| 1 | //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "MCTargetDesc/X86BaseInfo.h" |
| 10 | #include "MCTargetDesc/X86EncodingOptimization.h" |
| 11 | #include "MCTargetDesc/X86FixupKinds.h" |
| 12 | #include "MCTargetDesc/X86MCAsmInfo.h" |
| 13 | #include "llvm/ADT/StringSwitch.h" |
| 14 | #include "llvm/BinaryFormat/ELF.h" |
| 15 | #include "llvm/BinaryFormat/MachO.h" |
| 16 | #include "llvm/MC/MCAsmBackend.h" |
| 17 | #include "llvm/MC/MCAssembler.h" |
| 18 | #include "llvm/MC/MCCodeEmitter.h" |
| 19 | #include "llvm/MC/MCContext.h" |
| 20 | #include "llvm/MC/MCDwarf.h" |
| 21 | #include "llvm/MC/MCELFObjectWriter.h" |
| 22 | #include "llvm/MC/MCELFStreamer.h" |
| 23 | #include "llvm/MC/MCExpr.h" |
| 24 | #include "llvm/MC/MCFixupKindInfo.h" |
| 25 | #include "llvm/MC/MCInst.h" |
| 26 | #include "llvm/MC/MCInstrInfo.h" |
| 27 | #include "llvm/MC/MCObjectStreamer.h" |
| 28 | #include "llvm/MC/MCObjectWriter.h" |
| 29 | #include "llvm/MC/MCRegisterInfo.h" |
| 30 | #include "llvm/MC/MCSubtargetInfo.h" |
| 31 | #include "llvm/MC/MCValue.h" |
| 32 | #include "llvm/MC/TargetRegistry.h" |
| 33 | #include "llvm/Support/CommandLine.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Support/raw_ostream.h" |
| 36 | |
| 37 | using namespace llvm; |
| 38 | |
| 39 | namespace { |
| 40 | /// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind |
| 41 | class X86AlignBranchKind { |
| 42 | private: |
| 43 | uint8_t AlignBranchKind = 0; |
| 44 | |
| 45 | public: |
| 46 | void operator=(const std::string &Val) { |
| 47 | if (Val.empty()) |
| 48 | return; |
| 49 | SmallVector<StringRef, 6> BranchTypes; |
| 50 | StringRef(Val).split(A&: BranchTypes, Separator: '+', MaxSplit: -1, KeepEmpty: false); |
| 51 | for (auto BranchType : BranchTypes) { |
| 52 | if (BranchType == "fused" ) |
| 53 | addKind(Value: X86::AlignBranchFused); |
| 54 | else if (BranchType == "jcc" ) |
| 55 | addKind(Value: X86::AlignBranchJcc); |
| 56 | else if (BranchType == "jmp" ) |
| 57 | addKind(Value: X86::AlignBranchJmp); |
| 58 | else if (BranchType == "call" ) |
| 59 | addKind(Value: X86::AlignBranchCall); |
| 60 | else if (BranchType == "ret" ) |
| 61 | addKind(Value: X86::AlignBranchRet); |
| 62 | else if (BranchType == "indirect" ) |
| 63 | addKind(Value: X86::AlignBranchIndirect); |
| 64 | else { |
| 65 | errs() << "invalid argument " << BranchType.str() |
| 66 | << " to -x86-align-branch=; each element must be one of: fused, " |
| 67 | "jcc, jmp, call, ret, indirect.(plus separated)\n" ; |
| 68 | } |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | operator uint8_t() const { return AlignBranchKind; } |
| 73 | void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; } |
| 74 | }; |
| 75 | |
| 76 | X86AlignBranchKind X86AlignBranchKindLoc; |
| 77 | |
| 78 | cl::opt<unsigned> X86AlignBranchBoundary( |
| 79 | "x86-align-branch-boundary" , cl::init(Val: 0), |
| 80 | cl::desc( |
| 81 | "Control how the assembler should align branches with NOP. If the " |
| 82 | "boundary's size is not 0, it should be a power of 2 and no less " |
| 83 | "than 32. Branches will be aligned to prevent from being across or " |
| 84 | "against the boundary of specified size. The default value 0 does not " |
| 85 | "align branches." )); |
| 86 | |
| 87 | cl::opt<X86AlignBranchKind, true, cl::parser<std::string>> X86AlignBranch( |
| 88 | "x86-align-branch" , |
| 89 | cl::desc( |
| 90 | "Specify types of branches to align (plus separated list of types):" |
| 91 | "\njcc indicates conditional jumps" |
| 92 | "\nfused indicates fused conditional jumps" |
| 93 | "\njmp indicates direct unconditional jumps" |
| 94 | "\ncall indicates direct and indirect calls" |
| 95 | "\nret indicates rets" |
| 96 | "\nindirect indicates indirect unconditional jumps" ), |
| 97 | cl::location(L&: X86AlignBranchKindLoc)); |
| 98 | |
| 99 | cl::opt<bool> X86AlignBranchWithin32BBoundaries( |
| 100 | "x86-branches-within-32B-boundaries" , cl::init(Val: false), |
| 101 | cl::desc( |
| 102 | "Align selected instructions to mitigate negative performance impact " |
| 103 | "of Intel's micro code update for errata skx102. May break " |
| 104 | "assumptions about labels corresponding to particular instructions, " |
| 105 | "and should be used with caution." )); |
| 106 | |
| 107 | cl::opt<unsigned> X86PadMaxPrefixSize( |
| 108 | "x86-pad-max-prefix-size" , cl::init(Val: 0), |
| 109 | cl::desc("Maximum number of prefixes to use for padding" )); |
| 110 | |
| 111 | cl::opt<bool> X86PadForAlign( |
| 112 | "x86-pad-for-align" , cl::init(Val: false), cl::Hidden, |
| 113 | cl::desc("Pad previous instructions to implement align directives" )); |
| 114 | |
| 115 | cl::opt<bool> X86PadForBranchAlign( |
| 116 | "x86-pad-for-branch-align" , cl::init(Val: true), cl::Hidden, |
| 117 | cl::desc("Pad previous instructions to implement branch alignment" )); |
| 118 | |
| 119 | class X86AsmBackend : public MCAsmBackend { |
| 120 | const MCSubtargetInfo &STI; |
| 121 | std::unique_ptr<const MCInstrInfo> MCII; |
| 122 | X86AlignBranchKind AlignBranchType; |
| 123 | Align AlignBoundary; |
| 124 | unsigned TargetPrefixMax = 0; |
| 125 | |
| 126 | MCInst PrevInst; |
| 127 | unsigned PrevInstOpcode = 0; |
| 128 | MCBoundaryAlignFragment *PendingBA = nullptr; |
| 129 | std::pair<MCFragment *, size_t> PrevInstPosition; |
| 130 | bool IsRightAfterData = false; |
| 131 | |
| 132 | uint8_t determinePaddingPrefix(const MCInst &Inst) const; |
| 133 | bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const; |
| 134 | bool needAlign(const MCInst &Inst) const; |
| 135 | bool canPadBranches(MCObjectStreamer &OS) const; |
| 136 | bool canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const; |
| 137 | |
| 138 | public: |
| 139 | X86AsmBackend(const Target &T, const MCSubtargetInfo &STI) |
| 140 | : MCAsmBackend(llvm::endianness::little), STI(STI), |
| 141 | MCII(T.createMCInstrInfo()) { |
| 142 | if (X86AlignBranchWithin32BBoundaries) { |
| 143 | // At the moment, this defaults to aligning fused branches, unconditional |
| 144 | // jumps, and (unfused) conditional jumps with nops. Both the |
| 145 | // instructions aligned and the alignment method (nop vs prefix) may |
| 146 | // change in the future. |
| 147 | AlignBoundary = assumeAligned(Value: 32); |
| 148 | AlignBranchType.addKind(Value: X86::AlignBranchFused); |
| 149 | AlignBranchType.addKind(Value: X86::AlignBranchJcc); |
| 150 | AlignBranchType.addKind(Value: X86::AlignBranchJmp); |
| 151 | } |
| 152 | // Allow overriding defaults set by main flag |
| 153 | if (X86AlignBranchBoundary.getNumOccurrences()) |
| 154 | AlignBoundary = assumeAligned(Value: X86AlignBranchBoundary); |
| 155 | if (X86AlignBranch.getNumOccurrences()) |
| 156 | AlignBranchType = X86AlignBranchKindLoc; |
| 157 | if (X86PadMaxPrefixSize.getNumOccurrences()) |
| 158 | TargetPrefixMax = X86PadMaxPrefixSize; |
| 159 | } |
| 160 | |
| 161 | bool allowAutoPadding() const override; |
| 162 | bool allowEnhancedRelaxation() const override; |
| 163 | void emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst, |
| 164 | const MCSubtargetInfo &STI); |
| 165 | void emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst); |
| 166 | |
| 167 | |
| 168 | std::optional<MCFixupKind> getFixupKind(StringRef Name) const override; |
| 169 | |
| 170 | MCFixupKindInfo getFixupKindInfo(MCFixupKind Kind) const override; |
| 171 | |
| 172 | bool shouldForceRelocation(const MCFixup &, const MCValue &); |
| 173 | |
| 174 | void applyFixup(const MCFragment &, const MCFixup &, const MCValue &Target, |
| 175 | MutableArrayRef<char> Data, uint64_t Value, |
| 176 | bool IsResolved) override; |
| 177 | |
| 178 | bool mayNeedRelaxation(const MCInst &Inst, |
| 179 | const MCSubtargetInfo &STI) const override; |
| 180 | |
| 181 | bool fixupNeedsRelaxationAdvanced(const MCFixup &, const MCValue &, uint64_t, |
| 182 | bool) const override; |
| 183 | |
| 184 | void relaxInstruction(MCInst &Inst, |
| 185 | const MCSubtargetInfo &STI) const override; |
| 186 | |
| 187 | bool padInstructionViaRelaxation(MCRelaxableFragment &RF, |
| 188 | MCCodeEmitter &Emitter, |
| 189 | unsigned &RemainingSize) const; |
| 190 | |
| 191 | bool padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, |
| 192 | unsigned &RemainingSize) const; |
| 193 | |
| 194 | bool padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, |
| 195 | unsigned &RemainingSize) const; |
| 196 | |
| 197 | bool finishLayout(const MCAssembler &Asm) const override; |
| 198 | |
| 199 | unsigned getMaximumNopSize(const MCSubtargetInfo &STI) const override; |
| 200 | |
| 201 | bool writeNopData(raw_ostream &OS, uint64_t Count, |
| 202 | const MCSubtargetInfo *STI) const override; |
| 203 | }; |
| 204 | } // end anonymous namespace |
| 205 | |
| 206 | static bool isRelaxableBranch(unsigned Opcode) { |
| 207 | return Opcode == X86::JCC_1 || Opcode == X86::JMP_1; |
| 208 | } |
| 209 | |
| 210 | static unsigned getRelaxedOpcodeBranch(unsigned Opcode, |
| 211 | bool Is16BitMode = false) { |
| 212 | switch (Opcode) { |
| 213 | default: |
| 214 | llvm_unreachable("invalid opcode for branch" ); |
| 215 | case X86::JCC_1: |
| 216 | return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4; |
| 217 | case X86::JMP_1: |
| 218 | return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | static unsigned getRelaxedOpcode(const MCInst &MI, bool Is16BitMode) { |
| 223 | unsigned Opcode = MI.getOpcode(); |
| 224 | return isRelaxableBranch(Opcode) ? getRelaxedOpcodeBranch(Opcode, Is16BitMode) |
| 225 | : X86::getOpcodeForLongImmediateForm(Opcode); |
| 226 | } |
| 227 | |
| 228 | static X86::CondCode getCondFromBranch(const MCInst &MI, |
| 229 | const MCInstrInfo &MCII) { |
| 230 | unsigned Opcode = MI.getOpcode(); |
| 231 | switch (Opcode) { |
| 232 | default: |
| 233 | return X86::COND_INVALID; |
| 234 | case X86::JCC_1: { |
| 235 | const MCInstrDesc &Desc = MCII.get(Opcode); |
| 236 | return static_cast<X86::CondCode>( |
| 237 | MI.getOperand(i: Desc.getNumOperands() - 1).getImm()); |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | static X86::SecondMacroFusionInstKind |
| 243 | classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) { |
| 244 | X86::CondCode CC = getCondFromBranch(MI, MCII); |
| 245 | return classifySecondCondCodeInMacroFusion(CC); |
| 246 | } |
| 247 | |
| 248 | /// Check if the instruction uses RIP relative addressing. |
| 249 | static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) { |
| 250 | unsigned Opcode = MI.getOpcode(); |
| 251 | const MCInstrDesc &Desc = MCII.get(Opcode); |
| 252 | uint64_t TSFlags = Desc.TSFlags; |
| 253 | unsigned CurOp = X86II::getOperandBias(Desc); |
| 254 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
| 255 | if (MemoryOperand < 0) |
| 256 | return false; |
| 257 | unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg; |
| 258 | MCRegister BaseReg = MI.getOperand(i: BaseRegNum).getReg(); |
| 259 | return (BaseReg == X86::RIP); |
| 260 | } |
| 261 | |
| 262 | /// Check if the instruction is a prefix. |
| 263 | static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII) { |
| 264 | return X86II::isPrefix(TSFlags: MCII.get(Opcode).TSFlags); |
| 265 | } |
| 266 | |
| 267 | /// Check if the instruction is valid as the first instruction in macro fusion. |
| 268 | static bool isFirstMacroFusibleInst(const MCInst &Inst, |
| 269 | const MCInstrInfo &MCII) { |
| 270 | // An Intel instruction with RIP relative addressing is not macro fusible. |
| 271 | if (isRIPRelative(MI: Inst, MCII)) |
| 272 | return false; |
| 273 | X86::FirstMacroFusionInstKind FIK = |
| 274 | X86::classifyFirstOpcodeInMacroFusion(Opcode: Inst.getOpcode()); |
| 275 | return FIK != X86::FirstMacroFusionInstKind::Invalid; |
| 276 | } |
| 277 | |
| 278 | /// X86 can reduce the bytes of NOP by padding instructions with prefixes to |
| 279 | /// get a better peformance in some cases. Here, we determine which prefix is |
| 280 | /// the most suitable. |
| 281 | /// |
| 282 | /// If the instruction has a segment override prefix, use the existing one. |
| 283 | /// If the target is 64-bit, use the CS. |
| 284 | /// If the target is 32-bit, |
| 285 | /// - If the instruction has a ESP/EBP base register, use SS. |
| 286 | /// - Otherwise use DS. |
| 287 | uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const { |
| 288 | assert((STI.hasFeature(X86::Is32Bit) || STI.hasFeature(X86::Is64Bit)) && |
| 289 | "Prefixes can be added only in 32-bit or 64-bit mode." ); |
| 290 | const MCInstrDesc &Desc = MCII->get(Opcode: Inst.getOpcode()); |
| 291 | uint64_t TSFlags = Desc.TSFlags; |
| 292 | |
| 293 | // Determine where the memory operand starts, if present. |
| 294 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
| 295 | if (MemoryOperand != -1) |
| 296 | MemoryOperand += X86II::getOperandBias(Desc); |
| 297 | |
| 298 | MCRegister SegmentReg; |
| 299 | if (MemoryOperand >= 0) { |
| 300 | // Check for explicit segment override on memory operand. |
| 301 | SegmentReg = Inst.getOperand(i: MemoryOperand + X86::AddrSegmentReg).getReg(); |
| 302 | } |
| 303 | |
| 304 | switch (TSFlags & X86II::FormMask) { |
| 305 | default: |
| 306 | break; |
| 307 | case X86II::RawFrmDstSrc: { |
| 308 | // Check segment override opcode prefix as needed (not for %ds). |
| 309 | if (Inst.getOperand(i: 2).getReg() != X86::DS) |
| 310 | SegmentReg = Inst.getOperand(i: 2).getReg(); |
| 311 | break; |
| 312 | } |
| 313 | case X86II::RawFrmSrc: { |
| 314 | // Check segment override opcode prefix as needed (not for %ds). |
| 315 | if (Inst.getOperand(i: 1).getReg() != X86::DS) |
| 316 | SegmentReg = Inst.getOperand(i: 1).getReg(); |
| 317 | break; |
| 318 | } |
| 319 | case X86II::RawFrmMemOffs: { |
| 320 | // Check segment override opcode prefix as needed. |
| 321 | SegmentReg = Inst.getOperand(i: 1).getReg(); |
| 322 | break; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | if (SegmentReg) |
| 327 | return X86::getSegmentOverridePrefixForReg(Reg: SegmentReg); |
| 328 | |
| 329 | if (STI.hasFeature(Feature: X86::Is64Bit)) |
| 330 | return X86::CS_Encoding; |
| 331 | |
| 332 | if (MemoryOperand >= 0) { |
| 333 | unsigned BaseRegNum = MemoryOperand + X86::AddrBaseReg; |
| 334 | MCRegister BaseReg = Inst.getOperand(i: BaseRegNum).getReg(); |
| 335 | if (BaseReg == X86::ESP || BaseReg == X86::EBP) |
| 336 | return X86::SS_Encoding; |
| 337 | } |
| 338 | return X86::DS_Encoding; |
| 339 | } |
| 340 | |
| 341 | /// Check if the two instructions will be macro-fused on the target cpu. |
| 342 | bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const { |
| 343 | const MCInstrDesc &InstDesc = MCII->get(Opcode: Jcc.getOpcode()); |
| 344 | if (!InstDesc.isConditionalBranch()) |
| 345 | return false; |
| 346 | if (!isFirstMacroFusibleInst(Inst: Cmp, MCII: *MCII)) |
| 347 | return false; |
| 348 | const X86::FirstMacroFusionInstKind CmpKind = |
| 349 | X86::classifyFirstOpcodeInMacroFusion(Opcode: Cmp.getOpcode()); |
| 350 | const X86::SecondMacroFusionInstKind BranchKind = |
| 351 | classifySecondInstInMacroFusion(MI: Jcc, MCII: *MCII); |
| 352 | return X86::isMacroFused(FirstKind: CmpKind, SecondKind: BranchKind); |
| 353 | } |
| 354 | |
| 355 | /// Check if the instruction has a variant symbol operand. |
| 356 | static bool hasVariantSymbol(const MCInst &MI) { |
| 357 | for (auto &Operand : MI) { |
| 358 | if (!Operand.isExpr()) |
| 359 | continue; |
| 360 | const MCExpr &Expr = *Operand.getExpr(); |
| 361 | if (Expr.getKind() == MCExpr::SymbolRef && |
| 362 | cast<MCSymbolRefExpr>(Val: &Expr)->getSpecifier()) |
| 363 | return true; |
| 364 | } |
| 365 | return false; |
| 366 | } |
| 367 | |
| 368 | bool X86AsmBackend::allowAutoPadding() const { |
| 369 | return (AlignBoundary != Align(1) && AlignBranchType != X86::AlignBranchNone); |
| 370 | } |
| 371 | |
| 372 | bool X86AsmBackend::allowEnhancedRelaxation() const { |
| 373 | return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign; |
| 374 | } |
| 375 | |
| 376 | /// X86 has certain instructions which enable interrupts exactly one |
| 377 | /// instruction *after* the instruction which stores to SS. Return true if the |
| 378 | /// given instruction may have such an interrupt delay slot. |
| 379 | static bool mayHaveInterruptDelaySlot(unsigned InstOpcode) { |
| 380 | switch (InstOpcode) { |
| 381 | case X86::POPSS16: |
| 382 | case X86::POPSS32: |
| 383 | case X86::STI: |
| 384 | return true; |
| 385 | |
| 386 | case X86::MOV16sr: |
| 387 | case X86::MOV32sr: |
| 388 | case X86::MOV64sr: |
| 389 | case X86::MOV16sm: |
| 390 | // In fact, this is only the case if the first operand is SS. However, as |
| 391 | // segment moves occur extremely rarely, this is just a minor pessimization. |
| 392 | return true; |
| 393 | } |
| 394 | return false; |
| 395 | } |
| 396 | |
| 397 | /// Check if the instruction to be emitted is right after any data. |
| 398 | static bool |
| 399 | isRightAfterData(MCFragment *CurrentFragment, |
| 400 | const std::pair<MCFragment *, size_t> &PrevInstPosition) { |
| 401 | MCFragment *F = CurrentFragment; |
| 402 | // Since data is always emitted into a DataFragment, our check strategy is |
| 403 | // simple here. |
| 404 | // - If the fragment is a DataFragment |
| 405 | // - If it's empty (section start or data after align), return false. |
| 406 | // - If it's not the fragment where the previous instruction is, |
| 407 | // returns true. |
| 408 | // - If it's the fragment holding the previous instruction but its |
| 409 | // size changed since the previous instruction was emitted into |
| 410 | // it, returns true. |
| 411 | // - Otherwise returns false. |
| 412 | // - If the fragment is not a DataFragment, returns false. |
| 413 | if (auto *DF = dyn_cast_or_null<MCDataFragment>(Val: F)) |
| 414 | return DF->getContents().size() && |
| 415 | (DF != PrevInstPosition.first || |
| 416 | DF->getContents().size() != PrevInstPosition.second); |
| 417 | |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | /// \returns the fragment size if it has instructions, otherwise returns 0. |
| 422 | static size_t getSizeForInstFragment(const MCFragment *F) { |
| 423 | if (!F || !F->hasInstructions()) |
| 424 | return 0; |
| 425 | // MCEncodedFragmentWithContents being templated makes this tricky. |
| 426 | switch (F->getKind()) { |
| 427 | default: |
| 428 | llvm_unreachable("Unknown fragment with instructions!" ); |
| 429 | case MCFragment::FT_Data: |
| 430 | return cast<MCDataFragment>(Val: *F).getContents().size(); |
| 431 | case MCFragment::FT_Relaxable: |
| 432 | return cast<MCRelaxableFragment>(Val: *F).getContents().size(); |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | /// Return true if we can insert NOP or prefixes automatically before the |
| 437 | /// the instruction to be emitted. |
| 438 | bool X86AsmBackend::canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const { |
| 439 | if (hasVariantSymbol(MI: Inst)) |
| 440 | // Linker may rewrite the instruction with variant symbol operand(e.g. |
| 441 | // TLSCALL). |
| 442 | return false; |
| 443 | |
| 444 | if (mayHaveInterruptDelaySlot(InstOpcode: PrevInstOpcode)) |
| 445 | // If this instruction follows an interrupt enabling instruction with a one |
| 446 | // instruction delay, inserting a nop would change behavior. |
| 447 | return false; |
| 448 | |
| 449 | if (isPrefix(Opcode: PrevInstOpcode, MCII: *MCII)) |
| 450 | // If this instruction follows a prefix, inserting a nop/prefix would change |
| 451 | // semantic. |
| 452 | return false; |
| 453 | |
| 454 | if (isPrefix(Opcode: Inst.getOpcode(), MCII: *MCII)) |
| 455 | // If this instruction is a prefix, inserting a prefix would change |
| 456 | // semantic. |
| 457 | return false; |
| 458 | |
| 459 | if (IsRightAfterData) |
| 460 | // If this instruction follows any data, there is no clear |
| 461 | // instruction boundary, inserting a nop/prefix would change semantic. |
| 462 | return false; |
| 463 | |
| 464 | return true; |
| 465 | } |
| 466 | |
| 467 | bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS) const { |
| 468 | if (!OS.getAllowAutoPadding()) |
| 469 | return false; |
| 470 | assert(allowAutoPadding() && "incorrect initialization!" ); |
| 471 | |
| 472 | // We only pad in text section. |
| 473 | if (!OS.getCurrentSectionOnly()->isText()) |
| 474 | return false; |
| 475 | |
| 476 | // To be Done: Currently don't deal with Bundle cases. |
| 477 | if (OS.getAssembler().isBundlingEnabled()) |
| 478 | return false; |
| 479 | |
| 480 | // Branches only need to be aligned in 32-bit or 64-bit mode. |
| 481 | if (!(STI.hasFeature(Feature: X86::Is64Bit) || STI.hasFeature(Feature: X86::Is32Bit))) |
| 482 | return false; |
| 483 | |
| 484 | return true; |
| 485 | } |
| 486 | |
| 487 | /// Check if the instruction operand needs to be aligned. |
| 488 | bool X86AsmBackend::needAlign(const MCInst &Inst) const { |
| 489 | const MCInstrDesc &Desc = MCII->get(Opcode: Inst.getOpcode()); |
| 490 | return (Desc.isConditionalBranch() && |
| 491 | (AlignBranchType & X86::AlignBranchJcc)) || |
| 492 | (Desc.isUnconditionalBranch() && |
| 493 | (AlignBranchType & X86::AlignBranchJmp)) || |
| 494 | (Desc.isCall() && (AlignBranchType & X86::AlignBranchCall)) || |
| 495 | (Desc.isReturn() && (AlignBranchType & X86::AlignBranchRet)) || |
| 496 | (Desc.isIndirectBranch() && |
| 497 | (AlignBranchType & X86::AlignBranchIndirect)); |
| 498 | } |
| 499 | |
| 500 | /// Insert BoundaryAlignFragment before instructions to align branches. |
| 501 | void X86AsmBackend::emitInstructionBegin(MCObjectStreamer &OS, |
| 502 | const MCInst &Inst, const MCSubtargetInfo &STI) { |
| 503 | // Used by canPadInst. Done here, because in emitInstructionEnd, the current |
| 504 | // fragment will have changed. |
| 505 | IsRightAfterData = |
| 506 | isRightAfterData(CurrentFragment: OS.getCurrentFragment(), PrevInstPosition); |
| 507 | |
| 508 | if (!canPadBranches(OS)) |
| 509 | return; |
| 510 | |
| 511 | // NB: PrevInst only valid if canPadBranches is true. |
| 512 | if (!isMacroFused(Cmp: PrevInst, Jcc: Inst)) |
| 513 | // Macro fusion doesn't happen indeed, clear the pending. |
| 514 | PendingBA = nullptr; |
| 515 | |
| 516 | // When branch padding is enabled (basically the skx102 erratum => unlikely), |
| 517 | // we call canPadInst (not cheap) twice. However, in the common case, we can |
| 518 | // avoid unnecessary calls to that, as this is otherwise only used for |
| 519 | // relaxable fragments. |
| 520 | if (!canPadInst(Inst, OS)) |
| 521 | return; |
| 522 | |
| 523 | if (PendingBA && PendingBA->getNext() == OS.getCurrentFragment()) { |
| 524 | // Macro fusion actually happens and there is no other fragment inserted |
| 525 | // after the previous instruction. |
| 526 | // |
| 527 | // Do nothing here since we already inserted a BoudaryAlign fragment when |
| 528 | // we met the first instruction in the fused pair and we'll tie them |
| 529 | // together in emitInstructionEnd. |
| 530 | // |
| 531 | // Note: When there is at least one fragment, such as MCAlignFragment, |
| 532 | // inserted after the previous instruction, e.g. |
| 533 | // |
| 534 | // \code |
| 535 | // cmp %rax %rcx |
| 536 | // .align 16 |
| 537 | // je .Label0 |
| 538 | // \ endcode |
| 539 | // |
| 540 | // We will treat the JCC as a unfused branch although it may be fused |
| 541 | // with the CMP. |
| 542 | return; |
| 543 | } |
| 544 | |
| 545 | if (needAlign(Inst) || ((AlignBranchType & X86::AlignBranchFused) && |
| 546 | isFirstMacroFusibleInst(Inst, MCII: *MCII))) { |
| 547 | // If we meet a unfused branch or the first instuction in a fusiable pair, |
| 548 | // insert a BoundaryAlign fragment. |
| 549 | PendingBA = OS.getContext().allocFragment<MCBoundaryAlignFragment>( |
| 550 | args&: AlignBoundary, args: STI); |
| 551 | OS.insert(F: PendingBA); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /// Set the last fragment to be aligned for the BoundaryAlignFragment. |
| 556 | void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS, |
| 557 | const MCInst &Inst) { |
| 558 | MCFragment *CF = OS.getCurrentFragment(); |
| 559 | if (auto *F = dyn_cast_or_null<MCRelaxableFragment>(Val: CF)) |
| 560 | F->setAllowAutoPadding(canPadInst(Inst, OS)); |
| 561 | |
| 562 | // Update PrevInstOpcode here, canPadInst() reads that. |
| 563 | PrevInstOpcode = Inst.getOpcode(); |
| 564 | PrevInstPosition = std::make_pair(x&: CF, y: getSizeForInstFragment(F: CF)); |
| 565 | |
| 566 | if (!canPadBranches(OS)) |
| 567 | return; |
| 568 | |
| 569 | // PrevInst is only needed if canPadBranches. Copying an MCInst isn't cheap. |
| 570 | PrevInst = Inst; |
| 571 | |
| 572 | if (!needAlign(Inst) || !PendingBA) |
| 573 | return; |
| 574 | |
| 575 | // Tie the aligned instructions into a pending BoundaryAlign. |
| 576 | PendingBA->setLastFragment(CF); |
| 577 | PendingBA = nullptr; |
| 578 | |
| 579 | // We need to ensure that further data isn't added to the current |
| 580 | // DataFragment, so that we can get the size of instructions later in |
| 581 | // MCAssembler::relaxBoundaryAlign. The easiest way is to insert a new empty |
| 582 | // DataFragment. |
| 583 | if (isa_and_nonnull<MCDataFragment>(Val: CF)) |
| 584 | OS.insert(F: OS.getContext().allocFragment<MCDataFragment>()); |
| 585 | |
| 586 | // Update the maximum alignment on the current section if necessary. |
| 587 | MCSection *Sec = OS.getCurrentSectionOnly(); |
| 588 | Sec->ensureMinAlignment(MinAlignment: AlignBoundary); |
| 589 | } |
| 590 | |
| 591 | std::optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const { |
| 592 | if (STI.getTargetTriple().isOSBinFormatELF()) { |
| 593 | unsigned Type; |
| 594 | if (STI.getTargetTriple().getArch() == Triple::x86_64) { |
| 595 | Type = llvm::StringSwitch<unsigned>(Name) |
| 596 | #define ELF_RELOC(X, Y) .Case(#X, Y) |
| 597 | #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" |
| 598 | #undef ELF_RELOC |
| 599 | .Case(S: "BFD_RELOC_NONE" , Value: ELF::R_X86_64_NONE) |
| 600 | .Case(S: "BFD_RELOC_8" , Value: ELF::R_X86_64_8) |
| 601 | .Case(S: "BFD_RELOC_16" , Value: ELF::R_X86_64_16) |
| 602 | .Case(S: "BFD_RELOC_32" , Value: ELF::R_X86_64_32) |
| 603 | .Case(S: "BFD_RELOC_64" , Value: ELF::R_X86_64_64) |
| 604 | .Default(Value: -1u); |
| 605 | } else { |
| 606 | Type = llvm::StringSwitch<unsigned>(Name) |
| 607 | #define ELF_RELOC(X, Y) .Case(#X, Y) |
| 608 | #include "llvm/BinaryFormat/ELFRelocs/i386.def" |
| 609 | #undef ELF_RELOC |
| 610 | .Case(S: "BFD_RELOC_NONE" , Value: ELF::R_386_NONE) |
| 611 | .Case(S: "BFD_RELOC_8" , Value: ELF::R_386_8) |
| 612 | .Case(S: "BFD_RELOC_16" , Value: ELF::R_386_16) |
| 613 | .Case(S: "BFD_RELOC_32" , Value: ELF::R_386_32) |
| 614 | .Default(Value: -1u); |
| 615 | } |
| 616 | if (Type == -1u) |
| 617 | return std::nullopt; |
| 618 | return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); |
| 619 | } |
| 620 | return MCAsmBackend::getFixupKind(Name); |
| 621 | } |
| 622 | |
| 623 | MCFixupKindInfo X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const { |
| 624 | const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { |
| 625 | // clang-format off |
| 626 | {.Name: "reloc_riprel_4byte" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 627 | {.Name: "reloc_riprel_4byte_movq_load" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 628 | {.Name: "reloc_riprel_4byte_movq_load_rex2" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 629 | {.Name: "reloc_riprel_4byte_relax" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 630 | {.Name: "reloc_riprel_4byte_relax_rex" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 631 | {.Name: "reloc_riprel_4byte_relax_rex2" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 632 | {.Name: "reloc_riprel_4byte_relax_evex" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 633 | {.Name: "reloc_signed_4byte" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
| 634 | {.Name: "reloc_signed_4byte_relax" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
| 635 | {.Name: "reloc_global_offset_table" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
| 636 | {.Name: "reloc_branch_4byte_pcrel" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
| 637 | // clang-format on |
| 638 | }; |
| 639 | |
| 640 | // Fixup kinds from .reloc directive are like R_386_NONE/R_X86_64_NONE. They |
| 641 | // do not require any extra processing. |
| 642 | if (mc::isRelocation(FixupKind: Kind)) |
| 643 | return MCAsmBackend::getFixupKindInfo(Kind: FK_NONE); |
| 644 | |
| 645 | if (Kind < FirstTargetFixupKind) |
| 646 | return MCAsmBackend::getFixupKindInfo(Kind); |
| 647 | |
| 648 | assert(unsigned(Kind - FirstTargetFixupKind) < X86::NumTargetFixupKinds && |
| 649 | "Invalid kind!" ); |
| 650 | assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!" ); |
| 651 | return Infos[Kind - FirstTargetFixupKind]; |
| 652 | } |
| 653 | |
| 654 | static unsigned getFixupKindSize(unsigned Kind) { |
| 655 | switch (Kind) { |
| 656 | default: |
| 657 | llvm_unreachable("invalid fixup kind!" ); |
| 658 | case FK_NONE: |
| 659 | return 0; |
| 660 | case FK_PCRel_1: |
| 661 | case FK_SecRel_1: |
| 662 | case FK_Data_1: |
| 663 | return 1; |
| 664 | case FK_PCRel_2: |
| 665 | case FK_SecRel_2: |
| 666 | case FK_Data_2: |
| 667 | return 2; |
| 668 | case FK_PCRel_4: |
| 669 | case X86::reloc_riprel_4byte: |
| 670 | case X86::reloc_riprel_4byte_relax: |
| 671 | case X86::reloc_riprel_4byte_relax_rex: |
| 672 | case X86::reloc_riprel_4byte_relax_rex2: |
| 673 | case X86::reloc_riprel_4byte_movq_load: |
| 674 | case X86::reloc_riprel_4byte_movq_load_rex2: |
| 675 | case X86::reloc_riprel_4byte_relax_evex: |
| 676 | case X86::reloc_signed_4byte: |
| 677 | case X86::reloc_signed_4byte_relax: |
| 678 | case X86::reloc_global_offset_table: |
| 679 | case X86::reloc_branch_4byte_pcrel: |
| 680 | case FK_SecRel_4: |
| 681 | case FK_Data_4: |
| 682 | return 4; |
| 683 | case FK_PCRel_8: |
| 684 | case FK_SecRel_8: |
| 685 | case FK_Data_8: |
| 686 | return 8; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | void X86AsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup, |
| 691 | const MCValue &Target, |
| 692 | MutableArrayRef<char> Data, uint64_t Value, |
| 693 | bool IsResolved) { |
| 694 | // Force relocation when there is a specifier. This might be too conservative |
| 695 | // - GAS doesn't emit a relocation for call local@plt; local:. |
| 696 | if (Target.getSpecifier()) |
| 697 | IsResolved = false; |
| 698 | maybeAddReloc(F, Fixup, Target, Value, IsResolved); |
| 699 | |
| 700 | auto Kind = Fixup.getKind(); |
| 701 | if (mc::isRelocation(FixupKind: Kind)) |
| 702 | return; |
| 703 | unsigned Size = getFixupKindSize(Kind); |
| 704 | |
| 705 | assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!" ); |
| 706 | |
| 707 | int64_t SignedValue = static_cast<int64_t>(Value); |
| 708 | if (IsResolved && Fixup.isPCRel()) { |
| 709 | // check that PC relative fixup fits into the fixup size. |
| 710 | if (Size > 0 && !isIntN(N: Size * 8, x: SignedValue)) |
| 711 | getContext().reportError(L: Fixup.getLoc(), |
| 712 | Msg: "value of " + Twine(SignedValue) + |
| 713 | " is too large for field of " + Twine(Size) + |
| 714 | ((Size == 1) ? " byte." : " bytes." )); |
| 715 | } else { |
| 716 | // Check that uppper bits are either all zeros or all ones. |
| 717 | // Specifically ignore overflow/underflow as long as the leakage is |
| 718 | // limited to the lower bits. This is to remain compatible with |
| 719 | // other assemblers. |
| 720 | assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) && |
| 721 | "Value does not fit in the Fixup field" ); |
| 722 | } |
| 723 | |
| 724 | for (unsigned i = 0; i != Size; ++i) |
| 725 | Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); |
| 726 | } |
| 727 | |
| 728 | bool X86AsmBackend::mayNeedRelaxation(const MCInst &MI, |
| 729 | const MCSubtargetInfo &STI) const { |
| 730 | unsigned Opcode = MI.getOpcode(); |
| 731 | unsigned SkipOperands = X86::isCCMPCC(Opcode) ? 2 : 0; |
| 732 | return isRelaxableBranch(Opcode) || |
| 733 | (X86::getOpcodeForLongImmediateForm(Opcode) != Opcode && |
| 734 | MI.getOperand(i: MI.getNumOperands() - 1 - SkipOperands).isExpr()); |
| 735 | } |
| 736 | |
| 737 | bool X86AsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup, |
| 738 | const MCValue &Target, |
| 739 | uint64_t Value, |
| 740 | bool Resolved) const { |
| 741 | // If resolved, relax if the value is too big for a (signed) i8. |
| 742 | // |
| 743 | // Currently, `jmp local@plt` relaxes JMP even if the offset is small, |
| 744 | // different from gas. |
| 745 | if (Resolved) |
| 746 | return !isInt<8>(x: Value) || Target.getSpecifier(); |
| 747 | |
| 748 | // Otherwise, relax unless there is a @ABS8 specifier. |
| 749 | if (Fixup.getKind() == FK_Data_1 && Target.getAddSym() && |
| 750 | Target.getSpecifier() == X86::S_ABS8) |
| 751 | return false; |
| 752 | return true; |
| 753 | } |
| 754 | |
| 755 | // FIXME: Can tblgen help at all here to verify there aren't other instructions |
| 756 | // we can relax? |
| 757 | void X86AsmBackend::relaxInstruction(MCInst &Inst, |
| 758 | const MCSubtargetInfo &STI) const { |
| 759 | // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. |
| 760 | bool Is16BitMode = STI.hasFeature(Feature: X86::Is16Bit); |
| 761 | unsigned RelaxedOp = getRelaxedOpcode(MI: Inst, Is16BitMode); |
| 762 | |
| 763 | if (RelaxedOp == Inst.getOpcode()) { |
| 764 | SmallString<256> Tmp; |
| 765 | raw_svector_ostream OS(Tmp); |
| 766 | Inst.dump_pretty(OS); |
| 767 | OS << "\n" ; |
| 768 | report_fatal_error(reason: "unexpected instruction to relax: " + OS.str()); |
| 769 | } |
| 770 | |
| 771 | Inst.setOpcode(RelaxedOp); |
| 772 | } |
| 773 | |
| 774 | bool X86AsmBackend::padInstructionViaPrefix(MCRelaxableFragment &RF, |
| 775 | MCCodeEmitter &Emitter, |
| 776 | unsigned &RemainingSize) const { |
| 777 | if (!RF.getAllowAutoPadding()) |
| 778 | return false; |
| 779 | // If the instruction isn't fully relaxed, shifting it around might require a |
| 780 | // larger value for one of the fixups then can be encoded. The outer loop |
| 781 | // will also catch this before moving to the next instruction, but we need to |
| 782 | // prevent padding this single instruction as well. |
| 783 | if (mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
| 784 | return false; |
| 785 | |
| 786 | const unsigned OldSize = RF.getContents().size(); |
| 787 | if (OldSize == 15) |
| 788 | return false; |
| 789 | |
| 790 | const unsigned MaxPossiblePad = std::min(a: 15 - OldSize, b: RemainingSize); |
| 791 | const unsigned RemainingPrefixSize = [&]() -> unsigned { |
| 792 | SmallString<15> Code; |
| 793 | X86_MC::emitPrefix(MCE&: Emitter, MI: RF.getInst(), CB&: Code, STI); |
| 794 | assert(Code.size() < 15 && "The number of prefixes must be less than 15." ); |
| 795 | |
| 796 | // TODO: It turns out we need a decent amount of plumbing for the target |
| 797 | // specific bits to determine number of prefixes its safe to add. Various |
| 798 | // targets (older chips mostly, but also Atom family) encounter decoder |
| 799 | // stalls with too many prefixes. For testing purposes, we set the value |
| 800 | // externally for the moment. |
| 801 | unsigned ExistingPrefixSize = Code.size(); |
| 802 | if (TargetPrefixMax <= ExistingPrefixSize) |
| 803 | return 0; |
| 804 | return TargetPrefixMax - ExistingPrefixSize; |
| 805 | }(); |
| 806 | const unsigned PrefixBytesToAdd = |
| 807 | std::min(a: MaxPossiblePad, b: RemainingPrefixSize); |
| 808 | if (PrefixBytesToAdd == 0) |
| 809 | return false; |
| 810 | |
| 811 | const uint8_t Prefix = determinePaddingPrefix(Inst: RF.getInst()); |
| 812 | |
| 813 | SmallString<256> Code; |
| 814 | Code.append(NumInputs: PrefixBytesToAdd, Elt: Prefix); |
| 815 | Code.append(in_start: RF.getContents().begin(), in_end: RF.getContents().end()); |
| 816 | RF.setContents(Code); |
| 817 | |
| 818 | // Adjust the fixups for the change in offsets |
| 819 | for (auto &F : RF.getFixups()) { |
| 820 | F.setOffset(F.getOffset() + PrefixBytesToAdd); |
| 821 | } |
| 822 | |
| 823 | RemainingSize -= PrefixBytesToAdd; |
| 824 | return true; |
| 825 | } |
| 826 | |
| 827 | bool X86AsmBackend::padInstructionViaRelaxation(MCRelaxableFragment &RF, |
| 828 | MCCodeEmitter &Emitter, |
| 829 | unsigned &RemainingSize) const { |
| 830 | if (!mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
| 831 | // TODO: There are lots of other tricks we could apply for increasing |
| 832 | // encoding size without impacting performance. |
| 833 | return false; |
| 834 | |
| 835 | MCInst Relaxed = RF.getInst(); |
| 836 | relaxInstruction(Inst&: Relaxed, STI: *RF.getSubtargetInfo()); |
| 837 | |
| 838 | SmallVector<MCFixup, 4> Fixups; |
| 839 | SmallString<15> Code; |
| 840 | Emitter.encodeInstruction(Inst: Relaxed, CB&: Code, Fixups, STI: *RF.getSubtargetInfo()); |
| 841 | const unsigned OldSize = RF.getContents().size(); |
| 842 | const unsigned NewSize = Code.size(); |
| 843 | assert(NewSize >= OldSize && "size decrease during relaxation?" ); |
| 844 | unsigned Delta = NewSize - OldSize; |
| 845 | if (Delta > RemainingSize) |
| 846 | return false; |
| 847 | RF.setInst(Relaxed); |
| 848 | RF.setContents(Code); |
| 849 | RF.setFixups(Fixups); |
| 850 | RemainingSize -= Delta; |
| 851 | return true; |
| 852 | } |
| 853 | |
| 854 | bool X86AsmBackend::padInstructionEncoding(MCRelaxableFragment &RF, |
| 855 | MCCodeEmitter &Emitter, |
| 856 | unsigned &RemainingSize) const { |
| 857 | bool Changed = false; |
| 858 | if (RemainingSize != 0) |
| 859 | Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize); |
| 860 | if (RemainingSize != 0) |
| 861 | Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize); |
| 862 | return Changed; |
| 863 | } |
| 864 | |
| 865 | bool X86AsmBackend::finishLayout(const MCAssembler &Asm) const { |
| 866 | // See if we can further relax some instructions to cut down on the number of |
| 867 | // nop bytes required for code alignment. The actual win is in reducing |
| 868 | // instruction count, not number of bytes. Modern X86-64 can easily end up |
| 869 | // decode limited. It is often better to reduce the number of instructions |
| 870 | // (i.e. eliminate nops) even at the cost of increasing the size and |
| 871 | // complexity of others. |
| 872 | if (!X86PadForAlign && !X86PadForBranchAlign) |
| 873 | return false; |
| 874 | |
| 875 | // The processed regions are delimitered by LabeledFragments. -g may have more |
| 876 | // MCSymbols and therefore different relaxation results. X86PadForAlign is |
| 877 | // disabled by default to eliminate the -g vs non -g difference. |
| 878 | DenseSet<MCFragment *> LabeledFragments; |
| 879 | for (const MCSymbol &S : Asm.symbols()) |
| 880 | LabeledFragments.insert(V: S.getFragment()); |
| 881 | |
| 882 | bool Changed = false; |
| 883 | for (MCSection &Sec : Asm) { |
| 884 | if (!Sec.isText()) |
| 885 | continue; |
| 886 | |
| 887 | SmallVector<MCRelaxableFragment *, 4> Relaxable; |
| 888 | for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) { |
| 889 | MCFragment &F = *I; |
| 890 | |
| 891 | if (LabeledFragments.count(V: &F)) |
| 892 | Relaxable.clear(); |
| 893 | |
| 894 | if (F.getKind() == MCFragment::FT_Data) // Skip and ignore |
| 895 | continue; |
| 896 | |
| 897 | if (F.getKind() == MCFragment::FT_Relaxable) { |
| 898 | auto &RF = cast<MCRelaxableFragment>(Val&: *I); |
| 899 | Relaxable.push_back(Elt: &RF); |
| 900 | continue; |
| 901 | } |
| 902 | |
| 903 | auto canHandle = [](MCFragment &F) -> bool { |
| 904 | switch (F.getKind()) { |
| 905 | default: |
| 906 | return false; |
| 907 | case MCFragment::FT_Align: |
| 908 | return X86PadForAlign; |
| 909 | case MCFragment::FT_BoundaryAlign: |
| 910 | return X86PadForBranchAlign; |
| 911 | } |
| 912 | }; |
| 913 | // For any unhandled kind, assume we can't change layout. |
| 914 | if (!canHandle(F)) { |
| 915 | Relaxable.clear(); |
| 916 | continue; |
| 917 | } |
| 918 | |
| 919 | const uint64_t OrigSize = Asm.computeFragmentSize(F); |
| 920 | |
| 921 | // To keep the effects local, prefer to relax instructions closest to |
| 922 | // the align directive. This is purely about human understandability |
| 923 | // of the resulting code. If we later find a reason to expand |
| 924 | // particular instructions over others, we can adjust. |
| 925 | unsigned RemainingSize = OrigSize; |
| 926 | while (!Relaxable.empty() && RemainingSize != 0) { |
| 927 | auto &RF = *Relaxable.pop_back_val(); |
| 928 | // Give the backend a chance to play any tricks it wishes to increase |
| 929 | // the encoding size of the given instruction. Target independent code |
| 930 | // will try further relaxation, but target's may play further tricks. |
| 931 | Changed |= padInstructionEncoding(RF, Emitter&: Asm.getEmitter(), RemainingSize); |
| 932 | |
| 933 | // If we have an instruction which hasn't been fully relaxed, we can't |
| 934 | // skip past it and insert bytes before it. Changing its starting |
| 935 | // offset might require a larger negative offset than it can encode. |
| 936 | // We don't need to worry about larger positive offsets as none of the |
| 937 | // possible offsets between this and our align are visible, and the |
| 938 | // ones afterwards aren't changing. |
| 939 | if (mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
| 940 | break; |
| 941 | } |
| 942 | Relaxable.clear(); |
| 943 | |
| 944 | // If we're looking at a boundary align, make sure we don't try to pad |
| 945 | // its target instructions for some following directive. Doing so would |
| 946 | // break the alignment of the current boundary align. |
| 947 | if (auto *BF = dyn_cast<MCBoundaryAlignFragment>(Val: &F)) { |
| 948 | cast<MCBoundaryAlignFragment>(Val&: F).setSize(RemainingSize); |
| 949 | Changed = true; |
| 950 | const MCFragment *LastFragment = BF->getLastFragment(); |
| 951 | if (!LastFragment) |
| 952 | continue; |
| 953 | while (&*I != LastFragment) |
| 954 | ++I; |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | return Changed; |
| 960 | } |
| 961 | |
| 962 | unsigned X86AsmBackend::getMaximumNopSize(const MCSubtargetInfo &STI) const { |
| 963 | if (STI.hasFeature(Feature: X86::Is16Bit)) |
| 964 | return 4; |
| 965 | if (!STI.hasFeature(Feature: X86::FeatureNOPL) && !STI.hasFeature(Feature: X86::Is64Bit)) |
| 966 | return 1; |
| 967 | if (STI.hasFeature(Feature: X86::TuningFast7ByteNOP)) |
| 968 | return 7; |
| 969 | if (STI.hasFeature(Feature: X86::TuningFast15ByteNOP)) |
| 970 | return 15; |
| 971 | if (STI.hasFeature(Feature: X86::TuningFast11ByteNOP)) |
| 972 | return 11; |
| 973 | // FIXME: handle 32-bit mode |
| 974 | // 15-bytes is the longest single NOP instruction, but 10-bytes is |
| 975 | // commonly the longest that can be efficiently decoded. |
| 976 | return 10; |
| 977 | } |
| 978 | |
| 979 | /// Write a sequence of optimal nops to the output, covering \p Count |
| 980 | /// bytes. |
| 981 | /// \return - true on success, false on failure |
| 982 | bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, |
| 983 | const MCSubtargetInfo *STI) const { |
| 984 | static const char Nops32Bit[10][11] = { |
| 985 | // nop |
| 986 | "\x90" , |
| 987 | // xchg %ax,%ax |
| 988 | "\x66\x90" , |
| 989 | // nopl (%[re]ax) |
| 990 | "\x0f\x1f\x00" , |
| 991 | // nopl 0(%[re]ax) |
| 992 | "\x0f\x1f\x40\x00" , |
| 993 | // nopl 0(%[re]ax,%[re]ax,1) |
| 994 | "\x0f\x1f\x44\x00\x00" , |
| 995 | // nopw 0(%[re]ax,%[re]ax,1) |
| 996 | "\x66\x0f\x1f\x44\x00\x00" , |
| 997 | // nopl 0L(%[re]ax) |
| 998 | "\x0f\x1f\x80\x00\x00\x00\x00" , |
| 999 | // nopl 0L(%[re]ax,%[re]ax,1) |
| 1000 | "\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
| 1001 | // nopw 0L(%[re]ax,%[re]ax,1) |
| 1002 | "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
| 1003 | // nopw %cs:0L(%[re]ax,%[re]ax,1) |
| 1004 | "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
| 1005 | }; |
| 1006 | |
| 1007 | // 16-bit mode uses different nop patterns than 32-bit. |
| 1008 | static const char Nops16Bit[4][11] = { |
| 1009 | // nop |
| 1010 | "\x90" , |
| 1011 | // xchg %eax,%eax |
| 1012 | "\x66\x90" , |
| 1013 | // lea 0(%si),%si |
| 1014 | "\x8d\x74\x00" , |
| 1015 | // lea 0w(%si),%si |
| 1016 | "\x8d\xb4\x00\x00" , |
| 1017 | }; |
| 1018 | |
| 1019 | const char(*Nops)[11] = |
| 1020 | STI->hasFeature(Feature: X86::Is16Bit) ? Nops16Bit : Nops32Bit; |
| 1021 | |
| 1022 | uint64_t MaxNopLength = (uint64_t)getMaximumNopSize(STI: *STI); |
| 1023 | |
| 1024 | // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining |
| 1025 | // length. |
| 1026 | do { |
| 1027 | const uint8_t ThisNopLength = (uint8_t) std::min(a: Count, b: MaxNopLength); |
| 1028 | const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; |
| 1029 | for (uint8_t i = 0; i < Prefixes; i++) |
| 1030 | OS << '\x66'; |
| 1031 | const uint8_t Rest = ThisNopLength - Prefixes; |
| 1032 | if (Rest != 0) |
| 1033 | OS.write(Ptr: Nops[Rest - 1], Size: Rest); |
| 1034 | Count -= ThisNopLength; |
| 1035 | } while (Count != 0); |
| 1036 | |
| 1037 | return true; |
| 1038 | } |
| 1039 | |
| 1040 | /* *** */ |
| 1041 | |
| 1042 | namespace { |
| 1043 | |
| 1044 | class ELFX86AsmBackend : public X86AsmBackend { |
| 1045 | public: |
| 1046 | uint8_t OSABI; |
| 1047 | ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) |
| 1048 | : X86AsmBackend(T, STI), OSABI(OSABI) {} |
| 1049 | }; |
| 1050 | |
| 1051 | class ELFX86_32AsmBackend : public ELFX86AsmBackend { |
| 1052 | public: |
| 1053 | ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, |
| 1054 | const MCSubtargetInfo &STI) |
| 1055 | : ELFX86AsmBackend(T, OSABI, STI) {} |
| 1056 | |
| 1057 | std::unique_ptr<MCObjectTargetWriter> |
| 1058 | createObjectTargetWriter() const override { |
| 1059 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, EMachine: ELF::EM_386); |
| 1060 | } |
| 1061 | }; |
| 1062 | |
| 1063 | class ELFX86_X32AsmBackend : public ELFX86AsmBackend { |
| 1064 | public: |
| 1065 | ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, |
| 1066 | const MCSubtargetInfo &STI) |
| 1067 | : ELFX86AsmBackend(T, OSABI, STI) {} |
| 1068 | |
| 1069 | std::unique_ptr<MCObjectTargetWriter> |
| 1070 | createObjectTargetWriter() const override { |
| 1071 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, |
| 1072 | EMachine: ELF::EM_X86_64); |
| 1073 | } |
| 1074 | }; |
| 1075 | |
| 1076 | class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend { |
| 1077 | public: |
| 1078 | ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, |
| 1079 | const MCSubtargetInfo &STI) |
| 1080 | : ELFX86AsmBackend(T, OSABI, STI) {} |
| 1081 | |
| 1082 | std::unique_ptr<MCObjectTargetWriter> |
| 1083 | createObjectTargetWriter() const override { |
| 1084 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, |
| 1085 | EMachine: ELF::EM_IAMCU); |
| 1086 | } |
| 1087 | }; |
| 1088 | |
| 1089 | class ELFX86_64AsmBackend : public ELFX86AsmBackend { |
| 1090 | public: |
| 1091 | ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, |
| 1092 | const MCSubtargetInfo &STI) |
| 1093 | : ELFX86AsmBackend(T, OSABI, STI) {} |
| 1094 | |
| 1095 | std::unique_ptr<MCObjectTargetWriter> |
| 1096 | createObjectTargetWriter() const override { |
| 1097 | return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, EMachine: ELF::EM_X86_64); |
| 1098 | } |
| 1099 | }; |
| 1100 | |
| 1101 | class WindowsX86AsmBackend : public X86AsmBackend { |
| 1102 | bool Is64Bit; |
| 1103 | |
| 1104 | public: |
| 1105 | WindowsX86AsmBackend(const Target &T, bool is64Bit, |
| 1106 | const MCSubtargetInfo &STI) |
| 1107 | : X86AsmBackend(T, STI) |
| 1108 | , Is64Bit(is64Bit) { |
| 1109 | } |
| 1110 | |
| 1111 | std::optional<MCFixupKind> getFixupKind(StringRef Name) const override { |
| 1112 | return StringSwitch<std::optional<MCFixupKind>>(Name) |
| 1113 | .Case(S: "dir32" , Value: FK_Data_4) |
| 1114 | .Case(S: "secrel32" , Value: FK_SecRel_4) |
| 1115 | .Case(S: "secidx" , Value: FK_SecRel_2) |
| 1116 | .Default(Value: MCAsmBackend::getFixupKind(Name)); |
| 1117 | } |
| 1118 | |
| 1119 | std::unique_ptr<MCObjectTargetWriter> |
| 1120 | createObjectTargetWriter() const override { |
| 1121 | return createX86WinCOFFObjectWriter(Is64Bit); |
| 1122 | } |
| 1123 | }; |
| 1124 | |
| 1125 | namespace CU { |
| 1126 | |
| 1127 | /// Compact unwind encoding values. |
| 1128 | enum CompactUnwindEncodings { |
| 1129 | /// [RE]BP based frame where [RE]BP is pused on the stack immediately after |
| 1130 | /// the return address, then [RE]SP is moved to [RE]BP. |
| 1131 | UNWIND_MODE_BP_FRAME = 0x01000000, |
| 1132 | |
| 1133 | /// A frameless function with a small constant stack size. |
| 1134 | UNWIND_MODE_STACK_IMMD = 0x02000000, |
| 1135 | |
| 1136 | /// A frameless function with a large constant stack size. |
| 1137 | UNWIND_MODE_STACK_IND = 0x03000000, |
| 1138 | |
| 1139 | /// No compact unwind encoding is available. |
| 1140 | UNWIND_MODE_DWARF = 0x04000000, |
| 1141 | |
| 1142 | /// Mask for encoding the frame registers. |
| 1143 | UNWIND_BP_FRAME_REGISTERS = 0x00007FFF, |
| 1144 | |
| 1145 | /// Mask for encoding the frameless registers. |
| 1146 | UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF |
| 1147 | }; |
| 1148 | |
| 1149 | } // namespace CU |
| 1150 | |
| 1151 | class DarwinX86AsmBackend : public X86AsmBackend { |
| 1152 | const MCRegisterInfo &MRI; |
| 1153 | |
| 1154 | /// Number of registers that can be saved in a compact unwind encoding. |
| 1155 | enum { CU_NUM_SAVED_REGS = 6 }; |
| 1156 | |
| 1157 | mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; |
| 1158 | Triple TT; |
| 1159 | bool Is64Bit; |
| 1160 | |
| 1161 | unsigned OffsetSize; ///< Offset of a "push" instruction. |
| 1162 | unsigned MoveInstrSize; ///< Size of a "move" instruction. |
| 1163 | unsigned StackDivide; ///< Amount to adjust stack size by. |
| 1164 | protected: |
| 1165 | /// Size of a "push" instruction for the given register. |
| 1166 | unsigned PushInstrSize(MCRegister Reg) const { |
| 1167 | switch (Reg.id()) { |
| 1168 | case X86::EBX: |
| 1169 | case X86::ECX: |
| 1170 | case X86::EDX: |
| 1171 | case X86::EDI: |
| 1172 | case X86::ESI: |
| 1173 | case X86::EBP: |
| 1174 | case X86::RBX: |
| 1175 | case X86::RBP: |
| 1176 | return 1; |
| 1177 | case X86::R12: |
| 1178 | case X86::R13: |
| 1179 | case X86::R14: |
| 1180 | case X86::R15: |
| 1181 | return 2; |
| 1182 | } |
| 1183 | return 1; |
| 1184 | } |
| 1185 | |
| 1186 | private: |
| 1187 | /// Get the compact unwind number for a given register. The number |
| 1188 | /// corresponds to the enum lists in compact_unwind_encoding.h. |
| 1189 | int getCompactUnwindRegNum(unsigned Reg) const { |
| 1190 | static const MCPhysReg CU32BitRegs[7] = { |
| 1191 | X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 |
| 1192 | }; |
| 1193 | static const MCPhysReg CU64BitRegs[] = { |
| 1194 | X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 |
| 1195 | }; |
| 1196 | const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; |
| 1197 | for (int Idx = 1; *CURegs; ++CURegs, ++Idx) |
| 1198 | if (*CURegs == Reg) |
| 1199 | return Idx; |
| 1200 | |
| 1201 | return -1; |
| 1202 | } |
| 1203 | |
| 1204 | /// Return the registers encoded for a compact encoding with a frame |
| 1205 | /// pointer. |
| 1206 | uint32_t encodeCompactUnwindRegistersWithFrame() const { |
| 1207 | // Encode the registers in the order they were saved --- 3-bits per |
| 1208 | // register. The list of saved registers is assumed to be in reverse |
| 1209 | // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. |
| 1210 | uint32_t RegEnc = 0; |
| 1211 | for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { |
| 1212 | unsigned Reg = SavedRegs[i]; |
| 1213 | if (Reg == 0) break; |
| 1214 | |
| 1215 | int CURegNum = getCompactUnwindRegNum(Reg); |
| 1216 | if (CURegNum == -1) return ~0U; |
| 1217 | |
| 1218 | // Encode the 3-bit register number in order, skipping over 3-bits for |
| 1219 | // each register. |
| 1220 | RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); |
| 1221 | } |
| 1222 | |
| 1223 | assert((RegEnc & 0x3FFFF) == RegEnc && |
| 1224 | "Invalid compact register encoding!" ); |
| 1225 | return RegEnc; |
| 1226 | } |
| 1227 | |
| 1228 | /// Create the permutation encoding used with frameless stacks. It is |
| 1229 | /// passed the number of registers to be saved and an array of the registers |
| 1230 | /// saved. |
| 1231 | uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { |
| 1232 | // The saved registers are numbered from 1 to 6. In order to encode the |
| 1233 | // order in which they were saved, we re-number them according to their |
| 1234 | // place in the register order. The re-numbering is relative to the last |
| 1235 | // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in |
| 1236 | // that order: |
| 1237 | // |
| 1238 | // Orig Re-Num |
| 1239 | // ---- ------ |
| 1240 | // 6 6 |
| 1241 | // 2 2 |
| 1242 | // 4 3 |
| 1243 | // 5 3 |
| 1244 | // |
| 1245 | for (unsigned i = 0; i < RegCount; ++i) { |
| 1246 | int CUReg = getCompactUnwindRegNum(Reg: SavedRegs[i]); |
| 1247 | if (CUReg == -1) return ~0U; |
| 1248 | SavedRegs[i] = CUReg; |
| 1249 | } |
| 1250 | |
| 1251 | // Reverse the list. |
| 1252 | std::reverse(first: &SavedRegs[0], last: &SavedRegs[CU_NUM_SAVED_REGS]); |
| 1253 | |
| 1254 | uint32_t RenumRegs[CU_NUM_SAVED_REGS]; |
| 1255 | for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ |
| 1256 | unsigned Countless = 0; |
| 1257 | for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) |
| 1258 | if (SavedRegs[j] < SavedRegs[i]) |
| 1259 | ++Countless; |
| 1260 | |
| 1261 | RenumRegs[i] = SavedRegs[i] - Countless - 1; |
| 1262 | } |
| 1263 | |
| 1264 | // Take the renumbered values and encode them into a 10-bit number. |
| 1265 | uint32_t permutationEncoding = 0; |
| 1266 | switch (RegCount) { |
| 1267 | case 6: |
| 1268 | permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] |
| 1269 | + 6 * RenumRegs[2] + 2 * RenumRegs[3] |
| 1270 | + RenumRegs[4]; |
| 1271 | break; |
| 1272 | case 5: |
| 1273 | permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] |
| 1274 | + 6 * RenumRegs[3] + 2 * RenumRegs[4] |
| 1275 | + RenumRegs[5]; |
| 1276 | break; |
| 1277 | case 4: |
| 1278 | permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] |
| 1279 | + 3 * RenumRegs[4] + RenumRegs[5]; |
| 1280 | break; |
| 1281 | case 3: |
| 1282 | permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] |
| 1283 | + RenumRegs[5]; |
| 1284 | break; |
| 1285 | case 2: |
| 1286 | permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; |
| 1287 | break; |
| 1288 | case 1: |
| 1289 | permutationEncoding |= RenumRegs[5]; |
| 1290 | break; |
| 1291 | } |
| 1292 | |
| 1293 | assert((permutationEncoding & 0x3FF) == permutationEncoding && |
| 1294 | "Invalid compact register encoding!" ); |
| 1295 | return permutationEncoding; |
| 1296 | } |
| 1297 | |
| 1298 | public: |
| 1299 | DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, |
| 1300 | const MCSubtargetInfo &STI) |
| 1301 | : X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()), |
| 1302 | Is64Bit(TT.isArch64Bit()) { |
| 1303 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
| 1304 | OffsetSize = Is64Bit ? 8 : 4; |
| 1305 | MoveInstrSize = Is64Bit ? 3 : 2; |
| 1306 | StackDivide = Is64Bit ? 8 : 4; |
| 1307 | } |
| 1308 | |
| 1309 | std::unique_ptr<MCObjectTargetWriter> |
| 1310 | createObjectTargetWriter() const override { |
| 1311 | uint32_t CPUType = cantFail(ValOrErr: MachO::getCPUType(T: TT)); |
| 1312 | uint32_t CPUSubType = cantFail(ValOrErr: MachO::getCPUSubType(T: TT)); |
| 1313 | return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubtype: CPUSubType); |
| 1314 | } |
| 1315 | |
| 1316 | /// Implementation of algorithm to generate the compact unwind encoding |
| 1317 | /// for the CFI instructions. |
| 1318 | uint64_t generateCompactUnwindEncoding(const MCDwarfFrameInfo *FI, |
| 1319 | const MCContext *Ctxt) const override { |
| 1320 | ArrayRef<MCCFIInstruction> Instrs = FI->Instructions; |
| 1321 | if (Instrs.empty()) return 0; |
| 1322 | if (!isDarwinCanonicalPersonality(Sym: FI->Personality) && |
| 1323 | !Ctxt->emitCompactUnwindNonCanonical()) |
| 1324 | return CU::UNWIND_MODE_DWARF; |
| 1325 | |
| 1326 | // Reset the saved registers. |
| 1327 | unsigned SavedRegIdx = 0; |
| 1328 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
| 1329 | |
| 1330 | bool HasFP = false; |
| 1331 | |
| 1332 | // Encode that we are using EBP/RBP as the frame pointer. |
| 1333 | uint64_t CompactUnwindEncoding = 0; |
| 1334 | |
| 1335 | unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; |
| 1336 | unsigned InstrOffset = 0; |
| 1337 | unsigned StackAdjust = 0; |
| 1338 | uint64_t StackSize = 0; |
| 1339 | int64_t MinAbsOffset = std::numeric_limits<int64_t>::max(); |
| 1340 | |
| 1341 | for (const MCCFIInstruction &Inst : Instrs) { |
| 1342 | switch (Inst.getOperation()) { |
| 1343 | default: |
| 1344 | // Any other CFI directives indicate a frame that we aren't prepared |
| 1345 | // to represent via compact unwind, so just bail out. |
| 1346 | return CU::UNWIND_MODE_DWARF; |
| 1347 | case MCCFIInstruction::OpDefCfaRegister: { |
| 1348 | // Defines a frame pointer. E.g. |
| 1349 | // |
| 1350 | // movq %rsp, %rbp |
| 1351 | // L0: |
| 1352 | // .cfi_def_cfa_register %rbp |
| 1353 | // |
| 1354 | HasFP = true; |
| 1355 | |
| 1356 | // If the frame pointer is other than esp/rsp, we do not have a way to |
| 1357 | // generate a compact unwinding representation, so bail out. |
| 1358 | if (*MRI.getLLVMRegNum(RegNum: Inst.getRegister(), isEH: true) != |
| 1359 | (Is64Bit ? X86::RBP : X86::EBP)) |
| 1360 | return CU::UNWIND_MODE_DWARF; |
| 1361 | |
| 1362 | // Reset the counts. |
| 1363 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
| 1364 | StackAdjust = 0; |
| 1365 | SavedRegIdx = 0; |
| 1366 | MinAbsOffset = std::numeric_limits<int64_t>::max(); |
| 1367 | InstrOffset += MoveInstrSize; |
| 1368 | break; |
| 1369 | } |
| 1370 | case MCCFIInstruction::OpDefCfaOffset: { |
| 1371 | // Defines a new offset for the CFA. E.g. |
| 1372 | // |
| 1373 | // With frame: |
| 1374 | // |
| 1375 | // pushq %rbp |
| 1376 | // L0: |
| 1377 | // .cfi_def_cfa_offset 16 |
| 1378 | // |
| 1379 | // Without frame: |
| 1380 | // |
| 1381 | // subq $72, %rsp |
| 1382 | // L0: |
| 1383 | // .cfi_def_cfa_offset 80 |
| 1384 | // |
| 1385 | StackSize = Inst.getOffset() / StackDivide; |
| 1386 | break; |
| 1387 | } |
| 1388 | case MCCFIInstruction::OpOffset: { |
| 1389 | // Defines a "push" of a callee-saved register. E.g. |
| 1390 | // |
| 1391 | // pushq %r15 |
| 1392 | // pushq %r14 |
| 1393 | // pushq %rbx |
| 1394 | // L0: |
| 1395 | // subq $120, %rsp |
| 1396 | // L1: |
| 1397 | // .cfi_offset %rbx, -40 |
| 1398 | // .cfi_offset %r14, -32 |
| 1399 | // .cfi_offset %r15, -24 |
| 1400 | // |
| 1401 | if (SavedRegIdx == CU_NUM_SAVED_REGS) |
| 1402 | // If there are too many saved registers, we cannot use a compact |
| 1403 | // unwind encoding. |
| 1404 | return CU::UNWIND_MODE_DWARF; |
| 1405 | |
| 1406 | MCRegister Reg = *MRI.getLLVMRegNum(RegNum: Inst.getRegister(), isEH: true); |
| 1407 | SavedRegs[SavedRegIdx++] = Reg; |
| 1408 | StackAdjust += OffsetSize; |
| 1409 | MinAbsOffset = std::min(a: MinAbsOffset, b: std::abs(i: Inst.getOffset())); |
| 1410 | InstrOffset += PushInstrSize(Reg); |
| 1411 | break; |
| 1412 | } |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | StackAdjust /= StackDivide; |
| 1417 | |
| 1418 | if (HasFP) { |
| 1419 | if ((StackAdjust & 0xFF) != StackAdjust) |
| 1420 | // Offset was too big for a compact unwind encoding. |
| 1421 | return CU::UNWIND_MODE_DWARF; |
| 1422 | |
| 1423 | // We don't attempt to track a real StackAdjust, so if the saved registers |
| 1424 | // aren't adjacent to rbp we can't cope. |
| 1425 | if (SavedRegIdx != 0 && MinAbsOffset != 3 * (int)OffsetSize) |
| 1426 | return CU::UNWIND_MODE_DWARF; |
| 1427 | |
| 1428 | // Get the encoding of the saved registers when we have a frame pointer. |
| 1429 | uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); |
| 1430 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
| 1431 | |
| 1432 | CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; |
| 1433 | CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; |
| 1434 | CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; |
| 1435 | } else { |
| 1436 | SubtractInstrIdx += InstrOffset; |
| 1437 | ++StackAdjust; |
| 1438 | |
| 1439 | if ((StackSize & 0xFF) == StackSize) { |
| 1440 | // Frameless stack with a small stack size. |
| 1441 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; |
| 1442 | |
| 1443 | // Encode the stack size. |
| 1444 | CompactUnwindEncoding |= (StackSize & 0xFF) << 16; |
| 1445 | } else { |
| 1446 | if ((StackAdjust & 0x7) != StackAdjust) |
| 1447 | // The extra stack adjustments are too big for us to handle. |
| 1448 | return CU::UNWIND_MODE_DWARF; |
| 1449 | |
| 1450 | // Frameless stack with an offset too large for us to encode compactly. |
| 1451 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; |
| 1452 | |
| 1453 | // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' |
| 1454 | // instruction. |
| 1455 | CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; |
| 1456 | |
| 1457 | // Encode any extra stack adjustments (done via push instructions). |
| 1458 | CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; |
| 1459 | } |
| 1460 | |
| 1461 | // Encode the number of registers saved. (Reverse the list first.) |
| 1462 | std::reverse(first: &SavedRegs[0], last: &SavedRegs[SavedRegIdx]); |
| 1463 | CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; |
| 1464 | |
| 1465 | // Get the encoding of the saved registers when we don't have a frame |
| 1466 | // pointer. |
| 1467 | uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(RegCount: SavedRegIdx); |
| 1468 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
| 1469 | |
| 1470 | // Encode the register encoding. |
| 1471 | CompactUnwindEncoding |= |
| 1472 | RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; |
| 1473 | } |
| 1474 | |
| 1475 | return CompactUnwindEncoding; |
| 1476 | } |
| 1477 | }; |
| 1478 | |
| 1479 | } // end anonymous namespace |
| 1480 | |
| 1481 | MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, |
| 1482 | const MCSubtargetInfo &STI, |
| 1483 | const MCRegisterInfo &MRI, |
| 1484 | const MCTargetOptions &Options) { |
| 1485 | const Triple &TheTriple = STI.getTargetTriple(); |
| 1486 | if (TheTriple.isOSBinFormatMachO()) |
| 1487 | return new DarwinX86AsmBackend(T, MRI, STI); |
| 1488 | |
| 1489 | if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) |
| 1490 | return new WindowsX86AsmBackend(T, false, STI); |
| 1491 | |
| 1492 | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(OSType: TheTriple.getOS()); |
| 1493 | |
| 1494 | if (TheTriple.isOSIAMCU()) |
| 1495 | return new ELFX86_IAMCUAsmBackend(T, OSABI, STI); |
| 1496 | |
| 1497 | return new ELFX86_32AsmBackend(T, OSABI, STI); |
| 1498 | } |
| 1499 | |
| 1500 | MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, |
| 1501 | const MCSubtargetInfo &STI, |
| 1502 | const MCRegisterInfo &MRI, |
| 1503 | const MCTargetOptions &Options) { |
| 1504 | const Triple &TheTriple = STI.getTargetTriple(); |
| 1505 | if (TheTriple.isOSBinFormatMachO()) |
| 1506 | return new DarwinX86AsmBackend(T, MRI, STI); |
| 1507 | |
| 1508 | if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) |
| 1509 | return new WindowsX86AsmBackend(T, true, STI); |
| 1510 | |
| 1511 | if (TheTriple.isUEFI()) { |
| 1512 | assert(TheTriple.isOSBinFormatCOFF() && |
| 1513 | "Only COFF format is supported in UEFI environment." ); |
| 1514 | return new WindowsX86AsmBackend(T, true, STI); |
| 1515 | } |
| 1516 | |
| 1517 | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(OSType: TheTriple.getOS()); |
| 1518 | |
| 1519 | if (TheTriple.isX32()) |
| 1520 | return new ELFX86_X32AsmBackend(T, OSABI, STI); |
| 1521 | return new ELFX86_64AsmBackend(T, OSABI, STI); |
| 1522 | } |
| 1523 | |
| 1524 | namespace { |
| 1525 | class X86ELFStreamer : public MCELFStreamer { |
| 1526 | public: |
| 1527 | X86ELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, |
| 1528 | std::unique_ptr<MCObjectWriter> OW, |
| 1529 | std::unique_ptr<MCCodeEmitter> Emitter) |
| 1530 | : MCELFStreamer(Context, std::move(TAB), std::move(OW), |
| 1531 | std::move(Emitter)) {} |
| 1532 | |
| 1533 | void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override; |
| 1534 | }; |
| 1535 | } // end anonymous namespace |
| 1536 | |
| 1537 | void X86_MC::emitInstruction(MCObjectStreamer &S, const MCInst &Inst, |
| 1538 | const MCSubtargetInfo &STI) { |
| 1539 | auto &Backend = static_cast<X86AsmBackend &>(S.getAssembler().getBackend()); |
| 1540 | Backend.emitInstructionBegin(OS&: S, Inst, STI); |
| 1541 | S.MCObjectStreamer::emitInstruction(Inst, STI); |
| 1542 | Backend.emitInstructionEnd(OS&: S, Inst); |
| 1543 | } |
| 1544 | |
| 1545 | void X86ELFStreamer::emitInstruction(const MCInst &Inst, |
| 1546 | const MCSubtargetInfo &STI) { |
| 1547 | X86_MC::emitInstruction(S&: *this, Inst, STI); |
| 1548 | } |
| 1549 | |
| 1550 | MCStreamer *llvm::createX86ELFStreamer(const Triple &T, MCContext &Context, |
| 1551 | std::unique_ptr<MCAsmBackend> &&MAB, |
| 1552 | std::unique_ptr<MCObjectWriter> &&MOW, |
| 1553 | std::unique_ptr<MCCodeEmitter> &&MCE) { |
| 1554 | return new X86ELFStreamer(Context, std::move(MAB), std::move(MOW), |
| 1555 | std::move(MCE)); |
| 1556 | } |
| 1557 | |