parser.Lex(); // Eat the '!'. |
6145 | } |
6146 | |
6147 | return false; |
6148 | } |
6149 | |
6150 | /// parseMemRegOffsetShift - one of these two: |
6151 | /// ( lsl | lsr | asr | ror ) , # shift_amount |
6152 | /// rrx |
6153 | /// return true if it parses a shift otherwise it returns false. |
6154 | bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, |
6155 | unsigned &Amount) { |
6156 | MCAsmParser &Parser = getParser(); |
6157 | SMLoc Loc = Parser.getTok().getLoc(); |
6158 | const AsmToken &Tok = Parser.getTok(); |
6159 | if (Tok.isNot(K: AsmToken::Identifier)) |
6160 | return Error(L: Loc, Msg: "illegal shift operator" ); |
6161 | StringRef ShiftName = Tok.getString(); |
6162 | if (ShiftName == "lsl" || ShiftName == "LSL" || |
6163 | ShiftName == "asl" || ShiftName == "ASL" ) |
6164 | St = ARM_AM::lsl; |
6165 | else if (ShiftName == "lsr" || ShiftName == "LSR" ) |
6166 | St = ARM_AM::lsr; |
6167 | else if (ShiftName == "asr" || ShiftName == "ASR" ) |
6168 | St = ARM_AM::asr; |
6169 | else if (ShiftName == "ror" || ShiftName == "ROR" ) |
6170 | St = ARM_AM::ror; |
6171 | else if (ShiftName == "rrx" || ShiftName == "RRX" ) |
6172 | St = ARM_AM::rrx; |
6173 | else if (ShiftName == "uxtw" || ShiftName == "UXTW" ) |
6174 | St = ARM_AM::uxtw; |
6175 | else |
6176 | return Error(L: Loc, Msg: "illegal shift operator" ); |
6177 | Parser.Lex(); // Eat shift type token. |
6178 | |
6179 | // rrx stands alone. |
6180 | Amount = 0; |
6181 | if (St != ARM_AM::rrx) { |
6182 | Loc = Parser.getTok().getLoc(); |
6183 | // A '#' and a shift amount. |
6184 | const AsmToken &HashTok = Parser.getTok(); |
6185 | if (HashTok.isNot(K: AsmToken::Hash) && |
6186 | HashTok.isNot(K: AsmToken::Dollar)) |
6187 | return Error(L: HashTok.getLoc(), Msg: "'#' expected" ); |
6188 | Parser.Lex(); // Eat hash token. |
6189 | |
6190 | const MCExpr *Expr; |
6191 | if (getParser().parseExpression(Res&: Expr)) |
6192 | return true; |
6193 | // Range check the immediate. |
6194 | // lsl, ror: 0 <= imm <= 31 |
6195 | // lsr, asr: 0 <= imm <= 32 |
6196 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Expr); |
6197 | if (!CE) |
6198 | return Error(L: Loc, Msg: "shift amount must be an immediate" ); |
6199 | int64_t Imm = CE->getValue(); |
6200 | if (Imm < 0 || |
6201 | ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || |
6202 | ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) |
6203 | return Error(L: Loc, Msg: "immediate shift value out of range" ); |
6204 | // If <ShiftTy> #0, turn it into a no_shift. |
6205 | if (Imm == 0) |
6206 | St = ARM_AM::lsl; |
6207 | // For consistency, treat lsr #32 and asr #32 as having immediate value 0. |
6208 | if (Imm == 32) |
6209 | Imm = 0; |
6210 | Amount = Imm; |
6211 | } |
6212 | |
6213 | return false; |
6214 | } |
6215 | |
6216 | /// parseFPImm - A floating point immediate expression operand. |
6217 | ParseStatus ARMAsmParser::parseFPImm(OperandVector &Operands) { |
6218 | LLVM_DEBUG(dbgs() << "PARSE FPImm, Ops: " << Operands.size()); |
6219 | |
6220 | MCAsmParser &Parser = getParser(); |
6221 | // Anything that can accept a floating point constant as an operand |
6222 | // needs to go through here, as the regular parseExpression is |
6223 | // integer only. |
6224 | // |
6225 | // This routine still creates a generic Immediate operand, containing |
6226 | // a bitcast of the 64-bit floating point value. The various operands |
6227 | // that accept floats can check whether the value is valid for them |
6228 | // via the standard is*() predicates. |
6229 | |
6230 | SMLoc S = Parser.getTok().getLoc(); |
6231 | |
6232 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
6233 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
6234 | return ParseStatus::NoMatch; |
6235 | |
6236 | // Disambiguate the VMOV forms that can accept an FP immediate. |
6237 | // vmov.f32 <sreg>, #imm |
6238 | // vmov.f64 <dreg>, #imm |
6239 | // vmov.f32 <dreg>, #imm @ vector f32x2 |
6240 | // vmov.f32 <qreg>, #imm @ vector f32x4 |
6241 | // |
6242 | // There are also the NEON VMOV instructions which expect an |
6243 | // integer constant. Make sure we don't try to parse an FPImm |
6244 | // for these: |
6245 | // vmov.i{8|16|32|64} <dreg|qreg>, #imm |
6246 | |
6247 | bool isVmovf = false; |
6248 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
6249 | for (unsigned I = 1; I < MnemonicOpsEndInd; ++I) { |
6250 | ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[I]); |
6251 | if (TyOp.isToken() && |
6252 | (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || |
6253 | TyOp.getToken() == ".f16" )) { |
6254 | isVmovf = true; |
6255 | break; |
6256 | } |
6257 | } |
6258 | |
6259 | ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); |
6260 | bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || |
6261 | Mnemonic.getToken() == "fconsts" ); |
6262 | if (!(isVmovf || isFconst)) |
6263 | return ParseStatus::NoMatch; |
6264 | |
6265 | Parser.Lex(); // Eat '#' or '$'. |
6266 | |
6267 | // Handle negation, as that still comes through as a separate token. |
6268 | bool isNegative = false; |
6269 | if (Parser.getTok().is(K: AsmToken::Minus)) { |
6270 | isNegative = true; |
6271 | Parser.Lex(); |
6272 | } |
6273 | const AsmToken &Tok = Parser.getTok(); |
6274 | SMLoc Loc = Tok.getLoc(); |
6275 | if (Tok.is(K: AsmToken::Real) && isVmovf) { |
6276 | APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); |
6277 | uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); |
6278 | // If we had a '-' in front, toggle the sign bit. |
6279 | IntVal ^= (uint64_t)isNegative << 31; |
6280 | Parser.Lex(); // Eat the token. |
6281 | Operands.push_back( |
6282 | Elt: ARMOperand::CreateImm(Val: MCConstantExpr::create(Value: IntVal, Ctx&: getContext()), S, |
6283 | E: Parser.getTok().getLoc(), Parser&: *this)); |
6284 | return ParseStatus::Success; |
6285 | } |
6286 | // Also handle plain integers. Instructions which allow floating point |
6287 | // immediates also allow a raw encoded 8-bit value. |
6288 | if (Tok.is(K: AsmToken::Integer) && isFconst) { |
6289 | int64_t Val = Tok.getIntVal(); |
6290 | Parser.Lex(); // Eat the token. |
6291 | if (Val > 255 || Val < 0) |
6292 | return Error(L: Loc, Msg: "encoded floating point value out of range" ); |
6293 | float RealVal = ARM_AM::getFPImmFloat(Imm: Val); |
6294 | Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); |
6295 | |
6296 | Operands.push_back( |
6297 | Elt: ARMOperand::CreateImm(Val: MCConstantExpr::create(Value: Val, Ctx&: getContext()), S, |
6298 | E: Parser.getTok().getLoc(), Parser&: *this)); |
6299 | return ParseStatus::Success; |
6300 | } |
6301 | |
6302 | return Error(L: Loc, Msg: "invalid floating point immediate" ); |
6303 | } |
6304 | |
6305 | /// Parse a arm instruction operand. For now this parses the operand regardless |
6306 | /// of the mnemonic. |
6307 | bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { |
6308 | MCAsmParser &Parser = getParser(); |
6309 | SMLoc S, E; |
6310 | |
6311 | // Check if the current operand has a custom associated parser, if so, try to |
6312 | // custom parse the operand, or fallback to the general approach. |
6313 | ParseStatus ResTy = MatchOperandParserImpl(Operands, Mnemonic); |
6314 | if (ResTy.isSuccess()) |
6315 | return false; |
6316 | // If there wasn't a custom match, try the generic matcher below. Otherwise, |
6317 | // there was a match, but an error occurred, in which case, just return that |
6318 | // the operand parsing failed. |
6319 | if (ResTy.isFailure()) |
6320 | return true; |
6321 | |
6322 | switch (getLexer().getKind()) { |
6323 | default: |
6324 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected token in operand" ); |
6325 | return true; |
6326 | case AsmToken::Identifier: { |
6327 | // If we've seen a branch mnemonic, the next operand must be a label. This |
6328 | // is true even if the label is a register name. So "br r1" means branch to |
6329 | // label "r1". |
6330 | bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl" ; |
6331 | if (!ExpectLabel) { |
6332 | if (!tryParseRegisterWithWriteBack(Operands)) |
6333 | return false; |
6334 | int Res = tryParseShiftRegister(Operands); |
6335 | if (Res == 0) // success |
6336 | return false; |
6337 | else if (Res == -1) // irrecoverable error |
6338 | return true; |
6339 | // If this is VMRS, check for the apsr_nzcv operand. |
6340 | if (Mnemonic == "vmrs" && |
6341 | Parser.getTok().getString().equals_insensitive(RHS: "apsr_nzcv" )) { |
6342 | S = Parser.getTok().getLoc(); |
6343 | Parser.Lex(); |
6344 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: "APSR_nzcv" , S, Parser&: *this)); |
6345 | return false; |
6346 | } |
6347 | } |
6348 | |
6349 | // Fall though for the Identifier case that is not a register or a |
6350 | // special name. |
6351 | [[fallthrough]]; |
6352 | } |
6353 | case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) |
6354 | case AsmToken::Integer: // things like 1f and 2b as a branch targets |
6355 | case AsmToken::String: // quoted label names. |
6356 | case AsmToken::Dot: { // . as a branch target |
6357 | // This was not a register so parse other operands that start with an |
6358 | // identifier (like labels) as expressions and create them as immediates. |
6359 | const MCExpr *IdVal; |
6360 | S = Parser.getTok().getLoc(); |
6361 | if (getParser().parseExpression(Res&: IdVal)) |
6362 | return true; |
6363 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6364 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: IdVal, S, E, Parser&: *this)); |
6365 | return false; |
6366 | } |
6367 | case AsmToken::LBrac: |
6368 | return parseMemory(Operands); |
6369 | case AsmToken::LCurly: { |
6370 | bool IsLazyLoadStore = Mnemonic == "vlldm" || Mnemonic == "vlstm" ; |
6371 | bool IsVSCCLRM = Mnemonic == "vscclrm" ; |
6372 | return parseRegisterList(Operands, EnforceOrder: !Mnemonic.starts_with(Prefix: "clr" ), AllowRAAC: false, |
6373 | IsLazyLoadStore, IsVSCCLRM); |
6374 | } |
6375 | case AsmToken::Dollar: |
6376 | case AsmToken::Hash: { |
6377 | // #42 -> immediate |
6378 | // $ 42 -> immediate |
6379 | // $foo -> symbol name |
6380 | // $42 -> symbol name |
6381 | S = Parser.getTok().getLoc(); |
6382 | |
6383 | // Favor the interpretation of $-prefixed operands as symbol names. |
6384 | // Cases where immediates are explicitly expected are handled by their |
6385 | // specific ParseMethod implementations. |
6386 | auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); |
6387 | bool ExpectIdentifier = Parser.getTok().is(K: AsmToken::Dollar) && |
6388 | (AdjacentToken.is(K: AsmToken::Identifier) || |
6389 | AdjacentToken.is(K: AsmToken::Integer)); |
6390 | if (!ExpectIdentifier) { |
6391 | // Token is not part of identifier. Drop leading $ or # before parsing |
6392 | // expression. |
6393 | Parser.Lex(); |
6394 | } |
6395 | |
6396 | if (Parser.getTok().isNot(K: AsmToken::Colon)) { |
6397 | bool IsNegative = Parser.getTok().is(K: AsmToken::Minus); |
6398 | const MCExpr *ImmVal; |
6399 | if (getParser().parseExpression(Res&: ImmVal)) |
6400 | return true; |
6401 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ImmVal); |
6402 | if (CE) { |
6403 | int32_t Val = CE->getValue(); |
6404 | if (IsNegative && Val == 0) |
6405 | ImmVal = MCConstantExpr::create(Value: std::numeric_limits<int32_t>::min(), |
6406 | Ctx&: getContext()); |
6407 | } |
6408 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6409 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: ImmVal, S, E, Parser&: *this)); |
6410 | |
6411 | // There can be a trailing '!' on operands that we want as a separate |
6412 | // '!' Token operand. Handle that here. For example, the compatibility |
6413 | // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. |
6414 | if (Parser.getTok().is(K: AsmToken::Exclaim)) { |
6415 | Operands.push_back(Elt: ARMOperand::CreateToken( |
6416 | Str: Parser.getTok().getString(), S: Parser.getTok().getLoc(), Parser&: *this)); |
6417 | Parser.Lex(); // Eat exclaim token |
6418 | } |
6419 | return false; |
6420 | } |
6421 | // w/ a ':' after the '#', it's just like a plain ':'. |
6422 | [[fallthrough]]; |
6423 | } |
6424 | case AsmToken::Colon: { |
6425 | S = Parser.getTok().getLoc(); |
6426 | // ":lower16:", ":upper16:", ":lower0_7:", ":lower8_15:", ":upper0_7:" and |
6427 | // ":upper8_15:", expression prefixes |
6428 | // FIXME: Check it's an expression prefix, |
6429 | // e.g. (FOO - :lower16:BAR) isn't legal. |
6430 | ARM::Specifier Spec; |
6431 | if (parsePrefix(Spec)) |
6432 | return true; |
6433 | |
6434 | const MCExpr *SubExprVal; |
6435 | if (getParser().parseExpression(Res&: SubExprVal)) |
6436 | return true; |
6437 | |
6438 | const auto *ExprVal = |
6439 | MCSpecifierExpr::create(Expr: SubExprVal, S: Spec, Ctx&: getContext()); |
6440 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6441 | Operands.push_back(Elt: ARMOperand::CreateImm(Val: ExprVal, S, E, Parser&: *this)); |
6442 | return false; |
6443 | } |
6444 | case AsmToken::Equal: { |
6445 | S = Parser.getTok().getLoc(); |
6446 | if (Mnemonic != "ldr" ) // only parse for ldr pseudo (e.g. ldr r0, =val) |
6447 | return Error(L: S, Msg: "unexpected token in operand" ); |
6448 | Parser.Lex(); // Eat '=' |
6449 | const MCExpr *SubExprVal; |
6450 | if (getParser().parseExpression(Res&: SubExprVal)) |
6451 | return true; |
6452 | E = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
6453 | |
6454 | // execute-only: we assume that assembly programmers know what they are |
6455 | // doing and allow literal pool creation here |
6456 | Operands.push_back( |
6457 | Elt: ARMOperand::CreateConstantPoolImm(Val: SubExprVal, S, E, Parser&: *this)); |
6458 | return false; |
6459 | } |
6460 | } |
6461 | } |
6462 | |
6463 | bool ARMAsmParser::parseImmExpr(int64_t &Out) { |
6464 | const MCExpr *Expr = nullptr; |
6465 | SMLoc L = getParser().getTok().getLoc(); |
6466 | if (check(P: getParser().parseExpression(Res&: Expr), Loc: L, Msg: "expected expression" )) |
6467 | return true; |
6468 | const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Val: Expr); |
6469 | if (check(P: !Value, Loc: L, Msg: "expected constant expression" )) |
6470 | return true; |
6471 | Out = Value->getValue(); |
6472 | return false; |
6473 | } |
6474 | |
6475 | // parsePrefix - Parse ARM 16-bit relocations expression prefixes, i.e. |
6476 | // :lower16: and :upper16: and Thumb 8-bit relocation expression prefixes, i.e. |
6477 | // :upper8_15:, :upper0_7:, :lower8_15: and :lower0_7: |
6478 | bool ARMAsmParser::parsePrefix(ARM::Specifier &Spec) { |
6479 | MCAsmParser &Parser = getParser(); |
6480 | Spec = ARM::S_None; |
6481 | |
6482 | // consume an optional '#' (GNU compatibility) |
6483 | if (getLexer().is(K: AsmToken::Hash)) |
6484 | Parser.Lex(); |
6485 | |
6486 | assert(getLexer().is(AsmToken::Colon) && "expected a :" ); |
6487 | Parser.Lex(); // Eat ':' |
6488 | |
6489 | if (getLexer().isNot(K: AsmToken::Identifier)) { |
6490 | Error(L: Parser.getTok().getLoc(), Msg: "expected prefix identifier in operand" ); |
6491 | return true; |
6492 | } |
6493 | |
6494 | enum { |
6495 | COFF = (1 << MCContext::IsCOFF), |
6496 | ELF = (1 << MCContext::IsELF), |
6497 | MACHO = (1 << MCContext::IsMachO), |
6498 | WASM = (1 << MCContext::IsWasm), |
6499 | }; |
6500 | static const struct PrefixEntry { |
6501 | const char *Spelling; |
6502 | ARM::Specifier Spec; |
6503 | uint8_t SupportedFormats; |
6504 | } PrefixEntries[] = { |
6505 | {.Spelling: "upper16" , .Spec: ARM::S_HI16, .SupportedFormats: COFF | ELF | MACHO}, |
6506 | {.Spelling: "lower16" , .Spec: ARM::S_LO16, .SupportedFormats: COFF | ELF | MACHO}, |
6507 | {.Spelling: "upper8_15" , .Spec: ARM::S_HI_8_15, .SupportedFormats: ELF}, |
6508 | {.Spelling: "upper0_7" , .Spec: ARM::S_HI_0_7, .SupportedFormats: ELF}, |
6509 | {.Spelling: "lower8_15" , .Spec: ARM::S_LO_8_15, .SupportedFormats: ELF}, |
6510 | {.Spelling: "lower0_7" , .Spec: ARM::S_LO_0_7, .SupportedFormats: ELF}, |
6511 | }; |
6512 | |
6513 | StringRef IDVal = Parser.getTok().getIdentifier(); |
6514 | |
6515 | const auto &Prefix = |
6516 | llvm::find_if(Range: PrefixEntries, P: [&IDVal](const PrefixEntry &PE) { |
6517 | return PE.Spelling == IDVal; |
6518 | }); |
6519 | if (Prefix == std::end(arr: PrefixEntries)) { |
6520 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected prefix in operand" ); |
6521 | return true; |
6522 | } |
6523 | |
6524 | uint8_t CurrentFormat; |
6525 | switch (getContext().getObjectFileType()) { |
6526 | case MCContext::IsMachO: |
6527 | CurrentFormat = MACHO; |
6528 | break; |
6529 | case MCContext::IsELF: |
6530 | CurrentFormat = ELF; |
6531 | break; |
6532 | case MCContext::IsCOFF: |
6533 | CurrentFormat = COFF; |
6534 | break; |
6535 | case MCContext::IsWasm: |
6536 | CurrentFormat = WASM; |
6537 | break; |
6538 | case MCContext::IsGOFF: |
6539 | case MCContext::IsSPIRV: |
6540 | case MCContext::IsXCOFF: |
6541 | case MCContext::IsDXContainer: |
6542 | llvm_unreachable("unexpected object format" ); |
6543 | break; |
6544 | } |
6545 | |
6546 | if (~Prefix->SupportedFormats & CurrentFormat) { |
6547 | Error(L: Parser.getTok().getLoc(), |
6548 | Msg: "cannot represent relocation in the current file format" ); |
6549 | return true; |
6550 | } |
6551 | |
6552 | Spec = Prefix->Spec; |
6553 | Parser.Lex(); |
6554 | |
6555 | if (getLexer().isNot(K: AsmToken::Colon)) { |
6556 | Error(L: Parser.getTok().getLoc(), Msg: "unexpected token after prefix" ); |
6557 | return true; |
6558 | } |
6559 | Parser.Lex(); // Eat the last ':' |
6560 | |
6561 | // consume an optional trailing '#' (GNU compatibility) bla |
6562 | parseOptionalToken(T: AsmToken::Hash); |
6563 | |
6564 | return false; |
6565 | } |
6566 | |
6567 | /// Given a mnemonic, split out possible predication code and carry |
6568 | /// setting letters to form a canonical mnemonic and flags. |
6569 | // |
6570 | // FIXME: Would be nice to autogen this. |
6571 | // FIXME: This is a bit of a maze of special cases. |
6572 | StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, StringRef , |
6573 | ARMCC::CondCodes &PredicationCode, |
6574 | ARMVCC::VPTCodes &VPTPredicationCode, |
6575 | bool &CarrySetting, |
6576 | unsigned &ProcessorIMod, |
6577 | StringRef &ITMask) { |
6578 | PredicationCode = ARMCC::AL; |
6579 | VPTPredicationCode = ARMVCC::None; |
6580 | CarrySetting = false; |
6581 | ProcessorIMod = 0; |
6582 | |
6583 | // Ignore some mnemonics we know aren't predicated forms. |
6584 | // |
6585 | // FIXME: Would be nice to autogen this. |
6586 | if ((Mnemonic == "movs" && isThumb()) || Mnemonic == "teq" || |
6587 | Mnemonic == "vceq" || Mnemonic == "svc" || Mnemonic == "mls" || |
6588 | Mnemonic == "smmls" || Mnemonic == "vcls" || Mnemonic == "vmls" || |
6589 | Mnemonic == "vnmls" || Mnemonic == "vacge" || Mnemonic == "vcge" || |
6590 | Mnemonic == "vclt" || Mnemonic == "vacgt" || Mnemonic == "vaclt" || |
6591 | Mnemonic == "vacle" || Mnemonic == "hlt" || Mnemonic == "vcgt" || |
6592 | Mnemonic == "vcle" || Mnemonic == "smlal" || Mnemonic == "umaal" || |
6593 | Mnemonic == "umlal" || Mnemonic == "vabal" || Mnemonic == "vmlal" || |
6594 | Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || Mnemonic == "fmuls" || |
6595 | Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || |
6596 | Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || |
6597 | Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || |
6598 | Mnemonic == "vrintm" || Mnemonic == "hvc" || |
6599 | Mnemonic.starts_with(Prefix: "vsel" ) || Mnemonic == "vins" || |
6600 | Mnemonic == "vmovx" || Mnemonic == "bxns" || Mnemonic == "blxns" || |
6601 | Mnemonic == "vdot" || Mnemonic == "vmmla" || Mnemonic == "vudot" || |
6602 | Mnemonic == "vsdot" || Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
6603 | Mnemonic == "vfmal" || Mnemonic == "vfmsl" || Mnemonic == "wls" || |
6604 | Mnemonic == "le" || Mnemonic == "dls" || Mnemonic == "csel" || |
6605 | Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || |
6606 | Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || |
6607 | Mnemonic == "cset" || Mnemonic == "csetm" || Mnemonic == "aut" || |
6608 | Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "bti" ) |
6609 | return Mnemonic; |
6610 | |
6611 | // First, split out any predication code. Ignore mnemonics we know aren't |
6612 | // predicated but do have a carry-set and so weren't caught above. |
6613 | if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && |
6614 | Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && |
6615 | Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && |
6616 | Mnemonic != "sbcs" && Mnemonic != "rscs" && |
6617 | !(hasMVE() && |
6618 | (Mnemonic == "vmine" || Mnemonic == "vshle" || Mnemonic == "vshlt" || |
6619 | Mnemonic == "vshllt" || Mnemonic == "vrshle" || Mnemonic == "vrshlt" || |
6620 | Mnemonic == "vmvne" || Mnemonic == "vorne" || Mnemonic == "vnege" || |
6621 | Mnemonic == "vnegt" || Mnemonic == "vmule" || Mnemonic == "vmult" || |
6622 | Mnemonic == "vrintne" || Mnemonic == "vcmult" || |
6623 | Mnemonic == "vcmule" || Mnemonic == "vpsele" || Mnemonic == "vpselt" || |
6624 | Mnemonic.starts_with(Prefix: "vq" )))) { |
6625 | unsigned CC = ARMCondCodeFromString(CC: Mnemonic.substr(Start: Mnemonic.size()-2)); |
6626 | if (CC != ~0U) { |
6627 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size() - 2); |
6628 | PredicationCode = static_cast<ARMCC::CondCodes>(CC); |
6629 | } |
6630 | } |
6631 | |
6632 | // Next, determine if we have a carry setting bit. We explicitly ignore all |
6633 | // the instructions we know end in 's'. |
6634 | if (Mnemonic.ends_with(Suffix: "s" ) && |
6635 | !(Mnemonic == "cps" || Mnemonic == "mls" || Mnemonic == "mrs" || |
6636 | Mnemonic == "smmls" || Mnemonic == "vabs" || Mnemonic == "vcls" || |
6637 | Mnemonic == "vmls" || Mnemonic == "vmrs" || Mnemonic == "vnmls" || |
6638 | Mnemonic == "vqabs" || Mnemonic == "vrecps" || Mnemonic == "vrsqrts" || |
6639 | Mnemonic == "srs" || Mnemonic == "flds" || Mnemonic == "fmrs" || |
6640 | Mnemonic == "fsqrts" || Mnemonic == "fsubs" || Mnemonic == "fsts" || |
6641 | Mnemonic == "fcpys" || Mnemonic == "fdivs" || Mnemonic == "fmuls" || |
6642 | Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || Mnemonic == "vfms" || |
6643 | Mnemonic == "vfnms" || Mnemonic == "fconsts" || Mnemonic == "bxns" || |
6644 | Mnemonic == "blxns" || Mnemonic == "vfmas" || Mnemonic == "vmlas" || |
6645 | (Mnemonic == "movs" && isThumb()))) { |
6646 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size() - 1); |
6647 | CarrySetting = true; |
6648 | } |
6649 | |
6650 | // The "cps" instruction can have a interrupt mode operand which is glued into |
6651 | // the mnemonic. Check if this is the case, split it and parse the imod op |
6652 | if (Mnemonic.starts_with(Prefix: "cps" )) { |
6653 | // Split out any imod code. |
6654 | unsigned IMod = |
6655 | StringSwitch<unsigned>(Mnemonic.substr(Start: Mnemonic.size()-2, N: 2)) |
6656 | .Case(S: "ie" , Value: ARM_PROC::IE) |
6657 | .Case(S: "id" , Value: ARM_PROC::ID) |
6658 | .Default(Value: ~0U); |
6659 | if (IMod != ~0U) { |
6660 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size()-2); |
6661 | ProcessorIMod = IMod; |
6662 | } |
6663 | } |
6664 | |
6665 | if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && |
6666 | Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && |
6667 | Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && |
6668 | Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && |
6669 | Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && Mnemonic != "vmovnt" && |
6670 | Mnemonic != "vqdmullt" && Mnemonic != "vpnot" && Mnemonic != "vcvtt" && |
6671 | Mnemonic != "vcvt" ) { |
6672 | unsigned VCC = |
6673 | ARMVectorCondCodeFromString(CC: Mnemonic.substr(Start: Mnemonic.size() - 1)); |
6674 | if (VCC != ~0U) { |
6675 | Mnemonic = Mnemonic.slice(Start: 0, End: Mnemonic.size()-1); |
6676 | VPTPredicationCode = static_cast<ARMVCC::VPTCodes>(VCC); |
6677 | } |
6678 | return Mnemonic; |
6679 | } |
6680 | |
6681 | // The "it" instruction has the condition mask on the end of the mnemonic. |
6682 | if (Mnemonic.starts_with(Prefix: "it" )) { |
6683 | ITMask = Mnemonic.substr(Start: 2); |
6684 | Mnemonic = Mnemonic.slice(Start: 0, End: 2); |
6685 | } |
6686 | |
6687 | if (Mnemonic.starts_with(Prefix: "vpst" )) { |
6688 | ITMask = Mnemonic.substr(Start: 4); |
6689 | Mnemonic = Mnemonic.slice(Start: 0, End: 4); |
6690 | } else if (Mnemonic.starts_with(Prefix: "vpt" )) { |
6691 | ITMask = Mnemonic.substr(Start: 3); |
6692 | Mnemonic = Mnemonic.slice(Start: 0, End: 3); |
6693 | } |
6694 | |
6695 | return Mnemonic; |
6696 | } |
6697 | |
6698 | /// Given a canonical mnemonic, determine if the instruction ever allows |
6699 | /// inclusion of carry set or predication code operands. |
6700 | // |
6701 | // FIXME: It would be nice to autogen this. |
6702 | void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, |
6703 | StringRef , |
6704 | StringRef FullInst, |
6705 | bool &CanAcceptCarrySet, |
6706 | bool &CanAcceptPredicationCode, |
6707 | bool &CanAcceptVPTPredicationCode) { |
6708 | CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); |
6709 | |
6710 | CanAcceptCarrySet = |
6711 | Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
6712 | Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || |
6713 | Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || |
6714 | Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || |
6715 | Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || |
6716 | Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || |
6717 | Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || |
6718 | (!isThumb() && |
6719 | (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || |
6720 | Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull" )); |
6721 | |
6722 | if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || |
6723 | Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || |
6724 | Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || |
6725 | Mnemonic.starts_with(Prefix: "crc32" ) || Mnemonic.starts_with(Prefix: "cps" ) || |
6726 | Mnemonic.starts_with(Prefix: "vsel" ) || Mnemonic == "vmaxnm" || |
6727 | Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || |
6728 | Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || |
6729 | Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || |
6730 | Mnemonic.starts_with(Prefix: "aes" ) || Mnemonic == "hvc" || |
6731 | Mnemonic == "setpan" || Mnemonic.starts_with(Prefix: "sha1" ) || |
6732 | Mnemonic.starts_with(Prefix: "sha256" ) || |
6733 | (FullInst.starts_with(Prefix: "vmull" ) && FullInst.ends_with(Suffix: ".p64" )) || |
6734 | Mnemonic == "vmovx" || Mnemonic == "vins" || Mnemonic == "vudot" || |
6735 | Mnemonic == "vsdot" || Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
6736 | Mnemonic == "vfmal" || Mnemonic == "vfmsl" || Mnemonic == "vfmat" || |
6737 | Mnemonic == "vfmab" || Mnemonic == "vdot" || Mnemonic == "vmmla" || |
6738 | Mnemonic == "sb" || Mnemonic == "ssbb" || Mnemonic == "pssbb" || |
6739 | Mnemonic == "vsmmla" || Mnemonic == "vummla" || Mnemonic == "vusmmla" || |
6740 | Mnemonic == "vusdot" || Mnemonic == "vsudot" || Mnemonic == "bfcsel" || |
6741 | Mnemonic == "wls" || Mnemonic == "dls" || Mnemonic == "le" || |
6742 | Mnemonic == "csel" || Mnemonic == "csinc" || Mnemonic == "csinv" || |
6743 | Mnemonic == "csneg" || Mnemonic == "cinc" || Mnemonic == "cinv" || |
6744 | Mnemonic == "cneg" || Mnemonic == "cset" || Mnemonic == "csetm" || |
6745 | (hasCDE() && MS.isCDEInstr(Mnemonic) && |
6746 | !MS.isITPredicableCDEInstr(Mnemonic)) || |
6747 | Mnemonic.starts_with(Prefix: "vpt" ) || Mnemonic.starts_with(Prefix: "vpst" ) || |
6748 | Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" || |
6749 | Mnemonic == "bti" || |
6750 | (hasMVE() && |
6751 | (Mnemonic.starts_with(Prefix: "vst2" ) || Mnemonic.starts_with(Prefix: "vld2" ) || |
6752 | Mnemonic.starts_with(Prefix: "vst4" ) || Mnemonic.starts_with(Prefix: "vld4" ) || |
6753 | Mnemonic.starts_with(Prefix: "wlstp" ) || Mnemonic.starts_with(Prefix: "dlstp" ) || |
6754 | Mnemonic.starts_with(Prefix: "letp" )))) { |
6755 | // These mnemonics are never predicable |
6756 | CanAcceptPredicationCode = false; |
6757 | } else if (!isThumb()) { |
6758 | // Some instructions are only predicable in Thumb mode |
6759 | CanAcceptPredicationCode = |
6760 | Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && |
6761 | Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && |
6762 | Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && |
6763 | Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && |
6764 | Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && |
6765 | Mnemonic != "stc2" && Mnemonic != "stc2l" && Mnemonic != "tsb" && |
6766 | !Mnemonic.starts_with(Prefix: "rfe" ) && !Mnemonic.starts_with(Prefix: "srs" ); |
6767 | } else if (isThumbOne()) { |
6768 | if (hasV6MOps()) |
6769 | CanAcceptPredicationCode = Mnemonic != "movs" ; |
6770 | else |
6771 | CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs" ; |
6772 | } else |
6773 | CanAcceptPredicationCode = true; |
6774 | } |
6775 | |
6776 | bool operandsContainWide(OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6777 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) { |
6778 | auto &Op = static_cast<ARMOperand &>(*Operands[I]); |
6779 | if (Op.isToken() && Op.getToken() == ".w" ) |
6780 | return true; |
6781 | } |
6782 | return false; |
6783 | } |
6784 | |
6785 | // Some Thumb instructions have two operand forms that are not |
6786 | // available as three operand, convert to two operand form if possible. |
6787 | // |
6788 | // FIXME: We would really like to be able to tablegen'erate this. |
6789 | void ARMAsmParser::tryConvertingToTwoOperandForm( |
6790 | StringRef Mnemonic, ARMCC::CondCodes PredicationCode, bool CarrySetting, |
6791 | OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6792 | |
6793 | if (operandsContainWide(Operands, MnemonicOpsEndInd)) |
6794 | return; |
6795 | if (Operands.size() != MnemonicOpsEndInd + 3) |
6796 | return; |
6797 | |
6798 | const auto &Op3 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]); |
6799 | auto &Op4 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
6800 | if (!Op3.isReg() || !Op4.isReg()) |
6801 | return; |
6802 | |
6803 | auto Op3Reg = Op3.getReg(); |
6804 | auto Op4Reg = Op4.getReg(); |
6805 | |
6806 | // For most Thumb2 cases we just generate the 3 operand form and reduce |
6807 | // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) |
6808 | // won't accept SP or PC so we do the transformation here taking care |
6809 | // with immediate range in the 'add sp, sp #imm' case. |
6810 | auto &Op5 = static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 2]); |
6811 | if (isThumbTwo()) { |
6812 | if (Mnemonic != "add" ) |
6813 | return; |
6814 | bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || |
6815 | (Op5.isReg() && Op5.getReg() == ARM::PC); |
6816 | if (!TryTransform) { |
6817 | TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || |
6818 | (Op5.isReg() && Op5.getReg() == ARM::SP)) && |
6819 | !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && |
6820 | Op5.isImm() && !Op5.isImm0_508s4()); |
6821 | } |
6822 | if (!TryTransform) |
6823 | return; |
6824 | } else if (!isThumbOne()) |
6825 | return; |
6826 | |
6827 | if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || |
6828 | Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
6829 | Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || |
6830 | Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic" )) |
6831 | return; |
6832 | |
6833 | // If first 2 operands of a 3 operand instruction are the same |
6834 | // then transform to 2 operand version of the same instruction |
6835 | // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' |
6836 | bool Transform = Op3Reg == Op4Reg; |
6837 | |
6838 | // For communtative operations, we might be able to transform if we swap |
6839 | // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially |
6840 | // as tADDrsp. |
6841 | const ARMOperand *LastOp = &Op5; |
6842 | bool Swap = false; |
6843 | if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && |
6844 | ((Mnemonic == "add" && Op4Reg != ARM::SP) || |
6845 | Mnemonic == "and" || Mnemonic == "eor" || |
6846 | Mnemonic == "adc" || Mnemonic == "orr" )) { |
6847 | Swap = true; |
6848 | LastOp = &Op4; |
6849 | Transform = true; |
6850 | } |
6851 | |
6852 | // If both registers are the same then remove one of them from |
6853 | // the operand list, with certain exceptions. |
6854 | if (Transform) { |
6855 | // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the |
6856 | // 2 operand forms don't exist. |
6857 | if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub" ) && |
6858 | LastOp->isReg()) |
6859 | Transform = false; |
6860 | |
6861 | // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into |
6862 | // 3-bits because the ARMARM says not to. |
6863 | if ((Mnemonic == "add" || Mnemonic == "sub" ) && LastOp->isImm0_7()) |
6864 | Transform = false; |
6865 | } |
6866 | |
6867 | if (Transform) { |
6868 | if (Swap) |
6869 | std::swap(a&: Op4, b&: Op5); |
6870 | Operands.erase(CI: Operands.begin() + MnemonicOpsEndInd); |
6871 | } |
6872 | } |
6873 | |
6874 | // this function returns true if the operand is one of the following |
6875 | // relocations: :upper8_15:, :upper0_7:, :lower8_15: or :lower0_7: |
6876 | static bool isThumbI8Relocation(MCParsedAsmOperand &MCOp) { |
6877 | ARMOperand &Op = static_cast<ARMOperand &>(MCOp); |
6878 | if (!Op.isImm()) |
6879 | return false; |
6880 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
6881 | if (CE) |
6882 | return false; |
6883 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
6884 | if (!E) |
6885 | return false; |
6886 | auto *ARM16Expr = dyn_cast<MCSpecifierExpr>(Val: E); |
6887 | if (ARM16Expr && (ARM16Expr->getSpecifier() == ARM::S_HI_8_15 || |
6888 | ARM16Expr->getSpecifier() == ARM::S_HI_0_7 || |
6889 | ARM16Expr->getSpecifier() == ARM::S_LO_8_15 || |
6890 | ARM16Expr->getSpecifier() == ARM::S_LO_0_7)) |
6891 | return true; |
6892 | return false; |
6893 | } |
6894 | |
6895 | bool ARMAsmParser::shouldOmitVectorPredicateOperand( |
6896 | StringRef Mnemonic, OperandVector &Operands, unsigned MnemonicOpsEndInd) { |
6897 | if (!hasMVE() || Operands.size() <= MnemonicOpsEndInd) |
6898 | return true; |
6899 | |
6900 | if (Mnemonic.starts_with(Prefix: "vld2" ) || Mnemonic.starts_with(Prefix: "vld4" ) || |
6901 | Mnemonic.starts_with(Prefix: "vst2" ) || Mnemonic.starts_with(Prefix: "vst4" )) |
6902 | return true; |
6903 | |
6904 | if (Mnemonic.starts_with(Prefix: "vctp" ) || Mnemonic.starts_with(Prefix: "vpnot" )) |
6905 | return false; |
6906 | |
6907 | if (Mnemonic.starts_with(Prefix: "vmov" ) && |
6908 | !(Mnemonic.starts_with(Prefix: "vmovl" ) || Mnemonic.starts_with(Prefix: "vmovn" ) || |
6909 | Mnemonic.starts_with(Prefix: "vmovx" ))) { |
6910 | for (auto &Operand : Operands) { |
6911 | if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
6912 | ((*Operand).isReg() && |
6913 | (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
6914 | Reg: (*Operand).getReg()) || |
6915 | ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
6916 | Reg: (*Operand).getReg())))) { |
6917 | return true; |
6918 | } |
6919 | } |
6920 | return false; |
6921 | } else { |
6922 | for (auto &Operand : Operands) { |
6923 | // We check the larger class QPR instead of just the legal class |
6924 | // MQPR, to more accurately report errors when using Q registers |
6925 | // outside of the allowed range. |
6926 | if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
6927 | static_cast<ARMOperand &>(*Operand).isQReg()) |
6928 | return false; |
6929 | } |
6930 | return true; |
6931 | } |
6932 | } |
6933 | |
6934 | // FIXME: This bit should probably be handled via an explicit match class |
6935 | // in the .td files that matches the suffix instead of having it be |
6936 | // a literal string token the way it is now. |
6937 | static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { |
6938 | return Mnemonic.starts_with(Prefix: "vldm" ) || Mnemonic.starts_with(Prefix: "vstm" ); |
6939 | } |
6940 | |
6941 | static void applyMnemonicAliases(StringRef &Mnemonic, |
6942 | const FeatureBitset &Features, |
6943 | unsigned VariantID); |
6944 | |
6945 | // The GNU assembler has aliases of ldrd, strd, ldrexd, strexd, ldaexd, and |
6946 | // stlexd with the second register omitted. We don't have a way to do that in |
6947 | // tablegen, so fix it up here. |
6948 | // |
6949 | // We have to be careful to not emit an invalid Rt2 here, because the rest of |
6950 | // the assembly parser could then generate confusing diagnostics refering to |
6951 | // it. If we do find anything that prevents us from doing the transformation we |
6952 | // bail out, and let the assembly parser report an error on the instruction as |
6953 | // it is written. |
6954 | void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, |
6955 | OperandVector &Operands, |
6956 | unsigned MnemonicOpsEndInd) { |
6957 | if (Mnemonic != "ldrd" && Mnemonic != "strd" && Mnemonic != "ldrexd" && |
6958 | Mnemonic != "strexd" && Mnemonic != "ldaexd" && Mnemonic != "stlexd" ) |
6959 | return; |
6960 | |
6961 | unsigned IdX = Mnemonic == "strexd" || Mnemonic == "stlexd" |
6962 | ? MnemonicOpsEndInd + 1 |
6963 | : MnemonicOpsEndInd; |
6964 | |
6965 | if (Operands.size() < IdX + 2) |
6966 | return; |
6967 | |
6968 | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[IdX]); |
6969 | ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[IdX + 1]); |
6970 | |
6971 | if (!Op2.isReg()) |
6972 | return; |
6973 | if (!Op3.isGPRMem()) |
6974 | return; |
6975 | |
6976 | const MCRegisterClass &GPR = MRI->getRegClass(i: ARM::GPRRegClassID); |
6977 | if (!GPR.contains(Reg: Op2.getReg())) |
6978 | return; |
6979 | |
6980 | unsigned RtEncoding = MRI->getEncodingValue(Reg: Op2.getReg()); |
6981 | if (!isThumb() && (RtEncoding & 1)) { |
6982 | // In ARM mode, the registers must be from an aligned pair, this |
6983 | // restriction does not apply in Thumb mode. |
6984 | return; |
6985 | } |
6986 | if (Op2.getReg() == ARM::PC) |
6987 | return; |
6988 | MCRegister PairedReg = GPR.getRegister(i: RtEncoding + 1); |
6989 | if (!PairedReg || PairedReg == ARM::PC || |
6990 | (PairedReg == ARM::SP && !hasV8Ops())) |
6991 | return; |
6992 | |
6993 | Operands.insert(I: Operands.begin() + IdX + 1, |
6994 | Elt: ARMOperand::CreateReg(Reg: PairedReg, S: Op2.getStartLoc(), |
6995 | E: Op2.getEndLoc(), Parser&: *this)); |
6996 | } |
6997 | |
6998 | // Dual-register instruction have the following syntax: |
6999 | // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm |
7000 | // This function tries to remove <Rdest+1> and replace <Rdest> with a pair |
7001 | // operand. If the conversion fails an error is diagnosed, and the function |
7002 | // returns true. |
7003 | bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, |
7004 | OperandVector &Operands, |
7005 | unsigned MnemonicOpsEndInd) { |
7006 | assert(MS.isCDEDualRegInstr(Mnemonic)); |
7007 | |
7008 | if (Operands.size() < 3 + MnemonicOpsEndInd) |
7009 | return false; |
7010 | |
7011 | StringRef Op2Diag( |
7012 | "operand must be an even-numbered register in the range [r0, r10]" ); |
7013 | |
7014 | const MCParsedAsmOperand &Op2 = *Operands[MnemonicOpsEndInd + 1]; |
7015 | if (!Op2.isReg()) |
7016 | return Error(L: Op2.getStartLoc(), Msg: Op2Diag); |
7017 | |
7018 | MCRegister RNext; |
7019 | MCRegister RPair; |
7020 | switch (Op2.getReg().id()) { |
7021 | default: |
7022 | return Error(L: Op2.getStartLoc(), Msg: Op2Diag); |
7023 | case ARM::R0: |
7024 | RNext = ARM::R1; |
7025 | RPair = ARM::R0_R1; |
7026 | break; |
7027 | case ARM::R2: |
7028 | RNext = ARM::R3; |
7029 | RPair = ARM::R2_R3; |
7030 | break; |
7031 | case ARM::R4: |
7032 | RNext = ARM::R5; |
7033 | RPair = ARM::R4_R5; |
7034 | break; |
7035 | case ARM::R6: |
7036 | RNext = ARM::R7; |
7037 | RPair = ARM::R6_R7; |
7038 | break; |
7039 | case ARM::R8: |
7040 | RNext = ARM::R9; |
7041 | RPair = ARM::R8_R9; |
7042 | break; |
7043 | case ARM::R10: |
7044 | RNext = ARM::R11; |
7045 | RPair = ARM::R10_R11; |
7046 | break; |
7047 | } |
7048 | |
7049 | const MCParsedAsmOperand &Op3 = *Operands[MnemonicOpsEndInd + 2]; |
7050 | if (!Op3.isReg() || Op3.getReg() != RNext) |
7051 | return Error(L: Op3.getStartLoc(), Msg: "operand must be a consecutive register" ); |
7052 | |
7053 | Operands.erase(CI: Operands.begin() + MnemonicOpsEndInd + 2); |
7054 | Operands[MnemonicOpsEndInd + 1] = |
7055 | ARMOperand::CreateReg(Reg: RPair, S: Op2.getStartLoc(), E: Op2.getEndLoc(), Parser&: *this); |
7056 | return false; |
7057 | } |
7058 | |
7059 | void removeCondCode(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7060 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7061 | if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) { |
7062 | Operands.erase(CI: Operands.begin() + I); |
7063 | --MnemonicOpsEndInd; |
7064 | break; |
7065 | } |
7066 | } |
7067 | |
7068 | void removeCCOut(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7069 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7070 | if (static_cast<ARMOperand &>(*Operands[I]).isCCOut()) { |
7071 | Operands.erase(CI: Operands.begin() + I); |
7072 | --MnemonicOpsEndInd; |
7073 | break; |
7074 | } |
7075 | } |
7076 | |
7077 | void removeVPTCondCode(OperandVector &Operands, unsigned &MnemonicOpsEndInd) { |
7078 | for (unsigned I = 0; I < MnemonicOpsEndInd; ++I) |
7079 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) { |
7080 | Operands.erase(CI: Operands.begin() + I); |
7081 | --MnemonicOpsEndInd; |
7082 | break; |
7083 | } |
7084 | } |
7085 | |
7086 | /// Parse an arm instruction mnemonic followed by its operands. |
7087 | bool ARMAsmParser::parseInstruction(ParseInstructionInfo &Info, StringRef Name, |
7088 | SMLoc NameLoc, OperandVector &Operands) { |
7089 | MCAsmParser &Parser = getParser(); |
7090 | |
7091 | // Apply mnemonic aliases before doing anything else, as the destination |
7092 | // mnemonic may include suffices and we want to handle them normally. |
7093 | // The generic tblgen'erated code does this later, at the start of |
7094 | // MatchInstructionImpl(), but that's too late for aliases that include |
7095 | // any sort of suffix. |
7096 | const FeatureBitset &AvailableFeatures = getAvailableFeatures(); |
7097 | unsigned AssemblerDialect = getParser().getAssemblerDialect(); |
7098 | applyMnemonicAliases(Mnemonic&: Name, Features: AvailableFeatures, VariantID: AssemblerDialect); |
7099 | |
7100 | // First check for the ARM-specific .req directive. |
7101 | if (Parser.getTok().is(K: AsmToken::Identifier) && |
7102 | Parser.getTok().getIdentifier().lower() == ".req" ) { |
7103 | parseDirectiveReq(Name, L: NameLoc); |
7104 | // We always return 'error' for this, as we're done with this |
7105 | // statement and don't need to match the 'instruction." |
7106 | return true; |
7107 | } |
7108 | |
7109 | // Create the leading tokens for the mnemonic, split by '.' characters. |
7110 | size_t Start = 0, Next = Name.find(C: '.'); |
7111 | StringRef Mnemonic = Name.slice(Start, End: Next); |
7112 | StringRef = Name.slice(Start: Next, End: Name.find(C: ' ', From: Next + 1)); |
7113 | |
7114 | // Split out the predication code and carry setting flag from the mnemonic. |
7115 | ARMCC::CondCodes PredicationCode; |
7116 | ARMVCC::VPTCodes VPTPredicationCode; |
7117 | unsigned ProcessorIMod; |
7118 | bool CarrySetting; |
7119 | StringRef ITMask; |
7120 | Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, |
7121 | CarrySetting, ProcessorIMod, ITMask); |
7122 | |
7123 | // In Thumb1, only the branch (B) instruction can be predicated. |
7124 | if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b" ) { |
7125 | return Error(L: NameLoc, Msg: "conditional execution not supported in Thumb1" ); |
7126 | } |
7127 | |
7128 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: Mnemonic, S: NameLoc, Parser&: *this)); |
7129 | |
7130 | // Handle the mask for IT and VPT instructions. In ARMOperand and |
7131 | // MCOperand, this is stored in a format independent of the |
7132 | // condition code: the lowest set bit indicates the end of the |
7133 | // encoding, and above that, a 1 bit indicates 'else', and an 0 |
7134 | // indicates 'then'. E.g. |
7135 | // IT -> 1000 |
7136 | // ITx -> x100 (ITT -> 0100, ITE -> 1100) |
7137 | // ITxy -> xy10 (e.g. ITET -> 1010) |
7138 | // ITxyz -> xyz1 (e.g. ITEET -> 1101) |
7139 | // Note: See the ARM::PredBlockMask enum in |
7140 | // /lib/Target/ARM/Utils/ARMBaseInfo.h |
7141 | if (Mnemonic == "it" || Mnemonic.starts_with(Prefix: "vpt" ) || |
7142 | Mnemonic.starts_with(Prefix: "vpst" )) { |
7143 | SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 2) : |
7144 | Mnemonic == "vpt" ? SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 3) : |
7145 | SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + 4); |
7146 | if (ITMask.size() > 3) { |
7147 | if (Mnemonic == "it" ) |
7148 | return Error(L: Loc, Msg: "too many conditions on IT instruction" ); |
7149 | return Error(L: Loc, Msg: "too many conditions on VPT instruction" ); |
7150 | } |
7151 | unsigned Mask = 8; |
7152 | for (char Pos : llvm::reverse(C&: ITMask)) { |
7153 | if (Pos != 't' && Pos != 'e') { |
7154 | return Error(L: Loc, Msg: "illegal IT block condition mask '" + ITMask + "'" ); |
7155 | } |
7156 | Mask >>= 1; |
7157 | if (Pos == 'e') |
7158 | Mask |= 8; |
7159 | } |
7160 | Operands.push_back(Elt: ARMOperand::CreateITMask(Mask, S: Loc, Parser&: *this)); |
7161 | } |
7162 | |
7163 | // FIXME: This is all a pretty gross hack. We should automatically handle |
7164 | // optional operands like this via tblgen. |
7165 | |
7166 | // Next, add the CCOut and ConditionCode operands, if needed. |
7167 | // |
7168 | // For mnemonics which can ever incorporate a carry setting bit or predication |
7169 | // code, our matching model involves us always generating CCOut and |
7170 | // ConditionCode operands to match the mnemonic "as written" and then we let |
7171 | // the matcher deal with finding the right instruction or generating an |
7172 | // appropriate error. |
7173 | bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; |
7174 | getMnemonicAcceptInfo(Mnemonic, ExtraToken, FullInst: Name, CanAcceptCarrySet, |
7175 | CanAcceptPredicationCode, CanAcceptVPTPredicationCode); |
7176 | |
7177 | // If we had a carry-set on an instruction that can't do that, issue an |
7178 | // error. |
7179 | if (!CanAcceptCarrySet && CarrySetting) { |
7180 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7181 | "' can not set flags, but 's' suffix specified" ); |
7182 | } |
7183 | // If we had a predication code on an instruction that can't do that, issue an |
7184 | // error. |
7185 | if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { |
7186 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7187 | "' is not predicable, but condition code specified" ); |
7188 | } |
7189 | |
7190 | // If we had a VPT predication code on an instruction that can't do that, issue an |
7191 | // error. |
7192 | if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { |
7193 | return Error(L: NameLoc, Msg: "instruction '" + Mnemonic + |
7194 | "' is not VPT predicable, but VPT code T/E is specified" ); |
7195 | } |
7196 | |
7197 | // Add the carry setting operand, if necessary. |
7198 | if (CanAcceptCarrySet && CarrySetting) { |
7199 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size()); |
7200 | Operands.push_back(Elt: ARMOperand::CreateCCOut( |
7201 | Reg: CarrySetting ? ARM::CPSR : ARM::NoRegister, S: Loc, Parser&: *this)); |
7202 | } |
7203 | |
7204 | // Add the predication code operand, if necessary. |
7205 | if (CanAcceptPredicationCode && PredicationCode != llvm::ARMCC::AL) { |
7206 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size() + |
7207 | CarrySetting); |
7208 | Operands.push_back(Elt: ARMOperand::CreateCondCode( |
7209 | CC: ARMCC::CondCodes(PredicationCode), S: Loc, Parser&: *this)); |
7210 | } |
7211 | |
7212 | // Add the VPT predication code operand, if necessary. |
7213 | // Dont add in certain cases of VCVT as this needs to be disambiguated |
7214 | // after operand parsing. |
7215 | if (CanAcceptVPTPredicationCode && VPTPredicationCode != llvm::ARMVCC::None && |
7216 | !(Mnemonic.starts_with(Prefix: "vcvt" ) && Mnemonic != "vcvta" && |
7217 | Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm" )) { |
7218 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Mnemonic.size() + |
7219 | CarrySetting); |
7220 | Operands.push_back(Elt: ARMOperand::CreateVPTPred( |
7221 | CC: ARMVCC::VPTCodes(VPTPredicationCode), S: Loc, Parser&: *this)); |
7222 | } |
7223 | |
7224 | // Add the processor imod operand, if necessary. |
7225 | if (ProcessorIMod) { |
7226 | Operands.push_back(Elt: ARMOperand::CreateImm( |
7227 | Val: MCConstantExpr::create(Value: ProcessorIMod, Ctx&: getContext()), S: NameLoc, E: NameLoc, |
7228 | Parser&: *this)); |
7229 | } else if (Mnemonic == "cps" && isMClass()) { |
7230 | return Error(L: NameLoc, Msg: "instruction 'cps' requires effect for M-class" ); |
7231 | } |
7232 | |
7233 | // Add the remaining tokens in the mnemonic. |
7234 | while (Next != StringRef::npos) { |
7235 | Start = Next; |
7236 | Next = Name.find(C: '.', From: Start + 1); |
7237 | ExtraToken = Name.slice(Start, End: Next); |
7238 | |
7239 | // Some NEON instructions have an optional datatype suffix that is |
7240 | // completely ignored. Check for that. |
7241 | if (isDataTypeToken(Tok: ExtraToken) && |
7242 | doesIgnoreDataTypeSuffix(Mnemonic, DT: ExtraToken)) |
7243 | continue; |
7244 | |
7245 | // For for ARM mode generate an error if the .n qualifier is used. |
7246 | if (ExtraToken == ".n" && !isThumb()) { |
7247 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Start); |
7248 | return Error(L: Loc, Msg: "instruction with .n (narrow) qualifier not allowed in " |
7249 | "arm mode" ); |
7250 | } |
7251 | |
7252 | // The .n qualifier is always discarded as that is what the tables |
7253 | // and matcher expect. In ARM mode the .w qualifier has no effect, |
7254 | // so discard it to avoid errors that can be caused by the matcher. |
7255 | if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w" )) { |
7256 | SMLoc Loc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + Start); |
7257 | Operands.push_back(Elt: ARMOperand::CreateToken(Str: ExtraToken, S: Loc, Parser&: *this)); |
7258 | } |
7259 | } |
7260 | |
7261 | // This marks the end of the LHS Mnemonic operators. |
7262 | // This is used for indexing into the non-menmonic operators as some of the |
7263 | // mnemonic operators are optional and therfore indexes can differ. |
7264 | unsigned MnemonicOpsEndInd = Operands.size(); |
7265 | |
7266 | // Read the remaining operands. |
7267 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
7268 | // Read the first operand. |
7269 | if (parseOperand(Operands, Mnemonic)) { |
7270 | return true; |
7271 | } |
7272 | |
7273 | while (parseOptionalToken(T: AsmToken::Comma)) { |
7274 | // Parse and remember the operand. |
7275 | if (parseOperand(Operands, Mnemonic)) { |
7276 | return true; |
7277 | } |
7278 | } |
7279 | } |
7280 | |
7281 | if (parseToken(T: AsmToken::EndOfStatement, Msg: "unexpected token in argument list" )) |
7282 | return true; |
7283 | |
7284 | tryConvertingToTwoOperandForm(Mnemonic, PredicationCode, CarrySetting, |
7285 | Operands, MnemonicOpsEndInd); |
7286 | |
7287 | if (hasCDE() && MS.isCDEInstr(Mnemonic)) { |
7288 | // Dual-register instructions use even-odd register pairs as their |
7289 | // destination operand, in assembly such pair is spelled as two |
7290 | // consecutive registers, without any special syntax. ConvertDualRegOperand |
7291 | // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. |
7292 | // It returns true, if an error message has been emitted. If the function |
7293 | // returns false, the function either succeeded or an error (e.g. missing |
7294 | // operand) will be diagnosed elsewhere. |
7295 | if (MS.isCDEDualRegInstr(Mnemonic)) { |
7296 | bool GotError = |
7297 | CDEConvertDualRegOperand(Mnemonic, Operands, MnemonicOpsEndInd); |
7298 | if (GotError) |
7299 | return GotError; |
7300 | } |
7301 | } |
7302 | |
7303 | if (hasMVE()) { |
7304 | if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7305 | MnemonicOpsEndInd) && |
7306 | Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { |
7307 | // Very nasty hack to deal with the vector predicated variant of vmovlt |
7308 | // the scalar predicated vmov with condition 'lt'. We can not tell them |
7309 | // apart until we have parsed their operands. |
7310 | Operands.erase(CI: Operands.begin() + 1); |
7311 | Operands.erase(CI: Operands.begin()); |
7312 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7313 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7314 | Mnemonic.size() - 1 + CarrySetting); |
7315 | Operands.insert(I: Operands.begin(), |
7316 | Elt: ARMOperand::CreateVPTPred(CC: ARMVCC::None, S: PLoc, Parser&: *this)); |
7317 | Operands.insert(I: Operands.begin(), Elt: ARMOperand::CreateToken( |
7318 | Str: StringRef("vmovlt" ), S: MLoc, Parser&: *this)); |
7319 | } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && |
7320 | !shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7321 | MnemonicOpsEndInd)) { |
7322 | // Another nasty hack to deal with the ambiguity between vcvt with scalar |
7323 | // predication 'ne' and vcvtn with vector predication 'e'. As above we |
7324 | // can only distinguish between the two after we have parsed their |
7325 | // operands. |
7326 | Operands.erase(CI: Operands.begin() + 1); |
7327 | Operands.erase(CI: Operands.begin()); |
7328 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7329 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7330 | Mnemonic.size() - 1 + CarrySetting); |
7331 | Operands.insert(I: Operands.begin(), |
7332 | Elt: ARMOperand::CreateVPTPred(CC: ARMVCC::Else, S: PLoc, Parser&: *this)); |
7333 | Operands.insert(I: Operands.begin(), |
7334 | Elt: ARMOperand::CreateToken(Str: StringRef("vcvtn" ), S: MLoc, Parser&: *this)); |
7335 | } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && |
7336 | !shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7337 | MnemonicOpsEndInd)) { |
7338 | // Another hack, this time to distinguish between scalar predicated vmul |
7339 | // with 'lt' predication code and the vector instruction vmullt with |
7340 | // vector predication code "none" |
7341 | removeCondCode(Operands, MnemonicOpsEndInd); |
7342 | Operands.erase(CI: Operands.begin()); |
7343 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7344 | Operands.insert(I: Operands.begin(), Elt: ARMOperand::CreateToken( |
7345 | Str: StringRef("vmullt" ), S: MLoc, Parser&: *this)); |
7346 | } else if (Mnemonic.starts_with(Prefix: "vcvt" ) && !Mnemonic.starts_with(Prefix: "vcvta" ) && |
7347 | !Mnemonic.starts_with(Prefix: "vcvtn" ) && |
7348 | !Mnemonic.starts_with(Prefix: "vcvtp" ) && |
7349 | !Mnemonic.starts_with(Prefix: "vcvtm" )) { |
7350 | if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7351 | MnemonicOpsEndInd)) { |
7352 | // We could not split the vector predicate off vcvt because it might |
7353 | // have been the scalar vcvtt instruction. Now we know its a vector |
7354 | // instruction, we still need to check whether its the vector |
7355 | // predicated vcvt with 'Then' predication or the vector vcvtt. We can |
7356 | // distinguish the two based on the suffixes, if it is any of |
7357 | // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. |
7358 | if (Mnemonic.starts_with(Prefix: "vcvtt" ) && MnemonicOpsEndInd > 2) { |
7359 | auto Sz1 = |
7360 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd - 2]); |
7361 | auto Sz2 = |
7362 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd - 1]); |
7363 | if (!(Sz1.isToken() && Sz1.getToken().starts_with(Prefix: ".f" ) && |
7364 | Sz2.isToken() && Sz2.getToken().starts_with(Prefix: ".f" ))) { |
7365 | Operands.erase(CI: Operands.begin()); |
7366 | SMLoc MLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer()); |
7367 | VPTPredicationCode = ARMVCC::Then; |
7368 | |
7369 | Mnemonic = Mnemonic.substr(Start: 0, N: 4); |
7370 | Operands.insert(I: Operands.begin(), |
7371 | Elt: ARMOperand::CreateToken(Str: Mnemonic, S: MLoc, Parser&: *this)); |
7372 | } |
7373 | } |
7374 | SMLoc PLoc = SMLoc::getFromPointer(Ptr: NameLoc.getPointer() + |
7375 | Mnemonic.size() + CarrySetting); |
7376 | // Add VPTPred |
7377 | Operands.insert(I: Operands.begin() + 1, |
7378 | Elt: ARMOperand::CreateVPTPred( |
7379 | CC: ARMVCC::VPTCodes(VPTPredicationCode), S: PLoc, Parser&: *this)); |
7380 | ++MnemonicOpsEndInd; |
7381 | } |
7382 | } else if (CanAcceptVPTPredicationCode) { |
7383 | // For all other instructions, make sure only one of the two |
7384 | // predication operands is left behind, depending on whether we should |
7385 | // use the vector predication. |
7386 | if (shouldOmitVectorPredicateOperand(Mnemonic, Operands, |
7387 | MnemonicOpsEndInd)) { |
7388 | removeVPTCondCode(Operands, MnemonicOpsEndInd); |
7389 | } |
7390 | } |
7391 | } |
7392 | |
7393 | if (VPTPredicationCode != ARMVCC::None) { |
7394 | bool usedVPTPredicationCode = false; |
7395 | for (unsigned I = 1; I < Operands.size(); ++I) |
7396 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
7397 | usedVPTPredicationCode = true; |
7398 | if (!usedVPTPredicationCode) { |
7399 | // If we have a VPT predication code and we haven't just turned it |
7400 | // into an operand, then it was a mistake for splitMnemonic to |
7401 | // separate it from the rest of the mnemonic in the first place, |
7402 | // and this may lead to wrong disassembly (e.g. scalar floating |
7403 | // point VCMPE is actually a different instruction from VCMP, so |
7404 | // we mustn't treat them the same). In that situation, glue it |
7405 | // back on. |
7406 | Mnemonic = Name.slice(Start: 0, End: Mnemonic.size() + 1); |
7407 | Operands.erase(CI: Operands.begin()); |
7408 | Operands.insert(I: Operands.begin(), |
7409 | Elt: ARMOperand::CreateToken(Str: Mnemonic, S: NameLoc, Parser&: *this)); |
7410 | } |
7411 | } |
7412 | |
7413 | // ARM mode 'blx' need special handling, as the register operand version |
7414 | // is predicable, but the label operand version is not. So, we can't rely |
7415 | // on the Mnemonic based checking to correctly figure out when to put |
7416 | // a k_CondCode operand in the list. If we're trying to match the label |
7417 | // version, remove the k_CondCode operand here. |
7418 | if (!isThumb() && Mnemonic == "blx" && |
7419 | Operands.size() == MnemonicOpsEndInd + 1 && |
7420 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).isImm()) |
7421 | removeCondCode(Operands, MnemonicOpsEndInd); |
7422 | |
7423 | // GNU Assembler extension (compatibility). |
7424 | fixupGNULDRDAlias(Mnemonic, Operands, MnemonicOpsEndInd); |
7425 | |
7426 | // Adjust operands of ldrexd/strexd to MCK_GPRPair. |
7427 | // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, |
7428 | // a single GPRPair reg operand is used in the .td file to replace the two |
7429 | // GPRs. However, when parsing from asm, the two GRPs cannot be |
7430 | // automatically |
7431 | // expressed as a GPRPair, so we have to manually merge them. |
7432 | // FIXME: We would really like to be able to tablegen'erate this. |
7433 | bool IsLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd" ); |
7434 | if (!isThumb() && Operands.size() > MnemonicOpsEndInd + 1 + (!IsLoad) && |
7435 | (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || |
7436 | Mnemonic == "stlexd" )) { |
7437 | unsigned Idx = IsLoad ? MnemonicOpsEndInd : MnemonicOpsEndInd + 1; |
7438 | ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); |
7439 | ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); |
7440 | |
7441 | const MCRegisterClass &MRC = MRI->getRegClass(i: ARM::GPRRegClassID); |
7442 | // Adjust only if Op1 is a GPR. |
7443 | if (Op1.isReg() && MRC.contains(Reg: Op1.getReg())) { |
7444 | MCRegister Reg1 = Op1.getReg(); |
7445 | unsigned Rt = MRI->getEncodingValue(Reg: Reg1); |
7446 | MCRegister Reg2 = Op2.getReg(); |
7447 | unsigned Rt2 = MRI->getEncodingValue(Reg: Reg2); |
7448 | // Rt2 must be Rt + 1. |
7449 | if (Rt + 1 != Rt2) |
7450 | return Error(L: Op2.getStartLoc(), |
7451 | Msg: IsLoad ? "destination operands must be sequential" |
7452 | : "source operands must be sequential" ); |
7453 | |
7454 | // Rt must be even |
7455 | if (Rt & 1) |
7456 | return Error( |
7457 | L: Op1.getStartLoc(), |
7458 | Msg: IsLoad ? "destination operands must start start at an even register" |
7459 | : "source operands must start start at an even register" ); |
7460 | |
7461 | MCRegister NewReg = MRI->getMatchingSuperReg( |
7462 | Reg: Reg1, SubIdx: ARM::gsub_0, RC: &(MRI->getRegClass(i: ARM::GPRPairRegClassID))); |
7463 | Operands[Idx] = ARMOperand::CreateReg(Reg: NewReg, S: Op1.getStartLoc(), |
7464 | E: Op2.getEndLoc(), Parser&: *this); |
7465 | Operands.erase(CI: Operands.begin() + Idx + 1); |
7466 | } |
7467 | } |
7468 | |
7469 | // FIXME: As said above, this is all a pretty gross hack. This instruction |
7470 | // does not fit with other "subs" and tblgen. |
7471 | // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction |
7472 | // so the Mnemonic is the original name "subs" and delete the predicate |
7473 | // operand so it will match the table entry. |
7474 | if (isThumbTwo() && Mnemonic == "sub" && |
7475 | Operands.size() == MnemonicOpsEndInd + 3 && |
7476 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).isReg() && |
7477 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]).getReg() == |
7478 | ARM::PC && |
7479 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]).isReg() && |
7480 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]).getReg() == |
7481 | ARM::LR && |
7482 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 2]).isImm()) { |
7483 | Operands.front() = ARMOperand::CreateToken(Str: Name, S: NameLoc, Parser&: *this); |
7484 | removeCCOut(Operands, MnemonicOpsEndInd); |
7485 | } |
7486 | return false; |
7487 | } |
7488 | |
7489 | // Validate context-sensitive operand constraints. |
7490 | |
7491 | // return 'true' if register list contains non-low GPR registers, |
7492 | // 'false' otherwise. If Reg is in the register list or is HiReg, set |
7493 | // 'containsReg' to true. |
7494 | static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, |
7495 | MCRegister Reg, MCRegister HiReg, |
7496 | bool &containsReg) { |
7497 | containsReg = false; |
7498 | for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { |
7499 | MCRegister OpReg = Inst.getOperand(i).getReg(); |
7500 | if (OpReg == Reg) |
7501 | containsReg = true; |
7502 | // Anything other than a low register isn't legal here. |
7503 | if (!isARMLowRegister(Reg: OpReg) && (!HiReg || OpReg != HiReg)) |
7504 | return true; |
7505 | } |
7506 | return false; |
7507 | } |
7508 | |
7509 | // Check if the specified regisgter is in the register list of the inst, |
7510 | // starting at the indicated operand number. |
7511 | static bool listContainsReg(const MCInst &Inst, unsigned OpNo, MCRegister Reg) { |
7512 | for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { |
7513 | MCRegister OpReg = Inst.getOperand(i).getReg(); |
7514 | if (OpReg == Reg) |
7515 | return true; |
7516 | } |
7517 | return false; |
7518 | } |
7519 | |
7520 | // Return true if instruction has the interesting property of being |
7521 | // allowed in IT blocks, but not being predicable. |
7522 | static bool instIsBreakpoint(const MCInst &Inst) { |
7523 | return Inst.getOpcode() == ARM::tBKPT || |
7524 | Inst.getOpcode() == ARM::BKPT || |
7525 | Inst.getOpcode() == ARM::tHLT || |
7526 | Inst.getOpcode() == ARM::HLT; |
7527 | } |
7528 | |
7529 | unsigned getRegListInd(const OperandVector &Operands, |
7530 | unsigned MnemonicOpsEndInd) { |
7531 | for (unsigned I = MnemonicOpsEndInd; I < Operands.size(); ++I) { |
7532 | const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[I]); |
7533 | if (Op.isRegList()) { |
7534 | return I; |
7535 | } |
7536 | } |
7537 | return 0; |
7538 | } |
7539 | |
7540 | bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, |
7541 | const OperandVector &Operands, |
7542 | unsigned MnemonicOpsEndInd, |
7543 | unsigned ListIndex, bool IsARPop) { |
7544 | bool ListContainsSP = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::SP); |
7545 | bool ListContainsLR = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::LR); |
7546 | bool ListContainsPC = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::PC); |
7547 | |
7548 | if (!IsARPop && ListContainsSP) |
7549 | return Error( |
7550 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7551 | Msg: "SP may not be in the register list" ); |
7552 | if (ListContainsPC && ListContainsLR) |
7553 | return Error( |
7554 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7555 | Msg: "PC and LR may not be in the register list simultaneously" ); |
7556 | return false; |
7557 | } |
7558 | |
7559 | bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, |
7560 | const OperandVector &Operands, |
7561 | unsigned MnemonicOpsEndInd, |
7562 | unsigned ListIndex) { |
7563 | bool ListContainsSP = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::SP); |
7564 | bool ListContainsPC = listContainsReg(Inst, OpNo: ListIndex, Reg: ARM::PC); |
7565 | |
7566 | if (ListContainsSP && ListContainsPC) |
7567 | return Error( |
7568 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7569 | Msg: "SP and PC may not be in the register list" ); |
7570 | if (ListContainsSP) |
7571 | return Error( |
7572 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7573 | Msg: "SP may not be in the register list" ); |
7574 | if (ListContainsPC) |
7575 | return Error( |
7576 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
7577 | Msg: "PC may not be in the register list" ); |
7578 | return false; |
7579 | } |
7580 | |
7581 | bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, |
7582 | bool Load, bool ARMMode, bool Writeback, |
7583 | unsigned MnemonicOpsEndInd) { |
7584 | unsigned RtIndex = Load || !Writeback ? 0 : 1; |
7585 | unsigned Rt = MRI->getEncodingValue(Reg: Inst.getOperand(i: RtIndex).getReg()); |
7586 | unsigned Rt2 = MRI->getEncodingValue(Reg: Inst.getOperand(i: RtIndex + 1).getReg()); |
7587 | |
7588 | if (ARMMode) { |
7589 | // Rt can't be R14. |
7590 | if (Rt == 14) |
7591 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7592 | Msg: "Rt can't be R14" ); |
7593 | |
7594 | // Rt must be even-numbered. |
7595 | if ((Rt & 1) == 1) |
7596 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7597 | Msg: "Rt must be even-numbered" ); |
7598 | |
7599 | // Rt2 must be Rt + 1. |
7600 | if (Rt2 != Rt + 1) { |
7601 | if (Load) |
7602 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7603 | Msg: "destination operands must be sequential" ); |
7604 | else |
7605 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7606 | Msg: "source operands must be sequential" ); |
7607 | } |
7608 | |
7609 | // FIXME: Diagnose m == 15 |
7610 | // FIXME: Diagnose ldrd with m == t || m == t2. |
7611 | } |
7612 | |
7613 | if (!ARMMode && Load) { |
7614 | if (Rt2 == Rt) |
7615 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7616 | Msg: "destination operands can't be identical" ); |
7617 | } |
7618 | |
7619 | if (Writeback) { |
7620 | unsigned Rn = MRI->getEncodingValue(Reg: Inst.getOperand(i: 3).getReg()); |
7621 | |
7622 | if (Rn == Rt || Rn == Rt2) { |
7623 | if (Load) |
7624 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7625 | Msg: "base register needs to be different from destination " |
7626 | "registers" ); |
7627 | else |
7628 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7629 | Msg: "source register and base register can't be identical" ); |
7630 | } |
7631 | |
7632 | // FIXME: Diagnose ldrd/strd with writeback and n == 15. |
7633 | // (Except the immediate form of ldrd?) |
7634 | } |
7635 | |
7636 | return false; |
7637 | } |
7638 | |
7639 | static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { |
7640 | for (unsigned i = 0; i < MCID.NumOperands; ++i) { |
7641 | if (ARM::isVpred(op: MCID.operands()[i].OperandType)) |
7642 | return i; |
7643 | } |
7644 | return -1; |
7645 | } |
7646 | |
7647 | static bool isVectorPredicable(const MCInstrDesc &MCID) { |
7648 | return findFirstVectorPredOperandIdx(MCID) != -1; |
7649 | } |
7650 | |
7651 | static bool isARMMCExpr(MCParsedAsmOperand &MCOp) { |
7652 | ARMOperand &Op = static_cast<ARMOperand &>(MCOp); |
7653 | if (!Op.isImm()) |
7654 | return false; |
7655 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
7656 | if (CE) |
7657 | return false; |
7658 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
7659 | if (!E) |
7660 | return false; |
7661 | return true; |
7662 | } |
7663 | |
7664 | // FIXME: We would really like to be able to tablegen'erate this. |
7665 | bool ARMAsmParser::validateInstruction(MCInst &Inst, |
7666 | const OperandVector &Operands, |
7667 | unsigned MnemonicOpsEndInd) { |
7668 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
7669 | SMLoc Loc = Operands[0]->getStartLoc(); |
7670 | |
7671 | // Check the IT block state first. |
7672 | // NOTE: BKPT and HLT instructions have the interesting property of being |
7673 | // allowed in IT blocks, but not being predicable. They just always execute. |
7674 | if (inITBlock() && !instIsBreakpoint(Inst)) { |
7675 | // The instruction must be predicable. |
7676 | if (!MCID.isPredicable()) |
7677 | return Error(L: Loc, Msg: "instructions in IT block must be predicable" ); |
7678 | ARMCC::CondCodes Cond = ARMCC::CondCodes( |
7679 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm()); |
7680 | if (Cond != currentITCond()) { |
7681 | // Find the condition code Operand to get its SMLoc information. |
7682 | SMLoc CondLoc = Operands[0]->getEndLoc(); |
7683 | for (unsigned I = 1; I < Operands.size(); ++I) |
7684 | if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) |
7685 | CondLoc = Operands[I]->getStartLoc(); |
7686 | return Error(L: CondLoc, Msg: "incorrect condition in IT block; got '" + |
7687 | StringRef(ARMCondCodeToString(CC: Cond)) + |
7688 | "', but expected '" + |
7689 | ARMCondCodeToString(CC: currentITCond()) + "'" ); |
7690 | } |
7691 | // Check for non-'al' condition codes outside of the IT block. |
7692 | } else if (isThumbTwo() && MCID.isPredicable() && |
7693 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm() != |
7694 | ARMCC::AL && Inst.getOpcode() != ARM::tBcc && |
7695 | Inst.getOpcode() != ARM::t2Bcc && |
7696 | Inst.getOpcode() != ARM::t2BFic) { |
7697 | return Error(L: Loc, Msg: "predicated instructions must be in IT block" ); |
7698 | } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && |
7699 | Inst.getOperand(i: MCID.findFirstPredOperandIdx()).getImm() != |
7700 | ARMCC::AL) { |
7701 | return Warning(L: Loc, Msg: "predicated instructions should be in IT block" ); |
7702 | } else if (!MCID.isPredicable()) { |
7703 | // Check the instruction doesn't have a predicate operand anyway |
7704 | // that it's not allowed to use. Sometimes this happens in order |
7705 | // to keep instructions the same shape even though one cannot |
7706 | // legally be predicated, e.g. vmul.f16 vs vmul.f32. |
7707 | for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { |
7708 | if (MCID.operands()[i].isPredicate()) { |
7709 | if (Inst.getOperand(i).getImm() != ARMCC::AL) |
7710 | return Error(L: Loc, Msg: "instruction is not predicable" ); |
7711 | break; |
7712 | } |
7713 | } |
7714 | } |
7715 | |
7716 | // PC-setting instructions in an IT block, but not the last instruction of |
7717 | // the block, are UNPREDICTABLE. |
7718 | if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { |
7719 | return Error(L: Loc, Msg: "instruction must be outside of IT block or the last instruction in an IT block" ); |
7720 | } |
7721 | |
7722 | if (inVPTBlock() && !instIsBreakpoint(Inst)) { |
7723 | unsigned Bit = extractITMaskBit(Mask: VPTState.Mask, Position: VPTState.CurPosition); |
7724 | if (!isVectorPredicable(MCID)) |
7725 | return Error(L: Loc, Msg: "instruction in VPT block must be predicable" ); |
7726 | unsigned Pred = Inst.getOperand(i: findFirstVectorPredOperandIdx(MCID)).getImm(); |
7727 | unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; |
7728 | if (Pred != VPTPred) { |
7729 | SMLoc PredLoc; |
7730 | for (unsigned I = 1; I < Operands.size(); ++I) |
7731 | if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
7732 | PredLoc = Operands[I]->getStartLoc(); |
7733 | return Error(L: PredLoc, Msg: "incorrect predication in VPT block; got '" + |
7734 | StringRef(ARMVPTPredToString(CC: ARMVCC::VPTCodes(Pred))) + |
7735 | "', but expected '" + |
7736 | ARMVPTPredToString(CC: ARMVCC::VPTCodes(VPTPred)) + "'" ); |
7737 | } |
7738 | } |
7739 | else if (isVectorPredicable(MCID) && |
7740 | Inst.getOperand(i: findFirstVectorPredOperandIdx(MCID)).getImm() != |
7741 | ARMVCC::None) |
7742 | return Error(L: Loc, Msg: "VPT predicated instructions must be in VPT block" ); |
7743 | |
7744 | const unsigned Opcode = Inst.getOpcode(); |
7745 | switch (Opcode) { |
7746 | case ARM::VLLDM: |
7747 | case ARM::VLLDM_T2: |
7748 | case ARM::VLSTM: |
7749 | case ARM::VLSTM_T2: { |
7750 | // Since in some cases both T1 and T2 are valid, tablegen can not always |
7751 | // pick the correct instruction. |
7752 | if (Operands.size() == |
7753 | MnemonicOpsEndInd + 2) { // a register list has been provided |
7754 | ARMOperand &Op = static_cast<ARMOperand &>( |
7755 | *Operands[MnemonicOpsEndInd + 1]); // the register list, a dpr_reglist |
7756 | assert(Op.isDPRRegList()); |
7757 | auto &RegList = Op.getRegList(); |
7758 | // T2 requires v8.1-M.Main (cannot be handled by tablegen) |
7759 | if (RegList.size() == 32 && !hasV8_1MMainline()) { |
7760 | return Error(L: Op.getEndLoc(), Msg: "T2 version requires v8.1-M.Main" ); |
7761 | } |
7762 | // When target has 32 D registers, T1 is undefined. |
7763 | if (hasD32() && RegList.size() != 32) { |
7764 | return Error(L: Op.getEndLoc(), Msg: "operand must be exactly {d0-d31}" ); |
7765 | } |
7766 | // When target has 16 D registers, both T1 and T2 are valid. |
7767 | if (!hasD32() && (RegList.size() != 16 && RegList.size() != 32)) { |
7768 | return Error(L: Op.getEndLoc(), |
7769 | Msg: "operand must be exactly {d0-d15} (T1) or {d0-d31} (T2)" ); |
7770 | } |
7771 | } |
7772 | return false; |
7773 | } |
7774 | case ARM::t2IT: { |
7775 | // Encoding is unpredictable if it ever results in a notional 'NV' |
7776 | // predicate. Since we don't parse 'NV' directly this means an 'AL' |
7777 | // predicate with an "else" mask bit. |
7778 | unsigned Cond = Inst.getOperand(i: 0).getImm(); |
7779 | unsigned Mask = Inst.getOperand(i: 1).getImm(); |
7780 | |
7781 | // Conditions only allowing a 't' are those with no set bit except |
7782 | // the lowest-order one that indicates the end of the sequence. In |
7783 | // other words, powers of 2. |
7784 | if (Cond == ARMCC::AL && llvm::popcount(Value: Mask) != 1) |
7785 | return Error(L: Loc, Msg: "unpredictable IT predicate sequence" ); |
7786 | break; |
7787 | } |
7788 | case ARM::LDRD: |
7789 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ true, |
7790 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7791 | return true; |
7792 | break; |
7793 | case ARM::LDRD_PRE: |
7794 | case ARM::LDRD_POST: |
7795 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ true, |
7796 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7797 | return true; |
7798 | break; |
7799 | case ARM::t2LDRDi8: |
7800 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ false, |
7801 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7802 | return true; |
7803 | break; |
7804 | case ARM::t2LDRD_PRE: |
7805 | case ARM::t2LDRD_POST: |
7806 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ true, /*ARMMode*/ false, |
7807 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7808 | return true; |
7809 | break; |
7810 | case ARM::t2BXJ: { |
7811 | const MCRegister RmReg = Inst.getOperand(i: 0).getReg(); |
7812 | // Rm = SP is no longer unpredictable in v8-A |
7813 | if (RmReg == ARM::SP && !hasV8Ops()) |
7814 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7815 | Msg: "r13 (SP) is an unpredictable operand to BXJ" ); |
7816 | return false; |
7817 | } |
7818 | case ARM::STRD: |
7819 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ true, |
7820 | /*Writeback*/ false, MnemonicOpsEndInd)) |
7821 | return true; |
7822 | break; |
7823 | case ARM::STRD_PRE: |
7824 | case ARM::STRD_POST: |
7825 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ true, |
7826 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7827 | return true; |
7828 | break; |
7829 | case ARM::t2STRD_PRE: |
7830 | case ARM::t2STRD_POST: |
7831 | if (validateLDRDSTRD(Inst, Operands, /*Load*/ false, /*ARMMode*/ false, |
7832 | /*Writeback*/ true, MnemonicOpsEndInd)) |
7833 | return true; |
7834 | break; |
7835 | case ARM::STR_PRE_IMM: |
7836 | case ARM::STR_PRE_REG: |
7837 | case ARM::t2STR_PRE: |
7838 | case ARM::STR_POST_IMM: |
7839 | case ARM::STR_POST_REG: |
7840 | case ARM::t2STR_POST: |
7841 | case ARM::STRH_PRE: |
7842 | case ARM::t2STRH_PRE: |
7843 | case ARM::STRH_POST: |
7844 | case ARM::t2STRH_POST: |
7845 | case ARM::STRB_PRE_IMM: |
7846 | case ARM::STRB_PRE_REG: |
7847 | case ARM::t2STRB_PRE: |
7848 | case ARM::STRB_POST_IMM: |
7849 | case ARM::STRB_POST_REG: |
7850 | case ARM::t2STRB_POST: { |
7851 | // Rt must be different from Rn. |
7852 | const unsigned Rt = MRI->getEncodingValue(Reg: Inst.getOperand(i: 1).getReg()); |
7853 | const unsigned Rn = MRI->getEncodingValue(Reg: Inst.getOperand(i: 2).getReg()); |
7854 | |
7855 | if (Rt == Rn) |
7856 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
7857 | Msg: "source register and base register can't be identical" ); |
7858 | return false; |
7859 | } |
7860 | case ARM::t2LDR_PRE_imm: |
7861 | case ARM::t2LDR_POST_imm: |
7862 | case ARM::t2STR_PRE_imm: |
7863 | case ARM::t2STR_POST_imm: { |
7864 | // Rt must be different from Rn. |
7865 | const unsigned Rt = MRI->getEncodingValue(Reg: Inst.getOperand(i: 0).getReg()); |
7866 | const unsigned Rn = MRI->getEncodingValue(Reg: Inst.getOperand(i: 1).getReg()); |
7867 | |
7868 | if (Rt == Rn) |
7869 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7870 | Msg: "destination register and base register can't be identical" ); |
7871 | if (Inst.getOpcode() == ARM::t2LDR_POST_imm || |
7872 | Inst.getOpcode() == ARM::t2STR_POST_imm) { |
7873 | int Imm = Inst.getOperand(i: 2).getImm(); |
7874 | if (Imm > 255 || Imm < -255) |
7875 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7876 | Msg: "operand must be in range [-255, 255]" ); |
7877 | } |
7878 | if (Inst.getOpcode() == ARM::t2STR_PRE_imm || |
7879 | Inst.getOpcode() == ARM::t2STR_POST_imm) { |
7880 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7881 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7882 | Msg: "operand must be a register in range [r0, r14]" ); |
7883 | } |
7884 | } |
7885 | return false; |
7886 | } |
7887 | |
7888 | case ARM::t2LDRB_OFFSET_imm: |
7889 | case ARM::t2LDRB_PRE_imm: |
7890 | case ARM::t2LDRB_POST_imm: |
7891 | case ARM::t2STRB_OFFSET_imm: |
7892 | case ARM::t2STRB_PRE_imm: |
7893 | case ARM::t2STRB_POST_imm: { |
7894 | if (Inst.getOpcode() == ARM::t2LDRB_POST_imm || |
7895 | Inst.getOpcode() == ARM::t2STRB_POST_imm || |
7896 | Inst.getOpcode() == ARM::t2LDRB_PRE_imm || |
7897 | Inst.getOpcode() == ARM::t2STRB_PRE_imm) { |
7898 | int Imm = Inst.getOperand(i: 2).getImm(); |
7899 | if (Imm > 255 || Imm < -255) |
7900 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7901 | Msg: "operand must be in range [-255, 255]" ); |
7902 | } else if (Inst.getOpcode() == ARM::t2LDRB_OFFSET_imm || |
7903 | Inst.getOpcode() == ARM::t2STRB_OFFSET_imm) { |
7904 | int Imm = Inst.getOperand(i: 2).getImm(); |
7905 | if (Imm > 0 || Imm < -255) |
7906 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7907 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7908 | } |
7909 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7910 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7911 | Msg: "if operand is PC, should call the LDRB (literal)" ); |
7912 | } |
7913 | return false; |
7914 | } |
7915 | |
7916 | case ARM::t2LDRH_OFFSET_imm: |
7917 | case ARM::t2LDRH_PRE_imm: |
7918 | case ARM::t2LDRH_POST_imm: |
7919 | case ARM::t2STRH_OFFSET_imm: |
7920 | case ARM::t2STRH_PRE_imm: |
7921 | case ARM::t2STRH_POST_imm: { |
7922 | if (Inst.getOpcode() == ARM::t2LDRH_POST_imm || |
7923 | Inst.getOpcode() == ARM::t2STRH_POST_imm || |
7924 | Inst.getOpcode() == ARM::t2LDRH_PRE_imm || |
7925 | Inst.getOpcode() == ARM::t2STRH_PRE_imm) { |
7926 | int Imm = Inst.getOperand(i: 2).getImm(); |
7927 | if (Imm > 255 || Imm < -255) |
7928 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7929 | Msg: "operand must be in range [-255, 255]" ); |
7930 | } else if (Inst.getOpcode() == ARM::t2LDRH_OFFSET_imm || |
7931 | Inst.getOpcode() == ARM::t2STRH_OFFSET_imm) { |
7932 | int Imm = Inst.getOperand(i: 2).getImm(); |
7933 | if (Imm > 0 || Imm < -255) |
7934 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7935 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7936 | } |
7937 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7938 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7939 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7940 | } |
7941 | return false; |
7942 | } |
7943 | |
7944 | case ARM::t2LDRSB_OFFSET_imm: |
7945 | case ARM::t2LDRSB_PRE_imm: |
7946 | case ARM::t2LDRSB_POST_imm: { |
7947 | if (Inst.getOpcode() == ARM::t2LDRSB_POST_imm || |
7948 | Inst.getOpcode() == ARM::t2LDRSB_PRE_imm) { |
7949 | int Imm = Inst.getOperand(i: 2).getImm(); |
7950 | if (Imm > 255 || Imm < -255) |
7951 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7952 | Msg: "operand must be in range [-255, 255]" ); |
7953 | } else if (Inst.getOpcode() == ARM::t2LDRSB_OFFSET_imm) { |
7954 | int Imm = Inst.getOperand(i: 2).getImm(); |
7955 | if (Imm > 0 || Imm < -255) |
7956 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7957 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7958 | } |
7959 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7960 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7961 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7962 | } |
7963 | return false; |
7964 | } |
7965 | |
7966 | case ARM::t2LDRSH_OFFSET_imm: |
7967 | case ARM::t2LDRSH_PRE_imm: |
7968 | case ARM::t2LDRSH_POST_imm: { |
7969 | if (Inst.getOpcode() == ARM::t2LDRSH_POST_imm || |
7970 | Inst.getOpcode() == ARM::t2LDRSH_PRE_imm) { |
7971 | int Imm = Inst.getOperand(i: 2).getImm(); |
7972 | if (Imm > 255 || Imm < -255) |
7973 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7974 | Msg: "operand must be in range [-255, 255]" ); |
7975 | } else if (Inst.getOpcode() == ARM::t2LDRSH_OFFSET_imm) { |
7976 | int Imm = Inst.getOperand(i: 2).getImm(); |
7977 | if (Imm > 0 || Imm < -255) |
7978 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
7979 | Msg: "operand must be in range [0, 255] with a negative sign" ); |
7980 | } |
7981 | if (Inst.getOperand(i: 0).getReg() == ARM::PC) { |
7982 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
7983 | Msg: "if operand is PC, should call the LDRH (literal)" ); |
7984 | } |
7985 | return false; |
7986 | } |
7987 | |
7988 | case ARM::LDR_PRE_IMM: |
7989 | case ARM::LDR_PRE_REG: |
7990 | case ARM::t2LDR_PRE: |
7991 | case ARM::LDR_POST_IMM: |
7992 | case ARM::LDR_POST_REG: |
7993 | case ARM::t2LDR_POST: |
7994 | case ARM::LDRH_PRE: |
7995 | case ARM::t2LDRH_PRE: |
7996 | case ARM::LDRH_POST: |
7997 | case ARM::t2LDRH_POST: |
7998 | case ARM::LDRSH_PRE: |
7999 | case ARM::t2LDRSH_PRE: |
8000 | case ARM::LDRSH_POST: |
8001 | case ARM::t2LDRSH_POST: |
8002 | case ARM::LDRB_PRE_IMM: |
8003 | case ARM::LDRB_PRE_REG: |
8004 | case ARM::t2LDRB_PRE: |
8005 | case ARM::LDRB_POST_IMM: |
8006 | case ARM::LDRB_POST_REG: |
8007 | case ARM::t2LDRB_POST: |
8008 | case ARM::LDRSB_PRE: |
8009 | case ARM::t2LDRSB_PRE: |
8010 | case ARM::LDRSB_POST: |
8011 | case ARM::t2LDRSB_POST: { |
8012 | // Rt must be different from Rn. |
8013 | const unsigned Rt = MRI->getEncodingValue(Reg: Inst.getOperand(i: 0).getReg()); |
8014 | const unsigned Rn = MRI->getEncodingValue(Reg: Inst.getOperand(i: 2).getReg()); |
8015 | |
8016 | if (Rt == Rn) |
8017 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8018 | Msg: "destination register and base register can't be identical" ); |
8019 | return false; |
8020 | } |
8021 | |
8022 | case ARM::MVE_VLDRBU8_rq: |
8023 | case ARM::MVE_VLDRBU16_rq: |
8024 | case ARM::MVE_VLDRBS16_rq: |
8025 | case ARM::MVE_VLDRBU32_rq: |
8026 | case ARM::MVE_VLDRBS32_rq: |
8027 | case ARM::MVE_VLDRHU16_rq: |
8028 | case ARM::MVE_VLDRHU16_rq_u: |
8029 | case ARM::MVE_VLDRHU32_rq: |
8030 | case ARM::MVE_VLDRHU32_rq_u: |
8031 | case ARM::MVE_VLDRHS32_rq: |
8032 | case ARM::MVE_VLDRHS32_rq_u: |
8033 | case ARM::MVE_VLDRWU32_rq: |
8034 | case ARM::MVE_VLDRWU32_rq_u: |
8035 | case ARM::MVE_VLDRDU64_rq: |
8036 | case ARM::MVE_VLDRDU64_rq_u: |
8037 | case ARM::MVE_VLDRWU32_qi: |
8038 | case ARM::MVE_VLDRWU32_qi_pre: |
8039 | case ARM::MVE_VLDRDU64_qi: |
8040 | case ARM::MVE_VLDRDU64_qi_pre: { |
8041 | // Qd must be different from Qm. |
8042 | unsigned QdIdx = 0, QmIdx = 2; |
8043 | bool QmIsPointer = false; |
8044 | switch (Opcode) { |
8045 | case ARM::MVE_VLDRWU32_qi: |
8046 | case ARM::MVE_VLDRDU64_qi: |
8047 | QmIdx = 1; |
8048 | QmIsPointer = true; |
8049 | break; |
8050 | case ARM::MVE_VLDRWU32_qi_pre: |
8051 | case ARM::MVE_VLDRDU64_qi_pre: |
8052 | QdIdx = 1; |
8053 | QmIsPointer = true; |
8054 | break; |
8055 | } |
8056 | |
8057 | const unsigned Qd = MRI->getEncodingValue(Reg: Inst.getOperand(i: QdIdx).getReg()); |
8058 | const unsigned Qm = MRI->getEncodingValue(Reg: Inst.getOperand(i: QmIdx).getReg()); |
8059 | |
8060 | if (Qd == Qm) { |
8061 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8062 | Msg: Twine("destination vector register and vector " ) + |
8063 | (QmIsPointer ? "pointer" : "offset" ) + |
8064 | " register can't be identical" ); |
8065 | } |
8066 | return false; |
8067 | } |
8068 | |
8069 | case ARM::SBFX: |
8070 | case ARM::t2SBFX: |
8071 | case ARM::UBFX: |
8072 | case ARM::t2UBFX: { |
8073 | // Width must be in range [1, 32-lsb]. |
8074 | unsigned LSB = Inst.getOperand(i: 2).getImm(); |
8075 | unsigned Widthm1 = Inst.getOperand(i: 3).getImm(); |
8076 | if (Widthm1 >= 32 - LSB) |
8077 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8078 | Msg: "bitfield width must be in range [1,32-lsb]" ); |
8079 | return false; |
8080 | } |
8081 | // Notionally handles ARM::tLDMIA_UPD too. |
8082 | case ARM::tLDMIA: { |
8083 | // If we're parsing Thumb2, the .w variant is available and handles |
8084 | // most cases that are normally illegal for a Thumb1 LDM instruction. |
8085 | // We'll make the transformation in processInstruction() if necessary. |
8086 | // |
8087 | // Thumb LDM instructions are writeback iff the base register is not |
8088 | // in the register list. |
8089 | MCRegister Rn = Inst.getOperand(i: 0).getReg(); |
8090 | bool HasWritebackToken = |
8091 | (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8092 | .isToken() && |
8093 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8094 | .getToken() == "!" ); |
8095 | |
8096 | bool ListContainsBase; |
8097 | if (checkLowRegisterList(Inst, OpNo: 3, Reg: Rn, HiReg: MCRegister(), containsReg&: ListContainsBase) && |
8098 | !isThumbTwo()) |
8099 | return Error( |
8100 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
8101 | Msg: "registers must be in range r0-r7" ); |
8102 | // If we should have writeback, then there should be a '!' token. |
8103 | if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) |
8104 | return Error( |
8105 | L: Operands[getRegListInd(Operands, MnemonicOpsEndInd)]->getStartLoc(), |
8106 | Msg: "writeback operator '!' expected" ); |
8107 | // If we should not have writeback, there must not be a '!'. This is |
8108 | // true even for the 32-bit wide encodings. |
8109 | if (ListContainsBase && HasWritebackToken) |
8110 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8111 | Msg: "writeback operator '!' not allowed when base register " |
8112 | "in register list" ); |
8113 | |
8114 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8115 | return true; |
8116 | break; |
8117 | } |
8118 | case ARM::LDMIA_UPD: |
8119 | case ARM::LDMDB_UPD: |
8120 | case ARM::LDMIB_UPD: |
8121 | case ARM::LDMDA_UPD: |
8122 | // ARM variants loading and updating the same register are only officially |
8123 | // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. |
8124 | if (!hasV7Ops()) |
8125 | break; |
8126 | if (listContainsReg(Inst, OpNo: 3, Reg: Inst.getOperand(i: 0).getReg())) |
8127 | return Error(L: Operands.back()->getStartLoc(), |
8128 | Msg: "writeback register not allowed in register list" ); |
8129 | break; |
8130 | case ARM::t2LDMIA: |
8131 | case ARM::t2LDMDB: |
8132 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8133 | return true; |
8134 | break; |
8135 | case ARM::t2STMIA: |
8136 | case ARM::t2STMDB: |
8137 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8138 | return true; |
8139 | break; |
8140 | case ARM::t2LDMIA_UPD: |
8141 | case ARM::t2LDMDB_UPD: |
8142 | case ARM::t2STMIA_UPD: |
8143 | case ARM::t2STMDB_UPD: |
8144 | if (listContainsReg(Inst, OpNo: 3, Reg: Inst.getOperand(i: 0).getReg())) |
8145 | return Error(L: Operands.back()->getStartLoc(), |
8146 | Msg: "writeback register not allowed in register list" ); |
8147 | |
8148 | if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { |
8149 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8150 | return true; |
8151 | } else { |
8152 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 3)) |
8153 | return true; |
8154 | } |
8155 | break; |
8156 | |
8157 | case ARM::sysLDMIA_UPD: |
8158 | case ARM::sysLDMDA_UPD: |
8159 | case ARM::sysLDMDB_UPD: |
8160 | case ARM::sysLDMIB_UPD: |
8161 | if (!listContainsReg(Inst, OpNo: 3, Reg: ARM::PC)) |
8162 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8163 | Msg: "writeback register only allowed on system LDM " |
8164 | "if PC in register-list" ); |
8165 | break; |
8166 | case ARM::sysSTMIA_UPD: |
8167 | case ARM::sysSTMDA_UPD: |
8168 | case ARM::sysSTMDB_UPD: |
8169 | case ARM::sysSTMIB_UPD: |
8170 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8171 | Msg: "system STM cannot have writeback register" ); |
8172 | // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, |
8173 | // so only issue a diagnostic for thumb1. The instructions will be |
8174 | // switched to the t2 encodings in processInstruction() if necessary. |
8175 | case ARM::tPOP: { |
8176 | bool ListContainsBase; |
8177 | if (checkLowRegisterList(Inst, OpNo: 2, Reg: MCRegister(), HiReg: ARM::PC, |
8178 | containsReg&: ListContainsBase) && |
8179 | !isThumbTwo()) |
8180 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8181 | Msg: "registers must be in range r0-r7 or pc" ); |
8182 | if (validatetLDMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 2, IsARPop: !isMClass())) |
8183 | return true; |
8184 | break; |
8185 | } |
8186 | case ARM::tPUSH: { |
8187 | bool ListContainsBase; |
8188 | if (checkLowRegisterList(Inst, OpNo: 2, Reg: MCRegister(), HiReg: ARM::LR, |
8189 | containsReg&: ListContainsBase) && |
8190 | !isThumbTwo()) |
8191 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8192 | Msg: "registers must be in range r0-r7 or lr" ); |
8193 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 2)) |
8194 | return true; |
8195 | break; |
8196 | } |
8197 | case ARM::tSTMIA_UPD: { |
8198 | bool ListContainsBase, InvalidLowList; |
8199 | InvalidLowList = checkLowRegisterList(Inst, OpNo: 4, Reg: Inst.getOperand(i: 0).getReg(), |
8200 | HiReg: 0, containsReg&: ListContainsBase); |
8201 | if (InvalidLowList && !isThumbTwo()) |
8202 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8203 | Msg: "registers must be in range r0-r7" ); |
8204 | |
8205 | // This would be converted to a 32-bit stm, but that's not valid if the |
8206 | // writeback register is in the list. |
8207 | if (InvalidLowList && ListContainsBase) |
8208 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8209 | Msg: "writeback operator '!' not allowed when base register " |
8210 | "in register list" ); |
8211 | |
8212 | if (validatetSTMRegList(Inst, Operands, MnemonicOpsEndInd, ListIndex: 4)) |
8213 | return true; |
8214 | break; |
8215 | } |
8216 | case ARM::tADDrSP: |
8217 | // If the non-SP source operand and the destination operand are not the |
8218 | // same, we need thumb2 (for the wide encoding), or we have an error. |
8219 | if (!isThumbTwo() && |
8220 | Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 2).getReg()) { |
8221 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8222 | Msg: "source register must be the same as destination" ); |
8223 | } |
8224 | break; |
8225 | |
8226 | case ARM::t2ADDrr: |
8227 | case ARM::t2ADDrs: |
8228 | case ARM::t2SUBrr: |
8229 | case ARM::t2SUBrs: |
8230 | if (Inst.getOperand(i: 0).getReg() == ARM::SP && |
8231 | Inst.getOperand(i: 1).getReg() != ARM::SP) |
8232 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8233 | Msg: "source register must be sp if destination is sp" ); |
8234 | break; |
8235 | |
8236 | // Final range checking for Thumb unconditional branch instructions. |
8237 | case ARM::tB: |
8238 | if (!(static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd])) |
8239 | .isSignedOffset<11, 1>()) |
8240 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8241 | Msg: "branch target out of range" ); |
8242 | break; |
8243 | case ARM::t2B: { |
8244 | int op = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8245 | : MnemonicOpsEndInd + 1; |
8246 | ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]); |
8247 | // Delay the checks of symbolic expressions until they are resolved. |
8248 | if (!isa<MCBinaryExpr>(Val: Operand.getImm()) && |
8249 | !Operand.isSignedOffset<24, 1>()) |
8250 | return Error(L: Operands[op]->getStartLoc(), Msg: "branch target out of range" ); |
8251 | break; |
8252 | } |
8253 | // Final range checking for Thumb conditional branch instructions. |
8254 | case ARM::tBcc: |
8255 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8256 | .isSignedOffset<8, 1>()) |
8257 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8258 | Msg: "branch target out of range" ); |
8259 | break; |
8260 | case ARM::t2Bcc: { |
8261 | int Op = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8262 | : MnemonicOpsEndInd + 1; |
8263 | if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) |
8264 | return Error(L: Operands[Op]->getStartLoc(), Msg: "branch target out of range" ); |
8265 | break; |
8266 | } |
8267 | case ARM::tCBZ: |
8268 | case ARM::tCBNZ: { |
8269 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8270 | .isUnsignedOffset<6, 1>()) |
8271 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8272 | Msg: "branch target out of range" ); |
8273 | break; |
8274 | } |
8275 | case ARM::MOVi16: |
8276 | case ARM::MOVTi16: |
8277 | case ARM::t2MOVi16: |
8278 | case ARM::t2MOVTi16: |
8279 | { |
8280 | // We want to avoid misleadingly allowing something like "mov r0, <symbol>" |
8281 | // especially when we turn it into a movw and the expression <symbol> does |
8282 | // not have a :lower16: or :upper16 as part of the expression. We don't |
8283 | // want the behavior of silently truncating, which can be unexpected and |
8284 | // lead to bugs that are difficult to find since this is an easy mistake |
8285 | // to make. |
8286 | int i = (Operands[MnemonicOpsEndInd]->isImm()) ? MnemonicOpsEndInd |
8287 | : MnemonicOpsEndInd + 1; |
8288 | ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); |
8289 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm()); |
8290 | if (CE) break; |
8291 | const MCExpr *E = dyn_cast<MCExpr>(Val: Op.getImm()); |
8292 | if (!E) break; |
8293 | auto *ARM16Expr = dyn_cast<MCSpecifierExpr>(Val: E); |
8294 | if (!ARM16Expr || (ARM16Expr->getSpecifier() != ARM::S_HI16 && |
8295 | ARM16Expr->getSpecifier() != ARM::S_LO16)) |
8296 | return Error( |
8297 | L: Op.getStartLoc(), |
8298 | Msg: "immediate expression for mov requires :lower16: or :upper16" ); |
8299 | break; |
8300 | } |
8301 | case ARM::tADDi8: { |
8302 | int i = (Operands[MnemonicOpsEndInd + 1]->isImm()) ? MnemonicOpsEndInd + 1 |
8303 | : MnemonicOpsEndInd + 2; |
8304 | MCParsedAsmOperand &Op = *Operands[i]; |
8305 | if (isARMMCExpr(MCOp&: Op) && !isThumbI8Relocation(MCOp&: Op)) |
8306 | return Error(L: Op.getStartLoc(), |
8307 | Msg: "Immediate expression for Thumb adds requires :lower0_7:," |
8308 | " :lower8_15:, :upper0_7: or :upper8_15:" ); |
8309 | break; |
8310 | } |
8311 | case ARM::tMOVi8: { |
8312 | MCParsedAsmOperand &Op = *Operands[MnemonicOpsEndInd + 1]; |
8313 | if (isARMMCExpr(MCOp&: Op) && !isThumbI8Relocation(MCOp&: Op)) |
8314 | return Error(L: Op.getStartLoc(), |
8315 | Msg: "Immediate expression for Thumb movs requires :lower0_7:," |
8316 | " :lower8_15:, :upper0_7: or :upper8_15:" ); |
8317 | break; |
8318 | } |
8319 | case ARM::HINT: |
8320 | case ARM::t2HINT: { |
8321 | unsigned Imm8 = Inst.getOperand(i: 0).getImm(); |
8322 | unsigned Pred = Inst.getOperand(i: 1).getImm(); |
8323 | // ESB is not predicable (pred must be AL). Without the RAS extension, this |
8324 | // behaves as any other unallocated hint. |
8325 | if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) |
8326 | return Error(L: Operands[1]->getStartLoc(), Msg: "instruction 'esb' is not " |
8327 | "predicable, but condition " |
8328 | "code specified" ); |
8329 | if (Imm8 == 0x14 && Pred != ARMCC::AL) |
8330 | return Error(L: Operands[1]->getStartLoc(), Msg: "instruction 'csdb' is not " |
8331 | "predicable, but condition " |
8332 | "code specified" ); |
8333 | break; |
8334 | } |
8335 | case ARM::t2BFi: |
8336 | case ARM::t2BFr: |
8337 | case ARM::t2BFLi: |
8338 | case ARM::t2BFLr: { |
8339 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8340 | .isUnsignedOffset<4, 1>() || |
8341 | (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 0).getImm() == 0)) { |
8342 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8343 | Msg: "branch location out of range or not a multiple of 2" ); |
8344 | } |
8345 | |
8346 | if (Opcode == ARM::t2BFi) { |
8347 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8348 | .isSignedOffset<16, 1>()) |
8349 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8350 | Msg: "branch target out of range or not a multiple of 2" ); |
8351 | } else if (Opcode == ARM::t2BFLi) { |
8352 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8353 | .isSignedOffset<18, 1>()) |
8354 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8355 | Msg: "branch target out of range or not a multiple of 2" ); |
8356 | } |
8357 | break; |
8358 | } |
8359 | case ARM::t2BFic: { |
8360 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd]) |
8361 | .isUnsignedOffset<4, 1>() || |
8362 | (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 0).getImm() == 0)) |
8363 | return Error(L: Operands[1]->getStartLoc(), |
8364 | Msg: "branch location out of range or not a multiple of 2" ); |
8365 | |
8366 | if (!static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8367 | .isSignedOffset<16, 1>()) |
8368 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8369 | Msg: "branch target out of range or not a multiple of 2" ); |
8370 | |
8371 | assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && |
8372 | "branch location and else branch target should either both be " |
8373 | "immediates or both labels" ); |
8374 | |
8375 | if (Inst.getOperand(i: 0).isImm() && Inst.getOperand(i: 2).isImm()) { |
8376 | int Diff = Inst.getOperand(i: 2).getImm() - Inst.getOperand(i: 0).getImm(); |
8377 | if (Diff != 4 && Diff != 2) |
8378 | return Error( |
8379 | L: Operands[3]->getStartLoc(), |
8380 | Msg: "else branch target must be 2 or 4 greater than the branch location" ); |
8381 | } |
8382 | break; |
8383 | } |
8384 | case ARM::t2CLRM: { |
8385 | for (unsigned i = 2; i < Inst.getNumOperands(); i++) { |
8386 | if (Inst.getOperand(i).isReg() && |
8387 | !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( |
8388 | Reg: Inst.getOperand(i).getReg())) { |
8389 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8390 | Msg: "invalid register in register list. Valid registers are " |
8391 | "r0-r12, lr/r14 and APSR." ); |
8392 | } |
8393 | } |
8394 | break; |
8395 | } |
8396 | case ARM::DSB: |
8397 | case ARM::t2DSB: { |
8398 | |
8399 | if (Inst.getNumOperands() < 2) |
8400 | break; |
8401 | |
8402 | unsigned Option = Inst.getOperand(i: 0).getImm(); |
8403 | unsigned Pred = Inst.getOperand(i: 1).getImm(); |
8404 | |
8405 | // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). |
8406 | if (Option == 0 && Pred != ARMCC::AL) |
8407 | return Error(L: Operands[1]->getStartLoc(), |
8408 | Msg: "instruction 'ssbb' is not predicable, but condition code " |
8409 | "specified" ); |
8410 | if (Option == 4 && Pred != ARMCC::AL) |
8411 | return Error(L: Operands[1]->getStartLoc(), |
8412 | Msg: "instruction 'pssbb' is not predicable, but condition code " |
8413 | "specified" ); |
8414 | break; |
8415 | } |
8416 | case ARM::VMOVRRS: { |
8417 | // Source registers must be sequential. |
8418 | const unsigned Sm = MRI->getEncodingValue(Reg: Inst.getOperand(i: 2).getReg()); |
8419 | const unsigned Sm1 = MRI->getEncodingValue(Reg: Inst.getOperand(i: 3).getReg()); |
8420 | if (Sm1 != Sm + 1) |
8421 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8422 | Msg: "source operands must be sequential" ); |
8423 | break; |
8424 | } |
8425 | case ARM::VMOVSRR: { |
8426 | // Destination registers must be sequential. |
8427 | const unsigned Sm = MRI->getEncodingValue(Reg: Inst.getOperand(i: 0).getReg()); |
8428 | const unsigned Sm1 = MRI->getEncodingValue(Reg: Inst.getOperand(i: 1).getReg()); |
8429 | if (Sm1 != Sm + 1) |
8430 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8431 | Msg: "destination operands must be sequential" ); |
8432 | break; |
8433 | } |
8434 | case ARM::VLDMDIA: |
8435 | case ARM::VSTMDIA: { |
8436 | ARMOperand &Op = |
8437 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
8438 | auto &RegList = Op.getRegList(); |
8439 | if (RegList.size() < 1 || RegList.size() > 16) |
8440 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8441 | Msg: "list of registers must be at least 1 and at most 16" ); |
8442 | break; |
8443 | } |
8444 | case ARM::MVE_VQDMULLs32bh: |
8445 | case ARM::MVE_VQDMULLs32th: |
8446 | case ARM::MVE_VCMULf32: |
8447 | case ARM::MVE_VMULLBs32: |
8448 | case ARM::MVE_VMULLTs32: |
8449 | case ARM::MVE_VMULLBu32: |
8450 | case ARM::MVE_VMULLTu32: { |
8451 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8452 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8453 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8454 | Msg: "Qd register and Qn register can't be identical" ); |
8455 | } |
8456 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8457 | Operands[MnemonicOpsEndInd + 2]->getReg()) { |
8458 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8459 | Msg: "Qd register and Qm register can't be identical" ); |
8460 | } |
8461 | break; |
8462 | } |
8463 | case ARM::MVE_VREV64_8: |
8464 | case ARM::MVE_VREV64_16: |
8465 | case ARM::MVE_VREV64_32: |
8466 | case ARM::MVE_VQDMULL_qr_s32bh: |
8467 | case ARM::MVE_VQDMULL_qr_s32th: { |
8468 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8469 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8470 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8471 | Msg: "Qd register and Qn register can't be identical" ); |
8472 | } |
8473 | break; |
8474 | } |
8475 | case ARM::MVE_VCADDi32: |
8476 | case ARM::MVE_VCADDf32: |
8477 | case ARM::MVE_VHCADDs32: { |
8478 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8479 | Operands[MnemonicOpsEndInd + 2]->getReg()) { |
8480 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8481 | Msg: "Qd register and Qm register can't be identical" ); |
8482 | } |
8483 | break; |
8484 | } |
8485 | case ARM::MVE_VMOV_rr_q: { |
8486 | if (Operands[MnemonicOpsEndInd + 2]->getReg() != |
8487 | Operands[MnemonicOpsEndInd + 4]->getReg()) |
8488 | return Error(L: Operands[MnemonicOpsEndInd + 2]->getStartLoc(), |
8489 | Msg: "Q-registers must be the same" ); |
8490 | if (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 3]) |
8491 | .getVectorIndex() != |
8492 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 5]) |
8493 | .getVectorIndex() + |
8494 | 2) |
8495 | return Error(L: Operands[MnemonicOpsEndInd + 3]->getStartLoc(), |
8496 | Msg: "Q-register indexes must be 2 and 0 or 3 and 1" ); |
8497 | break; |
8498 | } |
8499 | case ARM::MVE_VMOV_q_rr: { |
8500 | if (Operands[MnemonicOpsEndInd]->getReg() != |
8501 | Operands[MnemonicOpsEndInd + 2]->getReg()) |
8502 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8503 | Msg: "Q-registers must be the same" ); |
8504 | if (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
8505 | .getVectorIndex() != |
8506 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 3]) |
8507 | .getVectorIndex() + |
8508 | 2) |
8509 | return Error(L: Operands[MnemonicOpsEndInd + 1]->getStartLoc(), |
8510 | Msg: "Q-register indexes must be 2 and 0 or 3 and 1" ); |
8511 | break; |
8512 | } |
8513 | case ARM::MVE_SQRSHR: |
8514 | case ARM::MVE_UQRSHL: { |
8515 | if (Operands[MnemonicOpsEndInd]->getReg() == |
8516 | Operands[MnemonicOpsEndInd + 1]->getReg()) { |
8517 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8518 | Msg: "Rda register and Rm register can't be identical" ); |
8519 | } |
8520 | break; |
8521 | } |
8522 | case ARM::UMAAL: |
8523 | case ARM::UMLAL: |
8524 | case ARM::UMULL: |
8525 | case ARM::t2UMAAL: |
8526 | case ARM::t2UMLAL: |
8527 | case ARM::t2UMULL: |
8528 | case ARM::SMLAL: |
8529 | case ARM::SMLALBB: |
8530 | case ARM::SMLALBT: |
8531 | case ARM::SMLALD: |
8532 | case ARM::SMLALDX: |
8533 | case ARM::SMLALTB: |
8534 | case ARM::SMLALTT: |
8535 | case ARM::SMLSLD: |
8536 | case ARM::SMLSLDX: |
8537 | case ARM::SMULL: |
8538 | case ARM::t2SMLAL: |
8539 | case ARM::t2SMLALBB: |
8540 | case ARM::t2SMLALBT: |
8541 | case ARM::t2SMLALD: |
8542 | case ARM::t2SMLALDX: |
8543 | case ARM::t2SMLALTB: |
8544 | case ARM::t2SMLALTT: |
8545 | case ARM::t2SMLSLD: |
8546 | case ARM::t2SMLSLDX: |
8547 | case ARM::t2SMULL: { |
8548 | MCRegister RdHi = Inst.getOperand(i: 0).getReg(); |
8549 | MCRegister RdLo = Inst.getOperand(i: 1).getReg(); |
8550 | if(RdHi == RdLo) { |
8551 | return Error(L: Loc, |
8552 | Msg: "unpredictable instruction, RdHi and RdLo must be different" ); |
8553 | } |
8554 | break; |
8555 | } |
8556 | |
8557 | case ARM::CDE_CX1: |
8558 | case ARM::CDE_CX1A: |
8559 | case ARM::CDE_CX1D: |
8560 | case ARM::CDE_CX1DA: |
8561 | case ARM::CDE_CX2: |
8562 | case ARM::CDE_CX2A: |
8563 | case ARM::CDE_CX2D: |
8564 | case ARM::CDE_CX2DA: |
8565 | case ARM::CDE_CX3: |
8566 | case ARM::CDE_CX3A: |
8567 | case ARM::CDE_CX3D: |
8568 | case ARM::CDE_CX3DA: |
8569 | case ARM::CDE_VCX1_vec: |
8570 | case ARM::CDE_VCX1_fpsp: |
8571 | case ARM::CDE_VCX1_fpdp: |
8572 | case ARM::CDE_VCX1A_vec: |
8573 | case ARM::CDE_VCX1A_fpsp: |
8574 | case ARM::CDE_VCX1A_fpdp: |
8575 | case ARM::CDE_VCX2_vec: |
8576 | case ARM::CDE_VCX2_fpsp: |
8577 | case ARM::CDE_VCX2_fpdp: |
8578 | case ARM::CDE_VCX2A_vec: |
8579 | case ARM::CDE_VCX2A_fpsp: |
8580 | case ARM::CDE_VCX2A_fpdp: |
8581 | case ARM::CDE_VCX3_vec: |
8582 | case ARM::CDE_VCX3_fpsp: |
8583 | case ARM::CDE_VCX3_fpdp: |
8584 | case ARM::CDE_VCX3A_vec: |
8585 | case ARM::CDE_VCX3A_fpsp: |
8586 | case ARM::CDE_VCX3A_fpdp: { |
8587 | assert(Inst.getOperand(1).isImm() && |
8588 | "CDE operand 1 must be a coprocessor ID" ); |
8589 | int64_t Coproc = Inst.getOperand(i: 1).getImm(); |
8590 | if (Coproc < 8 && !ARM::isCDECoproc(Coproc, STI: *STI)) |
8591 | return Error(L: Operands[1]->getStartLoc(), |
8592 | Msg: "coprocessor must be configured as CDE" ); |
8593 | else if (Coproc >= 8) |
8594 | return Error(L: Operands[1]->getStartLoc(), |
8595 | Msg: "coprocessor must be in the range [p0, p7]" ); |
8596 | break; |
8597 | } |
8598 | |
8599 | case ARM::t2CDP: |
8600 | case ARM::t2CDP2: |
8601 | case ARM::t2LDC2L_OFFSET: |
8602 | case ARM::t2LDC2L_OPTION: |
8603 | case ARM::t2LDC2L_POST: |
8604 | case ARM::t2LDC2L_PRE: |
8605 | case ARM::t2LDC2_OFFSET: |
8606 | case ARM::t2LDC2_OPTION: |
8607 | case ARM::t2LDC2_POST: |
8608 | case ARM::t2LDC2_PRE: |
8609 | case ARM::t2LDCL_OFFSET: |
8610 | case ARM::t2LDCL_OPTION: |
8611 | case ARM::t2LDCL_POST: |
8612 | case ARM::t2LDCL_PRE: |
8613 | case ARM::t2LDC_OFFSET: |
8614 | case ARM::t2LDC_OPTION: |
8615 | case ARM::t2LDC_POST: |
8616 | case ARM::t2LDC_PRE: |
8617 | case ARM::t2MCR: |
8618 | case ARM::t2MCR2: |
8619 | case ARM::t2MCRR: |
8620 | case ARM::t2MCRR2: |
8621 | case ARM::t2MRC: |
8622 | case ARM::t2MRC2: |
8623 | case ARM::t2MRRC: |
8624 | case ARM::t2MRRC2: |
8625 | case ARM::t2STC2L_OFFSET: |
8626 | case ARM::t2STC2L_OPTION: |
8627 | case ARM::t2STC2L_POST: |
8628 | case ARM::t2STC2L_PRE: |
8629 | case ARM::t2STC2_OFFSET: |
8630 | case ARM::t2STC2_OPTION: |
8631 | case ARM::t2STC2_POST: |
8632 | case ARM::t2STC2_PRE: |
8633 | case ARM::t2STCL_OFFSET: |
8634 | case ARM::t2STCL_OPTION: |
8635 | case ARM::t2STCL_POST: |
8636 | case ARM::t2STCL_PRE: |
8637 | case ARM::t2STC_OFFSET: |
8638 | case ARM::t2STC_OPTION: |
8639 | case ARM::t2STC_POST: |
8640 | case ARM::t2STC_PRE: { |
8641 | unsigned Opcode = Inst.getOpcode(); |
8642 | // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, |
8643 | // CopInd is the index of the coprocessor operand. |
8644 | size_t CopInd = 0; |
8645 | if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) |
8646 | CopInd = 2; |
8647 | else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) |
8648 | CopInd = 1; |
8649 | assert(Inst.getOperand(CopInd).isImm() && |
8650 | "Operand must be a coprocessor ID" ); |
8651 | int64_t Coproc = Inst.getOperand(i: CopInd).getImm(); |
8652 | // Operands[2] is the coprocessor operand at syntactic level |
8653 | if (ARM::isCDECoproc(Coproc, STI: *STI)) |
8654 | return Error(L: Operands[2]->getStartLoc(), |
8655 | Msg: "coprocessor must be configured as GCP" ); |
8656 | break; |
8657 | } |
8658 | |
8659 | case ARM::VTOSHH: |
8660 | case ARM::VTOUHH: |
8661 | case ARM::VTOSLH: |
8662 | case ARM::VTOULH: |
8663 | case ARM::VTOSHS: |
8664 | case ARM::VTOUHS: |
8665 | case ARM::VTOSLS: |
8666 | case ARM::VTOULS: |
8667 | case ARM::VTOSHD: |
8668 | case ARM::VTOUHD: |
8669 | case ARM::VTOSLD: |
8670 | case ARM::VTOULD: |
8671 | case ARM::VSHTOH: |
8672 | case ARM::VUHTOH: |
8673 | case ARM::VSLTOH: |
8674 | case ARM::VULTOH: |
8675 | case ARM::VSHTOS: |
8676 | case ARM::VUHTOS: |
8677 | case ARM::VSLTOS: |
8678 | case ARM::VULTOS: |
8679 | case ARM::VSHTOD: |
8680 | case ARM::VUHTOD: |
8681 | case ARM::VSLTOD: |
8682 | case ARM::VULTOD: { |
8683 | if (Operands[MnemonicOpsEndInd]->getReg() != |
8684 | Operands[MnemonicOpsEndInd + 1]->getReg()) |
8685 | return Error(L: Operands[MnemonicOpsEndInd]->getStartLoc(), |
8686 | Msg: "source and destination registers must be the same" ); |
8687 | break; |
8688 | } |
8689 | } |
8690 | |
8691 | return false; |
8692 | } |
8693 | |
8694 | static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { |
8695 | switch(Opc) { |
8696 | default: llvm_unreachable("unexpected opcode!" ); |
8697 | // VST1LN |
8698 | case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
8699 | case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
8700 | case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
8701 | case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
8702 | case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
8703 | case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
8704 | case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; |
8705 | case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; |
8706 | case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; |
8707 | |
8708 | // VST2LN |
8709 | case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
8710 | case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
8711 | case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
8712 | case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
8713 | case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
8714 | |
8715 | case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
8716 | case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
8717 | case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
8718 | case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
8719 | case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
8720 | |
8721 | case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; |
8722 | case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; |
8723 | case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; |
8724 | case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; |
8725 | case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; |
8726 | |
8727 | // VST3LN |
8728 | case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
8729 | case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
8730 | case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
8731 | case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; |
8732 | case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
8733 | case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
8734 | case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
8735 | case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
8736 | case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; |
8737 | case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
8738 | case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; |
8739 | case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; |
8740 | case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; |
8741 | case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; |
8742 | case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; |
8743 | |
8744 | // VST3 |
8745 | case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
8746 | case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
8747 | case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
8748 | case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
8749 | case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
8750 | case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
8751 | case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
8752 | case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
8753 | case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
8754 | case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
8755 | case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
8756 | case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
8757 | case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; |
8758 | case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; |
8759 | case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; |
8760 | case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; |
8761 | case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; |
8762 | case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; |
8763 | |
8764 | // VST4LN |
8765 | case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
8766 | case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
8767 | case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
8768 | case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; |
8769 | case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
8770 | case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
8771 | case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
8772 | case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
8773 | case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; |
8774 | case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
8775 | case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; |
8776 | case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; |
8777 | case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; |
8778 | case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; |
8779 | case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; |
8780 | |
8781 | // VST4 |
8782 | case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
8783 | case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
8784 | case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
8785 | case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
8786 | case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
8787 | case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
8788 | case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
8789 | case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
8790 | case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
8791 | case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
8792 | case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
8793 | case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
8794 | case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; |
8795 | case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; |
8796 | case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; |
8797 | case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; |
8798 | case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; |
8799 | case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; |
8800 | } |
8801 | } |
8802 | |
8803 | static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { |
8804 | switch(Opc) { |
8805 | default: llvm_unreachable("unexpected opcode!" ); |
8806 | // VLD1LN |
8807 | case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
8808 | case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
8809 | case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
8810 | case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
8811 | case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
8812 | case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
8813 | case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; |
8814 | case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; |
8815 | case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; |
8816 | |
8817 | // VLD2LN |
8818 | case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
8819 | case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
8820 | case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
8821 | case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; |
8822 | case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
8823 | case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
8824 | case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
8825 | case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
8826 | case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; |
8827 | case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
8828 | case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; |
8829 | case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; |
8830 | case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; |
8831 | case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; |
8832 | case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; |
8833 | |
8834 | // VLD3DUP |
8835 | case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
8836 | case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
8837 | case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
8838 | case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; |
8839 | case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
8840 | case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
8841 | case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
8842 | case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
8843 | case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
8844 | case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; |
8845 | case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
8846 | case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
8847 | case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; |
8848 | case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; |
8849 | case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; |
8850 | case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; |
8851 | case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; |
8852 | case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; |
8853 | |
8854 | // VLD3LN |
8855 | case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
8856 | case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
8857 | case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
8858 | case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; |
8859 | case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
8860 | case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
8861 | case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
8862 | case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
8863 | case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; |
8864 | case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
8865 | case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; |
8866 | case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; |
8867 | case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; |
8868 | case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; |
8869 | case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; |
8870 | |
8871 | // VLD3 |
8872 | case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
8873 | case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
8874 | case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
8875 | case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
8876 | case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
8877 | case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
8878 | case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
8879 | case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
8880 | case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
8881 | case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
8882 | case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
8883 | case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
8884 | case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; |
8885 | case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; |
8886 | case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; |
8887 | case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; |
8888 | case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; |
8889 | case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; |
8890 | |
8891 | // VLD4LN |
8892 | case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
8893 | case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
8894 | case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
8895 | case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
8896 | case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
8897 | case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
8898 | case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
8899 | case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
8900 | case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
8901 | case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
8902 | case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; |
8903 | case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; |
8904 | case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; |
8905 | case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; |
8906 | case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; |
8907 | |
8908 | // VLD4DUP |
8909 | case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
8910 | case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
8911 | case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
8912 | case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; |
8913 | case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; |
8914 | case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
8915 | case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
8916 | case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
8917 | case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
8918 | case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; |
8919 | case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; |
8920 | case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
8921 | case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; |
8922 | case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; |
8923 | case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; |
8924 | case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; |
8925 | case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; |
8926 | case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; |
8927 | |
8928 | // VLD4 |
8929 | case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
8930 | case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
8931 | case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
8932 | case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
8933 | case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
8934 | case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
8935 | case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
8936 | case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
8937 | case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
8938 | case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
8939 | case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
8940 | case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
8941 | case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; |
8942 | case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; |
8943 | case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; |
8944 | case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; |
8945 | case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; |
8946 | case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; |
8947 | } |
8948 | } |
8949 | |
8950 | bool ARMAsmParser::processInstruction(MCInst &Inst, |
8951 | const OperandVector &Operands, |
8952 | unsigned MnemonicOpsEndInd, |
8953 | MCStreamer &Out) { |
8954 | // Check if we have the wide qualifier, because if it's present we |
8955 | // must avoid selecting a 16-bit thumb instruction. |
8956 | bool HasWideQualifier = false; |
8957 | for (auto &Op : Operands) { |
8958 | ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); |
8959 | if (ARMOp.isToken() && ARMOp.getToken() == ".w" ) { |
8960 | HasWideQualifier = true; |
8961 | break; |
8962 | } |
8963 | } |
8964 | |
8965 | switch (Inst.getOpcode()) { |
8966 | case ARM::VLLDM: |
8967 | case ARM::VLSTM: { |
8968 | // In some cases both T1 and T2 are valid, causing tablegen pick T1 instead |
8969 | // of T2 |
8970 | if (Operands.size() == |
8971 | MnemonicOpsEndInd + 2) { // a register list has been provided |
8972 | ARMOperand &Op = static_cast<ARMOperand &>( |
8973 | *Operands[MnemonicOpsEndInd + 1]); // the register list, a dpr_reglist |
8974 | assert(Op.isDPRRegList()); |
8975 | auto &RegList = Op.getRegList(); |
8976 | // When the register list is {d0-d31} the instruction has to be the T2 |
8977 | // variant |
8978 | if (RegList.size() == 32) { |
8979 | const unsigned Opcode = |
8980 | (Inst.getOpcode() == ARM::VLLDM) ? ARM::VLLDM_T2 : ARM::VLSTM_T2; |
8981 | MCInst TmpInst; |
8982 | TmpInst.setOpcode(Opcode); |
8983 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
8984 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
8985 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
8986 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
8987 | Inst = TmpInst; |
8988 | return true; |
8989 | } |
8990 | } |
8991 | return false; |
8992 | } |
8993 | // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. |
8994 | case ARM::LDRT_POST: |
8995 | case ARM::LDRBT_POST: { |
8996 | const unsigned Opcode = |
8997 | (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM |
8998 | : ARM::LDRBT_POST_IMM; |
8999 | MCInst TmpInst; |
9000 | TmpInst.setOpcode(Opcode); |
9001 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
9002 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9003 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9004 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
9005 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); |
9006 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
9007 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
9008 | Inst = TmpInst; |
9009 | return true; |
9010 | } |
9011 | // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. |
9012 | case ARM::LDRSBTii: |
9013 | case ARM::LDRHTii: |
9014 | case ARM::LDRSHTii: { |
9015 | MCInst TmpInst; |
9016 | |
9017 | if (Inst.getOpcode() == ARM::LDRSBTii) |
9018 | TmpInst.setOpcode(ARM::LDRSBTi); |
9019 | else if (Inst.getOpcode() == ARM::LDRHTii) |
9020 | TmpInst.setOpcode(ARM::LDRHTi); |
9021 | else if (Inst.getOpcode() == ARM::LDRSHTii) |
9022 | TmpInst.setOpcode(ARM::LDRSHTi); |
9023 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
9024 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9025 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9026 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 256)); |
9027 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
9028 | Inst = TmpInst; |
9029 | return true; |
9030 | } |
9031 | // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. |
9032 | case ARM::STRT_POST: |
9033 | case ARM::STRBT_POST: { |
9034 | const unsigned Opcode = |
9035 | (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM |
9036 | : ARM::STRBT_POST_IMM; |
9037 | MCInst TmpInst; |
9038 | TmpInst.setOpcode(Opcode); |
9039 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9040 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
9041 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
9042 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); |
9043 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); |
9044 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
9045 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
9046 | Inst = TmpInst; |
9047 | return true; |
9048 | } |
9049 | // Alias for alternate form of 'ADR Rd, #imm' instruction. |
9050 | case ARM::ADDri: { |
9051 | if (Inst.getOperand(i: 1).getReg() != ARM::PC || Inst.getOperand(i: 5).getReg() || |
9052 | !(Inst.getOperand(i: 2).isExpr() || Inst.getOperand(i: 2).isImm())) |
9053 | return false; |
9054 | MCInst TmpInst; |
9055 | TmpInst.setOpcode(ARM::ADR); |
9056 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
9057 | if (Inst.getOperand(i: 2).isImm()) { |
9058 | // Immediate (mod_imm) will be in its encoded form, we must unencode it |
9059 | // before passing it to the ADR instruction. |
9060 | unsigned Enc = Inst.getOperand(i: 2).getImm(); |
9061 | TmpInst.addOperand(Op: MCOperand::createImm( |
9062 | Val: llvm::rotr<uint32_t>(V: Enc & 0xFF, R: (Enc & 0xF00) >> 7))); |
9063 | } else { |
9064 | // Turn PC-relative expression into absolute expression. |
9065 | // Reading PC provides the start of the current instruction + 8 and |
9066 | // the transform to adr is biased by that. |
9067 | MCSymbol *Dot = getContext().createTempSymbol(); |
9068 | Out.emitLabel(Symbol: Dot); |
9069 | const MCExpr *OpExpr = Inst.getOperand(i: 2).getExpr(); |
9070 | const MCExpr *InstPC = MCSymbolRefExpr::create(Symbol: Dot, |
9071 | Ctx&: getContext()); |
9072 | const MCExpr *Const8 = MCConstantExpr::create(Value: 8, Ctx&: getContext()); |
9073 | const MCExpr *ReadPC = MCBinaryExpr::createAdd(LHS: InstPC, RHS: Const8, |
9074 | Ctx&: getContext()); |
9075 | const MCExpr *FixupAddr = MCBinaryExpr::createAdd(LHS: ReadPC, RHS: OpExpr, |
9076 | Ctx&: getContext()); |
9077 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: FixupAddr)); |
9078 | } |
9079 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
9080 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9081 | Inst = TmpInst; |
9082 | return true; |
9083 | } |
9084 | // Aliases for imm syntax of LDR instructions. |
9085 | case ARM::t2LDR_PRE_imm: |
9086 | case ARM::t2LDR_POST_imm: { |
9087 | MCInst TmpInst; |
9088 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE |
9089 | : ARM::t2LDR_POST); |
9090 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9091 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9092 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9093 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9094 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9095 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9096 | Inst = TmpInst; |
9097 | return true; |
9098 | } |
9099 | // Aliases for imm syntax of STR instructions. |
9100 | case ARM::t2STR_PRE_imm: |
9101 | case ARM::t2STR_POST_imm: { |
9102 | MCInst TmpInst; |
9103 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE |
9104 | : ARM::t2STR_POST); |
9105 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9106 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9107 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9108 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9109 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9110 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9111 | Inst = TmpInst; |
9112 | return true; |
9113 | } |
9114 | // Aliases for imm syntax of LDRB instructions. |
9115 | case ARM::t2LDRB_OFFSET_imm: { |
9116 | MCInst TmpInst; |
9117 | TmpInst.setOpcode(ARM::t2LDRBi8); |
9118 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9119 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9120 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9121 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9122 | Inst = TmpInst; |
9123 | return true; |
9124 | } |
9125 | case ARM::t2LDRB_PRE_imm: |
9126 | case ARM::t2LDRB_POST_imm: { |
9127 | MCInst TmpInst; |
9128 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRB_PRE_imm |
9129 | ? ARM::t2LDRB_PRE |
9130 | : ARM::t2LDRB_POST); |
9131 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9132 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9133 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9134 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9135 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9136 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9137 | Inst = TmpInst; |
9138 | return true; |
9139 | } |
9140 | // Aliases for imm syntax of STRB instructions. |
9141 | case ARM::t2STRB_OFFSET_imm: { |
9142 | MCInst TmpInst; |
9143 | TmpInst.setOpcode(ARM::t2STRBi8); |
9144 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9145 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9146 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9147 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9148 | Inst = TmpInst; |
9149 | return true; |
9150 | } |
9151 | case ARM::t2STRB_PRE_imm: |
9152 | case ARM::t2STRB_POST_imm: { |
9153 | MCInst TmpInst; |
9154 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STRB_PRE_imm |
9155 | ? ARM::t2STRB_PRE |
9156 | : ARM::t2STRB_POST); |
9157 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9158 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9159 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9160 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9161 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9162 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9163 | Inst = TmpInst; |
9164 | return true; |
9165 | } |
9166 | // Aliases for imm syntax of LDRH instructions. |
9167 | case ARM::t2LDRH_OFFSET_imm: { |
9168 | MCInst TmpInst; |
9169 | TmpInst.setOpcode(ARM::t2LDRHi8); |
9170 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9171 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9172 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9173 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9174 | Inst = TmpInst; |
9175 | return true; |
9176 | } |
9177 | case ARM::t2LDRH_PRE_imm: |
9178 | case ARM::t2LDRH_POST_imm: { |
9179 | MCInst TmpInst; |
9180 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRH_PRE_imm |
9181 | ? ARM::t2LDRH_PRE |
9182 | : ARM::t2LDRH_POST); |
9183 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9184 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9185 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9186 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9187 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9188 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9189 | Inst = TmpInst; |
9190 | return true; |
9191 | } |
9192 | // Aliases for imm syntax of STRH instructions. |
9193 | case ARM::t2STRH_OFFSET_imm: { |
9194 | MCInst TmpInst; |
9195 | TmpInst.setOpcode(ARM::t2STRHi8); |
9196 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9197 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9198 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9199 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9200 | Inst = TmpInst; |
9201 | return true; |
9202 | } |
9203 | case ARM::t2STRH_PRE_imm: |
9204 | case ARM::t2STRH_POST_imm: { |
9205 | MCInst TmpInst; |
9206 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STRH_PRE_imm |
9207 | ? ARM::t2STRH_PRE |
9208 | : ARM::t2STRH_POST); |
9209 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9210 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9211 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9212 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9213 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9214 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9215 | Inst = TmpInst; |
9216 | return true; |
9217 | } |
9218 | // Aliases for imm syntax of LDRSB instructions. |
9219 | case ARM::t2LDRSB_OFFSET_imm: { |
9220 | MCInst TmpInst; |
9221 | TmpInst.setOpcode(ARM::t2LDRSBi8); |
9222 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9223 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9224 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9225 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9226 | Inst = TmpInst; |
9227 | return true; |
9228 | } |
9229 | case ARM::t2LDRSB_PRE_imm: |
9230 | case ARM::t2LDRSB_POST_imm: { |
9231 | MCInst TmpInst; |
9232 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRSB_PRE_imm |
9233 | ? ARM::t2LDRSB_PRE |
9234 | : ARM::t2LDRSB_POST); |
9235 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9236 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9237 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9238 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9239 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9240 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9241 | Inst = TmpInst; |
9242 | return true; |
9243 | } |
9244 | // Aliases for imm syntax of LDRSH instructions. |
9245 | case ARM::t2LDRSH_OFFSET_imm: { |
9246 | MCInst TmpInst; |
9247 | TmpInst.setOpcode(ARM::t2LDRSHi8); |
9248 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9249 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9250 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9251 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9252 | Inst = TmpInst; |
9253 | return true; |
9254 | } |
9255 | case ARM::t2LDRSH_PRE_imm: |
9256 | case ARM::t2LDRSH_POST_imm: { |
9257 | MCInst TmpInst; |
9258 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDRSH_PRE_imm |
9259 | ? ARM::t2LDRSH_PRE |
9260 | : ARM::t2LDRSH_POST); |
9261 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9262 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb |
9263 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
9264 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // imm |
9265 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9266 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
9267 | Inst = TmpInst; |
9268 | return true; |
9269 | } |
9270 | // Aliases for alternate PC+imm syntax of LDR instructions. |
9271 | case ARM::t2LDRpcrel: |
9272 | // Select the narrow version if the immediate will fit. |
9273 | if (Inst.getOperand(i: 1).getImm() > 0 && |
9274 | Inst.getOperand(i: 1).getImm() <= 0xff && |
9275 | !HasWideQualifier) |
9276 | Inst.setOpcode(ARM::tLDRpci); |
9277 | else |
9278 | Inst.setOpcode(ARM::t2LDRpci); |
9279 | return true; |
9280 | case ARM::t2LDRBpcrel: |
9281 | Inst.setOpcode(ARM::t2LDRBpci); |
9282 | return true; |
9283 | case ARM::t2LDRHpcrel: |
9284 | Inst.setOpcode(ARM::t2LDRHpci); |
9285 | return true; |
9286 | case ARM::t2LDRSBpcrel: |
9287 | Inst.setOpcode(ARM::t2LDRSBpci); |
9288 | return true; |
9289 | case ARM::t2LDRSHpcrel: |
9290 | Inst.setOpcode(ARM::t2LDRSHpci); |
9291 | return true; |
9292 | case ARM::LDRConstPool: |
9293 | case ARM::tLDRConstPool: |
9294 | case ARM::t2LDRConstPool: { |
9295 | // Pseudo instruction ldr rt, =immediate is converted to a |
9296 | // MOV rt, immediate if immediate is known and representable |
9297 | // otherwise we create a constant pool entry that we load from. |
9298 | MCInst TmpInst; |
9299 | if (Inst.getOpcode() == ARM::LDRConstPool) |
9300 | TmpInst.setOpcode(ARM::LDRi12); |
9301 | else if (Inst.getOpcode() == ARM::tLDRConstPool) |
9302 | TmpInst.setOpcode(ARM::tLDRpci); |
9303 | else if (Inst.getOpcode() == ARM::t2LDRConstPool) |
9304 | TmpInst.setOpcode(ARM::t2LDRpci); |
9305 | const ARMOperand &PoolOperand = |
9306 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]); |
9307 | const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); |
9308 | // If SubExprVal is a constant we may be able to use a MOV |
9309 | if (isa<MCConstantExpr>(Val: SubExprVal) && |
9310 | Inst.getOperand(i: 0).getReg() != ARM::PC && |
9311 | Inst.getOperand(i: 0).getReg() != ARM::SP) { |
9312 | int64_t Value = |
9313 | (int64_t) (cast<MCConstantExpr>(Val: SubExprVal))->getValue(); |
9314 | bool UseMov = true; |
9315 | bool MovHasS = true; |
9316 | if (Inst.getOpcode() == ARM::LDRConstPool) { |
9317 | // ARM Constant |
9318 | if (ARM_AM::getSOImmVal(Arg: Value) != -1) { |
9319 | Value = ARM_AM::getSOImmVal(Arg: Value); |
9320 | TmpInst.setOpcode(ARM::MOVi); |
9321 | } |
9322 | else if (ARM_AM::getSOImmVal(Arg: ~Value) != -1) { |
9323 | Value = ARM_AM::getSOImmVal(Arg: ~Value); |
9324 | TmpInst.setOpcode(ARM::MVNi); |
9325 | } |
9326 | else if (hasV6T2Ops() && |
9327 | Value >=0 && Value < 65536) { |
9328 | TmpInst.setOpcode(ARM::MOVi16); |
9329 | MovHasS = false; |
9330 | } |
9331 | else |
9332 | UseMov = false; |
9333 | } |
9334 | else { |
9335 | // Thumb/Thumb2 Constant |
9336 | if (hasThumb2() && |
9337 | ARM_AM::getT2SOImmVal(Arg: Value) != -1) |
9338 | TmpInst.setOpcode(ARM::t2MOVi); |
9339 | else if (hasThumb2() && |
9340 | ARM_AM::getT2SOImmVal(Arg: ~Value) != -1) { |
9341 | TmpInst.setOpcode(ARM::t2MVNi); |
9342 | Value = ~Value; |
9343 | } |
9344 | else if (hasV8MBaseline() && |
9345 | Value >=0 && Value < 65536) { |
9346 | TmpInst.setOpcode(ARM::t2MOVi16); |
9347 | MovHasS = false; |
9348 | } |
9349 | else |
9350 | UseMov = false; |
9351 | } |
9352 | if (UseMov) { |
9353 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9354 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Value)); // Immediate |
9355 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
9356 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9357 | if (MovHasS) |
9358 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // S |
9359 | Inst = TmpInst; |
9360 | return true; |
9361 | } |
9362 | } |
9363 | // No opportunity to use MOV/MVN create constant pool |
9364 | const MCExpr *CPLoc = |
9365 | getTargetStreamer().addConstantPoolEntry(SubExprVal, |
9366 | Loc: PoolOperand.getStartLoc()); |
9367 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rt |
9368 | TmpInst.addOperand(Op: MCOperand::createExpr(Val: CPLoc)); // offset to constpool |
9369 | if (TmpInst.getOpcode() == ARM::LDRi12) |
9370 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 0)); // unused offset |
9371 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
9372 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
9373 | Inst = TmpInst; |
9374 | return true; |
9375 | } |
9376 | // Handle NEON VST complex aliases. |
9377 | case ARM::VST1LNdWB_register_Asm_8: |
9378 | case ARM::VST1LNdWB_register_Asm_16: |
9379 | case ARM::VST1LNdWB_register_Asm_32: { |
9380 | MCInst TmpInst; |
9381 | // Shuffle the operands around so the lane index operand is in the |
9382 | // right place. |
9383 | unsigned Spacing; |
9384 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9385 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9386 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9387 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9388 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9389 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9390 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9391 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9392 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9393 | Inst = TmpInst; |
9394 | return true; |
9395 | } |
9396 | |
9397 | case ARM::VST2LNdWB_register_Asm_8: |
9398 | case ARM::VST2LNdWB_register_Asm_16: |
9399 | case ARM::VST2LNdWB_register_Asm_32: |
9400 | case ARM::VST2LNqWB_register_Asm_16: |
9401 | case ARM::VST2LNqWB_register_Asm_32: { |
9402 | MCInst TmpInst; |
9403 | // Shuffle the operands around so the lane index operand is in the |
9404 | // right place. |
9405 | unsigned Spacing; |
9406 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9407 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9408 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9409 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9410 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9411 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9412 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9413 | Spacing)); |
9414 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9415 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9416 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9417 | Inst = TmpInst; |
9418 | return true; |
9419 | } |
9420 | |
9421 | case ARM::VST3LNdWB_register_Asm_8: |
9422 | case ARM::VST3LNdWB_register_Asm_16: |
9423 | case ARM::VST3LNdWB_register_Asm_32: |
9424 | case ARM::VST3LNqWB_register_Asm_16: |
9425 | case ARM::VST3LNqWB_register_Asm_32: { |
9426 | MCInst TmpInst; |
9427 | // Shuffle the operands around so the lane index operand is in the |
9428 | // right place. |
9429 | unsigned Spacing; |
9430 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9431 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9432 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9433 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9434 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9435 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9436 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9437 | Spacing)); |
9438 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9439 | Spacing * 2)); |
9440 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9441 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9442 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9443 | Inst = TmpInst; |
9444 | return true; |
9445 | } |
9446 | |
9447 | case ARM::VST4LNdWB_register_Asm_8: |
9448 | case ARM::VST4LNdWB_register_Asm_16: |
9449 | case ARM::VST4LNdWB_register_Asm_32: |
9450 | case ARM::VST4LNqWB_register_Asm_16: |
9451 | case ARM::VST4LNqWB_register_Asm_32: { |
9452 | MCInst TmpInst; |
9453 | // Shuffle the operands around so the lane index operand is in the |
9454 | // right place. |
9455 | unsigned Spacing; |
9456 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9457 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9458 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9459 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9460 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9461 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9462 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9463 | Spacing)); |
9464 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9465 | Spacing * 2)); |
9466 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9467 | Spacing * 3)); |
9468 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9469 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9470 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9471 | Inst = TmpInst; |
9472 | return true; |
9473 | } |
9474 | |
9475 | case ARM::VST1LNdWB_fixed_Asm_8: |
9476 | case ARM::VST1LNdWB_fixed_Asm_16: |
9477 | case ARM::VST1LNdWB_fixed_Asm_32: { |
9478 | MCInst TmpInst; |
9479 | // Shuffle the operands around so the lane index operand is in the |
9480 | // right place. |
9481 | unsigned Spacing; |
9482 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9483 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9484 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9485 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9486 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9487 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9488 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9489 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9490 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9491 | Inst = TmpInst; |
9492 | return true; |
9493 | } |
9494 | |
9495 | case ARM::VST2LNdWB_fixed_Asm_8: |
9496 | case ARM::VST2LNdWB_fixed_Asm_16: |
9497 | case ARM::VST2LNdWB_fixed_Asm_32: |
9498 | case ARM::VST2LNqWB_fixed_Asm_16: |
9499 | case ARM::VST2LNqWB_fixed_Asm_32: { |
9500 | MCInst TmpInst; |
9501 | // Shuffle the operands around so the lane index operand is in the |
9502 | // right place. |
9503 | unsigned Spacing; |
9504 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9505 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9506 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9507 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9508 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9509 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9510 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9511 | Spacing)); |
9512 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9513 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9514 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9515 | Inst = TmpInst; |
9516 | return true; |
9517 | } |
9518 | |
9519 | case ARM::VST3LNdWB_fixed_Asm_8: |
9520 | case ARM::VST3LNdWB_fixed_Asm_16: |
9521 | case ARM::VST3LNdWB_fixed_Asm_32: |
9522 | case ARM::VST3LNqWB_fixed_Asm_16: |
9523 | case ARM::VST3LNqWB_fixed_Asm_32: { |
9524 | MCInst TmpInst; |
9525 | // Shuffle the operands around so the lane index operand is in the |
9526 | // right place. |
9527 | unsigned Spacing; |
9528 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9529 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9530 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9531 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9532 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9533 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9534 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9535 | Spacing)); |
9536 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9537 | Spacing * 2)); |
9538 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9539 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9540 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9541 | Inst = TmpInst; |
9542 | return true; |
9543 | } |
9544 | |
9545 | case ARM::VST4LNdWB_fixed_Asm_8: |
9546 | case ARM::VST4LNdWB_fixed_Asm_16: |
9547 | case ARM::VST4LNdWB_fixed_Asm_32: |
9548 | case ARM::VST4LNqWB_fixed_Asm_16: |
9549 | case ARM::VST4LNqWB_fixed_Asm_32: { |
9550 | MCInst TmpInst; |
9551 | // Shuffle the operands around so the lane index operand is in the |
9552 | // right place. |
9553 | unsigned Spacing; |
9554 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9555 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9556 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9557 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9558 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9559 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9560 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9561 | Spacing)); |
9562 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9563 | Spacing * 2)); |
9564 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9565 | Spacing * 3)); |
9566 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9567 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9568 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9569 | Inst = TmpInst; |
9570 | return true; |
9571 | } |
9572 | |
9573 | case ARM::VST1LNdAsm_8: |
9574 | case ARM::VST1LNdAsm_16: |
9575 | case ARM::VST1LNdAsm_32: { |
9576 | MCInst TmpInst; |
9577 | // Shuffle the operands around so the lane index operand is in the |
9578 | // right place. |
9579 | unsigned Spacing; |
9580 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9581 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9582 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9583 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9584 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9585 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9586 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9587 | Inst = TmpInst; |
9588 | return true; |
9589 | } |
9590 | |
9591 | case ARM::VST2LNdAsm_8: |
9592 | case ARM::VST2LNdAsm_16: |
9593 | case ARM::VST2LNdAsm_32: |
9594 | case ARM::VST2LNqAsm_16: |
9595 | case ARM::VST2LNqAsm_32: { |
9596 | MCInst TmpInst; |
9597 | // Shuffle the operands around so the lane index operand is in the |
9598 | // right place. |
9599 | unsigned Spacing; |
9600 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9601 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9602 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9603 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9604 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9605 | Spacing)); |
9606 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9607 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9608 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9609 | Inst = TmpInst; |
9610 | return true; |
9611 | } |
9612 | |
9613 | case ARM::VST3LNdAsm_8: |
9614 | case ARM::VST3LNdAsm_16: |
9615 | case ARM::VST3LNdAsm_32: |
9616 | case ARM::VST3LNqAsm_16: |
9617 | case ARM::VST3LNqAsm_32: { |
9618 | MCInst TmpInst; |
9619 | // Shuffle the operands around so the lane index operand is in the |
9620 | // right place. |
9621 | unsigned Spacing; |
9622 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9623 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9624 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9625 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9626 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9627 | Spacing)); |
9628 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9629 | Spacing * 2)); |
9630 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9631 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9632 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9633 | Inst = TmpInst; |
9634 | return true; |
9635 | } |
9636 | |
9637 | case ARM::VST4LNdAsm_8: |
9638 | case ARM::VST4LNdAsm_16: |
9639 | case ARM::VST4LNdAsm_32: |
9640 | case ARM::VST4LNqAsm_16: |
9641 | case ARM::VST4LNqAsm_32: { |
9642 | MCInst TmpInst; |
9643 | // Shuffle the operands around so the lane index operand is in the |
9644 | // right place. |
9645 | unsigned Spacing; |
9646 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
9647 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9648 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9649 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9650 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9651 | Spacing)); |
9652 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9653 | Spacing * 2)); |
9654 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9655 | Spacing * 3)); |
9656 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9657 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9658 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9659 | Inst = TmpInst; |
9660 | return true; |
9661 | } |
9662 | |
9663 | // Handle NEON VLD complex aliases. |
9664 | case ARM::VLD1LNdWB_register_Asm_8: |
9665 | case ARM::VLD1LNdWB_register_Asm_16: |
9666 | case ARM::VLD1LNdWB_register_Asm_32: { |
9667 | MCInst TmpInst; |
9668 | // Shuffle the operands around so the lane index operand is in the |
9669 | // right place. |
9670 | unsigned Spacing; |
9671 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9672 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9673 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9674 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9675 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9676 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9677 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9678 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9679 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9680 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9681 | Inst = TmpInst; |
9682 | return true; |
9683 | } |
9684 | |
9685 | case ARM::VLD2LNdWB_register_Asm_8: |
9686 | case ARM::VLD2LNdWB_register_Asm_16: |
9687 | case ARM::VLD2LNdWB_register_Asm_32: |
9688 | case ARM::VLD2LNqWB_register_Asm_16: |
9689 | case ARM::VLD2LNqWB_register_Asm_32: { |
9690 | MCInst TmpInst; |
9691 | // Shuffle the operands around so the lane index operand is in the |
9692 | // right place. |
9693 | unsigned Spacing; |
9694 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9695 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9696 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9697 | Spacing)); |
9698 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9699 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9700 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9701 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9702 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9703 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9704 | Spacing)); |
9705 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9706 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9707 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9708 | Inst = TmpInst; |
9709 | return true; |
9710 | } |
9711 | |
9712 | case ARM::VLD3LNdWB_register_Asm_8: |
9713 | case ARM::VLD3LNdWB_register_Asm_16: |
9714 | case ARM::VLD3LNdWB_register_Asm_32: |
9715 | case ARM::VLD3LNqWB_register_Asm_16: |
9716 | case ARM::VLD3LNqWB_register_Asm_32: { |
9717 | MCInst TmpInst; |
9718 | // Shuffle the operands around so the lane index operand is in the |
9719 | // right place. |
9720 | unsigned Spacing; |
9721 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9722 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9723 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9724 | Spacing)); |
9725 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9726 | Spacing * 2)); |
9727 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9728 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9729 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9730 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9731 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9732 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9733 | Spacing)); |
9734 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9735 | Spacing * 2)); |
9736 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9737 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9738 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9739 | Inst = TmpInst; |
9740 | return true; |
9741 | } |
9742 | |
9743 | case ARM::VLD4LNdWB_register_Asm_8: |
9744 | case ARM::VLD4LNdWB_register_Asm_16: |
9745 | case ARM::VLD4LNdWB_register_Asm_32: |
9746 | case ARM::VLD4LNqWB_register_Asm_16: |
9747 | case ARM::VLD4LNqWB_register_Asm_32: { |
9748 | MCInst TmpInst; |
9749 | // Shuffle the operands around so the lane index operand is in the |
9750 | // right place. |
9751 | unsigned Spacing; |
9752 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9753 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9754 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9755 | Spacing)); |
9756 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9757 | Spacing * 2)); |
9758 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9759 | Spacing * 3)); |
9760 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9761 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9762 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9763 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rm |
9764 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9765 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9766 | Spacing)); |
9767 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9768 | Spacing * 2)); |
9769 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9770 | Spacing * 3)); |
9771 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9772 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // CondCode |
9773 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
9774 | Inst = TmpInst; |
9775 | return true; |
9776 | } |
9777 | |
9778 | case ARM::VLD1LNdWB_fixed_Asm_8: |
9779 | case ARM::VLD1LNdWB_fixed_Asm_16: |
9780 | case ARM::VLD1LNdWB_fixed_Asm_32: { |
9781 | MCInst TmpInst; |
9782 | // Shuffle the operands around so the lane index operand is in the |
9783 | // right place. |
9784 | unsigned Spacing; |
9785 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9786 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9787 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9788 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9789 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9790 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9791 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9792 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9793 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9794 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9795 | Inst = TmpInst; |
9796 | return true; |
9797 | } |
9798 | |
9799 | case ARM::VLD2LNdWB_fixed_Asm_8: |
9800 | case ARM::VLD2LNdWB_fixed_Asm_16: |
9801 | case ARM::VLD2LNdWB_fixed_Asm_32: |
9802 | case ARM::VLD2LNqWB_fixed_Asm_16: |
9803 | case ARM::VLD2LNqWB_fixed_Asm_32: { |
9804 | MCInst TmpInst; |
9805 | // Shuffle the operands around so the lane index operand is in the |
9806 | // right place. |
9807 | unsigned Spacing; |
9808 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9809 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9810 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9811 | Spacing)); |
9812 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9813 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9814 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9815 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9816 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9817 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9818 | Spacing)); |
9819 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9820 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9821 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9822 | Inst = TmpInst; |
9823 | return true; |
9824 | } |
9825 | |
9826 | case ARM::VLD3LNdWB_fixed_Asm_8: |
9827 | case ARM::VLD3LNdWB_fixed_Asm_16: |
9828 | case ARM::VLD3LNdWB_fixed_Asm_32: |
9829 | case ARM::VLD3LNqWB_fixed_Asm_16: |
9830 | case ARM::VLD3LNqWB_fixed_Asm_32: { |
9831 | MCInst TmpInst; |
9832 | // Shuffle the operands around so the lane index operand is in the |
9833 | // right place. |
9834 | unsigned Spacing; |
9835 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9836 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9837 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9838 | Spacing)); |
9839 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9840 | Spacing * 2)); |
9841 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9842 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9843 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9844 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9845 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9846 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9847 | Spacing)); |
9848 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9849 | Spacing * 2)); |
9850 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9851 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9852 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9853 | Inst = TmpInst; |
9854 | return true; |
9855 | } |
9856 | |
9857 | case ARM::VLD4LNdWB_fixed_Asm_8: |
9858 | case ARM::VLD4LNdWB_fixed_Asm_16: |
9859 | case ARM::VLD4LNdWB_fixed_Asm_32: |
9860 | case ARM::VLD4LNqWB_fixed_Asm_16: |
9861 | case ARM::VLD4LNqWB_fixed_Asm_32: { |
9862 | MCInst TmpInst; |
9863 | // Shuffle the operands around so the lane index operand is in the |
9864 | // right place. |
9865 | unsigned Spacing; |
9866 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9867 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9868 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9869 | Spacing)); |
9870 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9871 | Spacing * 2)); |
9872 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9873 | Spacing * 3)); |
9874 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn_wb |
9875 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9876 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9877 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
9878 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9879 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9880 | Spacing)); |
9881 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9882 | Spacing * 2)); |
9883 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9884 | Spacing * 3)); |
9885 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9886 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9887 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9888 | Inst = TmpInst; |
9889 | return true; |
9890 | } |
9891 | |
9892 | case ARM::VLD1LNdAsm_8: |
9893 | case ARM::VLD1LNdAsm_16: |
9894 | case ARM::VLD1LNdAsm_32: { |
9895 | MCInst TmpInst; |
9896 | // Shuffle the operands around so the lane index operand is in the |
9897 | // right place. |
9898 | unsigned Spacing; |
9899 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9900 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9901 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9902 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9903 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9904 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9905 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9906 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9907 | Inst = TmpInst; |
9908 | return true; |
9909 | } |
9910 | |
9911 | case ARM::VLD2LNdAsm_8: |
9912 | case ARM::VLD2LNdAsm_16: |
9913 | case ARM::VLD2LNdAsm_32: |
9914 | case ARM::VLD2LNqAsm_16: |
9915 | case ARM::VLD2LNqAsm_32: { |
9916 | MCInst TmpInst; |
9917 | // Shuffle the operands around so the lane index operand is in the |
9918 | // right place. |
9919 | unsigned Spacing; |
9920 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9921 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9922 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9923 | Spacing)); |
9924 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9925 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9926 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9927 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9928 | Spacing)); |
9929 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9930 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9931 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9932 | Inst = TmpInst; |
9933 | return true; |
9934 | } |
9935 | |
9936 | case ARM::VLD3LNdAsm_8: |
9937 | case ARM::VLD3LNdAsm_16: |
9938 | case ARM::VLD3LNdAsm_32: |
9939 | case ARM::VLD3LNqAsm_16: |
9940 | case ARM::VLD3LNqAsm_32: { |
9941 | MCInst TmpInst; |
9942 | // Shuffle the operands around so the lane index operand is in the |
9943 | // right place. |
9944 | unsigned Spacing; |
9945 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9946 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9947 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9948 | Spacing)); |
9949 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9950 | Spacing * 2)); |
9951 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9952 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9953 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9954 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9955 | Spacing)); |
9956 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9957 | Spacing * 2)); |
9958 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9959 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9960 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9961 | Inst = TmpInst; |
9962 | return true; |
9963 | } |
9964 | |
9965 | case ARM::VLD4LNdAsm_8: |
9966 | case ARM::VLD4LNdAsm_16: |
9967 | case ARM::VLD4LNdAsm_32: |
9968 | case ARM::VLD4LNqAsm_16: |
9969 | case ARM::VLD4LNqAsm_32: { |
9970 | MCInst TmpInst; |
9971 | // Shuffle the operands around so the lane index operand is in the |
9972 | // right place. |
9973 | unsigned Spacing; |
9974 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
9975 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
9976 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9977 | Spacing)); |
9978 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9979 | Spacing * 2)); |
9980 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9981 | Spacing * 3)); |
9982 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rn |
9983 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // alignment |
9984 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Tied operand src (== Vd) |
9985 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9986 | Spacing)); |
9987 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9988 | Spacing * 2)); |
9989 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
9990 | Spacing * 3)); |
9991 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // lane |
9992 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
9993 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
9994 | Inst = TmpInst; |
9995 | return true; |
9996 | } |
9997 | |
9998 | // VLD3DUP single 3-element structure to all lanes instructions. |
9999 | case ARM::VLD3DUPdAsm_8: |
10000 | case ARM::VLD3DUPdAsm_16: |
10001 | case ARM::VLD3DUPdAsm_32: |
10002 | case ARM::VLD3DUPqAsm_8: |
10003 | case ARM::VLD3DUPqAsm_16: |
10004 | case ARM::VLD3DUPqAsm_32: { |
10005 | MCInst TmpInst; |
10006 | unsigned Spacing; |
10007 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10008 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10009 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10010 | Spacing)); |
10011 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10012 | Spacing * 2)); |
10013 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10014 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10015 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10016 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10017 | Inst = TmpInst; |
10018 | return true; |
10019 | } |
10020 | |
10021 | case ARM::VLD3DUPdWB_fixed_Asm_8: |
10022 | case ARM::VLD3DUPdWB_fixed_Asm_16: |
10023 | case ARM::VLD3DUPdWB_fixed_Asm_32: |
10024 | case ARM::VLD3DUPqWB_fixed_Asm_8: |
10025 | case ARM::VLD3DUPqWB_fixed_Asm_16: |
10026 | case ARM::VLD3DUPqWB_fixed_Asm_32: { |
10027 | MCInst TmpInst; |
10028 | unsigned Spacing; |
10029 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10030 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10031 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10032 | Spacing)); |
10033 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10034 | Spacing * 2)); |
10035 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10036 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10037 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10038 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10039 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10040 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10041 | Inst = TmpInst; |
10042 | return true; |
10043 | } |
10044 | |
10045 | case ARM::VLD3DUPdWB_register_Asm_8: |
10046 | case ARM::VLD3DUPdWB_register_Asm_16: |
10047 | case ARM::VLD3DUPdWB_register_Asm_32: |
10048 | case ARM::VLD3DUPqWB_register_Asm_8: |
10049 | case ARM::VLD3DUPqWB_register_Asm_16: |
10050 | case ARM::VLD3DUPqWB_register_Asm_32: { |
10051 | MCInst TmpInst; |
10052 | unsigned Spacing; |
10053 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10054 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10055 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10056 | Spacing)); |
10057 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10058 | Spacing * 2)); |
10059 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10060 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10061 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10062 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10063 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10064 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10065 | Inst = TmpInst; |
10066 | return true; |
10067 | } |
10068 | |
10069 | // VLD3 multiple 3-element structure instructions. |
10070 | case ARM::VLD3dAsm_8: |
10071 | case ARM::VLD3dAsm_16: |
10072 | case ARM::VLD3dAsm_32: |
10073 | case ARM::VLD3qAsm_8: |
10074 | case ARM::VLD3qAsm_16: |
10075 | case ARM::VLD3qAsm_32: { |
10076 | MCInst TmpInst; |
10077 | unsigned Spacing; |
10078 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10079 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10080 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10081 | Spacing)); |
10082 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10083 | Spacing * 2)); |
10084 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10085 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10086 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10087 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10088 | Inst = TmpInst; |
10089 | return true; |
10090 | } |
10091 | |
10092 | case ARM::VLD3dWB_fixed_Asm_8: |
10093 | case ARM::VLD3dWB_fixed_Asm_16: |
10094 | case ARM::VLD3dWB_fixed_Asm_32: |
10095 | case ARM::VLD3qWB_fixed_Asm_8: |
10096 | case ARM::VLD3qWB_fixed_Asm_16: |
10097 | case ARM::VLD3qWB_fixed_Asm_32: { |
10098 | MCInst TmpInst; |
10099 | unsigned Spacing; |
10100 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10101 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10102 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10103 | Spacing)); |
10104 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10105 | Spacing * 2)); |
10106 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10107 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10108 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10109 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10110 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10111 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10112 | Inst = TmpInst; |
10113 | return true; |
10114 | } |
10115 | |
10116 | case ARM::VLD3dWB_register_Asm_8: |
10117 | case ARM::VLD3dWB_register_Asm_16: |
10118 | case ARM::VLD3dWB_register_Asm_32: |
10119 | case ARM::VLD3qWB_register_Asm_8: |
10120 | case ARM::VLD3qWB_register_Asm_16: |
10121 | case ARM::VLD3qWB_register_Asm_32: { |
10122 | MCInst TmpInst; |
10123 | unsigned Spacing; |
10124 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10125 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10126 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10127 | Spacing)); |
10128 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10129 | Spacing * 2)); |
10130 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10131 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10132 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10133 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10134 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10135 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10136 | Inst = TmpInst; |
10137 | return true; |
10138 | } |
10139 | |
10140 | // VLD4DUP single 3-element structure to all lanes instructions. |
10141 | case ARM::VLD4DUPdAsm_8: |
10142 | case ARM::VLD4DUPdAsm_16: |
10143 | case ARM::VLD4DUPdAsm_32: |
10144 | case ARM::VLD4DUPqAsm_8: |
10145 | case ARM::VLD4DUPqAsm_16: |
10146 | case ARM::VLD4DUPqAsm_32: { |
10147 | MCInst TmpInst; |
10148 | unsigned Spacing; |
10149 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10150 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10151 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10152 | Spacing)); |
10153 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10154 | Spacing * 2)); |
10155 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10156 | Spacing * 3)); |
10157 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10158 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10159 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10160 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10161 | Inst = TmpInst; |
10162 | return true; |
10163 | } |
10164 | |
10165 | case ARM::VLD4DUPdWB_fixed_Asm_8: |
10166 | case ARM::VLD4DUPdWB_fixed_Asm_16: |
10167 | case ARM::VLD4DUPdWB_fixed_Asm_32: |
10168 | case ARM::VLD4DUPqWB_fixed_Asm_8: |
10169 | case ARM::VLD4DUPqWB_fixed_Asm_16: |
10170 | case ARM::VLD4DUPqWB_fixed_Asm_32: { |
10171 | MCInst TmpInst; |
10172 | unsigned Spacing; |
10173 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10174 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10175 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10176 | Spacing)); |
10177 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10178 | Spacing * 2)); |
10179 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10180 | Spacing * 3)); |
10181 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10182 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10183 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10184 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10185 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10186 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10187 | Inst = TmpInst; |
10188 | return true; |
10189 | } |
10190 | |
10191 | case ARM::VLD4DUPdWB_register_Asm_8: |
10192 | case ARM::VLD4DUPdWB_register_Asm_16: |
10193 | case ARM::VLD4DUPdWB_register_Asm_32: |
10194 | case ARM::VLD4DUPqWB_register_Asm_8: |
10195 | case ARM::VLD4DUPqWB_register_Asm_16: |
10196 | case ARM::VLD4DUPqWB_register_Asm_32: { |
10197 | MCInst TmpInst; |
10198 | unsigned Spacing; |
10199 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10200 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10201 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10202 | Spacing)); |
10203 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10204 | Spacing * 2)); |
10205 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10206 | Spacing * 3)); |
10207 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10208 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10209 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10210 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10211 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10212 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10213 | Inst = TmpInst; |
10214 | return true; |
10215 | } |
10216 | |
10217 | // VLD4 multiple 4-element structure instructions. |
10218 | case ARM::VLD4dAsm_8: |
10219 | case ARM::VLD4dAsm_16: |
10220 | case ARM::VLD4dAsm_32: |
10221 | case ARM::VLD4qAsm_8: |
10222 | case ARM::VLD4qAsm_16: |
10223 | case ARM::VLD4qAsm_32: { |
10224 | MCInst TmpInst; |
10225 | unsigned Spacing; |
10226 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10227 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10228 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10229 | Spacing)); |
10230 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10231 | Spacing * 2)); |
10232 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10233 | Spacing * 3)); |
10234 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10235 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10236 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10237 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10238 | Inst = TmpInst; |
10239 | return true; |
10240 | } |
10241 | |
10242 | case ARM::VLD4dWB_fixed_Asm_8: |
10243 | case ARM::VLD4dWB_fixed_Asm_16: |
10244 | case ARM::VLD4dWB_fixed_Asm_32: |
10245 | case ARM::VLD4qWB_fixed_Asm_8: |
10246 | case ARM::VLD4qWB_fixed_Asm_16: |
10247 | case ARM::VLD4qWB_fixed_Asm_32: { |
10248 | MCInst TmpInst; |
10249 | unsigned Spacing; |
10250 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10251 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10252 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10253 | Spacing)); |
10254 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10255 | Spacing * 2)); |
10256 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10257 | Spacing * 3)); |
10258 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10259 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10260 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10261 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10262 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10263 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10264 | Inst = TmpInst; |
10265 | return true; |
10266 | } |
10267 | |
10268 | case ARM::VLD4dWB_register_Asm_8: |
10269 | case ARM::VLD4dWB_register_Asm_16: |
10270 | case ARM::VLD4dWB_register_Asm_32: |
10271 | case ARM::VLD4qWB_register_Asm_8: |
10272 | case ARM::VLD4qWB_register_Asm_16: |
10273 | case ARM::VLD4qWB_register_Asm_32: { |
10274 | MCInst TmpInst; |
10275 | unsigned Spacing; |
10276 | TmpInst.setOpcode(getRealVLDOpcode(Opc: Inst.getOpcode(), Spacing)); |
10277 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10278 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10279 | Spacing)); |
10280 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10281 | Spacing * 2)); |
10282 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10283 | Spacing * 3)); |
10284 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10285 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10286 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10287 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10288 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10289 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10290 | Inst = TmpInst; |
10291 | return true; |
10292 | } |
10293 | |
10294 | // VST3 multiple 3-element structure instructions. |
10295 | case ARM::VST3dAsm_8: |
10296 | case ARM::VST3dAsm_16: |
10297 | case ARM::VST3dAsm_32: |
10298 | case ARM::VST3qAsm_8: |
10299 | case ARM::VST3qAsm_16: |
10300 | case ARM::VST3qAsm_32: { |
10301 | MCInst TmpInst; |
10302 | unsigned Spacing; |
10303 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10304 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10305 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10306 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10307 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10308 | Spacing)); |
10309 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10310 | Spacing * 2)); |
10311 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10312 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10313 | Inst = TmpInst; |
10314 | return true; |
10315 | } |
10316 | |
10317 | case ARM::VST3dWB_fixed_Asm_8: |
10318 | case ARM::VST3dWB_fixed_Asm_16: |
10319 | case ARM::VST3dWB_fixed_Asm_32: |
10320 | case ARM::VST3qWB_fixed_Asm_8: |
10321 | case ARM::VST3qWB_fixed_Asm_16: |
10322 | case ARM::VST3qWB_fixed_Asm_32: { |
10323 | MCInst TmpInst; |
10324 | unsigned Spacing; |
10325 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10326 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10327 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10328 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10329 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10330 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10331 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10332 | Spacing)); |
10333 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10334 | Spacing * 2)); |
10335 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10336 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10337 | Inst = TmpInst; |
10338 | return true; |
10339 | } |
10340 | |
10341 | case ARM::VST3dWB_register_Asm_8: |
10342 | case ARM::VST3dWB_register_Asm_16: |
10343 | case ARM::VST3dWB_register_Asm_32: |
10344 | case ARM::VST3qWB_register_Asm_8: |
10345 | case ARM::VST3qWB_register_Asm_16: |
10346 | case ARM::VST3qWB_register_Asm_32: { |
10347 | MCInst TmpInst; |
10348 | unsigned Spacing; |
10349 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10350 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10351 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10352 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10353 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10354 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10355 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10356 | Spacing)); |
10357 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10358 | Spacing * 2)); |
10359 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10360 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10361 | Inst = TmpInst; |
10362 | return true; |
10363 | } |
10364 | |
10365 | // VST4 multiple 3-element structure instructions. |
10366 | case ARM::VST4dAsm_8: |
10367 | case ARM::VST4dAsm_16: |
10368 | case ARM::VST4dAsm_32: |
10369 | case ARM::VST4qAsm_8: |
10370 | case ARM::VST4qAsm_16: |
10371 | case ARM::VST4qAsm_32: { |
10372 | MCInst TmpInst; |
10373 | unsigned Spacing; |
10374 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10375 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10376 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10377 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10378 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10379 | Spacing)); |
10380 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10381 | Spacing * 2)); |
10382 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10383 | Spacing * 3)); |
10384 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10385 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10386 | Inst = TmpInst; |
10387 | return true; |
10388 | } |
10389 | |
10390 | case ARM::VST4dWB_fixed_Asm_8: |
10391 | case ARM::VST4dWB_fixed_Asm_16: |
10392 | case ARM::VST4dWB_fixed_Asm_32: |
10393 | case ARM::VST4qWB_fixed_Asm_8: |
10394 | case ARM::VST4qWB_fixed_Asm_16: |
10395 | case ARM::VST4qWB_fixed_Asm_32: { |
10396 | MCInst TmpInst; |
10397 | unsigned Spacing; |
10398 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10399 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10400 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10401 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10402 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // Rm |
10403 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10404 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10405 | Spacing)); |
10406 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10407 | Spacing * 2)); |
10408 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10409 | Spacing * 3)); |
10410 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10411 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10412 | Inst = TmpInst; |
10413 | return true; |
10414 | } |
10415 | |
10416 | case ARM::VST4dWB_register_Asm_8: |
10417 | case ARM::VST4dWB_register_Asm_16: |
10418 | case ARM::VST4dWB_register_Asm_32: |
10419 | case ARM::VST4qWB_register_Asm_8: |
10420 | case ARM::VST4qWB_register_Asm_16: |
10421 | case ARM::VST4qWB_register_Asm_32: { |
10422 | MCInst TmpInst; |
10423 | unsigned Spacing; |
10424 | TmpInst.setOpcode(getRealVSTOpcode(Opc: Inst.getOpcode(), Spacing)); |
10425 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10426 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn_wb == tied Rn |
10427 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // alignment |
10428 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // Rm |
10429 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Vd |
10430 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10431 | Spacing)); |
10432 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10433 | Spacing * 2)); |
10434 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg() + |
10435 | Spacing * 3)); |
10436 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10437 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10438 | Inst = TmpInst; |
10439 | return true; |
10440 | } |
10441 | |
10442 | // Handle encoding choice for the shift-immediate instructions. |
10443 | case ARM::t2LSLri: |
10444 | case ARM::t2LSRri: |
10445 | case ARM::t2ASRri: |
10446 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10447 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10448 | Inst.getOperand(i: 5).getReg() == |
10449 | (inITBlock() ? ARM::NoRegister : ARM::CPSR) && |
10450 | !HasWideQualifier) { |
10451 | unsigned NewOpc; |
10452 | switch (Inst.getOpcode()) { |
10453 | default: llvm_unreachable("unexpected opcode" ); |
10454 | case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; |
10455 | case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; |
10456 | case ARM::t2ASRri: NewOpc = ARM::tASRri; break; |
10457 | } |
10458 | // The Thumb1 operands aren't in the same order. Awesome, eh? |
10459 | MCInst TmpInst; |
10460 | TmpInst.setOpcode(NewOpc); |
10461 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10462 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10463 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10464 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10465 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10466 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10467 | Inst = TmpInst; |
10468 | return true; |
10469 | } |
10470 | return false; |
10471 | |
10472 | // Handle the Thumb2 mode MOV complex aliases. |
10473 | case ARM::t2MOVsr: |
10474 | case ARM::t2MOVSsr: { |
10475 | // Which instruction to expand to depends on the CCOut operand and |
10476 | // whether we're in an IT block if the register operands are low |
10477 | // registers. |
10478 | bool isNarrow = false; |
10479 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10480 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10481 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg()) && |
10482 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() && |
10483 | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && |
10484 | !HasWideQualifier) |
10485 | isNarrow = true; |
10486 | MCInst TmpInst; |
10487 | unsigned newOpc; |
10488 | switch(ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 3).getImm())) { |
10489 | default: llvm_unreachable("unexpected opcode!" ); |
10490 | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; |
10491 | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; |
10492 | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; |
10493 | case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; |
10494 | } |
10495 | TmpInst.setOpcode(newOpc); |
10496 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10497 | if (isNarrow) |
10498 | TmpInst.addOperand(Op: MCOperand::createReg( |
10499 | Reg: Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : ARM::NoRegister)); |
10500 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10501 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rm |
10502 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // CondCode |
10503 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10504 | if (!isNarrow) |
10505 | TmpInst.addOperand(Op: MCOperand::createReg( |
10506 | Reg: Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : ARM::NoRegister)); |
10507 | Inst = TmpInst; |
10508 | return true; |
10509 | } |
10510 | case ARM::t2MOVsi: |
10511 | case ARM::t2MOVSsi: { |
10512 | // Which instruction to expand to depends on the CCOut operand and |
10513 | // whether we're in an IT block if the register operands are low |
10514 | // registers. |
10515 | bool isNarrow = false; |
10516 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10517 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10518 | inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && |
10519 | !HasWideQualifier) |
10520 | isNarrow = true; |
10521 | MCInst TmpInst; |
10522 | unsigned newOpc; |
10523 | unsigned Shift = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 2).getImm()); |
10524 | unsigned Amount = ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 2).getImm()); |
10525 | bool isMov = false; |
10526 | // MOV rd, rm, LSL #0 is actually a MOV instruction |
10527 | if (Shift == ARM_AM::lsl && Amount == 0) { |
10528 | isMov = true; |
10529 | // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of |
10530 | // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is |
10531 | // unpredictable in an IT block so the 32-bit encoding T3 has to be used |
10532 | // instead. |
10533 | if (inITBlock()) { |
10534 | isNarrow = false; |
10535 | } |
10536 | newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; |
10537 | } else { |
10538 | switch(Shift) { |
10539 | default: llvm_unreachable("unexpected opcode!" ); |
10540 | case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; |
10541 | case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; |
10542 | case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; |
10543 | case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; |
10544 | case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; |
10545 | } |
10546 | } |
10547 | if (Amount == 32) Amount = 0; |
10548 | TmpInst.setOpcode(newOpc); |
10549 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10550 | if (isNarrow && !isMov) |
10551 | TmpInst.addOperand(Op: MCOperand::createReg( |
10552 | Reg: Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : ARM::NoRegister)); |
10553 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10554 | if (newOpc != ARM::t2RRX && !isMov) |
10555 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Amount)); |
10556 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10557 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10558 | if (!isNarrow) |
10559 | TmpInst.addOperand(Op: MCOperand::createReg( |
10560 | Reg: Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : ARM::NoRegister)); |
10561 | Inst = TmpInst; |
10562 | return true; |
10563 | } |
10564 | // Handle the ARM mode MOV complex aliases. |
10565 | case ARM::ASRr: |
10566 | case ARM::LSRr: |
10567 | case ARM::LSLr: |
10568 | case ARM::RORr: { |
10569 | ARM_AM::ShiftOpc ShiftTy; |
10570 | switch(Inst.getOpcode()) { |
10571 | default: llvm_unreachable("unexpected opcode!" ); |
10572 | case ARM::ASRr: ShiftTy = ARM_AM::asr; break; |
10573 | case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; |
10574 | case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; |
10575 | case ARM::RORr: ShiftTy = ARM_AM::ror; break; |
10576 | } |
10577 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: 0); |
10578 | MCInst TmpInst; |
10579 | TmpInst.setOpcode(ARM::MOVsr); |
10580 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10581 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10582 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // Rm |
10583 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10584 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10585 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10586 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // cc_out |
10587 | Inst = TmpInst; |
10588 | return true; |
10589 | } |
10590 | case ARM::ASRi: |
10591 | case ARM::LSRi: |
10592 | case ARM::LSLi: |
10593 | case ARM::RORi: { |
10594 | ARM_AM::ShiftOpc ShiftTy; |
10595 | switch(Inst.getOpcode()) { |
10596 | default: llvm_unreachable("unexpected opcode!" ); |
10597 | case ARM::ASRi: ShiftTy = ARM_AM::asr; break; |
10598 | case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; |
10599 | case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; |
10600 | case ARM::RORi: ShiftTy = ARM_AM::ror; break; |
10601 | } |
10602 | // A shift by zero is a plain MOVr, not a MOVsi. |
10603 | unsigned Amt = Inst.getOperand(i: 2).getImm(); |
10604 | unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; |
10605 | // A shift by 32 should be encoded as 0 when permitted |
10606 | if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) |
10607 | Amt = 0; |
10608 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: Amt); |
10609 | MCInst TmpInst; |
10610 | TmpInst.setOpcode(Opc); |
10611 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10612 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10613 | if (Opc == ARM::MOVsi) |
10614 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10615 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // CondCode |
10616 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10617 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); // cc_out |
10618 | Inst = TmpInst; |
10619 | return true; |
10620 | } |
10621 | case ARM::RRXi: { |
10622 | unsigned Shifter = ARM_AM::getSORegOpc(ShOp: ARM_AM::rrx, Imm: 0); |
10623 | MCInst TmpInst; |
10624 | TmpInst.setOpcode(ARM::MOVsi); |
10625 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rd |
10626 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10627 | TmpInst.addOperand(Op: MCOperand::createImm(Val: Shifter)); // Shift value and ty |
10628 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10629 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10630 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // cc_out |
10631 | Inst = TmpInst; |
10632 | return true; |
10633 | } |
10634 | case ARM::t2LDMIA_UPD: { |
10635 | // If this is a load of a single register, then we should use |
10636 | // a post-indexed LDR instruction instead, per the ARM ARM. |
10637 | if (Inst.getNumOperands() != 5) |
10638 | return false; |
10639 | MCInst TmpInst; |
10640 | TmpInst.setOpcode(ARM::t2LDR_POST); |
10641 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10642 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10643 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10644 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 4)); |
10645 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10646 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10647 | Inst = TmpInst; |
10648 | return true; |
10649 | } |
10650 | case ARM::t2STMDB_UPD: { |
10651 | // If this is a store of a single register, then we should use |
10652 | // a pre-indexed STR instruction instead, per the ARM ARM. |
10653 | if (Inst.getNumOperands() != 5) |
10654 | return false; |
10655 | MCInst TmpInst; |
10656 | TmpInst.setOpcode(ARM::t2STR_PRE); |
10657 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10658 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10659 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10660 | TmpInst.addOperand(Op: MCOperand::createImm(Val: -4)); |
10661 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10662 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10663 | Inst = TmpInst; |
10664 | return true; |
10665 | } |
10666 | case ARM::LDMIA_UPD: |
10667 | // If this is a load of a single register via a 'pop', then we should use |
10668 | // a post-indexed LDR instruction instead, per the ARM ARM. |
10669 | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && |
10670 | Inst.getNumOperands() == 5) { |
10671 | MCInst TmpInst; |
10672 | TmpInst.setOpcode(ARM::LDR_POST_IMM); |
10673 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10674 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10675 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // Rn |
10676 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: 0)); // am2offset |
10677 | TmpInst.addOperand(Op: MCOperand::createImm(Val: 4)); |
10678 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10679 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10680 | Inst = TmpInst; |
10681 | return true; |
10682 | } |
10683 | break; |
10684 | case ARM::STMDB_UPD: |
10685 | // If this is a store of a single register via a 'push', then we should use |
10686 | // a pre-indexed STR instruction instead, per the ARM ARM. |
10687 | if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && |
10688 | Inst.getNumOperands() == 5) { |
10689 | MCInst TmpInst; |
10690 | TmpInst.setOpcode(ARM::STR_PRE_IMM); |
10691 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); // Rn_wb |
10692 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); // Rt |
10693 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); // addrmode_imm12 |
10694 | TmpInst.addOperand(Op: MCOperand::createImm(Val: -4)); |
10695 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); // CondCode |
10696 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10697 | Inst = TmpInst; |
10698 | } |
10699 | break; |
10700 | case ARM::t2ADDri12: |
10701 | case ARM::t2SUBri12: |
10702 | case ARM::t2ADDspImm12: |
10703 | case ARM::t2SUBspImm12: { |
10704 | // If the immediate fits for encoding T3 and the generic |
10705 | // mnemonic was used, encoding T3 is preferred. |
10706 | const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); |
10707 | if ((Token != "add" && Token != "sub" ) || |
10708 | ARM_AM::getT2SOImmVal(Arg: Inst.getOperand(i: 2).getImm()) == -1) |
10709 | break; |
10710 | switch (Inst.getOpcode()) { |
10711 | case ARM::t2ADDri12: |
10712 | Inst.setOpcode(ARM::t2ADDri); |
10713 | break; |
10714 | case ARM::t2SUBri12: |
10715 | Inst.setOpcode(ARM::t2SUBri); |
10716 | break; |
10717 | case ARM::t2ADDspImm12: |
10718 | Inst.setOpcode(ARM::t2ADDspImm); |
10719 | break; |
10720 | case ARM::t2SUBspImm12: |
10721 | Inst.setOpcode(ARM::t2SUBspImm); |
10722 | break; |
10723 | } |
10724 | |
10725 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); // cc_out |
10726 | return true; |
10727 | } |
10728 | case ARM::tADDi8: |
10729 | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
10730 | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
10731 | // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
10732 | // to encoding T1 if <Rd> is omitted." |
10733 | if (Inst.getOperand(i: 3).isImm() && |
10734 | (unsigned)Inst.getOperand(i: 3).getImm() < 8 && |
10735 | Operands.size() == MnemonicOpsEndInd + 3) { |
10736 | Inst.setOpcode(ARM::tADDi3); |
10737 | return true; |
10738 | } |
10739 | break; |
10740 | case ARM::tSUBi8: |
10741 | // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
10742 | // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
10743 | // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
10744 | // to encoding T1 if <Rd> is omitted." |
10745 | if ((unsigned)Inst.getOperand(i: 3).getImm() < 8 && |
10746 | Operands.size() == MnemonicOpsEndInd + 3) { |
10747 | Inst.setOpcode(ARM::tSUBi3); |
10748 | return true; |
10749 | } |
10750 | break; |
10751 | case ARM::t2ADDri: |
10752 | case ARM::t2SUBri: { |
10753 | // If the destination and first source operand are the same, and |
10754 | // the flags are compatible with the current IT status, use encoding T2 |
10755 | // instead of T3. For compatibility with the system 'as'. Make sure the |
10756 | // wide encoding wasn't explicit. |
10757 | if (HasWideQualifier) |
10758 | break; // source code has asked for the 32-bit instruction |
10759 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 1).getReg()) |
10760 | break; // tADDi8 can't take different input and output registers |
10761 | if (!isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg())) |
10762 | break; // high register that tADDi8 can't access |
10763 | if (Inst.getOperand(i: 5).getReg() != |
10764 | (inITBlock() ? ARM::NoRegister : ARM::CPSR)) |
10765 | break; // flag-modification would require overriding the IT state |
10766 | if (Inst.getOperand(i: 2).isImm()) { |
10767 | if ((unsigned)Inst.getOperand(i: 2).getImm() > 255) |
10768 | break; // large immediate that tADDi8 can't contain |
10769 | } else { |
10770 | int i = (Operands[MnemonicOpsEndInd + 1]->isImm()) |
10771 | ? MnemonicOpsEndInd + 1 |
10772 | : MnemonicOpsEndInd + 2; |
10773 | MCParsedAsmOperand &Op = *Operands[i]; |
10774 | if (isARMMCExpr(MCOp&: Op) && !isThumbI8Relocation(MCOp&: Op)) |
10775 | break; // a type of non-immediate that tADDi8 can't represent |
10776 | } |
10777 | MCInst TmpInst; |
10778 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? |
10779 | ARM::tADDi8 : ARM::tSUBi8); |
10780 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10781 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
10782 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10783 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10784 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10785 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10786 | Inst = TmpInst; |
10787 | return true; |
10788 | } |
10789 | case ARM::t2ADDspImm: |
10790 | case ARM::t2SUBspImm: { |
10791 | // Prefer T1 encoding if possible |
10792 | if (Inst.getOperand(i: 5).getReg() || HasWideQualifier) |
10793 | break; |
10794 | unsigned V = Inst.getOperand(i: 2).getImm(); |
10795 | if (V & 3 || V > ((1 << 7) - 1) << 2) |
10796 | break; |
10797 | MCInst TmpInst; |
10798 | TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi |
10799 | : ARM::tSUBspi); |
10800 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::SP)); // destination reg |
10801 | TmpInst.addOperand(Op: MCOperand::createReg(Reg: ARM::SP)); // source reg |
10802 | TmpInst.addOperand(Op: MCOperand::createImm(Val: V / 4)); // immediate |
10803 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); // pred |
10804 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10805 | Inst = TmpInst; |
10806 | return true; |
10807 | } |
10808 | case ARM::t2ADDrr: { |
10809 | // If the destination and first source operand are the same, and |
10810 | // there's no setting of the flags, use encoding T2 instead of T3. |
10811 | // Note that this is only for ADD, not SUB. This mirrors the system |
10812 | // 'as' behaviour. Also take advantage of ADD being commutative. |
10813 | // Make sure the wide encoding wasn't explicit. |
10814 | bool Swap = false; |
10815 | auto DestReg = Inst.getOperand(i: 0).getReg(); |
10816 | bool Transform = DestReg == Inst.getOperand(i: 1).getReg(); |
10817 | if (!Transform && DestReg == Inst.getOperand(i: 2).getReg()) { |
10818 | Transform = true; |
10819 | Swap = true; |
10820 | } |
10821 | if (!Transform || Inst.getOperand(i: 5).getReg() || HasWideQualifier) |
10822 | break; |
10823 | MCInst TmpInst; |
10824 | TmpInst.setOpcode(ARM::tADDhirr); |
10825 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10826 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10827 | TmpInst.addOperand(Op: Inst.getOperand(i: Swap ? 1 : 2)); |
10828 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10829 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10830 | Inst = TmpInst; |
10831 | return true; |
10832 | } |
10833 | case ARM::tADDrSP: |
10834 | // If the non-SP source operand and the destination operand are not the |
10835 | // same, we need to use the 32-bit encoding if it's available. |
10836 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 2).getReg()) { |
10837 | Inst.setOpcode(ARM::t2ADDrr); |
10838 | Inst.addOperand(Op: MCOperand::createReg(Reg: 0)); // cc_out |
10839 | return true; |
10840 | } |
10841 | break; |
10842 | case ARM::tB: |
10843 | // A Thumb conditional branch outside of an IT block is a tBcc. |
10844 | if (Inst.getOperand(i: 1).getImm() != ARMCC::AL && !inITBlock()) { |
10845 | Inst.setOpcode(ARM::tBcc); |
10846 | return true; |
10847 | } |
10848 | break; |
10849 | case ARM::t2B: |
10850 | // A Thumb2 conditional branch outside of an IT block is a t2Bcc. |
10851 | if (Inst.getOperand(i: 1).getImm() != ARMCC::AL && !inITBlock()){ |
10852 | Inst.setOpcode(ARM::t2Bcc); |
10853 | return true; |
10854 | } |
10855 | break; |
10856 | case ARM::t2Bcc: |
10857 | // If the conditional is AL or we're in an IT block, we really want t2B. |
10858 | if (Inst.getOperand(i: 1).getImm() == ARMCC::AL || inITBlock()) { |
10859 | Inst.setOpcode(ARM::t2B); |
10860 | return true; |
10861 | } |
10862 | break; |
10863 | case ARM::tBcc: |
10864 | // If the conditional is AL, we really want tB. |
10865 | if (Inst.getOperand(i: 1).getImm() == ARMCC::AL) { |
10866 | Inst.setOpcode(ARM::tB); |
10867 | return true; |
10868 | } |
10869 | break; |
10870 | case ARM::tLDMIA: { |
10871 | // If the register list contains any high registers, or if the writeback |
10872 | // doesn't match what tLDMIA can do, we need to use the 32-bit encoding |
10873 | // instead if we're in Thumb2. Otherwise, this should have generated |
10874 | // an error in validateInstruction(). |
10875 | MCRegister Rn = Inst.getOperand(i: 0).getReg(); |
10876 | bool hasWritebackToken = |
10877 | (static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
10878 | .isToken() && |
10879 | static_cast<ARMOperand &>(*Operands[MnemonicOpsEndInd + 1]) |
10880 | .getToken() == "!" ); |
10881 | bool listContainsBase; |
10882 | if (checkLowRegisterList(Inst, OpNo: 3, Reg: Rn, HiReg: MCRegister(), containsReg&: listContainsBase) || |
10883 | (!listContainsBase && !hasWritebackToken) || |
10884 | (listContainsBase && hasWritebackToken)) { |
10885 | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
10886 | assert(isThumbTwo()); |
10887 | Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); |
10888 | // If we're switching to the updating version, we need to insert |
10889 | // the writeback tied operand. |
10890 | if (hasWritebackToken) |
10891 | Inst.insert(I: Inst.begin(), |
10892 | Op: MCOperand::createReg(Reg: Inst.getOperand(i: 0).getReg())); |
10893 | return true; |
10894 | } |
10895 | break; |
10896 | } |
10897 | case ARM::tSTMIA_UPD: { |
10898 | // If the register list contains any high registers, we need to use |
10899 | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
10900 | // should have generated an error in validateInstruction(). |
10901 | MCRegister Rn = Inst.getOperand(i: 0).getReg(); |
10902 | bool listContainsBase; |
10903 | if (checkLowRegisterList(Inst, OpNo: 4, Reg: Rn, HiReg: MCRegister(), containsReg&: listContainsBase)) { |
10904 | // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
10905 | assert(isThumbTwo()); |
10906 | Inst.setOpcode(ARM::t2STMIA_UPD); |
10907 | return true; |
10908 | } |
10909 | break; |
10910 | } |
10911 | case ARM::tPOP: { |
10912 | bool listContainsBase; |
10913 | // If the register list contains any high registers, we need to use |
10914 | // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
10915 | // should have generated an error in validateInstruction(). |
10916 | if (!checkLowRegisterList(Inst, OpNo: 2, Reg: MCRegister(), HiReg: ARM::PC, containsReg&: listContainsBase)) |
10917 | return false; |
10918 | assert(isThumbTwo()); |
10919 | Inst.setOpcode(ARM::t2LDMIA_UPD); |
10920 | // Add the base register and writeback operands. |
10921 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10922 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10923 | return true; |
10924 | } |
10925 | case ARM::tPUSH: { |
10926 | bool listContainsBase; |
10927 | if (!checkLowRegisterList(Inst, OpNo: 2, Reg: MCRegister(), HiReg: ARM::LR, containsReg&: listContainsBase)) |
10928 | return false; |
10929 | assert(isThumbTwo()); |
10930 | Inst.setOpcode(ARM::t2STMDB_UPD); |
10931 | // Add the base register and writeback operands. |
10932 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10933 | Inst.insert(I: Inst.begin(), Op: MCOperand::createReg(Reg: ARM::SP)); |
10934 | return true; |
10935 | } |
10936 | case ARM::t2MOVi: |
10937 | // If we can use the 16-bit encoding and the user didn't explicitly |
10938 | // request the 32-bit variant, transform it here. |
10939 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10940 | (Inst.getOperand(i: 1).isImm() && |
10941 | (unsigned)Inst.getOperand(i: 1).getImm() <= 255) && |
10942 | Inst.getOperand(i: 4).getReg() == |
10943 | (inITBlock() ? ARM::NoRegister : ARM::CPSR) && |
10944 | !HasWideQualifier) { |
10945 | // The operands aren't in the same order for tMOVi8... |
10946 | MCInst TmpInst; |
10947 | TmpInst.setOpcode(ARM::tMOVi8); |
10948 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10949 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
10950 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10951 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10952 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10953 | Inst = TmpInst; |
10954 | return true; |
10955 | } |
10956 | break; |
10957 | |
10958 | case ARM::t2MOVr: |
10959 | // If we can use the 16-bit encoding and the user didn't explicitly |
10960 | // request the 32-bit variant, transform it here. |
10961 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10962 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10963 | Inst.getOperand(i: 2).getImm() == ARMCC::AL && |
10964 | Inst.getOperand(i: 4).getReg() == ARM::CPSR && |
10965 | !HasWideQualifier) { |
10966 | // The operands aren't the same for tMOV[S]r... (no cc_out) |
10967 | MCInst TmpInst; |
10968 | unsigned Op = Inst.getOperand(i: 4).getReg() ? ARM::tMOVSr : ARM::tMOVr; |
10969 | TmpInst.setOpcode(Op); |
10970 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
10971 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
10972 | if (Op == ARM::tMOVr) { |
10973 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
10974 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
10975 | } |
10976 | Inst = TmpInst; |
10977 | return true; |
10978 | } |
10979 | break; |
10980 | |
10981 | case ARM::t2SXTH: |
10982 | case ARM::t2SXTB: |
10983 | case ARM::t2UXTH: |
10984 | case ARM::t2UXTB: |
10985 | // If we can use the 16-bit encoding and the user didn't explicitly |
10986 | // request the 32-bit variant, transform it here. |
10987 | if (isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
10988 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
10989 | Inst.getOperand(i: 2).getImm() == 0 && |
10990 | !HasWideQualifier) { |
10991 | unsigned NewOpc; |
10992 | switch (Inst.getOpcode()) { |
10993 | default: llvm_unreachable("Illegal opcode!" ); |
10994 | case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; |
10995 | case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; |
10996 | case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; |
10997 | case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; |
10998 | } |
10999 | // The operands aren't the same for thumb1 (no rotate operand). |
11000 | MCInst TmpInst; |
11001 | TmpInst.setOpcode(NewOpc); |
11002 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11003 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11004 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11005 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11006 | Inst = TmpInst; |
11007 | return true; |
11008 | } |
11009 | break; |
11010 | |
11011 | case ARM::MOVsi: { |
11012 | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 2).getImm()); |
11013 | // rrx shifts and asr/lsr of #32 is encoded as 0 |
11014 | if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) |
11015 | return false; |
11016 | if (ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 2).getImm()) == 0) { |
11017 | // Shifting by zero is accepted as a vanilla 'MOVr' |
11018 | MCInst TmpInst; |
11019 | TmpInst.setOpcode(ARM::MOVr); |
11020 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11021 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11022 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11023 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11024 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11025 | Inst = TmpInst; |
11026 | return true; |
11027 | } |
11028 | return false; |
11029 | } |
11030 | case ARM::ANDrsi: |
11031 | case ARM::ORRrsi: |
11032 | case ARM::EORrsi: |
11033 | case ARM::BICrsi: |
11034 | case ARM::SUBrsi: |
11035 | case ARM::ADDrsi: { |
11036 | unsigned newOpc; |
11037 | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Op: Inst.getOperand(i: 3).getImm()); |
11038 | if (SOpc == ARM_AM::rrx) return false; |
11039 | switch (Inst.getOpcode()) { |
11040 | default: llvm_unreachable("unexpected opcode!" ); |
11041 | case ARM::ANDrsi: newOpc = ARM::ANDrr; break; |
11042 | case ARM::ORRrsi: newOpc = ARM::ORRrr; break; |
11043 | case ARM::EORrsi: newOpc = ARM::EORrr; break; |
11044 | case ARM::BICrsi: newOpc = ARM::BICrr; break; |
11045 | case ARM::SUBrsi: newOpc = ARM::SUBrr; break; |
11046 | case ARM::ADDrsi: newOpc = ARM::ADDrr; break; |
11047 | } |
11048 | // If the shift is by zero, use the non-shifted instruction definition. |
11049 | // The exception is for right shifts, where 0 == 32 |
11050 | if (ARM_AM::getSORegOffset(Op: Inst.getOperand(i: 3).getImm()) == 0 && |
11051 | !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { |
11052 | MCInst TmpInst; |
11053 | TmpInst.setOpcode(newOpc); |
11054 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11055 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11056 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11057 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11058 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11059 | TmpInst.addOperand(Op: Inst.getOperand(i: 6)); |
11060 | Inst = TmpInst; |
11061 | return true; |
11062 | } |
11063 | return false; |
11064 | } |
11065 | case ARM::ITasm: |
11066 | case ARM::t2IT: { |
11067 | // Set up the IT block state according to the IT instruction we just |
11068 | // matched. |
11069 | assert(!inITBlock() && "nested IT blocks?!" ); |
11070 | startExplicitITBlock(Cond: ARMCC::CondCodes(Inst.getOperand(i: 0).getImm()), |
11071 | Mask: Inst.getOperand(i: 1).getImm()); |
11072 | break; |
11073 | } |
11074 | case ARM::t2LSLrr: |
11075 | case ARM::t2LSRrr: |
11076 | case ARM::t2ASRrr: |
11077 | case ARM::t2SBCrr: |
11078 | case ARM::t2RORrr: |
11079 | case ARM::t2BICrr: |
11080 | // Assemblers should use the narrow encodings of these instructions when permissible. |
11081 | if ((isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
11082 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) && |
11083 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() && |
11084 | Inst.getOperand(i: 5).getReg() == |
11085 | (inITBlock() ? ARM::NoRegister : ARM::CPSR) && |
11086 | !HasWideQualifier) { |
11087 | unsigned NewOpc; |
11088 | switch (Inst.getOpcode()) { |
11089 | default: llvm_unreachable("unexpected opcode" ); |
11090 | case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; |
11091 | case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; |
11092 | case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; |
11093 | case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; |
11094 | case ARM::t2RORrr: NewOpc = ARM::tROR; break; |
11095 | case ARM::t2BICrr: NewOpc = ARM::tBIC; break; |
11096 | } |
11097 | MCInst TmpInst; |
11098 | TmpInst.setOpcode(NewOpc); |
11099 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11100 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11101 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11102 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11103 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11104 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11105 | Inst = TmpInst; |
11106 | return true; |
11107 | } |
11108 | return false; |
11109 | |
11110 | case ARM::t2ANDrr: |
11111 | case ARM::t2EORrr: |
11112 | case ARM::t2ADCrr: |
11113 | case ARM::t2ORRrr: |
11114 | // Assemblers should use the narrow encodings of these instructions when permissible. |
11115 | // These instructions are special in that they are commutable, so shorter encodings |
11116 | // are available more often. |
11117 | if ((isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
11118 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) && |
11119 | (Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg() || |
11120 | Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 2).getReg()) && |
11121 | Inst.getOperand(i: 5).getReg() == |
11122 | (inITBlock() ? ARM::NoRegister : ARM::CPSR) && |
11123 | !HasWideQualifier) { |
11124 | unsigned NewOpc; |
11125 | switch (Inst.getOpcode()) { |
11126 | default: llvm_unreachable("unexpected opcode" ); |
11127 | case ARM::t2ADCrr: NewOpc = ARM::tADC; break; |
11128 | case ARM::t2ANDrr: NewOpc = ARM::tAND; break; |
11129 | case ARM::t2EORrr: NewOpc = ARM::tEOR; break; |
11130 | case ARM::t2ORRrr: NewOpc = ARM::tORR; break; |
11131 | } |
11132 | MCInst TmpInst; |
11133 | TmpInst.setOpcode(NewOpc); |
11134 | TmpInst.addOperand(Op: Inst.getOperand(i: 0)); |
11135 | TmpInst.addOperand(Op: Inst.getOperand(i: 5)); |
11136 | if (Inst.getOperand(i: 0).getReg() == Inst.getOperand(i: 1).getReg()) { |
11137 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11138 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11139 | } else { |
11140 | TmpInst.addOperand(Op: Inst.getOperand(i: 2)); |
11141 | TmpInst.addOperand(Op: Inst.getOperand(i: 1)); |
11142 | } |
11143 | TmpInst.addOperand(Op: Inst.getOperand(i: 3)); |
11144 | TmpInst.addOperand(Op: Inst.getOperand(i: 4)); |
11145 | Inst = TmpInst; |
11146 | return true; |
11147 | } |
11148 | return false; |
11149 | case ARM::MVE_VPST: |
11150 | case ARM::MVE_VPTv16i8: |
11151 | case ARM::MVE_VPTv8i16: |
11152 | case ARM::MVE_VPTv4i32: |
11153 | case ARM::MVE_VPTv16u8: |
11154 | case ARM::MVE_VPTv8u16: |
11155 | case ARM::MVE_VPTv4u32: |
11156 | case ARM::MVE_VPTv16s8: |
11157 | case ARM::MVE_VPTv8s16: |
11158 | case ARM::MVE_VPTv4s32: |
11159 | case ARM::MVE_VPTv4f32: |
11160 | case ARM::MVE_VPTv8f16: |
11161 | case ARM::MVE_VPTv16i8r: |
11162 | case ARM::MVE_VPTv8i16r: |
11163 | case ARM::MVE_VPTv4i32r: |
11164 | case ARM::MVE_VPTv16u8r: |
11165 | case ARM::MVE_VPTv8u16r: |
11166 | case ARM::MVE_VPTv4u32r: |
11167 | case ARM::MVE_VPTv16s8r: |
11168 | case ARM::MVE_VPTv8s16r: |
11169 | case ARM::MVE_VPTv4s32r: |
11170 | case ARM::MVE_VPTv4f32r: |
11171 | case ARM::MVE_VPTv8f16r: { |
11172 | assert(!inVPTBlock() && "Nested VPT blocks are not allowed" ); |
11173 | MCOperand &MO = Inst.getOperand(i: 0); |
11174 | VPTState.Mask = MO.getImm(); |
11175 | VPTState.CurPosition = 0; |
11176 | break; |
11177 | } |
11178 | } |
11179 | return false; |
11180 | } |
11181 | |
11182 | unsigned |
11183 | ARMAsmParser::checkEarlyTargetMatchPredicate(MCInst &Inst, |
11184 | const OperandVector &Operands) { |
11185 | unsigned Opc = Inst.getOpcode(); |
11186 | switch (Opc) { |
11187 | // Prevent the mov r8 r8 encoding for nop being selected when the v6/thumb 2 |
11188 | // encoding is available. |
11189 | case ARM::tMOVr: { |
11190 | if (Operands[0]->isToken() && |
11191 | static_cast<ARMOperand &>(*Operands[0]).getToken() == "nop" && |
11192 | ((isThumb() && !isThumbOne()) || hasV6MOps())) { |
11193 | return Match_MnemonicFail; |
11194 | } |
11195 | } |
11196 | [[fallthrough]]; |
11197 | default: |
11198 | return Match_Success; |
11199 | } |
11200 | } |
11201 | |
11202 | unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { |
11203 | // 16-bit thumb arithmetic instructions either require or preclude the 'S' |
11204 | // suffix depending on whether they're in an IT block or not. |
11205 | unsigned Opc = Inst.getOpcode(); |
11206 | const MCInstrDesc &MCID = MII.get(Opcode: Opc); |
11207 | if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
11208 | assert(MCID.hasOptionalDef() && |
11209 | "optionally flag setting instruction missing optional def operand" ); |
11210 | assert(MCID.NumOperands == Inst.getNumOperands() && |
11211 | "operand count mismatch!" ); |
11212 | bool IsCPSR = false; |
11213 | // Check if the instruction has CPSR set. |
11214 | for (unsigned OpNo = 0; OpNo < MCID.NumOperands; ++OpNo) { |
11215 | if (MCID.operands()[OpNo].isOptionalDef() && |
11216 | Inst.getOperand(i: OpNo).isReg() && |
11217 | Inst.getOperand(i: OpNo).getReg() == ARM::CPSR) |
11218 | IsCPSR = true; |
11219 | } |
11220 | |
11221 | // If we're parsing Thumb1, reject it completely. |
11222 | if (isThumbOne() && !IsCPSR) |
11223 | return Match_RequiresFlagSetting; |
11224 | // If we're parsing Thumb2, which form is legal depends on whether we're |
11225 | // in an IT block. |
11226 | if (isThumbTwo() && !IsCPSR && !inITBlock()) |
11227 | return Match_RequiresITBlock; |
11228 | if (isThumbTwo() && IsCPSR && inITBlock()) |
11229 | return Match_RequiresNotITBlock; |
11230 | // LSL with zero immediate is not allowed in an IT block |
11231 | if (Opc == ARM::tLSLri && Inst.getOperand(i: 3).getImm() == 0 && inITBlock()) |
11232 | return Match_RequiresNotITBlock; |
11233 | } else if (isThumbOne()) { |
11234 | // Some high-register supporting Thumb1 encodings only allow both registers |
11235 | // to be from r0-r7 when in Thumb2. |
11236 | if (Opc == ARM::tADDhirr && !hasV6MOps() && |
11237 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg()) && |
11238 | isARMLowRegister(Reg: Inst.getOperand(i: 2).getReg())) |
11239 | return Match_RequiresThumb2; |
11240 | // Others only require ARMv6 or later. |
11241 | else if (Opc == ARM::tMOVr && !hasV6Ops() && |
11242 | isARMLowRegister(Reg: Inst.getOperand(i: 0).getReg()) && |
11243 | isARMLowRegister(Reg: Inst.getOperand(i: 1).getReg())) |
11244 | return Match_RequiresV6; |
11245 | } |
11246 | |
11247 | // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex |
11248 | // than the loop below can handle, so it uses the GPRnopc register class and |
11249 | // we do SP handling here. |
11250 | if (Opc == ARM::t2MOVr && !hasV8Ops()) |
11251 | { |
11252 | // SP as both source and destination is not allowed |
11253 | if (Inst.getOperand(i: 0).getReg() == ARM::SP && |
11254 | Inst.getOperand(i: 1).getReg() == ARM::SP) |
11255 | return Match_RequiresV8; |
11256 | // When flags-setting SP as either source or destination is not allowed |
11257 | if (Inst.getOperand(i: 4).getReg() == ARM::CPSR && |
11258 | (Inst.getOperand(i: 0).getReg() == ARM::SP || |
11259 | Inst.getOperand(i: 1).getReg() == ARM::SP)) |
11260 | return Match_RequiresV8; |
11261 | } |
11262 | |
11263 | switch (Inst.getOpcode()) { |
11264 | case ARM::VMRS: |
11265 | case ARM::VMSR: |
11266 | case ARM::VMRS_FPCXTS: |
11267 | case ARM::VMRS_FPCXTNS: |
11268 | case ARM::VMSR_FPCXTS: |
11269 | case ARM::VMSR_FPCXTNS: |
11270 | case ARM::VMRS_FPSCR_NZCVQC: |
11271 | case ARM::VMSR_FPSCR_NZCVQC: |
11272 | case ARM::FMSTAT: |
11273 | case ARM::VMRS_VPR: |
11274 | case ARM::VMRS_P0: |
11275 | case ARM::VMSR_VPR: |
11276 | case ARM::VMSR_P0: |
11277 | // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of |
11278 | // ARMv8-A. |
11279 | if (Inst.getOperand(i: 0).isReg() && Inst.getOperand(i: 0).getReg() == ARM::SP && |
11280 | (isThumb() && !hasV8Ops())) |
11281 | return Match_InvalidOperand; |
11282 | break; |
11283 | case ARM::t2TBB: |
11284 | case ARM::t2TBH: |
11285 | // Rn = sp is only allowed with ARMv8-A |
11286 | if (!hasV8Ops() && (Inst.getOperand(i: 0).getReg() == ARM::SP)) |
11287 | return Match_RequiresV8; |
11288 | break; |
11289 | case ARM::tMUL: |
11290 | // The second source operand must be the same register as the destination |
11291 | // operand. |
11292 | // FIXME: Ideally this would be handled by ARMGenAsmMatcher and |
11293 | // emitAsmTiedOperandConstraints. |
11294 | if (Inst.getOperand(i: 0).getReg() != Inst.getOperand(i: 3).getReg()) |
11295 | return Match_InvalidTiedOperand; |
11296 | break; |
11297 | default: |
11298 | break; |
11299 | } |
11300 | |
11301 | for (unsigned I = 0; I < MCID.NumOperands; ++I) |
11302 | if (MCID.operands()[I].RegClass == ARM::rGPRRegClassID) { |
11303 | // rGPRRegClass excludes PC, and also excluded SP before ARMv8 |
11304 | const auto &Op = Inst.getOperand(i: I); |
11305 | if (!Op.isReg()) { |
11306 | // This can happen in awkward cases with tied operands, e.g. a |
11307 | // writeback load/store with a complex addressing mode in |
11308 | // which there's an output operand corresponding to the |
11309 | // updated written-back base register: the Tablegen-generated |
11310 | // AsmMatcher will have written a placeholder operand to that |
11311 | // slot in the form of an immediate 0, because it can't |
11312 | // generate the register part of the complex addressing-mode |
11313 | // operand ahead of time. |
11314 | continue; |
11315 | } |
11316 | |
11317 | MCRegister Reg = Op.getReg(); |
11318 | if ((Reg == ARM::SP) && !hasV8Ops()) |
11319 | return Match_RequiresV8; |
11320 | else if (Reg == ARM::PC) |
11321 | return Match_InvalidOperand; |
11322 | } |
11323 | |
11324 | return Match_Success; |
11325 | } |
11326 | |
11327 | namespace llvm { |
11328 | |
11329 | template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { |
11330 | return true; // In an assembly source, no need to second-guess |
11331 | } |
11332 | |
11333 | } // end namespace llvm |
11334 | |
11335 | // Returns true if Inst is unpredictable if it is in and IT block, but is not |
11336 | // the last instruction in the block. |
11337 | bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { |
11338 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11339 | |
11340 | // All branch & call instructions terminate IT blocks with the exception of |
11341 | // SVC. |
11342 | if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || |
11343 | MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) |
11344 | return true; |
11345 | |
11346 | // Any arithmetic instruction which writes to the PC also terminates the IT |
11347 | // block. |
11348 | if (MCID.hasDefOfPhysReg(MI: Inst, Reg: ARM::PC, RI: *MRI)) |
11349 | return true; |
11350 | |
11351 | return false; |
11352 | } |
11353 | |
11354 | unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, |
11355 | SmallVectorImpl<NearMissInfo> &NearMisses, |
11356 | bool MatchingInlineAsm, |
11357 | bool &EmitInITBlock, |
11358 | MCStreamer &Out) { |
11359 | // If we can't use an implicit IT block here, just match as normal. |
11360 | if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) |
11361 | return MatchInstructionImpl(Operands, Inst, NearMisses: &NearMisses, matchingInlineAsm: MatchingInlineAsm); |
11362 | |
11363 | // Try to match the instruction in an extension of the current IT block (if |
11364 | // there is one). |
11365 | if (inImplicitITBlock()) { |
11366 | extendImplicitITBlock(Cond: ITState.Cond); |
11367 | if (MatchInstructionImpl(Operands, Inst, NearMisses: nullptr, matchingInlineAsm: MatchingInlineAsm) == |
11368 | Match_Success) { |
11369 | // The match succeded, but we still have to check that the instruction is |
11370 | // valid in this implicit IT block. |
11371 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11372 | if (MCID.isPredicable()) { |
11373 | ARMCC::CondCodes InstCond = |
11374 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11375 | .getImm(); |
11376 | ARMCC::CondCodes ITCond = currentITCond(); |
11377 | if (InstCond == ITCond) { |
11378 | EmitInITBlock = true; |
11379 | return Match_Success; |
11380 | } else if (InstCond == ARMCC::getOppositeCondition(CC: ITCond)) { |
11381 | invertCurrentITCondition(); |
11382 | EmitInITBlock = true; |
11383 | return Match_Success; |
11384 | } |
11385 | } |
11386 | } |
11387 | rewindImplicitITPosition(); |
11388 | } |
11389 | |
11390 | // Finish the current IT block, and try to match outside any IT block. |
11391 | flushPendingInstructions(Out); |
11392 | unsigned PlainMatchResult = |
11393 | MatchInstructionImpl(Operands, Inst, NearMisses: &NearMisses, matchingInlineAsm: MatchingInlineAsm); |
11394 | if (PlainMatchResult == Match_Success) { |
11395 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11396 | if (MCID.isPredicable()) { |
11397 | ARMCC::CondCodes InstCond = |
11398 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11399 | .getImm(); |
11400 | // Some forms of the branch instruction have their own condition code |
11401 | // fields, so can be conditionally executed without an IT block. |
11402 | if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { |
11403 | EmitInITBlock = false; |
11404 | return Match_Success; |
11405 | } |
11406 | if (InstCond == ARMCC::AL) { |
11407 | EmitInITBlock = false; |
11408 | return Match_Success; |
11409 | } |
11410 | } else { |
11411 | EmitInITBlock = false; |
11412 | return Match_Success; |
11413 | } |
11414 | } |
11415 | |
11416 | // Try to match in a new IT block. The matcher doesn't check the actual |
11417 | // condition, so we create an IT block with a dummy condition, and fix it up |
11418 | // once we know the actual condition. |
11419 | startImplicitITBlock(); |
11420 | if (MatchInstructionImpl(Operands, Inst, NearMisses: nullptr, matchingInlineAsm: MatchingInlineAsm) == |
11421 | Match_Success) { |
11422 | const MCInstrDesc &MCID = MII.get(Opcode: Inst.getOpcode()); |
11423 | if (MCID.isPredicable()) { |
11424 | ITState.Cond = |
11425 | (ARMCC::CondCodes)Inst.getOperand(i: MCID.findFirstPredOperandIdx()) |
11426 | .getImm(); |
11427 | EmitInITBlock = true; |
11428 | return Match_Success; |
11429 | } |
11430 | } |
11431 | discardImplicitITBlock(); |
11432 | |
11433 | // If none of these succeed, return the error we got when trying to match |
11434 | // outside any IT blocks. |
11435 | EmitInITBlock = false; |
11436 | return PlainMatchResult; |
11437 | } |
11438 | |
11439 | static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, |
11440 | unsigned VariantID = 0); |
11441 | |
11442 | static const char *getSubtargetFeatureName(uint64_t Val); |
11443 | bool ARMAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
11444 | OperandVector &Operands, |
11445 | MCStreamer &Out, uint64_t &ErrorInfo, |
11446 | bool MatchingInlineAsm) { |
11447 | MCInst Inst; |
11448 | unsigned MatchResult; |
11449 | bool PendConditionalInstruction = false; |
11450 | |
11451 | SmallVector<NearMissInfo, 4> NearMisses; |
11452 | MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, |
11453 | EmitInITBlock&: PendConditionalInstruction, Out); |
11454 | |
11455 | // Find the number of operators that are part of the Mnumonic (LHS). |
11456 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
11457 | |
11458 | switch (MatchResult) { |
11459 | case Match_Success: |
11460 | LLVM_DEBUG(dbgs() << "Parsed as: " ; |
11461 | Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
11462 | dbgs() << "\n" ); |
11463 | |
11464 | // Context sensitive operand constraints aren't handled by the matcher, |
11465 | // so check them here. |
11466 | if (validateInstruction(Inst, Operands, MnemonicOpsEndInd)) { |
11467 | // Still progress the IT block, otherwise one wrong condition causes |
11468 | // nasty cascading errors. |
11469 | forwardITPosition(); |
11470 | forwardVPTPosition(); |
11471 | return true; |
11472 | } |
11473 | |
11474 | { |
11475 | // Some instructions need post-processing to, for example, tweak which |
11476 | // encoding is selected. Loop on it while changes happen so the |
11477 | // individual transformations can chain off each other. E.g., |
11478 | // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) |
11479 | while (processInstruction(Inst, Operands, MnemonicOpsEndInd, Out)) |
11480 | LLVM_DEBUG(dbgs() << "Changed to: " ; |
11481 | Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
11482 | dbgs() << "\n" ); |
11483 | } |
11484 | |
11485 | // Only move forward at the very end so that everything in validate |
11486 | // and process gets a consistent answer about whether we're in an IT |
11487 | // block. |
11488 | forwardITPosition(); |
11489 | forwardVPTPosition(); |
11490 | |
11491 | // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and |
11492 | // doesn't actually encode. |
11493 | if (Inst.getOpcode() == ARM::ITasm) |
11494 | return false; |
11495 | |
11496 | Inst.setLoc(IDLoc); |
11497 | if (PendConditionalInstruction) { |
11498 | PendingConditionalInsts.push_back(Elt: Inst); |
11499 | if (isITBlockFull() || isITBlockTerminator(Inst)) |
11500 | flushPendingInstructions(Out); |
11501 | } else { |
11502 | Out.emitInstruction(Inst, STI: getSTI()); |
11503 | } |
11504 | return false; |
11505 | case Match_NearMisses: |
11506 | ReportNearMisses(NearMisses, IDLoc, Operands); |
11507 | return true; |
11508 | case Match_MnemonicFail: { |
11509 | FeatureBitset FBS = ComputeAvailableFeatures(FB: getSTI().getFeatureBits()); |
11510 | std::string Suggestion = ARMMnemonicSpellCheck( |
11511 | S: ((ARMOperand &)*Operands[0]).getToken(), FBS); |
11512 | return Error(L: IDLoc, Msg: "invalid instruction" + Suggestion, |
11513 | Range: ((ARMOperand &)*Operands[0]).getLocRange()); |
11514 | } |
11515 | } |
11516 | |
11517 | llvm_unreachable("Implement any new match types added!" ); |
11518 | } |
11519 | |
11520 | /// ParseDirective parses the arm specific directives |
11521 | bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { |
11522 | const MCContext::Environment Format = getContext().getObjectFileType(); |
11523 | bool IsMachO = Format == MCContext::IsMachO; |
11524 | bool IsCOFF = Format == MCContext::IsCOFF; |
11525 | |
11526 | std::string IDVal = DirectiveID.getIdentifier().lower(); |
11527 | if (IDVal == ".word" ) |
11528 | parseLiteralValues(Size: 4, L: DirectiveID.getLoc()); |
11529 | else if (IDVal == ".short" || IDVal == ".hword" ) |
11530 | parseLiteralValues(Size: 2, L: DirectiveID.getLoc()); |
11531 | else if (IDVal == ".thumb" ) |
11532 | parseDirectiveThumb(L: DirectiveID.getLoc()); |
11533 | else if (IDVal == ".arm" ) |
11534 | parseDirectiveARM(L: DirectiveID.getLoc()); |
11535 | else if (IDVal == ".thumb_func" ) |
11536 | parseDirectiveThumbFunc(L: DirectiveID.getLoc()); |
11537 | else if (IDVal == ".code" ) |
11538 | parseDirectiveCode(L: DirectiveID.getLoc()); |
11539 | else if (IDVal == ".syntax" ) |
11540 | parseDirectiveSyntax(L: DirectiveID.getLoc()); |
11541 | else if (IDVal == ".unreq" ) |
11542 | parseDirectiveUnreq(L: DirectiveID.getLoc()); |
11543 | else if (IDVal == ".fnend" ) |
11544 | parseDirectiveFnEnd(L: DirectiveID.getLoc()); |
11545 | else if (IDVal == ".cantunwind" ) |
11546 | parseDirectiveCantUnwind(L: DirectiveID.getLoc()); |
11547 | else if (IDVal == ".personality" ) |
11548 | parseDirectivePersonality(L: DirectiveID.getLoc()); |
11549 | else if (IDVal == ".handlerdata" ) |
11550 | parseDirectiveHandlerData(L: DirectiveID.getLoc()); |
11551 | else if (IDVal == ".setfp" ) |
11552 | parseDirectiveSetFP(L: DirectiveID.getLoc()); |
11553 | else if (IDVal == ".pad" ) |
11554 | parseDirectivePad(L: DirectiveID.getLoc()); |
11555 | else if (IDVal == ".save" ) |
11556 | parseDirectiveRegSave(L: DirectiveID.getLoc(), IsVector: false); |
11557 | else if (IDVal == ".vsave" ) |
11558 | parseDirectiveRegSave(L: DirectiveID.getLoc(), IsVector: true); |
11559 | else if (IDVal == ".ltorg" || IDVal == ".pool" ) |
11560 | parseDirectiveLtorg(L: DirectiveID.getLoc()); |
11561 | else if (IDVal == ".even" ) |
11562 | parseDirectiveEven(L: DirectiveID.getLoc()); |
11563 | else if (IDVal == ".personalityindex" ) |
11564 | parseDirectivePersonalityIndex(L: DirectiveID.getLoc()); |
11565 | else if (IDVal == ".unwind_raw" ) |
11566 | parseDirectiveUnwindRaw(L: DirectiveID.getLoc()); |
11567 | else if (IDVal == ".movsp" ) |
11568 | parseDirectiveMovSP(L: DirectiveID.getLoc()); |
11569 | else if (IDVal == ".arch_extension" ) |
11570 | parseDirectiveArchExtension(L: DirectiveID.getLoc()); |
11571 | else if (IDVal == ".align" ) |
11572 | return parseDirectiveAlign(L: DirectiveID.getLoc()); // Use Generic on failure. |
11573 | else if (IDVal == ".thumb_set" ) |
11574 | parseDirectiveThumbSet(L: DirectiveID.getLoc()); |
11575 | else if (IDVal == ".inst" ) |
11576 | parseDirectiveInst(L: DirectiveID.getLoc()); |
11577 | else if (IDVal == ".inst.n" ) |
11578 | parseDirectiveInst(L: DirectiveID.getLoc(), Suffix: 'n'); |
11579 | else if (IDVal == ".inst.w" ) |
11580 | parseDirectiveInst(L: DirectiveID.getLoc(), Suffix: 'w'); |
11581 | else if (!IsMachO && !IsCOFF) { |
11582 | if (IDVal == ".arch" ) |
11583 | parseDirectiveArch(L: DirectiveID.getLoc()); |
11584 | else if (IDVal == ".cpu" ) |
11585 | parseDirectiveCPU(L: DirectiveID.getLoc()); |
11586 | else if (IDVal == ".eabi_attribute" ) |
11587 | parseDirectiveEabiAttr(L: DirectiveID.getLoc()); |
11588 | else if (IDVal == ".fpu" ) |
11589 | parseDirectiveFPU(L: DirectiveID.getLoc()); |
11590 | else if (IDVal == ".fnstart" ) |
11591 | parseDirectiveFnStart(L: DirectiveID.getLoc()); |
11592 | else if (IDVal == ".object_arch" ) |
11593 | parseDirectiveObjectArch(L: DirectiveID.getLoc()); |
11594 | else if (IDVal == ".tlsdescseq" ) |
11595 | parseDirectiveTLSDescSeq(L: DirectiveID.getLoc()); |
11596 | else |
11597 | return true; |
11598 | } else if (IsCOFF) { |
11599 | if (IDVal == ".seh_stackalloc" ) |
11600 | parseDirectiveSEHAllocStack(L: DirectiveID.getLoc(), /*Wide=*/false); |
11601 | else if (IDVal == ".seh_stackalloc_w" ) |
11602 | parseDirectiveSEHAllocStack(L: DirectiveID.getLoc(), /*Wide=*/true); |
11603 | else if (IDVal == ".seh_save_regs" ) |
11604 | parseDirectiveSEHSaveRegs(L: DirectiveID.getLoc(), /*Wide=*/false); |
11605 | else if (IDVal == ".seh_save_regs_w" ) |
11606 | parseDirectiveSEHSaveRegs(L: DirectiveID.getLoc(), /*Wide=*/true); |
11607 | else if (IDVal == ".seh_save_sp" ) |
11608 | parseDirectiveSEHSaveSP(L: DirectiveID.getLoc()); |
11609 | else if (IDVal == ".seh_save_fregs" ) |
11610 | parseDirectiveSEHSaveFRegs(L: DirectiveID.getLoc()); |
11611 | else if (IDVal == ".seh_save_lr" ) |
11612 | parseDirectiveSEHSaveLR(L: DirectiveID.getLoc()); |
11613 | else if (IDVal == ".seh_endprologue" ) |
11614 | parseDirectiveSEHPrologEnd(L: DirectiveID.getLoc(), /*Fragment=*/false); |
11615 | else if (IDVal == ".seh_endprologue_fragment" ) |
11616 | parseDirectiveSEHPrologEnd(L: DirectiveID.getLoc(), /*Fragment=*/true); |
11617 | else if (IDVal == ".seh_nop" ) |
11618 | parseDirectiveSEHNop(L: DirectiveID.getLoc(), /*Wide=*/false); |
11619 | else if (IDVal == ".seh_nop_w" ) |
11620 | parseDirectiveSEHNop(L: DirectiveID.getLoc(), /*Wide=*/true); |
11621 | else if (IDVal == ".seh_startepilogue" ) |
11622 | parseDirectiveSEHEpilogStart(L: DirectiveID.getLoc(), /*Condition=*/false); |
11623 | else if (IDVal == ".seh_startepilogue_cond" ) |
11624 | parseDirectiveSEHEpilogStart(L: DirectiveID.getLoc(), /*Condition=*/true); |
11625 | else if (IDVal == ".seh_endepilogue" ) |
11626 | parseDirectiveSEHEpilogEnd(L: DirectiveID.getLoc()); |
11627 | else if (IDVal == ".seh_custom" ) |
11628 | parseDirectiveSEHCustom(L: DirectiveID.getLoc()); |
11629 | else |
11630 | return true; |
11631 | } else |
11632 | return true; |
11633 | return false; |
11634 | } |
11635 | |
11636 | /// parseLiteralValues |
11637 | /// ::= .hword expression [, expression]* |
11638 | /// ::= .short expression [, expression]* |
11639 | /// ::= .word expression [, expression]* |
11640 | bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { |
11641 | auto parseOne = [&]() -> bool { |
11642 | const MCExpr *Value; |
11643 | if (getParser().parseExpression(Res&: Value)) |
11644 | return true; |
11645 | getParser().getStreamer().emitValue(Value, Size, Loc: L); |
11646 | return false; |
11647 | }; |
11648 | return (parseMany(parseOne)); |
11649 | } |
11650 | |
11651 | /// parseDirectiveThumb |
11652 | /// ::= .thumb |
11653 | bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { |
11654 | if (parseEOL() || check(P: !hasThumb(), Loc: L, Msg: "target does not support Thumb mode" )) |
11655 | return true; |
11656 | |
11657 | if (!isThumb()) |
11658 | SwitchMode(); |
11659 | |
11660 | getTargetStreamer().emitCode16(); |
11661 | getParser().getStreamer().emitCodeAlignment(Alignment: Align(2), STI: &getSTI(), MaxBytesToEmit: 0); |
11662 | return false; |
11663 | } |
11664 | |
11665 | /// parseDirectiveARM |
11666 | /// ::= .arm |
11667 | bool ARMAsmParser::parseDirectiveARM(SMLoc L) { |
11668 | if (parseEOL() || check(P: !hasARM(), Loc: L, Msg: "target does not support ARM mode" )) |
11669 | return true; |
11670 | |
11671 | if (isThumb()) |
11672 | SwitchMode(); |
11673 | getTargetStreamer().emitCode32(); |
11674 | getParser().getStreamer().emitCodeAlignment(Alignment: Align(4), STI: &getSTI(), MaxBytesToEmit: 0); |
11675 | return false; |
11676 | } |
11677 | |
11678 | void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) { |
11679 | // We need to flush the current implicit IT block on a label, because it is |
11680 | // not legal to branch into an IT block. |
11681 | flushPendingInstructions(Out&: getStreamer()); |
11682 | } |
11683 | |
11684 | void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { |
11685 | if (NextSymbolIsThumb) { |
11686 | getTargetStreamer().emitThumbFunc(Symbol); |
11687 | NextSymbolIsThumb = false; |
11688 | } |
11689 | } |
11690 | |
11691 | /// parseDirectiveThumbFunc |
11692 | /// ::= .thumbfunc symbol_name |
11693 | bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { |
11694 | MCAsmParser &Parser = getParser(); |
11695 | const auto Format = getContext().getObjectFileType(); |
11696 | bool IsMachO = Format == MCContext::IsMachO; |
11697 | |
11698 | // Darwin asm has (optionally) function name after .thumb_func direction |
11699 | // ELF doesn't |
11700 | |
11701 | if (IsMachO) { |
11702 | if (Parser.getTok().is(K: AsmToken::Identifier) || |
11703 | Parser.getTok().is(K: AsmToken::String)) { |
11704 | MCSymbol *Func = getParser().getContext().getOrCreateSymbol( |
11705 | Name: Parser.getTok().getIdentifier()); |
11706 | getTargetStreamer().emitThumbFunc(Symbol: Func); |
11707 | Parser.Lex(); |
11708 | if (parseEOL()) |
11709 | return true; |
11710 | return false; |
11711 | } |
11712 | } |
11713 | |
11714 | if (parseEOL()) |
11715 | return true; |
11716 | |
11717 | // .thumb_func implies .thumb |
11718 | if (!isThumb()) |
11719 | SwitchMode(); |
11720 | |
11721 | getTargetStreamer().emitCode16(); |
11722 | |
11723 | NextSymbolIsThumb = true; |
11724 | return false; |
11725 | } |
11726 | |
11727 | /// parseDirectiveSyntax |
11728 | /// ::= .syntax unified | divided |
11729 | bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { |
11730 | MCAsmParser &Parser = getParser(); |
11731 | const AsmToken &Tok = Parser.getTok(); |
11732 | if (Tok.isNot(K: AsmToken::Identifier)) { |
11733 | Error(L, Msg: "unexpected token in .syntax directive" ); |
11734 | return false; |
11735 | } |
11736 | |
11737 | StringRef Mode = Tok.getString(); |
11738 | Parser.Lex(); |
11739 | if (check(P: Mode == "divided" || Mode == "DIVIDED" , Loc: L, |
11740 | Msg: "'.syntax divided' arm assembly not supported" ) || |
11741 | check(P: Mode != "unified" && Mode != "UNIFIED" , Loc: L, |
11742 | Msg: "unrecognized syntax mode in .syntax directive" ) || |
11743 | parseEOL()) |
11744 | return true; |
11745 | |
11746 | // TODO tell the MC streamer the mode |
11747 | // getParser().getStreamer().Emit???(); |
11748 | return false; |
11749 | } |
11750 | |
11751 | /// parseDirectiveCode |
11752 | /// ::= .code 16 | 32 |
11753 | bool ARMAsmParser::parseDirectiveCode(SMLoc L) { |
11754 | MCAsmParser &Parser = getParser(); |
11755 | const AsmToken &Tok = Parser.getTok(); |
11756 | if (Tok.isNot(K: AsmToken::Integer)) |
11757 | return Error(L, Msg: "unexpected token in .code directive" ); |
11758 | int64_t Val = Parser.getTok().getIntVal(); |
11759 | if (Val != 16 && Val != 32) { |
11760 | Error(L, Msg: "invalid operand to .code directive" ); |
11761 | return false; |
11762 | } |
11763 | Parser.Lex(); |
11764 | |
11765 | if (parseEOL()) |
11766 | return true; |
11767 | |
11768 | if (Val == 16) { |
11769 | if (!hasThumb()) |
11770 | return Error(L, Msg: "target does not support Thumb mode" ); |
11771 | |
11772 | if (!isThumb()) |
11773 | SwitchMode(); |
11774 | getTargetStreamer().emitCode16(); |
11775 | } else { |
11776 | if (!hasARM()) |
11777 | return Error(L, Msg: "target does not support ARM mode" ); |
11778 | |
11779 | if (isThumb()) |
11780 | SwitchMode(); |
11781 | getTargetStreamer().emitCode32(); |
11782 | } |
11783 | |
11784 | return false; |
11785 | } |
11786 | |
11787 | /// parseDirectiveReq |
11788 | /// ::= name .req registername |
11789 | bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { |
11790 | MCAsmParser &Parser = getParser(); |
11791 | Parser.Lex(); // Eat the '.req' token. |
11792 | MCRegister Reg; |
11793 | SMLoc SRegLoc, ERegLoc; |
11794 | const bool parseResult = parseRegister(Reg, StartLoc&: SRegLoc, EndLoc&: ERegLoc); |
11795 | if (check(P: parseResult, Loc: SRegLoc, Msg: "register name expected" ) || parseEOL()) |
11796 | return true; |
11797 | |
11798 | if (RegisterReqs.insert(KV: std::make_pair(x&: Name, y&: Reg)).first->second != Reg) |
11799 | return Error(L: SRegLoc, |
11800 | Msg: "redefinition of '" + Name + "' does not match original." ); |
11801 | |
11802 | return false; |
11803 | } |
11804 | |
11805 | /// parseDirectiveUneq |
11806 | /// ::= .unreq registername |
11807 | bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { |
11808 | MCAsmParser &Parser = getParser(); |
11809 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
11810 | return Error(L, Msg: "unexpected input in .unreq directive." ); |
11811 | RegisterReqs.erase(Key: Parser.getTok().getIdentifier().lower()); |
11812 | Parser.Lex(); // Eat the identifier. |
11813 | return parseEOL(); |
11814 | } |
11815 | |
11816 | // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was |
11817 | // before, if supported by the new target, or emit mapping symbols for the mode |
11818 | // switch. |
11819 | void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { |
11820 | if (WasThumb != isThumb()) { |
11821 | if (WasThumb && hasThumb()) { |
11822 | // Stay in Thumb mode |
11823 | SwitchMode(); |
11824 | } else if (!WasThumb && hasARM()) { |
11825 | // Stay in ARM mode |
11826 | SwitchMode(); |
11827 | } else { |
11828 | // Mode switch forced, because the new arch doesn't support the old mode. |
11829 | if (isThumb()) |
11830 | getTargetStreamer().emitCode16(); |
11831 | else |
11832 | getTargetStreamer().emitCode32(); |
11833 | // Warn about the implcit mode switch. GAS does not switch modes here, |
11834 | // but instead stays in the old mode, reporting an error on any following |
11835 | // instructions as the mode does not exist on the target. |
11836 | Warning(L: Loc, Msg: Twine("new target does not support " ) + |
11837 | (WasThumb ? "thumb" : "arm" ) + " mode, switching to " + |
11838 | (!WasThumb ? "thumb" : "arm" ) + " mode" ); |
11839 | } |
11840 | } |
11841 | } |
11842 | |
11843 | /// parseDirectiveArch |
11844 | /// ::= .arch token |
11845 | bool ARMAsmParser::parseDirectiveArch(SMLoc L) { |
11846 | StringRef Arch = getParser().parseStringToEndOfStatement().trim(); |
11847 | ARM::ArchKind ID = ARM::parseArch(Arch); |
11848 | |
11849 | if (ID == ARM::ArchKind::INVALID) |
11850 | return Error(L, Msg: "Unknown arch name" ); |
11851 | |
11852 | bool WasThumb = isThumb(); |
11853 | MCSubtargetInfo &STI = copySTI(); |
11854 | STI.setDefaultFeatures(CPU: "" , /*TuneCPU*/ "" , |
11855 | FS: ("+" + ARM::getArchName(AK: ID)).str()); |
11856 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11857 | FixModeAfterArchChange(WasThumb, Loc: L); |
11858 | |
11859 | getTargetStreamer().emitArch(Arch: ID); |
11860 | return false; |
11861 | } |
11862 | |
11863 | /// parseDirectiveEabiAttr |
11864 | /// ::= .eabi_attribute int, int [, "str"] |
11865 | /// ::= .eabi_attribute Tag_name, int [, "str"] |
11866 | bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { |
11867 | MCAsmParser &Parser = getParser(); |
11868 | int64_t Tag; |
11869 | SMLoc TagLoc; |
11870 | TagLoc = Parser.getTok().getLoc(); |
11871 | if (Parser.getTok().is(K: AsmToken::Identifier)) { |
11872 | StringRef Name = Parser.getTok().getIdentifier(); |
11873 | std::optional<unsigned> Ret = ELFAttrs::attrTypeFromString( |
11874 | tag: Name, tagNameMap: ARMBuildAttrs::getARMAttributeTags()); |
11875 | if (!Ret) { |
11876 | Error(L: TagLoc, Msg: "attribute name not recognised: " + Name); |
11877 | return false; |
11878 | } |
11879 | Tag = *Ret; |
11880 | Parser.Lex(); |
11881 | } else { |
11882 | const MCExpr *AttrExpr; |
11883 | |
11884 | TagLoc = Parser.getTok().getLoc(); |
11885 | if (Parser.parseExpression(Res&: AttrExpr)) |
11886 | return true; |
11887 | |
11888 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: AttrExpr); |
11889 | if (check(P: !CE, Loc: TagLoc, Msg: "expected numeric constant" )) |
11890 | return true; |
11891 | |
11892 | Tag = CE->getValue(); |
11893 | } |
11894 | |
11895 | if (Parser.parseComma()) |
11896 | return true; |
11897 | |
11898 | StringRef StringValue = "" ; |
11899 | bool IsStringValue = false; |
11900 | |
11901 | int64_t IntegerValue = 0; |
11902 | bool IsIntegerValue = false; |
11903 | |
11904 | if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) |
11905 | IsStringValue = true; |
11906 | else if (Tag == ARMBuildAttrs::compatibility) { |
11907 | IsStringValue = true; |
11908 | IsIntegerValue = true; |
11909 | } else if (Tag < 32 || Tag % 2 == 0) |
11910 | IsIntegerValue = true; |
11911 | else if (Tag % 2 == 1) |
11912 | IsStringValue = true; |
11913 | else |
11914 | llvm_unreachable("invalid tag type" ); |
11915 | |
11916 | if (IsIntegerValue) { |
11917 | const MCExpr *ValueExpr; |
11918 | SMLoc ValueExprLoc = Parser.getTok().getLoc(); |
11919 | if (Parser.parseExpression(Res&: ValueExpr)) |
11920 | return true; |
11921 | |
11922 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: ValueExpr); |
11923 | if (!CE) |
11924 | return Error(L: ValueExprLoc, Msg: "expected numeric constant" ); |
11925 | IntegerValue = CE->getValue(); |
11926 | } |
11927 | |
11928 | if (Tag == ARMBuildAttrs::compatibility) { |
11929 | if (Parser.parseComma()) |
11930 | return true; |
11931 | } |
11932 | |
11933 | std::string EscapedValue; |
11934 | if (IsStringValue) { |
11935 | if (Parser.getTok().isNot(K: AsmToken::String)) |
11936 | return Error(L: Parser.getTok().getLoc(), Msg: "bad string constant" ); |
11937 | |
11938 | if (Tag == ARMBuildAttrs::also_compatible_with) { |
11939 | if (Parser.parseEscapedString(Data&: EscapedValue)) |
11940 | return Error(L: Parser.getTok().getLoc(), Msg: "bad escaped string constant" ); |
11941 | |
11942 | StringValue = EscapedValue; |
11943 | } else { |
11944 | StringValue = Parser.getTok().getStringContents(); |
11945 | Parser.Lex(); |
11946 | } |
11947 | } |
11948 | |
11949 | if (Parser.parseEOL()) |
11950 | return true; |
11951 | |
11952 | if (IsIntegerValue && IsStringValue) { |
11953 | assert(Tag == ARMBuildAttrs::compatibility); |
11954 | getTargetStreamer().emitIntTextAttribute(Attribute: Tag, IntValue: IntegerValue, StringValue); |
11955 | } else if (IsIntegerValue) |
11956 | getTargetStreamer().emitAttribute(Attribute: Tag, Value: IntegerValue); |
11957 | else if (IsStringValue) |
11958 | getTargetStreamer().emitTextAttribute(Attribute: Tag, String: StringValue); |
11959 | return false; |
11960 | } |
11961 | |
11962 | /// parseDirectiveCPU |
11963 | /// ::= .cpu str |
11964 | bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { |
11965 | StringRef CPU = getParser().parseStringToEndOfStatement().trim(); |
11966 | getTargetStreamer().emitTextAttribute(Attribute: ARMBuildAttrs::CPU_name, String: CPU); |
11967 | |
11968 | // FIXME: This is using table-gen data, but should be moved to |
11969 | // ARMTargetParser once that is table-gen'd. |
11970 | if (!getSTI().isCPUStringValid(CPU)) |
11971 | return Error(L, Msg: "Unknown CPU name" ); |
11972 | |
11973 | bool WasThumb = isThumb(); |
11974 | MCSubtargetInfo &STI = copySTI(); |
11975 | STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, FS: "" ); |
11976 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11977 | FixModeAfterArchChange(WasThumb, Loc: L); |
11978 | |
11979 | return false; |
11980 | } |
11981 | |
11982 | /// parseDirectiveFPU |
11983 | /// ::= .fpu str |
11984 | bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { |
11985 | SMLoc FPUNameLoc = getTok().getLoc(); |
11986 | StringRef FPU = getParser().parseStringToEndOfStatement().trim(); |
11987 | |
11988 | ARM::FPUKind ID = ARM::parseFPU(FPU); |
11989 | std::vector<StringRef> Features; |
11990 | if (!ARM::getFPUFeatures(FPUKind: ID, Features)) |
11991 | return Error(L: FPUNameLoc, Msg: "Unknown FPU name" ); |
11992 | |
11993 | MCSubtargetInfo &STI = copySTI(); |
11994 | for (auto Feature : Features) |
11995 | STI.ApplyFeatureFlag(FS: Feature); |
11996 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
11997 | |
11998 | getTargetStreamer().emitFPU(FPU: ID); |
11999 | return false; |
12000 | } |
12001 | |
12002 | /// parseDirectiveFnStart |
12003 | /// ::= .fnstart |
12004 | bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { |
12005 | if (parseEOL()) |
12006 | return true; |
12007 | |
12008 | if (UC.hasFnStart()) { |
12009 | Error(L, Msg: ".fnstart starts before the end of previous one" ); |
12010 | UC.emitFnStartLocNotes(); |
12011 | return true; |
12012 | } |
12013 | |
12014 | // Reset the unwind directives parser state |
12015 | UC.reset(); |
12016 | |
12017 | getTargetStreamer().emitFnStart(); |
12018 | |
12019 | UC.recordFnStart(L); |
12020 | return false; |
12021 | } |
12022 | |
12023 | /// parseDirectiveFnEnd |
12024 | /// ::= .fnend |
12025 | bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { |
12026 | if (parseEOL()) |
12027 | return true; |
12028 | // Check the ordering of unwind directives |
12029 | if (!UC.hasFnStart()) |
12030 | return Error(L, Msg: ".fnstart must precede .fnend directive" ); |
12031 | |
12032 | // Reset the unwind directives parser state |
12033 | getTargetStreamer().emitFnEnd(); |
12034 | |
12035 | UC.reset(); |
12036 | return false; |
12037 | } |
12038 | |
12039 | /// parseDirectiveCantUnwind |
12040 | /// ::= .cantunwind |
12041 | bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { |
12042 | if (parseEOL()) |
12043 | return true; |
12044 | |
12045 | UC.recordCantUnwind(L); |
12046 | // Check the ordering of unwind directives |
12047 | if (check(P: !UC.hasFnStart(), Loc: L, Msg: ".fnstart must precede .cantunwind directive" )) |
12048 | return true; |
12049 | |
12050 | if (UC.hasHandlerData()) { |
12051 | Error(L, Msg: ".cantunwind can't be used with .handlerdata directive" ); |
12052 | UC.emitHandlerDataLocNotes(); |
12053 | return true; |
12054 | } |
12055 | if (UC.hasPersonality()) { |
12056 | Error(L, Msg: ".cantunwind can't be used with .personality directive" ); |
12057 | UC.emitPersonalityLocNotes(); |
12058 | return true; |
12059 | } |
12060 | |
12061 | getTargetStreamer().emitCantUnwind(); |
12062 | return false; |
12063 | } |
12064 | |
12065 | /// parseDirectivePersonality |
12066 | /// ::= .personality name |
12067 | bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { |
12068 | MCAsmParser &Parser = getParser(); |
12069 | bool HasExistingPersonality = UC.hasPersonality(); |
12070 | |
12071 | // Parse the name of the personality routine |
12072 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
12073 | return Error(L, Msg: "unexpected input in .personality directive." ); |
12074 | StringRef Name(Parser.getTok().getIdentifier()); |
12075 | Parser.Lex(); |
12076 | |
12077 | if (parseEOL()) |
12078 | return true; |
12079 | |
12080 | UC.recordPersonality(L); |
12081 | |
12082 | // Check the ordering of unwind directives |
12083 | if (!UC.hasFnStart()) |
12084 | return Error(L, Msg: ".fnstart must precede .personality directive" ); |
12085 | if (UC.cantUnwind()) { |
12086 | Error(L, Msg: ".personality can't be used with .cantunwind directive" ); |
12087 | UC.emitCantUnwindLocNotes(); |
12088 | return true; |
12089 | } |
12090 | if (UC.hasHandlerData()) { |
12091 | Error(L, Msg: ".personality must precede .handlerdata directive" ); |
12092 | UC.emitHandlerDataLocNotes(); |
12093 | return true; |
12094 | } |
12095 | if (HasExistingPersonality) { |
12096 | Error(L, Msg: "multiple personality directives" ); |
12097 | UC.emitPersonalityLocNotes(); |
12098 | return true; |
12099 | } |
12100 | |
12101 | MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); |
12102 | getTargetStreamer().emitPersonality(Personality: PR); |
12103 | return false; |
12104 | } |
12105 | |
12106 | /// parseDirectiveHandlerData |
12107 | /// ::= .handlerdata |
12108 | bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { |
12109 | if (parseEOL()) |
12110 | return true; |
12111 | |
12112 | UC.recordHandlerData(L); |
12113 | // Check the ordering of unwind directives |
12114 | if (!UC.hasFnStart()) |
12115 | return Error(L, Msg: ".fnstart must precede .personality directive" ); |
12116 | if (UC.cantUnwind()) { |
12117 | Error(L, Msg: ".handlerdata can't be used with .cantunwind directive" ); |
12118 | UC.emitCantUnwindLocNotes(); |
12119 | return true; |
12120 | } |
12121 | |
12122 | getTargetStreamer().emitHandlerData(); |
12123 | return false; |
12124 | } |
12125 | |
12126 | /// parseDirectiveSetFP |
12127 | /// ::= .setfp fpreg, spreg [, offset] |
12128 | bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { |
12129 | MCAsmParser &Parser = getParser(); |
12130 | // Check the ordering of unwind directives |
12131 | if (check(P: !UC.hasFnStart(), Loc: L, Msg: ".fnstart must precede .setfp directive" ) || |
12132 | check(P: UC.hasHandlerData(), Loc: L, |
12133 | Msg: ".setfp must precede .handlerdata directive" )) |
12134 | return true; |
12135 | |
12136 | // Parse fpreg |
12137 | SMLoc FPRegLoc = Parser.getTok().getLoc(); |
12138 | MCRegister FPReg = tryParseRegister(); |
12139 | |
12140 | if (check(P: !FPReg, Loc: FPRegLoc, Msg: "frame pointer register expected" ) || |
12141 | Parser.parseComma()) |
12142 | return true; |
12143 | |
12144 | // Parse spreg |
12145 | SMLoc SPRegLoc = Parser.getTok().getLoc(); |
12146 | MCRegister SPReg = tryParseRegister(); |
12147 | if (check(P: !SPReg, Loc: SPRegLoc, Msg: "stack pointer register expected" ) || |
12148 | check(P: SPReg != ARM::SP && SPReg != UC.getFPReg(), Loc: SPRegLoc, |
12149 | Msg: "register should be either $sp or the latest fp register" )) |
12150 | return true; |
12151 | |
12152 | // Update the frame pointer register |
12153 | UC.saveFPReg(Reg: FPReg); |
12154 | |
12155 | // Parse offset |
12156 | int64_t Offset = 0; |
12157 | if (Parser.parseOptionalToken(T: AsmToken::Comma)) { |
12158 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
12159 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
12160 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
12161 | Parser.Lex(); // skip hash token. |
12162 | |
12163 | const MCExpr *OffsetExpr; |
12164 | SMLoc ExLoc = Parser.getTok().getLoc(); |
12165 | SMLoc EndLoc; |
12166 | if (getParser().parseExpression(Res&: OffsetExpr, EndLoc)) |
12167 | return Error(L: ExLoc, Msg: "malformed setfp offset" ); |
12168 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12169 | if (check(P: !CE, Loc: ExLoc, Msg: "setfp offset must be an immediate" )) |
12170 | return true; |
12171 | Offset = CE->getValue(); |
12172 | } |
12173 | |
12174 | if (Parser.parseEOL()) |
12175 | return true; |
12176 | |
12177 | getTargetStreamer().emitSetFP(FpReg: FPReg, SpReg: SPReg, Offset); |
12178 | return false; |
12179 | } |
12180 | |
12181 | /// parseDirectivePad |
12182 | /// ::= .pad offset |
12183 | bool ARMAsmParser::parseDirectivePad(SMLoc L) { |
12184 | MCAsmParser &Parser = getParser(); |
12185 | // Check the ordering of unwind directives |
12186 | if (!UC.hasFnStart()) |
12187 | return Error(L, Msg: ".fnstart must precede .pad directive" ); |
12188 | if (UC.hasHandlerData()) |
12189 | return Error(L, Msg: ".pad must precede .handlerdata directive" ); |
12190 | |
12191 | // Parse the offset |
12192 | if (Parser.getTok().isNot(K: AsmToken::Hash) && |
12193 | Parser.getTok().isNot(K: AsmToken::Dollar)) |
12194 | return Error(L: Parser.getTok().getLoc(), Msg: "'#' expected" ); |
12195 | Parser.Lex(); // skip hash token. |
12196 | |
12197 | const MCExpr *OffsetExpr; |
12198 | SMLoc ExLoc = Parser.getTok().getLoc(); |
12199 | SMLoc EndLoc; |
12200 | if (getParser().parseExpression(Res&: OffsetExpr, EndLoc)) |
12201 | return Error(L: ExLoc, Msg: "malformed pad offset" ); |
12202 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12203 | if (!CE) |
12204 | return Error(L: ExLoc, Msg: "pad offset must be an immediate" ); |
12205 | |
12206 | if (parseEOL()) |
12207 | return true; |
12208 | |
12209 | getTargetStreamer().emitPad(Offset: CE->getValue()); |
12210 | return false; |
12211 | } |
12212 | |
12213 | /// parseDirectiveRegSave |
12214 | /// ::= .save { registers } |
12215 | /// ::= .vsave { registers } |
12216 | bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { |
12217 | // Check the ordering of unwind directives |
12218 | if (!UC.hasFnStart()) |
12219 | return Error(L, Msg: ".fnstart must precede .save or .vsave directives" ); |
12220 | if (UC.hasHandlerData()) |
12221 | return Error(L, Msg: ".save or .vsave must precede .handlerdata directive" ); |
12222 | |
12223 | // RAII object to make sure parsed operands are deleted. |
12224 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12225 | |
12226 | // Parse the register list |
12227 | if (parseRegisterList(Operands, EnforceOrder: true, AllowRAAC: true) || parseEOL()) |
12228 | return true; |
12229 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12230 | if (!IsVector && !Op.isRegList()) |
12231 | return Error(L, Msg: ".save expects GPR registers" ); |
12232 | if (IsVector && !Op.isDPRRegList()) |
12233 | return Error(L, Msg: ".vsave expects DPR registers" ); |
12234 | |
12235 | getTargetStreamer().emitRegSave(RegList: Op.getRegList(), isVector: IsVector); |
12236 | return false; |
12237 | } |
12238 | |
12239 | /// parseDirectiveInst |
12240 | /// ::= .inst opcode [, ...] |
12241 | /// ::= .inst.n opcode [, ...] |
12242 | /// ::= .inst.w opcode [, ...] |
12243 | bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { |
12244 | int Width = 4; |
12245 | |
12246 | if (isThumb()) { |
12247 | switch (Suffix) { |
12248 | case 'n': |
12249 | Width = 2; |
12250 | break; |
12251 | case 'w': |
12252 | break; |
12253 | default: |
12254 | Width = 0; |
12255 | break; |
12256 | } |
12257 | } else { |
12258 | if (Suffix) |
12259 | return Error(L: Loc, Msg: "width suffixes are invalid in ARM mode" ); |
12260 | } |
12261 | |
12262 | auto parseOne = [&]() -> bool { |
12263 | const MCExpr *Expr; |
12264 | if (getParser().parseExpression(Res&: Expr)) |
12265 | return true; |
12266 | const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Val: Expr); |
12267 | if (!Value) { |
12268 | return Error(L: Loc, Msg: "expected constant expression" ); |
12269 | } |
12270 | |
12271 | char CurSuffix = Suffix; |
12272 | switch (Width) { |
12273 | case 2: |
12274 | if (Value->getValue() > 0xffff) |
12275 | return Error(L: Loc, Msg: "inst.n operand is too big, use inst.w instead" ); |
12276 | break; |
12277 | case 4: |
12278 | if (Value->getValue() > 0xffffffff) |
12279 | return Error(L: Loc, Msg: StringRef(Suffix ? "inst.w" : "inst" ) + |
12280 | " operand is too big" ); |
12281 | break; |
12282 | case 0: |
12283 | // Thumb mode, no width indicated. Guess from the opcode, if possible. |
12284 | if (Value->getValue() < 0xe800) |
12285 | CurSuffix = 'n'; |
12286 | else if (Value->getValue() >= 0xe8000000) |
12287 | CurSuffix = 'w'; |
12288 | else |
12289 | return Error(L: Loc, Msg: "cannot determine Thumb instruction size, " |
12290 | "use inst.n/inst.w instead" ); |
12291 | break; |
12292 | default: |
12293 | llvm_unreachable("only supported widths are 2 and 4" ); |
12294 | } |
12295 | |
12296 | getTargetStreamer().emitInst(Inst: Value->getValue(), Suffix: CurSuffix); |
12297 | forwardITPosition(); |
12298 | forwardVPTPosition(); |
12299 | return false; |
12300 | }; |
12301 | |
12302 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) |
12303 | return Error(L: Loc, Msg: "expected expression following directive" ); |
12304 | if (parseMany(parseOne)) |
12305 | return true; |
12306 | return false; |
12307 | } |
12308 | |
12309 | /// parseDirectiveLtorg |
12310 | /// ::= .ltorg | .pool |
12311 | bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { |
12312 | if (parseEOL()) |
12313 | return true; |
12314 | getTargetStreamer().emitCurrentConstantPool(); |
12315 | return false; |
12316 | } |
12317 | |
12318 | bool ARMAsmParser::parseDirectiveEven(SMLoc L) { |
12319 | const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
12320 | |
12321 | if (parseEOL()) |
12322 | return true; |
12323 | |
12324 | if (!Section) { |
12325 | getStreamer().initSections(NoExecStack: false, STI: getSTI()); |
12326 | Section = getStreamer().getCurrentSectionOnly(); |
12327 | } |
12328 | |
12329 | assert(Section && "must have section to emit alignment" ); |
12330 | if (Section->useCodeAlign()) |
12331 | getStreamer().emitCodeAlignment(Alignment: Align(2), STI: &getSTI()); |
12332 | else |
12333 | getStreamer().emitValueToAlignment(Alignment: Align(2)); |
12334 | |
12335 | return false; |
12336 | } |
12337 | |
12338 | /// parseDirectivePersonalityIndex |
12339 | /// ::= .personalityindex index |
12340 | bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { |
12341 | MCAsmParser &Parser = getParser(); |
12342 | bool HasExistingPersonality = UC.hasPersonality(); |
12343 | |
12344 | const MCExpr *IndexExpression; |
12345 | SMLoc IndexLoc = Parser.getTok().getLoc(); |
12346 | if (Parser.parseExpression(Res&: IndexExpression) || parseEOL()) { |
12347 | return true; |
12348 | } |
12349 | |
12350 | UC.recordPersonalityIndex(L); |
12351 | |
12352 | if (!UC.hasFnStart()) { |
12353 | return Error(L, Msg: ".fnstart must precede .personalityindex directive" ); |
12354 | } |
12355 | if (UC.cantUnwind()) { |
12356 | Error(L, Msg: ".personalityindex cannot be used with .cantunwind" ); |
12357 | UC.emitCantUnwindLocNotes(); |
12358 | return true; |
12359 | } |
12360 | if (UC.hasHandlerData()) { |
12361 | Error(L, Msg: ".personalityindex must precede .handlerdata directive" ); |
12362 | UC.emitHandlerDataLocNotes(); |
12363 | return true; |
12364 | } |
12365 | if (HasExistingPersonality) { |
12366 | Error(L, Msg: "multiple personality directives" ); |
12367 | UC.emitPersonalityLocNotes(); |
12368 | return true; |
12369 | } |
12370 | |
12371 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: IndexExpression); |
12372 | if (!CE) |
12373 | return Error(L: IndexLoc, Msg: "index must be a constant number" ); |
12374 | if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) |
12375 | return Error(L: IndexLoc, |
12376 | Msg: "personality routine index should be in range [0-3]" ); |
12377 | |
12378 | getTargetStreamer().emitPersonalityIndex(Index: CE->getValue()); |
12379 | return false; |
12380 | } |
12381 | |
12382 | /// parseDirectiveUnwindRaw |
12383 | /// ::= .unwind_raw offset, opcode [, opcode...] |
12384 | bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { |
12385 | MCAsmParser &Parser = getParser(); |
12386 | int64_t StackOffset; |
12387 | const MCExpr *OffsetExpr; |
12388 | SMLoc OffsetLoc = getLexer().getLoc(); |
12389 | |
12390 | if (!UC.hasFnStart()) |
12391 | return Error(L, Msg: ".fnstart must precede .unwind_raw directives" ); |
12392 | if (getParser().parseExpression(Res&: OffsetExpr)) |
12393 | return Error(L: OffsetLoc, Msg: "expected expression" ); |
12394 | |
12395 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12396 | if (!CE) |
12397 | return Error(L: OffsetLoc, Msg: "offset must be a constant" ); |
12398 | |
12399 | StackOffset = CE->getValue(); |
12400 | |
12401 | if (Parser.parseComma()) |
12402 | return true; |
12403 | |
12404 | SmallVector<uint8_t, 16> Opcodes; |
12405 | |
12406 | auto parseOne = [&]() -> bool { |
12407 | const MCExpr *OE = nullptr; |
12408 | SMLoc OpcodeLoc = getLexer().getLoc(); |
12409 | if (check(P: getLexer().is(K: AsmToken::EndOfStatement) || |
12410 | Parser.parseExpression(Res&: OE), |
12411 | Loc: OpcodeLoc, Msg: "expected opcode expression" )) |
12412 | return true; |
12413 | const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(Val: OE); |
12414 | if (!OC) |
12415 | return Error(L: OpcodeLoc, Msg: "opcode value must be a constant" ); |
12416 | const int64_t Opcode = OC->getValue(); |
12417 | if (Opcode & ~0xff) |
12418 | return Error(L: OpcodeLoc, Msg: "invalid opcode" ); |
12419 | Opcodes.push_back(Elt: uint8_t(Opcode)); |
12420 | return false; |
12421 | }; |
12422 | |
12423 | // Must have at least 1 element |
12424 | SMLoc OpcodeLoc = getLexer().getLoc(); |
12425 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) |
12426 | return Error(L: OpcodeLoc, Msg: "expected opcode expression" ); |
12427 | if (parseMany(parseOne)) |
12428 | return true; |
12429 | |
12430 | getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); |
12431 | return false; |
12432 | } |
12433 | |
12434 | /// parseDirectiveTLSDescSeq |
12435 | /// ::= .tlsdescseq tls-variable |
12436 | bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { |
12437 | MCAsmParser &Parser = getParser(); |
12438 | |
12439 | if (getLexer().isNot(K: AsmToken::Identifier)) |
12440 | return TokError(Msg: "expected variable after '.tlsdescseq' directive" ); |
12441 | |
12442 | auto *Sym = getContext().getOrCreateSymbol(Name: Parser.getTok().getIdentifier()); |
12443 | const auto *SRE = |
12444 | MCSymbolRefExpr::create(Symbol: Sym, specifier: ARM::S_TLSDESCSEQ, Ctx&: getContext()); |
12445 | Lex(); |
12446 | |
12447 | if (parseEOL()) |
12448 | return true; |
12449 | |
12450 | getTargetStreamer().annotateTLSDescriptorSequence(SRE); |
12451 | return false; |
12452 | } |
12453 | |
12454 | /// parseDirectiveMovSP |
12455 | /// ::= .movsp reg [, #offset] |
12456 | bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { |
12457 | MCAsmParser &Parser = getParser(); |
12458 | if (!UC.hasFnStart()) |
12459 | return Error(L, Msg: ".fnstart must precede .movsp directives" ); |
12460 | if (UC.getFPReg() != ARM::SP) |
12461 | return Error(L, Msg: "unexpected .movsp directive" ); |
12462 | |
12463 | SMLoc SPRegLoc = Parser.getTok().getLoc(); |
12464 | MCRegister SPReg = tryParseRegister(); |
12465 | if (!SPReg) |
12466 | return Error(L: SPRegLoc, Msg: "register expected" ); |
12467 | if (SPReg == ARM::SP || SPReg == ARM::PC) |
12468 | return Error(L: SPRegLoc, Msg: "sp and pc are not permitted in .movsp directive" ); |
12469 | |
12470 | int64_t Offset = 0; |
12471 | if (Parser.parseOptionalToken(T: AsmToken::Comma)) { |
12472 | if (Parser.parseToken(T: AsmToken::Hash, Msg: "expected #constant" )) |
12473 | return true; |
12474 | |
12475 | const MCExpr *OffsetExpr; |
12476 | SMLoc OffsetLoc = Parser.getTok().getLoc(); |
12477 | |
12478 | if (Parser.parseExpression(Res&: OffsetExpr)) |
12479 | return Error(L: OffsetLoc, Msg: "malformed offset expression" ); |
12480 | |
12481 | const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: OffsetExpr); |
12482 | if (!CE) |
12483 | return Error(L: OffsetLoc, Msg: "offset must be an immediate constant" ); |
12484 | |
12485 | Offset = CE->getValue(); |
12486 | } |
12487 | |
12488 | if (parseEOL()) |
12489 | return true; |
12490 | |
12491 | getTargetStreamer().emitMovSP(Reg: SPReg, Offset); |
12492 | UC.saveFPReg(Reg: SPReg); |
12493 | |
12494 | return false; |
12495 | } |
12496 | |
12497 | /// parseDirectiveObjectArch |
12498 | /// ::= .object_arch name |
12499 | bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { |
12500 | MCAsmParser &Parser = getParser(); |
12501 | if (getLexer().isNot(K: AsmToken::Identifier)) |
12502 | return Error(L: getLexer().getLoc(), Msg: "unexpected token" ); |
12503 | |
12504 | StringRef Arch = Parser.getTok().getString(); |
12505 | SMLoc ArchLoc = Parser.getTok().getLoc(); |
12506 | Lex(); |
12507 | |
12508 | ARM::ArchKind ID = ARM::parseArch(Arch); |
12509 | |
12510 | if (ID == ARM::ArchKind::INVALID) |
12511 | return Error(L: ArchLoc, Msg: "unknown architecture '" + Arch + "'" ); |
12512 | if (parseToken(T: AsmToken::EndOfStatement)) |
12513 | return true; |
12514 | |
12515 | getTargetStreamer().emitObjectArch(Arch: ID); |
12516 | return false; |
12517 | } |
12518 | |
12519 | /// parseDirectiveAlign |
12520 | /// ::= .align |
12521 | bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { |
12522 | // NOTE: if this is not the end of the statement, fall back to the target |
12523 | // agnostic handling for this directive which will correctly handle this. |
12524 | if (parseOptionalToken(T: AsmToken::EndOfStatement)) { |
12525 | // '.align' is target specifically handled to mean 2**2 byte alignment. |
12526 | const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
12527 | assert(Section && "must have section to emit alignment" ); |
12528 | if (Section->useCodeAlign()) |
12529 | getStreamer().emitCodeAlignment(Alignment: Align(4), STI: &getSTI(), MaxBytesToEmit: 0); |
12530 | else |
12531 | getStreamer().emitValueToAlignment(Alignment: Align(4), Value: 0, ValueSize: 1, MaxBytesToEmit: 0); |
12532 | return false; |
12533 | } |
12534 | return true; |
12535 | } |
12536 | |
12537 | /// parseDirectiveThumbSet |
12538 | /// ::= .thumb_set name, value |
12539 | bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { |
12540 | MCAsmParser &Parser = getParser(); |
12541 | |
12542 | StringRef Name; |
12543 | if (check(P: Parser.parseIdentifier(Res&: Name), |
12544 | Msg: "expected identifier after '.thumb_set'" ) || |
12545 | Parser.parseComma()) |
12546 | return true; |
12547 | |
12548 | MCSymbol *Sym; |
12549 | const MCExpr *Value; |
12550 | if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, |
12551 | Parser, Symbol&: Sym, Value)) |
12552 | return true; |
12553 | |
12554 | getTargetStreamer().emitThumbSet(Symbol: Sym, Value); |
12555 | return false; |
12556 | } |
12557 | |
12558 | /// parseDirectiveSEHAllocStack |
12559 | /// ::= .seh_stackalloc |
12560 | /// ::= .seh_stackalloc_w |
12561 | bool ARMAsmParser::parseDirectiveSEHAllocStack(SMLoc L, bool Wide) { |
12562 | int64_t Size; |
12563 | if (parseImmExpr(Out&: Size)) |
12564 | return true; |
12565 | getTargetStreamer().emitARMWinCFIAllocStack(Size, Wide); |
12566 | return false; |
12567 | } |
12568 | |
12569 | /// parseDirectiveSEHSaveRegs |
12570 | /// ::= .seh_save_regs |
12571 | /// ::= .seh_save_regs_w |
12572 | bool ARMAsmParser::parseDirectiveSEHSaveRegs(SMLoc L, bool Wide) { |
12573 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12574 | |
12575 | if (parseRegisterList(Operands) || parseEOL()) |
12576 | return true; |
12577 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12578 | if (!Op.isRegList()) |
12579 | return Error(L, Msg: ".seh_save_regs{_w} expects GPR registers" ); |
12580 | const SmallVectorImpl<MCRegister> &RegList = Op.getRegList(); |
12581 | uint32_t Mask = 0; |
12582 | for (size_t i = 0; i < RegList.size(); ++i) { |
12583 | unsigned Reg = MRI->getEncodingValue(Reg: RegList[i]); |
12584 | if (Reg == 15) // pc -> lr |
12585 | Reg = 14; |
12586 | if (Reg == 13) |
12587 | return Error(L, Msg: ".seh_save_regs{_w} can't include SP" ); |
12588 | assert(Reg < 16U && "Register out of range" ); |
12589 | unsigned Bit = (1u << Reg); |
12590 | Mask |= Bit; |
12591 | } |
12592 | if (!Wide && (Mask & 0x1f00) != 0) |
12593 | return Error(L, |
12594 | Msg: ".seh_save_regs cannot save R8-R12, needs .seh_save_regs_w" ); |
12595 | getTargetStreamer().emitARMWinCFISaveRegMask(Mask, Wide); |
12596 | return false; |
12597 | } |
12598 | |
12599 | /// parseDirectiveSEHSaveSP |
12600 | /// ::= .seh_save_sp |
12601 | bool ARMAsmParser::parseDirectiveSEHSaveSP(SMLoc L) { |
12602 | MCRegister Reg = tryParseRegister(); |
12603 | if (!Reg || !MRI->getRegClass(i: ARM::GPRRegClassID).contains(Reg)) |
12604 | return Error(L, Msg: "expected GPR" ); |
12605 | unsigned Index = MRI->getEncodingValue(Reg); |
12606 | if (Index > 14 || Index == 13) |
12607 | return Error(L, Msg: "invalid register for .seh_save_sp" ); |
12608 | getTargetStreamer().emitARMWinCFISaveSP(Reg: Index); |
12609 | return false; |
12610 | } |
12611 | |
12612 | /// parseDirectiveSEHSaveFRegs |
12613 | /// ::= .seh_save_fregs |
12614 | bool ARMAsmParser::parseDirectiveSEHSaveFRegs(SMLoc L) { |
12615 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
12616 | |
12617 | if (parseRegisterList(Operands) || parseEOL()) |
12618 | return true; |
12619 | ARMOperand &Op = (ARMOperand &)*Operands[0]; |
12620 | if (!Op.isDPRRegList()) |
12621 | return Error(L, Msg: ".seh_save_fregs expects DPR registers" ); |
12622 | const SmallVectorImpl<MCRegister> &RegList = Op.getRegList(); |
12623 | uint32_t Mask = 0; |
12624 | for (size_t i = 0; i < RegList.size(); ++i) { |
12625 | unsigned Reg = MRI->getEncodingValue(Reg: RegList[i]); |
12626 | assert(Reg < 32U && "Register out of range" ); |
12627 | unsigned Bit = (1u << Reg); |
12628 | Mask |= Bit; |
12629 | } |
12630 | |
12631 | if (Mask == 0) |
12632 | return Error(L, Msg: ".seh_save_fregs missing registers" ); |
12633 | |
12634 | unsigned First = 0; |
12635 | while ((Mask & 1) == 0) { |
12636 | First++; |
12637 | Mask >>= 1; |
12638 | } |
12639 | if (((Mask + 1) & Mask) != 0) |
12640 | return Error(L, |
12641 | Msg: ".seh_save_fregs must take a contiguous range of registers" ); |
12642 | unsigned Last = First; |
12643 | while ((Mask & 2) != 0) { |
12644 | Last++; |
12645 | Mask >>= 1; |
12646 | } |
12647 | if (First < 16 && Last >= 16) |
12648 | return Error(L, Msg: ".seh_save_fregs must be all d0-d15 or d16-d31" ); |
12649 | getTargetStreamer().emitARMWinCFISaveFRegs(First, Last); |
12650 | return false; |
12651 | } |
12652 | |
12653 | /// parseDirectiveSEHSaveLR |
12654 | /// ::= .seh_save_lr |
12655 | bool ARMAsmParser::parseDirectiveSEHSaveLR(SMLoc L) { |
12656 | int64_t Offset; |
12657 | if (parseImmExpr(Out&: Offset)) |
12658 | return true; |
12659 | getTargetStreamer().emitARMWinCFISaveLR(Offset); |
12660 | return false; |
12661 | } |
12662 | |
12663 | /// parseDirectiveSEHPrologEnd |
12664 | /// ::= .seh_endprologue |
12665 | /// ::= .seh_endprologue_fragment |
12666 | bool ARMAsmParser::parseDirectiveSEHPrologEnd(SMLoc L, bool Fragment) { |
12667 | getTargetStreamer().emitARMWinCFIPrologEnd(Fragment); |
12668 | return false; |
12669 | } |
12670 | |
12671 | /// parseDirectiveSEHNop |
12672 | /// ::= .seh_nop |
12673 | /// ::= .seh_nop_w |
12674 | bool ARMAsmParser::parseDirectiveSEHNop(SMLoc L, bool Wide) { |
12675 | getTargetStreamer().emitARMWinCFINop(Wide); |
12676 | return false; |
12677 | } |
12678 | |
12679 | /// parseDirectiveSEHEpilogStart |
12680 | /// ::= .seh_startepilogue |
12681 | /// ::= .seh_startepilogue_cond |
12682 | bool ARMAsmParser::parseDirectiveSEHEpilogStart(SMLoc L, bool Condition) { |
12683 | unsigned CC = ARMCC::AL; |
12684 | if (Condition) { |
12685 | MCAsmParser &Parser = getParser(); |
12686 | SMLoc S = Parser.getTok().getLoc(); |
12687 | const AsmToken &Tok = Parser.getTok(); |
12688 | if (!Tok.is(K: AsmToken::Identifier)) |
12689 | return Error(L: S, Msg: ".seh_startepilogue_cond missing condition" ); |
12690 | CC = ARMCondCodeFromString(CC: Tok.getString()); |
12691 | if (CC == ~0U) |
12692 | return Error(L: S, Msg: "invalid condition" ); |
12693 | Parser.Lex(); // Eat the token. |
12694 | } |
12695 | |
12696 | getTargetStreamer().emitARMWinCFIEpilogStart(Condition: CC); |
12697 | return false; |
12698 | } |
12699 | |
12700 | /// parseDirectiveSEHEpilogEnd |
12701 | /// ::= .seh_endepilogue |
12702 | bool ARMAsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) { |
12703 | getTargetStreamer().emitARMWinCFIEpilogEnd(); |
12704 | return false; |
12705 | } |
12706 | |
12707 | /// parseDirectiveSEHCustom |
12708 | /// ::= .seh_custom |
12709 | bool ARMAsmParser::parseDirectiveSEHCustom(SMLoc L) { |
12710 | unsigned Opcode = 0; |
12711 | do { |
12712 | int64_t Byte; |
12713 | if (parseImmExpr(Out&: Byte)) |
12714 | return true; |
12715 | if (Byte > 0xff || Byte < 0) |
12716 | return Error(L, Msg: "Invalid byte value in .seh_custom" ); |
12717 | if (Opcode > 0x00ffffff) |
12718 | return Error(L, Msg: "Too many bytes in .seh_custom" ); |
12719 | // Store the bytes as one big endian number in Opcode. In a multi byte |
12720 | // opcode sequence, the first byte can't be zero. |
12721 | Opcode = (Opcode << 8) | Byte; |
12722 | } while (parseOptionalToken(T: AsmToken::Comma)); |
12723 | getTargetStreamer().emitARMWinCFICustom(Opcode); |
12724 | return false; |
12725 | } |
12726 | |
12727 | /// Force static initialization. |
12728 | extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { |
12729 | RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); |
12730 | RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); |
12731 | RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); |
12732 | RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); |
12733 | } |
12734 | |
12735 | #define GET_REGISTER_MATCHER |
12736 | #define GET_SUBTARGET_FEATURE_NAME |
12737 | #define GET_MATCHER_IMPLEMENTATION |
12738 | #define GET_MNEMONIC_SPELL_CHECKER |
12739 | #include "ARMGenAsmMatcher.inc" |
12740 | |
12741 | // Some diagnostics need to vary with subtarget features, so they are handled |
12742 | // here. For example, the DPR class has either 16 or 32 registers, depending |
12743 | // on the FPU available. |
12744 | const char * |
12745 | ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { |
12746 | switch (MatchError) { |
12747 | // rGPR contains sp starting with ARMv8. |
12748 | case Match_rGPR: |
12749 | return hasV8Ops() ? "operand must be a register in range [r0, r14]" |
12750 | : "operand must be a register in range [r0, r12] or r14" ; |
12751 | // DPR contains 16 registers for some FPUs, and 32 for others. |
12752 | case Match_DPR: |
12753 | return hasD32() ? "operand must be a register in range [d0, d31]" |
12754 | : "operand must be a register in range [d0, d15]" ; |
12755 | case Match_DPR_RegList: |
12756 | return hasD32() ? "operand must be a list of registers in range [d0, d31]" |
12757 | : "operand must be a list of registers in range [d0, d15]" ; |
12758 | |
12759 | // For all other diags, use the static string from tablegen. |
12760 | default: |
12761 | return getMatchKindDiag(MatchResult: MatchError); |
12762 | } |
12763 | } |
12764 | |
12765 | // Process the list of near-misses, throwing away ones we don't want to report |
12766 | // to the user, and converting the rest to a source location and string that |
12767 | // should be reported. |
12768 | void |
12769 | ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
12770 | SmallVectorImpl<NearMissMessage> &NearMissesOut, |
12771 | SMLoc IDLoc, OperandVector &Operands) { |
12772 | // TODO: If operand didn't match, sub in a dummy one and run target |
12773 | // predicate, so that we can avoid reporting near-misses that are invalid? |
12774 | // TODO: Many operand types dont have SuperClasses set, so we report |
12775 | // redundant ones. |
12776 | // TODO: Some operands are superclasses of registers (e.g. |
12777 | // MCK_RegShiftedImm), we don't have any way to represent that currently. |
12778 | // TODO: This is not all ARM-specific, can some of it be factored out? |
12779 | |
12780 | // Record some information about near-misses that we have already seen, so |
12781 | // that we can avoid reporting redundant ones. For example, if there are |
12782 | // variants of an instruction that take 8- and 16-bit immediates, we want |
12783 | // to only report the widest one. |
12784 | std::multimap<unsigned, unsigned> OperandMissesSeen; |
12785 | SmallSet<FeatureBitset, 4> FeatureMissesSeen; |
12786 | bool ReportedTooFewOperands = false; |
12787 | |
12788 | unsigned MnemonicOpsEndInd = getMnemonicOpsEndInd(Operands); |
12789 | |
12790 | // Process the near-misses in reverse order, so that we see more general ones |
12791 | // first, and so can avoid emitting more specific ones. |
12792 | for (NearMissInfo &I : reverse(C&: NearMissesIn)) { |
12793 | switch (I.getKind()) { |
12794 | case NearMissInfo::NearMissOperand: { |
12795 | SMLoc OperandLoc = |
12796 | ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); |
12797 | const char *OperandDiag = |
12798 | getCustomOperandDiag(MatchError: (ARMMatchResultTy)I.getOperandError()); |
12799 | |
12800 | // If we have already emitted a message for a superclass, don't also report |
12801 | // the sub-class. We consider all operand classes that we don't have a |
12802 | // specialised diagnostic for to be equal for the propose of this check, |
12803 | // so that we don't report the generic error multiple times on the same |
12804 | // operand. |
12805 | unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; |
12806 | auto PrevReports = OperandMissesSeen.equal_range(x: I.getOperandIndex()); |
12807 | if (std::any_of(first: PrevReports.first, last: PrevReports.second, |
12808 | pred: [DupCheckMatchClass]( |
12809 | const std::pair<unsigned, unsigned> Pair) { |
12810 | if (DupCheckMatchClass == ~0U || Pair.second == ~0U) |
12811 | return Pair.second == DupCheckMatchClass; |
12812 | else |
12813 | return isSubclass(A: (MatchClassKind)DupCheckMatchClass, |
12814 | B: (MatchClassKind)Pair.second); |
12815 | })) |
12816 | break; |
12817 | OperandMissesSeen.insert( |
12818 | x: std::make_pair(x: I.getOperandIndex(), y&: DupCheckMatchClass)); |
12819 | |
12820 | NearMissMessage Message; |
12821 | Message.Loc = OperandLoc; |
12822 | if (OperandDiag) { |
12823 | Message.Message = OperandDiag; |
12824 | } else if (I.getOperandClass() == InvalidMatchClass) { |
12825 | Message.Message = "too many operands for instruction" ; |
12826 | } else { |
12827 | Message.Message = "invalid operand for instruction" ; |
12828 | LLVM_DEBUG( |
12829 | dbgs() << "Missing diagnostic string for operand class " |
12830 | << getMatchClassName((MatchClassKind)I.getOperandClass()) |
12831 | << I.getOperandClass() << ", error " << I.getOperandError() |
12832 | << ", opcode " << MII.getName(I.getOpcode()) << "\n" ); |
12833 | } |
12834 | NearMissesOut.emplace_back(Args&: Message); |
12835 | break; |
12836 | } |
12837 | case NearMissInfo::NearMissFeature: { |
12838 | const FeatureBitset &MissingFeatures = I.getFeatures(); |
12839 | // Don't report the same set of features twice. |
12840 | if (FeatureMissesSeen.count(V: MissingFeatures)) |
12841 | break; |
12842 | FeatureMissesSeen.insert(V: MissingFeatures); |
12843 | |
12844 | // Special case: don't report a feature set which includes arm-mode for |
12845 | // targets that don't have ARM mode. |
12846 | if (MissingFeatures.test(I: Feature_IsARMBit) && !hasARM()) |
12847 | break; |
12848 | // Don't report any near-misses that both require switching instruction |
12849 | // set, and adding other subtarget features. |
12850 | if (isThumb() && MissingFeatures.test(I: Feature_IsARMBit) && |
12851 | MissingFeatures.count() > 1) |
12852 | break; |
12853 | if (!isThumb() && MissingFeatures.test(I: Feature_IsThumbBit) && |
12854 | MissingFeatures.count() > 1) |
12855 | break; |
12856 | if (!isThumb() && MissingFeatures.test(I: Feature_IsThumb2Bit) && |
12857 | (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, |
12858 | Feature_IsThumbBit})).any()) |
12859 | break; |
12860 | if (isMClass() && MissingFeatures.test(I: Feature_HasNEONBit)) |
12861 | break; |
12862 | |
12863 | NearMissMessage Message; |
12864 | Message.Loc = IDLoc; |
12865 | raw_svector_ostream OS(Message.Message); |
12866 | |
12867 | OS << "instruction requires:" ; |
12868 | for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) |
12869 | if (MissingFeatures.test(I: i)) |
12870 | OS << ' ' << getSubtargetFeatureName(Val: i); |
12871 | |
12872 | NearMissesOut.emplace_back(Args&: Message); |
12873 | |
12874 | break; |
12875 | } |
12876 | case NearMissInfo::NearMissPredicate: { |
12877 | NearMissMessage Message; |
12878 | Message.Loc = IDLoc; |
12879 | switch (I.getPredicateError()) { |
12880 | case Match_RequiresNotITBlock: |
12881 | Message.Message = "flag setting instruction only valid outside IT block" ; |
12882 | break; |
12883 | case Match_RequiresITBlock: |
12884 | Message.Message = "instruction only valid inside IT block" ; |
12885 | break; |
12886 | case Match_RequiresV6: |
12887 | Message.Message = "instruction variant requires ARMv6 or later" ; |
12888 | break; |
12889 | case Match_RequiresThumb2: |
12890 | Message.Message = "instruction variant requires Thumb2" ; |
12891 | break; |
12892 | case Match_RequiresV8: |
12893 | Message.Message = "instruction variant requires ARMv8 or later" ; |
12894 | break; |
12895 | case Match_RequiresFlagSetting: |
12896 | Message.Message = "no flag-preserving variant of this instruction available" ; |
12897 | break; |
12898 | case Match_InvalidTiedOperand: { |
12899 | ARMOperand &Op = static_cast<ARMOperand &>(*Operands[0]); |
12900 | if (Op.isToken() && Op.getToken() == "mul" ) { |
12901 | Message.Message = "destination register must match a source register" ; |
12902 | Message.Loc = Operands[MnemonicOpsEndInd]->getStartLoc(); |
12903 | } else { |
12904 | llvm_unreachable("Match_InvalidTiedOperand only used for tMUL." ); |
12905 | } |
12906 | break; |
12907 | } |
12908 | case Match_InvalidOperand: |
12909 | Message.Message = "invalid operand for instruction" ; |
12910 | break; |
12911 | default: |
12912 | llvm_unreachable("Unhandled target predicate error" ); |
12913 | break; |
12914 | } |
12915 | NearMissesOut.emplace_back(Args&: Message); |
12916 | break; |
12917 | } |
12918 | case NearMissInfo::NearMissTooFewOperands: { |
12919 | if (!ReportedTooFewOperands) { |
12920 | SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); |
12921 | NearMissesOut.emplace_back(Args: NearMissMessage{ |
12922 | .Loc: EndLoc, .Message: StringRef("too few operands for instruction" )}); |
12923 | ReportedTooFewOperands = true; |
12924 | } |
12925 | break; |
12926 | } |
12927 | case NearMissInfo::NoNearMiss: |
12928 | // This should never leave the matcher. |
12929 | llvm_unreachable("not a near-miss" ); |
12930 | break; |
12931 | } |
12932 | } |
12933 | } |
12934 | |
12935 | void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, |
12936 | SMLoc IDLoc, OperandVector &Operands) { |
12937 | SmallVector<NearMissMessage, 4> Messages; |
12938 | FilterNearMisses(NearMissesIn&: NearMisses, NearMissesOut&: Messages, IDLoc, Operands); |
12939 | |
12940 | if (Messages.size() == 0) { |
12941 | // No near-misses were found, so the best we can do is "invalid |
12942 | // instruction". |
12943 | Error(L: IDLoc, Msg: "invalid instruction" ); |
12944 | } else if (Messages.size() == 1) { |
12945 | // One near miss was found, report it as the sole error. |
12946 | Error(L: Messages[0].Loc, Msg: Messages[0].Message); |
12947 | } else { |
12948 | // More than one near miss, so report a generic "invalid instruction" |
12949 | // error, followed by notes for each of the near-misses. |
12950 | Error(L: IDLoc, Msg: "invalid instruction, any one of the following would fix this:" ); |
12951 | for (auto &M : Messages) { |
12952 | Note(L: M.Loc, Msg: M.Message); |
12953 | } |
12954 | } |
12955 | } |
12956 | |
12957 | bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) { |
12958 | // FIXME: This structure should be moved inside ARMTargetParser |
12959 | // when we start to table-generate them, and we can use the ARM |
12960 | // flags below, that were generated by table-gen. |
12961 | static const struct { |
12962 | const uint64_t Kind; |
12963 | const FeatureBitset ArchCheck; |
12964 | const FeatureBitset Features; |
12965 | } Extensions[] = { |
12966 | {.Kind: ARM::AEK_CRC, .ArchCheck: {Feature_HasV8Bit}, .Features: {ARM::FeatureCRC}}, |
12967 | {.Kind: ARM::AEK_AES, |
12968 | .ArchCheck: {Feature_HasV8Bit}, |
12969 | .Features: {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12970 | {.Kind: ARM::AEK_SHA2, |
12971 | .ArchCheck: {Feature_HasV8Bit}, |
12972 | .Features: {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12973 | {.Kind: ARM::AEK_CRYPTO, |
12974 | .ArchCheck: {Feature_HasV8Bit}, |
12975 | .Features: {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}}, |
12976 | {.Kind: (ARM::AEK_DSP | ARM::AEK_MVE | ARM::AEK_FP), |
12977 | .ArchCheck: {Feature_HasV8_1MMainlineBit}, |
12978 | .Features: {ARM::HasMVEFloatOps}}, |
12979 | {.Kind: ARM::AEK_FP, |
12980 | .ArchCheck: {Feature_HasV8Bit}, |
12981 | .Features: {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, |
12982 | {.Kind: (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), |
12983 | .ArchCheck: {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
12984 | .Features: {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}}, |
12985 | {.Kind: ARM::AEK_MP, |
12986 | .ArchCheck: {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
12987 | .Features: {ARM::FeatureMP}}, |
12988 | {.Kind: ARM::AEK_SIMD, |
12989 | .ArchCheck: {Feature_HasV8Bit}, |
12990 | .Features: {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}}, |
12991 | {.Kind: ARM::AEK_SEC, .ArchCheck: {Feature_HasV6KBit}, .Features: {ARM::FeatureTrustZone}}, |
12992 | // FIXME: Only available in A-class, isel not predicated |
12993 | {.Kind: ARM::AEK_VIRT, .ArchCheck: {Feature_HasV7Bit}, .Features: {ARM::FeatureVirtualization}}, |
12994 | {.Kind: ARM::AEK_FP16, |
12995 | .ArchCheck: {Feature_HasV8_2aBit}, |
12996 | .Features: {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}}, |
12997 | {.Kind: ARM::AEK_RAS, .ArchCheck: {Feature_HasV8Bit}, .Features: {ARM::FeatureRAS}}, |
12998 | {.Kind: ARM::AEK_LOB, .ArchCheck: {Feature_HasV8_1MMainlineBit}, .Features: {ARM::FeatureLOB}}, |
12999 | {.Kind: ARM::AEK_PACBTI, .ArchCheck: {Feature_HasV8_1MMainlineBit}, .Features: {ARM::FeaturePACBTI}}, |
13000 | // FIXME: Unsupported extensions. |
13001 | {.Kind: ARM::AEK_OS, .ArchCheck: {}, .Features: {}}, |
13002 | {.Kind: ARM::AEK_IWMMXT, .ArchCheck: {}, .Features: {}}, |
13003 | {.Kind: ARM::AEK_IWMMXT2, .ArchCheck: {}, .Features: {}}, |
13004 | {.Kind: ARM::AEK_MAVERICK, .ArchCheck: {}, .Features: {}}, |
13005 | {.Kind: ARM::AEK_XSCALE, .ArchCheck: {}, .Features: {}}, |
13006 | }; |
13007 | bool EnableFeature = !Name.consume_front_insensitive(Prefix: "no" ); |
13008 | uint64_t FeatureKind = ARM::parseArchExt(ArchExt: Name); |
13009 | if (FeatureKind == ARM::AEK_INVALID) |
13010 | return Error(L: ExtLoc, Msg: "unknown architectural extension: " + Name); |
13011 | |
13012 | for (const auto &Extension : Extensions) { |
13013 | if (Extension.Kind != FeatureKind) |
13014 | continue; |
13015 | |
13016 | if (Extension.Features.none()) |
13017 | return Error(L: ExtLoc, Msg: "unsupported architectural extension: " + Name); |
13018 | |
13019 | if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) |
13020 | return Error(L: ExtLoc, Msg: "architectural extension '" + Name + |
13021 | "' is not " |
13022 | "allowed for the current base architecture" ); |
13023 | |
13024 | MCSubtargetInfo &STI = copySTI(); |
13025 | if (EnableFeature) { |
13026 | STI.SetFeatureBitsTransitively(Extension.Features); |
13027 | } else { |
13028 | STI.ClearFeatureBitsTransitively(FB: Extension.Features); |
13029 | } |
13030 | FeatureBitset Features = ComputeAvailableFeatures(FB: STI.getFeatureBits()); |
13031 | setAvailableFeatures(Features); |
13032 | return true; |
13033 | } |
13034 | return false; |
13035 | } |
13036 | |
13037 | /// parseDirectiveArchExtension |
13038 | /// ::= .arch_extension [no]feature |
13039 | bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { |
13040 | |
13041 | MCAsmParser &Parser = getParser(); |
13042 | |
13043 | if (getLexer().isNot(K: AsmToken::Identifier)) |
13044 | return Error(L: getLexer().getLoc(), Msg: "expected architecture extension name" ); |
13045 | |
13046 | StringRef Name = Parser.getTok().getString(); |
13047 | SMLoc ExtLoc = Parser.getTok().getLoc(); |
13048 | Lex(); |
13049 | |
13050 | if (parseEOL()) |
13051 | return true; |
13052 | |
13053 | if (Name == "nocrypto" ) { |
13054 | enableArchExtFeature(Name: "nosha2" , ExtLoc); |
13055 | enableArchExtFeature(Name: "noaes" , ExtLoc); |
13056 | } |
13057 | |
13058 | if (enableArchExtFeature(Name, ExtLoc)) |
13059 | return false; |
13060 | |
13061 | return Error(L: ExtLoc, Msg: "unknown architectural extension: " + Name); |
13062 | } |
13063 | |
13064 | // Define this matcher function after the auto-generated include so we |
13065 | // have the match class enum definitions. |
13066 | unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, |
13067 | unsigned Kind) { |
13068 | ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); |
13069 | // If the kind is a token for a literal immediate, check if our asm |
13070 | // operand matches. This is for InstAliases which have a fixed-value |
13071 | // immediate in the syntax. |
13072 | switch (Kind) { |
13073 | default: break; |
13074 | case MCK__HASH_0: |
13075 | if (Op.isImm()) |
13076 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13077 | if (CE->getValue() == 0) |
13078 | return Match_Success; |
13079 | break; |
13080 | case MCK__HASH_8: |
13081 | if (Op.isImm()) |
13082 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13083 | if (CE->getValue() == 8) |
13084 | return Match_Success; |
13085 | break; |
13086 | case MCK__HASH_16: |
13087 | if (Op.isImm()) |
13088 | if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val: Op.getImm())) |
13089 | if (CE->getValue() == 16) |
13090 | return Match_Success; |
13091 | break; |
13092 | case MCK_ModImm: |
13093 | if (Op.isImm()) { |
13094 | const MCExpr *SOExpr = Op.getImm(); |
13095 | int64_t Value; |
13096 | if (!SOExpr->evaluateAsAbsolute(Res&: Value)) |
13097 | return Match_Success; |
13098 | assert((Value >= std::numeric_limits<int32_t>::min() && |
13099 | Value <= std::numeric_limits<uint32_t>::max()) && |
13100 | "expression value must be representable in 32 bits" ); |
13101 | } |
13102 | break; |
13103 | case MCK_rGPR: |
13104 | if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) |
13105 | return Match_Success; |
13106 | return Match_rGPR; |
13107 | } |
13108 | return Match_InvalidOperand; |
13109 | } |
13110 | |
13111 | bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, |
13112 | StringRef ) { |
13113 | if (!hasMVE()) |
13114 | return false; |
13115 | |
13116 | if (MS.isVPTPredicableCDEInstr(Mnemonic) || |
13117 | (Mnemonic.starts_with(Prefix: "vldrh" ) && Mnemonic != "vldrhi" ) || |
13118 | (Mnemonic.starts_with(Prefix: "vmov" ) && |
13119 | !(ExtraToken == ".f16" || ExtraToken == ".32" || ExtraToken == ".16" || |
13120 | ExtraToken == ".8" )) || |
13121 | (Mnemonic.starts_with(Prefix: "vrint" ) && Mnemonic != "vrintr" ) || |
13122 | (Mnemonic.starts_with(Prefix: "vstrh" ) && Mnemonic != "vstrhi" )) |
13123 | return true; |
13124 | |
13125 | const char *predicable_prefixes[] = { |
13126 | "vabav" , "vabd" , "vabs" , "vadc" , "vadd" , |
13127 | "vaddlv" , "vaddv" , "vand" , "vbic" , "vbrsr" , |
13128 | "vcadd" , "vcls" , "vclz" , "vcmla" , "vcmp" , |
13129 | "vcmul" , "vctp" , "vcvt" , "vddup" , "vdup" , |
13130 | "vdwdup" , "veor" , "vfma" , "vfmas" , "vfms" , |
13131 | "vhadd" , "vhcadd" , "vhsub" , "vidup" , "viwdup" , |
13132 | "vldrb" , "vldrd" , "vldrw" , "vmax" , "vmaxa" , |
13133 | "vmaxav" , "vmaxnm" , "vmaxnma" , "vmaxnmav" , "vmaxnmv" , |
13134 | "vmaxv" , "vmin" , "vminav" , "vminnm" , "vminnmav" , |
13135 | "vminnmv" , "vminv" , "vmla" , "vmladav" , "vmlaldav" , |
13136 | "vmlalv" , "vmlas" , "vmlav" , "vmlsdav" , "vmlsldav" , |
13137 | "vmovlb" , "vmovlt" , "vmovnb" , "vmovnt" , "vmul" , |
13138 | "vmvn" , "vneg" , "vorn" , "vorr" , "vpnot" , |
13139 | "vpsel" , "vqabs" , "vqadd" , "vqdmladh" , "vqdmlah" , |
13140 | "vqdmlash" , "vqdmlsdh" , "vqdmulh" , "vqdmull" , "vqmovn" , |
13141 | "vqmovun" , "vqneg" , "vqrdmladh" , "vqrdmlah" , "vqrdmlash" , |
13142 | "vqrdmlsdh" , "vqrdmulh" , "vqrshl" , "vqrshrn" , "vqrshrun" , |
13143 | "vqshl" , "vqshrn" , "vqshrun" , "vqsub" , "vrev16" , |
13144 | "vrev32" , "vrev64" , "vrhadd" , "vrmlaldavh" , "vrmlalvh" , |
13145 | "vrmlsldavh" , "vrmulh" , "vrshl" , "vrshr" , "vrshrn" , |
13146 | "vsbc" , "vshl" , "vshlc" , "vshll" , "vshr" , |
13147 | "vshrn" , "vsli" , "vsri" , "vstrb" , "vstrd" , |
13148 | "vstrw" , "vsub" }; |
13149 | |
13150 | return any_of(Range&: predicable_prefixes, P: [&Mnemonic](const char *prefix) { |
13151 | return Mnemonic.starts_with(Prefix: prefix); |
13152 | }); |
13153 | } |
13154 | |
13155 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultCondCodeOp() { |
13156 | return ARMOperand::CreateCondCode(CC: ARMCC::AL, S: SMLoc(), Parser&: *this); |
13157 | } |
13158 | |
13159 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultCCOutOp() { |
13160 | return ARMOperand::CreateCCOut(Reg: 0, S: SMLoc(), Parser&: *this); |
13161 | } |
13162 | |
13163 | std::unique_ptr<ARMOperand> ARMAsmParser::defaultVPTPredOp() { |
13164 | return ARMOperand::CreateVPTPred(CC: ARMVCC::None, S: SMLoc(), Parser&: *this); |
13165 | } |
13166 | |