| 1 | //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Subclass of MipsTargetLowering specialized for mips32/64. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "MipsSEISelLowering.h" |
| 14 | #include "MipsMachineFunction.h" |
| 15 | #include "MipsRegisterInfo.h" |
| 16 | #include "MipsSubtarget.h" |
| 17 | #include "llvm/ADT/APInt.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/CodeGen/CallingConvLower.h" |
| 21 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 23 | #include "llvm/CodeGen/MachineFunction.h" |
| 24 | #include "llvm/CodeGen/MachineInstr.h" |
| 25 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 26 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 27 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/SelectionDAG.h" |
| 29 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 30 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 32 | #include "llvm/CodeGen/ValueTypes.h" |
| 33 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 34 | #include "llvm/IR/DebugLoc.h" |
| 35 | #include "llvm/IR/Intrinsics.h" |
| 36 | #include "llvm/IR/IntrinsicsMips.h" |
| 37 | #include "llvm/Support/Casting.h" |
| 38 | #include "llvm/Support/CommandLine.h" |
| 39 | #include "llvm/Support/Debug.h" |
| 40 | #include "llvm/Support/ErrorHandling.h" |
| 41 | #include "llvm/Support/raw_ostream.h" |
| 42 | #include "llvm/TargetParser/Triple.h" |
| 43 | #include <algorithm> |
| 44 | #include <cassert> |
| 45 | #include <cstddef> |
| 46 | #include <cstdint> |
| 47 | #include <iterator> |
| 48 | #include <utility> |
| 49 | |
| 50 | using namespace llvm; |
| 51 | |
| 52 | #define DEBUG_TYPE "mips-isel" |
| 53 | |
| 54 | static cl::opt<bool> |
| 55 | UseMipsTailCalls("mips-tail-calls" , cl::Hidden, |
| 56 | cl::desc("MIPS: permit tail calls." ), cl::init(Val: false)); |
| 57 | |
| 58 | static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1" , cl::init(Val: false), |
| 59 | cl::desc("Expand double precision loads and " |
| 60 | "stores to their single precision " |
| 61 | "counterparts" )); |
| 62 | |
| 63 | // Widen the v2 vectors to the register width, i.e. v2i16 -> v8i16, |
| 64 | // v2i32 -> v4i32, etc, to ensure the correct rail size is used, i.e. |
| 65 | // INST.h for v16, INST.w for v32, INST.d for v64. |
| 66 | TargetLoweringBase::LegalizeTypeAction |
| 67 | MipsSETargetLowering::getPreferredVectorAction(MVT VT) const { |
| 68 | if (this->Subtarget.hasMSA()) { |
| 69 | switch (VT.SimpleTy) { |
| 70 | // Leave v2i1 vectors to be promoted to larger ones. |
| 71 | // Other i1 types will be promoted by default. |
| 72 | case MVT::v2i1: |
| 73 | return TypePromoteInteger; |
| 74 | break; |
| 75 | // 16-bit vector types (v2 and longer) |
| 76 | case MVT::v2i8: |
| 77 | // 32-bit vector types (v2 and longer) |
| 78 | case MVT::v2i16: |
| 79 | case MVT::v4i8: |
| 80 | // 64-bit vector types (v2 and longer) |
| 81 | case MVT::v2i32: |
| 82 | case MVT::v4i16: |
| 83 | case MVT::v8i8: |
| 84 | return TypeWidenVector; |
| 85 | break; |
| 86 | // Only word (.w) and doubleword (.d) are available for floating point |
| 87 | // vectors. That means floating point vectors should be either v2f64 |
| 88 | // or v4f32. |
| 89 | // Here we only explicitly widen the f32 types - f16 will be promoted |
| 90 | // by default. |
| 91 | case MVT::v2f32: |
| 92 | case MVT::v3f32: |
| 93 | return TypeWidenVector; |
| 94 | // v2i64 is already 128-bit wide. |
| 95 | default: |
| 96 | break; |
| 97 | } |
| 98 | } |
| 99 | return TargetLoweringBase::getPreferredVectorAction(VT); |
| 100 | } |
| 101 | |
| 102 | MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM, |
| 103 | const MipsSubtarget &STI) |
| 104 | : MipsTargetLowering(TM, STI) { |
| 105 | // Set up the register classes |
| 106 | addRegisterClass(VT: MVT::i32, RC: &Mips::GPR32RegClass); |
| 107 | |
| 108 | if (Subtarget.isGP64bit()) |
| 109 | addRegisterClass(VT: MVT::i64, RC: &Mips::GPR64RegClass); |
| 110 | |
| 111 | if (Subtarget.hasDSP() || Subtarget.hasMSA()) { |
| 112 | // Expand all truncating stores and extending loads. |
| 113 | for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) { |
| 114 | for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) { |
| 115 | setTruncStoreAction(ValVT: VT0, MemVT: VT1, Action: Expand); |
| 116 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT0, MemVT: VT1, Action: Expand); |
| 117 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT0, MemVT: VT1, Action: Expand); |
| 118 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT0, MemVT: VT1, Action: Expand); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | if (Subtarget.hasDSP()) { |
| 124 | MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8}; |
| 125 | |
| 126 | for (const auto &VecTy : VecTys) { |
| 127 | addRegisterClass(VT: VecTy, RC: &Mips::DSPRRegClass); |
| 128 | |
| 129 | // Expand all builtin opcodes. |
| 130 | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) |
| 131 | setOperationAction(Op: Opc, VT: VecTy, Action: Expand); |
| 132 | |
| 133 | setOperationAction(Op: ISD::ADD, VT: VecTy, Action: Legal); |
| 134 | setOperationAction(Op: ISD::SUB, VT: VecTy, Action: Legal); |
| 135 | setOperationAction(Op: ISD::LOAD, VT: VecTy, Action: Legal); |
| 136 | setOperationAction(Op: ISD::STORE, VT: VecTy, Action: Legal); |
| 137 | setOperationAction(Op: ISD::BITCAST, VT: VecTy, Action: Legal); |
| 138 | } |
| 139 | |
| 140 | setTargetDAGCombine( |
| 141 | {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT}); |
| 142 | |
| 143 | if (Subtarget.hasMips32r2()) { |
| 144 | setOperationAction(Op: ISD::ADDC, VT: MVT::i32, Action: Legal); |
| 145 | setOperationAction(Op: ISD::ADDE, VT: MVT::i32, Action: Legal); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | if (Subtarget.hasDSPR2()) |
| 150 | setOperationAction(Op: ISD::MUL, VT: MVT::v2i16, Action: Legal); |
| 151 | |
| 152 | if (Subtarget.hasMSA()) { |
| 153 | addMSAIntType(Ty: MVT::v16i8, RC: &Mips::MSA128BRegClass); |
| 154 | addMSAIntType(Ty: MVT::v8i16, RC: &Mips::MSA128HRegClass); |
| 155 | addMSAIntType(Ty: MVT::v4i32, RC: &Mips::MSA128WRegClass); |
| 156 | addMSAIntType(Ty: MVT::v2i64, RC: &Mips::MSA128DRegClass); |
| 157 | addMSAFloatType(Ty: MVT::v8f16, RC: &Mips::MSA128HRegClass); |
| 158 | addMSAFloatType(Ty: MVT::v4f32, RC: &Mips::MSA128WRegClass); |
| 159 | addMSAFloatType(Ty: MVT::v2f64, RC: &Mips::MSA128DRegClass); |
| 160 | |
| 161 | // f16 is a storage-only type, always promote it to f32. |
| 162 | addRegisterClass(VT: MVT::f16, RC: &Mips::MSA128HRegClass); |
| 163 | setOperationAction(Op: ISD::SETCC, VT: MVT::f16, Action: Promote); |
| 164 | setOperationAction(Op: ISD::BR_CC, VT: MVT::f16, Action: Promote); |
| 165 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::f16, Action: Promote); |
| 166 | setOperationAction(Op: ISD::SELECT, VT: MVT::f16, Action: Promote); |
| 167 | setOperationAction(Op: ISD::FADD, VT: MVT::f16, Action: Promote); |
| 168 | setOperationAction(Op: ISD::FSUB, VT: MVT::f16, Action: Promote); |
| 169 | setOperationAction(Op: ISD::FMUL, VT: MVT::f16, Action: Promote); |
| 170 | setOperationAction(Op: ISD::FDIV, VT: MVT::f16, Action: Promote); |
| 171 | setOperationAction(Op: ISD::FREM, VT: MVT::f16, Action: Promote); |
| 172 | setOperationAction(Op: ISD::FMA, VT: MVT::f16, Action: Promote); |
| 173 | setOperationAction(Op: ISD::FNEG, VT: MVT::f16, Action: Promote); |
| 174 | setOperationAction(Op: ISD::FABS, VT: MVT::f16, Action: Promote); |
| 175 | setOperationAction(Op: ISD::FCEIL, VT: MVT::f16, Action: Promote); |
| 176 | setOperationAction(Op: ISD::FCOPYSIGN, VT: MVT::f16, Action: Promote); |
| 177 | setOperationAction(Op: ISD::FCOS, VT: MVT::f16, Action: Promote); |
| 178 | setOperationAction(Op: ISD::FP_EXTEND, VT: MVT::f16, Action: Promote); |
| 179 | setOperationAction(Op: ISD::FFLOOR, VT: MVT::f16, Action: Promote); |
| 180 | setOperationAction(Op: ISD::FNEARBYINT, VT: MVT::f16, Action: Promote); |
| 181 | setOperationAction(Op: ISD::FPOW, VT: MVT::f16, Action: Promote); |
| 182 | setOperationAction(Op: ISD::FPOWI, VT: MVT::f16, Action: Promote); |
| 183 | setOperationAction(Op: ISD::FRINT, VT: MVT::f16, Action: Promote); |
| 184 | setOperationAction(Op: ISD::FSIN, VT: MVT::f16, Action: Promote); |
| 185 | setOperationAction(Op: ISD::FSINCOS, VT: MVT::f16, Action: Promote); |
| 186 | setOperationAction(Op: ISD::FSQRT, VT: MVT::f16, Action: Promote); |
| 187 | setOperationAction(Op: ISD::FEXP, VT: MVT::f16, Action: Promote); |
| 188 | setOperationAction(Op: ISD::FEXP2, VT: MVT::f16, Action: Promote); |
| 189 | setOperationAction(Op: ISD::FLOG, VT: MVT::f16, Action: Promote); |
| 190 | setOperationAction(Op: ISD::FLOG2, VT: MVT::f16, Action: Promote); |
| 191 | setOperationAction(Op: ISD::FLOG10, VT: MVT::f16, Action: Promote); |
| 192 | setOperationAction(Op: ISD::FROUND, VT: MVT::f16, Action: Promote); |
| 193 | setOperationAction(Op: ISD::FTRUNC, VT: MVT::f16, Action: Promote); |
| 194 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f16, Action: Promote); |
| 195 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f16, Action: Promote); |
| 196 | setOperationAction(Op: ISD::FMINIMUM, VT: MVT::f16, Action: Promote); |
| 197 | setOperationAction(Op: ISD::FMAXIMUM, VT: MVT::f16, Action: Promote); |
| 198 | |
| 199 | setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR}); |
| 200 | } |
| 201 | |
| 202 | if (!Subtarget.useSoftFloat()) { |
| 203 | addRegisterClass(VT: MVT::f32, RC: &Mips::FGR32RegClass); |
| 204 | |
| 205 | // When dealing with single precision only, use libcalls |
| 206 | if (!Subtarget.isSingleFloat()) { |
| 207 | if (Subtarget.isFP64bit()) |
| 208 | addRegisterClass(VT: MVT::f64, RC: &Mips::FGR64RegClass); |
| 209 | else |
| 210 | addRegisterClass(VT: MVT::f64, RC: &Mips::AFGR64RegClass); |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i32, Action: Custom); |
| 215 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i32, Action: Custom); |
| 216 | setOperationAction(Op: ISD::MULHS, VT: MVT::i32, Action: Custom); |
| 217 | setOperationAction(Op: ISD::MULHU, VT: MVT::i32, Action: Custom); |
| 218 | |
| 219 | if (Subtarget.hasCnMips()) |
| 220 | setOperationAction(Op: ISD::MUL, VT: MVT::i64, Action: Legal); |
| 221 | else if (Subtarget.isGP64bit()) |
| 222 | setOperationAction(Op: ISD::MUL, VT: MVT::i64, Action: Custom); |
| 223 | |
| 224 | if (Subtarget.isGP64bit()) { |
| 225 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i64, Action: Custom); |
| 226 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i64, Action: Custom); |
| 227 | setOperationAction(Op: ISD::MULHS, VT: MVT::i64, Action: Custom); |
| 228 | setOperationAction(Op: ISD::MULHU, VT: MVT::i64, Action: Custom); |
| 229 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i64, Action: Custom); |
| 230 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i64, Action: Custom); |
| 231 | } |
| 232 | |
| 233 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::i64, Action: Custom); |
| 234 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::i64, Action: Custom); |
| 235 | |
| 236 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i32, Action: Custom); |
| 237 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i32, Action: Custom); |
| 238 | setOperationAction(Op: ISD::ATOMIC_FENCE, VT: MVT::Other, Action: Custom); |
| 239 | if (Subtarget.hasMips32r6()) { |
| 240 | setOperationAction(Op: ISD::LOAD, VT: MVT::i32, Action: Legal); |
| 241 | setOperationAction(Op: ISD::STORE, VT: MVT::i32, Action: Legal); |
| 242 | } else { |
| 243 | setOperationAction(Op: ISD::LOAD, VT: MVT::i32, Action: Custom); |
| 244 | setOperationAction(Op: ISD::STORE, VT: MVT::i32, Action: Custom); |
| 245 | } |
| 246 | |
| 247 | setTargetDAGCombine(ISD::MUL); |
| 248 | |
| 249 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 250 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::Other, Action: Custom); |
| 251 | setOperationAction(Op: ISD::INTRINSIC_VOID, VT: MVT::Other, Action: Custom); |
| 252 | |
| 253 | if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() && |
| 254 | !Subtarget.hasMips64()) { |
| 255 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i64, Action: Custom); |
| 256 | } |
| 257 | |
| 258 | if (NoDPLoadStore) { |
| 259 | setOperationAction(Op: ISD::LOAD, VT: MVT::f64, Action: Custom); |
| 260 | setOperationAction(Op: ISD::STORE, VT: MVT::f64, Action: Custom); |
| 261 | } |
| 262 | |
| 263 | if (Subtarget.hasMips32r6()) { |
| 264 | // MIPS32r6 replaces the accumulator-based multiplies with a three register |
| 265 | // instruction |
| 266 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i32, Action: Expand); |
| 267 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i32, Action: Expand); |
| 268 | setOperationAction(Op: ISD::MUL, VT: MVT::i32, Action: Legal); |
| 269 | setOperationAction(Op: ISD::MULHS, VT: MVT::i32, Action: Legal); |
| 270 | setOperationAction(Op: ISD::MULHU, VT: MVT::i32, Action: Legal); |
| 271 | |
| 272 | // MIPS32r6 replaces the accumulator-based division/remainder with separate |
| 273 | // three register division and remainder instructions. |
| 274 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i32, Action: Expand); |
| 275 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i32, Action: Expand); |
| 276 | setOperationAction(Op: ISD::SDIV, VT: MVT::i32, Action: Legal); |
| 277 | setOperationAction(Op: ISD::UDIV, VT: MVT::i32, Action: Legal); |
| 278 | setOperationAction(Op: ISD::SREM, VT: MVT::i32, Action: Legal); |
| 279 | setOperationAction(Op: ISD::UREM, VT: MVT::i32, Action: Legal); |
| 280 | |
| 281 | // MIPS32r6 replaces conditional moves with an equivalent that removes the |
| 282 | // need for three GPR read ports. |
| 283 | setOperationAction(Op: ISD::SETCC, VT: MVT::i32, Action: Legal); |
| 284 | setOperationAction(Op: ISD::SELECT, VT: MVT::i32, Action: Legal); |
| 285 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i32, Action: Expand); |
| 286 | |
| 287 | setOperationAction(Op: ISD::SETCC, VT: MVT::f32, Action: Legal); |
| 288 | setOperationAction(Op: ISD::SELECT, VT: MVT::f32, Action: Legal); |
| 289 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::f32, Action: Expand); |
| 290 | |
| 291 | assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6" ); |
| 292 | setOperationAction(Op: ISD::SETCC, VT: MVT::f64, Action: Legal); |
| 293 | setOperationAction(Op: ISD::SELECT, VT: MVT::f64, Action: Custom); |
| 294 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::f64, Action: Expand); |
| 295 | |
| 296 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Legal); |
| 297 | |
| 298 | // Floating point > and >= are supported via < and <= |
| 299 | setCondCodeAction(CCs: ISD::SETOGE, VT: MVT::f32, Action: Expand); |
| 300 | setCondCodeAction(CCs: ISD::SETOGT, VT: MVT::f32, Action: Expand); |
| 301 | setCondCodeAction(CCs: ISD::SETUGE, VT: MVT::f32, Action: Expand); |
| 302 | setCondCodeAction(CCs: ISD::SETUGT, VT: MVT::f32, Action: Expand); |
| 303 | |
| 304 | setCondCodeAction(CCs: ISD::SETOGE, VT: MVT::f64, Action: Expand); |
| 305 | setCondCodeAction(CCs: ISD::SETOGT, VT: MVT::f64, Action: Expand); |
| 306 | setCondCodeAction(CCs: ISD::SETUGE, VT: MVT::f64, Action: Expand); |
| 307 | setCondCodeAction(CCs: ISD::SETUGT, VT: MVT::f64, Action: Expand); |
| 308 | } |
| 309 | |
| 310 | if (Subtarget.hasMips64r6()) { |
| 311 | // MIPS64r6 replaces the accumulator-based multiplies with a three register |
| 312 | // instruction |
| 313 | setOperationAction(Op: ISD::SMUL_LOHI, VT: MVT::i64, Action: Expand); |
| 314 | setOperationAction(Op: ISD::UMUL_LOHI, VT: MVT::i64, Action: Expand); |
| 315 | setOperationAction(Op: ISD::MUL, VT: MVT::i64, Action: Legal); |
| 316 | setOperationAction(Op: ISD::MULHS, VT: MVT::i64, Action: Legal); |
| 317 | setOperationAction(Op: ISD::MULHU, VT: MVT::i64, Action: Legal); |
| 318 | |
| 319 | // MIPS32r6 replaces the accumulator-based division/remainder with separate |
| 320 | // three register division and remainder instructions. |
| 321 | setOperationAction(Op: ISD::SDIVREM, VT: MVT::i64, Action: Expand); |
| 322 | setOperationAction(Op: ISD::UDIVREM, VT: MVT::i64, Action: Expand); |
| 323 | setOperationAction(Op: ISD::SDIV, VT: MVT::i64, Action: Legal); |
| 324 | setOperationAction(Op: ISD::UDIV, VT: MVT::i64, Action: Legal); |
| 325 | setOperationAction(Op: ISD::SREM, VT: MVT::i64, Action: Legal); |
| 326 | setOperationAction(Op: ISD::UREM, VT: MVT::i64, Action: Legal); |
| 327 | |
| 328 | // MIPS64r6 replaces conditional moves with an equivalent that removes the |
| 329 | // need for three GPR read ports. |
| 330 | setOperationAction(Op: ISD::SETCC, VT: MVT::i64, Action: Legal); |
| 331 | setOperationAction(Op: ISD::SELECT, VT: MVT::i64, Action: Legal); |
| 332 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i64, Action: Expand); |
| 333 | } |
| 334 | |
| 335 | computeRegisterProperties(TRI: Subtarget.getRegisterInfo()); |
| 336 | } |
| 337 | |
| 338 | const MipsTargetLowering * |
| 339 | llvm::createMipsSETargetLowering(const MipsTargetMachine &TM, |
| 340 | const MipsSubtarget &STI) { |
| 341 | return new MipsSETargetLowering(TM, STI); |
| 342 | } |
| 343 | |
| 344 | const TargetRegisterClass * |
| 345 | MipsSETargetLowering::getRepRegClassFor(MVT VT) const { |
| 346 | if (VT == MVT::Untyped) |
| 347 | return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass; |
| 348 | |
| 349 | return TargetLowering::getRepRegClassFor(VT); |
| 350 | } |
| 351 | |
| 352 | // Enable MSA support for the given integer type and Register class. |
| 353 | void MipsSETargetLowering:: |
| 354 | addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { |
| 355 | addRegisterClass(VT: Ty, RC); |
| 356 | |
| 357 | // Expand all builtin opcodes. |
| 358 | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) |
| 359 | setOperationAction(Op: Opc, VT: Ty, Action: Expand); |
| 360 | |
| 361 | setOperationAction(Op: ISD::BITCAST, VT: Ty, Action: Legal); |
| 362 | setOperationAction(Op: ISD::LOAD, VT: Ty, Action: Legal); |
| 363 | setOperationAction(Op: ISD::STORE, VT: Ty, Action: Legal); |
| 364 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: Ty, Action: Custom); |
| 365 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: Ty, Action: Legal); |
| 366 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: Ty, Action: Custom); |
| 367 | setOperationAction(Op: ISD::UNDEF, VT: Ty, Action: Legal); |
| 368 | |
| 369 | setOperationAction(Op: ISD::ADD, VT: Ty, Action: Legal); |
| 370 | setOperationAction(Op: ISD::AND, VT: Ty, Action: Legal); |
| 371 | setOperationAction(Op: ISD::CTLZ, VT: Ty, Action: Legal); |
| 372 | setOperationAction(Op: ISD::CTPOP, VT: Ty, Action: Legal); |
| 373 | setOperationAction(Op: ISD::MUL, VT: Ty, Action: Legal); |
| 374 | setOperationAction(Op: ISD::OR, VT: Ty, Action: Legal); |
| 375 | setOperationAction(Op: ISD::SDIV, VT: Ty, Action: Legal); |
| 376 | setOperationAction(Op: ISD::SREM, VT: Ty, Action: Legal); |
| 377 | setOperationAction(Op: ISD::SHL, VT: Ty, Action: Legal); |
| 378 | setOperationAction(Op: ISD::SRA, VT: Ty, Action: Legal); |
| 379 | setOperationAction(Op: ISD::SRL, VT: Ty, Action: Legal); |
| 380 | setOperationAction(Op: ISD::SUB, VT: Ty, Action: Legal); |
| 381 | setOperationAction(Op: ISD::SMAX, VT: Ty, Action: Legal); |
| 382 | setOperationAction(Op: ISD::SMIN, VT: Ty, Action: Legal); |
| 383 | setOperationAction(Op: ISD::UDIV, VT: Ty, Action: Legal); |
| 384 | setOperationAction(Op: ISD::UREM, VT: Ty, Action: Legal); |
| 385 | setOperationAction(Op: ISD::UMAX, VT: Ty, Action: Legal); |
| 386 | setOperationAction(Op: ISD::UMIN, VT: Ty, Action: Legal); |
| 387 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: Ty, Action: Custom); |
| 388 | setOperationAction(Op: ISD::VSELECT, VT: Ty, Action: Legal); |
| 389 | setOperationAction(Op: ISD::XOR, VT: Ty, Action: Legal); |
| 390 | |
| 391 | if (Ty == MVT::v4i32 || Ty == MVT::v2i64) { |
| 392 | setOperationAction(Op: ISD::FP_TO_SINT, VT: Ty, Action: Legal); |
| 393 | setOperationAction(Op: ISD::FP_TO_UINT, VT: Ty, Action: Legal); |
| 394 | setOperationAction(Op: ISD::SINT_TO_FP, VT: Ty, Action: Legal); |
| 395 | setOperationAction(Op: ISD::UINT_TO_FP, VT: Ty, Action: Legal); |
| 396 | } |
| 397 | |
| 398 | setOperationAction(Op: ISD::SETCC, VT: Ty, Action: Legal); |
| 399 | setCondCodeAction(CCs: ISD::SETNE, VT: Ty, Action: Expand); |
| 400 | setCondCodeAction(CCs: ISD::SETGE, VT: Ty, Action: Expand); |
| 401 | setCondCodeAction(CCs: ISD::SETGT, VT: Ty, Action: Expand); |
| 402 | setCondCodeAction(CCs: ISD::SETUGE, VT: Ty, Action: Expand); |
| 403 | setCondCodeAction(CCs: ISD::SETUGT, VT: Ty, Action: Expand); |
| 404 | } |
| 405 | |
| 406 | // Enable MSA support for the given floating-point type and Register class. |
| 407 | void MipsSETargetLowering:: |
| 408 | addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { |
| 409 | addRegisterClass(VT: Ty, RC); |
| 410 | |
| 411 | // Expand all builtin opcodes. |
| 412 | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) |
| 413 | setOperationAction(Op: Opc, VT: Ty, Action: Expand); |
| 414 | |
| 415 | setOperationAction(Op: ISD::LOAD, VT: Ty, Action: Legal); |
| 416 | setOperationAction(Op: ISD::STORE, VT: Ty, Action: Legal); |
| 417 | setOperationAction(Op: ISD::BITCAST, VT: Ty, Action: Legal); |
| 418 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT: Ty, Action: Legal); |
| 419 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT: Ty, Action: Legal); |
| 420 | setOperationAction(Op: ISD::BUILD_VECTOR, VT: Ty, Action: Custom); |
| 421 | |
| 422 | if (Ty != MVT::v8f16) { |
| 423 | setOperationAction(Op: ISD::FABS, VT: Ty, Action: Legal); |
| 424 | setOperationAction(Op: ISD::FADD, VT: Ty, Action: Legal); |
| 425 | setOperationAction(Op: ISD::FDIV, VT: Ty, Action: Legal); |
| 426 | setOperationAction(Op: ISD::FEXP2, VT: Ty, Action: Legal); |
| 427 | setOperationAction(Op: ISD::FLOG2, VT: Ty, Action: Legal); |
| 428 | setOperationAction(Op: ISD::FMA, VT: Ty, Action: Legal); |
| 429 | setOperationAction(Op: ISD::FMUL, VT: Ty, Action: Legal); |
| 430 | setOperationAction(Op: ISD::FRINT, VT: Ty, Action: Legal); |
| 431 | setOperationAction(Op: ISD::FSQRT, VT: Ty, Action: Legal); |
| 432 | setOperationAction(Op: ISD::FSUB, VT: Ty, Action: Legal); |
| 433 | setOperationAction(Op: ISD::VSELECT, VT: Ty, Action: Legal); |
| 434 | |
| 435 | setOperationAction(Op: ISD::SETCC, VT: Ty, Action: Legal); |
| 436 | setCondCodeAction(CCs: ISD::SETOGE, VT: Ty, Action: Expand); |
| 437 | setCondCodeAction(CCs: ISD::SETOGT, VT: Ty, Action: Expand); |
| 438 | setCondCodeAction(CCs: ISD::SETUGE, VT: Ty, Action: Expand); |
| 439 | setCondCodeAction(CCs: ISD::SETUGT, VT: Ty, Action: Expand); |
| 440 | setCondCodeAction(CCs: ISD::SETGE, VT: Ty, Action: Expand); |
| 441 | setCondCodeAction(CCs: ISD::SETGT, VT: Ty, Action: Expand); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| 446 | if(!Subtarget.hasMips32r6()) |
| 447 | return MipsTargetLowering::LowerOperation(Op, DAG); |
| 448 | |
| 449 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 450 | SDLoc DL(Op); |
| 451 | |
| 452 | // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the |
| 453 | // floating point register are undefined. Not really an issue as sel.d, which |
| 454 | // is produced from an FSELECT node, only looks at bit 0. |
| 455 | SDValue Tmp = DAG.getNode(Opcode: MipsISD::MTC1_D64, DL, VT: MVT::f64, Operand: Op->getOperand(Num: 0)); |
| 456 | return DAG.getNode(Opcode: MipsISD::FSELECT, DL, VT: ResTy, N1: Tmp, N2: Op->getOperand(Num: 1), |
| 457 | N3: Op->getOperand(Num: 2)); |
| 458 | } |
| 459 | |
| 460 | bool MipsSETargetLowering::allowsMisalignedMemoryAccesses( |
| 461 | EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { |
| 462 | MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; |
| 463 | |
| 464 | if (Subtarget.systemSupportsUnalignedAccess()) { |
| 465 | // MIPS32r6/MIPS64r6 is required to support unaligned access. It's |
| 466 | // implementation defined whether this is handled by hardware, software, or |
| 467 | // a hybrid of the two but it's expected that most implementations will |
| 468 | // handle the majority of cases in hardware. |
| 469 | if (Fast) |
| 470 | *Fast = 1; |
| 471 | return true; |
| 472 | } else if (Subtarget.hasMips32r6()) { |
| 473 | return false; |
| 474 | } |
| 475 | |
| 476 | switch (SVT) { |
| 477 | case MVT::i64: |
| 478 | case MVT::i32: |
| 479 | if (Fast) |
| 480 | *Fast = 1; |
| 481 | return true; |
| 482 | default: |
| 483 | return false; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | SDValue MipsSETargetLowering::LowerOperation(SDValue Op, |
| 488 | SelectionDAG &DAG) const { |
| 489 | switch(Op.getOpcode()) { |
| 490 | case ISD::LOAD: return lowerLOAD(Op, DAG); |
| 491 | case ISD::STORE: return lowerSTORE(Op, DAG); |
| 492 | case ISD::SMUL_LOHI: return lowerMulDiv(Op, NewOpc: MipsISD::Mult, HasLo: true, HasHi: true, DAG); |
| 493 | case ISD::UMUL_LOHI: return lowerMulDiv(Op, NewOpc: MipsISD::Multu, HasLo: true, HasHi: true, DAG); |
| 494 | case ISD::MULHS: return lowerMulDiv(Op, NewOpc: MipsISD::Mult, HasLo: false, HasHi: true, DAG); |
| 495 | case ISD::MULHU: return lowerMulDiv(Op, NewOpc: MipsISD::Multu, HasLo: false, HasHi: true, DAG); |
| 496 | case ISD::MUL: return lowerMulDiv(Op, NewOpc: MipsISD::Mult, HasLo: true, HasHi: false, DAG); |
| 497 | case ISD::SDIVREM: return lowerMulDiv(Op, NewOpc: MipsISD::DivRem, HasLo: true, HasHi: true, DAG); |
| 498 | case ISD::UDIVREM: return lowerMulDiv(Op, NewOpc: MipsISD::DivRemU, HasLo: true, HasHi: true, |
| 499 | DAG); |
| 500 | case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG); |
| 501 | case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG); |
| 502 | case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG); |
| 503 | case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 504 | case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); |
| 505 | case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); |
| 506 | case ISD::SELECT: return lowerSELECT(Op, DAG); |
| 507 | case ISD::BITCAST: return lowerBITCAST(Op, DAG); |
| 508 | } |
| 509 | |
| 510 | return MipsTargetLowering::LowerOperation(Op, DAG); |
| 511 | } |
| 512 | |
| 513 | // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT |
| 514 | // |
| 515 | // Performs the following transformations: |
| 516 | // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its |
| 517 | // sign/zero-extension is completely overwritten by the new one performed by |
| 518 | // the ISD::AND. |
| 519 | // - Removes redundant zero extensions performed by an ISD::AND. |
| 520 | static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, |
| 521 | TargetLowering::DAGCombinerInfo &DCI, |
| 522 | const MipsSubtarget &Subtarget) { |
| 523 | if (!Subtarget.hasMSA()) |
| 524 | return SDValue(); |
| 525 | |
| 526 | SDValue Op0 = N->getOperand(Num: 0); |
| 527 | SDValue Op1 = N->getOperand(Num: 1); |
| 528 | unsigned Op0Opcode = Op0->getOpcode(); |
| 529 | |
| 530 | // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d) |
| 531 | // where $d + 1 == 2^n and n == 32 |
| 532 | // or $d + 1 == 2^n and n <= 32 and ZExt |
| 533 | // -> (MipsVExtractZExt $a, $b, $c) |
| 534 | if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT || |
| 535 | Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) { |
| 536 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val&: Op1); |
| 537 | |
| 538 | if (!Mask) |
| 539 | return SDValue(); |
| 540 | |
| 541 | int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2(); |
| 542 | |
| 543 | if (Log2IfPositive <= 0) |
| 544 | return SDValue(); // Mask+1 is not a power of 2 |
| 545 | |
| 546 | SDValue Op0Op2 = Op0->getOperand(Num: 2); |
| 547 | EVT ExtendTy = cast<VTSDNode>(Val&: Op0Op2)->getVT(); |
| 548 | unsigned ExtendTySize = ExtendTy.getSizeInBits(); |
| 549 | unsigned Log2 = Log2IfPositive; |
| 550 | |
| 551 | if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) || |
| 552 | Log2 == ExtendTySize) { |
| 553 | SDValue Ops[] = { Op0->getOperand(Num: 0), Op0->getOperand(Num: 1), Op0Op2 }; |
| 554 | return DAG.getNode(Opcode: MipsISD::VEXTRACT_ZEXT_ELT, DL: SDLoc(Op0), |
| 555 | VTList: Op0->getVTList(), |
| 556 | Ops: ArrayRef(Ops, Op0->getNumOperands())); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | return SDValue(); |
| 561 | } |
| 562 | |
| 563 | // Determine if the specified node is a constant vector splat. |
| 564 | // |
| 565 | // Returns true and sets Imm if: |
| 566 | // * N is a ISD::BUILD_VECTOR representing a constant splat |
| 567 | // |
| 568 | // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The |
| 569 | // differences are that it assumes the MSA has already been checked and the |
| 570 | // arbitrary requirement for a maximum of 32-bit integers isn't applied (and |
| 571 | // must not be in order for binsri.d to be selectable). |
| 572 | static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) { |
| 573 | BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(Val: N.getNode()); |
| 574 | |
| 575 | if (!Node) |
| 576 | return false; |
| 577 | |
| 578 | APInt SplatValue, SplatUndef; |
| 579 | unsigned SplatBitSize; |
| 580 | bool HasAnyUndefs; |
| 581 | |
| 582 | if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, |
| 583 | MinSplatBits: 8, isBigEndian: !IsLittleEndian)) |
| 584 | return false; |
| 585 | |
| 586 | Imm = SplatValue; |
| 587 | |
| 588 | return true; |
| 589 | } |
| 590 | |
| 591 | // Test whether the given node is an all-ones build_vector. |
| 592 | static bool isVectorAllOnes(SDValue N) { |
| 593 | // Look through bitcasts. Endianness doesn't matter because we are looking |
| 594 | // for an all-ones value. |
| 595 | if (N->getOpcode() == ISD::BITCAST) |
| 596 | N = N->getOperand(Num: 0); |
| 597 | |
| 598 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Val&: N); |
| 599 | |
| 600 | if (!BVN) |
| 601 | return false; |
| 602 | |
| 603 | APInt SplatValue, SplatUndef; |
| 604 | unsigned SplatBitSize; |
| 605 | bool HasAnyUndefs; |
| 606 | |
| 607 | // Endianness doesn't matter in this context because we are looking for |
| 608 | // an all-ones value. |
| 609 | if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs)) |
| 610 | return SplatValue.isAllOnes(); |
| 611 | |
| 612 | return false; |
| 613 | } |
| 614 | |
| 615 | // Test whether N is the bitwise inverse of OfNode. |
| 616 | static bool isBitwiseInverse(SDValue N, SDValue OfNode) { |
| 617 | if (N->getOpcode() != ISD::XOR) |
| 618 | return false; |
| 619 | |
| 620 | if (isVectorAllOnes(N: N->getOperand(Num: 0))) |
| 621 | return N->getOperand(Num: 1) == OfNode; |
| 622 | |
| 623 | if (isVectorAllOnes(N: N->getOperand(Num: 1))) |
| 624 | return N->getOperand(Num: 0) == OfNode; |
| 625 | |
| 626 | return false; |
| 627 | } |
| 628 | |
| 629 | // Perform combines where ISD::OR is the root node. |
| 630 | // |
| 631 | // Performs the following transformations: |
| 632 | // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b) |
| 633 | // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit |
| 634 | // vector type. |
| 635 | static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, |
| 636 | TargetLowering::DAGCombinerInfo &DCI, |
| 637 | const MipsSubtarget &Subtarget) { |
| 638 | if (!Subtarget.hasMSA()) |
| 639 | return SDValue(); |
| 640 | |
| 641 | EVT Ty = N->getValueType(ResNo: 0); |
| 642 | |
| 643 | if (!Ty.is128BitVector()) |
| 644 | return SDValue(); |
| 645 | |
| 646 | SDValue Op0 = N->getOperand(Num: 0); |
| 647 | SDValue Op1 = N->getOperand(Num: 1); |
| 648 | |
| 649 | if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) { |
| 650 | SDValue Op0Op0 = Op0->getOperand(Num: 0); |
| 651 | SDValue Op0Op1 = Op0->getOperand(Num: 1); |
| 652 | SDValue Op1Op0 = Op1->getOperand(Num: 0); |
| 653 | SDValue Op1Op1 = Op1->getOperand(Num: 1); |
| 654 | bool IsLittleEndian = !Subtarget.isLittle(); |
| 655 | |
| 656 | SDValue IfSet, IfClr, Cond; |
| 657 | bool IsConstantMask = false; |
| 658 | APInt Mask, InvMask; |
| 659 | |
| 660 | // If Op0Op0 is an appropriate mask, try to find it's inverse in either |
| 661 | // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while |
| 662 | // looking. |
| 663 | // IfClr will be set if we find a valid match. |
| 664 | if (isVSplat(N: Op0Op0, Imm&: Mask, IsLittleEndian)) { |
| 665 | Cond = Op0Op0; |
| 666 | IfSet = Op0Op1; |
| 667 | |
| 668 | if (isVSplat(N: Op1Op0, Imm&: InvMask, IsLittleEndian) && |
| 669 | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) |
| 670 | IfClr = Op1Op1; |
| 671 | else if (isVSplat(N: Op1Op1, Imm&: InvMask, IsLittleEndian) && |
| 672 | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) |
| 673 | IfClr = Op1Op0; |
| 674 | |
| 675 | IsConstantMask = true; |
| 676 | } |
| 677 | |
| 678 | // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same |
| 679 | // thing again using this mask. |
| 680 | // IfClr will be set if we find a valid match. |
| 681 | if (!IfClr.getNode() && isVSplat(N: Op0Op1, Imm&: Mask, IsLittleEndian)) { |
| 682 | Cond = Op0Op1; |
| 683 | IfSet = Op0Op0; |
| 684 | |
| 685 | if (isVSplat(N: Op1Op0, Imm&: InvMask, IsLittleEndian) && |
| 686 | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) |
| 687 | IfClr = Op1Op1; |
| 688 | else if (isVSplat(N: Op1Op1, Imm&: InvMask, IsLittleEndian) && |
| 689 | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) |
| 690 | IfClr = Op1Op0; |
| 691 | |
| 692 | IsConstantMask = true; |
| 693 | } |
| 694 | |
| 695 | // If IfClr is not yet set, try looking for a non-constant match. |
| 696 | // IfClr will be set if we find a valid match amongst the eight |
| 697 | // possibilities. |
| 698 | if (!IfClr.getNode()) { |
| 699 | if (isBitwiseInverse(N: Op0Op0, OfNode: Op1Op0)) { |
| 700 | Cond = Op1Op0; |
| 701 | IfSet = Op1Op1; |
| 702 | IfClr = Op0Op1; |
| 703 | } else if (isBitwiseInverse(N: Op0Op1, OfNode: Op1Op0)) { |
| 704 | Cond = Op1Op0; |
| 705 | IfSet = Op1Op1; |
| 706 | IfClr = Op0Op0; |
| 707 | } else if (isBitwiseInverse(N: Op0Op0, OfNode: Op1Op1)) { |
| 708 | Cond = Op1Op1; |
| 709 | IfSet = Op1Op0; |
| 710 | IfClr = Op0Op1; |
| 711 | } else if (isBitwiseInverse(N: Op0Op1, OfNode: Op1Op1)) { |
| 712 | Cond = Op1Op1; |
| 713 | IfSet = Op1Op0; |
| 714 | IfClr = Op0Op0; |
| 715 | } else if (isBitwiseInverse(N: Op1Op0, OfNode: Op0Op0)) { |
| 716 | Cond = Op0Op0; |
| 717 | IfSet = Op0Op1; |
| 718 | IfClr = Op1Op1; |
| 719 | } else if (isBitwiseInverse(N: Op1Op1, OfNode: Op0Op0)) { |
| 720 | Cond = Op0Op0; |
| 721 | IfSet = Op0Op1; |
| 722 | IfClr = Op1Op0; |
| 723 | } else if (isBitwiseInverse(N: Op1Op0, OfNode: Op0Op1)) { |
| 724 | Cond = Op0Op1; |
| 725 | IfSet = Op0Op0; |
| 726 | IfClr = Op1Op1; |
| 727 | } else if (isBitwiseInverse(N: Op1Op1, OfNode: Op0Op1)) { |
| 728 | Cond = Op0Op1; |
| 729 | IfSet = Op0Op0; |
| 730 | IfClr = Op1Op0; |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | // At this point, IfClr will be set if we have a valid match. |
| 735 | if (!IfClr.getNode()) |
| 736 | return SDValue(); |
| 737 | |
| 738 | assert(Cond.getNode() && IfSet.getNode()); |
| 739 | |
| 740 | // Fold degenerate cases. |
| 741 | if (IsConstantMask) { |
| 742 | if (Mask.isAllOnes()) |
| 743 | return IfSet; |
| 744 | else if (Mask == 0) |
| 745 | return IfClr; |
| 746 | } |
| 747 | |
| 748 | // Transform the DAG into an equivalent VSELECT. |
| 749 | return DAG.getNode(Opcode: ISD::VSELECT, DL: SDLoc(N), VT: Ty, N1: Cond, N2: IfSet, N3: IfClr); |
| 750 | } |
| 751 | |
| 752 | return SDValue(); |
| 753 | } |
| 754 | |
| 755 | static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT, |
| 756 | SelectionDAG &DAG, |
| 757 | const MipsSubtarget &Subtarget) { |
| 758 | // Estimate the number of operations the below transform will turn a |
| 759 | // constant multiply into. The number is approximately equal to the minimal |
| 760 | // number of powers of two that constant can be broken down to by adding |
| 761 | // or subtracting them. |
| 762 | // |
| 763 | // If we have taken more than 12[1] / 8[2] steps to attempt the |
| 764 | // optimization for a native sized value, it is more than likely that this |
| 765 | // optimization will make things worse. |
| 766 | // |
| 767 | // [1] MIPS64 requires 6 instructions at most to materialize any constant, |
| 768 | // multiplication requires at least 4 cycles, but another cycle (or two) |
| 769 | // to retrieve the result from the HI/LO registers. |
| 770 | // |
| 771 | // [2] For MIPS32, more than 8 steps is expensive as the constant could be |
| 772 | // materialized in 2 instructions, multiplication requires at least 4 |
| 773 | // cycles, but another cycle (or two) to retrieve the result from the |
| 774 | // HI/LO registers. |
| 775 | // |
| 776 | // TODO: |
| 777 | // - MaxSteps needs to consider the `VT` of the constant for the current |
| 778 | // target. |
| 779 | // - Consider to perform this optimization after type legalization. |
| 780 | // That allows to remove a workaround for types not supported natively. |
| 781 | // - Take in account `-Os, -Oz` flags because this optimization |
| 782 | // increases code size. |
| 783 | unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12; |
| 784 | |
| 785 | SmallVector<APInt, 16> WorkStack(1, C); |
| 786 | unsigned Steps = 0; |
| 787 | unsigned BitWidth = C.getBitWidth(); |
| 788 | |
| 789 | while (!WorkStack.empty()) { |
| 790 | APInt Val = WorkStack.pop_back_val(); |
| 791 | |
| 792 | if (Val == 0 || Val == 1) |
| 793 | continue; |
| 794 | |
| 795 | if (Steps >= MaxSteps) |
| 796 | return false; |
| 797 | |
| 798 | if (Val.isPowerOf2()) { |
| 799 | ++Steps; |
| 800 | continue; |
| 801 | } |
| 802 | |
| 803 | APInt Floor = APInt(BitWidth, 1) << Val.logBase2(); |
| 804 | APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0) |
| 805 | : APInt(BitWidth, 1) << C.ceilLogBase2(); |
| 806 | if ((Val - Floor).ule(RHS: Ceil - Val)) { |
| 807 | WorkStack.push_back(Elt: Floor); |
| 808 | WorkStack.push_back(Elt: Val - Floor); |
| 809 | } else { |
| 810 | WorkStack.push_back(Elt: Ceil); |
| 811 | WorkStack.push_back(Elt: Ceil - Val); |
| 812 | } |
| 813 | |
| 814 | ++Steps; |
| 815 | } |
| 816 | |
| 817 | // If the value being multiplied is not supported natively, we have to pay |
| 818 | // an additional legalization cost, conservatively assume an increase in the |
| 819 | // cost of 3 instructions per step. This values for this heuristic were |
| 820 | // determined experimentally. |
| 821 | unsigned RegisterSize = DAG.getTargetLoweringInfo() |
| 822 | .getRegisterType(Context&: *DAG.getContext(), VT) |
| 823 | .getSizeInBits(); |
| 824 | Steps *= (VT.getSizeInBits() != RegisterSize) * 3; |
| 825 | if (Steps > 27) |
| 826 | return false; |
| 827 | |
| 828 | return true; |
| 829 | } |
| 830 | |
| 831 | static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT, |
| 832 | EVT ShiftTy, SelectionDAG &DAG) { |
| 833 | // Return 0. |
| 834 | if (C == 0) |
| 835 | return DAG.getConstant(Val: 0, DL, VT); |
| 836 | |
| 837 | // Return x. |
| 838 | if (C == 1) |
| 839 | return X; |
| 840 | |
| 841 | // If c is power of 2, return (shl x, log2(c)). |
| 842 | if (C.isPowerOf2()) |
| 843 | return DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, |
| 844 | N2: DAG.getConstant(Val: C.logBase2(), DL, VT: ShiftTy)); |
| 845 | |
| 846 | unsigned BitWidth = C.getBitWidth(); |
| 847 | APInt Floor = APInt(BitWidth, 1) << C.logBase2(); |
| 848 | APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) : |
| 849 | APInt(BitWidth, 1) << C.ceilLogBase2(); |
| 850 | |
| 851 | // If |c - floor_c| <= |c - ceil_c|, |
| 852 | // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))), |
| 853 | // return (add constMult(x, floor_c), constMult(x, c - floor_c)). |
| 854 | if ((C - Floor).ule(RHS: Ceil - C)) { |
| 855 | SDValue Op0 = genConstMult(X, C: Floor, DL, VT, ShiftTy, DAG); |
| 856 | SDValue Op1 = genConstMult(X, C: C - Floor, DL, VT, ShiftTy, DAG); |
| 857 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op0, N2: Op1); |
| 858 | } |
| 859 | |
| 860 | // If |c - floor_c| > |c - ceil_c|, |
| 861 | // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)). |
| 862 | SDValue Op0 = genConstMult(X, C: Ceil, DL, VT, ShiftTy, DAG); |
| 863 | SDValue Op1 = genConstMult(X, C: Ceil - C, DL, VT, ShiftTy, DAG); |
| 864 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Op0, N2: Op1); |
| 865 | } |
| 866 | |
| 867 | static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG, |
| 868 | const TargetLowering::DAGCombinerInfo &DCI, |
| 869 | const MipsSETargetLowering *TL, |
| 870 | const MipsSubtarget &Subtarget) { |
| 871 | EVT VT = N->getValueType(ResNo: 0); |
| 872 | |
| 873 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) |
| 874 | if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs( |
| 875 | C: C->getAPIntValue(), VT, DAG, Subtarget)) |
| 876 | return genConstMult(X: N->getOperand(Num: 0), C: C->getAPIntValue(), DL: SDLoc(N), VT, |
| 877 | ShiftTy: TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT), |
| 878 | DAG); |
| 879 | |
| 880 | return SDValue(N, 0); |
| 881 | } |
| 882 | |
| 883 | static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty, |
| 884 | SelectionDAG &DAG, |
| 885 | const MipsSubtarget &Subtarget) { |
| 886 | // See if this is a vector splat immediate node. |
| 887 | APInt SplatValue, SplatUndef; |
| 888 | unsigned SplatBitSize; |
| 889 | bool HasAnyUndefs; |
| 890 | unsigned EltSize = Ty.getScalarSizeInBits(); |
| 891 | BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Val: N->getOperand(Num: 1)); |
| 892 | |
| 893 | if (!Subtarget.hasDSP()) |
| 894 | return SDValue(); |
| 895 | |
| 896 | if (!BV || |
| 897 | !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, |
| 898 | MinSplatBits: EltSize, isBigEndian: !Subtarget.isLittle()) || |
| 899 | (SplatBitSize != EltSize) || |
| 900 | (SplatValue.getZExtValue() >= EltSize)) |
| 901 | return SDValue(); |
| 902 | |
| 903 | SDLoc DL(N); |
| 904 | return DAG.getNode(Opcode: Opc, DL, VT: Ty, N1: N->getOperand(Num: 0), |
| 905 | N2: DAG.getConstant(Val: SplatValue.getZExtValue(), DL, VT: MVT::i32)); |
| 906 | } |
| 907 | |
| 908 | static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, |
| 909 | TargetLowering::DAGCombinerInfo &DCI, |
| 910 | const MipsSubtarget &Subtarget) { |
| 911 | EVT Ty = N->getValueType(ResNo: 0); |
| 912 | |
| 913 | if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) |
| 914 | return SDValue(); |
| 915 | |
| 916 | return performDSPShiftCombine(Opc: MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget); |
| 917 | } |
| 918 | |
| 919 | // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold |
| 920 | // constant splats into MipsISD::SHRA_DSP for DSPr2. |
| 921 | // |
| 922 | // Performs the following transformations: |
| 923 | // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its |
| 924 | // sign/zero-extension is completely overwritten by the new one performed by |
| 925 | // the ISD::SRA and ISD::SHL nodes. |
| 926 | // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL |
| 927 | // sequence. |
| 928 | // |
| 929 | // See performDSPShiftCombine for more information about the transformation |
| 930 | // used for DSPr2. |
| 931 | static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, |
| 932 | TargetLowering::DAGCombinerInfo &DCI, |
| 933 | const MipsSubtarget &Subtarget) { |
| 934 | EVT Ty = N->getValueType(ResNo: 0); |
| 935 | |
| 936 | if (Subtarget.hasMSA()) { |
| 937 | SDValue Op0 = N->getOperand(Num: 0); |
| 938 | SDValue Op1 = N->getOperand(Num: 1); |
| 939 | |
| 940 | // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d) |
| 941 | // where $d + sizeof($c) == 32 |
| 942 | // or $d + sizeof($c) <= 32 and SExt |
| 943 | // -> (MipsVExtractSExt $a, $b, $c) |
| 944 | if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(Num: 1)) { |
| 945 | SDValue Op0Op0 = Op0->getOperand(Num: 0); |
| 946 | ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Val&: Op1); |
| 947 | |
| 948 | if (!ShAmount) |
| 949 | return SDValue(); |
| 950 | |
| 951 | if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT && |
| 952 | Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT) |
| 953 | return SDValue(); |
| 954 | |
| 955 | EVT ExtendTy = cast<VTSDNode>(Val: Op0Op0->getOperand(Num: 2))->getVT(); |
| 956 | unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits(); |
| 957 | |
| 958 | if (TotalBits == 32 || |
| 959 | (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT && |
| 960 | TotalBits <= 32)) { |
| 961 | SDValue Ops[] = { Op0Op0->getOperand(Num: 0), Op0Op0->getOperand(Num: 1), |
| 962 | Op0Op0->getOperand(Num: 2) }; |
| 963 | return DAG.getNode(Opcode: MipsISD::VEXTRACT_SEXT_ELT, DL: SDLoc(Op0Op0), |
| 964 | VTList: Op0Op0->getVTList(), |
| 965 | Ops: ArrayRef(Ops, Op0Op0->getNumOperands())); |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2())) |
| 971 | return SDValue(); |
| 972 | |
| 973 | return performDSPShiftCombine(Opc: MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget); |
| 974 | } |
| 975 | |
| 976 | |
| 977 | static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, |
| 978 | TargetLowering::DAGCombinerInfo &DCI, |
| 979 | const MipsSubtarget &Subtarget) { |
| 980 | EVT Ty = N->getValueType(ResNo: 0); |
| 981 | |
| 982 | if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8)) |
| 983 | return SDValue(); |
| 984 | |
| 985 | return performDSPShiftCombine(Opc: MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget); |
| 986 | } |
| 987 | |
| 988 | static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) { |
| 989 | bool IsV216 = (Ty == MVT::v2i16); |
| 990 | |
| 991 | switch (CC) { |
| 992 | case ISD::SETEQ: |
| 993 | case ISD::SETNE: return true; |
| 994 | case ISD::SETLT: |
| 995 | case ISD::SETLE: |
| 996 | case ISD::SETGT: |
| 997 | case ISD::SETGE: return IsV216; |
| 998 | case ISD::SETULT: |
| 999 | case ISD::SETULE: |
| 1000 | case ISD::SETUGT: |
| 1001 | case ISD::SETUGE: return !IsV216; |
| 1002 | default: return false; |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) { |
| 1007 | EVT Ty = N->getValueType(ResNo: 0); |
| 1008 | |
| 1009 | if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) |
| 1010 | return SDValue(); |
| 1011 | |
| 1012 | if (!isLegalDSPCondCode(Ty, CC: cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get())) |
| 1013 | return SDValue(); |
| 1014 | |
| 1015 | return DAG.getNode(Opcode: MipsISD::SETCC_DSP, DL: SDLoc(N), VT: Ty, N1: N->getOperand(Num: 0), |
| 1016 | N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2)); |
| 1017 | } |
| 1018 | |
| 1019 | static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) { |
| 1020 | EVT Ty = N->getValueType(ResNo: 0); |
| 1021 | |
| 1022 | if (Ty == MVT::v2i16 || Ty == MVT::v4i8) { |
| 1023 | SDValue SetCC = N->getOperand(Num: 0); |
| 1024 | |
| 1025 | if (SetCC.getOpcode() != MipsISD::SETCC_DSP) |
| 1026 | return SDValue(); |
| 1027 | |
| 1028 | return DAG.getNode(Opcode: MipsISD::SELECT_CC_DSP, DL: SDLoc(N), VT: Ty, |
| 1029 | N1: SetCC.getOperand(i: 0), N2: SetCC.getOperand(i: 1), |
| 1030 | N3: N->getOperand(Num: 1), N4: N->getOperand(Num: 2), N5: SetCC.getOperand(i: 2)); |
| 1031 | } |
| 1032 | |
| 1033 | return SDValue(); |
| 1034 | } |
| 1035 | |
| 1036 | static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, |
| 1037 | const MipsSubtarget &Subtarget) { |
| 1038 | EVT Ty = N->getValueType(ResNo: 0); |
| 1039 | |
| 1040 | if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) { |
| 1041 | // Try the following combines: |
| 1042 | // (xor (or $a, $b), (build_vector allones)) |
| 1043 | // (xor (or $a, $b), (bitcast (build_vector allones))) |
| 1044 | SDValue Op0 = N->getOperand(Num: 0); |
| 1045 | SDValue Op1 = N->getOperand(Num: 1); |
| 1046 | SDValue NotOp; |
| 1047 | |
| 1048 | if (ISD::isBuildVectorAllOnes(N: Op0.getNode())) |
| 1049 | NotOp = Op1; |
| 1050 | else if (ISD::isBuildVectorAllOnes(N: Op1.getNode())) |
| 1051 | NotOp = Op0; |
| 1052 | else |
| 1053 | return SDValue(); |
| 1054 | |
| 1055 | if (NotOp->getOpcode() == ISD::OR) |
| 1056 | return DAG.getNode(Opcode: MipsISD::VNOR, DL: SDLoc(N), VT: Ty, N1: NotOp->getOperand(Num: 0), |
| 1057 | N2: NotOp->getOperand(Num: 1)); |
| 1058 | } |
| 1059 | |
| 1060 | return SDValue(); |
| 1061 | } |
| 1062 | |
| 1063 | SDValue |
| 1064 | MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 1065 | SelectionDAG &DAG = DCI.DAG; |
| 1066 | SDValue Val; |
| 1067 | |
| 1068 | switch (N->getOpcode()) { |
| 1069 | case ISD::AND: |
| 1070 | Val = performANDCombine(N, DAG, DCI, Subtarget); |
| 1071 | break; |
| 1072 | case ISD::OR: |
| 1073 | Val = performORCombine(N, DAG, DCI, Subtarget); |
| 1074 | break; |
| 1075 | case ISD::MUL: |
| 1076 | return performMULCombine(N, DAG, DCI, TL: this, Subtarget); |
| 1077 | case ISD::SHL: |
| 1078 | Val = performSHLCombine(N, DAG, DCI, Subtarget); |
| 1079 | break; |
| 1080 | case ISD::SRA: |
| 1081 | return performSRACombine(N, DAG, DCI, Subtarget); |
| 1082 | case ISD::SRL: |
| 1083 | return performSRLCombine(N, DAG, DCI, Subtarget); |
| 1084 | case ISD::VSELECT: |
| 1085 | return performVSELECTCombine(N, DAG); |
| 1086 | case ISD::XOR: |
| 1087 | Val = performXORCombine(N, DAG, Subtarget); |
| 1088 | break; |
| 1089 | case ISD::SETCC: |
| 1090 | Val = performSETCCCombine(N, DAG); |
| 1091 | break; |
| 1092 | } |
| 1093 | |
| 1094 | if (Val.getNode()) { |
| 1095 | LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n" ; |
| 1096 | N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n" ; |
| 1097 | Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n" ); |
| 1098 | return Val; |
| 1099 | } |
| 1100 | |
| 1101 | return MipsTargetLowering::PerformDAGCombine(N, DCI); |
| 1102 | } |
| 1103 | |
| 1104 | MachineBasicBlock * |
| 1105 | MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| 1106 | MachineBasicBlock *BB) const { |
| 1107 | switch (MI.getOpcode()) { |
| 1108 | default: |
| 1109 | return MipsTargetLowering::EmitInstrWithCustomInserter(MI, MBB: BB); |
| 1110 | case Mips::BPOSGE32_PSEUDO: |
| 1111 | return emitBPOSGE32(MI, BB); |
| 1112 | case Mips::SNZ_B_PSEUDO: |
| 1113 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BNZ_B); |
| 1114 | case Mips::SNZ_H_PSEUDO: |
| 1115 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BNZ_H); |
| 1116 | case Mips::SNZ_W_PSEUDO: |
| 1117 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BNZ_W); |
| 1118 | case Mips::SNZ_D_PSEUDO: |
| 1119 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BNZ_D); |
| 1120 | case Mips::SNZ_V_PSEUDO: |
| 1121 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BNZ_V); |
| 1122 | case Mips::SZ_B_PSEUDO: |
| 1123 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BZ_B); |
| 1124 | case Mips::SZ_H_PSEUDO: |
| 1125 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BZ_H); |
| 1126 | case Mips::SZ_W_PSEUDO: |
| 1127 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BZ_W); |
| 1128 | case Mips::SZ_D_PSEUDO: |
| 1129 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BZ_D); |
| 1130 | case Mips::SZ_V_PSEUDO: |
| 1131 | return emitMSACBranchPseudo(MI, BB, BranchOp: Mips::BZ_V); |
| 1132 | case Mips::COPY_FW_PSEUDO: |
| 1133 | return emitCOPY_FW(MI, BB); |
| 1134 | case Mips::COPY_FD_PSEUDO: |
| 1135 | return emitCOPY_FD(MI, BB); |
| 1136 | case Mips::INSERT_FW_PSEUDO: |
| 1137 | return emitINSERT_FW(MI, BB); |
| 1138 | case Mips::INSERT_FD_PSEUDO: |
| 1139 | return emitINSERT_FD(MI, BB); |
| 1140 | case Mips::INSERT_B_VIDX_PSEUDO: |
| 1141 | case Mips::INSERT_B_VIDX64_PSEUDO: |
| 1142 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 1, IsFP: false); |
| 1143 | case Mips::INSERT_H_VIDX_PSEUDO: |
| 1144 | case Mips::INSERT_H_VIDX64_PSEUDO: |
| 1145 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 2, IsFP: false); |
| 1146 | case Mips::INSERT_W_VIDX_PSEUDO: |
| 1147 | case Mips::INSERT_W_VIDX64_PSEUDO: |
| 1148 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 4, IsFP: false); |
| 1149 | case Mips::INSERT_D_VIDX_PSEUDO: |
| 1150 | case Mips::INSERT_D_VIDX64_PSEUDO: |
| 1151 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 8, IsFP: false); |
| 1152 | case Mips::INSERT_FW_VIDX_PSEUDO: |
| 1153 | case Mips::INSERT_FW_VIDX64_PSEUDO: |
| 1154 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 4, IsFP: true); |
| 1155 | case Mips::INSERT_FD_VIDX_PSEUDO: |
| 1156 | case Mips::INSERT_FD_VIDX64_PSEUDO: |
| 1157 | return emitINSERT_DF_VIDX(MI, BB, EltSizeInBytes: 8, IsFP: true); |
| 1158 | case Mips::FILL_FW_PSEUDO: |
| 1159 | return emitFILL_FW(MI, BB); |
| 1160 | case Mips::FILL_FD_PSEUDO: |
| 1161 | return emitFILL_FD(MI, BB); |
| 1162 | case Mips::FEXP2_W_1_PSEUDO: |
| 1163 | return emitFEXP2_W_1(MI, BB); |
| 1164 | case Mips::FEXP2_D_1_PSEUDO: |
| 1165 | return emitFEXP2_D_1(MI, BB); |
| 1166 | case Mips::ST_F16: |
| 1167 | return emitST_F16_PSEUDO(MI, BB); |
| 1168 | case Mips::LD_F16: |
| 1169 | return emitLD_F16_PSEUDO(MI, BB); |
| 1170 | case Mips::MSA_FP_EXTEND_W_PSEUDO: |
| 1171 | return emitFPEXTEND_PSEUDO(MI, BB, IsFGR64: false); |
| 1172 | case Mips::MSA_FP_ROUND_W_PSEUDO: |
| 1173 | return emitFPROUND_PSEUDO(MI, BBi: BB, IsFGR64: false); |
| 1174 | case Mips::MSA_FP_EXTEND_D_PSEUDO: |
| 1175 | return emitFPEXTEND_PSEUDO(MI, BB, IsFGR64: true); |
| 1176 | case Mips::MSA_FP_ROUND_D_PSEUDO: |
| 1177 | return emitFPROUND_PSEUDO(MI, BBi: BB, IsFGR64: true); |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | bool MipsSETargetLowering::isEligibleForTailCallOptimization( |
| 1182 | const CCState &CCInfo, unsigned NextStackOffset, |
| 1183 | const MipsFunctionInfo &FI) const { |
| 1184 | if (!UseMipsTailCalls) |
| 1185 | return false; |
| 1186 | |
| 1187 | // Exception has to be cleared with eret. |
| 1188 | if (FI.isISR()) |
| 1189 | return false; |
| 1190 | |
| 1191 | // Return false if either the callee or caller has a byval argument. |
| 1192 | if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg()) |
| 1193 | return false; |
| 1194 | |
| 1195 | // Return true if the callee's argument area is no larger than the |
| 1196 | // caller's. |
| 1197 | return NextStackOffset <= FI.getIncomingArgSize(); |
| 1198 | } |
| 1199 | |
| 1200 | void MipsSETargetLowering:: |
| 1201 | getOpndList(SmallVectorImpl<SDValue> &Ops, |
| 1202 | std::deque<std::pair<unsigned, SDValue>> &RegsToPass, |
| 1203 | bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, |
| 1204 | bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, |
| 1205 | SDValue Chain) const { |
| 1206 | Ops.push_back(Elt: Callee); |
| 1207 | MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, |
| 1208 | InternalLinkage, IsCallReloc, CLI, Callee, |
| 1209 | Chain); |
| 1210 | } |
| 1211 | |
| 1212 | SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| 1213 | LoadSDNode &Nd = *cast<LoadSDNode>(Val&: Op); |
| 1214 | |
| 1215 | if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) |
| 1216 | return MipsTargetLowering::lowerLOAD(Op, DAG); |
| 1217 | |
| 1218 | // Replace a double precision load with two i32 loads and a buildpair64. |
| 1219 | SDLoc DL(Op); |
| 1220 | SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); |
| 1221 | EVT PtrVT = Ptr.getValueType(); |
| 1222 | |
| 1223 | // i32 load from lower address. |
| 1224 | SDValue Lo = DAG.getLoad(VT: MVT::i32, dl: DL, Chain, Ptr, PtrInfo: MachinePointerInfo(), |
| 1225 | Alignment: Nd.getAlign(), MMOFlags: Nd.getMemOperand()->getFlags()); |
| 1226 | |
| 1227 | // i32 load from higher address. |
| 1228 | Ptr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Ptr, N2: DAG.getConstant(Val: 4, DL, VT: PtrVT)); |
| 1229 | SDValue Hi = DAG.getLoad( |
| 1230 | VT: MVT::i32, dl: DL, Chain: Lo.getValue(R: 1), Ptr, PtrInfo: MachinePointerInfo(), |
| 1231 | Alignment: commonAlignment(A: Nd.getAlign(), Offset: 4), MMOFlags: Nd.getMemOperand()->getFlags()); |
| 1232 | |
| 1233 | if (!Subtarget.isLittle()) |
| 1234 | std::swap(a&: Lo, b&: Hi); |
| 1235 | |
| 1236 | SDValue BP = DAG.getNode(Opcode: MipsISD::BuildPairF64, DL, VT: MVT::f64, N1: Lo, N2: Hi); |
| 1237 | SDValue Ops[2] = {BP, Hi.getValue(R: 1)}; |
| 1238 | return DAG.getMergeValues(Ops, dl: DL); |
| 1239 | } |
| 1240 | |
| 1241 | SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| 1242 | StoreSDNode &Nd = *cast<StoreSDNode>(Val&: Op); |
| 1243 | |
| 1244 | if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) |
| 1245 | return MipsTargetLowering::lowerSTORE(Op, DAG); |
| 1246 | |
| 1247 | // Replace a double precision store with two extractelement64s and i32 stores. |
| 1248 | SDLoc DL(Op); |
| 1249 | SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); |
| 1250 | EVT PtrVT = Ptr.getValueType(); |
| 1251 | SDValue Lo = DAG.getNode(Opcode: MipsISD::ExtractElementF64, DL, VT: MVT::i32, |
| 1252 | N1: Val, N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 1253 | SDValue Hi = DAG.getNode(Opcode: MipsISD::ExtractElementF64, DL, VT: MVT::i32, |
| 1254 | N1: Val, N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)); |
| 1255 | |
| 1256 | if (!Subtarget.isLittle()) |
| 1257 | std::swap(a&: Lo, b&: Hi); |
| 1258 | |
| 1259 | // i32 store to lower address. |
| 1260 | Chain = DAG.getStore(Chain, dl: DL, Val: Lo, Ptr, PtrInfo: MachinePointerInfo(), Alignment: Nd.getAlign(), |
| 1261 | MMOFlags: Nd.getMemOperand()->getFlags(), AAInfo: Nd.getAAInfo()); |
| 1262 | |
| 1263 | // i32 store to higher address. |
| 1264 | Ptr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: Ptr, N2: DAG.getConstant(Val: 4, DL, VT: PtrVT)); |
| 1265 | return DAG.getStore(Chain, dl: DL, Val: Hi, Ptr, PtrInfo: MachinePointerInfo(), |
| 1266 | Alignment: commonAlignment(A: Nd.getAlign(), Offset: 4), |
| 1267 | MMOFlags: Nd.getMemOperand()->getFlags(), AAInfo: Nd.getAAInfo()); |
| 1268 | } |
| 1269 | |
| 1270 | SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op, |
| 1271 | SelectionDAG &DAG) const { |
| 1272 | SDLoc DL(Op); |
| 1273 | MVT Src = Op.getOperand(i: 0).getValueType().getSimpleVT(); |
| 1274 | MVT Dest = Op.getValueType().getSimpleVT(); |
| 1275 | |
| 1276 | // Bitcast i64 to double. |
| 1277 | if (Src == MVT::i64 && Dest == MVT::f64) { |
| 1278 | SDValue Lo, Hi; |
| 1279 | std::tie(args&: Lo, args&: Hi) = |
| 1280 | DAG.SplitScalar(N: Op.getOperand(i: 0), DL, LoVT: MVT::i32, HiVT: MVT::i32); |
| 1281 | return DAG.getNode(Opcode: MipsISD::BuildPairF64, DL, VT: MVT::f64, N1: Lo, N2: Hi); |
| 1282 | } |
| 1283 | |
| 1284 | // Bitcast double to i64. |
| 1285 | if (Src == MVT::f64 && Dest == MVT::i64) { |
| 1286 | // Skip lower bitcast when operand0 has converted float results to integer |
| 1287 | // which was done by function SoftenFloatResult. |
| 1288 | if (getTypeAction(Context&: *DAG.getContext(), VT: Op.getOperand(i: 0).getValueType()) == |
| 1289 | TargetLowering::TypeSoftenFloat) |
| 1290 | return SDValue(); |
| 1291 | SDValue Lo = |
| 1292 | DAG.getNode(Opcode: MipsISD::ExtractElementF64, DL, VT: MVT::i32, N1: Op.getOperand(i: 0), |
| 1293 | N2: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 1294 | SDValue Hi = |
| 1295 | DAG.getNode(Opcode: MipsISD::ExtractElementF64, DL, VT: MVT::i32, N1: Op.getOperand(i: 0), |
| 1296 | N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)); |
| 1297 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i64, N1: Lo, N2: Hi); |
| 1298 | } |
| 1299 | |
| 1300 | // Skip other cases of bitcast and use default lowering. |
| 1301 | return SDValue(); |
| 1302 | } |
| 1303 | |
| 1304 | SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc, |
| 1305 | bool HasLo, bool HasHi, |
| 1306 | SelectionDAG &DAG) const { |
| 1307 | // MIPS32r6/MIPS64r6 removed accumulator based multiplies. |
| 1308 | assert(!Subtarget.hasMips32r6()); |
| 1309 | |
| 1310 | EVT Ty = Op.getOperand(i: 0).getValueType(); |
| 1311 | SDLoc DL(Op); |
| 1312 | SDValue Mult = DAG.getNode(Opcode: NewOpc, DL, VT: MVT::Untyped, |
| 1313 | N1: Op.getOperand(i: 0), N2: Op.getOperand(i: 1)); |
| 1314 | SDValue Lo, Hi; |
| 1315 | |
| 1316 | if (HasLo) |
| 1317 | Lo = DAG.getNode(Opcode: MipsISD::MFLO, DL, VT: Ty, Operand: Mult); |
| 1318 | if (HasHi) |
| 1319 | Hi = DAG.getNode(Opcode: MipsISD::MFHI, DL, VT: Ty, Operand: Mult); |
| 1320 | |
| 1321 | if (!HasLo || !HasHi) |
| 1322 | return HasLo ? Lo : Hi; |
| 1323 | |
| 1324 | SDValue Vals[] = { Lo, Hi }; |
| 1325 | return DAG.getMergeValues(Ops: Vals, dl: DL); |
| 1326 | } |
| 1327 | |
| 1328 | static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) { |
| 1329 | SDValue InLo, InHi; |
| 1330 | std::tie(args&: InLo, args&: InHi) = DAG.SplitScalar(N: In, DL, LoVT: MVT::i32, HiVT: MVT::i32); |
| 1331 | return DAG.getNode(Opcode: MipsISD::MTLOHI, DL, VT: MVT::Untyped, N1: InLo, N2: InHi); |
| 1332 | } |
| 1333 | |
| 1334 | static SDValue (SDValue Op, const SDLoc &DL, SelectionDAG &DAG) { |
| 1335 | SDValue Lo = DAG.getNode(Opcode: MipsISD::MFLO, DL, VT: MVT::i32, Operand: Op); |
| 1336 | SDValue Hi = DAG.getNode(Opcode: MipsISD::MFHI, DL, VT: MVT::i32, Operand: Op); |
| 1337 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i64, N1: Lo, N2: Hi); |
| 1338 | } |
| 1339 | |
| 1340 | // This function expands mips intrinsic nodes which have 64-bit input operands |
| 1341 | // or output values. |
| 1342 | // |
| 1343 | // out64 = intrinsic-node in64 |
| 1344 | // => |
| 1345 | // lo = copy (extract-element (in64, 0)) |
| 1346 | // hi = copy (extract-element (in64, 1)) |
| 1347 | // mips-specific-node |
| 1348 | // v0 = copy lo |
| 1349 | // v1 = copy hi |
| 1350 | // out64 = merge-values (v0, v1) |
| 1351 | // |
| 1352 | static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { |
| 1353 | SDLoc DL(Op); |
| 1354 | bool HasChainIn = Op->getOperand(Num: 0).getValueType() == MVT::Other; |
| 1355 | SmallVector<SDValue, 3> Ops; |
| 1356 | unsigned OpNo = 0; |
| 1357 | |
| 1358 | // See if Op has a chain input. |
| 1359 | if (HasChainIn) |
| 1360 | Ops.push_back(Elt: Op->getOperand(Num: OpNo++)); |
| 1361 | |
| 1362 | // The next operand is the intrinsic opcode. |
| 1363 | assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant); |
| 1364 | |
| 1365 | // See if the next operand has type i64. |
| 1366 | SDValue Opnd = Op->getOperand(Num: ++OpNo), In64; |
| 1367 | |
| 1368 | if (Opnd.getValueType() == MVT::i64) |
| 1369 | In64 = initAccumulator(In: Opnd, DL, DAG); |
| 1370 | else |
| 1371 | Ops.push_back(Elt: Opnd); |
| 1372 | |
| 1373 | // Push the remaining operands. |
| 1374 | for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo) |
| 1375 | Ops.push_back(Elt: Op->getOperand(Num: OpNo)); |
| 1376 | |
| 1377 | // Add In64 to the end of the list. |
| 1378 | if (In64.getNode()) |
| 1379 | Ops.push_back(Elt: In64); |
| 1380 | |
| 1381 | // Scan output. |
| 1382 | SmallVector<EVT, 2> ResTys; |
| 1383 | |
| 1384 | for (EVT Ty : Op->values()) |
| 1385 | ResTys.push_back(Elt: (Ty == MVT::i64) ? MVT::Untyped : Ty); |
| 1386 | |
| 1387 | // Create node. |
| 1388 | SDValue Val = DAG.getNode(Opcode: Opc, DL, ResultTys: ResTys, Ops); |
| 1389 | SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Op: Val, DL, DAG) : Val; |
| 1390 | |
| 1391 | if (!HasChainIn) |
| 1392 | return Out; |
| 1393 | |
| 1394 | assert(Val->getValueType(1) == MVT::Other); |
| 1395 | SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) }; |
| 1396 | return DAG.getMergeValues(Ops: Vals, dl: DL); |
| 1397 | } |
| 1398 | |
| 1399 | // Lower an MSA copy intrinsic into the specified SelectionDAG node |
| 1400 | static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { |
| 1401 | SDLoc DL(Op); |
| 1402 | SDValue Vec = Op->getOperand(Num: 1); |
| 1403 | SDValue Idx = Op->getOperand(Num: 2); |
| 1404 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1405 | EVT EltTy = Vec->getValueType(ResNo: 0).getVectorElementType(); |
| 1406 | |
| 1407 | SDValue Result = DAG.getNode(Opcode: Opc, DL, VT: ResTy, N1: Vec, N2: Idx, |
| 1408 | N3: DAG.getValueType(EltTy)); |
| 1409 | |
| 1410 | return Result; |
| 1411 | } |
| 1412 | |
| 1413 | static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) { |
| 1414 | EVT ResVecTy = Op->getValueType(ResNo: 0); |
| 1415 | EVT ViaVecTy = ResVecTy; |
| 1416 | bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); |
| 1417 | SDLoc DL(Op); |
| 1418 | |
| 1419 | // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and |
| 1420 | // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating |
| 1421 | // lanes. |
| 1422 | SDValue LaneA = Op->getOperand(Num: OpNr); |
| 1423 | SDValue LaneB; |
| 1424 | |
| 1425 | if (ResVecTy == MVT::v2i64) { |
| 1426 | // In case of the index being passed as an immediate value, set the upper |
| 1427 | // lane to 0 so that the splati.d instruction can be matched. |
| 1428 | if (isa<ConstantSDNode>(Val: LaneA)) |
| 1429 | LaneB = DAG.getConstant(Val: 0, DL, VT: MVT::i32); |
| 1430 | // Having the index passed in a register, set the upper lane to the same |
| 1431 | // value as the lower - this results in the BUILD_VECTOR node not being |
| 1432 | // expanded through stack. This way we are able to pattern match the set of |
| 1433 | // nodes created here to splat.d. |
| 1434 | else |
| 1435 | LaneB = LaneA; |
| 1436 | ViaVecTy = MVT::v4i32; |
| 1437 | if(BigEndian) |
| 1438 | std::swap(a&: LaneA, b&: LaneB); |
| 1439 | } else |
| 1440 | LaneB = LaneA; |
| 1441 | |
| 1442 | SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, |
| 1443 | LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB }; |
| 1444 | |
| 1445 | SDValue Result = DAG.getBuildVector( |
| 1446 | VT: ViaVecTy, DL, Ops: ArrayRef(Ops, ViaVecTy.getVectorNumElements())); |
| 1447 | |
| 1448 | if (ViaVecTy != ResVecTy) { |
| 1449 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ViaVecTy); |
| 1450 | Result = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ResVecTy, |
| 1451 | Operand: DAG.getNode(Opcode: ISD::AND, DL, VT: ViaVecTy, N1: Result, N2: One)); |
| 1452 | } |
| 1453 | |
| 1454 | return Result; |
| 1455 | } |
| 1456 | |
| 1457 | static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, |
| 1458 | bool IsSigned = false) { |
| 1459 | auto *CImm = cast<ConstantSDNode>(Val: Op->getOperand(Num: ImmOp)); |
| 1460 | return DAG.getConstant( |
| 1461 | Val: APInt(Op->getValueType(ResNo: 0).getScalarType().getSizeInBits(), |
| 1462 | IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned), |
| 1463 | DL: SDLoc(Op), VT: Op->getValueType(ResNo: 0)); |
| 1464 | } |
| 1465 | |
| 1466 | static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue, |
| 1467 | bool BigEndian, SelectionDAG &DAG) { |
| 1468 | EVT ViaVecTy = VecTy; |
| 1469 | SDValue SplatValueA = SplatValue; |
| 1470 | SDValue SplatValueB = SplatValue; |
| 1471 | SDLoc DL(SplatValue); |
| 1472 | |
| 1473 | if (VecTy == MVT::v2i64) { |
| 1474 | // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's. |
| 1475 | ViaVecTy = MVT::v4i32; |
| 1476 | |
| 1477 | SplatValueA = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: SplatValue); |
| 1478 | SplatValueB = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: SplatValue, |
| 1479 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i32)); |
| 1480 | SplatValueB = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: SplatValueB); |
| 1481 | } |
| 1482 | |
| 1483 | // We currently hold the parts in little endian order. Swap them if |
| 1484 | // necessary. |
| 1485 | if (BigEndian) |
| 1486 | std::swap(a&: SplatValueA, b&: SplatValueB); |
| 1487 | |
| 1488 | SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB, |
| 1489 | SplatValueA, SplatValueB, SplatValueA, SplatValueB, |
| 1490 | SplatValueA, SplatValueB, SplatValueA, SplatValueB, |
| 1491 | SplatValueA, SplatValueB, SplatValueA, SplatValueB }; |
| 1492 | |
| 1493 | SDValue Result = DAG.getBuildVector( |
| 1494 | VT: ViaVecTy, DL, Ops: ArrayRef(Ops, ViaVecTy.getVectorNumElements())); |
| 1495 | |
| 1496 | if (VecTy != ViaVecTy) |
| 1497 | Result = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: VecTy, Operand: Result); |
| 1498 | |
| 1499 | return Result; |
| 1500 | } |
| 1501 | |
| 1502 | static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG, |
| 1503 | unsigned Opc, SDValue Imm, |
| 1504 | bool BigEndian) { |
| 1505 | EVT VecTy = Op->getValueType(ResNo: 0); |
| 1506 | SDValue Exp2Imm; |
| 1507 | SDLoc DL(Op); |
| 1508 | |
| 1509 | // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it |
| 1510 | // here for now. |
| 1511 | if (VecTy == MVT::v2i64) { |
| 1512 | if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Val&: Imm)) { |
| 1513 | APInt BitImm = APInt(64, 1) << CImm->getAPIntValue(); |
| 1514 | |
| 1515 | SDValue BitImmHiOp = DAG.getConstant(Val: BitImm.lshr(shiftAmt: 32).trunc(width: 32), DL, |
| 1516 | VT: MVT::i32); |
| 1517 | SDValue BitImmLoOp = DAG.getConstant(Val: BitImm.trunc(width: 32), DL, VT: MVT::i32); |
| 1518 | |
| 1519 | if (BigEndian) |
| 1520 | std::swap(a&: BitImmLoOp, b&: BitImmHiOp); |
| 1521 | |
| 1522 | Exp2Imm = DAG.getNode( |
| 1523 | Opcode: ISD::BITCAST, DL, VT: MVT::v2i64, |
| 1524 | Operand: DAG.getBuildVector(VT: MVT::v4i32, DL, |
| 1525 | Ops: {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp})); |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | if (!Exp2Imm.getNode()) { |
| 1530 | // We couldnt constant fold, do a vector shift instead |
| 1531 | |
| 1532 | // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since |
| 1533 | // only values 0-63 are valid. |
| 1534 | if (VecTy == MVT::v2i64) |
| 1535 | Imm = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i64, Operand: Imm); |
| 1536 | |
| 1537 | Exp2Imm = getBuildVectorSplat(VecTy, SplatValue: Imm, BigEndian, DAG); |
| 1538 | |
| 1539 | Exp2Imm = DAG.getNode(Opcode: ISD::SHL, DL, VT: VecTy, N1: DAG.getConstant(Val: 1, DL, VT: VecTy), |
| 1540 | N2: Exp2Imm); |
| 1541 | } |
| 1542 | |
| 1543 | return DAG.getNode(Opcode: Opc, DL, VT: VecTy, N1: Op->getOperand(Num: 1), N2: Exp2Imm); |
| 1544 | } |
| 1545 | |
| 1546 | static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) { |
| 1547 | SDLoc DL(Op); |
| 1548 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1549 | SDValue Vec = Op->getOperand(Num: 2); |
| 1550 | bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); |
| 1551 | MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32; |
| 1552 | SDValue ConstValue = DAG.getConstant(Val: Vec.getScalarValueSizeInBits() - 1, |
| 1553 | DL, VT: ResEltTy); |
| 1554 | SDValue SplatVec = getBuildVectorSplat(VecTy: ResTy, SplatValue: ConstValue, BigEndian, DAG); |
| 1555 | |
| 1556 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Vec, N2: SplatVec); |
| 1557 | } |
| 1558 | |
| 1559 | static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) { |
| 1560 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1561 | SDLoc DL(Op); |
| 1562 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ResTy); |
| 1563 | SDValue Bit = DAG.getNode(Opcode: ISD::SHL, DL, VT: ResTy, N1: One, N2: truncateVecElts(Op, DAG)); |
| 1564 | |
| 1565 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Op->getOperand(Num: 1), |
| 1566 | N2: DAG.getNOT(DL, Val: Bit, VT: ResTy)); |
| 1567 | } |
| 1568 | |
| 1569 | static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) { |
| 1570 | SDLoc DL(Op); |
| 1571 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1572 | APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) |
| 1573 | << Op->getConstantOperandAPInt(Num: 2); |
| 1574 | SDValue BitMask = DAG.getConstant(Val: ~BitImm, DL, VT: ResTy); |
| 1575 | |
| 1576 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Op->getOperand(Num: 1), N2: BitMask); |
| 1577 | } |
| 1578 | |
| 1579 | SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, |
| 1580 | SelectionDAG &DAG) const { |
| 1581 | SDLoc DL(Op); |
| 1582 | unsigned Intrinsic = Op->getConstantOperandVal(Num: 0); |
| 1583 | switch (Intrinsic) { |
| 1584 | default: |
| 1585 | return SDValue(); |
| 1586 | case Intrinsic::mips_shilo: |
| 1587 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::SHILO); |
| 1588 | case Intrinsic::mips_dpau_h_qbl: |
| 1589 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAU_H_QBL); |
| 1590 | case Intrinsic::mips_dpau_h_qbr: |
| 1591 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAU_H_QBR); |
| 1592 | case Intrinsic::mips_dpsu_h_qbl: |
| 1593 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSU_H_QBL); |
| 1594 | case Intrinsic::mips_dpsu_h_qbr: |
| 1595 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSU_H_QBR); |
| 1596 | case Intrinsic::mips_dpa_w_ph: |
| 1597 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPA_W_PH); |
| 1598 | case Intrinsic::mips_dps_w_ph: |
| 1599 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPS_W_PH); |
| 1600 | case Intrinsic::mips_dpax_w_ph: |
| 1601 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAX_W_PH); |
| 1602 | case Intrinsic::mips_dpsx_w_ph: |
| 1603 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSX_W_PH); |
| 1604 | case Intrinsic::mips_mulsa_w_ph: |
| 1605 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MULSA_W_PH); |
| 1606 | case Intrinsic::mips_mult: |
| 1607 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::Mult); |
| 1608 | case Intrinsic::mips_multu: |
| 1609 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::Multu); |
| 1610 | case Intrinsic::mips_madd: |
| 1611 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAdd); |
| 1612 | case Intrinsic::mips_maddu: |
| 1613 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAddu); |
| 1614 | case Intrinsic::mips_msub: |
| 1615 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MSub); |
| 1616 | case Intrinsic::mips_msubu: |
| 1617 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MSubu); |
| 1618 | case Intrinsic::mips_addv_b: |
| 1619 | case Intrinsic::mips_addv_h: |
| 1620 | case Intrinsic::mips_addv_w: |
| 1621 | case Intrinsic::mips_addv_d: |
| 1622 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1623 | N2: Op->getOperand(Num: 2)); |
| 1624 | case Intrinsic::mips_addvi_b: |
| 1625 | case Intrinsic::mips_addvi_h: |
| 1626 | case Intrinsic::mips_addvi_w: |
| 1627 | case Intrinsic::mips_addvi_d: |
| 1628 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1629 | N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 1630 | case Intrinsic::mips_and_v: |
| 1631 | return DAG.getNode(Opcode: ISD::AND, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1632 | N2: Op->getOperand(Num: 2)); |
| 1633 | case Intrinsic::mips_andi_b: |
| 1634 | return DAG.getNode(Opcode: ISD::AND, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1635 | N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 1636 | case Intrinsic::mips_bclr_b: |
| 1637 | case Intrinsic::mips_bclr_h: |
| 1638 | case Intrinsic::mips_bclr_w: |
| 1639 | case Intrinsic::mips_bclr_d: |
| 1640 | return lowerMSABitClear(Op, DAG); |
| 1641 | case Intrinsic::mips_bclri_b: |
| 1642 | case Intrinsic::mips_bclri_h: |
| 1643 | case Intrinsic::mips_bclri_w: |
| 1644 | case Intrinsic::mips_bclri_d: |
| 1645 | return lowerMSABitClearImm(Op, DAG); |
| 1646 | case Intrinsic::mips_binsli_b: |
| 1647 | case Intrinsic::mips_binsli_h: |
| 1648 | case Intrinsic::mips_binsli_w: |
| 1649 | case Intrinsic::mips_binsli_d: { |
| 1650 | // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear) |
| 1651 | EVT VecTy = Op->getValueType(ResNo: 0); |
| 1652 | EVT EltTy = VecTy.getVectorElementType(); |
| 1653 | if (Op->getConstantOperandVal(Num: 3) >= EltTy.getSizeInBits()) |
| 1654 | report_fatal_error(reason: "Immediate out of range" ); |
| 1655 | APInt Mask = APInt::getHighBitsSet(numBits: EltTy.getSizeInBits(), |
| 1656 | hiBitsSet: Op->getConstantOperandVal(Num: 3) + 1); |
| 1657 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: VecTy, |
| 1658 | N1: DAG.getConstant(Val: Mask, DL, VT: VecTy, isTarget: true), |
| 1659 | N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 1)); |
| 1660 | } |
| 1661 | case Intrinsic::mips_binsri_b: |
| 1662 | case Intrinsic::mips_binsri_h: |
| 1663 | case Intrinsic::mips_binsri_w: |
| 1664 | case Intrinsic::mips_binsri_d: { |
| 1665 | // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear) |
| 1666 | EVT VecTy = Op->getValueType(ResNo: 0); |
| 1667 | EVT EltTy = VecTy.getVectorElementType(); |
| 1668 | if (Op->getConstantOperandVal(Num: 3) >= EltTy.getSizeInBits()) |
| 1669 | report_fatal_error(reason: "Immediate out of range" ); |
| 1670 | APInt Mask = APInt::getLowBitsSet(numBits: EltTy.getSizeInBits(), |
| 1671 | loBitsSet: Op->getConstantOperandVal(Num: 3) + 1); |
| 1672 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: VecTy, |
| 1673 | N1: DAG.getConstant(Val: Mask, DL, VT: VecTy, isTarget: true), |
| 1674 | N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 1)); |
| 1675 | } |
| 1676 | case Intrinsic::mips_bmnz_v: |
| 1677 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 3), |
| 1678 | N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 1)); |
| 1679 | case Intrinsic::mips_bmnzi_b: |
| 1680 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), |
| 1681 | N1: lowerMSASplatImm(Op, ImmOp: 3, DAG), N2: Op->getOperand(Num: 2), |
| 1682 | N3: Op->getOperand(Num: 1)); |
| 1683 | case Intrinsic::mips_bmz_v: |
| 1684 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 3), |
| 1685 | N2: Op->getOperand(Num: 1), N3: Op->getOperand(Num: 2)); |
| 1686 | case Intrinsic::mips_bmzi_b: |
| 1687 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), |
| 1688 | N1: lowerMSASplatImm(Op, ImmOp: 3, DAG), N2: Op->getOperand(Num: 1), |
| 1689 | N3: Op->getOperand(Num: 2)); |
| 1690 | case Intrinsic::mips_bneg_b: |
| 1691 | case Intrinsic::mips_bneg_h: |
| 1692 | case Intrinsic::mips_bneg_w: |
| 1693 | case Intrinsic::mips_bneg_d: { |
| 1694 | EVT VecTy = Op->getValueType(ResNo: 0); |
| 1695 | SDValue One = DAG.getConstant(Val: 1, DL, VT: VecTy); |
| 1696 | |
| 1697 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: VecTy, N1: Op->getOperand(Num: 1), |
| 1698 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: VecTy, N1: One, |
| 1699 | N2: truncateVecElts(Op, DAG))); |
| 1700 | } |
| 1701 | case Intrinsic::mips_bnegi_b: |
| 1702 | case Intrinsic::mips_bnegi_h: |
| 1703 | case Intrinsic::mips_bnegi_w: |
| 1704 | case Intrinsic::mips_bnegi_d: |
| 1705 | return lowerMSABinaryBitImmIntr(Op, DAG, Opc: ISD::XOR, Imm: Op->getOperand(Num: 2), |
| 1706 | BigEndian: !Subtarget.isLittle()); |
| 1707 | case Intrinsic::mips_bnz_b: |
| 1708 | case Intrinsic::mips_bnz_h: |
| 1709 | case Intrinsic::mips_bnz_w: |
| 1710 | case Intrinsic::mips_bnz_d: |
| 1711 | return DAG.getNode(Opcode: MipsISD::VALL_NONZERO, DL, VT: Op->getValueType(ResNo: 0), |
| 1712 | Operand: Op->getOperand(Num: 1)); |
| 1713 | case Intrinsic::mips_bnz_v: |
| 1714 | return DAG.getNode(Opcode: MipsISD::VANY_NONZERO, DL, VT: Op->getValueType(ResNo: 0), |
| 1715 | Operand: Op->getOperand(Num: 1)); |
| 1716 | case Intrinsic::mips_bsel_v: |
| 1717 | // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) |
| 1718 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), |
| 1719 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 3), |
| 1720 | N3: Op->getOperand(Num: 2)); |
| 1721 | case Intrinsic::mips_bseli_b: |
| 1722 | // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) |
| 1723 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: Op->getValueType(ResNo: 0), |
| 1724 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 3, DAG), |
| 1725 | N3: Op->getOperand(Num: 2)); |
| 1726 | case Intrinsic::mips_bset_b: |
| 1727 | case Intrinsic::mips_bset_h: |
| 1728 | case Intrinsic::mips_bset_w: |
| 1729 | case Intrinsic::mips_bset_d: { |
| 1730 | EVT VecTy = Op->getValueType(ResNo: 0); |
| 1731 | SDValue One = DAG.getConstant(Val: 1, DL, VT: VecTy); |
| 1732 | |
| 1733 | return DAG.getNode(Opcode: ISD::OR, DL, VT: VecTy, N1: Op->getOperand(Num: 1), |
| 1734 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: VecTy, N1: One, |
| 1735 | N2: truncateVecElts(Op, DAG))); |
| 1736 | } |
| 1737 | case Intrinsic::mips_bseti_b: |
| 1738 | case Intrinsic::mips_bseti_h: |
| 1739 | case Intrinsic::mips_bseti_w: |
| 1740 | case Intrinsic::mips_bseti_d: |
| 1741 | return lowerMSABinaryBitImmIntr(Op, DAG, Opc: ISD::OR, Imm: Op->getOperand(Num: 2), |
| 1742 | BigEndian: !Subtarget.isLittle()); |
| 1743 | case Intrinsic::mips_bz_b: |
| 1744 | case Intrinsic::mips_bz_h: |
| 1745 | case Intrinsic::mips_bz_w: |
| 1746 | case Intrinsic::mips_bz_d: |
| 1747 | return DAG.getNode(Opcode: MipsISD::VALL_ZERO, DL, VT: Op->getValueType(ResNo: 0), |
| 1748 | Operand: Op->getOperand(Num: 1)); |
| 1749 | case Intrinsic::mips_bz_v: |
| 1750 | return DAG.getNode(Opcode: MipsISD::VANY_ZERO, DL, VT: Op->getValueType(ResNo: 0), |
| 1751 | Operand: Op->getOperand(Num: 1)); |
| 1752 | case Intrinsic::mips_ceq_b: |
| 1753 | case Intrinsic::mips_ceq_h: |
| 1754 | case Intrinsic::mips_ceq_w: |
| 1755 | case Intrinsic::mips_ceq_d: |
| 1756 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1757 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETEQ); |
| 1758 | case Intrinsic::mips_ceqi_b: |
| 1759 | case Intrinsic::mips_ceqi_h: |
| 1760 | case Intrinsic::mips_ceqi_w: |
| 1761 | case Intrinsic::mips_ceqi_d: |
| 1762 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1763 | RHS: lowerMSASplatImm(Op, ImmOp: 2, DAG, IsSigned: true), Cond: ISD::SETEQ); |
| 1764 | case Intrinsic::mips_cle_s_b: |
| 1765 | case Intrinsic::mips_cle_s_h: |
| 1766 | case Intrinsic::mips_cle_s_w: |
| 1767 | case Intrinsic::mips_cle_s_d: |
| 1768 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1769 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETLE); |
| 1770 | case Intrinsic::mips_clei_s_b: |
| 1771 | case Intrinsic::mips_clei_s_h: |
| 1772 | case Intrinsic::mips_clei_s_w: |
| 1773 | case Intrinsic::mips_clei_s_d: |
| 1774 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1775 | RHS: lowerMSASplatImm(Op, ImmOp: 2, DAG, IsSigned: true), Cond: ISD::SETLE); |
| 1776 | case Intrinsic::mips_cle_u_b: |
| 1777 | case Intrinsic::mips_cle_u_h: |
| 1778 | case Intrinsic::mips_cle_u_w: |
| 1779 | case Intrinsic::mips_cle_u_d: |
| 1780 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1781 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETULE); |
| 1782 | case Intrinsic::mips_clei_u_b: |
| 1783 | case Intrinsic::mips_clei_u_h: |
| 1784 | case Intrinsic::mips_clei_u_w: |
| 1785 | case Intrinsic::mips_clei_u_d: |
| 1786 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1787 | RHS: lowerMSASplatImm(Op, ImmOp: 2, DAG), Cond: ISD::SETULE); |
| 1788 | case Intrinsic::mips_clt_s_b: |
| 1789 | case Intrinsic::mips_clt_s_h: |
| 1790 | case Intrinsic::mips_clt_s_w: |
| 1791 | case Intrinsic::mips_clt_s_d: |
| 1792 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1793 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETLT); |
| 1794 | case Intrinsic::mips_clti_s_b: |
| 1795 | case Intrinsic::mips_clti_s_h: |
| 1796 | case Intrinsic::mips_clti_s_w: |
| 1797 | case Intrinsic::mips_clti_s_d: |
| 1798 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1799 | RHS: lowerMSASplatImm(Op, ImmOp: 2, DAG, IsSigned: true), Cond: ISD::SETLT); |
| 1800 | case Intrinsic::mips_clt_u_b: |
| 1801 | case Intrinsic::mips_clt_u_h: |
| 1802 | case Intrinsic::mips_clt_u_w: |
| 1803 | case Intrinsic::mips_clt_u_d: |
| 1804 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1805 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETULT); |
| 1806 | case Intrinsic::mips_clti_u_b: |
| 1807 | case Intrinsic::mips_clti_u_h: |
| 1808 | case Intrinsic::mips_clti_u_w: |
| 1809 | case Intrinsic::mips_clti_u_d: |
| 1810 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1811 | RHS: lowerMSASplatImm(Op, ImmOp: 2, DAG), Cond: ISD::SETULT); |
| 1812 | case Intrinsic::mips_copy_s_b: |
| 1813 | case Intrinsic::mips_copy_s_h: |
| 1814 | case Intrinsic::mips_copy_s_w: |
| 1815 | return lowerMSACopyIntr(Op, DAG, Opc: MipsISD::VEXTRACT_SEXT_ELT); |
| 1816 | case Intrinsic::mips_copy_s_d: |
| 1817 | if (Subtarget.hasMips64()) |
| 1818 | // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64. |
| 1819 | return lowerMSACopyIntr(Op, DAG, Opc: MipsISD::VEXTRACT_SEXT_ELT); |
| 1820 | else { |
| 1821 | // Lower into the generic EXTRACT_VECTOR_ELT node and let the type |
| 1822 | // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. |
| 1823 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(Op), |
| 1824 | VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1825 | N2: Op->getOperand(Num: 2)); |
| 1826 | } |
| 1827 | case Intrinsic::mips_copy_u_b: |
| 1828 | case Intrinsic::mips_copy_u_h: |
| 1829 | case Intrinsic::mips_copy_u_w: |
| 1830 | return lowerMSACopyIntr(Op, DAG, Opc: MipsISD::VEXTRACT_ZEXT_ELT); |
| 1831 | case Intrinsic::mips_copy_u_d: |
| 1832 | if (Subtarget.hasMips64()) |
| 1833 | // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64. |
| 1834 | return lowerMSACopyIntr(Op, DAG, Opc: MipsISD::VEXTRACT_ZEXT_ELT); |
| 1835 | else { |
| 1836 | // Lower into the generic EXTRACT_VECTOR_ELT node and let the type |
| 1837 | // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. |
| 1838 | // Note: When i64 is illegal, this results in copy_s.w instructions |
| 1839 | // instead of copy_u.w instructions. This makes no difference to the |
| 1840 | // behaviour since i64 is only illegal when the register file is 32-bit. |
| 1841 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SDLoc(Op), |
| 1842 | VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1843 | N2: Op->getOperand(Num: 2)); |
| 1844 | } |
| 1845 | case Intrinsic::mips_div_s_b: |
| 1846 | case Intrinsic::mips_div_s_h: |
| 1847 | case Intrinsic::mips_div_s_w: |
| 1848 | case Intrinsic::mips_div_s_d: |
| 1849 | return DAG.getNode(Opcode: ISD::SDIV, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1850 | N2: Op->getOperand(Num: 2)); |
| 1851 | case Intrinsic::mips_div_u_b: |
| 1852 | case Intrinsic::mips_div_u_h: |
| 1853 | case Intrinsic::mips_div_u_w: |
| 1854 | case Intrinsic::mips_div_u_d: |
| 1855 | return DAG.getNode(Opcode: ISD::UDIV, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1856 | N2: Op->getOperand(Num: 2)); |
| 1857 | case Intrinsic::mips_fadd_w: |
| 1858 | case Intrinsic::mips_fadd_d: |
| 1859 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1860 | return DAG.getNode(Opcode: ISD::FADD, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1861 | N2: Op->getOperand(Num: 2)); |
| 1862 | // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away |
| 1863 | case Intrinsic::mips_fceq_w: |
| 1864 | case Intrinsic::mips_fceq_d: |
| 1865 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1866 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETOEQ); |
| 1867 | case Intrinsic::mips_fcle_w: |
| 1868 | case Intrinsic::mips_fcle_d: |
| 1869 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1870 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETOLE); |
| 1871 | case Intrinsic::mips_fclt_w: |
| 1872 | case Intrinsic::mips_fclt_d: |
| 1873 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1874 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETOLT); |
| 1875 | case Intrinsic::mips_fcne_w: |
| 1876 | case Intrinsic::mips_fcne_d: |
| 1877 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1878 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETONE); |
| 1879 | case Intrinsic::mips_fcor_w: |
| 1880 | case Intrinsic::mips_fcor_d: |
| 1881 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1882 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETO); |
| 1883 | case Intrinsic::mips_fcueq_w: |
| 1884 | case Intrinsic::mips_fcueq_d: |
| 1885 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1886 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETUEQ); |
| 1887 | case Intrinsic::mips_fcule_w: |
| 1888 | case Intrinsic::mips_fcule_d: |
| 1889 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1890 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETULE); |
| 1891 | case Intrinsic::mips_fcult_w: |
| 1892 | case Intrinsic::mips_fcult_d: |
| 1893 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1894 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETULT); |
| 1895 | case Intrinsic::mips_fcun_w: |
| 1896 | case Intrinsic::mips_fcun_d: |
| 1897 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1898 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETUO); |
| 1899 | case Intrinsic::mips_fcune_w: |
| 1900 | case Intrinsic::mips_fcune_d: |
| 1901 | return DAG.getSetCC(DL, VT: Op->getValueType(ResNo: 0), LHS: Op->getOperand(Num: 1), |
| 1902 | RHS: Op->getOperand(Num: 2), Cond: ISD::SETUNE); |
| 1903 | case Intrinsic::mips_fdiv_w: |
| 1904 | case Intrinsic::mips_fdiv_d: |
| 1905 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1906 | return DAG.getNode(Opcode: ISD::FDIV, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1907 | N2: Op->getOperand(Num: 2)); |
| 1908 | case Intrinsic::mips_ffint_u_w: |
| 1909 | case Intrinsic::mips_ffint_u_d: |
| 1910 | return DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: Op->getValueType(ResNo: 0), |
| 1911 | Operand: Op->getOperand(Num: 1)); |
| 1912 | case Intrinsic::mips_ffint_s_w: |
| 1913 | case Intrinsic::mips_ffint_s_d: |
| 1914 | return DAG.getNode(Opcode: ISD::SINT_TO_FP, DL, VT: Op->getValueType(ResNo: 0), |
| 1915 | Operand: Op->getOperand(Num: 1)); |
| 1916 | case Intrinsic::mips_fill_b: |
| 1917 | case Intrinsic::mips_fill_h: |
| 1918 | case Intrinsic::mips_fill_w: |
| 1919 | case Intrinsic::mips_fill_d: { |
| 1920 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1921 | SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(), |
| 1922 | Op->getOperand(Num: 1)); |
| 1923 | |
| 1924 | // If ResTy is v2i64 then the type legalizer will break this node down into |
| 1925 | // an equivalent v4i32. |
| 1926 | return DAG.getBuildVector(VT: ResTy, DL, Ops); |
| 1927 | } |
| 1928 | case Intrinsic::mips_fexp2_w: |
| 1929 | case Intrinsic::mips_fexp2_d: { |
| 1930 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1931 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1932 | return DAG.getNode( |
| 1933 | Opcode: ISD::FMUL, DL: SDLoc(Op), VT: ResTy, N1: Op->getOperand(Num: 1), |
| 1934 | N2: DAG.getNode(Opcode: ISD::FEXP2, DL: SDLoc(Op), VT: ResTy, Operand: Op->getOperand(Num: 2))); |
| 1935 | } |
| 1936 | case Intrinsic::mips_flog2_w: |
| 1937 | case Intrinsic::mips_flog2_d: |
| 1938 | return DAG.getNode(Opcode: ISD::FLOG2, DL, VT: Op->getValueType(ResNo: 0), Operand: Op->getOperand(Num: 1)); |
| 1939 | case Intrinsic::mips_fmadd_w: |
| 1940 | case Intrinsic::mips_fmadd_d: |
| 1941 | return DAG.getNode(Opcode: ISD::FMA, DL: SDLoc(Op), VT: Op->getValueType(ResNo: 0), |
| 1942 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 3)); |
| 1943 | case Intrinsic::mips_fmul_w: |
| 1944 | case Intrinsic::mips_fmul_d: |
| 1945 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1946 | return DAG.getNode(Opcode: ISD::FMUL, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1947 | N2: Op->getOperand(Num: 2)); |
| 1948 | case Intrinsic::mips_fmsub_w: |
| 1949 | case Intrinsic::mips_fmsub_d: { |
| 1950 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1951 | return DAG.getNode(Opcode: MipsISD::FMS, DL: SDLoc(Op), VT: Op->getValueType(ResNo: 0), |
| 1952 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 3)); |
| 1953 | } |
| 1954 | case Intrinsic::mips_frint_w: |
| 1955 | case Intrinsic::mips_frint_d: |
| 1956 | return DAG.getNode(Opcode: ISD::FRINT, DL, VT: Op->getValueType(ResNo: 0), Operand: Op->getOperand(Num: 1)); |
| 1957 | case Intrinsic::mips_fsqrt_w: |
| 1958 | case Intrinsic::mips_fsqrt_d: |
| 1959 | return DAG.getNode(Opcode: ISD::FSQRT, DL, VT: Op->getValueType(ResNo: 0), Operand: Op->getOperand(Num: 1)); |
| 1960 | case Intrinsic::mips_fsub_w: |
| 1961 | case Intrinsic::mips_fsub_d: |
| 1962 | // TODO: If intrinsics have fast-math-flags, propagate them. |
| 1963 | return DAG.getNode(Opcode: ISD::FSUB, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 1964 | N2: Op->getOperand(Num: 2)); |
| 1965 | case Intrinsic::mips_ftrunc_u_w: |
| 1966 | case Intrinsic::mips_ftrunc_u_d: |
| 1967 | return DAG.getNode(Opcode: ISD::FP_TO_UINT, DL, VT: Op->getValueType(ResNo: 0), |
| 1968 | Operand: Op->getOperand(Num: 1)); |
| 1969 | case Intrinsic::mips_ftrunc_s_w: |
| 1970 | case Intrinsic::mips_ftrunc_s_d: |
| 1971 | return DAG.getNode(Opcode: ISD::FP_TO_SINT, DL, VT: Op->getValueType(ResNo: 0), |
| 1972 | Operand: Op->getOperand(Num: 1)); |
| 1973 | case Intrinsic::mips_ilvev_b: |
| 1974 | case Intrinsic::mips_ilvev_h: |
| 1975 | case Intrinsic::mips_ilvev_w: |
| 1976 | case Intrinsic::mips_ilvev_d: |
| 1977 | return DAG.getNode(Opcode: MipsISD::ILVEV, DL, VT: Op->getValueType(ResNo: 0), |
| 1978 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 1979 | case Intrinsic::mips_ilvl_b: |
| 1980 | case Intrinsic::mips_ilvl_h: |
| 1981 | case Intrinsic::mips_ilvl_w: |
| 1982 | case Intrinsic::mips_ilvl_d: |
| 1983 | return DAG.getNode(Opcode: MipsISD::ILVL, DL, VT: Op->getValueType(ResNo: 0), |
| 1984 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 1985 | case Intrinsic::mips_ilvod_b: |
| 1986 | case Intrinsic::mips_ilvod_h: |
| 1987 | case Intrinsic::mips_ilvod_w: |
| 1988 | case Intrinsic::mips_ilvod_d: |
| 1989 | return DAG.getNode(Opcode: MipsISD::ILVOD, DL, VT: Op->getValueType(ResNo: 0), |
| 1990 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 1991 | case Intrinsic::mips_ilvr_b: |
| 1992 | case Intrinsic::mips_ilvr_h: |
| 1993 | case Intrinsic::mips_ilvr_w: |
| 1994 | case Intrinsic::mips_ilvr_d: |
| 1995 | return DAG.getNode(Opcode: MipsISD::ILVR, DL, VT: Op->getValueType(ResNo: 0), |
| 1996 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 1997 | case Intrinsic::mips_insert_b: |
| 1998 | case Intrinsic::mips_insert_h: |
| 1999 | case Intrinsic::mips_insert_w: |
| 2000 | case Intrinsic::mips_insert_d: |
| 2001 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(Op), VT: Op->getValueType(ResNo: 0), |
| 2002 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 3), N3: Op->getOperand(Num: 2)); |
| 2003 | case Intrinsic::mips_insve_b: |
| 2004 | case Intrinsic::mips_insve_h: |
| 2005 | case Intrinsic::mips_insve_w: |
| 2006 | case Intrinsic::mips_insve_d: { |
| 2007 | // Report an error for out of range values. |
| 2008 | int64_t Max; |
| 2009 | switch (Intrinsic) { |
| 2010 | case Intrinsic::mips_insve_b: Max = 15; break; |
| 2011 | case Intrinsic::mips_insve_h: Max = 7; break; |
| 2012 | case Intrinsic::mips_insve_w: Max = 3; break; |
| 2013 | case Intrinsic::mips_insve_d: Max = 1; break; |
| 2014 | default: llvm_unreachable("Unmatched intrinsic" ); |
| 2015 | } |
| 2016 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 2))->getSExtValue(); |
| 2017 | if (Value < 0 || Value > Max) |
| 2018 | report_fatal_error(reason: "Immediate out of range" ); |
| 2019 | return DAG.getNode(Opcode: MipsISD::INSVE, DL, VT: Op->getValueType(ResNo: 0), |
| 2020 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 3), |
| 2021 | N4: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 2022 | } |
| 2023 | case Intrinsic::mips_ldi_b: |
| 2024 | case Intrinsic::mips_ldi_h: |
| 2025 | case Intrinsic::mips_ldi_w: |
| 2026 | case Intrinsic::mips_ldi_d: |
| 2027 | return lowerMSASplatImm(Op, ImmOp: 1, DAG, IsSigned: true); |
| 2028 | case Intrinsic::mips_lsa: |
| 2029 | case Intrinsic::mips_dlsa: { |
| 2030 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2031 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: ResTy, N1: Op->getOperand(Num: 1), |
| 2032 | N2: DAG.getNode(Opcode: ISD::SHL, DL: SDLoc(Op), VT: ResTy, |
| 2033 | N1: Op->getOperand(Num: 2), N2: Op->getOperand(Num: 3))); |
| 2034 | } |
| 2035 | case Intrinsic::mips_maddv_b: |
| 2036 | case Intrinsic::mips_maddv_h: |
| 2037 | case Intrinsic::mips_maddv_w: |
| 2038 | case Intrinsic::mips_maddv_d: { |
| 2039 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2040 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(Op), VT: ResTy, N1: Op->getOperand(Num: 1), |
| 2041 | N2: DAG.getNode(Opcode: ISD::MUL, DL: SDLoc(Op), VT: ResTy, |
| 2042 | N1: Op->getOperand(Num: 2), N2: Op->getOperand(Num: 3))); |
| 2043 | } |
| 2044 | case Intrinsic::mips_max_s_b: |
| 2045 | case Intrinsic::mips_max_s_h: |
| 2046 | case Intrinsic::mips_max_s_w: |
| 2047 | case Intrinsic::mips_max_s_d: |
| 2048 | return DAG.getNode(Opcode: ISD::SMAX, DL, VT: Op->getValueType(ResNo: 0), |
| 2049 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2050 | case Intrinsic::mips_max_u_b: |
| 2051 | case Intrinsic::mips_max_u_h: |
| 2052 | case Intrinsic::mips_max_u_w: |
| 2053 | case Intrinsic::mips_max_u_d: |
| 2054 | return DAG.getNode(Opcode: ISD::UMAX, DL, VT: Op->getValueType(ResNo: 0), |
| 2055 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2056 | case Intrinsic::mips_maxi_s_b: |
| 2057 | case Intrinsic::mips_maxi_s_h: |
| 2058 | case Intrinsic::mips_maxi_s_w: |
| 2059 | case Intrinsic::mips_maxi_s_d: |
| 2060 | return DAG.getNode(Opcode: ISD::SMAX, DL, VT: Op->getValueType(ResNo: 0), |
| 2061 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG, IsSigned: true)); |
| 2062 | case Intrinsic::mips_maxi_u_b: |
| 2063 | case Intrinsic::mips_maxi_u_h: |
| 2064 | case Intrinsic::mips_maxi_u_w: |
| 2065 | case Intrinsic::mips_maxi_u_d: |
| 2066 | return DAG.getNode(Opcode: ISD::UMAX, DL, VT: Op->getValueType(ResNo: 0), |
| 2067 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2068 | case Intrinsic::mips_min_s_b: |
| 2069 | case Intrinsic::mips_min_s_h: |
| 2070 | case Intrinsic::mips_min_s_w: |
| 2071 | case Intrinsic::mips_min_s_d: |
| 2072 | return DAG.getNode(Opcode: ISD::SMIN, DL, VT: Op->getValueType(ResNo: 0), |
| 2073 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2074 | case Intrinsic::mips_min_u_b: |
| 2075 | case Intrinsic::mips_min_u_h: |
| 2076 | case Intrinsic::mips_min_u_w: |
| 2077 | case Intrinsic::mips_min_u_d: |
| 2078 | return DAG.getNode(Opcode: ISD::UMIN, DL, VT: Op->getValueType(ResNo: 0), |
| 2079 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2080 | case Intrinsic::mips_mini_s_b: |
| 2081 | case Intrinsic::mips_mini_s_h: |
| 2082 | case Intrinsic::mips_mini_s_w: |
| 2083 | case Intrinsic::mips_mini_s_d: |
| 2084 | return DAG.getNode(Opcode: ISD::SMIN, DL, VT: Op->getValueType(ResNo: 0), |
| 2085 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG, IsSigned: true)); |
| 2086 | case Intrinsic::mips_mini_u_b: |
| 2087 | case Intrinsic::mips_mini_u_h: |
| 2088 | case Intrinsic::mips_mini_u_w: |
| 2089 | case Intrinsic::mips_mini_u_d: |
| 2090 | return DAG.getNode(Opcode: ISD::UMIN, DL, VT: Op->getValueType(ResNo: 0), |
| 2091 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2092 | case Intrinsic::mips_mod_s_b: |
| 2093 | case Intrinsic::mips_mod_s_h: |
| 2094 | case Intrinsic::mips_mod_s_w: |
| 2095 | case Intrinsic::mips_mod_s_d: |
| 2096 | return DAG.getNode(Opcode: ISD::SREM, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2097 | N2: Op->getOperand(Num: 2)); |
| 2098 | case Intrinsic::mips_mod_u_b: |
| 2099 | case Intrinsic::mips_mod_u_h: |
| 2100 | case Intrinsic::mips_mod_u_w: |
| 2101 | case Intrinsic::mips_mod_u_d: |
| 2102 | return DAG.getNode(Opcode: ISD::UREM, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2103 | N2: Op->getOperand(Num: 2)); |
| 2104 | case Intrinsic::mips_mulv_b: |
| 2105 | case Intrinsic::mips_mulv_h: |
| 2106 | case Intrinsic::mips_mulv_w: |
| 2107 | case Intrinsic::mips_mulv_d: |
| 2108 | return DAG.getNode(Opcode: ISD::MUL, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2109 | N2: Op->getOperand(Num: 2)); |
| 2110 | case Intrinsic::mips_msubv_b: |
| 2111 | case Intrinsic::mips_msubv_h: |
| 2112 | case Intrinsic::mips_msubv_w: |
| 2113 | case Intrinsic::mips_msubv_d: { |
| 2114 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2115 | return DAG.getNode(Opcode: ISD::SUB, DL: SDLoc(Op), VT: ResTy, N1: Op->getOperand(Num: 1), |
| 2116 | N2: DAG.getNode(Opcode: ISD::MUL, DL: SDLoc(Op), VT: ResTy, |
| 2117 | N1: Op->getOperand(Num: 2), N2: Op->getOperand(Num: 3))); |
| 2118 | } |
| 2119 | case Intrinsic::mips_nlzc_b: |
| 2120 | case Intrinsic::mips_nlzc_h: |
| 2121 | case Intrinsic::mips_nlzc_w: |
| 2122 | case Intrinsic::mips_nlzc_d: |
| 2123 | return DAG.getNode(Opcode: ISD::CTLZ, DL, VT: Op->getValueType(ResNo: 0), Operand: Op->getOperand(Num: 1)); |
| 2124 | case Intrinsic::mips_nor_v: { |
| 2125 | SDValue Res = DAG.getNode(Opcode: ISD::OR, DL, VT: Op->getValueType(ResNo: 0), |
| 2126 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2127 | return DAG.getNOT(DL, Val: Res, VT: Res->getValueType(ResNo: 0)); |
| 2128 | } |
| 2129 | case Intrinsic::mips_nori_b: { |
| 2130 | SDValue Res = DAG.getNode(Opcode: ISD::OR, DL, VT: Op->getValueType(ResNo: 0), |
| 2131 | N1: Op->getOperand(Num: 1), |
| 2132 | N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2133 | return DAG.getNOT(DL, Val: Res, VT: Res->getValueType(ResNo: 0)); |
| 2134 | } |
| 2135 | case Intrinsic::mips_or_v: |
| 2136 | return DAG.getNode(Opcode: ISD::OR, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2137 | N2: Op->getOperand(Num: 2)); |
| 2138 | case Intrinsic::mips_ori_b: |
| 2139 | return DAG.getNode(Opcode: ISD::OR, DL, VT: Op->getValueType(ResNo: 0), |
| 2140 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2141 | case Intrinsic::mips_pckev_b: |
| 2142 | case Intrinsic::mips_pckev_h: |
| 2143 | case Intrinsic::mips_pckev_w: |
| 2144 | case Intrinsic::mips_pckev_d: |
| 2145 | return DAG.getNode(Opcode: MipsISD::PCKEV, DL, VT: Op->getValueType(ResNo: 0), |
| 2146 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2147 | case Intrinsic::mips_pckod_b: |
| 2148 | case Intrinsic::mips_pckod_h: |
| 2149 | case Intrinsic::mips_pckod_w: |
| 2150 | case Intrinsic::mips_pckod_d: |
| 2151 | return DAG.getNode(Opcode: MipsISD::PCKOD, DL, VT: Op->getValueType(ResNo: 0), |
| 2152 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2)); |
| 2153 | case Intrinsic::mips_pcnt_b: |
| 2154 | case Intrinsic::mips_pcnt_h: |
| 2155 | case Intrinsic::mips_pcnt_w: |
| 2156 | case Intrinsic::mips_pcnt_d: |
| 2157 | return DAG.getNode(Opcode: ISD::CTPOP, DL, VT: Op->getValueType(ResNo: 0), Operand: Op->getOperand(Num: 1)); |
| 2158 | case Intrinsic::mips_sat_s_b: |
| 2159 | case Intrinsic::mips_sat_s_h: |
| 2160 | case Intrinsic::mips_sat_s_w: |
| 2161 | case Intrinsic::mips_sat_s_d: |
| 2162 | case Intrinsic::mips_sat_u_b: |
| 2163 | case Intrinsic::mips_sat_u_h: |
| 2164 | case Intrinsic::mips_sat_u_w: |
| 2165 | case Intrinsic::mips_sat_u_d: { |
| 2166 | // Report an error for out of range values. |
| 2167 | int64_t Max; |
| 2168 | switch (Intrinsic) { |
| 2169 | case Intrinsic::mips_sat_s_b: |
| 2170 | case Intrinsic::mips_sat_u_b: Max = 7; break; |
| 2171 | case Intrinsic::mips_sat_s_h: |
| 2172 | case Intrinsic::mips_sat_u_h: Max = 15; break; |
| 2173 | case Intrinsic::mips_sat_s_w: |
| 2174 | case Intrinsic::mips_sat_u_w: Max = 31; break; |
| 2175 | case Intrinsic::mips_sat_s_d: |
| 2176 | case Intrinsic::mips_sat_u_d: Max = 63; break; |
| 2177 | default: llvm_unreachable("Unmatched intrinsic" ); |
| 2178 | } |
| 2179 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 2))->getSExtValue(); |
| 2180 | if (Value < 0 || Value > Max) |
| 2181 | report_fatal_error(reason: "Immediate out of range" ); |
| 2182 | return SDValue(); |
| 2183 | } |
| 2184 | case Intrinsic::mips_shf_b: |
| 2185 | case Intrinsic::mips_shf_h: |
| 2186 | case Intrinsic::mips_shf_w: { |
| 2187 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 2))->getSExtValue(); |
| 2188 | if (Value < 0 || Value > 255) |
| 2189 | report_fatal_error(reason: "Immediate out of range" ); |
| 2190 | return DAG.getNode(Opcode: MipsISD::SHF, DL, VT: Op->getValueType(ResNo: 0), |
| 2191 | N1: Op->getOperand(Num: 2), N2: Op->getOperand(Num: 1)); |
| 2192 | } |
| 2193 | case Intrinsic::mips_sldi_b: |
| 2194 | case Intrinsic::mips_sldi_h: |
| 2195 | case Intrinsic::mips_sldi_w: |
| 2196 | case Intrinsic::mips_sldi_d: { |
| 2197 | // Report an error for out of range values. |
| 2198 | int64_t Max; |
| 2199 | switch (Intrinsic) { |
| 2200 | case Intrinsic::mips_sldi_b: Max = 15; break; |
| 2201 | case Intrinsic::mips_sldi_h: Max = 7; break; |
| 2202 | case Intrinsic::mips_sldi_w: Max = 3; break; |
| 2203 | case Intrinsic::mips_sldi_d: Max = 1; break; |
| 2204 | default: llvm_unreachable("Unmatched intrinsic" ); |
| 2205 | } |
| 2206 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 3))->getSExtValue(); |
| 2207 | if (Value < 0 || Value > Max) |
| 2208 | report_fatal_error(reason: "Immediate out of range" ); |
| 2209 | return SDValue(); |
| 2210 | } |
| 2211 | case Intrinsic::mips_sll_b: |
| 2212 | case Intrinsic::mips_sll_h: |
| 2213 | case Intrinsic::mips_sll_w: |
| 2214 | case Intrinsic::mips_sll_d: |
| 2215 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2216 | N2: truncateVecElts(Op, DAG)); |
| 2217 | case Intrinsic::mips_slli_b: |
| 2218 | case Intrinsic::mips_slli_h: |
| 2219 | case Intrinsic::mips_slli_w: |
| 2220 | case Intrinsic::mips_slli_d: |
| 2221 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: Op->getValueType(ResNo: 0), |
| 2222 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2223 | case Intrinsic::mips_splat_b: |
| 2224 | case Intrinsic::mips_splat_h: |
| 2225 | case Intrinsic::mips_splat_w: |
| 2226 | case Intrinsic::mips_splat_d: |
| 2227 | // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle |
| 2228 | // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because |
| 2229 | // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32. |
| 2230 | // Instead we lower to MipsISD::VSHF and match from there. |
| 2231 | return DAG.getNode(Opcode: MipsISD::VSHF, DL, VT: Op->getValueType(ResNo: 0), |
| 2232 | N1: lowerMSASplatZExt(Op, OpNr: 2, DAG), N2: Op->getOperand(Num: 1), |
| 2233 | N3: Op->getOperand(Num: 1)); |
| 2234 | case Intrinsic::mips_splati_b: |
| 2235 | case Intrinsic::mips_splati_h: |
| 2236 | case Intrinsic::mips_splati_w: |
| 2237 | case Intrinsic::mips_splati_d: |
| 2238 | return DAG.getNode(Opcode: MipsISD::VSHF, DL, VT: Op->getValueType(ResNo: 0), |
| 2239 | N1: lowerMSASplatImm(Op, ImmOp: 2, DAG), N2: Op->getOperand(Num: 1), |
| 2240 | N3: Op->getOperand(Num: 1)); |
| 2241 | case Intrinsic::mips_sra_b: |
| 2242 | case Intrinsic::mips_sra_h: |
| 2243 | case Intrinsic::mips_sra_w: |
| 2244 | case Intrinsic::mips_sra_d: |
| 2245 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2246 | N2: truncateVecElts(Op, DAG)); |
| 2247 | case Intrinsic::mips_srai_b: |
| 2248 | case Intrinsic::mips_srai_h: |
| 2249 | case Intrinsic::mips_srai_w: |
| 2250 | case Intrinsic::mips_srai_d: |
| 2251 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: Op->getValueType(ResNo: 0), |
| 2252 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2253 | case Intrinsic::mips_srari_b: |
| 2254 | case Intrinsic::mips_srari_h: |
| 2255 | case Intrinsic::mips_srari_w: |
| 2256 | case Intrinsic::mips_srari_d: { |
| 2257 | // Report an error for out of range values. |
| 2258 | int64_t Max; |
| 2259 | switch (Intrinsic) { |
| 2260 | case Intrinsic::mips_srari_b: Max = 7; break; |
| 2261 | case Intrinsic::mips_srari_h: Max = 15; break; |
| 2262 | case Intrinsic::mips_srari_w: Max = 31; break; |
| 2263 | case Intrinsic::mips_srari_d: Max = 63; break; |
| 2264 | default: llvm_unreachable("Unmatched intrinsic" ); |
| 2265 | } |
| 2266 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 2))->getSExtValue(); |
| 2267 | if (Value < 0 || Value > Max) |
| 2268 | report_fatal_error(reason: "Immediate out of range" ); |
| 2269 | return SDValue(); |
| 2270 | } |
| 2271 | case Intrinsic::mips_srl_b: |
| 2272 | case Intrinsic::mips_srl_h: |
| 2273 | case Intrinsic::mips_srl_w: |
| 2274 | case Intrinsic::mips_srl_d: |
| 2275 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2276 | N2: truncateVecElts(Op, DAG)); |
| 2277 | case Intrinsic::mips_srli_b: |
| 2278 | case Intrinsic::mips_srli_h: |
| 2279 | case Intrinsic::mips_srli_w: |
| 2280 | case Intrinsic::mips_srli_d: |
| 2281 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: Op->getValueType(ResNo: 0), |
| 2282 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2283 | case Intrinsic::mips_srlri_b: |
| 2284 | case Intrinsic::mips_srlri_h: |
| 2285 | case Intrinsic::mips_srlri_w: |
| 2286 | case Intrinsic::mips_srlri_d: { |
| 2287 | // Report an error for out of range values. |
| 2288 | int64_t Max; |
| 2289 | switch (Intrinsic) { |
| 2290 | case Intrinsic::mips_srlri_b: Max = 7; break; |
| 2291 | case Intrinsic::mips_srlri_h: Max = 15; break; |
| 2292 | case Intrinsic::mips_srlri_w: Max = 31; break; |
| 2293 | case Intrinsic::mips_srlri_d: Max = 63; break; |
| 2294 | default: llvm_unreachable("Unmatched intrinsic" ); |
| 2295 | } |
| 2296 | int64_t Value = cast<ConstantSDNode>(Val: Op->getOperand(Num: 2))->getSExtValue(); |
| 2297 | if (Value < 0 || Value > Max) |
| 2298 | report_fatal_error(reason: "Immediate out of range" ); |
| 2299 | return SDValue(); |
| 2300 | } |
| 2301 | case Intrinsic::mips_subv_b: |
| 2302 | case Intrinsic::mips_subv_h: |
| 2303 | case Intrinsic::mips_subv_w: |
| 2304 | case Intrinsic::mips_subv_d: |
| 2305 | return DAG.getNode(Opcode: ISD::SUB, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2306 | N2: Op->getOperand(Num: 2)); |
| 2307 | case Intrinsic::mips_subvi_b: |
| 2308 | case Intrinsic::mips_subvi_h: |
| 2309 | case Intrinsic::mips_subvi_w: |
| 2310 | case Intrinsic::mips_subvi_d: |
| 2311 | return DAG.getNode(Opcode: ISD::SUB, DL, VT: Op->getValueType(ResNo: 0), |
| 2312 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2313 | case Intrinsic::mips_vshf_b: |
| 2314 | case Intrinsic::mips_vshf_h: |
| 2315 | case Intrinsic::mips_vshf_w: |
| 2316 | case Intrinsic::mips_vshf_d: |
| 2317 | return DAG.getNode(Opcode: MipsISD::VSHF, DL, VT: Op->getValueType(ResNo: 0), |
| 2318 | N1: Op->getOperand(Num: 1), N2: Op->getOperand(Num: 2), N3: Op->getOperand(Num: 3)); |
| 2319 | case Intrinsic::mips_xor_v: |
| 2320 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: Op->getValueType(ResNo: 0), N1: Op->getOperand(Num: 1), |
| 2321 | N2: Op->getOperand(Num: 2)); |
| 2322 | case Intrinsic::mips_xori_b: |
| 2323 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: Op->getValueType(ResNo: 0), |
| 2324 | N1: Op->getOperand(Num: 1), N2: lowerMSASplatImm(Op, ImmOp: 2, DAG)); |
| 2325 | case Intrinsic::thread_pointer: { |
| 2326 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 2327 | return DAG.getNode(Opcode: MipsISD::ThreadPointer, DL, VT: PtrVT); |
| 2328 | } |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, |
| 2333 | const MipsSubtarget &Subtarget) { |
| 2334 | SDLoc DL(Op); |
| 2335 | SDValue ChainIn = Op->getOperand(Num: 0); |
| 2336 | SDValue Address = Op->getOperand(Num: 2); |
| 2337 | SDValue Offset = Op->getOperand(Num: 3); |
| 2338 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2339 | EVT PtrTy = Address->getValueType(ResNo: 0); |
| 2340 | |
| 2341 | // For N64 addresses have the underlying type MVT::i64. This intrinsic |
| 2342 | // however takes an i32 signed constant offset. The actual type of the |
| 2343 | // intrinsic is a scaled signed i10. |
| 2344 | if (Subtarget.isABI_N64()) |
| 2345 | Offset = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: PtrTy, Operand: Offset); |
| 2346 | |
| 2347 | Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrTy, N1: Address, N2: Offset); |
| 2348 | return DAG.getLoad(VT: ResTy, dl: DL, Chain: ChainIn, Ptr: Address, PtrInfo: MachinePointerInfo(), |
| 2349 | Alignment: Align(16)); |
| 2350 | } |
| 2351 | |
| 2352 | SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, |
| 2353 | SelectionDAG &DAG) const { |
| 2354 | unsigned Intr = Op->getConstantOperandVal(Num: 1); |
| 2355 | switch (Intr) { |
| 2356 | default: |
| 2357 | return SDValue(); |
| 2358 | case Intrinsic::mips_extp: |
| 2359 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTP); |
| 2360 | case Intrinsic::mips_extpdp: |
| 2361 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTPDP); |
| 2362 | case Intrinsic::mips_extr_w: |
| 2363 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTR_W); |
| 2364 | case Intrinsic::mips_extr_r_w: |
| 2365 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTR_R_W); |
| 2366 | case Intrinsic::mips_extr_rs_w: |
| 2367 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTR_RS_W); |
| 2368 | case Intrinsic::mips_extr_s_h: |
| 2369 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::EXTR_S_H); |
| 2370 | case Intrinsic::mips_mthlip: |
| 2371 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MTHLIP); |
| 2372 | case Intrinsic::mips_mulsaq_s_w_ph: |
| 2373 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MULSAQ_S_W_PH); |
| 2374 | case Intrinsic::mips_maq_s_w_phl: |
| 2375 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAQ_S_W_PHL); |
| 2376 | case Intrinsic::mips_maq_s_w_phr: |
| 2377 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAQ_S_W_PHR); |
| 2378 | case Intrinsic::mips_maq_sa_w_phl: |
| 2379 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAQ_SA_W_PHL); |
| 2380 | case Intrinsic::mips_maq_sa_w_phr: |
| 2381 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::MAQ_SA_W_PHR); |
| 2382 | case Intrinsic::mips_dpaq_s_w_ph: |
| 2383 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAQ_S_W_PH); |
| 2384 | case Intrinsic::mips_dpsq_s_w_ph: |
| 2385 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSQ_S_W_PH); |
| 2386 | case Intrinsic::mips_dpaq_sa_l_w: |
| 2387 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAQ_SA_L_W); |
| 2388 | case Intrinsic::mips_dpsq_sa_l_w: |
| 2389 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSQ_SA_L_W); |
| 2390 | case Intrinsic::mips_dpaqx_s_w_ph: |
| 2391 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAQX_S_W_PH); |
| 2392 | case Intrinsic::mips_dpaqx_sa_w_ph: |
| 2393 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPAQX_SA_W_PH); |
| 2394 | case Intrinsic::mips_dpsqx_s_w_ph: |
| 2395 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSQX_S_W_PH); |
| 2396 | case Intrinsic::mips_dpsqx_sa_w_ph: |
| 2397 | return lowerDSPIntr(Op, DAG, Opc: MipsISD::DPSQX_SA_W_PH); |
| 2398 | case Intrinsic::mips_ld_b: |
| 2399 | case Intrinsic::mips_ld_h: |
| 2400 | case Intrinsic::mips_ld_w: |
| 2401 | case Intrinsic::mips_ld_d: |
| 2402 | return lowerMSALoadIntr(Op, DAG, Intr, Subtarget); |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, |
| 2407 | const MipsSubtarget &Subtarget) { |
| 2408 | SDLoc DL(Op); |
| 2409 | SDValue ChainIn = Op->getOperand(Num: 0); |
| 2410 | SDValue Value = Op->getOperand(Num: 2); |
| 2411 | SDValue Address = Op->getOperand(Num: 3); |
| 2412 | SDValue Offset = Op->getOperand(Num: 4); |
| 2413 | EVT PtrTy = Address->getValueType(ResNo: 0); |
| 2414 | |
| 2415 | // For N64 addresses have the underlying type MVT::i64. This intrinsic |
| 2416 | // however takes an i32 signed constant offset. The actual type of the |
| 2417 | // intrinsic is a scaled signed i10. |
| 2418 | if (Subtarget.isABI_N64()) |
| 2419 | Offset = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: PtrTy, Operand: Offset); |
| 2420 | |
| 2421 | Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrTy, N1: Address, N2: Offset); |
| 2422 | |
| 2423 | return DAG.getStore(Chain: ChainIn, dl: DL, Val: Value, Ptr: Address, PtrInfo: MachinePointerInfo(), |
| 2424 | Alignment: Align(16)); |
| 2425 | } |
| 2426 | |
| 2427 | SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op, |
| 2428 | SelectionDAG &DAG) const { |
| 2429 | unsigned Intr = Op->getConstantOperandVal(Num: 1); |
| 2430 | switch (Intr) { |
| 2431 | default: |
| 2432 | return SDValue(); |
| 2433 | case Intrinsic::mips_st_b: |
| 2434 | case Intrinsic::mips_st_h: |
| 2435 | case Intrinsic::mips_st_w: |
| 2436 | case Intrinsic::mips_st_d: |
| 2437 | return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget); |
| 2438 | } |
| 2439 | } |
| 2440 | |
| 2441 | // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT. |
| 2442 | // |
| 2443 | // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We |
| 2444 | // choose to sign-extend but we could have equally chosen zero-extend. The |
| 2445 | // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT |
| 2446 | // result into this node later (possibly changing it to a zero-extend in the |
| 2447 | // process). |
| 2448 | SDValue MipsSETargetLowering:: |
| 2449 | (SDValue Op, SelectionDAG &DAG) const { |
| 2450 | SDLoc DL(Op); |
| 2451 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2452 | SDValue Op0 = Op->getOperand(Num: 0); |
| 2453 | EVT VecTy = Op0->getValueType(ResNo: 0); |
| 2454 | |
| 2455 | if (!VecTy.is128BitVector()) |
| 2456 | return SDValue(); |
| 2457 | |
| 2458 | if (ResTy.isInteger()) { |
| 2459 | SDValue Op1 = Op->getOperand(Num: 1); |
| 2460 | EVT EltTy = VecTy.getVectorElementType(); |
| 2461 | return DAG.getNode(Opcode: MipsISD::VEXTRACT_SEXT_ELT, DL, VT: ResTy, N1: Op0, N2: Op1, |
| 2462 | N3: DAG.getValueType(EltTy)); |
| 2463 | } |
| 2464 | |
| 2465 | return Op; |
| 2466 | } |
| 2467 | |
| 2468 | static bool isConstantOrUndef(const SDValue Op) { |
| 2469 | if (Op->isUndef()) |
| 2470 | return true; |
| 2471 | if (isa<ConstantSDNode>(Val: Op)) |
| 2472 | return true; |
| 2473 | if (isa<ConstantFPSDNode>(Val: Op)) |
| 2474 | return true; |
| 2475 | return false; |
| 2476 | } |
| 2477 | |
| 2478 | static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) { |
| 2479 | for (unsigned i = 0; i < Op->getNumOperands(); ++i) |
| 2480 | if (isConstantOrUndef(Op: Op->getOperand(Num: i))) |
| 2481 | return true; |
| 2482 | return false; |
| 2483 | } |
| 2484 | |
| 2485 | // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the |
| 2486 | // backend. |
| 2487 | // |
| 2488 | // Lowers according to the following rules: |
| 2489 | // - Constant splats are legal as-is as long as the SplatBitSize is a power of |
| 2490 | // 2 less than or equal to 64 and the value fits into a signed 10-bit |
| 2491 | // immediate |
| 2492 | // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize |
| 2493 | // is a power of 2 less than or equal to 64 and the value does not fit into a |
| 2494 | // signed 10-bit immediate |
| 2495 | // - Non-constant splats are legal as-is. |
| 2496 | // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT. |
| 2497 | // - All others are illegal and must be expanded. |
| 2498 | SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| 2499 | SelectionDAG &DAG) const { |
| 2500 | BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Val&: Op); |
| 2501 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 2502 | SDLoc DL(Op); |
| 2503 | APInt SplatValue, SplatUndef; |
| 2504 | unsigned SplatBitSize; |
| 2505 | bool HasAnyUndefs; |
| 2506 | |
| 2507 | if (!Subtarget.hasMSA() || !ResTy.is128BitVector()) |
| 2508 | return SDValue(); |
| 2509 | |
| 2510 | if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, |
| 2511 | HasAnyUndefs, MinSplatBits: 8, |
| 2512 | isBigEndian: !Subtarget.isLittle()) && SplatBitSize <= 64) { |
| 2513 | // We can only cope with 8, 16, 32, or 64-bit elements |
| 2514 | if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 && |
| 2515 | SplatBitSize != 64) |
| 2516 | return SDValue(); |
| 2517 | |
| 2518 | // If the value isn't an integer type we will have to bitcast |
| 2519 | // from an integer type first. Also, if there are any undefs, we must |
| 2520 | // lower them to defined values first. |
| 2521 | if (ResTy.isInteger() && !HasAnyUndefs) |
| 2522 | return Op; |
| 2523 | |
| 2524 | EVT ViaVecTy; |
| 2525 | |
| 2526 | switch (SplatBitSize) { |
| 2527 | default: |
| 2528 | return SDValue(); |
| 2529 | case 8: |
| 2530 | ViaVecTy = MVT::v16i8; |
| 2531 | break; |
| 2532 | case 16: |
| 2533 | ViaVecTy = MVT::v8i16; |
| 2534 | break; |
| 2535 | case 32: |
| 2536 | ViaVecTy = MVT::v4i32; |
| 2537 | break; |
| 2538 | case 64: |
| 2539 | // There's no fill.d to fall back on for 64-bit values |
| 2540 | return SDValue(); |
| 2541 | } |
| 2542 | |
| 2543 | // SelectionDAG::getConstant will promote SplatValue appropriately. |
| 2544 | SDValue Result = DAG.getConstant(Val: SplatValue, DL, VT: ViaVecTy); |
| 2545 | |
| 2546 | // Bitcast to the type we originally wanted |
| 2547 | if (ViaVecTy != ResTy) |
| 2548 | Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(Node), VT: ResTy, Operand: Result); |
| 2549 | |
| 2550 | return Result; |
| 2551 | } else if (DAG.isSplatValue(V: Op, /* AllowUndefs */ false)) |
| 2552 | return Op; |
| 2553 | else if (!isConstantOrUndefBUILD_VECTOR(Op: Node)) { |
| 2554 | // Use INSERT_VECTOR_ELT operations rather than expand to stores. |
| 2555 | // The resulting code is the same length as the expansion, but it doesn't |
| 2556 | // use memory operations |
| 2557 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 2558 | |
| 2559 | assert(ResTy.isVector()); |
| 2560 | |
| 2561 | unsigned NumElts = ResTy.getVectorNumElements(); |
| 2562 | SDValue Vector = DAG.getUNDEF(VT: ResTy); |
| 2563 | for (unsigned i = 0; i < NumElts; ++i) { |
| 2564 | Vector = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: ResTy, N1: Vector, |
| 2565 | N2: Node->getOperand(Num: i), |
| 2566 | N3: DAG.getConstant(Val: i, DL, VT: MVT::i32)); |
| 2567 | } |
| 2568 | return Vector; |
| 2569 | } |
| 2570 | |
| 2571 | return SDValue(); |
| 2572 | } |
| 2573 | |
| 2574 | // Lower VECTOR_SHUFFLE into SHF (if possible). |
| 2575 | // |
| 2576 | // SHF splits the vector into blocks of four elements, then shuffles these |
| 2577 | // elements according to a <4 x i2> constant (encoded as an integer immediate). |
| 2578 | // |
| 2579 | // It is therefore possible to lower into SHF when the mask takes the form: |
| 2580 | // <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...> |
| 2581 | // When undef's appear they are treated as if they were whatever value is |
| 2582 | // necessary in order to fit the above forms. |
| 2583 | // |
| 2584 | // For example: |
| 2585 | // %2 = shufflevector <8 x i16> %0, <8 x i16> undef, |
| 2586 | // <8 x i32> <i32 3, i32 2, i32 1, i32 0, |
| 2587 | // i32 7, i32 6, i32 5, i32 4> |
| 2588 | // is lowered to: |
| 2589 | // (SHF_H $w0, $w1, 27) |
| 2590 | // where the 27 comes from: |
| 2591 | // 3 + (2 << 2) + (1 << 4) + (0 << 6) |
| 2592 | static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy, |
| 2593 | SmallVector<int, 16> Indices, |
| 2594 | SelectionDAG &DAG) { |
| 2595 | int SHFIndices[4] = { -1, -1, -1, -1 }; |
| 2596 | |
| 2597 | if (Indices.size() < 4) |
| 2598 | return SDValue(); |
| 2599 | |
| 2600 | for (unsigned i = 0; i < 4; ++i) { |
| 2601 | for (unsigned j = i; j < Indices.size(); j += 4) { |
| 2602 | int Idx = Indices[j]; |
| 2603 | |
| 2604 | // Convert from vector index to 4-element subvector index |
| 2605 | // If an index refers to an element outside of the subvector then give up |
| 2606 | if (Idx != -1) { |
| 2607 | Idx -= 4 * (j / 4); |
| 2608 | if (Idx < 0 || Idx >= 4) |
| 2609 | return SDValue(); |
| 2610 | } |
| 2611 | |
| 2612 | // If the mask has an undef, replace it with the current index. |
| 2613 | // Note that it might still be undef if the current index is also undef |
| 2614 | if (SHFIndices[i] == -1) |
| 2615 | SHFIndices[i] = Idx; |
| 2616 | |
| 2617 | // Check that non-undef values are the same as in the mask. If they |
| 2618 | // aren't then give up |
| 2619 | if (!(Idx == -1 || Idx == SHFIndices[i])) |
| 2620 | return SDValue(); |
| 2621 | } |
| 2622 | } |
| 2623 | |
| 2624 | // Calculate the immediate. Replace any remaining undefs with zero |
| 2625 | APInt Imm(32, 0); |
| 2626 | for (int i = 3; i >= 0; --i) { |
| 2627 | int Idx = SHFIndices[i]; |
| 2628 | |
| 2629 | if (Idx == -1) |
| 2630 | Idx = 0; |
| 2631 | |
| 2632 | Imm <<= 2; |
| 2633 | Imm |= Idx & 0x3; |
| 2634 | } |
| 2635 | |
| 2636 | SDLoc DL(Op); |
| 2637 | return DAG.getNode(Opcode: MipsISD::SHF, DL, VT: ResTy, |
| 2638 | N1: DAG.getTargetConstant(Val: Imm, DL, VT: MVT::i32), |
| 2639 | N2: Op->getOperand(Num: 0)); |
| 2640 | } |
| 2641 | |
| 2642 | /// Determine whether a range fits a regular pattern of values. |
| 2643 | /// This function accounts for the possibility of jumping over the End iterator. |
| 2644 | template <typename ValType> |
| 2645 | static bool |
| 2646 | fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin, |
| 2647 | unsigned CheckStride, |
| 2648 | typename SmallVectorImpl<ValType>::const_iterator End, |
| 2649 | ValType ExpectedIndex, unsigned ExpectedIndexStride) { |
| 2650 | auto &I = Begin; |
| 2651 | |
| 2652 | while (I != End) { |
| 2653 | if (*I != -1 && *I != ExpectedIndex) |
| 2654 | return false; |
| 2655 | ExpectedIndex += ExpectedIndexStride; |
| 2656 | |
| 2657 | // Incrementing past End is undefined behaviour so we must increment one |
| 2658 | // step at a time and check for End at each step. |
| 2659 | for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I) |
| 2660 | ; // Empty loop body. |
| 2661 | } |
| 2662 | return true; |
| 2663 | } |
| 2664 | |
| 2665 | // Determine whether VECTOR_SHUFFLE is a SPLATI. |
| 2666 | // |
| 2667 | // It is a SPLATI when the mask is: |
| 2668 | // <x, x, x, ...> |
| 2669 | // where x is any valid index. |
| 2670 | // |
| 2671 | // When undef's appear in the mask they are treated as if they were whatever |
| 2672 | // value is necessary in order to fit the above form. |
| 2673 | static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy, |
| 2674 | SmallVector<int, 16> Indices, |
| 2675 | SelectionDAG &DAG) { |
| 2676 | assert((Indices.size() % 2) == 0); |
| 2677 | |
| 2678 | int SplatIndex = -1; |
| 2679 | for (const auto &V : Indices) { |
| 2680 | if (V != -1) { |
| 2681 | SplatIndex = V; |
| 2682 | break; |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | return fitsRegularPattern<int>(Begin: Indices.begin(), CheckStride: 1, End: Indices.end(), ExpectedIndex: SplatIndex, |
| 2687 | ExpectedIndexStride: 0); |
| 2688 | } |
| 2689 | |
| 2690 | // Lower VECTOR_SHUFFLE into ILVEV (if possible). |
| 2691 | // |
| 2692 | // ILVEV interleaves the even elements from each vector. |
| 2693 | // |
| 2694 | // It is possible to lower into ILVEV when the mask consists of two of the |
| 2695 | // following forms interleaved: |
| 2696 | // <0, 2, 4, ...> |
| 2697 | // <n, n+2, n+4, ...> |
| 2698 | // where n is the number of elements in the vector. |
| 2699 | // For example: |
| 2700 | // <0, 0, 2, 2, 4, 4, ...> |
| 2701 | // <0, n, 2, n+2, 4, n+4, ...> |
| 2702 | // |
| 2703 | // When undef's appear in the mask they are treated as if they were whatever |
| 2704 | // value is necessary in order to fit the above forms. |
| 2705 | static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy, |
| 2706 | SmallVector<int, 16> Indices, |
| 2707 | SelectionDAG &DAG) { |
| 2708 | assert((Indices.size() % 2) == 0); |
| 2709 | |
| 2710 | SDValue Wt; |
| 2711 | SDValue Ws; |
| 2712 | const auto &Begin = Indices.begin(); |
| 2713 | const auto &End = Indices.end(); |
| 2714 | |
| 2715 | // Check even elements are taken from the even elements of one half or the |
| 2716 | // other and pick an operand accordingly. |
| 2717 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2718 | Wt = Op->getOperand(Num: 0); |
| 2719 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Indices.size(), ExpectedIndexStride: 2)) |
| 2720 | Wt = Op->getOperand(Num: 1); |
| 2721 | else |
| 2722 | return SDValue(); |
| 2723 | |
| 2724 | // Check odd elements are taken from the even elements of one half or the |
| 2725 | // other and pick an operand accordingly. |
| 2726 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2727 | Ws = Op->getOperand(Num: 0); |
| 2728 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Indices.size(), ExpectedIndexStride: 2)) |
| 2729 | Ws = Op->getOperand(Num: 1); |
| 2730 | else |
| 2731 | return SDValue(); |
| 2732 | |
| 2733 | return DAG.getNode(Opcode: MipsISD::ILVEV, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2734 | } |
| 2735 | |
| 2736 | // Lower VECTOR_SHUFFLE into ILVOD (if possible). |
| 2737 | // |
| 2738 | // ILVOD interleaves the odd elements from each vector. |
| 2739 | // |
| 2740 | // It is possible to lower into ILVOD when the mask consists of two of the |
| 2741 | // following forms interleaved: |
| 2742 | // <1, 3, 5, ...> |
| 2743 | // <n+1, n+3, n+5, ...> |
| 2744 | // where n is the number of elements in the vector. |
| 2745 | // For example: |
| 2746 | // <1, 1, 3, 3, 5, 5, ...> |
| 2747 | // <1, n+1, 3, n+3, 5, n+5, ...> |
| 2748 | // |
| 2749 | // When undef's appear in the mask they are treated as if they were whatever |
| 2750 | // value is necessary in order to fit the above forms. |
| 2751 | static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy, |
| 2752 | SmallVector<int, 16> Indices, |
| 2753 | SelectionDAG &DAG) { |
| 2754 | assert((Indices.size() % 2) == 0); |
| 2755 | |
| 2756 | SDValue Wt; |
| 2757 | SDValue Ws; |
| 2758 | const auto &Begin = Indices.begin(); |
| 2759 | const auto &End = Indices.end(); |
| 2760 | |
| 2761 | // Check even elements are taken from the odd elements of one half or the |
| 2762 | // other and pick an operand accordingly. |
| 2763 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2764 | Wt = Op->getOperand(Num: 0); |
| 2765 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Indices.size() + 1, ExpectedIndexStride: 2)) |
| 2766 | Wt = Op->getOperand(Num: 1); |
| 2767 | else |
| 2768 | return SDValue(); |
| 2769 | |
| 2770 | // Check odd elements are taken from the odd elements of one half or the |
| 2771 | // other and pick an operand accordingly. |
| 2772 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2773 | Ws = Op->getOperand(Num: 0); |
| 2774 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Indices.size() + 1, ExpectedIndexStride: 2)) |
| 2775 | Ws = Op->getOperand(Num: 1); |
| 2776 | else |
| 2777 | return SDValue(); |
| 2778 | |
| 2779 | return DAG.getNode(Opcode: MipsISD::ILVOD, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2780 | } |
| 2781 | |
| 2782 | // Lower VECTOR_SHUFFLE into ILVR (if possible). |
| 2783 | // |
| 2784 | // ILVR interleaves consecutive elements from the right (lowest-indexed) half of |
| 2785 | // each vector. |
| 2786 | // |
| 2787 | // It is possible to lower into ILVR when the mask consists of two of the |
| 2788 | // following forms interleaved: |
| 2789 | // <0, 1, 2, ...> |
| 2790 | // <n, n+1, n+2, ...> |
| 2791 | // where n is the number of elements in the vector. |
| 2792 | // For example: |
| 2793 | // <0, 0, 1, 1, 2, 2, ...> |
| 2794 | // <0, n, 1, n+1, 2, n+2, ...> |
| 2795 | // |
| 2796 | // When undef's appear in the mask they are treated as if they were whatever |
| 2797 | // value is necessary in order to fit the above forms. |
| 2798 | static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy, |
| 2799 | SmallVector<int, 16> Indices, |
| 2800 | SelectionDAG &DAG) { |
| 2801 | assert((Indices.size() % 2) == 0); |
| 2802 | |
| 2803 | SDValue Wt; |
| 2804 | SDValue Ws; |
| 2805 | const auto &Begin = Indices.begin(); |
| 2806 | const auto &End = Indices.end(); |
| 2807 | |
| 2808 | // Check even elements are taken from the right (lowest-indexed) elements of |
| 2809 | // one half or the other and pick an operand accordingly. |
| 2810 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 1)) |
| 2811 | Wt = Op->getOperand(Num: 0); |
| 2812 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Indices.size(), ExpectedIndexStride: 1)) |
| 2813 | Wt = Op->getOperand(Num: 1); |
| 2814 | else |
| 2815 | return SDValue(); |
| 2816 | |
| 2817 | // Check odd elements are taken from the right (lowest-indexed) elements of |
| 2818 | // one half or the other and pick an operand accordingly. |
| 2819 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 1)) |
| 2820 | Ws = Op->getOperand(Num: 0); |
| 2821 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Indices.size(), ExpectedIndexStride: 1)) |
| 2822 | Ws = Op->getOperand(Num: 1); |
| 2823 | else |
| 2824 | return SDValue(); |
| 2825 | |
| 2826 | return DAG.getNode(Opcode: MipsISD::ILVR, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2827 | } |
| 2828 | |
| 2829 | // Lower VECTOR_SHUFFLE into ILVL (if possible). |
| 2830 | // |
| 2831 | // ILVL interleaves consecutive elements from the left (highest-indexed) half |
| 2832 | // of each vector. |
| 2833 | // |
| 2834 | // It is possible to lower into ILVL when the mask consists of two of the |
| 2835 | // following forms interleaved: |
| 2836 | // <x, x+1, x+2, ...> |
| 2837 | // <n+x, n+x+1, n+x+2, ...> |
| 2838 | // where n is the number of elements in the vector and x is half n. |
| 2839 | // For example: |
| 2840 | // <x, x, x+1, x+1, x+2, x+2, ...> |
| 2841 | // <x, n+x, x+1, n+x+1, x+2, n+x+2, ...> |
| 2842 | // |
| 2843 | // When undef's appear in the mask they are treated as if they were whatever |
| 2844 | // value is necessary in order to fit the above forms. |
| 2845 | static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy, |
| 2846 | SmallVector<int, 16> Indices, |
| 2847 | SelectionDAG &DAG) { |
| 2848 | assert((Indices.size() % 2) == 0); |
| 2849 | |
| 2850 | unsigned HalfSize = Indices.size() / 2; |
| 2851 | SDValue Wt; |
| 2852 | SDValue Ws; |
| 2853 | const auto &Begin = Indices.begin(); |
| 2854 | const auto &End = Indices.end(); |
| 2855 | |
| 2856 | // Check even elements are taken from the left (highest-indexed) elements of |
| 2857 | // one half or the other and pick an operand accordingly. |
| 2858 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2859 | Wt = Op->getOperand(Num: 0); |
| 2860 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Indices.size() + HalfSize, ExpectedIndexStride: 1)) |
| 2861 | Wt = Op->getOperand(Num: 1); |
| 2862 | else |
| 2863 | return SDValue(); |
| 2864 | |
| 2865 | // Check odd elements are taken from the left (highest-indexed) elements of |
| 2866 | // one half or the other and pick an operand accordingly. |
| 2867 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2868 | Ws = Op->getOperand(Num: 0); |
| 2869 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Indices.size() + HalfSize, |
| 2870 | ExpectedIndexStride: 1)) |
| 2871 | Ws = Op->getOperand(Num: 1); |
| 2872 | else |
| 2873 | return SDValue(); |
| 2874 | |
| 2875 | return DAG.getNode(Opcode: MipsISD::ILVL, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2876 | } |
| 2877 | |
| 2878 | // Lower VECTOR_SHUFFLE into PCKEV (if possible). |
| 2879 | // |
| 2880 | // PCKEV copies the even elements of each vector into the result vector. |
| 2881 | // |
| 2882 | // It is possible to lower into PCKEV when the mask consists of two of the |
| 2883 | // following forms concatenated: |
| 2884 | // <0, 2, 4, ...> |
| 2885 | // <n, n+2, n+4, ...> |
| 2886 | // where n is the number of elements in the vector. |
| 2887 | // For example: |
| 2888 | // <0, 2, 4, ..., 0, 2, 4, ...> |
| 2889 | // <0, 2, 4, ..., n, n+2, n+4, ...> |
| 2890 | // |
| 2891 | // When undef's appear in the mask they are treated as if they were whatever |
| 2892 | // value is necessary in order to fit the above forms. |
| 2893 | static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy, |
| 2894 | SmallVector<int, 16> Indices, |
| 2895 | SelectionDAG &DAG) { |
| 2896 | assert((Indices.size() % 2) == 0); |
| 2897 | |
| 2898 | SDValue Wt; |
| 2899 | SDValue Ws; |
| 2900 | const auto &Begin = Indices.begin(); |
| 2901 | const auto &Mid = Indices.begin() + Indices.size() / 2; |
| 2902 | const auto &End = Indices.end(); |
| 2903 | |
| 2904 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2905 | Wt = Op->getOperand(Num: 0); |
| 2906 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: Indices.size(), ExpectedIndexStride: 2)) |
| 2907 | Wt = Op->getOperand(Num: 1); |
| 2908 | else |
| 2909 | return SDValue(); |
| 2910 | |
| 2911 | if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2912 | Ws = Op->getOperand(Num: 0); |
| 2913 | else if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: Indices.size(), ExpectedIndexStride: 2)) |
| 2914 | Ws = Op->getOperand(Num: 1); |
| 2915 | else |
| 2916 | return SDValue(); |
| 2917 | |
| 2918 | return DAG.getNode(Opcode: MipsISD::PCKEV, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2919 | } |
| 2920 | |
| 2921 | // Lower VECTOR_SHUFFLE into PCKOD (if possible). |
| 2922 | // |
| 2923 | // PCKOD copies the odd elements of each vector into the result vector. |
| 2924 | // |
| 2925 | // It is possible to lower into PCKOD when the mask consists of two of the |
| 2926 | // following forms concatenated: |
| 2927 | // <1, 3, 5, ...> |
| 2928 | // <n+1, n+3, n+5, ...> |
| 2929 | // where n is the number of elements in the vector. |
| 2930 | // For example: |
| 2931 | // <1, 3, 5, ..., 1, 3, 5, ...> |
| 2932 | // <1, 3, 5, ..., n+1, n+3, n+5, ...> |
| 2933 | // |
| 2934 | // When undef's appear in the mask they are treated as if they were whatever |
| 2935 | // value is necessary in order to fit the above forms. |
| 2936 | static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy, |
| 2937 | SmallVector<int, 16> Indices, |
| 2938 | SelectionDAG &DAG) { |
| 2939 | assert((Indices.size() % 2) == 0); |
| 2940 | |
| 2941 | SDValue Wt; |
| 2942 | SDValue Ws; |
| 2943 | const auto &Begin = Indices.begin(); |
| 2944 | const auto &Mid = Indices.begin() + Indices.size() / 2; |
| 2945 | const auto &End = Indices.end(); |
| 2946 | |
| 2947 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2948 | Wt = Op->getOperand(Num: 0); |
| 2949 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: Indices.size() + 1, ExpectedIndexStride: 2)) |
| 2950 | Wt = Op->getOperand(Num: 1); |
| 2951 | else |
| 2952 | return SDValue(); |
| 2953 | |
| 2954 | if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2955 | Ws = Op->getOperand(Num: 0); |
| 2956 | else if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: Indices.size() + 1, ExpectedIndexStride: 2)) |
| 2957 | Ws = Op->getOperand(Num: 1); |
| 2958 | else |
| 2959 | return SDValue(); |
| 2960 | |
| 2961 | return DAG.getNode(Opcode: MipsISD::PCKOD, DL: SDLoc(Op), VT: ResTy, N1: Ws, N2: Wt); |
| 2962 | } |
| 2963 | |
| 2964 | // Lower VECTOR_SHUFFLE into VSHF. |
| 2965 | // |
| 2966 | // This mostly consists of converting the shuffle indices in Indices into a |
| 2967 | // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is |
| 2968 | // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example, |
| 2969 | // if the type is v8i16 and all the indices are less than 8 then the second |
| 2970 | // operand is unused and can be replaced with anything. We choose to replace it |
| 2971 | // with the used operand since this reduces the number of instructions overall. |
| 2972 | // |
| 2973 | // NOTE: SPLATI shuffle masks may contain UNDEFs, since isSPLATI() treats |
| 2974 | // UNDEFs as same as SPLATI index. |
| 2975 | // For other instances we use the last valid index if UNDEF is |
| 2976 | // encountered. |
| 2977 | static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy, |
| 2978 | const SmallVector<int, 16> &Indices, |
| 2979 | const bool isSPLATI, |
| 2980 | SelectionDAG &DAG) { |
| 2981 | SmallVector<SDValue, 16> Ops; |
| 2982 | SDValue Op0; |
| 2983 | SDValue Op1; |
| 2984 | EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger(); |
| 2985 | EVT MaskEltTy = MaskVecTy.getVectorElementType(); |
| 2986 | bool Using1stVec = false; |
| 2987 | bool Using2ndVec = false; |
| 2988 | SDLoc DL(Op); |
| 2989 | int ResTyNumElts = ResTy.getVectorNumElements(); |
| 2990 | |
| 2991 | assert(Indices[0] >= 0 && |
| 2992 | "shuffle mask starts with an UNDEF, which is not expected" ); |
| 2993 | |
| 2994 | for (int i = 0; i < ResTyNumElts; ++i) { |
| 2995 | // Idx == -1 means UNDEF |
| 2996 | int Idx = Indices[i]; |
| 2997 | |
| 2998 | if (0 <= Idx && Idx < ResTyNumElts) |
| 2999 | Using1stVec = true; |
| 3000 | if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2) |
| 3001 | Using2ndVec = true; |
| 3002 | } |
| 3003 | int LastValidIndex = 0; |
| 3004 | for (size_t i = 0; i < Indices.size(); i++) { |
| 3005 | int Idx = Indices[i]; |
| 3006 | if (Idx < 0) { |
| 3007 | // Continue using splati index or use the last valid index. |
| 3008 | Idx = isSPLATI ? Indices[0] : LastValidIndex; |
| 3009 | } else { |
| 3010 | LastValidIndex = Idx; |
| 3011 | } |
| 3012 | Ops.push_back(Elt: DAG.getTargetConstant(Val: Idx, DL, VT: MaskEltTy)); |
| 3013 | } |
| 3014 | |
| 3015 | SDValue MaskVec = DAG.getBuildVector(VT: MaskVecTy, DL, Ops); |
| 3016 | |
| 3017 | if (Using1stVec && Using2ndVec) { |
| 3018 | Op0 = Op->getOperand(Num: 0); |
| 3019 | Op1 = Op->getOperand(Num: 1); |
| 3020 | } else if (Using1stVec) |
| 3021 | Op0 = Op1 = Op->getOperand(Num: 0); |
| 3022 | else if (Using2ndVec) |
| 3023 | Op0 = Op1 = Op->getOperand(Num: 1); |
| 3024 | else |
| 3025 | llvm_unreachable("shuffle vector mask references neither vector operand?" ); |
| 3026 | |
| 3027 | // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion. |
| 3028 | // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11> |
| 3029 | // VSHF concatenates the vectors in a bitwise fashion: |
| 3030 | // <0b00, 0b01> + <0b10, 0b11> -> |
| 3031 | // 0b0100 + 0b1110 -> 0b01001110 |
| 3032 | // <0b10, 0b11, 0b00, 0b01> |
| 3033 | // We must therefore swap the operands to get the correct result. |
| 3034 | return DAG.getNode(Opcode: MipsISD::VSHF, DL, VT: ResTy, N1: MaskVec, N2: Op1, N3: Op0); |
| 3035 | } |
| 3036 | |
| 3037 | // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the |
| 3038 | // indices in the shuffle. |
| 3039 | SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| 3040 | SelectionDAG &DAG) const { |
| 3041 | ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Val&: Op); |
| 3042 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 3043 | |
| 3044 | if (!ResTy.is128BitVector()) |
| 3045 | return SDValue(); |
| 3046 | |
| 3047 | int ResTyNumElts = ResTy.getVectorNumElements(); |
| 3048 | SmallVector<int, 16> Indices; |
| 3049 | |
| 3050 | for (int i = 0; i < ResTyNumElts; ++i) |
| 3051 | Indices.push_back(Elt: Node->getMaskElt(Idx: i)); |
| 3052 | |
| 3053 | // splati.[bhwd] is preferable to the others but is matched from |
| 3054 | // MipsISD::VSHF. |
| 3055 | if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG)) |
| 3056 | return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, isSPLATI: true, DAG); |
| 3057 | SDValue Result; |
| 3058 | if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG))) |
| 3059 | return Result; |
| 3060 | if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG))) |
| 3061 | return Result; |
| 3062 | if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG))) |
| 3063 | return Result; |
| 3064 | if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG))) |
| 3065 | return Result; |
| 3066 | if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG))) |
| 3067 | return Result; |
| 3068 | if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG))) |
| 3069 | return Result; |
| 3070 | if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG))) |
| 3071 | return Result; |
| 3072 | return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, isSPLATI: false, DAG); |
| 3073 | } |
| 3074 | |
| 3075 | MachineBasicBlock * |
| 3076 | MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI, |
| 3077 | MachineBasicBlock *BB) const { |
| 3078 | // $bb: |
| 3079 | // bposge32_pseudo $vr0 |
| 3080 | // => |
| 3081 | // $bb: |
| 3082 | // bposge32 $tbb |
| 3083 | // $fbb: |
| 3084 | // li $vr2, 0 |
| 3085 | // b $sink |
| 3086 | // $tbb: |
| 3087 | // li $vr1, 1 |
| 3088 | // $sink: |
| 3089 | // $vr0 = phi($vr2, $fbb, $vr1, $tbb) |
| 3090 | |
| 3091 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3092 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3093 | const TargetRegisterClass *RC = &Mips::GPR32RegClass; |
| 3094 | DebugLoc DL = MI.getDebugLoc(); |
| 3095 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 3096 | MachineFunction::iterator It = std::next(x: MachineFunction::iterator(BB)); |
| 3097 | MachineFunction *F = BB->getParent(); |
| 3098 | MachineBasicBlock *FBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3099 | MachineBasicBlock *TBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3100 | MachineBasicBlock *Sink = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3101 | F->insert(MBBI: It, MBB: FBB); |
| 3102 | F->insert(MBBI: It, MBB: TBB); |
| 3103 | F->insert(MBBI: It, MBB: Sink); |
| 3104 | |
| 3105 | // Transfer the remainder of BB and its successor edges to Sink. |
| 3106 | Sink->splice(Where: Sink->begin(), Other: BB, From: std::next(x: MachineBasicBlock::iterator(MI)), |
| 3107 | To: BB->end()); |
| 3108 | Sink->transferSuccessorsAndUpdatePHIs(FromMBB: BB); |
| 3109 | |
| 3110 | // Add successors. |
| 3111 | BB->addSuccessor(Succ: FBB); |
| 3112 | BB->addSuccessor(Succ: TBB); |
| 3113 | FBB->addSuccessor(Succ: Sink); |
| 3114 | TBB->addSuccessor(Succ: Sink); |
| 3115 | |
| 3116 | // Insert the real bposge32 instruction to $BB. |
| 3117 | BuildMI(BB, MIMD: DL, MCID: TII->get(Opcode: Mips::BPOSGE32)).addMBB(MBB: TBB); |
| 3118 | // Insert the real bposge32c instruction to $BB. |
| 3119 | BuildMI(BB, MIMD: DL, MCID: TII->get(Opcode: Mips::BPOSGE32C_MMR3)).addMBB(MBB: TBB); |
| 3120 | |
| 3121 | // Fill $FBB. |
| 3122 | Register VR2 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3123 | BuildMI(BB&: *FBB, I: FBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::ADDiu), DestReg: VR2) |
| 3124 | .addReg(RegNo: Mips::ZERO).addImm(Val: 0); |
| 3125 | BuildMI(BB&: *FBB, I: FBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::B)).addMBB(MBB: Sink); |
| 3126 | |
| 3127 | // Fill $TBB. |
| 3128 | Register VR1 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3129 | BuildMI(BB&: *TBB, I: TBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::ADDiu), DestReg: VR1) |
| 3130 | .addReg(RegNo: Mips::ZERO).addImm(Val: 1); |
| 3131 | |
| 3132 | // Insert phi function to $Sink. |
| 3133 | BuildMI(BB&: *Sink, I: Sink->begin(), MIMD: DL, MCID: TII->get(Opcode: Mips::PHI), |
| 3134 | DestReg: MI.getOperand(i: 0).getReg()) |
| 3135 | .addReg(RegNo: VR2) |
| 3136 | .addMBB(MBB: FBB) |
| 3137 | .addReg(RegNo: VR1) |
| 3138 | .addMBB(MBB: TBB); |
| 3139 | |
| 3140 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3141 | return Sink; |
| 3142 | } |
| 3143 | |
| 3144 | MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo( |
| 3145 | MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const { |
| 3146 | // $bb: |
| 3147 | // vany_nonzero $rd, $ws |
| 3148 | // => |
| 3149 | // $bb: |
| 3150 | // bnz.b $ws, $tbb |
| 3151 | // b $fbb |
| 3152 | // $fbb: |
| 3153 | // li $rd1, 0 |
| 3154 | // b $sink |
| 3155 | // $tbb: |
| 3156 | // li $rd2, 1 |
| 3157 | // $sink: |
| 3158 | // $rd = phi($rd1, $fbb, $rd2, $tbb) |
| 3159 | |
| 3160 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3161 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3162 | const TargetRegisterClass *RC = &Mips::GPR32RegClass; |
| 3163 | DebugLoc DL = MI.getDebugLoc(); |
| 3164 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 3165 | MachineFunction::iterator It = std::next(x: MachineFunction::iterator(BB)); |
| 3166 | MachineFunction *F = BB->getParent(); |
| 3167 | MachineBasicBlock *FBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3168 | MachineBasicBlock *TBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3169 | MachineBasicBlock *Sink = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 3170 | F->insert(MBBI: It, MBB: FBB); |
| 3171 | F->insert(MBBI: It, MBB: TBB); |
| 3172 | F->insert(MBBI: It, MBB: Sink); |
| 3173 | |
| 3174 | // Transfer the remainder of BB and its successor edges to Sink. |
| 3175 | Sink->splice(Where: Sink->begin(), Other: BB, From: std::next(x: MachineBasicBlock::iterator(MI)), |
| 3176 | To: BB->end()); |
| 3177 | Sink->transferSuccessorsAndUpdatePHIs(FromMBB: BB); |
| 3178 | |
| 3179 | // Add successors. |
| 3180 | BB->addSuccessor(Succ: FBB); |
| 3181 | BB->addSuccessor(Succ: TBB); |
| 3182 | FBB->addSuccessor(Succ: Sink); |
| 3183 | TBB->addSuccessor(Succ: Sink); |
| 3184 | |
| 3185 | // Insert the real bnz.b instruction to $BB. |
| 3186 | BuildMI(BB, MIMD: DL, MCID: TII->get(Opcode: BranchOp)) |
| 3187 | .addReg(RegNo: MI.getOperand(i: 1).getReg()) |
| 3188 | .addMBB(MBB: TBB); |
| 3189 | |
| 3190 | // Fill $FBB. |
| 3191 | Register RD1 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3192 | BuildMI(BB&: *FBB, I: FBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::ADDiu), DestReg: RD1) |
| 3193 | .addReg(RegNo: Mips::ZERO).addImm(Val: 0); |
| 3194 | BuildMI(BB&: *FBB, I: FBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::B)).addMBB(MBB: Sink); |
| 3195 | |
| 3196 | // Fill $TBB. |
| 3197 | Register RD2 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3198 | BuildMI(BB&: *TBB, I: TBB->end(), MIMD: DL, MCID: TII->get(Opcode: Mips::ADDiu), DestReg: RD2) |
| 3199 | .addReg(RegNo: Mips::ZERO).addImm(Val: 1); |
| 3200 | |
| 3201 | // Insert phi function to $Sink. |
| 3202 | BuildMI(BB&: *Sink, I: Sink->begin(), MIMD: DL, MCID: TII->get(Opcode: Mips::PHI), |
| 3203 | DestReg: MI.getOperand(i: 0).getReg()) |
| 3204 | .addReg(RegNo: RD1) |
| 3205 | .addMBB(MBB: FBB) |
| 3206 | .addReg(RegNo: RD2) |
| 3207 | .addMBB(MBB: TBB); |
| 3208 | |
| 3209 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3210 | return Sink; |
| 3211 | } |
| 3212 | |
| 3213 | // Emit the COPY_FW pseudo instruction. |
| 3214 | // |
| 3215 | // copy_fw_pseudo $fd, $ws, n |
| 3216 | // => |
| 3217 | // copy_u_w $rt, $ws, $n |
| 3218 | // mtc1 $rt, $fd |
| 3219 | // |
| 3220 | // When n is zero, the equivalent operation can be performed with (potentially) |
| 3221 | // zero instructions due to register overlaps. This optimization is never valid |
| 3222 | // for lane 1 because it would require FR=0 mode which isn't supported by MSA. |
| 3223 | MachineBasicBlock * |
| 3224 | MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI, |
| 3225 | MachineBasicBlock *BB) const { |
| 3226 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3227 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3228 | DebugLoc DL = MI.getDebugLoc(); |
| 3229 | Register Fd = MI.getOperand(i: 0).getReg(); |
| 3230 | Register Ws = MI.getOperand(i: 1).getReg(); |
| 3231 | unsigned Lane = MI.getOperand(i: 2).getImm(); |
| 3232 | |
| 3233 | if (Lane == 0) { |
| 3234 | unsigned Wt = Ws; |
| 3235 | if (!Subtarget.useOddSPReg()) { |
| 3236 | // We must copy to an even-numbered MSA register so that the |
| 3237 | // single-precision sub-register is also guaranteed to be even-numbered. |
| 3238 | Wt = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WEvensRegClass); |
| 3239 | |
| 3240 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Wt).addReg(RegNo: Ws); |
| 3241 | } |
| 3242 | |
| 3243 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Fd).addReg(RegNo: Wt, flags: 0, SubReg: Mips::sub_lo); |
| 3244 | } else { |
| 3245 | Register Wt = RegInfo.createVirtualRegister( |
| 3246 | RegClass: Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass |
| 3247 | : &Mips::MSA128WEvensRegClass); |
| 3248 | |
| 3249 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SPLATI_W), DestReg: Wt).addReg(RegNo: Ws).addImm(Val: Lane); |
| 3250 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Fd).addReg(RegNo: Wt, flags: 0, SubReg: Mips::sub_lo); |
| 3251 | } |
| 3252 | |
| 3253 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3254 | return BB; |
| 3255 | } |
| 3256 | |
| 3257 | // Emit the COPY_FD pseudo instruction. |
| 3258 | // |
| 3259 | // copy_fd_pseudo $fd, $ws, n |
| 3260 | // => |
| 3261 | // splati.d $wt, $ws, $n |
| 3262 | // copy $fd, $wt:sub_64 |
| 3263 | // |
| 3264 | // When n is zero, the equivalent operation can be performed with (potentially) |
| 3265 | // zero instructions due to register overlaps. This optimization is always |
| 3266 | // valid because FR=1 mode which is the only supported mode in MSA. |
| 3267 | MachineBasicBlock * |
| 3268 | MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI, |
| 3269 | MachineBasicBlock *BB) const { |
| 3270 | assert(Subtarget.isFP64bit()); |
| 3271 | |
| 3272 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3273 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3274 | Register Fd = MI.getOperand(i: 0).getReg(); |
| 3275 | Register Ws = MI.getOperand(i: 1).getReg(); |
| 3276 | unsigned Lane = MI.getOperand(i: 2).getImm() * 2; |
| 3277 | DebugLoc DL = MI.getDebugLoc(); |
| 3278 | |
| 3279 | if (Lane == 0) |
| 3280 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Fd).addReg(RegNo: Ws, flags: 0, SubReg: Mips::sub_64); |
| 3281 | else { |
| 3282 | Register Wt = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128DRegClass); |
| 3283 | |
| 3284 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SPLATI_D), DestReg: Wt).addReg(RegNo: Ws).addImm(Val: 1); |
| 3285 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Fd).addReg(RegNo: Wt, flags: 0, SubReg: Mips::sub_64); |
| 3286 | } |
| 3287 | |
| 3288 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3289 | return BB; |
| 3290 | } |
| 3291 | |
| 3292 | // Emit the INSERT_FW pseudo instruction. |
| 3293 | // |
| 3294 | // insert_fw_pseudo $wd, $wd_in, $n, $fs |
| 3295 | // => |
| 3296 | // subreg_to_reg $wt:sub_lo, $fs |
| 3297 | // insve_w $wd[$n], $wd_in, $wt[0] |
| 3298 | MachineBasicBlock * |
| 3299 | MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI, |
| 3300 | MachineBasicBlock *BB) const { |
| 3301 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3302 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3303 | DebugLoc DL = MI.getDebugLoc(); |
| 3304 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3305 | Register Wd_in = MI.getOperand(i: 1).getReg(); |
| 3306 | unsigned Lane = MI.getOperand(i: 2).getImm(); |
| 3307 | Register Fs = MI.getOperand(i: 3).getReg(); |
| 3308 | Register Wt = RegInfo.createVirtualRegister( |
| 3309 | RegClass: Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass |
| 3310 | : &Mips::MSA128WEvensRegClass); |
| 3311 | |
| 3312 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SUBREG_TO_REG), DestReg: Wt) |
| 3313 | .addImm(Val: 0) |
| 3314 | .addReg(RegNo: Fs) |
| 3315 | .addImm(Val: Mips::sub_lo); |
| 3316 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSVE_W), DestReg: Wd) |
| 3317 | .addReg(RegNo: Wd_in) |
| 3318 | .addImm(Val: Lane) |
| 3319 | .addReg(RegNo: Wt) |
| 3320 | .addImm(Val: 0); |
| 3321 | |
| 3322 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3323 | return BB; |
| 3324 | } |
| 3325 | |
| 3326 | // Emit the INSERT_FD pseudo instruction. |
| 3327 | // |
| 3328 | // insert_fd_pseudo $wd, $fs, n |
| 3329 | // => |
| 3330 | // subreg_to_reg $wt:sub_64, $fs |
| 3331 | // insve_d $wd[$n], $wd_in, $wt[0] |
| 3332 | MachineBasicBlock * |
| 3333 | MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI, |
| 3334 | MachineBasicBlock *BB) const { |
| 3335 | assert(Subtarget.isFP64bit()); |
| 3336 | |
| 3337 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3338 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3339 | DebugLoc DL = MI.getDebugLoc(); |
| 3340 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3341 | Register Wd_in = MI.getOperand(i: 1).getReg(); |
| 3342 | unsigned Lane = MI.getOperand(i: 2).getImm(); |
| 3343 | Register Fs = MI.getOperand(i: 3).getReg(); |
| 3344 | Register Wt = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128DRegClass); |
| 3345 | |
| 3346 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SUBREG_TO_REG), DestReg: Wt) |
| 3347 | .addImm(Val: 0) |
| 3348 | .addReg(RegNo: Fs) |
| 3349 | .addImm(Val: Mips::sub_64); |
| 3350 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSVE_D), DestReg: Wd) |
| 3351 | .addReg(RegNo: Wd_in) |
| 3352 | .addImm(Val: Lane) |
| 3353 | .addReg(RegNo: Wt) |
| 3354 | .addImm(Val: 0); |
| 3355 | |
| 3356 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3357 | return BB; |
| 3358 | } |
| 3359 | |
| 3360 | // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction. |
| 3361 | // |
| 3362 | // For integer: |
| 3363 | // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs) |
| 3364 | // => |
| 3365 | // (SLL $lanetmp1, $lane, <log2size) |
| 3366 | // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) |
| 3367 | // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs) |
| 3368 | // (NEG $lanetmp2, $lanetmp1) |
| 3369 | // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2) |
| 3370 | // |
| 3371 | // For floating point: |
| 3372 | // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs) |
| 3373 | // => |
| 3374 | // (SUBREG_TO_REG $wt, $fs, <subreg>) |
| 3375 | // (SLL $lanetmp1, $lane, <log2size) |
| 3376 | // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) |
| 3377 | // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0) |
| 3378 | // (NEG $lanetmp2, $lanetmp1) |
| 3379 | // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2) |
| 3380 | MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX( |
| 3381 | MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes, |
| 3382 | bool IsFP) const { |
| 3383 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3384 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3385 | DebugLoc DL = MI.getDebugLoc(); |
| 3386 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3387 | Register SrcVecReg = MI.getOperand(i: 1).getReg(); |
| 3388 | Register LaneReg = MI.getOperand(i: 2).getReg(); |
| 3389 | Register SrcValReg = MI.getOperand(i: 3).getReg(); |
| 3390 | |
| 3391 | const TargetRegisterClass *VecRC = nullptr; |
| 3392 | // FIXME: This should be true for N32 too. |
| 3393 | const TargetRegisterClass *GPRRC = |
| 3394 | Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; |
| 3395 | unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0; |
| 3396 | unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL; |
| 3397 | unsigned EltLog2Size; |
| 3398 | unsigned InsertOp = 0; |
| 3399 | unsigned InsveOp = 0; |
| 3400 | switch (EltSizeInBytes) { |
| 3401 | default: |
| 3402 | llvm_unreachable("Unexpected size" ); |
| 3403 | case 1: |
| 3404 | EltLog2Size = 0; |
| 3405 | InsertOp = Mips::INSERT_B; |
| 3406 | InsveOp = Mips::INSVE_B; |
| 3407 | VecRC = &Mips::MSA128BRegClass; |
| 3408 | break; |
| 3409 | case 2: |
| 3410 | EltLog2Size = 1; |
| 3411 | InsertOp = Mips::INSERT_H; |
| 3412 | InsveOp = Mips::INSVE_H; |
| 3413 | VecRC = &Mips::MSA128HRegClass; |
| 3414 | break; |
| 3415 | case 4: |
| 3416 | EltLog2Size = 2; |
| 3417 | InsertOp = Mips::INSERT_W; |
| 3418 | InsveOp = Mips::INSVE_W; |
| 3419 | VecRC = &Mips::MSA128WRegClass; |
| 3420 | break; |
| 3421 | case 8: |
| 3422 | EltLog2Size = 3; |
| 3423 | InsertOp = Mips::INSERT_D; |
| 3424 | InsveOp = Mips::INSVE_D; |
| 3425 | VecRC = &Mips::MSA128DRegClass; |
| 3426 | break; |
| 3427 | } |
| 3428 | |
| 3429 | if (IsFP) { |
| 3430 | Register Wt = RegInfo.createVirtualRegister(RegClass: VecRC); |
| 3431 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SUBREG_TO_REG), DestReg: Wt) |
| 3432 | .addImm(Val: 0) |
| 3433 | .addReg(RegNo: SrcValReg) |
| 3434 | .addImm(Val: EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo); |
| 3435 | SrcValReg = Wt; |
| 3436 | } |
| 3437 | |
| 3438 | // Convert the lane index into a byte index |
| 3439 | if (EltSizeInBytes != 1) { |
| 3440 | Register LaneTmp1 = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3441 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: ShiftOp), DestReg: LaneTmp1) |
| 3442 | .addReg(RegNo: LaneReg) |
| 3443 | .addImm(Val: EltLog2Size); |
| 3444 | LaneReg = LaneTmp1; |
| 3445 | } |
| 3446 | |
| 3447 | // Rotate bytes around so that the desired lane is element zero |
| 3448 | Register WdTmp1 = RegInfo.createVirtualRegister(RegClass: VecRC); |
| 3449 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SLD_B), DestReg: WdTmp1) |
| 3450 | .addReg(RegNo: SrcVecReg) |
| 3451 | .addReg(RegNo: SrcVecReg) |
| 3452 | .addReg(RegNo: LaneReg, flags: 0, SubReg: SubRegIdx); |
| 3453 | |
| 3454 | Register WdTmp2 = RegInfo.createVirtualRegister(RegClass: VecRC); |
| 3455 | if (IsFP) { |
| 3456 | // Use insve.df to insert to element zero |
| 3457 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: InsveOp), DestReg: WdTmp2) |
| 3458 | .addReg(RegNo: WdTmp1) |
| 3459 | .addImm(Val: 0) |
| 3460 | .addReg(RegNo: SrcValReg) |
| 3461 | .addImm(Val: 0); |
| 3462 | } else { |
| 3463 | // Use insert.df to insert to element zero |
| 3464 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: InsertOp), DestReg: WdTmp2) |
| 3465 | .addReg(RegNo: WdTmp1) |
| 3466 | .addReg(RegNo: SrcValReg) |
| 3467 | .addImm(Val: 0); |
| 3468 | } |
| 3469 | |
| 3470 | // Rotate elements the rest of the way for a full rotation. |
| 3471 | // sld.df inteprets $rt modulo the number of columns so we only need to negate |
| 3472 | // the lane index to do this. |
| 3473 | Register LaneTmp2 = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3474 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB), |
| 3475 | DestReg: LaneTmp2) |
| 3476 | .addReg(RegNo: Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO) |
| 3477 | .addReg(RegNo: LaneReg); |
| 3478 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SLD_B), DestReg: Wd) |
| 3479 | .addReg(RegNo: WdTmp2) |
| 3480 | .addReg(RegNo: WdTmp2) |
| 3481 | .addReg(RegNo: LaneTmp2, flags: 0, SubReg: SubRegIdx); |
| 3482 | |
| 3483 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3484 | return BB; |
| 3485 | } |
| 3486 | |
| 3487 | // Emit the FILL_FW pseudo instruction. |
| 3488 | // |
| 3489 | // fill_fw_pseudo $wd, $fs |
| 3490 | // => |
| 3491 | // implicit_def $wt1 |
| 3492 | // insert_subreg $wt2:subreg_lo, $wt1, $fs |
| 3493 | // splati.w $wd, $wt2[0] |
| 3494 | MachineBasicBlock * |
| 3495 | MipsSETargetLowering::emitFILL_FW(MachineInstr &MI, |
| 3496 | MachineBasicBlock *BB) const { |
| 3497 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3498 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3499 | DebugLoc DL = MI.getDebugLoc(); |
| 3500 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3501 | Register Fs = MI.getOperand(i: 1).getReg(); |
| 3502 | Register Wt1 = RegInfo.createVirtualRegister( |
| 3503 | RegClass: Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass |
| 3504 | : &Mips::MSA128WEvensRegClass); |
| 3505 | Register Wt2 = RegInfo.createVirtualRegister( |
| 3506 | RegClass: Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass |
| 3507 | : &Mips::MSA128WEvensRegClass); |
| 3508 | |
| 3509 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::IMPLICIT_DEF), DestReg: Wt1); |
| 3510 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSERT_SUBREG), DestReg: Wt2) |
| 3511 | .addReg(RegNo: Wt1) |
| 3512 | .addReg(RegNo: Fs) |
| 3513 | .addImm(Val: Mips::sub_lo); |
| 3514 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SPLATI_W), DestReg: Wd).addReg(RegNo: Wt2).addImm(Val: 0); |
| 3515 | |
| 3516 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3517 | return BB; |
| 3518 | } |
| 3519 | |
| 3520 | // Emit the FILL_FD pseudo instruction. |
| 3521 | // |
| 3522 | // fill_fd_pseudo $wd, $fs |
| 3523 | // => |
| 3524 | // implicit_def $wt1 |
| 3525 | // insert_subreg $wt2:subreg_64, $wt1, $fs |
| 3526 | // splati.d $wd, $wt2[0] |
| 3527 | MachineBasicBlock * |
| 3528 | MipsSETargetLowering::emitFILL_FD(MachineInstr &MI, |
| 3529 | MachineBasicBlock *BB) const { |
| 3530 | assert(Subtarget.isFP64bit()); |
| 3531 | |
| 3532 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3533 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3534 | DebugLoc DL = MI.getDebugLoc(); |
| 3535 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3536 | Register Fs = MI.getOperand(i: 1).getReg(); |
| 3537 | Register Wt1 = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128DRegClass); |
| 3538 | Register Wt2 = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128DRegClass); |
| 3539 | |
| 3540 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::IMPLICIT_DEF), DestReg: Wt1); |
| 3541 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSERT_SUBREG), DestReg: Wt2) |
| 3542 | .addReg(RegNo: Wt1) |
| 3543 | .addReg(RegNo: Fs) |
| 3544 | .addImm(Val: Mips::sub_64); |
| 3545 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SPLATI_D), DestReg: Wd).addReg(RegNo: Wt2).addImm(Val: 0); |
| 3546 | |
| 3547 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3548 | return BB; |
| 3549 | } |
| 3550 | |
| 3551 | // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA |
| 3552 | // register. |
| 3553 | // |
| 3554 | // STF16 MSA128F16:$wd, mem_simm10:$addr |
| 3555 | // => |
| 3556 | // copy_u.h $rtemp,$wd[0] |
| 3557 | // sh $rtemp, $addr |
| 3558 | // |
| 3559 | // Safety: We can't use st.h & co as they would over write the memory after |
| 3560 | // the destination. It would require half floats be allocated 16 bytes(!) of |
| 3561 | // space. |
| 3562 | MachineBasicBlock * |
| 3563 | MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI, |
| 3564 | MachineBasicBlock *BB) const { |
| 3565 | |
| 3566 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3567 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3568 | DebugLoc DL = MI.getDebugLoc(); |
| 3569 | Register Ws = MI.getOperand(i: 0).getReg(); |
| 3570 | Register Rt = MI.getOperand(i: 1).getReg(); |
| 3571 | const MachineMemOperand &MMO = **MI.memoperands_begin(); |
| 3572 | unsigned Imm = MMO.getOffset(); |
| 3573 | |
| 3574 | // Caution: A load via the GOT can expand to a GPR32 operand, a load via |
| 3575 | // spill and reload can expand as a GPR64 operand. Examine the |
| 3576 | // operand in detail and default to ABI. |
| 3577 | const TargetRegisterClass *RC = |
| 3578 | MI.getOperand(i: 1).isReg() ? RegInfo.getRegClass(Reg: MI.getOperand(i: 1).getReg()) |
| 3579 | : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass |
| 3580 | : &Mips::GPR64RegClass); |
| 3581 | const bool UsingMips32 = RC == &Mips::GPR32RegClass; |
| 3582 | Register Rs = RegInfo.createVirtualRegister(RegClass: &Mips::GPR32RegClass); |
| 3583 | |
| 3584 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY_U_H), DestReg: Rs).addReg(RegNo: Ws).addImm(Val: 0); |
| 3585 | if(!UsingMips32) { |
| 3586 | Register Tmp = RegInfo.createVirtualRegister(RegClass: &Mips::GPR64RegClass); |
| 3587 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::SUBREG_TO_REG), DestReg: Tmp) |
| 3588 | .addImm(Val: 0) |
| 3589 | .addReg(RegNo: Rs) |
| 3590 | .addImm(Val: Mips::sub_32); |
| 3591 | Rs = Tmp; |
| 3592 | } |
| 3593 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: UsingMips32 ? Mips::SH : Mips::SH64)) |
| 3594 | .addReg(RegNo: Rs) |
| 3595 | .addReg(RegNo: Rt) |
| 3596 | .addImm(Val: Imm) |
| 3597 | .addMemOperand(MMO: BB->getParent()->getMachineMemOperand( |
| 3598 | MMO: &MMO, Offset: MMO.getOffset(), Size: MMO.getSize())); |
| 3599 | |
| 3600 | MI.eraseFromParent(); |
| 3601 | return BB; |
| 3602 | } |
| 3603 | |
| 3604 | // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register. |
| 3605 | // |
| 3606 | // LD_F16 MSA128F16:$wd, mem_simm10:$addr |
| 3607 | // => |
| 3608 | // lh $rtemp, $addr |
| 3609 | // fill.h $wd, $rtemp |
| 3610 | // |
| 3611 | // Safety: We can't use ld.h & co as they over-read from the source. |
| 3612 | // Additionally, if the address is not modulo 16, 2 cases can occur: |
| 3613 | // a) Segmentation fault as the load instruction reads from a memory page |
| 3614 | // memory it's not supposed to. |
| 3615 | // b) The load crosses an implementation specific boundary, requiring OS |
| 3616 | // intervention. |
| 3617 | MachineBasicBlock * |
| 3618 | MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI, |
| 3619 | MachineBasicBlock *BB) const { |
| 3620 | |
| 3621 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3622 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3623 | DebugLoc DL = MI.getDebugLoc(); |
| 3624 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3625 | |
| 3626 | // Caution: A load via the GOT can expand to a GPR32 operand, a load via |
| 3627 | // spill and reload can expand as a GPR64 operand. Examine the |
| 3628 | // operand in detail and default to ABI. |
| 3629 | const TargetRegisterClass *RC = |
| 3630 | MI.getOperand(i: 1).isReg() ? RegInfo.getRegClass(Reg: MI.getOperand(i: 1).getReg()) |
| 3631 | : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass |
| 3632 | : &Mips::GPR64RegClass); |
| 3633 | |
| 3634 | const bool UsingMips32 = RC == &Mips::GPR32RegClass; |
| 3635 | Register Rt = RegInfo.createVirtualRegister(RegClass: RC); |
| 3636 | |
| 3637 | MachineInstrBuilder MIB = |
| 3638 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: UsingMips32 ? Mips::LH : Mips::LH64), DestReg: Rt); |
| 3639 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands())) |
| 3640 | MIB.add(MO); |
| 3641 | |
| 3642 | if(!UsingMips32) { |
| 3643 | Register Tmp = RegInfo.createVirtualRegister(RegClass: &Mips::GPR32RegClass); |
| 3644 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY), DestReg: Tmp).addReg(RegNo: Rt, flags: 0, SubReg: Mips::sub_32); |
| 3645 | Rt = Tmp; |
| 3646 | } |
| 3647 | |
| 3648 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FILL_H), DestReg: Wd).addReg(RegNo: Rt); |
| 3649 | |
| 3650 | MI.eraseFromParent(); |
| 3651 | return BB; |
| 3652 | } |
| 3653 | |
| 3654 | // Emit the FPROUND_PSEUDO instruction. |
| 3655 | // |
| 3656 | // Round an FGR64Opnd, FGR32Opnd to an f16. |
| 3657 | // |
| 3658 | // Safety: Cycle the operand through the GPRs so the result always ends up |
| 3659 | // the correct MSA register. |
| 3660 | // |
| 3661 | // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs |
| 3662 | // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register |
| 3663 | // (which they can be, as the MSA registers are defined to alias the |
| 3664 | // FPU's 64 bit and 32 bit registers) the result can be accessed using |
| 3665 | // the correct register class. That requires operands be tie-able across |
| 3666 | // register classes which have a sub/super register class relationship. |
| 3667 | // |
| 3668 | // For FPG32Opnd: |
| 3669 | // |
| 3670 | // FPROUND MSA128F16:$wd, FGR32Opnd:$fs |
| 3671 | // => |
| 3672 | // mfc1 $rtemp, $fs |
| 3673 | // fill.w $rtemp, $wtemp |
| 3674 | // fexdo.w $wd, $wtemp, $wtemp |
| 3675 | // |
| 3676 | // For FPG64Opnd on mips32r2+: |
| 3677 | // |
| 3678 | // FPROUND MSA128F16:$wd, FGR64Opnd:$fs |
| 3679 | // => |
| 3680 | // mfc1 $rtemp, $fs |
| 3681 | // fill.w $rtemp, $wtemp |
| 3682 | // mfhc1 $rtemp2, $fs |
| 3683 | // insert.w $wtemp[1], $rtemp2 |
| 3684 | // insert.w $wtemp[3], $rtemp2 |
| 3685 | // fexdo.w $wtemp2, $wtemp, $wtemp |
| 3686 | // fexdo.h $wd, $temp2, $temp2 |
| 3687 | // |
| 3688 | // For FGR64Opnd on mips64r2+: |
| 3689 | // |
| 3690 | // FPROUND MSA128F16:$wd, FGR64Opnd:$fs |
| 3691 | // => |
| 3692 | // dmfc1 $rtemp, $fs |
| 3693 | // fill.d $rtemp, $wtemp |
| 3694 | // fexdo.w $wtemp2, $wtemp, $wtemp |
| 3695 | // fexdo.h $wd, $wtemp2, $wtemp2 |
| 3696 | // |
| 3697 | // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the |
| 3698 | // undef bits are "just right" and the exception enable bits are |
| 3699 | // set. By using fill.w to replicate $fs into all elements over |
| 3700 | // insert.w for one element, we avoid that potiential case. If |
| 3701 | // fexdo.[hw] causes an exception in, the exception is valid and it |
| 3702 | // occurs for all elements. |
| 3703 | MachineBasicBlock * |
| 3704 | MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI, |
| 3705 | MachineBasicBlock *BB, |
| 3706 | bool IsFGR64) const { |
| 3707 | |
| 3708 | // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous |
| 3709 | // here. It's technically doable to support MIPS32 here, but the ISA forbids |
| 3710 | // it. |
| 3711 | assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); |
| 3712 | |
| 3713 | bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; |
| 3714 | bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; |
| 3715 | |
| 3716 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3717 | DebugLoc DL = MI.getDebugLoc(); |
| 3718 | Register Wd = MI.getOperand(i: 0).getReg(); |
| 3719 | Register Fs = MI.getOperand(i: 1).getReg(); |
| 3720 | |
| 3721 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3722 | Register Wtemp = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WRegClass); |
| 3723 | const TargetRegisterClass *GPRRC = |
| 3724 | IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; |
| 3725 | unsigned MFC1Opc = IsFGR64onMips64 |
| 3726 | ? Mips::DMFC1 |
| 3727 | : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1); |
| 3728 | unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W; |
| 3729 | |
| 3730 | // Perform the register class copy as mentioned above. |
| 3731 | Register Rtemp = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3732 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: MFC1Opc), DestReg: Rtemp).addReg(RegNo: Fs); |
| 3733 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: FILLOpc), DestReg: Wtemp).addReg(RegNo: Rtemp); |
| 3734 | unsigned WPHI = Wtemp; |
| 3735 | |
| 3736 | if (IsFGR64onMips32) { |
| 3737 | Register Rtemp2 = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3738 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::MFHC1_D64), DestReg: Rtemp2).addReg(RegNo: Fs); |
| 3739 | Register Wtemp2 = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WRegClass); |
| 3740 | Register Wtemp3 = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WRegClass); |
| 3741 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSERT_W), DestReg: Wtemp2) |
| 3742 | .addReg(RegNo: Wtemp) |
| 3743 | .addReg(RegNo: Rtemp2) |
| 3744 | .addImm(Val: 1); |
| 3745 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::INSERT_W), DestReg: Wtemp3) |
| 3746 | .addReg(RegNo: Wtemp2) |
| 3747 | .addReg(RegNo: Rtemp2) |
| 3748 | .addImm(Val: 3); |
| 3749 | WPHI = Wtemp3; |
| 3750 | } |
| 3751 | |
| 3752 | if (IsFGR64) { |
| 3753 | Register Wtemp2 = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WRegClass); |
| 3754 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXDO_W), DestReg: Wtemp2) |
| 3755 | .addReg(RegNo: WPHI) |
| 3756 | .addReg(RegNo: WPHI); |
| 3757 | WPHI = Wtemp2; |
| 3758 | } |
| 3759 | |
| 3760 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXDO_H), DestReg: Wd).addReg(RegNo: WPHI).addReg(RegNo: WPHI); |
| 3761 | |
| 3762 | MI.eraseFromParent(); |
| 3763 | return BB; |
| 3764 | } |
| 3765 | |
| 3766 | // Emit the FPEXTEND_PSEUDO instruction. |
| 3767 | // |
| 3768 | // Expand an f16 to either a FGR32Opnd or FGR64Opnd. |
| 3769 | // |
| 3770 | // Safety: Cycle the result through the GPRs so the result always ends up |
| 3771 | // the correct floating point register. |
| 3772 | // |
| 3773 | // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd |
| 3774 | // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register |
| 3775 | // (which they can be, as the MSA registers are defined to alias the |
| 3776 | // FPU's 64 bit and 32 bit registers) the result can be accessed using |
| 3777 | // the correct register class. That requires operands be tie-able across |
| 3778 | // register classes which have a sub/super register class relationship. I |
| 3779 | // haven't checked. |
| 3780 | // |
| 3781 | // For FGR32Opnd: |
| 3782 | // |
| 3783 | // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws |
| 3784 | // => |
| 3785 | // fexupr.w $wtemp, $ws |
| 3786 | // copy_s.w $rtemp, $ws[0] |
| 3787 | // mtc1 $rtemp, $fd |
| 3788 | // |
| 3789 | // For FGR64Opnd on Mips64: |
| 3790 | // |
| 3791 | // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws |
| 3792 | // => |
| 3793 | // fexupr.w $wtemp, $ws |
| 3794 | // fexupr.d $wtemp2, $wtemp |
| 3795 | // copy_s.d $rtemp, $wtemp2s[0] |
| 3796 | // dmtc1 $rtemp, $fd |
| 3797 | // |
| 3798 | // For FGR64Opnd on Mips32: |
| 3799 | // |
| 3800 | // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws |
| 3801 | // => |
| 3802 | // fexupr.w $wtemp, $ws |
| 3803 | // fexupr.d $wtemp2, $wtemp |
| 3804 | // copy_s.w $rtemp, $wtemp2[0] |
| 3805 | // mtc1 $rtemp, $ftemp |
| 3806 | // copy_s.w $rtemp2, $wtemp2[1] |
| 3807 | // $fd = mthc1 $rtemp2, $ftemp |
| 3808 | MachineBasicBlock * |
| 3809 | MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI, |
| 3810 | MachineBasicBlock *BB, |
| 3811 | bool IsFGR64) const { |
| 3812 | |
| 3813 | // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous |
| 3814 | // here. It's technically doable to support MIPS32 here, but the ISA forbids |
| 3815 | // it. |
| 3816 | assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); |
| 3817 | |
| 3818 | bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; |
| 3819 | bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; |
| 3820 | |
| 3821 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3822 | DebugLoc DL = MI.getDebugLoc(); |
| 3823 | Register Fd = MI.getOperand(i: 0).getReg(); |
| 3824 | Register Ws = MI.getOperand(i: 1).getReg(); |
| 3825 | |
| 3826 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3827 | const TargetRegisterClass *GPRRC = |
| 3828 | IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; |
| 3829 | unsigned MTC1Opc = IsFGR64onMips64 |
| 3830 | ? Mips::DMTC1 |
| 3831 | : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1); |
| 3832 | Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W; |
| 3833 | |
| 3834 | Register Wtemp = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128WRegClass); |
| 3835 | Register WPHI = Wtemp; |
| 3836 | |
| 3837 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXUPR_W), DestReg: Wtemp).addReg(RegNo: Ws); |
| 3838 | if (IsFGR64) { |
| 3839 | WPHI = RegInfo.createVirtualRegister(RegClass: &Mips::MSA128DRegClass); |
| 3840 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXUPR_D), DestReg: WPHI).addReg(RegNo: Wtemp); |
| 3841 | } |
| 3842 | |
| 3843 | // Perform the safety regclass copy mentioned above. |
| 3844 | Register Rtemp = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3845 | Register FPRPHI = IsFGR64onMips32 |
| 3846 | ? RegInfo.createVirtualRegister(RegClass: &Mips::FGR64RegClass) |
| 3847 | : Fd; |
| 3848 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: COPYOpc), DestReg: Rtemp).addReg(RegNo: WPHI).addImm(Val: 0); |
| 3849 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: MTC1Opc), DestReg: FPRPHI).addReg(RegNo: Rtemp); |
| 3850 | |
| 3851 | if (IsFGR64onMips32) { |
| 3852 | Register Rtemp2 = RegInfo.createVirtualRegister(RegClass: GPRRC); |
| 3853 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::COPY_S_W), DestReg: Rtemp2) |
| 3854 | .addReg(RegNo: WPHI) |
| 3855 | .addImm(Val: 1); |
| 3856 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::MTHC1_D64), DestReg: Fd) |
| 3857 | .addReg(RegNo: FPRPHI) |
| 3858 | .addReg(RegNo: Rtemp2); |
| 3859 | } |
| 3860 | |
| 3861 | MI.eraseFromParent(); |
| 3862 | return BB; |
| 3863 | } |
| 3864 | |
| 3865 | // Emit the FEXP2_W_1 pseudo instructions. |
| 3866 | // |
| 3867 | // fexp2_w_1_pseudo $wd, $wt |
| 3868 | // => |
| 3869 | // ldi.w $ws, 1 |
| 3870 | // fexp2.w $wd, $ws, $wt |
| 3871 | MachineBasicBlock * |
| 3872 | MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI, |
| 3873 | MachineBasicBlock *BB) const { |
| 3874 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3875 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3876 | const TargetRegisterClass *RC = &Mips::MSA128WRegClass; |
| 3877 | Register Ws1 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3878 | Register Ws2 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3879 | DebugLoc DL = MI.getDebugLoc(); |
| 3880 | |
| 3881 | // Splat 1.0 into a vector |
| 3882 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::LDI_W), DestReg: Ws1).addImm(Val: 1); |
| 3883 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FFINT_U_W), DestReg: Ws2).addReg(RegNo: Ws1); |
| 3884 | |
| 3885 | // Emit 1.0 * fexp2(Wt) |
| 3886 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXP2_W), DestReg: MI.getOperand(i: 0).getReg()) |
| 3887 | .addReg(RegNo: Ws2) |
| 3888 | .addReg(RegNo: MI.getOperand(i: 1).getReg()); |
| 3889 | |
| 3890 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3891 | return BB; |
| 3892 | } |
| 3893 | |
| 3894 | // Emit the FEXP2_D_1 pseudo instructions. |
| 3895 | // |
| 3896 | // fexp2_d_1_pseudo $wd, $wt |
| 3897 | // => |
| 3898 | // ldi.d $ws, 1 |
| 3899 | // fexp2.d $wd, $ws, $wt |
| 3900 | MachineBasicBlock * |
| 3901 | MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI, |
| 3902 | MachineBasicBlock *BB) const { |
| 3903 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 3904 | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); |
| 3905 | const TargetRegisterClass *RC = &Mips::MSA128DRegClass; |
| 3906 | Register Ws1 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3907 | Register Ws2 = RegInfo.createVirtualRegister(RegClass: RC); |
| 3908 | DebugLoc DL = MI.getDebugLoc(); |
| 3909 | |
| 3910 | // Splat 1.0 into a vector |
| 3911 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::LDI_D), DestReg: Ws1).addImm(Val: 1); |
| 3912 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FFINT_U_D), DestReg: Ws2).addReg(RegNo: Ws1); |
| 3913 | |
| 3914 | // Emit 1.0 * fexp2(Wt) |
| 3915 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: Mips::FEXP2_D), DestReg: MI.getOperand(i: 0).getReg()) |
| 3916 | .addReg(RegNo: Ws2) |
| 3917 | .addReg(RegNo: MI.getOperand(i: 1).getReg()); |
| 3918 | |
| 3919 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 3920 | return BB; |
| 3921 | } |
| 3922 | |