1 | //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // If a load follows a store and reloads data that the store has written to |
10 | // memory, Intel microarchitectures can in many cases forward the data directly |
11 | // from the store to the load, This "store forwarding" saves cycles by enabling |
12 | // the load to directly obtain the data instead of accessing the data from |
13 | // cache or memory. |
14 | // A "store forward block" occurs in cases that a store cannot be forwarded to |
15 | // the load. The most typical case of store forward block on Intel Core |
16 | // microarchitecture that a small store cannot be forwarded to a large load. |
17 | // The estimated penalty for a store forward block is ~13 cycles. |
18 | // |
19 | // This pass tries to recognize and handle cases where "store forward block" |
20 | // is created by the compiler when lowering memcpy calls to a sequence |
21 | // of a load and a store. |
22 | // |
23 | // The pass currently only handles cases where memcpy is lowered to |
24 | // XMM/YMM registers, it tries to break the memcpy into smaller copies. |
25 | // breaking the memcpy should be possible since there is no atomicity |
26 | // guarantee for loads and stores to XMM/YMM. |
27 | // |
28 | // It could be better for performance to solve the problem by loading |
29 | // to XMM/YMM then inserting the partial store before storing back from XMM/YMM |
30 | // to memory, but this will result in a more conservative optimization since it |
31 | // requires we prove that all memory accesses between the blocking store and the |
32 | // load must alias/don't alias before we can move the store, whereas the |
33 | // transformation done here is correct regardless to other memory accesses. |
34 | //===----------------------------------------------------------------------===// |
35 | |
36 | #include "X86.h" |
37 | #include "X86InstrInfo.h" |
38 | #include "X86Subtarget.h" |
39 | #include "llvm/Analysis/AliasAnalysis.h" |
40 | #include "llvm/CodeGen/MachineBasicBlock.h" |
41 | #include "llvm/CodeGen/MachineFunction.h" |
42 | #include "llvm/CodeGen/MachineFunctionPass.h" |
43 | #include "llvm/CodeGen/MachineInstr.h" |
44 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
45 | #include "llvm/CodeGen/MachineOperand.h" |
46 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
47 | #include "llvm/IR/DebugLoc.h" |
48 | #include "llvm/IR/Function.h" |
49 | #include "llvm/InitializePasses.h" |
50 | #include "llvm/MC/MCInstrDesc.h" |
51 | |
52 | using namespace llvm; |
53 | |
54 | #define DEBUG_TYPE "x86-avoid-SFB" |
55 | |
56 | static cl::opt<bool> DisableX86AvoidStoreForwardBlocks( |
57 | "x86-disable-avoid-SFB" , cl::Hidden, |
58 | cl::desc("X86: Disable Store Forwarding Blocks fixup." ), cl::init(Val: false)); |
59 | |
60 | static cl::opt<unsigned> X86AvoidSFBInspectionLimit( |
61 | "x86-sfb-inspection-limit" , |
62 | cl::desc("X86: Number of instructions backward to " |
63 | "inspect for store forwarding blocks." ), |
64 | cl::init(Val: 20), cl::Hidden); |
65 | |
66 | namespace { |
67 | |
68 | using DisplacementSizeMap = std::map<int64_t, unsigned>; |
69 | |
70 | class X86AvoidSFBPass : public MachineFunctionPass { |
71 | public: |
72 | static char ID; |
73 | X86AvoidSFBPass() : MachineFunctionPass(ID) { } |
74 | |
75 | StringRef getPassName() const override { |
76 | return "X86 Avoid Store Forwarding Blocks" ; |
77 | } |
78 | |
79 | bool runOnMachineFunction(MachineFunction &MF) override; |
80 | |
81 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
82 | MachineFunctionPass::getAnalysisUsage(AU); |
83 | AU.addRequired<AAResultsWrapperPass>(); |
84 | } |
85 | |
86 | private: |
87 | MachineRegisterInfo *MRI = nullptr; |
88 | const X86InstrInfo *TII = nullptr; |
89 | const X86RegisterInfo *TRI = nullptr; |
90 | SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2> |
91 | BlockedLoadsStoresPairs; |
92 | SmallVector<MachineInstr *, 2> ForRemoval; |
93 | AliasAnalysis *AA = nullptr; |
94 | |
95 | /// Returns couples of Load then Store to memory which look |
96 | /// like a memcpy. |
97 | void findPotentiallylBlockedCopies(MachineFunction &MF); |
98 | /// Break the memcpy's load and store into smaller copies |
99 | /// such that each memory load that was blocked by a smaller store |
100 | /// would now be copied separately. |
101 | void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst, |
102 | const DisplacementSizeMap &BlockingStoresDispSizeMap); |
103 | /// Break a copy of size Size to smaller copies. |
104 | void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm, |
105 | MachineInstr *StoreInst, int64_t StDispImm, |
106 | int64_t LMMOffset, int64_t SMMOffset); |
107 | |
108 | void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp, |
109 | MachineInstr *StoreInst, unsigned NStoreOpcode, |
110 | int64_t StoreDisp, unsigned Size, int64_t LMMOffset, |
111 | int64_t SMMOffset); |
112 | |
113 | bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const; |
114 | |
115 | unsigned getRegSizeInBytes(MachineInstr *Inst); |
116 | }; |
117 | |
118 | } // end anonymous namespace |
119 | |
120 | char X86AvoidSFBPass::ID = 0; |
121 | |
122 | INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking" , |
123 | false, false) |
124 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
125 | INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking" , false, |
126 | false) |
127 | |
128 | FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() { |
129 | return new X86AvoidSFBPass(); |
130 | } |
131 | |
132 | static bool isXMMLoadOpcode(unsigned Opcode) { |
133 | return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm || |
134 | Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm || |
135 | Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm || |
136 | Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm || |
137 | Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm || |
138 | Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm || |
139 | Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm || |
140 | Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm; |
141 | } |
142 | static bool isYMMLoadOpcode(unsigned Opcode) { |
143 | return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm || |
144 | Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm || |
145 | Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm || |
146 | Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm || |
147 | Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm || |
148 | Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm || |
149 | Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm; |
150 | } |
151 | |
152 | static bool isPotentialBlockedMemCpyLd(unsigned Opcode) { |
153 | return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode); |
154 | } |
155 | |
156 | static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode, unsigned StOpcode) { |
157 | switch (LdOpcode) { |
158 | case X86::MOVUPSrm: |
159 | case X86::MOVAPSrm: |
160 | return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr; |
161 | case X86::VMOVUPSrm: |
162 | case X86::VMOVAPSrm: |
163 | return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr; |
164 | case X86::VMOVUPDrm: |
165 | case X86::VMOVAPDrm: |
166 | return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr; |
167 | case X86::VMOVDQUrm: |
168 | case X86::VMOVDQArm: |
169 | return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr; |
170 | case X86::VMOVUPSZ128rm: |
171 | case X86::VMOVAPSZ128rm: |
172 | return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr; |
173 | case X86::VMOVUPDZ128rm: |
174 | case X86::VMOVAPDZ128rm: |
175 | return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr; |
176 | case X86::VMOVUPSYrm: |
177 | case X86::VMOVAPSYrm: |
178 | return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr; |
179 | case X86::VMOVUPDYrm: |
180 | case X86::VMOVAPDYrm: |
181 | return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr; |
182 | case X86::VMOVDQUYrm: |
183 | case X86::VMOVDQAYrm: |
184 | return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr; |
185 | case X86::VMOVUPSZ256rm: |
186 | case X86::VMOVAPSZ256rm: |
187 | return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr; |
188 | case X86::VMOVUPDZ256rm: |
189 | case X86::VMOVAPDZ256rm: |
190 | return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr; |
191 | case X86::VMOVDQU64Z128rm: |
192 | case X86::VMOVDQA64Z128rm: |
193 | return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr; |
194 | case X86::VMOVDQU32Z128rm: |
195 | case X86::VMOVDQA32Z128rm: |
196 | return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr; |
197 | case X86::VMOVDQU64Z256rm: |
198 | case X86::VMOVDQA64Z256rm: |
199 | return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr; |
200 | case X86::VMOVDQU32Z256rm: |
201 | case X86::VMOVDQA32Z256rm: |
202 | return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr; |
203 | default: |
204 | return false; |
205 | } |
206 | } |
207 | |
208 | static bool isPotentialBlockingStoreInst(unsigned Opcode, unsigned LoadOpcode) { |
209 | bool PBlock = false; |
210 | PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 || |
211 | Opcode == X86::MOV32mr || Opcode == X86::MOV32mi || |
212 | Opcode == X86::MOV16mr || Opcode == X86::MOV16mi || |
213 | Opcode == X86::MOV8mr || Opcode == X86::MOV8mi; |
214 | if (isYMMLoadOpcode(Opcode: LoadOpcode)) |
215 | PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr || |
216 | Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr || |
217 | Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr || |
218 | Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr || |
219 | Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr || |
220 | Opcode == X86::VMOVDQU64Z128mr || |
221 | Opcode == X86::VMOVDQA64Z128mr || |
222 | Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr; |
223 | return PBlock; |
224 | } |
225 | |
226 | static const int MOV128SZ = 16; |
227 | static const int MOV64SZ = 8; |
228 | static const int MOV32SZ = 4; |
229 | static const int MOV16SZ = 2; |
230 | static const int MOV8SZ = 1; |
231 | |
232 | static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) { |
233 | switch (LoadOpcode) { |
234 | case X86::VMOVUPSYrm: |
235 | case X86::VMOVAPSYrm: |
236 | return X86::VMOVUPSrm; |
237 | case X86::VMOVUPDYrm: |
238 | case X86::VMOVAPDYrm: |
239 | return X86::VMOVUPDrm; |
240 | case X86::VMOVDQUYrm: |
241 | case X86::VMOVDQAYrm: |
242 | return X86::VMOVDQUrm; |
243 | case X86::VMOVUPSZ256rm: |
244 | case X86::VMOVAPSZ256rm: |
245 | return X86::VMOVUPSZ128rm; |
246 | case X86::VMOVUPDZ256rm: |
247 | case X86::VMOVAPDZ256rm: |
248 | return X86::VMOVUPDZ128rm; |
249 | case X86::VMOVDQU64Z256rm: |
250 | case X86::VMOVDQA64Z256rm: |
251 | return X86::VMOVDQU64Z128rm; |
252 | case X86::VMOVDQU32Z256rm: |
253 | case X86::VMOVDQA32Z256rm: |
254 | return X86::VMOVDQU32Z128rm; |
255 | default: |
256 | llvm_unreachable("Unexpected Load Instruction Opcode" ); |
257 | } |
258 | return 0; |
259 | } |
260 | |
261 | static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) { |
262 | switch (StoreOpcode) { |
263 | case X86::VMOVUPSYmr: |
264 | case X86::VMOVAPSYmr: |
265 | return X86::VMOVUPSmr; |
266 | case X86::VMOVUPDYmr: |
267 | case X86::VMOVAPDYmr: |
268 | return X86::VMOVUPDmr; |
269 | case X86::VMOVDQUYmr: |
270 | case X86::VMOVDQAYmr: |
271 | return X86::VMOVDQUmr; |
272 | case X86::VMOVUPSZ256mr: |
273 | case X86::VMOVAPSZ256mr: |
274 | return X86::VMOVUPSZ128mr; |
275 | case X86::VMOVUPDZ256mr: |
276 | case X86::VMOVAPDZ256mr: |
277 | return X86::VMOVUPDZ128mr; |
278 | case X86::VMOVDQU64Z256mr: |
279 | case X86::VMOVDQA64Z256mr: |
280 | return X86::VMOVDQU64Z128mr; |
281 | case X86::VMOVDQU32Z256mr: |
282 | case X86::VMOVDQA32Z256mr: |
283 | return X86::VMOVDQU32Z128mr; |
284 | default: |
285 | llvm_unreachable("Unexpected Load Instruction Opcode" ); |
286 | } |
287 | return 0; |
288 | } |
289 | |
290 | static int getAddrOffset(const MachineInstr *MI) { |
291 | const MCInstrDesc &Descl = MI->getDesc(); |
292 | int AddrOffset = X86II::getMemoryOperandNo(TSFlags: Descl.TSFlags); |
293 | assert(AddrOffset != -1 && "Expected Memory Operand" ); |
294 | AddrOffset += X86II::getOperandBias(Desc: Descl); |
295 | return AddrOffset; |
296 | } |
297 | |
298 | static MachineOperand &getBaseOperand(MachineInstr *MI) { |
299 | int AddrOffset = getAddrOffset(MI); |
300 | return MI->getOperand(i: AddrOffset + X86::AddrBaseReg); |
301 | } |
302 | |
303 | static MachineOperand &getDispOperand(MachineInstr *MI) { |
304 | int AddrOffset = getAddrOffset(MI); |
305 | return MI->getOperand(i: AddrOffset + X86::AddrDisp); |
306 | } |
307 | |
308 | // Relevant addressing modes contain only base register and immediate |
309 | // displacement or frameindex and immediate displacement. |
310 | // TODO: Consider expanding to other addressing modes in the future |
311 | static bool isRelevantAddressingMode(MachineInstr *MI) { |
312 | int AddrOffset = getAddrOffset(MI); |
313 | const MachineOperand &Base = getBaseOperand(MI); |
314 | const MachineOperand &Disp = getDispOperand(MI); |
315 | const MachineOperand &Scale = MI->getOperand(i: AddrOffset + X86::AddrScaleAmt); |
316 | const MachineOperand &Index = MI->getOperand(i: AddrOffset + X86::AddrIndexReg); |
317 | const MachineOperand &Segment = MI->getOperand(i: AddrOffset + X86::AddrSegmentReg); |
318 | |
319 | if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI())) |
320 | return false; |
321 | if (!Disp.isImm()) |
322 | return false; |
323 | if (Scale.getImm() != 1) |
324 | return false; |
325 | if (!(Index.isReg() && Index.getReg() == X86::NoRegister)) |
326 | return false; |
327 | if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister)) |
328 | return false; |
329 | return true; |
330 | } |
331 | |
332 | // Collect potentially blocking stores. |
333 | // Limit the number of instructions backwards we want to inspect |
334 | // since the effect of store block won't be visible if the store |
335 | // and load instructions have enough instructions in between to |
336 | // keep the core busy. |
337 | static SmallVector<MachineInstr *, 2> |
338 | findPotentialBlockers(MachineInstr *LoadInst) { |
339 | SmallVector<MachineInstr *, 2> PotentialBlockers; |
340 | unsigned BlockCount = 0; |
341 | const unsigned InspectionLimit = X86AvoidSFBInspectionLimit; |
342 | for (auto PBInst = std::next(x: MachineBasicBlock::reverse_iterator(LoadInst)), |
343 | E = LoadInst->getParent()->rend(); |
344 | PBInst != E; ++PBInst) { |
345 | if (PBInst->isMetaInstruction()) |
346 | continue; |
347 | BlockCount++; |
348 | if (BlockCount >= InspectionLimit) |
349 | break; |
350 | MachineInstr &MI = *PBInst; |
351 | if (MI.getDesc().isCall()) |
352 | return PotentialBlockers; |
353 | PotentialBlockers.push_back(Elt: &MI); |
354 | } |
355 | // If we didn't get to the instructions limit try predecessing blocks. |
356 | // Ideally we should traverse the predecessor blocks in depth with some |
357 | // coloring algorithm, but for now let's just look at the first order |
358 | // predecessors. |
359 | if (BlockCount < InspectionLimit) { |
360 | MachineBasicBlock *MBB = LoadInst->getParent(); |
361 | int LimitLeft = InspectionLimit - BlockCount; |
362 | for (MachineBasicBlock *PMBB : MBB->predecessors()) { |
363 | int PredCount = 0; |
364 | for (MachineInstr &PBInst : llvm::reverse(C&: *PMBB)) { |
365 | if (PBInst.isMetaInstruction()) |
366 | continue; |
367 | PredCount++; |
368 | if (PredCount >= LimitLeft) |
369 | break; |
370 | if (PBInst.getDesc().isCall()) |
371 | break; |
372 | PotentialBlockers.push_back(Elt: &PBInst); |
373 | } |
374 | } |
375 | } |
376 | return PotentialBlockers; |
377 | } |
378 | |
379 | void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, |
380 | int64_t LoadDisp, MachineInstr *StoreInst, |
381 | unsigned NStoreOpcode, int64_t StoreDisp, |
382 | unsigned Size, int64_t LMMOffset, |
383 | int64_t SMMOffset) { |
384 | MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
385 | MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
386 | MachineBasicBlock *MBB = LoadInst->getParent(); |
387 | MachineMemOperand *LMMO = *LoadInst->memoperands_begin(); |
388 | MachineMemOperand *SMMO = *StoreInst->memoperands_begin(); |
389 | |
390 | Register Reg1 = MRI->createVirtualRegister( |
391 | RegClass: TII->getRegClass(MCID: TII->get(Opcode: NLoadOpcode), OpNum: 0, TRI, MF: *(MBB->getParent()))); |
392 | MachineInstr *NewLoad = |
393 | BuildMI(BB&: *MBB, I: LoadInst, MIMD: LoadInst->getDebugLoc(), MCID: TII->get(Opcode: NLoadOpcode), |
394 | DestReg: Reg1) |
395 | .add(MO: LoadBase) |
396 | .addImm(Val: 1) |
397 | .addReg(RegNo: X86::NoRegister) |
398 | .addImm(Val: LoadDisp) |
399 | .addReg(RegNo: X86::NoRegister) |
400 | .addMemOperand( |
401 | MMO: MBB->getParent()->getMachineMemOperand(MMO: LMMO, Offset: LMMOffset, Size)); |
402 | if (LoadBase.isReg()) |
403 | getBaseOperand(MI: NewLoad).setIsKill(false); |
404 | LLVM_DEBUG(NewLoad->dump()); |
405 | // If the load and store are consecutive, use the loadInst location to |
406 | // reduce register pressure. |
407 | MachineInstr *StInst = StoreInst; |
408 | auto PrevInstrIt = prev_nodbg(It: MachineBasicBlock::instr_iterator(StoreInst), |
409 | Begin: MBB->instr_begin()); |
410 | if (PrevInstrIt.getNodePtr() == LoadInst) |
411 | StInst = LoadInst; |
412 | MachineInstr *NewStore = |
413 | BuildMI(BB&: *MBB, I: StInst, MIMD: StInst->getDebugLoc(), MCID: TII->get(Opcode: NStoreOpcode)) |
414 | .add(MO: StoreBase) |
415 | .addImm(Val: 1) |
416 | .addReg(RegNo: X86::NoRegister) |
417 | .addImm(Val: StoreDisp) |
418 | .addReg(RegNo: X86::NoRegister) |
419 | .addReg(RegNo: Reg1) |
420 | .addMemOperand( |
421 | MMO: MBB->getParent()->getMachineMemOperand(MMO: SMMO, Offset: SMMOffset, Size)); |
422 | if (StoreBase.isReg()) |
423 | getBaseOperand(MI: NewStore).setIsKill(false); |
424 | MachineOperand &StoreSrcVReg = StoreInst->getOperand(i: X86::AddrNumOperands); |
425 | assert(StoreSrcVReg.isReg() && "Expected virtual register" ); |
426 | NewStore->getOperand(i: X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill()); |
427 | LLVM_DEBUG(NewStore->dump()); |
428 | } |
429 | |
430 | void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst, |
431 | int64_t LdDispImm, MachineInstr *StoreInst, |
432 | int64_t StDispImm, int64_t LMMOffset, |
433 | int64_t SMMOffset) { |
434 | int LdDisp = LdDispImm; |
435 | int StDisp = StDispImm; |
436 | while (Size > 0) { |
437 | if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(Opcode: LoadInst->getOpcode())) { |
438 | Size = Size - MOV128SZ; |
439 | buildCopy(LoadInst, NLoadOpcode: getYMMtoXMMLoadOpcode(LoadOpcode: LoadInst->getOpcode()), LoadDisp: LdDisp, |
440 | StoreInst, NStoreOpcode: getYMMtoXMMStoreOpcode(StoreOpcode: StoreInst->getOpcode()), |
441 | StoreDisp: StDisp, Size: MOV128SZ, LMMOffset, SMMOffset); |
442 | LdDisp += MOV128SZ; |
443 | StDisp += MOV128SZ; |
444 | LMMOffset += MOV128SZ; |
445 | SMMOffset += MOV128SZ; |
446 | continue; |
447 | } |
448 | if (Size - MOV64SZ >= 0) { |
449 | Size = Size - MOV64SZ; |
450 | buildCopy(LoadInst, NLoadOpcode: X86::MOV64rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV64mr, StoreDisp: StDisp, |
451 | Size: MOV64SZ, LMMOffset, SMMOffset); |
452 | LdDisp += MOV64SZ; |
453 | StDisp += MOV64SZ; |
454 | LMMOffset += MOV64SZ; |
455 | SMMOffset += MOV64SZ; |
456 | continue; |
457 | } |
458 | if (Size - MOV32SZ >= 0) { |
459 | Size = Size - MOV32SZ; |
460 | buildCopy(LoadInst, NLoadOpcode: X86::MOV32rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV32mr, StoreDisp: StDisp, |
461 | Size: MOV32SZ, LMMOffset, SMMOffset); |
462 | LdDisp += MOV32SZ; |
463 | StDisp += MOV32SZ; |
464 | LMMOffset += MOV32SZ; |
465 | SMMOffset += MOV32SZ; |
466 | continue; |
467 | } |
468 | if (Size - MOV16SZ >= 0) { |
469 | Size = Size - MOV16SZ; |
470 | buildCopy(LoadInst, NLoadOpcode: X86::MOV16rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV16mr, StoreDisp: StDisp, |
471 | Size: MOV16SZ, LMMOffset, SMMOffset); |
472 | LdDisp += MOV16SZ; |
473 | StDisp += MOV16SZ; |
474 | LMMOffset += MOV16SZ; |
475 | SMMOffset += MOV16SZ; |
476 | continue; |
477 | } |
478 | if (Size - MOV8SZ >= 0) { |
479 | Size = Size - MOV8SZ; |
480 | buildCopy(LoadInst, NLoadOpcode: X86::MOV8rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV8mr, StoreDisp: StDisp, |
481 | Size: MOV8SZ, LMMOffset, SMMOffset); |
482 | LdDisp += MOV8SZ; |
483 | StDisp += MOV8SZ; |
484 | LMMOffset += MOV8SZ; |
485 | SMMOffset += MOV8SZ; |
486 | continue; |
487 | } |
488 | } |
489 | assert(Size == 0 && "Wrong size division" ); |
490 | } |
491 | |
492 | static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) { |
493 | MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
494 | MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
495 | auto *StorePrevNonDbgInstr = |
496 | prev_nodbg(It: MachineBasicBlock::instr_iterator(StoreInst), |
497 | Begin: LoadInst->getParent()->instr_begin()) |
498 | .getNodePtr(); |
499 | if (LoadBase.isReg()) { |
500 | MachineInstr *LastLoad = LoadInst->getPrevNode(); |
501 | // If the original load and store to xmm/ymm were consecutive |
502 | // then the partial copies were also created in |
503 | // a consecutive order to reduce register pressure, |
504 | // and the location of the last load is before the last store. |
505 | if (StorePrevNonDbgInstr == LoadInst) |
506 | LastLoad = LoadInst->getPrevNode()->getPrevNode(); |
507 | getBaseOperand(MI: LastLoad).setIsKill(LoadBase.isKill()); |
508 | } |
509 | if (StoreBase.isReg()) { |
510 | MachineInstr *StInst = StoreInst; |
511 | if (StorePrevNonDbgInstr == LoadInst) |
512 | StInst = LoadInst; |
513 | getBaseOperand(MI: StInst->getPrevNode()).setIsKill(StoreBase.isKill()); |
514 | } |
515 | } |
516 | |
517 | bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1, |
518 | const MachineMemOperand &Op2) const { |
519 | if (!Op1.getValue() || !Op2.getValue()) |
520 | return true; |
521 | |
522 | int64_t MinOffset = std::min(a: Op1.getOffset(), b: Op2.getOffset()); |
523 | int64_t Overlapa = Op1.getSize().getValue() + Op1.getOffset() - MinOffset; |
524 | int64_t Overlapb = Op2.getSize().getValue() + Op2.getOffset() - MinOffset; |
525 | |
526 | return !AA->isNoAlias( |
527 | LocA: MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()), |
528 | LocB: MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo())); |
529 | } |
530 | |
531 | void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) { |
532 | for (auto &MBB : MF) |
533 | for (auto &MI : MBB) { |
534 | if (!isPotentialBlockedMemCpyLd(Opcode: MI.getOpcode())) |
535 | continue; |
536 | Register DefVR = MI.getOperand(i: 0).getReg(); |
537 | if (!MRI->hasOneNonDBGUse(RegNo: DefVR)) |
538 | continue; |
539 | for (MachineOperand &StoreMO : |
540 | llvm::make_early_inc_range(Range: MRI->use_nodbg_operands(Reg: DefVR))) { |
541 | MachineInstr &StoreMI = *StoreMO.getParent(); |
542 | // Skip cases where the memcpy may overlap. |
543 | if (StoreMI.getParent() == MI.getParent() && |
544 | isPotentialBlockedMemCpyPair(LdOpcode: MI.getOpcode(), StOpcode: StoreMI.getOpcode()) && |
545 | isRelevantAddressingMode(MI: &MI) && |
546 | isRelevantAddressingMode(MI: &StoreMI) && |
547 | MI.hasOneMemOperand() && StoreMI.hasOneMemOperand()) { |
548 | if (!alias(Op1: **MI.memoperands_begin(), Op2: **StoreMI.memoperands_begin())) |
549 | BlockedLoadsStoresPairs.push_back(Elt: std::make_pair(x: &MI, y: &StoreMI)); |
550 | } |
551 | } |
552 | } |
553 | } |
554 | |
555 | unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) { |
556 | const auto *TRC = TII->getRegClass(MCID: TII->get(Opcode: LoadInst->getOpcode()), OpNum: 0, TRI, |
557 | MF: *LoadInst->getParent()->getParent()); |
558 | return TRI->getRegSizeInBits(RC: *TRC) / 8; |
559 | } |
560 | |
561 | void X86AvoidSFBPass::breakBlockedCopies( |
562 | MachineInstr *LoadInst, MachineInstr *StoreInst, |
563 | const DisplacementSizeMap &BlockingStoresDispSizeMap) { |
564 | int64_t LdDispImm = getDispOperand(MI: LoadInst).getImm(); |
565 | int64_t StDispImm = getDispOperand(MI: StoreInst).getImm(); |
566 | int64_t LMMOffset = 0; |
567 | int64_t SMMOffset = 0; |
568 | |
569 | int64_t LdDisp1 = LdDispImm; |
570 | int64_t LdDisp2 = 0; |
571 | int64_t StDisp1 = StDispImm; |
572 | int64_t StDisp2 = 0; |
573 | unsigned Size1 = 0; |
574 | unsigned Size2 = 0; |
575 | int64_t LdStDelta = StDispImm - LdDispImm; |
576 | |
577 | for (auto DispSizePair : BlockingStoresDispSizeMap) { |
578 | LdDisp2 = DispSizePair.first; |
579 | StDisp2 = DispSizePair.first + LdStDelta; |
580 | Size2 = DispSizePair.second; |
581 | // Avoid copying overlapping areas. |
582 | if (LdDisp2 < LdDisp1) { |
583 | int OverlapDelta = LdDisp1 - LdDisp2; |
584 | LdDisp2 += OverlapDelta; |
585 | StDisp2 += OverlapDelta; |
586 | Size2 -= OverlapDelta; |
587 | } |
588 | Size1 = LdDisp2 - LdDisp1; |
589 | |
590 | // Build a copy for the point until the current blocking store's |
591 | // displacement. |
592 | buildCopies(Size: Size1, LoadInst, LdDispImm: LdDisp1, StoreInst, StDispImm: StDisp1, LMMOffset, |
593 | SMMOffset); |
594 | // Build a copy for the current blocking store. |
595 | buildCopies(Size: Size2, LoadInst, LdDispImm: LdDisp2, StoreInst, StDispImm: StDisp2, LMMOffset: LMMOffset + Size1, |
596 | SMMOffset: SMMOffset + Size1); |
597 | LdDisp1 = LdDisp2 + Size2; |
598 | StDisp1 = StDisp2 + Size2; |
599 | LMMOffset += Size1 + Size2; |
600 | SMMOffset += Size1 + Size2; |
601 | } |
602 | unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1; |
603 | buildCopies(Size: Size3, LoadInst, LdDispImm: LdDisp1, StoreInst, StDispImm: StDisp1, LMMOffset, |
604 | SMMOffset: LMMOffset); |
605 | } |
606 | |
607 | static bool hasSameBaseOpValue(MachineInstr *LoadInst, |
608 | MachineInstr *StoreInst) { |
609 | const MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
610 | const MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
611 | if (LoadBase.isReg() != StoreBase.isReg()) |
612 | return false; |
613 | if (LoadBase.isReg()) |
614 | return LoadBase.getReg() == StoreBase.getReg(); |
615 | return LoadBase.getIndex() == StoreBase.getIndex(); |
616 | } |
617 | |
618 | static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize, |
619 | int64_t StoreDispImm, unsigned StoreSize) { |
620 | return ((StoreDispImm >= LoadDispImm) && |
621 | (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize))); |
622 | } |
623 | |
624 | // Keep track of all stores blocking a load |
625 | static void |
626 | updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap, |
627 | int64_t DispImm, unsigned Size) { |
628 | auto [It, Inserted] = BlockingStoresDispSizeMap.try_emplace(k: DispImm, args&: Size); |
629 | // Choose the smallest blocking store starting at this displacement. |
630 | if (!Inserted && It->second > Size) |
631 | It->second = Size; |
632 | } |
633 | |
634 | // Remove blocking stores contained in each other. |
635 | static void |
636 | removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) { |
637 | if (BlockingStoresDispSizeMap.size() <= 1) |
638 | return; |
639 | |
640 | SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack; |
641 | for (auto DispSizePair : BlockingStoresDispSizeMap) { |
642 | int64_t CurrDisp = DispSizePair.first; |
643 | unsigned CurrSize = DispSizePair.second; |
644 | while (DispSizeStack.size()) { |
645 | int64_t PrevDisp = DispSizeStack.back().first; |
646 | unsigned PrevSize = DispSizeStack.back().second; |
647 | if (CurrDisp + CurrSize > PrevDisp + PrevSize) |
648 | break; |
649 | DispSizeStack.pop_back(); |
650 | } |
651 | DispSizeStack.push_back(Elt: DispSizePair); |
652 | } |
653 | BlockingStoresDispSizeMap.clear(); |
654 | for (auto Disp : DispSizeStack) |
655 | BlockingStoresDispSizeMap.insert(x&: Disp); |
656 | } |
657 | |
658 | bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) { |
659 | bool Changed = false; |
660 | |
661 | if (DisableX86AvoidStoreForwardBlocks || skipFunction(F: MF.getFunction()) || |
662 | !MF.getSubtarget<X86Subtarget>().is64Bit()) |
663 | return false; |
664 | |
665 | MRI = &MF.getRegInfo(); |
666 | assert(MRI->isSSA() && "Expected MIR to be in SSA form" ); |
667 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
668 | TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
669 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
670 | LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n" ;); |
671 | // Look for a load then a store to XMM/YMM which look like a memcpy |
672 | findPotentiallylBlockedCopies(MF); |
673 | |
674 | for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) { |
675 | MachineInstr *LoadInst = LoadStoreInstPair.first; |
676 | int64_t LdDispImm = getDispOperand(MI: LoadInst).getImm(); |
677 | DisplacementSizeMap BlockingStoresDispSizeMap; |
678 | |
679 | SmallVector<MachineInstr *, 2> PotentialBlockers = |
680 | findPotentialBlockers(LoadInst); |
681 | for (auto *PBInst : PotentialBlockers) { |
682 | if (!isPotentialBlockingStoreInst(Opcode: PBInst->getOpcode(), |
683 | LoadOpcode: LoadInst->getOpcode()) || |
684 | !isRelevantAddressingMode(MI: PBInst) || !PBInst->hasOneMemOperand()) |
685 | continue; |
686 | int64_t PBstDispImm = getDispOperand(MI: PBInst).getImm(); |
687 | unsigned PBstSize = (*PBInst->memoperands_begin())->getSize().getValue(); |
688 | // This check doesn't cover all cases, but it will suffice for now. |
689 | // TODO: take branch probability into consideration, if the blocking |
690 | // store is in an unreached block, breaking the memcopy could lose |
691 | // performance. |
692 | if (hasSameBaseOpValue(LoadInst, StoreInst: PBInst) && |
693 | isBlockingStore(LoadDispImm: LdDispImm, LoadSize: getRegSizeInBytes(LoadInst), StoreDispImm: PBstDispImm, |
694 | StoreSize: PBstSize)) |
695 | updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, DispImm: PBstDispImm, |
696 | Size: PBstSize); |
697 | } |
698 | |
699 | if (BlockingStoresDispSizeMap.empty()) |
700 | continue; |
701 | |
702 | // We found a store forward block, break the memcpy's load and store |
703 | // into smaller copies such that each smaller store that was causing |
704 | // a store block would now be copied separately. |
705 | MachineInstr *StoreInst = LoadStoreInstPair.second; |
706 | LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n" ); |
707 | LLVM_DEBUG(LoadInst->dump()); |
708 | LLVM_DEBUG(StoreInst->dump()); |
709 | LLVM_DEBUG(dbgs() << "Replaced with:\n" ); |
710 | removeRedundantBlockingStores(BlockingStoresDispSizeMap); |
711 | breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap); |
712 | updateKillStatus(LoadInst, StoreInst); |
713 | ForRemoval.push_back(Elt: LoadInst); |
714 | ForRemoval.push_back(Elt: StoreInst); |
715 | } |
716 | for (auto *RemovedInst : ForRemoval) { |
717 | RemovedInst->eraseFromParent(); |
718 | } |
719 | ForRemoval.clear(); |
720 | BlockedLoadsStoresPairs.clear(); |
721 | LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n" ;); |
722 | |
723 | return Changed; |
724 | } |
725 | |