| 1 | //===- HexagonBitSimplify.cpp ---------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "BitTracker.h" |
| 10 | #include "Hexagon.h" |
| 11 | #include "HexagonBitTracker.h" |
| 12 | #include "HexagonInstrInfo.h" |
| 13 | #include "HexagonRegisterInfo.h" |
| 14 | #include "HexagonSubtarget.h" |
| 15 | #include "llvm/ADT/BitVector.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 19 | #include "llvm/CodeGen/MachineDominators.h" |
| 20 | #include "llvm/CodeGen/MachineFunction.h" |
| 21 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
| 23 | #include "llvm/CodeGen/MachineOperand.h" |
| 24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 25 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 26 | #include "llvm/IR/DebugLoc.h" |
| 27 | #include "llvm/InitializePasses.h" |
| 28 | #include "llvm/MC/MCInstrDesc.h" |
| 29 | #include "llvm/Pass.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/raw_ostream.h" |
| 32 | |
| 33 | #define DEBUG_TYPE "hexbit" |
| 34 | |
| 35 | using namespace llvm; |
| 36 | |
| 37 | static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied" , cl::Hidden, |
| 38 | cl::init(Val: true), cl::desc("Preserve subregisters in tied operands" )); |
| 39 | static cl::opt<bool> ("hexbit-extract" , cl::Hidden, |
| 40 | cl::init(Val: true), cl::desc("Generate extract instructions" )); |
| 41 | static cl::opt<bool> GenBitSplit("hexbit-bitsplit" , cl::Hidden, |
| 42 | cl::init(Val: true), cl::desc("Generate bitsplit instructions" )); |
| 43 | |
| 44 | static cl::opt<unsigned> ("hexbit-max-extract" , cl::Hidden, |
| 45 | cl::init(Val: std::numeric_limits<unsigned>::max())); |
| 46 | static unsigned = 0; |
| 47 | static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit" , cl::Hidden, |
| 48 | cl::init(Val: std::numeric_limits<unsigned>::max())); |
| 49 | static unsigned CountBitSplit = 0; |
| 50 | |
| 51 | static cl::opt<unsigned> RegisterSetLimit("hexbit-registerset-limit" , |
| 52 | cl::Hidden, cl::init(Val: 1000)); |
| 53 | |
| 54 | namespace { |
| 55 | |
| 56 | // Set of virtual registers, based on BitVector. |
| 57 | struct RegisterSet { |
| 58 | RegisterSet() = default; |
| 59 | explicit RegisterSet(unsigned s, bool t = false) : Bits(s, t) {} |
| 60 | RegisterSet(const RegisterSet &RS) = default; |
| 61 | |
| 62 | void clear() { |
| 63 | Bits.clear(); |
| 64 | LRU.clear(); |
| 65 | } |
| 66 | |
| 67 | unsigned count() const { |
| 68 | return Bits.count(); |
| 69 | } |
| 70 | |
| 71 | unsigned find_first() const { |
| 72 | int First = Bits.find_first(); |
| 73 | if (First < 0) |
| 74 | return 0; |
| 75 | return x2v(x: First); |
| 76 | } |
| 77 | |
| 78 | unsigned find_next(unsigned Prev) const { |
| 79 | int Next = Bits.find_next(Prev: v2x(v: Prev)); |
| 80 | if (Next < 0) |
| 81 | return 0; |
| 82 | return x2v(x: Next); |
| 83 | } |
| 84 | |
| 85 | RegisterSet &insert(unsigned R) { |
| 86 | unsigned Idx = v2x(v: R); |
| 87 | ensure(Idx); |
| 88 | bool Exists = Bits.test(Idx); |
| 89 | Bits.set(Idx); |
| 90 | if (!Exists) { |
| 91 | LRU.push_back(x: Idx); |
| 92 | if (LRU.size() > RegisterSetLimit) { |
| 93 | unsigned T = LRU.front(); |
| 94 | Bits.reset(Idx: T); |
| 95 | LRU.pop_front(); |
| 96 | } |
| 97 | } |
| 98 | return *this; |
| 99 | } |
| 100 | RegisterSet &remove(unsigned R) { |
| 101 | unsigned Idx = v2x(v: R); |
| 102 | if (Idx < Bits.size()) { |
| 103 | bool Exists = Bits.test(Idx); |
| 104 | Bits.reset(Idx); |
| 105 | if (Exists) { |
| 106 | auto F = llvm::find(Range&: LRU, Val: Idx); |
| 107 | assert(F != LRU.end()); |
| 108 | LRU.erase(position: F); |
| 109 | } |
| 110 | } |
| 111 | return *this; |
| 112 | } |
| 113 | |
| 114 | RegisterSet &insert(const RegisterSet &Rs) { |
| 115 | for (unsigned R = Rs.find_first(); R; R = Rs.find_next(Prev: R)) |
| 116 | insert(R); |
| 117 | return *this; |
| 118 | } |
| 119 | RegisterSet &remove(const RegisterSet &Rs) { |
| 120 | for (unsigned R = Rs.find_first(); R; R = Rs.find_next(Prev: R)) |
| 121 | remove(R); |
| 122 | return *this; |
| 123 | } |
| 124 | |
| 125 | bool operator[](unsigned R) const { |
| 126 | unsigned Idx = v2x(v: R); |
| 127 | return Idx < Bits.size() ? Bits[Idx] : false; |
| 128 | } |
| 129 | bool has(unsigned R) const { |
| 130 | unsigned Idx = v2x(v: R); |
| 131 | if (Idx >= Bits.size()) |
| 132 | return false; |
| 133 | return Bits.test(Idx); |
| 134 | } |
| 135 | |
| 136 | bool empty() const { |
| 137 | return !Bits.any(); |
| 138 | } |
| 139 | bool includes(const RegisterSet &Rs) const { |
| 140 | // A.test(B) <=> A-B != {} |
| 141 | return !Rs.Bits.test(RHS: Bits); |
| 142 | } |
| 143 | bool intersects(const RegisterSet &Rs) const { |
| 144 | return Bits.anyCommon(RHS: Rs.Bits); |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | BitVector Bits; |
| 149 | std::deque<unsigned> LRU; |
| 150 | |
| 151 | void ensure(unsigned Idx) { |
| 152 | if (Bits.size() <= Idx) |
| 153 | Bits.resize(N: std::max(a: Idx+1, b: 32U)); |
| 154 | } |
| 155 | |
| 156 | static inline unsigned v2x(unsigned v) { |
| 157 | return Register(v).virtRegIndex(); |
| 158 | } |
| 159 | |
| 160 | static inline unsigned x2v(unsigned x) { |
| 161 | return Register::index2VirtReg(Index: x); |
| 162 | } |
| 163 | }; |
| 164 | |
| 165 | struct PrintRegSet { |
| 166 | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) |
| 167 | : RS(S), TRI(RI) {} |
| 168 | |
| 169 | friend raw_ostream &operator<< (raw_ostream &OS, |
| 170 | const PrintRegSet &P); |
| 171 | |
| 172 | private: |
| 173 | const RegisterSet &RS; |
| 174 | const TargetRegisterInfo *TRI; |
| 175 | }; |
| 176 | |
| 177 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) |
| 178 | LLVM_ATTRIBUTE_UNUSED; |
| 179 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { |
| 180 | OS << '{'; |
| 181 | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(Prev: R)) |
| 182 | OS << ' ' << printReg(Reg: R, TRI: P.TRI); |
| 183 | OS << " }" ; |
| 184 | return OS; |
| 185 | } |
| 186 | |
| 187 | class Transformation; |
| 188 | |
| 189 | class HexagonBitSimplify : public MachineFunctionPass { |
| 190 | public: |
| 191 | static char ID; |
| 192 | |
| 193 | HexagonBitSimplify() : MachineFunctionPass(ID) {} |
| 194 | |
| 195 | StringRef getPassName() const override { |
| 196 | return "Hexagon bit simplification" ; |
| 197 | } |
| 198 | |
| 199 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 200 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 201 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 202 | MachineFunctionPass::getAnalysisUsage(AU); |
| 203 | } |
| 204 | |
| 205 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 206 | |
| 207 | static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); |
| 208 | static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); |
| 209 | static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, |
| 210 | const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); |
| 211 | static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, |
| 212 | uint16_t W); |
| 213 | static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, |
| 214 | uint16_t W, uint64_t &U); |
| 215 | static bool replaceReg(Register OldR, Register NewR, |
| 216 | MachineRegisterInfo &MRI); |
| 217 | static bool getSubregMask(const BitTracker::RegisterRef &RR, |
| 218 | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); |
| 219 | static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR, |
| 220 | MachineRegisterInfo &MRI); |
| 221 | static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR, |
| 222 | unsigned NewSR, MachineRegisterInfo &MRI); |
| 223 | static bool parseRegSequence(const MachineInstr &I, |
| 224 | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, |
| 225 | const MachineRegisterInfo &MRI); |
| 226 | |
| 227 | static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| 228 | uint16_t Begin); |
| 229 | static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, |
| 230 | uint16_t Begin, const HexagonInstrInfo &HII); |
| 231 | |
| 232 | static const TargetRegisterClass *getFinalVRegClass( |
| 233 | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); |
| 234 | static bool isTransparentCopy(const BitTracker::RegisterRef &RD, |
| 235 | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); |
| 236 | |
| 237 | private: |
| 238 | MachineDominatorTree *MDT = nullptr; |
| 239 | |
| 240 | bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); |
| 241 | static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, |
| 242 | unsigned NewSub = Hexagon::NoSubRegister); |
| 243 | }; |
| 244 | |
| 245 | using HBS = HexagonBitSimplify; |
| 246 | |
| 247 | // The purpose of this class is to provide a common facility to traverse |
| 248 | // the function top-down or bottom-up via the dominator tree, and keep |
| 249 | // track of the available registers. |
| 250 | class Transformation { |
| 251 | public: |
| 252 | bool TopDown; |
| 253 | |
| 254 | Transformation(bool TD) : TopDown(TD) {} |
| 255 | virtual ~Transformation() = default; |
| 256 | |
| 257 | virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; |
| 258 | }; |
| 259 | |
| 260 | } // end anonymous namespace |
| 261 | |
| 262 | char HexagonBitSimplify::ID = 0; |
| 263 | |
| 264 | INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify" , |
| 265 | "Hexagon bit simplification" , false, false) |
| 266 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 267 | INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify" , |
| 268 | "Hexagon bit simplification" , false, false) |
| 269 | |
| 270 | bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, |
| 271 | RegisterSet &AVs) { |
| 272 | bool Changed = false; |
| 273 | |
| 274 | if (T.TopDown) |
| 275 | Changed = T.processBlock(B, AVs); |
| 276 | |
| 277 | RegisterSet Defs; |
| 278 | for (auto &I : B) |
| 279 | getInstrDefs(MI: I, Defs); |
| 280 | RegisterSet NewAVs = AVs; |
| 281 | NewAVs.insert(Rs: Defs); |
| 282 | |
| 283 | for (auto *DTN : children<MachineDomTreeNode*>(G: MDT->getNode(BB: &B))) |
| 284 | Changed |= visitBlock(B&: *(DTN->getBlock()), T, AVs&: NewAVs); |
| 285 | |
| 286 | if (!T.TopDown) |
| 287 | Changed |= T.processBlock(B, AVs); |
| 288 | |
| 289 | return Changed; |
| 290 | } |
| 291 | |
| 292 | // |
| 293 | // Utility functions: |
| 294 | // |
| 295 | void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, |
| 296 | RegisterSet &Defs) { |
| 297 | for (auto &Op : MI.operands()) { |
| 298 | if (!Op.isReg() || !Op.isDef()) |
| 299 | continue; |
| 300 | Register R = Op.getReg(); |
| 301 | if (!R.isVirtual()) |
| 302 | continue; |
| 303 | Defs.insert(R); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, |
| 308 | RegisterSet &Uses) { |
| 309 | for (auto &Op : MI.operands()) { |
| 310 | if (!Op.isReg() || !Op.isUse()) |
| 311 | continue; |
| 312 | Register R = Op.getReg(); |
| 313 | if (!R.isVirtual()) |
| 314 | continue; |
| 315 | Uses.insert(R); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | // Check if all the bits in range [B, E) in both cells are equal. |
| 320 | bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, |
| 321 | uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, |
| 322 | uint16_t W) { |
| 323 | for (uint16_t i = 0; i < W; ++i) { |
| 324 | // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. |
| 325 | if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) |
| 326 | return false; |
| 327 | // Same for RC2[i]. |
| 328 | if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) |
| 329 | return false; |
| 330 | if (RC1[B1+i] != RC2[B2+i]) |
| 331 | return false; |
| 332 | } |
| 333 | return true; |
| 334 | } |
| 335 | |
| 336 | bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, |
| 337 | uint16_t B, uint16_t W) { |
| 338 | assert(B < RC.width() && B+W <= RC.width()); |
| 339 | for (uint16_t i = B; i < B+W; ++i) |
| 340 | if (!RC[i].is(T: 0)) |
| 341 | return false; |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, |
| 346 | uint16_t B, uint16_t W, uint64_t &U) { |
| 347 | assert(B < RC.width() && B+W <= RC.width()); |
| 348 | int64_t T = 0; |
| 349 | for (uint16_t i = B+W; i > B; --i) { |
| 350 | const BitTracker::BitValue &BV = RC[i-1]; |
| 351 | T <<= 1; |
| 352 | if (BV.is(T: 1)) |
| 353 | T |= 1; |
| 354 | else if (!BV.is(T: 0)) |
| 355 | return false; |
| 356 | } |
| 357 | U = T; |
| 358 | return true; |
| 359 | } |
| 360 | |
| 361 | bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR, |
| 362 | MachineRegisterInfo &MRI) { |
| 363 | if (!OldR.isVirtual() || !NewR.isVirtual()) |
| 364 | return false; |
| 365 | auto Begin = MRI.use_begin(RegNo: OldR), End = MRI.use_end(); |
| 366 | decltype(End) NextI; |
| 367 | for (auto I = Begin; I != End; I = NextI) { |
| 368 | NextI = std::next(x: I); |
| 369 | I->setReg(NewR); |
| 370 | } |
| 371 | return Begin != End; |
| 372 | } |
| 373 | |
| 374 | bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR, |
| 375 | unsigned NewSR, |
| 376 | MachineRegisterInfo &MRI) { |
| 377 | if (!OldR.isVirtual() || !NewR.isVirtual()) |
| 378 | return false; |
| 379 | if (hasTiedUse(Reg: OldR, MRI, NewSub: NewSR)) |
| 380 | return false; |
| 381 | auto Begin = MRI.use_begin(RegNo: OldR), End = MRI.use_end(); |
| 382 | decltype(End) NextI; |
| 383 | for (auto I = Begin; I != End; I = NextI) { |
| 384 | NextI = std::next(x: I); |
| 385 | I->setReg(NewR); |
| 386 | I->setSubReg(NewSR); |
| 387 | } |
| 388 | return Begin != End; |
| 389 | } |
| 390 | |
| 391 | bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR, |
| 392 | Register NewR, unsigned NewSR, |
| 393 | MachineRegisterInfo &MRI) { |
| 394 | if (!OldR.isVirtual() || !NewR.isVirtual()) |
| 395 | return false; |
| 396 | if (OldSR != NewSR && hasTiedUse(Reg: OldR, MRI, NewSub: NewSR)) |
| 397 | return false; |
| 398 | auto Begin = MRI.use_begin(RegNo: OldR), End = MRI.use_end(); |
| 399 | decltype(End) NextI; |
| 400 | for (auto I = Begin; I != End; I = NextI) { |
| 401 | NextI = std::next(x: I); |
| 402 | if (I->getSubReg() != OldSR) |
| 403 | continue; |
| 404 | I->setReg(NewR); |
| 405 | I->setSubReg(NewSR); |
| 406 | } |
| 407 | return Begin != End; |
| 408 | } |
| 409 | |
| 410 | // For a register ref (pair Reg:Sub), set Begin to the position of the LSB |
| 411 | // of Sub in Reg, and set Width to the size of Sub in bits. Return true, |
| 412 | // if this succeeded, otherwise return false. |
| 413 | bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, |
| 414 | unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { |
| 415 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: RR.Reg); |
| 416 | if (RR.Sub == 0) { |
| 417 | Begin = 0; |
| 418 | Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(RC: *RC); |
| 419 | return true; |
| 420 | } |
| 421 | |
| 422 | Begin = 0; |
| 423 | |
| 424 | switch (RC->getID()) { |
| 425 | case Hexagon::DoubleRegsRegClassID: |
| 426 | case Hexagon::HvxWRRegClassID: |
| 427 | Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(RC: *RC) / 2; |
| 428 | if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi) |
| 429 | Begin = Width; |
| 430 | break; |
| 431 | default: |
| 432 | return false; |
| 433 | } |
| 434 | return true; |
| 435 | } |
| 436 | |
| 437 | |
| 438 | // For a REG_SEQUENCE, set SL to the low subregister and SH to the high |
| 439 | // subregister. |
| 440 | bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, |
| 441 | BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH, |
| 442 | const MachineRegisterInfo &MRI) { |
| 443 | assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); |
| 444 | unsigned Sub1 = I.getOperand(i: 2).getImm(), Sub2 = I.getOperand(i: 4).getImm(); |
| 445 | auto &DstRC = *MRI.getRegClass(Reg: I.getOperand(i: 0).getReg()); |
| 446 | auto &HRI = static_cast<const HexagonRegisterInfo&>( |
| 447 | *MRI.getTargetRegisterInfo()); |
| 448 | unsigned SubLo = HRI.getHexagonSubRegIndex(RC: DstRC, GenIdx: Hexagon::ps_sub_lo); |
| 449 | unsigned SubHi = HRI.getHexagonSubRegIndex(RC: DstRC, GenIdx: Hexagon::ps_sub_hi); |
| 450 | assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo)); |
| 451 | if (Sub1 == SubLo && Sub2 == SubHi) { |
| 452 | SL = I.getOperand(i: 1); |
| 453 | SH = I.getOperand(i: 3); |
| 454 | return true; |
| 455 | } |
| 456 | if (Sub1 == SubHi && Sub2 == SubLo) { |
| 457 | SH = I.getOperand(i: 1); |
| 458 | SL = I.getOperand(i: 3); |
| 459 | return true; |
| 460 | } |
| 461 | return false; |
| 462 | } |
| 463 | |
| 464 | // All stores (except 64-bit stores) take a 32-bit register as the source |
| 465 | // of the value to be stored. If the instruction stores into a location |
| 466 | // that is shorter than 32 bits, some bits of the source register are not |
| 467 | // used. For each store instruction, calculate the set of used bits in |
| 468 | // the source register, and set appropriate bits in Bits. Return true if |
| 469 | // the bits are calculated, false otherwise. |
| 470 | bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, |
| 471 | uint16_t Begin) { |
| 472 | using namespace Hexagon; |
| 473 | |
| 474 | switch (Opc) { |
| 475 | // Store byte |
| 476 | case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 |
| 477 | case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new |
| 478 | case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 |
| 479 | case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 |
| 480 | case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| 481 | case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 |
| 482 | case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new |
| 483 | case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new |
| 484 | case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| 485 | case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new |
| 486 | case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 |
| 487 | case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new |
| 488 | case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 |
| 489 | case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 |
| 490 | case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| 491 | case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 |
| 492 | case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new |
| 493 | case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new |
| 494 | case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| 495 | case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new |
| 496 | case S4_storerb_ap: // memb(Re32=#U6)=Rt32 |
| 497 | case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new |
| 498 | case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 |
| 499 | case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new |
| 500 | case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 |
| 501 | case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new |
| 502 | case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 |
| 503 | case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new |
| 504 | case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 |
| 505 | case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new |
| 506 | case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 |
| 507 | case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new |
| 508 | case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 |
| 509 | case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new |
| 510 | case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| 511 | case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 |
| 512 | case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| 513 | case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 |
| 514 | case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 515 | case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 516 | case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 517 | case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new |
| 518 | case S2_storerbgp: // memb(gp+#u16:0)=Rt32 |
| 519 | case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new |
| 520 | case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 |
| 521 | case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 |
| 522 | case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 |
| 523 | case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 |
| 524 | case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new |
| 525 | case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new |
| 526 | case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new |
| 527 | case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new |
| 528 | Bits.set(I: Begin, E: Begin+8); |
| 529 | return true; |
| 530 | |
| 531 | // Store low half |
| 532 | case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 |
| 533 | case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new |
| 534 | case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 |
| 535 | case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 |
| 536 | case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| 537 | case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 |
| 538 | case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new |
| 539 | case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new |
| 540 | case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| 541 | case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new |
| 542 | case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 |
| 543 | case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new |
| 544 | case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 |
| 545 | case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 |
| 546 | case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| 547 | case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 |
| 548 | case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new |
| 549 | case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new |
| 550 | case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| 551 | case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new |
| 552 | case S4_storerh_ap: // memh(Re32=#U6)=Rt32 |
| 553 | case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new |
| 554 | case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 |
| 555 | case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new |
| 556 | case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 |
| 557 | case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new |
| 558 | case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 |
| 559 | case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new |
| 560 | case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 |
| 561 | case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new |
| 562 | case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 |
| 563 | case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new |
| 564 | case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 |
| 565 | case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| 566 | case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 |
| 567 | case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| 568 | case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 |
| 569 | case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new |
| 570 | case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 571 | case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 572 | case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 573 | case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new |
| 574 | case S2_storerhgp: // memh(gp+#u16:1)=Rt32 |
| 575 | case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new |
| 576 | case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 |
| 577 | case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 |
| 578 | case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 |
| 579 | case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 |
| 580 | case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new |
| 581 | case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new |
| 582 | case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new |
| 583 | case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new |
| 584 | Bits.set(I: Begin, E: Begin+16); |
| 585 | return true; |
| 586 | |
| 587 | // Store high half |
| 588 | case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 |
| 589 | case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| 590 | case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 |
| 591 | case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| 592 | case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 |
| 593 | case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 |
| 594 | case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| 595 | case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 |
| 596 | case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| 597 | case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 |
| 598 | case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 |
| 599 | case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 |
| 600 | case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 |
| 601 | case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 |
| 602 | case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 |
| 603 | case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 |
| 604 | case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 605 | case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 606 | case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 607 | case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 608 | case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 |
| 609 | case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 |
| 610 | case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 |
| 611 | case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 |
| 612 | case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 |
| 613 | case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 |
| 614 | Bits.set(I: Begin+16, E: Begin+32); |
| 615 | return true; |
| 616 | } |
| 617 | |
| 618 | return false; |
| 619 | } |
| 620 | |
| 621 | // For an instruction with opcode Opc, calculate the set of bits that it |
| 622 | // uses in a register in operand OpN. This only calculates the set of used |
| 623 | // bits for cases where it does not depend on any operands (as is the case |
| 624 | // in shifts, for example). For concrete instructions from a program, the |
| 625 | // operand may be a subregister of a larger register, while Bits would |
| 626 | // correspond to the larger register in its entirety. Because of that, |
| 627 | // the parameter Begin can be used to indicate which bit of Bits should be |
| 628 | // considered the LSB of the operand. |
| 629 | bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, |
| 630 | BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { |
| 631 | using namespace Hexagon; |
| 632 | |
| 633 | const MCInstrDesc &D = HII.get(Opcode: Opc); |
| 634 | if (D.mayStore()) { |
| 635 | if (OpN == D.getNumOperands()-1) |
| 636 | return getUsedBitsInStore(Opc, Bits, Begin); |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | switch (Opc) { |
| 641 | // One register source. Used bits: R1[0-7]. |
| 642 | case A2_sxtb: |
| 643 | case A2_zxtb: |
| 644 | case A4_cmpbeqi: |
| 645 | case A4_cmpbgti: |
| 646 | case A4_cmpbgtui: |
| 647 | if (OpN == 1) { |
| 648 | Bits.set(I: Begin, E: Begin+8); |
| 649 | return true; |
| 650 | } |
| 651 | break; |
| 652 | |
| 653 | // One register source. Used bits: R1[0-15]. |
| 654 | case A2_aslh: |
| 655 | case A2_sxth: |
| 656 | case A2_zxth: |
| 657 | case A4_cmpheqi: |
| 658 | case A4_cmphgti: |
| 659 | case A4_cmphgtui: |
| 660 | if (OpN == 1) { |
| 661 | Bits.set(I: Begin, E: Begin+16); |
| 662 | return true; |
| 663 | } |
| 664 | break; |
| 665 | |
| 666 | // One register source. Used bits: R1[16-31]. |
| 667 | case A2_asrh: |
| 668 | if (OpN == 1) { |
| 669 | Bits.set(I: Begin+16, E: Begin+32); |
| 670 | return true; |
| 671 | } |
| 672 | break; |
| 673 | |
| 674 | // Two register sources. Used bits: R1[0-7], R2[0-7]. |
| 675 | case A4_cmpbeq: |
| 676 | case A4_cmpbgt: |
| 677 | case A4_cmpbgtu: |
| 678 | if (OpN == 1) { |
| 679 | Bits.set(I: Begin, E: Begin+8); |
| 680 | return true; |
| 681 | } |
| 682 | break; |
| 683 | |
| 684 | // Two register sources. Used bits: R1[0-15], R2[0-15]. |
| 685 | case A4_cmpheq: |
| 686 | case A4_cmphgt: |
| 687 | case A4_cmphgtu: |
| 688 | case A2_addh_h16_ll: |
| 689 | case A2_addh_h16_sat_ll: |
| 690 | case A2_addh_l16_ll: |
| 691 | case A2_addh_l16_sat_ll: |
| 692 | case A2_combine_ll: |
| 693 | case A2_subh_h16_ll: |
| 694 | case A2_subh_h16_sat_ll: |
| 695 | case A2_subh_l16_ll: |
| 696 | case A2_subh_l16_sat_ll: |
| 697 | case M2_mpy_acc_ll_s0: |
| 698 | case M2_mpy_acc_ll_s1: |
| 699 | case M2_mpy_acc_sat_ll_s0: |
| 700 | case M2_mpy_acc_sat_ll_s1: |
| 701 | case M2_mpy_ll_s0: |
| 702 | case M2_mpy_ll_s1: |
| 703 | case M2_mpy_nac_ll_s0: |
| 704 | case M2_mpy_nac_ll_s1: |
| 705 | case M2_mpy_nac_sat_ll_s0: |
| 706 | case M2_mpy_nac_sat_ll_s1: |
| 707 | case M2_mpy_rnd_ll_s0: |
| 708 | case M2_mpy_rnd_ll_s1: |
| 709 | case M2_mpy_sat_ll_s0: |
| 710 | case M2_mpy_sat_ll_s1: |
| 711 | case M2_mpy_sat_rnd_ll_s0: |
| 712 | case M2_mpy_sat_rnd_ll_s1: |
| 713 | case M2_mpyd_acc_ll_s0: |
| 714 | case M2_mpyd_acc_ll_s1: |
| 715 | case M2_mpyd_ll_s0: |
| 716 | case M2_mpyd_ll_s1: |
| 717 | case M2_mpyd_nac_ll_s0: |
| 718 | case M2_mpyd_nac_ll_s1: |
| 719 | case M2_mpyd_rnd_ll_s0: |
| 720 | case M2_mpyd_rnd_ll_s1: |
| 721 | case M2_mpyu_acc_ll_s0: |
| 722 | case M2_mpyu_acc_ll_s1: |
| 723 | case M2_mpyu_ll_s0: |
| 724 | case M2_mpyu_ll_s1: |
| 725 | case M2_mpyu_nac_ll_s0: |
| 726 | case M2_mpyu_nac_ll_s1: |
| 727 | case M2_mpyud_acc_ll_s0: |
| 728 | case M2_mpyud_acc_ll_s1: |
| 729 | case M2_mpyud_ll_s0: |
| 730 | case M2_mpyud_ll_s1: |
| 731 | case M2_mpyud_nac_ll_s0: |
| 732 | case M2_mpyud_nac_ll_s1: |
| 733 | if (OpN == 1 || OpN == 2) { |
| 734 | Bits.set(I: Begin, E: Begin+16); |
| 735 | return true; |
| 736 | } |
| 737 | break; |
| 738 | |
| 739 | // Two register sources. Used bits: R1[0-15], R2[16-31]. |
| 740 | case A2_addh_h16_lh: |
| 741 | case A2_addh_h16_sat_lh: |
| 742 | case A2_combine_lh: |
| 743 | case A2_subh_h16_lh: |
| 744 | case A2_subh_h16_sat_lh: |
| 745 | case M2_mpy_acc_lh_s0: |
| 746 | case M2_mpy_acc_lh_s1: |
| 747 | case M2_mpy_acc_sat_lh_s0: |
| 748 | case M2_mpy_acc_sat_lh_s1: |
| 749 | case M2_mpy_lh_s0: |
| 750 | case M2_mpy_lh_s1: |
| 751 | case M2_mpy_nac_lh_s0: |
| 752 | case M2_mpy_nac_lh_s1: |
| 753 | case M2_mpy_nac_sat_lh_s0: |
| 754 | case M2_mpy_nac_sat_lh_s1: |
| 755 | case M2_mpy_rnd_lh_s0: |
| 756 | case M2_mpy_rnd_lh_s1: |
| 757 | case M2_mpy_sat_lh_s0: |
| 758 | case M2_mpy_sat_lh_s1: |
| 759 | case M2_mpy_sat_rnd_lh_s0: |
| 760 | case M2_mpy_sat_rnd_lh_s1: |
| 761 | case M2_mpyd_acc_lh_s0: |
| 762 | case M2_mpyd_acc_lh_s1: |
| 763 | case M2_mpyd_lh_s0: |
| 764 | case M2_mpyd_lh_s1: |
| 765 | case M2_mpyd_nac_lh_s0: |
| 766 | case M2_mpyd_nac_lh_s1: |
| 767 | case M2_mpyd_rnd_lh_s0: |
| 768 | case M2_mpyd_rnd_lh_s1: |
| 769 | case M2_mpyu_acc_lh_s0: |
| 770 | case M2_mpyu_acc_lh_s1: |
| 771 | case M2_mpyu_lh_s0: |
| 772 | case M2_mpyu_lh_s1: |
| 773 | case M2_mpyu_nac_lh_s0: |
| 774 | case M2_mpyu_nac_lh_s1: |
| 775 | case M2_mpyud_acc_lh_s0: |
| 776 | case M2_mpyud_acc_lh_s1: |
| 777 | case M2_mpyud_lh_s0: |
| 778 | case M2_mpyud_lh_s1: |
| 779 | case M2_mpyud_nac_lh_s0: |
| 780 | case M2_mpyud_nac_lh_s1: |
| 781 | // These four are actually LH. |
| 782 | case A2_addh_l16_hl: |
| 783 | case A2_addh_l16_sat_hl: |
| 784 | case A2_subh_l16_hl: |
| 785 | case A2_subh_l16_sat_hl: |
| 786 | if (OpN == 1) { |
| 787 | Bits.set(I: Begin, E: Begin+16); |
| 788 | return true; |
| 789 | } |
| 790 | if (OpN == 2) { |
| 791 | Bits.set(I: Begin+16, E: Begin+32); |
| 792 | return true; |
| 793 | } |
| 794 | break; |
| 795 | |
| 796 | // Two register sources, used bits: R1[16-31], R2[0-15]. |
| 797 | case A2_addh_h16_hl: |
| 798 | case A2_addh_h16_sat_hl: |
| 799 | case A2_combine_hl: |
| 800 | case A2_subh_h16_hl: |
| 801 | case A2_subh_h16_sat_hl: |
| 802 | case M2_mpy_acc_hl_s0: |
| 803 | case M2_mpy_acc_hl_s1: |
| 804 | case M2_mpy_acc_sat_hl_s0: |
| 805 | case M2_mpy_acc_sat_hl_s1: |
| 806 | case M2_mpy_hl_s0: |
| 807 | case M2_mpy_hl_s1: |
| 808 | case M2_mpy_nac_hl_s0: |
| 809 | case M2_mpy_nac_hl_s1: |
| 810 | case M2_mpy_nac_sat_hl_s0: |
| 811 | case M2_mpy_nac_sat_hl_s1: |
| 812 | case M2_mpy_rnd_hl_s0: |
| 813 | case M2_mpy_rnd_hl_s1: |
| 814 | case M2_mpy_sat_hl_s0: |
| 815 | case M2_mpy_sat_hl_s1: |
| 816 | case M2_mpy_sat_rnd_hl_s0: |
| 817 | case M2_mpy_sat_rnd_hl_s1: |
| 818 | case M2_mpyd_acc_hl_s0: |
| 819 | case M2_mpyd_acc_hl_s1: |
| 820 | case M2_mpyd_hl_s0: |
| 821 | case M2_mpyd_hl_s1: |
| 822 | case M2_mpyd_nac_hl_s0: |
| 823 | case M2_mpyd_nac_hl_s1: |
| 824 | case M2_mpyd_rnd_hl_s0: |
| 825 | case M2_mpyd_rnd_hl_s1: |
| 826 | case M2_mpyu_acc_hl_s0: |
| 827 | case M2_mpyu_acc_hl_s1: |
| 828 | case M2_mpyu_hl_s0: |
| 829 | case M2_mpyu_hl_s1: |
| 830 | case M2_mpyu_nac_hl_s0: |
| 831 | case M2_mpyu_nac_hl_s1: |
| 832 | case M2_mpyud_acc_hl_s0: |
| 833 | case M2_mpyud_acc_hl_s1: |
| 834 | case M2_mpyud_hl_s0: |
| 835 | case M2_mpyud_hl_s1: |
| 836 | case M2_mpyud_nac_hl_s0: |
| 837 | case M2_mpyud_nac_hl_s1: |
| 838 | if (OpN == 1) { |
| 839 | Bits.set(I: Begin+16, E: Begin+32); |
| 840 | return true; |
| 841 | } |
| 842 | if (OpN == 2) { |
| 843 | Bits.set(I: Begin, E: Begin+16); |
| 844 | return true; |
| 845 | } |
| 846 | break; |
| 847 | |
| 848 | // Two register sources, used bits: R1[16-31], R2[16-31]. |
| 849 | case A2_addh_h16_hh: |
| 850 | case A2_addh_h16_sat_hh: |
| 851 | case A2_combine_hh: |
| 852 | case A2_subh_h16_hh: |
| 853 | case A2_subh_h16_sat_hh: |
| 854 | case M2_mpy_acc_hh_s0: |
| 855 | case M2_mpy_acc_hh_s1: |
| 856 | case M2_mpy_acc_sat_hh_s0: |
| 857 | case M2_mpy_acc_sat_hh_s1: |
| 858 | case M2_mpy_hh_s0: |
| 859 | case M2_mpy_hh_s1: |
| 860 | case M2_mpy_nac_hh_s0: |
| 861 | case M2_mpy_nac_hh_s1: |
| 862 | case M2_mpy_nac_sat_hh_s0: |
| 863 | case M2_mpy_nac_sat_hh_s1: |
| 864 | case M2_mpy_rnd_hh_s0: |
| 865 | case M2_mpy_rnd_hh_s1: |
| 866 | case M2_mpy_sat_hh_s0: |
| 867 | case M2_mpy_sat_hh_s1: |
| 868 | case M2_mpy_sat_rnd_hh_s0: |
| 869 | case M2_mpy_sat_rnd_hh_s1: |
| 870 | case M2_mpyd_acc_hh_s0: |
| 871 | case M2_mpyd_acc_hh_s1: |
| 872 | case M2_mpyd_hh_s0: |
| 873 | case M2_mpyd_hh_s1: |
| 874 | case M2_mpyd_nac_hh_s0: |
| 875 | case M2_mpyd_nac_hh_s1: |
| 876 | case M2_mpyd_rnd_hh_s0: |
| 877 | case M2_mpyd_rnd_hh_s1: |
| 878 | case M2_mpyu_acc_hh_s0: |
| 879 | case M2_mpyu_acc_hh_s1: |
| 880 | case M2_mpyu_hh_s0: |
| 881 | case M2_mpyu_hh_s1: |
| 882 | case M2_mpyu_nac_hh_s0: |
| 883 | case M2_mpyu_nac_hh_s1: |
| 884 | case M2_mpyud_acc_hh_s0: |
| 885 | case M2_mpyud_acc_hh_s1: |
| 886 | case M2_mpyud_hh_s0: |
| 887 | case M2_mpyud_hh_s1: |
| 888 | case M2_mpyud_nac_hh_s0: |
| 889 | case M2_mpyud_nac_hh_s1: |
| 890 | if (OpN == 1 || OpN == 2) { |
| 891 | Bits.set(I: Begin+16, E: Begin+32); |
| 892 | return true; |
| 893 | } |
| 894 | break; |
| 895 | } |
| 896 | |
| 897 | return false; |
| 898 | } |
| 899 | |
| 900 | // Calculate the register class that matches Reg:Sub. For example, if |
| 901 | // %1 is a double register, then %1:isub_hi would match the "int" |
| 902 | // register class. |
| 903 | const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( |
| 904 | const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { |
| 905 | if (!RR.Reg.isVirtual()) |
| 906 | return nullptr; |
| 907 | auto *RC = MRI.getRegClass(Reg: RR.Reg); |
| 908 | if (RR.Sub == 0) |
| 909 | return RC; |
| 910 | auto &HRI = static_cast<const HexagonRegisterInfo&>( |
| 911 | *MRI.getTargetRegisterInfo()); |
| 912 | |
| 913 | auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void { |
| 914 | (void)HRI; |
| 915 | assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) || |
| 916 | Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi)); |
| 917 | }; |
| 918 | |
| 919 | switch (RC->getID()) { |
| 920 | case Hexagon::DoubleRegsRegClassID: |
| 921 | VerifySR(RC, RR.Sub); |
| 922 | return &Hexagon::IntRegsRegClass; |
| 923 | case Hexagon::HvxWRRegClassID: |
| 924 | VerifySR(RC, RR.Sub); |
| 925 | return &Hexagon::HvxVRRegClass; |
| 926 | } |
| 927 | return nullptr; |
| 928 | } |
| 929 | |
| 930 | // Check if RD could be replaced with RS at any possible use of RD. |
| 931 | // For example a predicate register cannot be replaced with a integer |
| 932 | // register, but a 64-bit register with a subregister can be replaced |
| 933 | // with a 32-bit register. |
| 934 | bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, |
| 935 | const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { |
| 936 | if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual()) |
| 937 | return false; |
| 938 | // Return false if one (or both) classes are nullptr. |
| 939 | auto *DRC = getFinalVRegClass(RR: RD, MRI); |
| 940 | if (!DRC) |
| 941 | return false; |
| 942 | |
| 943 | return DRC == getFinalVRegClass(RR: RS, MRI); |
| 944 | } |
| 945 | |
| 946 | bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, |
| 947 | unsigned NewSub) { |
| 948 | if (!PreserveTiedOps) |
| 949 | return false; |
| 950 | return llvm::any_of(Range: MRI.use_operands(Reg), |
| 951 | P: [NewSub] (const MachineOperand &Op) -> bool { |
| 952 | return Op.getSubReg() != NewSub && Op.isTied(); |
| 953 | }); |
| 954 | } |
| 955 | |
| 956 | namespace { |
| 957 | |
| 958 | class DeadCodeElimination { |
| 959 | public: |
| 960 | DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) |
| 961 | : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), |
| 962 | MDT(mdt), MRI(mf.getRegInfo()) {} |
| 963 | |
| 964 | bool run() { |
| 965 | return runOnNode(N: MDT.getRootNode()); |
| 966 | } |
| 967 | |
| 968 | private: |
| 969 | bool isDead(unsigned R) const; |
| 970 | bool runOnNode(MachineDomTreeNode *N); |
| 971 | |
| 972 | MachineFunction &MF; |
| 973 | const HexagonInstrInfo &HII; |
| 974 | MachineDominatorTree &MDT; |
| 975 | MachineRegisterInfo &MRI; |
| 976 | }; |
| 977 | |
| 978 | } // end anonymous namespace |
| 979 | |
| 980 | bool DeadCodeElimination::isDead(unsigned R) const { |
| 981 | for (const MachineOperand &MO : MRI.use_operands(Reg: R)) { |
| 982 | const MachineInstr *UseI = MO.getParent(); |
| 983 | if (UseI->isDebugInstr()) |
| 984 | continue; |
| 985 | if (UseI->isPHI()) { |
| 986 | assert(!UseI->getOperand(0).getSubReg()); |
| 987 | Register DR = UseI->getOperand(i: 0).getReg(); |
| 988 | if (DR == R) |
| 989 | continue; |
| 990 | } |
| 991 | return false; |
| 992 | } |
| 993 | return true; |
| 994 | } |
| 995 | |
| 996 | bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { |
| 997 | bool Changed = false; |
| 998 | |
| 999 | for (auto *DTN : children<MachineDomTreeNode*>(G: N)) |
| 1000 | Changed |= runOnNode(N: DTN); |
| 1001 | |
| 1002 | MachineBasicBlock *B = N->getBlock(); |
| 1003 | std::vector<MachineInstr*> Instrs; |
| 1004 | for (MachineInstr &MI : llvm::reverse(C&: *B)) |
| 1005 | Instrs.push_back(x: &MI); |
| 1006 | |
| 1007 | for (auto *MI : Instrs) { |
| 1008 | unsigned Opc = MI->getOpcode(); |
| 1009 | // Do not touch lifetime markers. This is why the target-independent DCE |
| 1010 | // cannot be used. |
| 1011 | if (Opc == TargetOpcode::LIFETIME_START || |
| 1012 | Opc == TargetOpcode::LIFETIME_END) |
| 1013 | continue; |
| 1014 | bool Store = false; |
| 1015 | if (MI->isInlineAsm()) |
| 1016 | continue; |
| 1017 | // Delete PHIs if possible. |
| 1018 | if (!MI->isPHI() && !MI->isSafeToMove(SawStore&: Store)) |
| 1019 | continue; |
| 1020 | |
| 1021 | bool AllDead = true; |
| 1022 | SmallVector<unsigned,2> Regs; |
| 1023 | for (auto &Op : MI->operands()) { |
| 1024 | if (!Op.isReg() || !Op.isDef()) |
| 1025 | continue; |
| 1026 | Register R = Op.getReg(); |
| 1027 | if (!R.isVirtual() || !isDead(R)) { |
| 1028 | AllDead = false; |
| 1029 | break; |
| 1030 | } |
| 1031 | Regs.push_back(Elt: R); |
| 1032 | } |
| 1033 | if (!AllDead) |
| 1034 | continue; |
| 1035 | |
| 1036 | B->erase(I: MI); |
| 1037 | for (unsigned Reg : Regs) |
| 1038 | MRI.markUsesInDebugValueAsUndef(Reg); |
| 1039 | Changed = true; |
| 1040 | } |
| 1041 | |
| 1042 | return Changed; |
| 1043 | } |
| 1044 | |
| 1045 | namespace { |
| 1046 | |
| 1047 | // Eliminate redundant instructions |
| 1048 | // |
| 1049 | // This transformation will identify instructions where the output register |
| 1050 | // is the same as one of its input registers. This only works on instructions |
| 1051 | // that define a single register (unlike post-increment loads, for example). |
| 1052 | // The equality check is actually more detailed: the code calculates which |
| 1053 | // bits of the output are used, and only compares these bits with the input |
| 1054 | // registers. |
| 1055 | // If the output matches an input, the instruction is replaced with COPY. |
| 1056 | // The copies will be removed by another transformation. |
| 1057 | class RedundantInstrElimination : public Transformation { |
| 1058 | public: |
| 1059 | RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1060 | const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| 1061 | : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} |
| 1062 | |
| 1063 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1064 | |
| 1065 | private: |
| 1066 | bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, |
| 1067 | unsigned &LostB, unsigned &LostE); |
| 1068 | bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, |
| 1069 | unsigned &LostB, unsigned &LostE); |
| 1070 | bool computeUsedBits(unsigned Reg, BitVector &Bits); |
| 1071 | bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, |
| 1072 | uint16_t Begin); |
| 1073 | bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); |
| 1074 | |
| 1075 | const HexagonInstrInfo &HII; |
| 1076 | const HexagonRegisterInfo &HRI; |
| 1077 | MachineRegisterInfo &MRI; |
| 1078 | BitTracker &BT; |
| 1079 | }; |
| 1080 | |
| 1081 | } // end anonymous namespace |
| 1082 | |
| 1083 | // Check if the instruction is a lossy shift left, where the input being |
| 1084 | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| 1085 | // of bit indices that are lost. |
| 1086 | bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, |
| 1087 | unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| 1088 | using namespace Hexagon; |
| 1089 | |
| 1090 | unsigned Opc = MI.getOpcode(); |
| 1091 | unsigned ImN, RegN, Width; |
| 1092 | switch (Opc) { |
| 1093 | case S2_asl_i_p: |
| 1094 | ImN = 2; |
| 1095 | RegN = 1; |
| 1096 | Width = 64; |
| 1097 | break; |
| 1098 | case S2_asl_i_p_acc: |
| 1099 | case S2_asl_i_p_and: |
| 1100 | case S2_asl_i_p_nac: |
| 1101 | case S2_asl_i_p_or: |
| 1102 | case S2_asl_i_p_xacc: |
| 1103 | ImN = 3; |
| 1104 | RegN = 2; |
| 1105 | Width = 64; |
| 1106 | break; |
| 1107 | case S2_asl_i_r: |
| 1108 | ImN = 2; |
| 1109 | RegN = 1; |
| 1110 | Width = 32; |
| 1111 | break; |
| 1112 | case S2_addasl_rrri: |
| 1113 | case S4_andi_asl_ri: |
| 1114 | case S4_ori_asl_ri: |
| 1115 | case S4_addi_asl_ri: |
| 1116 | case S4_subi_asl_ri: |
| 1117 | case S2_asl_i_r_acc: |
| 1118 | case S2_asl_i_r_and: |
| 1119 | case S2_asl_i_r_nac: |
| 1120 | case S2_asl_i_r_or: |
| 1121 | case S2_asl_i_r_sat: |
| 1122 | case S2_asl_i_r_xacc: |
| 1123 | ImN = 3; |
| 1124 | RegN = 2; |
| 1125 | Width = 32; |
| 1126 | break; |
| 1127 | default: |
| 1128 | return false; |
| 1129 | } |
| 1130 | |
| 1131 | if (RegN != OpN) |
| 1132 | return false; |
| 1133 | |
| 1134 | assert(MI.getOperand(ImN).isImm()); |
| 1135 | unsigned S = MI.getOperand(i: ImN).getImm(); |
| 1136 | if (S == 0) |
| 1137 | return false; |
| 1138 | LostB = Width-S; |
| 1139 | LostE = Width; |
| 1140 | return true; |
| 1141 | } |
| 1142 | |
| 1143 | // Check if the instruction is a lossy shift right, where the input being |
| 1144 | // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range |
| 1145 | // of bit indices that are lost. |
| 1146 | bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, |
| 1147 | unsigned OpN, unsigned &LostB, unsigned &LostE) { |
| 1148 | using namespace Hexagon; |
| 1149 | |
| 1150 | unsigned Opc = MI.getOpcode(); |
| 1151 | unsigned ImN, RegN; |
| 1152 | switch (Opc) { |
| 1153 | case S2_asr_i_p: |
| 1154 | case S2_lsr_i_p: |
| 1155 | ImN = 2; |
| 1156 | RegN = 1; |
| 1157 | break; |
| 1158 | case S2_asr_i_p_acc: |
| 1159 | case S2_asr_i_p_and: |
| 1160 | case S2_asr_i_p_nac: |
| 1161 | case S2_asr_i_p_or: |
| 1162 | case S2_lsr_i_p_acc: |
| 1163 | case S2_lsr_i_p_and: |
| 1164 | case S2_lsr_i_p_nac: |
| 1165 | case S2_lsr_i_p_or: |
| 1166 | case S2_lsr_i_p_xacc: |
| 1167 | ImN = 3; |
| 1168 | RegN = 2; |
| 1169 | break; |
| 1170 | case S2_asr_i_r: |
| 1171 | case S2_lsr_i_r: |
| 1172 | ImN = 2; |
| 1173 | RegN = 1; |
| 1174 | break; |
| 1175 | case S4_andi_lsr_ri: |
| 1176 | case S4_ori_lsr_ri: |
| 1177 | case S4_addi_lsr_ri: |
| 1178 | case S4_subi_lsr_ri: |
| 1179 | case S2_asr_i_r_acc: |
| 1180 | case S2_asr_i_r_and: |
| 1181 | case S2_asr_i_r_nac: |
| 1182 | case S2_asr_i_r_or: |
| 1183 | case S2_lsr_i_r_acc: |
| 1184 | case S2_lsr_i_r_and: |
| 1185 | case S2_lsr_i_r_nac: |
| 1186 | case S2_lsr_i_r_or: |
| 1187 | case S2_lsr_i_r_xacc: |
| 1188 | ImN = 3; |
| 1189 | RegN = 2; |
| 1190 | break; |
| 1191 | |
| 1192 | default: |
| 1193 | return false; |
| 1194 | } |
| 1195 | |
| 1196 | if (RegN != OpN) |
| 1197 | return false; |
| 1198 | |
| 1199 | assert(MI.getOperand(ImN).isImm()); |
| 1200 | unsigned S = MI.getOperand(i: ImN).getImm(); |
| 1201 | LostB = 0; |
| 1202 | LostE = S; |
| 1203 | return true; |
| 1204 | } |
| 1205 | |
| 1206 | // Calculate the bit vector that corresponds to the used bits of register Reg. |
| 1207 | // The vector Bits has the same size, as the size of Reg in bits. If the cal- |
| 1208 | // culation fails (i.e. the used bits are unknown), it returns false. Other- |
| 1209 | // wise, it returns true and sets the corresponding bits in Bits. |
| 1210 | bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { |
| 1211 | BitVector Used(Bits.size()); |
| 1212 | RegisterSet Visited; |
| 1213 | std::vector<unsigned> Pending; |
| 1214 | Pending.push_back(x: Reg); |
| 1215 | |
| 1216 | for (unsigned i = 0; i < Pending.size(); ++i) { |
| 1217 | unsigned R = Pending[i]; |
| 1218 | if (Visited.has(R)) |
| 1219 | continue; |
| 1220 | Visited.insert(R); |
| 1221 | for (auto I = MRI.use_begin(RegNo: R), E = MRI.use_end(); I != E; ++I) { |
| 1222 | BitTracker::RegisterRef UR = *I; |
| 1223 | unsigned B, W; |
| 1224 | if (!HBS::getSubregMask(RR: UR, Begin&: B, Width&: W, MRI)) |
| 1225 | return false; |
| 1226 | MachineInstr &UseI = *I->getParent(); |
| 1227 | if (UseI.isPHI() || UseI.isCopy()) { |
| 1228 | Register DefR = UseI.getOperand(i: 0).getReg(); |
| 1229 | if (!DefR.isVirtual()) |
| 1230 | return false; |
| 1231 | Pending.push_back(x: DefR); |
| 1232 | } else { |
| 1233 | if (!computeUsedBits(MI: UseI, OpN: I.getOperandNo(), Bits&: Used, Begin: B)) |
| 1234 | return false; |
| 1235 | } |
| 1236 | } |
| 1237 | } |
| 1238 | Bits |= Used; |
| 1239 | return true; |
| 1240 | } |
| 1241 | |
| 1242 | // Calculate the bits used by instruction MI in a register in operand OpN. |
| 1243 | // Return true/false if the calculation succeeds/fails. If is succeeds, set |
| 1244 | // used bits in Bits. This function does not reset any bits in Bits, so |
| 1245 | // subsequent calls over different instructions will result in the union |
| 1246 | // of the used bits in all these instructions. |
| 1247 | // The register in question may be used with a sub-register, whereas Bits |
| 1248 | // holds the bits for the entire register. To keep track of that, the |
| 1249 | // argument Begin indicates where in Bits is the lowest-significant bit |
| 1250 | // of the register used in operand OpN. For example, in instruction: |
| 1251 | // %1 = S2_lsr_i_r %2:isub_hi, 10 |
| 1252 | // the operand 1 is a 32-bit register, which happens to be a subregister |
| 1253 | // of the 64-bit register %2, and that subregister starts at position 32. |
| 1254 | // In this case Begin=32, since Bits[32] would be the lowest-significant bit |
| 1255 | // of %2:isub_hi. |
| 1256 | bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, |
| 1257 | unsigned OpN, BitVector &Bits, uint16_t Begin) { |
| 1258 | unsigned Opc = MI.getOpcode(); |
| 1259 | BitVector T(Bits.size()); |
| 1260 | bool GotBits = HBS::getUsedBits(Opc, OpN, Bits&: T, Begin, HII); |
| 1261 | // Even if we don't have bits yet, we could still provide some information |
| 1262 | // if the instruction is a lossy shift: the lost bits will be marked as |
| 1263 | // not used. |
| 1264 | unsigned LB, LE; |
| 1265 | if (isLossyShiftLeft(MI, OpN, LostB&: LB, LostE&: LE) || isLossyShiftRight(MI, OpN, LostB&: LB, LostE&: LE)) { |
| 1266 | assert(MI.getOperand(OpN).isReg()); |
| 1267 | BitTracker::RegisterRef RR = MI.getOperand(i: OpN); |
| 1268 | const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); |
| 1269 | uint16_t Width = HRI.getRegSizeInBits(RC: *RC); |
| 1270 | |
| 1271 | if (!GotBits) |
| 1272 | T.set(I: Begin, E: Begin+Width); |
| 1273 | assert(LB <= LE && LB < Width && LE <= Width); |
| 1274 | T.reset(I: Begin+LB, E: Begin+LE); |
| 1275 | GotBits = true; |
| 1276 | } |
| 1277 | if (GotBits) |
| 1278 | Bits |= T; |
| 1279 | return GotBits; |
| 1280 | } |
| 1281 | |
| 1282 | // Calculates the used bits in RD ("defined register"), and checks if these |
| 1283 | // bits in RS ("used register") and RD are identical. |
| 1284 | bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, |
| 1285 | BitTracker::RegisterRef RS) { |
| 1286 | const BitTracker::RegisterCell &DC = BT.lookup(Reg: RD.Reg); |
| 1287 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: RS.Reg); |
| 1288 | |
| 1289 | unsigned DB, DW; |
| 1290 | if (!HBS::getSubregMask(RR: RD, Begin&: DB, Width&: DW, MRI)) |
| 1291 | return false; |
| 1292 | unsigned SB, SW; |
| 1293 | if (!HBS::getSubregMask(RR: RS, Begin&: SB, Width&: SW, MRI)) |
| 1294 | return false; |
| 1295 | if (SW != DW) |
| 1296 | return false; |
| 1297 | |
| 1298 | BitVector Used(DC.width()); |
| 1299 | if (!computeUsedBits(Reg: RD.Reg, Bits&: Used)) |
| 1300 | return false; |
| 1301 | |
| 1302 | for (unsigned i = 0; i != DW; ++i) |
| 1303 | if (Used[i+DB] && DC[DB+i] != SC[SB+i]) |
| 1304 | return false; |
| 1305 | return true; |
| 1306 | } |
| 1307 | |
| 1308 | bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, |
| 1309 | const RegisterSet&) { |
| 1310 | if (!BT.reached(B: &B)) |
| 1311 | return false; |
| 1312 | bool Changed = false; |
| 1313 | |
| 1314 | for (auto I = B.begin(), E = B.end(); I != E; ++I) { |
| 1315 | MachineInstr *MI = &*I; |
| 1316 | |
| 1317 | if (MI->getOpcode() == TargetOpcode::COPY) |
| 1318 | continue; |
| 1319 | if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| 1320 | continue; |
| 1321 | unsigned NumD = MI->getDesc().getNumDefs(); |
| 1322 | if (NumD != 1) |
| 1323 | continue; |
| 1324 | |
| 1325 | BitTracker::RegisterRef RD = MI->getOperand(i: 0); |
| 1326 | if (!BT.has(Reg: RD.Reg)) |
| 1327 | continue; |
| 1328 | const BitTracker::RegisterCell &DC = BT.lookup(Reg: RD.Reg); |
| 1329 | auto At = MachineBasicBlock::iterator(MI); |
| 1330 | |
| 1331 | // Find a source operand that is equal to the result. |
| 1332 | for (auto &Op : MI->uses()) { |
| 1333 | if (!Op.isReg()) |
| 1334 | continue; |
| 1335 | BitTracker::RegisterRef RS = Op; |
| 1336 | if (!BT.has(Reg: RS.Reg)) |
| 1337 | continue; |
| 1338 | if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| 1339 | continue; |
| 1340 | |
| 1341 | unsigned BN, BW; |
| 1342 | if (!HBS::getSubregMask(RR: RS, Begin&: BN, Width&: BW, MRI)) |
| 1343 | continue; |
| 1344 | |
| 1345 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: RS.Reg); |
| 1346 | if (!usedBitsEqual(RD, RS) && !HBS::isEqual(RC1: DC, B1: 0, RC2: SC, B2: BN, W: BW)) |
| 1347 | continue; |
| 1348 | |
| 1349 | // If found, replace the instruction with a COPY. |
| 1350 | const DebugLoc &DL = MI->getDebugLoc(); |
| 1351 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RR: RD, MRI); |
| 1352 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 1353 | MachineInstr *CopyI = |
| 1354 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: NewR) |
| 1355 | .addReg(RegNo: RS.Reg, flags: 0, SubReg: RS.Sub); |
| 1356 | HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: RD.Sub, NewR, NewSR: 0, MRI); |
| 1357 | // This pass can create copies between registers that don't have the |
| 1358 | // exact same values. Updating the tracker has to involve updating |
| 1359 | // all dependent cells. Example: |
| 1360 | // %1 = inst %2 ; %1 != %2, but used bits are equal |
| 1361 | // |
| 1362 | // %3 = copy %2 ; <- inserted |
| 1363 | // ... = %3 ; <- replaced from %2 |
| 1364 | // Indirectly, we can create a "copy" between %1 and %2 even |
| 1365 | // though their exact values do not match. |
| 1366 | BT.visit(MI: *CopyI); |
| 1367 | Changed = true; |
| 1368 | break; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | return Changed; |
| 1373 | } |
| 1374 | |
| 1375 | namespace { |
| 1376 | |
| 1377 | // Recognize instructions that produce constant values known at compile-time. |
| 1378 | // Replace them with register definitions that load these constants directly. |
| 1379 | class ConstGeneration : public Transformation { |
| 1380 | public: |
| 1381 | ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1382 | MachineRegisterInfo &mri) |
| 1383 | : Transformation(true), HII(hii), MRI(mri), BT(bt) {} |
| 1384 | |
| 1385 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1386 | static bool isTfrConst(const MachineInstr &MI); |
| 1387 | |
| 1388 | private: |
| 1389 | Register genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| 1390 | MachineBasicBlock &B, MachineBasicBlock::iterator At, |
| 1391 | DebugLoc &DL); |
| 1392 | |
| 1393 | const HexagonInstrInfo &HII; |
| 1394 | MachineRegisterInfo &MRI; |
| 1395 | BitTracker &BT; |
| 1396 | }; |
| 1397 | |
| 1398 | } // end anonymous namespace |
| 1399 | |
| 1400 | bool ConstGeneration::isTfrConst(const MachineInstr &MI) { |
| 1401 | unsigned Opc = MI.getOpcode(); |
| 1402 | switch (Opc) { |
| 1403 | case Hexagon::A2_combineii: |
| 1404 | case Hexagon::A4_combineii: |
| 1405 | case Hexagon::A2_tfrsi: |
| 1406 | case Hexagon::A2_tfrpi: |
| 1407 | case Hexagon::PS_true: |
| 1408 | case Hexagon::PS_false: |
| 1409 | case Hexagon::CONST32: |
| 1410 | case Hexagon::CONST64: |
| 1411 | return true; |
| 1412 | } |
| 1413 | return false; |
| 1414 | } |
| 1415 | |
| 1416 | // Generate a transfer-immediate instruction that is appropriate for the |
| 1417 | // register class and the actual value being transferred. |
| 1418 | Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, |
| 1419 | MachineBasicBlock &B, |
| 1420 | MachineBasicBlock::iterator At, |
| 1421 | DebugLoc &DL) { |
| 1422 | Register Reg = MRI.createVirtualRegister(RegClass: RC); |
| 1423 | if (RC == &Hexagon::IntRegsRegClass) { |
| 1424 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: Reg) |
| 1425 | .addImm(Val: int32_t(C)); |
| 1426 | return Reg; |
| 1427 | } |
| 1428 | |
| 1429 | if (RC == &Hexagon::DoubleRegsRegClass) { |
| 1430 | if (isInt<8>(x: C)) { |
| 1431 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrpi), DestReg: Reg) |
| 1432 | .addImm(Val: C); |
| 1433 | return Reg; |
| 1434 | } |
| 1435 | |
| 1436 | unsigned Lo = Lo_32(Value: C), Hi = Hi_32(Value: C); |
| 1437 | if (isInt<8>(x: Lo) || isInt<8>(x: Hi)) { |
| 1438 | unsigned Opc = isInt<8>(x: Lo) ? Hexagon::A2_combineii |
| 1439 | : Hexagon::A4_combineii; |
| 1440 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Opc), DestReg: Reg) |
| 1441 | .addImm(Val: int32_t(Hi)) |
| 1442 | .addImm(Val: int32_t(Lo)); |
| 1443 | return Reg; |
| 1444 | } |
| 1445 | MachineFunction *MF = B.getParent(); |
| 1446 | auto &HST = MF->getSubtarget<HexagonSubtarget>(); |
| 1447 | |
| 1448 | // Disable CONST64 for tiny core since it takes a LD resource. |
| 1449 | if (!HST.isTinyCore() || |
| 1450 | MF->getFunction().hasOptSize()) { |
| 1451 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::CONST64), DestReg: Reg) |
| 1452 | .addImm(Val: C); |
| 1453 | return Reg; |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | if (RC == &Hexagon::PredRegsRegClass) { |
| 1458 | unsigned Opc; |
| 1459 | if (C == 0) |
| 1460 | Opc = Hexagon::PS_false; |
| 1461 | else if ((C & 0xFF) == 0xFF) |
| 1462 | Opc = Hexagon::PS_true; |
| 1463 | else |
| 1464 | return 0; |
| 1465 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Opc), DestReg: Reg); |
| 1466 | return Reg; |
| 1467 | } |
| 1468 | |
| 1469 | return 0; |
| 1470 | } |
| 1471 | |
| 1472 | bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| 1473 | if (!BT.reached(B: &B)) |
| 1474 | return false; |
| 1475 | bool Changed = false; |
| 1476 | RegisterSet Defs; |
| 1477 | |
| 1478 | for (auto I = B.begin(), E = B.end(); I != E; ++I) { |
| 1479 | if (isTfrConst(MI: *I)) |
| 1480 | continue; |
| 1481 | Defs.clear(); |
| 1482 | HBS::getInstrDefs(MI: *I, Defs); |
| 1483 | if (Defs.count() != 1) |
| 1484 | continue; |
| 1485 | Register DR = Defs.find_first(); |
| 1486 | if (!DR.isVirtual()) |
| 1487 | continue; |
| 1488 | uint64_t U; |
| 1489 | const BitTracker::RegisterCell &DRC = BT.lookup(Reg: DR); |
| 1490 | if (HBS::getConst(RC: DRC, B: 0, W: DRC.width(), U)) { |
| 1491 | int64_t C = U; |
| 1492 | DebugLoc DL = I->getDebugLoc(); |
| 1493 | auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| 1494 | Register ImmReg = genTfrConst(RC: MRI.getRegClass(Reg: DR), C, B, At, DL); |
| 1495 | if (ImmReg) { |
| 1496 | HBS::replaceReg(OldR: DR, NewR: ImmReg, MRI); |
| 1497 | BT.put(RR: ImmReg, RC: DRC); |
| 1498 | Changed = true; |
| 1499 | } |
| 1500 | } |
| 1501 | } |
| 1502 | return Changed; |
| 1503 | } |
| 1504 | |
| 1505 | namespace { |
| 1506 | |
| 1507 | // Identify pairs of available registers which hold identical values. |
| 1508 | // In such cases, only one of them needs to be calculated, the other one |
| 1509 | // will be defined as a copy of the first. |
| 1510 | class CopyGeneration : public Transformation { |
| 1511 | public: |
| 1512 | CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, |
| 1513 | const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| 1514 | : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {} |
| 1515 | |
| 1516 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1517 | |
| 1518 | private: |
| 1519 | bool findMatch(const BitTracker::RegisterRef &Inp, |
| 1520 | BitTracker::RegisterRef &Out, const RegisterSet &AVs); |
| 1521 | |
| 1522 | const HexagonInstrInfo &HII; |
| 1523 | const HexagonRegisterInfo &HRI; |
| 1524 | MachineRegisterInfo &MRI; |
| 1525 | BitTracker &BT; |
| 1526 | RegisterSet Forbidden; |
| 1527 | }; |
| 1528 | |
| 1529 | // Eliminate register copies RD = RS, by replacing the uses of RD with |
| 1530 | // with uses of RS. |
| 1531 | class CopyPropagation : public Transformation { |
| 1532 | public: |
| 1533 | CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) |
| 1534 | : Transformation(false), HRI(hri), MRI(mri) {} |
| 1535 | |
| 1536 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1537 | |
| 1538 | static bool isCopyReg(unsigned Opc, bool NoConv); |
| 1539 | |
| 1540 | private: |
| 1541 | bool propagateRegCopy(MachineInstr &MI); |
| 1542 | |
| 1543 | const HexagonRegisterInfo &HRI; |
| 1544 | MachineRegisterInfo &MRI; |
| 1545 | }; |
| 1546 | |
| 1547 | } // end anonymous namespace |
| 1548 | |
| 1549 | /// Check if there is a register in AVs that is identical to Inp. If so, |
| 1550 | /// set Out to the found register. The output may be a pair Reg:Sub. |
| 1551 | bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, |
| 1552 | BitTracker::RegisterRef &Out, const RegisterSet &AVs) { |
| 1553 | if (!BT.has(Reg: Inp.Reg)) |
| 1554 | return false; |
| 1555 | const BitTracker::RegisterCell &InpRC = BT.lookup(Reg: Inp.Reg); |
| 1556 | auto *FRC = HBS::getFinalVRegClass(RR: Inp, MRI); |
| 1557 | unsigned B, W; |
| 1558 | if (!HBS::getSubregMask(RR: Inp, Begin&: B, Width&: W, MRI)) |
| 1559 | return false; |
| 1560 | |
| 1561 | for (Register R = AVs.find_first(); R; R = AVs.find_next(Prev: R)) { |
| 1562 | if (!BT.has(Reg: R) || Forbidden[R]) |
| 1563 | continue; |
| 1564 | const BitTracker::RegisterCell &RC = BT.lookup(Reg: R); |
| 1565 | unsigned RW = RC.width(); |
| 1566 | if (W == RW) { |
| 1567 | if (FRC != MRI.getRegClass(Reg: R)) |
| 1568 | continue; |
| 1569 | if (!HBS::isTransparentCopy(RD: R, RS: Inp, MRI)) |
| 1570 | continue; |
| 1571 | if (!HBS::isEqual(RC1: InpRC, B1: B, RC2: RC, B2: 0, W)) |
| 1572 | continue; |
| 1573 | Out.Reg = R; |
| 1574 | Out.Sub = 0; |
| 1575 | return true; |
| 1576 | } |
| 1577 | // Check if there is a super-register, whose part (with a subregister) |
| 1578 | // is equal to the input. |
| 1579 | // Only do double registers for now. |
| 1580 | if (W*2 != RW) |
| 1581 | continue; |
| 1582 | if (MRI.getRegClass(Reg: R) != &Hexagon::DoubleRegsRegClass) |
| 1583 | continue; |
| 1584 | |
| 1585 | if (HBS::isEqual(RC1: InpRC, B1: B, RC2: RC, B2: 0, W)) |
| 1586 | Out.Sub = Hexagon::isub_lo; |
| 1587 | else if (HBS::isEqual(RC1: InpRC, B1: B, RC2: RC, B2: W, W)) |
| 1588 | Out.Sub = Hexagon::isub_hi; |
| 1589 | else |
| 1590 | continue; |
| 1591 | Out.Reg = R; |
| 1592 | if (HBS::isTransparentCopy(RD: Out, RS: Inp, MRI)) |
| 1593 | return true; |
| 1594 | } |
| 1595 | return false; |
| 1596 | } |
| 1597 | |
| 1598 | bool CopyGeneration::processBlock(MachineBasicBlock &B, |
| 1599 | const RegisterSet &AVs) { |
| 1600 | if (!BT.reached(B: &B)) |
| 1601 | return false; |
| 1602 | RegisterSet AVB(AVs); |
| 1603 | bool Changed = false; |
| 1604 | RegisterSet Defs; |
| 1605 | |
| 1606 | for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Rs: Defs)) { |
| 1607 | Defs.clear(); |
| 1608 | HBS::getInstrDefs(MI: *I, Defs); |
| 1609 | |
| 1610 | unsigned Opc = I->getOpcode(); |
| 1611 | if (CopyPropagation::isCopyReg(Opc, NoConv: false) || |
| 1612 | ConstGeneration::isTfrConst(MI: *I)) |
| 1613 | continue; |
| 1614 | |
| 1615 | DebugLoc DL = I->getDebugLoc(); |
| 1616 | auto At = I->isPHI() ? B.getFirstNonPHI() : I; |
| 1617 | |
| 1618 | for (Register R = Defs.find_first(); R; R = Defs.find_next(Prev: R)) { |
| 1619 | BitTracker::RegisterRef MR; |
| 1620 | auto *FRC = HBS::getFinalVRegClass(RR: R, MRI); |
| 1621 | |
| 1622 | if (findMatch(Inp: R, Out&: MR, AVs: AVB)) { |
| 1623 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 1624 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: NewR) |
| 1625 | .addReg(RegNo: MR.Reg, flags: 0, SubReg: MR.Sub); |
| 1626 | BT.put(RR: BitTracker::RegisterRef(NewR), RC: BT.get(RR: MR)); |
| 1627 | HBS::replaceReg(OldR: R, NewR, MRI); |
| 1628 | Forbidden.insert(R); |
| 1629 | continue; |
| 1630 | } |
| 1631 | |
| 1632 | if (FRC == &Hexagon::DoubleRegsRegClass || |
| 1633 | FRC == &Hexagon::HvxWRRegClass) { |
| 1634 | // Try to generate REG_SEQUENCE. |
| 1635 | unsigned SubLo = HRI.getHexagonSubRegIndex(RC: *FRC, GenIdx: Hexagon::ps_sub_lo); |
| 1636 | unsigned SubHi = HRI.getHexagonSubRegIndex(RC: *FRC, GenIdx: Hexagon::ps_sub_hi); |
| 1637 | BitTracker::RegisterRef TL = { R, SubLo }; |
| 1638 | BitTracker::RegisterRef TH = { R, SubHi }; |
| 1639 | BitTracker::RegisterRef ML, MH; |
| 1640 | if (findMatch(Inp: TL, Out&: ML, AVs: AVB) && findMatch(Inp: TH, Out&: MH, AVs: AVB)) { |
| 1641 | auto *FRC = HBS::getFinalVRegClass(RR: R, MRI); |
| 1642 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 1643 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::REG_SEQUENCE), DestReg: NewR) |
| 1644 | .addReg(RegNo: ML.Reg, flags: 0, SubReg: ML.Sub) |
| 1645 | .addImm(Val: SubLo) |
| 1646 | .addReg(RegNo: MH.Reg, flags: 0, SubReg: MH.Sub) |
| 1647 | .addImm(Val: SubHi); |
| 1648 | BT.put(RR: BitTracker::RegisterRef(NewR), RC: BT.get(RR: R)); |
| 1649 | HBS::replaceReg(OldR: R, NewR, MRI); |
| 1650 | Forbidden.insert(R); |
| 1651 | } |
| 1652 | } |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | return Changed; |
| 1657 | } |
| 1658 | |
| 1659 | bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) { |
| 1660 | switch (Opc) { |
| 1661 | case TargetOpcode::COPY: |
| 1662 | case TargetOpcode::REG_SEQUENCE: |
| 1663 | case Hexagon::A4_combineir: |
| 1664 | case Hexagon::A4_combineri: |
| 1665 | return true; |
| 1666 | case Hexagon::A2_tfr: |
| 1667 | case Hexagon::A2_tfrp: |
| 1668 | case Hexagon::A2_combinew: |
| 1669 | case Hexagon::V6_vcombine: |
| 1670 | return NoConv; |
| 1671 | default: |
| 1672 | break; |
| 1673 | } |
| 1674 | return false; |
| 1675 | } |
| 1676 | |
| 1677 | bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { |
| 1678 | bool Changed = false; |
| 1679 | unsigned Opc = MI.getOpcode(); |
| 1680 | BitTracker::RegisterRef RD = MI.getOperand(i: 0); |
| 1681 | assert(MI.getOperand(0).getSubReg() == 0); |
| 1682 | |
| 1683 | switch (Opc) { |
| 1684 | case TargetOpcode::COPY: |
| 1685 | case Hexagon::A2_tfr: |
| 1686 | case Hexagon::A2_tfrp: { |
| 1687 | BitTracker::RegisterRef RS = MI.getOperand(i: 1); |
| 1688 | if (!HBS::isTransparentCopy(RD, RS, MRI)) |
| 1689 | break; |
| 1690 | if (RS.Sub != 0) |
| 1691 | Changed = HBS::replaceRegWithSub(OldR: RD.Reg, NewR: RS.Reg, NewSR: RS.Sub, MRI); |
| 1692 | else |
| 1693 | Changed = HBS::replaceReg(OldR: RD.Reg, NewR: RS.Reg, MRI); |
| 1694 | break; |
| 1695 | } |
| 1696 | case TargetOpcode::REG_SEQUENCE: { |
| 1697 | BitTracker::RegisterRef SL, SH; |
| 1698 | if (HBS::parseRegSequence(I: MI, SL, SH, MRI)) { |
| 1699 | const TargetRegisterClass &RC = *MRI.getRegClass(Reg: RD.Reg); |
| 1700 | unsigned SubLo = HRI.getHexagonSubRegIndex(RC, GenIdx: Hexagon::ps_sub_lo); |
| 1701 | unsigned SubHi = HRI.getHexagonSubRegIndex(RC, GenIdx: Hexagon::ps_sub_hi); |
| 1702 | Changed = HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: SubLo, NewR: SL.Reg, NewSR: SL.Sub, MRI); |
| 1703 | Changed |= HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: SubHi, NewR: SH.Reg, NewSR: SH.Sub, MRI); |
| 1704 | } |
| 1705 | break; |
| 1706 | } |
| 1707 | case Hexagon::A2_combinew: |
| 1708 | case Hexagon::V6_vcombine: { |
| 1709 | const TargetRegisterClass &RC = *MRI.getRegClass(Reg: RD.Reg); |
| 1710 | unsigned SubLo = HRI.getHexagonSubRegIndex(RC, GenIdx: Hexagon::ps_sub_lo); |
| 1711 | unsigned SubHi = HRI.getHexagonSubRegIndex(RC, GenIdx: Hexagon::ps_sub_hi); |
| 1712 | BitTracker::RegisterRef RH = MI.getOperand(i: 1), RL = MI.getOperand(i: 2); |
| 1713 | Changed = HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: SubLo, NewR: RL.Reg, NewSR: RL.Sub, MRI); |
| 1714 | Changed |= HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: SubHi, NewR: RH.Reg, NewSR: RH.Sub, MRI); |
| 1715 | break; |
| 1716 | } |
| 1717 | case Hexagon::A4_combineir: |
| 1718 | case Hexagon::A4_combineri: { |
| 1719 | unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; |
| 1720 | unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo |
| 1721 | : Hexagon::isub_hi; |
| 1722 | BitTracker::RegisterRef RS = MI.getOperand(i: SrcX); |
| 1723 | Changed = HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: Sub, NewR: RS.Reg, NewSR: RS.Sub, MRI); |
| 1724 | break; |
| 1725 | } |
| 1726 | } |
| 1727 | return Changed; |
| 1728 | } |
| 1729 | |
| 1730 | bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { |
| 1731 | std::vector<MachineInstr*> Instrs; |
| 1732 | for (MachineInstr &MI : llvm::reverse(C&: B)) |
| 1733 | Instrs.push_back(x: &MI); |
| 1734 | |
| 1735 | bool Changed = false; |
| 1736 | for (auto *I : Instrs) { |
| 1737 | unsigned Opc = I->getOpcode(); |
| 1738 | if (!CopyPropagation::isCopyReg(Opc, NoConv: true)) |
| 1739 | continue; |
| 1740 | Changed |= propagateRegCopy(MI&: *I); |
| 1741 | } |
| 1742 | |
| 1743 | return Changed; |
| 1744 | } |
| 1745 | |
| 1746 | namespace { |
| 1747 | |
| 1748 | // Recognize patterns that can be simplified and replace them with the |
| 1749 | // simpler forms. |
| 1750 | // This is by no means complete |
| 1751 | class BitSimplification : public Transformation { |
| 1752 | public: |
| 1753 | BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt, |
| 1754 | const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri, |
| 1755 | MachineRegisterInfo &mri, MachineFunction &mf) |
| 1756 | : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri), |
| 1757 | MF(mf), BT(bt) {} |
| 1758 | |
| 1759 | bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; |
| 1760 | |
| 1761 | private: |
| 1762 | struct RegHalf : public BitTracker::RegisterRef { |
| 1763 | bool Low; // Low/High halfword. |
| 1764 | }; |
| 1765 | |
| 1766 | bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| 1767 | unsigned B, RegHalf &RH); |
| 1768 | bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum); |
| 1769 | |
| 1770 | bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, |
| 1771 | BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); |
| 1772 | unsigned getCombineOpcode(bool HLow, bool LLow); |
| 1773 | |
| 1774 | bool genStoreUpperHalf(MachineInstr *MI); |
| 1775 | bool genStoreImmediate(MachineInstr *MI); |
| 1776 | bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1777 | const BitTracker::RegisterCell &RC); |
| 1778 | bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1779 | const BitTracker::RegisterCell &RC); |
| 1780 | bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1781 | const BitTracker::RegisterCell &RC); |
| 1782 | bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1783 | const BitTracker::RegisterCell &RC); |
| 1784 | bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1785 | const BitTracker::RegisterCell &RC, const RegisterSet &AVs); |
| 1786 | bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1787 | const BitTracker::RegisterCell &RC); |
| 1788 | bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, |
| 1789 | const BitTracker::RegisterCell &RC, const RegisterSet &AVs); |
| 1790 | bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD); |
| 1791 | |
| 1792 | // Cache of created instructions to avoid creating duplicates. |
| 1793 | // XXX Currently only used by genBitSplit. |
| 1794 | std::vector<MachineInstr*> NewMIs; |
| 1795 | |
| 1796 | const MachineDominatorTree &MDT; |
| 1797 | const HexagonInstrInfo &HII; |
| 1798 | const HexagonRegisterInfo &HRI; |
| 1799 | MachineRegisterInfo &MRI; |
| 1800 | MachineFunction &MF; |
| 1801 | BitTracker &BT; |
| 1802 | }; |
| 1803 | |
| 1804 | } // end anonymous namespace |
| 1805 | |
| 1806 | // Check if the bits [B..B+16) in register cell RC form a valid halfword, |
| 1807 | // i.e. [0..16), [16..32), etc. of some register. If so, return true and |
| 1808 | // set the information about the found register in RH. |
| 1809 | bool BitSimplification::matchHalf(unsigned SelfR, |
| 1810 | const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { |
| 1811 | // XXX This could be searching in the set of available registers, in case |
| 1812 | // the match is not exact. |
| 1813 | |
| 1814 | // Match 16-bit chunks, where the RC[B..B+15] references exactly one |
| 1815 | // register and all the bits B..B+15 match between RC and the register. |
| 1816 | // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, |
| 1817 | // and RC = { [0]:0 [1-15]:v1[1-15]... }. |
| 1818 | bool Low = false; |
| 1819 | unsigned I = B; |
| 1820 | while (I < B+16 && RC[I].num()) |
| 1821 | I++; |
| 1822 | if (I == B+16) |
| 1823 | return false; |
| 1824 | |
| 1825 | Register Reg = RC[I].RefI.Reg; |
| 1826 | unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. |
| 1827 | if (P < I-B) |
| 1828 | return false; |
| 1829 | unsigned Pos = P - (I-B); |
| 1830 | |
| 1831 | if (Reg == 0 || Reg == SelfR) // Don't match "self". |
| 1832 | return false; |
| 1833 | if (!Reg.isVirtual()) |
| 1834 | return false; |
| 1835 | if (!BT.has(Reg)) |
| 1836 | return false; |
| 1837 | |
| 1838 | const BitTracker::RegisterCell &SC = BT.lookup(Reg); |
| 1839 | if (Pos+16 > SC.width()) |
| 1840 | return false; |
| 1841 | |
| 1842 | for (unsigned i = 0; i < 16; ++i) { |
| 1843 | const BitTracker::BitValue &RV = RC[i+B]; |
| 1844 | if (RV.Type == BitTracker::BitValue::Ref) { |
| 1845 | if (RV.RefI.Reg != Reg) |
| 1846 | return false; |
| 1847 | if (RV.RefI.Pos != i+Pos) |
| 1848 | return false; |
| 1849 | continue; |
| 1850 | } |
| 1851 | if (RC[i+B] != SC[i+Pos]) |
| 1852 | return false; |
| 1853 | } |
| 1854 | |
| 1855 | unsigned Sub = 0; |
| 1856 | switch (Pos) { |
| 1857 | case 0: |
| 1858 | Sub = Hexagon::isub_lo; |
| 1859 | Low = true; |
| 1860 | break; |
| 1861 | case 16: |
| 1862 | Sub = Hexagon::isub_lo; |
| 1863 | Low = false; |
| 1864 | break; |
| 1865 | case 32: |
| 1866 | Sub = Hexagon::isub_hi; |
| 1867 | Low = true; |
| 1868 | break; |
| 1869 | case 48: |
| 1870 | Sub = Hexagon::isub_hi; |
| 1871 | Low = false; |
| 1872 | break; |
| 1873 | default: |
| 1874 | return false; |
| 1875 | } |
| 1876 | |
| 1877 | RH.Reg = Reg; |
| 1878 | RH.Sub = Sub; |
| 1879 | RH.Low = Low; |
| 1880 | // If the subregister is not valid with the register, set it to 0. |
| 1881 | if (!HBS::getFinalVRegClass(RR: RH, MRI)) |
| 1882 | RH.Sub = 0; |
| 1883 | |
| 1884 | return true; |
| 1885 | } |
| 1886 | |
| 1887 | bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc, |
| 1888 | unsigned OpNum) { |
| 1889 | auto *OpRC = HII.getRegClass(MCID: HII.get(Opcode: Opc), OpNum, TRI: &HRI, MF); |
| 1890 | auto *RRC = HBS::getFinalVRegClass(RR: R, MRI); |
| 1891 | return OpRC->hasSubClassEq(RC: RRC); |
| 1892 | } |
| 1893 | |
| 1894 | // Check if RC matches the pattern of a S2_packhl. If so, return true and |
| 1895 | // set the inputs Rs and Rt. |
| 1896 | bool BitSimplification::matchPackhl(unsigned SelfR, |
| 1897 | const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, |
| 1898 | BitTracker::RegisterRef &Rt) { |
| 1899 | RegHalf L1, H1, L2, H2; |
| 1900 | |
| 1901 | if (!matchHalf(SelfR, RC, B: 0, RH&: L2) || !matchHalf(SelfR, RC, B: 16, RH&: L1)) |
| 1902 | return false; |
| 1903 | if (!matchHalf(SelfR, RC, B: 32, RH&: H2) || !matchHalf(SelfR, RC, B: 48, RH&: H1)) |
| 1904 | return false; |
| 1905 | |
| 1906 | // Rs = H1.L1, Rt = H2.L2 |
| 1907 | if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) |
| 1908 | return false; |
| 1909 | if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) |
| 1910 | return false; |
| 1911 | |
| 1912 | Rs = H1; |
| 1913 | Rt = H2; |
| 1914 | return true; |
| 1915 | } |
| 1916 | |
| 1917 | unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { |
| 1918 | return HLow ? LLow ? Hexagon::A2_combine_ll |
| 1919 | : Hexagon::A2_combine_lh |
| 1920 | : LLow ? Hexagon::A2_combine_hl |
| 1921 | : Hexagon::A2_combine_hh; |
| 1922 | } |
| 1923 | |
| 1924 | // If MI stores the upper halfword of a register (potentially obtained via |
| 1925 | // shifts or extracts), replace it with a storerf instruction. This could |
| 1926 | // cause the "extraction" code to become dead. |
| 1927 | bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { |
| 1928 | unsigned Opc = MI->getOpcode(); |
| 1929 | if (Opc != Hexagon::S2_storerh_io) |
| 1930 | return false; |
| 1931 | |
| 1932 | MachineOperand &ValOp = MI->getOperand(i: 2); |
| 1933 | BitTracker::RegisterRef RS = ValOp; |
| 1934 | if (!BT.has(Reg: RS.Reg)) |
| 1935 | return false; |
| 1936 | const BitTracker::RegisterCell &RC = BT.lookup(Reg: RS.Reg); |
| 1937 | RegHalf H; |
| 1938 | unsigned B = (RS.Sub == Hexagon::isub_hi) ? 32 : 0; |
| 1939 | if (!matchHalf(SelfR: 0, RC, B, RH&: H)) |
| 1940 | return false; |
| 1941 | if (H.Low) |
| 1942 | return false; |
| 1943 | MI->setDesc(HII.get(Opcode: Hexagon::S2_storerf_io)); |
| 1944 | ValOp.setReg(H.Reg); |
| 1945 | ValOp.setSubReg(H.Sub); |
| 1946 | return true; |
| 1947 | } |
| 1948 | |
| 1949 | // If MI stores a value known at compile-time, and the value is within a range |
| 1950 | // that avoids using constant-extenders, replace it with a store-immediate. |
| 1951 | bool BitSimplification::genStoreImmediate(MachineInstr *MI) { |
| 1952 | unsigned Opc = MI->getOpcode(); |
| 1953 | unsigned Align = 0; |
| 1954 | switch (Opc) { |
| 1955 | case Hexagon::S2_storeri_io: |
| 1956 | Align++; |
| 1957 | [[fallthrough]]; |
| 1958 | case Hexagon::S2_storerh_io: |
| 1959 | Align++; |
| 1960 | [[fallthrough]]; |
| 1961 | case Hexagon::S2_storerb_io: |
| 1962 | break; |
| 1963 | default: |
| 1964 | return false; |
| 1965 | } |
| 1966 | |
| 1967 | // Avoid stores to frame-indices (due to an unknown offset). |
| 1968 | if (!MI->getOperand(i: 0).isReg()) |
| 1969 | return false; |
| 1970 | MachineOperand &OffOp = MI->getOperand(i: 1); |
| 1971 | if (!OffOp.isImm()) |
| 1972 | return false; |
| 1973 | |
| 1974 | int64_t Off = OffOp.getImm(); |
| 1975 | // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). |
| 1976 | if (!isUIntN(N: 6+Align, x: Off) || (Off & ((1<<Align)-1))) |
| 1977 | return false; |
| 1978 | // Source register: |
| 1979 | BitTracker::RegisterRef RS = MI->getOperand(i: 2); |
| 1980 | if (!BT.has(Reg: RS.Reg)) |
| 1981 | return false; |
| 1982 | const BitTracker::RegisterCell &RC = BT.lookup(Reg: RS.Reg); |
| 1983 | uint64_t U; |
| 1984 | if (!HBS::getConst(RC, B: 0, W: RC.width(), U)) |
| 1985 | return false; |
| 1986 | |
| 1987 | // Only consider 8-bit values to avoid constant-extenders. |
| 1988 | int V; |
| 1989 | switch (Opc) { |
| 1990 | case Hexagon::S2_storerb_io: |
| 1991 | V = int8_t(U); |
| 1992 | break; |
| 1993 | case Hexagon::S2_storerh_io: |
| 1994 | V = int16_t(U); |
| 1995 | break; |
| 1996 | case Hexagon::S2_storeri_io: |
| 1997 | V = int32_t(U); |
| 1998 | break; |
| 1999 | default: |
| 2000 | // Opc is already checked above to be one of the three store instructions. |
| 2001 | // This silences a -Wuninitialized false positive on GCC 5.4. |
| 2002 | llvm_unreachable("Unexpected store opcode" ); |
| 2003 | } |
| 2004 | if (!isInt<8>(x: V)) |
| 2005 | return false; |
| 2006 | |
| 2007 | MI->removeOperand(OpNo: 2); |
| 2008 | switch (Opc) { |
| 2009 | case Hexagon::S2_storerb_io: |
| 2010 | MI->setDesc(HII.get(Opcode: Hexagon::S4_storeirb_io)); |
| 2011 | break; |
| 2012 | case Hexagon::S2_storerh_io: |
| 2013 | MI->setDesc(HII.get(Opcode: Hexagon::S4_storeirh_io)); |
| 2014 | break; |
| 2015 | case Hexagon::S2_storeri_io: |
| 2016 | MI->setDesc(HII.get(Opcode: Hexagon::S4_storeiri_io)); |
| 2017 | break; |
| 2018 | } |
| 2019 | MI->addOperand(Op: MachineOperand::CreateImm(Val: V)); |
| 2020 | return true; |
| 2021 | } |
| 2022 | |
| 2023 | // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the |
| 2024 | // last instruction in a sequence that results in something equivalent to |
| 2025 | // the pack-halfwords. The intent is to cause the entire sequence to become |
| 2026 | // dead. |
| 2027 | bool BitSimplification::genPackhl(MachineInstr *MI, |
| 2028 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2029 | unsigned Opc = MI->getOpcode(); |
| 2030 | if (Opc == Hexagon::S2_packhl) |
| 2031 | return false; |
| 2032 | BitTracker::RegisterRef Rs, Rt; |
| 2033 | if (!matchPackhl(SelfR: RD.Reg, RC, Rs, Rt)) |
| 2034 | return false; |
| 2035 | if (!validateReg(R: Rs, Opc: Hexagon::S2_packhl, OpNum: 1) || |
| 2036 | !validateReg(R: Rt, Opc: Hexagon::S2_packhl, OpNum: 2)) |
| 2037 | return false; |
| 2038 | |
| 2039 | MachineBasicBlock &B = *MI->getParent(); |
| 2040 | Register NewR = MRI.createVirtualRegister(RegClass: &Hexagon::DoubleRegsRegClass); |
| 2041 | DebugLoc DL = MI->getDebugLoc(); |
| 2042 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2043 | : MachineBasicBlock::iterator(MI); |
| 2044 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::S2_packhl), DestReg: NewR) |
| 2045 | .addReg(RegNo: Rs.Reg, flags: 0, SubReg: Rs.Sub) |
| 2046 | .addReg(RegNo: Rt.Reg, flags: 0, SubReg: Rt.Sub); |
| 2047 | HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: RD.Sub, NewR, NewSR: 0, MRI); |
| 2048 | BT.put(RR: BitTracker::RegisterRef(NewR), RC); |
| 2049 | return true; |
| 2050 | } |
| 2051 | |
| 2052 | // If MI produces halfword of the input in the low half of the output, |
| 2053 | // replace it with zero-extend or extractu. |
| 2054 | bool BitSimplification::(MachineInstr *MI, |
| 2055 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2056 | RegHalf L; |
| 2057 | // Check for halfword in low 16 bits, zeros elsewhere. |
| 2058 | if (!matchHalf(SelfR: RD.Reg, RC, B: 0, RH&: L) || !HBS::isZero(RC, B: 16, W: 16)) |
| 2059 | return false; |
| 2060 | |
| 2061 | unsigned Opc = MI->getOpcode(); |
| 2062 | MachineBasicBlock &B = *MI->getParent(); |
| 2063 | DebugLoc DL = MI->getDebugLoc(); |
| 2064 | |
| 2065 | // Prefer zxth, since zxth can go in any slot, while extractu only in |
| 2066 | // slots 2 and 3. |
| 2067 | unsigned NewR = 0; |
| 2068 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2069 | : MachineBasicBlock::iterator(MI); |
| 2070 | if (L.Low && Opc != Hexagon::A2_zxth) { |
| 2071 | if (validateReg(R: L, Opc: Hexagon::A2_zxth, OpNum: 1)) { |
| 2072 | NewR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 2073 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_zxth), DestReg: NewR) |
| 2074 | .addReg(RegNo: L.Reg, flags: 0, SubReg: L.Sub); |
| 2075 | } |
| 2076 | } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { |
| 2077 | if (validateReg(R: L, Opc: Hexagon::S2_lsr_i_r, OpNum: 1)) { |
| 2078 | NewR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 2079 | BuildMI(BB&: B, I: MI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::S2_lsr_i_r), DestReg: NewR) |
| 2080 | .addReg(RegNo: L.Reg, flags: 0, SubReg: L.Sub) |
| 2081 | .addImm(Val: 16); |
| 2082 | } |
| 2083 | } |
| 2084 | if (NewR == 0) |
| 2085 | return false; |
| 2086 | HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: RD.Sub, NewR, NewSR: 0, MRI); |
| 2087 | BT.put(RR: BitTracker::RegisterRef(NewR), RC); |
| 2088 | return true; |
| 2089 | } |
| 2090 | |
| 2091 | // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the |
| 2092 | // combine. |
| 2093 | bool BitSimplification::genCombineHalf(MachineInstr *MI, |
| 2094 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2095 | RegHalf L, H; |
| 2096 | // Check for combine h/l |
| 2097 | if (!matchHalf(SelfR: RD.Reg, RC, B: 0, RH&: L) || !matchHalf(SelfR: RD.Reg, RC, B: 16, RH&: H)) |
| 2098 | return false; |
| 2099 | // Do nothing if this is just a reg copy. |
| 2100 | if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) |
| 2101 | return false; |
| 2102 | |
| 2103 | unsigned Opc = MI->getOpcode(); |
| 2104 | unsigned COpc = getCombineOpcode(HLow: H.Low, LLow: L.Low); |
| 2105 | if (COpc == Opc) |
| 2106 | return false; |
| 2107 | if (!validateReg(R: H, Opc: COpc, OpNum: 1) || !validateReg(R: L, Opc: COpc, OpNum: 2)) |
| 2108 | return false; |
| 2109 | |
| 2110 | MachineBasicBlock &B = *MI->getParent(); |
| 2111 | DebugLoc DL = MI->getDebugLoc(); |
| 2112 | Register NewR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 2113 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2114 | : MachineBasicBlock::iterator(MI); |
| 2115 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: COpc), DestReg: NewR) |
| 2116 | .addReg(RegNo: H.Reg, flags: 0, SubReg: H.Sub) |
| 2117 | .addReg(RegNo: L.Reg, flags: 0, SubReg: L.Sub); |
| 2118 | HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: RD.Sub, NewR, NewSR: 0, MRI); |
| 2119 | BT.put(RR: BitTracker::RegisterRef(NewR), RC); |
| 2120 | return true; |
| 2121 | } |
| 2122 | |
| 2123 | // If MI resets high bits of a register and keeps the lower ones, replace it |
| 2124 | // with zero-extend byte/half, and-immediate, or extractu, as appropriate. |
| 2125 | bool BitSimplification::(MachineInstr *MI, |
| 2126 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2127 | unsigned Opc = MI->getOpcode(); |
| 2128 | switch (Opc) { |
| 2129 | case Hexagon::A2_zxtb: |
| 2130 | case Hexagon::A2_zxth: |
| 2131 | case Hexagon::S2_extractu: |
| 2132 | return false; |
| 2133 | } |
| 2134 | if (Opc == Hexagon::A2_andir && MI->getOperand(i: 2).isImm()) { |
| 2135 | int32_t Imm = MI->getOperand(i: 2).getImm(); |
| 2136 | if (isInt<10>(x: Imm)) |
| 2137 | return false; |
| 2138 | } |
| 2139 | |
| 2140 | if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) |
| 2141 | return false; |
| 2142 | unsigned W = RC.width(); |
| 2143 | while (W > 0 && RC[W-1].is(T: 0)) |
| 2144 | W--; |
| 2145 | if (W == 0 || W == RC.width()) |
| 2146 | return false; |
| 2147 | unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb |
| 2148 | : (W == 16) ? Hexagon::A2_zxth |
| 2149 | : (W < 10) ? Hexagon::A2_andir |
| 2150 | : Hexagon::S2_extractu; |
| 2151 | MachineBasicBlock &B = *MI->getParent(); |
| 2152 | DebugLoc DL = MI->getDebugLoc(); |
| 2153 | |
| 2154 | for (auto &Op : MI->uses()) { |
| 2155 | if (!Op.isReg()) |
| 2156 | continue; |
| 2157 | BitTracker::RegisterRef RS = Op; |
| 2158 | if (!BT.has(Reg: RS.Reg)) |
| 2159 | continue; |
| 2160 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: RS.Reg); |
| 2161 | unsigned BN, BW; |
| 2162 | if (!HBS::getSubregMask(RR: RS, Begin&: BN, Width&: BW, MRI)) |
| 2163 | continue; |
| 2164 | if (BW < W || !HBS::isEqual(RC1: RC, B1: 0, RC2: SC, B2: BN, W)) |
| 2165 | continue; |
| 2166 | if (!validateReg(R: RS, Opc: NewOpc, OpNum: 1)) |
| 2167 | continue; |
| 2168 | |
| 2169 | Register NewR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
| 2170 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2171 | : MachineBasicBlock::iterator(MI); |
| 2172 | auto MIB = BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: NewOpc), DestReg: NewR) |
| 2173 | .addReg(RegNo: RS.Reg, flags: 0, SubReg: RS.Sub); |
| 2174 | if (NewOpc == Hexagon::A2_andir) |
| 2175 | MIB.addImm(Val: (1 << W) - 1); |
| 2176 | else if (NewOpc == Hexagon::S2_extractu) |
| 2177 | MIB.addImm(Val: W).addImm(Val: 0); |
| 2178 | HBS::replaceSubWithSub(OldR: RD.Reg, OldSR: RD.Sub, NewR, NewSR: 0, MRI); |
| 2179 | BT.put(RR: BitTracker::RegisterRef(NewR), RC); |
| 2180 | return true; |
| 2181 | } |
| 2182 | return false; |
| 2183 | } |
| 2184 | |
| 2185 | bool BitSimplification::genBitSplit(MachineInstr *MI, |
| 2186 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, |
| 2187 | const RegisterSet &AVs) { |
| 2188 | if (!GenBitSplit) |
| 2189 | return false; |
| 2190 | if (MaxBitSplit.getNumOccurrences()) { |
| 2191 | if (CountBitSplit >= MaxBitSplit) |
| 2192 | return false; |
| 2193 | } |
| 2194 | |
| 2195 | unsigned Opc = MI->getOpcode(); |
| 2196 | switch (Opc) { |
| 2197 | case Hexagon::A4_bitsplit: |
| 2198 | case Hexagon::A4_bitspliti: |
| 2199 | return false; |
| 2200 | } |
| 2201 | |
| 2202 | unsigned W = RC.width(); |
| 2203 | if (W != 32) |
| 2204 | return false; |
| 2205 | |
| 2206 | auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned { |
| 2207 | unsigned Z = C.width(); |
| 2208 | while (Z > 0 && C[Z-1].is(T: 0)) |
| 2209 | --Z; |
| 2210 | return C.width() - Z; |
| 2211 | }; |
| 2212 | |
| 2213 | // Count the number of leading zeros in the target RC. |
| 2214 | unsigned Z = ctlz(RC); |
| 2215 | if (Z == 0 || Z == W) |
| 2216 | return false; |
| 2217 | |
| 2218 | // A simplistic analysis: assume the source register (the one being split) |
| 2219 | // is fully unknown, and that all its bits are self-references. |
| 2220 | const BitTracker::BitValue &B0 = RC[0]; |
| 2221 | if (B0.Type != BitTracker::BitValue::Ref) |
| 2222 | return false; |
| 2223 | |
| 2224 | unsigned SrcR = B0.RefI.Reg; |
| 2225 | unsigned SrcSR = 0; |
| 2226 | unsigned Pos = B0.RefI.Pos; |
| 2227 | |
| 2228 | // All the non-zero bits should be consecutive bits from the same register. |
| 2229 | for (unsigned i = 1; i < W-Z; ++i) { |
| 2230 | const BitTracker::BitValue &V = RC[i]; |
| 2231 | if (V.Type != BitTracker::BitValue::Ref) |
| 2232 | return false; |
| 2233 | if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i) |
| 2234 | return false; |
| 2235 | } |
| 2236 | |
| 2237 | // Now, find the other bitfield among AVs. |
| 2238 | for (unsigned S = AVs.find_first(); S; S = AVs.find_next(Prev: S)) { |
| 2239 | // The number of leading zeros here should be the number of trailing |
| 2240 | // non-zeros in RC. |
| 2241 | unsigned SRC = MRI.getRegClass(Reg: S)->getID(); |
| 2242 | if (SRC != Hexagon::IntRegsRegClassID && |
| 2243 | SRC != Hexagon::DoubleRegsRegClassID) |
| 2244 | continue; |
| 2245 | if (!BT.has(Reg: S)) |
| 2246 | continue; |
| 2247 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: S); |
| 2248 | if (SC.width() != W || ctlz(SC) != W-Z) |
| 2249 | continue; |
| 2250 | // The Z lower bits should now match SrcR. |
| 2251 | const BitTracker::BitValue &S0 = SC[0]; |
| 2252 | if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR) |
| 2253 | continue; |
| 2254 | unsigned P = S0.RefI.Pos; |
| 2255 | |
| 2256 | if (Pos <= P && (Pos + W-Z) != P) |
| 2257 | continue; |
| 2258 | if (P < Pos && (P + Z) != Pos) |
| 2259 | continue; |
| 2260 | // The starting bitfield position must be at a subregister boundary. |
| 2261 | if (std::min(a: P, b: Pos) != 0 && std::min(a: P, b: Pos) != 32) |
| 2262 | continue; |
| 2263 | |
| 2264 | unsigned I; |
| 2265 | for (I = 1; I < Z; ++I) { |
| 2266 | const BitTracker::BitValue &V = SC[I]; |
| 2267 | if (V.Type != BitTracker::BitValue::Ref) |
| 2268 | break; |
| 2269 | if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I) |
| 2270 | break; |
| 2271 | } |
| 2272 | if (I != Z) |
| 2273 | continue; |
| 2274 | |
| 2275 | // Generate bitsplit where S is defined. |
| 2276 | if (MaxBitSplit.getNumOccurrences()) |
| 2277 | CountBitSplit++; |
| 2278 | MachineInstr *DefS = MRI.getVRegDef(Reg: S); |
| 2279 | assert(DefS != nullptr); |
| 2280 | DebugLoc DL = DefS->getDebugLoc(); |
| 2281 | MachineBasicBlock &B = *DefS->getParent(); |
| 2282 | auto At = DefS->isPHI() ? B.getFirstNonPHI() |
| 2283 | : MachineBasicBlock::iterator(DefS); |
| 2284 | if (MRI.getRegClass(Reg: SrcR)->getID() == Hexagon::DoubleRegsRegClassID) |
| 2285 | SrcSR = (std::min(a: Pos, b: P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo; |
| 2286 | if (!validateReg(R: {SrcR,SrcSR}, Opc: Hexagon::A4_bitspliti, OpNum: 1)) |
| 2287 | continue; |
| 2288 | unsigned ImmOp = Pos <= P ? W-Z : Z; |
| 2289 | |
| 2290 | // Find an existing bitsplit instruction if one already exists. |
| 2291 | unsigned NewR = 0; |
| 2292 | for (MachineInstr *In : NewMIs) { |
| 2293 | if (In->getOpcode() != Hexagon::A4_bitspliti) |
| 2294 | continue; |
| 2295 | MachineOperand &Op1 = In->getOperand(i: 1); |
| 2296 | if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR) |
| 2297 | continue; |
| 2298 | if (In->getOperand(i: 2).getImm() != ImmOp) |
| 2299 | continue; |
| 2300 | // Check if the target register is available here. |
| 2301 | MachineOperand &Op0 = In->getOperand(i: 0); |
| 2302 | MachineInstr *DefI = MRI.getVRegDef(Reg: Op0.getReg()); |
| 2303 | assert(DefI != nullptr); |
| 2304 | if (!MDT.dominates(A: DefI, B: &*At)) |
| 2305 | continue; |
| 2306 | |
| 2307 | // Found one that can be reused. |
| 2308 | assert(Op0.getSubReg() == 0); |
| 2309 | NewR = Op0.getReg(); |
| 2310 | break; |
| 2311 | } |
| 2312 | if (!NewR) { |
| 2313 | NewR = MRI.createVirtualRegister(RegClass: &Hexagon::DoubleRegsRegClass); |
| 2314 | auto NewBS = BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A4_bitspliti), DestReg: NewR) |
| 2315 | .addReg(RegNo: SrcR, flags: 0, SubReg: SrcSR) |
| 2316 | .addImm(Val: ImmOp); |
| 2317 | NewMIs.push_back(x: NewBS); |
| 2318 | } |
| 2319 | if (Pos <= P) { |
| 2320 | HBS::replaceRegWithSub(OldR: RD.Reg, NewR, NewSR: Hexagon::isub_lo, MRI); |
| 2321 | HBS::replaceRegWithSub(OldR: S, NewR, NewSR: Hexagon::isub_hi, MRI); |
| 2322 | } else { |
| 2323 | HBS::replaceRegWithSub(OldR: S, NewR, NewSR: Hexagon::isub_lo, MRI); |
| 2324 | HBS::replaceRegWithSub(OldR: RD.Reg, NewR, NewSR: Hexagon::isub_hi, MRI); |
| 2325 | } |
| 2326 | return true; |
| 2327 | } |
| 2328 | |
| 2329 | return false; |
| 2330 | } |
| 2331 | |
| 2332 | // Check for tstbit simplification opportunity, where the bit being checked |
| 2333 | // can be tracked back to another register. For example: |
| 2334 | // %2 = S2_lsr_i_r %1, 5 |
| 2335 | // %3 = S2_tstbit_i %2, 0 |
| 2336 | // => |
| 2337 | // %3 = S2_tstbit_i %1, 5 |
| 2338 | bool BitSimplification::simplifyTstbit(MachineInstr *MI, |
| 2339 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { |
| 2340 | unsigned Opc = MI->getOpcode(); |
| 2341 | if (Opc != Hexagon::S2_tstbit_i) |
| 2342 | return false; |
| 2343 | |
| 2344 | unsigned BN = MI->getOperand(i: 2).getImm(); |
| 2345 | BitTracker::RegisterRef RS = MI->getOperand(i: 1); |
| 2346 | unsigned F, W; |
| 2347 | DebugLoc DL = MI->getDebugLoc(); |
| 2348 | if (!BT.has(Reg: RS.Reg) || !HBS::getSubregMask(RR: RS, Begin&: F, Width&: W, MRI)) |
| 2349 | return false; |
| 2350 | MachineBasicBlock &B = *MI->getParent(); |
| 2351 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2352 | : MachineBasicBlock::iterator(MI); |
| 2353 | |
| 2354 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: RS.Reg); |
| 2355 | const BitTracker::BitValue &V = SC[F+BN]; |
| 2356 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { |
| 2357 | const TargetRegisterClass *TC = MRI.getRegClass(Reg: V.RefI.Reg); |
| 2358 | // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is |
| 2359 | // a double register, need to use a subregister and adjust bit |
| 2360 | // number. |
| 2361 | unsigned P = std::numeric_limits<unsigned>::max(); |
| 2362 | BitTracker::RegisterRef RR(V.RefI.Reg, 0); |
| 2363 | if (TC == &Hexagon::DoubleRegsRegClass) { |
| 2364 | P = V.RefI.Pos; |
| 2365 | RR.Sub = Hexagon::isub_lo; |
| 2366 | if (P >= 32) { |
| 2367 | P -= 32; |
| 2368 | RR.Sub = Hexagon::isub_hi; |
| 2369 | } |
| 2370 | } else if (TC == &Hexagon::IntRegsRegClass) { |
| 2371 | P = V.RefI.Pos; |
| 2372 | } |
| 2373 | if (P != std::numeric_limits<unsigned>::max()) { |
| 2374 | Register NewR = MRI.createVirtualRegister(RegClass: &Hexagon::PredRegsRegClass); |
| 2375 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::S2_tstbit_i), DestReg: NewR) |
| 2376 | .addReg(RegNo: RR.Reg, flags: 0, SubReg: RR.Sub) |
| 2377 | .addImm(Val: P); |
| 2378 | HBS::replaceReg(OldR: RD.Reg, NewR, MRI); |
| 2379 | BT.put(RR: NewR, RC); |
| 2380 | return true; |
| 2381 | } |
| 2382 | } else if (V.is(T: 0) || V.is(T: 1)) { |
| 2383 | Register NewR = MRI.createVirtualRegister(RegClass: &Hexagon::PredRegsRegClass); |
| 2384 | unsigned NewOpc = V.is(T: 0) ? Hexagon::PS_false : Hexagon::PS_true; |
| 2385 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: NewOpc), DestReg: NewR); |
| 2386 | HBS::replaceReg(OldR: RD.Reg, NewR, MRI); |
| 2387 | return true; |
| 2388 | } |
| 2389 | |
| 2390 | return false; |
| 2391 | } |
| 2392 | |
| 2393 | // Detect whether RD is a bitfield extract (sign- or zero-extended) of |
| 2394 | // some register from the AVs set. Create a new corresponding instruction |
| 2395 | // at the location of MI. The intent is to recognize situations where |
| 2396 | // a sequence of instructions performs an operation that is equivalent to |
| 2397 | // an extract operation, such as a shift left followed by a shift right. |
| 2398 | bool BitSimplification::(MachineInstr *MI, |
| 2399 | BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC, |
| 2400 | const RegisterSet &AVs) { |
| 2401 | if (!GenExtract) |
| 2402 | return false; |
| 2403 | if (MaxExtract.getNumOccurrences()) { |
| 2404 | if (CountExtract >= MaxExtract) |
| 2405 | return false; |
| 2406 | CountExtract++; |
| 2407 | } |
| 2408 | |
| 2409 | unsigned W = RC.width(); |
| 2410 | unsigned RW = W; |
| 2411 | unsigned Len; |
| 2412 | bool Signed; |
| 2413 | |
| 2414 | // The code is mostly class-independent, except for the part that generates |
| 2415 | // the extract instruction, and establishes the source register (in case it |
| 2416 | // needs to use a subregister). |
| 2417 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RR: RD, MRI); |
| 2418 | if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) |
| 2419 | return false; |
| 2420 | assert(RD.Sub == 0); |
| 2421 | |
| 2422 | // Observation: |
| 2423 | // If the cell has a form of 00..0xx..x with k zeros and n remaining |
| 2424 | // bits, this could be an extractu of the n bits, but it could also be |
| 2425 | // an extractu of a longer field which happens to have 0s in the top |
| 2426 | // bit positions. |
| 2427 | // The same logic applies to sign-extended fields. |
| 2428 | // |
| 2429 | // Do not check for the extended extracts, since it would expand the |
| 2430 | // search space quite a bit. The search may be expensive as it is. |
| 2431 | |
| 2432 | const BitTracker::BitValue &TopV = RC[W-1]; |
| 2433 | |
| 2434 | // Eliminate candidates that have self-referential bits, since they |
| 2435 | // cannot be extracts from other registers. Also, skip registers that |
| 2436 | // have compile-time constant values. |
| 2437 | bool IsConst = true; |
| 2438 | for (unsigned I = 0; I != W; ++I) { |
| 2439 | const BitTracker::BitValue &V = RC[I]; |
| 2440 | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg) |
| 2441 | return false; |
| 2442 | IsConst = IsConst && (V.is(T: 0) || V.is(T: 1)); |
| 2443 | } |
| 2444 | if (IsConst) |
| 2445 | return false; |
| 2446 | |
| 2447 | if (TopV.is(T: 0) || TopV.is(T: 1)) { |
| 2448 | bool S = TopV.is(T: 1); |
| 2449 | for (--W; W > 0 && RC[W-1].is(T: S); --W) |
| 2450 | ; |
| 2451 | Len = W; |
| 2452 | Signed = S; |
| 2453 | // The sign bit must be a part of the field being extended. |
| 2454 | if (Signed) |
| 2455 | ++Len; |
| 2456 | } else { |
| 2457 | // This could still be a sign-extended extract. |
| 2458 | assert(TopV.Type == BitTracker::BitValue::Ref); |
| 2459 | if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1) |
| 2460 | return false; |
| 2461 | for (--W; W > 0 && RC[W-1] == TopV; --W) |
| 2462 | ; |
| 2463 | // The top bits of RC are copies of TopV. One occurrence of TopV will |
| 2464 | // be a part of the field. |
| 2465 | Len = W + 1; |
| 2466 | Signed = true; |
| 2467 | } |
| 2468 | |
| 2469 | // This would be just a copy. It should be handled elsewhere. |
| 2470 | if (Len == RW) |
| 2471 | return false; |
| 2472 | |
| 2473 | LLVM_DEBUG({ |
| 2474 | dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub) |
| 2475 | << ", MI: " << *MI; |
| 2476 | dbgs() << "Cell: " << RC << '\n'; |
| 2477 | dbgs() << "Expected bitfield size: " << Len << " bits, " |
| 2478 | << (Signed ? "sign" : "zero" ) << "-extended\n" ; |
| 2479 | }); |
| 2480 | |
| 2481 | bool Changed = false; |
| 2482 | |
| 2483 | for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(Prev: R)) { |
| 2484 | if (!BT.has(Reg: R)) |
| 2485 | continue; |
| 2486 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: R); |
| 2487 | unsigned SW = SC.width(); |
| 2488 | |
| 2489 | // The source can be longer than the destination, as long as its size is |
| 2490 | // a multiple of the size of the destination. Also, we would need to be |
| 2491 | // able to refer to the subregister in the source that would be of the |
| 2492 | // same size as the destination, but only check the sizes here. |
| 2493 | if (SW < RW || (SW % RW) != 0) |
| 2494 | continue; |
| 2495 | |
| 2496 | // The field can start at any offset in SC as long as it contains Len |
| 2497 | // bits and does not cross subregister boundary (if the source register |
| 2498 | // is longer than the destination). |
| 2499 | unsigned Off = 0; |
| 2500 | while (Off <= SW-Len) { |
| 2501 | unsigned OE = (Off+Len)/RW; |
| 2502 | if (OE != Off/RW) { |
| 2503 | // The assumption here is that if the source (R) is longer than the |
| 2504 | // destination, then the destination is a sequence of words of |
| 2505 | // size RW, and each such word in R can be accessed via a subregister. |
| 2506 | // |
| 2507 | // If the beginning and the end of the field cross the subregister |
| 2508 | // boundary, advance to the next subregister. |
| 2509 | Off = OE*RW; |
| 2510 | continue; |
| 2511 | } |
| 2512 | if (HBS::isEqual(RC1: RC, B1: 0, RC2: SC, B2: Off, W: Len)) |
| 2513 | break; |
| 2514 | ++Off; |
| 2515 | } |
| 2516 | |
| 2517 | if (Off > SW-Len) |
| 2518 | continue; |
| 2519 | |
| 2520 | // Found match. |
| 2521 | unsigned ExtOpc = 0; |
| 2522 | if (Off == 0) { |
| 2523 | if (Len == 8) |
| 2524 | ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb; |
| 2525 | else if (Len == 16) |
| 2526 | ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth; |
| 2527 | else if (Len < 10 && !Signed) |
| 2528 | ExtOpc = Hexagon::A2_andir; |
| 2529 | } |
| 2530 | if (ExtOpc == 0) { |
| 2531 | ExtOpc = |
| 2532 | Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp) |
| 2533 | : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup); |
| 2534 | } |
| 2535 | unsigned SR = 0; |
| 2536 | // This only recognizes isub_lo and isub_hi. |
| 2537 | if (RW != SW && RW*2 != SW) |
| 2538 | continue; |
| 2539 | if (RW != SW) |
| 2540 | SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi; |
| 2541 | Off = Off % RW; |
| 2542 | |
| 2543 | if (!validateReg(R: {R,SR}, Opc: ExtOpc, OpNum: 1)) |
| 2544 | continue; |
| 2545 | |
| 2546 | // Don't generate the same instruction as the one being optimized. |
| 2547 | if (MI->getOpcode() == ExtOpc) { |
| 2548 | // All possible ExtOpc's have the source in operand(1). |
| 2549 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
| 2550 | if (SrcOp.getReg() == R) |
| 2551 | continue; |
| 2552 | } |
| 2553 | |
| 2554 | DebugLoc DL = MI->getDebugLoc(); |
| 2555 | MachineBasicBlock &B = *MI->getParent(); |
| 2556 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 2557 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2558 | : MachineBasicBlock::iterator(MI); |
| 2559 | auto MIB = BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: ExtOpc), DestReg: NewR) |
| 2560 | .addReg(RegNo: R, flags: 0, SubReg: SR); |
| 2561 | switch (ExtOpc) { |
| 2562 | case Hexagon::A2_sxtb: |
| 2563 | case Hexagon::A2_zxtb: |
| 2564 | case Hexagon::A2_sxth: |
| 2565 | case Hexagon::A2_zxth: |
| 2566 | break; |
| 2567 | case Hexagon::A2_andir: |
| 2568 | MIB.addImm(Val: (1u << Len) - 1); |
| 2569 | break; |
| 2570 | case Hexagon::S4_extract: |
| 2571 | case Hexagon::S2_extractu: |
| 2572 | case Hexagon::S4_extractp: |
| 2573 | case Hexagon::S2_extractup: |
| 2574 | MIB.addImm(Val: Len) |
| 2575 | .addImm(Val: Off); |
| 2576 | break; |
| 2577 | default: |
| 2578 | llvm_unreachable("Unexpected opcode" ); |
| 2579 | } |
| 2580 | |
| 2581 | HBS::replaceReg(OldR: RD.Reg, NewR, MRI); |
| 2582 | BT.put(RR: BitTracker::RegisterRef(NewR), RC); |
| 2583 | Changed = true; |
| 2584 | break; |
| 2585 | } |
| 2586 | |
| 2587 | return Changed; |
| 2588 | } |
| 2589 | |
| 2590 | bool BitSimplification::simplifyRCmp0(MachineInstr *MI, |
| 2591 | BitTracker::RegisterRef RD) { |
| 2592 | unsigned Opc = MI->getOpcode(); |
| 2593 | if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi) |
| 2594 | return false; |
| 2595 | MachineOperand &CmpOp = MI->getOperand(i: 2); |
| 2596 | if (!CmpOp.isImm() || CmpOp.getImm() != 0) |
| 2597 | return false; |
| 2598 | |
| 2599 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RR: RD, MRI); |
| 2600 | if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass) |
| 2601 | return false; |
| 2602 | assert(RD.Sub == 0); |
| 2603 | |
| 2604 | MachineBasicBlock &B = *MI->getParent(); |
| 2605 | const DebugLoc &DL = MI->getDebugLoc(); |
| 2606 | auto At = MI->isPHI() ? B.getFirstNonPHI() |
| 2607 | : MachineBasicBlock::iterator(MI); |
| 2608 | bool KnownZ = true; |
| 2609 | bool KnownNZ = false; |
| 2610 | |
| 2611 | BitTracker::RegisterRef SR = MI->getOperand(i: 1); |
| 2612 | if (!BT.has(Reg: SR.Reg)) |
| 2613 | return false; |
| 2614 | const BitTracker::RegisterCell &SC = BT.lookup(Reg: SR.Reg); |
| 2615 | unsigned F, W; |
| 2616 | if (!HBS::getSubregMask(RR: SR, Begin&: F, Width&: W, MRI)) |
| 2617 | return false; |
| 2618 | |
| 2619 | for (uint16_t I = F; I != F+W; ++I) { |
| 2620 | const BitTracker::BitValue &V = SC[I]; |
| 2621 | if (!V.is(T: 0)) |
| 2622 | KnownZ = false; |
| 2623 | if (V.is(T: 1)) |
| 2624 | KnownNZ = true; |
| 2625 | } |
| 2626 | |
| 2627 | auto ReplaceWithConst = [&](int C) { |
| 2628 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 2629 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: NewR) |
| 2630 | .addImm(Val: C); |
| 2631 | HBS::replaceReg(OldR: RD.Reg, NewR, MRI); |
| 2632 | BitTracker::RegisterCell NewRC(W); |
| 2633 | for (uint16_t I = 0; I != W; ++I) { |
| 2634 | NewRC[I] = BitTracker::BitValue(C & 1); |
| 2635 | C = unsigned(C) >> 1; |
| 2636 | } |
| 2637 | BT.put(RR: BitTracker::RegisterRef(NewR), RC: NewRC); |
| 2638 | return true; |
| 2639 | }; |
| 2640 | |
| 2641 | auto IsNonZero = [] (const MachineOperand &Op) { |
| 2642 | if (Op.isGlobal() || Op.isBlockAddress()) |
| 2643 | return true; |
| 2644 | if (Op.isImm()) |
| 2645 | return Op.getImm() != 0; |
| 2646 | if (Op.isCImm()) |
| 2647 | return !Op.getCImm()->isZero(); |
| 2648 | if (Op.isFPImm()) |
| 2649 | return !Op.getFPImm()->isZero(); |
| 2650 | return false; |
| 2651 | }; |
| 2652 | |
| 2653 | auto IsZero = [] (const MachineOperand &Op) { |
| 2654 | if (Op.isGlobal() || Op.isBlockAddress()) |
| 2655 | return false; |
| 2656 | if (Op.isImm()) |
| 2657 | return Op.getImm() == 0; |
| 2658 | if (Op.isCImm()) |
| 2659 | return Op.getCImm()->isZero(); |
| 2660 | if (Op.isFPImm()) |
| 2661 | return Op.getFPImm()->isZero(); |
| 2662 | return false; |
| 2663 | }; |
| 2664 | |
| 2665 | // If the source register is known to be 0 or non-0, the comparison can |
| 2666 | // be folded to a load of a constant. |
| 2667 | if (KnownZ || KnownNZ) { |
| 2668 | assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0" ); |
| 2669 | return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi)); |
| 2670 | } |
| 2671 | |
| 2672 | // Special case: if the compare comes from a C2_muxii, then we know the |
| 2673 | // two possible constants that can be the source value. |
| 2674 | MachineInstr *InpDef = MRI.getVRegDef(Reg: SR.Reg); |
| 2675 | if (!InpDef) |
| 2676 | return false; |
| 2677 | if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) { |
| 2678 | MachineOperand &Src1 = InpDef->getOperand(i: 2); |
| 2679 | MachineOperand &Src2 = InpDef->getOperand(i: 3); |
| 2680 | // Check if both are non-zero. |
| 2681 | bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2); |
| 2682 | if (KnownNZ1 && KnownNZ2) |
| 2683 | return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi); |
| 2684 | // Check if both are zero. |
| 2685 | bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2); |
| 2686 | if (KnownZ1 && KnownZ2) |
| 2687 | return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi); |
| 2688 | |
| 2689 | // If for both operands we know that they are either 0 or non-0, |
| 2690 | // replace the comparison with a C2_muxii, using the same predicate |
| 2691 | // register, but with operands substituted with 0/1 accordingly. |
| 2692 | if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) { |
| 2693 | Register NewR = MRI.createVirtualRegister(RegClass: FRC); |
| 2694 | BuildMI(BB&: B, I: At, MIMD: DL, MCID: HII.get(Opcode: Hexagon::C2_muxii), DestReg: NewR) |
| 2695 | .addReg(RegNo: InpDef->getOperand(i: 1).getReg()) |
| 2696 | .addImm(Val: KnownZ1 == (Opc == Hexagon::A4_rcmpeqi)) |
| 2697 | .addImm(Val: KnownZ2 == (Opc == Hexagon::A4_rcmpeqi)); |
| 2698 | HBS::replaceReg(OldR: RD.Reg, NewR, MRI); |
| 2699 | // Create a new cell with only the least significant bit unknown. |
| 2700 | BitTracker::RegisterCell NewRC(W); |
| 2701 | NewRC[0] = BitTracker::BitValue::self(); |
| 2702 | NewRC.fill(B: 1, E: W, V: BitTracker::BitValue::Zero); |
| 2703 | BT.put(RR: BitTracker::RegisterRef(NewR), RC: NewRC); |
| 2704 | return true; |
| 2705 | } |
| 2706 | } |
| 2707 | |
| 2708 | return false; |
| 2709 | } |
| 2710 | |
| 2711 | bool BitSimplification::processBlock(MachineBasicBlock &B, |
| 2712 | const RegisterSet &AVs) { |
| 2713 | if (!BT.reached(B: &B)) |
| 2714 | return false; |
| 2715 | bool Changed = false; |
| 2716 | RegisterSet AVB = AVs; |
| 2717 | RegisterSet Defs; |
| 2718 | |
| 2719 | for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Rs: Defs)) { |
| 2720 | MachineInstr *MI = &*I; |
| 2721 | Defs.clear(); |
| 2722 | HBS::getInstrDefs(MI: *MI, Defs); |
| 2723 | |
| 2724 | unsigned Opc = MI->getOpcode(); |
| 2725 | if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) |
| 2726 | continue; |
| 2727 | |
| 2728 | if (MI->mayStore()) { |
| 2729 | bool T = genStoreUpperHalf(MI); |
| 2730 | T = T || genStoreImmediate(MI); |
| 2731 | Changed |= T; |
| 2732 | continue; |
| 2733 | } |
| 2734 | |
| 2735 | if (Defs.count() != 1) |
| 2736 | continue; |
| 2737 | const MachineOperand &Op0 = MI->getOperand(i: 0); |
| 2738 | if (!Op0.isReg() || !Op0.isDef()) |
| 2739 | continue; |
| 2740 | BitTracker::RegisterRef RD = Op0; |
| 2741 | if (!BT.has(Reg: RD.Reg)) |
| 2742 | continue; |
| 2743 | const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RR: RD, MRI); |
| 2744 | const BitTracker::RegisterCell &RC = BT.lookup(Reg: RD.Reg); |
| 2745 | |
| 2746 | if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { |
| 2747 | bool T = genPackhl(MI, RD, RC); |
| 2748 | T = T || simplifyExtractLow(MI, RD, RC, AVs: AVB); |
| 2749 | Changed |= T; |
| 2750 | continue; |
| 2751 | } |
| 2752 | |
| 2753 | if (FRC->getID() == Hexagon::IntRegsRegClassID) { |
| 2754 | bool T = genBitSplit(MI, RD, RC, AVs: AVB); |
| 2755 | T = T || simplifyExtractLow(MI, RD, RC, AVs: AVB); |
| 2756 | T = T || genExtractHalf(MI, RD, RC); |
| 2757 | T = T || genCombineHalf(MI, RD, RC); |
| 2758 | T = T || genExtractLow(MI, RD, RC); |
| 2759 | T = T || simplifyRCmp0(MI, RD); |
| 2760 | Changed |= T; |
| 2761 | continue; |
| 2762 | } |
| 2763 | |
| 2764 | if (FRC->getID() == Hexagon::PredRegsRegClassID) { |
| 2765 | bool T = simplifyTstbit(MI, RD, RC); |
| 2766 | Changed |= T; |
| 2767 | continue; |
| 2768 | } |
| 2769 | } |
| 2770 | return Changed; |
| 2771 | } |
| 2772 | |
| 2773 | bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { |
| 2774 | if (skipFunction(F: MF.getFunction())) |
| 2775 | return false; |
| 2776 | |
| 2777 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| 2778 | auto &HRI = *HST.getRegisterInfo(); |
| 2779 | auto &HII = *HST.getInstrInfo(); |
| 2780 | |
| 2781 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 2782 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2783 | bool Changed; |
| 2784 | |
| 2785 | Changed = DeadCodeElimination(MF, *MDT).run(); |
| 2786 | |
| 2787 | const HexagonEvaluator HE(HRI, MRI, HII, MF); |
| 2788 | BitTracker BT(HE, MF); |
| 2789 | LLVM_DEBUG(BT.trace(true)); |
| 2790 | BT.run(); |
| 2791 | |
| 2792 | MachineBasicBlock &Entry = MF.front(); |
| 2793 | |
| 2794 | RegisterSet AIG; // Available registers for IG. |
| 2795 | ConstGeneration ImmG(BT, HII, MRI); |
| 2796 | Changed |= visitBlock(B&: Entry, T&: ImmG, AVs&: AIG); |
| 2797 | |
| 2798 | RegisterSet ARE; // Available registers for RIE. |
| 2799 | RedundantInstrElimination RIE(BT, HII, HRI, MRI); |
| 2800 | bool Ried = visitBlock(B&: Entry, T&: RIE, AVs&: ARE); |
| 2801 | if (Ried) { |
| 2802 | Changed = true; |
| 2803 | BT.run(); |
| 2804 | } |
| 2805 | |
| 2806 | RegisterSet ACG; // Available registers for CG. |
| 2807 | CopyGeneration CopyG(BT, HII, HRI, MRI); |
| 2808 | Changed |= visitBlock(B&: Entry, T&: CopyG, AVs&: ACG); |
| 2809 | |
| 2810 | RegisterSet ACP; // Available registers for CP. |
| 2811 | CopyPropagation CopyP(HRI, MRI); |
| 2812 | Changed |= visitBlock(B&: Entry, T&: CopyP, AVs&: ACP); |
| 2813 | |
| 2814 | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| 2815 | |
| 2816 | BT.run(); |
| 2817 | RegisterSet ABS; // Available registers for BS. |
| 2818 | BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF); |
| 2819 | Changed |= visitBlock(B&: Entry, T&: BitS, AVs&: ABS); |
| 2820 | |
| 2821 | Changed = DeadCodeElimination(MF, *MDT).run() || Changed; |
| 2822 | |
| 2823 | if (Changed) { |
| 2824 | for (auto &B : MF) |
| 2825 | for (auto &I : B) |
| 2826 | I.clearKillInfo(); |
| 2827 | DeadCodeElimination(MF, *MDT).run(); |
| 2828 | } |
| 2829 | return Changed; |
| 2830 | } |
| 2831 | |
| 2832 | // Recognize loops where the code at the end of the loop matches the code |
| 2833 | // before the entry of the loop, and the matching code is such that is can |
| 2834 | // be simplified. This pass relies on the bit simplification above and only |
| 2835 | // prepares code in a way that can be handled by the bit simplification. |
| 2836 | // |
| 2837 | // This is the motivating testcase (and explanation): |
| 2838 | // |
| 2839 | // { |
| 2840 | // loop0(.LBB0_2, r1) // %for.body.preheader |
| 2841 | // r5:4 = memd(r0++#8) |
| 2842 | // } |
| 2843 | // { |
| 2844 | // r3 = lsr(r4, #16) |
| 2845 | // r7:6 = combine(r5, r5) |
| 2846 | // } |
| 2847 | // { |
| 2848 | // r3 = insert(r5, #16, #16) |
| 2849 | // r7:6 = vlsrw(r7:6, #16) |
| 2850 | // } |
| 2851 | // .LBB0_2: |
| 2852 | // { |
| 2853 | // memh(r2+#4) = r5 |
| 2854 | // memh(r2+#6) = r6 # R6 is really R5.H |
| 2855 | // } |
| 2856 | // { |
| 2857 | // r2 = add(r2, #8) |
| 2858 | // memh(r2+#0) = r4 |
| 2859 | // memh(r2+#2) = r3 # R3 is really R4.H |
| 2860 | // } |
| 2861 | // { |
| 2862 | // r5:4 = memd(r0++#8) |
| 2863 | // } |
| 2864 | // { # "Shuffling" code that sets up R3 and R6 |
| 2865 | // r3 = lsr(r4, #16) # so that their halves can be stored in the |
| 2866 | // r7:6 = combine(r5, r5) # next iteration. This could be folded into |
| 2867 | // } # the stores if the code was at the beginning |
| 2868 | // { # of the loop iteration. Since the same code |
| 2869 | // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved |
| 2870 | // r7:6 = vlsrw(r7:6, #16) # there. |
| 2871 | // }:endloop0 |
| 2872 | // |
| 2873 | // |
| 2874 | // The outcome: |
| 2875 | // |
| 2876 | // { |
| 2877 | // loop0(.LBB0_2, r1) |
| 2878 | // r5:4 = memd(r0++#8) |
| 2879 | // } |
| 2880 | // .LBB0_2: |
| 2881 | // { |
| 2882 | // memh(r2+#4) = r5 |
| 2883 | // memh(r2+#6) = r5.h |
| 2884 | // } |
| 2885 | // { |
| 2886 | // r2 = add(r2, #8) |
| 2887 | // memh(r2+#0) = r4 |
| 2888 | // memh(r2+#2) = r4.h |
| 2889 | // } |
| 2890 | // { |
| 2891 | // r5:4 = memd(r0++#8) |
| 2892 | // }:endloop0 |
| 2893 | |
| 2894 | namespace { |
| 2895 | |
| 2896 | class HexagonLoopRescheduling : public MachineFunctionPass { |
| 2897 | public: |
| 2898 | static char ID; |
| 2899 | |
| 2900 | HexagonLoopRescheduling() : MachineFunctionPass(ID) {} |
| 2901 | |
| 2902 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 2903 | |
| 2904 | private: |
| 2905 | const HexagonInstrInfo *HII = nullptr; |
| 2906 | const HexagonRegisterInfo *HRI = nullptr; |
| 2907 | MachineRegisterInfo *MRI = nullptr; |
| 2908 | BitTracker *BTP = nullptr; |
| 2909 | |
| 2910 | struct LoopCand { |
| 2911 | LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, |
| 2912 | MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} |
| 2913 | |
| 2914 | MachineBasicBlock *LB, *PB, *EB; |
| 2915 | }; |
| 2916 | using InstrList = std::vector<MachineInstr *>; |
| 2917 | struct InstrGroup { |
| 2918 | BitTracker::RegisterRef Inp, Out; |
| 2919 | InstrList Ins; |
| 2920 | }; |
| 2921 | struct PhiInfo { |
| 2922 | PhiInfo(MachineInstr &P, MachineBasicBlock &B); |
| 2923 | |
| 2924 | unsigned DefR; |
| 2925 | BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register |
| 2926 | MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block |
| 2927 | }; |
| 2928 | |
| 2929 | static unsigned getDefReg(const MachineInstr *MI); |
| 2930 | bool isConst(unsigned Reg) const; |
| 2931 | bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; |
| 2932 | bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; |
| 2933 | bool isShuffleOf(unsigned OutR, unsigned InpR) const; |
| 2934 | bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, |
| 2935 | unsigned &InpR2) const; |
| 2936 | void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, |
| 2937 | MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); |
| 2938 | bool processLoop(LoopCand &C); |
| 2939 | }; |
| 2940 | |
| 2941 | } // end anonymous namespace |
| 2942 | |
| 2943 | char HexagonLoopRescheduling::ID = 0; |
| 2944 | |
| 2945 | INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched-pass" , |
| 2946 | "Hexagon Loop Rescheduling" , false, false) |
| 2947 | |
| 2948 | HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, |
| 2949 | MachineBasicBlock &B) { |
| 2950 | DefR = HexagonLoopRescheduling::getDefReg(MI: &P); |
| 2951 | LB = &B; |
| 2952 | PB = nullptr; |
| 2953 | for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { |
| 2954 | const MachineOperand &OpB = P.getOperand(i: i+1); |
| 2955 | if (OpB.getMBB() == &B) { |
| 2956 | LR = P.getOperand(i); |
| 2957 | continue; |
| 2958 | } |
| 2959 | PB = OpB.getMBB(); |
| 2960 | PR = P.getOperand(i); |
| 2961 | } |
| 2962 | } |
| 2963 | |
| 2964 | unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { |
| 2965 | RegisterSet Defs; |
| 2966 | HBS::getInstrDefs(MI: *MI, Defs); |
| 2967 | if (Defs.count() != 1) |
| 2968 | return 0; |
| 2969 | return Defs.find_first(); |
| 2970 | } |
| 2971 | |
| 2972 | bool HexagonLoopRescheduling::isConst(unsigned Reg) const { |
| 2973 | if (!BTP->has(Reg)) |
| 2974 | return false; |
| 2975 | const BitTracker::RegisterCell &RC = BTP->lookup(Reg); |
| 2976 | for (unsigned i = 0, w = RC.width(); i < w; ++i) { |
| 2977 | const BitTracker::BitValue &V = RC[i]; |
| 2978 | if (!V.is(T: 0) && !V.is(T: 1)) |
| 2979 | return false; |
| 2980 | } |
| 2981 | return true; |
| 2982 | } |
| 2983 | |
| 2984 | bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, |
| 2985 | unsigned DefR) const { |
| 2986 | unsigned Opc = MI->getOpcode(); |
| 2987 | switch (Opc) { |
| 2988 | case TargetOpcode::COPY: |
| 2989 | case Hexagon::S2_lsr_i_r: |
| 2990 | case Hexagon::S2_asr_i_r: |
| 2991 | case Hexagon::S2_asl_i_r: |
| 2992 | case Hexagon::S2_lsr_i_p: |
| 2993 | case Hexagon::S2_asr_i_p: |
| 2994 | case Hexagon::S2_asl_i_p: |
| 2995 | case Hexagon::S2_insert: |
| 2996 | case Hexagon::A2_or: |
| 2997 | case Hexagon::A2_orp: |
| 2998 | case Hexagon::A2_and: |
| 2999 | case Hexagon::A2_andp: |
| 3000 | case Hexagon::A2_combinew: |
| 3001 | case Hexagon::A4_combineri: |
| 3002 | case Hexagon::A4_combineir: |
| 3003 | case Hexagon::A2_combineii: |
| 3004 | case Hexagon::A4_combineii: |
| 3005 | case Hexagon::A2_combine_ll: |
| 3006 | case Hexagon::A2_combine_lh: |
| 3007 | case Hexagon::A2_combine_hl: |
| 3008 | case Hexagon::A2_combine_hh: |
| 3009 | return true; |
| 3010 | } |
| 3011 | return false; |
| 3012 | } |
| 3013 | |
| 3014 | bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, |
| 3015 | unsigned InpR) const { |
| 3016 | for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { |
| 3017 | const MachineOperand &Op = MI->getOperand(i); |
| 3018 | if (!Op.isReg()) |
| 3019 | continue; |
| 3020 | if (Op.getReg() == InpR) |
| 3021 | return i == n-1; |
| 3022 | } |
| 3023 | return false; |
| 3024 | } |
| 3025 | |
| 3026 | bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { |
| 3027 | if (!BTP->has(Reg: OutR) || !BTP->has(Reg: InpR)) |
| 3028 | return false; |
| 3029 | const BitTracker::RegisterCell &OutC = BTP->lookup(Reg: OutR); |
| 3030 | for (unsigned i = 0, w = OutC.width(); i < w; ++i) { |
| 3031 | const BitTracker::BitValue &V = OutC[i]; |
| 3032 | if (V.Type != BitTracker::BitValue::Ref) |
| 3033 | continue; |
| 3034 | if (V.RefI.Reg != InpR) |
| 3035 | return false; |
| 3036 | } |
| 3037 | return true; |
| 3038 | } |
| 3039 | |
| 3040 | bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, |
| 3041 | unsigned OutR2, unsigned &InpR2) const { |
| 3042 | if (!BTP->has(Reg: OutR1) || !BTP->has(Reg: InpR1) || !BTP->has(Reg: OutR2)) |
| 3043 | return false; |
| 3044 | const BitTracker::RegisterCell &OutC1 = BTP->lookup(Reg: OutR1); |
| 3045 | const BitTracker::RegisterCell &OutC2 = BTP->lookup(Reg: OutR2); |
| 3046 | unsigned W = OutC1.width(); |
| 3047 | unsigned MatchR = 0; |
| 3048 | if (W != OutC2.width()) |
| 3049 | return false; |
| 3050 | for (unsigned i = 0; i < W; ++i) { |
| 3051 | const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; |
| 3052 | if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) |
| 3053 | return false; |
| 3054 | if (V1.Type != BitTracker::BitValue::Ref) |
| 3055 | continue; |
| 3056 | if (V1.RefI.Pos != V2.RefI.Pos) |
| 3057 | return false; |
| 3058 | if (V1.RefI.Reg != InpR1) |
| 3059 | return false; |
| 3060 | if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) |
| 3061 | return false; |
| 3062 | if (!MatchR) |
| 3063 | MatchR = V2.RefI.Reg; |
| 3064 | else if (V2.RefI.Reg != MatchR) |
| 3065 | return false; |
| 3066 | } |
| 3067 | InpR2 = MatchR; |
| 3068 | return true; |
| 3069 | } |
| 3070 | |
| 3071 | void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, |
| 3072 | MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, |
| 3073 | unsigned NewPredR) { |
| 3074 | DenseMap<unsigned,unsigned> RegMap; |
| 3075 | |
| 3076 | const TargetRegisterClass *PhiRC = MRI->getRegClass(Reg: NewPredR); |
| 3077 | Register PhiR = MRI->createVirtualRegister(RegClass: PhiRC); |
| 3078 | BuildMI(BB&: LB, I: At, MIMD: At->getDebugLoc(), MCID: HII->get(Opcode: TargetOpcode::PHI), DestReg: PhiR) |
| 3079 | .addReg(RegNo: NewPredR) |
| 3080 | .addMBB(MBB: &PB) |
| 3081 | .addReg(RegNo: G.Inp.Reg) |
| 3082 | .addMBB(MBB: &LB); |
| 3083 | RegMap.insert(KV: std::make_pair(x&: G.Inp.Reg, y&: PhiR)); |
| 3084 | |
| 3085 | for (const MachineInstr *SI : llvm::reverse(C&: G.Ins)) { |
| 3086 | unsigned DR = getDefReg(MI: SI); |
| 3087 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DR); |
| 3088 | Register NewDR = MRI->createVirtualRegister(RegClass: RC); |
| 3089 | DebugLoc DL = SI->getDebugLoc(); |
| 3090 | |
| 3091 | auto MIB = BuildMI(BB&: LB, I: At, MIMD: DL, MCID: HII->get(Opcode: SI->getOpcode()), DestReg: NewDR); |
| 3092 | for (const MachineOperand &Op : SI->operands()) { |
| 3093 | if (!Op.isReg()) { |
| 3094 | MIB.add(MO: Op); |
| 3095 | continue; |
| 3096 | } |
| 3097 | if (!Op.isUse()) |
| 3098 | continue; |
| 3099 | unsigned UseR = RegMap[Op.getReg()]; |
| 3100 | MIB.addReg(RegNo: UseR, flags: 0, SubReg: Op.getSubReg()); |
| 3101 | } |
| 3102 | RegMap.insert(KV: std::make_pair(x&: DR, y&: NewDR)); |
| 3103 | } |
| 3104 | |
| 3105 | HBS::replaceReg(OldR: OldPhiR, NewR: RegMap[G.Out.Reg], MRI&: *MRI); |
| 3106 | } |
| 3107 | |
| 3108 | bool HexagonLoopRescheduling::processLoop(LoopCand &C) { |
| 3109 | LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB) |
| 3110 | << "\n" ); |
| 3111 | std::vector<PhiInfo> Phis; |
| 3112 | for (auto &I : *C.LB) { |
| 3113 | if (!I.isPHI()) |
| 3114 | break; |
| 3115 | unsigned PR = getDefReg(MI: &I); |
| 3116 | if (isConst(Reg: PR)) |
| 3117 | continue; |
| 3118 | bool BadUse = false, GoodUse = false; |
| 3119 | for (const MachineOperand &MO : MRI->use_operands(Reg: PR)) { |
| 3120 | const MachineInstr *UseI = MO.getParent(); |
| 3121 | if (UseI->getParent() != C.LB) { |
| 3122 | BadUse = true; |
| 3123 | break; |
| 3124 | } |
| 3125 | if (isBitShuffle(MI: UseI, DefR: PR) || isStoreInput(MI: UseI, InpR: PR)) |
| 3126 | GoodUse = true; |
| 3127 | } |
| 3128 | if (BadUse || !GoodUse) |
| 3129 | continue; |
| 3130 | |
| 3131 | Phis.push_back(x: PhiInfo(I, *C.LB)); |
| 3132 | } |
| 3133 | |
| 3134 | LLVM_DEBUG({ |
| 3135 | dbgs() << "Phis: {" ; |
| 3136 | for (auto &I : Phis) { |
| 3137 | dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi(" |
| 3138 | << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() |
| 3139 | << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" |
| 3140 | << I.LB->getNumber() << ')'; |
| 3141 | } |
| 3142 | dbgs() << " }\n" ; |
| 3143 | }); |
| 3144 | |
| 3145 | if (Phis.empty()) |
| 3146 | return false; |
| 3147 | |
| 3148 | bool Changed = false; |
| 3149 | InstrList ShufIns; |
| 3150 | |
| 3151 | // Go backwards in the block: for each bit shuffling instruction, check |
| 3152 | // if that instruction could potentially be moved to the front of the loop: |
| 3153 | // the output of the loop cannot be used in a non-shuffling instruction |
| 3154 | // in this loop. |
| 3155 | for (MachineInstr &MI : llvm::reverse(C&: *C.LB)) { |
| 3156 | if (MI.isTerminator()) |
| 3157 | continue; |
| 3158 | if (MI.isPHI()) |
| 3159 | break; |
| 3160 | |
| 3161 | RegisterSet Defs; |
| 3162 | HBS::getInstrDefs(MI, Defs); |
| 3163 | if (Defs.count() != 1) |
| 3164 | continue; |
| 3165 | Register DefR = Defs.find_first(); |
| 3166 | if (!DefR.isVirtual()) |
| 3167 | continue; |
| 3168 | if (!isBitShuffle(MI: &MI, DefR)) |
| 3169 | continue; |
| 3170 | |
| 3171 | bool BadUse = false; |
| 3172 | for (auto UI = MRI->use_begin(RegNo: DefR), UE = MRI->use_end(); UI != UE; ++UI) { |
| 3173 | MachineInstr *UseI = UI->getParent(); |
| 3174 | if (UseI->getParent() == C.LB) { |
| 3175 | if (UseI->isPHI()) { |
| 3176 | // If the use is in a phi node in this loop, then it should be |
| 3177 | // the value corresponding to the back edge. |
| 3178 | unsigned Idx = UI.getOperandNo(); |
| 3179 | if (UseI->getOperand(i: Idx+1).getMBB() != C.LB) |
| 3180 | BadUse = true; |
| 3181 | } else { |
| 3182 | if (!llvm::is_contained(Range&: ShufIns, Element: UseI)) |
| 3183 | BadUse = true; |
| 3184 | } |
| 3185 | } else { |
| 3186 | // There is a use outside of the loop, but there is no epilog block |
| 3187 | // suitable for a copy-out. |
| 3188 | if (C.EB == nullptr) |
| 3189 | BadUse = true; |
| 3190 | } |
| 3191 | if (BadUse) |
| 3192 | break; |
| 3193 | } |
| 3194 | |
| 3195 | if (BadUse) |
| 3196 | continue; |
| 3197 | ShufIns.push_back(x: &MI); |
| 3198 | } |
| 3199 | |
| 3200 | // Partition the list of shuffling instructions into instruction groups, |
| 3201 | // where each group has to be moved as a whole (i.e. a group is a chain of |
| 3202 | // dependent instructions). A group produces a single live output register, |
| 3203 | // which is meant to be the input of the loop phi node (although this is |
| 3204 | // not checked here yet). It also uses a single register as its input, |
| 3205 | // which is some value produced in the loop body. After moving the group |
| 3206 | // to the beginning of the loop, that input register would need to be |
| 3207 | // the loop-carried register (through a phi node) instead of the (currently |
| 3208 | // loop-carried) output register. |
| 3209 | using InstrGroupList = std::vector<InstrGroup>; |
| 3210 | InstrGroupList Groups; |
| 3211 | |
| 3212 | for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { |
| 3213 | MachineInstr *SI = ShufIns[i]; |
| 3214 | if (SI == nullptr) |
| 3215 | continue; |
| 3216 | |
| 3217 | InstrGroup G; |
| 3218 | G.Ins.push_back(x: SI); |
| 3219 | G.Out.Reg = getDefReg(MI: SI); |
| 3220 | RegisterSet Inputs; |
| 3221 | HBS::getInstrUses(MI: *SI, Uses&: Inputs); |
| 3222 | |
| 3223 | for (unsigned j = i+1; j < n; ++j) { |
| 3224 | MachineInstr *MI = ShufIns[j]; |
| 3225 | if (MI == nullptr) |
| 3226 | continue; |
| 3227 | RegisterSet Defs; |
| 3228 | HBS::getInstrDefs(MI: *MI, Defs); |
| 3229 | // If this instruction does not define any pending inputs, skip it. |
| 3230 | if (!Defs.intersects(Rs: Inputs)) |
| 3231 | continue; |
| 3232 | // Otherwise, add it to the current group and remove the inputs that |
| 3233 | // are defined by MI. |
| 3234 | G.Ins.push_back(x: MI); |
| 3235 | Inputs.remove(Rs: Defs); |
| 3236 | // Then add all registers used by MI. |
| 3237 | HBS::getInstrUses(MI: *MI, Uses&: Inputs); |
| 3238 | ShufIns[j] = nullptr; |
| 3239 | } |
| 3240 | |
| 3241 | // Only add a group if it requires at most one register. |
| 3242 | if (Inputs.count() > 1) |
| 3243 | continue; |
| 3244 | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| 3245 | return G.Out.Reg == P.LR.Reg; |
| 3246 | }; |
| 3247 | if (llvm::none_of(Range&: Phis, P: LoopInpEq)) |
| 3248 | continue; |
| 3249 | |
| 3250 | G.Inp.Reg = Inputs.find_first(); |
| 3251 | Groups.push_back(x: G); |
| 3252 | } |
| 3253 | |
| 3254 | LLVM_DEBUG({ |
| 3255 | for (unsigned i = 0, n = Groups.size(); i < n; ++i) { |
| 3256 | InstrGroup &G = Groups[i]; |
| 3257 | dbgs() << "Group[" << i << "] inp: " |
| 3258 | << printReg(G.Inp.Reg, HRI, G.Inp.Sub) |
| 3259 | << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n" ; |
| 3260 | for (const MachineInstr *MI : G.Ins) |
| 3261 | dbgs() << " " << MI; |
| 3262 | } |
| 3263 | }); |
| 3264 | |
| 3265 | for (InstrGroup &G : Groups) { |
| 3266 | if (!isShuffleOf(OutR: G.Out.Reg, InpR: G.Inp.Reg)) |
| 3267 | continue; |
| 3268 | auto LoopInpEq = [G] (const PhiInfo &P) -> bool { |
| 3269 | return G.Out.Reg == P.LR.Reg; |
| 3270 | }; |
| 3271 | auto F = llvm::find_if(Range&: Phis, P: LoopInpEq); |
| 3272 | if (F == Phis.end()) |
| 3273 | continue; |
| 3274 | unsigned PrehR = 0; |
| 3275 | if (!isSameShuffle(OutR1: G.Out.Reg, InpR1: G.Inp.Reg, OutR2: F->PR.Reg, InpR2&: PrehR)) { |
| 3276 | const MachineInstr *DefPrehR = MRI->getVRegDef(Reg: F->PR.Reg); |
| 3277 | unsigned Opc = DefPrehR->getOpcode(); |
| 3278 | if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) |
| 3279 | continue; |
| 3280 | if (!DefPrehR->getOperand(i: 1).isImm()) |
| 3281 | continue; |
| 3282 | if (DefPrehR->getOperand(i: 1).getImm() != 0) |
| 3283 | continue; |
| 3284 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: G.Inp.Reg); |
| 3285 | if (RC != MRI->getRegClass(Reg: F->PR.Reg)) { |
| 3286 | PrehR = MRI->createVirtualRegister(RegClass: RC); |
| 3287 | unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi |
| 3288 | : Hexagon::A2_tfrpi; |
| 3289 | auto T = C.PB->getFirstTerminator(); |
| 3290 | DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); |
| 3291 | BuildMI(BB&: *C.PB, I: T, MIMD: DL, MCID: HII->get(Opcode: TfrI), DestReg: PrehR) |
| 3292 | .addImm(Val: 0); |
| 3293 | } else { |
| 3294 | PrehR = F->PR.Reg; |
| 3295 | } |
| 3296 | } |
| 3297 | // isSameShuffle could match with PrehR being of a wider class than |
| 3298 | // G.Inp.Reg, for example if G shuffles the low 32 bits of its input, |
| 3299 | // it would match for the input being a 32-bit register, and PrehR |
| 3300 | // being a 64-bit register (where the low 32 bits match). This could |
| 3301 | // be handled, but for now skip these cases. |
| 3302 | if (MRI->getRegClass(Reg: PrehR) != MRI->getRegClass(Reg: G.Inp.Reg)) |
| 3303 | continue; |
| 3304 | moveGroup(G, LB&: *F->LB, PB&: *F->PB, At: F->LB->getFirstNonPHI(), OldPhiR: F->DefR, NewPredR: PrehR); |
| 3305 | Changed = true; |
| 3306 | } |
| 3307 | |
| 3308 | return Changed; |
| 3309 | } |
| 3310 | |
| 3311 | bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { |
| 3312 | if (skipFunction(F: MF.getFunction())) |
| 3313 | return false; |
| 3314 | |
| 3315 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| 3316 | HII = HST.getInstrInfo(); |
| 3317 | HRI = HST.getRegisterInfo(); |
| 3318 | MRI = &MF.getRegInfo(); |
| 3319 | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); |
| 3320 | BitTracker BT(HE, MF); |
| 3321 | LLVM_DEBUG(BT.trace(true)); |
| 3322 | BT.run(); |
| 3323 | BTP = &BT; |
| 3324 | |
| 3325 | std::vector<LoopCand> Cand; |
| 3326 | |
| 3327 | for (auto &B : MF) { |
| 3328 | if (B.pred_size() != 2 || B.succ_size() != 2) |
| 3329 | continue; |
| 3330 | MachineBasicBlock *PB = nullptr; |
| 3331 | bool IsLoop = false; |
| 3332 | for (MachineBasicBlock *Pred : B.predecessors()) { |
| 3333 | if (Pred != &B) |
| 3334 | PB = Pred; |
| 3335 | else |
| 3336 | IsLoop = true; |
| 3337 | } |
| 3338 | if (!IsLoop) |
| 3339 | continue; |
| 3340 | |
| 3341 | MachineBasicBlock *EB = nullptr; |
| 3342 | for (MachineBasicBlock *Succ : B.successors()) { |
| 3343 | if (Succ == &B) |
| 3344 | continue; |
| 3345 | // Set EP to the epilog block, if it has only 1 predecessor (i.e. the |
| 3346 | // edge from B to EP is non-critical. |
| 3347 | if (Succ->pred_size() == 1) |
| 3348 | EB = Succ; |
| 3349 | break; |
| 3350 | } |
| 3351 | |
| 3352 | Cand.push_back(x: LoopCand(&B, PB, EB)); |
| 3353 | } |
| 3354 | |
| 3355 | bool Changed = false; |
| 3356 | for (auto &C : Cand) |
| 3357 | Changed |= processLoop(C); |
| 3358 | |
| 3359 | return Changed; |
| 3360 | } |
| 3361 | |
| 3362 | //===----------------------------------------------------------------------===// |
| 3363 | // Public Constructor Functions |
| 3364 | //===----------------------------------------------------------------------===// |
| 3365 | |
| 3366 | FunctionPass *llvm::createHexagonLoopRescheduling() { |
| 3367 | return new HexagonLoopRescheduling(); |
| 3368 | } |
| 3369 | |
| 3370 | FunctionPass *llvm::createHexagonBitSimplify() { |
| 3371 | return new HexagonBitSimplify(); |
| 3372 | } |
| 3373 | |