1 | //===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the lowering of LLVM calls to machine code calls for |
10 | // GlobalISel. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "SPIRVCallLowering.h" |
15 | #include "MCTargetDesc/SPIRVBaseInfo.h" |
16 | #include "SPIRV.h" |
17 | #include "SPIRVBuiltins.h" |
18 | #include "SPIRVGlobalRegistry.h" |
19 | #include "SPIRVISelLowering.h" |
20 | #include "SPIRVMetadata.h" |
21 | #include "SPIRVRegisterInfo.h" |
22 | #include "SPIRVSubtarget.h" |
23 | #include "SPIRVUtils.h" |
24 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
25 | #include "llvm/IR/IntrinsicInst.h" |
26 | #include "llvm/IR/IntrinsicsSPIRV.h" |
27 | #include "llvm/Support/ModRef.h" |
28 | |
29 | using namespace llvm; |
30 | |
31 | SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI, |
32 | SPIRVGlobalRegistry *GR) |
33 | : CallLowering(&TLI), GR(GR) {} |
34 | |
35 | bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, |
36 | const Value *Val, ArrayRef<Register> VRegs, |
37 | FunctionLoweringInfo &FLI, |
38 | Register SwiftErrorVReg) const { |
39 | // Ignore if called from the internal service function |
40 | if (MIRBuilder.getMF() |
41 | .getFunction() |
42 | .getFnAttribute(SPIRV_BACKEND_SERVICE_FUN_NAME) |
43 | .isValid()) |
44 | return true; |
45 | |
46 | // Maybe run postponed production of types for function pointers |
47 | if (IndirectCalls.size() > 0) { |
48 | produceIndirectPtrTypes(MIRBuilder); |
49 | IndirectCalls.clear(); |
50 | } |
51 | |
52 | // Currently all return types should use a single register. |
53 | // TODO: handle the case of multiple registers. |
54 | if (VRegs.size() > 1) |
55 | return false; |
56 | if (Val) { |
57 | const auto &STI = MIRBuilder.getMF().getSubtarget(); |
58 | return MIRBuilder.buildInstr(Opcode: SPIRV::OpReturnValue) |
59 | .addUse(RegNo: VRegs[0]) |
60 | .constrainAllUses(TII: MIRBuilder.getTII(), TRI: *STI.getRegisterInfo(), |
61 | RBI: *STI.getRegBankInfo()); |
62 | } |
63 | MIRBuilder.buildInstr(Opcode: SPIRV::OpReturn); |
64 | return true; |
65 | } |
66 | |
67 | // Based on the LLVM function attributes, get a SPIR-V FunctionControl. |
68 | static uint32_t getFunctionControl(const Function &F, |
69 | const SPIRVSubtarget *ST) { |
70 | MemoryEffects MemEffects = F.getMemoryEffects(); |
71 | |
72 | uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None); |
73 | |
74 | if (F.hasFnAttribute(Kind: Attribute::AttrKind::NoInline)) |
75 | FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline); |
76 | else if (F.hasFnAttribute(Kind: Attribute::AttrKind::AlwaysInline)) |
77 | FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline); |
78 | |
79 | if (MemEffects.doesNotAccessMemory()) |
80 | FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure); |
81 | else if (MemEffects.onlyReadsMemory()) |
82 | FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const); |
83 | |
84 | if (ST->canUseExtension(E: SPIRV::Extension::SPV_INTEL_optnone) || |
85 | ST->canUseExtension(E: SPIRV::Extension::SPV_EXT_optnone)) |
86 | if (F.hasFnAttribute(Kind: Attribute::OptimizeNone)) |
87 | FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::OptNoneEXT); |
88 | |
89 | return FuncControl; |
90 | } |
91 | |
92 | static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) { |
93 | if (MD->getNumOperands() > NumOp) { |
94 | auto *CMeta = dyn_cast<ConstantAsMetadata>(Val: MD->getOperand(I: NumOp)); |
95 | if (CMeta) |
96 | return dyn_cast<ConstantInt>(Val: CMeta->getValue()); |
97 | } |
98 | return nullptr; |
99 | } |
100 | |
101 | // If the function has pointer arguments, we are forced to re-create this |
102 | // function type from the very beginning, changing PointerType by |
103 | // TypedPointerType for each pointer argument. Otherwise, the same `Type*` |
104 | // potentially corresponds to different SPIR-V function type, effectively |
105 | // invalidating logic behind global registry and duplicates tracker. |
106 | static FunctionType * |
107 | fixFunctionTypeIfPtrArgs(SPIRVGlobalRegistry *GR, const Function &F, |
108 | FunctionType *FTy, const SPIRVType *SRetTy, |
109 | const SmallVector<SPIRVType *, 4> &SArgTys) { |
110 | bool hasArgPtrs = false; |
111 | for (auto &Arg : F.args()) { |
112 | // check if it's an instance of a non-typed PointerType |
113 | if (Arg.getType()->isPointerTy()) { |
114 | hasArgPtrs = true; |
115 | break; |
116 | } |
117 | } |
118 | if (!hasArgPtrs) { |
119 | Type *RetTy = FTy->getReturnType(); |
120 | // check if it's an instance of a non-typed PointerType |
121 | if (!RetTy->isPointerTy()) |
122 | return FTy; |
123 | } |
124 | |
125 | // re-create function type, using TypedPointerType instead of PointerType to |
126 | // properly trace argument types |
127 | const Type *RetTy = GR->getTypeForSPIRVType(Ty: SRetTy); |
128 | SmallVector<Type *, 4> ArgTys; |
129 | for (auto SArgTy : SArgTys) |
130 | ArgTys.push_back(Elt: const_cast<Type *>(GR->getTypeForSPIRVType(Ty: SArgTy))); |
131 | return FunctionType::get(Result: const_cast<Type *>(RetTy), Params: ArgTys, isVarArg: false); |
132 | } |
133 | |
134 | // This code restores function args/retvalue types for composite cases |
135 | // because the final types should still be aggregate whereas they're i32 |
136 | // during the translation to cope with aggregate flattening etc. |
137 | static FunctionType *getOriginalFunctionType(const Function &F) { |
138 | auto *NamedMD = F.getParent()->getNamedMetadata(Name: "spv.cloned_funcs" ); |
139 | if (NamedMD == nullptr) |
140 | return F.getFunctionType(); |
141 | |
142 | Type *RetTy = F.getFunctionType()->getReturnType(); |
143 | SmallVector<Type *, 4> ArgTypes; |
144 | for (auto &Arg : F.args()) |
145 | ArgTypes.push_back(Elt: Arg.getType()); |
146 | |
147 | auto ThisFuncMDIt = |
148 | std::find_if(first: NamedMD->op_begin(), last: NamedMD->op_end(), pred: [&F](MDNode *N) { |
149 | return isa<MDString>(Val: N->getOperand(I: 0)) && |
150 | cast<MDString>(Val: N->getOperand(I: 0))->getString() == F.getName(); |
151 | }); |
152 | // TODO: probably one function can have numerous type mutations, |
153 | // so we should support this. |
154 | if (ThisFuncMDIt != NamedMD->op_end()) { |
155 | auto *ThisFuncMD = *ThisFuncMDIt; |
156 | MDNode *MD = dyn_cast<MDNode>(Val: ThisFuncMD->getOperand(I: 1)); |
157 | assert(MD && "MDNode operand is expected" ); |
158 | ConstantInt *Const = getConstInt(MD, NumOp: 0); |
159 | if (Const) { |
160 | auto *CMeta = dyn_cast<ConstantAsMetadata>(Val: MD->getOperand(I: 1)); |
161 | assert(CMeta && "ConstantAsMetadata operand is expected" ); |
162 | assert(Const->getSExtValue() >= -1); |
163 | // Currently -1 indicates return value, greater values mean |
164 | // argument numbers. |
165 | if (Const->getSExtValue() == -1) |
166 | RetTy = CMeta->getType(); |
167 | else |
168 | ArgTypes[Const->getSExtValue()] = CMeta->getType(); |
169 | } |
170 | } |
171 | |
172 | return FunctionType::get(Result: RetTy, Params: ArgTypes, isVarArg: F.isVarArg()); |
173 | } |
174 | |
175 | static SPIRV::AccessQualifier::AccessQualifier |
176 | getArgAccessQual(const Function &F, unsigned ArgIdx) { |
177 | if (F.getCallingConv() != CallingConv::SPIR_KERNEL) |
178 | return SPIRV::AccessQualifier::ReadWrite; |
179 | |
180 | MDString *ArgAttribute = getOCLKernelArgAccessQual(F, ArgIdx); |
181 | if (!ArgAttribute) |
182 | return SPIRV::AccessQualifier::ReadWrite; |
183 | |
184 | if (ArgAttribute->getString() == "read_only" ) |
185 | return SPIRV::AccessQualifier::ReadOnly; |
186 | if (ArgAttribute->getString() == "write_only" ) |
187 | return SPIRV::AccessQualifier::WriteOnly; |
188 | return SPIRV::AccessQualifier::ReadWrite; |
189 | } |
190 | |
191 | static std::vector<SPIRV::Decoration::Decoration> |
192 | getKernelArgTypeQual(const Function &F, unsigned ArgIdx) { |
193 | MDString *ArgAttribute = getOCLKernelArgTypeQual(F, ArgIdx); |
194 | if (ArgAttribute && ArgAttribute->getString() == "volatile" ) |
195 | return {SPIRV::Decoration::Volatile}; |
196 | return {}; |
197 | } |
198 | |
199 | static SPIRVType *getArgSPIRVType(const Function &F, unsigned ArgIdx, |
200 | SPIRVGlobalRegistry *GR, |
201 | MachineIRBuilder &MIRBuilder, |
202 | const SPIRVSubtarget &ST) { |
203 | // Read argument's access qualifier from metadata or default. |
204 | SPIRV::AccessQualifier::AccessQualifier ArgAccessQual = |
205 | getArgAccessQual(F, ArgIdx); |
206 | |
207 | Type *OriginalArgType = getOriginalFunctionType(F)->getParamType(i: ArgIdx); |
208 | |
209 | // If OriginalArgType is non-pointer, use the OriginalArgType (the type cannot |
210 | // be legally reassigned later). |
211 | if (!isPointerTy(T: OriginalArgType)) |
212 | return GR->getOrCreateSPIRVType(Type: OriginalArgType, MIRBuilder, AQ: ArgAccessQual, |
213 | EmitIR: true); |
214 | |
215 | Argument *Arg = F.getArg(i: ArgIdx); |
216 | Type *ArgType = Arg->getType(); |
217 | if (isTypedPointerTy(T: ArgType)) { |
218 | return GR->getOrCreateSPIRVPointerType( |
219 | BaseType: cast<TypedPointerType>(Val: ArgType)->getElementType(), MIRBuilder, |
220 | SC: addressSpaceToStorageClass(AddrSpace: getPointerAddressSpace(T: ArgType), STI: ST)); |
221 | } |
222 | |
223 | // In case OriginalArgType is of untyped pointer type, there are three |
224 | // possibilities: |
225 | // 1) This is a pointer of an LLVM IR element type, passed byval/byref. |
226 | // 2) This is an OpenCL/SPIR-V builtin type if there is spv_assign_type |
227 | // intrinsic assigning a TargetExtType. |
228 | // 3) This is a pointer, try to retrieve pointer element type from a |
229 | // spv_assign_ptr_type intrinsic or otherwise use default pointer element |
230 | // type. |
231 | if (hasPointeeTypeAttr(Arg)) { |
232 | return GR->getOrCreateSPIRVPointerType( |
233 | BaseType: getPointeeTypeByAttr(Arg), MIRBuilder, |
234 | SC: addressSpaceToStorageClass(AddrSpace: getPointerAddressSpace(T: ArgType), STI: ST)); |
235 | } |
236 | |
237 | for (auto User : Arg->users()) { |
238 | auto *II = dyn_cast<IntrinsicInst>(Val: User); |
239 | // Check if this is spv_assign_type assigning OpenCL/SPIR-V builtin type. |
240 | if (II && II->getIntrinsicID() == Intrinsic::spv_assign_type) { |
241 | MetadataAsValue *VMD = cast<MetadataAsValue>(Val: II->getOperand(i_nocapture: 1)); |
242 | Type *BuiltinType = |
243 | cast<ConstantAsMetadata>(Val: VMD->getMetadata())->getType(); |
244 | assert(BuiltinType->isTargetExtTy() && "Expected TargetExtType" ); |
245 | return GR->getOrCreateSPIRVType(Type: BuiltinType, MIRBuilder, AQ: ArgAccessQual, |
246 | EmitIR: true); |
247 | } |
248 | |
249 | // Check if this is spv_assign_ptr_type assigning pointer element type. |
250 | if (!II || II->getIntrinsicID() != Intrinsic::spv_assign_ptr_type) |
251 | continue; |
252 | |
253 | MetadataAsValue *VMD = cast<MetadataAsValue>(Val: II->getOperand(i_nocapture: 1)); |
254 | Type *ElementTy = |
255 | toTypedPointer(Ty: cast<ConstantAsMetadata>(Val: VMD->getMetadata())->getType()); |
256 | return GR->getOrCreateSPIRVPointerType( |
257 | BaseType: ElementTy, MIRBuilder, |
258 | SC: addressSpaceToStorageClass( |
259 | AddrSpace: cast<ConstantInt>(Val: II->getOperand(i_nocapture: 2))->getZExtValue(), STI: ST)); |
260 | } |
261 | |
262 | // Replace PointerType with TypedPointerType to be able to map SPIR-V types to |
263 | // LLVM types in a consistent manner |
264 | return GR->getOrCreateSPIRVType(Type: toTypedPointer(Ty: OriginalArgType), MIRBuilder, |
265 | AQ: ArgAccessQual, EmitIR: true); |
266 | } |
267 | |
268 | static SPIRV::ExecutionModel::ExecutionModel |
269 | getExecutionModel(const SPIRVSubtarget &STI, const Function &F) { |
270 | if (STI.isKernel()) |
271 | return SPIRV::ExecutionModel::Kernel; |
272 | |
273 | if (STI.isShader()) { |
274 | auto attribute = F.getFnAttribute(Kind: "hlsl.shader" ); |
275 | if (!attribute.isValid()) { |
276 | report_fatal_error( |
277 | reason: "This entry point lacks mandatory hlsl.shader attribute." ); |
278 | } |
279 | |
280 | const auto value = attribute.getValueAsString(); |
281 | if (value == "compute" ) |
282 | return SPIRV::ExecutionModel::GLCompute; |
283 | if (value == "vertex" ) |
284 | return SPIRV::ExecutionModel::Vertex; |
285 | if (value == "pixel" ) |
286 | return SPIRV::ExecutionModel::Fragment; |
287 | |
288 | report_fatal_error( |
289 | reason: "This HLSL entry point is not supported by this backend." ); |
290 | } |
291 | |
292 | assert(STI.getEnv() == SPIRVSubtarget::Unknown); |
293 | // "hlsl.shader" attribute is mandatory for Vulkan, so we can set Env to |
294 | // Shader whenever we find it, and to Kernel otherwise. |
295 | |
296 | // We will now change the Env based on the attribute, so we need to strip |
297 | // `const` out of the ref to STI. |
298 | SPIRVSubtarget *NonConstSTI = const_cast<SPIRVSubtarget *>(&STI); |
299 | auto attribute = F.getFnAttribute(Kind: "hlsl.shader" ); |
300 | if (!attribute.isValid()) { |
301 | NonConstSTI->setEnv(SPIRVSubtarget::Kernel); |
302 | return SPIRV::ExecutionModel::Kernel; |
303 | } |
304 | NonConstSTI->setEnv(SPIRVSubtarget::Shader); |
305 | |
306 | const auto value = attribute.getValueAsString(); |
307 | if (value == "compute" ) |
308 | return SPIRV::ExecutionModel::GLCompute; |
309 | if (value == "vertex" ) |
310 | return SPIRV::ExecutionModel::Vertex; |
311 | if (value == "pixel" ) |
312 | return SPIRV::ExecutionModel::Fragment; |
313 | |
314 | report_fatal_error(reason: "This HLSL entry point is not supported by this backend." ); |
315 | } |
316 | |
317 | bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder, |
318 | const Function &F, |
319 | ArrayRef<ArrayRef<Register>> VRegs, |
320 | FunctionLoweringInfo &FLI) const { |
321 | // Discard the internal service function |
322 | if (F.getFnAttribute(SPIRV_BACKEND_SERVICE_FUN_NAME).isValid()) |
323 | return true; |
324 | |
325 | assert(GR && "Must initialize the SPIRV type registry before lowering args." ); |
326 | GR->setCurrentFunc(MIRBuilder.getMF()); |
327 | |
328 | // Get access to information about available extensions |
329 | const SPIRVSubtarget *ST = |
330 | static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget()); |
331 | |
332 | // Assign types and names to all args, and store their types for later. |
333 | SmallVector<SPIRVType *, 4> ArgTypeVRegs; |
334 | if (VRegs.size() > 0) { |
335 | unsigned i = 0; |
336 | for (const auto &Arg : F.args()) { |
337 | // Currently formal args should use single registers. |
338 | // TODO: handle the case of multiple registers. |
339 | if (VRegs[i].size() > 1) |
340 | return false; |
341 | auto *SpirvTy = getArgSPIRVType(F, ArgIdx: i, GR, MIRBuilder, ST: *ST); |
342 | GR->assignSPIRVTypeToVReg(Type: SpirvTy, VReg: VRegs[i][0], MF: MIRBuilder.getMF()); |
343 | ArgTypeVRegs.push_back(Elt: SpirvTy); |
344 | |
345 | if (Arg.hasName()) |
346 | buildOpName(Target: VRegs[i][0], Name: Arg.getName(), MIRBuilder); |
347 | if (isPointerTyOrWrapper(Ty: Arg.getType())) { |
348 | auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes()); |
349 | if (DerefBytes != 0) |
350 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
351 | Dec: SPIRV::Decoration::MaxByteOffset, DecArgs: {DerefBytes}); |
352 | } |
353 | if (Arg.hasAttribute(Kind: Attribute::Alignment) && !ST->isShader()) { |
354 | auto Alignment = static_cast<unsigned>( |
355 | Arg.getAttribute(Kind: Attribute::Alignment).getValueAsInt()); |
356 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, Dec: SPIRV::Decoration::Alignment, |
357 | DecArgs: {Alignment}); |
358 | } |
359 | if (Arg.hasAttribute(Kind: Attribute::ReadOnly)) { |
360 | auto Attr = |
361 | static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite); |
362 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
363 | Dec: SPIRV::Decoration::FuncParamAttr, DecArgs: {Attr}); |
364 | } |
365 | if (Arg.hasAttribute(Kind: Attribute::ZExt)) { |
366 | auto Attr = |
367 | static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext); |
368 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
369 | Dec: SPIRV::Decoration::FuncParamAttr, DecArgs: {Attr}); |
370 | } |
371 | if (Arg.hasAttribute(Kind: Attribute::NoAlias)) { |
372 | auto Attr = |
373 | static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias); |
374 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
375 | Dec: SPIRV::Decoration::FuncParamAttr, DecArgs: {Attr}); |
376 | } |
377 | if (Arg.hasAttribute(Kind: Attribute::ByVal)) { |
378 | auto Attr = |
379 | static_cast<unsigned>(SPIRV::FunctionParameterAttribute::ByVal); |
380 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
381 | Dec: SPIRV::Decoration::FuncParamAttr, DecArgs: {Attr}); |
382 | } |
383 | if (Arg.hasAttribute(Kind: Attribute::StructRet)) { |
384 | auto Attr = |
385 | static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Sret); |
386 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, |
387 | Dec: SPIRV::Decoration::FuncParamAttr, DecArgs: {Attr}); |
388 | } |
389 | |
390 | if (F.getCallingConv() == CallingConv::SPIR_KERNEL) { |
391 | std::vector<SPIRV::Decoration::Decoration> ArgTypeQualDecs = |
392 | getKernelArgTypeQual(F, ArgIdx: i); |
393 | for (SPIRV::Decoration::Decoration Decoration : ArgTypeQualDecs) |
394 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, Dec: Decoration, DecArgs: {}); |
395 | } |
396 | |
397 | MDNode *Node = F.getMetadata(Kind: "spirv.ParameterDecorations" ); |
398 | if (Node && i < Node->getNumOperands() && |
399 | isa<MDNode>(Val: Node->getOperand(I: i))) { |
400 | MDNode *MD = cast<MDNode>(Val: Node->getOperand(I: i)); |
401 | for (const MDOperand &MDOp : MD->operands()) { |
402 | MDNode *MD2 = dyn_cast<MDNode>(Val: MDOp); |
403 | assert(MD2 && "Metadata operand is expected" ); |
404 | ConstantInt *Const = getConstInt(MD: MD2, NumOp: 0); |
405 | assert(Const && "MDOperand should be ConstantInt" ); |
406 | auto Dec = |
407 | static_cast<SPIRV::Decoration::Decoration>(Const->getZExtValue()); |
408 | std::vector<uint32_t> DecVec; |
409 | for (unsigned j = 1; j < MD2->getNumOperands(); j++) { |
410 | ConstantInt *Const = getConstInt(MD: MD2, NumOp: j); |
411 | assert(Const && "MDOperand should be ConstantInt" ); |
412 | DecVec.push_back(x: static_cast<uint32_t>(Const->getZExtValue())); |
413 | } |
414 | buildOpDecorate(Reg: VRegs[i][0], MIRBuilder, Dec, DecArgs: DecVec); |
415 | } |
416 | } |
417 | ++i; |
418 | } |
419 | } |
420 | |
421 | auto MRI = MIRBuilder.getMRI(); |
422 | Register FuncVReg = MRI->createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 64)); |
423 | MRI->setRegClass(Reg: FuncVReg, RC: &SPIRV::iIDRegClass); |
424 | FunctionType *FTy = getOriginalFunctionType(F); |
425 | Type *FRetTy = FTy->getReturnType(); |
426 | if (isUntypedPointerTy(T: FRetTy)) { |
427 | if (Type *FRetElemTy = GR->findDeducedElementType(Val: &F)) { |
428 | TypedPointerType *DerivedTy = TypedPointerType::get( |
429 | ElementType: toTypedPointer(Ty: FRetElemTy), AddressSpace: getPointerAddressSpace(T: FRetTy)); |
430 | GR->addReturnType(ArgF: &F, DerivedTy); |
431 | FRetTy = DerivedTy; |
432 | } |
433 | } |
434 | SPIRVType *RetTy = GR->getOrCreateSPIRVType( |
435 | Type: FRetTy, MIRBuilder, AQ: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
436 | FTy = fixFunctionTypeIfPtrArgs(GR, F, FTy, SRetTy: RetTy, SArgTys: ArgTypeVRegs); |
437 | SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs( |
438 | Ty: FTy, RetType: RetTy, ArgTypes: ArgTypeVRegs, MIRBuilder); |
439 | uint32_t FuncControl = getFunctionControl(F, ST); |
440 | |
441 | // Add OpFunction instruction |
442 | MachineInstrBuilder MB = MIRBuilder.buildInstr(Opcode: SPIRV::OpFunction) |
443 | .addDef(RegNo: FuncVReg) |
444 | .addUse(RegNo: GR->getSPIRVTypeID(SpirvType: RetTy)) |
445 | .addImm(Val: FuncControl) |
446 | .addUse(RegNo: GR->getSPIRVTypeID(SpirvType: FuncTy)); |
447 | GR->recordFunctionDefinition(F: &F, MO: &MB.getInstr()->getOperand(i: 0)); |
448 | GR->addGlobalObject(V: &F, MF: &MIRBuilder.getMF(), R: FuncVReg); |
449 | if (F.isDeclaration()) |
450 | GR->add(V: &F, MI: MB); |
451 | |
452 | // Add OpFunctionParameter instructions |
453 | int i = 0; |
454 | for (const auto &Arg : F.args()) { |
455 | assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs" ); |
456 | Register ArgReg = VRegs[i][0]; |
457 | MRI->setRegClass(Reg: ArgReg, RC: GR->getRegClass(SpvType: ArgTypeVRegs[i])); |
458 | MRI->setType(VReg: ArgReg, Ty: GR->getRegType(SpvType: ArgTypeVRegs[i])); |
459 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpFunctionParameter) |
460 | .addDef(RegNo: ArgReg) |
461 | .addUse(RegNo: GR->getSPIRVTypeID(SpirvType: ArgTypeVRegs[i])); |
462 | if (F.isDeclaration()) |
463 | GR->add(V: &Arg, MI: MIB); |
464 | GR->addGlobalObject(V: &Arg, MF: &MIRBuilder.getMF(), R: ArgReg); |
465 | i++; |
466 | } |
467 | // Name the function. |
468 | if (F.hasName()) |
469 | buildOpName(Target: FuncVReg, Name: F.getName(), MIRBuilder); |
470 | |
471 | // Handle entry points and function linkage. |
472 | if (isEntryPoint(F)) { |
473 | // EntryPoints can help us to determine the environment we're working on. |
474 | // Therefore, we need a non-const pointer to SPIRVSubtarget to update the |
475 | // environment if we need to. |
476 | const SPIRVSubtarget *ST = |
477 | static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget()); |
478 | auto MIB = MIRBuilder.buildInstr(Opcode: SPIRV::OpEntryPoint) |
479 | .addImm(Val: static_cast<uint32_t>(getExecutionModel(STI: *ST, F))) |
480 | .addUse(RegNo: FuncVReg); |
481 | addStringImm(Str: F.getName(), MIB); |
482 | } else if (F.getLinkage() != GlobalValue::InternalLinkage && |
483 | F.getLinkage() != GlobalValue::PrivateLinkage && |
484 | F.getVisibility() != GlobalValue::HiddenVisibility) { |
485 | SPIRV::LinkageType::LinkageType LnkTy = |
486 | F.isDeclaration() |
487 | ? SPIRV::LinkageType::Import |
488 | : (F.getLinkage() == GlobalValue::LinkOnceODRLinkage && |
489 | ST->canUseExtension( |
490 | E: SPIRV::Extension::SPV_KHR_linkonce_odr) |
491 | ? SPIRV::LinkageType::LinkOnceODR |
492 | : SPIRV::LinkageType::Export); |
493 | buildOpDecorate(Reg: FuncVReg, MIRBuilder, Dec: SPIRV::Decoration::LinkageAttributes, |
494 | DecArgs: {static_cast<uint32_t>(LnkTy)}, StrImm: F.getName()); |
495 | } |
496 | |
497 | // Handle function pointers decoration |
498 | bool hasFunctionPointers = |
499 | ST->canUseExtension(E: SPIRV::Extension::SPV_INTEL_function_pointers); |
500 | if (hasFunctionPointers) { |
501 | if (F.hasFnAttribute(Kind: "referenced-indirectly" )) { |
502 | assert((F.getCallingConv() != CallingConv::SPIR_KERNEL) && |
503 | "Unexpected 'referenced-indirectly' attribute of the kernel " |
504 | "function" ); |
505 | buildOpDecorate(Reg: FuncVReg, MIRBuilder, |
506 | Dec: SPIRV::Decoration::ReferencedIndirectlyINTEL, DecArgs: {}); |
507 | } |
508 | } |
509 | |
510 | return true; |
511 | } |
512 | |
513 | // Used to postpone producing of indirect function pointer types after all |
514 | // indirect calls info is collected |
515 | // TODO: |
516 | // - add a topological sort of IndirectCalls to ensure the best types knowledge |
517 | // - we may need to fix function formal parameter types if they are opaque |
518 | // pointers used as function pointers in these indirect calls |
519 | void SPIRVCallLowering::produceIndirectPtrTypes( |
520 | MachineIRBuilder &MIRBuilder) const { |
521 | // Create indirect call data types if any |
522 | MachineFunction &MF = MIRBuilder.getMF(); |
523 | for (auto const &IC : IndirectCalls) { |
524 | SPIRVType *SpirvRetTy = GR->getOrCreateSPIRVType( |
525 | Type: IC.RetTy, MIRBuilder, AQ: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
526 | SmallVector<SPIRVType *, 4> SpirvArgTypes; |
527 | for (size_t i = 0; i < IC.ArgTys.size(); ++i) { |
528 | SPIRVType *SPIRVTy = GR->getOrCreateSPIRVType( |
529 | Type: IC.ArgTys[i], MIRBuilder, AQ: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
530 | SpirvArgTypes.push_back(Elt: SPIRVTy); |
531 | if (!GR->getSPIRVTypeForVReg(VReg: IC.ArgRegs[i])) |
532 | GR->assignSPIRVTypeToVReg(Type: SPIRVTy, VReg: IC.ArgRegs[i], MF); |
533 | } |
534 | // SPIR-V function type: |
535 | FunctionType *FTy = |
536 | FunctionType::get(Result: const_cast<Type *>(IC.RetTy), Params: IC.ArgTys, isVarArg: false); |
537 | SPIRVType *SpirvFuncTy = GR->getOrCreateOpTypeFunctionWithArgs( |
538 | Ty: FTy, RetType: SpirvRetTy, ArgTypes: SpirvArgTypes, MIRBuilder); |
539 | // SPIR-V pointer to function type: |
540 | SPIRVType *IndirectFuncPtrTy = GR->getOrCreateSPIRVPointerType( |
541 | BaseType: SpirvFuncTy, MIRBuilder, SC: SPIRV::StorageClass::Function); |
542 | // Correct the Callee type |
543 | GR->assignSPIRVTypeToVReg(Type: IndirectFuncPtrTy, VReg: IC.Callee, MF); |
544 | } |
545 | } |
546 | |
547 | bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, |
548 | CallLoweringInfo &Info) const { |
549 | // Currently call returns should have single vregs. |
550 | // TODO: handle the case of multiple registers. |
551 | if (Info.OrigRet.Regs.size() > 1) |
552 | return false; |
553 | MachineFunction &MF = MIRBuilder.getMF(); |
554 | GR->setCurrentFunc(MF); |
555 | const Function *CF = nullptr; |
556 | std::string DemangledName; |
557 | const Type *OrigRetTy = Info.OrigRet.Ty; |
558 | |
559 | // Emit a regular OpFunctionCall. If it's an externally declared function, |
560 | // be sure to emit its type and function declaration here. It will be hoisted |
561 | // globally later. |
562 | if (Info.Callee.isGlobal()) { |
563 | std::string FuncName = Info.Callee.getGlobal()->getName().str(); |
564 | DemangledName = getOclOrSpirvBuiltinDemangledName(Name: FuncName); |
565 | CF = dyn_cast_or_null<const Function>(Val: Info.Callee.getGlobal()); |
566 | // TODO: support constexpr casts and indirect calls. |
567 | if (CF == nullptr) |
568 | return false; |
569 | if (FunctionType *FTy = getOriginalFunctionType(F: *CF)) { |
570 | OrigRetTy = FTy->getReturnType(); |
571 | if (isUntypedPointerTy(T: OrigRetTy)) { |
572 | if (auto *DerivedRetTy = GR->findReturnType(ArgF: CF)) |
573 | OrigRetTy = DerivedRetTy; |
574 | } |
575 | } |
576 | } |
577 | |
578 | MachineRegisterInfo *MRI = MIRBuilder.getMRI(); |
579 | Register ResVReg = |
580 | Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0]; |
581 | const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget()); |
582 | |
583 | bool isFunctionDecl = CF && CF->isDeclaration(); |
584 | if (isFunctionDecl && !DemangledName.empty()) { |
585 | if (ResVReg.isValid()) { |
586 | if (!GR->getSPIRVTypeForVReg(VReg: ResVReg)) { |
587 | const Type *RetTy = OrigRetTy; |
588 | if (auto *PtrRetTy = dyn_cast<PointerType>(Val: OrigRetTy)) { |
589 | const Value *OrigValue = Info.OrigRet.OrigValue; |
590 | if (!OrigValue) |
591 | OrigValue = Info.CB; |
592 | if (OrigValue) |
593 | if (Type *ElemTy = GR->findDeducedElementType(Val: OrigValue)) |
594 | RetTy = |
595 | TypedPointerType::get(ElementType: ElemTy, AddressSpace: PtrRetTy->getAddressSpace()); |
596 | } |
597 | setRegClassType(Reg: ResVReg, Ty: RetTy, GR, MIRBuilder, |
598 | AccessQual: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
599 | } |
600 | } else { |
601 | ResVReg = createVirtualRegister(Ty: OrigRetTy, GR, MIRBuilder, |
602 | AccessQual: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
603 | } |
604 | SmallVector<Register, 8> ArgVRegs; |
605 | for (auto Arg : Info.OrigArgs) { |
606 | assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs" ); |
607 | Register ArgReg = Arg.Regs[0]; |
608 | ArgVRegs.push_back(Elt: ArgReg); |
609 | SPIRVType *SpvType = GR->getSPIRVTypeForVReg(VReg: ArgReg); |
610 | if (!SpvType) { |
611 | Type *ArgTy = nullptr; |
612 | if (auto *PtrArgTy = dyn_cast<PointerType>(Val: Arg.Ty)) { |
613 | // If Arg.Ty is an untyped pointer (i.e., ptr [addrspace(...)]) and we |
614 | // don't have access to original value in LLVM IR or info about |
615 | // deduced pointee type, then we should wait with setting the type for |
616 | // the virtual register until pre-legalizer step when we access |
617 | // @llvm.spv.assign.ptr.type.p...(...)'s info. |
618 | if (Arg.OrigValue) |
619 | if (Type *ElemTy = GR->findDeducedElementType(Val: Arg.OrigValue)) |
620 | ArgTy = |
621 | TypedPointerType::get(ElementType: ElemTy, AddressSpace: PtrArgTy->getAddressSpace()); |
622 | } else { |
623 | ArgTy = Arg.Ty; |
624 | } |
625 | if (ArgTy) { |
626 | SpvType = GR->getOrCreateSPIRVType( |
627 | Type: ArgTy, MIRBuilder, AQ: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
628 | GR->assignSPIRVTypeToVReg(Type: SpvType, VReg: ArgReg, MF); |
629 | } |
630 | } |
631 | if (!MRI->getRegClassOrNull(Reg: ArgReg)) { |
632 | // Either we have SpvType created, or Arg.Ty is an untyped pointer and |
633 | // we know its virtual register's class and type even if we don't know |
634 | // pointee type. |
635 | MRI->setRegClass(Reg: ArgReg, RC: SpvType ? GR->getRegClass(SpvType) |
636 | : &SPIRV::pIDRegClass); |
637 | MRI->setType( |
638 | VReg: ArgReg, |
639 | Ty: SpvType ? GR->getRegType(SpvType) |
640 | : LLT::pointer(AddressSpace: cast<PointerType>(Val: Arg.Ty)->getAddressSpace(), |
641 | SizeInBits: GR->getPointerSize())); |
642 | } |
643 | } |
644 | if (auto Res = |
645 | SPIRV::lowerBuiltin(DemangledCall: DemangledName, Set: ST->getPreferredInstructionSet(), |
646 | MIRBuilder, OrigRet: ResVReg, OrigRetTy, Args: ArgVRegs, GR)) |
647 | return *Res; |
648 | } |
649 | |
650 | if (isFunctionDecl && !GR->find(V: CF, MF: &MF).isValid()) { |
651 | // Emit the type info and forward function declaration to the first MBB |
652 | // to ensure VReg definition dependencies are valid across all MBBs. |
653 | MachineIRBuilder FirstBlockBuilder; |
654 | FirstBlockBuilder.setMF(MF); |
655 | FirstBlockBuilder.setMBB(*MF.getBlockNumbered(N: 0)); |
656 | |
657 | SmallVector<ArrayRef<Register>, 8> VRegArgs; |
658 | SmallVector<SmallVector<Register, 1>, 8> ToInsert; |
659 | for (const Argument &Arg : CF->args()) { |
660 | if (MIRBuilder.getDataLayout().getTypeStoreSize(Ty: Arg.getType()).isZero()) |
661 | continue; // Don't handle zero sized types. |
662 | Register Reg = MRI->createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 64)); |
663 | MRI->setRegClass(Reg, RC: &SPIRV::iIDRegClass); |
664 | ToInsert.push_back(Elt: {Reg}); |
665 | VRegArgs.push_back(Elt: ToInsert.back()); |
666 | } |
667 | // TODO: Reuse FunctionLoweringInfo |
668 | FunctionLoweringInfo FuncInfo; |
669 | lowerFormalArguments(MIRBuilder&: FirstBlockBuilder, F: *CF, VRegs: VRegArgs, FLI&: FuncInfo); |
670 | } |
671 | |
672 | // Ignore the call if it's called from the internal service function |
673 | if (MIRBuilder.getMF() |
674 | .getFunction() |
675 | .getFnAttribute(SPIRV_BACKEND_SERVICE_FUN_NAME) |
676 | .isValid()) { |
677 | // insert a no-op |
678 | MIRBuilder.buildTrap(); |
679 | return true; |
680 | } |
681 | |
682 | unsigned CallOp; |
683 | if (Info.CB->isIndirectCall()) { |
684 | if (!ST->canUseExtension(E: SPIRV::Extension::SPV_INTEL_function_pointers)) |
685 | report_fatal_error(reason: "An indirect call is encountered but SPIR-V without " |
686 | "extensions does not support it" , |
687 | gen_crash_diag: false); |
688 | // Set instruction operation according to SPV_INTEL_function_pointers |
689 | CallOp = SPIRV::OpFunctionPointerCallINTEL; |
690 | // Collect information about the indirect call to support possible |
691 | // specification of opaque ptr types of parent function's parameters |
692 | Register CalleeReg = Info.Callee.getReg(); |
693 | if (CalleeReg.isValid()) { |
694 | SPIRVCallLowering::SPIRVIndirectCall IndirectCall; |
695 | IndirectCall.Callee = CalleeReg; |
696 | IndirectCall.RetTy = OrigRetTy; |
697 | for (const auto &Arg : Info.OrigArgs) { |
698 | assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs" ); |
699 | IndirectCall.ArgTys.push_back(Elt: Arg.Ty); |
700 | IndirectCall.ArgRegs.push_back(Elt: Arg.Regs[0]); |
701 | } |
702 | IndirectCalls.push_back(Elt: IndirectCall); |
703 | } |
704 | } else { |
705 | // Emit a regular OpFunctionCall |
706 | CallOp = SPIRV::OpFunctionCall; |
707 | } |
708 | |
709 | // Make sure there's a valid return reg, even for functions returning void. |
710 | if (!ResVReg.isValid()) |
711 | ResVReg = MIRBuilder.getMRI()->createVirtualRegister(RegClass: &SPIRV::iIDRegClass); |
712 | SPIRVType *RetType = GR->assignTypeToVReg( |
713 | Type: OrigRetTy, VReg: ResVReg, MIRBuilder, AQ: SPIRV::AccessQualifier::ReadWrite, EmitIR: true); |
714 | |
715 | // Emit the call instruction and its args. |
716 | auto MIB = MIRBuilder.buildInstr(Opcode: CallOp) |
717 | .addDef(RegNo: ResVReg) |
718 | .addUse(RegNo: GR->getSPIRVTypeID(SpirvType: RetType)) |
719 | .add(MO: Info.Callee); |
720 | |
721 | for (const auto &Arg : Info.OrigArgs) { |
722 | // Currently call args should have single vregs. |
723 | if (Arg.Regs.size() > 1) |
724 | return false; |
725 | MIB.addUse(RegNo: Arg.Regs[0]); |
726 | } |
727 | |
728 | if (ST->canUseExtension(E: SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) { |
729 | // Process aliasing metadata. |
730 | const CallBase *CI = Info.CB; |
731 | if (CI && CI->hasMetadata()) { |
732 | if (MDNode *MD = CI->getMetadata(KindID: LLVMContext::MD_alias_scope)) |
733 | GR->buildMemAliasingOpDecorate(Reg: ResVReg, MIRBuilder, |
734 | Dec: SPIRV::Decoration::AliasScopeINTEL, GVarMD: MD); |
735 | if (MDNode *MD = CI->getMetadata(KindID: LLVMContext::MD_noalias)) |
736 | GR->buildMemAliasingOpDecorate(Reg: ResVReg, MIRBuilder, |
737 | Dec: SPIRV::Decoration::NoAliasINTEL, GVarMD: MD); |
738 | } |
739 | } |
740 | |
741 | return MIB.constrainAllUses(TII: MIRBuilder.getTII(), TRI: *ST->getRegisterInfo(), |
742 | RBI: *ST->getRegBankInfo()); |
743 | } |
744 | |