| 1 | //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains a printer that converts from our internal representation |
| 10 | // of machine-dependent LLVM code to NVPTX assembly language. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "NVPTXAsmPrinter.h" |
| 15 | #include "MCTargetDesc/NVPTXBaseInfo.h" |
| 16 | #include "MCTargetDesc/NVPTXInstPrinter.h" |
| 17 | #include "MCTargetDesc/NVPTXMCAsmInfo.h" |
| 18 | #include "MCTargetDesc/NVPTXTargetStreamer.h" |
| 19 | #include "NVPTX.h" |
| 20 | #include "NVPTXMCExpr.h" |
| 21 | #include "NVPTXMachineFunctionInfo.h" |
| 22 | #include "NVPTXRegisterInfo.h" |
| 23 | #include "NVPTXSubtarget.h" |
| 24 | #include "NVPTXTargetMachine.h" |
| 25 | #include "NVPTXUtilities.h" |
| 26 | #include "TargetInfo/NVPTXTargetInfo.h" |
| 27 | #include "cl_common_defines.h" |
| 28 | #include "llvm/ADT/APFloat.h" |
| 29 | #include "llvm/ADT/APInt.h" |
| 30 | #include "llvm/ADT/ArrayRef.h" |
| 31 | #include "llvm/ADT/DenseMap.h" |
| 32 | #include "llvm/ADT/DenseSet.h" |
| 33 | #include "llvm/ADT/SmallString.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/ADT/StringExtras.h" |
| 36 | #include "llvm/ADT/StringRef.h" |
| 37 | #include "llvm/ADT/Twine.h" |
| 38 | #include "llvm/ADT/iterator_range.h" |
| 39 | #include "llvm/Analysis/ConstantFolding.h" |
| 40 | #include "llvm/CodeGen/Analysis.h" |
| 41 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 42 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 43 | #include "llvm/CodeGen/MachineFunction.h" |
| 44 | #include "llvm/CodeGen/MachineInstr.h" |
| 45 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 46 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 47 | #include "llvm/CodeGen/MachineOperand.h" |
| 48 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 49 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 50 | #include "llvm/CodeGen/ValueTypes.h" |
| 51 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 52 | #include "llvm/IR/Argument.h" |
| 53 | #include "llvm/IR/Attributes.h" |
| 54 | #include "llvm/IR/BasicBlock.h" |
| 55 | #include "llvm/IR/Constant.h" |
| 56 | #include "llvm/IR/Constants.h" |
| 57 | #include "llvm/IR/DataLayout.h" |
| 58 | #include "llvm/IR/DebugInfo.h" |
| 59 | #include "llvm/IR/DebugInfoMetadata.h" |
| 60 | #include "llvm/IR/DebugLoc.h" |
| 61 | #include "llvm/IR/DerivedTypes.h" |
| 62 | #include "llvm/IR/Function.h" |
| 63 | #include "llvm/IR/GlobalAlias.h" |
| 64 | #include "llvm/IR/GlobalValue.h" |
| 65 | #include "llvm/IR/GlobalVariable.h" |
| 66 | #include "llvm/IR/Instruction.h" |
| 67 | #include "llvm/IR/LLVMContext.h" |
| 68 | #include "llvm/IR/Module.h" |
| 69 | #include "llvm/IR/Operator.h" |
| 70 | #include "llvm/IR/Type.h" |
| 71 | #include "llvm/IR/User.h" |
| 72 | #include "llvm/MC/MCExpr.h" |
| 73 | #include "llvm/MC/MCInst.h" |
| 74 | #include "llvm/MC/MCInstrDesc.h" |
| 75 | #include "llvm/MC/MCStreamer.h" |
| 76 | #include "llvm/MC/MCSymbol.h" |
| 77 | #include "llvm/MC/TargetRegistry.h" |
| 78 | #include "llvm/Support/Alignment.h" |
| 79 | #include "llvm/Support/Casting.h" |
| 80 | #include "llvm/Support/Compiler.h" |
| 81 | #include "llvm/Support/Endian.h" |
| 82 | #include "llvm/Support/ErrorHandling.h" |
| 83 | #include "llvm/Support/NativeFormatting.h" |
| 84 | #include "llvm/Support/raw_ostream.h" |
| 85 | #include "llvm/Target/TargetLoweringObjectFile.h" |
| 86 | #include "llvm/Target/TargetMachine.h" |
| 87 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
| 88 | #include <cassert> |
| 89 | #include <cstdint> |
| 90 | #include <cstring> |
| 91 | #include <string> |
| 92 | #include <utility> |
| 93 | #include <vector> |
| 94 | |
| 95 | using namespace llvm; |
| 96 | |
| 97 | #define DEPOTNAME "__local_depot" |
| 98 | |
| 99 | /// discoverDependentGlobals - Return a set of GlobalVariables on which \p V |
| 100 | /// depends. |
| 101 | static void |
| 102 | discoverDependentGlobals(const Value *V, |
| 103 | DenseSet<const GlobalVariable *> &Globals) { |
| 104 | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: V)) { |
| 105 | Globals.insert(V: GV); |
| 106 | return; |
| 107 | } |
| 108 | |
| 109 | if (const User *U = dyn_cast<User>(Val: V)) |
| 110 | for (const auto &O : U->operands()) |
| 111 | discoverDependentGlobals(V: O, Globals); |
| 112 | } |
| 113 | |
| 114 | /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable |
| 115 | /// instances to be emitted, but only after any dependents have been added |
| 116 | /// first.s |
| 117 | static void |
| 118 | VisitGlobalVariableForEmission(const GlobalVariable *GV, |
| 119 | SmallVectorImpl<const GlobalVariable *> &Order, |
| 120 | DenseSet<const GlobalVariable *> &Visited, |
| 121 | DenseSet<const GlobalVariable *> &Visiting) { |
| 122 | // Have we already visited this one? |
| 123 | if (Visited.count(V: GV)) |
| 124 | return; |
| 125 | |
| 126 | // Do we have a circular dependency? |
| 127 | if (!Visiting.insert(V: GV).second) |
| 128 | report_fatal_error(reason: "Circular dependency found in global variable set" ); |
| 129 | |
| 130 | // Make sure we visit all dependents first |
| 131 | DenseSet<const GlobalVariable *> Others; |
| 132 | for (const auto &O : GV->operands()) |
| 133 | discoverDependentGlobals(V: O, Globals&: Others); |
| 134 | |
| 135 | for (const GlobalVariable *GV : Others) |
| 136 | VisitGlobalVariableForEmission(GV, Order, Visited, Visiting); |
| 137 | |
| 138 | // Now we can visit ourself |
| 139 | Order.push_back(Elt: GV); |
| 140 | Visited.insert(V: GV); |
| 141 | Visiting.erase(V: GV); |
| 142 | } |
| 143 | |
| 144 | void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) { |
| 145 | NVPTX_MC::verifyInstructionPredicates(Opcode: MI->getOpcode(), |
| 146 | Features: getSubtargetInfo().getFeatureBits()); |
| 147 | |
| 148 | MCInst Inst; |
| 149 | lowerToMCInst(MI, OutMI&: Inst); |
| 150 | EmitToStreamer(S&: *OutStreamer, Inst); |
| 151 | } |
| 152 | |
| 153 | void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) { |
| 154 | OutMI.setOpcode(MI->getOpcode()); |
| 155 | // Special: Do not mangle symbol operand of CALL_PROTOTYPE |
| 156 | if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) { |
| 157 | const MachineOperand &MO = MI->getOperand(i: 0); |
| 158 | OutMI.addOperand(Op: GetSymbolRef( |
| 159 | Symbol: OutContext.getOrCreateSymbol(Name: Twine(MO.getSymbolName())))); |
| 160 | return; |
| 161 | } |
| 162 | |
| 163 | for (const auto MO : MI->operands()) |
| 164 | OutMI.addOperand(Op: lowerOperand(MO)); |
| 165 | } |
| 166 | |
| 167 | MCOperand NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO) { |
| 168 | switch (MO.getType()) { |
| 169 | default: |
| 170 | llvm_unreachable("unknown operand type" ); |
| 171 | case MachineOperand::MO_Register: |
| 172 | return MCOperand::createReg(Reg: encodeVirtualRegister(Reg: MO.getReg())); |
| 173 | case MachineOperand::MO_Immediate: |
| 174 | return MCOperand::createImm(Val: MO.getImm()); |
| 175 | case MachineOperand::MO_MachineBasicBlock: |
| 176 | return MCOperand::createExpr( |
| 177 | Val: MCSymbolRefExpr::create(Symbol: MO.getMBB()->getSymbol(), Ctx&: OutContext)); |
| 178 | case MachineOperand::MO_ExternalSymbol: |
| 179 | return GetSymbolRef(Symbol: GetExternalSymbolSymbol(Sym: MO.getSymbolName())); |
| 180 | case MachineOperand::MO_GlobalAddress: |
| 181 | return GetSymbolRef(Symbol: getSymbol(GV: MO.getGlobal())); |
| 182 | case MachineOperand::MO_FPImmediate: { |
| 183 | const ConstantFP *Cnt = MO.getFPImm(); |
| 184 | const APFloat &Val = Cnt->getValueAPF(); |
| 185 | |
| 186 | switch (Cnt->getType()->getTypeID()) { |
| 187 | default: |
| 188 | report_fatal_error(reason: "Unsupported FP type" ); |
| 189 | break; |
| 190 | case Type::HalfTyID: |
| 191 | return MCOperand::createExpr( |
| 192 | Val: NVPTXFloatMCExpr::createConstantFPHalf(Flt: Val, Ctx&: OutContext)); |
| 193 | case Type::BFloatTyID: |
| 194 | return MCOperand::createExpr( |
| 195 | Val: NVPTXFloatMCExpr::createConstantBFPHalf(Flt: Val, Ctx&: OutContext)); |
| 196 | case Type::FloatTyID: |
| 197 | return MCOperand::createExpr( |
| 198 | Val: NVPTXFloatMCExpr::createConstantFPSingle(Flt: Val, Ctx&: OutContext)); |
| 199 | case Type::DoubleTyID: |
| 200 | return MCOperand::createExpr( |
| 201 | Val: NVPTXFloatMCExpr::createConstantFPDouble(Flt: Val, Ctx&: OutContext)); |
| 202 | } |
| 203 | break; |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) { |
| 209 | if (Register::isVirtualRegister(Reg)) { |
| 210 | const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| 211 | |
| 212 | DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC]; |
| 213 | unsigned RegNum = RegMap[Reg]; |
| 214 | |
| 215 | // Encode the register class in the upper 4 bits |
| 216 | // Must be kept in sync with NVPTXInstPrinter::printRegName |
| 217 | unsigned Ret = 0; |
| 218 | if (RC == &NVPTX::B1RegClass) { |
| 219 | Ret = (1 << 28); |
| 220 | } else if (RC == &NVPTX::B16RegClass) { |
| 221 | Ret = (2 << 28); |
| 222 | } else if (RC == &NVPTX::B32RegClass) { |
| 223 | Ret = (3 << 28); |
| 224 | } else if (RC == &NVPTX::B64RegClass) { |
| 225 | Ret = (4 << 28); |
| 226 | } else if (RC == &NVPTX::B128RegClass) { |
| 227 | Ret = (7 << 28); |
| 228 | } else { |
| 229 | report_fatal_error(reason: "Bad register class" ); |
| 230 | } |
| 231 | |
| 232 | // Insert the vreg number |
| 233 | Ret |= (RegNum & 0x0FFFFFFF); |
| 234 | return Ret; |
| 235 | } else { |
| 236 | // Some special-use registers are actually physical registers. |
| 237 | // Encode this as the register class ID of 0 and the real register ID. |
| 238 | return Reg & 0x0FFFFFFF; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) { |
| 243 | const MCExpr *Expr; |
| 244 | Expr = MCSymbolRefExpr::create(Symbol, Ctx&: OutContext); |
| 245 | return MCOperand::createExpr(Val: Expr); |
| 246 | } |
| 247 | |
| 248 | void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) { |
| 249 | const DataLayout &DL = getDataLayout(); |
| 250 | const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(F: *F); |
| 251 | const auto *TLI = cast<NVPTXTargetLowering>(Val: STI.getTargetLowering()); |
| 252 | |
| 253 | Type *Ty = F->getReturnType(); |
| 254 | if (Ty->getTypeID() == Type::VoidTyID) |
| 255 | return; |
| 256 | O << " (" ; |
| 257 | |
| 258 | auto PrintScalarRetVal = [&](unsigned Size) { |
| 259 | O << ".param .b" << promoteScalarArgumentSize(size: Size) << " func_retval0" ; |
| 260 | }; |
| 261 | if (shouldPassAsArray(Ty)) { |
| 262 | const unsigned TotalSize = DL.getTypeAllocSize(Ty); |
| 263 | const Align RetAlignment = TLI->getFunctionArgumentAlignment( |
| 264 | F, Ty, Idx: AttributeList::ReturnIndex, DL); |
| 265 | O << ".param .align " << RetAlignment.value() << " .b8 func_retval0[" |
| 266 | << TotalSize << "]" ; |
| 267 | } else if (Ty->isFloatingPointTy()) { |
| 268 | PrintScalarRetVal(Ty->getPrimitiveSizeInBits()); |
| 269 | } else if (auto *ITy = dyn_cast<IntegerType>(Val: Ty)) { |
| 270 | PrintScalarRetVal(ITy->getBitWidth()); |
| 271 | } else if (isa<PointerType>(Val: Ty)) { |
| 272 | PrintScalarRetVal(TLI->getPointerTy(DL).getSizeInBits()); |
| 273 | } else |
| 274 | llvm_unreachable("Unknown return type" ); |
| 275 | O << ") " ; |
| 276 | } |
| 277 | |
| 278 | void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF, |
| 279 | raw_ostream &O) { |
| 280 | const Function &F = MF.getFunction(); |
| 281 | printReturnValStr(F: &F, O); |
| 282 | } |
| 283 | |
| 284 | // Return true if MBB is the header of a loop marked with |
| 285 | // llvm.loop.unroll.disable or llvm.loop.unroll.count=1. |
| 286 | bool NVPTXAsmPrinter::( |
| 287 | const MachineBasicBlock &MBB) const { |
| 288 | MachineLoopInfo &LI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 289 | // We insert .pragma "nounroll" only to the loop header. |
| 290 | if (!LI.isLoopHeader(BB: &MBB)) |
| 291 | return false; |
| 292 | |
| 293 | // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore, |
| 294 | // we iterate through each back edge of the loop with header MBB, and check |
| 295 | // whether its metadata contains llvm.loop.unroll.disable. |
| 296 | for (const MachineBasicBlock *PMBB : MBB.predecessors()) { |
| 297 | if (LI.getLoopFor(BB: PMBB) != LI.getLoopFor(BB: &MBB)) { |
| 298 | // Edges from other loops to MBB are not back edges. |
| 299 | continue; |
| 300 | } |
| 301 | if (const BasicBlock *PBB = PMBB->getBasicBlock()) { |
| 302 | if (MDNode *LoopID = |
| 303 | PBB->getTerminator()->getMetadata(KindID: LLVMContext::MD_loop)) { |
| 304 | if (GetUnrollMetadata(LoopID, Name: "llvm.loop.unroll.disable" )) |
| 305 | return true; |
| 306 | if (MDNode *UnrollCountMD = |
| 307 | GetUnrollMetadata(LoopID, Name: "llvm.loop.unroll.count" )) { |
| 308 | if (mdconst::extract<ConstantInt>(MD: UnrollCountMD->getOperand(I: 1)) |
| 309 | ->isOne()) |
| 310 | return true; |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | } |
| 315 | return false; |
| 316 | } |
| 317 | |
| 318 | void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { |
| 319 | AsmPrinter::emitBasicBlockStart(MBB); |
| 320 | if (isLoopHeaderOfNoUnroll(MBB)) |
| 321 | OutStreamer->emitRawText(String: StringRef("\t.pragma \"nounroll\";\n" )); |
| 322 | } |
| 323 | |
| 324 | void NVPTXAsmPrinter::emitFunctionEntryLabel() { |
| 325 | SmallString<128> Str; |
| 326 | raw_svector_ostream O(Str); |
| 327 | |
| 328 | if (!GlobalsEmitted) { |
| 329 | emitGlobals(M: *MF->getFunction().getParent()); |
| 330 | GlobalsEmitted = true; |
| 331 | } |
| 332 | |
| 333 | // Set up |
| 334 | MRI = &MF->getRegInfo(); |
| 335 | F = &MF->getFunction(); |
| 336 | emitLinkageDirective(V: F, O); |
| 337 | if (isKernelFunction(F: *F)) |
| 338 | O << ".entry " ; |
| 339 | else { |
| 340 | O << ".func " ; |
| 341 | printReturnValStr(MF: *MF, O); |
| 342 | } |
| 343 | |
| 344 | CurrentFnSym->print(OS&: O, MAI); |
| 345 | |
| 346 | emitFunctionParamList(F, O); |
| 347 | O << "\n" ; |
| 348 | |
| 349 | if (isKernelFunction(F: *F)) |
| 350 | emitKernelFunctionDirectives(F: *F, O); |
| 351 | |
| 352 | if (shouldEmitPTXNoReturn(V: F, TM)) |
| 353 | O << ".noreturn" ; |
| 354 | |
| 355 | OutStreamer->emitRawText(String: O.str()); |
| 356 | |
| 357 | VRegMapping.clear(); |
| 358 | // Emit open brace for function body. |
| 359 | OutStreamer->emitRawText(String: StringRef("{\n" )); |
| 360 | setAndEmitFunctionVirtualRegisters(*MF); |
| 361 | encodeDebugInfoRegisterNumbers(MF: *MF); |
| 362 | // Emit initial .loc debug directive for correct relocation symbol data. |
| 363 | if (const DISubprogram *SP = MF->getFunction().getSubprogram()) { |
| 364 | assert(SP->getUnit()); |
| 365 | if (!SP->getUnit()->isDebugDirectivesOnly()) |
| 366 | emitInitialRawDwarfLocDirective(MF: *MF); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) { |
| 371 | bool Result = AsmPrinter::runOnMachineFunction(MF&: F); |
| 372 | // Emit closing brace for the body of function F. |
| 373 | // The closing brace must be emitted here because we need to emit additional |
| 374 | // debug labels/data after the last basic block. |
| 375 | // We need to emit the closing brace here because we don't have function that |
| 376 | // finished emission of the function body. |
| 377 | OutStreamer->emitRawText(String: StringRef("}\n" )); |
| 378 | return Result; |
| 379 | } |
| 380 | |
| 381 | void NVPTXAsmPrinter::emitFunctionBodyStart() { |
| 382 | SmallString<128> Str; |
| 383 | raw_svector_ostream O(Str); |
| 384 | emitDemotedVars(&MF->getFunction(), O); |
| 385 | OutStreamer->emitRawText(String: O.str()); |
| 386 | } |
| 387 | |
| 388 | void NVPTXAsmPrinter::emitFunctionBodyEnd() { |
| 389 | VRegMapping.clear(); |
| 390 | } |
| 391 | |
| 392 | const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const { |
| 393 | SmallString<128> Str; |
| 394 | raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber(); |
| 395 | return OutContext.getOrCreateSymbol(Name: Str); |
| 396 | } |
| 397 | |
| 398 | void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const { |
| 399 | Register RegNo = MI->getOperand(i: 0).getReg(); |
| 400 | if (RegNo.isVirtual()) { |
| 401 | OutStreamer->AddComment(T: Twine("implicit-def: " ) + |
| 402 | getVirtualRegisterName(RegNo)); |
| 403 | } else { |
| 404 | const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>(); |
| 405 | OutStreamer->AddComment(T: Twine("implicit-def: " ) + |
| 406 | STI.getRegisterInfo()->getName(RegNo)); |
| 407 | } |
| 408 | OutStreamer->addBlankLine(); |
| 409 | } |
| 410 | |
| 411 | void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F, |
| 412 | raw_ostream &O) const { |
| 413 | // If the NVVM IR has some of reqntid* specified, then output |
| 414 | // the reqntid directive, and set the unspecified ones to 1. |
| 415 | // If none of Reqntid* is specified, don't output reqntid directive. |
| 416 | const auto ReqNTID = getReqNTID(F); |
| 417 | if (!ReqNTID.empty()) |
| 418 | O << formatv(Fmt: ".reqntid {0:$[, ]}\n" , |
| 419 | Vals: make_range(x: ReqNTID.begin(), y: ReqNTID.end())); |
| 420 | |
| 421 | const auto MaxNTID = getMaxNTID(F); |
| 422 | if (!MaxNTID.empty()) |
| 423 | O << formatv(Fmt: ".maxntid {0:$[, ]}\n" , |
| 424 | Vals: make_range(x: MaxNTID.begin(), y: MaxNTID.end())); |
| 425 | |
| 426 | if (const auto Mincta = getMinCTASm(F)) |
| 427 | O << ".minnctapersm " << *Mincta << "\n" ; |
| 428 | |
| 429 | if (const auto Maxnreg = getMaxNReg(F)) |
| 430 | O << ".maxnreg " << *Maxnreg << "\n" ; |
| 431 | |
| 432 | // .maxclusterrank directive requires SM_90 or higher, make sure that we |
| 433 | // filter it out for lower SM versions, as it causes a hard ptxas crash. |
| 434 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 435 | const auto *STI = static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl()); |
| 436 | |
| 437 | if (STI->getSmVersion() >= 90) { |
| 438 | const auto ClusterDim = getClusterDim(F); |
| 439 | |
| 440 | if (!ClusterDim.empty()) { |
| 441 | O << ".explicitcluster\n" ; |
| 442 | if (ClusterDim[0] != 0) { |
| 443 | assert(llvm::all_of(ClusterDim, [](unsigned D) { return D != 0; }) && |
| 444 | "cluster_dim_x != 0 implies cluster_dim_y and cluster_dim_z " |
| 445 | "should be non-zero as well" ); |
| 446 | |
| 447 | O << formatv(Fmt: ".reqnctapercluster {0:$[, ]}\n" , |
| 448 | Vals: make_range(x: ClusterDim.begin(), y: ClusterDim.end())); |
| 449 | } else { |
| 450 | assert(llvm::all_of(ClusterDim, [](unsigned D) { return D == 0; }) && |
| 451 | "cluster_dim_x == 0 implies cluster_dim_y and cluster_dim_z " |
| 452 | "should be 0 as well" ); |
| 453 | } |
| 454 | } |
| 455 | if (const auto Maxclusterrank = getMaxClusterRank(F)) |
| 456 | O << ".maxclusterrank " << *Maxclusterrank << "\n" ; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | std::string NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const { |
| 461 | const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| 462 | |
| 463 | std::string Name; |
| 464 | raw_string_ostream NameStr(Name); |
| 465 | |
| 466 | VRegRCMap::const_iterator I = VRegMapping.find(Val: RC); |
| 467 | assert(I != VRegMapping.end() && "Bad register class" ); |
| 468 | const DenseMap<unsigned, unsigned> &RegMap = I->second; |
| 469 | |
| 470 | VRegMap::const_iterator VI = RegMap.find(Val: Reg); |
| 471 | assert(VI != RegMap.end() && "Bad virtual register" ); |
| 472 | unsigned MappedVR = VI->second; |
| 473 | |
| 474 | NameStr << getNVPTXRegClassStr(RC) << MappedVR; |
| 475 | |
| 476 | return Name; |
| 477 | } |
| 478 | |
| 479 | void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, |
| 480 | raw_ostream &O) { |
| 481 | O << getVirtualRegisterName(Reg: vr); |
| 482 | } |
| 483 | |
| 484 | void NVPTXAsmPrinter::emitAliasDeclaration(const GlobalAlias *GA, |
| 485 | raw_ostream &O) { |
| 486 | const Function *F = dyn_cast_or_null<Function>(Val: GA->getAliaseeObject()); |
| 487 | if (!F || isKernelFunction(F: *F) || F->isDeclaration()) |
| 488 | report_fatal_error( |
| 489 | reason: "NVPTX aliasee must be a non-kernel function definition" ); |
| 490 | |
| 491 | if (GA->hasLinkOnceLinkage() || GA->hasWeakLinkage() || |
| 492 | GA->hasAvailableExternallyLinkage() || GA->hasCommonLinkage()) |
| 493 | report_fatal_error(reason: "NVPTX aliasee must not be '.weak'" ); |
| 494 | |
| 495 | emitDeclarationWithName(F, getSymbol(GV: GA), O); |
| 496 | } |
| 497 | |
| 498 | void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) { |
| 499 | emitDeclarationWithName(F, getSymbol(GV: F), O); |
| 500 | } |
| 501 | |
| 502 | void NVPTXAsmPrinter::emitDeclarationWithName(const Function *F, MCSymbol *S, |
| 503 | raw_ostream &O) { |
| 504 | emitLinkageDirective(V: F, O); |
| 505 | if (isKernelFunction(F: *F)) |
| 506 | O << ".entry " ; |
| 507 | else |
| 508 | O << ".func " ; |
| 509 | printReturnValStr(F, O); |
| 510 | S->print(OS&: O, MAI); |
| 511 | O << "\n" ; |
| 512 | emitFunctionParamList(F, O); |
| 513 | O << "\n" ; |
| 514 | if (shouldEmitPTXNoReturn(V: F, TM)) |
| 515 | O << ".noreturn" ; |
| 516 | O << ";\n" ; |
| 517 | } |
| 518 | |
| 519 | static bool usedInGlobalVarDef(const Constant *C) { |
| 520 | if (!C) |
| 521 | return false; |
| 522 | |
| 523 | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C)) |
| 524 | return GV->getName() != "llvm.used" ; |
| 525 | |
| 526 | for (const User *U : C->users()) |
| 527 | if (const Constant *C = dyn_cast<Constant>(Val: U)) |
| 528 | if (usedInGlobalVarDef(C)) |
| 529 | return true; |
| 530 | |
| 531 | return false; |
| 532 | } |
| 533 | |
| 534 | static bool usedInOneFunc(const User *U, Function const *&OneFunc) { |
| 535 | if (const GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(Val: U)) |
| 536 | if (OtherGV->getName() == "llvm.used" ) |
| 537 | return true; |
| 538 | |
| 539 | if (const Instruction *I = dyn_cast<Instruction>(Val: U)) { |
| 540 | if (const Function *CurFunc = I->getFunction()) { |
| 541 | if (OneFunc && (CurFunc != OneFunc)) |
| 542 | return false; |
| 543 | OneFunc = CurFunc; |
| 544 | return true; |
| 545 | } |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | for (const User *UU : U->users()) |
| 550 | if (!usedInOneFunc(U: UU, OneFunc)) |
| 551 | return false; |
| 552 | |
| 553 | return true; |
| 554 | } |
| 555 | |
| 556 | /* Find out if a global variable can be demoted to local scope. |
| 557 | * Currently, this is valid for CUDA shared variables, which have local |
| 558 | * scope and global lifetime. So the conditions to check are : |
| 559 | * 1. Is the global variable in shared address space? |
| 560 | * 2. Does it have local linkage? |
| 561 | * 3. Is the global variable referenced only in one function? |
| 562 | */ |
| 563 | static bool canDemoteGlobalVar(const GlobalVariable *GV, Function const *&f) { |
| 564 | if (!GV->hasLocalLinkage()) |
| 565 | return false; |
| 566 | if (GV->getAddressSpace() != ADDRESS_SPACE_SHARED) |
| 567 | return false; |
| 568 | |
| 569 | const Function *oneFunc = nullptr; |
| 570 | |
| 571 | bool flag = usedInOneFunc(U: GV, OneFunc&: oneFunc); |
| 572 | if (!flag) |
| 573 | return false; |
| 574 | if (!oneFunc) |
| 575 | return false; |
| 576 | f = oneFunc; |
| 577 | return true; |
| 578 | } |
| 579 | |
| 580 | static bool useFuncSeen(const Constant *C, |
| 581 | const SmallPtrSetImpl<const Function *> &SeenSet) { |
| 582 | for (const User *U : C->users()) { |
| 583 | if (const Constant *cu = dyn_cast<Constant>(Val: U)) { |
| 584 | if (useFuncSeen(C: cu, SeenSet)) |
| 585 | return true; |
| 586 | } else if (const Instruction *I = dyn_cast<Instruction>(Val: U)) { |
| 587 | if (const Function *Caller = I->getFunction()) |
| 588 | if (SeenSet.contains(Ptr: Caller)) |
| 589 | return true; |
| 590 | } |
| 591 | } |
| 592 | return false; |
| 593 | } |
| 594 | |
| 595 | void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) { |
| 596 | SmallPtrSet<const Function *, 32> SeenSet; |
| 597 | for (const Function &F : M) { |
| 598 | if (F.getAttributes().hasFnAttr(Kind: "nvptx-libcall-callee" )) { |
| 599 | emitDeclaration(F: &F, O); |
| 600 | continue; |
| 601 | } |
| 602 | |
| 603 | if (F.isDeclaration()) { |
| 604 | if (F.use_empty()) |
| 605 | continue; |
| 606 | if (F.getIntrinsicID()) |
| 607 | continue; |
| 608 | emitDeclaration(F: &F, O); |
| 609 | continue; |
| 610 | } |
| 611 | for (const User *U : F.users()) { |
| 612 | if (const Constant *C = dyn_cast<Constant>(Val: U)) { |
| 613 | if (usedInGlobalVarDef(C)) { |
| 614 | // The use is in the initialization of a global variable |
| 615 | // that is a function pointer, so print a declaration |
| 616 | // for the original function |
| 617 | emitDeclaration(F: &F, O); |
| 618 | break; |
| 619 | } |
| 620 | // Emit a declaration of this function if the function that |
| 621 | // uses this constant expr has already been seen. |
| 622 | if (useFuncSeen(C, SeenSet)) { |
| 623 | emitDeclaration(F: &F, O); |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | if (!isa<Instruction>(Val: U)) |
| 629 | continue; |
| 630 | const Function *Caller = cast<Instruction>(Val: U)->getFunction(); |
| 631 | if (!Caller) |
| 632 | continue; |
| 633 | |
| 634 | // If a caller has already been seen, then the caller is |
| 635 | // appearing in the module before the callee. so print out |
| 636 | // a declaration for the callee. |
| 637 | if (SeenSet.contains(Ptr: Caller)) { |
| 638 | emitDeclaration(F: &F, O); |
| 639 | break; |
| 640 | } |
| 641 | } |
| 642 | SeenSet.insert(Ptr: &F); |
| 643 | } |
| 644 | for (const GlobalAlias &GA : M.aliases()) |
| 645 | emitAliasDeclaration(GA: &GA, O); |
| 646 | } |
| 647 | |
| 648 | void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) { |
| 649 | // Construct a default subtarget off of the TargetMachine defaults. The |
| 650 | // rest of NVPTX isn't friendly to change subtargets per function and |
| 651 | // so the default TargetMachine will have all of the options. |
| 652 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 653 | const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl()); |
| 654 | SmallString<128> Str1; |
| 655 | raw_svector_ostream OS1(Str1); |
| 656 | |
| 657 | // Emit header before any dwarf directives are emitted below. |
| 658 | emitHeader(M, O&: OS1, STI: *STI); |
| 659 | OutStreamer->emitRawText(String: OS1.str()); |
| 660 | } |
| 661 | |
| 662 | bool NVPTXAsmPrinter::doInitialization(Module &M) { |
| 663 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 664 | const NVPTXSubtarget &STI = |
| 665 | *static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl()); |
| 666 | if (M.alias_size() && (STI.getPTXVersion() < 63 || STI.getSmVersion() < 30)) |
| 667 | report_fatal_error(reason: ".alias requires PTX version >= 6.3 and sm_30" ); |
| 668 | |
| 669 | // We need to call the parent's one explicitly. |
| 670 | bool Result = AsmPrinter::doInitialization(M); |
| 671 | |
| 672 | GlobalsEmitted = false; |
| 673 | |
| 674 | return Result; |
| 675 | } |
| 676 | |
| 677 | void NVPTXAsmPrinter::emitGlobals(const Module &M) { |
| 678 | SmallString<128> Str2; |
| 679 | raw_svector_ostream OS2(Str2); |
| 680 | |
| 681 | emitDeclarations(M, O&: OS2); |
| 682 | |
| 683 | // As ptxas does not support forward references of globals, we need to first |
| 684 | // sort the list of module-level globals in def-use order. We visit each |
| 685 | // global variable in order, and ensure that we emit it *after* its dependent |
| 686 | // globals. We use a little extra memory maintaining both a set and a list to |
| 687 | // have fast searches while maintaining a strict ordering. |
| 688 | SmallVector<const GlobalVariable *, 8> Globals; |
| 689 | DenseSet<const GlobalVariable *> GVVisited; |
| 690 | DenseSet<const GlobalVariable *> GVVisiting; |
| 691 | |
| 692 | // Visit each global variable, in order |
| 693 | for (const GlobalVariable &I : M.globals()) |
| 694 | VisitGlobalVariableForEmission(GV: &I, Order&: Globals, Visited&: GVVisited, Visiting&: GVVisiting); |
| 695 | |
| 696 | assert(GVVisited.size() == M.global_size() && "Missed a global variable" ); |
| 697 | assert(GVVisiting.size() == 0 && "Did not fully process a global variable" ); |
| 698 | |
| 699 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 700 | const NVPTXSubtarget &STI = |
| 701 | *static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl()); |
| 702 | |
| 703 | // Print out module-level global variables in proper order |
| 704 | for (const GlobalVariable *GV : Globals) |
| 705 | printModuleLevelGV(GVar: GV, O&: OS2, /*ProcessDemoted=*/processDemoted: false, STI); |
| 706 | |
| 707 | OS2 << '\n'; |
| 708 | |
| 709 | OutStreamer->emitRawText(String: OS2.str()); |
| 710 | } |
| 711 | |
| 712 | void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { |
| 713 | SmallString<128> Str; |
| 714 | raw_svector_ostream OS(Str); |
| 715 | |
| 716 | MCSymbol *Name = getSymbol(GV: &GA); |
| 717 | |
| 718 | OS << ".alias " << Name->getName() << ", " << GA.getAliaseeObject()->getName() |
| 719 | << ";\n" ; |
| 720 | |
| 721 | OutStreamer->emitRawText(String: OS.str()); |
| 722 | } |
| 723 | |
| 724 | void NVPTXAsmPrinter::(Module &M, raw_ostream &O, |
| 725 | const NVPTXSubtarget &STI) { |
| 726 | const unsigned PTXVersion = STI.getPTXVersion(); |
| 727 | |
| 728 | O << "//\n" |
| 729 | "// Generated by LLVM NVPTX Back-End\n" |
| 730 | "//\n" |
| 731 | "\n" |
| 732 | << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n" |
| 733 | << ".target " << STI.getTargetName(); |
| 734 | |
| 735 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 736 | if (NTM.getDrvInterface() == NVPTX::NVCL) |
| 737 | O << ", texmode_independent" ; |
| 738 | |
| 739 | bool HasFullDebugInfo = false; |
| 740 | for (DICompileUnit *CU : M.debug_compile_units()) { |
| 741 | switch(CU->getEmissionKind()) { |
| 742 | case DICompileUnit::NoDebug: |
| 743 | case DICompileUnit::DebugDirectivesOnly: |
| 744 | break; |
| 745 | case DICompileUnit::LineTablesOnly: |
| 746 | case DICompileUnit::FullDebug: |
| 747 | HasFullDebugInfo = true; |
| 748 | break; |
| 749 | } |
| 750 | if (HasFullDebugInfo) |
| 751 | break; |
| 752 | } |
| 753 | if (HasFullDebugInfo) |
| 754 | O << ", debug" ; |
| 755 | |
| 756 | O << "\n" |
| 757 | << ".address_size " << (NTM.is64Bit() ? "64" : "32" ) << "\n" |
| 758 | << "\n" ; |
| 759 | } |
| 760 | |
| 761 | bool NVPTXAsmPrinter::doFinalization(Module &M) { |
| 762 | // If we did not emit any functions, then the global declarations have not |
| 763 | // yet been emitted. |
| 764 | if (!GlobalsEmitted) { |
| 765 | emitGlobals(M); |
| 766 | GlobalsEmitted = true; |
| 767 | } |
| 768 | |
| 769 | // call doFinalization |
| 770 | bool ret = AsmPrinter::doFinalization(M); |
| 771 | |
| 772 | clearAnnotationCache(&M); |
| 773 | |
| 774 | auto *TS = |
| 775 | static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer()); |
| 776 | // Close the last emitted section |
| 777 | if (hasDebugInfo()) { |
| 778 | TS->closeLastSection(); |
| 779 | // Emit empty .debug_macinfo section for better support of the empty files. |
| 780 | OutStreamer->emitRawText(String: "\t.section\t.debug_macinfo\t{\t}" ); |
| 781 | } |
| 782 | |
| 783 | // Output last DWARF .file directives, if any. |
| 784 | TS->outputDwarfFileDirectives(); |
| 785 | |
| 786 | return ret; |
| 787 | } |
| 788 | |
| 789 | // This function emits appropriate linkage directives for |
| 790 | // functions and global variables. |
| 791 | // |
| 792 | // extern function declaration -> .extern |
| 793 | // extern function definition -> .visible |
| 794 | // external global variable with init -> .visible |
| 795 | // external without init -> .extern |
| 796 | // appending -> not allowed, assert. |
| 797 | // for any linkage other than |
| 798 | // internal, private, linker_private, |
| 799 | // linker_private_weak, linker_private_weak_def_auto, |
| 800 | // we emit -> .weak. |
| 801 | |
| 802 | void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V, |
| 803 | raw_ostream &O) { |
| 804 | if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) { |
| 805 | if (V->hasExternalLinkage()) { |
| 806 | if (const auto *GVar = dyn_cast<GlobalVariable>(Val: V)) |
| 807 | O << (GVar->hasInitializer() ? ".visible " : ".extern " ); |
| 808 | else if (V->isDeclaration()) |
| 809 | O << ".extern " ; |
| 810 | else |
| 811 | O << ".visible " ; |
| 812 | } else if (V->hasAppendingLinkage()) { |
| 813 | report_fatal_error(reason: "Symbol '" + (V->hasName() ? V->getName() : "" ) + |
| 814 | "' has unsupported appending linkage type" ); |
| 815 | } else if (!V->hasInternalLinkage() && !V->hasPrivateLinkage()) { |
| 816 | O << ".weak " ; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar, |
| 822 | raw_ostream &O, bool ProcessDemoted, |
| 823 | const NVPTXSubtarget &STI) { |
| 824 | // Skip meta data |
| 825 | if (GVar->hasSection()) |
| 826 | if (GVar->getSection() == "llvm.metadata" ) |
| 827 | return; |
| 828 | |
| 829 | // Skip LLVM intrinsic global variables |
| 830 | if (GVar->getName().starts_with(Prefix: "llvm." ) || |
| 831 | GVar->getName().starts_with(Prefix: "nvvm." )) |
| 832 | return; |
| 833 | |
| 834 | const DataLayout &DL = getDataLayout(); |
| 835 | |
| 836 | // GlobalVariables are always constant pointers themselves. |
| 837 | Type *ETy = GVar->getValueType(); |
| 838 | |
| 839 | if (GVar->hasExternalLinkage()) { |
| 840 | if (GVar->hasInitializer()) |
| 841 | O << ".visible " ; |
| 842 | else |
| 843 | O << ".extern " ; |
| 844 | } else if (STI.getPTXVersion() >= 50 && GVar->hasCommonLinkage() && |
| 845 | GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) { |
| 846 | O << ".common " ; |
| 847 | } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() || |
| 848 | GVar->hasAvailableExternallyLinkage() || |
| 849 | GVar->hasCommonLinkage()) { |
| 850 | O << ".weak " ; |
| 851 | } |
| 852 | |
| 853 | if (isTexture(*GVar)) { |
| 854 | O << ".global .texref " << getTextureName(*GVar) << ";\n" ; |
| 855 | return; |
| 856 | } |
| 857 | |
| 858 | if (isSurface(*GVar)) { |
| 859 | O << ".global .surfref " << getSurfaceName(*GVar) << ";\n" ; |
| 860 | return; |
| 861 | } |
| 862 | |
| 863 | if (GVar->isDeclaration()) { |
| 864 | // (extern) declarations, no definition or initializer |
| 865 | // Currently the only known declaration is for an automatic __local |
| 866 | // (.shared) promoted to global. |
| 867 | emitPTXGlobalVariable(GVar, O, STI); |
| 868 | O << ";\n" ; |
| 869 | return; |
| 870 | } |
| 871 | |
| 872 | if (isSampler(*GVar)) { |
| 873 | O << ".global .samplerref " << getSamplerName(*GVar); |
| 874 | |
| 875 | const Constant *Initializer = nullptr; |
| 876 | if (GVar->hasInitializer()) |
| 877 | Initializer = GVar->getInitializer(); |
| 878 | const ConstantInt *CI = nullptr; |
| 879 | if (Initializer) |
| 880 | CI = dyn_cast<ConstantInt>(Val: Initializer); |
| 881 | if (CI) { |
| 882 | unsigned sample = CI->getZExtValue(); |
| 883 | |
| 884 | O << " = { " ; |
| 885 | |
| 886 | for (int i = 0, |
| 887 | addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE); |
| 888 | i < 3; i++) { |
| 889 | O << "addr_mode_" << i << " = " ; |
| 890 | switch (addr) { |
| 891 | case 0: |
| 892 | O << "wrap" ; |
| 893 | break; |
| 894 | case 1: |
| 895 | O << "clamp_to_border" ; |
| 896 | break; |
| 897 | case 2: |
| 898 | O << "clamp_to_edge" ; |
| 899 | break; |
| 900 | case 3: |
| 901 | O << "wrap" ; |
| 902 | break; |
| 903 | case 4: |
| 904 | O << "mirror" ; |
| 905 | break; |
| 906 | } |
| 907 | O << ", " ; |
| 908 | } |
| 909 | O << "filter_mode = " ; |
| 910 | switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) { |
| 911 | case 0: |
| 912 | O << "nearest" ; |
| 913 | break; |
| 914 | case 1: |
| 915 | O << "linear" ; |
| 916 | break; |
| 917 | case 2: |
| 918 | llvm_unreachable("Anisotropic filtering is not supported" ); |
| 919 | default: |
| 920 | O << "nearest" ; |
| 921 | break; |
| 922 | } |
| 923 | if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) { |
| 924 | O << ", force_unnormalized_coords = 1" ; |
| 925 | } |
| 926 | O << " }" ; |
| 927 | } |
| 928 | |
| 929 | O << ";\n" ; |
| 930 | return; |
| 931 | } |
| 932 | |
| 933 | if (GVar->hasPrivateLinkage()) { |
| 934 | if (GVar->getName().starts_with(Prefix: "unrollpragma" )) |
| 935 | return; |
| 936 | |
| 937 | // FIXME - need better way (e.g. Metadata) to avoid generating this global |
| 938 | if (GVar->getName().starts_with(Prefix: "filename" )) |
| 939 | return; |
| 940 | if (GVar->use_empty()) |
| 941 | return; |
| 942 | } |
| 943 | |
| 944 | const Function *DemotedFunc = nullptr; |
| 945 | if (!ProcessDemoted && canDemoteGlobalVar(GV: GVar, f&: DemotedFunc)) { |
| 946 | O << "// " << GVar->getName() << " has been demoted\n" ; |
| 947 | localDecls[DemotedFunc].push_back(x: GVar); |
| 948 | return; |
| 949 | } |
| 950 | |
| 951 | O << "." ; |
| 952 | emitPTXAddressSpace(AddressSpace: GVar->getAddressSpace(), O); |
| 953 | |
| 954 | if (isManaged(*GVar)) { |
| 955 | if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) |
| 956 | report_fatal_error( |
| 957 | reason: ".attribute(.managed) requires PTX version >= 4.0 and sm_30" ); |
| 958 | O << " .attribute(.managed)" ; |
| 959 | } |
| 960 | |
| 961 | O << " .align " |
| 962 | << GVar->getAlign().value_or(u: DL.getPrefTypeAlign(Ty: ETy)).value(); |
| 963 | |
| 964 | if (ETy->isPointerTy() || ((ETy->isIntegerTy() || ETy->isFloatingPointTy()) && |
| 965 | ETy->getScalarSizeInBits() <= 64)) { |
| 966 | O << " ." ; |
| 967 | // Special case: ABI requires that we use .u8 for predicates |
| 968 | if (ETy->isIntegerTy(Bitwidth: 1)) |
| 969 | O << "u8" ; |
| 970 | else |
| 971 | O << getPTXFundamentalTypeStr(Ty: ETy, false); |
| 972 | O << " " ; |
| 973 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 974 | |
| 975 | // Ptx allows variable initilization only for constant and global state |
| 976 | // spaces. |
| 977 | if (GVar->hasInitializer()) { |
| 978 | if ((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) || |
| 979 | (GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) { |
| 980 | const Constant *Initializer = GVar->getInitializer(); |
| 981 | // 'undef' is treated as there is no value specified. |
| 982 | if (!Initializer->isNullValue() && !isa<UndefValue>(Val: Initializer)) { |
| 983 | O << " = " ; |
| 984 | printScalarConstant(CPV: Initializer, O); |
| 985 | } |
| 986 | } else { |
| 987 | // The frontend adds zero-initializer to device and constant variables |
| 988 | // that don't have an initial value, and UndefValue to shared |
| 989 | // variables, so skip warning for this case. |
| 990 | if (!GVar->getInitializer()->isNullValue() && |
| 991 | !isa<UndefValue>(Val: GVar->getInitializer())) { |
| 992 | report_fatal_error(reason: "initial value of '" + GVar->getName() + |
| 993 | "' is not allowed in addrspace(" + |
| 994 | Twine(GVar->getAddressSpace()) + ")" ); |
| 995 | } |
| 996 | } |
| 997 | } |
| 998 | } else { |
| 999 | // Although PTX has direct support for struct type and array type and |
| 1000 | // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for |
| 1001 | // targets that support these high level field accesses. Structs, arrays |
| 1002 | // and vectors are lowered into arrays of bytes. |
| 1003 | switch (ETy->getTypeID()) { |
| 1004 | case Type::IntegerTyID: // Integers larger than 64 bits |
| 1005 | case Type::FP128TyID: |
| 1006 | case Type::StructTyID: |
| 1007 | case Type::ArrayTyID: |
| 1008 | case Type::FixedVectorTyID: { |
| 1009 | const uint64_t ElementSize = DL.getTypeStoreSize(Ty: ETy); |
| 1010 | // Ptx allows variable initilization only for constant and |
| 1011 | // global state spaces. |
| 1012 | if (((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) || |
| 1013 | (GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) && |
| 1014 | GVar->hasInitializer()) { |
| 1015 | const Constant *Initializer = GVar->getInitializer(); |
| 1016 | if (!isa<UndefValue>(Val: Initializer) && !Initializer->isNullValue()) { |
| 1017 | AggBuffer aggBuffer(ElementSize, *this); |
| 1018 | bufferAggregateConstant(CV: Initializer, aggBuffer: &aggBuffer); |
| 1019 | if (aggBuffer.numSymbols()) { |
| 1020 | const unsigned int ptrSize = MAI->getCodePointerSize(); |
| 1021 | if (ElementSize % ptrSize || |
| 1022 | !aggBuffer.allSymbolsAligned(ptrSize)) { |
| 1023 | // Print in bytes and use the mask() operator for pointers. |
| 1024 | if (!STI.hasMaskOperator()) |
| 1025 | report_fatal_error( |
| 1026 | reason: "initialized packed aggregate with pointers '" + |
| 1027 | GVar->getName() + |
| 1028 | "' requires at least PTX ISA version 7.1" ); |
| 1029 | O << " .u8 " ; |
| 1030 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1031 | O << "[" << ElementSize << "] = {" ; |
| 1032 | aggBuffer.printBytes(os&: O); |
| 1033 | O << "}" ; |
| 1034 | } else { |
| 1035 | O << " .u" << ptrSize * 8 << " " ; |
| 1036 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1037 | O << "[" << ElementSize / ptrSize << "] = {" ; |
| 1038 | aggBuffer.printWords(os&: O); |
| 1039 | O << "}" ; |
| 1040 | } |
| 1041 | } else { |
| 1042 | O << " .b8 " ; |
| 1043 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1044 | O << "[" << ElementSize << "] = {" ; |
| 1045 | aggBuffer.printBytes(os&: O); |
| 1046 | O << "}" ; |
| 1047 | } |
| 1048 | } else { |
| 1049 | O << " .b8 " ; |
| 1050 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1051 | if (ElementSize) |
| 1052 | O << "[" << ElementSize << "]" ; |
| 1053 | } |
| 1054 | } else { |
| 1055 | O << " .b8 " ; |
| 1056 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1057 | if (ElementSize) |
| 1058 | O << "[" << ElementSize << "]" ; |
| 1059 | } |
| 1060 | break; |
| 1061 | } |
| 1062 | default: |
| 1063 | llvm_unreachable("type not supported yet" ); |
| 1064 | } |
| 1065 | } |
| 1066 | O << ";\n" ; |
| 1067 | } |
| 1068 | |
| 1069 | void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) { |
| 1070 | const Value *v = Symbols[nSym]; |
| 1071 | const Value *v0 = SymbolsBeforeStripping[nSym]; |
| 1072 | if (const GlobalValue *GVar = dyn_cast<GlobalValue>(Val: v)) { |
| 1073 | MCSymbol *Name = AP.getSymbol(GV: GVar); |
| 1074 | PointerType *PTy = dyn_cast<PointerType>(Val: v0->getType()); |
| 1075 | // Is v0 a generic pointer? |
| 1076 | bool isGenericPointer = PTy && PTy->getAddressSpace() == 0; |
| 1077 | if (EmitGeneric && isGenericPointer && !isa<Function>(Val: v)) { |
| 1078 | os << "generic(" ; |
| 1079 | Name->print(OS&: os, MAI: AP.MAI); |
| 1080 | os << ")" ; |
| 1081 | } else { |
| 1082 | Name->print(OS&: os, MAI: AP.MAI); |
| 1083 | } |
| 1084 | } else if (const ConstantExpr *CExpr = dyn_cast<ConstantExpr>(Val: v0)) { |
| 1085 | const MCExpr *Expr = AP.lowerConstantForGV(CV: CExpr, ProcessingGeneric: false); |
| 1086 | AP.printMCExpr(Expr: *Expr, OS&: os); |
| 1087 | } else |
| 1088 | llvm_unreachable("symbol type unknown" ); |
| 1089 | } |
| 1090 | |
| 1091 | void NVPTXAsmPrinter::AggBuffer::printBytes(raw_ostream &os) { |
| 1092 | unsigned int ptrSize = AP.MAI->getCodePointerSize(); |
| 1093 | // Do not emit trailing zero initializers. They will be zero-initialized by |
| 1094 | // ptxas. This saves on both space requirements for the generated PTX and on |
| 1095 | // memory use by ptxas. (See: |
| 1096 | // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#global-state-space) |
| 1097 | unsigned int InitializerCount = size; |
| 1098 | // TODO: symbols make this harder, but it would still be good to trim trailing |
| 1099 | // 0s for aggs with symbols as well. |
| 1100 | if (numSymbols() == 0) |
| 1101 | while (InitializerCount >= 1 && !buffer[InitializerCount - 1]) |
| 1102 | InitializerCount--; |
| 1103 | |
| 1104 | symbolPosInBuffer.push_back(Elt: InitializerCount); |
| 1105 | unsigned int nSym = 0; |
| 1106 | unsigned int nextSymbolPos = symbolPosInBuffer[nSym]; |
| 1107 | for (unsigned int pos = 0; pos < InitializerCount;) { |
| 1108 | if (pos) |
| 1109 | os << ", " ; |
| 1110 | if (pos != nextSymbolPos) { |
| 1111 | os << (unsigned int)buffer[pos]; |
| 1112 | ++pos; |
| 1113 | continue; |
| 1114 | } |
| 1115 | // Generate a per-byte mask() operator for the symbol, which looks like: |
| 1116 | // .global .u8 addr[] = {0xFF(foo), 0xFF00(foo), 0xFF0000(foo), ...}; |
| 1117 | // See https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#initializers |
| 1118 | std::string symText; |
| 1119 | llvm::raw_string_ostream oss(symText); |
| 1120 | printSymbol(nSym, os&: oss); |
| 1121 | for (unsigned i = 0; i < ptrSize; ++i) { |
| 1122 | if (i) |
| 1123 | os << ", " ; |
| 1124 | llvm::write_hex(S&: os, N: 0xFFULL << i * 8, Style: HexPrintStyle::PrefixUpper); |
| 1125 | os << "(" << symText << ")" ; |
| 1126 | } |
| 1127 | pos += ptrSize; |
| 1128 | nextSymbolPos = symbolPosInBuffer[++nSym]; |
| 1129 | assert(nextSymbolPos >= pos); |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) { |
| 1134 | unsigned int ptrSize = AP.MAI->getCodePointerSize(); |
| 1135 | symbolPosInBuffer.push_back(Elt: size); |
| 1136 | unsigned int nSym = 0; |
| 1137 | unsigned int nextSymbolPos = symbolPosInBuffer[nSym]; |
| 1138 | assert(nextSymbolPos % ptrSize == 0); |
| 1139 | for (unsigned int pos = 0; pos < size; pos += ptrSize) { |
| 1140 | if (pos) |
| 1141 | os << ", " ; |
| 1142 | if (pos == nextSymbolPos) { |
| 1143 | printSymbol(nSym, os); |
| 1144 | nextSymbolPos = symbolPosInBuffer[++nSym]; |
| 1145 | assert(nextSymbolPos % ptrSize == 0); |
| 1146 | assert(nextSymbolPos >= pos + ptrSize); |
| 1147 | } else if (ptrSize == 4) |
| 1148 | os << support::endian::read32le(P: &buffer[pos]); |
| 1149 | else |
| 1150 | os << support::endian::read64le(P: &buffer[pos]); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | void NVPTXAsmPrinter::emitDemotedVars(const Function *F, raw_ostream &O) { |
| 1155 | auto It = localDecls.find(x: F); |
| 1156 | if (It == localDecls.end()) |
| 1157 | return; |
| 1158 | |
| 1159 | ArrayRef<const GlobalVariable *> GVars = It->second; |
| 1160 | |
| 1161 | const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM); |
| 1162 | const NVPTXSubtarget &STI = |
| 1163 | *static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl()); |
| 1164 | |
| 1165 | for (const GlobalVariable *GV : GVars) { |
| 1166 | O << "\t// demoted variable\n\t" ; |
| 1167 | printModuleLevelGV(GVar: GV, O, /*processDemoted=*/ProcessDemoted: true, STI); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace, |
| 1172 | raw_ostream &O) const { |
| 1173 | switch (AddressSpace) { |
| 1174 | case ADDRESS_SPACE_LOCAL: |
| 1175 | O << "local" ; |
| 1176 | break; |
| 1177 | case ADDRESS_SPACE_GLOBAL: |
| 1178 | O << "global" ; |
| 1179 | break; |
| 1180 | case ADDRESS_SPACE_CONST: |
| 1181 | O << "const" ; |
| 1182 | break; |
| 1183 | case ADDRESS_SPACE_SHARED: |
| 1184 | O << "shared" ; |
| 1185 | break; |
| 1186 | default: |
| 1187 | report_fatal_error(reason: "Bad address space found while emitting PTX: " + |
| 1188 | llvm::Twine(AddressSpace)); |
| 1189 | break; |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | std::string |
| 1194 | NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const { |
| 1195 | switch (Ty->getTypeID()) { |
| 1196 | case Type::IntegerTyID: { |
| 1197 | unsigned NumBits = cast<IntegerType>(Val: Ty)->getBitWidth(); |
| 1198 | if (NumBits == 1) |
| 1199 | return "pred" ; |
| 1200 | if (NumBits <= 64) { |
| 1201 | std::string name = "u" ; |
| 1202 | return name + utostr(X: NumBits); |
| 1203 | } |
| 1204 | llvm_unreachable("Integer too large" ); |
| 1205 | break; |
| 1206 | } |
| 1207 | case Type::BFloatTyID: |
| 1208 | case Type::HalfTyID: |
| 1209 | // fp16 and bf16 are stored as .b16 for compatibility with pre-sm_53 |
| 1210 | // PTX assembly. |
| 1211 | return "b16" ; |
| 1212 | case Type::FloatTyID: |
| 1213 | return "f32" ; |
| 1214 | case Type::DoubleTyID: |
| 1215 | return "f64" ; |
| 1216 | case Type::PointerTyID: { |
| 1217 | unsigned PtrSize = TM.getPointerSizeInBits(AS: Ty->getPointerAddressSpace()); |
| 1218 | assert((PtrSize == 64 || PtrSize == 32) && "Unexpected pointer size" ); |
| 1219 | |
| 1220 | if (PtrSize == 64) |
| 1221 | if (useB4PTR) |
| 1222 | return "b64" ; |
| 1223 | else |
| 1224 | return "u64" ; |
| 1225 | else if (useB4PTR) |
| 1226 | return "b32" ; |
| 1227 | else |
| 1228 | return "u32" ; |
| 1229 | } |
| 1230 | default: |
| 1231 | break; |
| 1232 | } |
| 1233 | llvm_unreachable("unexpected type" ); |
| 1234 | } |
| 1235 | |
| 1236 | void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar, |
| 1237 | raw_ostream &O, |
| 1238 | const NVPTXSubtarget &STI) { |
| 1239 | const DataLayout &DL = getDataLayout(); |
| 1240 | |
| 1241 | // GlobalVariables are always constant pointers themselves. |
| 1242 | Type *ETy = GVar->getValueType(); |
| 1243 | |
| 1244 | O << "." ; |
| 1245 | emitPTXAddressSpace(AddressSpace: GVar->getType()->getAddressSpace(), O); |
| 1246 | if (isManaged(*GVar)) { |
| 1247 | if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) |
| 1248 | report_fatal_error( |
| 1249 | reason: ".attribute(.managed) requires PTX version >= 4.0 and sm_30" ); |
| 1250 | |
| 1251 | O << " .attribute(.managed)" ; |
| 1252 | } |
| 1253 | O << " .align " |
| 1254 | << GVar->getAlign().value_or(u: DL.getPrefTypeAlign(Ty: ETy)).value(); |
| 1255 | |
| 1256 | // Special case for i128/fp128 |
| 1257 | if (ETy->getScalarSizeInBits() == 128) { |
| 1258 | O << " .b8 " ; |
| 1259 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1260 | O << "[16]" ; |
| 1261 | return; |
| 1262 | } |
| 1263 | |
| 1264 | if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) { |
| 1265 | O << " ." << getPTXFundamentalTypeStr(Ty: ETy) << " " ; |
| 1266 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1267 | return; |
| 1268 | } |
| 1269 | |
| 1270 | int64_t ElementSize = 0; |
| 1271 | |
| 1272 | // Although PTX has direct support for struct type and array type and LLVM IR |
| 1273 | // is very similar to PTX, the LLVM CodeGen does not support for targets that |
| 1274 | // support these high level field accesses. Structs and arrays are lowered |
| 1275 | // into arrays of bytes. |
| 1276 | switch (ETy->getTypeID()) { |
| 1277 | case Type::StructTyID: |
| 1278 | case Type::ArrayTyID: |
| 1279 | case Type::FixedVectorTyID: |
| 1280 | ElementSize = DL.getTypeStoreSize(Ty: ETy); |
| 1281 | O << " .b8 " ; |
| 1282 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1283 | O << "[" ; |
| 1284 | if (ElementSize) { |
| 1285 | O << ElementSize; |
| 1286 | } |
| 1287 | O << "]" ; |
| 1288 | break; |
| 1289 | default: |
| 1290 | llvm_unreachable("type not supported yet" ); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) { |
| 1295 | const DataLayout &DL = getDataLayout(); |
| 1296 | const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(F: *F); |
| 1297 | const auto *TLI = cast<NVPTXTargetLowering>(Val: STI.getTargetLowering()); |
| 1298 | const NVPTXMachineFunctionInfo *MFI = |
| 1299 | MF ? MF->getInfo<NVPTXMachineFunctionInfo>() : nullptr; |
| 1300 | |
| 1301 | bool IsFirst = true; |
| 1302 | const bool IsKernelFunc = isKernelFunction(F: *F); |
| 1303 | |
| 1304 | if (F->arg_empty() && !F->isVarArg()) { |
| 1305 | O << "()" ; |
| 1306 | return; |
| 1307 | } |
| 1308 | |
| 1309 | O << "(\n" ; |
| 1310 | |
| 1311 | for (const Argument &Arg : F->args()) { |
| 1312 | Type *Ty = Arg.getType(); |
| 1313 | const std::string ParamSym = TLI->getParamName(F, Idx: Arg.getArgNo()); |
| 1314 | |
| 1315 | if (!IsFirst) |
| 1316 | O << ",\n" ; |
| 1317 | |
| 1318 | IsFirst = false; |
| 1319 | |
| 1320 | // Handle image/sampler parameters |
| 1321 | if (IsKernelFunc) { |
| 1322 | const bool IsSampler = isSampler(Arg); |
| 1323 | const bool IsTexture = !IsSampler && isImageReadOnly(Arg); |
| 1324 | const bool IsSurface = !IsSampler && !IsTexture && |
| 1325 | (isImageReadWrite(Arg) || isImageWriteOnly(Arg)); |
| 1326 | if (IsSampler || IsTexture || IsSurface) { |
| 1327 | const bool EmitImgPtr = !MFI || !MFI->checkImageHandleSymbol(Symbol: ParamSym); |
| 1328 | O << "\t.param " ; |
| 1329 | if (EmitImgPtr) |
| 1330 | O << ".u64 .ptr " ; |
| 1331 | |
| 1332 | if (IsSampler) |
| 1333 | O << ".samplerref " ; |
| 1334 | else if (IsTexture) |
| 1335 | O << ".texref " ; |
| 1336 | else // IsSurface |
| 1337 | O << ".surfref " ; |
| 1338 | O << ParamSym; |
| 1339 | continue; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | auto GetOptimalAlignForParam = [TLI, &DL, F, &Arg](Type *Ty) -> Align { |
| 1344 | if (MaybeAlign StackAlign = |
| 1345 | getAlign(F: *F, Index: Arg.getArgNo() + AttributeList::FirstArgIndex)) |
| 1346 | return StackAlign.value(); |
| 1347 | |
| 1348 | Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, ArgTy: Ty, DL); |
| 1349 | MaybeAlign ParamAlign = |
| 1350 | Arg.hasByValAttr() ? Arg.getParamAlign() : MaybeAlign(); |
| 1351 | return std::max(a: TypeAlign, b: ParamAlign.valueOrOne()); |
| 1352 | }; |
| 1353 | |
| 1354 | if (Arg.hasByValAttr()) { |
| 1355 | // param has byVal attribute. |
| 1356 | Type *ETy = Arg.getParamByValType(); |
| 1357 | assert(ETy && "Param should have byval type" ); |
| 1358 | |
| 1359 | // Print .param .align <a> .b8 .param[size]; |
| 1360 | // <a> = optimal alignment for the element type; always multiple of |
| 1361 | // PAL.getParamAlignment |
| 1362 | // size = typeallocsize of element type |
| 1363 | const Align OptimalAlign = |
| 1364 | IsKernelFunc ? GetOptimalAlignForParam(ETy) |
| 1365 | : TLI->getFunctionByValParamAlign( |
| 1366 | F, ArgTy: ETy, InitialAlign: Arg.getParamAlign().valueOrOne(), DL); |
| 1367 | |
| 1368 | O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym |
| 1369 | << "[" << DL.getTypeAllocSize(Ty: ETy) << "]" ; |
| 1370 | continue; |
| 1371 | } |
| 1372 | |
| 1373 | if (shouldPassAsArray(Ty)) { |
| 1374 | // Just print .param .align <a> .b8 .param[size]; |
| 1375 | // <a> = optimal alignment for the element type; always multiple of |
| 1376 | // PAL.getParamAlignment |
| 1377 | // size = typeallocsize of element type |
| 1378 | Align OptimalAlign = GetOptimalAlignForParam(Ty); |
| 1379 | |
| 1380 | O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym |
| 1381 | << "[" << DL.getTypeAllocSize(Ty) << "]" ; |
| 1382 | |
| 1383 | continue; |
| 1384 | } |
| 1385 | // Just a scalar |
| 1386 | auto *PTy = dyn_cast<PointerType>(Val: Ty); |
| 1387 | unsigned PTySizeInBits = 0; |
| 1388 | if (PTy) { |
| 1389 | PTySizeInBits = |
| 1390 | TLI->getPointerTy(DL, AS: PTy->getAddressSpace()).getSizeInBits(); |
| 1391 | assert(PTySizeInBits && "Invalid pointer size" ); |
| 1392 | } |
| 1393 | |
| 1394 | if (IsKernelFunc) { |
| 1395 | if (PTy) { |
| 1396 | O << "\t.param .u" << PTySizeInBits << " .ptr" ; |
| 1397 | |
| 1398 | switch (PTy->getAddressSpace()) { |
| 1399 | default: |
| 1400 | break; |
| 1401 | case ADDRESS_SPACE_GLOBAL: |
| 1402 | O << " .global" ; |
| 1403 | break; |
| 1404 | case ADDRESS_SPACE_SHARED: |
| 1405 | O << " .shared" ; |
| 1406 | break; |
| 1407 | case ADDRESS_SPACE_CONST: |
| 1408 | O << " .const" ; |
| 1409 | break; |
| 1410 | case ADDRESS_SPACE_LOCAL: |
| 1411 | O << " .local" ; |
| 1412 | break; |
| 1413 | } |
| 1414 | |
| 1415 | O << " .align " << Arg.getParamAlign().valueOrOne().value() << " " |
| 1416 | << ParamSym; |
| 1417 | continue; |
| 1418 | } |
| 1419 | |
| 1420 | // non-pointer scalar to kernel func |
| 1421 | O << "\t.param ." ; |
| 1422 | // Special case: predicate operands become .u8 types |
| 1423 | if (Ty->isIntegerTy(Bitwidth: 1)) |
| 1424 | O << "u8" ; |
| 1425 | else |
| 1426 | O << getPTXFundamentalTypeStr(Ty); |
| 1427 | O << " " << ParamSym; |
| 1428 | continue; |
| 1429 | } |
| 1430 | // Non-kernel function, just print .param .b<size> for ABI |
| 1431 | // and .reg .b<size> for non-ABI |
| 1432 | unsigned Size; |
| 1433 | if (auto *ITy = dyn_cast<IntegerType>(Val: Ty)) { |
| 1434 | Size = promoteScalarArgumentSize(size: ITy->getBitWidth()); |
| 1435 | } else if (PTy) { |
| 1436 | assert(PTySizeInBits && "Invalid pointer size" ); |
| 1437 | Size = PTySizeInBits; |
| 1438 | } else |
| 1439 | Size = Ty->getPrimitiveSizeInBits(); |
| 1440 | O << "\t.param .b" << Size << " " << ParamSym; |
| 1441 | } |
| 1442 | |
| 1443 | if (F->isVarArg()) { |
| 1444 | if (!IsFirst) |
| 1445 | O << ",\n" ; |
| 1446 | O << "\t.param .align " << STI.getMaxRequiredAlignment() << " .b8 " |
| 1447 | << TLI->getParamName(F, /* vararg */ Idx: -1) << "[]" ; |
| 1448 | } |
| 1449 | |
| 1450 | O << "\n)" ; |
| 1451 | } |
| 1452 | |
| 1453 | void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters( |
| 1454 | const MachineFunction &MF) { |
| 1455 | SmallString<128> Str; |
| 1456 | raw_svector_ostream O(Str); |
| 1457 | |
| 1458 | // Map the global virtual register number to a register class specific |
| 1459 | // virtual register number starting from 1 with that class. |
| 1460 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 1461 | //unsigned numRegClasses = TRI->getNumRegClasses(); |
| 1462 | |
| 1463 | // Emit the Fake Stack Object |
| 1464 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1465 | int64_t NumBytes = MFI.getStackSize(); |
| 1466 | if (NumBytes) { |
| 1467 | O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t" |
| 1468 | << DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n" ; |
| 1469 | if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) { |
| 1470 | O << "\t.reg .b64 \t%SP;\n" |
| 1471 | << "\t.reg .b64 \t%SPL;\n" ; |
| 1472 | } else { |
| 1473 | O << "\t.reg .b32 \t%SP;\n" |
| 1474 | << "\t.reg .b32 \t%SPL;\n" ; |
| 1475 | } |
| 1476 | } |
| 1477 | |
| 1478 | // Go through all virtual registers to establish the mapping between the |
| 1479 | // global virtual |
| 1480 | // register number and the per class virtual register number. |
| 1481 | // We use the per class virtual register number in the ptx output. |
| 1482 | unsigned int numVRs = MRI->getNumVirtRegs(); |
| 1483 | for (unsigned i = 0; i < numVRs; i++) { |
| 1484 | Register vr = Register::index2VirtReg(Index: i); |
| 1485 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: vr); |
| 1486 | DenseMap<unsigned, unsigned> ®map = VRegMapping[RC]; |
| 1487 | int n = regmap.size(); |
| 1488 | regmap.insert(KV: std::make_pair(x&: vr, y: n + 1)); |
| 1489 | } |
| 1490 | |
| 1491 | // Emit declaration of the virtual registers or 'physical' registers for |
| 1492 | // each register class |
| 1493 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
| 1494 | const unsigned N = VRegMapping[RC].size(); |
| 1495 | |
| 1496 | // Only declare those registers that may be used. |
| 1497 | if (N) { |
| 1498 | const StringRef RCName = getNVPTXRegClassName(RC); |
| 1499 | const StringRef RCStr = getNVPTXRegClassStr(RC); |
| 1500 | O << "\t.reg " << RCName << " \t" << RCStr << "<" << (N + 1) << ">;\n" ; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | OutStreamer->emitRawText(String: O.str()); |
| 1505 | } |
| 1506 | |
| 1507 | /// Translate virtual register numbers in DebugInfo locations to their printed |
| 1508 | /// encodings, as used by CUDA-GDB. |
| 1509 | void NVPTXAsmPrinter::encodeDebugInfoRegisterNumbers( |
| 1510 | const MachineFunction &MF) { |
| 1511 | const NVPTXSubtarget &STI = MF.getSubtarget<NVPTXSubtarget>(); |
| 1512 | const NVPTXRegisterInfo *registerInfo = STI.getRegisterInfo(); |
| 1513 | |
| 1514 | // Clear the old mapping, and add the new one. This mapping is used after the |
| 1515 | // printing of the current function is complete, but before the next function |
| 1516 | // is printed. |
| 1517 | registerInfo->clearDebugRegisterMap(); |
| 1518 | |
| 1519 | for (auto &classMap : VRegMapping) { |
| 1520 | for (auto ®isterMapping : classMap.getSecond()) { |
| 1521 | auto reg = registerMapping.getFirst(); |
| 1522 | registerInfo->addToDebugRegisterMap(preEncodedVirtualRegister: reg, RegisterName: getVirtualRegisterName(Reg: reg)); |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, |
| 1528 | raw_ostream &O) const { |
| 1529 | APFloat APF = APFloat(Fp->getValueAPF()); // make a copy |
| 1530 | bool ignored; |
| 1531 | unsigned int numHex; |
| 1532 | const char *lead; |
| 1533 | |
| 1534 | if (Fp->getType()->getTypeID() == Type::FloatTyID) { |
| 1535 | numHex = 8; |
| 1536 | lead = "0f" ; |
| 1537 | APF.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 1538 | } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) { |
| 1539 | numHex = 16; |
| 1540 | lead = "0d" ; |
| 1541 | APF.convert(ToSemantics: APFloat::IEEEdouble(), RM: APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 1542 | } else |
| 1543 | llvm_unreachable("unsupported fp type" ); |
| 1544 | |
| 1545 | APInt API = APF.bitcastToAPInt(); |
| 1546 | O << lead << format_hex_no_prefix(N: API.getZExtValue(), Width: numHex, /*Upper=*/true); |
| 1547 | } |
| 1548 | |
| 1549 | void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) { |
| 1550 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: CPV)) { |
| 1551 | O << CI->getValue(); |
| 1552 | return; |
| 1553 | } |
| 1554 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: CPV)) { |
| 1555 | printFPConstant(Fp: CFP, O); |
| 1556 | return; |
| 1557 | } |
| 1558 | if (isa<ConstantPointerNull>(Val: CPV)) { |
| 1559 | O << "0" ; |
| 1560 | return; |
| 1561 | } |
| 1562 | if (const GlobalValue *GVar = dyn_cast<GlobalValue>(Val: CPV)) { |
| 1563 | const bool IsNonGenericPointer = GVar->getAddressSpace() != 0; |
| 1564 | if (EmitGeneric && !isa<Function>(Val: CPV) && !IsNonGenericPointer) { |
| 1565 | O << "generic(" ; |
| 1566 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1567 | O << ")" ; |
| 1568 | } else { |
| 1569 | getSymbol(GV: GVar)->print(OS&: O, MAI); |
| 1570 | } |
| 1571 | return; |
| 1572 | } |
| 1573 | if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(Val: CPV)) { |
| 1574 | const MCExpr *E = lowerConstantForGV(CV: cast<Constant>(Val: Cexpr), ProcessingGeneric: false); |
| 1575 | printMCExpr(Expr: *E, OS&: O); |
| 1576 | return; |
| 1577 | } |
| 1578 | llvm_unreachable("Not scalar type found in printScalarConstant()" ); |
| 1579 | } |
| 1580 | |
| 1581 | void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes, |
| 1582 | AggBuffer *AggBuffer) { |
| 1583 | const DataLayout &DL = getDataLayout(); |
| 1584 | int AllocSize = DL.getTypeAllocSize(Ty: CPV->getType()); |
| 1585 | if (isa<UndefValue>(Val: CPV) || CPV->isNullValue()) { |
| 1586 | // Non-zero Bytes indicates that we need to zero-fill everything. Otherwise, |
| 1587 | // only the space allocated by CPV. |
| 1588 | AggBuffer->addZeros(Num: Bytes ? Bytes : AllocSize); |
| 1589 | return; |
| 1590 | } |
| 1591 | |
| 1592 | // Helper for filling AggBuffer with APInts. |
| 1593 | auto AddIntToBuffer = [AggBuffer, Bytes](const APInt &Val) { |
| 1594 | size_t NumBytes = (Val.getBitWidth() + 7) / 8; |
| 1595 | SmallVector<unsigned char, 16> Buf(NumBytes); |
| 1596 | // `extractBitsAsZExtValue` does not allow the extraction of bits beyond the |
| 1597 | // input's bit width, and i1 arrays may not have a length that is a multuple |
| 1598 | // of 8. We handle the last byte separately, so we never request out of |
| 1599 | // bounds bits. |
| 1600 | for (unsigned I = 0; I < NumBytes - 1; ++I) { |
| 1601 | Buf[I] = Val.extractBitsAsZExtValue(numBits: 8, bitPosition: I * 8); |
| 1602 | } |
| 1603 | size_t LastBytePosition = (NumBytes - 1) * 8; |
| 1604 | size_t LastByteBits = Val.getBitWidth() - LastBytePosition; |
| 1605 | Buf[NumBytes - 1] = |
| 1606 | Val.extractBitsAsZExtValue(numBits: LastByteBits, bitPosition: LastBytePosition); |
| 1607 | AggBuffer->addBytes(Ptr: Buf.data(), Num: NumBytes, Bytes); |
| 1608 | }; |
| 1609 | |
| 1610 | switch (CPV->getType()->getTypeID()) { |
| 1611 | case Type::IntegerTyID: |
| 1612 | if (const auto *CI = dyn_cast<ConstantInt>(Val: CPV)) { |
| 1613 | AddIntToBuffer(CI->getValue()); |
| 1614 | break; |
| 1615 | } |
| 1616 | if (const auto *Cexpr = dyn_cast<ConstantExpr>(Val: CPV)) { |
| 1617 | if (const auto *CI = |
| 1618 | dyn_cast<ConstantInt>(Val: ConstantFoldConstant(C: Cexpr, DL))) { |
| 1619 | AddIntToBuffer(CI->getValue()); |
| 1620 | break; |
| 1621 | } |
| 1622 | if (Cexpr->getOpcode() == Instruction::PtrToInt) { |
| 1623 | Value *V = Cexpr->getOperand(i_nocapture: 0)->stripPointerCasts(); |
| 1624 | AggBuffer->addSymbol(GVar: V, GVarBeforeStripping: Cexpr->getOperand(i_nocapture: 0)); |
| 1625 | AggBuffer->addZeros(Num: AllocSize); |
| 1626 | break; |
| 1627 | } |
| 1628 | } |
| 1629 | llvm_unreachable("unsupported integer const type" ); |
| 1630 | break; |
| 1631 | |
| 1632 | case Type::HalfTyID: |
| 1633 | case Type::BFloatTyID: |
| 1634 | case Type::FloatTyID: |
| 1635 | case Type::DoubleTyID: |
| 1636 | AddIntToBuffer(cast<ConstantFP>(Val: CPV)->getValueAPF().bitcastToAPInt()); |
| 1637 | break; |
| 1638 | |
| 1639 | case Type::PointerTyID: { |
| 1640 | if (const GlobalValue *GVar = dyn_cast<GlobalValue>(Val: CPV)) { |
| 1641 | AggBuffer->addSymbol(GVar, GVarBeforeStripping: GVar); |
| 1642 | } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(Val: CPV)) { |
| 1643 | const Value *v = Cexpr->stripPointerCasts(); |
| 1644 | AggBuffer->addSymbol(GVar: v, GVarBeforeStripping: Cexpr); |
| 1645 | } |
| 1646 | AggBuffer->addZeros(Num: AllocSize); |
| 1647 | break; |
| 1648 | } |
| 1649 | |
| 1650 | case Type::ArrayTyID: |
| 1651 | case Type::FixedVectorTyID: |
| 1652 | case Type::StructTyID: { |
| 1653 | if (isa<ConstantAggregate>(Val: CPV) || isa<ConstantDataSequential>(Val: CPV)) { |
| 1654 | bufferAggregateConstant(CV: CPV, aggBuffer: AggBuffer); |
| 1655 | if (Bytes > AllocSize) |
| 1656 | AggBuffer->addZeros(Num: Bytes - AllocSize); |
| 1657 | } else if (isa<ConstantAggregateZero>(Val: CPV)) |
| 1658 | AggBuffer->addZeros(Num: Bytes); |
| 1659 | else |
| 1660 | llvm_unreachable("Unexpected Constant type" ); |
| 1661 | break; |
| 1662 | } |
| 1663 | |
| 1664 | default: |
| 1665 | llvm_unreachable("unsupported type" ); |
| 1666 | } |
| 1667 | } |
| 1668 | |
| 1669 | void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV, |
| 1670 | AggBuffer *aggBuffer) { |
| 1671 | const DataLayout &DL = getDataLayout(); |
| 1672 | |
| 1673 | auto ExtendBuffer = [](APInt Val, AggBuffer *Buffer) { |
| 1674 | for (unsigned I : llvm::seq(Size: Val.getBitWidth() / 8)) |
| 1675 | Buffer->addByte(Byte: Val.extractBitsAsZExtValue(numBits: 8, bitPosition: I * 8)); |
| 1676 | }; |
| 1677 | |
| 1678 | // Integers of arbitrary width |
| 1679 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: CPV)) { |
| 1680 | ExtendBuffer(CI->getValue(), aggBuffer); |
| 1681 | return; |
| 1682 | } |
| 1683 | |
| 1684 | // f128 |
| 1685 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: CPV)) { |
| 1686 | if (CFP->getType()->isFP128Ty()) { |
| 1687 | ExtendBuffer(CFP->getValueAPF().bitcastToAPInt(), aggBuffer); |
| 1688 | return; |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | // Old constants |
| 1693 | if (isa<ConstantArray>(Val: CPV) || isa<ConstantVector>(Val: CPV)) { |
| 1694 | for (const auto &Op : CPV->operands()) |
| 1695 | bufferLEByte(CPV: cast<Constant>(Val: Op), Bytes: 0, AggBuffer: aggBuffer); |
| 1696 | return; |
| 1697 | } |
| 1698 | |
| 1699 | if (const auto *CDS = dyn_cast<ConstantDataSequential>(Val: CPV)) { |
| 1700 | for (unsigned I : llvm::seq(Size: CDS->getNumElements())) |
| 1701 | bufferLEByte(CPV: cast<Constant>(Val: CDS->getElementAsConstant(i: I)), Bytes: 0, AggBuffer: aggBuffer); |
| 1702 | return; |
| 1703 | } |
| 1704 | |
| 1705 | if (isa<ConstantStruct>(Val: CPV)) { |
| 1706 | if (CPV->getNumOperands()) { |
| 1707 | StructType *ST = cast<StructType>(Val: CPV->getType()); |
| 1708 | for (unsigned I : llvm::seq(Size: CPV->getNumOperands())) { |
| 1709 | int EndOffset = (I + 1 == CPV->getNumOperands()) |
| 1710 | ? DL.getStructLayout(Ty: ST)->getElementOffset(Idx: 0) + |
| 1711 | DL.getTypeAllocSize(Ty: ST) |
| 1712 | : DL.getStructLayout(Ty: ST)->getElementOffset(Idx: I + 1); |
| 1713 | int Bytes = EndOffset - DL.getStructLayout(Ty: ST)->getElementOffset(Idx: I); |
| 1714 | bufferLEByte(CPV: cast<Constant>(Val: CPV->getOperand(i: I)), Bytes, AggBuffer: aggBuffer); |
| 1715 | } |
| 1716 | } |
| 1717 | return; |
| 1718 | } |
| 1719 | llvm_unreachable("unsupported constant type in printAggregateConstant()" ); |
| 1720 | } |
| 1721 | |
| 1722 | /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly |
| 1723 | /// a copy from AsmPrinter::lowerConstant, except customized to only handle |
| 1724 | /// expressions that are representable in PTX and create |
| 1725 | /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions. |
| 1726 | const MCExpr * |
| 1727 | NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, |
| 1728 | bool ProcessingGeneric) const { |
| 1729 | MCContext &Ctx = OutContext; |
| 1730 | |
| 1731 | if (CV->isNullValue() || isa<UndefValue>(Val: CV)) |
| 1732 | return MCConstantExpr::create(Value: 0, Ctx); |
| 1733 | |
| 1734 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: CV)) |
| 1735 | return MCConstantExpr::create(Value: CI->getZExtValue(), Ctx); |
| 1736 | |
| 1737 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CV)) { |
| 1738 | const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(Symbol: getSymbol(GV), Ctx); |
| 1739 | if (ProcessingGeneric) |
| 1740 | return NVPTXGenericMCSymbolRefExpr::create(SymExpr: Expr, Ctx); |
| 1741 | return Expr; |
| 1742 | } |
| 1743 | |
| 1744 | const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: CV); |
| 1745 | if (!CE) { |
| 1746 | llvm_unreachable("Unknown constant value to lower!" ); |
| 1747 | } |
| 1748 | |
| 1749 | switch (CE->getOpcode()) { |
| 1750 | default: |
| 1751 | break; // Error |
| 1752 | |
| 1753 | case Instruction::AddrSpaceCast: { |
| 1754 | // Strip the addrspacecast and pass along the operand |
| 1755 | PointerType *DstTy = cast<PointerType>(Val: CE->getType()); |
| 1756 | if (DstTy->getAddressSpace() == 0) |
| 1757 | return lowerConstantForGV(CV: cast<const Constant>(Val: CE->getOperand(i_nocapture: 0)), ProcessingGeneric: true); |
| 1758 | |
| 1759 | break; // Error |
| 1760 | } |
| 1761 | |
| 1762 | case Instruction::GetElementPtr: { |
| 1763 | const DataLayout &DL = getDataLayout(); |
| 1764 | |
| 1765 | // Generate a symbolic expression for the byte address |
| 1766 | APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); |
| 1767 | cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset&: OffsetAI); |
| 1768 | |
| 1769 | const MCExpr *Base = lowerConstantForGV(CV: CE->getOperand(i_nocapture: 0), |
| 1770 | ProcessingGeneric); |
| 1771 | if (!OffsetAI) |
| 1772 | return Base; |
| 1773 | |
| 1774 | int64_t Offset = OffsetAI.getSExtValue(); |
| 1775 | return MCBinaryExpr::createAdd(LHS: Base, RHS: MCConstantExpr::create(Value: Offset, Ctx), |
| 1776 | Ctx); |
| 1777 | } |
| 1778 | |
| 1779 | case Instruction::Trunc: |
| 1780 | // We emit the value and depend on the assembler to truncate the generated |
| 1781 | // expression properly. This is important for differences between |
| 1782 | // blockaddress labels. Since the two labels are in the same function, it |
| 1783 | // is reasonable to treat their delta as a 32-bit value. |
| 1784 | [[fallthrough]]; |
| 1785 | case Instruction::BitCast: |
| 1786 | return lowerConstantForGV(CV: CE->getOperand(i_nocapture: 0), ProcessingGeneric); |
| 1787 | |
| 1788 | case Instruction::IntToPtr: { |
| 1789 | const DataLayout &DL = getDataLayout(); |
| 1790 | |
| 1791 | // Handle casts to pointers by changing them into casts to the appropriate |
| 1792 | // integer type. This promotes constant folding and simplifies this code. |
| 1793 | Constant *Op = CE->getOperand(i_nocapture: 0); |
| 1794 | Op = ConstantFoldIntegerCast(C: Op, DestTy: DL.getIntPtrType(CV->getType()), |
| 1795 | /*IsSigned*/ false, DL); |
| 1796 | if (Op) |
| 1797 | return lowerConstantForGV(CV: Op, ProcessingGeneric); |
| 1798 | |
| 1799 | break; // Error |
| 1800 | } |
| 1801 | |
| 1802 | case Instruction::PtrToInt: { |
| 1803 | const DataLayout &DL = getDataLayout(); |
| 1804 | |
| 1805 | // Support only foldable casts to/from pointers that can be eliminated by |
| 1806 | // changing the pointer to the appropriately sized integer type. |
| 1807 | Constant *Op = CE->getOperand(i_nocapture: 0); |
| 1808 | Type *Ty = CE->getType(); |
| 1809 | |
| 1810 | const MCExpr *OpExpr = lowerConstantForGV(CV: Op, ProcessingGeneric); |
| 1811 | |
| 1812 | // We can emit the pointer value into this slot if the slot is an |
| 1813 | // integer slot equal to the size of the pointer. |
| 1814 | if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Ty: Op->getType())) |
| 1815 | return OpExpr; |
| 1816 | |
| 1817 | // Otherwise the pointer is smaller than the resultant integer, mask off |
| 1818 | // the high bits so we are sure to get a proper truncation if the input is |
| 1819 | // a constant expr. |
| 1820 | unsigned InBits = DL.getTypeAllocSizeInBits(Ty: Op->getType()); |
| 1821 | const MCExpr *MaskExpr = MCConstantExpr::create(Value: ~0ULL >> (64-InBits), Ctx); |
| 1822 | return MCBinaryExpr::createAnd(LHS: OpExpr, RHS: MaskExpr, Ctx); |
| 1823 | } |
| 1824 | |
| 1825 | // The MC library also has a right-shift operator, but it isn't consistently |
| 1826 | // signed or unsigned between different targets. |
| 1827 | case Instruction::Add: { |
| 1828 | const MCExpr *LHS = lowerConstantForGV(CV: CE->getOperand(i_nocapture: 0), ProcessingGeneric); |
| 1829 | const MCExpr *RHS = lowerConstantForGV(CV: CE->getOperand(i_nocapture: 1), ProcessingGeneric); |
| 1830 | switch (CE->getOpcode()) { |
| 1831 | default: llvm_unreachable("Unknown binary operator constant cast expr" ); |
| 1832 | case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); |
| 1833 | } |
| 1834 | } |
| 1835 | } |
| 1836 | |
| 1837 | // If the code isn't optimized, there may be outstanding folding |
| 1838 | // opportunities. Attempt to fold the expression using DataLayout as a |
| 1839 | // last resort before giving up. |
| 1840 | Constant *C = ConstantFoldConstant(C: CE, DL: getDataLayout()); |
| 1841 | if (C != CE) |
| 1842 | return lowerConstantForGV(CV: C, ProcessingGeneric); |
| 1843 | |
| 1844 | // Otherwise report the problem to the user. |
| 1845 | std::string S; |
| 1846 | raw_string_ostream OS(S); |
| 1847 | OS << "Unsupported expression in static initializer: " ; |
| 1848 | CE->printAsOperand(O&: OS, /*PrintType=*/false, |
| 1849 | M: !MF ? nullptr : MF->getFunction().getParent()); |
| 1850 | report_fatal_error(reason: Twine(OS.str())); |
| 1851 | } |
| 1852 | |
| 1853 | void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) const { |
| 1854 | OutContext.getAsmInfo()->printExpr(OS, Expr); |
| 1855 | } |
| 1856 | |
| 1857 | /// PrintAsmOperand - Print out an operand for an inline asm expression. |
| 1858 | /// |
| 1859 | bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, |
| 1860 | const char *, raw_ostream &O) { |
| 1861 | if (ExtraCode && ExtraCode[0]) { |
| 1862 | if (ExtraCode[1] != 0) |
| 1863 | return true; // Unknown modifier. |
| 1864 | |
| 1865 | switch (ExtraCode[0]) { |
| 1866 | default: |
| 1867 | // See if this is a generic print operand |
| 1868 | return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS&: O); |
| 1869 | case 'r': |
| 1870 | break; |
| 1871 | } |
| 1872 | } |
| 1873 | |
| 1874 | printOperand(MI, OpNum: OpNo, O); |
| 1875 | |
| 1876 | return false; |
| 1877 | } |
| 1878 | |
| 1879 | bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
| 1880 | unsigned OpNo, |
| 1881 | const char *, |
| 1882 | raw_ostream &O) { |
| 1883 | if (ExtraCode && ExtraCode[0]) |
| 1884 | return true; // Unknown modifier |
| 1885 | |
| 1886 | O << '['; |
| 1887 | printMemOperand(MI, OpNum: OpNo, O); |
| 1888 | O << ']'; |
| 1889 | |
| 1890 | return false; |
| 1891 | } |
| 1892 | |
| 1893 | void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum, |
| 1894 | raw_ostream &O) { |
| 1895 | const MachineOperand &MO = MI->getOperand(i: OpNum); |
| 1896 | switch (MO.getType()) { |
| 1897 | case MachineOperand::MO_Register: |
| 1898 | if (MO.getReg().isPhysical()) { |
| 1899 | if (MO.getReg() == NVPTX::VRDepot) |
| 1900 | O << DEPOTNAME << getFunctionNumber(); |
| 1901 | else |
| 1902 | O << NVPTXInstPrinter::getRegisterName(Reg: MO.getReg()); |
| 1903 | } else { |
| 1904 | emitVirtualRegister(vr: MO.getReg(), O); |
| 1905 | } |
| 1906 | break; |
| 1907 | |
| 1908 | case MachineOperand::MO_Immediate: |
| 1909 | O << MO.getImm(); |
| 1910 | break; |
| 1911 | |
| 1912 | case MachineOperand::MO_FPImmediate: |
| 1913 | printFPConstant(Fp: MO.getFPImm(), O); |
| 1914 | break; |
| 1915 | |
| 1916 | case MachineOperand::MO_GlobalAddress: |
| 1917 | PrintSymbolOperand(MO, OS&: O); |
| 1918 | break; |
| 1919 | |
| 1920 | case MachineOperand::MO_MachineBasicBlock: |
| 1921 | MO.getMBB()->getSymbol()->print(OS&: O, MAI); |
| 1922 | break; |
| 1923 | |
| 1924 | default: |
| 1925 | llvm_unreachable("Operand type not supported." ); |
| 1926 | } |
| 1927 | } |
| 1928 | |
| 1929 | void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, unsigned OpNum, |
| 1930 | raw_ostream &O, const char *Modifier) { |
| 1931 | printOperand(MI, OpNum, O); |
| 1932 | |
| 1933 | if (Modifier && strcmp(s1: Modifier, s2: "add" ) == 0) { |
| 1934 | O << ", " ; |
| 1935 | printOperand(MI, OpNum: OpNum + 1, O); |
| 1936 | } else { |
| 1937 | if (MI->getOperand(i: OpNum + 1).isImm() && |
| 1938 | MI->getOperand(i: OpNum + 1).getImm() == 0) |
| 1939 | return; // don't print ',0' or '+0' |
| 1940 | O << "+" ; |
| 1941 | printOperand(MI, OpNum: OpNum + 1, O); |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | char NVPTXAsmPrinter::ID = 0; |
| 1946 | |
| 1947 | INITIALIZE_PASS(NVPTXAsmPrinter, "nvptx-asm-printer" , "NVPTX Assembly Printer" , |
| 1948 | false, false) |
| 1949 | |
| 1950 | // Force static initialization. |
| 1951 | extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void |
| 1952 | LLVMInitializeNVPTXAsmPrinter() { |
| 1953 | RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32()); |
| 1954 | RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64()); |
| 1955 | } |
| 1956 | |