| 1 | //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the interfaces that AVR uses to lower LLVM code into a |
| 10 | // selection DAG. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AVRISelLowering.h" |
| 15 | |
| 16 | #include "llvm/ADT/ArrayRef.h" |
| 17 | #include "llvm/ADT/StringSwitch.h" |
| 18 | #include "llvm/CodeGen/CallingConvLower.h" |
| 19 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 20 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 21 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 22 | #include "llvm/CodeGen/SelectionDAG.h" |
| 23 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 24 | #include "llvm/IR/Function.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | |
| 27 | #include "AVR.h" |
| 28 | #include "AVRMachineFunctionInfo.h" |
| 29 | #include "AVRSubtarget.h" |
| 30 | #include "AVRTargetMachine.h" |
| 31 | #include "MCTargetDesc/AVRMCTargetDesc.h" |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM, |
| 36 | const AVRSubtarget &STI) |
| 37 | : TargetLowering(TM), Subtarget(STI) { |
| 38 | // Set up the register classes. |
| 39 | addRegisterClass(VT: MVT::i8, RC: &AVR::GPR8RegClass); |
| 40 | addRegisterClass(VT: MVT::i16, RC: &AVR::DREGSRegClass); |
| 41 | |
| 42 | // Compute derived properties from the register classes. |
| 43 | computeRegisterProperties(TRI: Subtarget.getRegisterInfo()); |
| 44 | |
| 45 | setBooleanContents(ZeroOrOneBooleanContent); |
| 46 | setBooleanVectorContents(ZeroOrOneBooleanContent); |
| 47 | setSchedulingPreference(Sched::RegPressure); |
| 48 | setStackPointerRegisterToSaveRestore(AVR::SP); |
| 49 | setSupportsUnalignedAtomics(true); |
| 50 | |
| 51 | setOperationAction(Op: ISD::GlobalAddress, VT: MVT::i16, Action: Custom); |
| 52 | setOperationAction(Op: ISD::BlockAddress, VT: MVT::i16, Action: Custom); |
| 53 | |
| 54 | setOperationAction(Op: ISD::STACKSAVE, VT: MVT::Other, Action: Expand); |
| 55 | setOperationAction(Op: ISD::STACKRESTORE, VT: MVT::Other, Action: Expand); |
| 56 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i8, Action: Expand); |
| 57 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i16, Action: Expand); |
| 58 | |
| 59 | setOperationAction(Op: ISD::INLINEASM, VT: MVT::Other, Action: Custom); |
| 60 | |
| 61 | for (MVT VT : MVT::integer_valuetypes()) { |
| 62 | for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { |
| 63 | setLoadExtAction(ExtType: N, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 64 | setLoadExtAction(ExtType: N, ValVT: VT, MemVT: MVT::i8, Action: Expand); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | setTruncStoreAction(ValVT: MVT::i16, MemVT: MVT::i8, Action: Expand); |
| 69 | |
| 70 | for (MVT VT : MVT::integer_valuetypes()) { |
| 71 | setOperationAction(Op: ISD::ADDC, VT, Action: Legal); |
| 72 | setOperationAction(Op: ISD::SUBC, VT, Action: Legal); |
| 73 | setOperationAction(Op: ISD::ADDE, VT, Action: Legal); |
| 74 | setOperationAction(Op: ISD::SUBE, VT, Action: Legal); |
| 75 | } |
| 76 | |
| 77 | // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types |
| 78 | // revert into a sub since we don't have an add with immediate instruction. |
| 79 | setOperationAction(Op: ISD::ADD, VT: MVT::i32, Action: Custom); |
| 80 | setOperationAction(Op: ISD::ADD, VT: MVT::i64, Action: Custom); |
| 81 | |
| 82 | // our shift instructions are only able to shift 1 bit at a time, so handle |
| 83 | // this in a custom way. |
| 84 | setOperationAction(Op: ISD::SRA, VT: MVT::i8, Action: Custom); |
| 85 | setOperationAction(Op: ISD::SHL, VT: MVT::i8, Action: Custom); |
| 86 | setOperationAction(Op: ISD::SRL, VT: MVT::i8, Action: Custom); |
| 87 | setOperationAction(Op: ISD::SRA, VT: MVT::i16, Action: Custom); |
| 88 | setOperationAction(Op: ISD::SHL, VT: MVT::i16, Action: Custom); |
| 89 | setOperationAction(Op: ISD::SRL, VT: MVT::i16, Action: Custom); |
| 90 | setOperationAction(Op: ISD::SRA, VT: MVT::i32, Action: Custom); |
| 91 | setOperationAction(Op: ISD::SHL, VT: MVT::i32, Action: Custom); |
| 92 | setOperationAction(Op: ISD::SRL, VT: MVT::i32, Action: Custom); |
| 93 | setOperationAction(Op: ISD::SHL_PARTS, VT: MVT::i16, Action: Expand); |
| 94 | setOperationAction(Op: ISD::SRA_PARTS, VT: MVT::i16, Action: Expand); |
| 95 | setOperationAction(Op: ISD::SRL_PARTS, VT: MVT::i16, Action: Expand); |
| 96 | |
| 97 | setOperationAction(Op: ISD::ROTL, VT: MVT::i8, Action: Custom); |
| 98 | setOperationAction(Op: ISD::ROTL, VT: MVT::i16, Action: Expand); |
| 99 | setOperationAction(Op: ISD::ROTR, VT: MVT::i8, Action: Custom); |
| 100 | setOperationAction(Op: ISD::ROTR, VT: MVT::i16, Action: Expand); |
| 101 | |
| 102 | setOperationAction(Op: ISD::BR_CC, VT: MVT::i8, Action: Custom); |
| 103 | setOperationAction(Op: ISD::BR_CC, VT: MVT::i16, Action: Custom); |
| 104 | setOperationAction(Op: ISD::BR_CC, VT: MVT::i32, Action: Custom); |
| 105 | setOperationAction(Op: ISD::BR_CC, VT: MVT::i64, Action: Custom); |
| 106 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Expand); |
| 107 | |
| 108 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i8, Action: Custom); |
| 109 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i16, Action: Custom); |
| 110 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i32, Action: Expand); |
| 111 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i64, Action: Expand); |
| 112 | setOperationAction(Op: ISD::SETCC, VT: MVT::i8, Action: Custom); |
| 113 | setOperationAction(Op: ISD::SETCC, VT: MVT::i16, Action: Custom); |
| 114 | setOperationAction(Op: ISD::SETCC, VT: MVT::i32, Action: Custom); |
| 115 | setOperationAction(Op: ISD::SETCC, VT: MVT::i64, Action: Custom); |
| 116 | setOperationAction(Op: ISD::SELECT, VT: MVT::i8, Action: Expand); |
| 117 | setOperationAction(Op: ISD::SELECT, VT: MVT::i16, Action: Expand); |
| 118 | |
| 119 | setOperationAction(Op: ISD::BSWAP, VT: MVT::i16, Action: Expand); |
| 120 | |
| 121 | // Add support for postincrement and predecrement load/stores. |
| 122 | setIndexedLoadAction(IdxModes: ISD::POST_INC, VT: MVT::i8, Action: Legal); |
| 123 | setIndexedLoadAction(IdxModes: ISD::POST_INC, VT: MVT::i16, Action: Legal); |
| 124 | setIndexedLoadAction(IdxModes: ISD::PRE_DEC, VT: MVT::i8, Action: Legal); |
| 125 | setIndexedLoadAction(IdxModes: ISD::PRE_DEC, VT: MVT::i16, Action: Legal); |
| 126 | setIndexedStoreAction(IdxModes: ISD::POST_INC, VT: MVT::i8, Action: Legal); |
| 127 | setIndexedStoreAction(IdxModes: ISD::POST_INC, VT: MVT::i16, Action: Legal); |
| 128 | setIndexedStoreAction(IdxModes: ISD::PRE_DEC, VT: MVT::i8, Action: Legal); |
| 129 | setIndexedStoreAction(IdxModes: ISD::PRE_DEC, VT: MVT::i16, Action: Legal); |
| 130 | |
| 131 | setOperationAction(Op: ISD::BR_JT, VT: MVT::Other, Action: Expand); |
| 132 | |
| 133 | setOperationAction(Op: ISD::VASTART, VT: MVT::Other, Action: Custom); |
| 134 | setOperationAction(Op: ISD::VAEND, VT: MVT::Other, Action: Expand); |
| 135 | setOperationAction(Op: ISD::VAARG, VT: MVT::Other, Action: Expand); |
| 136 | setOperationAction(Op: ISD::VACOPY, VT: MVT::Other, Action: Expand); |
| 137 | |
| 138 | // Atomic operations which must be lowered to rtlib calls |
| 139 | for (MVT VT : MVT::integer_valuetypes()) { |
| 140 | setOperationAction(Op: ISD::ATOMIC_SWAP, VT, Action: Expand); |
| 141 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP, VT, Action: Expand); |
| 142 | setOperationAction(Op: ISD::ATOMIC_LOAD_NAND, VT, Action: Expand); |
| 143 | setOperationAction(Op: ISD::ATOMIC_LOAD_MAX, VT, Action: Expand); |
| 144 | setOperationAction(Op: ISD::ATOMIC_LOAD_MIN, VT, Action: Expand); |
| 145 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMAX, VT, Action: Expand); |
| 146 | setOperationAction(Op: ISD::ATOMIC_LOAD_UMIN, VT, Action: Expand); |
| 147 | } |
| 148 | |
| 149 | // Division/remainder |
| 150 | setOperationAction(Op: ISD::UDIV, VT: MVT::i8, Action: Expand); |
| 151 | setOperationAction(Op: ISD::UDIV, VT: MVT::i16, Action: Expand); |
| 152 | setOperationAction(Op: ISD::UREM, VT: MVT::i8, Action: Expand); |
| 153 | setOperationAction(Op: ISD::UREM, VT: MVT::i16, Action: Expand); |
| 154 | setOperationAction(Op: ISD::SDIV, VT: MVT::i8, Action: Expand); |
| 155 | setOperationAction(Op: ISD::SDIV, VT: MVT::i16, Action: Expand); |
| 156 | setOperationAction(Op: ISD::SREM, VT: MVT::i8, Action: Expand); |
| 157 | setOperationAction(Op: ISD::SREM, VT: MVT::i16, Action: Expand); |
| 158 | |
| 159 | // Make division and modulus custom |
| 160 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i8, Action: Custom); |
| 161 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i16, Action: Custom); |
| 162 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i32, Action: Custom); |
| 163 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i8, Action: Custom); |
| 164 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i16, Action: Custom); |
| 165 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i32, Action: Custom); |
| 166 | |
| 167 | // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co. |
| 168 | setOperationAction(Op: ISD::MUL, VT: MVT::i8, Action: Expand); |
| 169 | setOperationAction(Op: ISD::MUL, VT: MVT::i16, Action: Expand); |
| 170 | |
| 171 | // Expand 16 bit multiplications. |
| 172 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i16, Action: Expand); |
| 173 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i16, Action: Expand); |
| 174 | |
| 175 | // Expand multiplications to libcalls when there is |
| 176 | // no hardware MUL. |
| 177 | if (!Subtarget.supportsMultiplication()) { |
| 178 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i8, Action: Expand); |
| 179 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i8, Action: Expand); |
| 180 | } |
| 181 | |
| 182 | for (MVT VT : MVT::integer_valuetypes()) { |
| 183 | setOperationAction(Op: ISD::MULHS, VT, Action: Expand); |
| 184 | setOperationAction(Op: ISD::MULHU, VT, Action: Expand); |
| 185 | } |
| 186 | |
| 187 | for (MVT VT : MVT::integer_valuetypes()) { |
| 188 | setOperationAction(Op: ISD::CTPOP, VT, Action: Expand); |
| 189 | setOperationAction(Op: ISD::CTLZ, VT, Action: Expand); |
| 190 | setOperationAction(Op: ISD::CTTZ, VT, Action: Expand); |
| 191 | } |
| 192 | |
| 193 | for (MVT VT : MVT::integer_valuetypes()) { |
| 194 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT, Action: Expand); |
| 195 | // TODO: The generated code is pretty poor. Investigate using the |
| 196 | // same "shift and subtract with carry" trick that we do for |
| 197 | // extending 8-bit to 16-bit. This may require infrastructure |
| 198 | // improvements in how we treat 16-bit "registers" to be feasible. |
| 199 | } |
| 200 | |
| 201 | setMinFunctionAlignment(Align(2)); |
| 202 | setMinimumJumpTableEntries(UINT_MAX); |
| 203 | } |
| 204 | |
| 205 | EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| 206 | EVT VT) const { |
| 207 | assert(!VT.isVector() && "No AVR SetCC type for vectors!" ); |
| 208 | return MVT::i8; |
| 209 | } |
| 210 | |
| 211 | SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const { |
| 212 | unsigned Opc8; |
| 213 | const SDNode *N = Op.getNode(); |
| 214 | EVT VT = Op.getValueType(); |
| 215 | SDLoc dl(N); |
| 216 | assert(llvm::has_single_bit<uint32_t>(VT.getSizeInBits()) && |
| 217 | "Expected power-of-2 shift amount" ); |
| 218 | |
| 219 | if (VT.getSizeInBits() == 32) { |
| 220 | if (!isa<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
| 221 | // 32-bit shifts are converted to a loop in IR. |
| 222 | // This should be unreachable. |
| 223 | report_fatal_error(reason: "Expected a constant shift amount!" ); |
| 224 | } |
| 225 | SDVTList ResTys = DAG.getVTList(VT1: MVT::i16, VT2: MVT::i16); |
| 226 | SDValue SrcLo = |
| 227 | DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL: dl, VT: MVT::i16, N1: Op.getOperand(i: 0), |
| 228 | N2: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i16)); |
| 229 | SDValue SrcHi = |
| 230 | DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL: dl, VT: MVT::i16, N1: Op.getOperand(i: 0), |
| 231 | N2: DAG.getConstant(Val: 1, DL: dl, VT: MVT::i16)); |
| 232 | uint64_t ShiftAmount = N->getConstantOperandVal(Num: 1); |
| 233 | if (ShiftAmount == 16) { |
| 234 | // Special case these two operations because they appear to be used by the |
| 235 | // generic codegen parts to lower 32-bit numbers. |
| 236 | // TODO: perhaps we can lower shift amounts bigger than 16 to a 16-bit |
| 237 | // shift of a part of the 32-bit value? |
| 238 | switch (Op.getOpcode()) { |
| 239 | case ISD::SHL: { |
| 240 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: MVT::i16); |
| 241 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: MVT::i32, N1: Zero, N2: SrcLo); |
| 242 | } |
| 243 | case ISD::SRL: { |
| 244 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: MVT::i16); |
| 245 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: MVT::i32, N1: SrcHi, N2: Zero); |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | SDValue Cnt = DAG.getTargetConstant(Val: ShiftAmount, DL: dl, VT: MVT::i8); |
| 250 | unsigned Opc; |
| 251 | switch (Op.getOpcode()) { |
| 252 | default: |
| 253 | llvm_unreachable("Invalid 32-bit shift opcode!" ); |
| 254 | case ISD::SHL: |
| 255 | Opc = AVRISD::LSLW; |
| 256 | break; |
| 257 | case ISD::SRL: |
| 258 | Opc = AVRISD::LSRW; |
| 259 | break; |
| 260 | case ISD::SRA: |
| 261 | Opc = AVRISD::ASRW; |
| 262 | break; |
| 263 | } |
| 264 | SDValue Result = DAG.getNode(Opcode: Opc, DL: dl, VTList: ResTys, N1: SrcLo, N2: SrcHi, N3: Cnt); |
| 265 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: MVT::i32, N1: Result.getValue(R: 0), |
| 266 | N2: Result.getValue(R: 1)); |
| 267 | } |
| 268 | |
| 269 | // Expand non-constant shifts to loops. |
| 270 | if (!isa<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
| 271 | switch (Op.getOpcode()) { |
| 272 | default: |
| 273 | llvm_unreachable("Invalid shift opcode!" ); |
| 274 | case ISD::SHL: |
| 275 | return DAG.getNode(Opcode: AVRISD::LSLLOOP, DL: dl, VT, N1: N->getOperand(Num: 0), |
| 276 | N2: N->getOperand(Num: 1)); |
| 277 | case ISD::SRL: |
| 278 | return DAG.getNode(Opcode: AVRISD::LSRLOOP, DL: dl, VT, N1: N->getOperand(Num: 0), |
| 279 | N2: N->getOperand(Num: 1)); |
| 280 | case ISD::ROTL: { |
| 281 | SDValue Amt = N->getOperand(Num: 1); |
| 282 | EVT AmtVT = Amt.getValueType(); |
| 283 | Amt = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: AmtVT, N1: Amt, |
| 284 | N2: DAG.getConstant(Val: VT.getSizeInBits() - 1, DL: dl, VT: AmtVT)); |
| 285 | return DAG.getNode(Opcode: AVRISD::ROLLOOP, DL: dl, VT, N1: N->getOperand(Num: 0), N2: Amt); |
| 286 | } |
| 287 | case ISD::ROTR: { |
| 288 | SDValue Amt = N->getOperand(Num: 1); |
| 289 | EVT AmtVT = Amt.getValueType(); |
| 290 | Amt = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: AmtVT, N1: Amt, |
| 291 | N2: DAG.getConstant(Val: VT.getSizeInBits() - 1, DL: dl, VT: AmtVT)); |
| 292 | return DAG.getNode(Opcode: AVRISD::RORLOOP, DL: dl, VT, N1: N->getOperand(Num: 0), N2: Amt); |
| 293 | } |
| 294 | case ISD::SRA: |
| 295 | return DAG.getNode(Opcode: AVRISD::ASRLOOP, DL: dl, VT, N1: N->getOperand(Num: 0), |
| 296 | N2: N->getOperand(Num: 1)); |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | uint64_t ShiftAmount = N->getConstantOperandVal(Num: 1); |
| 301 | SDValue Victim = N->getOperand(Num: 0); |
| 302 | |
| 303 | switch (Op.getOpcode()) { |
| 304 | case ISD::SRA: |
| 305 | Opc8 = AVRISD::ASR; |
| 306 | break; |
| 307 | case ISD::ROTL: |
| 308 | Opc8 = AVRISD::ROL; |
| 309 | ShiftAmount = ShiftAmount % VT.getSizeInBits(); |
| 310 | break; |
| 311 | case ISD::ROTR: |
| 312 | Opc8 = AVRISD::ROR; |
| 313 | ShiftAmount = ShiftAmount % VT.getSizeInBits(); |
| 314 | break; |
| 315 | case ISD::SRL: |
| 316 | Opc8 = AVRISD::LSR; |
| 317 | break; |
| 318 | case ISD::SHL: |
| 319 | Opc8 = AVRISD::LSL; |
| 320 | break; |
| 321 | default: |
| 322 | llvm_unreachable("Invalid shift opcode" ); |
| 323 | } |
| 324 | |
| 325 | // Optimize int8/int16 shifts. |
| 326 | if (VT.getSizeInBits() == 8) { |
| 327 | if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) { |
| 328 | // Optimize LSL when 4 <= ShiftAmount <= 6. |
| 329 | Victim = DAG.getNode(Opcode: AVRISD::SWAP, DL: dl, VT, Operand: Victim); |
| 330 | Victim = |
| 331 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Victim, N2: DAG.getConstant(Val: 0xf0, DL: dl, VT)); |
| 332 | ShiftAmount -= 4; |
| 333 | } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount && |
| 334 | ShiftAmount < 7) { |
| 335 | // Optimize LSR when 4 <= ShiftAmount <= 6. |
| 336 | Victim = DAG.getNode(Opcode: AVRISD::SWAP, DL: dl, VT, Operand: Victim); |
| 337 | Victim = |
| 338 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Victim, N2: DAG.getConstant(Val: 0x0f, DL: dl, VT)); |
| 339 | ShiftAmount -= 4; |
| 340 | } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) { |
| 341 | // Optimize LSL when ShiftAmount == 7. |
| 342 | Victim = DAG.getNode(Opcode: AVRISD::LSLBN, DL: dl, VT, N1: Victim, |
| 343 | N2: DAG.getConstant(Val: 7, DL: dl, VT)); |
| 344 | ShiftAmount = 0; |
| 345 | } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) { |
| 346 | // Optimize LSR when ShiftAmount == 7. |
| 347 | Victim = DAG.getNode(Opcode: AVRISD::LSRBN, DL: dl, VT, N1: Victim, |
| 348 | N2: DAG.getConstant(Val: 7, DL: dl, VT)); |
| 349 | ShiftAmount = 0; |
| 350 | } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 6) { |
| 351 | // Optimize ASR when ShiftAmount == 6. |
| 352 | Victim = DAG.getNode(Opcode: AVRISD::ASRBN, DL: dl, VT, N1: Victim, |
| 353 | N2: DAG.getConstant(Val: 6, DL: dl, VT)); |
| 354 | ShiftAmount = 0; |
| 355 | } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) { |
| 356 | // Optimize ASR when ShiftAmount == 7. |
| 357 | Victim = DAG.getNode(Opcode: AVRISD::ASRBN, DL: dl, VT, N1: Victim, |
| 358 | N2: DAG.getConstant(Val: 7, DL: dl, VT)); |
| 359 | ShiftAmount = 0; |
| 360 | } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 3) { |
| 361 | // Optimize left rotation 3 bits to swap then right rotation 1 bit. |
| 362 | Victim = DAG.getNode(Opcode: AVRISD::SWAP, DL: dl, VT, Operand: Victim); |
| 363 | Victim = DAG.getNode(Opcode: AVRISD::ROR, DL: dl, VT, Operand: Victim); |
| 364 | ShiftAmount = 0; |
| 365 | } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 3) { |
| 366 | // Optimize right rotation 3 bits to swap then left rotation 1 bit. |
| 367 | Victim = DAG.getNode(Opcode: AVRISD::SWAP, DL: dl, VT, Operand: Victim); |
| 368 | Victim = DAG.getNode(Opcode: AVRISD::ROL, DL: dl, VT, Operand: Victim); |
| 369 | ShiftAmount = 0; |
| 370 | } else if (Op.getOpcode() == ISD::ROTL && ShiftAmount == 7) { |
| 371 | // Optimize left rotation 7 bits to right rotation 1 bit. |
| 372 | Victim = DAG.getNode(Opcode: AVRISD::ROR, DL: dl, VT, Operand: Victim); |
| 373 | ShiftAmount = 0; |
| 374 | } else if (Op.getOpcode() == ISD::ROTR && ShiftAmount == 7) { |
| 375 | // Optimize right rotation 7 bits to left rotation 1 bit. |
| 376 | Victim = DAG.getNode(Opcode: AVRISD::ROL, DL: dl, VT, Operand: Victim); |
| 377 | ShiftAmount = 0; |
| 378 | } else if ((Op.getOpcode() == ISD::ROTR || Op.getOpcode() == ISD::ROTL) && |
| 379 | ShiftAmount >= 4) { |
| 380 | // Optimize left/right rotation with the SWAP instruction. |
| 381 | Victim = DAG.getNode(Opcode: AVRISD::SWAP, DL: dl, VT, Operand: Victim); |
| 382 | ShiftAmount -= 4; |
| 383 | } |
| 384 | } else if (VT.getSizeInBits() == 16) { |
| 385 | if (Op.getOpcode() == ISD::SRA) |
| 386 | // Special optimization for int16 arithmetic right shift. |
| 387 | switch (ShiftAmount) { |
| 388 | case 15: |
| 389 | Victim = DAG.getNode(Opcode: AVRISD::ASRWN, DL: dl, VT, N1: Victim, |
| 390 | N2: DAG.getConstant(Val: 15, DL: dl, VT)); |
| 391 | ShiftAmount = 0; |
| 392 | break; |
| 393 | case 14: |
| 394 | Victim = DAG.getNode(Opcode: AVRISD::ASRWN, DL: dl, VT, N1: Victim, |
| 395 | N2: DAG.getConstant(Val: 14, DL: dl, VT)); |
| 396 | ShiftAmount = 0; |
| 397 | break; |
| 398 | case 7: |
| 399 | Victim = DAG.getNode(Opcode: AVRISD::ASRWN, DL: dl, VT, N1: Victim, |
| 400 | N2: DAG.getConstant(Val: 7, DL: dl, VT)); |
| 401 | ShiftAmount = 0; |
| 402 | break; |
| 403 | default: |
| 404 | break; |
| 405 | } |
| 406 | if (4 <= ShiftAmount && ShiftAmount < 8) |
| 407 | switch (Op.getOpcode()) { |
| 408 | case ISD::SHL: |
| 409 | Victim = DAG.getNode(Opcode: AVRISD::LSLWN, DL: dl, VT, N1: Victim, |
| 410 | N2: DAG.getConstant(Val: 4, DL: dl, VT)); |
| 411 | ShiftAmount -= 4; |
| 412 | break; |
| 413 | case ISD::SRL: |
| 414 | Victim = DAG.getNode(Opcode: AVRISD::LSRWN, DL: dl, VT, N1: Victim, |
| 415 | N2: DAG.getConstant(Val: 4, DL: dl, VT)); |
| 416 | ShiftAmount -= 4; |
| 417 | break; |
| 418 | default: |
| 419 | break; |
| 420 | } |
| 421 | else if (8 <= ShiftAmount && ShiftAmount < 12) |
| 422 | switch (Op.getOpcode()) { |
| 423 | case ISD::SHL: |
| 424 | Victim = DAG.getNode(Opcode: AVRISD::LSLWN, DL: dl, VT, N1: Victim, |
| 425 | N2: DAG.getConstant(Val: 8, DL: dl, VT)); |
| 426 | ShiftAmount -= 8; |
| 427 | // Only operate on the higher byte for remaining shift bits. |
| 428 | Opc8 = AVRISD::LSLHI; |
| 429 | break; |
| 430 | case ISD::SRL: |
| 431 | Victim = DAG.getNode(Opcode: AVRISD::LSRWN, DL: dl, VT, N1: Victim, |
| 432 | N2: DAG.getConstant(Val: 8, DL: dl, VT)); |
| 433 | ShiftAmount -= 8; |
| 434 | // Only operate on the lower byte for remaining shift bits. |
| 435 | Opc8 = AVRISD::LSRLO; |
| 436 | break; |
| 437 | case ISD::SRA: |
| 438 | Victim = DAG.getNode(Opcode: AVRISD::ASRWN, DL: dl, VT, N1: Victim, |
| 439 | N2: DAG.getConstant(Val: 8, DL: dl, VT)); |
| 440 | ShiftAmount -= 8; |
| 441 | // Only operate on the lower byte for remaining shift bits. |
| 442 | Opc8 = AVRISD::ASRLO; |
| 443 | break; |
| 444 | default: |
| 445 | break; |
| 446 | } |
| 447 | else if (12 <= ShiftAmount) |
| 448 | switch (Op.getOpcode()) { |
| 449 | case ISD::SHL: |
| 450 | Victim = DAG.getNode(Opcode: AVRISD::LSLWN, DL: dl, VT, N1: Victim, |
| 451 | N2: DAG.getConstant(Val: 12, DL: dl, VT)); |
| 452 | ShiftAmount -= 12; |
| 453 | // Only operate on the higher byte for remaining shift bits. |
| 454 | Opc8 = AVRISD::LSLHI; |
| 455 | break; |
| 456 | case ISD::SRL: |
| 457 | Victim = DAG.getNode(Opcode: AVRISD::LSRWN, DL: dl, VT, N1: Victim, |
| 458 | N2: DAG.getConstant(Val: 12, DL: dl, VT)); |
| 459 | ShiftAmount -= 12; |
| 460 | // Only operate on the lower byte for remaining shift bits. |
| 461 | Opc8 = AVRISD::LSRLO; |
| 462 | break; |
| 463 | case ISD::SRA: |
| 464 | Victim = DAG.getNode(Opcode: AVRISD::ASRWN, DL: dl, VT, N1: Victim, |
| 465 | N2: DAG.getConstant(Val: 8, DL: dl, VT)); |
| 466 | ShiftAmount -= 8; |
| 467 | // Only operate on the lower byte for remaining shift bits. |
| 468 | Opc8 = AVRISD::ASRLO; |
| 469 | break; |
| 470 | default: |
| 471 | break; |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | while (ShiftAmount--) { |
| 476 | Victim = DAG.getNode(Opcode: Opc8, DL: dl, VT, Operand: Victim); |
| 477 | } |
| 478 | |
| 479 | return Victim; |
| 480 | } |
| 481 | |
| 482 | SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { |
| 483 | unsigned Opcode = Op->getOpcode(); |
| 484 | assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && |
| 485 | "Invalid opcode for Div/Rem lowering" ); |
| 486 | bool IsSigned = (Opcode == ISD::SDIVREM); |
| 487 | EVT VT = Op->getValueType(ResNo: 0); |
| 488 | Type *Ty = VT.getTypeForEVT(Context&: *DAG.getContext()); |
| 489 | |
| 490 | RTLIB::Libcall LC; |
| 491 | switch (VT.getSimpleVT().SimpleTy) { |
| 492 | default: |
| 493 | llvm_unreachable("Unexpected request for libcall!" ); |
| 494 | case MVT::i8: |
| 495 | LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; |
| 496 | break; |
| 497 | case MVT::i16: |
| 498 | LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; |
| 499 | break; |
| 500 | case MVT::i32: |
| 501 | LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| 502 | break; |
| 503 | } |
| 504 | |
| 505 | SDValue InChain = DAG.getEntryNode(); |
| 506 | |
| 507 | TargetLowering::ArgListTy Args; |
| 508 | TargetLowering::ArgListEntry Entry; |
| 509 | for (SDValue const &Value : Op->op_values()) { |
| 510 | Entry.Node = Value; |
| 511 | Entry.Ty = Value.getValueType().getTypeForEVT(Context&: *DAG.getContext()); |
| 512 | Entry.IsSExt = IsSigned; |
| 513 | Entry.IsZExt = !IsSigned; |
| 514 | Args.push_back(x: Entry); |
| 515 | } |
| 516 | |
| 517 | SDValue Callee = DAG.getExternalSymbol(Sym: getLibcallName(Call: LC), |
| 518 | VT: getPointerTy(DL: DAG.getDataLayout())); |
| 519 | |
| 520 | Type *RetTy = (Type *)StructType::get(elt1: Ty, elts: Ty); |
| 521 | |
| 522 | SDLoc dl(Op); |
| 523 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 524 | CLI.setDebugLoc(dl) |
| 525 | .setChain(InChain) |
| 526 | .setLibCallee(CC: getLibcallCallingConv(Call: LC), ResultType: RetTy, Target: Callee, ArgsList: std::move(Args)) |
| 527 | .setInRegister() |
| 528 | .setSExtResult(IsSigned) |
| 529 | .setZExtResult(!IsSigned); |
| 530 | |
| 531 | std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| 532 | return CallInfo.first; |
| 533 | } |
| 534 | |
| 535 | SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op, |
| 536 | SelectionDAG &DAG) const { |
| 537 | auto DL = DAG.getDataLayout(); |
| 538 | |
| 539 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Val&: Op)->getGlobal(); |
| 540 | int64_t Offset = cast<GlobalAddressSDNode>(Val&: Op)->getOffset(); |
| 541 | |
| 542 | // Create the TargetGlobalAddress node, folding in the constant offset. |
| 543 | SDValue Result = |
| 544 | DAG.getTargetGlobalAddress(GV, DL: SDLoc(Op), VT: getPointerTy(DL), offset: Offset); |
| 545 | return DAG.getNode(Opcode: AVRISD::WRAPPER, DL: SDLoc(Op), VT: getPointerTy(DL), Operand: Result); |
| 546 | } |
| 547 | |
| 548 | SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op, |
| 549 | SelectionDAG &DAG) const { |
| 550 | auto DL = DAG.getDataLayout(); |
| 551 | const BlockAddress *BA = cast<BlockAddressSDNode>(Val&: Op)->getBlockAddress(); |
| 552 | |
| 553 | SDValue Result = DAG.getTargetBlockAddress(BA, VT: getPointerTy(DL)); |
| 554 | |
| 555 | return DAG.getNode(Opcode: AVRISD::WRAPPER, DL: SDLoc(Op), VT: getPointerTy(DL), Operand: Result); |
| 556 | } |
| 557 | |
| 558 | /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC. |
| 559 | static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) { |
| 560 | switch (CC) { |
| 561 | default: |
| 562 | llvm_unreachable("Unknown condition code!" ); |
| 563 | case ISD::SETEQ: |
| 564 | return AVRCC::COND_EQ; |
| 565 | case ISD::SETNE: |
| 566 | return AVRCC::COND_NE; |
| 567 | case ISD::SETGE: |
| 568 | return AVRCC::COND_GE; |
| 569 | case ISD::SETLT: |
| 570 | return AVRCC::COND_LT; |
| 571 | case ISD::SETUGE: |
| 572 | return AVRCC::COND_SH; |
| 573 | case ISD::SETULT: |
| 574 | return AVRCC::COND_LO; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | /// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands. |
| 579 | SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, |
| 580 | SelectionDAG &DAG, SDLoc DL) const { |
| 581 | assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) && |
| 582 | "LHS and RHS have different types" ); |
| 583 | assert(((LHS.getSimpleValueType() == MVT::i16) || |
| 584 | (LHS.getSimpleValueType() == MVT::i8)) && |
| 585 | "invalid comparison type" ); |
| 586 | |
| 587 | SDValue Cmp; |
| 588 | |
| 589 | if (LHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(Val: RHS)) { |
| 590 | uint64_t Imm = RHS->getAsZExtVal(); |
| 591 | // Generate a CPI/CPC pair if RHS is a 16-bit constant. Use the zero |
| 592 | // register for the constant RHS if its lower or higher byte is zero. |
| 593 | SDValue LHSlo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHS, |
| 594 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 595 | SDValue LHShi = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHS, |
| 596 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 597 | SDValue RHSlo = (Imm & 0xff) == 0 |
| 598 | ? DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8) |
| 599 | : DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: RHS, |
| 600 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 601 | SDValue RHShi = (Imm & 0xff00) == 0 |
| 602 | ? DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8) |
| 603 | : DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: RHS, |
| 604 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 605 | Cmp = DAG.getNode(Opcode: AVRISD::CMP, DL, VT: MVT::Glue, N1: LHSlo, N2: RHSlo); |
| 606 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHShi, N2: RHShi, N3: Cmp); |
| 607 | } else if (RHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(Val: LHS)) { |
| 608 | // Generate a CPI/CPC pair if LHS is a 16-bit constant. Use the zero |
| 609 | // register for the constant LHS if its lower or higher byte is zero. |
| 610 | uint64_t Imm = LHS->getAsZExtVal(); |
| 611 | SDValue LHSlo = (Imm & 0xff) == 0 |
| 612 | ? DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8) |
| 613 | : DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHS, |
| 614 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 615 | SDValue LHShi = (Imm & 0xff00) == 0 |
| 616 | ? DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8) |
| 617 | : DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHS, |
| 618 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 619 | SDValue RHSlo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: RHS, |
| 620 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 621 | SDValue RHShi = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: RHS, |
| 622 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 623 | Cmp = DAG.getNode(Opcode: AVRISD::CMP, DL, VT: MVT::Glue, N1: LHSlo, N2: RHSlo); |
| 624 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHShi, N2: RHShi, N3: Cmp); |
| 625 | } else { |
| 626 | // Generate ordinary 16-bit comparison. |
| 627 | Cmp = DAG.getNode(Opcode: AVRISD::CMP, DL, VT: MVT::Glue, N1: LHS, N2: RHS); |
| 628 | } |
| 629 | |
| 630 | return Cmp; |
| 631 | } |
| 632 | |
| 633 | /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for |
| 634 | /// the given operands. |
| 635 | SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 636 | SDValue &AVRcc, SelectionDAG &DAG, |
| 637 | SDLoc DL) const { |
| 638 | SDValue Cmp; |
| 639 | EVT VT = LHS.getValueType(); |
| 640 | bool UseTest = false; |
| 641 | |
| 642 | switch (CC) { |
| 643 | default: |
| 644 | break; |
| 645 | case ISD::SETLE: { |
| 646 | // Swap operands and reverse the branching condition. |
| 647 | std::swap(a&: LHS, b&: RHS); |
| 648 | CC = ISD::SETGE; |
| 649 | break; |
| 650 | } |
| 651 | case ISD::SETGT: { |
| 652 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 653 | switch (C->getSExtValue()) { |
| 654 | case -1: { |
| 655 | // When doing lhs > -1 use a tst instruction on the top part of lhs |
| 656 | // and use brpl instead of using a chain of cp/cpc. |
| 657 | UseTest = true; |
| 658 | AVRcc = DAG.getConstant(Val: AVRCC::COND_PL, DL, VT: MVT::i8); |
| 659 | break; |
| 660 | } |
| 661 | case 0: { |
| 662 | // Turn lhs > 0 into 0 < lhs since 0 can be materialized with |
| 663 | // __zero_reg__ in lhs. |
| 664 | RHS = LHS; |
| 665 | LHS = DAG.getConstant(Val: 0, DL, VT); |
| 666 | CC = ISD::SETLT; |
| 667 | break; |
| 668 | } |
| 669 | default: { |
| 670 | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows |
| 671 | // us to fold the constant into the cmp instruction. |
| 672 | RHS = DAG.getConstant(Val: C->getSExtValue() + 1, DL, VT); |
| 673 | CC = ISD::SETGE; |
| 674 | break; |
| 675 | } |
| 676 | } |
| 677 | break; |
| 678 | } |
| 679 | // Swap operands and reverse the branching condition. |
| 680 | std::swap(a&: LHS, b&: RHS); |
| 681 | CC = ISD::SETLT; |
| 682 | break; |
| 683 | } |
| 684 | case ISD::SETLT: { |
| 685 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 686 | switch (C->getSExtValue()) { |
| 687 | case 1: { |
| 688 | // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with |
| 689 | // __zero_reg__ in lhs. |
| 690 | RHS = LHS; |
| 691 | LHS = DAG.getConstant(Val: 0, DL, VT); |
| 692 | CC = ISD::SETGE; |
| 693 | break; |
| 694 | } |
| 695 | case 0: { |
| 696 | // When doing lhs < 0 use a tst instruction on the top part of lhs |
| 697 | // and use brmi instead of using a chain of cp/cpc. |
| 698 | UseTest = true; |
| 699 | AVRcc = DAG.getConstant(Val: AVRCC::COND_MI, DL, VT: MVT::i8); |
| 700 | break; |
| 701 | } |
| 702 | } |
| 703 | } |
| 704 | break; |
| 705 | } |
| 706 | case ISD::SETULE: { |
| 707 | // Swap operands and reverse the branching condition. |
| 708 | std::swap(a&: LHS, b&: RHS); |
| 709 | CC = ISD::SETUGE; |
| 710 | break; |
| 711 | } |
| 712 | case ISD::SETUGT: { |
| 713 | // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to |
| 714 | // fold the constant into the cmp instruction. |
| 715 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 716 | RHS = DAG.getConstant(Val: C->getSExtValue() + 1, DL, VT); |
| 717 | CC = ISD::SETUGE; |
| 718 | break; |
| 719 | } |
| 720 | // Swap operands and reverse the branching condition. |
| 721 | std::swap(a&: LHS, b&: RHS); |
| 722 | CC = ISD::SETULT; |
| 723 | break; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of |
| 728 | // using the default and/or/xor expansion code which is much longer. |
| 729 | if (VT == MVT::i32) { |
| 730 | SDValue LHSlo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS, |
| 731 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 732 | SDValue LHShi = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS, |
| 733 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 734 | SDValue RHSlo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS, |
| 735 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 736 | SDValue RHShi = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS, |
| 737 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 738 | |
| 739 | if (UseTest) { |
| 740 | // When using tst we only care about the highest part. |
| 741 | SDValue Top = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHShi, |
| 742 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 743 | Cmp = DAG.getNode(Opcode: AVRISD::TST, DL, VT: MVT::Glue, Operand: Top); |
| 744 | } else { |
| 745 | Cmp = getAVRCmp(LHS: LHSlo, RHS: RHSlo, DAG, DL); |
| 746 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHShi, N2: RHShi, N3: Cmp); |
| 747 | } |
| 748 | } else if (VT == MVT::i64) { |
| 749 | SDValue LHS_0 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i32, N1: LHS, |
| 750 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 751 | SDValue LHS_1 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i32, N1: LHS, |
| 752 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 753 | |
| 754 | SDValue LHS0 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS_0, |
| 755 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 756 | SDValue LHS1 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS_0, |
| 757 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 758 | SDValue LHS2 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS_1, |
| 759 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 760 | SDValue LHS3 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: LHS_1, |
| 761 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 762 | |
| 763 | SDValue RHS_0 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i32, N1: RHS, |
| 764 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 765 | SDValue RHS_1 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i32, N1: RHS, |
| 766 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 767 | |
| 768 | SDValue RHS0 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS_0, |
| 769 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 770 | SDValue RHS1 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS_0, |
| 771 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 772 | SDValue RHS2 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS_1, |
| 773 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 774 | SDValue RHS3 = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i16, N1: RHS_1, |
| 775 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 776 | |
| 777 | if (UseTest) { |
| 778 | // When using tst we only care about the highest part. |
| 779 | SDValue Top = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, N1: LHS3, |
| 780 | N2: DAG.getIntPtrConstant(Val: 1, DL)); |
| 781 | Cmp = DAG.getNode(Opcode: AVRISD::TST, DL, VT: MVT::Glue, Operand: Top); |
| 782 | } else { |
| 783 | Cmp = getAVRCmp(LHS: LHS0, RHS: RHS0, DAG, DL); |
| 784 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHS1, N2: RHS1, N3: Cmp); |
| 785 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHS2, N2: RHS2, N3: Cmp); |
| 786 | Cmp = DAG.getNode(Opcode: AVRISD::CMPC, DL, VT: MVT::Glue, N1: LHS3, N2: RHS3, N3: Cmp); |
| 787 | } |
| 788 | } else if (VT == MVT::i8 || VT == MVT::i16) { |
| 789 | if (UseTest) { |
| 790 | // When using tst we only care about the highest part. |
| 791 | Cmp = DAG.getNode(Opcode: AVRISD::TST, DL, VT: MVT::Glue, |
| 792 | Operand: (VT == MVT::i8) |
| 793 | ? LHS |
| 794 | : DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::i8, |
| 795 | N1: LHS, N2: DAG.getIntPtrConstant(Val: 1, DL))); |
| 796 | } else { |
| 797 | Cmp = getAVRCmp(LHS, RHS, DAG, DL); |
| 798 | } |
| 799 | } else { |
| 800 | llvm_unreachable("Invalid comparison size" ); |
| 801 | } |
| 802 | |
| 803 | // When using a test instruction AVRcc is already set. |
| 804 | if (!UseTest) { |
| 805 | AVRcc = DAG.getConstant(Val: intCCToAVRCC(CC), DL, VT: MVT::i8); |
| 806 | } |
| 807 | |
| 808 | return Cmp; |
| 809 | } |
| 810 | |
| 811 | SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 812 | SDValue Chain = Op.getOperand(i: 0); |
| 813 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 1))->get(); |
| 814 | SDValue LHS = Op.getOperand(i: 2); |
| 815 | SDValue RHS = Op.getOperand(i: 3); |
| 816 | SDValue Dest = Op.getOperand(i: 4); |
| 817 | SDLoc dl(Op); |
| 818 | |
| 819 | SDValue TargetCC; |
| 820 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, AVRcc&: TargetCC, DAG, DL: dl); |
| 821 | |
| 822 | return DAG.getNode(Opcode: AVRISD::BRCOND, DL: dl, VT: MVT::Other, N1: Chain, N2: Dest, N3: TargetCC, |
| 823 | N4: Cmp); |
| 824 | } |
| 825 | |
| 826 | SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| 827 | SDValue LHS = Op.getOperand(i: 0); |
| 828 | SDValue RHS = Op.getOperand(i: 1); |
| 829 | SDValue TrueV = Op.getOperand(i: 2); |
| 830 | SDValue FalseV = Op.getOperand(i: 3); |
| 831 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 4))->get(); |
| 832 | SDLoc dl(Op); |
| 833 | |
| 834 | SDValue TargetCC; |
| 835 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, AVRcc&: TargetCC, DAG, DL: dl); |
| 836 | |
| 837 | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| 838 | |
| 839 | return DAG.getNode(Opcode: AVRISD::SELECT_CC, DL: dl, VT: Op.getValueType(), Ops); |
| 840 | } |
| 841 | |
| 842 | SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| 843 | SDValue LHS = Op.getOperand(i: 0); |
| 844 | SDValue RHS = Op.getOperand(i: 1); |
| 845 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
| 846 | SDLoc DL(Op); |
| 847 | |
| 848 | SDValue TargetCC; |
| 849 | SDValue Cmp = getAVRCmp(LHS, RHS, CC, AVRcc&: TargetCC, DAG, DL); |
| 850 | |
| 851 | SDValue TrueV = DAG.getConstant(Val: 1, DL, VT: Op.getValueType()); |
| 852 | SDValue FalseV = DAG.getConstant(Val: 0, DL, VT: Op.getValueType()); |
| 853 | SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp}; |
| 854 | |
| 855 | return DAG.getNode(Opcode: AVRISD::SELECT_CC, DL, VT: Op.getValueType(), Ops); |
| 856 | } |
| 857 | |
| 858 | SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| 859 | const MachineFunction &MF = DAG.getMachineFunction(); |
| 860 | const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| 861 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 862 | auto DL = DAG.getDataLayout(); |
| 863 | SDLoc dl(Op); |
| 864 | |
| 865 | // Vastart just stores the address of the VarArgsFrameIndex slot into the |
| 866 | // memory location argument. |
| 867 | SDValue FI = DAG.getFrameIndex(FI: AFI->getVarArgsFrameIndex(), VT: getPointerTy(DL)); |
| 868 | |
| 869 | return DAG.getStore(Chain: Op.getOperand(i: 0), dl, Val: FI, Ptr: Op.getOperand(i: 1), |
| 870 | PtrInfo: MachinePointerInfo(SV)); |
| 871 | } |
| 872 | |
| 873 | // Modify the existing ISD::INLINEASM node to add the implicit zero register. |
| 874 | SDValue AVRTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { |
| 875 | SDValue ZeroReg = DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8); |
| 876 | if (Op.getOperand(i: Op.getNumOperands() - 1) == ZeroReg || |
| 877 | Op.getOperand(i: Op.getNumOperands() - 2) == ZeroReg) { |
| 878 | // Zero register has already been added. Don't add it again. |
| 879 | // If this isn't handled, we get called over and over again. |
| 880 | return Op; |
| 881 | } |
| 882 | |
| 883 | // Get a list of operands to the new INLINEASM node. This is mostly a copy, |
| 884 | // with some edits. |
| 885 | // Add the following operands at the end (but before the glue node, if it's |
| 886 | // there): |
| 887 | // - The flags of the implicit zero register operand. |
| 888 | // - The implicit zero register operand itself. |
| 889 | SDLoc dl(Op); |
| 890 | SmallVector<SDValue, 8> Ops; |
| 891 | SDNode *N = Op.getNode(); |
| 892 | SDValue Glue; |
| 893 | for (unsigned I = 0; I < N->getNumOperands(); I++) { |
| 894 | SDValue Operand = N->getOperand(Num: I); |
| 895 | if (Operand.getValueType() == MVT::Glue) { |
| 896 | // The glue operand always needs to be at the end, so we need to treat it |
| 897 | // specially. |
| 898 | Glue = Operand; |
| 899 | } else { |
| 900 | Ops.push_back(Elt: Operand); |
| 901 | } |
| 902 | } |
| 903 | InlineAsm::Flag Flags(InlineAsm::Kind::RegUse, 1); |
| 904 | Ops.push_back(Elt: DAG.getTargetConstant(Val: Flags, DL: dl, VT: MVT::i32)); |
| 905 | Ops.push_back(Elt: ZeroReg); |
| 906 | if (Glue) { |
| 907 | Ops.push_back(Elt: Glue); |
| 908 | } |
| 909 | |
| 910 | // Replace the current INLINEASM node with a new one that has the zero |
| 911 | // register as implicit parameter. |
| 912 | SDValue New = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList: N->getVTList(), Ops); |
| 913 | DAG.ReplaceAllUsesOfValueWith(From: Op, To: New); |
| 914 | DAG.ReplaceAllUsesOfValueWith(From: Op.getValue(R: 1), To: New.getValue(R: 1)); |
| 915 | |
| 916 | return New; |
| 917 | } |
| 918 | |
| 919 | SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| 920 | switch (Op.getOpcode()) { |
| 921 | default: |
| 922 | llvm_unreachable("Don't know how to custom lower this!" ); |
| 923 | case ISD::SHL: |
| 924 | case ISD::SRA: |
| 925 | case ISD::SRL: |
| 926 | case ISD::ROTL: |
| 927 | case ISD::ROTR: |
| 928 | return LowerShifts(Op, DAG); |
| 929 | case ISD::GlobalAddress: |
| 930 | return LowerGlobalAddress(Op, DAG); |
| 931 | case ISD::BlockAddress: |
| 932 | return LowerBlockAddress(Op, DAG); |
| 933 | case ISD::BR_CC: |
| 934 | return LowerBR_CC(Op, DAG); |
| 935 | case ISD::SELECT_CC: |
| 936 | return LowerSELECT_CC(Op, DAG); |
| 937 | case ISD::SETCC: |
| 938 | return LowerSETCC(Op, DAG); |
| 939 | case ISD::VASTART: |
| 940 | return LowerVASTART(Op, DAG); |
| 941 | case ISD::SDIVREM: |
| 942 | case ISD::UDIVREM: |
| 943 | return LowerDivRem(Op, DAG); |
| 944 | case ISD::INLINEASM: |
| 945 | return LowerINLINEASM(Op, DAG); |
| 946 | } |
| 947 | |
| 948 | return SDValue(); |
| 949 | } |
| 950 | |
| 951 | /// Replace a node with an illegal result type |
| 952 | /// with a new node built out of custom code. |
| 953 | void AVRTargetLowering::ReplaceNodeResults(SDNode *N, |
| 954 | SmallVectorImpl<SDValue> &Results, |
| 955 | SelectionDAG &DAG) const { |
| 956 | SDLoc DL(N); |
| 957 | |
| 958 | switch (N->getOpcode()) { |
| 959 | case ISD::ADD: { |
| 960 | // Convert add (x, imm) into sub (x, -imm). |
| 961 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
| 962 | SDValue Sub = DAG.getNode( |
| 963 | Opcode: ISD::SUB, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 0), |
| 964 | N2: DAG.getConstant(Val: -C->getAPIntValue(), DL, VT: C->getValueType(ResNo: 0))); |
| 965 | Results.push_back(Elt: Sub); |
| 966 | } |
| 967 | break; |
| 968 | } |
| 969 | default: { |
| 970 | SDValue Res = LowerOperation(Op: SDValue(N, 0), DAG); |
| 971 | |
| 972 | for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) |
| 973 | Results.push_back(Elt: Res.getValue(R: I)); |
| 974 | |
| 975 | break; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /// Return true if the addressing mode represented |
| 981 | /// by AM is legal for this target, for a load/store of the specified type. |
| 982 | bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| 983 | const AddrMode &AM, Type *Ty, |
| 984 | unsigned AS, |
| 985 | Instruction *I) const { |
| 986 | int64_t Offs = AM.BaseOffs; |
| 987 | |
| 988 | // Allow absolute addresses. |
| 989 | if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) { |
| 990 | return true; |
| 991 | } |
| 992 | |
| 993 | // Flash memory instructions only allow zero offsets. |
| 994 | if (isa<PointerType>(Val: Ty) && AS == AVR::ProgramMemory) { |
| 995 | return false; |
| 996 | } |
| 997 | |
| 998 | // Allow reg+<6bit> offset. |
| 999 | if (Offs < 0) |
| 1000 | Offs = -Offs; |
| 1001 | if (AM.BaseGV == nullptr && AM.HasBaseReg && AM.Scale == 0 && |
| 1002 | isUInt<6>(x: Offs)) { |
| 1003 | return true; |
| 1004 | } |
| 1005 | |
| 1006 | return false; |
| 1007 | } |
| 1008 | |
| 1009 | /// Returns true by value, base pointer and |
| 1010 | /// offset pointer and addressing mode by reference if the node's address |
| 1011 | /// can be legally represented as pre-indexed load / store address. |
| 1012 | bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| 1013 | SDValue &Offset, |
| 1014 | ISD::MemIndexedMode &AM, |
| 1015 | SelectionDAG &DAG) const { |
| 1016 | EVT VT; |
| 1017 | const SDNode *Op; |
| 1018 | SDLoc DL(N); |
| 1019 | |
| 1020 | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(Val: N)) { |
| 1021 | VT = LD->getMemoryVT(); |
| 1022 | Op = LD->getBasePtr().getNode(); |
| 1023 | if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| 1024 | return false; |
| 1025 | if (AVR::isProgramMemoryAccess(N: LD)) { |
| 1026 | return false; |
| 1027 | } |
| 1028 | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(Val: N)) { |
| 1029 | VT = ST->getMemoryVT(); |
| 1030 | Op = ST->getBasePtr().getNode(); |
| 1031 | if (AVR::isProgramMemoryAccess(N: ST)) { |
| 1032 | return false; |
| 1033 | } |
| 1034 | } else { |
| 1035 | return false; |
| 1036 | } |
| 1037 | |
| 1038 | if (VT != MVT::i8 && VT != MVT::i16) { |
| 1039 | return false; |
| 1040 | } |
| 1041 | |
| 1042 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| 1043 | return false; |
| 1044 | } |
| 1045 | |
| 1046 | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: Op->getOperand(Num: 1))) { |
| 1047 | int RHSC = RHS->getSExtValue(); |
| 1048 | if (Op->getOpcode() == ISD::SUB) |
| 1049 | RHSC = -RHSC; |
| 1050 | |
| 1051 | if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) { |
| 1052 | return false; |
| 1053 | } |
| 1054 | |
| 1055 | Base = Op->getOperand(Num: 0); |
| 1056 | Offset = DAG.getSignedConstant(Val: RHSC, DL, VT: MVT::i8); |
| 1057 | AM = ISD::PRE_DEC; |
| 1058 | |
| 1059 | return true; |
| 1060 | } |
| 1061 | |
| 1062 | return false; |
| 1063 | } |
| 1064 | |
| 1065 | /// Returns true by value, base pointer and |
| 1066 | /// offset pointer and addressing mode by reference if this node can be |
| 1067 | /// combined with a load / store to form a post-indexed load / store. |
| 1068 | bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| 1069 | SDValue &Base, |
| 1070 | SDValue &Offset, |
| 1071 | ISD::MemIndexedMode &AM, |
| 1072 | SelectionDAG &DAG) const { |
| 1073 | EVT VT; |
| 1074 | SDValue Ptr; |
| 1075 | SDLoc DL(N); |
| 1076 | |
| 1077 | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(Val: N)) { |
| 1078 | VT = LD->getMemoryVT(); |
| 1079 | Ptr = LD->getBasePtr(); |
| 1080 | if (LD->getExtensionType() != ISD::NON_EXTLOAD) |
| 1081 | return false; |
| 1082 | } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(Val: N)) { |
| 1083 | VT = ST->getMemoryVT(); |
| 1084 | Ptr = ST->getBasePtr(); |
| 1085 | // We can not store to program memory. |
| 1086 | if (AVR::isProgramMemoryAccess(N: ST)) |
| 1087 | return false; |
| 1088 | // Since the high byte need to be stored first, we can not emit |
| 1089 | // i16 post increment store like: |
| 1090 | // st X+, r24 |
| 1091 | // st X+, r25 |
| 1092 | if (VT == MVT::i16 && !Subtarget.hasLowByteFirst()) |
| 1093 | return false; |
| 1094 | } else { |
| 1095 | return false; |
| 1096 | } |
| 1097 | |
| 1098 | if (VT != MVT::i8 && VT != MVT::i16) { |
| 1099 | return false; |
| 1100 | } |
| 1101 | |
| 1102 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) { |
| 1103 | return false; |
| 1104 | } |
| 1105 | |
| 1106 | if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: Op->getOperand(Num: 1))) { |
| 1107 | int RHSC = RHS->getSExtValue(); |
| 1108 | if (Op->getOpcode() == ISD::SUB) |
| 1109 | RHSC = -RHSC; |
| 1110 | if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) { |
| 1111 | return false; |
| 1112 | } |
| 1113 | |
| 1114 | // FIXME: We temporarily disable post increment load from program memory, |
| 1115 | // due to bug https://github.com/llvm/llvm-project/issues/59914. |
| 1116 | if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(Val: N)) |
| 1117 | if (AVR::isProgramMemoryAccess(N: LD)) |
| 1118 | return false; |
| 1119 | |
| 1120 | Base = Op->getOperand(Num: 0); |
| 1121 | |
| 1122 | // Post-indexing updates the base, so it's not a valid transform |
| 1123 | // if that's not the same as the load's pointer. |
| 1124 | if (Ptr != Base) |
| 1125 | return false; |
| 1126 | |
| 1127 | Offset = DAG.getConstant(Val: RHSC, DL, VT: MVT::i8); |
| 1128 | AM = ISD::POST_INC; |
| 1129 | |
| 1130 | return true; |
| 1131 | } |
| 1132 | |
| 1133 | return false; |
| 1134 | } |
| 1135 | |
| 1136 | bool AVRTargetLowering::isOffsetFoldingLegal( |
| 1137 | const GlobalAddressSDNode *GA) const { |
| 1138 | return true; |
| 1139 | } |
| 1140 | |
| 1141 | //===----------------------------------------------------------------------===// |
| 1142 | // Formal Arguments Calling Convention Implementation |
| 1143 | //===----------------------------------------------------------------------===// |
| 1144 | |
| 1145 | #include "AVRGenCallingConv.inc" |
| 1146 | |
| 1147 | /// Registers for calling conventions, ordered in reverse as required by ABI. |
| 1148 | /// Both arrays must be of the same length. |
| 1149 | static const MCPhysReg RegList8AVR[] = { |
| 1150 | AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20, |
| 1151 | AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14, |
| 1152 | AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8}; |
| 1153 | static const MCPhysReg RegList8Tiny[] = {AVR::R25, AVR::R24, AVR::R23, |
| 1154 | AVR::R22, AVR::R21, AVR::R20}; |
| 1155 | static const MCPhysReg RegList16AVR[] = { |
| 1156 | AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21, |
| 1157 | AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16, |
| 1158 | AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11, |
| 1159 | AVR::R11R10, AVR::R10R9, AVR::R9R8}; |
| 1160 | static const MCPhysReg RegList16Tiny[] = {AVR::R26R25, AVR::R25R24, |
| 1161 | AVR::R24R23, AVR::R23R22, |
| 1162 | AVR::R22R21, AVR::R21R20}; |
| 1163 | |
| 1164 | static_assert(std::size(RegList8AVR) == std::size(RegList16AVR), |
| 1165 | "8-bit and 16-bit register arrays must be of equal length" ); |
| 1166 | static_assert(std::size(RegList8Tiny) == std::size(RegList16Tiny), |
| 1167 | "8-bit and 16-bit register arrays must be of equal length" ); |
| 1168 | |
| 1169 | /// Analyze incoming and outgoing function arguments. We need custom C++ code |
| 1170 | /// to handle special constraints in the ABI. |
| 1171 | /// In addition, all pieces of a certain argument have to be passed either |
| 1172 | /// using registers or the stack but never mixing both. |
| 1173 | template <typename ArgT> |
| 1174 | static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI, |
| 1175 | const Function *F, const DataLayout *TD, |
| 1176 | const SmallVectorImpl<ArgT> &Args, |
| 1177 | SmallVectorImpl<CCValAssign> &ArgLocs, |
| 1178 | CCState &CCInfo, bool Tiny) { |
| 1179 | // Choose the proper register list for argument passing according to the ABI. |
| 1180 | ArrayRef<MCPhysReg> RegList8; |
| 1181 | ArrayRef<MCPhysReg> RegList16; |
| 1182 | if (Tiny) { |
| 1183 | RegList8 = ArrayRef(RegList8Tiny); |
| 1184 | RegList16 = ArrayRef(RegList16Tiny); |
| 1185 | } else { |
| 1186 | RegList8 = ArrayRef(RegList8AVR); |
| 1187 | RegList16 = ArrayRef(RegList16AVR); |
| 1188 | } |
| 1189 | |
| 1190 | unsigned NumArgs = Args.size(); |
| 1191 | // This is the index of the last used register, in RegList*. |
| 1192 | // -1 means R26 (R26 is never actually used in CC). |
| 1193 | int RegLastIdx = -1; |
| 1194 | // Once a value is passed to the stack it will always be used |
| 1195 | bool UseStack = false; |
| 1196 | for (unsigned i = 0; i != NumArgs;) { |
| 1197 | MVT VT = Args[i].VT; |
| 1198 | // We have to count the number of bytes for each function argument, that is |
| 1199 | // those Args with the same OrigArgIndex. This is important in case the |
| 1200 | // function takes an aggregate type. |
| 1201 | // Current argument will be between [i..j). |
| 1202 | unsigned ArgIndex = Args[i].OrigArgIndex; |
| 1203 | unsigned TotalBytes = VT.getStoreSize(); |
| 1204 | unsigned j = i + 1; |
| 1205 | for (; j != NumArgs; ++j) { |
| 1206 | if (Args[j].OrigArgIndex != ArgIndex) |
| 1207 | break; |
| 1208 | TotalBytes += Args[j].VT.getStoreSize(); |
| 1209 | } |
| 1210 | // Round up to even number of bytes. |
| 1211 | TotalBytes = alignTo(Value: TotalBytes, Align: 2); |
| 1212 | // Skip zero sized arguments |
| 1213 | if (TotalBytes == 0) |
| 1214 | continue; |
| 1215 | // The index of the first register to be used |
| 1216 | unsigned RegIdx = RegLastIdx + TotalBytes; |
| 1217 | RegLastIdx = RegIdx; |
| 1218 | // If there are not enough registers, use the stack |
| 1219 | if (RegIdx >= RegList8.size()) { |
| 1220 | UseStack = true; |
| 1221 | } |
| 1222 | for (; i != j; ++i) { |
| 1223 | MVT VT = Args[i].VT; |
| 1224 | |
| 1225 | if (UseStack) { |
| 1226 | auto evt = EVT(VT).getTypeForEVT(Context&: CCInfo.getContext()); |
| 1227 | unsigned Offset = CCInfo.AllocateStack(Size: TD->getTypeAllocSize(Ty: evt), |
| 1228 | Alignment: TD->getABITypeAlign(Ty: evt)); |
| 1229 | CCInfo.addLoc( |
| 1230 | V: CCValAssign::getMem(ValNo: i, ValVT: VT, Offset, LocVT: VT, HTP: CCValAssign::Full)); |
| 1231 | } else { |
| 1232 | unsigned Reg; |
| 1233 | if (VT == MVT::i8) { |
| 1234 | Reg = CCInfo.AllocateReg(Reg: RegList8[RegIdx]); |
| 1235 | } else if (VT == MVT::i16) { |
| 1236 | Reg = CCInfo.AllocateReg(Reg: RegList16[RegIdx]); |
| 1237 | } else { |
| 1238 | llvm_unreachable( |
| 1239 | "calling convention can only manage i8 and i16 types" ); |
| 1240 | } |
| 1241 | assert(Reg && "register not available in calling convention" ); |
| 1242 | CCInfo.addLoc(V: CCValAssign::getReg(ValNo: i, ValVT: VT, Reg, LocVT: VT, HTP: CCValAssign::Full)); |
| 1243 | // Registers inside a particular argument are sorted in increasing order |
| 1244 | // (remember the array is reversed). |
| 1245 | RegIdx -= VT.getStoreSize(); |
| 1246 | } |
| 1247 | } |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | /// Count the total number of bytes needed to pass or return these arguments. |
| 1252 | template <typename ArgT> |
| 1253 | static unsigned |
| 1254 | getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) { |
| 1255 | unsigned TotalBytes = 0; |
| 1256 | |
| 1257 | for (const ArgT &Arg : Args) { |
| 1258 | TotalBytes += Arg.VT.getStoreSize(); |
| 1259 | } |
| 1260 | return TotalBytes; |
| 1261 | } |
| 1262 | |
| 1263 | /// Analyze incoming and outgoing value of returning from a function. |
| 1264 | /// The algorithm is similar to analyzeArguments, but there can only be |
| 1265 | /// one value, possibly an aggregate, and it is limited to 8 bytes. |
| 1266 | template <typename ArgT> |
| 1267 | static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args, |
| 1268 | CCState &CCInfo, bool Tiny) { |
| 1269 | unsigned NumArgs = Args.size(); |
| 1270 | unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args); |
| 1271 | // CanLowerReturn() guarantees this assertion. |
| 1272 | if (Tiny) |
| 1273 | assert(TotalBytes <= 4 && |
| 1274 | "return values greater than 4 bytes cannot be lowered on AVRTiny" ); |
| 1275 | else |
| 1276 | assert(TotalBytes <= 8 && |
| 1277 | "return values greater than 8 bytes cannot be lowered on AVR" ); |
| 1278 | |
| 1279 | // Choose the proper register list for argument passing according to the ABI. |
| 1280 | ArrayRef<MCPhysReg> RegList8; |
| 1281 | ArrayRef<MCPhysReg> RegList16; |
| 1282 | if (Tiny) { |
| 1283 | RegList8 = ArrayRef(RegList8Tiny); |
| 1284 | RegList16 = ArrayRef(RegList16Tiny); |
| 1285 | } else { |
| 1286 | RegList8 = ArrayRef(RegList8AVR); |
| 1287 | RegList16 = ArrayRef(RegList16AVR); |
| 1288 | } |
| 1289 | |
| 1290 | // GCC-ABI says that the size is rounded up to the next even number, |
| 1291 | // but actually once it is more than 4 it will always round up to 8. |
| 1292 | if (TotalBytes > 4) { |
| 1293 | TotalBytes = 8; |
| 1294 | } else { |
| 1295 | TotalBytes = alignTo(Value: TotalBytes, Align: 2); |
| 1296 | } |
| 1297 | |
| 1298 | // The index of the first register to use. |
| 1299 | int RegIdx = TotalBytes - 1; |
| 1300 | for (unsigned i = 0; i != NumArgs; ++i) { |
| 1301 | MVT VT = Args[i].VT; |
| 1302 | unsigned Reg; |
| 1303 | if (VT == MVT::i8) { |
| 1304 | Reg = CCInfo.AllocateReg(Reg: RegList8[RegIdx]); |
| 1305 | } else if (VT == MVT::i16) { |
| 1306 | Reg = CCInfo.AllocateReg(Reg: RegList16[RegIdx]); |
| 1307 | } else { |
| 1308 | llvm_unreachable("calling convention can only manage i8 and i16 types" ); |
| 1309 | } |
| 1310 | assert(Reg && "register not available in calling convention" ); |
| 1311 | CCInfo.addLoc(V: CCValAssign::getReg(ValNo: i, ValVT: VT, Reg, LocVT: VT, HTP: CCValAssign::Full)); |
| 1312 | // Registers sort in increasing order |
| 1313 | RegIdx -= VT.getStoreSize(); |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | SDValue AVRTargetLowering::LowerFormalArguments( |
| 1318 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| 1319 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| 1320 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 1321 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1322 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1323 | auto DL = DAG.getDataLayout(); |
| 1324 | |
| 1325 | // Assign locations to all of the incoming arguments. |
| 1326 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1327 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| 1328 | *DAG.getContext()); |
| 1329 | |
| 1330 | // Variadic functions do not need all the analysis below. |
| 1331 | if (isVarArg) { |
| 1332 | CCInfo.AnalyzeFormalArguments(Ins, Fn: ArgCC_AVR_Vararg); |
| 1333 | } else { |
| 1334 | analyzeArguments(CLI: nullptr, F: &MF.getFunction(), TD: &DL, Args: Ins, ArgLocs, CCInfo, |
| 1335 | Tiny: Subtarget.hasTinyEncoding()); |
| 1336 | } |
| 1337 | |
| 1338 | SDValue ArgValue; |
| 1339 | for (CCValAssign &VA : ArgLocs) { |
| 1340 | |
| 1341 | // Arguments stored on registers. |
| 1342 | if (VA.isRegLoc()) { |
| 1343 | EVT RegVT = VA.getLocVT(); |
| 1344 | const TargetRegisterClass *RC; |
| 1345 | if (RegVT == MVT::i8) { |
| 1346 | RC = &AVR::GPR8RegClass; |
| 1347 | } else if (RegVT == MVT::i16) { |
| 1348 | RC = &AVR::DREGSRegClass; |
| 1349 | } else { |
| 1350 | llvm_unreachable("Unknown argument type!" ); |
| 1351 | } |
| 1352 | |
| 1353 | Register Reg = MF.addLiveIn(PReg: VA.getLocReg(), RC); |
| 1354 | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, VT: RegVT); |
| 1355 | |
| 1356 | // :NOTE: Clang should not promote any i8 into i16 but for safety the |
| 1357 | // following code will handle zexts or sexts generated by other |
| 1358 | // front ends. Otherwise: |
| 1359 | // If this is an 8 bit value, it is really passed promoted |
| 1360 | // to 16 bits. Insert an assert[sz]ext to capture this, then |
| 1361 | // truncate to the right size. |
| 1362 | switch (VA.getLocInfo()) { |
| 1363 | default: |
| 1364 | llvm_unreachable("Unknown loc info!" ); |
| 1365 | case CCValAssign::Full: |
| 1366 | break; |
| 1367 | case CCValAssign::BCvt: |
| 1368 | ArgValue = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: VA.getValVT(), Operand: ArgValue); |
| 1369 | break; |
| 1370 | case CCValAssign::SExt: |
| 1371 | ArgValue = DAG.getNode(Opcode: ISD::AssertSext, DL: dl, VT: RegVT, N1: ArgValue, |
| 1372 | N2: DAG.getValueType(VA.getValVT())); |
| 1373 | ArgValue = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: VA.getValVT(), Operand: ArgValue); |
| 1374 | break; |
| 1375 | case CCValAssign::ZExt: |
| 1376 | ArgValue = DAG.getNode(Opcode: ISD::AssertZext, DL: dl, VT: RegVT, N1: ArgValue, |
| 1377 | N2: DAG.getValueType(VA.getValVT())); |
| 1378 | ArgValue = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: VA.getValVT(), Operand: ArgValue); |
| 1379 | break; |
| 1380 | } |
| 1381 | |
| 1382 | InVals.push_back(Elt: ArgValue); |
| 1383 | } else { |
| 1384 | // Only arguments passed on the stack should make it here. |
| 1385 | assert(VA.isMemLoc()); |
| 1386 | |
| 1387 | EVT LocVT = VA.getLocVT(); |
| 1388 | |
| 1389 | // Create the frame index object for this incoming parameter. |
| 1390 | int FI = MFI.CreateFixedObject(Size: LocVT.getSizeInBits() / 8, |
| 1391 | SPOffset: VA.getLocMemOffset(), IsImmutable: true); |
| 1392 | |
| 1393 | // Create the SelectionDAG nodes corresponding to a load |
| 1394 | // from this parameter. |
| 1395 | SDValue FIN = DAG.getFrameIndex(FI, VT: getPointerTy(DL)); |
| 1396 | InVals.push_back(Elt: DAG.getLoad(VT: LocVT, dl, Chain, Ptr: FIN, |
| 1397 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI))); |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | // If the function takes variable number of arguments, make a frame index for |
| 1402 | // the start of the first vararg value... for expansion of llvm.va_start. |
| 1403 | if (isVarArg) { |
| 1404 | unsigned StackSize = CCInfo.getStackSize(); |
| 1405 | AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| 1406 | |
| 1407 | AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(Size: 2, SPOffset: StackSize, IsImmutable: true)); |
| 1408 | } |
| 1409 | |
| 1410 | return Chain; |
| 1411 | } |
| 1412 | |
| 1413 | //===----------------------------------------------------------------------===// |
| 1414 | // Call Calling Convention Implementation |
| 1415 | //===----------------------------------------------------------------------===// |
| 1416 | |
| 1417 | SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| 1418 | SmallVectorImpl<SDValue> &InVals) const { |
| 1419 | SelectionDAG &DAG = CLI.DAG; |
| 1420 | SDLoc &DL = CLI.DL; |
| 1421 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 1422 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 1423 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 1424 | SDValue Chain = CLI.Chain; |
| 1425 | SDValue Callee = CLI.Callee; |
| 1426 | bool &isTailCall = CLI.IsTailCall; |
| 1427 | CallingConv::ID CallConv = CLI.CallConv; |
| 1428 | bool isVarArg = CLI.IsVarArg; |
| 1429 | |
| 1430 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1431 | |
| 1432 | // AVR does not yet support tail call optimization. |
| 1433 | isTailCall = false; |
| 1434 | |
| 1435 | // Analyze operands of the call, assigning locations to each operand. |
| 1436 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1437 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| 1438 | *DAG.getContext()); |
| 1439 | |
| 1440 | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| 1441 | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| 1442 | // node so that legalize doesn't hack it. |
| 1443 | const Function *F = nullptr; |
| 1444 | if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) { |
| 1445 | const GlobalValue *GV = G->getGlobal(); |
| 1446 | if (isa<Function>(Val: GV)) |
| 1447 | F = cast<Function>(Val: GV); |
| 1448 | Callee = |
| 1449 | DAG.getTargetGlobalAddress(GV, DL, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 1450 | } else if (const ExternalSymbolSDNode *ES = |
| 1451 | dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) { |
| 1452 | Callee = DAG.getTargetExternalSymbol(Sym: ES->getSymbol(), |
| 1453 | VT: getPointerTy(DL: DAG.getDataLayout())); |
| 1454 | } |
| 1455 | |
| 1456 | // Variadic functions do not need all the analysis below. |
| 1457 | if (isVarArg) { |
| 1458 | CCInfo.AnalyzeCallOperands(Outs, Fn: ArgCC_AVR_Vararg); |
| 1459 | } else { |
| 1460 | analyzeArguments(CLI: &CLI, F, TD: &DAG.getDataLayout(), Args: Outs, ArgLocs, CCInfo, |
| 1461 | Tiny: Subtarget.hasTinyEncoding()); |
| 1462 | } |
| 1463 | |
| 1464 | // Get a count of how many bytes are to be pushed on the stack. |
| 1465 | unsigned NumBytes = CCInfo.getStackSize(); |
| 1466 | |
| 1467 | Chain = DAG.getCALLSEQ_START(Chain, InSize: NumBytes, OutSize: 0, DL); |
| 1468 | |
| 1469 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| 1470 | |
| 1471 | // First, walk the register assignments, inserting copies. |
| 1472 | unsigned AI, AE; |
| 1473 | bool HasStackArgs = false; |
| 1474 | for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) { |
| 1475 | CCValAssign &VA = ArgLocs[AI]; |
| 1476 | EVT RegVT = VA.getLocVT(); |
| 1477 | SDValue Arg = OutVals[AI]; |
| 1478 | |
| 1479 | // Promote the value if needed. With Clang this should not happen. |
| 1480 | switch (VA.getLocInfo()) { |
| 1481 | default: |
| 1482 | llvm_unreachable("Unknown loc info!" ); |
| 1483 | case CCValAssign::Full: |
| 1484 | break; |
| 1485 | case CCValAssign::SExt: |
| 1486 | Arg = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: RegVT, Operand: Arg); |
| 1487 | break; |
| 1488 | case CCValAssign::ZExt: |
| 1489 | Arg = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: RegVT, Operand: Arg); |
| 1490 | break; |
| 1491 | case CCValAssign::AExt: |
| 1492 | Arg = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: RegVT, Operand: Arg); |
| 1493 | break; |
| 1494 | case CCValAssign::BCvt: |
| 1495 | Arg = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: RegVT, Operand: Arg); |
| 1496 | break; |
| 1497 | } |
| 1498 | |
| 1499 | // Stop when we encounter a stack argument, we need to process them |
| 1500 | // in reverse order in the loop below. |
| 1501 | if (VA.isMemLoc()) { |
| 1502 | HasStackArgs = true; |
| 1503 | break; |
| 1504 | } |
| 1505 | |
| 1506 | // Arguments that can be passed on registers must be kept in the RegsToPass |
| 1507 | // vector. |
| 1508 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: Arg)); |
| 1509 | } |
| 1510 | |
| 1511 | // Second, stack arguments have to walked. |
| 1512 | // Previously this code created chained stores but those chained stores appear |
| 1513 | // to be unchained in the legalization phase. Therefore, do not attempt to |
| 1514 | // chain them here. In fact, chaining them here somehow causes the first and |
| 1515 | // second store to be reversed which is the exact opposite of the intended |
| 1516 | // effect. |
| 1517 | if (HasStackArgs) { |
| 1518 | SmallVector<SDValue, 8> MemOpChains; |
| 1519 | for (; AI != AE; AI++) { |
| 1520 | CCValAssign &VA = ArgLocs[AI]; |
| 1521 | SDValue Arg = OutVals[AI]; |
| 1522 | |
| 1523 | assert(VA.isMemLoc()); |
| 1524 | |
| 1525 | // SP points to one stack slot further so add one to adjust it. |
| 1526 | SDValue PtrOff = DAG.getNode( |
| 1527 | Opcode: ISD::ADD, DL, VT: getPointerTy(DL: DAG.getDataLayout()), |
| 1528 | N1: DAG.getRegister(Reg: AVR::SP, VT: getPointerTy(DL: DAG.getDataLayout())), |
| 1529 | N2: DAG.getIntPtrConstant(Val: VA.getLocMemOffset() + 1, DL)); |
| 1530 | |
| 1531 | MemOpChains.push_back( |
| 1532 | Elt: DAG.getStore(Chain, dl: DL, Val: Arg, Ptr: PtrOff, |
| 1533 | PtrInfo: MachinePointerInfo::getStack(MF, Offset: VA.getLocMemOffset()))); |
| 1534 | } |
| 1535 | |
| 1536 | if (!MemOpChains.empty()) |
| 1537 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOpChains); |
| 1538 | } |
| 1539 | |
| 1540 | // Build a sequence of copy-to-reg nodes chained together with token chain and |
| 1541 | // flag operands which copy the outgoing args into registers. The InGlue in |
| 1542 | // necessary since all emited instructions must be stuck together. |
| 1543 | SDValue InGlue; |
| 1544 | for (auto Reg : RegsToPass) { |
| 1545 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: Reg.first, N: Reg.second, Glue: InGlue); |
| 1546 | InGlue = Chain.getValue(R: 1); |
| 1547 | } |
| 1548 | |
| 1549 | // Returns a chain & a flag for retval copy to use. |
| 1550 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 1551 | SmallVector<SDValue, 8> Ops; |
| 1552 | Ops.push_back(Elt: Chain); |
| 1553 | Ops.push_back(Elt: Callee); |
| 1554 | |
| 1555 | // Add argument registers to the end of the list so that they are known live |
| 1556 | // into the call. |
| 1557 | for (auto Reg : RegsToPass) { |
| 1558 | Ops.push_back(Elt: DAG.getRegister(Reg: Reg.first, VT: Reg.second.getValueType())); |
| 1559 | } |
| 1560 | |
| 1561 | // The zero register (usually R1) must be passed as an implicit register so |
| 1562 | // that this register is correctly zeroed in interrupts. |
| 1563 | Ops.push_back(Elt: DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8)); |
| 1564 | |
| 1565 | // Add a register mask operand representing the call-preserved registers. |
| 1566 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 1567 | const uint32_t *Mask = |
| 1568 | TRI->getCallPreservedMask(MF: DAG.getMachineFunction(), CallConv); |
| 1569 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 1570 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 1571 | |
| 1572 | if (InGlue.getNode()) { |
| 1573 | Ops.push_back(Elt: InGlue); |
| 1574 | } |
| 1575 | |
| 1576 | Chain = DAG.getNode(Opcode: AVRISD::CALL, DL, VTList: NodeTys, Ops); |
| 1577 | InGlue = Chain.getValue(R: 1); |
| 1578 | |
| 1579 | // Create the CALLSEQ_END node. |
| 1580 | Chain = DAG.getCALLSEQ_END(Chain, Size1: NumBytes, Size2: 0, Glue: InGlue, DL); |
| 1581 | |
| 1582 | if (!Ins.empty()) { |
| 1583 | InGlue = Chain.getValue(R: 1); |
| 1584 | } |
| 1585 | |
| 1586 | // Handle result values, copying them out of physregs into vregs that we |
| 1587 | // return. |
| 1588 | return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl: DL, DAG, |
| 1589 | InVals); |
| 1590 | } |
| 1591 | |
| 1592 | /// Lower the result values of a call into the |
| 1593 | /// appropriate copies out of appropriate physical registers. |
| 1594 | /// |
| 1595 | SDValue AVRTargetLowering::LowerCallResult( |
| 1596 | SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, |
| 1597 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| 1598 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 1599 | |
| 1600 | // Assign locations to each value returned by this call. |
| 1601 | SmallVector<CCValAssign, 16> RVLocs; |
| 1602 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| 1603 | *DAG.getContext()); |
| 1604 | |
| 1605 | // Handle runtime calling convs. |
| 1606 | if (CallConv == CallingConv::AVR_BUILTIN) { |
| 1607 | CCInfo.AnalyzeCallResult(Ins, Fn: RetCC_AVR_BUILTIN); |
| 1608 | } else { |
| 1609 | analyzeReturnValues(Args: Ins, CCInfo, Tiny: Subtarget.hasTinyEncoding()); |
| 1610 | } |
| 1611 | |
| 1612 | // Copy all of the result registers out of their specified physreg. |
| 1613 | for (CCValAssign const &RVLoc : RVLocs) { |
| 1614 | Chain = DAG.getCopyFromReg(Chain, dl, Reg: RVLoc.getLocReg(), VT: RVLoc.getValVT(), |
| 1615 | Glue: InGlue) |
| 1616 | .getValue(R: 1); |
| 1617 | InGlue = Chain.getValue(R: 2); |
| 1618 | InVals.push_back(Elt: Chain.getValue(R: 0)); |
| 1619 | } |
| 1620 | |
| 1621 | return Chain; |
| 1622 | } |
| 1623 | |
| 1624 | //===----------------------------------------------------------------------===// |
| 1625 | // Return Value Calling Convention Implementation |
| 1626 | //===----------------------------------------------------------------------===// |
| 1627 | |
| 1628 | bool AVRTargetLowering::CanLowerReturn( |
| 1629 | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| 1630 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, |
| 1631 | const Type *RetTy) const { |
| 1632 | if (CallConv == CallingConv::AVR_BUILTIN) { |
| 1633 | SmallVector<CCValAssign, 16> RVLocs; |
| 1634 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| 1635 | return CCInfo.CheckReturn(Outs, Fn: RetCC_AVR_BUILTIN); |
| 1636 | } |
| 1637 | |
| 1638 | unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args: Outs); |
| 1639 | return TotalBytes <= (unsigned)(Subtarget.hasTinyEncoding() ? 4 : 8); |
| 1640 | } |
| 1641 | |
| 1642 | SDValue |
| 1643 | AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 1644 | bool isVarArg, |
| 1645 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1646 | const SmallVectorImpl<SDValue> &OutVals, |
| 1647 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 1648 | // CCValAssign - represent the assignment of the return value to locations. |
| 1649 | SmallVector<CCValAssign, 16> RVLocs; |
| 1650 | |
| 1651 | // CCState - Info about the registers and stack slot. |
| 1652 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| 1653 | *DAG.getContext()); |
| 1654 | |
| 1655 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1656 | |
| 1657 | // Analyze return values. |
| 1658 | if (CallConv == CallingConv::AVR_BUILTIN) { |
| 1659 | CCInfo.AnalyzeReturn(Outs, Fn: RetCC_AVR_BUILTIN); |
| 1660 | } else { |
| 1661 | analyzeReturnValues(Args: Outs, CCInfo, Tiny: Subtarget.hasTinyEncoding()); |
| 1662 | } |
| 1663 | |
| 1664 | SDValue Glue; |
| 1665 | SmallVector<SDValue, 4> RetOps(1, Chain); |
| 1666 | // Copy the result values into the output registers. |
| 1667 | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| 1668 | CCValAssign &VA = RVLocs[i]; |
| 1669 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 1670 | |
| 1671 | Chain = DAG.getCopyToReg(Chain, dl, Reg: VA.getLocReg(), N: OutVals[i], Glue); |
| 1672 | |
| 1673 | // Guarantee that all emitted copies are stuck together with flags. |
| 1674 | Glue = Chain.getValue(R: 1); |
| 1675 | RetOps.push_back(Elt: DAG.getRegister(Reg: VA.getLocReg(), VT: VA.getLocVT())); |
| 1676 | } |
| 1677 | |
| 1678 | // Don't emit the ret/reti instruction when the naked attribute is present in |
| 1679 | // the function being compiled. |
| 1680 | if (MF.getFunction().getAttributes().hasFnAttr(Kind: Attribute::Naked)) { |
| 1681 | return Chain; |
| 1682 | } |
| 1683 | |
| 1684 | const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>(); |
| 1685 | |
| 1686 | if (!AFI->isInterruptOrSignalHandler()) { |
| 1687 | // The return instruction has an implicit zero register operand: it must |
| 1688 | // contain zero on return. |
| 1689 | // This is not needed in interrupts however, where the zero register is |
| 1690 | // handled specially (only pushed/popped when needed). |
| 1691 | RetOps.push_back(Elt: DAG.getRegister(Reg: Subtarget.getZeroRegister(), VT: MVT::i8)); |
| 1692 | } |
| 1693 | |
| 1694 | unsigned RetOpc = |
| 1695 | AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_GLUE : AVRISD::RET_GLUE; |
| 1696 | |
| 1697 | RetOps[0] = Chain; // Update chain. |
| 1698 | |
| 1699 | if (Glue.getNode()) { |
| 1700 | RetOps.push_back(Elt: Glue); |
| 1701 | } |
| 1702 | |
| 1703 | return DAG.getNode(Opcode: RetOpc, DL: dl, VT: MVT::Other, Ops: RetOps); |
| 1704 | } |
| 1705 | |
| 1706 | //===----------------------------------------------------------------------===// |
| 1707 | // Custom Inserters |
| 1708 | //===----------------------------------------------------------------------===// |
| 1709 | |
| 1710 | MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI, |
| 1711 | MachineBasicBlock *BB, |
| 1712 | bool Tiny) const { |
| 1713 | unsigned Opc; |
| 1714 | const TargetRegisterClass *RC; |
| 1715 | bool HasRepeatedOperand = false; |
| 1716 | MachineFunction *F = BB->getParent(); |
| 1717 | MachineRegisterInfo &RI = F->getRegInfo(); |
| 1718 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 1719 | DebugLoc dl = MI.getDebugLoc(); |
| 1720 | |
| 1721 | switch (MI.getOpcode()) { |
| 1722 | default: |
| 1723 | llvm_unreachable("Invalid shift opcode!" ); |
| 1724 | case AVR::Lsl8: |
| 1725 | Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd |
| 1726 | RC = &AVR::GPR8RegClass; |
| 1727 | HasRepeatedOperand = true; |
| 1728 | break; |
| 1729 | case AVR::Lsl16: |
| 1730 | Opc = AVR::LSLWRd; |
| 1731 | RC = &AVR::DREGSRegClass; |
| 1732 | break; |
| 1733 | case AVR::Asr8: |
| 1734 | Opc = AVR::ASRRd; |
| 1735 | RC = &AVR::GPR8RegClass; |
| 1736 | break; |
| 1737 | case AVR::Asr16: |
| 1738 | Opc = AVR::ASRWRd; |
| 1739 | RC = &AVR::DREGSRegClass; |
| 1740 | break; |
| 1741 | case AVR::Lsr8: |
| 1742 | Opc = AVR::LSRRd; |
| 1743 | RC = &AVR::GPR8RegClass; |
| 1744 | break; |
| 1745 | case AVR::Lsr16: |
| 1746 | Opc = AVR::LSRWRd; |
| 1747 | RC = &AVR::DREGSRegClass; |
| 1748 | break; |
| 1749 | case AVR::Rol8: |
| 1750 | Opc = Tiny ? AVR::ROLBRdR17 : AVR::ROLBRdR1; |
| 1751 | RC = &AVR::GPR8RegClass; |
| 1752 | break; |
| 1753 | case AVR::Rol16: |
| 1754 | Opc = AVR::ROLWRd; |
| 1755 | RC = &AVR::DREGSRegClass; |
| 1756 | break; |
| 1757 | case AVR::Ror8: |
| 1758 | Opc = AVR::RORBRd; |
| 1759 | RC = &AVR::GPR8RegClass; |
| 1760 | break; |
| 1761 | case AVR::Ror16: |
| 1762 | Opc = AVR::RORWRd; |
| 1763 | RC = &AVR::DREGSRegClass; |
| 1764 | break; |
| 1765 | } |
| 1766 | |
| 1767 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 1768 | |
| 1769 | MachineFunction::iterator I; |
| 1770 | for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I) |
| 1771 | ; |
| 1772 | if (I != F->end()) |
| 1773 | ++I; |
| 1774 | |
| 1775 | // Create loop block. |
| 1776 | MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 1777 | MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 1778 | MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 1779 | |
| 1780 | F->insert(MBBI: I, MBB: LoopBB); |
| 1781 | F->insert(MBBI: I, MBB: CheckBB); |
| 1782 | F->insert(MBBI: I, MBB: RemBB); |
| 1783 | |
| 1784 | // Update machine-CFG edges by transferring all successors of the current |
| 1785 | // block to the block containing instructions after shift. |
| 1786 | RemBB->splice(Where: RemBB->begin(), Other: BB, From: std::next(x: MachineBasicBlock::iterator(MI)), |
| 1787 | To: BB->end()); |
| 1788 | RemBB->transferSuccessorsAndUpdatePHIs(FromMBB: BB); |
| 1789 | |
| 1790 | // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB. |
| 1791 | BB->addSuccessor(Succ: CheckBB); |
| 1792 | LoopBB->addSuccessor(Succ: CheckBB); |
| 1793 | CheckBB->addSuccessor(Succ: LoopBB); |
| 1794 | CheckBB->addSuccessor(Succ: RemBB); |
| 1795 | |
| 1796 | Register ShiftAmtReg = RI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1797 | Register ShiftAmtReg2 = RI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1798 | Register ShiftReg = RI.createVirtualRegister(RegClass: RC); |
| 1799 | Register ShiftReg2 = RI.createVirtualRegister(RegClass: RC); |
| 1800 | Register ShiftAmtSrcReg = MI.getOperand(i: 2).getReg(); |
| 1801 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1802 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1803 | |
| 1804 | // BB: |
| 1805 | // rjmp CheckBB |
| 1806 | BuildMI(BB, MIMD: dl, MCID: TII.get(Opcode: AVR::RJMPk)).addMBB(MBB: CheckBB); |
| 1807 | |
| 1808 | // LoopBB: |
| 1809 | // ShiftReg2 = shift ShiftReg |
| 1810 | auto ShiftMI = BuildMI(BB: LoopBB, MIMD: dl, MCID: TII.get(Opcode: Opc), DestReg: ShiftReg2).addReg(RegNo: ShiftReg); |
| 1811 | if (HasRepeatedOperand) |
| 1812 | ShiftMI.addReg(RegNo: ShiftReg); |
| 1813 | |
| 1814 | // CheckBB: |
| 1815 | // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] |
| 1816 | // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] |
| 1817 | // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] |
| 1818 | // ShiftAmt2 = ShiftAmt - 1; |
| 1819 | // if (ShiftAmt2 >= 0) goto LoopBB; |
| 1820 | BuildMI(BB: CheckBB, MIMD: dl, MCID: TII.get(Opcode: AVR::PHI), DestReg: ShiftReg) |
| 1821 | .addReg(RegNo: SrcReg) |
| 1822 | .addMBB(MBB: BB) |
| 1823 | .addReg(RegNo: ShiftReg2) |
| 1824 | .addMBB(MBB: LoopBB); |
| 1825 | BuildMI(BB: CheckBB, MIMD: dl, MCID: TII.get(Opcode: AVR::PHI), DestReg: ShiftAmtReg) |
| 1826 | .addReg(RegNo: ShiftAmtSrcReg) |
| 1827 | .addMBB(MBB: BB) |
| 1828 | .addReg(RegNo: ShiftAmtReg2) |
| 1829 | .addMBB(MBB: LoopBB); |
| 1830 | BuildMI(BB: CheckBB, MIMD: dl, MCID: TII.get(Opcode: AVR::PHI), DestReg: DstReg) |
| 1831 | .addReg(RegNo: SrcReg) |
| 1832 | .addMBB(MBB: BB) |
| 1833 | .addReg(RegNo: ShiftReg2) |
| 1834 | .addMBB(MBB: LoopBB); |
| 1835 | |
| 1836 | BuildMI(BB: CheckBB, MIMD: dl, MCID: TII.get(Opcode: AVR::DECRd), DestReg: ShiftAmtReg2).addReg(RegNo: ShiftAmtReg); |
| 1837 | BuildMI(BB: CheckBB, MIMD: dl, MCID: TII.get(Opcode: AVR::BRPLk)).addMBB(MBB: LoopBB); |
| 1838 | |
| 1839 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 1840 | return RemBB; |
| 1841 | } |
| 1842 | |
| 1843 | // Do a multibyte AVR shift. Insert shift instructions and put the output |
| 1844 | // registers in the Regs array. |
| 1845 | // Because AVR does not have a normal shift instruction (only a single bit shift |
| 1846 | // instruction), we have to emulate this behavior with other instructions. |
| 1847 | // It first tries large steps (moving registers around) and then smaller steps |
| 1848 | // like single bit shifts. |
| 1849 | // Large shifts actually reduce the number of shifted registers, so the below |
| 1850 | // algorithms have to work independently of the number of registers that are |
| 1851 | // shifted. |
| 1852 | // For more information and background, see this blogpost: |
| 1853 | // https://aykevl.nl/2021/02/avr-bitshift |
| 1854 | static void insertMultibyteShift(MachineInstr &MI, MachineBasicBlock *BB, |
| 1855 | MutableArrayRef<std::pair<Register, int>> Regs, |
| 1856 | ISD::NodeType Opc, int64_t ShiftAmt) { |
| 1857 | const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| 1858 | const AVRSubtarget &STI = BB->getParent()->getSubtarget<AVRSubtarget>(); |
| 1859 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 1860 | const DebugLoc &dl = MI.getDebugLoc(); |
| 1861 | |
| 1862 | const bool ShiftLeft = Opc == ISD::SHL; |
| 1863 | const bool ArithmeticShift = Opc == ISD::SRA; |
| 1864 | |
| 1865 | // Zero a register, for use in later operations. |
| 1866 | Register ZeroReg = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1867 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::COPY), DestReg: ZeroReg) |
| 1868 | .addReg(RegNo: STI.getZeroRegister()); |
| 1869 | |
| 1870 | // Do a shift modulo 6 or 7. This is a bit more complicated than most shifts |
| 1871 | // and is hard to compose with the rest, so these are special cased. |
| 1872 | // The basic idea is to shift one or two bits in the opposite direction and |
| 1873 | // then move registers around to get the correct end result. |
| 1874 | if (ShiftLeft && (ShiftAmt % 8) >= 6) { |
| 1875 | // Left shift modulo 6 or 7. |
| 1876 | |
| 1877 | // Create a slice of the registers we're going to modify, to ease working |
| 1878 | // with them. |
| 1879 | size_t ShiftRegsOffset = ShiftAmt / 8; |
| 1880 | size_t ShiftRegsSize = Regs.size() - ShiftRegsOffset; |
| 1881 | MutableArrayRef<std::pair<Register, int>> ShiftRegs = |
| 1882 | Regs.slice(N: ShiftRegsOffset, M: ShiftRegsSize); |
| 1883 | |
| 1884 | // Shift one to the right, keeping the least significant bit as the carry |
| 1885 | // bit. |
| 1886 | insertMultibyteShift(MI, BB, Regs: ShiftRegs, Opc: ISD::SRL, ShiftAmt: 1); |
| 1887 | |
| 1888 | // Rotate the least significant bit from the carry bit into a new register |
| 1889 | // (that starts out zero). |
| 1890 | Register LowByte = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1891 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::RORRd), DestReg: LowByte).addReg(RegNo: ZeroReg); |
| 1892 | |
| 1893 | // Shift one more to the right if this is a modulo-6 shift. |
| 1894 | if (ShiftAmt % 8 == 6) { |
| 1895 | insertMultibyteShift(MI, BB, Regs: ShiftRegs, Opc: ISD::SRL, ShiftAmt: 1); |
| 1896 | Register NewLowByte = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1897 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::RORRd), DestReg: NewLowByte).addReg(RegNo: LowByte); |
| 1898 | LowByte = NewLowByte; |
| 1899 | } |
| 1900 | |
| 1901 | // Move all registers to the left, zeroing the bottom registers as needed. |
| 1902 | for (size_t I = 0; I < Regs.size(); I++) { |
| 1903 | int ShiftRegsIdx = I + 1; |
| 1904 | if (ShiftRegsIdx < (int)ShiftRegs.size()) { |
| 1905 | Regs[I] = ShiftRegs[ShiftRegsIdx]; |
| 1906 | } else if (ShiftRegsIdx == (int)ShiftRegs.size()) { |
| 1907 | Regs[I] = std::pair(LowByte, 0); |
| 1908 | } else { |
| 1909 | Regs[I] = std::pair(ZeroReg, 0); |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | return; |
| 1914 | } |
| 1915 | |
| 1916 | // Right shift modulo 6 or 7. |
| 1917 | if (!ShiftLeft && (ShiftAmt % 8) >= 6) { |
| 1918 | // Create a view on the registers we're going to modify, to ease working |
| 1919 | // with them. |
| 1920 | size_t ShiftRegsSize = Regs.size() - (ShiftAmt / 8); |
| 1921 | MutableArrayRef<std::pair<Register, int>> ShiftRegs = |
| 1922 | Regs.slice(N: 0, M: ShiftRegsSize); |
| 1923 | |
| 1924 | // Shift one to the left. |
| 1925 | insertMultibyteShift(MI, BB, Regs: ShiftRegs, Opc: ISD::SHL, ShiftAmt: 1); |
| 1926 | |
| 1927 | // Sign or zero extend the most significant register into a new register. |
| 1928 | // The HighByte is the byte that still has one (or two) bits from the |
| 1929 | // original value. The ExtByte is purely a zero/sign extend byte (all bits |
| 1930 | // are either 0 or 1). |
| 1931 | Register HighByte = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1932 | Register ExtByte = 0; |
| 1933 | if (ArithmeticShift) { |
| 1934 | // Sign-extend bit that was shifted out last. |
| 1935 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::SBCRdRr), DestReg: HighByte) |
| 1936 | .addReg(RegNo: HighByte, flags: RegState::Undef) |
| 1937 | .addReg(RegNo: HighByte, flags: RegState::Undef); |
| 1938 | ExtByte = HighByte; |
| 1939 | // The highest bit of the original value is the same as the zero-extend |
| 1940 | // byte, so HighByte and ExtByte are the same. |
| 1941 | } else { |
| 1942 | // Use the zero register for zero extending. |
| 1943 | ExtByte = ZeroReg; |
| 1944 | // Rotate most significant bit into a new register (that starts out zero). |
| 1945 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ADCRdRr), DestReg: HighByte) |
| 1946 | .addReg(RegNo: ExtByte) |
| 1947 | .addReg(RegNo: ExtByte); |
| 1948 | } |
| 1949 | |
| 1950 | // Shift one more to the left for modulo 6 shifts. |
| 1951 | if (ShiftAmt % 8 == 6) { |
| 1952 | insertMultibyteShift(MI, BB, Regs: ShiftRegs, Opc: ISD::SHL, ShiftAmt: 1); |
| 1953 | // Shift the topmost bit into the HighByte. |
| 1954 | Register NewExt = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1955 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ADCRdRr), DestReg: NewExt) |
| 1956 | .addReg(RegNo: HighByte) |
| 1957 | .addReg(RegNo: HighByte); |
| 1958 | HighByte = NewExt; |
| 1959 | } |
| 1960 | |
| 1961 | // Move all to the right, while sign or zero extending. |
| 1962 | for (int I = Regs.size() - 1; I >= 0; I--) { |
| 1963 | int ShiftRegsIdx = I - (Regs.size() - ShiftRegs.size()) - 1; |
| 1964 | if (ShiftRegsIdx >= 0) { |
| 1965 | Regs[I] = ShiftRegs[ShiftRegsIdx]; |
| 1966 | } else if (ShiftRegsIdx == -1) { |
| 1967 | Regs[I] = std::pair(HighByte, 0); |
| 1968 | } else { |
| 1969 | Regs[I] = std::pair(ExtByte, 0); |
| 1970 | } |
| 1971 | } |
| 1972 | |
| 1973 | return; |
| 1974 | } |
| 1975 | |
| 1976 | // For shift amounts of at least one register, simply rename the registers and |
| 1977 | // zero the bottom registers. |
| 1978 | while (ShiftLeft && ShiftAmt >= 8) { |
| 1979 | // Move all registers one to the left. |
| 1980 | for (size_t I = 0; I < Regs.size() - 1; I++) { |
| 1981 | Regs[I] = Regs[I + 1]; |
| 1982 | } |
| 1983 | |
| 1984 | // Zero the least significant register. |
| 1985 | Regs[Regs.size() - 1] = std::pair(ZeroReg, 0); |
| 1986 | |
| 1987 | // Continue shifts with the leftover registers. |
| 1988 | Regs = Regs.drop_back(N: 1); |
| 1989 | |
| 1990 | ShiftAmt -= 8; |
| 1991 | } |
| 1992 | |
| 1993 | // And again, the same for right shifts. |
| 1994 | Register ShrExtendReg = 0; |
| 1995 | if (!ShiftLeft && ShiftAmt >= 8) { |
| 1996 | if (ArithmeticShift) { |
| 1997 | // Sign extend the most significant register into ShrExtendReg. |
| 1998 | ShrExtendReg = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 1999 | Register Tmp = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 2000 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ADDRdRr), DestReg: Tmp) |
| 2001 | .addReg(RegNo: Regs[0].first, flags: 0, SubReg: Regs[0].second) |
| 2002 | .addReg(RegNo: Regs[0].first, flags: 0, SubReg: Regs[0].second); |
| 2003 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::SBCRdRr), DestReg: ShrExtendReg) |
| 2004 | .addReg(RegNo: Tmp) |
| 2005 | .addReg(RegNo: Tmp); |
| 2006 | } else { |
| 2007 | ShrExtendReg = ZeroReg; |
| 2008 | } |
| 2009 | for (; ShiftAmt >= 8; ShiftAmt -= 8) { |
| 2010 | // Move all registers one to the right. |
| 2011 | for (size_t I = Regs.size() - 1; I != 0; I--) { |
| 2012 | Regs[I] = Regs[I - 1]; |
| 2013 | } |
| 2014 | |
| 2015 | // Zero or sign extend the most significant register. |
| 2016 | Regs[0] = std::pair(ShrExtendReg, 0); |
| 2017 | |
| 2018 | // Continue shifts with the leftover registers. |
| 2019 | Regs = Regs.drop_front(N: 1); |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | // The bigger shifts are already handled above. |
| 2024 | assert((ShiftAmt < 8) && "Unexpect shift amount" ); |
| 2025 | |
| 2026 | // Shift by four bits, using a complicated swap/eor/andi/eor sequence. |
| 2027 | // It only works for logical shifts because the bits shifted in are all |
| 2028 | // zeroes. |
| 2029 | // To shift a single byte right, it produces code like this: |
| 2030 | // swap r0 |
| 2031 | // andi r0, 0x0f |
| 2032 | // For a two-byte (16-bit) shift, it adds the following instructions to shift |
| 2033 | // the upper byte into the lower byte: |
| 2034 | // swap r1 |
| 2035 | // eor r0, r1 |
| 2036 | // andi r1, 0x0f |
| 2037 | // eor r0, r1 |
| 2038 | // For bigger shifts, it repeats the above sequence. For example, for a 3-byte |
| 2039 | // (24-bit) shift it adds: |
| 2040 | // swap r2 |
| 2041 | // eor r1, r2 |
| 2042 | // andi r2, 0x0f |
| 2043 | // eor r1, r2 |
| 2044 | if (!ArithmeticShift && ShiftAmt >= 4) { |
| 2045 | Register Prev = 0; |
| 2046 | for (size_t I = 0; I < Regs.size(); I++) { |
| 2047 | size_t Idx = ShiftLeft ? I : Regs.size() - I - 1; |
| 2048 | Register SwapReg = MRI.createVirtualRegister(RegClass: &AVR::LD8RegClass); |
| 2049 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::SWAPRd), DestReg: SwapReg) |
| 2050 | .addReg(RegNo: Regs[Idx].first, flags: 0, SubReg: Regs[Idx].second); |
| 2051 | if (I != 0) { |
| 2052 | Register R = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 2053 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::EORRdRr), DestReg: R) |
| 2054 | .addReg(RegNo: Prev) |
| 2055 | .addReg(RegNo: SwapReg); |
| 2056 | Prev = R; |
| 2057 | } |
| 2058 | Register AndReg = MRI.createVirtualRegister(RegClass: &AVR::LD8RegClass); |
| 2059 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ANDIRdK), DestReg: AndReg) |
| 2060 | .addReg(RegNo: SwapReg) |
| 2061 | .addImm(Val: ShiftLeft ? 0xf0 : 0x0f); |
| 2062 | if (I != 0) { |
| 2063 | Register R = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 2064 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::EORRdRr), DestReg: R) |
| 2065 | .addReg(RegNo: Prev) |
| 2066 | .addReg(RegNo: AndReg); |
| 2067 | size_t PrevIdx = ShiftLeft ? Idx - 1 : Idx + 1; |
| 2068 | Regs[PrevIdx] = std::pair(R, 0); |
| 2069 | } |
| 2070 | Prev = AndReg; |
| 2071 | Regs[Idx] = std::pair(AndReg, 0); |
| 2072 | } |
| 2073 | ShiftAmt -= 4; |
| 2074 | } |
| 2075 | |
| 2076 | // Shift by one. This is the fallback that always works, and the shift |
| 2077 | // operation that is used for 1, 2, and 3 bit shifts. |
| 2078 | while (ShiftLeft && ShiftAmt) { |
| 2079 | // Shift one to the left. |
| 2080 | for (ssize_t I = Regs.size() - 1; I >= 0; I--) { |
| 2081 | Register Out = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 2082 | Register In = Regs[I].first; |
| 2083 | Register InSubreg = Regs[I].second; |
| 2084 | if (I == (ssize_t)Regs.size() - 1) { // first iteration |
| 2085 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ADDRdRr), DestReg: Out) |
| 2086 | .addReg(RegNo: In, flags: 0, SubReg: InSubreg) |
| 2087 | .addReg(RegNo: In, flags: 0, SubReg: InSubreg); |
| 2088 | } else { |
| 2089 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::ADCRdRr), DestReg: Out) |
| 2090 | .addReg(RegNo: In, flags: 0, SubReg: InSubreg) |
| 2091 | .addReg(RegNo: In, flags: 0, SubReg: InSubreg); |
| 2092 | } |
| 2093 | Regs[I] = std::pair(Out, 0); |
| 2094 | } |
| 2095 | ShiftAmt--; |
| 2096 | } |
| 2097 | while (!ShiftLeft && ShiftAmt) { |
| 2098 | // Shift one to the right. |
| 2099 | for (size_t I = 0; I < Regs.size(); I++) { |
| 2100 | Register Out = MRI.createVirtualRegister(RegClass: &AVR::GPR8RegClass); |
| 2101 | Register In = Regs[I].first; |
| 2102 | Register InSubreg = Regs[I].second; |
| 2103 | if (I == 0) { |
| 2104 | unsigned Opc = ArithmeticShift ? AVR::ASRRd : AVR::LSRRd; |
| 2105 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: Opc), DestReg: Out).addReg(RegNo: In, flags: 0, SubReg: InSubreg); |
| 2106 | } else { |
| 2107 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::RORRd), DestReg: Out).addReg(RegNo: In, flags: 0, SubReg: InSubreg); |
| 2108 | } |
| 2109 | Regs[I] = std::pair(Out, 0); |
| 2110 | } |
| 2111 | ShiftAmt--; |
| 2112 | } |
| 2113 | |
| 2114 | if (ShiftAmt != 0) { |
| 2115 | llvm_unreachable("don't know how to shift!" ); // sanity check |
| 2116 | } |
| 2117 | } |
| 2118 | |
| 2119 | // Do a wide (32-bit) shift. |
| 2120 | MachineBasicBlock * |
| 2121 | AVRTargetLowering::insertWideShift(MachineInstr &MI, |
| 2122 | MachineBasicBlock *BB) const { |
| 2123 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 2124 | const DebugLoc &dl = MI.getDebugLoc(); |
| 2125 | |
| 2126 | // How much to shift to the right (meaning: a negative number indicates a left |
| 2127 | // shift). |
| 2128 | int64_t ShiftAmt = MI.getOperand(i: 4).getImm(); |
| 2129 | ISD::NodeType Opc; |
| 2130 | switch (MI.getOpcode()) { |
| 2131 | case AVR::Lsl32: |
| 2132 | Opc = ISD::SHL; |
| 2133 | break; |
| 2134 | case AVR::Lsr32: |
| 2135 | Opc = ISD::SRL; |
| 2136 | break; |
| 2137 | case AVR::Asr32: |
| 2138 | Opc = ISD::SRA; |
| 2139 | break; |
| 2140 | } |
| 2141 | |
| 2142 | // Read the input registers, with the most significant register at index 0. |
| 2143 | std::array<std::pair<Register, int>, 4> Registers = { |
| 2144 | std::pair(MI.getOperand(i: 3).getReg(), AVR::sub_hi), |
| 2145 | std::pair(MI.getOperand(i: 3).getReg(), AVR::sub_lo), |
| 2146 | std::pair(MI.getOperand(i: 2).getReg(), AVR::sub_hi), |
| 2147 | std::pair(MI.getOperand(i: 2).getReg(), AVR::sub_lo), |
| 2148 | }; |
| 2149 | |
| 2150 | // Do the shift. The registers are modified in-place. |
| 2151 | insertMultibyteShift(MI, BB, Regs: Registers, Opc, ShiftAmt); |
| 2152 | |
| 2153 | // Combine the 8-bit registers into 16-bit register pairs. |
| 2154 | // This done either from LSB to MSB or from MSB to LSB, depending on the |
| 2155 | // shift. It's an optimization so that the register allocator will use the |
| 2156 | // fewest movs possible (which order we use isn't a correctness issue, just an |
| 2157 | // optimization issue). |
| 2158 | // - lsl prefers starting from the most significant byte (2nd case). |
| 2159 | // - lshr prefers starting from the least significant byte (1st case). |
| 2160 | // - for ashr it depends on the number of shifted bytes. |
| 2161 | // Some shift operations still don't get the most optimal mov sequences even |
| 2162 | // with this distinction. TODO: figure out why and try to fix it (but we're |
| 2163 | // already equal to or faster than avr-gcc in all cases except ashr 8). |
| 2164 | if (Opc != ISD::SHL && |
| 2165 | (Opc != ISD::SRA || (ShiftAmt < 16 || ShiftAmt >= 22))) { |
| 2166 | // Use the resulting registers starting with the least significant byte. |
| 2167 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::REG_SEQUENCE), DestReg: MI.getOperand(i: 0).getReg()) |
| 2168 | .addReg(RegNo: Registers[3].first, flags: 0, SubReg: Registers[3].second) |
| 2169 | .addImm(Val: AVR::sub_lo) |
| 2170 | .addReg(RegNo: Registers[2].first, flags: 0, SubReg: Registers[2].second) |
| 2171 | .addImm(Val: AVR::sub_hi); |
| 2172 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::REG_SEQUENCE), DestReg: MI.getOperand(i: 1).getReg()) |
| 2173 | .addReg(RegNo: Registers[1].first, flags: 0, SubReg: Registers[1].second) |
| 2174 | .addImm(Val: AVR::sub_lo) |
| 2175 | .addReg(RegNo: Registers[0].first, flags: 0, SubReg: Registers[0].second) |
| 2176 | .addImm(Val: AVR::sub_hi); |
| 2177 | } else { |
| 2178 | // Use the resulting registers starting with the most significant byte. |
| 2179 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::REG_SEQUENCE), DestReg: MI.getOperand(i: 1).getReg()) |
| 2180 | .addReg(RegNo: Registers[0].first, flags: 0, SubReg: Registers[0].second) |
| 2181 | .addImm(Val: AVR::sub_hi) |
| 2182 | .addReg(RegNo: Registers[1].first, flags: 0, SubReg: Registers[1].second) |
| 2183 | .addImm(Val: AVR::sub_lo); |
| 2184 | BuildMI(BB&: *BB, I&: MI, MIMD: dl, MCID: TII.get(Opcode: AVR::REG_SEQUENCE), DestReg: MI.getOperand(i: 0).getReg()) |
| 2185 | .addReg(RegNo: Registers[2].first, flags: 0, SubReg: Registers[2].second) |
| 2186 | .addImm(Val: AVR::sub_hi) |
| 2187 | .addReg(RegNo: Registers[3].first, flags: 0, SubReg: Registers[3].second) |
| 2188 | .addImm(Val: AVR::sub_lo); |
| 2189 | } |
| 2190 | |
| 2191 | // Remove the pseudo instruction. |
| 2192 | MI.eraseFromParent(); |
| 2193 | return BB; |
| 2194 | } |
| 2195 | |
| 2196 | static bool isCopyMulResult(MachineBasicBlock::iterator const &I) { |
| 2197 | if (I->getOpcode() == AVR::COPY) { |
| 2198 | Register SrcReg = I->getOperand(i: 1).getReg(); |
| 2199 | return (SrcReg == AVR::R0 || SrcReg == AVR::R1); |
| 2200 | } |
| 2201 | |
| 2202 | return false; |
| 2203 | } |
| 2204 | |
| 2205 | // The mul instructions wreak havock on our zero_reg R1. We need to clear it |
| 2206 | // after the result has been evacuated. This is probably not the best way to do |
| 2207 | // it, but it works for now. |
| 2208 | MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI, |
| 2209 | MachineBasicBlock *BB) const { |
| 2210 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 2211 | MachineBasicBlock::iterator I(MI); |
| 2212 | ++I; // in any case insert *after* the mul instruction |
| 2213 | if (isCopyMulResult(I)) |
| 2214 | ++I; |
| 2215 | if (isCopyMulResult(I)) |
| 2216 | ++I; |
| 2217 | BuildMI(BB&: *BB, I, MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode: AVR::EORRdRr), DestReg: AVR::R1) |
| 2218 | .addReg(RegNo: AVR::R1) |
| 2219 | .addReg(RegNo: AVR::R1); |
| 2220 | return BB; |
| 2221 | } |
| 2222 | |
| 2223 | // Insert a read from the zero register. |
| 2224 | MachineBasicBlock * |
| 2225 | AVRTargetLowering::insertCopyZero(MachineInstr &MI, |
| 2226 | MachineBasicBlock *BB) const { |
| 2227 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 2228 | MachineBasicBlock::iterator I(MI); |
| 2229 | BuildMI(BB&: *BB, I, MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode: AVR::COPY)) |
| 2230 | .add(MO: MI.getOperand(i: 0)) |
| 2231 | .addReg(RegNo: Subtarget.getZeroRegister()); |
| 2232 | MI.eraseFromParent(); |
| 2233 | return BB; |
| 2234 | } |
| 2235 | |
| 2236 | // Lower atomicrmw operation to disable interrupts, do operation, and restore |
| 2237 | // interrupts. This works because all AVR microcontrollers are single core. |
| 2238 | MachineBasicBlock *AVRTargetLowering::insertAtomicArithmeticOp( |
| 2239 | MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, int Width) const { |
| 2240 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 2241 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 2242 | MachineBasicBlock::iterator I(MI); |
| 2243 | DebugLoc dl = MI.getDebugLoc(); |
| 2244 | |
| 2245 | // Example instruction sequence, for an atomic 8-bit add: |
| 2246 | // ldi r25, 5 |
| 2247 | // in r0, SREG |
| 2248 | // cli |
| 2249 | // ld r24, X |
| 2250 | // add r25, r24 |
| 2251 | // st X, r25 |
| 2252 | // out SREG, r0 |
| 2253 | |
| 2254 | const TargetRegisterClass *RC = |
| 2255 | (Width == 8) ? &AVR::GPR8RegClass : &AVR::DREGSRegClass; |
| 2256 | unsigned LoadOpcode = (Width == 8) ? AVR::LDRdPtr : AVR::LDWRdPtr; |
| 2257 | unsigned StoreOpcode = (Width == 8) ? AVR::STPtrRr : AVR::STWPtrRr; |
| 2258 | |
| 2259 | // Disable interrupts. |
| 2260 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode: AVR::INRdA), DestReg: Subtarget.getTmpRegister()) |
| 2261 | .addImm(Val: Subtarget.getIORegSREG()); |
| 2262 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode: AVR::BCLRs)).addImm(Val: 7); |
| 2263 | |
| 2264 | // Load the original value. |
| 2265 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode: LoadOpcode), DestReg: MI.getOperand(i: 0).getReg()) |
| 2266 | .add(MO: MI.getOperand(i: 1)); |
| 2267 | |
| 2268 | // Do the arithmetic operation. |
| 2269 | Register Result = MRI.createVirtualRegister(RegClass: RC); |
| 2270 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode), DestReg: Result) |
| 2271 | .addReg(RegNo: MI.getOperand(i: 0).getReg()) |
| 2272 | .add(MO: MI.getOperand(i: 2)); |
| 2273 | |
| 2274 | // Store the result. |
| 2275 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode: StoreOpcode)) |
| 2276 | .add(MO: MI.getOperand(i: 1)) |
| 2277 | .addReg(RegNo: Result); |
| 2278 | |
| 2279 | // Restore interrupts. |
| 2280 | BuildMI(BB&: *BB, I, MIMD: dl, MCID: TII.get(Opcode: AVR::OUTARr)) |
| 2281 | .addImm(Val: Subtarget.getIORegSREG()) |
| 2282 | .addReg(RegNo: Subtarget.getTmpRegister()); |
| 2283 | |
| 2284 | // Remove the pseudo instruction. |
| 2285 | MI.eraseFromParent(); |
| 2286 | return BB; |
| 2287 | } |
| 2288 | |
| 2289 | MachineBasicBlock * |
| 2290 | AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 2291 | MachineBasicBlock *MBB) const { |
| 2292 | int Opc = MI.getOpcode(); |
| 2293 | const AVRSubtarget &STI = MBB->getParent()->getSubtarget<AVRSubtarget>(); |
| 2294 | |
| 2295 | // Pseudo shift instructions with a non constant shift amount are expanded |
| 2296 | // into a loop. |
| 2297 | switch (Opc) { |
| 2298 | case AVR::Lsl8: |
| 2299 | case AVR::Lsl16: |
| 2300 | case AVR::Lsr8: |
| 2301 | case AVR::Lsr16: |
| 2302 | case AVR::Rol8: |
| 2303 | case AVR::Rol16: |
| 2304 | case AVR::Ror8: |
| 2305 | case AVR::Ror16: |
| 2306 | case AVR::Asr8: |
| 2307 | case AVR::Asr16: |
| 2308 | return insertShift(MI, BB: MBB, Tiny: STI.hasTinyEncoding()); |
| 2309 | case AVR::Lsl32: |
| 2310 | case AVR::Lsr32: |
| 2311 | case AVR::Asr32: |
| 2312 | return insertWideShift(MI, BB: MBB); |
| 2313 | case AVR::MULRdRr: |
| 2314 | case AVR::MULSRdRr: |
| 2315 | return insertMul(MI, BB: MBB); |
| 2316 | case AVR::CopyZero: |
| 2317 | return insertCopyZero(MI, BB: MBB); |
| 2318 | case AVR::AtomicLoadAdd8: |
| 2319 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ADDRdRr, Width: 8); |
| 2320 | case AVR::AtomicLoadAdd16: |
| 2321 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ADDWRdRr, Width: 16); |
| 2322 | case AVR::AtomicLoadSub8: |
| 2323 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::SUBRdRr, Width: 8); |
| 2324 | case AVR::AtomicLoadSub16: |
| 2325 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::SUBWRdRr, Width: 16); |
| 2326 | case AVR::AtomicLoadAnd8: |
| 2327 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ANDRdRr, Width: 8); |
| 2328 | case AVR::AtomicLoadAnd16: |
| 2329 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ANDWRdRr, Width: 16); |
| 2330 | case AVR::AtomicLoadOr8: |
| 2331 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ORRdRr, Width: 8); |
| 2332 | case AVR::AtomicLoadOr16: |
| 2333 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::ORWRdRr, Width: 16); |
| 2334 | case AVR::AtomicLoadXor8: |
| 2335 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::EORRdRr, Width: 8); |
| 2336 | case AVR::AtomicLoadXor16: |
| 2337 | return insertAtomicArithmeticOp(MI, BB: MBB, Opcode: AVR::EORWRdRr, Width: 16); |
| 2338 | } |
| 2339 | |
| 2340 | assert((Opc == AVR::Select16 || Opc == AVR::Select8) && |
| 2341 | "Unexpected instr type to insert" ); |
| 2342 | |
| 2343 | const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent() |
| 2344 | ->getParent() |
| 2345 | ->getSubtarget() |
| 2346 | .getInstrInfo(); |
| 2347 | DebugLoc dl = MI.getDebugLoc(); |
| 2348 | |
| 2349 | // To "insert" a SELECT instruction, we insert the diamond |
| 2350 | // control-flow pattern. The incoming instruction knows the |
| 2351 | // destination vreg to set, the condition code register to branch |
| 2352 | // on, the true/false values to select between, and a branch opcode |
| 2353 | // to use. |
| 2354 | |
| 2355 | MachineFunction *MF = MBB->getParent(); |
| 2356 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| 2357 | MachineBasicBlock *FallThrough = MBB->getFallThrough(); |
| 2358 | |
| 2359 | // If the current basic block falls through to another basic block, |
| 2360 | // we must insert an unconditional branch to the fallthrough destination |
| 2361 | // if we are to insert basic blocks at the prior fallthrough point. |
| 2362 | if (FallThrough != nullptr) { |
| 2363 | BuildMI(BB: MBB, MIMD: dl, MCID: TII.get(Opcode: AVR::RJMPk)).addMBB(MBB: FallThrough); |
| 2364 | } |
| 2365 | |
| 2366 | MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
| 2367 | MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
| 2368 | |
| 2369 | MachineFunction::iterator I; |
| 2370 | for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I) |
| 2371 | ; |
| 2372 | if (I != MF->end()) |
| 2373 | ++I; |
| 2374 | MF->insert(MBBI: I, MBB: trueMBB); |
| 2375 | MF->insert(MBBI: I, MBB: falseMBB); |
| 2376 | |
| 2377 | // Set the call frame size on entry to the new basic blocks. |
| 2378 | unsigned CallFrameSize = TII.getCallFrameSizeAt(MI); |
| 2379 | trueMBB->setCallFrameSize(CallFrameSize); |
| 2380 | falseMBB->setCallFrameSize(CallFrameSize); |
| 2381 | |
| 2382 | // Transfer remaining instructions and all successors of the current |
| 2383 | // block to the block which will contain the Phi node for the |
| 2384 | // select. |
| 2385 | trueMBB->splice(Where: trueMBB->begin(), Other: MBB, |
| 2386 | From: std::next(x: MachineBasicBlock::iterator(MI)), To: MBB->end()); |
| 2387 | trueMBB->transferSuccessorsAndUpdatePHIs(FromMBB: MBB); |
| 2388 | |
| 2389 | AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(i: 3).getImm(); |
| 2390 | BuildMI(BB: MBB, MIMD: dl, MCID: TII.getBrCond(CC)).addMBB(MBB: trueMBB); |
| 2391 | BuildMI(BB: MBB, MIMD: dl, MCID: TII.get(Opcode: AVR::RJMPk)).addMBB(MBB: falseMBB); |
| 2392 | MBB->addSuccessor(Succ: falseMBB); |
| 2393 | MBB->addSuccessor(Succ: trueMBB); |
| 2394 | |
| 2395 | // Unconditionally flow back to the true block |
| 2396 | BuildMI(BB: falseMBB, MIMD: dl, MCID: TII.get(Opcode: AVR::RJMPk)).addMBB(MBB: trueMBB); |
| 2397 | falseMBB->addSuccessor(Succ: trueMBB); |
| 2398 | |
| 2399 | // Set up the Phi node to determine where we came from |
| 2400 | BuildMI(BB&: *trueMBB, I: trueMBB->begin(), MIMD: dl, MCID: TII.get(Opcode: AVR::PHI), |
| 2401 | DestReg: MI.getOperand(i: 0).getReg()) |
| 2402 | .addReg(RegNo: MI.getOperand(i: 1).getReg()) |
| 2403 | .addMBB(MBB) |
| 2404 | .addReg(RegNo: MI.getOperand(i: 2).getReg()) |
| 2405 | .addMBB(MBB: falseMBB); |
| 2406 | |
| 2407 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 2408 | return trueMBB; |
| 2409 | } |
| 2410 | |
| 2411 | //===----------------------------------------------------------------------===// |
| 2412 | // Inline Asm Support |
| 2413 | //===----------------------------------------------------------------------===// |
| 2414 | |
| 2415 | AVRTargetLowering::ConstraintType |
| 2416 | AVRTargetLowering::getConstraintType(StringRef Constraint) const { |
| 2417 | if (Constraint.size() == 1) { |
| 2418 | // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html |
| 2419 | switch (Constraint[0]) { |
| 2420 | default: |
| 2421 | break; |
| 2422 | case 'a': // Simple upper registers |
| 2423 | case 'b': // Base pointer registers pairs |
| 2424 | case 'd': // Upper register |
| 2425 | case 'l': // Lower registers |
| 2426 | case 'e': // Pointer register pairs |
| 2427 | case 'q': // Stack pointer register |
| 2428 | case 'r': // Any register |
| 2429 | case 'w': // Special upper register pairs |
| 2430 | return C_RegisterClass; |
| 2431 | case 't': // Temporary register |
| 2432 | case 'x': |
| 2433 | case 'X': // Pointer register pair X |
| 2434 | case 'y': |
| 2435 | case 'Y': // Pointer register pair Y |
| 2436 | case 'z': |
| 2437 | case 'Z': // Pointer register pair Z |
| 2438 | return C_Register; |
| 2439 | case 'Q': // A memory address based on Y or Z pointer with displacement. |
| 2440 | return C_Memory; |
| 2441 | case 'G': // Floating point constant |
| 2442 | case 'I': // 6-bit positive integer constant |
| 2443 | case 'J': // 6-bit negative integer constant |
| 2444 | case 'K': // Integer constant (Range: 2) |
| 2445 | case 'L': // Integer constant (Range: 0) |
| 2446 | case 'M': // 8-bit integer constant |
| 2447 | case 'N': // Integer constant (Range: -1) |
| 2448 | case 'O': // Integer constant (Range: 8, 16, 24) |
| 2449 | case 'P': // Integer constant (Range: 1) |
| 2450 | case 'R': // Integer constant (Range: -6 to 5)x |
| 2451 | return C_Immediate; |
| 2452 | } |
| 2453 | } |
| 2454 | |
| 2455 | return TargetLowering::getConstraintType(Constraint); |
| 2456 | } |
| 2457 | |
| 2458 | InlineAsm::ConstraintCode |
| 2459 | AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| 2460 | // Not sure if this is actually the right thing to do, but we got to do |
| 2461 | // *something* [agnat] |
| 2462 | switch (ConstraintCode[0]) { |
| 2463 | case 'Q': |
| 2464 | return InlineAsm::ConstraintCode::Q; |
| 2465 | } |
| 2466 | return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| 2467 | } |
| 2468 | |
| 2469 | AVRTargetLowering::ConstraintWeight |
| 2470 | AVRTargetLowering::getSingleConstraintMatchWeight( |
| 2471 | AsmOperandInfo &info, const char *constraint) const { |
| 2472 | ConstraintWeight weight = CW_Invalid; |
| 2473 | Value *CallOperandVal = info.CallOperandVal; |
| 2474 | |
| 2475 | // If we don't have a value, we can't do a match, |
| 2476 | // but allow it at the lowest weight. |
| 2477 | // (this behaviour has been copied from the ARM backend) |
| 2478 | if (!CallOperandVal) { |
| 2479 | return CW_Default; |
| 2480 | } |
| 2481 | |
| 2482 | // Look at the constraint type. |
| 2483 | switch (*constraint) { |
| 2484 | default: |
| 2485 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| 2486 | break; |
| 2487 | case 'd': |
| 2488 | case 'r': |
| 2489 | case 'l': |
| 2490 | weight = CW_Register; |
| 2491 | break; |
| 2492 | case 'a': |
| 2493 | case 'b': |
| 2494 | case 'e': |
| 2495 | case 'q': |
| 2496 | case 't': |
| 2497 | case 'w': |
| 2498 | case 'x': |
| 2499 | case 'X': |
| 2500 | case 'y': |
| 2501 | case 'Y': |
| 2502 | case 'z': |
| 2503 | case 'Z': |
| 2504 | weight = CW_SpecificReg; |
| 2505 | break; |
| 2506 | case 'G': |
| 2507 | if (const ConstantFP *C = dyn_cast<ConstantFP>(Val: CallOperandVal)) { |
| 2508 | if (C->isZero()) { |
| 2509 | weight = CW_Constant; |
| 2510 | } |
| 2511 | } |
| 2512 | break; |
| 2513 | case 'I': |
| 2514 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2515 | if (isUInt<6>(x: C->getZExtValue())) { |
| 2516 | weight = CW_Constant; |
| 2517 | } |
| 2518 | } |
| 2519 | break; |
| 2520 | case 'J': |
| 2521 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2522 | if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) { |
| 2523 | weight = CW_Constant; |
| 2524 | } |
| 2525 | } |
| 2526 | break; |
| 2527 | case 'K': |
| 2528 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2529 | if (C->getZExtValue() == 2) { |
| 2530 | weight = CW_Constant; |
| 2531 | } |
| 2532 | } |
| 2533 | break; |
| 2534 | case 'L': |
| 2535 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2536 | if (C->getZExtValue() == 0) { |
| 2537 | weight = CW_Constant; |
| 2538 | } |
| 2539 | } |
| 2540 | break; |
| 2541 | case 'M': |
| 2542 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2543 | if (isUInt<8>(x: C->getZExtValue())) { |
| 2544 | weight = CW_Constant; |
| 2545 | } |
| 2546 | } |
| 2547 | break; |
| 2548 | case 'N': |
| 2549 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2550 | if (C->getSExtValue() == -1) { |
| 2551 | weight = CW_Constant; |
| 2552 | } |
| 2553 | } |
| 2554 | break; |
| 2555 | case 'O': |
| 2556 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2557 | if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) || |
| 2558 | (C->getZExtValue() == 24)) { |
| 2559 | weight = CW_Constant; |
| 2560 | } |
| 2561 | } |
| 2562 | break; |
| 2563 | case 'P': |
| 2564 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2565 | if (C->getZExtValue() == 1) { |
| 2566 | weight = CW_Constant; |
| 2567 | } |
| 2568 | } |
| 2569 | break; |
| 2570 | case 'R': |
| 2571 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: CallOperandVal)) { |
| 2572 | if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) { |
| 2573 | weight = CW_Constant; |
| 2574 | } |
| 2575 | } |
| 2576 | break; |
| 2577 | case 'Q': |
| 2578 | weight = CW_Memory; |
| 2579 | break; |
| 2580 | } |
| 2581 | |
| 2582 | return weight; |
| 2583 | } |
| 2584 | |
| 2585 | std::pair<unsigned, const TargetRegisterClass *> |
| 2586 | AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| 2587 | StringRef Constraint, |
| 2588 | MVT VT) const { |
| 2589 | if (Constraint.size() == 1) { |
| 2590 | switch (Constraint[0]) { |
| 2591 | case 'a': // Simple upper registers r16..r23. |
| 2592 | if (VT == MVT::i8) |
| 2593 | return std::make_pair(x: 0U, y: &AVR::LD8loRegClass); |
| 2594 | else if (VT == MVT::i16) |
| 2595 | return std::make_pair(x: 0U, y: &AVR::DREGSLD8loRegClass); |
| 2596 | break; |
| 2597 | case 'b': // Base pointer registers: y, z. |
| 2598 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2599 | return std::make_pair(x: 0U, y: &AVR::PTRDISPREGSRegClass); |
| 2600 | break; |
| 2601 | case 'd': // Upper registers r16..r31. |
| 2602 | if (VT == MVT::i8) |
| 2603 | return std::make_pair(x: 0U, y: &AVR::LD8RegClass); |
| 2604 | else if (VT == MVT::i16) |
| 2605 | return std::make_pair(x: 0U, y: &AVR::DLDREGSRegClass); |
| 2606 | break; |
| 2607 | case 'l': // Lower registers r0..r15. |
| 2608 | if (VT == MVT::i8) |
| 2609 | return std::make_pair(x: 0U, y: &AVR::GPR8loRegClass); |
| 2610 | else if (VT == MVT::i16) |
| 2611 | return std::make_pair(x: 0U, y: &AVR::DREGSloRegClass); |
| 2612 | break; |
| 2613 | case 'e': // Pointer register pairs: x, y, z. |
| 2614 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2615 | return std::make_pair(x: 0U, y: &AVR::PTRREGSRegClass); |
| 2616 | break; |
| 2617 | case 'q': // Stack pointer register: SPH:SPL. |
| 2618 | return std::make_pair(x: 0U, y: &AVR::GPRSPRegClass); |
| 2619 | case 'r': // Any register: r0..r31. |
| 2620 | if (VT == MVT::i8) |
| 2621 | return std::make_pair(x: 0U, y: &AVR::GPR8RegClass); |
| 2622 | else if (VT == MVT::i16) |
| 2623 | return std::make_pair(x: 0U, y: &AVR::DREGSRegClass); |
| 2624 | break; |
| 2625 | case 't': // Temporary register: r0. |
| 2626 | if (VT == MVT::i8) |
| 2627 | return std::make_pair(x: unsigned(Subtarget.getTmpRegister()), |
| 2628 | y: &AVR::GPR8RegClass); |
| 2629 | break; |
| 2630 | case 'w': // Special upper register pairs: r24, r26, r28, r30. |
| 2631 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2632 | return std::make_pair(x: 0U, y: &AVR::IWREGSRegClass); |
| 2633 | break; |
| 2634 | case 'x': // Pointer register pair X: r27:r26. |
| 2635 | case 'X': |
| 2636 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2637 | return std::make_pair(x: unsigned(AVR::R27R26), y: &AVR::PTRREGSRegClass); |
| 2638 | break; |
| 2639 | case 'y': // Pointer register pair Y: r29:r28. |
| 2640 | case 'Y': |
| 2641 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2642 | return std::make_pair(x: unsigned(AVR::R29R28), y: &AVR::PTRREGSRegClass); |
| 2643 | break; |
| 2644 | case 'z': // Pointer register pair Z: r31:r30. |
| 2645 | case 'Z': |
| 2646 | if (VT == MVT::i8 || VT == MVT::i16) |
| 2647 | return std::make_pair(x: unsigned(AVR::R31R30), y: &AVR::PTRREGSRegClass); |
| 2648 | break; |
| 2649 | default: |
| 2650 | break; |
| 2651 | } |
| 2652 | } |
| 2653 | |
| 2654 | return TargetLowering::getRegForInlineAsmConstraint( |
| 2655 | TRI: Subtarget.getRegisterInfo(), Constraint, VT); |
| 2656 | } |
| 2657 | |
| 2658 | void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| 2659 | StringRef Constraint, |
| 2660 | std::vector<SDValue> &Ops, |
| 2661 | SelectionDAG &DAG) const { |
| 2662 | SDValue Result; |
| 2663 | SDLoc DL(Op); |
| 2664 | EVT Ty = Op.getValueType(); |
| 2665 | |
| 2666 | // Currently only support length 1 constraints. |
| 2667 | if (Constraint.size() != 1) { |
| 2668 | return; |
| 2669 | } |
| 2670 | |
| 2671 | char ConstraintLetter = Constraint[0]; |
| 2672 | switch (ConstraintLetter) { |
| 2673 | default: |
| 2674 | break; |
| 2675 | // Deal with integers first: |
| 2676 | case 'I': |
| 2677 | case 'J': |
| 2678 | case 'K': |
| 2679 | case 'L': |
| 2680 | case 'M': |
| 2681 | case 'N': |
| 2682 | case 'O': |
| 2683 | case 'P': |
| 2684 | case 'R': { |
| 2685 | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Op); |
| 2686 | if (!C) { |
| 2687 | return; |
| 2688 | } |
| 2689 | |
| 2690 | int64_t CVal64 = C->getSExtValue(); |
| 2691 | uint64_t CUVal64 = C->getZExtValue(); |
| 2692 | switch (ConstraintLetter) { |
| 2693 | case 'I': // 0..63 |
| 2694 | if (!isUInt<6>(x: CUVal64)) |
| 2695 | return; |
| 2696 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2697 | break; |
| 2698 | case 'J': // -63..0 |
| 2699 | if (CVal64 < -63 || CVal64 > 0) |
| 2700 | return; |
| 2701 | Result = DAG.getTargetConstant(Val: CVal64, DL, VT: Ty); |
| 2702 | break; |
| 2703 | case 'K': // 2 |
| 2704 | if (CUVal64 != 2) |
| 2705 | return; |
| 2706 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2707 | break; |
| 2708 | case 'L': // 0 |
| 2709 | if (CUVal64 != 0) |
| 2710 | return; |
| 2711 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2712 | break; |
| 2713 | case 'M': // 0..255 |
| 2714 | if (!isUInt<8>(x: CUVal64)) |
| 2715 | return; |
| 2716 | // i8 type may be printed as a negative number, |
| 2717 | // e.g. 254 would be printed as -2, |
| 2718 | // so we force it to i16 at least. |
| 2719 | if (Ty.getSimpleVT() == MVT::i8) { |
| 2720 | Ty = MVT::i16; |
| 2721 | } |
| 2722 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2723 | break; |
| 2724 | case 'N': // -1 |
| 2725 | if (CVal64 != -1) |
| 2726 | return; |
| 2727 | Result = DAG.getTargetConstant(Val: CVal64, DL, VT: Ty); |
| 2728 | break; |
| 2729 | case 'O': // 8, 16, 24 |
| 2730 | if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24) |
| 2731 | return; |
| 2732 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2733 | break; |
| 2734 | case 'P': // 1 |
| 2735 | if (CUVal64 != 1) |
| 2736 | return; |
| 2737 | Result = DAG.getTargetConstant(Val: CUVal64, DL, VT: Ty); |
| 2738 | break; |
| 2739 | case 'R': // -6..5 |
| 2740 | if (CVal64 < -6 || CVal64 > 5) |
| 2741 | return; |
| 2742 | Result = DAG.getTargetConstant(Val: CVal64, DL, VT: Ty); |
| 2743 | break; |
| 2744 | } |
| 2745 | |
| 2746 | break; |
| 2747 | } |
| 2748 | case 'G': |
| 2749 | const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Val&: Op); |
| 2750 | if (!FC || !FC->isZero()) |
| 2751 | return; |
| 2752 | // Soften float to i8 0 |
| 2753 | Result = DAG.getTargetConstant(Val: 0, DL, VT: MVT::i8); |
| 2754 | break; |
| 2755 | } |
| 2756 | |
| 2757 | if (Result.getNode()) { |
| 2758 | Ops.push_back(x: Result); |
| 2759 | return; |
| 2760 | } |
| 2761 | |
| 2762 | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 2763 | } |
| 2764 | |
| 2765 | Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| 2766 | const MachineFunction &MF) const { |
| 2767 | Register Reg; |
| 2768 | |
| 2769 | if (VT == LLT::scalar(SizeInBits: 8)) { |
| 2770 | Reg = StringSwitch<unsigned>(RegName) |
| 2771 | .Case(S: "r0" , Value: AVR::R0) |
| 2772 | .Case(S: "r1" , Value: AVR::R1) |
| 2773 | .Default(Value: 0); |
| 2774 | } else { |
| 2775 | Reg = StringSwitch<unsigned>(RegName) |
| 2776 | .Case(S: "r0" , Value: AVR::R1R0) |
| 2777 | .Case(S: "sp" , Value: AVR::SP) |
| 2778 | .Default(Value: 0); |
| 2779 | } |
| 2780 | |
| 2781 | if (Reg) |
| 2782 | return Reg; |
| 2783 | |
| 2784 | report_fatal_error( |
| 2785 | reason: Twine("Invalid register name \"" + StringRef(RegName) + "\"." )); |
| 2786 | } |
| 2787 | |
| 2788 | } // end of namespace llvm |
| 2789 | |